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Preface

This volume contains the proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming (CP 2011), held in Peru-
gia, Italy, during September 12-16, 2011. Detailed information about the 2011
conference can be found on the conference website (http://www.dmi.unipg.it
/cp2011/). We would like to thank our sponsors for their generous support in
various forms for this event. Held annually, the CP conference is the premier in-
ternational forum on constraint programming. The conference is concerned with
all aspects of computing with constraints, including: theory, algorithms, envi-
ronments, languages, models and systems, applications such as decision making,
resource allocation, and agreement technologies. CP 2011 was organized by the
Università degli Studi di Perugia and Dipartimento di Matematica e Informatica
on behalf of the Association for Constraint Programming (ACP). Information
about ACP can be found at http://www.a4cp.org/ and that of the conferences
in the series can be found at http://www.a4cp.org/events/cp-conference-series.

CP 2011 included two calls for contributions: one for research papers, de-
scribing fundamental innovations in the field, and one for application papers,
describing uses of constraint technology in real-life scenarios. We received a to-
tal of 159 submissions (139 to the Research Track and 20 to the Application
Track). We did not differentiate between long and short submissions. They were
both evaluated to the same high standard in terms of quality. In particular, no
long submissions were accepted as short papers. Every paper received at least
three reviews. An author rebuttal process was implemented, allowing authors to
provide responses to the initial reviews of their papers. In many cases, several
rounds of intense discussions among the Program Committee members in charge
of the papers were carried out before final decisions were made. Where necessary,
additional reviews were solicited for individual papers. There were separate Re-
search Track and Application Track Program Committees. Eventually, 51 (37%)
research papers (7 short) and 7 (35%) application papers were accepted. All
papers, long and short, were presented at the main conference.

The conference program featured three invited talks by distinguished scien-
tists: Leonardo de Moura, Laurent Perron and Jean-Charles Régin. The abstracts
of the talks are included in these proceedings. Winners of the 2011 ACP Research
Excellence and Doctoral Research Awards presented their award talks. In addi-
tion to regular paper presentations, the conference encompassed pre-conference
workshops, tutorials, a panel and social activities.

CP 2011 continued the tradition of the CP Doctoral Program, in which PhD
students presented their work, attended tutorials and discussed their work with
senior researchers via a mentoring scheme. This year, the Doctoral Program
received 39 submissions and selected 30 of them for financial support (2 of whom
were supported in the form of an AI*IA scholarship).



VI Preface

The conference management system, EasyChair, made our life a lot easier
from paper submission to reviewing to discussions and to producing the pro-
ceedings. We are grateful to Andrei Voronkov for providing such a nice platform
to the community for free.

A successful conference is the result of hard work by many people. I thank
Stefano Bistarelli, the Conference Chair, who had the huge task of planning
the whole event. He and his team put in much time and effort in budgeting,
logistical planning, booking, maintaining the conference website, and essentially
making everything work. I thank Helmut Simonis, the Application Track Chair,
for assembling the Program Committee and taking care of papers of the appli-
cation track. I thank Christian Schulte, the Workshop and Tutorial Chair, for
soliciting and putting together an interesting workshop and tutorial program. I
thank Christopher Jefferson and Guido Tack, the Doctoral Program Chairs, for
composing a fantastic program for our future generation. My applause to Ian
Miguel, the Sponsorship Chair, for his relentless pursuit of various sponsorship
possibilities. As usual, Helmut Simonis took great photos of the conference for
our fond memories.

The conference would not have been possible without the high-quality and
interesting submissions from authors, who made the decision process so challeng-
ing. I must thank all Program Committee (PC) members for their dedication
over the past months. They all reviewed papers in a timely and professional
manner. Of course, we could not leave out the additional reviewers recruited
by our PC members. Together, these wonderful colleagues helped to assemble
an excellent conference program. Pedro Meseguer was kind enough to oversee
submissions from CUHK, assign PC members and make final decisions. I am
also indebted to many of my “secret agents” (who should remain anonymous for
obvious reasons) who offered last-minute help with additional reviews and arbi-
tration. I would like to salute my mentors: Peter Stuckey, Ian Gent and David
Cohen, who were the Program Chairs of CP 2008, 2009 and 2010, respectively.
They were always good sources of advice and inspiration. Barry O’Sullivan was
always there to answer my many questions.

I also acknowledge local assistance from Ivy Chau, Jingying Li, Lirong Liu,
Terrence Mak, Irwin Shum, Charles Siu, May Woo and Yi Wu.

Last but not least, I would like to thank members of the Executive Com-
mittee of the Association for Constraint Programming for entrusting me with
the responsibility of being the Program Chair, thus giving me an opportunity
for a thriving and rewarding experience. I hope I met at least some of their
expectations for CP 2011.

July 2011 Jimmy Lee



Distinguished Papers

Separate small subcommittees were formed to help decide on the papers deserv-
ing recognition as the highest standard of those submitted for each submission
category.

Best Application Track Paper

“The Design of Cryptographic Substitution Boxes Using CSPs,” by Venkatesh
Ramamoorthy, Marius Silaghi, Toshihiro Matsui, Katsutoshi Hirayama and
Makoto Yokoo

Runner-Up

“Optimal Carpet Cutting,” by Andreas Schutt, Peter J. Stuckey and Andrew R.
Verden

Best Research Track Paper

“On Minimal Constraint Networks,” by Georg Gottlob

Best Student Paper1

“Octagonal Domains for Continuous Constraints,” by Marie Pelleau, Charlotte
Truchet and Frédéric Benhamou

1 Student papers were those papers declared by the authors to be mainly the work
(both in research and writing) of PhD or other students.



Workshops and Tutorials

Workshops

A range of workshops affiliated with the conference took place the day before
the main conference on September 11, 2011. The accepted workshops were as
follows.

– Preferences and Soft Constraints (Soft 2011)
– Local Search Techniques in Constraint Satisfaction (LSCS 2011)
– Constraint-Based Methods for Bioinformatics (WCB 2011)
– Logics for Component Configuration (Lococo 2011)
– Symmetry in Constraint Satisfaction Problems (SymCon 2011)
– Constraint Modelling and Reformulation (ModRef 2011)
– Parallel Methods for Constraint Solving (PMCS 2011)
– MiniZinc (MZN 2011)

Tutorials

Three tutorial presentations were given during the main program of the confer-
ence as follows.

– Automatic Solver Configuration and Solver Portfolios, by Meinolf Sellmann
(IBM, USA)

– Integer Programming for Constraint Programmers, by Chris Beck (Univer-
sity of Toronto, Canada), Timo Berdhold, Ambros Gleixner, Stefan Heinz,
Kati Wolter (Zuse Institute Berlin, Germany)

– Machine Learning and Data Mining: Challenges and Opportunities for Con-
straint Programming, by Luc De Raedt, Siegfried Nijssen (Katholieke
Universiteit Leuven, Belgium)
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Arnaud Lallouet GREYC, University of Caen, France
Javier Larrossa Technical University of Catalonia, Spain
Yat-Chiu Law The Chinese University of Hong Kong
Joao Marques-Silva University College Dublin, Ireland
Pedro Meseguer IIIA-CSIC, Spain
Laurent Michel University of Connecticut, USA
Ian Miguel University of St. Andrews, UK
Michela Milano DEIS Università di Bologna, Italy
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Association for Constraint Programming

The Association for Constraint Programming (ACP) aims at promoting con-
straint programming in every aspect of the scientific world, by encouraging its
theoretical and practical developments, its teaching in academic institutions,
its adoption in the industrial world, and its use in applications. The ACP is a
non-profit association, which uses the surplus of the organized events to support
future events or activities.

The ACP is led by an Executive Committee (EC), which takes all the deci-
sions necessary to achieve the goals of the association. In particular, the ACP
EC organizes a summer school in CP and the ACP Research Excellence Award
and the ACP Doctoral Research Award. The ACP EC also organizes an annual
international conference on constraint programming, and decides the venue of
the conference, as well as its program and conference chairs.

The ACP EC maintains a website (http://www.a4cp.org/) about all aspects
of CP, and publishes a quarterly newsletter about CP events.

Executive Committee

President: Barry O’Sullivan, Ireland
Secretary: Jimmy Lee, Hong Kong
Treasurer: Thomas Schiex, France
Other Members:

– Yves Deville, Belgium
– John Hooker, USA
– Helmut Simonis, Ireland
– Peter Stuckey, Australia
– Roland Yap, Singapore

Also supporting the EC is Pedro Meseguer, Spain, acting as Conference
Coordinator.
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Orchestrating Satisfiability Engines

Leonardo de Moura

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
leonardo@microsoft.com

Abstract. Constraint satisfaction problems arise in many diverse ar-
eas including software and hardware verification, type inference, static
program analysis, test-case generation, scheduling, planning and graph
problems. These areas share a common trait, they include a core com-
ponent using logical formulas for describing states and transformations
between them. The most well-known constraint satisfaction problem is
propositional satisfiability, SAT, where the goal is to decide whether a
formula over Boolean variables, formed using logical connectives can be
made true by choosing true/false values for its variables. Some problems
are more naturally described using richer languages, such as arithmetic.
A supporting theory (of arithmetic) is then required to capture the mean-
ing of these formulas. Solvers for such formulations are commonly called
Satisfiability Modulo Theories (SMT) solvers.

Software analysis and model-based tools are increasingly complex and
multi-faceted software systems. However, at their core is invariably a
component using logical formulas for describing states and transforma-
tions between system states. In a nutshell, symbolic logic is the calculus
of computation. The state-of-the art SMT solver, Z3, developed at Mi-
crosoft Research, can be used to check the satisfiability of logical formulas
over one or more theories. SMT solvers offer a compelling match for soft-
ware tools, since several common software constructs map directly into
supported theories.

Z3 comprises of a collection of symbolic reasoning engines. These en-
gines are combined to address the requirements of each application do-
main. In this talk, we describe the main challenges in orchestrating the
different engines, and the main application domains within Microsoft.
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Operations Research and Constraint
Programming at Google

Laurent Perron

Google SA,
38 avenue de l’opéra,
75002 Paris, France

Abstract. The Operations Research and Optimization team at Google develops
both general purpose optimization tools and solutions for internal optimization
problems. We will describe the tools – most of which are available at http://
code.google.com/p/or-tools – and present a few applications, for example in
the area of assigning jobs to machines. Furthermore, we will discuss our usage of
Constraint Programming in greater detail, and how it fits into the general usage
of Operations Research at Google. Finally, we will also share our future plans.

J. Lee (Ed.): CP 2011, LNCS 6876, p. 2, 2011.
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Solving Problems with CP: Four Common

Pitfalls to Avoid

Jean-Charles Régin

Université de Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France
jcregin@gmail.com

Abstract. Constraint Programming (CP) is a general technique for
solving combinatorial optimization problems. Real world problems are
quite complex and solving them requires to divide work into different
parts. Mainly, there are: the abstraction of interesting and relevant sub-
parts, the definition of benchmarks and design of a global model and the
application of a particular search strategy. We propose to identify for
each of these parts some common pitfalls and to discuss them. We will
successively consider undivided model, rigid search, biased benchmarking
and wrong abstraction.

1 Introduction

The resolution of real world complex problems is hard for several reasons: the
size of the problem, the intrinsic difficulty of some subparts and the combination
of subparts. Therefore, it requires the implementation of a complex procedure
divided into several steps. We can identify four of them. First, the user has to
try to abstract some parts of the problem in order to focus his attention on
difficult and relevant parts, or on combinations of these parts. Then, a bench-
marking process must be defined in order to be able to work on smaller instances
than the whole problem. This process is needed for ensuring that the previous
step abstraction and the obtained results with small problems will be generally
applicable. Next, a global model must be defined. Here, we mean the method
that will be used for solving the whole problem and not each part. That is, for
instance, the successive resolution of each part and their combination. At last,
a search strategy is defined for the most important parts.

All these different aspects are well known. However, it appears that we tend
to repeat the same mistakes. Hence, we propose to try to identify some pitfalls.
We will show the benefit that we can obtain by avoiding them. For each step of
the resolution process, we identify one strong pitfall and try to give it a pertinent
name:

– undivided model
– rigid search
– biased benchmarking
– wrong abstraction

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 3–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The undivided model pitfall means that the global model for solving the whole
problem is too much general, in other words, we could certainly improve the
resolution if we split the resolution into different parts.

The rigid search expresses the idea of a search strategy which is too much
linked to a depth first search procedure. We should benefit from the recent
research about random restart and avoid waiting too long in a wrong part of the
search tree before leaving it.

The biased benchmarking corresponds to a process which cannot be globally
applicable. In other words, the obtained results for the smaller problems that
are considered could not be used to derive some global rules or ideas for solving
the whole problem.

The wrong abstraction defines a wrong identification of a relevant subpart
of the whole problem. For instance, the subpart may not include an important
constraint and be easy to solve in this context, whereas in the whole problem
the introduction of the missing constraint will totally change the difficulty.

We propose to detail these fours aspects

2 Undivided Model

Complex problems usually involve the combination of some other complex prob-
lems. Thus, we have two possibilities: either we deal with the whole problem
in one step, that is we integrate all the constraints and we try to solve the ob-
tained problem, or we split the problem into different parts and then we solve
the parts independently and we try to combine them. Note that the indepen-
dent resolutions of the subparts may be relative. Classical MIP formulations
and resolutions have nice examples of decompositions. The most well known are
certainly column generation and Bender’s decomposition.

We propose to emphasize this point on a well known example in CP the
sports scheduling problem of the MIPLIB which is described in [10]. A more
recent and nice example of decomposition can be found in [8], where a load
balancing problem must be solved.

The problem consists of scheduling games between n teams over n− 1 weeks.
In addition, each week is divided into n/2 periods. The goal is to schedule a game
for each period of every week so that the following constraints are satisfied:

1. Every team plays against every other team;
2. A team plays exactly once a week;
3. A team plays at most twice in the same period over the course of the season.

The first two constraints just define a round robin. The third one complexifies
the problem.

A solution to this problem for 8 teams is shown in Figure 1. The problem can
be made more uniform by adding a ”dummy” final week and requesting that all
teams play exactly twice in each period.

With the dummy column, the most efficient model seems to be the following
one:
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Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4
period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6
period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7
period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

Fig. 1. A solution to the Sports-Scheduling Application with 8 teams

We use two classes of variables:
• team variables specifying the team playing on a given week, period and

slot;
• game variables specifying which game is played on a given week and period.

The use of game variables makes it simple to state the constraint that every
team must play against each other team. Since games are uniquely identified
by their two teams, there are n ∗ (n − 1)/2 possible values for the game vari-
ables, and by defining an alldiff constraint on the game variables we ensure that
the first constraint is satisfied. Team variables and game variables are simply
linked by ternary table constraints given in extension. For each slot i, a table
constraint involves the variables gi, thi, tai where gi is the game variable, thi
and tai the team variables of this slot. For 8 teams, it is defined by the list of
tuples < 1, 1, 2 >,< 2, 1, 3 >, ..., < 56, 7, 8 > where a combination < g, t1, t2 >
means that the game number g corresponds to the game t1 vs t2. For each week,
the constraint on the week (constraint 2) is represented by an alldiff constraint
involving the team variables of the week. For each period, the constraint on the
period (constraint 3) is represented by a global cardinality constraint involving
the team variable of the period.

We add an additional constraint for breaking symmetry: the game 0 vs w
appears in week w. In addition, the search strategy is defined as follows. Teams
are instantiated (that is value of team variables). We select the team which is
the most instantiated and we select the team variable having this value in its
domain and the smallest domain size and we assign this variable to this team
value. Here are the results we obtain:

#teams #fails time (s)
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
24 6,391,470 12h

This model is a global one and it involves only one step: all the constraints are
defined and we try to find a solution. The results are good but we can really
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improve them if we try to decompose the model. For instance, the link between
rows and columns is an issue. In addition, this problem can be seen in a different
way: we have to find a round robin which satisfies the period constraint. Thus,
instead of trying to find a round robin and at the same time to satisfy the period
constraint, we could try to decompose the problem into its two natural parts:

1. We compute a round robin, which is an easy task (i.e. a polynomial algo-
rithm is available). This means that we satisfy the alldiff constraint on game
variables and we satisfy all the constraints on team variables for each week.

2. Then, we try to rearrange the elements of each column such that the period
constraint is satisfied.

In this model, symmetries are broken by setting 0 vs 1 as the first game of
the dummy column. Then, rows and columns are successively instantiated. The
major risk of this decomposition is that there may be no way to satisfy the
period constraints for the computed round robin. In this case, another round
robin should be computed and so on... Fortunately, this is not the case, as shown
by the obtained results given in Figure 2.

First Model
#teams #fails time (s)

8 32 0.08
10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
24 6,391,470 12h

Second Model
#teams #fails time (s)

8 10 0.01
10 24 0.6
12 58 0.2
14 21 0.2
16 182 0.6
18 263 0.9
20 226 1.2
24 2,702 10.5
26 5,683 26.4
30 11,895 138
40 2,834,754 6h

Fig. 2. The results obtained with two different models for solving sports scheduling
problems

This example clearly shows that decomposition may lead to huge improve-
ments. Note that the method we use is quite general: we precompute a solution
for a part of the problem and we try to rearrange it in order to satisfy some
additional constraints.

3 Rigid Search

At the beginning of CP, mainly static search strategies were considered. This
means that the set of variables is ordered a priori, that is before starting the
search. Then, the next assigned variable is selected w.r.t this order: the first
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Fig. 3. Impact of restarts (published with the courtesy of C. Gomes)

non assigned variable is selected and a value is assigned to it. Then, dynamic
orderings have been introduced. With dynamic orderings, the next variable to
assign is computed. Generally, a criteria is defined and recomputed for each
variable when a selection has to be made. The variable having the best value for
this criteria is chosen as the next variable to assign. A lot of studies have been
made and several orders have been proposed.

In addition, the search space is usually traversed by a depth first search.
These methods work well for a lot of problems, however they have in general

a huge drawback as it has been shown by C. Gomes et al [4] who emphasized
heavy tails phenomena in quasigroup completion problem.

Heavy tails phenomena have been observed by Pareto in the 1920’s. A stan-
dard distribution has an exponential decay, whereas a heavy tail distribution has
a power law decay. This phenomena arises in a lot of problems and in constraint
programming. For instance, while trying to solve some instances of the latin
square completion problem, Gomes et al. discovered that there is no ordering
which is able to solve all the instances in a short period of time. About 18%
of the instances remain unsolvable even with 100, 000 backtracks. Then, they
proved theoretically that heavy tail phenomena may be eliminated by using a
strategy for selecting the next assignment which involves some randomness and
by restarting the search when the solver begins to backtrack. The idea is very
nice and quite simple. Roughly, the idea can be described as follows: when se-
lecting a variable instead of taking the one having the best score in regards to
some criteria, consider the 10% best variables and randomly select one among
them. This is the selection method. Now, after a certain number of backtracks,
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we restart the search for a solution from scratch: this is the restart method.
Figure 3 shows the effect of this method.

This method performs very well in practice and has been intensively used
in commercial solvers like ILOG CP. It is also used by some MIP solvers. It
encourages us to be careful with too much rigid search and to accept to be less
deterministic.

4 Biased Benchmarking

Identifying an interesting problem is a first step but not the only one. It is
also quite important to design some benchmarks from which we could expect to
derive general considerations. This part is not enough studied and may cause
some problems because we have to make sure that the deduction may be still
valid in general and not only for the particular instances we studied. Biased
benchmarking represents the fact that the result obtained from a benchmark can
be not representative of the whole problem. Biased benchmarking will prevent
us from generalizing our results.

In other words, it means that benchmarks should not be too much focused on
a very specific part of a more general problem. Unfortunately, this is not always
the case. For instance, for the bin packing problem1, it appears that most of
the instances proposed in the literature have some major drawbacks. Gent [3]
criticized the well known Falkenauer’s benchmarks [2]. He closed five benchmark
problems left open by cpu-intensive methods using a genetic algorithm and an
exhaustive search method by using a very simple heuristic method requiring only
some seconds of cpu time and hours of manual work. He questioned the under-
lying hardness of test data sets. One reason of the problem is the kind of data
sets: most of the time, bins are filled in with only 3 items or less. Unfortunately,
the same kind of data sets have been proposed by others [9,6,5]. Korf took it
right up to explicitly consider triplets instances.

The issue here is not only the type of the data. It changes the kind of problem
which is solved. With such data sets, we can only conclude about problems
involving only few items per bins and not for the bin packing problem in general.
In fact, if there are few items per bin, then the capacity constraints dominate
the problems, whereas it is not the case when there are more items per bin. We
can prove this by considering the set of solution of the Diophantine equation
ax+ by = c. If we consider the case where the greatest common divisor (gcd) is
1, then this equation has always a solution when ab ≥ c and a solution in half of
the cases when ab < c (from Paoli’s theorem). If we consider now the equation
ax+ by + cz = d then we have less chance to have a gcd greater than 1 and the
equation is equivalent to the system ax+by = d−c or ax+by = d−2c or ... This
means that the density of solutions increases. So, if several variables are involved,
then the equation will have more chances to be satisfied. Since this equation
corresponds to the sum constraint involved for each bin, this means that we
1 From Wikipedia: objects of different volumes must be packed into a finite number

of bins of capacity V in a way that minimizes the number of bins used.
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have less and less chance to be able to filter the domains of the variables when
the number of variables increases. Therefore, benchmarks for the bin packing
problems should consider different types of data depending on the number of
items per bin.

5 Wrong Abstraction

In general, it is difficult to identify the relevant subparts of a problem, that is the
part that deserves a particular study. The wrong abstraction pitfall corresponds
to the identification of a subproblem which is not relevant for the resolution
of the whole problem whereas it looks interesting. This problematic has been
considered by Bessiere and Régin who proposed to test first the advantage of
having a constraint by using the solver before designing a new specific filtering
algorithm [1]. We propose to study another example.

Consider that we have a problem in which a counting constraint, like the
alldiff, is combined with arithmetic constraints. In this case, we could look at
the literature, like the CSPLIB, and try to find some problems having the same
type of combination. We can identify two problems: the Golomb Ruler problem
and the All Interval series. At first glance, these problems look very similar.

All interval series is described as prob007 in the CSPLIB. It can be expressed
as follows. Find a permutation (x1, ..., xn) of {0, 1, ..., n − 1} such that the list
|x2 − x1|, |x3 − x2|, ..., |xn − xn−1| is a permutation of {1, 2, ..., n− 1}.

The Golomb Ruler is the problem prob006 in the CSPLIB. It may be defined
as a set of m integers 0 = a1 < a2 < ... < am such that the m(m − 1)/2
differences aj − ai, 1 <= i < j <= m are distinct. Such a ruler is said to contain
m marks and is of length am. The objective is to find optimal (minimum length)
or near optimal rulers.

As shown in [7], the All interval series may be easily solved for large values of
n. For instance, the first two solutions can be found without any fail for n = 2000
and the 9, 912 solutions for n = 14 may be found with 670, 000 fails in 600s. On
the other hand, the Golomb Ruler is hard to solve for n = 13 where more than
20 millions of backtracks are required (see the CSPLIB comments).

In fact, these problems have a strong difference. The integration of arithmetic
constraints into the alldiff constraint which models the permutation are quite
different. For the All Interval series the combination is weak because arithmetic
constraints involve only successive variables whereas in the Golomb Ruler all the
n(n− 1)/2 differences between variables are implied.

Therefore, if you select the wrong problem that is if you make the wrong
abstraction, then you will miss the interesting part. On the other hand, if you
select the right abstraction you could better understand the weakness of your
CP model. For instance, the model for solving the Golomb Ruler clearly shows
the weakness of the combination of symbolic (or counting) and arithmetic con-
straints. Figure 4 shows a part of the solution of the alldiff constraint. We can
clearly see that the combination of arithmetic and counting constraints is not
really taken into account. It is not consistent to assign at the same time the
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Fig. 4. A current solution of a part of the alldiff constraint represented by red edges

variables x2 to 5, x3 to 6 and the absolute difference |x2 − x3| to 3. Unfortu-
nately, we do not know any model which prevents such bad assignments. Thus,
it is quite important to figure out which kind of combination is implied in your
problem, that is to make the right abstraction.

6 Conclusion

In this paper, we showed and detailed four common pitfalls when solving real
world problems with CP. Our goal has been to recall some principles that are
usually worthwhile in practice. First, we should avoid undivided models because
the decomposition of a model into different subproblems, their resolution and
their recombination give often good results in practice. Second, even if we have
clever strategies we should not forget that there is no ideal strategy and that
we have to avoid some parts of the search quickly when there are not successful
and apply principles like the random-restart mechanism. Then, we have to be
careful with benchmarking and ensure that we will be able to extrapolate the
results we obtained for some restricted version of the whole problem. At last, the
identification of relevant subparts of the problem on which we should focus our
attention is not an easy task and we should try to make the right abstraction.
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Abstract. In this paper we describe a Constraint Seeker application which pro-
vides a web interface to search for global constraints in the global constraint
catalog, given positive and negative, fully instantiated (ground) examples. Based
on the given instances the tool returns a ranked list of matching constraints, the
rank indicating whether the constraint is likely to be the intended constraint of
the user. We give some examples of use cases and generated output, describe the
different elements of the search and ranking process, discuss the role of constraint
programming in the different tools used, and provide evaluation results over the
complete global constraint catalog. The Constraint Seeker is an example for the
use of generic meta-data provided in the catalog to solve a specific problem.

1 Motivation

The global constraint catalog [4] provides a valuable repository of global constraint
information for both researchers in the constraint field and application developers
searching for the right modelling abstraction. The catalog currently describes over 350
constraints on more than 2800 pages. This wealth of information is also its main weak-
ness. For a novice (and even for an experienced) user it can be quite challenging to
find a particular constraint, unless the name in the catalog is known. As a consis-
tent naming scheme (like the naming scheme for chemical compounds http://en.
wikipedia.org/wiki/IUPAC_nomenclature, for example) does not exist in
the constraint field, and different constraint systems often use incompatible names and
argument orders for their constraints, there is no easy way to deduce the name of a con-
straint and the way its arguments are organized from its properties. The catalog already
provides search by name, or by keywords, and provides extensive cross-references be-
tween constraints, as well as a classification by the required argument type. All of these
access methods can be helpful, but are of limited use if one does not know too much
about the constraint one is looking for.
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2010 sponsored by CNRS (INS2I).
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The Constraint Seeker (http://seeker.mines-nantes.fr) provides
another way of finding constraint candidates, sorted by potential relevance, in the cat-
alog. The user provides positive and/or negative ground instances for a constraint, and
the tool provides a ranked list of possible candidates which match the given examples.

The paper is structured as follows: Section 2 describes related work, Section 3 shows
the use of the Constraint Seeker on an example query. Section 4 describes how candidate
explanations are created, the next section discusses the ranking of candidates, followed
by a discussion of instance generation. In Section 7 we show the different constraint
solvers in the system, before evaluating the Seeker in section 8. We close with a sum-
mary and description of future work, which discusses the role of meta-data for this
work.

2 Related Work

Our Constraint Seeker is related to a number of other systems, and, more fundamentally,
to a strand of research in constraints.

2.1 Integer Sequences

A key motivation for developing the Constraint Seeker was the example of an interactive
website http://oeis.org/Seis.html for Integer Sequences [22]. In this tool,
the user can enter a sequence of integer values, and the search tool will return a list of
those integer sequences in its library which seem to match that sequence, either as a
prefix, or as a subset of the values. Candidates are ranked by similarity to the example
given, for example a prefix is considered more similar than a subset matching.

2.2 Constraint Taxonomy

Taxonomies (structure/sub-structure relations) are often used to give access to large
collections of information, and form the basis of many on-line information retrieval
systems. Unfortunately, there has been rather little work on providing a taxonomy of
different constraints. A taxonomy considering only difference and equality is proposed
in [15], while a taxonomy of the global constraints in the CHIP system was given
in [21].

2.3 Library Seeker

Library search tools for programming languages typically allow search by name and by
a taxonomy of intended function. A search tool for CamlLight [26] at http://www.
dicosmo.org/TESTS/ENGLISH/CamlSearchCGI.english.html also pro-
vides lookup by type. One can enter a type specification for a library function, and the
system should return all library functions with isomorphic types.1

Using the signature of the constraint is an important element of our Constraint Seeker,
as it allows to restrict the search to a relatively small subset of the complete catalog,
while at the same time not requiring to guess the complete signature of the constraint.

1 The system seems to be no longer operational.

http://seeker.mines-nantes.fr
http://oeis.org/Seis.html
http://www.dicosmo.org/TESTS/ENGLISH/CamlSearchCGI.english.html
http://www.dicosmo.org/TESTS/ENGLISH/CamlSearchCGI.english.html
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2.4 Electronic Symbol Catalog

The interactive Electrical What catalog http://electricalwhat.com/ gives
another example of a search tool, where just searching by name is not sufficient. The
catalog lists images of electronic symbols, and the user can search by category (transis-
tor, diode, etc), but also by structural properties of the symbol (how many connections,
major symbol a circle, a rectangle or a triangle, etc). This is required by a use case where
a novice sees a new symbol, but does not know what it stands for. This is quite similar
to our use case of encountering a constraint, and describing its properties, instead of
searching for it by name.

2.5 Constraint Acquisition

Constraint Acquisition [17] is the process of finding a constraint network from a training
set of positive and negative examples. The learning process operates on a library of
allowed constraints, and a resulting solution is a conjunction of constraints from that
library, each constraint ranging over a subset of the variables.

This area of research has attracted a fair bit of work over the last ten years
[8,24,6,16,5,14,7,13,18,20,19]. A key idea for solving this problem is the use of ver-
sion space learning from AI, which considers the set of all possible constraint networks
which accept the training set.

In an interactive setting, the training set is not fixed, but will be derived incremen-
tally. If the target model has not been identified, the system may suggest new train-
ing instances, which the user has to classify as either positive or negative. Ideally,
these new examples are chosen to maximally reduce the version space that needs to be
considered.

One of the challenges of constraint acquisition for a library of global constraints is
that many global constraints have additional parameters which might not occur in the
examples given, which only list the main decision variables describing the problem. The
values of these parameters must be learned from the examples as well, this is considered
in [9,10].

Another issue is that in constraint acquisition we don’t know over which subset of
the decision variables a constraint will be expressed. When we consider only binary
constraints, this does not matter, we can explore all binary combinations of variables in
quadratic time. For a global constraint with k variables which ranges over a subset of n
decision variables, we are faced with a combinatorial explosion, especially if the order
of the variables in the constraint matters.

Our problem of the Constraint Seeker is closely related to the constraint acquisition
problem, but subtly different. We are not looking for a model of a complete constraint
problem, we are searching for a single constraint in the global constraint catalog. It
means that we know the variables over which the constraint ranges, as well as their order
in a collection, and we assume that most (but not necessarily all) additional parameters
are given as well. This makes it possible to search over the complete catalog of 350+
constraints without a combinatorial explosion.

http://electricalwhat.com/
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3 User Experience

We now show the behaviour of the Constraint Seeker on a simple example. The user
interacts with the system through a simple web form, where he must give at least one
positive example for the constraint. Suppose the user enters the query

p( 2 , [4,2,4,5] , 4 )
where p stands for positive example. The colors for the arguments are applied by the
Seeker to help visualize changes in the argument order in the output.

3.1 Seeker Matches

Figure 1 shows the output of the Constraint Seeker for the sample query, formatted for
pdf output.

In the output the candidate explanations are listed by relevance, i.e. for the given
example the first entry, the exactly constraint, is the best explanation. It has rank
0, a numerical value computed from structural information about the candidate. The
density value (3125) shows how many solutions were counted for a small instance of
the constraint, constraints with few solutions are more likely candidate explanations
than constraints with many solutions. The exactly constraint has 9 links, i.e. its de-
scription refers to nine other constraints in the catalog. Constraints with many links are
typically more common and useful, e.g. alldifferent has 72 links. The exactly
constraint is also marked as having a functional dependency. One of the arguments (the
first) is determined by the values for the other arguments, as we are counting in the first
argument how often a particular value (the third argument) occurs in a list of values (the

Constraint Rank Density Links UnTyp ArgOrder Crisp Func Tr
exactly 0 3125 9 0 0 n/a graph -

Pattern: exactly( 2 , [[var-4],[var-2],[var-4],[var-5]] , 4 )

Relations:
exactly implies atmost
exactly implies atleast

atleast 5 5625 11 0 0 0 n/a -

Pattern: atleast( 2 , [[var-4],[var-2],[var-4],[var-5]] , 4 )
Relations: atleast implied by exactly

atmost 5 9188 12 0 0 0 n/a -

Pattern: atmost( 2 , [[var-4],[var-2],[var-4],[var-5]] , 4 )

Relations: atmost implied by exactly
minimum greater than 30 2146 10 0 3 n/a n/a -

Pattern: minimum greater than( 4 , 2 , [[var-4],[var-2],[var-4],[var-5]] )
int value precede 30 7060 11 0 3 n/a n/a -

Pattern: int value precede( 4 , 2 , [[var-4],[var-2],[var-4],[var-5]] )
atmost 30 9188 12 1 2 3 n/a -

Pattern: atmost( 4 , [[var-4],[var-2],[var-4],[var-5]] , 2 )
Relations: atmost implied by exactly

Fig. 1. Example Output of Constraint Seeker for Query p( 2 , [4,2,4,5] , 4 )
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second argument). Constraints with functional dependencies are considered good can-
didate explanations, therefore the rank value for the exactly constraint is very low.
The functional dependency is derived from the graph description [1] of the constraint
in the catalog, i.e. it was not specified manually. For other constraints this property can
be deduced from the specification of the constraint as an automaton [2], but for some of
the constraints (mostly numerical constraints) we had to define this property manually
as meta-data in the catalog.

The second line of the exactly constraint shows the actual call pattern that must
be used, in this case the user input is used without any transformation. The Constraint
Seeker does allow for permutations of the arguments, and even within list arguments,
since it is not reasonable to require that a user knows the particular argument order
used in the catalog. The third line shows relations between the exactly constraint
and other candidates found. The exactly constraint implies both the atleast and
the atmost constraint, it is therefore a better (more specific) candidate explanation
and ranked above the other candidates.

The second candidate shown is the atleast constraint, with a rank of 5 and a
density of 5625. Its rank must be greater than that of the exactly constraint, as
atleast is implied by exactly, but it is also influenced by what we call crisp-
ness of its first argument. In the atleast constraint, the first argument is not a func-
tional dependency of the other arguments, but it is monotonic. If the constraint is
satisfied for some value k in the first argument, it is also satisfied for all values smaller
than k. The crispness of the constraint (column Crisp) is the difference between the
maximal value for the argument that satisfies the constraint and the value that occurs
in the user given pattern. Candidates with small crispness values are considered good
explanations.

The third candidate is atmost, which also has a rank of 5, but a density value of
9188, and which therefore is ranked lower than atleast.2

The next two candidates minimum greater than and int value precede
require a permutation of their arguments to match the example instance given by the
user, and have neither a functional dependency nor a monotonic argument. This leads
to a relatively bad ranking value. The number of arguments that need to be permuted is
given in the column ArgOrder.

The last candidate is another variation of the atmost constraint. Instead of stating
that atmost 2 values in the collection have value 4, this candidate explanation says that
atmost 4 variables in the collection have value 2. This requires two argument swaps (Ar-
gOrder=2), but also shows a crispness value of 3. In the instance given only one variable
has value 2, so the first argument with its value 4 is three steps off the crisp value. This
candidate also shows another issue, one of the typical restrictions for atmost is vio-
lated. The typical restrictions state conditions which hold in normal use of a constraint.
For the atmost(N,Variables,Value) constraint, these restrictions are given in
the catalog:

1. N > 0
2. N < |VARIABLES |
2 This difference in solutions counted will become clear when, in Section 5.2, we describe the

method for computing the density.
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3. |VARIABLES | > 1
4. atleast(1,VARIABLES ,VALUE)

Restriction 2 is not satisfied, as the collection contains only four variables, and the first
argument N is also set to 4. Candidates which violate typical restrictions are considered
weak explanations, and are therefore down-ranked.

Wider Matches. The candidates above were found by looking for explanations with
the same compressed type as the example given, i.e. where the arguments were per-
mutations of the user example. The Seeker can find more general examples, where the
user input must be transformed in a more complex way to find the explanation. Typi-
cal cases are optional arguments which may or may not be present, reorganization of
the arguments (a matrix for example may be given as a matrix, or as a collection de-
scribing the rows, or as a collection describing the columns). The two wider matches
in the output in Figure 2 show explanations based on such transformations: In the first
case, we find a match for element, based on a shift of an index argument. The global
constraint catalog assumes that indices are counted from 1. Some constraint systems
(like Choco or Gecode) instead follow their host language and count indices from 0.
To match examples intended for such systems, we try to add one to index arguments.
If we change the first argument from 2 to 3, then the instance matches an element
constraint. This is the same as considering the constraint with the index in the first ar-
gument being counted from 0. The second candidate, count, is obtained by adding
an additional argument with the equality operator. The user may not have considered
parametrizing his example with such an operator, we therefore try to add this argument
and try out all possible operator values, but only keep the strongest (most restrictive) of
the possible choices.

Note that the ranking for element would place it at the top of the list if both result
lists are combined. This is due to the functional dependency in the element constraint
(the third argument is determined by the index and the list of values), and the small
number of solutions it admits. The column Func indicates the functional dependency
as manual, i.e. this is specified explicitly in the description of the constraint. Also note
how the modified value in the first argument of element is highlighted, as well as the
added argument in the count constraint. This matching of the arguments against the
original example instance is done by a small constraint program, which also deals with
new or modified arguments.

Constraint Rank Density Links UnTyp ArgOrder Crisp Func Tr
element 0 2500 35 0 0 n/a manual T11

Pattern: element( 3 , [[value-4],[value-2],[value-4],[value-5]] , 4 )
count 30 3125 16 0 3 n/a n/a T1

Pattern: count( 4 , [[var-4],[var-2],[var-4],[var-5]] , = , 2 )

Fig. 2. Extended Search Results
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4 Generating Candidates

Given a set of positive and negative examples, we first have to find candidate explana-
tions, constraints that match these examples. This requires the following steps:

– We first construct a type signature from the examples, using the following ground
types (page 6-8 of [4]) in the given lexicographical order:

atom ≺ int ≺ real ≺ list ≺ collection

– We sort the arguments and collections in lexicographical order to generate a nor-
malized type.

– If we partition the constraints in the catalog by their normalized type signature, we
find 97 distinct types, with the largest equivalence class containing 40 constraints
(see page 109 of [4]).

– For each constraint in the selected equivalence class we have to evaluate it against
all positive and negative examples. In order to do this, we have to permute the exam-
ples given to create the call pattern matching the argument order of each constraint.
There can be multiple ways to do this, for example if a constraint has multiple
arguments of the same type, and we have to explore each of those possibilities.
Fortunately, the number of permutations to be considered is often quite limited,
there are only 15 constraints in the catalog for which we have to consider more
than 72 permutations.

– Different permutations can lead to the same call pattern, if for example multiple
arguments have the same value. In other cases, the catalog explicitly provides the
information that some arguments in the constraint are interchangeable (page 19
in [4]), i.e. there are symmetries which we don’t have to present multiple times.
We can filter such duplicates before (or sometimes only after) the ranking of the
candidate list.

– In many cases we want to consider more than just a strict matching of the ar-
gument types. The user may present the arguments in a different form, e.g. use
a matrix rather than a collection of collections. He might also have ignored or
added some arguments, or optional parameters. We deal with these possibilities
by using a rule-based transformation system which, based on pre- and post con-
ditions, can modify the argument structure of the examples given. At the moment
we use 13 such rules in the system (http://seeker.mines-nantes.fr/
transformations.htm).

The process above results in a set of call pattern in the correct format for every constraint
with the correct compressed type. In order to evaluate these pattern, we need some code
that can check if these ground instances satisfy the constraint. In principle, we only need
a constraint checker, which operates on a ground instance, and returns true or false. But
the catalog descriptions may contain stronger implementations:

built-in. The Seeker code is executed in SICStus Prolog [12], which contains a finite
domain solver that implements a number of global constraints. We can call these
built-ins to execute the constraint, after some syntactic transformation.

http://seeker.mines-nantes.fr/transformations.htm
http://seeker.mines-nantes.fr/transformations.htm
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reformulation. The constraint can be evaluated by executing a Prolog program which
calls other global constraints and possibly some general Prolog code to transform
arguments. Obviously, the call tree must not be cyclic, i.e. any constraints called
may not use a reformulation which calls the initial constraint.

automaton. The constraint can be evaluated by an automaton with counters [3]. These
can be executed directly in SICStus Prolog.

logic. An evaluator is provided as a logic based formula in the rule language extending
the geost constraint described in [11]. An evaluator for the rule language is available
in SICStus Prolog.

checker. A small number of complex constraints (e.g. cycle) are described only with
a constraint checker, which can evaluate ground instances only. While this is suffi-
cient for the candidate generation, this will not be enough for other elements of the
overall Seeker application.

none. No evaluator for the constraint is given in the catalog.

For some constraints, multiple evaluators are given. Table 1 shows the current state of
evaluators for the global constraint catalog. 274 of 354 (77.4%) can be evaluated. Most
of the missing constraints use finite set variables or are graph constraints, which are
not provided in the SICStus Prolog constraint engine. The finite set constraints could
be added through a basic set solver, adding the graph constraints would require more
extensive work on either evaluating the graph description in the catalog algorithmically,
or implementing some of the constraints in SICStus Prolog.

Table 1. Evaluators for Global Constraints

Evaluator Nr Constraints
reformulation 137
automaton 49
reformulation + automaton 40
builtin 26
logic 9
builtin + automaton 8
checker 3
reformulation + reformulation 1
builtin + reformulation 1
none 80
Total 354

5 Ranking

Not all candidate explanations are equally useful to the user. We use three criteria to
order the candidates, the rank being the most important, and the number of links the
least important tie breaker:

rank. The rank of the constraint indicates how specific it is. The relative rank value
is determined on-line by a constraint program which compares all candidates with
each other.
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density. We compute a solution density for each constraint by enumerating all solutions
for small problem instances. Constraints with few solutions are considered better
explanations. The solution density is pre-computed by another constraint program.

links. The number of cross references between constraints in the catalog gives an indi-
cation of their popularity.

5.1 Rank Computation Solver

The rank computation solver is run on-line for each query to produce a relative position
for each candidate. The rank for each candidate is represented by a domain variable,
small values are better than large ones.

We use unary and binary constraints in this model. Unary constraints affect the lower
bound of the domain variable based on a combination of:

functional dependency. If one or multiple arguments of a constraint depend on other
arguments, it is quite unlikely that a user did pick the correct value by chance.
Candidates with functional dependencies are good explanations.

crispness. Slightly weaker than functional dependencies, the crispness is derived from
monotonic arguments. If the constraint holds for some value k of such an argu-
ment, it must also hold for all values larger (smaller) than k. We call the minimal
(maximal) value for which the constraint holds, its crisp value. The smaller the dif-
ference between the crisp value and the value given in the example, the better is the
candidate explanation.

typical restriction violations. For each constraint, the catalog describes restrictions
which apply to a typical use of the constraint. If a candidate violates these typical
restrictions, it should not be considered a good explanation, and it should be down
ranked.

argument reordering. If the user has given the arguments of the constraint in the cor-
rect order, so that no re-ordering is required, we consider the constraint a better
candidate than one where all arguments must be permuted. This is a rather weak
criterion, as it is based on convention rather than structure.

The exact formula on how these criteria are combined to affect the lower bound is based
on a heuristic evaluation of different parameter choices.

Binary constraints are imposed between candidate constraints for which semantic
links (page 84 of [4]) are given in the catalog. As we had seen in our example in Sec-
tion 3, the exactly constraint implies both atleast and atmost constraints. It is
therefore a better candidate, and we impose inequality constraints between all candi-
dates for which such semantic links exist. At the moment we only use the implies and
implied by links, the links generalization and soft variant do not seem to work as well,
typically relying on added parameters which change the constraint signature.

We search for a solution which minimizes the sum of all rank variables, this solu-
tion can be found by assigning the variables by increasing lower bound and fixing the
smallest value in each domain. No backtracking is required. As a constraint problem
this is not very difficult, the main advantage that CP gives is the flexibility with which
different scenarios can be explored without much effort.
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5.2 Density Solver

The solution density of each constraint is estimated off-line by two constraint models,
and stored result values are then used in the on-line queries. Unfortunately, closed form
formulas for solution counting are known for very few constraints [27], and thus can
not be used in the general case. Instead, we create small problem instances only: For a
given size parameter n, we enumerate all argument pattern where all collections have
n or fewer entries. For many constraints, the length of the collections is constrained by
restrictions provided in the catalog, so that these choices can not be made arbitrarily.
A small constraint program considers all these restrictions, by enumeration we find all
combinations which are allowed. Having fixed the size of the collections in the first
model the second model creates domains ranging from 0 to n, calls the constraint and
enumerates all solutions with a timeout. The value 0 is included in the domain, as it
often plays a special role in the constraint definition. In our experiments we restrict n
to 4 or 5. Note that by imposing the “typical” restrictions in our models, we can also
count how many typical solutions exist for a given constraint.

6 Instance Generation

The two models of the density solver can be used for another purpose. We can also
generate positive instances for the constraints. In this variant, we change the domain
limits from −2n to 2n, allow larger values for n, and use a more complex search rou-
tine, which tries to sample the complete solution space. The search routine first tries
to assign some regular instances pattern, like setting each collection to all zero values,
or enforcing monotonicity in some argument. In a second step, we try to set randomly
selected arguments to random values. In a last step, we try to find instances for missing
values. If in the previous phase some value has not been chosen for some argument,
we try to force that value, in order to increase variety in the solution set. All phases are
linked to time-outs, set to finish the complete catalog overnight. We can again impose
the typical restrictions in order to find typical examples.

We will use these randomly generated instances in our evaluation to compare against
the manually chosen examples in the catalog.

7 Constraint Solving Inside the Seeker

We have seen that the complete Constraint Seeker tool uses constraint models for mul-
tiple roles:

1. Check positive and negative examples for satisfaction (on-line)
2. Rank candidate lists by estimated relevance (on-line)
3. Determine the argument order used for output coloring (on-line)
4. Compute all call patterns up to given size (off-line)
5. Count all (typical) solutions for small problem sizes (off-line)
6. Sample solution space to generate positive (typical) instances (off-line)
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Each of these models is quite small, sometimes only involving the constraint under test.
In other cases, various other constraints, from the typical restrictions for example, will
be added. The search complexity ranges from trivial (ranking solver without backtrack-
ing), to quite complex (instance generator). Note that all of these models are generated
automatically from the meta-data given in the catalog description. This means in par-
ticular that we generate typical and non-typical test cases for many global constraints
solely from the abstract description in the catalog.

8 Evaluation

We have tested the Constraint Seeker against different example datasets:

Catalog Examples. The first set uses the examples which are given for each constraint
in the catalog. For the vast majority of constraints, only a single positive instance is
given, which was manually designed as part of the constraint description. We either
use all tests for which an evaluator exists (Column all), only those for which we
were able to also generate tests (Column restricted), or (Column first) only the first
example given in the restricted set.

Generated. The second set uses the generated examples described in section 6. The
order of the instances for each constraint is randomized. Instances can normally
only be generated if an efficient evaluator for the constraint is available.

Representatives. We try to reduce the number of examples for each constraint, while
maintaining some variety. Many generated examples produce the same candidate
set. In this set we only use one representative from each such group.

Single. We pick a single, best test from the generated examples, i.e. one which mini-
mizes the number of candidates and which has the highest ranking for the intended
constraint.

Combined. We also pick a single best test, but this time from both the hand-crafted
and the generated examples.

In a first test we only check how many candidates are generated when running over all
provided instances, and ignore the ranking. This should show if either the candidate list
is so short that ranking is not required, or an unmanageable number of candidates is
produced. The numbers indicated in row k of table 2 state for how many constraints the
Seeker found k candidates. The examples from the catalog produce up to 14 candidates,
while for the generated examples and for the representative set up to nine candidates
are produced. We can also see that the generated examples are much more selective.
For 155 constraints, there is only one candidate left. This drops to 140 constraints, if
we only consider representatives, but that is still more than twice the number of exam-
ples with a single candidate when using the hand-crafted examples from the catalog.
If we only consider a single test example, the generated examples do not fare quite as
well, but still better than the hand-crafted examples. Combining both sets brings further
improvements, showing that the hand-crafted examples are not always worse than the
generated ones. Overall, we can see that the number of candidates is not excessive in
any of the test scenarios, but that it is clearly not enough to just produce the candidate
list.
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Table 2. Number of Candidates Generated

Nr Catalog Examples Generated Representative Single Combined
all restricted first Examples Examples

1 66 63 63 155 140 96 107
2 35 28 28 48 60 59 45
3 27 25 20 23 24 33 29
4 32 31 28 11 13 22 27
5 26 24 22 8 9 11 11
6 30 30 32 6 5 12 11
7 15 15 16 1 2 7 10
8 11 9 9 2 2 7 7
9 12 12 12 1 - 4 3

10 7 7 7 - - 2 3
11 7 7 7 - - - -
12 2 2 2 - - - -
13 2 2 2 - - - -
14 - - 7 - - 2 2

Table 3. Quality of Ranking

Nr Catalog Examples Generated Representative Single Combined
all restricted first Examples Examples

only 66 63 63 155 140 96 107
first 149 142 135 89 99 124 121

second 33 27 31 10 14 25 17
third 12 11 13 0 0 6 6
other 13 12 13 1 2 5 4
total 273 255 255 255 255 255 255

We now consider how good the ranking is at identifying the intended constraint.
Table 3 shows in row only for how many constraints we get a single candidate which
identifies the constraint. In that case the ranking is irrelevant. The next rows (first, sec-
ond, third) indicate for how many constraint the ranking puts the correct constraint in
first, second or third place. The next line (other) indicates that the intended constraint
was not in the top three entries. The last row gives the total number of constraints identi-
fied for each dataset. The candidate selection together with the ranking produces rather
strong results for the generated examples. For 244 of 255 constraints do we find the
intended constraint in first position, in only 11 of 255 (4.3%) case do we not find the
intended constraint at the top of the candidate list, and in only one case it is not in the
top three. This increases to 16 of 255 (6.2 %) cases for the representative set, and to 35
of 255 (13.7%) if we pick only one example. The hand-crafted examples are somewhat
weaker, in 58 of 273 cases (21.2 %) do we not find the intended constraint in first po-
sition. Picking a single, best example from both generated and hand-crafted examples
leaves us with 27 of 255 cases not identified in first position (10.6 %), but only 4 cases
(1.6 %) not in the top three.
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We can also provide some analysis at the system level. The Constraint Seeker is writ-
ten in SICStus Prolog, integrated with an Apache web server. Nearly all of the HTML
output is generated, the rest is fairly simple forms and CSS data. The Prolog code is
just over 6,400 lines, developed over a period of 3 months by one of the authors. The
six constraint models in the Seeker make up 2,000 lines, roughly one third of the code.
This line count does not include the 50,000 lines of Prolog describing the constraints
themselves. This description is not specific to the Seeker, instead it provides the meta
data that systematically document the various aspects of the global constraints, while
its first use was to generate the textual form of the catalog itself.

9 Summary and Future Work

Besides introducing the Constraint Seeker, the key contribution of the paper is to illus-
trate the power of meta data and meta programming in the context of future constraints
platforms. Constraint platforms today typically provide some or all of the following
features:

1. The core engine dealing with domains, variables and propagation.
2. A set of built-in constraints with their filtering algorithms.
3. Some generic way to define new constraints (e.g. table, MDD, automata).
4. A low level API to define new constraints and their filtering algorithms.
5. A modelling language which may also allow to express reformulation.

However, it is well known that a lot of specific knowledge is required for achieving
automatically various tasks such as validating constraints in a systematic way, break-
ing symmetries, or producing implied constraints. To deal with this aspect we suggest
a complementary approach where we use meta data for explicitly describing different
aspects of global constraints such as argument types, restrictions on the arguments, typ-
ical use of a constraint, symmetries w.r.t. the arguments of a constraint, links between
constraints (e.g. implication, generalisation). The electronic version of the global con-
straint catalog provides such information in a systematic way for the different global
constraints. The Constraint Seeker presented in this paper illustrates the fact that the
same meta data can be used for different purposes (unlike ad-hoc code in a procedural
language which is designed for a specific (and unique) usage and a single system). In
fact to build our Constraint Seeker we have systematically used the meta data describing
the constraints for solving a number of dedicated problems such as:

– Estimating the solution density of a constraint, which was needed for the ranking.
– Extracting structural information about a constraint from meta data (e.g. functional

dependency between the arguments of a constraint) used for the ranking.
– Generating discriminating examples for all constraints, as well as typical examples

with some degree of diversity for systematically evaluating our Constraint Seeker.
– Using the symmetry information for automatically filtering out symmetrical an-

swers of the Constraint Seeker.

Beside these problems, the meta data is also used for generating the catalog. It is worth
noting that it could also be used for simulating the effect of various consistencies, get-
ting interesting examples of missing propagation, and providing certificates for testing
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constraints for all constraints of the catalog. The key point to keep in mind is that with
this approach it is possible to design a variety of tools that don’t need to be updated
when new constraints are added (i.e., we only need to provide meta data for the new
constraint as well as an evaluator). This contrasts with today’s approach where con-
straint libraries need to modify a number of things as soon as a new constraint is added
(e.g. update the manual, write specific code for testing the parameters of the constraint,
generate meaningful examples, update the test cases, . . . ).

The current version of the Constraint Seeker has been deployed on the web (http://
seeker.mines-nantes.fr), future work will study queries given by the users to
identify further improvements of the user experience.
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Abstract. A datacenter can be viewed as a dynamic bin packing sys-
tem where servers host applications with varying resource requirements
and varying relative placement constraints. When those needs are no
longer satisfied, the system has to be reconfigured. Virtualization allows
to distribute applications into Virtual Machines (VMs) to ease their ma-
nipulation. In particular, a VM can be freely migrated without disrupt-
ing its service, temporarily consuming resources both on its origin and
destination.

We introduce the Bin Repacking Scheduling Problem in this context.
This problem is to find a final packing and to schedule the transitions
from a given initial packing, accordingly to new resource and placement
requirements, while minimizing the average transition completion time.
Our CP-based approach is implemented into Entropy, an autonomous
VM manager which detects reconfiguration needs, generates and solves
the CP model, then applies the computed decision. CP provides the
awaited flexibility to handle heterogeneous placement constraints and
the ability to manage large datacenters with up to 2,000 servers and
10,000 VMs.

1 Introduction

A datacenter is a hosting platform of hundreds of interconnected servers. To
make this infrastructure costly effective, it should be able to host simultaneously
a large range of client applications. Virtualization eases the deployment of the
applications. An application is distributed into Virtual Machines (VMs) which
can be colocated on any servers, and dynamically manipulated under different
kinds of actions, including live migration between hosts.

The deployment of the applications is constrained by the finite capacity of
the servers in shared resources like CPU and memory. In addition, clients and
system administrators have specific expectations with regards to the relative
placement of the VMs on the servers. For instance, a client may require the
replicas of his application to be continuously hosted on distinct servers to ensure
fault tolerance, or an administrator may require to isolate a group of servers for
maintenance purpose.
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A system configuration is an assignment of the VMs to the servers which
satisfies both the resource and placement requirements. Over time, the system
evolves: placement requirements vary, servers are intentionally or unexpectedly
halted or restarted, VMs are launched or killed and their resource requirements
change. When the current configuration is no longer viable, a new configura-
tion has to be computed, and the transition actions to apply to reach the new
configuration have to be planned to ensure their feasibility.

The reconfiguration problem is then made of a packing and a scheduling sub-
problems, both being subject to resource and placement constraints. The prob-
lem may have no solution, either because no feasible final configuration exists, or
because reaching such a configuration induces an unsolvable cycle of transitions.
Furthermore, a reconfiguration has an impact on the running applications. Thus
the objective is to get a reconfiguration plan with minimum average transition
completion time. Although this objective affects the scheduling part only, it is
also conditioned by the packing to reach.

The reconfiguration problem is clearly intractable in theory. In practice, the
automated VM manager of the datacenter needs to periodically solve online
large-sized instances. For scalability reasons, incomplete optimization is then
required and a tradeoff has to be made between the computation time of the
reconfiguration plan and its execution time. In a previous work [6] on a recon-
figuration problem without side constraints, we shown that despite a fast com-
putation time, a standard greedy algorithm tends to compute reconfiguration
plans with large execution durations. On the opposite, our solution, partially
based on CP, computed faster plans in an extra time that was drastically lesser
than the execution duration gain. In this paper, we follow this viewpoint: VM
managers would benefit from embedding smarter reconfiguration decision mo-
dules. By smarter, we mean able to compute high-quality decisions even if an
additional, still acceptable, solving time is required. We mean also flexible and
generic enough to handle the various user requirements, which are traditionally
not considered. For these reasons, we first adopt a centralized solution approach,
by contrast to cheaper distributed approaches which only apply local changes.
Although the problem induces a natural decomposition into two subproblems,
we solve them conjointly as they both contribute to get a reliable and fast re-
configuration plan. Finally, we rely on Constraint Programming to easily handle
the problem as a whole, including any combinations of user requirements.

In this paper, we first formalize the general reconfiguration problem and dis-
cuss its complexity (Section 2). We describe the specifications of the practical
problem of automated VM management and show how CP fulfills them (Sec-
tion 3). We then present the CP model, the search strategy, and the two reso-
lution modes we developed for this problem (Section 4). All these elements are
pre-implemented into the autonomous VM manager Entropy [6]. Experiments
on realistic workloads show that our implementation solves problems involving
10,000 VMs on 2,000 servers with 900 side constraints in less than 5 minutes
(Section 5). Last, we review the literature on process and data migration, and
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show how our general model fits many of these related problems (Section 6).
Our conclusions and perspectives are provided in Section 7.

2 Core Problem Statement

Without side constraints, a configuration is a standard packing of items with ar-
bitrary heights (VMs) to multidimensional bins with arbitrary capacities (servers).
A reconfiguration plan is a schedule of the transition actions applied to the VMs,
subject to the same resource limitations. The specificity of this scheduling prob-
lem comes from the occupation of the resources by each VM: on its initial host
before and during the transition, and on its final host during and after the tran-
sition. The reconfiguration problem can be dissociated from the context of VM
management. To our knowledge, no such formalization has formerly been pro-
posed. Hereafter it is referred to as the Bin Repacking Scheduling Problem.

2.1 The Repacking and Scheduling Problem

Consider a 2-states (initial/final) dynamic system which consists of a set R of
p-dimensional bins with static capacities Br ∈ Np, for all r ∈ R, and a set J of
items with dynamic initial boj ∈ Np and final bfj ∈ Np heights, for all j ∈ J . The
initial state of the system is known and defined as an assignment so : J → R
satisfying

∑
j∈s−1

o (r)b
o
j ≤ Br for each bin r ∈ R.1 The system state changes by

applying a transition action to each item j ∈ J . The restricted set of allowed
transitions is given as a tableΔj ⊆ T ×R, where each element δ = (τ, r) indicates
that a transition of type τ ∈ T can be applied to item j ∈ J to reassign it from
bin so(j) to bin r. With any transition δ ∈ Δj are associated a duration dδ ∈ N
and a weight wδ ∈ N.

Definition 1. The Bin Repacking Scheduling Problem (BRSP) is to as-
sociate with each item j ∈ J , a transition δ(j) = (τ(j), sf (j)) ∈ Δj and a time
tj ∈ N to start this transition, such that the bin capacities are satisfied at any
time ∑

j ∈ s−1
o (r)

t < tj + dδ(j)

boj +
∑

j ∈ s−1
f (r)

t ≥ tj

bfj ≤ Br, ∀r ∈ R, ∀t ≥ 0, (1)

and the weighted sum of the completion times is minimized∑
j∈J

wδ(j)(tj + dδ(j)), (2)

or to prove that no such feasible packing or scheduling exists.

We deliberately present a first conceptual model as the notion of allowed transi-
tion action is context-dependent. In the context of VM management, we consider
3 groups of items: items j ∈ JS have to be suspended (boj > 0, bfj = 0), items

1 s−1(r) ⊆ J denotes the preimage of {r} ⊂ R under function s from J to R.
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j ∈ JL have to be launched (boj = 0, bfj > 0), items j ∈ JA have to be let active
(boj > 0, bfj > 0). To each group corresponds one transition table:

Δj =

⎧⎪⎨
⎪⎩
{(S, r) | r ∈ R} ∀j ∈ JS
{(L, r) | r ∈ R} ∀j ∈ JL
{(F, so(j))} ∪ {(M, r) | r ∈ R \ {so(j)}} ∀j ∈ JA.

The transition types T = {S,L,M,U} stand for Suspend, Launch, Migrate,
Unmoved, respectively. The duration and the weight of a transition are 0 if it
is of type U , and the duration is positive and the weight is 1 otherwise. Let
VM Repacking Scheduling Problem (VRSP) refer to this instance of the
BRSP. This model totally fits our application: VMs can be suspended (S) or
resumed (L), either on their current server or on another, incurring different
costs in these two cases. Running VMs can also either stay on their origin server
(U) or migrate live to another server (M). In the first case, the transition is
immediate (dU = 0), even if the VM resource requirements change, and it does
not alter the VM service (wU = 0). Finally, the action of turning a server off or
on can be modeled by introducing a dummy VM, respectively to be launched or
suspended, statically assigned to the server, and occupying its entire resources.

In the VRSP, the transition typecast is determined by the item j itself, its
origin so(j) and destination sf (j) bins. Hence, determining a set of transitions
δj comes to compute a Multidimensional Bin Packing. This problem is NP-
complete in the strong sense [5] even in the one-dimensional case (p = 1). In
turn, determining the times tj yields to a particular scheduling problem.

2.2 The Scheduling Subproblem

Definition 2. Given a final packing sf : J → R such that
∑

j∈s−1
f (r)b

f
j ≤ Br,

∀r ∈ R, and a transition δ(j) ∈ Δj for each item j ∈ J , the Repacking

Transition Scheduling Problem (RTSP) is to schedule all the transitions
such that the resource constraints (1) are satisfied and the weighted sum of the
completion times (2) is minimized, or to prove that no such schedule exists.

This can be viewed as a Resource Constrained Scheduling Problem [5]
with no-wait, variable durations and consumer/producer tasks : to each item
j ∈ J correspond two operations, Oj occupying boj resource units on so(j) in
time interval [0, tj + dj) and Fj occupying bfj resource units on sf (j) in [tj , H̄),
where H̄ denotes any large enough scheduling horizon. A decision variant of this
problem, with unit durations dj = 1 and constant requirements boj = bfj , has
previously been studied by Sirdey et al. [8] and referred to as Zero-Impact

Process Move Program. It asks whether a total order exists over the set of
transitions. As durations are unit, this is equivalent to find a timed schedule.
In [8], this problem is proved to be NP-hard in the strong sense. We give below
a sketch of the proof.



BRSP in Virtualized Datacenters 31

Proposition 1. The decision variant of RTSP is NP-hard in the strong sense,
even with 2 one-dimensional bins, unit durations and constant requirements.

Proof. Consider an instance of 3-Partition [5], made of a bound W ∈ N
and a set A of 3m elements of sizes W/4 < wa < W/2 for all a ∈ A such
that

∑
a∈A wa = mW . This reduces to an instance of RTSP with two one-

dimensional bins R = {r1, r2} each of capacity mW and two sets of items: J1

composed of 3m items of height wj migrating from r1 to r2, and J2 composed of
k−1 items of height W and migrating from r2 to r1. Then finding a partition of
A in m sets, each of size W , is equivalent to find a migration plan transferring
a height W of resource, alternatively from r1 to r2 and from r2 to r1. ��

3 An Automated VM Manager Relying on CP

The VRSP models a reconfiguration problem centered on the resource require-
ments. In practice, a VM manager should also deal with user placement require-
ments. This section first presents, as a proof of concept, 4 typical placement
constraints. It then describes the concrete specifications of a VM manager and
why CP is suitable. It finally presents the VM manager Entropy that relies on
CP for modeling and solving, on-the-fly, instances of a specialized VRSP.

3.1 Side Placement Constraints

A side placement constraint restricts the assignment of given VMs to given
servers, or the relative assignments of sets of VMs. Some restrictions are required
by the system administrators for management purposes; others are required by
the clients for the good execution of their applications. The 4 examples below
are representative of concrete standard requirements.

Ban. To perform a hardware or a software maintenance on a server, a system
administrator has first to migrate the hosted VMs to other servers. More gene-
rally, administrators and clients may want to disallow a given set of VMs to be
hosted by a given set of servers. We refer to this constraint as ban.

Spread. Highly-available applications use replication to achieve tolerance to
hardware failures. To be fully effective, the VMs running the replicas must, at any
time, be hosted on distinct servers. We refer to this constraint as spread. Figure 1
depicts an instance of VRSP with two VMs subject to a spread constraint. As its
resource requirements increase, VM1 has to migrate to server N2. Spread enforces
to delay this action after the migration of VM2 to N3 is completed.

Lonely. Using a denial-of-service, a VM may over-use the CPU and memory
resources of its host and then impact the colocated VMs or crash the host. A
solution is to make critical application VMs to be hosted on servers on their
own. Typically, a system administrator separates the service VMs that manage
the datacenter from the client VMs. We refer to this constraint as lonely.
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Fig. 1. spread enforces VM1 and VM2 to always be hosted on distinct servers

Capacity. A system administrator controls how shared resources are distributed
among the VMs. For instance, each VM reachable from outside the datacenter
requires a public IP address. As the pool of public IPs is limited, the number of
simultaneous running VMs is restricted to the size of this pool. We refer to as
capacity the constraint that limits the maximum number of VMs colocated on
a given set of servers.

3.2 Constraint Programming for VM Management

The Autonomous VM Manager of a datacenter relies on a periodic or event-
driven control loop composed of four modules: monitoring retrieves the current
system configuration, provisioning predicts the future requirements, plan com-
putes the reconfiguration plan, and execution performs the physical reconfigu-
ration. The plan module gathers the informations of the monitoring and provi-
sioning modules, adapts the solution algorithm, and runs it. The specifications
for an efficient plan module are as follows. First, the algorithm should scale
up to the size of the datacenter. Second, as the applications run in degraded
mode until the configuration becomes viable, computing a solution should be
fast and the reconfiguration durations of the applications should be short. Third
the algorithm does not need to ensure optimality, but it is strongly required to
be flexible. Indeed, it must be dynamically adaptable to handle different types
of side constraints and to deal with any combinations of them. Last, virtuali-
zed datacenters exist for a short while, but they spread rapidly and new needs
emerge with new usages. As a consequence, a VM manager should be extensible
to take into consideration future needs.

Constraint Programming is known as a suitable solution for packing and
scheduling problems. We claim that CP actually offers unique capabilities to
deal with the practical reconfiguration problem considered here. First, modeling
with global constraints eases the specification of new side placement constraints.
Second, the propagation engine ensures the automatic composability needed to
handle the packing and scheduling problems together with extra placement cons-
traints. Finally, the framework of tree search can easily be specialized in most CP
solvers with pre-implemented or ad-hoc variable and value ordering heuristics.
Such framework is thus convenient to quickly develop and test complete or local
search strategies. The search strategy matches the optimization objective, while
the CP propagation engine enforces the feasibility part of the problem.
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The statement of the lonely constraint illustrates well the flexibility of our
approach. This constraint was specified after Amazon EC2 described this new
feature in march 2011.2 Its whole implementation in Entropy, from the selection
of the appropriate global constraint to the tests, has taken only 3 hours, and its
model, relying on a global constraint already available in the CP solver Choco
(see next Section), is about 50 lines of code. We did not have to modify our
heuristics to take this new constraint into account. The same holds true for the
3 other placement constraints described above. Obviously, the expressivity and
flexibility of CP have their limits, yet we have not reached them in our current
application.

Entropy is an open-source autonomous VM manager.3 The specificity of En-
tropy lies in its plan module based on the CP Solver Choco4 and in its confi-
guration script language for its specialization. The scripts allow administrators
and clients to each describe a datacenter and an application, respectively, while
focusing on their primary concerns: the administrator manages its servers with-
out any knowledge of the hosted applications, while a client specifies its place-
ment requirements without knowledge of the infrastructure or the other hosted
applications. Listing 2a illustrates the description of a 3-tiers highly-available
application. A tier ($T1, $T2, or $T3) is composed of several VMs, each running
a replica of a same service. For fault tolerance, a spread constraint enforces all
the VMs of each tier to be placed on distinct servers. To improve the application
isolation, a lonely constraint enforces all the VMs to be placed on servers on
their own. Listing 2b illustrates administrator needs. It describes a datacenter
made of 3 racks ($R1, $R2, $R3) of 50 servers each. A maximum of 100 hosted
VMs per rack is enforced by 3 capacity constraints. Last, all VMs are disallowed
to be placed on server N101 in order to prepare a maintenance.

1 $T1 = VM [1..5];
2 $T2 = VM [6..15];
3 $T3 = {VM17 , VM21 , VM22 };
4 for $t in $T [1..3] {
5 spread($t);
6 }
7 lonely($T1 + $T2 + $T3 );

(a) Description of a 3-tiers HA application.

1 $R1=N[1..50];
2 $R2=N[51..100];
3 $R3=N[101..150];
4 for $r in $R [1..3] {
5 capacity ($r , 100);
6 }
7 ban($ALL_VMS , N101 );

(b) Description of a datacenter.

Fig. 2. Sample configuration scripts provided by clients or administrators

Given the current configuration retrieved by the monitoring module and the
future resource requirements estimated by the provisioning module, the plan
module first generates a Choco model of the corresponding VRSP instance.

2 https://aws.amazon.com/dedicated-instances/
3 http://entropy.gforge.inria.fr
4 http://choco.emn.fr
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The configuration scripts are then interpreted and the placement constraints are
added in turn to the model. If the current configuration is consistent with this
model, then Entropy restarts the control loop. Otherwise, the model is optimized
for a limited time and the best solution found, if exists, is sent to the execution
module in charge to apply the reconfiguration plan.

4 Elements of Solution

This section presents the CP model including the four examples of placement
constraints, the search strategy dedicated to incomplete optimization and the
two modes of resolution currently implemented in Entropy. The model relies on
several standard constraints mentioned in the Global Constraint Catalog [2];
details on these constraints can be found in this reference.

4.1 Modeling the Core Problem

The end of the schedule is the first time the final configuration is reached. In our
model, it is represented by a domain variable H , defined on the integer interval
[0, H̄], H̄ being the given horizon. In order to properly represent a schedule, we
first introduce the notion of task variable:

Definition 3. A task variable is a compound object made of integer variables
T = 〈T s, T e, T r, T b1, T b2, . . . , T bp〉 denoting respectively: T s and T e the starting
and the ending times of the task, T r the resource the task is assigned to, and
T b1, . . . , T bp the heights of the task in the p dimensions.

Producer/consumer tasks. Each VM j ∈ J is modeled by two multidimen-
sional task variables representing the occupation of the initial server (Oj) and of
the final server (Fj). Such a representation is a variant of the producer-consumer
model [7] with no negative stock: Oj produces resources at the transition com-
pletion time, while Fj consumes resources from the transition start time. The
two task variables associated with each VM j ∈ J are formally defined by:

– Oj = 〈0, Oej , so(j), bo1j , . . . , b
op
j 〉 where only Oej is a variable defined on [0, H̄ ].

It means j occupies heights boj on initial server so(j) from time 0 to Oej .
– Fj = 〈F sj , H, F rj , b

f1
j , . . . , b

fp
j 〉, where F sj is a variable defined on [0, H̄], and

F rj is a discrete variable defined on R. It means j occupies heights bfj on
final server F rj from time F sJ to the end of the schedule H .

Transition types and no-wait. The tasks associated with a VM j ∈ J are
subject to a precedence relation with no-wait, Oej −F sj = dδ(j), which depends on
the applied transition action δ(j). In order to model transition δ(j), we consider a
variableXj defined on T denoting the transition type, and a variableWj , defined
on N denoting the transition weight. Then, the different variables associated with
a VM can be related by one table constraint:

(Xj , F
r
j , O

e
j − F sj ,Wj) ∈ {(τ, r, dδ, wδ) | δ = (τ, r) ∈ Δj}, ∀j ∈ J .
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Resource constraints. The resource constraints can be modeled on each di-
mension by one cumulatives constraint as follows:

cumulatives(〈Oj , Fj | j ∈ J 〉, R, ≤, k), ∀k ∈ {1, . . . , p}.

This signature is slightly different from the original one, as it specifies the dimen-
sion k to constrain. The filtering of cumulatives runs in O(|R|.|J |2). Actually,
as this constraint was not available in Choco, we developed our own version spe-
cialized to producer/consumer tasks, running with the same time complexity.

Redundant constraints. A transition typed as Unmoved has no duration
and no cost. It can then be scheduled at any time freeing maximum resources.
Formally, for each solution of VRSP, there exists a solution of equal or least
cost where an Unmoved transition is scheduled at time 0, if the VM requirements
decrease, or at time H , if they increase. The property remains true when adding
any side placement constraints, as those considered VMs keep precisely the same
placement. The property only applies to VMs which requirements vary uniformly
in all dimensions, which is usually the case in practice.

Xj = U ⇒ Oej = F sj = 0, ∀j ∈ JA | boj ≥ bfj ,

Xj = U ⇒ Oej = F sj = H, ∀j ∈ JA | boj < bfj .

4.2 Modeling the Side Constraints

Ban. The model of ban is straightforward as it relies on a simple domain reduc-
tion of the final assignment variables. For any subset of VMs J ⊆ J , and any
subset of servers R ⊆ R, constraint ban(J,R) is modeled by:

F rj �= r, ∀j ∈ J, ∀r ∈ R.

Spread. Despite appearances, the model of spread cannot rely on disjunctives
constraints as the specified VMs are possibly hosted by a same server in the initial
configuration. An alternative is to ensure that the VMs are on distinct servers
in the final configuration; then, on each server, to ensure that the arrival of a
VM is delayed after all other involved VMs left. For any subset of VMs J ⊆ J ,
constraint spread(J) is modeled by:{

allDifferent(〈F rj | j ∈ J〉),
F ri = so(j) ⇒ Oei ≤ F sj , ∀i, j ∈ J, i �= j.

Lonely. The model of lonely relies on one disjoint constraint enforcing the set
of servers hosting the specified VMs to be disjoint from the set of servers hosting
the remaining VMs. For any subset of VMs J ⊆ J , lonely(J) is modeled by:

disjoint(〈F rj | j ∈ J〉, 〈F rj | j �∈ J〉).
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Capacity. The model of capacity relies on a redundant set model for the VRSP.
A set variable, associated with each server, indicates the hosted VMs. The con-
straint bounds the sum of the set cardinalities over the specified servers. For any
subset of servers R ⊆ R and value n ∈ N, capacity(R, n) is modeled by:⎧⎪⎨

⎪⎩
∑

r∈R card(Vr) ≤ n,

j ∈ Vr ⇐⇒ F rj = r, ∀r ∈ R, ∀j ∈ J ,
Vr ⊆ J , ∀r ∈ R.

4.3 Solving the VRSP

Dedicated Search Strategy. Entropy solves the CP model using a time-
truncated branch-and-bound. The search strategy is conceived to descend quickly
towards a local optimum, by following the natural decomposition of the problem.
First, it focuses on the final packing and instantiates the assignment variables
〈F rj 〉j∈J . Starting with the VMs whose placement in the initial configuration vio-
lates a resource or a placement constraint, the heuristic selects the VMs in order of
decreasingmemory requirements and attempts at placing them to their initial host
first, then to another server selected in a worst-fit fashion. Once the final packing
is instantiated, the tasks 〈Fj〉j∈J are started as early as possible, in turn, starting
from the tasks which are entering a server with no leaving transition.

A Repair Approach. We experimented two modes of resolution: either start-
ing from scratch or from a partial solution. In the rebuild mode, all VMs are
allowed to migrate, contrary to the repair mode where some candidates are a
priori fixed to their current location. The repair mode may drastically reduce
the size of the model – and then speed and scale up the solution process – if
a maximum number of candidates is fixed. On the other hand, the pre-packing
should be loose enough to ensure a solution to exist. The issue here is to build
a feasible and reasonable-sized partial solution. For this, we compute the inter-
section of the candidate sets returned by simple heuristics that come with each
resource and side constraint.

5 Evaluation

In this section, we evaluate the solving abilities of Entropy on realistic workloads.
The critical parameters we evaluate are the consolidation ratio, the size of the
datacenter, and the side constraints.

For these experiments, we simulate a datacenter composed of racks with 50
servers each. Each server provides 80 GB RAM and 150 uCPU (an abstract
unit to establish the computing capacity of a server). This infrastructure hosts
3-tiers applications, each composed of 20 VMs. The VMs are sized according
to the standards defined by Amazon EC25. The first and the second tiers are
5 http://aws.amazon.com/ec2
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composed of 5 and 10 VMs, respectively. Each VM uses 7.5 GB RAM and at most
4 uCPU (large instances in the EC2 terminology). The third tier is composed of
5 VMs, each using 17.1 GB RAM and at most 6.5 uCPU (high-memory extra-
large instances). The initial configuration is generated randomly. To simulate
a load spike, the uCPU demand is asked to grow for half the applications. To
simulate transitions, 4% of the VMs have to be launched or resumed, 2% of the
running VMs will be stopped or suspended, and 1% of the servers are being
taken off-line. The estimated duration of each transition is: 1 second to launch
a VM, 2 seconds to stop a VM, 4 to suspend, 5 to resume on the current server
and 6 on another one. Finally, the migration of a VM lasts 1 second per gigabyte
of RAM. For each instance, 10 minutes have been given to the plan module to
compute one first solution on an Intel Xeon E5520 at 2.27 GHz running Linux
2.6.26-2-amd64 and Sun JVM 1.6u21 with 8 GB RAM allocated to the heap.

The tables hereafter display the average computational results by sets of 100
instances each: solved is the number of solved instances (failures are due to
timeout), obj the average sum of the completion times in seconds, nodes the
average number of nodes open in the search tree, fails the average number of
fails, time the average solution time in seconds.

The consolidation ratio is the average number of VMs hosted per server. For
this experiment, we simulated 5 ratio values by fixing the number of servers to
1,000 and varying the number of VMs from 2,000 to 6,000.

Table 1. Impact of the consolidation ratio on the solving process.

Ratio Rebuild Mode Repair Mode
solved obj nodes fails time solved obj nodes fails time

2:1 100 452 2034 352 42.2 100 381 163 0 3.5
3:1 94 1264 3119 3645 75.2 100 749 394 0 8.4
4:1 65 3213 4574 11476 129.3 100 1349 836 0 18.7
5:1 10 7475 6878 47590 241.2 100 2312 1585 44 37.7
6:1 0 - - - - 86 4092 2884 2863 71.5

Table 1 shows the impact of the consolidation ratio on the solving process in
rebuild and repair modes. Increasing the consolidation ratio naturally makes the
problem harder: the number of VMs to place rises up, making the packing tighter.
The cost of the computed reconfiguration plan also grows as the migrations on
the overloaded servers have to be more precisely orchestrated. The repair mode
outperforms significantly the rebuild mode as it tackles, for a same ratio value,
much smaller models. The results show that our policy for fixing VMs a priori in
the repair mode is correctly balanced as it reduces well the model size without
making the problem unsolvable, even for a consolidation ratio of 5:1. Such a
ratio implies an average CPU demand of 72% of the datacenter capacity. This
utilization rate is considered as ideal by system administrators as it provides an
efficient tradeoff between a high resource usage and the ability to absorb the
temporary load spikes.
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The datacenter size. For this experiment, we generated 4 sets of instances
using a fixed consolidation ratio of 5:1 and a variable datacenter size, from 500
servers and 2,500 VMs to 2,000 servers and 10,000 VMs.

Table 2. Impact of the datacenter size on the solving process (repair mode)

Set #servers #VMs solved obj nodes fails time
x1 500 2,500 100 1160 805 13 7.0
x2 1,000 5,000 99 2321 1594 17 36.2
x3 1,500 7,500 99 3476 2374 43 105.5
x4 2,000 10,000 100 4635 3171 15 217.0

Table 2 shows the impact of the datacenter size on the computation in repair
mode. We observe that the solving time grows non-linearly with the datacenter
size, accordingly to the temporal complexity of the VRSP. The solver is however
able to compute at least one solution for almost all the instances. Finally, the
slow objective value growth and the few number of fails indicate the reliability
of our search heuristics to guide the solver to solutions of high quality. These re-
sults show the ability of Entropy to handle large representative datacenter sizes.
Indeed, the current trend in datacenter architecture consists in acquiring servers
per shipping container. Each container is almost autonomous and contains be-
tween 500 and 2,500 servers6. While it is possible to aggregate several containers,
i.e. several physical partitions, in one logical partition, the technical limitations
of the platform software may prevent migrations between them. Entropy is then
dimensioned to manage each partition individually.

The side constraints are now experimented in the context of Highly Avail-
able applications. For this experiment, one spread constraint is specified for
each application tier to provide fault tolerance. One application asks for dedi-
cated servers using a lonely constraint. Using capacity constraints, the hosted
capacity of each rack is limited to 300 VMs. Maintenance are prepared using
ban constraints on 0.5% of the running servers.

Table 3. Impact of the side constraints on the solving process (repair mode)

variable consolidation ratios variable datacenter sizes
Set solved obj nodes fails time Set solved obj nodes fails time
2:1 100 381 163 0 3.7 x1 97 1255 1156 3518 12.2
3:1 100 751 394 0 9 x2 93 2511 1872 3018 47.1
4:1 100 1376 841 31 19.2 x3 88 3778 2477 1670 120.2
5:1 95 2491 2007 7053 53.2 x4 91 4980 3271 957 238.7
6:1 35 4512 3603 9661 110.1

Table 3 shows the impact of the side constraints on the instances with a
variable consolidation ratio (left) and with a variable datacenter size (right).
6 http://www.datacentermap.com/blog/datacenter-container-55.html



BRSP in Virtualized Datacenters 39

For the highest consolidation ratio, the solver becomes unable to compute a
solution. The packing is already tight and hard to solve, and the additional side
constraints only exacerbate the situation. For lower ratios, the impact of the side
constraints on the solving time and on the solution cost is quite acceptable. Until
ratio 4:1, the difference is not significant. With ratio 5:1, the solver takes only
15 additional seconds to compute a solution subject to 750 spread constraints,
20 capacity constraints, 5 ban constraints, and one lonely constraint, while the
cost of the reconfiguration plan is increased by 13%. When the datacenter size
varies, the impact of the side constraints appears again to be limited. With fixed
ratio 5:1, the solver is always able to compute a solution for more than 88% of
the instances. For the largest problems, the solving time is only 9% greater than
for the core VRSP, while the cost of the solutions is only 7% higher.

These experiments show that the impact of the side constraints is significant
only when the core VRSP is itself already hard. In a well-designed datacenter,
the primary bottleneck is the limited capacity of its servers. The side placement
constraints should remain only tools provided to the administrators and clients to
express their preferences. When they become preponderant, then the dimension
of the datacenter should be rethought.

6 Related Works

Dynamic reconfiguration arises in real-time computing systems with two domi-
nant applications: reallocation of storage devices to data and reallocation of
processors to processes. In both cases, the goal is to improve the efficiency of the
service as the system evolves, but the main concerns differ.

One key issue in data migration is when to schedule, given a final configu-
ration and the limited capacity of the network, the transfer of data blocks to
involve the least impact on the service. In the core problem, the reconfiguration
time should be minimized, and each transfer occupies, simultaneously during
one unit time, the unique ports of its sender and receiver devices. Such a port
constraint is similar to the concurrent resource constraint of the RTSP. It is
however simpler since it is a disjunctive resource constraint, uncorrelated with
the storage capacity of the devices which is usually assumed to be unlimited dur-
ing migration. In the Data Migration with Space Constraints [1] variant,
both port and storage constraints have to be satisfied during the reconfiguration,
but data blocks are assumed to be identical and the devices never full.

The key issue in process migration is rather where to redispatch the processes,
given the limited capacities of the processors. Most former works, actually, only
consider migrations by service disruption and thus are not subject to scheduling
problems. CP-based approaches were proposed for two opposite objectives: Load

Rebalancing [4] aims at finding a more balanced configuration while minimi-
zing the number of migrations; Service Consolidation [3,6] aims at gathering
the load in order to switch off the maximum number of unused processors.

Live process migration induces a scheduling problem with concurrent resource
requirements during the reconfiguration. To our knowledge, this problem has pre-
viously only been studied in [6,8]. Sirdey et al. [8] presented the Process Move
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Program, a variant of the RTSP oriented to load balancing, with two transi-
tion types: unit-time live migration and migration by disruption. The resource
requirements are constant and the final configuration is given. The problem is to
minimize the number of disruptions and to order the live migrations of the re-
maining processes for solving the resource conflicts. The ZIPMP problem, evoked
in Section 2, is the decision variant where no disruption is allowed. The authors
provided a branch-and-bound and several metaheuristics solutions. In a previ-
ous implementation of Entropy oriented to consolidation [6], a fast schedule is
searched in a greedy way, using a CP model to enforce the resource constraints
to be satisfied at any time. The considered problem is an extension of the RTSP

as it allows to migrate VMs on bypass servers to avoid cycles.
It turns out that, in former works, the packing and the scheduling parts of the

reconfiguration problem have never been handled at once. Such a decomposition
allows to deal with a quality criterion on the final configuration, namely load
balancing or consolidation, but it hinders the objective to get fast reconfiguration
plans. In the VRSP, consolidation and load balancing criteria could also be
enforced as extra soft constraints or within the search heuristic.

The aforementioned reconfiguration problems match the exact resource con-
straints (1) of the BRSP, or a natural extension of them:

∑
j∈s−1

o (r)
t<tj

boj +
∑

j∈s−1
o (r)

tj ≤ t<tj +dδ(j)

boδ(j) +
∑

j∈s−1
f (r)

tj ≤ t<tj +dδ(j)

bfδ(j) +
∑

j∈s−1
f (r)

tj +dδ(j) ≤ t

bfj ≤ Br, ∀r ∈ R, ∀t ≥ 0.

This extension allows the requirements to differ as the transitions are performed.
Thus it allows to model disruptions (boδ(j) = bfδ(j) = 0) as in Process Move

Program or port constraints (boδ(j) = bfδ(j) = 1 and boj = bfj = 0) as in Data

Migration. Furthermore our CP model can be extended to handle these con-
straints, using 4 task variables for each transition instead of 2. As a consequence,
this model, with different objectives, fits most of the problems above described,
at one notable exception: it cannot deal with bypass as in [1,6].

Regarding now the flexibility and the scalability of our approach, a dozen of
relative placement constraints are currently implemented in Entropy. In the same
context of datacenter resource management, Dhyani et al. [3] also advocated the
power of CP technologies to handle some of these constraints. As previously
said, they perform only consolidation, not reconfiguration, and experiment on
instances with up to 30 servers with 4 resources each, and 250 VMs. Commercial
VM managers propose also more and more services to their clients to express
their needs in terms of placement. For example, the DRS [9] manager by VMWare
performs consolidation and provides 3 affinity rules to customize the VM place-
ment. These rules match the constraints, called in Entropy: spread, ban and its
opposite, fence. A cluster managed by DRS can not exceed 32 nodes and 1280
VMs. The technology behind DRS is concealed.
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7 Conclusion

Virtualized datacenters host and manage large ranges of applications, each appli-
cation being distributed in VMs. The resource requirements of the VMs change
over time. In addition, clients and system administrators have specific expec-
tations regarding the relative placement of the VMs on the servers. Automatic
reconfiguration is needed each time the current placement is no longer viable.
Considering both the resource requirements and the placement constraints, the
problem is to determine a new placement of the VMs and to schedule the tran-
sitions so as to provide a fast and reliable reconfiguration.

In this paper, we presented a general formalization of this problem, called
Bin Repacking Scheduling Problem, and a model of Constraint Programming
providing the flexibility needed to dynamically inject side placement constraints.
Our model is implemented and integrated into the autonomous VM manager
Entropy. Experiments with realistic simulated workloads show the ability of
Entropy to solve problems involving up to 10,000 VMs on 2,000 servers with 900
side constraints in less than 5 minutes.

In future works, we want to enrich Entropy with more placement constraints,
including constraints on the network topology, which could make our model
drastically harder to solve. We aim also at providing side constraints with vio-
lation penalties, as clients prefer a controlled degradation of the service to any
non-viable configurations. In addition, we want Entropy to be able to help a
system administrator to locate issues, such as resource bottleneck CP provides,
through soft constraints and explanations, the elements to address these needs.
Their development will contribute to improve the usability of datacenters.
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Abstract. In this paper, we describe a Constraint Programming (CP)
route finding application for a container transportation company. Math-
ematically, this amounts to finding the k shortest paths in a directed
graph. However the nature of the business constraints rule out known
algorithms such as Dijkstra’s. Indeed, one cannot unfold all constraints
into a directed graph as the resulting graph would be too large. Given
an origin and destination (two places), the problem is to decide which
ships should be used (routes), and when and where the containers should
be loaded from one ship to another (connections), while satisfying many
business rules specified by the transportation company. The CP model
described in this paper is quite simple, it doesn’t use any specialized
constraints, but it is surprisingly effective. Queries for the best route are
answered in a matter of a second or fraction of a second, although the
problem is very large: around 900 places, 2,300 routes, 22,000 connec-
tions and 4,200 business rules. The system gracefully handles 100,000
requests a day on a single server.

Keywords: Transportation, Shortest Path, Routing.

1 Problem Description

One of the major container carrier companies has contacted IBM about a route
finding (RF) application they needed to rewrite. The RF application is part of
the system that supports the commercial operations of that company. Basically,
the problem is about rapidly finding feasible ways to ship goods from one place
to another place, worldwide. The system response must be fast enough to be used
during a phone call where a company representative negotiates with a potential
customer. In order to support the commercial negotiation the RF system must
propose several alternative ways for shipping goods. The fastest way does not
have to be necessarily the cheapest, the company needs a system able to propose
several different paths so that the customer can make a choice. The RF system
is also used by various IT applications as a subroutine. All in all, RF system
must answer about 100,000 requests a day.

In the following we concentrate on transportation by container ships but the
definitions can be extended to other transportation means such as trains or

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 42–53, 2011.
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Fig. 1. Example of a route

barges. Therefore, in data description, we will use generic terms such as place,
connection and so on. This section gives a quick overview of the problem, ter-
minology and notation.

Container ships usually operate on fairly regular schedules which are known in
advance and do not change a lot. Typically, a ship follows a circular path called
route (see Figure 1). A route doesn’t have any particular start or end, containers
can be loaded or unloaded at each stop. Transition times between places on the
route are known in advance. A route is therefore a closed loop that visits a series
of places (harbors usually) in a predefined order. A ship following a given route
visits all places on the route according to their (route specific) sequence number.
The same place can appear several times on a route with different sequence
numbers.

An operation of unloading a container from one ship and loading it on another
ship is called transhipment. In order to make a transhipment, both ships must
make a stop at the same port, but not necessarily at the same time: the container
can be stored at the port for a short period of time. However, even if the two
ships make a stop at the same port, it still may be impossible to make the
transhipment: some ports are very large and transportation from one part of
the port to another may be costly or not allowed at all. Therefore, possible
connections are specified by a set of tuples of the form [place, from-route, to-
route]. Note that connections are not symmetrical – from-route and to-route
cannot be exchanged. See Figure 2.

The task is to find k shortest paths (in terms of duration) from Place Of Load
(POL) to Place Of Discharge (POD), see Figure 3.

The path must fulfill the following conditions:

– Maximum number of transhipments is 5.
– All business rules are satisfied (will be explained later).

To simplify the problem, we solve it in two phases. In the first phase, we concen-
trate only on finding the best routes, without assigning the schedule. In another
words, we ignore limitations such as:
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Fig. 2. Example of a connection at Place1 from Route1 to Route2

Fig. 3. Example of a path from POL to POD. The path starts by Route1, at Place1
it changes to Route2 using Connection1 etc. until it reaches POD.

– Exact ship schedules: We take into account the time it usually takes for
a ship to travel from place A to place B, but we ignore the fact that the
particular trip takes 1 more day (for example, due to planned repairs).

– Exact transhipment times: We precompute the usual time necessary for
each allowed connection. Then we use these values instead of real connection
times which depend on real ship schedules.

– Ship capacity etc.: We assume that the ship can always transport the
cargo. For example, there are no capacity constraints or type constraints.

In the second phase (post processing) we use real ship schedules to compute the
real length of the path. The second phase is pretty straightforward, it doesn’t
use CP, and therefore we do not describe it in this paper.

Note that post processing can change duration of routes found by CP, in
extreme case some solutions found by CP can be even found infeasible during
post processing. This is one of the reasons why it is necessary to find k shortest
paths instead of only the best one during the first phase. There is no guarantee
that (after the post processing) one of the k shortest paths is the optimal one,
however we didn’t see such a case in practice. Note also that the current solution
developed by the customer also split the problem in this way and it was a
requirement of the customer to keep it this way.
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1.1 Business Rules

Aside of the path constraints, the solution must satisfy a set of approximately
4,200 business rules. These rules have the following form:

IF
applicabilityPart and
(IF1 or IF2 or ... or IFn)

THEN [NOT]
(TH1 or TH2 or ... or THn)

Where

– applicabilityPart specifies when the rule is active in terms of POL and
POD. For example, it is possible to specify that a rule is active only for
paths from Europe to China. But it is also possible to specify a rule which
is always active.

– IFi and THi are if/then literals. They could be, for example, one of the
following conditions:
• Place P is on the path.
• Route R is on the path.
• Place P1 is directly followed by place P2.
• Route R1 is directly followed by route R2.

– If NOT is present then the THEN part may be empty (no THi). In this case
all of the IFi conditions must be false in order to satisfy the rule.

Here are two examples of the business rules:

1. If POL is New York and POD is in France (applicabilityPart) and route
R1 or route R2 is used (two IF literals) then place P must be on the path
(one TH literal).

2. If POL is in Brazil and POD in Germany (applicabilityPart) then route
R cannot be used (one IF literal for route R, NOT is present, no TH literal).

Note that the possible connections at a place may depend on the origin (POL)
and destination (POD) of the request, the rules are not local. This is what makes
the problem not solvable by classical methods as we shall see in the next section.

2 Why CP?

Shortest path problems are very easy to solve, and one could wonder why we
did not consider using classical algorithms such as Dijkstra’s. The issue is that
a fundamental property required by Dijkstra and all dynamic programming ap-
proaches is that any sub path of an optimal path is also optimal. Indeed, there
are business rules that make a perfectly optimal sub path not extensible into an
optimal path.

For instance, while looking for a path from A to C, reaching the intermediate
point B from A within 10 days does not mean we can ignore ways to reach B in
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more than 10 days. Indeed, the allowed path from B to C may depend on how
(which route) B is reached. One way to solve this could be to construct a de-
rived graph where the unconstrained shortest paths are the shortest constrained
path in the original graph. For this one needs to duplicate place nodes so that
business rules are replaced by possible arcs. Business rules depend on the origin,
destination, place of transhipment, and also on incoming and outgoing routes to
the place of transhipment. Therefore we need to create one node per origin/des-
tination/place/route tuple. In our case this means about 1012 nodes, which is
not manageable with the time and space constraints we have for finding routes.
Refinement of this brute force approach is certainly possible, but we decided to
keep the graph implicit and treat the business rules as constraints.

The shipping company had developed a system that was searching for con-
strained paths as outlined above. That system was poorly designed as it grew
over time with ad hoc coding of business rules into the control flow. It was
difficult to maintain as it was made of:

– several heterogeneous and interdependent modules (500,000 lines of hand
made code, written in Forte)

– with additional technical features to compensate for the low performance
(frequent request caching, graph reduction)

– and many similar and redundant concepts coexisting.

It was therefore decided to:

– keep the business-specific part of the system i.e., the routing rules and the
authorized connections,

– to replace the complex procedural code by a declarative CP model, based on
those constraints and solved by a generic solver (IBM ILOG CP Optimizer
[5]),

– to isolate the static graph set-up, in order to avoid useless data reloading
and graph set-up for each routing request.

2.1 Related Work

Problem of finding shortest paths using CP was already studied by several au-
thors, see for example [11, 3, 8]. The recommended approach is to use a dedicated
constraint for propagation.

In our case, the maximum number of transhipments is 5 what simplifies the
problem a lot. Therefore we tried first to model the problem using only standard
constraints available our CP solver. In the end, performance of this model is so
good that it is not necessary to implement a dedicated constraint. Moreover, the
customer already experienced how hard it is to maintain existing RF system.
Therefore it was very appreciated that implementation of a new constraint is
not necessary and CP could be used as a kind of black-box solver.
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3 CP Model

3.1 Development

The RF application has been developed with IBM CPLEX Optimization Stu-
dio [1]. This product contains several components among which the modeling
language OPL1, and the Constraint Programming system CP Optimizer (CPO)
[5]. At the beginning, we started the development in OPL. Thanks to the OPL
we were able to connect to the customer database, read the data, and quickly
experiment with different models until we found the best one.

In case of the routing application, every fraction of a second matters as the
target is to solve thousands of requests per hour. Therefore once the model
was stabilized, we converted it from OPL to the C++ API of CPO in order
to eliminate overhead of model building (although the overhead was only a few
percents in speed).

3.2 General Framework

CP is a great tool for solving optimization problems. However, it should be
used to solve only the core part of the problem and leave remaining work to
preprocessing and post processing. Therefore we use the following framework:

GlobalPreprocessing();
while (WaitForQuery()) do begin
LocalPreprocessing();
SolveCPModel();
Postprocessing();

end;

Where:

– GlobalPreprocessing does preprocessing independent of POL and POD.
For example, it computes usual transhipment times for all allowed connec-
tions. At the end of this phase, all necessary data are loaded into memory
in order to avoid disc access during following phases.

– LocalPreprocessing does preprocessing dependent on POL and POD. For
example, it filters applicable rules and adds StopPlace into the graph (will
be described later).

– PostProcessing assigns schedules to found paths, resorts the solutions ac-
cording to real duration or according to any other business criteria.

In the following, we will concentrate on the SolveCPModel part.

1 The OPL language has significantly evolved since its original design by Pascal Van
Hentenryck, Irv Lustig, Laurent Michel, and Jean-François Puget [4]. The current
version documentation can be found at
http://publib.boulder.ibm.com/infocenter/cosinfoc/v12r2/index.jsp

http://publib.boulder.ibm.com/infocenter/cosinfoc/v12r2/index.jsp
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3.3 Decision Variables

As usual with real problems, there are many ways to represent them as a con-
strained optimization problem. For instance one could create one decision vari-
able per place whose value would be the next place. One issue with this model
is to deal with the places that won’t be visited for a given request. One would
need to both introduce dummy values for such nodes and extend constraints to
ignore those dummy values. A seemingly better model would be to create an
array of decision variables, one decision variable per visited place. For instance,
the fourth variable would denote the fourth visited place. This model still re-
quires dummy values as we do not know the number of places that the shortest
path will visit. The dummy values would be used for the variables whose indices
are larger than the index of the one valued with the destination.

A much better model leverages two facts. First of all, if no transhipment takes
place at a place, then the container stays on the same ship before and after
visiting that place. The only real decisions to be made are where transhipments
occur, that is, which connections are used. Therefore, a solution to the problem
is a chain of routes, places and connections. For each of them we create a decision
variable (see Figure 4):

– route[i]: i-th route on the path.
– duration[i]: duration of the transportation using route[i].
– place[i]: i-th place on the path.
– connex[i]: connection used at place[i].
– trTime[i]: usual time spent by connex[i].

The second fact is that the number of transhipments is limited to 5, which
limits the number of decision variables we need to consider.

The number of transhipments is not known in advance, it can range from 0
to 5. In order to deal with it we add a new place in the graph – StopPlace –
which is reachable only from POD using ToStop connection and ToStop route,
see Figure 5. Once StopPlace is reached the only way to continue the path is to
use an artificial StopRoute back to StopPlace. This way, instead of looking for

Fig. 4. Decision variables of the problem
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Fig. 5. Addition of StopPlace into the graph

a path from POL to POD with maximum 5 transhipments, we are looking for a
path from POL to StopPlace with exactly 6 transhipments (including artificial
transhipments at StopPlace). That’s why there are 6 connections in Figure 4
and place[0] is set to POL and place[7] is set to StopPlace.

3.4 Constraints for Path

The variables described above are connected using the allowedAssignment con-
straint of CPO (also known as table constraint [6]). Using OPL syntax:

forall(i in 1..6)
allowedAssignments(allowedConnections,

place[i], connex[i],
route[i], route[i+1], trTime[i]);

forall(i in 1..7)
allowedAssignments(distances,

route[i], place[i-1], place[i], duration[i]);

Where allowedConnections is a set of tuples [place, connection, from-route, to-
route, transhipment-time] and distances is a set of tuples [route, from-place,
to-place, duration].

Of course, no place (aside from StopPlace) can appear on the path more
than once. This could be modeled using the count expression in CPO (note
that these expressions are automatically aggregated into a global cardinality
constraint [10]):

forall(p in places)
count(place, p) <= 1;

3.5 Business Rules

The constraints for applicable business rules are built on the fly. First we create
integer expressions for all IFi and THi literals: the expression has value 1 if the
literal is true, 0 otherwise. Then, if NOT is not present in the rule then we add
the following constraint:

max
i

{
IfExpri

}
≤ max

i

{
ThenExpri

}
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Otherwise (if NOT is present) we add the following constraint:

max
i

{
IfExpri

}
≤ 1 − max

i

{
ThenExpri

}
If there is no THi literal then we define:

max
i

{
ThenExpri

}
= 1

In Section 1.1 we gave two examples of business rules. Assuming that they
are applicable (considering the current POL and POD), they will generate the
following constraints:

1. If POL is New York and POD is in France (applicabilityPart) and route
R1 or route R2 is used (two IF literals) then place P must be on the path
(one TH literal):
max( count(route, R1), count(route, R2) ) <= count(place, P)

2. If POL is in Brazil and POD in Germany (applicabilityPart) then route
R cannot be used (one IF literal for route R, NOT is present, no TH literal):
count(route, R) <= 1 - 1

3.6 The Search

We started the development by looking for a single shortest path using default
search of CPO. The results were very good, however for this particular model the
default search was “too clever”. Thanks to strong propagation, CPO was able to
find solutions almost without any backtrack. However, the impact measurement
used in its default search [9] slowed it down. Therefore we switched to simple
DepthFirst search focusing on the place variables first as these variables have
the biggest impact. This could be done using CPO high level search statements
called search phases. The net result was a speedup of around 20%, even though
there was more backtracking.

The customer was not interested in only one best path, the request was to
find best k paths. Currently, there is no public API for this kind of output in
CPO. Therefore we designed a workaround in the following way:

1. Start the search for all solutions, without supplying any objective function.
2. Iterate over solutions and remember k best solutions found so far. If there

are more than 1,000 solutions then continue by 3, otherwise return best k
solutions found.

3. Add constraint saying that we are interested only in solutions strictly better
than the worst one from the k stored solutions. Forget all stored solutions
with exception of the worst one. Restart the search and continue by 2.

Usually, one restart was enough. In rare cases it was necessary to restart the
search twice. Note that without restarting we could end up by enumeration mil-
lions of solutions which would require minutes instead of a fraction of a second.
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4 Added Value of CP

The CP based route finder code is quite small compared to the previous system,
as it is about 2,000 lines of C++ code instead of about 50,000 lines of code
for the search part of the previous system. Moreover, the declarative nature of
the CP code enables consistency checking and review by humans whereas it is
almost impossible to check the logic embedded in the old system. This alone has
been seen as a tremendous progress by the shipping company team. A nice side
effect of this is that the system is much easier to maintain and to evolve.

The CP based system prototype has been developed in less than two months
in elapsed time, and four man months in total. This is much smaller than the
time required to develop the original system.

Having a nice small piece of code is a desirable property, but what matters
the most is the quality of the routes found, their adequateness with the business
operations, and the speed at which these routes have been found, for any possible
request.

The quality of the routes has been evaluated the following way. On a signifi-
cant sample of 9,127 requests the two systems have been run. On 92.8% of the
requests, the best route found by the old system is also found by the CP based
system. Conversely, the best route found by the new system is also found by the
old one in 73.2% of the requests. This shows that the quality of the new system
routes is better on average. The fact that CP did not found the best stored solu-
tion in 100% of the cases can be explained by the nature of the procedural code
of the old system. All business rules and constraints are coded as part of the
procedural code that searches for routes, and it is probable that some mistakes
have been made in these encodings. On the contrary, the declarative nature of
the CP based system enables easy code review.

The adequateness of the routes found with the business needs has been eval-
uated the following way. A sample of routes for which the best route has been
validated by a human operator has been provided to us. This is a by product
of an attempt to speed up the old system. With the old system, each time a
request is answered its result is cached to speed up the next query with the
same (origin, destination) pair. The most frequent ones are then looked up by
a human operator and stored as a routing instructions (RI). We were provided
a sample of 839 routing instructions. For each of them we ran our route finder
with the (origin, destination) pair and we compared with the best route stored
with the one computed by CP. Our system found the stored answer in 815 of
the cases, i.e. 97.1%. For the remaining few cases where CP did not find the
stored solutions, CP found a better route, or some constraints were not met by
the stored solution.

The speed of the new system has been evaluated against the speed of the
old system using a 998 request sample. In a first experiment the requests were
handled sequentially. The new system response time was about 1 second on
average against 9.4 seconds for the old system. However the new system does not
implement some post processing done by the old system (computing the exact
schedule of the trip once a route is found). In order to make the comparison fair
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we take into account the time to do this post processing, and it is estimated to
take 1 extra second. Therefore the new system would take about 2 seconds on
average against 9.4 seconds for th old one. We then did a second experiment
where requests are triggered concurrently, at the rate in which they arrive in
reality (about one per second). Then the response time of the new system is
unchanged, at about 1 second without post processing, whereas the old system
response time goes up to 47 seconds on average. The response time of the new
system is therefore about 24 times better than the old one.

The experiments above show that the new system finds better routes on av-
erage and that it finds them much faster than the old system. The new system
is also easier to evolve given the declarative code used. One very interesting evo-
lution was to use a small variant of the CP model to provide explanations using
the original business rules. We introduced this as a way to debug our encoding
of the business rules as follows.

Sometimes the problem didn’t have any solution and we wanted to know why.
Therefore, instead of applying the rules all the time we added 0/1 decision vari-
able controlling whether the rule is turned on or not. This is straightforward to
implement in CP Optimizer using conditional constraints. Then, by minimizing
the sum of these additional variables we are able to identify which rule(s) make
the problem infeasible (and that again in a matter of a second). This possibility
became quickly very popular and due to the demand, we also added a possibility
to choose which rules cannot be relaxed and to check why a particular solution
is not possible.

Given the dramatic speedup and route quality improvements the shipping
company has decided to integrate the CP based route finder application within
its overall IT system and to deploy it. This is currently underway.

Note that the customer team did not had to understand the CP technology
as we only used straightforward modeling constructs. They are able to read the
C++ code that translates their business rules into CPO constraints.

Our use of CP for this project was focused on modeling. We did not write
fancy search algorithms nor new constraint propagators. The resulting code is
quite declarative and it can be seen as an instance of the model and run paradigm
for CP advocated in [7]. This is one of the lessons learned from using CPO on
this project. It is very important to have a code that business users can check
and understand, which is key to build confidence into the system. The ability to
provide explanations in terms of the original business rules was also key to build
confidence.

The old system, beside its poor performance, was a gigantic black box that
no one could understand at the shipping company. They had to rely on a costly
third party consulting firm for any change to the system. The new one is much
more maintainable and ready for evolution.

The CP approach developed for this customer is original as far as we know.
There is little literature on finding constrained shortest path, with or without
CP. One can cite [12] who solve a constrained shortest path problem in telecom
networks. However, their problem had significant difference from the one we
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discussed in this paper. For instance, their graph is such that each arc (A,B)
has a corresponding arc (B,A), whereas in our case arcs and connections do
not necessarily have a symmetric counterpart. Another attempt at using CP for
shortest path is given in [2]. This paper explores constrained variants of shortest
path problems, but these variants do not cover constraints we generate from
business rules.

As a summary, we have presented a quite effective use of CP for solving a
complex business problem, namely how to route goods from one place to the
other in the shortest possible time. A rather simple CP model requiring 2,000
lines of code yields much better performance than a system made of 500,000
lines of procedural code. The results of the application are so good that the
shipping company has decided to deploy the CP based application. This is a
remarkable endorsement since all the business of the shipping company depends
on the quality of the proposed routes.
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Abstract. We use the Constraint Satisfaction Problem (CSP) framework to
model and solve the problem of designing substitution functions for substitution-
permutation (SP) networks as proposed by Shannon for the architecture of ci-
phers. Many ciphers are designed using the SP pattern, and differ mainly by two
parametrized functions: substitution and permutation. The most difficult of the
two is the substitution function, which has to be nonlinear (a requirement that was
difficult to define and quantify). Over time, researchers such as Nyberg, Pieprzyk
and Matsui have proposed various metrics of nonlinearity that make the func-
tion robust to modern attacks. Before us, people have attempted various ways to
design functions that respect these metrics. In the past people hand-picked sub-
stitution tables (S-boxes) by trying various values. Recently they use difficult to
analyze constructs (such as Bent functions, spectral inversion, inverses in Galois
fields) whose outputs are tested for nonlinearity. While efficient, such techniques
are neither exhaustive (optimal), nor did they manage to generate better substitu-
tions than the ones hand-picked in the past.

We show that Matsui’s nonlinearity requirement can be naturally modelled
using CSPs. Based on a combination of existing CSP techniques and some new
filtering operators that we designed specially for the new types of constraints,
we manage to obtain better S-boxes than any previously published ones. The
simplicity of the CSP framework and availability of general CSP solvers like
ours, makes it easy for more people to design their own ciphers with easy to
understand security parameters. Here we report on this new application of CSPs.

Keywords: CSP Model, S-Boxes, DES, 3DES, Nonlinearity, Linear Cryptanal-
ysis, Differential Cryptanalysis.

1 The Cipher Design Problem

We discuss an application of the Constraint Satisfaction Problem (CSP) framework to
the design of Substitution Boxes (S-Boxes) used extensively in cryptographic algo-
rithms to secure data for confidentiality purposes.
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Fig. 1. Shannon’s Substitution Permutation (SP) Network

Claude Shannon proposed the Substitution Permutation (SP) network, considered to
be the heart of modern cryptography [22]. To transform (encrypt or decrypt) bits of data
to ensure confidentiality, an SP network such as the one shown in Fig. 1, performs three
steps. First, a function of the transformation key, called a subkey, is exclusively-ORed
into the input data bits.

The second step is the one we are interested in. A substitution function Si : Z2n →
Z2n (i = 1, . . . , 4 in Fig. 1) replaces n bits of data by another set of n bits to in-
troduce confusion into the data. By Zk we denote the set of residues {0, 1, ..., k − 1}
modulo-k. The replacement is performed using lookup tables called Substitution Boxes,
or S-Boxes.

In the third step, a permutation function P shuffles the bits to cause diffusion
within the data. Shannon’s SP network requires that each of the S-functions be in-
vertible. The three steps constitute a round of the SP network and are repeated several
times. Each round other than the first acts on the output of a previous round. Fig. 1
constitutes a three-round SP network, with subkeysK0, . . . ,K3 derived from the trans-
forming key.

One of the most productive contributions to modern cryptography is Feistel’s
architecture [8], also referred to as the Feistel network in the literature. It offers a simple
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Fig. 2. Rounds of encryption / decryption in a typical Feistel Cipher

mechanism for generating countless sound1 encryption schemes. The Feistel network,
first designed by Horst Feistel and depicted in Fig. 2, is a product cipher. Each block of
data being transformed is divided into two halves, a left and right half. Input bits being
transformed are permuted to introduce diffusion into the bits.

Next, a function f applies the S-Boxes on these permuted bits to further introduce
confusion into the data being transformed. These substitution-permutation steps form a
round of transformation, and are repeated several times. In addition, f mixes a function
of the transformation key called subkey, precomputed from the transformation key using
a key schedule. Each round uses a subkey different from the others.

New sound encryption schemes on 2mk bits are obtained2 for any choice of k n×m
S-Boxes for any desiredm and n. Feistel’s cipher architecture is a variant of Shannon’s
substitution-permutation (SP) network [22]. When compared with Shannon’s network,
the soundness requirement imposes no constraint on the Feistel’s substitution boxes
(i.e., on the S function)3.

1 An encryption scheme is sound if decryption always returns the original plaintext.
2 One for each key schedule.
3 Shannon required that S-Boxes be invertible.
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Fig. 3. One Round of encryption / decryption in 3DES using the S-Boxes

1.1 Examples of SP Networks

Blowfish, Twofish, Camellia, RC5, IBM’s Data Encryption Standard (DES) [15], and
the widely used Triple-DES (3DES), are examples of Feistel ciphers. Note that 3DES is
one of the main ciphers used in protocols such as Secure Sockets Layer (SSL) and
the newer Transport Layer Security (TLS). It is also employed in the Secure Shell
(SSH) protocol used in applications such as sftp and ssh. Non-Feistel architectures
abound in the literature such as, for example, the International Data Encryption Algo-
rithm (IDEA) [11] and Rijndael, the current Advanced Encryption Standard (AES) [7],
that employ the SP architecture.

A round of 3DES employs eight 6×4 S-Boxes numbered S1, S2, . . . , S8 as depicted
in Fig. 3 with S1 shown in Fig. 4. An S-box substitution of 4 bits for a 6-bit input i is
obtained by indexing into the row number formed by the first and last bits of i, and the
column number formed by the middle bits of i. For example, input of 45(= 1011012) to
S-Box S1 yields 1, obtained by reading the entry in row 3 (= 112), column 6 (= 01102)
of Fig. 4.



58 V. Ramamoorthy et al.

S1 y1y2y3y4

y0y5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Fig. 4. S-box S1 used in 3DES

Table 1. The S-box criteria used by IBM for designing 3DES [6]

S-1 Each S-box has six bits of input and four bits of output.
S-2 No output bit of an S-box should be too close to a linear function of the input bits.

(That is, if we select any output bit position and any subset of the six input bit positions,
the fraction of inputs for which this output bit equals the exclusive-OR of these input
bits should not be close to 0 or 1, but rather should be near 1

2
).

S-3 If we fix the leftmost and rightmost input bits of the S-box and vary the four middle
bits, each possible 4-bit output is attained exactly once as the middle four input bits
range over their 16 possibilities.

S-4 If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least
two bits.

S-5 If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ
in at least two bits.

S-6 If two inputs to an S-box differ in their first two bits and are identical in their last two
bits, the two outputs must not be the same.

S-7 For any nonzero 6-bit difference between inputs ΔIi,j , no more than eight of the 32
pairs of inputs exhibiting ΔIi,j may result in the same output difference ΔOi,j .

1.2 The Security Requirements of S-Boxes

The only part of the Feistel network that is highly nonlinear and therefore difficult to
cryptanalyze, consists of the S-Boxes in the function f of Fig. 2. Thus, the security
of the S-Boxes is highly important. The numbers in Fig. 4 are obtained due to S-box
design. The design requirements have evolved through years of research by the crypto-
graphic community.

For example, the S-Boxes of 3DES are so designed to satisfy the security criteria
numbered S-1, S-2, and so on [6], which are listed in Table 1. These criteria were clas-
sified and eventually, revealed [6] only after reporting of results of differential crypt-
analysis by Biham, et. al [4] and linear cryptanalysis by Matsui [13].

Subsequently, security requirements such as maximum nonlinearity, minimum auto-
correlation, the strict avalanche criterion (SAC), the bit independence criterion (BIC),
highest dynamic distance, and several others, have found their way into the design prin-
ciples to enhance S-box security [18,14].
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2 Rationale of the CSP Approach to S-Box Design

The first S-Boxes for Feistel ciphers were designed by hand. Early security attacks
have propelled the research for guidelines (i.e., requirements) that avoid known vul-
nerabilities. These requirements prove to be so difficult to achieve, to the point where
it is said [15] that the 3DES designing team dropped guards when hand-picking their
last S-box (given the fact that their last S-box is susceptible to attacks from differential
cryptanalysis [4]). Some subsequent proposals build keyed one-time usage S-Boxes dy-
namically. This avoids the need of hand-building them, but results in expensive start-up
times at encryption and decryption (e.g., Blowfish, Twofish [21]).

Some of the criteria used for design of static S-Boxes (such as maximum nonlinearity
and minimum autocorrelation) are defined using numerical satisfaction functions where
the absolute satisfaction appears unreachable4. Therefore the design process becomes
an optimization procedure where the satisfaction of the criteria is maximized.

The approach on which we build here, is to automatically generate the needed
S-Boxes based on the relevant security criteria. S-box generation approaches can
be classified as: random generation of S-Boxes, random generation-and-testing of
S-Boxes, human-made S-Boxes, and math-made S-Boxes [23].

An exhaustive generation of all possible S-Boxes followed by validating them using
security criteria known at that time has been tested for 4×4 S-Boxes as reported in [1].
Among the existing math-made S-box generation schemes, a number of approaches
pre-load bent functions, often constructing them bit by bit, into an S-box entry, and test-
ing the entry against design criteria. For example Mister, et.al [14] loads a bent function
bit-by-bit into an S-box entry and tests for its nonlinearity and highest dynamic distance.
Adams, et.al [2] test combinations of the bits of a 4 × 4 S-box entry against design cri-
teria such as nonlinearity, strict avalanche and output bit independence. O’Connor [16]
combinatorially analyzes the bit-by-bit approach and shows that there are practical lim-
its up to which this scheme can generate S-boxes efficiently. Pieprzyk, et.al construct
n × n bijective S-Boxes by focussing only on nonlinearity requirements [18]. Gupta,
et.al [9] construct n × m S-Boxes in two ways – one, by modifying a technique by
Zhang and Zheng and the other, by using a sharpened version of Maiorana-McFarland
technique to construct nonlinear resilient functions.

Recently, evolutionary approaches using local search have been applied to obtain
S-Boxes satisfying security requirements [12]. The approaches employ hill climbing,
simulated annealing and spectral inversion. A typical approach generates a fully-filled
S-box that is “approximate” in that not all criteria are satisfied, and entries in the S-box
are adjusted to guide the search towards criteria satisfaction. None of these approaches
has the elegance of a CSP model. They did not manage to produce S-Boxes of a higher
quality than the hand-made ones. Neither can they be so simply extended with new con-
straints, nor do their efficiency benefit immediately from advances in general computing
techniques. In contrast, in our work, we employ automatic generation of S-Boxes using
CSPs.

4 This observation of unreachability is supported by our experiments, as well as by the existing
S-box selections of various ciphers.
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3 The CSP Approach

Our model of the problem is based on the following definition of a CSP:

Definition 1. A Constraint Satisfaction Problem (CSP) is a tuple (X,D, C) where X is
a set of variables,D, a set of domains of each variable inX , and C is a set of constraints
between variables in X , all of which are required to be satisfied.

3.1 Notations

For a number x, we use |x| to denote its absolute value. If S is a set, then |S| represents
its cardinality (number of elements in S). Whenever a set is written with braces, its car-
dinality is written with a # preceding the set itself, such as #{a0, a1, a2, . . . ak−1}. The
symbols · and⊕ represent, respectively, the bit-wise AND and exclusive-OR (XOR) op-
erations on two identical-sized bit patterns. Bit pattern x̄ denotes the one’s-complement
of x. A linear combination of Boolean variables x0, x1, x2, . . . , xk−1, is given by the
expression

k−1⊕
i=0

ai · xi = a0 · x0 ⊕ . . .⊕ ak−1 · xk−1 (1)

where the ai’s are Boolean coefficients. A linear Boolean function Lω(x) on an n-bit
input x = x0 . . . xn−1 defined by an n-bit selector ω = ω0 . . . ωn−1 is computed [5] as:

Lω(x) = ω0 · x0 ⊕ . . .⊕ ωn−1 · xn−1 =
n−1⊕
i=0

ωi · xi (2)

1 The parity P (x) of an n-bit pattern x = x0x1 . . . xn−1 is equal to the exclusive-
OR of the bits in x, that is, P (x) = x0 ⊕ x1 ⊕ . . .⊕ xn−1. Using these facts, we derive
the following property of Lω(x):

Property 1. Lω(x̄) = Lω(x) ⊕ P (ω)

Some existing criteria are based on the concepts of Hamming weight and Hamming
Distance. The Hamming weight of a given bit-pattern u, denoted by wt(u), is defined
as the number of 1’s in u. Two n-bit numbers x and y differ by an amount equal to
x⊕ y. The Hamming Distance between x and y is the minimum number of changes to
be made to x to obtain y, and is equal to wt(x⊕ y).

y1y2y3y4

y0y5 0 1 2 3 ... 13 14 15
0 x0 x2 x4 x6 ... x26 x28 x30

1 x1 x3 x5 x7 ... x27 x29 x31

2 x32 x34 x36 x38 ... x58 x60 x62

3 x33 x35 x37 x39 ... x59 x61 x63

Fig. 5. The relation between the selected variables and a 6 × 4 S-box
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Each security criteria is now implemented by a set of corresponding constraints,
taking IBM’s criteria (Table 1) applied to n ×m S-box design as an example. IBM’s
Criterion S-1 is implicit in the choice of variables. Criteria S-4 through S-6 are formu-
lated as binary constraints. Criteria S-2 and S-7 have to be implemented using n-ary
constraints and S-3 generates Alldiff constraints. The constraints for S-2 are the
most involved and are first presented (Sec. 3.3).

3.2 Variables and Domains for an n × m S-Box

To model, using constraints, an n × m S-box (i.e., on n-bit inputs), we propose to
use 2n variables. The ith variable will be denoted xi, 0 ≤ i < 2n. Each xi specifies
the output of the S-box for input i. The set of variables for the CSP is the set X =
{x0, x1, . . . , x2n−1}. Since the output of an S-box is m bits long, the domain of each
variable xi is defined as xi ∈ {0, 1, . . . , 2m − 1}, 0 ≤ i < 2n.

In the example for 3DES, where n = 6 and m = 4, there are 64 different
S-box input values. Let the corresponding 64 output values be represented by vari-
ables x0, x1, . . . x63. Since each output is 4 bits, the domains are defined by xi ∈ {x :
0 ≤ x ≤ 15}, 0 ≤ i ≤ 63. Using these variables, a 6 × 4 S-box such as the one for
3DES is organized as shown in Fig. 5, as addressed by incrementing the input. In Fig. 5,
6-bit inputs i, 0 ≤ i ≤ 63 are represented as bit-patterns y0y1y2y3y4y5 for clarity.

3.3 The Nonlinearity Constraint S-2

The rationale behind IBM’s criterion S-2 (see Table 1) is to ensure that an S-box is
highly nonlinear. Matsui’s work on linear cryptanalysis [13] uses a table called the
Linear Approximation Table that records the counts of linear combinations of all subsets
of input and output bits, for a particular S-box. Consider an n×m S-box, i.e., that for
any n-bit input i = i0 . . . in−1 yields the m-bit output xi = xi0 . . . xim−1 . The linear
combinations to be checked for equality are obtained by selecting bits in i and xi using
selectors a and b respectively, where 0 ≤ a < 2n and 0 ≤ b < 2m. For a given S-box
Φ with all variables in X , let us define NΦ

X(a, b) as follows:

NΦ
X(a, b) = #{i : La(i)=Lb(xi); a, i ∈ Z2n ; b, xi ∈ Z2m} (3)

where Lω(x) is defined in (2). The minimum value of NΦ
X(a, b) is zero and the maxi-

mum value is 2n. Matsui [13] considered the general case when b is not a power of 2,
corresponding to a criterion S-2′ that is stricter than S-2.

Given an n×m S-box Φ′ and X ′ ⊆ X , let us define NΦ′
X′(a, b) as follows:

NΦ′
X′(a, b) = #{i : La(i)=Lb(xi);xi ∈ X ′; a ∈ Z2n ; b, xi ∈ Z2m}

A Measure of Nonlinearity. For selectors a and b defined as above, let p(a, b) denote
the fraction of cases when La(i) = Lb(xi), computed as:

p(a, b) =
NΦ
X(a, b)
2n

(4)
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If p(a, b) is equal to 1, this indicates that the linear combination of the output bits
selected by b equals a linear combination of the input bits selected by a, i.e., ∀i, La(i) =
Lb(xi). If p(a, b) is equal to zero, then the linear combination of the output bits selected
by b is never equal to the linear combination of input bits selected by a. S-2 stipulates
that p(a, b) should be near 1

2 , i.e. |NΦ
X(a, b)− |X|

2 | should be as close to zero as possible.

The Score of an S-box. The ideal case where NΦ
X(a, b) − |X|

2 is zero for all selector-
pairs (a, b), has so far not been attained in the literature for common cryptosystems.
The most effective linear approximation of a 3DES S-box is obtained if, for some a
and b, |NΦ

X(a, b) − |X|
2 | is maximal. To reduce the weakest point of the S-box, we use

the so called effectiveness of linearization [17] of an S-box Φ as its score:

σX(Φ) = max{|NΦ
X(a, b) − |X |

2
| : 1 ≤ a < |X |; 1 ≤ b < |D|} (5)

An S-box with a smaller score is considered better. For our search heuristics we proved
and use the following property:

Property 2. The score σX(Φ) of a complete assignment Φ does not change if all of its
assigned values are replaced by their one’s-complements, into an assignment Φ̄.

The score σX′ , X ′ ⊆ X , of a partially-filled n×m S-box Φ′ is defined as follows:

σX′(Φ′) = max{|NΦ′
X′(a, b) −

|X |
2

| : 1 ≤ a <
|X |
2

; 1 ≤ b < |D|} (6)

The Constraint for S-2. The criteria S-2 leads to a soft constraint that minimizes
σX(Φ). When implemented as a hard constraint for a threshold τ , it has the form:

σX(Φ) ≤ τ (7)

The maximum value of σX(Φ) is equal to |X|
2 , which is attained when the S-box output

bits are given by a linear combination of its input bits.
This constraint is not implemented using an extensional representation. Rather, a

specialized function is added to the solver that works with a 2n+m size storage, repli-
cated at each level in the search tree. This results in a total space requirement of 22n+m

bytes. For 3DES-size boxes the constraint requires 64kB. This heuristic will be referred
to as HΦ,τ

S .

An Incomplete, Incremental Heuristic for S-2 using Partial Assignments. The in-
complete constructive search heuristicHφ,τ

I is based on abandoning partial assignments
larger than φ variables, with score exceeding a threshold τ . For example, for 6 × 4
S-box generation with H48,16

I , partial S-Boxes having 48 instantiated variables will be
rejected if they do not have entries with NΦ′

X′(a, b) of at least 16. The H48,16
I heuris-

tic with MAC yielded a large number of S-Boxes having score 8, (better than those
in 3DES) whose retrieval using other search techniques required a lot of computation
time.
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Projections of n-ary constraints to partial assignments. The following property of a
partial assignment allows for projection of (Eq. 7) into lower-arity constraints.

Property 3 (Projections). A partial assignmentΦ′ with values for variables inX ′, X ′ ⊆
X , cannot be extended to a solution with score better than a threshold τ if the following
inequality is not satisfied:

|X ′| − τ − |X |
2

≤ max
a,b

NΦ′
X′(a, b) ≤

|X |
2

+ τ (8)

A complete, incremental heuristic that uses this property will be referred to as Hφ,τ
C .

S-3 (see Table 1). Fixing the leftmost and rightmost input bits y0y5 to any of the pos-
sible four combinations, selects one of four subsets of the variables. To formulate con-
straints for S-3, all we require is that no two output variables, in each subset, should be
equal. The inequations are directly expressible as Alldiff constraints [19], [10]:

Alldiff(x0, x2, x4, ..., x30)
Alldiff(x1, x3, x5, ..., x31)
Alldiff(x32, x34, x36, ..., x62)
Alldiff(x33, x35, x37, ..., x63)

3.4 Constraints for Criteria S-4 to S-6

For criteria S-4, S-5 and S-6, consider any two n-bit inputs i and j and their correspond-
ing m-bit outputs xi, xj ∈ D, of a 3DES S-box S.

S-4 “If two inputs to an S-box differ in exactly one bit, the outputs must differ in at
least two bits.” This requirement is expressible in First-Order Logic as:

(∀i)(∀j)(0 ≤ i < j < 2n) ∧ wt(i⊕ j) = 1 ⇒ wt(xi ⊕ xj) ≥ 2 (9)

For 3DES, each variable will participate in exactly 6 such binary constraints (one for
each bit), generating 192 binary constraints. For an n×m S-box, the number of binary
constraints for criterion S-4 is equal to n× 2n−1.

S-5 “If two inputs to an S-box differ in the two middle bits exactly, the outputs must
differ in at least two bits.” The fact that n-bit inputs i and j differ in the two middle
bits implies that the 6-bit difference is exactly equal to 3 · 2 n

2 −1 when n is even. S-5 is
expressible in First-Order Logic as:

(∀i)(∀j)(0 ≤ i, j < 2n) ∧ (i �= j) ∧ (i⊕ j = 3 · 2 n
2 −1 ⇒ wt(xi ⊕ xj) ≥ 2 (10)

For 3DES, this results in 32 binary constraints, each input (S-box entry) participating in
exactly one such binary constraint. For an n×mS-box, the number of binary constraints
for criterion S-5 is equal to 2n−1 when n is even.
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S-6 “If two inputs to an S-box differ in their first two bits and are identical in their
last two bits, the two outputs must not be the same.” The fact that n-bit inputs i and
j differ in their first two bits and are identical in their last two bits, implies that the
input-difference (i⊕ j) ∧ 3(2n−2 + 1) is exactly equal to 3 · 2n−1 when n ≥ 4. S-6 is
expressible in First-Order Logic as:

(∀i)(∀j)(0 ≤ i < j < 2n), [(i⊕ j) ∧ 3(2n−2 + 1)] = 3 × 2n−2 ⇒ xi �= xj (11)

For 3DES, each variable is involved in 4 such binary constraints (one for each possible
combination of the two middle input bits), resulting in a total of 128 new binary con-
straints. For an n×mS-box, the number of binary constraints for criterion S-6 is equal
to 22n−5 when n ≥ 4.

Total Number of Binary Constraints. For the n × m S-box design problem using
this framework, the total number of binary constraints, obtained by adding the three
results for S-4, S-5 and S-6, is equal to 2n−1(2n− 1) when n ≥ 4. One can observe the
independence of the total number of constraints on m. For 3DES, this works out to 352
constraints. Also, no binary constraints are observed to contain the same two variables.

3.5 The Global Constraint S-7

S-7:“For any nonzero 6-bit difference between inputs ΔIi,j , no more than eight of the
32 pairs of inputs exhibiting ΔIi,j may result in the same output difference ΔOi,j .”

Let O7 = {(xi, x2n−1−i) : 0 ≤ i < 2n−1} be the set of pairs of variables corre-
sponding to pairs of subscripts (i, 2n−1−i) of those n-bit inputs to an n×mS-box that
differ by all n bits with |O7| = 2n−1. S-7 applies tom-bit differences d = xi⊕x2n−1−i.

Let f : Z2m → Z2n−1 denote a count function, where f(d) is the frequency of
occurrence of an m-bit number d = xi⊕ x2n−1−i where (xi, x2n−1−i) ∈ O7, 0 ≤ i <

2n−1, and 0 ≤ d < 2m. Note that Σ2n−1−1
i=0 f(xi ⊕ x2n−1−i) = 2n−1.

According to S-7, at most eight elements in O7 should evaluate to the same m-bit
difference d. S-7 is modeled as a global, n-ary, Boolean constraint in the following way:

2n−1−1∧
i=0

(f(xi ⊕ x2n−i−1) ≤ 8) (12)

This n-ary global constraint is not straightforwardly decomposable into smaller arity
constraints. After assigning xi, if the count of a given AND-term in Eq. 12 equals 8,
values from domains of not yet assigned variables that would further increase this count
are removed (as they violate Eq. 12).

4 The Advantages of the CSP Approach

The CSP solver helped us find S-Boxes of quality better (with respect to the standard
3DES security metrics) than that of any other published S-box.

The solver we use is an implementation of Maintenance of Arc Consistency (MAC)
[20] with AC2001 [3], as discussed in Section 3. The CSP solution was built starting
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Table 2. Statistics of 4× 2 S-Boxes generated by our CSP framework to satisfy combinations of
3DES criteria

Constraint Time # of Score-wise breakup
Combinations (seconds) S-Boxes Score 8 Score 6 Score 4 Score 2
No constraints 136228.906250 4294967296 3931260 517882560 3496729600 276422720
S-3 only 35.029600 331776 11904 153600 166272 0
S-4 only 0.000089 4 4 0 0 0
S-5 only 6.410940 65536 7936 45056 12544 0
S-6 only 13214.516602 429981696 2103616 91728896 323934912 12214272
S-3, S-5 0.433693 4096 384 2048 1664 0
S-3, S-6 5.224500 46656 6240 22272 18144 0
S-5, S-6 2.085620 20736 4160 13312 3264 0
S-3, S-5, S-6 0.165739 1600 224 768 608 0

from an existing generic C++ implementation, to which we have added modules for
dynamically checking and propagating the decompositions of the global constraints.

The generation of the constraints and the development of the related theory and in-
volved filtering operators are the main topic of the PhD thesis of the first author, and
took approximately 2 to 3 years to refine.

Experiments are being run with the final version for approximately one year. Users
of the system that solely plan to design ciphers using the standard security criteria in
Table 1 do not need to thoroughly understand the workings of CP solvers. Most ex-
tensions with additional constraints could also be performed with little CP knowledge,
except if new filtering operators for those constraints are desired.

We have used the system to generate S-Boxes of different sizes, such as 4× 2, 5× 3
and 6×4 that resemble those used in 3DES. We have tuned the solver by trying various
heuristics for criteria S-2 and S-7. One of these heuristics instantly generated 6 × 4
S-Boxes that are of quality better than those published so far, with respect to Matsui’s
nonlinearity metric.

4 × 2 S-box Generation: The smallest S-Boxes we have encountered in the literature
is an educational example of 4×2 [23]. Not all criteria in Table 1 apply to S-Boxes that
are not of size 6 × 4. In the 4 × 2 case, our solver has proven that it is even impossible
to generate S-Boxes that respect the criteria that apply. The CSP approach generated
4× 2 S-Boxes when some of the conditions are relaxed. Table 2 displays the results on
combinations of satisfied criteria.

5 × 3 S-box Generation: The complete CSP solver is able to explore the entire search
space for generating 5 × 3 S-Boxes (32 variables, each with domain {0, 1, . . . , 7}).
Criteria S-5 and S-6 had to be relaxed since the original version did not apply to this
size. Table 3 shows generation times and number of S-Boxes for various scores, with a
total of 32,640 S-Boxes generated. The optimum score possible for 5× 3 S-Boxes is 8.

6 × 4 S-box Generation: We have used the three heuristics Hφ,τ
S , Hφ,τ

I and Hφ,τ
C for

generation of S-Boxes of this size. For Hφ,τ
I , we have fixed thresholds τ = 16, 10 and
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Table 3. The scores of obtained 5 × 3 S-Boxes, with criteria S-5 and S-6 relaxed

Total time Total number Score-wise breakup
(seconds) of S-Boxes Score 16 Score 12 Score 8
14.2659 32,640 25728 3456 3456

Table 4. Solver Performance Using Complete Heuristics, with S-box threshold τ = 16

Time Non-incremental Incremental
(hrs) r(6×4) × 1049 S-box Count r(6×4) × 1049 S-box Count

1 1.198 4 206,990 38,124
2 21.725 14 978,520 54,725
3 42.091 15 999,560 93,523
4 42.091 26 1,083,100 104,904
5 61.340 40 1,342,900 127,111

0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 11
3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 8
3 15 0 12 5 9 10 6 4 8 11 7 14 2 1 13
9 5 15 3 12 0 6 10 7 11 8 4 2 14 13 1

Fig. 6. A 6 × 4 S-box with score 8, generated by our CSP solver

for the other two heuristics, τ = 16. In a 5-hour run, we observed that H64,16
C proceeds

approximately 20–200 times faster than H64,16
S . 3DES S-box S7 has the maximum

nonlinearity score equal to 18 while the minimum of 10 is possessed by S4. Heuristic
H64,10
I is observed to yield 6 × 4 S-Boxes having a score of 8, which is far better than

the “best” published 3DES S-Boxes. 3,600 such 6 × 4 S-Boxes were generated in the
first hour and this number went up to more than 13,500 in the 5-hour run. Fig. 6 shows
one such S-box generated by our CSP solver employing heuristic H64,10

I .

A New Metric: Percentage of the Search Space Explored. Although our techniques
have found S-Boxes with the “best” score so far, we do not know if they are optimal.
To know whether we have found optimal-quality S-Boxes we have to exhaust the whole
search space. If the search space is too large to be exhausted with available techniques,
we would like to at least know what fraction of this search space we have managed to
explore, as a measure of the probability that the optimal solution could have been found.

We therefore quantify the size of the search space, as the total number of potential
n ×m S-Boxes. Assuming that the solver is systematic, each node of the search tree
defines a traversed distance (explored search space):

S(n×m)
p =

|X′|−1∑
i=0

xi · (2m)|X
′|−i−1 (13)
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For 6 × 4 S-Boxes, S(6×4)
p evaluates to 78-digit base-10 numbers. Given the large

size of this search space, distances typically covered by the MAC solver in reasonable
time differed only in their last few assignments (78-digit numbers differed in approxi-
mately the last 15 digits). Sometimes, certain constraints rule out much larger areas of
the search space. To conveniently report this, we define a search offset metric S-box
S

(n×m)
p1 :

r(n×m) =
S

(n×m)
p − S

(n×m)
p1

2n×2m (14)

Here,S(n×m)
p1 denotes the value for S(n×m)

p (determined from Eq. 13) for the first S-box

obtained by the solver. The solver has yielded S(6×4)
p1 ≈0x033× 1660. The difference

between S(6×4)
p1 for the incomplete and complete heuristics is ≈ 3 × 1652 even when

they use the same value for τ (graphs not shown due to lack of space). Table 4 reports
the (scaled) search offsets of the solver using complete heuristics.

Developments. One can now extend the CSP model with constraints for various special
security requirements. We would like to post the obtained constraints as benchmarks for
the CSP community. Once the CSP model is available, it can be easily used to generate
SAT models and test SAT techniques. The obtained S-Boxes can be used to strengthen
protocols such as SSL (where 3DES is now one of the main ciphers). In this direction,
the first author moved to one of the main US-based providers of SSL technologies.

5 Conclusion

We conclude that CP is a powerful formalism, able to model accurately such complex
criteria as the 3DES security constraints, and in particular the nonlinearity requirement.
The fact that generic solvers can then address such complex problems efficiently and
improve over all existing results is a testimony to the importance of this tool.
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Abstract. In this paper we present a model for the carpet cutting prob-
lem in which carpet shapes are cut from a rectangular carpet roll with a
fixed width and sufficiently long length. Our exact solution approaches
decompose the problem into smaller parts and minimise the needed car-
pet roll length for each part separately. The customers requirements are
to produce a cutting solution of the carpet within 3 minutes, in order
to be usable during the quotation process for estimating the amount of
carpet required. Our system can find and prove the optimal solution for
106 of the 150 real-world instances provided by the customer, and find
high quality solutions to the remainder within this time limit. In contrast
the existing solution developed some years ago finds (but does not prove)
optimal solutions for 30 instances. Our solutions reduce the wastage by
more than 35% on average compared to the existing approach.

1 Introduction

The carpet cutting problem is a two-dimensional cutting and packing problem
in which carpet shapes (also called items or objects) are cut from a rectangular
carpet roll with a fixed roll width and a sufficiently long roll length. The goal
is to find a non-overlapping placement of all carpet shapes on the carpet roll,
so that the waste is minimised or in other words the utilisation of used carpet
material is maximised while meeting all additional constraints. In our case the
objective is to minimise the carpet roll length.

In this paper the carpet shapes are rectilinear polygons of up to 12 sides that
can be made up of non-overlapping rectangles, that must be placed orthogonal
on the carpet roll, i.e., their edges must be parallel to the borders of the roll.
Before the placement of a carpet shape a rotation may be allowed by 90◦, 180◦,
or 270◦, i.e., it can be put onto the roll in one of four cardinal directions 0◦, 90◦,
180◦, or 270◦. But depending on the pile direction of the carpet there may be
restrictions on the which cardinal directions can be used: perhaps only 0◦, 180◦

or perhaps fixed to 0◦.
Normally, a carpet shape is cut as a single piece from the carpet roll, but carpet

shapes for covering stairs or filling up the remainder of a room are allowed to be
cut in several pieces provided that the partition of these carpet shapes satisfy

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 69–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Example of a carpet cutting instance

additional constraints which are described later. The joint of carpets for stairs
that is then introduced between two adjacent pieces can be hidden between the
tread and the riser of the stairs once they are laid. The resulting seams of carpets
filling up a room are hidden at the edge of a room. Moreover, these carpet shapes
are simple rectangles.

Another complexity of the problem is that carpets have a pile direction that
may constrain the orientations of some carpet shapes to be dependent on one
or another. Clients may also prefer to have the pile direction fixed to ensure an
even colour of the carpet when laid relative to a window. Where two carpets
join, e.g. at a door way, the pile direction becomes visible if the two pieces are
not laid with a similar pile direction. Therefore, all carpet shapes that are joined
together must be arranged pile aligned in the plan. Carpet shapes for stairs must
be pile aligned with the pile direction being up the stairs, for safety reasons this
ensures that it is less easy to slip down the stairs.

Example 1. Figure 1 shows an example of a carpet cutting instance. On the left
side the five carpet shapes A, B, C, D, and E are shown and on the right side
their placement on the carpet roll (gray area). The roll is laid out from the left
to the right, i.e., its width is the vertical edge and its length the horizontal one.

On the left-hand side each object contains arrows displaying in which direction
the object can be placed where an arrow pointing to the top, left, bottom, or
right stands for the direction 0◦, 90◦, 180◦, and 270◦ respectively. As shown the
object A, and B can placed in any direction, but not the objects C, D, and E
which must be pile aligned. Moreover, the object E is a carpet for covering four
stair steps. The vertical dotted line shows the edge between the tread and riser
of two steps. The object E can be split at those edges.

In the placement shown on the right-hand side the objects A and B are placed
in the 0◦ direction whereas the other objects are rotated by 180◦. The object E
is partitioned in four parts in order to minimise the needed roll length.

The carpet retailer uses a solution as a base of an on-site cost estimation and
ordering process, to submit an offer to customers. The offer should be made
in a timely manner and a three-minutes runtime limit is given to the cut-plan
optimisation process.

The carpet cutting problem can be characterised as an extension of a two-
dimensional orthogonal strip packing (Osp) problem (referred to as a two-
dimensional orthogonal open dimension problem by [22]) with additional
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constraints in which a packing of rectangles with minimal waste is sought. The
extensions are the placement constraints between rectangles belonging to the
same carpet shape and the partition constraints for carpet shapes covering stairs.
The side effect of the first constraints is that for those carpet shapes a rotation
by 180◦ and 270◦ may be not symmetric to a rotation by 0◦ and 90◦ respectively.

For Osp and related cutting and packing problems different methods have
been applied, a survey can be found in [9]. The different methods can be roughly
categorised in these groups: (1) positional placement/reasoning and (2) rela-
tional placement/reasoning. The first category includes methods such as the
bottom-left rule [7,11] and the discretisation of the large rectangle [3]. The sec-
ond category includes methods that determines the relations (above, under, left,
and right) of each pair of rectangles [16] and the graph-theoretical models [5].
Our approach includes features of both categories.

A two-dimensional cutting and packing problem can be relaxed into two sched-
uled problems, once the problem is projected on the length-axis of the large rect-
angle and the other on the width-axis of the large rectangle. These relaxations
are used in order to infer more about possible positions of the items to be laid
on the large rectangle and detect infeasibility of partial solution earlier.

Constraint programming methods include the global constraints cumulative
[1] that models a cumulative scheduling problem, the sweep pruning technique for
k-dimensional objects [3] and the geost constraint [2] (modelling k-dimensional
objects that can take different shapes). Moreover, special pruning algorithms ex-
ists for the cumulative constraint in the case of non-overlapping rectangles [4].
The sweep algorithm and the geost constraint are specifically designed to model
non-overlapping object with at least 2-dimensions. These algorithms demon-
strate very good results if the slack (the unused space) is small. If the slack
is not small then the additional computational effort may not rewarded by the
reduction of the search space.

The existing fielded solution [14,15] uses a combination of heuristic search
and dynamic programming in a series of optimisation steps. The algorithm in-
crementally selects carpet shapes that are placed across the roll considering all
alternatives and reduces the overall length of material in a branch-and-bound
backtracking search. The algorithm is complex and can be subject to reduced
performance when certain rare combinations of heuristic choice lead to inefficien-
cies of placement. It is not exact and often uses the full 3 minutes of runtime but
considerably less for smaller problems. It was designed to run on 100MHz tablet
PCs with considerably less computing power available than today’s processors.

We define two new exact approaches to the carpet cutting problems. The
first approach decomposes the problem into multiple instances where all the
carpets have fixed dimension and orientation. These subproblems are solved
sequentially maintaining the best solution found overall. Since all dimensions are
fixed the constraint propagation is strong. But a disadvantage is there may be
many instances for a single problem. The second approach models the orientation
of the carpet as a variable and hence reduces the number of instances required
for each problem. It can handle problems that the first approach cannot.
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The subproblems are solved by the lazy clause generation (Lcg) [13] which
is a hybrid of a Boolean satisfiability (Sat) solving and finite domain (Fd)
solving. The Lcg lazily transforms an Fd problem into an Sat problem during
the progress of a search where the conflict analysis only takes the Sat part
into account. At the moment Lcg is one of the best exact solution approaches
for tackling the basic resource-constrained project scheduling problem [19] and
its extension with minimal and maximal time lags [18] in which an optimal
schedule minimising the project duration is demanded. These problems involve
an explaining version of the global constraint cumulative in their model which
is also used to solve carpet cutting.

2 The Carpet Cutting Problem

In the carpet cutting problem there are three different types of carpet shapes:
(i) room carpets that cover rooms which are made up of a number of rectangular
pieces which are constrained to align; (ii) stair carpets that cover stairs which
can be cut into regular pieces and are always rectangular; (iii) edge filler carpets
that cover the remainder of a room that is only slightly wider than the width of
the carpet. The remainder of the room is covered with multiple narrow pieces
cut at any point providing each piece is of a minimum length.

A room carpet is characterised by its set of (possible) orientations and offsets
from its origin to the origin of its rectangles for each orientation. The origin of a
room carpet is the bottom left corner of the smallest rectangle that encloses all
its rectangles in each orientation. Each rectangle has a width and a length which
are given for the 0◦ orientation. The carpet origin is the bottom left corner in
each orientation. Where a room is larger in both directions than the width of
the carpet, a choice of where the full roll width is aligned is made by the user in
advance of the placement optimisation.

Example 2. Figure 2a shows the room carpet laid out in each orientation. Its
smallest enclosing rectangle is displayed with a red-dotted line. The small black
squares in each rectangle indicates the origin for the carpet and its rectangles.
These pictures show how the offsets from the origin differ for each orientation.

Stair and edge filler carpets are characterised by their width and length. Each
of them may be allowed to be cut in several pieces. Stair carpets are cut with
regular breaks between the tread and the riser of two or more steps hence each
single piece must cover an integral number of steps.

Edge filler pieces may be cut arbitrarily with irregular length breaks. These
shapes can be divided at any position so long as their length is not smaller
than a minimal given length. The resulting seam(s) is hidden at the edge of
a room. Significant savings in material wastage occur for certain single room
carpet orders using this approach. For both kinds of breaks a maximal number
of pieces and minimal length of sub-pieces can be given.

Example 3. Figure 2b shows a stair carpet with 4 pieces and possible partitions,
with a maximum of three pieces allowed. Figure 2c shows possible partitions for
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(a)

(b) (c)

Fig. 2. The origin of a room carpet and its rectangles in each orientation (a). Possible
partitions for a stair carpet (b) and an edge filler carpet (c).

Fig. 3. A solution (split into two parts) for Cc instance with 34 room carpets (involving
74 rectangles) and 2 stair carpets (involving 7 rectangles). The roll length is about 93m
to a granularity of 1cm.

an edge filler carpet with length 200 units, with a minimal length of 50 units
(indicated by the bar in the bottom left corner) and a maximum of two cuts.

A formal specification of an instance I of the carpet cutting problem is defined as
follows. We are given 3 sets of disjoint objects: (i) Room is a set of room carpets.
Each c ∈ Room is defined by a set of rectangles c.rect. For each rectangle r ∈
c.rect we have a length r.len and width r.wid (in the 0◦ orientation) together with
an offset (r.ox, r.oy) from the origin of the room carpet (in the 0◦ orientation).
Moreover, each c ∈ Room is also given a set of allowable orientations c.ori ⊆
{0◦, 90◦, 180◦, 270◦}. (ii) Str is a set of stair carpets. For each c ∈ Str we have
a width c.wid, step length c.step and number of steps c.n as well as a maximum
number of pieces c.pcs and minimum steps per piece length c.min. (iii) Edg is
a set of edge filler carpets. For each c ∈ Edg we have a width c.wid, length c.len
as well as a maximum number of pieces c.pcs and minimum length per piece
length c.min. The remaining part of the model is a set Pile ⊆ Room which
determines which carpets must be pile aligned, i.e., c.ori = {0◦, 180◦} for each
c ∈ Pile, and a roll width RW . Hence, I = (Room, Str, Edg, P ile, RW ). Note
that all stair and edge filler carpets must be pile aligned, but this constraint can
be neglected, since the pile orientations are symmetrical for rectangles as it is
for parts of these carpets.
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The aim is to find an allowable partitioning c.part of each carpet c ∈ Str∪Edg
into rectangles, and position (x, y) and allowed orientation for each rectangle r
appearing in a room carpet such that: none of the rectangles overlap; each of the
rectangles in a room carpet are correctly offset from the origin of the carpet; all
pile aligned carpets are aligned in the same orientation, and the roll length RL
is minimised.

Figure 3 shows the best solution found by our method for a large instance. It
reduces the wastage by about 33% in comparison to the current method.

3 Static Model

The first model we present, the static model, splits the original problem into
instances where the orientations and dimensions of each of the rectangular pieces
are fixed in advance (statically known). This is achieved by fixing rotations of
room carpets and fixing the partitions for stair carpets. The advantage of the
static model is that it reduces the number of variables required to specify the
problem, and gives stronger initial propagation. It reduces the requirements of
the global constraints needed to model non-overlap, since dimensions are fixed.
It also improves the strength of preprocessing. The obvious disadvantage of the
static model is that the number of instances required to specify one original
problem may become prohibitive.

To apply the static model we wish to fix the orientation and dimensions of
all the rectangles in the problem. To do so we have to split the problem into
multiple instances. For many problems in the customer data the number of
instances required is not too large since they are often reasonably constrained.

3.1 Dealing with Orientations

Every carpet c ∈ Room \ Pile has an allowable set of orientations in {0◦, 90◦,
180◦, 270◦}. We can split an instance I to remove possibilities of different orien-
tations for a carpet c by creating the set of instances Io, o ∈ c.ori that are each
identical to I except that c.ori = {o}, and for room carpets we swap the length
r.len and width r.wid of the component rectangles if o ∈ {90◦, 270◦}, and update
the offsets (r.ox, r.oy) to reflect them from the new origin in this orientation.

If pile aligned carpets are involved in an instance then the instance is split in
two instances. In one instance all pile aligned carpets c are fixed to the orientation
0◦ and in the other to 180◦.

Note that before doing this we preprocess instances for reducing the possible
orientations of carpets: (i) For room carpets consisting of one rectangle the
orientations 0◦ and 180◦ (90◦ and 270◦) are symmetric. If both orientations are
given then one of them is removed. For square carpets the orientation is fixed to
0◦. (ii) Some room carpets are too wide for the carpet roll if they are placed in a
certain orientations. All those orientations are removed. (iii) Finally, if all room
carpets in one instance that are made of more than one rectangle must be pile
aligned then the pile-aligned constraint is removed from all of them and their



Optimal Carpet Cutting 75

orientation is fixed to 0◦, since each solution for the direction 0◦ is a solution for
the direction 180◦ by rotating the carpet roll and all the placed objects by 180◦.

3.2 Stair Carpets

Carpets for stairs play an important role for the difficulty of a problem be-
cause they can be partitioned in many combinations and introduce symmetries
if two parts in the partition have the same length. We can reduce the difficulty
of stair carpets by avoiding considering all possible partitions by determining
“dominated” partitions.

Example 4. Suppose a stair carpet covers 15 steps and can be cut into an un-
limited number of pieces where each part must consists of at least two steps.
Possible partitions are {10, 5}, {10, 3, 2}, {5, 4, 3, 3}, etc. where each multiset
represents a partition and the elements express the size in steps of each piece.
The total number of possible partitions (incl. the partition {15}) is 41.

The partition problem is well studied in number theory. The (generating) func-
tion that counts the number of different partitions for a sum n is called the parti-
tion function [6]. This function grows exponentially as the value n increases. For
stair carpets an important simplification of the problem arises when we realise
that not all partitions need to be considered because some parts of a partition
can be broken into smaller pieces which can be laid out in a way identical to the
original coarser pieces.
Example 5. Consider a stair carpet with the possible partitions {10, 5} and
{10, 3, 2}. Given a layout for the first partition, the piece of length 5 steps in
the first partition can be split into two parts in which one part covers three
steps and the other one two steps, thus giving a layout for the second partition.
Hence we need not consider laying out the first partition, the partition {10, 5}
is dominated by the partition {10, 3, 2}.
Definition 1. Let P1 and P2 be two different partitions of n (i.e.,

∑
P1 =∑

P2 = n). We say P2 = {p21 . . . , p2k} is dominated by P1 = {p11, . . . , p1m} iff a
mapping σ : 1..m→ 1..k exists such that ∀i ∈ 1..k : p2i =

∑
j∈1..m where σ(j)=i p1j .

That is we can further partition P2 to obtain P1. Given a set of partitions P we
say P ∈ P is dominating if it is not dominated by any P ′ ∈ P− {P}.
We note that [10] use a more general dominance criterion for one-dimensional
bin-packing problems, which is defined in the opposite sense.

It follows that only dominating partitions must be considered during the solu-
tion process. We now construct a recursive definition of the number nd(n, p, k) of
dominating partitions for a stair carpet of length n steps with maximum number
of pieces p and minimal step length k as follows:

nd(n, p, k) = nd(n, p, k, k)

nd(n, p, l, k) =

⎧⎪⎨
⎪⎩

0 if 0 < n ∧ n < l or 0 ∧ p > 0 ∧ l ≥ 2k
1 if n = 0 ∧ p = 0 or n = 0 ∧ p > 0 ∧ l < 2k∑
l≤i≤n

nd(n− i, p− 1, i, k) otherwise.
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Table 1. All dominating partitions for various lengths n where the minimal step length
k is 2, and maximal pieces is n (so effectively no limit on pieces)

n partitions n partitions n partitions n partitions

2 {2} 8 {3, 3, 2}, {2, 2, 2, 2} 12 {3, 3, 3, 3}, 14 {3, 3, 3, 3, 2},
3 {3} 9 {3, 3, 3}, {3, 2, 2, 2} {3, 3, 2, 2, 2}, {3, 3, 2, 2, 2, 2},
4 {2, 2} 10 {3, 3, 2, 2}, {2, 2, 2, 2, 2, 2} {2, 2, 2, 2, 2, 2, 2}
5 {3, 2} {2, 2, 2, 2, 2} 13 {3, 3, 3, 2, 2}, 15 {3, 3, 3, 3, 3},
6 {3, 3}, {2, 2, 2} 11 {3, 3, 3, 2}, {3, 2, 2, 2, 2, 2} {3, 3, 3, 2, 2, 2},
7 {3, 2, 2} {3, 2, 2, 2, 2} {3, 2, 2, 2, 2, 2, 2}

The function nd(n, p, l, k) returns the number of dominating partitions for a
carpet of length n, maximal pieces p, minimum length l and minimum original
length k. The definition captures the following reasoning. The first case is where
there is carpet left but it is smaller that the minimal required length, or there
is no carpet left but there are pieces remaining and one of the earlier pieces
(which is at least size l) could be split in two. The second case is where there is
no carpet and no pieces left, or there is no carpet left, and more pieces possible
but the longest piece is not big enough to split. The recursive case adds up the
possibilities of selecting a piece of size i in the range l to n from a carpet of
size n, and determine how many ways to partition the remaining carpet. The
remaining subproblem is for a carpet of length n− i, with one less piece possible,
and a minimum length of i (so we pick pieces in increasing order of length). The
function can be easily modified to return the dominating partitions.

In the customer data the parameter k is either 1 or 2 and the number of
steps n in a stair carpet ranges from 1 to 18 and 2 to 15 for k = 1 and k = 2
respectively. For most of the customer data the number of cuts constraint is not
constraining (≥ n when k = 1 and ≥ �n/2� when k = 2), and the total number
of dominating partitions is small. This means we can separate the problem into
different instances with different fixed (dominating) partitions. Table 1 shows the
dominating partitions for stair carpets up to 15 steps for k = 2. If k = 1 then
the partition with n parts “1”, i.e., {1, . . . , 1} is the only dominating partition
for stair carpets covering n steps.

We can split a carpet cutting instance I involving a stair carpet c as follows.
For a stair carpet c we determine the set of dominating partitions P of c and
create a new instance IP , P ∈ P where P = {p1, . . . , pm} which is identical
to I except that the partition function for carpet c is fixed so that c.part =
{r1, . . . , rm} and the rectangular pieces ri are constrained as follows: ri.wid =
c.wid, ri.len = pi × c.step.

Too many dominating partitions. For some cases in the customer data, for
example n = 18, k = 1 and p = 7, there are 49 dominating partitions. Splitting
into different instances becomes prohibitive when we have to consider other
reasons for splitting such as multiple stair carpets, and different room carpet
orientations.
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When the number of dominating partitions is too large, we modify the par-
titioning as follows. We consider the partitioning problem with no limit on the
number of pieces (or equivalently limit n). For the customer data, the maximal
number of dominating partitions that arise with this weakening is 3 (as illus-
trated by Tab. 1). We split into instances using these dominating partitions.
This model of course can create a carpet cutting with too many carpet pieces
for a regular carpet c. For each rectangle r ∈ c.part we add a Boolean variable
r.last to the model.

We constrain r.last to hold if the rectangle does not have another rectangle
r′ ∈ c.part directly to the right (1) and ensure that there are at most c.pcs last
parts (2). These constraints are posted for all carpets c ∈ Str:

∀r ∈ c.part : r.last↔ (∀r′ ∈ c.part \ {r} : r.x+ r.len �= r′.x ∨ r.y �= r′.y) (1)∑
r∈c.part

r.last ≤ c.pcs . (2)

3.3 The Model

After handling rotations and stair carpets our original instance I is transformed
into a set of static instances I in which all rectangles are fixed in orientation
and length and width. If the splitting process created too many instances I or
involved edge filler carpets then we will have to handle the original problem
using the dynamic model defined in the next section.

We can now model each static instance I ′ ∈ I reasonably straightforwardly.
Let a variable tuple (r.x, r.y) be defined for each rectangle in the instance Rect =
(
⋃
c∈Str c.part)∪(

⋃
c∈Room c.rect) which gives the position of the rectangle on the

roll, and variable tuples (c.x, c.y) for each room carpet c ∈ Room. We introduce
variable RL to hold the roll length. The constraints of the model are (1–2) if
required, together with:
Each rectangle must be on the roll

∀r ∈ Rect : 0 ≤ r.x ∧ r.x+ r.len ≤ RL ∧ 0 ≤ r.y ∧ r.y + r.wid ≤ RW . (3)

Each rectangle in a room carpet must be placed correctly relative to the carpet

∀c ∈ Room, ∀r ∈ c.rect : r.x = c.x+ r.ox ∧ r.y = c.y + r.oy . (4)

No rectangles overlap.

diff2([r.x | r ∈ Rect], [r.y | r ∈ Rect], [r.len | r ∈ Rect], [r.wid | r ∈ Rect]) (5)

For the solver we make use of there is no global definition of diff2, instead it
is decomposed into a disjunction of possibilities where ≺ is simply an arbitrary
total order imposed on the rectangles.

∀r1, r2 ∈ Rect s.t. r1 ≺ r2 : r1.x+ r1.len ≤ r2.x ∨ r2.x+ r2.len ≤ r1.x

∨ r1.y + r1.wid ≤ r2.y ∨ r2.y + r2.wid ≤ r1.y . (6)
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This decomposition is very weak, and only propagates if three inequalities are
unsatisfiable and the remaining one undecided. In order to get a stronger propa-
gation on the involved variables two global cumulative constraints are used, i.e.,
one for the roll length and the other one for the roll width. We hence enhance
the model with the redundant constraints

cumulative([r.x | r ∈ Rect], [r.len | r ∈ Rect], [r.wid | r ∈ Rect], RW ) , (7)
cumulative([r.y | r ∈ Rect], [r.wid | r ∈ Rect], [r.len | r ∈ Rect], RL) . (8)

The cumulative constraints are implemented as global constraints with explana-
tion [19]. They provide much stronger propagation than the decomposed diff2.
Equation (8) also provides strong lower bound reasoning on the objective RL.

In order to find the optimal solution to an original problem instance I using
the static model we must find the minimal roll length solution for any of the
instances I it was split into.

4 Dynamic Model

The static model splits the problem into multiple instances to fix the dimensions
of the rectangles. But this can be prohibitive when an original problem splits
into very many instances, and it does not give an approach to edge filler carpets.
The dynamic model models the problem more directly.

Orientation. For each room carpet c we model its orientation with variable
c.vori which takes a value in c.ori. We introduce two Boolean variables c.0or180
which is true if the carpet is oriented at 0◦ or 180◦, and similarly c.0or90.

For each rectangle r we introduce a variable r.vlen to hold its length (after
orientation), and similarly a variable to hold its width r.vwid, and x offset r.vox
and y offset r.voy from the carpet origin. For each carpet c and rectangle r ∈
c.rect we precalculate two arrays of offsets of r from the carpet origin and each
orientation o ∈ {0◦, 90◦, 180◦, 270◦} given by oxc,r[o], and oyc,r[o].

The model includes the following constraints for each carpet c ∈ Room:
Enforcing agreement of the orientation and Boolean variables

c.0or180 = (c.vori ∈ {0◦, 180◦}) ∧ c.0or90 = (c.vori ∈ {0◦, 90◦}) . (9)

Setting length, width and offsets of each rectangle depending on orientation

∀r ∈ c.rect : r.vox = oxc,r[c.vori] ∧ r.voy = oyc,r[c.vori]
∧ r.vwid = r.len+ (r.wid − r.len)× c.0or180 (10)
∧ r.vlen = r.wid+ (r.len− r.wid) × c.0or180 . (11)

Note that the offset calculation constraints are examples of element constraints.

Edge filler carpets. Given an edge filler carpet c ∈ Edg we model this with
a set of c.pcs different rectangles c.part (so |c.part| = c.pcs). We have to ensure
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that these pieces either 0 length (and hence only really pseudo pieces) or reach
the minimal length.

∀c ∈ Edg, ∀r ∈ c.part : r.vwid = c.wid ∧ (r.vlen = 0 ∨ r.vlen ≥ c.min) (12)

And the sum of the lengths must equal the irregular break length

∀c ∈ Edg :
∑

r∈c.part
r.vlen = c.len . (13)

We can also reason about dominating partitions for irregular breaks. Any par-
tition with a piece r where r.vlen ≥ 2c.min and one piece of zero length will be
dominated by a partition where r is broken in two. Hence we can add

∀c ∈ Edg : (∃r ∈ c.part : r.vlen = 0) → (∀r ∈ c.part : r.vlen < 2c.min) . (14)

If c.len ≥ 2(c.pcs− 1)× c.min then there can be no zero length pieces since the
right hand side of the implication in (14) cannot be satisfied at the same time
as (13), hence in this case we can simplify (12).

The Model. The set of rectangles is Rect =
⋃
c∈Room r.rect∪

⋃
c∈Str∪Edg c.part.

We assume that for each stair piece r.vlen = r.len and r.vwid = r.wid. The
constraints of the model are: (1–2) if required, (3–8) with r.len replaced by
r.vlen and r.wid replaced with r.vwid, (9–11) and (12–14) if required.

5 Refining the Models

The basic model can be further enhanced in order to improve the propagation, re-
duce the model size, and strengthen the reasoning and the conflict-driven search
in the Lcg solver.

Variable views. Variable views [17] are a form of variable aliasing. Suppose
y = ax+c where a and c are constants, then rather than creating a new variable
for y use a view to compute information about the (view) variable y from the
real variable x. This refinement (views) is particularly useful for Lcg solvers
since it improves learning. For a fixed orientation room carpet c we can replace
the variables r.x and r.y by views on c.x and c.y for all r ∈ c.rect using (4). For
non-fixed orientation carpets c we can use views to define r.vlen and r.vwid for
r ∈ c.rect using (10) and (11).

Disjunction and Better diff2 decomposition. In all carpet cutting prob-
lems the roll width is narrow in comparison to some carpets, so that no other
carpet can be positioned below or above to those carpets. We say these carpets
are in disjunction. Carpets that are in disjunction with all others can be placed
at the beginning of the roll. We denote this as the disj refinement.

We can use disjunction to improve the diff2 decomposition (diff2). Assume
function not par(r1, r2) holds if r1 and r2 cannot overlap horizontally on the role.
For pairs r1, r2 with this holds we replace the body of (6) by r1.x + r1.len ≤
r2.x ∨ r2.x + r2.len ≤ r1.x. The simplest definition of not par just r1.wid +
r2.wid > RW , but it can be improved by considering the compulsory parts [8]
and possible y coordinates of r1 and r2 to determine if there is insufficient space
for them to overlap.
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Symmetry breaking constraints. In the model symmetries can occur be-
tween rectangles that have the same size, i.e., length and width. The most
common case for symmetries occurs for pieces of stair carpets. We assume a
function same(r, r′) which (statically) tests if two rectangles have the same di-
mensions, are not rotatable and are not part of a room carpet with more than one
rectangle. For refinement sym we add a lexicographic ordering on (r.y, r.x) for
rectangles that are the same. Symmetry breaking can also considerably simplify
the definition of r.last for stair carpets c ∈ Str since we only need to consider
the lexicographically least member of each symmetric group that appears in the
partition c.part. Finally we can enforce that the pieces of an edge filler carpet
are ordered in length.

Forbidden gaps. Forbidden gaps [20] are areas between a rectangle and a
long edge (either from another rectangle or a boundary) that are too small to
accommodate any part of other rectangles. In this paper, we forbid these gaps
between rectangles that have fixed orientation and do not belong to room carpets
with multiple rectangles, and the borders of the carpet roll as follows.

Let gap be the minimal width of any rectangle. In the y direction (fbg y) We
consider how many rectangles (multiples of gap) might fit between the considered
object edge and the border of the carpet roll: (i) none, (ii) one, and (iii) two
or more. In case (i) the y coordinate is set to 0. In case (ii) the object is aligned
with either the top or the bottom. In case (iii) constraints are added to forbid
placements of the object that creates a smaller gap than gap with either the top
or bottom of the roll. Similarly, we impose forbidden gaps (fbg x) for the left
and right border of the roll.

6 Search

To solve a carpet cutting problem instance I in our approaches we need to solve a
series of instances I determined by splitting. The generic algorithm first attempts
to find a good solution for each I ′ ∈ I and then uses the best solution found
as an upper bound on roll length, and searches for an optimal solution of each
I ′ ∈ I in the order of how good a first solution we found for them. During this
process the upper bound is always the best solution found so far.

The two phase approach has two benefits. First it means that domain sizes
of variables in the optimisation search are much smaller. Because lazy clause
generation generates a Boolean representation of the size of the initial domain
size this makes the optimisation search much more efficient. Second the first
phase ranks the split instances on likelihood of finding good solutions, so usually
later instances in the optimisation phase are quickly found to be unable to lead
to a better solution.

First solution generation. The goal of the first search is to quickly generate
a first solution that gives a good upper bound on the carpet roll length. We
examine each split instance in I in turn. We order the split instances by the
partitions of regular stair carpets examining partitions with fewer pieces before
partitions with more pieces, and otherwise breaking ties arbitrarily.
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We use a simple sequential search on each split instance. We treat the room
carpets first, in decreasing order of total area. First we assign a horizontal or
vertical orientation for all room carpets by fixing the c.0or180, which fixes the
dimensions of each rectangle. Then we fix the orientation by fixing c.0or90. We
then fix the lengths of edge filler carpets. We next determine c.x for all room
carpets c, and then determine each c.y again in decreasing area order. Finally
we place each stair carpet rectangles by fixing r.x and then r.y treating each
rectangle in input order.

Minimisation. A hybrid sequential/activity based search is used to find opti-
mal solutions. We first fix the orientations of each room carpet as we did in the
first-solution search. Then we switch to the activity-based search (a variant of
Vsids [12]) which concentrates on variables which are involved in lots of recent
failures. Activity-based search is tightly tied to the learning solver we use, but
is acknowledged from the SAT community to be very effective.

For the activity-based search, we use a geometric restart policy on the number
of node failures in order to make the search more robust. The restart base and
factor are 128 failures and 2.0, respectively.

7 Experiments

The experiments were carried out on a 64-bit machine with Intel(R) Pentium(R)
D processing with 3.4 GHz clock and Ubuntu 9.04. For each original problem
instance I an overall 3 minutes runtime limit was imposed for calculating carpets
that are in disjunction with all other carpets if the refinement disj is used, finding
a first solution and minimising the roll length for all split instances I.

The G12/FDX solver from the G12 Constraint Programming Platform [21]
was used as the Lcg solver. We also experimented with the G12 Fd solver using
search more suitable for Fd (placement of the biggest carpets at first). It could
only optimally solve 7 instances compared to 76 for Lcg using the same search.
This shows that Lcg is vital for solving the problem to prune substantial parts
of the search space.

Dynamic versus static model. Table 2 compares the static and dynamic
model as well as the current solution approach on the instances which the static
model can handle (126 of 150). It shows the number of instances solved optimally
(“opt.”), the sum of the best first solutions found for each instance (“init. ΣRL”),
the sum of the best solutions found for each instance (“ΣRL”) and the area of
wastage (“wast.”), i.e., for one instance RL × RW −

∑
c∈Rect c.len × c.wid,

relatively to the wastage created by the current method as well as the total
runtime to solve all instances (“Σrt.”). The static approach solves one more
problem and its first solutions are better than for the dynamic approach. In
total, a better first solution was generated for 55 instances. Where applicable
the static approach is preferable.

The existing method finds, but does not prove, 27 optimal solutions. It was
tested by IF Computer GmbH on a Dell Latitude D820 with a Intel(R) Core(TM)
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Table 2. Comparison between dynamic and static approach

approach opt. init. ΣRL ΣRL wast. Σrt.

dynamic 92/126 171,645 160,536 66.5% 6,247s
static 93/126 168,270 160,399 65.9% 6,946s

Current method 27/126 - 167,668 100% 7,450s†

Table 3. Results of different refinements

disj views diff2 sym fbg x fbg y opt. init. ΣRL ΣRL wast. Σrt.

86/150 232,181 221,542 67.9% 12,721s
× 88/150 232,075 221,521 67.8% 12,360s

× 89/150 232,181 221,248 66.9% 11,999s
× 89/150 232,181 221,240 66.9% 11,980s

× 99/150 232,181 221,344 67.2% 9,933s
× 88/150 232,181 221,596 68.1% 12,295s

× 88/150 232,181 221,399 67.4% 12,302s
× × 89/150 232,181 221,060 66.3% 12,385s

× × × × × × 106/150 232,075 220,775 65.2% 9,290s

Current method 30/150 - 230,795 100% 8,988s†

Duo processor T2400 processing with 1.86 Ghz clock. The times marked (†) for
the existing approach are the sum of times when the best solution was found.
Since it cannot prove optimality for the majority of instances the method uses
the whole 3 minutes. The new approach reduces the wastage of over 33%.

Refinements. Table 3 presents the impact of different refinements on the dy-
namic models. The entry × means that the refinement was used. We compare
the different refinements with the same features as before.

The change in number of optimally solved instances clearly illustrates the
important of symmetry breaking for proving optimality. Variable views and for-
bidden gaps have a minor impact on proving optimality.

We can see a tradeoff in the refinements. Most make it harder to find solutions,
but reduce the search space required to prove optimality. When applying all
refinements we solve the most instances, and generate solutions with minimal
total length, since the new optimal solutions make up for unsolved problems
where we found worse solutions.

8 Conclusion

We have created an approach to carpet cutting that can find and prove the
optimal solution for typical problems instances within 3 minutes. The power
of the approach comes from the combination of careful modelling of the stair
breaking constraints to eliminate symmetries and dominated solutions, and the
use of lazy clause generation to drastically reduce the time to prove optimality.
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Abstract. Nurse rostering is the process of creating a plan for nurse
working hours over a given time horizon. This problem, most variants of
which are NP-hard, has been studied extensively for many years. Still,
practical nurse rostering is mostly done manually, often by highly quali-
fied health care personnel. This underlines the need to address the chal-
lenges of realistic, applied nurse rostering, and the implementation of
advanced rostering methods in commercial software.

In this paper, we present an industrial case study of a nurse roster-
ing software currently used in several hospitals and other health care
institutions in Norway and Sweden. The presented problem model has a
rich set of hard and soft constraints, as required by Norwegian hospitals.
Our solution approach is a hybrid: An Iterated Local Search framework
that uses Constraint Programming for initial solution construction and
diversification, and a Variable Neighborhood Descent for iterative im-
provement. The search method shows good results in terms of solution
quality and computation time on a set of real world instances. We make
these test instances available on-line.

Keywords: Nurse rostering, Iterated Local Search, Constraint Program-
ming, Variable Neighborhood Descent, Hybrid optimization, Real-world
test cases, Industrial case study.

1 Introduction

Nurse rostering is the process of creating a work schedule for hospital nurses by
matching employees to shifts over a given planning horizon, while considering
skills, competence, fairness, and laws and regulations. The output is a roster of
the working hours for the nurses that also provides an overview of staff utilization
and associated costs.

Producing a nurse roster is a complex task: The hospital typically has a con-
tinuous demand for personnel, and this demand varies over time. In addition, the
roster must follow labor laws, union regulations, as well as hospital policy. Also,
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the problem involves multiple stakeholders (employer, employees, and patients),
whose preferences must be taken into consideration. The main focus of the em-
ployer might be efficient resource utilization at minimum cost, while an employee
would like to have a fair distribution of work load and the option to influence the
planning of his or her days off. For the patients, short waiting time and treatment
by personnel with the right competence could be the main concern.

Currently, nurse rostering is usually conducted manually, often by highly qual-
ified health care personnel. There are important advantages to be gained by au-
tomating the construction and maintenance of rosters. Not only can the added
computation power lead to better rosters, it also drastically reduces the time
used in this task. Thus, time is freed up for the involved health care personnel
— time that can be better spent on clinical tasks and care.

The presented work was done in a R&D project for Gatsoft AS, a developer
of personnel management software that currently serves 80 % of the Norwegian
Hospital market. The solution approach showed very good results and was im-
plemented in their personnel management system already in 2005. Today, the
module is used by several hospitals and other health care institutions in Norway
and Sweden, and has also attracted interest from food production and trans-
portation companies.

In this paper we present the developed problem model and solution approach.
These were developed to meet performance requirements and functional speci-
fications from Norwegian hospitals. The solution approach is a hybrid between
Constraint Programming, Iterated Local Search [20] and Variable Neighborhood
Descent [13], and will be presented in the following. The test results (section 5)
show that this search method can solve large, realistic instances within reason-
able time. All test instances are from real world rostering applications, and are
available online [25].

The paper is organized as follows: Section 2 provides background information
on related research. In section 3, we describe the problem, while the solution
method is presented in section 4. Experimental results are given in section 5. We
conclude and highlight possible directions for future research in section 6.

2 Background

Nurse rostering problems (NRPs) are combinatorial optimization problems that
in most cases are NP-hard [17]. There is a large literature on different solu-
tion methods applied on NRPs. However, according to [8] and [18], only a few
methods have been tested on real world instances and even fewer have been
implemented and used in hospitals: For a more comprehensive overview of the
nurse rostering literature, see [8].

2.1 Related Work
Both complete and incomplete solution methods have been applied to the NRP.
Examples of complete methods are: Mathematical Programming [3], Goal Pro-
gramming [11], and Constraint Programming [14,29]. Examples of incomplete
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methods includes: Variable Neighborhood Search [7], Simulated Annealing [5],
Genetic Algorithm [23], Tabu Search [6,12], and Multi-Objective Optimization
with Variable Neighborhood Search [9].

Our approach is a hybrid, combining Constraint Programming (CP) with It-
erated Local Search (ILS) and Variable Neighborhood Descent (VND). Similar
hybrid approaches include [19], who combine CP with Tabu Search. However,
while they formulate a weighted Constraint Satisfaction Problem, we differen-
tiate between hard and soft constraints in a manner similar to that of CP’s
constraint hierarchy [4]. There is also a difference in CP heuristics: [19] involve
only some of the nurses in their CP model, while our CP search constructs
complete solutions for all nurses. Also, while they use Tabu Search for improv-
ing their partial solution, we use ILS to improve on our complete solution. [28]
present an early and interesting hybrid approach: They use a simplified Integer
Linear Programming (ILP) formulation of the complete model to produce an
initial solution. Tabu Search is used in a second stage to repair and improve
on the solution found by ILP. Another relevant approach is [15], where Large
Neighborhood Search is used as the algorithmic framework. Here, fragments of
low quality in the solution are destroyed, and CP assists by rebuilding the so-
lution. [7] has the approach most similar to ours. They use an iterative process
of Variable Neighborhood Search (VNS), then destroy (un-assign) shifts for the
most penalized nurses. However, their re-construction is done by a heuristic con-
struction method rather than a CP search, and the solutions so constructed are
allowed to be infeasible. These infeasibilities are subsequently removed by the
next application of VNS.

There are few systems implemented and used in hospitals. For example, Gym-
naste [22], Interdip [1], and Orbis:Dienstplan [2], which all use CP as their so-
lution method. In addition, we have ORTEC’s rostering software Harmony [23],
which use Genetic Algorithm as its solution method. The only hybrid we have
found is Plane [6], which combine simple Tabu Search with problem solving
heuristics (diversification and greedy shuffling).

3 Problem Description

Based on extensive dialog with Norwegian hospitals, we believe that the proposed
model includes all important constraints for Norwegian nurse rostering. In the
following, E is the set of all employees, while D is the set of all days in the roster.
Table 1 lists the hard and soft constraints of the model.

Each shift is a member of one and only one shift category, which is a “collec-
tion” of shifts that are concurrent (day shifts, evening shifts and night shift). A
manpower plan (cover requirement) is a table summarizing how many employ-
ees that are needed for each shift on the different weekdays. The inclusion and
parametrization of individual constraints will vary between problem instances. A
feasible solution must satisfy all included hard constraints. The objective func-
tion of the problem, f , is a weighted sum of the penalties derived from violating
the soft constraints. For an exact mathematical definition of the problem, please
see [26].
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Table 1. Hard and soft constraints

Hard constraints Soft constraints

HC1: Maximum one shift is assigned on
each day to each employee.
HC2: The manpower plan must be cov-
ered exactly on each day (’cover require-
ment’).
HC3: The sum of working hours for each
employee must not deviate too much with
respect to the employee’s contracted hours
(typical for Norway). Note that within the
hard limits of HC3, the deviation is mini-
mized by soft constraint SC6.
HC4: Employees can only work shifts for
which they have the required competence.
HC5: There must be a minimum time be-
tween shifts on consecutive working days.
HC6: Every week must have a minimum
continuous free period.
HC7: The maximum weekly working time
must not be violated.

SC1: Avoid too many consecutive working
days with the same shift category.
SC2: Avoid too many consecutive working
days.
SC3: Avoid too few consecutive working
days with the same shift category.
SC4: Avoid too few consecutive working
days.
SC5: Minimize deviation from minimum
and maximum number of shifts in each cat-
egory.
SC6: Minimize deviation from the em-
ployee’s contracted hours. While HC3 pro-
vide a minimum and maximum limit for
the sum working hours, this constraint
tries to minimize the distance to the con-
tracted number of working hours within
those limits.
SC7: Cluster days off as much as possible.
SC8: Maximize wanted shift patterns.
SC9: Minimize unwanted shift patterns.

4 Solution Method

We employ a hybrid solution approach combining Constraint Programming (CP)
and Variable Neighborhood Descent (VND) in an Iterated Local Search (ILS)
framework. All parts of this hybrid algorithm were implemented using SINTEF’s
in-house optimization library, SCOOP.

keywordstyle
1 IteratedLocalSearch
2 x∗ ← x ← CPBuild(x0)
3 repeat
4 x ← VariableNeighborhoodDescent(x)
5 x∗ ← Accept(x, x∗)
6 repeat // Diversification
7 x′ ← DestroyPartsOfSolution(x)
8 x′ ← CPBuild(x′)
9 until x′ is a legal solution

10 x ← x′

11 until some termination condition is met
12 return x∗

Listing 1.1. The iterated local search scheme
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Listing 1.1 shows a high level pseudo-code of the algorithm. The search is initi-
ated in line 2 where CP is used to create an initial feasible solution. This becomes
the starting point of the improvement phase in the ILS algorithm. More details
on the procedure CPBuild can be found in Section 4.1. In line 4, VND is run
to improve the current solution x. For more details about the VND algorithm,
see Section 4.2. The VND can get stuck in local optima and the purpose of
the diversification step in lines 7 and 8 is to escape these. We employ a ruin
(DestroyPartsOfSolution) and recreate (CPBuild) methodology for this diversi-
fication; see section 4.3 for a detailed description. The procedure Accept (line 5)
simply accepts x as the new best solution if it improves the objective value. The
search terminates when a pre-set time limit is reached, when a solution with
zero penalty is found, or upon manual interruption by the user. Throughout the
search we only store the best found solution (x∗) at any time. Inferior solutions
found during the search are discarded.

4.1 Initial Solution Construction

The procedure CPBuild applies CP search on a Constraint Satisfaction Prob-
lem (CSP) involving only the hard constraints. In line 2 in Listing 1.1, CP-
Build constructs a complete feasible initial solution from scratch. We will later
(in section 4.3) describe how CPBuild is used in the diversification step of the
algorithm, to complete partial solutions where only some of the variables are
instantiated.

The CSP model has a set of variables X = {Xed}, where e ∈ E and d ∈ D
indicates the corresponding employee and day, respectively. Each variable has a
finite domain of discrete shift code values. A set of hard constraints restrict the
domain values that any subset of variables can take simultaneously. A feasible
solution contains an assignment of a shift code value to every variableXed in such
a way that all the hard constraints are satisfied, and the procedure terminates
as soon as as such a solution is found. If the procedure cannot find a feasible
solution within an allocated time limit it will return a solution satisfying as many
of the hard constraints as possible. This is ensured by first finding a solution
that satisfy the two hard constraints, HC2 and HC3 (and HC1 implicitly by
modelling). For our test cases, finding such ”basic solution” is always possible
and in general fast, if the rostering problem is set up with the right amount
of personnel (which it typically true since this is used in hospitals where the
cover / manpower plan is adjusted to the amount of available personnel). Next
we try to find a solution where all the hard constraints in the problem are
satisfied, if that works, this solution becomes the initial solution. If not; different
combinations of the constraints are tried, in a pre-defined order. When the time
limit is reached, the solution involving the most important / highest ranked
constraint combination is returned.

The hard constraints HC1 and HC2 in Table 1 are always required to be sat-
isfied and to ensure this, the time limit can be exceeded. Those hard constraints
that are not satisfied are relaxed and added to the set of soft constraints that
form the basis for the objective function used in the subsequent local search.
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Note that this happens very rarely, and did not happen in any of our tests.
Therefore, in the following discussion we assume that CPBuild always returns a
feasible solution, satisfying all hard constraints.

We use a MAC CP search algorithm (from our SCOOP library) that establish
arc consistency before and search and maintain it during search. The algorithm
uses a depth first search with dynamic variable and value orderings. A standard
CP search algorithm usually first selects a variable to instantiate, and then a
value (or vice versa). In our CP search algorithm the variable and value selection
is interconnected: The algorithm first partially orders variables by day, then
orders shift values by criticality, and finally orders the variables by employees.
The details of this selection procedure are as follows:

1. Select days, most critical first. The first variables to consider are those
concerning weekend days. This is because the model requires that “weekends
off” for the employees are specified as problem input. Thereafter the weekday
variables are ordered in sequence of the last Friday to the first Monday of
the plan.

2. Select shift, most critical shift category first. The shift categories
are first ordered by descending value of the ratio pdc/ndc where pdc is the
required number of shifts of category c left to assign on day d and ndc is the
number of employees with shifts of category c in its domain on day d in the
current solution.

For example, assume that there are five night shifts and two day shifts
left to assign on day d. Eight employees have night shifts (c=1) and four
employees have day shifts (c=2) in their domain on day d. By looking at
the ratios pd1/nd1 = 5/8 > pd2/nd2 = 2/4, we see that the next shift to
assign will be a shift from the night shift category. We use a lexicographical
ordering of shift codes within each shift category.

3. Select employee for the shift according to employee’s ’need’. The
selected shift is assigned to the variable on the selected day that correspond
to the employee that ’needs’ this shift the most. We define mec as the de-
sired number of shifts of category c for employee e. Initially, mec is computed
by adding all shifts required from the manpower plan for all days and all
employees over the planning horizon and computing employee e’s share ac-
cording to his/her contract. This number is updated during the search, as
shifts are assigned to the employee. Following the previous partial ordering
described above, the variables are now ordered by descending mec value for
the corresponding employees. If we continue with the previous example, then
for day d, the next shift to assign is from the night shift category (c=2). We
assign it to the employee e with the highest me2.

4.2 Variable Neighborhood Descent

When the construction algorithm CPBuild has created a feasible solution, either
as an initial solution (line 2) or as part of the diversification step (line 8), VND is
applied to locally refine the solution. The basic VND algorithm is described in [13].
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Our implementation cycles through a set of basic neighborhoods, performing a
first-improvement Descent local search for each of them. The search terminates
when no improving neighbors can be found in any basic neighborhood (i.e. in a lo-
cal optimum), or when the total improvement over a certain number of iterations
is less than a set fraction of the best found objective value (’flattening’). We use the
following three basic neighborhoods:

1. 2-Exchange: This neighborhood consists of all moves where two shifts are
swapped on the same day between two different employees, as illustrated in
Thursday’s column in Figure 1.

2. 3-Exchange: All moves where three shifts are swapped on the same day
between three different employees, as illustrated in Monday’s column in Fig-
ure 1.

3. Double 2-Exchange: All moves that swap shifts between two employees
on two days. Such moves are made up of two 2-Exchange moves on different
days for the same two employees. Note that the two days are not necessarily
consecutive. The two shifts that are moved must belong to the same shift
category. This move is illustrated in Saturday’s and Sunday’s columns in
Figure 1.

Before we added the Double 2-Exchange neighborhood, we experienced that the
hard constraint concerning working hours for employees (HC3) often prevented
the removing or adding of a free-shift to a roster using 2-Exchange. The Double
2-Exchange operator makes it easier to preserve the working hours when moving
a free-shifts because exchanging a working shift with a free shift on one day, will
be coupled with a free shift being exchanged with a working shift on the other
day in the move. This preserves the number of shifts of different categories for
both employees, thus improving the likelihood of an improving move.

The above neighborhoods are used in many local search applications for the
nurse rostering problem. The most basic move operator in nurse rostering is the
replace move [21] which corresponds to (in our model) moving a shift from one
employee to another. The 2-Exchange move can be viewed as a combination of
two opposite replace moves.

Employee 1

Employee 2

Employee 3

Employee 4

Employee 5
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Fig. 1. Example of 2-Exchange (Thursday) and 3-Exchange (Monday), and Double
2-Exchange (Saturday+Sunday) neighborhoods. All blank cells are free shifts.
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Note that soft constraint SC8 is challenging for local search methods: The
obvious objective function to use is the number of complete wanted patterns
in the solution. However, such a function is lacking because its value is only
reduced when a new complete pattern is found. This motivates keeping patterns
that are already found, but there is no explicit mechanism that actually drives
the local search in the direction of completing patterns. To introduce such a
driving mechanism in our method, we use a modified penalty function [26] which
decreases the penalty as we get closer to completing a wanted pattern. For
instance, let D,D,D,E be a wanted pattern: When evaluating part of a roster
with D,D,F,E (3 out of 4 shifts correct) against one with N,D,F,E (2 out of 4
shifts correct) the first combination (D,D,F,E) receives the lowest penalty. We
use a fixed number from which we subtract the squared (normalized) Hamming
distance. This is then a function with the property that a pattern with two
wrong shifts are penalized harder than two patterns each with one wrong shift.

4.3 Neighborhood Reduction

The neighborhoods, described in Section 4.2, are rather large. For example, the
2-Exchange neighborhood has a size of order |E|2|D|. We use focal points to
significantly reduce the size of the neighborhoods. A focal point identifies features
in the solution which is expected to be critical to further improvement of the
objective value. We create one focal point for each variable that is involved in
a violation of one or more of the soft constraints. During the VND search, each
neighborhood is reduced to those moves that somehow involve one or more focal
points. When a move is performed, the list of focal points is updated. This is
comparable to the “Cost-based Neighborhood” idea presented by [10] in which
the authors focus the search effort on the part of the problem which has the
greatest effect on the objective. In that work, however, more effort was done in
evaluating several candidate improvements, in contrast to our first-improvement
strategy. Analogous ideas exists in the project scheduling literature, where local
search neighborhoods can be focused on critical paths in the project graph. Also,
the Fast Local Search algorithm of [27] is similar.

4.4 Diversification

The purpose of the diversification step (line 7 and 8 in Listing 1.1) is to escape
local optima and areas of the search space where little improvement is found
(’flattening’). We do this by making a major change to the current solution by
ruin-and-recreate [24]. The “ruin” mechanism removes the shift assignments for
a subset (E ′) of the employees. A partial CSP solution is created, based on the
partially ruined solution (x′), where some of the variables are instantiated while
those variables involved in the above “ruin” process get their full, initial domains.
This partial solution becomes the input to CPBuild which then constructs a new
feasible solution.

The number of rosters to ruin is picked randomly between 2 % and 30 % of
the total number of rosters. Half of the rosters to ruin are randomly selected,
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while the other half are those that produce the highest penalties. We focus partly
on the parts of the solution that have the largest potential for improvement —
similar to the focal points of the VND, but also include some randomly chosen
rosters to avoid recreating the same, high penalty solution, and intensify the
diversification.

If a feasible solution is not found by CPBuild within a given time limit, the
algorithm retries DestroyPartsOfSolution with a different selection of randomly
chosen rosters. The time limit is equal to the time used when creating the initial
solution. Our experience is that this happens very rarely.

5 Computational Experiments

5.1 Test Cases

The presented problem model and solution method were designed for integra-
tion in the leading nurse rostering system in the Norwegian market. The aim in
this context was to develop a robust solution method that could solve a wide
range of realistic problem instances as they occur in the hospitals. The model
has a very similar structure to those found in common academic benchmark
problems such as those at http://www.cs.nott.ac.uk/∼tec/NRP/. There are,
however, some differences. For example, most benchmark problems involve time
limited “horizontal” constraints (constraints for one employee) while our hori-
zontal constraints spans over the complete planning horizon (except for HC7).
Furthermore, we assume the assignment of free weekends to be part of the prob-
lem input, which is not common in benchmark problems. Also, our functional
requirement demanded that the manpower plan (cover requirement) must be
covered exactly — it is a hard constraint that we implicitly handle by algorithm
design. In the literature, some flexibility in the coverage is normally allowed,
often modeled as a soft constraint.

Table 2 describe our seven test cases (OpTur1 – OpTur7). The first four rows
provide general information for each case (e.g. number of employees to schedule,
number of hours for the complete scheduling period, etc.). The following rows
provide the parameterization for the constraints (see Table 1 in section 4 for
more information about the individual constraints). In Table 2, the shift cate-
gories “Day”, “Evening”, and “Night” are represented by “D”, “E”, and “N”.
For example: For the case OpTur2, the hard constraint “HC5: N → E” forces
the minimum time between consecutive shifts in the night category (N) and
the evening category (E) to be at least 8 hours. An empty cell signifies that the
corresponding constraint is not used in the test case. The notation ’10/8’ in for
instance OpTur6’s three HC5 constraints, sets this minimum time to 10 and 8
for weekends and weekdays, respectively. The symbol ’-’ means that the con-
straint parameter is not set (e.g. SC1 in OpTur2 has no specific maximum limit
for day shift (D) while it only allows 4 consecutive evening shifts (E) and night
shifts (N).

Each of our seven test cases contain a mix of employee contracts. E.g. most of
the 51 employees in OpTur1 are on standard Norwegian nursing contracts with an
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Table 2. Overview of the seven test cases; characteristics and parameterization of the
constraints used

OpTur1 OpTur2 OpTur3 OpTur4 OpTur5 OpTur6 OpTur7

General information:
# of employees 51 83 29 30 20 54 15
# of hours to schedule 19170 12819 4159.5 17352 2280 18978 2209.5
# days to schedule 84 42 42 168 28 84 42
# of shifts in use 9 9 8 8 9 5 6

Hard constraints:
HC1 Yes Yes Yes Yes Yes Yes Yes
HC2 Yes Yes Yes Yes Yes Yes Yes
HC3 Yes Yes Yes Yes Yes Yes Yes
HC4 Yes Yes
HC5: (N → E) 8 8 11 11 11 10/8 11
HC5: (E → D) 8 9 11 9 8 10/8 11
HC5: (D → N) 8 8 11 11 11 10/8 11
HC6: 32 32 32 32 32 32 32
HC7: 54 50 48 48 48 54 48

Soft constraints:
SC1: (D,E,N) 6,3,4 -,4,4 5,2,4 4,3,4 3,2,3 -,-,3 -,-,4
SC2: 6 6 12 7 5 6
SC3: (D,E,N) -,-,2 2,2,2 -,-,2 2,-,2 -,-,2
SC4: (Not used in any of the test cases)

SC5: D 0/10
SC5: E 0/10 0/5
SC5: N 3/10 2/6
SC6: Yes Yes Yes Yes Yes Yes Yes
SC7: Yes Yes Yes Yes Yes Yes
SC8: 1 p. 1 p. 3 ps.
SC9: (Not used in any of the test cases)

average 35.5 hours working time is s. The same test case also involves contracts
with an average of 26.6, 17.7, 8.9 and even 4.4 hours/week. Other important
aspects of each test case concerns skills, nurse contracts, shifts, manpower plans
patterns, etc. A complete description of all test cases can be found in [25].

5.2 Experimental Results

We have conducted the experiments described in this paper on a PC (Intel Core2
Duo CPU at 2.53 GHz with 4 GB RAM) running 64-bits Windows 7. Through
extensive testing we have determined the values for the different parameters
of the algorithm. The most important of these are: first-improvement (rather
than best-improvement) in the VND, the number of rosters to destroy in the
diversification step (random number between 2 % and 30 %), and the “flat”
criterion in VND (less than 5 % change in the objective value over the last n
iterations, where n = 50

√
|D||E|).
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The algorithm contains random elements in the neighborhood generation for
VND and in the ruin part of diversification (see Listing 1.1, Section 4). Therefore,
to statistically verify our results, we have run every test case 66 times (the
exact number was determined by our experimental setup), terminating each
run after 1200 seconds. Table 3 presents some statistics of the results, taken
over all runs. Line 2 shows the number of backtracks in the CP search used
to compute an initial solution. The following rows present time spent (Mean,
standard deviation, and coefficient of variation) on each of the following parts
of the iterated local search: Generate Initial Solution (line 2), VND (line 4) and
Diversification (line 7 + 8). The row “Initial Obj val” shows the objective value
after the initial solution generation. The five last rows show statistics for the
objective values found after 1200 seconds.

Table 3. Results for the seven test cases: Number of backtracks. Time spent on the
initial solution generation, variable neighborhood search, and diversify parts of the
algorithm, Last rows provide information concerning the objective value. All cases
were run 66 times and for 1200 seconds.

OpTur1 OpTur2 OpTur3 OpTur4 OpTur5 OpTur6 OpTur7

# backtracks 199106 3994 160100 52133 294 1274 0

Initial solution

Mean (sec) 59.0 1.87 33.8 17.2 0.131 0.818 0.0694

StDev (sec) 6.25 0.0162 0.184 0.164 0.00594 0.0124 0.00713

CV (%) 10.6 0.866 0.546 0.954 4.54 1.52 10.3

VND

Mean (sec) 1141 1188 1144 1181 1104 1199 883

StDev (sec) 6.88 6.86 8.21 1.08 9.59 2.16 27.8

CV (%) 0.603 0.578 0.717 0.0914 0.869 0.180 3.15

Diversification

Mean (sec) 0.472 10.3 22.4 2.00 96.3 1.19 317

StDev (sec) 1.79 6.88 8.27 1.02 9.53 2.15 27.8

CV (%) 379 66.6 36.9 50.9 9.90 181 8.76

Initial Obj val 428 162 253 203 253 48.0 378

Final Obj val

Mean 17.0 3.09 81.7 2.48 8.34 1.83 156

StDev 6.95 0.190 1.79 0.503 1.99 0.0759 0.303

CV (%) 40.8 6.16 2.20 20.2 23.8 4.16 0.194

Min 13.1 2.82 78.1 1.56 4.48 1.66 156

Max 42.3 3.53 86.1 3.78 12.9 1.97 157
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Finding a solution with an objective value of zero on these over-constrained
instances is very unlikely, as is the case in most real-world problems. Several of
the soft constraints are easily parameterized in such way that violation of some
soft constraints cannot be avoided. The results show that there are differences in
how difficult it is to compute the initial solution. The number of backtracks (and
thus time spent) during initial solution construction varies from almost nothing
for OpTur5 and OpTur7, to several hundred thousand for OpTur1 and OpTur4.
This is partly connected to the problem size and how constrained the problem is.
But also because the diversification step is run many times, and the number of
times differ between the cases. (The number depends on how often the variable
neighborhood descent will end up in a local optimum or on a ”flat” plateau.)
If the diversification step is run a large number of times, the time spent on
diversification will increase compared to the initial solution construction which
is a one-time action. The most important observation to make, however, is that
the time used to generate a feasible initial solution is very fast (less than a
minute on average for all cases) compared to manual rostering, in which one
typically use days to set up a feasible roster. In this sense, the performance of
the construction algorithm is more than adequate.

After 1200 seconds, the objective value of the initial solution was drastically
improved by the ILS algorithm, in most cases by more than 96 %. This is not
surprising, since the initial solution was constructed without considering soft
constraints. The exceptions are the cases OpTur7 (378 → 156) and OpTur3 (253
→ 81.7), for which the improvements were 58.7 % and 67.7 %, respectively. Both
OpTur 3 and OpTur7 contains wanted patterns (SC8) for the weekends.

To assess how the algorithm improves the objective value over time, one can
consider the run-time distributions for each test case [chap. 4.2] [16]. Figure 2
shows such distributions for the case OpTur6, each curve representing the ob-
served cumulative fraction of all runs reaching the corresponding objective value
threshold as a function of computation time. Note that since we do not know
the optimal value, solution quality thresholds are given in terms of percentual
deviation from the best found value in any run. Observe that all runs achieved
an objective value of 24 % deviation from the best known value, or better, in
the first 162 seconds. After 1200 seconds, 10.6 % of the runs had passed the 3 %
deviation threshold, while 25.8 % of the runs resulted in an objective value of
less than 6 % above the best known objective value.

For some cases there is substantial variation in the objective value across
runs, especially for OpTur1 (cv = 40.8 %), OpTur4 (cv =20.2 %), and OpTur6
(cv =23.8 %). For OpTur1, this seems to happen because the best found value
for each run ends up in one of three objective value ranges; 13.1 – 14.1, 18.2
– 19.8 or above 36.3. This may indicate that there are some distinct valleys
or plateaus in the objective function surface of this problem instance. For the
two other test cases, however, the observed objective values at the time of run
termination are more or less evenly distributed between the minimum and the
maximum values.
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Fig. 2. Qualified Run-Time Distribution of OpTur6 for solution quality levels of 3 %,
6 %, 12 % and 24 % of the best found objective value, across all runs

6 Conclusions and Future Work

The case study presented here concerns a nurse rostering module that was devel-
oped for the software company Gatsoft AS and implemented in their personnel
management system in 2005. Today, the module is used by several hospitals
and other health care institutions in Norway and Sweden. The module applies
a hybrid solution approach: An Iterated Local Search framework that uses Con-
straint Programming for initial solution construction and diversification, and a
Variable Neighborhood Descent in the iterative improvement phase. The require-
ments and specifications for the model and the algorithm evolved from regular
meetings and workshops with health care personnel. We believe it includes all
the important constraints that are applied in Norwegian hospitals. In this paper,
we show that the module can solve large real-world instances within reasonable
time.

Further research involves adapting the model to handle a rigorous testing on
the standard academic benchmarks. To further improve performance, we aim
to develop massively parallel algorithms that exploit the computation power of
emerging heterogeneous hardware platforms, where graphical processing units
and multiple CPUs can be used together to produce high performance search
methods.

It is also important to extend the research context to encompass related and
practical extensions of the problem. For example, by introducing flexibility in
the model’s shifts by allowing their length, start, and end time to be dynamically
adjusted: A small changes in start or end times may allow for plans that violate
fewer soft constraints without affecting patient quality or increasing personnel
costs.

Also, nurse rosters are typically static, while the daily situations at a hospital
is very dynamic — employees get sick, take days off on a short notice, or the
staff demand temporarily increases. In Norway, the resulting personnel shortages
are normally filled through temporary work agencies, which is not only very
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expensive but quite inefficient. This opens up interesting research directions,
such as robust nurse scheduling to minimize the impact due to dynamic events.
A related problem is the dynamic re-scheduling of nurses across departments
to minimize the impact of unexpected events while maximizing the competence
build-up to obtain a more robust future personnel structure.
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Abstract. In this paper, we show how the problem of synthesis of a
controller for a dynamic system that must satisfy some safety proper-
ties, possibly in a non deterministic and partially observable setting, can
be modeled as a pure constraint satisfaction problem, by replacing the
reachability property by a so-called weak reachability property. We show,
first on a toy illustrative example, then on a real-world example of control
of a satellite subsystem, how standard constraint programming tools can
be used to model and solve the controller synthesis problem. Finally, we
conclude with the strengths and weaknesses of the proposed approach.

1 The Controller Synthesis Problem

1.1 An Informal View

In this paper, we are interested in the closed loop control of dynamic systems
(see Fig. 1). More precisely, we are interested in software controllers that are
implemented on digital computers (most of the modern controllers) and that
do not act continuously on the systems they control, but in a discrete way, by
successive steps.

At each step, the controller collects information on the system it controls
(observations) and makes reactively a control decision (commands) as a function
of the collected information. Observations may come from the system itself, from
other systems with which the system interacts, or from human operators. They
may contain synthetic information on past observations or commands (controller

commands

System to be
controlled

Controller

observations

Fig. 1. Closed loop control of a dynamic system
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memory). In the opposite direction, commands are sent to the system itself, to
other systems, or to operators.

We assume that the system evolution that follows a command (system tran-
sition) is not deterministic and Markovian: several transitions are possible from
the current state and command; the actual transition depends only on the cur-
rent state and command; it does not depend on previous ones. However, we do
not assume the existence of probability distributions on the set of possible tran-
sitions: only possible and impossible transitions are distinguished. Moreover, we
do not assume that the actual state of the system is known at each step by the
controller: only observations are available. We assume that the set of possible
system states, the set of possible observations, and the set of possible commands
are all discrete and finite.

We are interested in safety properties, that is in properties that must be sat-
isfied by any transition of the controlled system. In such a setting, the controller
synthesis problem consists in building off-line, before bringing the system into
service, what is called a policy, that is a function which associates with each
observation a command and which guarantees that, in spite of non deterministic
transitions, every transition satisfies the safety properties.

Sect. 1 introduces the controller synthesis problem. Sect. 2 presents a CSP
formulation of this problem, based on the notion of weak reachability. Sect. 3
shows how the proposed approach can be applied to the problem of control of a
satellite subsystem. Sect. 4 concludes with the strengths and weaknesses of the
proposed approach.

1.2 A Formal Definition

The controller synthesis problem can be formally defined as follows.

Problem data is:

– a finite sequence S of state variables;
– a sub-sequence O ⊆ S of observable state variables;
– a finite sequence C of command variables;
– a set I ⊆ d(S) of possible initial states, assumed not to be empty;
– a set T ⊆ d(S) × d(C) × d(S) of possible transitions;
– a set P ⊆ d(S) × d(C) × d(S) of acceptable transitions.

Each state or command variable is assumed to have a finite domain of value1.
Sets I, T , and P can be implicitly defined by finite sets of constraints2.

A policy π is a partial function from d(O) to d(C). Let dfπ ⊆ d(O) be the
domain of definition of π.
1 If x is a variable, d(x) denotes its domain. If X is a sequence of variables, d(X)

denotes the Cartesian product of the domains of the variables in X. If X is a sequence
of variables and Y a sub-sequence of X and if A is an assignment of X, A↓Y denotes
the assignment of Y (projection).

2 We use the same notation for a set and its characteristic function: If S is a set and
SS ⊆ S, for all e ∈ S, SS(e) is true if and only if e ∈ SS.
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Given a policy π, the set rπ of the states that are reachable from an initial
state by following π can be defined as follows. If rπ,k is the set of states that are
reachable in less than k steps from an initial state, we have:

∀s ∈ d(S), rπ,0(s) = I(s) (1)

∀k, 1 ≤ k ≤ |d(S)| − 1, rπ,k(s) = rπ,k−1(s) ∨ (2)
(∃s′ ∈ d(S), rπ,k−1(s′) ∧ dfπ(s′↓O) ∧ T (s′, π(s′↓O), s))

rπ(s) = max
0≤k≤|d(S)|−1

rπ,k(s) (3)

Eq. 1 expresses that a state is reachable in 0 step if and only if it is a possible
initial state. Eq. 2 expresses that a state is reachable in less than k steps if
and only if it is reachable in less than k − 1 steps or if a transition is possible
from a state that is is reachable in less than k − 1 steps. Finally, Eq. 3 says
that a state is reachable if and only if it is reachable in less than k steps, with
0 ≤ k ≤ |d(S)|− 1. Indeed, for any state s ∈ S, either it is not reachable, or it is
in at most |d(S)|−1 steps. It must be stressed that, according to this definition,
the set of reachable states depends on the chosen policy π.

Requirements on policy are the following:

∀s ∈ d(S), rπ(s) → dfπ(s↓O) (4)

rπ(s) → (∃s′ ∈ d(S), T (s, π(s↓O), s′)) (5)

rπ(s) → (∀s′ ∈ d(S), T (s, π(s↓O), s′) → P (s, π(s↓O), s′)) (6)

Eq. 4 specifies that the policy shall be defined for all the reachable states. Eq. 5
specifies that the policy shall not lead to dead ends: for each reachable state, by
following the policy, there is a possible transition. Finally, Eq. 6 enforces that
the policy be “acceptable”: for each reachable state, by following the policy, every
possible transition is acceptable. It must be stressed that these requirements shall
be satisfied, not on all the possible states, but only on those that are reachable
from an initial state by following the chosen policy π.

A policy is valid if and only if it satisfies requirements 4, 5, and 6. The objective
of controller synthesis is to produce a valid policy or to prove that such a policy
does not exist.

1.3 A Toy Example

As an example, let us consider the toy example used in [16]. We consider a robot
that is able to move on the grid of Fig. 2 where walls are shown in bold. Initially,
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the robot is on one of the places of x-coordinate 2. At each step, it is on a place
p that it does not know directly. It only observes the walls immediately around
p. At each step, it moves north, south, east, or west. It cannot stay where it is.
Because of the presence of walls, some moves are not feasible. The robot shall
avoid the place marked X (x = 3, y = 1) that is considered to be dangerous.

y=1

y=2

x=1 x=2 x=3

X

Fig. 2. Robot control problem on a grid

To model this problem, we consider six state variables: S = {x, y, wN , wS , wE ,
wW }. x and y represent the robot position, with d(x) = [1..3] and d(y) =
[1..2]. wN , wS , wE , and wW are Boolean variables that represent the presence
or the absence of a wall at north, south, east, and west of the current place.
Only state variables wN , wS , wE , and wW are observable by the robot: O =
{wN , wS , wE , wW }. We consider only one command variable m which represents
the robot move, with d(m) = {mN ,mS ,mE ,mW } (four possible moves).

The set I of the possible initial states is defined by the following five unary
constraints: x = 2, wN , wS , ¬wE , and ¬wW .

The set T of the possible transitions is defined by the following constraints:

wN → (m �= mN), wS → (m �= mS), wE → (m �= mE), wW → (m �= mW )

x′ = x+ (m = mE) − (m = mW ), y′ = y + (m = mN ) − (m = mS)

w′
N = (y′ = 2 ∨ (y′ = 1 ∧ x′ = 2)), w′

S = (y′ = 1 ∨ (y′ = 2 ∧ x′ = 2))
w′
E = (x′ = 3), w′

W = (x′ = 1)

The first four constraints (first line) express the feasible moves, taking into ac-
count the possible presence of walls. The following two (second line) express
the possible transitions which, in this case, are all deterministic. For each state
variable z, z′ represents its value at the next step. We assume that a constraint
returns value 1 if it is satisfied and value 0 otherwise. The last four constraints
(last two lines) result from the available knowledge of the grid topology.

The set P of the acceptable transitions is defined by the binary constraint
¬((x′ = 3) ∧ (y′ = 1)).

1.4 Existing Methods

The method that is by far the most used to build a controller consists in specify-
ing it using any general or specific purpose programming language, for example
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one of the family of the synchronous languages [9]. Once the controller pro-
grammed, its properties can be checked, either experimentally by simulation, or
formally by using proof or model-checking tools [4].

Controller synthesis is an alternative approach which aims at building a con-
troller automatically from the properties of the system to be controlled and from
the requirements on the controlled system. The resulting controller is valid by
construction and no further check is theoretically necessary on it.

The first works on controller synthesis are based on automata and language
theory [18]. Then, many works use automata to model the physical system
and temporal logics to specify requirements [14] (see for example the ANZU
et RATSY tools [11,19], which both assume complete state observability). The
MBP tool (Model-Based Planner) uses symbolic model-checking techniques,
based on BDDs (Binary Decision Diagrams) to synthesize controllers that guar-
antee a goal to be reached in spite of non determinism and partial observabil-
ity [2,13]. Generic search algorithms for the synthesis of finite memory controllers
are proposed in [3,16], with the same assumptions of non determinism and partial
observability (but with some restrictions in [3]).

The proximity between the controller synthesis problem and (PO)MDP ((Par-
tially Observable) Markov Decision Processes [17]) must be emphasized. Dy-
namic programming algorithms are the most used to solve (PO)MDP. The first
difference between both problems is that, in (PO)MDP, conditional probability
distributions on the states resulting from a transition and on the observations
resulting from a state are assumed to be available. The second one is that re-
quirements take in (PO)MDP the form of an additive global criterion to be
optimized.

The difference between the controller synthesis problem and the planning
problem in Artificial Intelligence [8] must be emphasized too. In planning, we
are interested in reachability properties: a goal state must be reached and the
control is assumed to be stopped once the goal reached. In controller synthesis,
we are interested in safety properties which must be satisfied along the whole
system trajectory and the control is assumed to never stop.

2 Formulation as a Constraint Satisfaction Problem

2.1 First Formulation

Let us associate with each observation o ∈ d(O) a variable π(o) of domain
d(C) ∪ {⊥} which represents the command to be applied when o is observed.
Value ⊥ represents the absence of command. Let us associate with each state
s ∈ d(S) the following variables:

– a Boolean variable rπ(s) which represents the fact that s is reachable or not;
– for each k, 0 ≤ k ≤ |d(S)| − 1, a Boolean variable rπ,k(s) which represents

the fact that s is reachable or not in less than k steps.
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If we replace dfπ(o) by π(o) �= ⊥, Eqs. 1 to 6 define a constraint satisfaction
problem P (CSP [20]) which models exactly the controller synthesis problem.
Unfortunately, the number of variables of P is prohibitive, mainly due to vari-
ables rπ,k(s): for each s ∈ d(S), we have |d(S)| such variables. As a result, the
number of variables rπ,k(s) is equal to |d(S)|2. To get round this difficulty, we
are going to use a relaxation of the reachability property we will refer to as weak
reachability.

2.2 Reachability and Weak Reachability

We use the following definition of weak reachability: a relation wrπ is a weak
reachability relation associated with a policy π if and only if it satisfies the
following two equations:

∀s ∈ d(S), I(s) → wrπ(s) (7)

∀s, s′ ∈ d(S), (wrπ(s) ∧ dfπ(s↓O) ∧ T (s, π(s↓O), s′)) → wrπ(s′) (8)

Eq. 7 expresses that, if a state is a possible initial state, it is weakly reachable.
Eq. 7 expresses that, if a state s is weakly reachable and if a transition is possible
from state s to another state s′, state s′ is weakly reachable too. From this
definition of weak reachability, the following four properties can be established.

Property 1. Let π be a policy. The associated reachability relation rπ is unique.
On the contrary, several associated weak reachability relations wrπ may exist.

The reachability relation is unique because it is defined by Eqs. 1 to 3 which
are all equality equations. The possible existence of several weak reachability
relations is shown in the example of Fig 3 where the reachability graph associated
with a policy is displayed. In this graph, nodes represent states and arcs represent
possible transitions.

1

4

3

2

5

6

Fig. 3. Example of reachability graph associated with a policy

On this example, if 1 is the only possible initial state, reachability relation r
is defined by the set of states {1, 2, 3}. However, the four relations defined by
the set of states {1, 2, 3}, {1, 2, 3, 4, 5}, {1, 2, 3, 6}, and {1, 2, 3, 4, 5, 6} all satisfy
Eqs. 7 and 8 and thus are all weak reachability relations.
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Property 2. Let π be a policy, rπ be the associated reachability relation, and
wrπ be any associated weak reachability relation. rπ is a subset of wrπ.

To establish this property, let us prove that ∀s′ ∈ d(S), rπ(s′) → wrπ(s′).
If rπ(s′), there exists k, 0 ≤ k ≤ |d(S)| − 1 such that rπ,k(s′) (according to

Eq. 3). Let us prove by recurrence on k that ∀k ≥ 0, ∀s′ ∈ d(S), rπ,k(s′) →
wrπ(s′).

For k = 0, if rπ,0(s′), we have I(s′) (according to Eq. 1) and thus wrπ(s′)
(according to Eq. 7).

For k > 0, let us assume that ∀s′ ∈ d(S), rπ,k−1(s′) → wrπ(s′). If rπ,k(s′),
we have (according to Eq. 2), either rπ,k−1(s′) and thus wrπ(s′) (according to
the recurrence assumption), or ∃s ∈ d(S) , rπ,k−1(s)∧dfπ(s↓O)∧T (s, π(s↓O), s′)
and thus ∃s ∈ d(S) , wrπ(s) ∧ dfπ(s↓O) ∧ T (s, π(s↓O), s′) (still according to the
recurrence assumption) and finally wrπ(s′) (according to Eq. 8). From that, we
can deduce that ∀s′ ∈ d(S), rπ,k(s′) → wrπ(s′).

As a consequence, ∀s′ ∈ d(S), rπ(s′) → wrπ(s′).

Property 3. Let π be a policy. The associated reachability relation rπ is an
associated weak reachability relation.

To establish it, it suffices to prove that rπ satisfies Eqs. 7 and 8 which define
weak reachability. rπ satisfies them due to the definition of reachability (Eqs. 1
to 3).

Property 4. Let π be a policy. The associated reachability relation rπ is the
unique smallest weak reachability relation associated with π (smallest with regard
to inclusion and thus to cardinality).

This property is the immediate consequence of properties 1, 2, and 3.

2.3 Second Formulation

By using the notion of weak reachability, we propose the following formulation
of the controller synthesis problem.

This formulation uses two sets of variables:

– for each observation o ∈ d(O), a variable π(o) of domain d(C) ∪ {⊥} which
represents the command to be applied when o is observed;

– for each state s ∈ d(S), a Boolean variable wrπ(s) which represents the fact
that s is weakly reachable or not.

The constraints to be satisfied are defined by the following equations:

∀s ∈ d(S), I(s) → wrπ(s) (9)

∀s, s′ ∈ d(S), (wrπ(s) ∧ T (s, π(s↓O), s′)) → wrπ(s′) (10)
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∀s ∈ d(S), wrπ(s) → (π(s↓O) �= ⊥) (11)

wrπ(s) → (∃s′ ∈ d(S), T (s, π(s↓O), s′)) (12)

wrπ(s) → (∀s′ ∈ d(S), T (s, π(s↓O), s′) → P (s, π(s↓O), s′)) (13)

Eqs. 9 and 10 are copies of Eqs. 7 and 8 which define weak reachability. Eqs. 11
to 13 are copies of Eqs. 4 to 6 which define requirements on policy, where rπ
is replaced by wrπ . In Eq. 11, dfπ(o) is replaced by the equivalent formulation
(π(o) �= ⊥). Eq. 10 is finally simplified to take into account Eq. 11.

Whereas the previous CSP P (see Sect. 2.1) involved |d(O)|+ |d(S)|+ |d(S)|2
variables, this CSP P ′ involves only |d(O)| + |d(S)| variables.

We are going to show that, as P does, P ′ models exactly the controller syn-
thesis problem, that is that solving P ′ in order to solve the controller synthesis
problem is correct, complete, and possibly optimal. Correctness means that, if
P ′ has a solution Sol, the projection of Sol on policy variables π is a solution
of the controller synthesis problem. Completeness means that, if the controller
synthesis problem has a solution, P ′ has a solution too. Optimality means that
the produced policy is defined only for reachable observations (associated with
at least one reachable state).

2.4 Correctness, Completeness, and Optimality

Correctness results from Prop. 2. Let us indeed assume that P ′ has a solution,
made of a policy π and of a relation wrπ . According to Eqs. 9 and 10, relation wrπ
is a weak reachability relation. Let rπ be the reachability relation associated with
π. According to Prop. 2, we have : ∀s ∈ d(S), rπ(s) → wrπ(s). Hence, relation
rπ satisfies the requirements associated with Eqs. 11 to 13. As a consequence, π
is a solution of the controller synthesis problem.

As for completeness, it results from Prop. 3. Let us indeed assume that the
controller synthesis problem has a solution, made of a policy π and of the asso-
ciated reachability relation rπ. According to Prop. 3, rπ is a weak reachability
relation. Hence, π and rπ make up together a solution of P ′. P ′ is thus consistent
and a complete constraint solver is able to produce a solution.

It remains that, if P ′ is consistent, the produced policy π may be defined
for unreachable observations (associated with no reachable states). Practically,
there is no issue because these observations will never be reached by following π.
However if, for the sake of readability or compactness, we prefer a policy π that is
defined only for reachable observations, it suffices to replace wrπ(s) → (π(s↓O) �=
⊥) by wrπ(s) ↔ (π(s↓O) �= ⊥) in Eq. 11 and to transform the resulting constraint
satisfaction problem into a constraint optimization problem where the criterion
to be minimized is the number of weakly reachable states (

∑
s∈d(S)wrπ(s)). If

we get an optimal solution with optimality proof, we have, according to Prop. 4,
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the guarantee that the produced relation wrπ is the reachability relation rπ and
that the produced policy π is defined only for reachable observations.

2.5 OPL Model

We used the OPL language [10] to express the constraint satisfaction (opti-
mization) model associated with any given controller synthesis problem. Any
other constraint programming language could have been used. These models are
optimized in order to limit as much as possible the number of resulting CSP con-
straints. For the moment, these models are built manually, what is a potential
source of errors. The automatic construction of an OPL model from the sets of
variables S, O, and C and from the sets of constraints that define relations I,
T , and P could be however considered.

On the toy example of Sect. 1.3, this model generates 112 variables and 980
constraints. It is solved by the CP Optimizer tool associated with OPL in less
than 1/100 second. The policy produced is the following one:

wN ∧ wS ∧ ¬wE ∧ ¬wW : m = mW

wN ∧ ¬wS ∧ ¬wE ∧ wW : m = mS

¬wN ∧ wS ∧ ¬wE ∧ wW : m = mN

Each line is associated with a weakly reachable observation. On each line, the
observation appears before the colon and the associated command after. For
example, the first line specifies that, if walls are observed at north and south and
not at east and west, the robot shall move west. This policy consists in moving
west and then in alternating north and south moves. In this case, the policy
produced without optimization (no optimization criterion) is luckily “optimal”:
it is defined for only reachable observations.

3 A Real-World Example

To validate the proposed approach, we made use of it on a real-world problem
of control of a satellite subsystem, previously introduced in [15].

The context is an Earth watching satellite whose mission is to detect and to
observe hot spots at the Earth surface, due to forest fires or volcanic eruptions [5].
It is equipped with a wide swath detection instrument and with a narrow swath
observation one. In case of detection of a hot spot, an alarm must be sent to
the ground using a geostationary relay satellite and observations of the ground
area must be performed. Observation data is then downloaded towards ground
stations during visibility windows. In such a context, we are interested in an
equipment referred to as DSP (Digital Signal Processor) in charge of the analysis
of the images produced by the detection instrument and of the detection of hot
spots in these images. The DSP is made of three elements:
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Fig. 4. Inputs and outputs of the module in charge of controlling the DSP

– an analyser in charge of image analysis itself;
– a circuit which supplies the analyser with the necessary current;
– a switch which allows the circuit to be open or not and thus tension to be

present or not at the ends of the circuit.

The DSP control module receives ON or OFF requests from the detection control
module. At each step, it produces several outputs (see Fig. 4):

– a command to the DSP switch;
– signals towards the detection control module, giving information about the

correct or incorrect behavior of the DSP;
– a signal towards the alarm control module, giving information about the

detection or not of hot spots.

Each of the three elements that make the DSP may fail. When the analyser
does not fail and receives current, hot spot detection is assumed to run cor-
rectly. When the analyser fails or does not receive current, hot spot detection
does not run. When the circuit fails, the analyser does not receive current.
When the switch fails, tension in the circuit may be inconsistent with the switch
command.

Informally speaking, the highest level safety properties that must be satisfied
at each step are the following: when the DSP is ON and no element fails, detec-
tion shall be correct (hot spot detection signal in case of hot spot; no detection
signal, otherwise); when the DSP is OFF, it shall detect nothing.

To model this problem, we use the following state variables (set S):

– switchOn ∈ {0, 1}: presence or not of an ON request: 1 for presence;
– switchOff ∈ {0, 1}: presence or not of an OFF request: 1 for presence;
– switched ∈ {0, 1}: last ON or OFF request received by the controller (con-

troller memory): 1 for ON and 0 for OFF;
– tension ∈ {0, 1}: presence or not of tension at the ends of the circuit: 1 for

presence;



110 G. Verfaillie and C. Pralet

– current ∈ {0, 1}: presence or not of current in the circuit: 1 for presence;
– faultAnalyser ∈ {0, 1}: analyser failure or not: 1 for failure;
– faultCircuit ∈ {0, 1}: circuit failure or not: 1 for failure;
– faultSwitch ∈ {0, 1}: switch failure or not: 1 for failure;
– inputIm ∈ {NOIM ,NORM ,HOT}: type of the analyser input image: NOIM

in case of absence of image, NORM in case of an image without hot spot, HOT
in case of an image with hot spot; to control the DSP, we are not interested
in the precise content of images, for example, the geographical position of hot
spots; we are only interested in the presence or not of hot spots;

– resultAnal ∈ {NOIM,NORM,HOT }: result of analysis.

Among these variables, only variables switchOn, switchOff , switched , tension ,
current , and resultAnal are observable by the controller (set O). Failures, as well
as the type of the analyser input image, are not known by the controller.

We use the following command variables (set C):

– cmdSwitch ∈ {0, 1}: command to the switch: 1 for ON and 0 for OFF;
– cmdMemory ∈ {0, 1}: updating of the controller memory: 1 for ON and 0

for OFF;
– running ∈ {0, 1}: information about the correct behaviour of the DSP: 1 for

correct;
– failing ∈ {0, 1}: information about the incorrect behaviour of the DSP: 1 for

incorrect;
– hotSpot ∈ {0, 1}: information about hot spot detection: 1 for detection.

To structure model writing (relations I, T , and P ), it may be useful to build
the graph that represents dependencies between state and command variables.
Fig. 5 shows this graph in a modeling framework that is close to the graphical
language associated with the SCADE tool [7]. Boxes labelled with “pre” allow
access to the previous value of a state variable to be represented. We can see for
example that the current tension depends on the previous one, on the command
to the DSP switch, and on the switch state (failure or not).

Possible initial states (relation I) are defined by the following constraints on
state variables: ¬switchOn, ¬switchOff , ¬switched , ¬current , ¬tension ,
(resultAnal = NOIM), (inputIm = NOIM). Failures are thus possible in the
initial state.

Possible transitions (relation T ) are defined by the following constraints on
state and command variables:

Constraints on higher level modules:
¬(switchOn ∧ switchOff)
Constraints on controller memory:
switched’ = cmdMemory
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Fig. 5. Dependency graph between state and command variables

Constraints on switch:
¬tension ∧ ¬cmdSwitch → ¬tension’
tension ∧ cmdSwitch → tension’
¬faultSwitch → (tension’ = cmdSwitch)
Constraints on circuit:
current = (tension ∧ ¬faultCircuit)
Constraints on analyser:
(¬current ∨ faultAnalyser) → (resultAnal = NOIM)
(current ∧ ¬faultAnalyser) → (resultAnal = inputIm)

Let us recall that, for each state variable x, x′ represents its value at the next step.
Constraints on higher level modules express that an ON request and an OFF
request cannot be emitted simultaneously. Constraints on controller memory
express that the controller memory is always correctly updated. Constraints on
the switch express that, when the switch does not fail, tension is consistent with
the command to the switch. Those on the circuit express that there is current if
and only if there is tension and no circuit failure. Finally, those on the analyser
express that, when the analyser does not fail, the result of analysis is consistent
with the type of the input image.

Acceptable transitions (set P ) are defined by the following constraints on state
and command variables:
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Requirements on controller memory updating:
switchOn → cmdMemory
switchOff → ¬cmdMemory
(¬switchOn ∧ ¬switchOff) → (cmdMemory = switched)
Requirements on hot spot detection:
hotSpot = (running ∧ (resultAnal = HOT ))
Requirements on failure detection:
running = (switched ∧ (resultAnal �= NOIM))
failing = (switched ∧ (resultAnal = NOIM)) ∨

(tension �= switched)) ∨ (current �= tension))
¬(running ∧ failing)
switched → (running ∨ failing)
Highest level requirements:
((inputIm = HOT ) ∧ running) → hotSpot
hotSpot → (inputIm = HOT )
(¬faultSwitch ∧ ¬faultCircuit’ ∧ ¬faultAnalyser’ ∧ switched’)

→ (resultAnal’ = inputIm’)
(¬faultSwitch ∧ ¬switched’) → (resultAnal’ = NOIM)

For example, constraints on hot spot detection enforce that a detection signal
is emitted if and only if the DSP runs correctly and a hot spot is detected in
the input image. Constraints on failure detection enforce that the DSP controller
cannot say simultaneously that the DSP is running correctly and that it is failing
and that, when the DSP is ON, the DSP controller must say whether or not the
DSP runs correctly. Highest level requirements enforce that, when a hot spot is
detected in the input image and the DSP runs correctly, a detection signal is
emitted. Conversely, they enforce that, when a detection signal is emitted, a hot
spot is present in the input image. Moreover, they enforce that, when no failure
occurs and the DSP is ON, the result of analysis is consistent with the type of
the input image. On the contrary, they enforce that, when the DSP is OFF and
the switch does not fail, there is no analysis result.

The associated OPL model generates 2356 variables and 512175 constraints
(information given by the OPL interface). It is solved by CP Optimizer in 3.39
seconds seconds thanks to initial constraint propagation which assigns 2338 vari-
ables (results obtained on a Ultra 45 SUN workstation running under Unix and
using a 1.6 GHz processor and 1 GB of RAM). As with the toy example of
Sect. 1.3, the policy produced without optimization is luckily “optimal”: it is
defined for only reachable observations.
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4 Strengths and Weaknesses of the Proposed Approach

In this paper, we proposed a formulation of the problem of synthesis of a con-
troller for a dynamic system that must satisfy some safety properties as a pure
constraint satisfaction (optimization) problem. As far as we know, this the first
time that such a formulation has been proposed. The constraint-based approach
proposed in [12] is correct, but incomplete: it may fail to find a valid policy,
even if such a policy exists. Beyond classical planning and scheduling applica-
tions of constraint programming, this opens a large new domain of application
of constraint programming techniques to the control of discrete event dynamic
systems. It must be moreover stressed that the proposed formulation can be used
either to synthesize or to check controllers: checking is simpler than synthesis
because the policy is known in case of checking, whereas it is unknown in case
of synthesis. It must be also stressed that, using the same approach, ILP (Inte-
ger Linear Programming) or SAT (Boolean Satisfiability) modeling frameworks
can be used instead of CP, depending on the nature of variables, domains, and
constraints.

The proposed approach can be compared with the formulation of the problem
of synthesis of an optimal policy for an MDP (Markov Decision Process [17]) as
a pure linear programming problem [6]. Indeed, in this formulation, a variable
is associated with each state s, representing the optimal gain it is possible to
get from s. Bellman optimality equations [1] take the form of linear constraints:
one constraint per state-command pair. The criterion to be optimized is the sum
of the variables. However, reachability is not taken into account: all states are
assumed to be reachable at any step. The approach we proposed can be seen as
the “logical” counterpart of this MDP solving approach.

The main advantage of the proposed approach is that it allows us to rely
entirely on existing generic constraint programming tools for solving. When
constraint programming models will be automatically built from the problem
definition (sets of variables S, O, and C, and sets of constraints that define re-
lations I, T , and P ), only problem definition shall be changed from a dynamic
system to another.

Its main drawback is the huge number of resulting CSP variables and con-
straints: at least one variable per state and one constraint per pair of states.
Because the number of possible states is an exponential function of the number
of state variables (not to be mistaken for CSP variables), this approach can be
used only on problems that involve a small number of state variables: in the
order of ten as in the DSP example of Sect. 3.

The number of CSP variables and constraints has an impact on efficiency:
as an example, on the DSP example of Sect. 3, whereas CP Optimizer takes
3.39 seconds to produce a valid policy, the Dyncode tool [16], which implements
search algorithms dedicated to controller synthesis, takes only 0.12 second.

As a consequence, other approaches, still based on constraint programming,
but less consuming in terms of variables and constraints, should be explored.
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Abstract. The benefits of combinatorial optimization techniques for
the solution of real-world industrial problems are an acknowledged ev-
idence; yet, the application of those approaches to many practical do-
mains still encounters active resistance by practitioners, in large part
due to the difficulty to come up with accurate declarative representa-
tions. We propose a simple and effective technique to bring hard-to-
describe systems within the reach of Constraint Optimization methods;
the goal is achieved by embedding into a combinatorial model a soft-
computing paradigm, namely Neural Networks, properly trained before
their insertion. The approach is flexible and easy to implement on top of
available Constraint Solvers. To provide evidence for the viability of the
proposed method, we tackle a thermal aware task allocation problem for
a multi-core computing platform.

Keywords: Constraint Programming, Neural Network, Thermal aware
allocation and scheduling.

1 Introduction

The benefits of combinatorial optimization for the solution of real-world indus-
trial problems are a widely acknowledged evidence, sitting of an ever-growing
collection of success stories [11,12,20]. Yet, the application of optimization ap-
proaches to many practical domains still encounters active resistance by prac-
titioners. A considerable part of the issue stems from difficulties in devising an
accurate representation for the target domain. As matter of fact, many opti-
mization approaches assume the availability of a declarative description of the
system, usually obtained by introducing some degree of approximation; the re-
sulting accuracy is critical for the optimization effectiveness: an over-simplified
model may threat the successful application of the most advanced combinatorial
method. Coming up with an accurate model may be very challenging whenever
there are elements admitting no obvious numerical description, or the system
behavior results from the interaction of a very large number of actors.

In this work, we propose a simple and effective technique to bring hard-to-
describe systems within the reach of optimization methods; the goal is achieved
by embedding a properly trained Neural Network into a combinatorial model. The
Neural Network basically learns how to link decision variables either with a cor-
responding metric or with observable variables or with other decision variables.

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 115–129, 2011.
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Such a hybridization with a soft-computing paradigm allows the model to accu-
rately represent complex interactions and to handle difficult-to-measure metrics.

As a host technology, Constraint Programming (CP) represents an ideal can-
didate, thanks to the ability to deal with non-linear functions and the modular-
ity of constraint based models. Specifically, we introduce a novel class of global
Neuron Constraints to capture the behavior of a single Neural Network node.
The ability to incorporate soft-computing system representations marks a dis-
tinguishing advantage of CP over competitor techniques (namely those based on
linear models), increasing its appeal for the solution of industrial problems.

To showcase the proposed approach, we consider a temperature aware work-
load allocation problem over a Multi-Processor Systems on Chip (MPSoC) with
Dynamic Voltage and Frequency Scaling (DVFS) capabilities. DVFS allows the
programmer to slow the pace of one or more processors, to let the system cool
down and become ready to accept more demanding tasks later on. The thermal
behavior of a MPSoC device is the result of the interaction of many concurrent
factors (including heat conduction, processor workload, chip layout). Despite the
dynamic of the single phenomena is known, the complexity of the overall system
makes it very hard to devise a declarative thermal model. In such a context, a
Neural Network can be designed and trained to approximate the system thermal
behavior. The resulting network can then be embedded in a combinatorial model
and used to produce an optimized workload allocation, avoiding resource over-
heating as well as over-usage. We tested the approach obtaining consistently
better result compared to a load balancing strategy guided by a temperature
aware heuristic; moreover, we even improve the results of a very well-performing
surrogate temperature measure.

2 Neural Networks: Background and Definitions

An artificial Neural Network (NN) is a computational system emulating the
operation of a biological neural network; NNs are capable to perform non-linear
computations and can be deployed to perform different tasks by proper training.
NNs are parallel systems, consisting of o set of many interconnected computing
elements; the basic computation block is called artificial neuron and mimics the
behavior of a neural cell, processing multiple electrical input from neighboring
cells to produce a single electrical output. The first simplified neuron models
date back to the 40’ [13]: basically, an artificial neuron is a non-linear function
with vector input x and scalar output y; in detail:

y = φ

(
b +

∑
i

wixi

)
(1)

where xi denotes a single component in x, the argument of φ is known as neuron
activity, b is a bias and φ is called activation function; φ is a monotonic non-
decreasing function, so that inhibitory/excitatory connections between biological
neurons can be respectively modeled as negative/positive weights wi. Artificial
neurons differ by the type of activation function and can be broadly classified
into threshold, linear/piecewise-linear and sigmoid neurons; for example:
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φ(a) =

{
1 if a ≥ 0

0 if a < 0
(2) φ(a) = a (3) φ(a) =

2

1 + e−2a
− 1 (4)

the function in Equation (2) corresponds to a threshold neuron (the classical
perceptron from [19]), Equation (3) corresponds to a linear neuron and Equa-
tion (4) is a sigmoid neuron (hyperbolic tangent). In many cases φ acts as a
squashing function, restricting the output to be in the interval [0, 1] or [−1, 1].

A Neural Network is a system with vector input/output (say x, y) and com-
posed of one or more artificial neurons; each neuron receives input from neighbors
(or from the outside the network, i.e. x) and computes an output signal which is
propagated to other neurons; designated neurons provide the network output y.
A NN can be represented as a directed graph and is said feed-forward in case the
graph is cycle-free, recurrent if at least a loop is present. Feed-forward networks
are usually organized into layers; in this case neurons/nodes in level 0 accept
the input x, neurons in the last layer provide the output y, while each neuron
in the remaining layers (hidden) is connected to all nodes in the previous and in
the next layer; there is no connection between nodes in the same layer.

Weights of a NN are usually decided in a learning stage to match input/output
pairs in a training set; this can be done (e.g.) by means of the back-propagation
process [6,17]. Depending on the neuron types and the training set, the network
acts as a classifier or performs regression analysis; the network ability to treat
previously unseen input patters (i.e. generalization) depends to a large extent on
the chosen training set. Single layer networks can only match linearly separable
training sets [14]; conversely, multi-layer networks have no such limitation and
can model any Rn → Rm function with finitely many discontinuities [8], pro-
vided the hidden layers have a non-linear activation function and the network is
sufficiently large.

3 Neuron Constraints

The main appeal of Neural Networks stems from their ability to learn the approx-
imate behavior of opaque or very complex systems, without requiring detailed
knowledge of their components and interactions. User intervention is required in
the preparation of the training set, but not in the actual definition of weights.
Once the training stage is over, the network is intrinsically declarative and can
therefore be embedded into a classical combinatorial model. In detail, we pro-
ceed by introducing a novel and simple class of (global) Neuron Constraints,
modeling a single artificial neuron with a specific activation function. Real val-
ued variables are associated to the output and to each component of the input
vector; hence a Neuron Constraint has the following signature:

actfunction(Y, X, w, b)

where ‘actfunction’ denotes the activation function type — i.e. function φ in
Equation (1) —, Y is the output variable, X is the vector of input variables,
w is the vector of weights and b is the bias. The integration of a trained NN
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into a CP model is as straightforward as introducing a Neuron Constraint for
each node, connecting input/outputs variables and setting arc weights. Using a
global constraint for each single neuron rather than for a whole network provides
a fine grained modeling approach, allowing complex networks (even recurrent
ones) to be defined with a limited number of basic components, i.e. a constraint
for each type of activation function. In particular, we have implemented the
activation functions from Equations (2),(3) and (4), corresponding to the Neuron
Constraints ‘hardlim’, ‘purelin’ and ‘tansig’1.

3.1 Filtering for Neuron Constraints

Filtering in a Neuron Constraint can be done by separately tackling the activity
expression and the activation function; namely, Equation (1) can be decomposed
so that we have:

A = b+
∑
i

Xiwi (5) Y = φ(A) (6)

where A is an artificially introduced activity variable. Equation (5) is linear and
poses no issue; function φ is monotonic non-decreasing, so that bound consistency
can be enforced by means of the following rules:

max(A) updated ⇒ max(Y) ← max{y′ | φ(max(A)) = y′} (7)

max(Y) updated ⇒ max(A) ← max{a′ | max(Y) = φ(a′)} (8)

Rules for “min” are analogous. Observe that, from a mathematical standpoint,
the set {y′ | φ(max(A)) = y′} is a singleton and only contains the value φ(max(A)),
similarly the set {a′ | max(Y) = φ(a′)} is in fact {φ−1(max(Y))} and so on. The
distinction becomes however relevant when finite computing precision is taken
into account. As an example, the filtering rules for the upper bound with tansig
function are:

max(A) upd. ⇒ max(Y) ← tansig(max(A))

max(Y) upd. ⇒ max(A) ←

⎧⎪⎪⎨
⎪⎪⎩
tansig−1(max(Y)) if max(Y) ∈] − 1, 1[ (A)

max{a′ | tansig(a) = 1} if max(Y) = 1 (B)

max{a′ | tansig(a) = −1} if max(Y) = −1 (C)

where tansig(a) is as from Equation (4) and tansig−1(y) = 0.5 × ln
((1 − y)/(1 + y)). The expressions from case (B) and (C) are implementation
dependent constants. The rules for lower bound filtering are analogous. As an
important consequence of precision issues, an A variable may be unbound even if
the corresponding Y variable is bound; forcing A to be bound would result in an
incorrect behavior; hence the uncertainty due to precision errors should be even-
tually carried on in the problem solution. As one can see, aside from precision
issues the filtering rules are simple, making the implementation of the approach
fairly easy on off-the-shelf available solvers.

1 The naming convention comes from the MATLAB Neural Network Toolbox.
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4 A Use Case: Thermal Aware Workload Allocation

Providing evidence of the method effectiveness requires a problem with non-
trivial modeling issues; specifically, in this paper we tackle a thermal-aware work-
load allocation problem on Multi Core Systems on Chip (MPSoC); due to the
inherent complexity, the description of the problem and the solution approach
takes an extensive portion of the paper.

4.1 Context and Motivation

Temperature management in MPSoCs is receiving growing research interest in
recent years, pushed by the awareness that the development of modern multi-
core platforms is about to hit a thermal wall. A larger number of cores packed on
a single silicon die lead to an impressing heat generation rate; this is the source
of a number of issues [5] such as (1) the cost of the cooling system; (2) reduced
reliability and lifetime; (3) reduced performance.

Classical approaches include changing the operating frequency, task migration
or core shutdown, triggered when a specified threshold temperature is reached.
This reactive method avoids chip overheating, but may have a relevant impact on
the performance. Hence several works have investigated thermal-aware workload
allocation, making use of mechanisms as DVFS to prevent the activation of more
drastic cooling measures. Those approaches include: (1) on-line optimization
policies [4,5,2,22], based on predictive models and taking advantage of run-time
temperatures read from hardware sensors; (2) off-line allocation and scheduling
approaches [18,15], usually embedding a simplified thermal model of the target
platform [16]; (3) off-line iterative methods [1,21], performing chip temperature
assessment via a simulator (e.g. the HotSpot system [10]).

Capturing the thermal behavior of an MPSoC platform is a tricky task; the
temperature depends on the workload, the position of the heat sinks, thermal
interactions between neighboring cores. This is why off-line approaches rely on
simplified models and often disregard either non-homogeneities due to the floor-
plan or heat transfer between neighboring cores. Iterative approaches overcome
the issue by performing thermal simulation after each iteration, but this prevents
information on the temperature behavior to be directly used in the optimiza-
tion procedure. Despite the dynamic of the single elements concurring to system
temperature is known, the complexity of the overall system makes it very hard
to devise a declarative model: in such a context, however, a Neural Network can
still be designed and trained to approximate the system thermal behavior.

4.2 The Target Problem

Specifically, we address a workload allocation problem on a multi-core system
consisting of a set P of Processing Elements pj (PE); the operating frequency
of each element can be dynamically changed between a minimum and maximum
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value (say fmin, fmax) with a fixed step2; the workload is specified as a set T of
independent3 tasks ti. As a target system we designed a framework (implemented
in MATLAB) for accurate emulation of the temperature evolution of a multicore
platform when executing a sequence of tasks. The optimization problem consists
in the assignment of a PE and an operating frequency to each task, so that the full
workload is executed within a specified deadline and the final peak temperature
is minimized. Higher operating frequencies result in lower durations, but also
higher power consumption and heat generation; PEs are non-homogeneous from
a thermal point of view; custom starting temperatures (say Tstartj) can be
specified for each PE to take into account the case of an already running system.

4.3 Simulation Framework

The simulation framework has been developed to simulate system evolution,
with specific regard for the thermal transient;, but we also take into account the
dependency of execution time and power consumption on the frequency and the
task properties [3].

Task Duration: We assume task execution time to be frequency dependent, with
cpu-bounded tasks being more sensitive to frequency changes than memory-
bounded tasks; the Clock per Instruction (CPI) metric is a simple and widely
adopted [2] way to estimate the degree of memory boundedness of a task. For
an in-order CPU4, the execution time Di of ti can be expressed as follow:

Di =
1

fmax
·NIi ·

(
fmax
fi

+ CPIi − 1
)

where NIi is the total number of instruction composing the task; fi is the PE
frequency during the execution of ti and CPIi is the average task CPI when
running at maximum frequency. According to this model, each task is there-
fore characterized by an NIi, CPIi pair. The use of cycle accurate simulation
would provide a more detailed duration model, but the corresponding computa-
tional burden is prohibitive with the time resolution needed to identify thermal
transients. We assume a constant operating frequency for each task, even if in
principle it is possible to switch the frequency during execution, since the over-
head induced by recording this information at run-time would be too high.

Power Consumption: We use a model to estimate the power consumption of a
Processing Element, accounting for the dependency on the frequency and the
CPI of the task currently in execution; this is in line with several approaches,
showing how to extract a power model directly from an MPSoC by combining
2 This is in line with the real HW DVFS capabilities of today and future MPSoC [9]

that allow frequency to change by steps of hundreds of MHz.
3 Independent tasks are common in many scenarios, such as real time OS, web servers,

high performance computing. . .
4 Recent trends in many-core often witness the use of a simple, in-order cores as basic

blocks for the parallel architecture [9].
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power and performance measurements with data regression techniques [7]. In
detail, our power model has been empirically extracted from measurements per-
formed on an Intel R© server system S7000FC4UR based on the quad-core Xeon R©

X7350 processor, with a maximal frequency of 2.93GHz (see [3]). The resulting
model for a task ti is reported in the following equation, together with the value
of each constant; the static power consumption Wstat is 3 Watt:

Wdyn = kA · fPEkB + kC + (kD + kE · fPE) · CPIikF +Wstat (9)

with:

kA = 3.87 · 10−8 kB = 2.41 kC = 1.10

kD = −4.14 kE = 5.1 · 10−3 kf = −3.02 · 10−1

Thermal Behavior: We use a state-of-the-art thermal simulator to emulate the
system temperature evolution in time and space under different power stimuli
[16,10]. State-of-the-art simulators start from a representation of the platform
and allocate the input PE power, dissipated in each thermal simulation time
interval over the floorplan. Then the entire surface of the die is spatially dis-
cretized in a two dimensional grid. Each spatial block models a heat source and
is characterized by an intrinsic temperature. This models the bottom surface and
the injection of heat in the target multicore package. In addition, the package
volume is partitioned in cells. Each cell is modeled with the equivalent thermal
capacitance and resistance and connected with the adjacent ones. At each simu-
lation step the R, C thermal-equivalent differential problem is solved providing
the new temperature value for each cell as output. We embed in our set-up the
HotSpot simulator [10], since it is a de-facto standard in MPSoC thermal sim-
ulation. Each time a new task is scheduled the power consumption of each core
is estimated by using the power model and fed to the simulator.

5 Workload Allocation as an Optimization Problem

5.1 Modeling the Thermal Behavior via a Neural Network

The use of a thermal simulator to model temperature dynamics allows our frame-
work to accurately emulate the behavior of a real-world MPSoC system; as a
main drawback, the resulting thermal model is not declarative and cannot be
directly handled via CP. Hence, devising a declarative thermal model is a nec-
essary step if Constraint Optimization is to be applied and Neuron Constraints
provide us an effective tool to deal with the issue.

In detailed we are interested in predicting the temperature after the system
has been running some workload for a specific time span Δ; this depends non-
linearly on the the initial temperature Tstartj and the power consumption Pj
of every PE in the platform, plus the environment temperature Tenv:

Tj = f(Tstart, P , T env,Δ)
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where Tstart is the vector of initial temperatures and P is the vector with the
average power consumption of each core. The network used to learn such a non-
linear relationship must ideally be as simple as possible to reduce the compu-
tational burden of the optimization problem. We evaluated different topologies
and input configurations: the best trade-off between NN complexity and accu-
racy is obtained by using a feed-forward two-layer neural network for each PE,
with ‘tansig’ neurons in the hidden layer and a single ‘purelin’ one in the output
layer. In detail, the network for PE pj models the function:

‖Tj‖ = g(‖Tstart‖, ‖P‖, ‖P ·Δ‖, ‖Δ‖)

all network inputs are normalized (see the ‖·‖ notation) and P ·Δ represents the
average consumed energy (i.e. the product between the consumption vector and
the interval duration). Overall, each network has 13 inputs for a 4 core platform;
the hidden layer size is 3/4 of the input number, i.e. 10 neurons in this case.
The network output is the (normalized) predicted temperature for PE pj .

The training and test set consist each of N randomly generated tuples, con-
taining values for the inputs Tstart, P ,Δ, Tenv. We then use HotSpot to sim-
ulate the final temperatures Tj corresponding to each tuple. Network train-
ing is performed via back-propagation, adjusting weights and bias according to
Levenberg-Marquardt. Figure 1 shows the prediction error for a training and
test set of N = 5000 random elements. One can observe from the plot that
the selected Neural Network provides an estimation error below 0.1oC for more
than the 90% of the validation patterns; moreover, the error prediction is always
within ±1oC.
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Fig. 1. Neural Network Test Error histogram
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5.2 Combinatorial Model and Solution Process

Now, the workload allocation over a single time interval can modeled as a Con-
straint Optimization Problem, featuring two decision variable arrays P and F
(respectively representing the chosen frequency and processing element for each
task). In detail, let Dmax be the global deadline value, Wmax the maximum
power consumption, let Tenv be the environmental temperature and Tmax the
maximum allowed temperature; let Tstartj denote the initial temperature of pj
and Tj be the final one; then the problem can be formulated as:

min max
pj∈P

Tj

s.t.: Di =
1

fmax
NIi

(
fmax

Fi
+ CPIi − 1

)
∀ti ∈ T (10)∑

ti∈T

Di · (Pi = j) ≤ Dmax ∀pj ∈ P (11)

WTi = (kA · FikB + kC) + (kD + kE · Fi) · cpii
kF + Wstat ∀ti ∈ T (12)

Wj =
1

Dmax

∑
ti∈T

Di · WTi · (Pi = j) ∀pj ∈ P (13)

for the Neural Network:

NWj = Wj/Wmax, NDj = Dmax, NWDj = NWj ∀pj ∈ P (14)

NTIj = (Tstartj − Tenv)/(Tmax − Tenv) ∀pj ∈ P (15)

NTOj = (Tj − Tenv)/(Tmax − Tenv) ∀pj ∈ P (16)

Neuron Csts between NWj, NDj, NWDj, NTIj and NTOj (17)

with:

Pi ∈ {0, |P | − 1} ∀ti ∈ T

Fi ∈ {fmin..fmax, multiple of 100 MHz} ∀ti ∈ T

Di ∈ [0, Dmax], Ti ∈ [Tenv , Tmax], WTi ∈ [0, Wmax] ∀ti ∈ T

Wj ∈ [0, Dmax], NWj, NDj, NWDj, NTIj, NTOj ∈ [0, 1] ∀pj ∈ P

Basically, real variables Di model task durations; WTi and Wj respectively repre-
sent the power consumption for each task and the average power consumption
for each processor as from Section 4.3; NWj, NDj, NWDj, NTIj are the normalized
inputs to the neural network and correspond to power consumption, duration,
energy and input temperature; NTOj are the normalized network outputs and
Tj are the final temperature variables. Constraints (10) and (12) respectively
correspond to the duration and power model in the simulation framework; Con-
straints (11) and Constraints (13) are the deadline restrictions and average power
computation. Constraints (14) to (16) are normalization formulas. Finally, the
model contains Neuron Constraints matching the structure of the network from
Section 5.1.
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Observe all variable except for the decision ones (i.e. Pi and Fi) are real valued.
Our current implementation is based on Comet 2.1.1, which lacks real variables
support in the CP module; therefore, we use integer variables with a fixed pre-
cision factor and all constraints are formulated so as to avoid rounding errors.
As a consequence, there may be (bounded) imprecision on the final temperature
values forecast by the networks: in this case we assume a conservative approach
and pick the worst possible value given the rounding error bound.

5.3 Solution Process

The constraint model has been implemented in Comet 2.1.1 using the CP (rather
than the local search) module and solved by alternating restarts and Large
Neighborhood Search (LNS). In both cases, the base approach is tree search,
with a relatively simple two-stage strategy; in detail:

– Stage 1, PE allocation: search is performed on the Pi variables, by opening
binary choice points:
• the branching variable is selected uniformly at random among those of

the 15% tasks with the smallest number of instructions NIi;
• the value to be assigned on the left-branch is the index of the PE pj

with smallest lower bound for the expression:
∑

ti∈T Di · (Pi = j) (see
Constraints (11) in the model); on the right branch Pi �= j is posted.

– Stage 2, frequency assignment: once all Pi variables are bound, search is
performed on the Fi variables by domain splitting:
• the branching variable is chosen with the same criterion as in Stage 1;
• let Fi be the selected variable and f∗ be the middle value in its cur-

rent domain; search is performed by opening a binary choice point and
respectively posting Fi ≤ f∗ and Fi > f∗ on the left/right branch.

The main underlying idea is to assign a PE and a frequency to tasks with lowNIi
value early in search. The solution initially performs tree search with restarts;
each attempt is capped at 800 fails and the limit grows by 7.5% if no solution
is found. Whenever a solution is reached the LNS loop begins; at each LNS
iteration the incumbent solution is partially relaxed; in detail, tasks are ranked by
decreasing value of the expression NIi ·r (with r a random number in [0, 1]), the
first 60% tasks in the ranking are selected and the corresponding Pi, Fi variables
de-assigned. The the problem is re-optimized with the described tree search
method. Each LNS iteration is capped at 800 fails and the value is increased by
7.5% in case the limit is reached (same as for restarts). Every 3 iterations with
no solution improvement, the process switches back to restarts and so on.

6 Experimental Results

In principle, the embedded neural network should provide the solver with a
powerful model of the system behavior, taking into account the diversity of
the thermal dynamics of each core and the effect of non-homogeneous start-
ing temperatures; on the other side, the network complexity may lead to poor
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propagation and slow down the solution process. To assess the effectiveness of
the proposed approach, we performed an experimental evaluation: our method
was compared to two different variants, making use of simpler (arguably less
accurate) thermal cost functions.

Considered Problem Variants: Due to the tight connection between temperature
and power consumption, in the first considered variant we replaced the temper-
ature minimization from Section 5.2 with a power balancing objective; namely,
we minimize:

max
pj∈P

Wj (18)

in the following, we refer to the original approach as NN and as PP to this first vari-
ant. The resulting combinatorial model is much simpler, as it contains no neural
network; moreover, this surrogate thermal objective performs usually very well,
due to the strong dependency of temperature on power consumption. However,
this approach does not account for non-homogeneous thermal behaviors (e.g.
due to the core location) and still requires an accurate power model with a well
defined structure, which may not be available in many practical situations. In
this case, a Neural Network can still be trained to approximate the thermal be-
havior, while Equation (18) can no longer be used. Therefore, we considered a
second problem variant with a load balancing objective; namely, we maximize
the smallest cumulative duration among the processors:

min
pj∈P

∑
ti∈T

Di · (Pi = j) (19)

we refer to this second variant as HH. In this case, the search strategy is modified
to incorporate some knowledge of the thermal behavior; in particular, the left
and right branches in the frequency assignment stage are inverted depending on
the task CPI. In detail, the solver prefers high frequency values if CPIi ≤ 10,
while low frequencies are given priority if CPIi > 10. The reason is that the
duration of a low CPI task has a strong dependence on the operating frequency,
allowing the heat contribution from static power consumption to be minimized
by reducing the execution time; conversely, high CPI tasks have less elastic
behavior and are best tackled by reducing the dynamic power consumption with
a low frequency assignment. This modification proved very effective for the HH
method behavior.

Input Workload and Target System: we synthesized 40 random workload in-
stances, counting around 50 tasks each. Task durations (in seconds) and CPI
were generated according to a mixed Gaussian distribution, representative of
a mostly computation intensive workload, with a minor portion of memory-
bounded tasks. The NIi values were synthesized so as to keep the system 80%
busy at maximal frequency. We considered two quad core platform, with a 1x4
(linear) and 2x2 (square) floorplan; frequencies range between 1600 and 2900
MHz and the global deadline Dmax is 10 seconds. The choices are representa-
tive of a server system, regularly accepting a typical workload to be dispatched
before the next arrival.
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Fig. 2. Temperature and power dynamics on a single experiment

We computed optimized workload allocation and frequency assignments for both
the target platforms, by running each approach for 90 seconds on an Intel Core 2
T7200, 2GHz; the resulting solutions were executed on the simulation framework,
with all cores starting from a room temperature of 26.5◦C. Since all considered
variants make use of approximated thermal model, there is no theoretical guar-
antee for the dominance of one approach over another: the use of simulation to
evaluate the results ensures a fair comparison and a reliable effectiveness assess-
ment. Moreover, since the optimized solution are evaluated via simulation, the
results are unaffected by any numerical issue in the models.

The typical thermal behavior exhibited by the NN approach solutions is de-
picted in Figure 2, showing both temperature and power dynamics for a single
experiment; each line in the graphs corresponds to a PE: as one can see, after
an initial transient behavior the temperature becomes pretty stable, thanks to
the thermal aware allocation.

Next, we compared the final (simulated) peak temperature obtained by each of
the considered approaches; the results are shown in Figure 3, depicting for the 40
instances the distribution (histogram) of the difference THH−TNN (in dark grey) and
TPP−TNN (in light grey). For the considered configuration, discrepancies of around
1-2◦C were found to be already significant; as one can see, the network based ap-
proach is consistently better than the HH one and even improves (on average) the
PP approach, which is known to use a very good temperature proxy measure.

In order to investigate the effect of non-homogeneity, we performed a sec-
ond evaluation after having asymmetrically pre-heated the target platforms; in
this case the starting temperature for each core are 31.05◦C, 33.55◦C, 35.75◦C,
36.48◦C. The resulting differences in the final peak temperature are shown in
Figure 4; as one can see the advantage of the NN approach becomes more rel-
evant, due to the inability of the surrogate objective functions to capture the
initial asymmetry.



Neuron Constraints to Model Complex Real-World Problems 127

Co
un

t

T - TNN

Peak temp. difference - 1x4 system

[°C]

Co
un

t

T - TNN

Peak temp. difference - 2x2 system

[°C]

Fig. 3. Difference from NN in final peak temperature for the HH (dark grey) and the PP

(light grey) approach

Co
un

t

T - TNN

Peak temp. difference - 1x4 system
(pre-heated platform)

[°C]

Co
un

t

T - Tnn

Peak temp. difference - 2x2 system
(pre-heated platform)

[°C]

Fig. 4. Difference from NN in final peak temperature for the HH (dark grey) and the PP

(light grey) approach – pre-heated platform

Fig. 5. (Frequency, CPI) values for each task in sample solution, for the NN and the HH

approach



128 A. Bartolini et al.

Finally, Figure 5 is a scatter plot representing, for a sample workload instance,
the assigned operating frequency and the CPI of each task in the NN and the HH
solution; as one can see, the two plot are very similar, with low CPI tasks receiv-
ing high operating frequencies and high CPI ones usually running at 1600 MHz:
as discussed earlier, this is a reasonable choice. However, while such information
was fed to the HH approach by customization of the search strategy, the same
relation has been learned by the Neural Network and enforced via propagation;
by generalization of this reasoning, we conjecture a properly designed network
has the chance of greatly reducing the effort in search strategy tuning.

7 Conclusions

We have introduced the idea of hybridizing Constraint Programming with a soft-
computing paradigm, namely Neural Networks, to model complex real world
problems; the novel Neuron (global) Constraint class provide a simple and yet
effective tool to incorporate a trained network into a declarative CP model. As
an important consequence training and designing the network becomes part of
the modeling process; this involves deciding the parts of the target system to
be represented via soft-computing and those to be tackled by more traditional
means. To provide some evidence of the approach viability, we tackled a realistic
thermal-aware workload allocation problem, with promising results.

Future research directions include experimentation with different real world
problems, to investigate the applicability and effectiveness of the Neural Net-
work integration approach to a broader set of target domains. Moreover, we
are interested in improving the use of the Network provided information, e.g.
search heuristics based on weight and connection structures could be designed.
Finally, we plan to investigate the generalization of the approach to different
soft-computing paradigms.
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Abstract. A cyclic scheduling problem is specified by a set of activities
that are executed an infinite number of times subject to precedence and
resource constraints. The cyclic scheduling problem has many applica-
tions in manufacturing, production systems, embedded systems, compiler
design and chemical systems. This paper proposes a Constraint Program-
ming approach based on Modular Arithmetic, taking into account tem-
poral resource constraints. In particular, we propose an original modular
precedence constraint along with its filtering algorithm. Classical ”mod-
ular” approaches fix the modulus and solve an integer linear sub-problem
in a generate-and-test fashion. Conversely, our technique is based on a
non-linear model that faces the problem as a whole: the modulus do-
main bounds are inferred from the activity-related and iteration-related
variables. The method has been extensively tested on a number of non-
trivial synthetic instances and on a set of realistic industrial instances.
Both the time to compute a solution and its quality have been assessed.
The method is extremely fast to find close to optimal solutions in a very
short time also for large instances. In addition, we have found a solution
for one instance that was previously unsolved and improved the bound
of another of a factor of 11.5%.

Keywords: Constraint Resource Constrained Cyclic Scheduling.

1 Introduction

The cyclic scheduling problem concerns setting times for a set of activities, to
be indefinitely repeated, subject to precedence and resource constraints. It can
be found in many application areas. For instance, it arises in compiler design
implementing loops on parallel architecture, and on data-flow computations in
embedded applications. Moreover, cyclic scheduling can be found in mass pro-
duction, such as cyclic shop or Hoist scheduling problems.

In cyclic scheduling often the notion of optimality is related to the period of
the schedule. A minimal period corresponds to the highest number of activities
carried out on average over a large time window.

Optimal cyclic schedulers are lately in great demand, as streaming paradigms
are gaining momentum across a wide spectrum of computing platforms, ranging
from multi-media encoding and decoding in mobile and consumer devices, to
advanced packet processing in network appliances, to high-quality rendering in
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game consoles. In stream computing, an application can be abstracted as a set
of tasks that have to be performed on incoming items (frames) of a data stream.
A typical example is video decoding, where a compressed video stream has to
be expanded and rendered. As video compression exploits temporal correlation
between successive frames, decoding is not pure process-and-forward and com-
putation on the current frame depends on the previously decoded frame. These
dependencies must be taken into account in the scheduling model. In embedded
computing contexts, resource constraints (computational units and buffer stor-
age) imposed by the underlying hardware platforms are of great importance. In
addition, the computational effort which can be spent to compute an optimal
schedule is often limited by cost and time-to-market considerations.

In this paper we introduce a Constraint Programming approach based on
modular arithmetic for computing minimum-period resource-constrained cyclic
schedules. Our main contribution is an original modular precedence constraint
and its filtering algorithm. The solver has several interesting characteristics: it
deals effectively with temporal and resource constraints, it computes very high
quality solutions in a short time, but it can also be pushed to run complete
search. An extensive experimental evaluation on a number of non-trivial syn-
thetic instances and on a set of realistic industrial instances gave promising re-
sults compared with a state-of-the art ILP-based (Integer Linear Programming)
scheduler and the Swing Modulo Scheduling (SMS) heuristic technique.

2 The Problem

The cyclic scheduling problem is defined on a directed graph G(V, A) with n
(|V| = n) nodes that represent activities with fixed durations di, and m (|A| = m)
arcs representing dependencies between pair of activities.

As the problem is periodic (it is executed an infinite number of times) we have
an infinite number of repetitions of the same task. We call start(i, ω) the starting
time of activity i at repetition ω. An edge (i, j) in this setting is interpreted
as a precedence constraint such that: start(j, ω) ≥ start(i, ω) + di. Moreover, a
dependency edge from activity i to activity j might be associated with a minimal
time lag θ(i,j) and a repetition distance δ(i,j). Every edge of the graph can be
formally represented as:

start(j, ω) ≥ start(i, ω − δ(i,j)) + di + θ(i,j) (1)

In other words, the start time of j at iteration ω must be higher than the sum of
the time lag θ and the end time of i at ω shifted by the repetition distance δ of
the arc. For a periodic schedule, the start times follow a static pattern, repeated
over iterations: start(i, ω) = start(i, 0)+ω ·λ , where λ > 0 is the duration of an
iteration (i.e. the iteration period, or modulus) and start(i, 0) is the start time
of the first execution. Hence, we can deduce that scheduling a periodic task-set
implies finding feasible assignments for start(i, 0) and a feasible modulus λ.

Observe that, since the schedule is repeated every λ time units, resource re-
quirement at a time instant t may be caused by activities from different schedule
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repetitions (i.e. with different ω values). From this point of view, the schedule
execution exhibits an initial, finite length, transient phase and then enters a fully
periodic behaviour (i.e. the resource usage profile becomes periodic as well).

Therefore it is convenient to focus on an arbitrary λ length time span in the
periodic phase; the relative start time of an activity i within such an interval
can be obtained by applying start(i, 0) = si + ki · λ, where si is the start time
within the modulus (0 ≤ si ≤ λ − di) and ki, called iteration number, refers to
the number of full periods elapsed before start(i, 0) is scheduled. Note that, any
schedule start time can be formally represented as: start(i, ω) = si+ki ·λ+ω ·λ.

The key step of our approach is the generalization of equation (1) that enables
activities to be assigned to arbitrary iterations (i.e. by taking into account inter-
iteration overlappings). Hence, for every (i, j), we have a modular precedence
constraint:

sj + kj · λ ≥ si + di + θ(i,j) + (ki − δ(i,j)) · λ (2)

where ki and kj denote the iteration numbers to which activities i and j belong.
Note that, by definition kj ≥ ki− δ(i,j). The modular precedence relation can be
satisfied either by modification of the start times si, or by moving the involved
activities across iterations.

Finally, each activity i requires a certain amount reqi,rk
of one or more re-

newable resources rk with capacity caprk
.

The problem consists in finding a schedule (that is, an assignment of start
times s and iteration values k to activities), such that no resource capacity is
exceed at any point of time and the modulus λ of the schedule (that is the
makespan) is minimized.

In the context of chemical processes, the problem described above is described
via Petri net’s (see [23]), where δ is the number of markers over the places. In
embedded system design this model is equivalent to scheduling homogeneous
synchronous data-flow graphs (see [18]), where δ is the number of initial tokens
in the buffer of the edges.

Fig. 1 presents a simple instance with 5 activities with different execution
times and resource consumption. Assuming a total resource capacity of 3, the
schedule depicted in Fig. 1 and labeled as solution is the optimal schedule. The
activity coloured in light grey are scheduled at iteration 0 while the darkest
at iteration 1. The execution of the schedule is plotted in Fig. 1 labeled as
execution.
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3 Constraint-Based Approach

We propose a complete constraint-based approach for the cyclic scheduling prob-
lem. The model is based on modular arithmetic. The solving algorithm inter-
leaves propagation and search. We have implemented a modular precedence con-
straint taking into account propagation on iteration variables, start time and the
modulus variable. The search strategy interleaves the instantiation of start and
iteration variables.

3.1 Model

The model we devised is based on three classes of variables: activity starting
time within the modulus, iterations and the modulus. The starting time of each
activity has a domain [0..MAX TIME− d], the iterations have the domain [- |V |..
+ |V |] and the modulus ]0..MAX TIME], where |V | is the number of nodes and
MAX TIME represents the sum of the execution times of the activities and the
sum of the time lags of the edges. These variables are subject to temporal,
resource (including buffers) and symmetry breaking constraints.

Temporal constraints. The time model we devised is an extension of the
Simple Temporal Network Model (STNM, see [8]). Each node i of the graph
is represented with a pair of time points si, ei with associated time windows,
connected by a directional binary constraints of the form:

si
[di]−−→ ei

where di (the execution time of activity i) is the distance between the activity
starting point si and the activity endpoint ei, meaning that ei = si + di.

We extend the STNM with a new precedence edge formulation: each edge
(i, j) of the graph, described by (2), is represented as:

ei
[θ(i,j),ki,kj ,δ(i,j)]−−−−−−−−−−−→ sj

where θ(i,j) is the minimal time lag between the end of i (ei) and the start of j
(sj). The construct also takes in account the iteration numbers ki, kj and their
minimal iteration distance δ(i,j). This precedence is modeled through a dedicated
Modular Precedence Constraint whose signature is as follows. Let e = (i, j) ∈ A
be an edge of the graph.

ModPCst([ei], [sj], [ki], [kj], [λ], θ, δ)

where [ei], [sj], [ki], [kj], [λ] are the variables representing respectively the end
time of activity i, the start time of activity j, their respective iterations and the
modulus, and θ(i,j) = θ, δ(i,j) = δ are constant values. The filtering for a single
precedence relation constraint achieves GAC and runs in constant time.

Resource constraints (including buffers). Unary and discrete resources in
cyclic scheduling are modeled via traditional resource constraints. In fact, having
starting time within a modulus, we can reuse the results achieved in constraint-
based scheduling. In addition, in real contexts, a precedence constraint often
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implies an exchange of intermediate step products between activities that should
be stored in buffers. For example, in the embedded system context activities may
exchange data packets that should be stored in memory buffers.

Every time the activity i ends, its product is accumulated in a buffer and
whenever the activity j starts, it consumes a product from it. It is common
to have size limits for each buffer. We model this limit through the following
constraint:

kj − ki + (ei ≤ sj) ≤ B(i,j) − δ(i,j) (3)

where B(i,j) is the size limit of the buffer and the reified constraint (ei ≤ sj)
equals one if the condition is satisfied. Obviously B(i,j) ≥ δ(i,j), otherwise the
problem is unsolvable. In fact, the value δ(i,j) counts the number of products
already accumulated in the buffer (i, j) as initial condition. Inequality (3) limits
the number of executions of activity i (the producer) before the first execution
of j (the consumer).

Symmetry Breaking constraints. One important observation is that the
assignment of different iteration values to communicating tasks allows one to
assign apparently infeasible values to activities starting times.

Suppose there exists a precedence constraint between activities (i, j) and sup-
pose we decide to overlap their executions, such that sj ≤ si + di and that
θ(i,j) = δ(i,j) = 0. From (2) we derive:

kj ≥ ki +
⌈
si + di − sj

λ

⌉
(4)

Observe that the precedence relation does indeed hold, but appears to be violated
on the modular time horizon. The minimum iteration difference that enables such
an apparent order swap to occur is with kj = ki + 1, and any larger number
obtains the same effect.

Therefore the iteration value of the activity j should be at most one unit
greater than all the predecessors iteration values: the following constraint is
used to remove symmetries and narrow the search space on k variables:

kj ≤ max
i∈Pj

(ki − δ(i,j) +
⌈
si + di − sj + θ(i,j)

λ

⌉
) + 1 (5)

where Pj : {i ∈ Pj |(i, j) ∈ A} is the set of the predecessors of j.

3.2 Constraint Propagation

The filtering on buffer and symmetry breaking constraints is the one embedded
in mathematical constraints. In the same way, traditional resource constraints
are propagated as usual. What is original in this paper is the filtering algorithm
for the modular precedence constraint.
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Modular Precedence Constraint. The filtering algorithm of the Modular
Precedence Constraint has three fundamental components:

– Filtering on the iteration variables k: the goal of this component is to main-
tain a proper distance between iteration variables.

– Filtering on the start time variables s: the aim of this part is to modify
the start times of the involved variables to avoid infeasible overlapping of
activities.

– Filtering on the modulus variable λ: this phase computes and sets a lower
bound for the modulus.

The algorithm is executed whenever the domain of any variable involved changes.
Referring to the temporal model proposed in section 3.1 we can rewrite the

inequality (2) as:
sj + kj · λ ≥ ei + θ + (ki − δ) · λ (6)

Filtering on iteration variables Starting from the equation above, we have

ki − kj − δ ≤ sj − ei − θ

λ
(7)

with −λ ≤ sj − ei ≤ λ and θ ≥ 0.
In the following we refer to x and x as the highest and the lowest values of

the domain of a generic variable x.
Then, we can identify the highest integer value of the right part of the in-

equality:
⌊
sj−ei−θ

λ

⌋
that is upper-bounded to 1 if dj = di = 0, θ = 0 and sj = λ,

ei = 0.
Hence, we can define two expressions computing bounds over the k variables:

ki ≤ kj + δ +
⌊
sj − ei − θ

λ

⌋
kj ≥ ki − δ −

⌊
sj − ei − θ

λ

⌋
(8)

As an example, suppose during search two activities i and j connected with a
precedence (i, j) temporally overlap and that sj = 0, ei = 3, δ = 0, θ = 0: then
the inequality (8) appears as follows:

kj ≥ ki −
⌊
−3
λ

⌋
(9)

that implies that kj > ki; in fact, two connected activities can overlap iff their
iteration values differ: in particular ksinkNode > ksourceNode.

Filtering on starting variables Let now Δk = ki − kj − δ and Δk = ki − kj − δ,
the constraint (6) could be written as:

sj − ei − θ ≥ Δk · λ (10)
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It is trivial to prove that Δk ≤ 0: in fact Δk > 0 implies that kj < ki − δ which
is, by definition, impossible.

If Δk ≤ 0, we can deduce two inequalities and their relative bound:

sj ≥ ei + θ +Δk · λ ≥ ei + θ +Δk · λ (11)

ei ≤ sj − θ −Δk · λ ≤ sj − θ −Δk · λ (12)

Note that, if Δk = 0, the modular constraint is turned into a simple time con-
straint: sj ≥ ei + θ. In fact, two connected activities with the same iteration
value cannot overlap and the inequality (11) pushes the destination activity j
after the end time of i plus the arc time lag θ.

Filtering on the modulus The filtering on the modulus variable can be obtained
only in one case, namely when Δk < 0: in fact, we can derive from formula (10)
the following inequality, that computes a lower bound on the modulus variable:

λ ≥ ei − sj + θ

−Δk

=
⌈
ei − sj + θ

kj − ki + δ

⌉
(13)

3.3 Search

The solver is based on tree search adopting a schedule or postpone approach
(described in[17]).

The main idea underlying the search strategy is the following: since the sched-
ule is periodic, the starting time values of each activity can be positioned with
respect to an arbitrarily chosen reference; we select one activity as reference and
assign its starting time to zero. The choice is guided by a simple heuristics; in
particular, the candidates to become the reference node should have no in-going
arc with a strictly positive δ. Formally, for node i to be a candidate, it must hold
�(j, i) ∈ A such that δ(j,i) > 0. Then we accord preference to nodes with a high
number of outgoing arcs. The rationale behind this choice is that it seems to
ease propagation of symmetry breaking constraints. Hence, the reference node
assumes standard values: ssrc = 0, ksrc = 0. Note that fixing the start time of
one activity to 0 does not compromise completeness as the iteration variables
k ∈ Z can assume negative values: therefore optimality is guaranteed.

At each search step a new node is selected among the activities connected with
the already considered nodes. Two activities are connected if there exists al least
an edge between them. This method improves the efficiency of the propagation
of symmetry breaking constraints. Other variable selection strategies radically
worsen the performance of the solver.

The search interleaves the assignment of start times and iteration values.
The algorithm assigns to an activity its earliest start time. In backtracking,
the decision is postponed until its earliest start time has been removed. This
removal can occur as a result of a combination of search decisions and constraints
propagation. Hence, the algorithm, considering the same activity, assigns to it
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an iteration value. Note that the iteration assigned is always the lowest absolute
value in the variable domain. In case of failure, the value is removed from the
domain and a higher number is assigned. In fact, if a solution results infeasible
with ki = φ, it is trivial to prove that it is infeasible for any value φ′ ≤ φ
(remember that ksinkNode ≥ ksourceNode − δ).

4 Experimental Results

The main purpose of the experimental evaluation is to show our approach to
cyclic scheduling is viable; in particular, the focus is to assess the effectiveness
on practically significant benchmarks.

In this work we show four groups of experimental results: the first (1) considers
an industrial set of 36 instruction scheduling instances for the ST200 processor
by STmicroelectronics [2]. The second (2) group considers a set of synthetic
instances and compares the best solution obtained within 300 seconds and the
(ideal) lower bound of the instance. The third (3) set of experiments considers
a set of a synthetic instances and compares the solution quality of our modulo
approach with a classic blocked approach on cyclic scheduling (see [3]). Finally,
the fourth (4) group of results is used to assess the efficiency of the combined
propagation of the buffer constraints and the symmetry breaking constraints.

The system described so far was implemented on top of ILOG Solver 6.7; all
tests were run on a 2.8GHz Core2Duo machine with 4GB of RAM. The synthetic
instances were built by means of a internally developed task-graph generator,
designed to produce graphs with realistic structure and parameters. Designing
the generator itself was a non-trivial task, but it is out of the scope of this paper.

4.1 Industrial Instances

The first set of 36 instances refers to compilers for VLIW architectures. These
instances belong to compilers when optimizing inner loops at instruction level
for very-long instruction word (VLIW) parallel processors. Since the resource
consumption is always unary, to obtain a more challenging set, in [2] the au-
thors replaced the original resource consumption with a random integer number
bounded by the resource capacity. Nodes represent operations and their execu-
tion time is unary: the smallest instance features 10 nodes and 42 arcs, while the
largest one features 214 nodes and 1063 arcs. In [2] the authors present two ILP
formulations for the resource-constrained modulo scheduling problem (RCMSP),
which is equivalent to a cyclic RCPSP. As described in [2], both ILP approaches
adopt a dual process by iteratively increasing an infeasible lower bound; as a
consequence, the method does not provide any feasible solution before the opti-
mum is reached. Given a large time limit (604800 seconds) their solvers found
the optimal solution for almost all the instances: our experiments compare the
optimal value and the solution found by our method within a 300 sec. time
limit. In addition, to empathize the quality of our solutions, we compare also
with a state of the art heuristic approach: the Swing Modulo Scheduling (SMS),
presented in [20], used by the gcc compiler [13].



138 A. Bonfietti et al.

The set of instances is composed by two subsets: the easiest one containing
industrial instances and the more difficult one generated with random resource
consumptions. Tab. 1 reports a summary of the experiments results: the first
three columns describe the instances (name, number of nodes and arcs), the
third shows the run-times of the fastest ILP approach (in [2]), the fourth re-
ports the quality of our solutions achieved within a second and 300 seconds and
the fifth presents the quality of the solutions computed with the SMS heuristic
approach. The remaining three columns report the same figures referred to the
modified set of instances. For the easiest set, our method computes the optimal
value within one second for all but one instance (adpcm-st231.2) whose opti-
mal gap is 2.44%. We also found a solution for the gsm-st231.18 instance that
was previously unsolved; clearly, we cannot evaluate its quality as the optimal
solution has never been found.

We also compared our approach with the SMS heuristic that presents an
average optimality gap of 14.58%. Its average solution time is lower than ten
seconds; the highest computation time refers to instance gsm-st231.18 and is 58
seconds.

The last three columns of Tab. 1 report the experimental results on the
modified set of instances. Again, time refers to the fastest ILP approach, while
gap(%) and SMS(%) report the optimality gap of our approach and the SMS
heuristic respectively. Within a second we found the optimal value of 89% of the
instances and the average gap is 0.813%. Within 300 seconds its value improves
to 0.61%. Swing Modulo Schedule solves all the instances with an average gap of
3.03% within few tens of seconds.

Finally, referring to instances gsm-st231.25 and gsm-st231.33, the authors of
[2] claim to compute two sub-optimal solutions in 604800 seconds (though no
details are given on how the dual process they propose converges to sub-optimal
solutions). For instance gsm-st231.25 both the modular and the SMS approaches
find the same solution as the bound computed in the original paper. Instead,
in gsm-st231.33, the solution proposed in [2] has value 52. While the heuristic
solver finds the same solution, the modular method finds in one second a solution
with value 47 and within 56 seconds a solution of value 46.

Note that, within the time limit we prove optimality in 12.5% of the instances:
we are currently investigating how to improve the efficiency of the proof of
optimality, even though the optimality gap is so narrow to reduce the significance
of finding (and proving) the optimal solution.

4.2 Evaluating the Solution Quality on Synthetic Benchmarks

The second set of experiments targets a task scheduling problem over a multi-
processor platform; this set contains 1200 synthetic instances with 20 to 100
activities: each instance corresponds to a cyclic graph with a high concurrency
between the activities. This form has been empirically proven to be the hard-
est structure for the solver developed. The generated instances contain a single
cumulative resource with capacity 6 and activities have a unary consumption.
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Table 1. Run-Times/Gaps of Industrial/Modified instances

Industrial Modified
Instances nodes arcs time(sec) Gap(%) SMS(%) time(sec) Gap(%) SMS(%)

adpcm-st231.1 86 405 14400 0% 19.23% X X X
adpcm-st231.2 142 722 582362 2.44/2.44% 0% X X X
gsm-st231.1 30 190 0.05 0% 0% 250 10.7/10.7% 10.7%
gsm-st231.2 101 462 79362 0% 0% X X X
gsm-st231.5 44 192 0.05 0% 13.33% 280 0% 5.26%
gsm-st231.6 30 130 17 0% 31.25% 152 0% 0%
gsm-st231.7 44 192 0.05 0% 41.66% 92 0% 2.38%
gsm-st231.8 14 66 0.05 0% 31.25% 0.27 0% 0%
gsm-st231.9 34 154 0.05 0% 0% 0.56 5.88/0% 8.57%
gsm-st231.10 10 42 0.05 0% 0% 0.1 0% 0%
gsm-st231.11 26 137 0.05 0% 0% 0.37 0% 0%
gsm-st231.12 15 70 0.05 0% 0% 12.65 0% 0%
gsm-st231.13 46 210 1856 0% 0% 985.03 0% 0%
gsm-st231.14 39 176 301.25 0% 17.39% 220 2.94/2.94% 0%
gsm-st231.15 15 70 0.05 0% 28.57% 12.36 0% 8.33%
gsm-st231.16 65 323 7520 0% 0% X X X
gsm-st231.17 38 173 0.05 0% 23.81% 90 0% 0%
gsm-st231.18 214 1063 X 0% 30.76% X X X
gsm-st231.19 19 86 0.05 0% 0% 38.23 0% 6.25%
gsm-st231.20 23 102 0.05 0% 0% 123 3.23/3.23% 4.76%
gsm-st231.21 33 154 0.05 0% 45.45% 42.06 0% 3.24%
gsm-st231.22 31 146 0.05 0% 0% 80.36 0% 0%
gsm-st231.25 60 273 3652 0% 0% (604800) 0% 1.75%
gsm-st231.29 44 192 12.6 0% 23.81% 210 0% 0%
gsm-st231.30 30 130 12 0% 0% 58 0% 3.84%
gsm-st231.31 44 192 47 0% 41.67% 142 0% 2.5%
gsm-st231.32 32 138 0.05 0% 31.25% 0.25 0 0%
gsm-st231.33 59 266 2365 0% 11.76% (604800) 0% 0%
gsm-st231.34 10 42 0.05 0% 6.25% 5.05 0% 0%
gsm-st231.35 18 80 0.05 0% 0% 52 0% 0%
gsm-st231.36 31 143 27 0% 14.29% 230 0% 7.69%
gsm-st231.39 26 118 0.05 0% 0% 95 0% 4.55%
gsm-st231.40 21 103 0.05 0% 0% 15 0% 5.56%
gsm-st231.41 60 315 2356 0% 0% X X X
gsm-st231.42 23 102 0.05 0% 0% 12 0% 14.29%
gsm-st231.43 26 115 0.05 0% 21.73% 15 0% 9.1%

Table 2. Solution quality

time(s) avg(%) best(%) worst(%)

1 3.706% 2.28% 5.18%
2 3.68% 2.105% 5.04%
5 3.51% 1.81% 5.015%
10 3.37% 1.538% 4.98%
60 3.14% 1.102% 4.83%
300 2.9% 0.518% 4.73%

Tests run with a time limit of 300 seconds: Tab. 2 shows the average, best
and worst gap between the best solution found within a time limit (reported in
the first column) and the ideal lower bound of the instance.

The lower bound is the following:
lb =

⌈
max (ib,

∑
i∈V di

cap )
⌉
,
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that is the maximum between the intrinsic iteration bound1 ib of the graph and
the ratio between the sum of the execution times and the total capacity.

The first row of the table reports that within one second run-time the solver
finds a solution which is about 3.7% distant from the ideal optimal value; at the
end of the time limit the gap is decreased to 2.9%. Fig. 2 depicts a zoom of the
progress of the gap values.

From the results of these experiments, we can conclude that our approach
converges very quickly close to a value that is an ideal optimal. The optimal
value lies somewhere in-between the two values and therefore is even closer to
the solution found within 300 seconds.

4.3 Modulo vs. Unfolding Scheduling

The aim of this third experimentation is to investigate the impact of the over-
lapped schedule (namely a schedule explicitly designed such that successive it-
erations in the application overlap) w.r.t. the so called blocked classic approach
that considers only one iteration. Since the problem is periodic, and the schedule
is iterated essentially infinitely, the latter method pays a penalty in the quality
of the schedule obtained. A technique often used to exploit inter-iteration par-
allelism is unfolding (see [22]). The unfolding strategy schedules u iterations of
the application, where u is called the blocking factor. Unfolding often leads to
improved blocked schedules, but it also implies an increased size of the instance.

Fig. 2. Graphical representation of the optimality gap

The third set of instances contains 220 instances with an activity number from
14 to 65. We have divided these instances into three classes: small instances featur-
ing 14 to 24 nodes, medium-size instances (25 to 44 activities) and big instances
with 45 to 65 activities. Also we have considered eight solver configurations: the
blocked one (scheduling only one iteration) and seven configurations called Un-
foldX whereX is the number of iteration scheduled. Tab. 3 shows the average gap
1 The iteration bound of the graph is in relation with the cycles, in particular with

the maximum cycle mean; details in [7,12].
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Fig. 3. Optimality gap over blocking factor

between the above mentioned configurations and our approach. Obviously, the
worst gap is relative to the blocked schedule, while the unfolded ones tend to have
an oscillatory behaviour. Fig. 3 depicts the relation between the gap (Y axes) and
the blocking factor (X axes) of a selected instance with 30 nodes. The figure high-
lights the waveform of the gap. With unfolding factor u = 11 the solver found a
solution equivalent to the overlapped one, with the difference that the unfolded
problem consists of 330 activities. The last column presents the average optimality
gap over the whole experimental set.

Note that for the instance analysed in Fig. 3 there exists a blocking factor
that enables to find the optimal solution. However, Parhi and Messerschmitt
in [22] widely studied the unfolding techniques and provide an example of an
application for which no blocked schedule can be found, even allowing unfolding.

4.4 Buffer-Size Constraints Tests

The last set of tests contains 400 instances with 20 nodes; for each instance, the
resource free optimal solution has buffer request from 3 to 6. This property was
obtained via careful tuning of the instance generation problem.

The purpose of this experimental section is to highlight the efficiency of the
buffer and symmetry breaking propagation. The results show that reasonable
limits on the buffer size do not compromise solution quality, while providing a
tremendous boost to the search time. All instances were solved with five different
buffer sizes (1,2,3,6,9). Tab. 4 reports the average and median running time. The
first two rows refer to tightly constrained instances, while the last one refers to
loosely constrained instances.

The second and the third columns show respectively the average and the me-
dian run times in seconds to find the optimal solution. Note that the propagation
drastically impacts the run time of the search.
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Table 3. Unfolding set results

Solution Gap (%)

Solver [14-20] [25-40] [45-65] AVG

Blocked 108.16% 65.45% 38.83% 55.32%
Unfold2 55.92% 26.06% 19.89% 26.23%
Unfold3 33.31% 16.15% 9.99% 18.6%
Unfold4 29.41% 14.27% 6.278 14.13%
Unfold5 21.35% 5.33% 8.76% 5.67%
Unfold6 39.06% 8.67% 4.39% 8.67%
Unfold8 78.31% 10.71% 7.65% 12.44%
Unfold10 16.95% 10.21% 10.03% 8.65%

Table 4. Buffer set results

buffesSize avg(s) median(s) gap%

1 1.1423 0.05 4.925%
2 52.1894 0.1 0.052%
3 157.4673 0.31 0%
6 599.9671 1.215 0%
9 791.5552 1.83 0%

Another interesting aspect to observe is that since value 6 is the intrinsic
buffer size of the instances, a solution with that buffer limit is considered as
the reference solution. The last column presents the gap between the optimal
found and the reference. The interesting aspect is that the trade-off between the
run-time speed-up and the optimality loss is not linear: in fact, despite the tests
with buffer limit 2 run over 10 times faster the solution, remains close to the
reference one.

5 Related Work

The static cyclic scheduling literature arises from two main contexts: the in-
dustrial and the computing contexts. The former includes mass production (i.e.
[15],[9]), chemical (i.e. [19]), robot flow-shop (i.e. [6]) and hoist scheduling prob-
lems(i.e. [5]), the latter includes parallel processing(i.e. [21],[14]), software pipelin-
ing(i.e. [24]) and the emerging embedded system data-flow problems (i.e. [16]).

There is a considerable body of work on the problem available in the OR
literature, while from the AI community, the problem has not received much
focus.

An important subset of cyclic scheduling problems is the modulo scheduling:
here, start times and modulus are required to assume integer values; as stated
in section 2 we make the same assumption.

Several heuristic and complete approaches have been proposed since many
years to solve this problem. An heuristic approach is described in [24], wherein
the algorithm, called iterative modulo scheduling, generates near-optimal sched-
ules. Another interesting heuristic approach, called SCAN and in part based
on the previous one, is presented in [4]. The latter method is based on an ILP
model. A state of the art incomplete method is Swing Modulo Scheduling ap-
proach, described in [20], [21], and currently adopted in the GCC compiler [13].

Heuristic approaches compute a schedule for a single iteration of the applica-
tion: the schedule is characterized by the value of the makespan (the horizon)
and by an initiation interval which defines the real throughput. However, the
horizon makespan could be extremely large, with implications on the size of
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the model. Our model, instead, is compact, since both horizon and initiation
makespan coincide in the modulus value.

Advanced complete formulations were proposed in [11,10], both report ILP
models; the first comprises both binary and integer variables while the latter in-
cludes only binary variables. In [2] the authors report an excellent overview of the
state-of-the-art formulations (including Eichenberger and Dupont de Dinechin
models) and present a new formulation issued from Danzig-Wolfe Decomposi-
tion. Finally, good overviews of complete methods can be found in [14,1].

To the best of our knowledge the state-of-the-art complete approaches are
based on iteratively solving the problem with a fixed modulus. Modeling the
modulus as a decision variable yields non-linear mathematical programs; on the
other hand, with a fixed value, the resulting problem is a linear mathematical
program. Hence, fixing the modulus and iteratively solving an ILP model is a
common formulation for solving cyclic RCPSP.

Our methodology is constraint-based and tackles the non-linear problem as
a whole: the modulus value is inferred from the others variables avoiding the
iterative solving procedure thus increasing efficiency.

6 Conclusions

We propose a constraint formulation based on modular arithmetic solving the
cyclic resource-constraint project scheduling problem. Keys of the efficiency are
three different set of constraints: the buffer, the symmetry breaking and the
modular precedence constraints. In particular, for the latter we devise an original
filtering algorithm.

The experiments highlight a good performance and a solution quality that
converges close to the optimal very quickly. In particular, the solver is extremely
effective in finding a solution with a negligible optimality loss in terms of a few
seconds; conversely, the optimality proof takes much longer to complete.

As a natural extension, future works will focus on allowing an activity to be
scheduled across different iterations. Consequently a new cumulative filtering
algorithm should be studied.
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Abstract. The Semantic Web aims at building cross-domain and distributed data-
bases across the Internet. SPARQL is a standard query language for such data-
bases. Evaluating such queries is however NP-hard. We model SPARQL queries
in a declarative way, by means of CSPs. A CP operational semantics is proposed.
It can be used for a direct implementation in existing CP solvers. To handle large
databases, we introduce a specialized and efficient light solver, Castor. Bench-
marks show the feasibility and efficiency of the approach.

1 Introduction

The Internet has become the privileged means of looking for information in everyday’s
life. While the information abundantly available on the Web is increasingly accessible
for human users, computers still have trouble making sense out of it. Developers have to
rely on fuzzy machine learning techniques [5] or site-specific APIs (e.g., Google APIs),
or resort to writing a specialized parser that has to be updated on every site layout
change.

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) to
enable sites to publish computer-readable data aside of the human-readable documents.
Merging all published Semantic Web data results in one large global database. The
global nature of the Semantic Web implies a much looser structure than traditional
relational databases. A loose structure provides the needed flexibility to store unrelated
data, but makes querying the database harder. SPARQL [16] is a query language for the
Semantic Web that has been standardized by the W3C. Evaluating SPARQL queries is
known to be NP-hard [15].

The execution model of current SPARQL engines (e.g., Sesame [4], 4store [10] or
Virtuoso [7]) is based on relational algebra. A query is subdivided in many small parts
that are computed separately. The answer sets are then joined together. User-specified
filters are often processed after such join operations. Constraint Programming (CP), on
the other hand, is able to exploit filters as constraints during the search. A constraint-
based query engine is thus well suited for the Semantic Web.
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Contributions. Our first contribution is a declarative model based on CSPs and an op-
erational semantics based on CP for solving SPARQL queries. Existing CP solvers
however are not designed to handle the huge domains linked with the Semantic Web
datasets. The second contribution of this work is a specialized lightweight solver, called
Castor, for executing SPARQL queries. On standard benchmarks, Castor is competitive
with existing engines and improves on complex queries.

Outline. The next section explains how data is represented in the Semantic Web and
how to query the data. Section 3 and 4 show respectively the declarative model and the
operational semantics to solve queries. Section 5 presents our lightweight solver imple-
menting the operational semantics. Section 6 evaluates the feasibility and efficiency of
the approach through a standard benchmark.

2 The Semantic Web and the SPARQL Query Language

The Resource Description Framework (RDF) [11] allows one to model knowledge as
a set of triples (subject,predicate,object). Such triples express relations, described by
predicates, between subjects and objects. The three elements of a triple can be arbi-
trary resources identified by Uniform Resource Identifiers (URIs)1. Objects may also
be literal values, such as strings, numbers, dates or custom data. An RDF dataset can be
represented by a labeled directed multigraph as shown in Fig. 1.

people:erdoes foaf:name "Paul Erdős" .
people:doe foaf:name "John Doe" .
journals:1942 dc:issued 1942 .
journals:1942 swrc:editor people:erdoes .
journals:1942/art1 dc:title "An Article" .
journals:1942/art1 dc:creator people:erdoes .
journals:1942/art1 dc:creator people:doe .

people:erdoes

Paul Erdős

journals:1942/art1

journals:1942 1942

An Article

people:doeJohn Doe

foaf:name swrc:editor

dc:issued

swrc:journal
dc:title

dc:creator

dc:creator

foaf:name

(a) Triple set (b) Graph representation

Fig. 1. Example RDF dataset representing a fictive journal edited by Paul Erdős and an article of
the journal written by Erdős and Doe. Here, people:erdoes and foaf:name are URIs whereas
"Paul Erdős" is a literal.

SPARQL [16] is a query language for RDF. A basic query is a set of triple patterns,
i.e., triples where elements may be replaced by variables. Basic queries can be assem-
bled in compound queries with composition, optional or alternative parts. Filters add

1 More precisely, RDF makes use of URI References, but the differences are not relevant to
this paper. The specification also allows subjects and objects to be blank nodes, i.e., resources
without an identifier. Without loss of generality, blank nodes will be considered as regular
URIs for the purpose of this paper.
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constraints on the variables. A solution of a query is an assignment of variables to URIs
or literals appearing in the dataset. Substituting the variables in the query by their as-
signed values in the solution gives a subset of the dataset. A SPARQL query may also
define a subset of variables to return, a sort order, etc., but those are not relevant for this
paper and are omitted.

More formally, let U , L and V be pairwise disjoint infinite sets representing URIs,
literals, and variables, respectively. A SPARQL problem instance is defined by a pair
(S,Q) such that S⊂U×U×(U∪L) is a finite set of triples corresponding to the dataset,
and Q is a query. The syntax of queries is recursively defined as follows2. The semantics
will be defined in the next section.

– A basic query is a set of triple patterns (s, p,o) such that s, p ∈ U ∪V and o ∈
U ∪L∪V . The difference with RDF datasets is that we can have variables in place
of URIs and literals.

– Let Q1 and Q2 be queries. Q1 .Q2, Q1 OPTIONALQ2 and Q1 UNIONQ2 are compound
queries.

– Let Q be a query and c be a constraint such that every variable of c occurs at least
once in Q. QFILTERc is a constrained query. The SPARQL constraint expression
language used to define c includes arithmetic operators, boolean operators, com-
parisons, regular expressions for string literals and some RDF-specific operators.

Given a dataset S, we respectively denote US and LS the set of URIs and literals that
occur in S. Given a query Q, we denote vars(Q) the set of variables appearing in Q.

3 A CSP Declarative Modeling of SPARQL Queries

A solution to a SPARQL problem instance (S,Q) is an assignment σ of variables of Q
to values from US∪LS, i.e., a set of variable/value pairs. Given a solution σ and a query
Q, we denote σ(Q) the query obtained by replacing every occurrence of a variable
assigned in σ by its value. The goal is to find all solutions. We denote sol(S,Q) the set
of all solutions to (S,Q).

Contrarily to classical CSPs, a solution σ does not have to cover all the variables
occurring in Q. For example, if a variable x appears only in an optional part that is not
found in a solution σ , x will not appear in the solution σ . Such variables are said to be
unbound.

In this section, we define the set of solutions of a SPARQL problem instance by
means of CSPs, thus giving a denotational semantics of SPARQL queries. Note that,
while doing so, we transform a declarative language, SPARQL, into another one based
on CSPs which may be solved by existing solvers.

3.1 Basic Queries

A basic query BQ is a set of triple patterns (s, p,o). In this simple form, an assignment
σ is a solution if σ(BQ) ⊆ S.

2 To keep things clear, we make some simplifications to the language. These assumptions do not
alter the expressive power of SPARQL.
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The SPARQL problem (S,BQ) may be viewed as a graph matching problem from
a query graph associated with BQ to a target graph associated with S [3], as illustrated
in Fig. 2. However, even the simple basic form of query is more general than classical
graph matching, such as graph homomorphism or subgraph isomorphism. Variables on
the edges (the predicates) can impose additional relationships between different edges.
This problem is thus already NP-hard.

SELECT *
WHERE {

?p foaf:name ?name .

?journal swrc:editor ?p .

?article swrc:journal ?journal .

?article dc:creator ?p .

}

?p

?name

?article

?journal

foaf:name swrc:editor

swrc:journal

dc:creator

(a) SPARQL query (b) Associated pattern graph

Fig. 2. Example of a basic query searching for journal editors having published an article in the
same journal. Variables are prefixed by a question mark, e.g., ?name. Executing the query on
the dataset of Fig. 1 results in the unique solution {(p,people:erdoes), (name,“Paul Erdős”),
( journal, journals:1942), (article, journals:1942/art1)}.

We formally define the set sol(S,BQ) as the solutions of the CSP (X ,D,C) such that

– X = vars(BQ),
– all variables have the same domain, containing all URIs and literals of S, i.e., ∀x ∈

X ,D(x) = US ∪LS,
– constraints ensure that every triple of the query belongs to the dataset, i.e.,

C = {Member
(
(s, p,o),S

)
| (s, p,o) ∈ BQ} ,

where Member is the set membership constraint.

3.2 Compound Queries

More advanced queries, e.g., queries with optional parts, cannot directly be translated
into CSPs. Indeed some queries rely on the non-satisfiability of a subquery, which is
coNP-hard. CSPs can only model NP problems.

Q1 .Q2. Two patterns can be concatenated with the join or concatenation symbol (.).
The solution set of a concatenation is the cartesian product of the solution sets of both
queries. Such cartesian product is obtained by merging every pair of solutions assigning
the same values to the common variables. Note that the operator is commutative, i.e.,
Q1 .Q2 is equivalent to Q2 .Q1. The set of solutions is defined as follows:



An Efficient Light Solver for Querying the Semantic Web 149

sol(S,Q1 .Q2) =

{σ1 ∪σ2 |σ1 ∈ sol(S,Q1),

σ2 ∈ sol(S,σ1(Q2))} .

1

4

sol

5

sol

3

6

sol

2

Q1

Q2

The figure on the right depicts an example. A triangle represents the search tree of a
subquery. Circles at the bottom of a triangle are the solutions of the subquery. Circles
1, 2 and 3 represent sol(S,Q1). Solution 1 is extended into the solutions 4 and 5 in the
search tree of sol(S,σ1(Q2)). Solutions 4, 5 and 6 are the solutions of the concatenation.
If Q1 and Q2 are both basic queries, we can compute the concatenation more efficiently
by merging both sets of triple patterns and solve the resulting basic query as shown in
Section 3.1.

Q1 OPTIONALQ2. The OPTIONAL operator solves its left-hand side subquery Q1 and tries
to solve its right-hand side subquery Q2. If a solution of Q1 cannot be extended into a
solution of Q1 .Q2, then that solution of Q1 becomes a solution of the query too. More
formally,

sol(S,Q1 OPTIONALQ2) =

sol(S,Q1 .Q2) ∪
{σ ∈ sol(S,Q1) | sol(S,σ(Q2)) = ∅} .

1

4

sol

5

sol

3

6

sol

2
sol

Q1

Q2

Compared to the example for the concatenation operator, circle 2 in the figure becomes
a solution of the compound query. The inconsistency check makes the search difficult.
Indeed, in the simple case, Q2 is a basic query and is thus solved by a CSP. However, as
checking the consistency of a CSP is NP-hard, checking its inconsistency is coNP-hard.
To ensure the semantics are compositional, we impose that if Q1 OPTIONALQ2 is a sub-
query of a query Q, then variables occurring in Q2 but not in Q1 (vars(Q2)\vars(Q1))
do not appear elsewhere in Q. Such condition does not alter the expressive power of the
language [1].

Q1 UNIONQ2. Disjunctions are introduced by the UNION operator. The solution set of the
union of two queries is the union of the solution sets of both queries. The solutions of
the two queries are computed separately:

sol(S,Q1 UNIONQ2) = sol(S,Q1) ∪ sol(S,Q2) .
Q1

1

sol

2

sol

Q2
3

sol

3.3 Filters

The FILTER operator removes solutions of Q not satisfying the constraint c, i.e.,

sol(S,QFILTERc) = {σ ∈ sol(S,Q) | c(σ)} ,
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where c(σ) is true if c is satisfied by σ . The SPARQL reference [16] defines the seman-
tics of the constraints, also in the event of unbound variables.

The FILTER operator may be used a posteriori, to remove solutions which do not
satisfy some constraints. This is usually done by existing SPARQL engines. However,
such constraints may also be used during the search process in order to prune the search
tree. A goal of this paper is to investigate the benefit of using CP, which actively exploits
constraints to prune the search space, for solving SPARQL queries.

When the FILTER operator is directly applied to a basic query BQ, the constraints
may be simply added to the set of member constraints associated with the query, i.e.,
sol(S,BQFILTERc) is equal to the set of solutions of the CSP (X ,D,C ∪{c}), where
(X ,D,C) is the CSP associated with (S,BQ). Of course, finding all solutions to the CSP
(X ,D,C∪c) is usually more quickly achieved than finding all solutions to (X ,D,C) and
then removing those which do not satisfy c.

Filters applied on compound queries can sometimes be pushed down onto sub-
queries [18]. For example (Q1 UNIONQ2)FILTERc can be rewritten as (Q1 FILTERc)
UNION (Q2 FILTERc). Such query optimization is common in database engines.

4 A CP Operational Modeling of SPARQL Queries

The denotational semantics of SPARQL can be turned into an operational semantics us-
ing conventional CP solvers provided they allow posting constraints during the search.
Examples of such solvers are Comet [6] or Gecode [8]. We detail the operational se-
mantics of SPARQL queries, i.e., how the set sol(S,Q) is computed. This model can be
used for a direct implementation in existing solvers.

To run a query Q in a dataset S, we define a global array of CP variables X = vars(Q).
The initial domain of each variable x ∈ X is D(x) = US ∪LS. The set of constraints C is
initially empty. To explain the posting of constraints and the search, we use Comet as a
notation. The following code solves the query Q.

solveall<cp> {

} using {

sol(Q);

output(); // print the solution
}

The first (empty) block posts the constraints, the second describes the search. The
sol(Q) function will be defined for every query type. It posts constraints and intro-
duces choice points. Choice points are either explicit with the try keyword or implicit
when labeling variables with label. When a failure is encountered, either explicitly
with cp.fail() or implicitly during the propagation of a constraint, the search back-
tracks to the latest choice point and resumes the execution on the other branch. A back-
track also occurs after outputting a solution at the end of the using block to search for
other solutions. We assume a depth-first search expanding branches from left to right.

As we do not label all variables in every branch, the domain of some variables may
still be untouched when outputting a solution. Such variables are considered unbound
and are not included in the solution. Indeed, we always label all variables of a basic
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query. Unbound variables do not appear in the basic queries along one branch, due to
disjunctions introduced by UNION or inconsistent optional subqueries. No constraints
are posted on such variables. Their domains are not reduced.

Figure 3a shows the sol function for a basic query with a filter. The filter is posted
with the triples constraints and prunes the search tree from the beginning. In some cases,
specific propagators can be used, e.g., for the comparison or arithmetic operators. In all
cases we can fall back on an off-the-shelf SPARQL expression evaluator to propagate
the condition with forward checking consistency, i.e., when all but one variables are
assigned, propagation is realized on the domain of the uninstantiated variable.

Filters on compound queries however can only be checked after each solution of the
subquery as shown in Fig. 3b. Note that the condition c is not posted as there may be
unbound variables that need to be handled according to the SPARQL specification.

function sol(BQFILTERc) {

forall((s, p,o) in BQ)

cp.post(Member((s, p,o),S));
cp.post(c);
label(vars(BQ));

}

function sol(QFILTERc) {

sol(Q);

if( ! c )

cp.fail();

}

(a) Basic query with filter (b) Compound query with filter

Fig. 3. Filters applied on basic queries are posted as constraints. In all other cases, they are
checked after solving the subquery.

Concatenations are computed sequentially as shown in Fig. 4a. The OPTIONAL oper-
ator is similar to the concatenation and is shown in Fig. 4b. First, sol(Q1) is computed.
Before executing the second subquery Q2, a choice point is introduced. The left branch
computes sol(Q2), hence providing solutions to Q1 .Q2. If it succeeds, the right branch
is pruned. Otherwise, the right branch is empty and therefor sol(Q1) is returned as a
solution. Note that this only works with depth first search exploring the left branch first.
Finally, for the UNION operator the two subqueries are solved in two separate branches
as shown in Fig. 4c.

It is clear that this operational semantics of SPARQL queries computes the set of
solutions defined by the declarative modeling.

5 Castor: A Lightweight Solver for the Semantic Web

We now present Castor, a lightweight solver designed to compute SPARQL queries. A
query does not involve many variables and constraints. The main challenge is to han-
dle the huge domains associated with the variables. Existing CP solvers do not scale
well in this context as shown in the experimental section. The key idea of Castor is to
avoid maintaining and backtracking data structures that are proportional to the domain
sizes. On the one hand we do not use advanced propagation techniques that need such
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function

sol(Q1 .Q2) {

sol(Q1);

sol(Q2);

}

function

sol(Q1 OPTIONALQ2) {

sol(Q1);

Boolean cons(false);

try<cp> {

sol(Q2);

cons := true;

}|{

if(cons)

cp.fail();

}

}

function

sol(Q1 UNIONQ2) {

try<cp> {

sol(Q1);

}|{

sol(Q2);

}

}

(a) Concatenation (b) Optional (c) Union

Fig. 4. Compound queries are solved recursively

expensive structures. On the other hand backtracking is a cheap operation allowing us
to explore large trees fast enough to compensate for the loss of propagation.

In this section, we first present the database schema we use to store an RDF dataset.
Then, we explain the three major components of the solver: the variables and the rep-
resentation of their domains, the constraints and their propagators, and the search tech-
niques used to explore the tree.

5.1 Database Schema

To run a query on a dataset, we need data structures to represent the dataset. We settled
on an SQLite database. Such a relational database provides efficient lookups through
the use of indexes. We use a standard schema designed for RDF applications [9]. It
mainly consists of two tables.

– One table contains the set of all values occurring in the dataset, i.e., US ∪LS. The
values are numbered sequentially starting from 1.

– Another table contains the triples. The table has three columns containing only the
identifier number of the value. Indexes are created on all column combinations to
allow fast lookups in the table.

We only consider the value identifiers in the solver. We thus loose information about
what the values represent. To get such information back quickly, e.g., for evaluating
an expression, we load the table of values in memory before starting the search. We
estimate a value to take on average 80 bytes. Large datasets contain around 108 values,
taking 8 GB of memory. Having such amount of memory available is not uncommon in
today’s servers.

5.2 Variables and Domains Representation

Variables in Castor are integers taking values from 1 up to the number of values in the
dataset. There is no direct relation between two numbers. As such, the ordering of the
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values in the domain of a variable does not matter if bound consistency is not consid-
ered. We exploit this property in the data structures of the domains. When backtracking,
we only need to restore the sizes of each domain. Such structures are also used in the
code computing subgraph isomorphisms presented in [20].

We represent the finite domain D(x) of a variable x by its size and two arrays dom

and map. The size first values of dom are in the domain of the variable, the others have
been removed (see Fig. 5). The map array maps values to their position in the dom array.

4 7 6 3 2 9 8 1 5dom:

size
in domain removed

8 5 4 1 9 3 2 7 6map:
1 2 3 4 5 6 7 8 9

Fig. 5. Example representation of the domain {2,3,4,6,7,9}, such that size= 6, when the initial
domain is {1, . . . ,9}. The size first values in dom belong to the domain; the last values are those
which have been removed. The map array maps values to their position in dom. For example,
value 2 has index 5 in the dom array. In such representation, only the size needs to be restored on
backtrack.

The following invariants are enforced.

– Arrays dom and map are coherent, i.e., map[v] = i ⇔ dom[i] = v.
– The domain D(x) is the set of the first size values of dom, i.e.,

D(x) = {dom[i] | i ∈ {1, . . . ,size}}.
– Any reduction of the domain does not modify the previously removed values (i.e.,

the values from size+ 1 up to the end of the dom array).

The last invariant allows us to restore only size when backtracking. Indeed, the parti-
tion between removed values and values left in the domain will be the same. The order
of the values before size may have changed however. The last invariant is respected
when using depth-first search, since we keep removing values along one branch before
backtracking.

The basic operations on the domain all have a constant time complexity. Checking if
a value is still in the domain can be done with the property v ∈ D(x) ⇔ map[v] ≤ size.
To remove a value, we swap it with the latest value in the domain and decrease size.
For example, to remove value 3 in Fig. 5, we swap the values 3 and 9 in dom, update
map accordingly and decrease size by one.

To restrict the domain to a set of values, we mark each values to keep, i.e., we swap
the value with the left-most non-marked value in dom and increase the count of marked
values. We then set the domain size to the count of marked values. The complete oper-
ation has a linear time complexity w.r.t. the number of values kept.
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5.3 Constraints and Propagators

There are two kinds of constraints in SPARQL queries: triple patterns and filters. Filters
on compound queries are only checked after assigning all their variables. Filters on ba-
sic queries and triple patterns are posted and exploited during the search. As for domain
representation, the goal is to minimize trailable structures that need to be backtracked.
In the current prototype of Castor, no such structures exist for constraints.

A constraint in Castor is an object that implements two methods: propagate and
restore. When the constraint is created, it registers to events of the variables. The
propagate method is called when one of the registered events occurs. The restore

method is called when the search backtracks. Currently, each variable has two events:
bind, occurring when the domain becomes a singleton, and change, occurring when the
domain has changed. To know which values have been removed from a variable since
the last execution of the propagator, we store (locally to the constraint) the size of the
domain at the end of the propagate method. Removed values are between the new and
the old size in the dom array at the next call of the method. The restore method is used
to reset the stored sizes after a backtrack. Propagators are called until the fix-point is
reached.

Triple patterns. A triple pattern is a table constraint. It reacts on the bind event of the
variables. When a variable is bound, we fetch all the consistent triples from the SQLite
database and restrict the domains of the remaining unbound variables.

Filters. Checking filters on compound queries is done by an expression evaluator fol-
lowing SPARQL specifications. The evaluator considers all variables with a domain size
larger than 1 as unbound. Filters on basic queries are posted together with the triple pat-
terns. The propagator achieves forward checking consistency. As soon as all variables
but one are bound, we iterate over the values in the domain of the unbound variable,
keeping only values making the expression true.

Some filters can be propagated more efficiently with specialized algorithms. The
propagator for x �= y waits for a value to be assigned to one of the two variables and
removes it from the domain of the other variable. There is no need to iterate over all
values in the domain. The constraint x = y achieves arc consistency by removing from
D(y) the values that have been removed from D(x) and vice versa, reacting to the change
event.

5.4 Search

The search tree is defined by using a labeling strategy. At each node, a variable is
chosen and a child node is created for each of the values in the domain of the variable.
The standard smallest domain heuristic is used for choosing the variable. The order of
the values is defined by their current order in the dom array representation.

The search tree is explored with a depth-first search algorithm. Such exploration is
required for efficient backtracking of the domains (Section 5.2) and efficient inconsis-
tency check of optional subqueries (Section 4).
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To enable posting constraints during the search, we introduce subtrees. A subtree has
a set of constraints and a set of variables to label. It iterates over all assignments of the
variables satisfying the constraints, embedding the backtrack trail. At each assignment,
Castor can create a new subtree or output the solution, depending on the query. When a
subtree has been completely explored, the domains of the variables are restored to their
state when the subtree was created and the constraints are removed. The search can then
continue in the previous subtree.

6 Experimental Results

To assess the feasibility and the performances of our approach, we have run queries
from the SPARQL Performance Benchmark (SP2Bench) [17]. SP2Bench consists of a
deterministic program generating an RDF dataset of configurable size, and 12 repre-
sentative queries. The datasets represent relationships between fictive academic papers
and their authors, following the model of academic publications in the DBLP data-
base. The benchmark includes both basic and compound queries, but only makes use of
simple comparison filters. We removed unsupported solution modifiers like DISTINCT

and ORDER BY from the queries. We focus on the queries identified as difficult by the
SP2Bench authors (q4, q5, q6 and q7) as well as one simpler query (q2) and two queries
involving the UNION operator (q8 and q9). We thus consider 8 queries as q5 comes in
two flavors.

We compare the performances of three engines: the state-of-the-art SPARQL engine
Sesame [4], the lightweight solver Castor described in Section 5 and a direct implemen-
tation of the operational semantics in Comet [6]. The Comet implementation loads the
whole dataset in memory. It uses the built-in table constraint for the triple patterns and
built-in expressions for the filters. Sesame was run both using an on-disk store and an
in-memory store.

We have generated 6 datasets of 10k, 25k, 250k, 1M and 5M triples. We have per-
formed three cold runs of each query over all the generated datasets, i.e., the engines
were restarted and the databases cleared between two runs. Such setting corresponds
to the one used by the authors of SP2Bench. All experiments were conducted on an
Intel Pentium 4 2.40 GHz computer running Ubuntu Linux 10.10 with 2 GB of DDR-
400 RAM and a 160 GB Maxtor 6Y160P0 ATA/133 disk. We report the time spent to
solve the queries, not including the time needed to load the datasets. We checked that
all engines find the exact same set of solutions.

Figure 6 shows the execution time of the considered queries. Note that both axes
have logarithmic scales. We now discuss the results for each query.

Simple query. Query q2 has the form BQ1 OPTIONALBQ2. BQ1 is a basic query with
9 variables and 9 triple patterns. The optional part BQ2 has a single triple pattern with
only one variable not appearing in BQ1. Executing subquery BQ2 can thus be done by
one access to the database. Sesame and Castor perform equally well. Comet however
suffers from the heavy data structures.

Filters. Queries q4 and q5a are similar. Both are basic queries with one filter. Query q4
has 7 variables, 8 triple patterns and a filter x1 < x2 on two variables x1 and x2. Query
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Fig. 6. Experimental results for Sesame with on-disk store (Sdisk), Sesame with in-memory store
(Smem), Comet (Com) and Castor (Cas). The x-axis represents the dataset size in terms of number
of triples. The y-axis is the query execution time. Both axes have a logarithmic scale. The number
of solutions is written in parentheses.
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q5a has 6 variables, 6 triple patterns and a filter x1 = x2. The CP engines are able to out-
perform Sesame on q5a thanks to their efficient propagation of the equality constraint.
We suspect this constraint to be post-processed in Sesame. Query q4 however shows the
opposite situation. It has many more solutions than q5a (2.65 ·106 versus 1.01 ·105 for
the dataset with 1M triples). As such, filtering is not the bottleneck anymore. Solving
the query mostly involves pure database access.

The two flavors of q5, q5a and q5b, compute exactly the same set of solutions. The
latter encodes the equality constraint into its 5 triple patterns using 4 variables. Unsur-
prisingly, the CP engines perform similarly on both queries as they exploit the filters
early-on during the search. Sesame handles the filter-less query much better than q5a.
This shows the relevance of our approach, especially considering filters are present in
about half of the real-world queries [2].

Negations. A negation in SPARQL is a compound query that has the form (Q1 OPTIONAL

Q2) FILTER (!bound(x)), where x is a variable appearing only in Q2. The filter removes
all solutions assigning a value to x, i.e., we keep only solutions of Q1 that cannot be
extended into solutions of Q1 .Q2. Query q6 is one such negation with additional fil-
ters inside Q2. Query q7 has no additional filters, but Q2 is itself a nested negation.
Counter-intuitively, q6 is actually more difficult than q7. Possible reasons are given in
[17]. Castor has better results than Sesame for the former query and behaves similarly
to Sesame on the latter.

Unions. The compound queries q8 and q9 use the UNION operator. The former adds
inequality filters in both its subqueries. The subqueries of the latter contain only two
triple patterns each. Yet, q9 generates many solutions. Neither Comet with its heavy
structures nor Sesame with its on-disk store are able to go beyond 50k triples. Castor and
Sesame with in-memory store are close to each other. In query q8, the two alternative
subqueries have some duplicate triple patterns. Exploiting such property might explain
the relative flatness of Sesame’s execution time compared to Castor.

Conclusion. Table 1 shows the relative speed of Castor w.r.t. Sesame using an in-
memory store. The goal of Castor is to use CP to solve very constrained queries, i.e.,
queries where filters eliminate many solutions. Such queries (e.g., q5a and q6) are han-
dled much more efficiently by Castor than by Sesame. On queries relying more on
database access (e.g., q2 and q9), the CP approach is still competitive.

Table 1. Speedup of Castor w.r.t. Sesame with in-memory store. The letter ‘C’ (resp. ‘S’) means
only Castor (resp. Sesame) was able to solve the instance within the time limit.

q2 q4 q5a q5b q6 q7 q8 q9

10k 6.75 2.95 94.15 6.51 5.13 1.21 61.52 3.60
50k 3.03 1.38 799.26 5.01 6.38 0.84 68.91 1.94

250k 1.54 0.41 C 3.93 C 1.24 39.32 1.34
1M 1.19 S C 2.79 — — 15.99 1.29
5M 1.19 — C 2.00 — — 3.81 1.24
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7 Discussion

We proposed a declarative modeling and operational semantics for solving SPARQL
queries using the Constraint Programming framework. We introduced a specialized
lightweight solver implementing the semantics. We showed that the approach outper-
forms the state of the art on very constrained queries, and is competitive on most other
queries.

Related work. Mamoulis and Stergiou have used CSPs to solve complex XPath queries
over XML documents [13]. XML documents can be viewed as graphs, like RDF data3,
but with an underlying tree structure. Such structure is used by the authors to design
specific propagators. However, they cannot be used for SPARQL queries.

Mouhoub and Feng applied constraint programming to solve combinatorial queries
in relational databases [14]. Such queries involve joining multiple tables subject to rel-
atively complex arithmetic constraints. The problem is similar to SPARQL. However,
the authors do not deal with large datasets. Their experiments are limited to tables with
800 rows. Such size is not realistic for RDF data.

Other work aims at extending the standard SQL query language to support explicit
constraint satisfaction expressions [12,19]. This allows to solve CSPs within relational
databases.

Future work. Two paths are possible. On the one hand, we can create a full-in-memory
engine, getting rid of the SQLite database. More advanced propagators for the table
constraint could then be used. While such engine would not scale well, it could still be
of interest for very complex queries on small to medium-sized datasets. On the other
hand, we can make a heavier database usage, eliminating the need to load all values
in memory. The current propagators for triple patterns and equality constraints already
do not need to know the meaning of a value. The query can also be preprocessed to
reduce the initial domain before the variables are created to further reduce the memory
consumption.

In both cases, specialized propagators need to be written for the various SPARQL ex-
pressions. Other consistency levels, e.g., bound consistency, may be considered for such
tasks. Different variable selection heuristics can be investigated. More comprehensive
benchmarks with other engines also needs to be done.
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Abstract. Much work has been done on describing tractable classes of
constraint networks. Most of the known tractable examples are described
by either restricting the structure of the networks, or their language. In-
deed, for both structural or language restrictions very strong dichotomy
results have been proven and in both cases it is likely that all practical
examples have already been discovered.

As such it is timely to consider tractability which cannot be described
by language or structural restrictions. This is the focus of the work here.

In this paper we investigate a novel reason for tractability: having at
least one variable ordering for which the number of partial solutions to
the first n variables is bounded by a polynomial in n.

We show that the presence of sufficient functional constraints can
guarantee this property and we investigate the complexity of finding
good variable orderings based on different notions of functionality.

What is more we identify a completely novel reason for tractability
based on so called Turan sets.

Keywords: Constraint satisfaction, satisfiability, hybrid tractability,
functional constraints, Turan tractability, variable ordering.

1 Introduction

A constraint network consists of a collection of variables, each of which must take
its value from a specified domain. Some subsets of these variables have a further
limitation, called a constraint, on the values they may simultaneously take. Thus
a constraint has two components: a list of variables called its scope, and a set of
allowed valuations that this list may be assigned, called its relation [10].

The set of relations occurring in a particular constraint network is often called
the language of the network. The scopes of a constraint network, abstracted as
sets of variables, are called the structure of the network.

It is natural to define tractable classes of constraint networks by restricting
the language or the structure. It is conjectured that there is a dichotomy for all
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constraint languages: they are either tractable or NP-hard [7]. This dichotomy
has been made explicit by Bulatov [2]. Since much work has been done in this
area we have a growing base of evidence for this conjecture.

On the other hand, the work on structural tractability is even further ad-
vanced. Grohe [8] showed that a set of structures is tractable if and only if the
tree-width of their cores is bounded.

In this paper we extend the classical theory of constraint network tractability
beyond the artificial distinction between language and structure. Such hybrid
tractability is just beginning to be systematically studied [3,11,13].

We will exhibit two novel polytime-testable hybrid properties of constraint
networks which guarantee a polynomial-size search tree as well as a polynomial
number of solutions. Classes defined by such properties are clearly tractable.
Indeed, in such cases, polytime solvability is preserved even after the addition
of any number of arbitrary constraints and/or the addition of any polytime
objective function, since it suffices to test the extra constraints and/or evaluate
the objective function for each of the polynomial number of solutions.

We say that a constraint is functional [6] on one of its variables if the value
of this variable is uniquely determined by an assignment to the rest of the vari-
ables of the scope. Examples include functional dependencies in databases, or
mathematical constraints of the form Xi = f(Xi1 , . . . , Xir ). In particular, linear
constraints are functional in all variables. A constraint network with sufficient
functional constraints has the property for which we are looking.

In the second case we use a structure from combinatorial mathematics called a
Turan set. By making sure that constraints with sufficiently tight relations have
scopes which form a Turan set we can find a polynomial bound on the number
of partial solutions to any subset of the variables.

We show that the constraints required by the Turan example generalise func-
tional constraints and so there is an overlap between these two classes. However,
the classes are incomparable as the first guarantees at most one solution whilst
the second allows for more general global constraint types.

The paper is structured as follows. In Sect. 2 we introduce the necessary
basic definitions and give a motivating example. Section 3 is a study of different
forms of functional constraint networks. Section 4 presents a novel tractable class
which guarantees a polynomial bound on the number of solutions, but which is
not based on any form of functionality.

2 Background

We first define the problem we are trying to solve.

Definition 1. A constraint network is a triple 〈V,D,C〉 where:

– V is a finite set of variables;
– D is a finite domain;
– C is a set of constraints. Each constraint c ∈ C consists of a pair c =

〈σ(c), ρ(c)〉 where σ(c) ∈ V ∗, the constraint scope, is a list of variables and
ρ(c) ⊆ D|σ(c)|, is the constraint relation.
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A solution to P = 〈V,D,C〉 is a mapping s : V → D which satisfies each
constraint. That is, for each 〈σ, ρ〉 ∈ C, s(σ) ∈ ρ.

For any set of variables X ⊆ V we have the standard notion of the induced
network P [X ] = 〈X,D,C′〉 on X, where, for every c ∈ C whose scope includes
at least one variable of X there is a corresponding induced constraint c[X ] ∈ C′.
The scope of c[X ] is the sublist of variables of σ that occur in X and the relation
of c[X ] consists of those tuples of values that extend to tuples in ρ.

We assume that constraint relations are explicitly stored and so |〈V,D,C〉| =∑
〈σ,ρ〉∈C log(|D|)|σ||ρ| + log(|V |)|σ|.

2.1 Ordered Polynomial Tractability

We are interested in constraint networks for which we only ever generate a
polynomial number of partial solutions during complete backtrack search. As
such we are interested in networks which have particularly well behaved variable
orderings.

Definition 2. A class of constraint networks is ordered polynomial if there
is some polynomial p such that, for any such instance P , there is some ordering
x1 < x2 < . . . < xn of the variables of P where, for each i = 1, . . . , n the induced
network P [{x1, . . . , xi}] has at most p(|P [{x1, . . . , xi}]|) solutions.

Example 1. This example describes the tractable class of constraint networks
with fractional edge cover number at most k discovered by Grohe and Marx [9].

For any constraint network P = 〈V,D,C〉 we define the structure of P to be
the hypergraph H(P ) with vertex set V and a hyperedge for each constraint
scope (abstracted as a set of variables).

A fractional edge cover of the hypergraph 〈V,E〉 is a mapping ψ : E → Q+

such that, for every v ∈ V ,
∑

e∈E,v∈e ψ(e) ≥ 1. The weight of ψ is
∑
e∈E ψ(e)

and the fractional weight, ρ∗H , of H is the minimum weight of all fractional
edge covers of H .

Grohe and Marx [9] proved that the number of solutions to any constraint
network P is at most |P |ρ∗(H(P )).

Since the fractional edge cover number of any induced network is at most
that of the original network it follows that the class of constraint networks with
fractional edge cover number at most k is ordered polynomial.

Grohe and Marx proved that enumerating all solutions can be done in time
|I|ρ∗(H(I))+O(1). We generalise this result to arbitrary ordered polynomial classes.

Proposition 1. Let P = 〈V,D,C〉 be any constraint network with variable or-
dering x1 < x2 < . . . < xn such that the induced network P [{x1, . . . , xi}] can be
solved in time p(|P [{x1, . . . , xi}]|). All solutions to P can be enumerated in time
p(|P |).|P |2.

Proof. For i = 1, . . . , |V | the algorithm generates a list Li of solutions to
P [{x1, . . . , xi}]. The list L1 contains at most |D| solutions. Since every solu-
tion in Li+1 induces a solution in Li by projection, to find Li+1 we have only
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to find those solutions in Li which extend to a solution of P [{x1, . . . , xi+1}].
Clearly this extension can be done in time |Li|.|D|.|P [{x1, . . . , xi+1}]|.

Now since |P [{x1, . . . , xi+1}]| ≥ |P [{x1, . . . , xi}]| we can bound the total run-
ning time by |V |.|D|.p(|P |).|P | ≤ p(|P |).|P |2.

3 Functional Constraint Networks

In this section, we begin by studying the class of constraint networks which have
sufficient functional constraints to guarantee backtrack free search.

Functional constraints have been extensively studied in the case of binary
networks [6,4,5]. We extend previous studies to the case of functional constraints
of arbitrary arity and generalise to the case of incrementally-functional networks.

Definition 3. A constraint 〈σ, ρ〉 is functional on variable i ∈ σ if ρ contains
no two tuples differing only at variable i.

A constraint network P is functional if there exists a variable ordering x1 <
x2 < . . . < xn such that, for all i ∈ {1, . . . , n}, there is some constraint of
P [{x1, . . . , xi}] that is functional on xi.

Example 2. Consider the following constraint network with variables {x1, . . . , x4}
and domain the integers modulo 7: {0, . . . , 6}.

We have four constraints: x1 = 4, 2x1 + x2 = 5, 3x1 + 4x2 + x3 = 2 and
x1 + x2 + x3 + x4 = 0.

With respect to the ordering x1 < x2 < x3 < x4 this is a functional network.
The unique solution is: x1 = 4, x2 = 4, x3 = 2, x4 = 4.

Any functional network always has at most one solution. Furthermore, func-
tional networks form a tractable class: they are both identifiable and solvable in
polynomial time. We will, in fact, prove this for the much larger class defined
below.

Definition 4. A constraint network P is incrementally functional if there
is an ordering x1 < x2 < . . . < xn of its variables such that for all i ∈
{1, . . . , n − 1}, each solution to P [{x1, . . . , xi}] extends to at most one solution
to P [{x1, . . . , xi+1}].

An incrementally functional constraint network has at most one solution.

Proposition 2. The number of nodes in the backtracking search tree of an in-
crementally functional constraint network is O(n) when the variables are instan-
tiated according to the correct ordering.

It is possible to determine in polynomial time whether a network P is incremen-
tally functional. This is a corollary of the following result which says that we can
determine in polynomial time the maximum-cardinality subset M ⊆ {1, . . . , n}
such that P [M ] is incrementally functional. This provides us with a simple
variable-ordering heuristic: if the variables in M are instantiated in the order
that makes P [M ] incrementally functional, then, in the backtracking search tree,
there is no branching at any of the variables of M .
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Proposition 3. Given a constraint network P = 〈V,D,C〉, it is possible to
find in polynomial time the maximum-cardinality set M ⊆ V such that P [M ] is
incrementally functional.

Proof. We initialize M to the empty set and aM to the empty tuple. We then
use a greedy algorithm to repeatedly add variables i to M if there is at most
one value ai for i which is consistent with the partial assignment aM . If such an
ai exists then aM is extended to include the assignment of ai to i. If aM has no
consistent extension to variables M ∪ {i}, then we halt, returning V (since, in
this case, the conditions of Definition 4 are satisfied on i and so trivially on all
variables not in M ∪ {i}).

Consider the set M returned by this greedy algorithm. Suppose that P [M ′]
is incrementally functional where |M ′| > |M |. Without loss of generality, we
can assume that M ′ = {1, . . . , t} and that the variable ordering which makes
P incrementally functional on M ′ is the usual ordering of the integers. Let
i = min(M ′ \ M) and let X = {j ∈ M ′ : j < i}. Since i ∈ M ′, all consis-
tent assignments to the variables P can be extended to at most one consistent
assignment to the variables X ∪ {i}. But, by choice of i, X ⊆ M , and hence
all consistent assignments to the variables M can be extended to at most one
consistent assignment to the variables M ∪ {i}. Thus, i would have been added
to M by our greedy algorithm. This contradiction completes the proof.

Corollary 1. It is possible to determine in polynomial time whether a constraint
network is incrementally functional.

For the constraint network P = 〈V,D,C〉, if the induced network P [M ] is incre-
mentally functional, then after instantiating the variables in V −M , P becomes
incrementally functional. The converse is not necessarily true, in the sense that
P may be incrementally functional on all remaining variables after instantiation
of the variables in a proper subset of V −M . This leads us to notions which are
related to strong backdoor sets.

In a SAT instance, given a polynomial-time algorithm A (such as unit-
propagation), a set X of variables is a strong backdoor set with respect to A
if, for any assignment to the variables in X , the algorithm A determines whether
or not this assignment can be extended to a complete solution. The set of prob-
lem instances having a strong backdoor set of size O(log n) is a hybrid tractable
class [17], but does not provide a polynomial bound on the number of solutions.
Szeider [15] showed that when the SAT algorithm A is unit propagation, pure
literal elimination or a combination of both of these, the detection of a strong
backdoor set (with respect to A) of size bounded by a fixed integer k is W[P]-
complete. This means that it is highly unlikely that smallest backdoor sets can
be found more efficiently than by exhaustive search.

The remainder of this section is devoted to types of backdoor sets, called root
sets, defined in terms of simple forms of functionality.

Definition 5. In a constraint network P = 〈V,D,C〉, a root set is a subset Q
of the variables for which there exists a variable ordering x1 < x2 < . . . < xn
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such that, for all i ∈ V −Q, there is some constraint of P [{x1, . . . , xi}] that is
functional on xi.

The existence of a root set Q means that the constraint network I will become
functional after instantiation of all variables in Q. It is therefore of interest to
find a minimum-cardinality root set. David [5] showed that this can be achieved
in polynomial time in the case of binary CSPs. Unfortunately, if I contains
ternary functional constraints, then finding the minimum-cardinality root set is
NP-hard, as we now show.

Theorem 1. The problem of finding a minimum-cardinality root set in a ternary
constraint network is NP-hard, for all d ≥ 2 (where d is the maximum domain
size).

Proof. We demonstrate a polynomial reduction from max clique (which is
known to be NP-complete [12]). Let G be a graph with n vertices 1, . . . , n and
m edges. For simplicity of presentation, we identify a clique C in G with its
vertex set. We will construct a ternary constraint network PG such that {Xi :
i /∈ C} ∪ {X0} is a minimum-cardinality root set of PG if and only if C is a
maximum clique in G.

We first give an example of a ternary functional constraint which is functional
on only one of its variables. Let R3 denote the relation {〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉,
〈1, 1, 1〉}. It is straightforward to verify that R3 is functional only on its third
variable.

The constraint network PG has a “dummy” variable X0 (which, by construc-
tion, must appear in every root set) as well as a variable Xi corresponding to
each of the n vertices of G. Apart from these variables Xi (i = 0, . . . , n), PG
has two other types of variables: non-edge variables denoted by Yi (1 ≤ i ≤ M
where M = n

2 (n − 1) −m) and cascade variables Zij (i = 1, . . . , n; 1 ≤ j ≤ N).
For each pair of distinct vertices j, k ∈ {1, . . . , n} which are not connected by an
edge in G, there is a corresponding non-edge variable Yi in PG together with two
ternary functional constraints: 〈〈X0, Xj , Yi〉, R3〉 and 〈〈X0, Xk, Yi〉, R3〉. These
constraints are both functional on Yi and are the only constraints of PG which
are functional on Yi.

For each of theXi variables, there is a cascade of ternary functional constraints
from the set of all the non-edge variables Yj (1 ≤ j ≤M) toXi. This is illustrated
in Fig. 1 which shows a cascade from the variables Y1, . . . , Y8 to the variable Xi

via the cascade variables Zi1, . . . , Zi6. Each two-tailed arrow represents a ternary
functional constraint from the two tail variables to the head variable: if U, V
are the tail variables and W the head variable, then there is the constraint
〈〈U, V,W 〉, R3〉 in PG. We require a total of N = n(2�log2M� − 2) = O(n3)
cascade variables.

For any subset C ⊆ {1, . . . , n} of the vertices of G, denote by RC the set
{Xi : i /∈ C} ∪ {X0}. C is a clique if and only if RC contains one of Xj , Xk

for each non-edge {j, k} in G. We claim that, by construction of PG, this is a
necessary and sufficient condition for RC to be a root set of PG. For each non-
edge {j, k} with corresponding variable Yi in PG, the only functional constraints
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Fig. 1. Example of a cascade of variables from the variables Y1, . . . , Y8 to variable Xi

on Yi are 〈〈X0, Xj, Yi〉, R3〉 and 〈〈X0, Xk, Yi〉, R3〉; hence RC is a root set only if
it contains one of Xj , Xk. If RC contains one of Xj, Xk for each non-edge {j, k}
in G, then any ordering which places the variables in RC first, then the variables
{Yi : 1 ≤ i ≤ M}, then the variables {Zij : 1 ≤ i ≤ n, 1 ≤ j ≤ N} and finally
the variables {Xi : i ≤ i ≤ n} −RC satisfies the conditions of Definition 5.

It is possible to replace some number of the Xi variables (1 ≤ i ≤ n) in the
root set RC by some number of the Yj and Zik variables (for example,Xi in Fig. 1
could be replaced by Zi5, Z

i
6), but, by our construction, this never reduces the

cardinality of the root set. We can conclude that RC is a minimum-cardinality
root set of PG if and only if C is a maximum clique in G. This reduction from
max clique is clearly polynomial.

4 Turan Sets

In this section, we study conditions which guarantee the existence of only a
polynomial number of solutions, but which are not so restrictive as to guarantee
the existence of at most one solution. Very little work appears to have been done
in this area.

We will define a class of constraint networks, the k-Turan networks, with this
property, which have many constraints with small scopes that each satisfy a
weak tightness condition. This contrasts with networks of bounded fractional
edge cover number [9] which require quite large scopes. Many of the well-known
global constraints [1] satisfy the k-Turan tightness restriction, but we have only
space to give the (simple) proofs for functional constraints (Proposition 4) and
Boolean clauses (Corollary 3).

To simplify our proofs we define a technical device: the domain pair arity
function (DPAF). For any particular DPAF, α, we can then capture the class of
constraint networks which are α-restrictive, which we prove to have a polynomial
bound on the number of solutions. The k-Turan networks are α-restrictive for a
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constant DPAF, α, but a direct proof of the polynomial bound (Theorem 3) is
simplified by first proving the general result, Theorem 2, using an induction on
the weight of a general DPAF.

Definition 6. U∗ is the set of all lists of elements of U and [a, b]|σ| is the set
of length |σ| tuples consisting of just a’s and b’s.

For any domain D we define a domain pair arity function (DPAF) to
be a symmetric mapping α : D2 → N+.

The weight of α is then defined as wt(α) =
∑

{a,b}⊆D α(a, b).
For any DPAF α we say that constraint network P = 〈V,D,C〉 is α-

restrictive if

∀{a, b} ⊆ D,U ⊆ V, |U | = α(a, b), ∃ 〈σ, ρ〉 ∈ C, σ ∈ U∗and [a, b]|σ| �⊆ ρ .

Let F (n,D, α) be the maximum number of solutions to any α-restrictive con-
straint network with domain D and n variables.

Theorem 2. F (n,D, α) ≤ nwt(α).

Proof. Let D be any domain and α be any DPAF. Choose an n variable α-
restrictive constraint network P = 〈V,D,C〉 with F (n,D, α) solutions.

Choose any variable x ∈ V . We say that a pair of solutions to P are an {a, b}-
pair at x if they differ only in their value for variable x: one having value a, the
other value b.

Let S{a,b} be the solutions to P which are in {a, b}-pairs. Let S1 be the
solutions to P that are in no {a, b}-pair for any {a, b} ⊆ D.

We get an upper bound on the number of solutions to P , F (n,D, α), by
counting the size of these sets.

First, for any {a, b} where α(a, b) > 1, consider the set S{a,b}.
Choose any U ⊆ V with x ∈ U and |U | = α(a, b).
Since P is α-restrictive there is a constraint 〈σ, ρ〉 ∈ C for which σ ⊆ U∗ and

[a, b]|σ| �⊆ ρ. Hence the restriction of S{a,b} to U −{x} cannot contain [a, b]|U|−1.
So, for each such U , we can build a constraint with scope U −{x} that allows

all solutions in S{a,b}, but whose relation does not contain [a, b]|U|−1.
Add all such constraints to the induced network P [V − {x}] to obtain the

α{a,b}−-restrictive network P (a, b). By construction, every solution in S{a,b} re-
stricted to V − {x} is a solution to P (a, b). Since every element of S{a,b} has
value either a or b at x we know that the number of solutions to P (a, b) is at
least half of the size of S{a,b}.

Now consider the set S1. Each solution to P [V −{x}] extends to at most one
element of S1, so the α-restrictive network P [V −{x}] has precisely |S1| solutions
that extend to an element of S1.

Finally, observe that if α(a, b) = 1 then S{a,b} is empty since there is a con-
straint with scope 〈x〉 whose relation does not contain [a, b].

Defining

α{a,b}−(x, y) =

{
α(x, y) − 1 if {x, y} = {a, b},
α(x, y) otherwise.
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we have shown that:

F (n,D, α) ≤

⎛
⎝ ∑

{a,b}⊆D,α(a,b)>1

2F (n− 1, D, α{a,b}−)

⎞
⎠+ F (n− 1, D, α) . (1)

We now prove the theorem by induction on the weight of α.
The base case is when α is identically 1. Here F (n,D, α) = 1 since in the

solution set to any α-restrictive constraint network we can have, for each variable,
at most one of each pair of domain values.

For the inductive step we can assume that F (n,D, α′) ≤ nwt(α′) whenever
wt(α′) < wt(α). Using inequality (1) we now obtain

F (n,D, α) ≤
(
D

2

)
(n− 1)wt(α)−1 + (n− 1)wt(α) .

It therefore remains to show that

nwt(α) ≥
(
D

2

)
(n− 1)wt(α)−1 + (n− 1)wt(α).

We can rewrite this inequality as:(
1 +

1
n− 1

)wt(α)

≥
(
D
2

)
(n− 1)

+ 1 .

This equality must hold since wt(α) ≥
(
D
2

)
.

Given an arbitrary DPAF α it is clear that if P is α-restrictive then so is every
network induced by P on a subset of its variables. It follows immediately from
Theorem 2 and Proposition 1 that the class of α-restrictive constraint networks
is polynomially solvable for any fixed domain size.

Corollary 2. For any fixed domain D and DPAF α the class of α-good con-
straint networks over domain D is polynomial time solvable.

Now we will need the notion of a Turan set in order to define classes of α-
restrictive networks for a constant function α. This will allow us not only to give
some concrete examples of tractable classes but also to estimate the minimum
number of constraints in an α-restrictive constraint network.

Definition 7. We say that a subset of variables σ represents another set τ if
σ is contained in τ .

An (n, k)-Turan system is a pair 〈χ,B〉 where B is a collection of subsets
of the n-element set χ such that every k-element subset of χ is represented by
some set in B. The size of the system 〈χ,B〉 is the number of subsets in B.

The restricted notion of a Turan system where every member is required to have
precisely r < k elements has been well-studied in the mathematics community
and, for many set of parameters, minimal size examples are known [14,16].
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Definition 8. An n-variable constraint network over domain D is said to be
k-Turan if the scopes of the constraints 〈σ, ρ〉 for which:

∀a, b ∈ D, [a, b]|σ| �⊆ ρ

are an (n, k)-Turan system.

Example 3. For any k > 2 we can construct a binary k-Turan network with
variables {1, . . . , n} and domain {1, . . . , d} as follows. The scopes are all pairs of
variables of the same parity, like 〈4, 12〉 and 〈3, 7〉. Each binary constraint has
the same constraint relation that disallows only d− 1 tuples: 〈2, 2〉, . . . , 〈d, d〉.

Every k-set of variables contains (at least) two variables with the same parity
and so is represented by the scope of some constraint. Hence the scopes form
an (n, k)-Turan system. Furthermore, for any pair of domain values a < b each
constraint relation disallows the tuple 〈b, b〉 and so does not contain [a, b]2.

Theorem 3. For any domain D and fixed k, the class of k-Turan constraint
networks is tractable.

Proof. Let P be any k-Turan constraint network over domain D.
Since every k-set of variables contains the scope 〈σ, ρ〉 of a constraint for

which:
∀a, b ∈ D, [a, b]|σ| �⊆ ρ .

We immediately get that P is α-restrictive for the constant DPAF α(a, b) = k,
and so the class is polynomially solvable.

To see that such a class is polynomially recognisable observe that there are
polynomially many subsets of variables of size k and, for each of these sets we
have only to check the relations of constraints whose scope they contain. That
is, one check is required for each pair of domain elements, for each constraint
and for each subset of size k giving time complexity O(|D|2|P |k+1).

It is worth observing that the restriction:

∀a, b ∈ D, [a, b]|σ| �⊆ ρ

is not very strong. For instance every clause (seen as a constraint over a Boolean
domain) satisfies the restriction. There is just one domain pair 0, 1 and so we
only require there to be at least one disallowed tuple.

Hence, a direct consequence of Theorem 3 is for the case of k-SAT (boolean
domains, where each constraint is a clause on k-variables).

Corollary 3. The class of k-SAT instances where every k-tuple is restricted by
a k-clause is tractable.

What is more, every functional constraint satisfies this property.

Proposition 4. Let 〈σ, τ〉 be any functional constraint. We have that:

∀a, b ∈ D, [a, b]|σ| �⊆ ρ .
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Proof. Suppose that 〈σ, τ〉 is functional at x. Choose arbitrary domain elements
a and b. We know that any assignment of values from {a, b} to the variables of
σ other than x extends to at most one value at x. So we are done.

The result of David’s [4] is another corollary of Theorem 3.

Corollary 4. [4] If a constraint network P has all arity-q constraints and each
of these constraints is functional then we can solve I in polynomial time

5 Conclusion

We have defined different classes of constraint networks whose tractability stems
from the fact that each network has only a polynomial number of solutions.
This means that we can list or count all solutions or find all optimal solutions
(according to any polytime objective function) in polynomial time.

Incrementally functional constraint networks have a single solution and a
forward-checking search tree is linear when a dynamic smallest-domain first
variable-ordering is used. Finding a maximum-cardinality subset of the vari-
ables on which a network is incrementally functional is polynomial-time. Find-
ing a maximum-cardinality root set (a set of variables on which all others are
functionally dependent) would appear to be NP-hard except in the case that
each variable is functionally dependent on a single previous variable.

We have also presented novel tractable classes of constraint networks with
no functional constraints which have a polynomial bound on the number of
solutions. These k-Turan networks require many constraints with small scopes
but put only a very weak restriction on the relations of these constraints. As
such this is an interesting contrast with the (structural) class of networks with
small fractional edge cover number.

An interesting open question is whether there exist other conditions guaran-
teeing a polynomial number of solutions.
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Abstract. Consistencies are properties of constraint networks that can
be enforced by appropriate algorithms to reduce the size of the search
space to be explored. Recently, many consistencies built upon taking
decisions (most often, variable assignments) and stronger than (general-
ized) arc consistency have been introduced. In this paper, our ambition
is to present a clear picture of decision-based consistencies. We identify
four general classes (or levels) of decision-based consistencies, denoted
by Sφ

Δ, Eφ
Δ, Bφ

Δ and Dφ
Δ, study their relationships, and show that known

consistencies are particular cases of these classes. Interestingly, this gen-
eral framework provides us with a better insight into decision-based con-
sistencies, and allows us to derive many new consistencies that can be
directly integrated and compared with other ones.

1 Introduction

Consistencies are properties of constraint networks that can be used to make
inferences. Such inferences are useful to filter the search space of problem in-
stances. Most of the current constraint solvers interleave inference and search.
Typically, they enforce generalized arc consistency (GAC), or one of its partial
form, during the search of a solution. One avenue to make solvers more robust is
to enforce strong consistencies, i.e., consistencies stronger than GAC. Whereas
GAC corresponds to the strongest form of local reasoning when constraints are
treated separately, strong consistencies necessarily involve several constraints
(e.g., path inverse consistency [12], max-restricted path consistency [8] and their
adaptations [20] to non-binary constraints) or even the entire constraint network
(e.g., singleton arc consistency [9]).

A trend that emerges from recent works on strong consistencies is the resort
to taking decisions before enforcing a well-known consistency (typically, GAC)
and making some deductions. Among such decision-based consistencies, we find
SAC (singleton arc consistency), partition-k-AC [2], weak-k-SAC [22], BiSAC [4],
and DC (dual consistency) [15]. Besides, a partial form of SAC, better known as
shaving, has been introduced for a long time [6,18] and is still an active subject
of research [17,21]; when shaving systematically concerns the bounds of each
variable domain, it is called BoundSAC [16]. What makes decision-based con-
sistencies particularly attractive is that they are (usually) easy to define and

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 172–186, 2011.
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understand, and easy to implement since they are mainly based on two concepts
(decision, propagation) already handled by constraint solvers. The increased in-
terest perceived in the community for decision-based consistencies has motivated
our study.

In this paper, our ambition is to present a clear picture of decision-based
consistencies that can derive nogoods of size up to 2; i.e., inconsistent values
or inconsistent pairs of values. The only restriction we impose is that decisions
correspond to unary constraints. The four classes (or levels) of consistencies, de-
noted by SφΔ, Eφ

Δ, Bφ
Δ and Dφ

Δ, that we introduce are built on top of a consistency
φ and a so-called decision mapping Δ. These are quite general because:

1. Δ allows us to introduce a specific set of decisions for every variable x and
every possible (sub)domain of x,

2. decisions are membership decisions (of the form x ∈ Dx where Dx is a set
of values taken from the initial domain of x) that generalize both variable
assignments (of the form x = a) and value refutations (of the form x �= a),

3. decisions may ignore some variables and/or values, and decisions may overlap
each other,

4. φ is any well-behaved nogood-identifying consistency.

We study the relationships existing between them, including the case where Δ
covers every variable and every value. We also show that SAC, partition-k-AC,
BiSAC and DC are particular cases of SφΔ, SφΔ+Eφ

Δ (the two consistencies com-
bined), Bφ

Δ and Dφ
Δ, respectively. BoundSAC, and many other forms of shaving,

are also elements of the class SφΔ. The general framework we depict provides a
better insight into decision-based consistencies while allowing many new combi-
nations and comparisons of such consistencies. For example, the class of consis-
tencies SφΔ induces a complete lattice where the partial order denotes the relative
strength of every two consistencies.

2 Technical Background

This section provides technical background about constraint networks and con-
sistencies, mainly taken from [1,11,3,13].

Constraint Networks. A constraint network (CN) P is composed of a finite
set of n variables, denoted by vars(P ), and a finite set of e constraints, denoted
by cons(P ). Each variable x has a domain which is the finite set of values that
can be assigned to x. Each constraint c involves an ordered set of variables,
called the scope of c and denoted by scp(c), and is defined by a relation which
is the set of tuples allowed for the variables involved in c. The initial domain
of a variable x is denoted by dominit(x) whereas the current domain of x (in
the context of P ) is denoted by domP (x), or more simply dom(x). Assuming
that the initial domain of each variable is totally ordered, min(x) and max(x)
will denote the smallest and greatest values in dom(x). The initial and current
relations of a constraint c are denoted by relinit(c) and rel(c), respectively.
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A constraint is universal iff relinit(c) = Πx∈scp(c)dom
init(x). For simplicity, a

pair (x, a) with x ∈ vars(P ) and a ∈ dom(x) is called a value of P , which is
denoted by (x, a) ∈ P . A unary (resp., binary) constraint involves 1 (resp., 2)
variable(s), and a non-binary one strictly more than 2 variables. Without any
loss of generality, we only consider CNs that do not involve unary constraints,
universal constraints and constraints of similar scope. The set of such CNs is
denoted by P. An instantiation I of a set X = {x1, . . . , xk} of variables is a
set {(x1, a1), . . ., (xk, ak)} such that ∀i ∈ 1..k, ai ∈ dominit(xi); X is denoted
by vars(I) and each ai is denoted by I[xi]. An instantiation I on a CN P is an
instantiation of a set X ⊆ vars(P ) ; it is complete if vars(I) = vars(P ). I is
valid on P iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint c iff scp(c) ⊆ vars(I),
and I satisfies a constraint c with scp(c) = {x1, . . . , xr} iff (i) I covers c and
(ii) the tuple (I[x1], . . . , I[xr]) ∈ rel(c). An instantiation I on a CN P is locally
consistent iff (i) I is valid on P and (ii) every constraint of P covered by I is
satisfied by I. A solution of P is a complete locally consistent instantiation on P ;
sols(P ) denotes the set of solutions of P . An instantiation I on a CN P is globally
inconsistent, or a nogood, iff it cannot be extended to a solution of P . Two CNs
P and P ′ are equivalent iff vars(P ) = vars(P ′) and sols(P ) = sols(P ′).

The nogood representation of a CN is a set of nogoods, one for every value re-
moved from the initial domain of a variable and one for every tuple forbidden by
a constraint. More precisely, the nogood representation x̃ of a variable x is the set{
{(x, a)} | a ∈ dom(x)

}
with dom(x) = dominit(x) \ dom(x). The nogood repre-

sentation c̃ of a constraint c is
{
{(x1, a1) , . . . , (xr, ar)} | (a1, . . . , ar) ∈ rel(c)

}
,

with scp(c) = {x1, . . . , xr} and rel(c) = Πx∈scp(c)dom
init(x) \ rel(c). The no-

good representation P̃ of a CN P is
(
∪x∈vars(P )x̃

)
∪
(
∪c∈cons(P )c̃

)
. Based on

nogood representations, a general partial order can be introduced to relate CNs.
Let P and P ′ be two CNs such that vars(P ) = vars(P ′), we have P ′  P iff
P̃ ′ ⊇ P̃ and we have P ′ ≺ P iff P̃ ′ � P̃ . (P,) is the partially ordered set
(poset) considered in this paper. The search space of a CN can be reduced by a
filtering process (called constraint propagation) based on some properties (called
consistencies) that allow us to identify and record explicit nogoods in CNs; e.g.,
identified nogoods of size 1 correspond to inconsistent values that can be safely
removed from variable domains. In P, there is only one manner to discard an
instantiation from a given CN, or equivalently to “record” a new explicit no-
good. Given a CN P in P, and an instantiation I on P , P \ I denotes the CN
P ′ in P such that vars(P ′) = vars(P ) and P̃ ′ = P̃ ∪ {I}. P \ I is an operation
that retracts I from P and builds a new CN. If I = {(x, a)}, we remove a from
dom(x). If I corresponds to a tuple allowed by a constraint c of P , we remove
this tuple from rel(c). Otherwise, we introduce a new constraint allowing all
possible tuples (from initial domains) except the one that corresponds to I.

Consistencies. A consistency is a property defined on CNs. When a consistency
φ holds on a CN P , we say that P is φ-consistent; if ψ is another consistency, P
is φ+ψ-consistent iff P is both φ-consistent and ψ-consistent. A consistency φ
is nogood-identifying iff the reason why a CN P is not φ-consistent is that some
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instantiations, which are not in P̃ , are identified as globally inconsistent by φ;
such instantiations are said to be φ-inconsistent. A kth-order consistency is a
nogood-identifying consistency that allows the identification of nogoods of size
k. A domain-filtering consistency [10,5] is a first-order consistency. A nogood-
identifying consistency is well-behaved when for any CN P , the set {P ′ ∈ P |
P ′ is φ-consistent and P ′  P} admits a greatest element, denoted by φ(P ),
equivalent to P . Enforcing φ on a CN P means computing φ(P ). Any well-
behaved consistency φ is monotonic: for any two CNs P and P ′, we have: P ′ 
P ⇒ φ(P ′)  φ(P ). To compare the pruning capability of consistencies, we
use a preorder. A consistency φ is stronger than (or equal to) a consistency ψ,
denoted by φ � ψ, iff whenever φ holds on a CN P , ψ also holds on P . φ is
strictly stronger than ψ, denoted by φ � ψ, iff φ � ψ and there is at least a CN
P such that ψ holds on P but not φ. φ and ψ are equivalent, denoted by φ ≈ ψ,
iff both φ � ψ and ψ � φ.

Now we introduce some concrete consistencies, starting with GAC (General-
ized Arc Consistency). A value (x, a) of P is GAC-consistent iff for each con-
straint c of P involving x there exists a valid instantiation I of scp(c) such that
I satisfies c and I[x] = a. P is GAC-consistent iff every value of P is GAC-
consistent. For binary constraints, GAC is often referred to as AC (Arc Con-
sistency). Now, we introduce known consistencies based on decisions. When the
domain of a variable of P is empty, P is unsatisfiable (i.e., sols(P ) = ∅), which
is denoted by P = ⊥; to simplify, we consider that no value is present in a CN
P such that P = ⊥. The CN P |x=a is obtained from P by removing every value
b �= a from dom(x). A value (x, a) of P is SAC-consistent iff GAC (P |x=a) �= ⊥
[9]. A value (x, a) of P is 1-AC-consistent iff (x, a) is SAC-consistent and ∀y ∈
vars(P ) \ {x}, ∃b ∈ dom(y) | (x, a) ∈ GAC (P |y=b) [2]. A value (x, a) of P is
BiSAC-consistent iff GAC (P ia|x=a) �= ⊥ where P ia is the CN obtained after re-
moving every value (y, b) of P such that y �= x and (x, a) /∈ GAC(P |y=b) [4]. P
is SAC-consistent (resp., 1-AC-consistent, BiSAC-consistent) iff every value of P
is SAC-consistent (resp., 1-AC-consistent, BiSAC-consistent). P is BoundSAC-
consistent iff for every variable x, min(x) and max(x) are SAC-consistent [16].
A decision-based second-order consistency is dual consistency (DC) defined as
follows. A locally consistent instantiation {(x, a), (y, b)} on P , with y �= x, is
DC-consistent iff (y, b) ∈ GAC (P |x=a) and (x, a) ∈ GAC (P |y=b) [14]. P is
DC-consistent iff every locally consistent instantiation {(x, a), (y, b)} on P is
DC-consistent. P is sDC-consistent (strong DC-consistent) iff P is GAC+DC-
consistent, i.e. both GAC-consistent and DC-consistent. All consistencies men-
tioned above are well-behaved. Also, we know that sDC � BiSAC � 1-GAC �
SAC � BoundSAC � GAC.

3 Decision-Based Consistencies

In this section, we introduce decisions before presenting general classes of con-
sistencies.
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3.1 Decisions

A positive decision δ is a restriction on a variable x of the form x = a whereas
a negative decision is a restriction of the form x �= a, with a ∈ dominit(x). A
membership decision is a decision of the form x ∈ Dx, where x is a variable and
Dx ⊆ dominit(x) is a non-empty set of values; note that Dx is not necessarily
dom(x), the current domain of x. Membership decisions generalize both positive
and negative decisions as a positive (resp., negative) decision x = a (resp., x �= a)
is equivalent to the membership decision x ∈ {a} (resp., x ∈ dominit(x) \ {a}).
The variable involved in a decision δ is denoted by var(δ).

For a membership decision δ, we define P |δ to be the CN obtained (derived)
from P such that, if δ denotes x ∈ Dx and if x is a variable of P then each value
b ∈ domP (x) with b /∈ Dx is removed from domP (x). If Γ is a set of decisions, P |Γ
is obtained by restricting P by means of all decisions in Γ , and vars(Γ ) denotes
the set of variables occurring in Γ . Enforcing a given well-behaved consistency
φ after taking a decision δ on a CN P may be quite informative. As seen later,
analyzing the CN φ(P |δ) allows us to identify nogoods. Computing φ(P |δ) in
order to make such inferences is called a decision-based φ-check on P from δ, or
more simply a decision-based check. For SAC, a decision-based check from a pair
(x, a), usually called a singleton check, aims at comparing GAC(P |x=a) with ⊥.

From now on, Δ will denote a mapping, called decision mapping, that as-
sociates with every variable x and every possible domain domx ⊆ dominit(x),
a (possibly empty) set Δ(x, domx) of membership decisions on x such that for
every decision x ∈ Dx in Δ(x, domx), we have Dx ⊆ domx. For example, an
illustrative decision mapping Δex may be such that Δex(x, {a, b, c, d}) = {x ∈
{a, b}, x ∈ {d}}. For the current domain of x, i.e., the domain of x in the context
of a current CN P , Δ(x, dom(x)) = Δ(x, domP (x)) will be simplified into Δ(x)
when this is unambiguous. To simplify, we shall also refer to Δ as the set of
all “current” decisions w.r.t. P , i.e., Δ will be considered as ∪x∈vars(P )Δ(x).
This quite general definition of decision mapping will be considered as our basis
to perform decision-based checks. Sometimes, we need to restrict sets of deci-
sions in order to have each value occurring at least once in a decision. A set
of decisions Γ on a variable x is said to be a cover of ∪(x∈Dx)∈ΓDx. For ex-
ample, Δex(x, {a, b, c, d}), as defined above, is a cover of {a, b, d}. Δ is a cover
for (x, domx), where domx ⊆ dominit(x), iff Δ(x, domx) is a cover of domx. For
example, Δex is not a cover for (x, {a, b, c, d}). Δ is a cover for x iff for every
domx ⊆ dominit(x), Δ is a cover for (x, domx). Δ is covering iff for every variable
x, Δ is a cover for x.

As examples of decision mappings, we have for every variable x:

– Δid(x) containing only x ∈ dom(x);
– Δ=(x) containing x = a, ∀a ∈ dom(x);
– Δ�=(x) containing x �= a, ∀a ∈ dom(x);
– Δbnd(x) containing x = min(x) and x = max(x);
– ΔP2(x) containing x ∈ D1

x and x ∈ D2
x where D1

x and D2
x resp. contain the

first and last |dom(x)|/2 values of dom(x).
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For example, if P is a CN such that vars(P ) = {x, y} with dom(x) = domP (x) =
{a, b, c} and dom(y) = domP (y) = {a, b} then:

– Δid(x) = {x ∈ {a, b, c}} and Δid(y) = {y ∈ {a, b}};
– Δ=(x) = {x = a, x = b, x = c} and Δ=(y) = {y = a, y = b};
– Δ�=(x) = {x �= a, x �= b, x �= c} and Δ�=(y) = {y �= a, y �= b};
– Δbnd(x) = {x = a, x = c} and Δbnd(y) = {y = a, y = b};
– ΔP2(x) = {x ∈ {a, b}, x = c} and ΔP2(y) = {y = a, y = b}.

Note that, except for Δbnd, all these decision mappings are covering. Also, the
reader should be aware of the dynamic nature of decision mappings. For ex-
ample, if P ′ is obtained from P after removing a from domP (x) then we have
Δbnd(x, domP ′

(x)) = {x = b, x = c}.

3.2 Two Classes of First-Order Consistencies

Informally, a decision-based consistency is a property defined from the outcome
of decision-based checks. From now on, we consider given a well-behaved nogood-
identifying consistency φ and a decision mapping Δ. A first kind of inferences is
made possible by considering the effect of a decision-based check on the domain
initially reduced by the decision that has been taken.

Definition 1 (Consistency SφΔ). A value (x, a) of a CN P is SφΔ-consistent
iff for every membership decision x ∈ Dx in Δ(x) such that a ∈ Dx, we have
(x, a) ∈ φ(P |x∈Dx).

The following result can be seen as a generalization of Property 1 in [2].

Proposition 1. Any SφΔ-inconsistent value is globally inconsistent.

Proof. If (x, a) is an SφΔ-inconsistent value, then we know that there exists a
decision x ∈ Dx in Δ(x) such that a ∈ Dx and (x, a) /∈ φ(P |x∈Dx). We deduce
that x ∈ Dx ∧ x = a cannot lead to a solution because φ is nogood-identifying.
This simplifies into x = a being a nogood because a ∈ Dx. ��

SAC is equivalent to SGAC
Δ= (because no value belongs to ⊥), and BoundSAC1

is equivalent to SGAC
Δbnd . Note also that GAC is equivalent to SGAC

Δid . As a simple
illustration of SφΔ, let us consider the five binary CNs depicted in Figure 1; each
vertex denotes a value, each edge denotes an allowed tuple and each dotted
vertex (resp., edge) means that the value (resp., tuple) is removed (resp., no
more relevant). P1, P2, P3 and P4 are obtained from P by removing values that
are SACΔ -inconsistent when Δ is set to Δid, ΔP2 , Δbnd and Δ=, respectively. For
example, for ΔP2 , we find that (y, c) /∈ AC (P |y∈{c,d}). Note that the CN P4 is
also obtained when setting Δ to Δ�=.
1 Another related consistency is Existential SAC [16], which guarantees that some

value in the domain of each variable is SAC-consistent. However, there is no guar-
antee about the network obtained after checking Existential SAC due to the non-
deterministic nature of this consistency. Existential SAC is not an element of Sφ

Δ.
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Fig. 1. Illustration of SGAC
Δ

In [2], it is also shown that inferences regarding values may be obtained by
considering the result of several decision-based checks. This is generalized below.
The idea is that a value (x, a) of P can be safely removed when there exist a
variable y and a cover Γ ⊆ Δ(y) of dom(y) such that every decision-based check,
performed from a decision in Γ , eliminates (x, a).

Definition 2 (Consistency Eφ
Δ). A value (x, a) of a CN P is Eφ

Δ-consistent
w.r.t. a variable y �= x of P iff for every cover Γ of dom(y) such that Γ ⊆ Δ(y),
there exists a decision y ∈ Dy in Γ such that (x, a) ∈ φ(P |y∈Dy). (x, a) is
Eφ

Δ-consistent iff (x, a) is Eφ
Δ-consistent w.r.t. every variable y �= x of P .
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Proposition 2. Any Eφ
Δ-inconsistent value is globally inconsistent.

Proof. If (x, a) is an Eφ
Δ-inconsistent value, then we know that there exists a

variable y �= x of P and a set Γ ⊆ Δ(y) such that (i) domP (y) = ∪(y∈Dy)∈ΓDy

and (ii) every decision y ∈ Dy in Γ entails (x, a) /∈ φ(P |y∈Dy ). As Γ is a cover
of dom(y), we infer that sols(P ) = ∪(y∈Dy)∈Γ sols(P |y∈Dy). Because φ preserves
solutions, we have sols(P ) = ∪(y∈Dy)∈Γ sols(φ(P |y∈Dy )). For every y ∈ Dy in Γ ,
we know that (x, a) /∈ φ(P |y∈Dy ). We deduce that (x, a) cannot be involved in
any solution. ��

As an illustration, let us consider the CN of Figure 1(a) and Δ(x) = {x ∈
{a, c}, x ∈ {b, d}}. We can show that (z, a) is EGAC

Δ -inconsistent because (z, a) /∈
AC(P |x∈{a,c}) and (z, a) /∈ AC(P |x∈{b,d}). The consistency P-k-AC, introduced
in [2], corresponds to SφΔ+Eφ

Δ where φ = AC and Δ necessarily corresponds to
a partition of each domain into pieces of size at most k.

3.3 Classes Related to Nogoods of Size 2

Decision-based consistencies introduced above are clearly domain-filtering: they
allow us to identify inconsistent values. However, decision-based consistencies
are also naturally orientated towards identifying nogoods of size 2. NG2 (P )φΔ
denotes the set of nogoods of size 2 that can be directly derived from checks
on P based on the consistency φ and the decision mapping Δ. From this set,
together with a decision x ∈ Dx, we obtain a set ND1 (P, x ∈ Dx)

φ
Δ of negative

decisions that can be used to make further inferences.

Definition 3. Let P be a CN and x ∈ Dx be a membership decision in Δ(x).

– NG2 (P )φx∈Dx
denotes the set of locally consistent instantiations {(x, a), (y, b)}

on P such that a ∈ Dx and (y, b) /∈ φ(P |x∈Dx).
– NG2 (P )φΔ denotes the set ∪δ∈ΔNG2 (P )φδ .
– ND1 (P, x ∈ Dx)

φ
Δ denotes the set of negative decisions y �= b such that

every value a ∈ Dx is such that {(x, a), (y, b)} ∈ P̃ or {(x, a), (y, b)} ∈
NG2 (P )φΔ\{x∈Dx}.

From ND1 sets, we can define a new class Bφ
Δ of consistencies.

Definition 4 (Consistency Bφ
Δ). A value (x, a) of a CN P is Bφ

Δ-consistent
iff for every membership decision x ∈ Dx in Δ(x) such that a ∈ Dx, we have
(x, a) ∈ φ(P |{x∈Dx}∪ND1 (P,x∈Dx)φ

Δ
).

Proposition 3. Any Bφ
Δ-inconsistent value is globally inconsistent.

Proof. The proof is similar to that of Proposition 1. The only difference is that
the network P is made smaller by removing some additional values by means of
negative decisions. However, in the context of a decision x ∈ Dx taken on P , the
inferred negative decisions correspond to inconsistent values because they are
derived from nogoods of size 2 (showing that elements of NG2 (P )φΔ are nogoods
is immediate). ��
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As an illustration of Bφ
Δ, let us consider the binary CN P in Figure 2(a). For

φ = AC and Δ = ΔP2 = {x ∈ {a, b}, x = c, y ∈ {a, b}, y = c, z = a, z = b}
we obtain NG2 (P )φΔ = {{(x, a), (y, a)}, {(x, a), (z, b)}, {(x, b), (y, c)}} since for
example (x, a) /∈ AC (P |y∈{a,b}). Because {(x, b), (z, b)} ∈ P̃ and {(x, a), (z, b)} ∈
NG2 (P )φΔ, ND1 (P, x ∈ {a, b})φΔ = {z �= b}, and (x, a) is Bφ

Δ-inconsistent as
(x, a) /∈ AC (P |x∈{a,b}∪{z �=b}). Here, P is SφΔ-consistent, but not Bφ

Δ-consistent.
Note that BiSAC [4] is equivalent to BGAC

Δ= . On the other hand, there is a
2-order consistency that can be naturally defined as follows.

Definition 5 (Consistency Dφ
Δ). A locally consistent instantiation {(x, a),

(y, b)} on a CN P is Dφ
Δ-consistent iff for every membership decision x ∈ Dx in

Δ(x) such that a ∈ Dx, (y, b) ∈ φ(P |x∈Dx) and for every membership decision
y ∈ Dy in Δ(y) such that b ∈ Dy, (x, a) ∈ φ(P |y∈Dy ).

Proposition 4. Any Dφ
Δ-inconsistent instantiation is globally inconsistent.

Proof. Dφ
Δ-inconsistent instantiations are exactly those in NG2 (P )φΔ, which are

nogoods. ��

Note that DC [15] is equivalent to DGAC
Δ= , and recall that DC is equivalent to PC

(Path Consistency) for binary CNs. Dφ
Δ (being 2-order) is obviously incomparable

with previously introduced domain-filtering consistencies. However, a natural
practical approach is to benefit from decision-based checks to record both SφΔ-
inconsistent values and Dφ

Δ-inconsistent instantiations. This corresponds to the
combined consistency SφΔ+Dφ

Δ.
As an illustration of Dφ

Δ, let us consider again Figure 2. For φ = AC and
Δ = ΔP2 = {x ∈ {a, b}, x = c, y ∈ {a, b}, y = c, z = a, z = b}, we have that P is
SφΔ-consistent, not Bφ

Δ-consistent and not Dφ
Δ-consistent. Enforcing SφΔ + Dφ

Δ on
P yields the CN P ′, which is also the strong DC-closure (here, AC+PC-closure)
of P .
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4 Qualitative Study

In this section, we study the relationships between the different classes of con-
sistencies (as well as some of their combinations), and discuss refinements and
well-behavedness of consistencies.

4.1 Relationships between Consistencies

From Definitions 1 and 4, it is immediate that any SφΔ-inconsistent value is
necessarily Bφ

Δ-inconsistent.

Proposition 5. Bφ
Δ � SφΔ.

In order to relate Bφ
Δ with Eφ

Δ, we need to consider covering sets of decisions.

Proposition 6. If Δ is covering, Bφ
Δ � Eφ

Δ.

Proof. We show that every Eφ
Δ-inconsistent value in a CN P is necessarily Bφ

Δ-
inconsistent. Assume that (x, a) is a Eφ

Δ-inconsistent value. It means that there
exists a variable y �= x of P and Γ ⊆ Δ(y) such that domP (y) = ∪(y∈Dy)∈ΓDy

and every decision y ∈ Dy in Γ is such that (x, a) /∈ φ(P |y∈Dy). We deduce that
for every value b ∈ domP (y), we have {(x, a), (y, b)} in NG2 (P )φΔ. On the other
hand, we know that there exists a decision x ∈ Dx in Δ such that a ∈ Dx (since
Δ is covering). Hence, ND1 (P, x ∈ Dx)

φ
Δ contains a negative decision y �= b

for each value in domP (y). It follows that φ(P |{x∈Dx}∪ND1 (P,x∈Dx)φ
Δ

) = ⊥, and

(x, a) is Bφ
Δ-inconsistent. ��

As a corollary, we have Bφ
Δ � SφΔ +Eφ

Δ when Δ is covering. Note that there exist
consistencies φ and decision mappings Δ such that Bφ

Δ is strictly stronger (�)
than SφΔ and Eφ

Δ (and also SφΔ+Eφ
Δ). For example, when φ = AC and Δ = Δ=,

we have Bφ
Δ = BiSAC, SφΔ = SAC and SφΔ + Eφ

Δ = 1-AC, and we know that
BiSAC � 1-AC [4], and 1-AC � SAC [2].

Because Dφ
Δ captures all 2-sized nogoods while SφΔ can eliminate inconsistent

values, it follows that the joint use of these two consistencies is stronger than
Bφ

Δ.

Proposition 7. SφΔ+Dφ
Δ � Bφ

Δ.

Proof. Let P be a CN that is SφΔ+Dφ
Δ-consistent. As P is SφΔ-consistent, for ev-

ery decision x ∈ Dx in Δ and every a ∈ Dx, we have (x, a) ∈ φ(P |x∈Dx). But
φ(P |x∈Dx) = φ(P |{x∈Dx}∪ND1 (P,x∈Dx)φ

Δ
) since P being Dφ

Δ-consistent entails

NG2 (P )φΔ = ∅ and ND1 (P, x ∈ Dx)
φ
Δ = ∅. We deduce that P is Bφ

Δ-consistent.
��

One may expect that SφΔ � φ. However, to guarantee this, we need both φ to be
domain-filtering and Δ to be covering, For example, SAC

Δ
� AC does not hold

if for every domx ⊆ dominit(x), we have Δ(x, domx) = ∅: it suffices to build a
CN P with a value (x, a) being arc-inconsistent.



182 J.-F. Condotta and C. Lecoutre

Proposition 8. If φ is domain-filtering and Δ is covering, SφΔ � φ.

Proof. Assume that (x, a) is a φ-inconsistent value of a CN P . This means that
(x, a) /∈ φ(P ). As Δ is covering, there exists a decision x ∈ Dx in Δ with a ∈ Dx.
We know that P |x∈Dx  P . By monotonicity of φ, φ(P |x∈Dx)  φ(P ). Since
(x, a) /∈ φ(P ), we deduce that (x, a) /∈ φ(P |x∈Dx). So, (x, a) is SφΔ-inconsistent,
and SφΔ is stronger than φ. ��

Figure 3 shows the relationships between the different classes of consistencies
introduced so far. There are many ways to instantiate these classes because the
choice of Δ and φ is left open. If we consider binary CNs, and choose φ =
AC and Δ = Δ=, we obtain known consistencies. We directly benefit from
the relationships of Figure 3, and have just to prove strictness when it holds.
Figure 4 shows this where an arrow denotes now � (instead of �). An extreme
instantiation case is when Δ = Δid and φ is domain-filtering. In this case, all
consistencies collapse: we have Sφ

Δid = Eφ
Δid = Bφ

Δid = Dφ
Δid = φ. This means that

our framework of decision-based consistencies is general enough to encompass
all classical local consistencies. Although this is appealing for theoretical reasons
(e.g., see Proposition 11 later), the main objective of decision-based consistencies
remains to learn relevant nogoods from nontrivial decision-based checks.

Sφ
ΔBφ

ΔSφ
Δ+Dφ

Δ

Dφ
Δ

Sφ
Δ+Eφ

Δ Eφ
Δ

φ

Fig. 3. Summary of the relationships between (classes of) consistencies. An arrow from
ϕ to ψ means that ϕ � ψ. A dashed (resp., dotted) arrow means that the relationship is
guaranteed provided that Δ is covering (resp., Δ is covering and φ is domain-filtering).

SACsDC

DC

BiSAC

1 -AC EAC
Δ=

BoundSAC AC

Fig. 4. Relationships between consistencies when φ = AC and Δ = Δ= (except for
BoundSAC which is derived from Δbnd). An arrow from ϕ to ψ means that ϕ � ψ.



A Framework for Decision-Based Consistencies 183

4.2 Refinements

Now, we show that two consistencies of the same class can be naturally compared
when a refinement connection exists between their decision mappings.

Definition 6. A decision mapping Δ′ is a refinement of a decision mapping Δ
iff for each decision x ∈ Dx in Δ there exists a subset Γ ⊆ Δ′(x) that is a cover
of Dx.

For example, {x ∈ {a, b}, x = c} is a refinement of {x ∈ {a, b, c}}, and {x ∈
{a, b}, x = c, y = a, y = b, y = c} is a refinement of {x ∈ {a, b, c}, y ∈ {a, b}, y ∈
{b, c}}. Unsurprisingly, using refined sets of decisions improves inference capa-
bility as shown by the following proposition.

Proposition 9. If Δ and Δ′ are two decision mappings such that Δ′ is a re-
finement of Δ, then X φ

Δ′ � X φ
Δ where X ∈ {S,E,B,D}.

Proof. Due to lack of space, we only show that Sφ
Δ′ � SφΔ. Assume that (x, a)

is an SφΔ-inconsistent value of a CN P . This means that there exists a decision
x ∈ Dx in Δ(x) such that a ∈ Dx and (x, a) /∈ φ(P |x∈Dx). We know, by hypoth-
esis, that there exists a subset Γ ⊆ Δ′(x) such that Dx = ∪(x∈D′

x)∈ΓD
′
x. Hence,

there exists (at least) a decision x ∈ D′
x in Γ such that a ∈ D′

x and D′
x ⊆ Dx. As

D′
x ⊆ Dx, we have P |x∈D′

x
 P |x∈Dx , and by monotonicity of φ, φ(P |x∈D′

x
) 

φ(P |x∈Dx). Consequently, (x, a) /∈ φ(P |x∈Dx) implies (x, a) /∈ φ(P |x∈D′
x
). We

deduce that there exists a decision x ∈ D′
x in Δ′(x) such that a ∈ D′

x and
(x, a) /∈ φ(P |x∈D′′

x
). Then (x, a) is Sφ

Δ′-inconsistent. We conclude that Sφ
Δ′ � SφΔ.

��

As a corollary, for any decision mapping Δ, we have: X φ
Δ= � X φ

Δ � X φ
Δid where

X ∈ {S,E,B,D}. In particular, if φ = GAC, we have SAC = SGAC
Δ= � SGAC

Δ

� SGAC
Δid = GAC.

Because, consistencies SφΔ identify inconsistent values on the basis of a single
decision, we obtain the two following results. In the spirit of our set view of
decision mappings, for any two decision mappings Δ1 and Δ2, Δ1 ∪Δ2 is the
decision mapping such that for every variable x and every domx ⊆ dominit(x),
(Δ1 ∪Δ2)(x, domx) = Δ1(x, domx) +Δ2(x, domx).

Proposition 10. Let Δ1 and Δ2 be two decision mappings. We have SφΔ1 +
SφΔ2 = SφΔ1∪Δ2 .

Proof. Let P be a CN and (x, a) be a value of P . (x, a) is SφΔ1∪Δ2 -inconsistent ⇔
there exists a decision x ∈ Dx in Δ1 ∪Δ2 such that (x, a) /∈ φ(P |x∈Dx) ⇔ (x, a)
is SφΔ1-inconsistent or (x, a) is SφΔ2-inconsistent ⇔ (x, a) is SφΔ1+SφΔ2-inconsistent.

��

S φ denotes the set of equivalence classes modulo ≈ of the consistencies SφΔ
that can be built from φ and all possible decision mappings Δ. It forms a com-
plete lattice, in a similar way to what has been shown for qualitative constraint
networks [7].
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Proposition 11. (S φ,�) is a complete lattice with SφΔ= as greatest element
and Sφ

Δid as least element.

Proof. Let SφΔ1 and SφΔ2 be two consistencies in S φ.
(Existence of binary joins) From Proposition 10, we can infer that SφΔ1∪Δ2 is the
least upper bound of SφΔ1 and SφΔ2 .

(Existence of binary meets) Let us define the set E as E = {SφΔ ∈ S φ : SφΔ �
SφΔ1 and SφΔ � SφΔ2}. Note that E �= ∅ since Sφ

Δid ∈ E. Next, let us define Sφ
ΔE

such that ΔE =
⋃

Sφ
Δi

∈EΔi. For every SφΔi
∈ E, ΔE is a refinement Δi, and so,

from Proposition 9, we know that Sφ
ΔE is an upper bound of E. We now prove

by contradiction that Sφ
ΔE � SφΔ1

. Suppose that there is a value (x, a) of a CN
P that is Sφ

ΔE -inconsistent and SφΔ1-consistent. This means that there exists a
decision x ∈ Dx in Δ(x) such that (x, a) /∈ φ(P |x∈Dx). From construction of Δ,
we know that there exists a decision mapping Δi such that SφΔi

∈ E and x ∈ Dx

is in Δi. By definition of E, we know that SφΔi
� SφΔ1 . Consequently, (x, a) is

SφΔi
-consistent and (x, a) ∈ φ(P |x∈Dx). This is a contradiction, so SφΔ � SφΔ1 .

Similarly, we have SφΔ � SφΔ2 . Then SφΔ is the greatest lower bound of SφΔ1 and
SφΔ2 . ��

4.3 Well-Behavedness

Finally, we are interested in well-behavedness of consistencies. Actually, in the
general case, the consistencies SφΔ, Eφ

Δ , Bφ
Δ and Dφ

Δ are not necessarily well-
behaved for (P,). Consider as an illustration three CNs P , P1 and P2 which
differ only by the domain of the variable x: domP (x) = {a, b, c, d}, domP1(x) =
{a, b, c} and domP2(x) = {d}. Now, consider a decision mapping Δ defined for
the variable x and the domains {a, b, c, d}, {a, b, c} and {d} by:Δ(x, {a, b, c, d}) =
{x ∈ {a}}, Δ(x, {a, b, c}) = {x ∈ {a, b, c}} and Δ(x, {d}) = {x ∈ {d}}. Despite
the fact that domP (x) = domP1(x)∪domP2 (x), one can see that the value (x, a)
could be SφΔ-consistent in P1 and P2, whereas SφΔ-inconsistent in P . With such
a Δ, SφΔ is not guaranteed to be well-behaved.

Nevertheless, there exist decision mappings for which consistencies are guar-
anteed to be well-behaved, at least those of the class SφΔ. Informally, a relevant
decision mapping is a decision mapping that keeps its precision (in terms of
decisions) when domains are restricted.

Definition 7. A decision mapping Δ is said to be relevant if and only if for any
variable x, any two sets of values domx and dom′

x such that dom′
x � domx ⊆

dominit(x) and any decision x ∈ Dx in Δ(x, domx), we have:

Dx ∩ dom′
x �= ∅ ⇒ ∃Γ ⊆ Δ(x, dom′

x) | Dx ∩ dom′
x = ∪(x∈D′

x)∈ΓD
′
x.

We can notice that Δid, Δ=, Δ�=, Δbnd are relevant decision mappings. For our
proposition, we need some additional definitions. A CN P ′ is a sub-CN of a
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CN P if P ′ can be obtained from P by simply removing certain values. If P1

and P2 are two CNs that only differ by the domains of their variables, then
P = P1 ∪ P2 is the CN such that P1 and P2 are sub-CNs of P and for every
variable x, domP (x) = domP1(x) ∪ domP2 (x).

Proposition 12. Let Δ be a relevant decision mapping and let P , P1, and P2

be three CNs such that P = P1 ∪ P2. If P1 and P2 are SφΔ-consistent then P is
SφΔ-consistent.

Proof. Let (x, a) be a value of P = P1 ∪ P2. Let us show that this value is SφΔ-
consistent. Consider a membership decision x ∈ Dx in Δ(x, domP (x)) such that
a ∈ Dx. We have to show that (x, a) ∈ φ(P |x∈Dx). We know that domP (x) =
domP1(x) ∪ domP2(x). Hence, a ∈ domP1(x) or x ∈ domP2(x). Assume that
a ∈ domP1(x) (the case a ∈ domP2(x) can be handled in a similar way). Since
Δ is a relevant decision mapping, there exists Γ ⊆ Δ(x, domP1 (x)) such that
Dx ∩ domP1(x) = ∪(x∈D′

x)∈ΓD
′
x. It follows that there exists a decision x ∈ D1

x

in Δ(x, domP1 (x)) such that a ∈ D1
x and D1

x ⊆ Dx. From the fact that P1 is
SφΔ-consistent we know that (x, a) ∈ φ(P1|x∈D1

x
). Since a ∈ D1

x, D
1
x ⊆ Dx and

P1 is a sub-CN of P we can assert that (x, a) ∈ φ(P |x∈Dx). We conclude that
(x, a) is a SφΔ-consistent value of P . ��

Corollary 1. If Δ is a relevant decision mapping then SφΔ is well-behaved.

Indeed, to obtain the closure of a CN P , it suffices to take the union of all sub-
CNs of P which are SφΔ-consistent. Hence, the consistency SφΔ for which Δ is a
relevant decision mapping is well-behaved for (P,).

5 Conclusion

In this paper, our aim was to give a precise picture of decision-based consis-
tencies by developing a hierarchy of general classes. This general framework
offers the user a vast range of new consistencies. Several issues have now to be
addressed. First, me must determine the conditions under which overlapping
between decisions may be beneficial. Overlapping allows us to cover domains
while considering weak decisions (e.g., decisions in Δ�=) that are quick to prop-
agate, and might also be useful to tractability procedures (e.g., in situations
where only some decisions lead to known tractable networks). Second, we must
seek to elaborate dynamic procedures (heuristics) so as automatically select the
right decision-based consistency (set of membership decisions) at each step of
a backtrack search as in [19]; many new combinations are permitted. Finally,
bound consistencies and especially singleton checks on bounds may be revisited
by checking several values at once (using intervals at bounds with the mechanism
of detecting X φ

Δ -inconsistent values), so as to speed up the inference process in
shaving procedures. These are some of the main perspectives.
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Abstract. We introduce tractable classes of VCSP instances based on
convex cost functions. Firstly, we show that the class of VCSP instances
satisfying the hierarchically nested convexity property is tractable. This
class generalises our recent results on VCSP instances satisfying the
non-overlapping convexity property by dropping the assumption that
the input functions are non-decreasing [3]. Not only do we generalise
the tractable class from [3], but also our algorithm has better running
time compared to the algorithm from [3]. We present several examples
of applications including soft hierarchical global cardinality constraints,
useful in rostering problems. We go on to show that, over Boolean do-
mains, it is possible to determine in polynomial time whether there exists
some subset of the constraints such that the VCSP satisfies the hierar-
chically nested convexity property after renaming the variables in these
constraints.

1 Preliminaries

VCSPs As usual, we denote by N the set of positive integers with zero, and by Q
set of all rational numbers. We denote Q = Q∪{∞} with the standard addition
operation extended so that for all α ∈ Q, α+ ∞ = ∞.

In a VCSP (Valued Constraint Satisfaction Problem) the objective function
to be minimised is the sum of cost functions whose arguments are subsets of
arbitrary size of the variables v1, . . . , vn where the domain of vi is Di. For nota-
tional convenience, we interpret a solution x (i.e. an assignment to the variables
v1, . . . , vn) as the set of 〈variable,value〉 assignments {〈vi, xi〉 : i = 1, . . . , n}. The
range of all cost functions is Q.

Network flows. Here we review some basics on flows in graphs. We refer the
reader to the standard textbook [1] for more details. We present only the notions
and results needed for our purposes. In particular, we deal with only integral
flows. Let G = (V,A) be a directed graph with vertex set V and arc set A. To
each arc a ∈ A we assign a demand/capacity function [d(a), c(a)] and a weight

� Martin Cooper is supported by ANR Projects ANR-10-BLAN-0210 and ANR-10-
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(or cost) function w(a), where d(a), c(a) ∈ N and w(a) ∈ Q. Let s, t ∈ V . A
function f : A → N is called an s− t flow (or just a flow) if for all v ∈ V \ {s, t},∑

a=(u,v)∈A
f(a) =

∑
a=(v,u)∈A

f(a) (flow conservation).

We say that a flow is feasible if d(a) ≤ f(a) ≤ c(a) for each a ∈ A. We define the
value of flow f as val(f) =

∑
a=(s,v)∈A f(a) −

∑
a=(v,s)∈A f(a). We define the

cost of flow f as
∑

a∈A w(a)f(a). A minimum-cost flow is a feasible flow with
minimum cost.

Algorithms for finding the minimum-cost flow of a given value are well
known [1]. We consider a generalisation of the minimum-cost flow problem. To
each arc a ∈ A we assign a convex weight function wa. In particular, we consider
the model in which the weight functions wa (a ∈ A) are convex piecewise linear
and given by the breakpoints (which covers the case of convex functions over
the integers). We define the cost of flow f as

∑
a∈A wa(f(a)). The correspond-

ing problem of finding a minimum-cost integral flow is known as the minimum
convex cost flow problem. In a network with n vertices and m edges with ca-
pacities at most U , the minimum convex cost flow problem can be solved in
time O((m logU)SP (n,m)), where SP (n,m) is the time to compute a shortest
directed path in the network [1].

2 Hierarchically Nested Convex

A discrete function g : {0, . . . , s} → Q is called convex on the interval [l, u] if
g is finite-valued on the interval [l, u] and the derivative of g is non-decreasing
on [l, u], i.e. if g(m+ 2) − g(m+ 1) ≥ g(m+ 1) − g(m) for all m = l, . . . , u− 2.
For brevity, we will often say that g is convex if it is convex on some interval
[l, u] ⊆ [0, s] and infinite elsewhere (i.e. on [0, l − 1] ∪ [u+ 1, s]).

Two sets A1, A2 are said to be non-overlapping if they are either disjoint or
one is a subset of the other (i.e. A1 ∩ A2 = ∅, A1 ⊆ A2 or A2 ⊆ A1). Sets
A1, . . . , Ar are called hierarchically nested if for any 1 ≤ i, j ≤ r, Ai and Aj
are non-overlapping. If Ai is a set of 〈variable,value〉 assignments of a VCSP
instance P and x a solution to P , then we use the notation |x∩Ai| to represent
the number of 〈variable,value〉 assignments in the solution x which lie in Ai.

Definition 1. Let P be a VCSP instance. Let A1, . . . , Ar be hierarchically nested
sets of 〈variable,value〉 assignments of P. Let si be the number of distinct vari-
ables occurring in the set of 〈variable,value〉 assignments Ai. Instance P satisfies
the hierarchically nested convexity property if the objective function of P can
be written as g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|) where each gi : [0, si] → Q
(i = 1, . . . , r) is convex on an interval [li, ui] ⊆ [0, si] and gi(z) = ∞ for
z ∈ [0, li − 1] ∪ [ui + 1, si].

Theorem 1. Any VCSP instance P satisfying the hierarchically nested convex-
ity property can be solved in polynomial time.
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In our previous paper [3], we proved a special case of Theorem 1 where all
functions gi (i = 1, . . . , r) are non-decreasing. We give an algorithm to solve
VCSPs satisfying the hierarchically nested convexity property in Section 2.1
and a proof of polynomial-time complexity of this algorithm in Section 2.2.

Observe that the addition of any unary cost function cannot destroy the hi-
erarchically nested convexity property. This is because for each 〈variable,value〉
assignment 〈vj , a〉 we can add the singleton Ai = {〈vj , a〉} which is necessarily ei-
ther disjoint or a subset of any other set Ak (and furthermore the corresponding
function gi : {0, 1} → Q is trivially convex).

Example 1 (Value-based soft GCC). The Global Cardinality Constraint

(GCC), introduced by Régin [8], is a generalisation of the AllDifferent con-
straint. Given a set of n variables, the GCC specifies for each domain value d
a lower bound ld and an upper bound ud on the number of variables that are
assigned value d. The AllDifferent constraint is the special case of GCC with
ld = 0 and ud = 1 for every d. Soft versions of the GCC have been considered
by van Hoeve et al. [6].

The value-based soft GCC minimises the number of values below or above the
given bound. We show that the value-based soft GCC satisfies the hierarchically
nested convexity property.

For every domain value d ∈ D, let Ad = {〈vi, d〉 : i = 1, . . . , n}. Clearly,
A1, . . . , As are disjoint, where s = |D|. For every d, let

gd(m) =

⎧⎪⎨
⎪⎩
ld −m if m < ld

0 if ld ≤ m ≤ ud

m− ud if m > ud

From the definition of gd, gd(m+1)− gd(m) for m = 0, . . . , n−1 is the sequence
−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1. Therefore, for every d, gd has a non-decreasing
derivative and hence is convex.

Example 2 (Nurse Rostering). In a nurse rostering problem, we have to assign
several nurses to each shift [2]. There may be strict lower and upper bounds
li, ui on the number of nurses assigned to shift i. For example, assigning zero
nurses to a shift is no doubt unacceptable. There is also a penalty if we assign
too few or too many nurses to the same shift. The cost function is not necessarily
symmetric. For example, being short-staffed is potentially dangerous (and hence
worse) than being over-staffed which just costs more money. The cost function
for shift i could, for example, be g(z) = li

z − 1 for 0 ≤ z < li, g(z) = 0 for
z ∈ [li, ui] and g(z) = z − ui for z > ui. It is easily verified that this function is
convex.

Example 3 (Hierarchically nested value-based soft GCC). Being able to nest
GCC constraints is useful in many staff assignment problems where there is a
hierarchy (e.g. senior manager-manager-personnel, foreman-worker, senior nurse-
nurse) [9]. We might want to impose soft convex constraints such as each day we
prefer that there are between 10 and 15 people at work, of which at least 5 are
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managers among whom there is exactly 1 senior manger, with convex penalties
if these constraints do not hold.

Suppose that the constraints of a VCSP instance consist of soft GCC con-
straints on pairwise non-overlapping sets of variables S1, . . . , St. Let Aid =
{〈x, d〉 : x ∈ Si}. Clearly, the sets of assignments Aid are hierarchically nested
and, as shown in Example 1, the cost functions corresponding to each GCC
constraint are convex.

2.1 Algorithm

Our algorithm is similar to the algorithm presented in [3] based on finding a
minimum-cost flow in a network. We use a similar network, with the difference
that we only require a single arc between any pair of nodes and the corresponding
cost function gi is now an arbitrary convex function (which is not necessarily
non-decreasing). Somewhat surprisingly, this small generalisation allows us to
solve many more problems, as we have demonstrated in Section 2 since all these
examples involve cost functions gi which are not monotone non-decreasing.

We call the sets Ai (i = 1, . . . , r) assignment-sets. We assume that the
assignment-sets Ai are distinct, since if Ai = Aj then these two sets can be
merged by replacing the two functions gi,gj by their sum (which is necessarily
also convex). Note that the assignment-set consisting of all variable-value as-
signments, if present in P , can be ignored since it is just a constant. We say
that assignment-set Ak is the father of assignment-set Ai if it is the minimal
assignment-set which properly contains Ai, i.e. Ai ⊂ Ak and �Aj such that
Ai ⊂ Aj ⊂ Ak. It follows from the definition of hierarchically nested convexity
that Ak is unique and hence that the father relation defines a tree. Moreover,
again from the definition of hierarchically nested convexity, for every variable
vi of P and every a ∈ Di, there is a unique minimal assignment-set containing
〈vi, a〉. Indeed, we can assume without loss of generality that this is precisely
{〈vi, a〉}.

We construct a directed graph GP whose minimum-cost integral flows of value
n are in one-to-one correspondence with the solutions to P . GP has the following
nodes:

1. the source node s;
2. a variable node vi (i = 1, . . . , n) for each variable of P ;
3. an assignment node 〈vi, d〉 (d ∈ Di, i = 1, . . . , n) for each possible variable-

value assignment in P ;
4. an assignment-set node Ai (i = 1, . . . , r) for each assignment-set in P ;
5. the sink node t.

GP has the following arcs:

1. a = (s, vi) for each variable vi of P ; d(a) = c(a) = 1 (this forces a flow of
exactly 1 through each variable node vi); w(a) = 0;

2. a = (vi, 〈vi, d〉) for all variables vi and for each d ∈ Di; d(a) = 0; c(a) = 1;
w(a) = 0;
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3. a = (〈vi, d〉, Aj) for all variables vi and for each d ∈ Di, where Aj is the
minimal assignment-set containing 〈vi, d〉; d(a) = 0; c(a) = 1; w(a) = 0;

4. for each assignment-set Ai with father Aj , there is an arc a from Ai to Aj
with cost function gi, demand d(a) = li and capacity c(a) = ui.

Clearly, GP can be constructed from P in polynomial time. We now prove that
minimum-cost flows f of value n in GP are in one-to-one correspondence with
assignments in P and, furthermore, that the cost of f is equal to the cost in P
of the corresponding assignment.

All feasible flows have value n since all n arcs (s, vi) leaving the source have
both demand and capacity equal to 1. Flows in GP necessarily correspond to the
assignment of a unique value xi to each variable vi since the flow of 1 through
node vi must traverse a node 〈vi, xi〉 for some unique xi ∈ Di. It remains to
show that for every assignment x = {〈v1, x1〉, . . . , 〈vn, xn〉} which is feasible (i.e.
whose cost in P is finite), there is a corresponding minimum-cost feasible flow f
in GP of cost g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|).

For each arc a which is incoming to or outgoing from 〈vi, d〉 in GP , let f(a) = 1
if d = xi and 0 otherwise. By construction, each assignment-set node Ai in GP
only has outgoing arcs to its father assignment-set. The flow fa in arc a from
Ai to its father assignment-set Aj is uniquely determined by the assignment of
values to variables in the solution x. Trivially this is therefore a minimum-cost
flow corresponding to the assignment x. The cost of flow f is clearly

∑
i gi(|x∩

Ai|) which corresponds precisely to the cost of the assignment x.
We remark that since our construction is projection-safe [7], it can be used

for Soft Global Arc Consistency for hierarchically nested convex constraints.

2.2 Complexity

Let P be a VCSP instance with n variables, each with a domain of size at most
d, and r assignment-sets Ai. The maximum number of distinct non-overlapping
sets Ai is 2nd − 1 since the sets of assignments Ai form a tree with at most
nd leaves (corresponding to single 〈variable,value〉 assignments) and in which all
non-leaf nodes have at least two sons. Thus r = O(nd). The network GP has
n′ = O(n+nd+ r) = O(nd) vertices and arcs. GP can be built in O((nd)2) time
in a top-down manner, by adding assignment-sets in inverse order of size (which
ensures that an assignment-set is always inserted after its father) and using a
table T [〈v, a〉]=smallest assignment set (in the tree being built) containing 〈v, a〉.

In a network with n′ vertices and m′ arcs with capacities at most U , the min-
imum convex cost flow problem can be solved in time O((m logU)SP (n′,m′)),
where SP (n′,m′) is the time to compute a shortest directed path in the net-
work with n′ vertices and m′ edges [1]. Using Fibonacci heaps [4], SP (n′,m′) =
O(m′+n′ logn′) = O(nd log(nd)), since the number of vertices n′ and arcsm′ are
both O(nd). The maximum capacity U in the network GP is at most n. Hence
an optimal solution to a hierarchically nested convex VCSP can be determined
in O((nd log n)(nd log(nd))) = O((nd)2(logn)(log n+ log d)) time.

The running time of our algorithm is better than the running time of the
algorithm from [3], which is O(n3d2). The improvement is mostly due to the
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fact that the new construction involves only O(nd) arcs as opposed to O((nd)2)
arcs in [3]. Moreover, our algorithm solves a bigger class of problems compared
to [3]. Overall, we solve more and faster!

3 Renamable Boolean Hierarchically Nested Convex
VCSP

In this section we extend the class of hierarchically nested convex VCSPs to
allow renaming of certain variables in the case of Boolean domains.

We begin by illustrating the notion of renaming by means of an example.
First, we require some notation.

Cost function AtMostr(A) returns 0 if x contains at most r assignments
from the set of assignments A, and AtMostr(A) returns 1 otherwise. Similarly,
cost function AtLeastr(A) returns 0 if x contains at least r assignments from
the set of assignments A, and AtLeastr(A) returns 1 otherwise. Note that cost
functions AtLeast1 and AtMostr, where r = |A| − 1, are both convex on
[0, |A|]. In the remainder of this section we will consider only Boolean VCSPs.

Example 4. Let P be a Max-SAT instance given in CNF form by the following
clauses:

(a ∨ b ∨ c), (c ∨ d), (¬c ∨ ¬d ∨ e), (¬a ∨ ¬e).

Clearly, a clause with literals A can be written as AtLeast1(A). Notice that,
in this example, the first two clauses are overlapping. However, we can replace
the second clause by the equivalent constraint AtMost1({¬c,¬d}). This gives
us an equivalent problem with the following constraints:

(a ∨ b ∨ c), AtMost1({¬c,¬d}), (¬c ∨ ¬d ∨ e), (¬a ∨ ¬e).

Now P is expressed as an instance satisfying the hierarchically nested convex-
ity property on the hierarchically nested sets of assignments {a, b, c}, {¬c,¬d},
{¬c,¬d, e}, {¬a,¬e}.

Example 4 leads to the following definitions:

Definition 2. Given a valued constraint in the form of the cost function g(|x∩
A|), where A is a set of Boolean assignments (i.e. literals) of size m, we define the
renaming of this valued constraint, on the set of Boolean assignments denoted by
rename(A) = Ā, as the valued constraint g′(|x∩Ā|) = g(m−|x∩Ā|) = g(|x∩A|),
where Ā = {¬x | x ∈ A}.

The function g′(z) = g(m− z) is clearly convex if and only if g is convex.

Definition 3. A Boolean VCSP instance P with the objective function g1(|x ∩
A1|) + . . . + gr(|x ∩ Ar|) is renamable hierarchically nested convex if there is
a subset of the constraints of P whose renaming results in an equivalent VCSP
instance P ′ which is hierarchically nested convex.
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Theorem 2. The class of renamable hierarchically nested convex VCSPs is
recognisable and solvable in polynomial time.

Proof. We show that recognition is polynomial-time by a simple reduction to 2-
SAT, a well-known problem solvable in polynomial time [5]. Let P be a Boolean
VCSP instance with r constraints such that the ith constraint (i = 1, . . . , r) is
gi(|x∩Ai|) for a convex function gi. For each constraint in P , there is a Boolean
variable reni indicating whether or not the ith constraint is renamed. For each
pair of distinct i, j ∈ {1, . . . , r}, we add clauses of length 2 as follows:

1. if Ai and Aj overlap then add constraint reni ⇔ ¬renj (since we must
rename just one of the two constraints);

2. if rename(Ai) and Aj overlap then add constraint reni ⇔ renj (to avoid
introducing an overlap by a renaming).

It is easy to see that solutions to the constructed 2-SAT instance correspond to
valid renamings of P which give rise to an equivalent VCSP instance satisfying
the hierarchically nested convexity property. Tractability of solving the resulting
instance follows directly from Theorem 1. ��

4 Maximality of Hierarchically Nested Convex

This section shows that relaxing either convexity or hierarchical nestedness leads
to intractability.

Proposition 1. The class of VCSP instances whose objective function is of the
form g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|) where the functions gi are convex,
but the sets of assignments Ai may overlap, is NP-hard, even if |Ai| ≤ 2 for all
i ∈ {1, . . . , r} and all variables are Boolean.

Proof. It suffices to demonstrate a polynomial-time reduction from the well-
known NP-hard problem Max-2SAT [5]. We have seen in Section 3 that any
Max-2SAT clause l1∨l2 (where l1, l2 are literals) is equivalent to the {0, 1}-valued
convex cost function AtLeast1(|x∩{l1, l2}|). It is therefore possible to code any
instance of Max-2SAT using convex cost functions (on possibly overlapping sets
of assignments). ��

Proposition 2. The class of VCSP instances whose objective function is of the
form g(x) = g1(|x∩A1|)+ . . .+gr(|x∩Ar |) where the sets of assignments Ai are
hierarchically nested, but the functions gi are not necessarily convex, is NP-hard
even if |Ai| ≤ 3 for all i ∈ {1, . . . , r} and all variables are Boolean.

Proof. We give a polynomial-time reduction from the well-known NP-complete
problem 3SAT [5]. Let I3SAT be an instance of 3SAT with m clauses. The con-
straint AllEqual(l1, l2, l3) (where l1, l2, l3 are literals) is equivalent to the (non-
convex) cost function g(|x ∩ {l1, l2, l3}|) where g(0) = g(3) = 0 and g(1) =
g(2) = ∞. For each variable v in I3SAT , we use the following gadget Gv based
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on non-overlapping AllEqual constraints to produce multiple copies v1, . . . , vm
of the variable v and multiple copies w1, . . . , wm of its negation v: Gv consists of
the constraints AllEqual(ui, vi, yi) (i ∈ {1, . . . ,m}), AllEqual(yi, wi, ui+1)
(i ∈ {1, . . . ,m−1}), and AllEqual(ym, wm, u1), where the variables ui, yi only
occur in the gadget Gv. It is easy to verify that Gv imposes v1 = . . . = vm =
w1 = . . . = wm. Furthermore, the variables vi, wi only occur negatively in Gv.
We now replace the ith clause of I3SAT by a clause in which each positive vari-
able v is replaced by its ith copy vi and each negative variable v is replaced by
the ith copy wi of v. This produces a hierarchically nested VCSP instance which
is equivalent to I3SAT (but whose cost functions are not all convex). ��

5 Conclusions

The complexity of the recognition problem for hierarchically nested convex
VCSPs is an open problem if the functions gi are not explicitly given. The com-
plexity of hierarchically nested non-convex VCSPs where all assignment-sets are
of size at most 2 is open as well. (Note that the NP-hardness reduction in the
proof of Proposition 2 requires assignment-sets of size up to three.)

Acknowledgments. We are grateful to Jean-Philippe Métivier for pointing out
the utility of soft hierarchically nested GCC in nurse rostering.

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Appli-
cations. Prentice Hall/Pearson (2005)

2. Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the
art of nurse rostering. Journal of Scheduling 7(6), 441–499 (2004)
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Abstract. We study the computational complexity of binary valued
constraint satisfaction problems (VCSP) given by allowing only certain
types of costs in every triangle of variable-value assignments to three dis-
tinct variables. We show that for several computational problems, includ-
ing CSP, Max-CSP, finite-valued VCSP, and general-valued VCSP, the
only non-trivial tractable classes are the well known maximum matching
problem and the recently discovered joint-winner property [9].

1 Introduction

1.1 Background

An instance of the constraint satisfaction problem (CSP) consists of a collec-
tion of variables which must be assigned values subject to specified constraints.
Each CSP instance has an underlying undirected graph, known as its constraint
network, whose vertices are the variables of the instance, and two vertices are
adjacent if corresponding variables are related by some constraint. Such a graph
is also known as the structure of the instance.

An important line of research on the CSP is to identify all tractable cases
which are recognisable in polynomial time. Most of this work has been focused
on one of the two general approaches: either identifying forms of constraint
which are sufficiently restrictive to ensure tractability no matter how they are
combined [3,16], or else identifying structural properties of constraint networks
which ensure tractability no matter what forms of constraint are imposed [13].

The first approach has led to identifying certain algebraic properties known
as polymorphisms [20] which are necessary for a set of constraint types to ensure
tractability. A set of constraint types with this property is called a tractable con-
straint language. The second approach has been used to characterise all tractable
cases of bounded-arity CSPs (such as binary CSPs): the only class of structures
which ensures tractability (subject to certain complexity theory assumptions)
are structures of bounded tree-width [19].

In practice, constraint satisfaction problems usually do not possess a suffi-
ciently restricted structure or use a sufficiently restricted constraint language to
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fall into any of these tractable classes. Nevertheless, they may still have proper-
ties which ensure they can be solved efficiently, but these properties concern both
the structure and the form of the constraints. Such properties have sometimes
been called hybrid reasons for tractability [12,7,6,8].

Since in practice many constraint satisfaction problems are over-constrained,
and hence have no solution, soft constraint satisfaction problems have been stud-
ied [12]. In an instance of the soft CSP, every constraint is associated with a func-
tion (rather than a relation as in the CSP) which represents preferences among
different partial assignments, and the goal is to find the best assignment. Several
very general soft CSP frameworks have been proposed in the literature [29,2]. In
this paper we focus on one of the very general frameworks, the valued constraint
satisfaction problem (VCSP) [29].

Similarly to the CSP, an important line of research on the VCSP is to identify
tractable cases which are recognisable in polynomial time. Is is well known that
structural reasons for tractability generalise to the VCSP [1,12]. In the case of
language restrictions, only a few conditions are known to guarantee tractability
of a given set of valued constraints [5,4,21,22].

1.2 Contributions

In this paper, we study hybrid tractability of binary VCSPs for various valuation
structures that correspond to the CSP, CSP with soft unary constraints, Max-
CSP, finite-valued VCSP and general-valued VCSP.

We focus on classes of instances defined by allowed combinations of binary
costs in every assignment to 3 different variables (called a triangle). Our motiva-
tion for this investigation is that one such restriction, the so-called joint-winner
property has recently been shown to define a tractable class with several practical
applications [9].

The JWP (joint-winner property) states that for any triangle of variable-value
assignments {〈vi, a〉, 〈vj , b〉, 〈vk, c〉}, no one of the binary costs cij(a, b), cjk(b, c),
cik(a, c) is strictly less than the other two. This holds, for example, if there
is a (soft) not-equal constraint between each pair of variables (vi, vj), (vj , vk),
(vi, vk), by transitivity of equality. In [9] we gave several applications of the JWP
in CSPs and VCSPs. For example, the class of CSP instances satisfying the JWP
generalises the AllDifferent constraint with arbitrary unary constraints, since its
binary constraints are equivalent to allowing at most one assignment from each
of a set of disjoint sets of (variable,value) assignments. We also showed how to
code a set of non-overlapping SoftAllDifferent constraints with either graph- or
variable-based costs as a VCSP satisfying the JWP. As another example, a job-
shop scheduling problem in which the aim is to minimise the sum, over all jobs,
of their time until completion can be coded as a VCSP satisfying the JWP [9].
The JWP has also been generalised to VCSPs in which the objective function
is the sum of hierarchically nested arbitrary convex cost functions [10]: applica-
tions include soft hierarchical global cardinality constraints, useful in rostering
problems.



Tractable Triangles 197

For finite valuation structures (corresponding to the CSP and Max-CSP),
there are only finitely many possibilities of multi-sets of binary costs in a triangle.
For example, in Max-CSP there are only four possible multi-sets of costs, namely
{0, 0, 0}, {0, 0, 1}, {0, 1, 1} and {1, 1, 1}. However, for infinite valuation structures
(corresponding to the finite-valued CSP and general-valued VCSP) there are
infinitely many combinations. Obviously, we cannot consider them all, and hence
we consider an equivalence relation based on the total order on the valuation
structure. There are 4 equivalence classes, thus giving 4 types of combinations
of the three binary costs α, β, γ given by α = β = γ, α = β < γ, α = β > γ,
α < β < γ.

For all valuation structures we consider, we prove a dichotomy theorem, thus
identifying all tractable cases with respect to the equivalence relation on the
combinations of costs. It turns out that there are only two non-trivial tractable
cases: the well-known maximum weighted matching problem [15], and the re-
cently discovered joint-winner property [9].

The study of the tractability of classes of instances defined by properties on
triangles of costs can be seen as a first step on the long road towards the char-
acterisation of tractable classes of VCSPs based on so-called hybrid properties
which are not captured by restrictions on the language of cost functions or the
structure of the constraint graph. The intractability results in this paper provide
initial guidelines for such a research program.

Paper organisation. The rest of this paper is organised as follows. We start, in
Section 2, with defining valuation structures, binary valued constraint satisfac-
tion problems and cost types. In Section 3, we present our results on the CSP,
followed up with results on the CSP with soft unary constraints. In Section 4, we
present our results on the Max-CSP, followed by the results on the finite-valued
and general-valued VCSP in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

A valuation structure, Ω, is a totally ordered set, with a minimum and a maxi-
mum element (denoted 0 and ∞), together with a commutative, associative bi-
nary aggregation operator (denoted ⊕), such that for all α, β, γ ∈ Ω, α⊕ 0 = α,
and α⊕ γ ≥ β ⊕ γ whenever α ≥ β. Members of Ω are called costs.

An instance of the binary Valued Constraint Satisfaction Problem (VCSP) is
given by n variables v1, . . . , vn over finite domains D1, . . . , Dn of values, unary
cost functions ci : Di → Ω, and binary cost functions cij : Di×Dj → Ω [29]. (If
the domains of all the variables are the same, we denote it by D.) The goal is to
find an assignment of values from the domains to the variables which minimises
the total cost given by

n⊕
i=1

ci(vi) ⊕
⊕

1≤i<j≤n
cij(vi, vj) .
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Note that we assume that all binary cost functions cij exist. The absence of any
constraint between variables vi, vj is modelled by a cost function cij which is
uniformly zero.

We shall denote by Q+ the set of all non-negative rational numbers. We define
Q+ = Q+ ∪ {∞}. In this paper, we consider the following valuation structures:
{0,∞}, {0, 1}, Q+ and Q+, where in all cases the aggregation operation is the
standard addition operation on rationals, +, extended so that a+∞ = ∞ for all
a ∈ Q+. These valuation structures correspond to CSP, Max-CSP, finite-valued
VCSP and general-valued VCSP, respectively.

Given an infinite valuation structure, such as Q+ or Q+, there is an infinite
number of possible sets of triples of costs. Obviously, we cannot consider all such
sets. Therefore, we only consider the cases defined by the total order on Ω. We
use curly brackets {} for multi-sets. The following table defines possible cost
types of 3 costs.

Symbol Costs Remark
� {α, β, γ} α, β, γ ∈ Ω, α �= β �= γ �= α
< {α, α, β} α, β ∈ Ω, α < β
> {α, α, β} α, β ∈ Ω, α > β
= {α, α, α} α ∈ Ω

We use the word triangle for any set of assignments {〈vi, a〉, 〈vj , b〉, 〈vk, c〉}, where
vi, vj , vk are distinct variables and a ∈ Di, b ∈ Dj , c ∈ Dk are domain values.
The multi-set of costs in such a triangle is {cij(a, b), cik(a, c), cjk(b, c)}.

We denote by D = {�, <,>,=} the set of all possible cost types. Let Ω be
a fixed valuation structure. For any set S ⊆ D, we denote by AΩ(S) (A for
allowed) the set of binary VCSP instances with the valuation structure Ω where
for every triangle the multi-set of costs in the triangle is of a type from S.

For instance, if Ω = Q+ and S = {�}, then AΩ(S) is the set of binary
finite-valued VCSP instances where for every triangle {〈vi, a〉, 〈vj , b〉, 〈vk, c〉} the
multi-set of costs in the triangle {cij(a, b), cik(a, c), cjk(b, c)} contains exactly
three distinct costs.

Our goal is to classify the complexity of AΩ(S) for every S ⊆ D.

Proposition 1. Let Ω be an arbitrary valuation structure and S ⊆ D.

1. If AΩ(S) is tractable and S′ ⊆ S, then AΩ(S′) is tractable.
2. If AΩ(S) is intractable and S′ ⊇ S, then AΩ(S′) is intractable.

A triangle {〈vi, a〉, 〈vj , b〉, 〈vk, c〉}, where a ∈ Di, b ∈ Dj , c ∈ Dk, satisfies the
joint-winner property (JWP) if either all three cij(a, b), cik(a, c), cjk(b, c) are
the same, or two of them are equal and the third one is bigger. A VCSP instance
satisfies the joint-winner property if every triangle satisfies the joint-winner prop-
erty.

Theorem 1 ([9]). The class of VCSP instances satisfying JWP is tractable.
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In [9], we also showed that the class defined by the joint-winner property is
maximal – allowing a single extra triple of costs that violates the joint-winner
property renders the class NP-hard.

Theorem 2 ([9]). Let α < β ≤ γ, where α ∈ Q+ and β, γ ∈ Q+, be a multi-set
of (not necessarily distinct) costs that do not satisfy the joint-winner property.
The class of instances where the costs in each triangle either satisfy the joint-
winner property or are {α, β, γ} is NP-hard

In this paper we consider a much broader question, whether allowing any arbi-
trary set S of triples of costs in triangles, where S does not necessarily include
all triples allowed by the JWP, defines a tractable class of VCSP instances.

Remark 1. We implicitly allow all unary cost functions. In fact, all our tractabil-
ity results work with unary cost functions, and our NP-hardness results do no
require any unary cost functions.

Remark 2. We consider problems with unbounded domains; that is, the domain
sizes are part of the input. However, all our NP-hardness results are obtained for
problems with a fixed domain size.1 In the case of CSPs, we need domains of size
3 to prove NP-hardness, and in all other cases domains of size 2 are sufficient
to prove NP-hardness. Since binary CSPs are known to be tractable on Boolean
domains, and any VCSP is trivially tractable over domains of size 1, all our
NP-hardness results are tight.

Remark 3. Binary finite-valued/general-valued VCSPs have also been studied
under the name of pair-wise MinSum or pair-wise Markov Random Field (MRF).
Consequently, our results readily apply to these frameworks, and other graphical
models equivalent to the VCSP.

3 CSP

In this section, we will focus on the valuation structure Ω = {0,∞}; that is, the
Constraint Satisfaction Problem (CSP). It is clear that the � cost type cannot
occur. Since there are only 2 possible costs, we split the cost type = into two:

Symbol Costs
0 {0, 0, 0}
∞ {∞,∞,∞}

The set of possible cost types is then D = {<,>, 0,∞}. Indeed, these four
cost types correspond precisely to the four possible multi-sets of costs: {0, 0, 0},
{0, 0,∞}, {0,∞,∞} and {∞,∞,∞}. The dichotomy presented in this section
therefore represents a complete characterisation of the complexity of CSPs de-
fined by placing restrictions on triples of costs in triangles.
1 In other words, the considered problems are not fixed-parameter tractable [14] in

the domain size.
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∅

< > 0 ∞

<,> <, 0 <,∞ >, 0 >,∞ 0,∞

<,>, 0 <,>,∞ <, 0,∞ >, 0,∞

<,>, 0,∞

Fig. 1. Complexity of CSPs A{0,∞}(S), S ⊆ {<, >, 0,∞}

As A{0,∞}(D) allows all binary CSPs, A{0,∞}(D) is intractable [26] unless
the domain is of size at most 2, which is equivalent to 2-SAT, and a well-known
tractable class [28].

Proposition 2. A{0,∞}(D) is intractable unless |D| ≤ 2.

The joint-winner property for CSPs gives

Corollary 1 (of Theorem 1). A{0,∞}({<, 0,∞}) is tractable.

Proposition 3. A{0,∞}({>, 0,∞}) is tractable.

Proof. Since < is forbidden, if two binary costs in a triangle are zero then the
third binary cost must also be zero. In other words, if the assignment 〈v1, a1〉 is
consistent with 〈vi, ai〉 for each i ∈ {2, . . . , n}, then for all i, j ∈ {1, . . . , n} such
that i �= j, 〈vi, ai〉 is consistent with 〈vj , aj〉. Thus Singleton Arc Consistency,
which is a procedure enforcing Arc Consistency for every variable-value pair [27],
solves A{0,∞}({>, 0,∞}). ��

Proposition 4. A{0,∞}({<,>,∞}) is tractable.

Proof. This class is trivial: instances with at least three variables have no solu-
tion, since the triple of costs {0, 0, 0} is not allowed. ��

Proposition 5. A{0,∞}({<,>, 0}) is intractable unless |D| ≤ 2.

Proof. It is straightforward to encode the 3-colouring problem as a binary CSP.
The result then follows from the fact that 3-colouring is NP-hard for triangle-free
graphs, which can be derived from two results from [24]. (Indeed, 3-colouring is
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NP-hard even for triangle-free graphs of degree at most 4 [25].) The triple of costs
{∞,∞,∞} cannot occur in the CSP encoding of the colouring of a triangle-free
graph. ��

Results from this section, together with Proposition 1, complete the complexity
classification, as depicted in Figure 1: white nodes represent tractable cases and
shaded nodes represent intractable cases.

Theorem 3. For |D| ≥ 3 a class of binary CSP instances defined as A{0,∞}(S),
where S ⊆ {<,>, 0,∞}, is intractable if and only if {<,>, 0} ⊆ S.

A simple way to convert classical CSP into an optimisation problem is to allow
soft unary constraints. It turns out that the dichotomy given in Theorem 3
remains valid even if soft unary constraints are allowed. We use the notation

AQ+

{0,∞}(S) to represent the set of VCSP instances with binary costs from {0,∞},
unary costs from Q+ and whose triples of costs in triangles belong to S. In other
words, we now consider VCSPs with crisp binary constraints and soft unary
constraints.

Theorem 4. For |D| ≥ 3 a class of binary CSP instances defined as AQ+

{0,∞}(S),
where S ⊆ {<,>, 0,∞}, is intractable if and only if {<,>, 0} ⊆ S.

Proof. It suffices to show tractability when S is {<,>,∞}, {<, 0,∞} or {>
, 0,∞}, the three maximal tractable sets in the case of CSP shown in Figure 1,
since sets S which are intractable for CSPs clearly remain intractable when soft
unary constraints are allowed.

The tractability of AQ+
{0,∞}({<, 0,∞}) is again a corollary of Theorem 1 since

the joint-winner property allows any unary soft constraints.

To solve AQ+

{0,∞}({>, 0,∞}) in polynomial time, we establish Singleton Arc
Consistency in the CSP corresponding to the binary constraints and then loop
over all assignments to the first variable. For each assignment a1 to variable v1,
we can determine the optimal global assignment which is an extension of 〈v1, a1〉
by simply choosing the assignment ai for each variable vi with the least unary
cost ci(ai) among those assignments 〈vi, ai〉 that are consistent with 〈v1, a1〉.

As in the proof of Proposition 4, any instance of AQ+

{0,∞}({<,>,∞}) is tractable,
since instances with at least three variables have no solution. ��

4 Max-CSP

In this section, we will focus on the valuation structure Ω = {0, 1}. It is well
known that the VCSP with the valuation structure {0, 1} is polynomial-time
equivalent to unweighted Max-CSP (no repetition of constraints allowed) [27]. It
is clear that the � cost type cannot occur. Since there are only 2 possible costs,
we split the cost type = into two:
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∅

< > 0 1

<,> <, 0 <, 1 >, 0 >, 1 0, 1

<,>, 0 <,>, 1 <, 0, 1 >, 0, 1

<,>, 0, 1

Fig. 2. Complexity of Max-CSPs A{0,1}(S), S ⊆ {<, >, 0, 1}

Symbol Costs
0 {0, 0, 0}
1 {1, 1, 1}

The set of possible cost types is then D = {<,>, 0, 1}. Again, these four
costs types correspond precisely to the four possible multi-sets of costs: {0, 0, 0},
{0, 0, 1}, {0, 1, 1}, and {1, 1, 1}. As for CSP, our dichotomy result for Max-CSP
represents a complete characterisation of the complexity of classes of instances
defined by placing restrictions on allowed costs in triangles.

As A{0,1}(D) allows all binary Max-CSPs, A{0,1}(D) is intractable [17,26]
unless the domain is of size 1.

Proposition 6. A{0,1}(D) is intractable unless |D| ≤ 1.

The joint-winner property [9] for Max-CSPs gives

Corollary 2 (of Theorem 1). A{0,1}({<, 0, 1}) is tractable.

Proposition 7. A{0,1}({<,>}) is tractable.

Proof. We show that A{0,1}({<,>}) contains instances on at most 5 variables,
thus showing that A{0,1}({<,>}) is trivially tractable. Consider an instance of
A{0,1}({<,>}) on 6 or more variables. Choose 6 arbitrary variables v1, . . . , v6
and 6 domain values di ∈ Dvi , 1 ≤ i ≤ 6. Every cost is either 0 or 1. It is



Tractable Triangles 203

well known [18] and not difficult to show2 that for every 2-colouring of edges
of K6 (the complete graph on 6 vertices) there is a monochromatic triangle.
Therefore, there is a triangle with costs either {0, 0, 0} or {1, 1, 1}. But this is
a contradiction with the fact that only cost types < (i.e. {0, 0, 1}) and > (i.e.
{1, 1, 0}) are allowed. ��

Remark 4. Both AΩ({>}) and AΩ({<,>}) are tractable over any finite val-
uation structure Ω due to a similar Ramsey type of argument: given Ω =
{0, 1, . . . ,K − 1}, there is n0 ∈ N such that for every graph G on n vertices,
where n ≥ n0, and every colouring of the edges of G with K colours, there is
a monochromatic triangle or an independent set of size 3. Hence there are only
finitely many instances, which can be stored in a look-up table. However, once
the valuation structure is infinite (e.g. Q+), both classes become intractable, as
shown in the next section.

Proposition 8. A{0,1}({>, 0, 1}) is intractable unless |D| ≤ 1.

Proof. Given an instance of the Max-2SAT problem, we show how to reduce it
to a {0, 1}-valued VCSP instance from A{0,1}({>, 0, 1}). The result then follows
from the well-known fact that Max-2SAT is NP-hard [17,26]. Recall that an
instance of Max-2SAT is given by a set of m clauses of length 2 over n variables
x1, . . . , xn and the goal is to find an assignment that maximises the number of
clauses that have at least one true literal.

In order to simplify notation, rather than constructing a VCSP instance from
A{0,1}({>, 0, 1}) with the goal to minimise the total cost, we construct an in-
stance from A{0,1}({<, 0, 1}) with the goal to maximise the total cost. This
implies that the allowed multi-sets of costs in triangles are {0, 0, 1}, {0, 0, 0},
and {1, 1, 1}. Clearly, these two problems are polynomial-time equivalent.

For each variable xi, we create a large number M of copies xji of xi with
domain {0, 1}, 1 ≤ i ≤ n and 1 ≤ j ≤ M . For each variable xi, the new
copies of xi are pairwise joined by an equality-encouraging cost function h, where
h(x, y) = 1 if x = y and h(x, y) = 0 otherwise. By choosing M very large, we
can assume from now on that all copies of xi will be assigned the same value
in all optimal solutions. We can effectively ignore the contribution of these cost
functions, which is K = n

(
M
2

)
, to the total cost. It is straightforward to check

that all triangles involving the new copies of the variables have the allowed costs.
For each clause (l1 ∨ l2), where l1 and l2 are literals, we create a variable zi

with domain {l1, l2}, 1 ≤ i ≤ m. For each literal l in the domain of zk: if l is a
positive literal l = xi, we introduce cost function g between zk and each copy
xji of xi, where g(l, 1) = 1 and g(., .) = 0 otherwise; if l is a negative literal

2 Take an arbitrary vertex v in K6 where every edge is coloured either blue or red.
By the pigeonhole principle, v is incident to at least 3 blue or at lest 3 red edges.
Without loss of generality, we consider the former case. Let v1, v2 and v3 be the three
vertices incident to three blue edges incident to v. If an any of the edges {v1, v2},
{v1, v3}, {v2, v3} is blue, we have a blue triangle. If all three edges are red, we have
a red triangle.
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l = ¬xi, we introduce cost function g′ between zk and each copy xji of xi, where
g′(l, 0) = 1 and g′(., .) = 0 otherwise.

To make sure that the only multi-sets of costs in all triangles are {0, 0, 1},
{0, 0, 0}, and {1, 1, 1}, we also add cost functions f between the different clause
variables zk and zk′ involving the same literal l, where f(l, l) = 1 and f(., .) = 0
otherwise. The contribution of all the cost functions between zk and zk′ , 1 ≤
k �= k′ ≤ m, is less than M and hence of no importance for M very large.

Answering the question of whether the resulting VCSP instance has a solution
with a cost ≥ K + pM is equivalent to determining whether the original Max-
2SAT instance has a solution satisfying at least p clauses. This is because each
clause variable zk can only add a score ≥ M if we assign value l to zk for some
literal l which is assigned true. ��

Proposition 9. Both A{0,1}({<,>, 0}) and A{0,1}({<,>, 1}) are intractable
unless |D| ≤ 1.

Proof. We present a reduction from Max-Cut, a well-known NP-hard prob-
lem [17], which is NP-hard even on triangle-free graphs [23]. An instance of
Max-Cut can easily be modelled as a Boolean {0, 1}-valued VCSP instance: ev-
ery vertex of the graph is represented by a variable with the Boolean domain
{0, 1}, and every edge yields cost function f , where f(x, y) = 1 if x = y and
f(x, y) = 0 if x �= y. Observe that since the original graph is triangle-free, there
cannot be a triangle with costs {1, 1, 1}. Therefore, the constructed instance
belongs to A{0,1}({<,>, 0}).

For the A{0,1}({<,>, 1}) case, instead of minimising the total cost, we max-
imise the total cost for instances from A{0,1}({<,>, 0}). Again, we model an
instance of the Max-Cut problem using Boolean variables, and every edge yields
a cost function g, where g(x, y) = 0 if x = y and g(x, y) = 1 if x �= y (where in
this case the aim is to maximise the total cost). The constructed instance belongs
to A{0,1}({<,>, 0}) when the original graph is triangle-free. The result then fol-
lows from the fact that Max-Cut is NP-complete on triangle-free graphs [23]. ��

Proposition 10. A{0,1}({>, 0}) is tractable.

Proof. Let I be an instance from A{0,1}({>, 0}). The algorithm loops through all
possible assignments {〈v1, a1〉, 〈v2, a2〉} to the first two variables. Suppose that
c12(a1, a2) = 1 (the case c12(a1, a2) = 0 is similar). Observe that the possible
variable-value assignments to other variables {〈vi, b〉 | 3 ≤ i ≤ n, b ∈ Di} can
be uniquely split in two sets L and R such that: (1) for every 〈vi, b〉 ∈ L,
c1i(a1, b) = 1 and c2i(a2, b) = 0; for every 〈vi, b〉, 〈vj , c〉 ∈ L, cij(b, c) = 0; (2) for
every 〈vi, b〉 ∈ R, c1i(a1, b) = 0 and c2i(a2, b) = 1; for every 〈vi, b〉, 〈vj , c〉 ∈ R,
cij(b, c) = 0; (3) for every 〈vi, b〉 ∈ L and 〈vj , c〉 ∈ R, cij(b, c) = 1. Ignoring unary
cost functions for a moment, to find an optimal assignment to the remaining n−2
variables, one has to decide how many variables vi, 3 ≤ i ≤ n, will be assigned
a value b ∈ Di such that 〈vi, b〉 ∈ L. The cost of a global assignment involving
k variable-value assignments from L is 1 + k + (n − 2 − k) + k(n − 2 − k) =
n− 1 + k(n − 2 − k). For some variables vi it could happen that 〈vi, b〉 ∈ L for
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all b ∈ Di or 〈vi, c〉 ∈ R for all c ∈ Di. If this is the case, then we choose an
arbitrary value b for xi with minimum unary cost ci(b). This is an optimal choice
whatever the assignments to the variables xj (j ∈ {3, . . . , i− 1, i+ 1, . . . , n}).

Assuming that all such variables have been eliminated and now taking into
account unary cost functions, the function to minimise is given by the objective
function (in which we drop the constant term n− 1):

(
∑

xi)(n− 2 −
∑

xi) +
∑

wLi xi +
∑

wRi (1 − xi)

(each sum being over i ∈ {3, . . . , n}), where xi ∈ {0, 1} indicates whether vi
is assigned a value from R or L, wLi = min{ci(b) : b ∈ Di ∧ 〈vi, b〉 ∈ L}, and
similarly wRi = min{ci(c) : c ∈ Di ∧ 〈vi, c〉 ∈ R}. The objective function is thus
equal to k(n−2−k)+

∑
wLi xi+

∑
wRi (1−xi), where, as above, k =

∑
xi is the

number of assignments from L. This objective function is minimised either when
k = 0 or when k = n − 2. This follows from the fact that the contribution of
unary cost functions to the objective function is

∑
wLi xi +

∑
wRi (1 − xi) which

is at most n− 2 (since in Max-CSP all unary costs belong to {0, 1}). This is no
greater than the value of the quadratic term k(n − 2 − k) for all values of k in
{1, . . . , n− 3}, i.e. not equal to 0 or n− 2.

The optimal assignment which involves k = 0 (respectively k = n − 2) as-
signments from L is obtained by simply choosing each value ai (for i > 2) with
minimum unary cost among all assignments 〈vi, ai〉 ∈ R (respectively L).

In the case that c12(a1, a2) = 0, a similar argument shows that the quadratic
term in the objective function is now 2(n−2−k)+k(n−2−k) = (k+2)(n−2−k).
This is always minimised by setting k = n − 2 and again the sum of the unary
costs is no greater than the value of the quadratic term for other values of
k �= n − 2. The optimal assignment which involves all k = n − 2 assignments
from L is obtained by simply choosing each value ai (for i > 2) with minimum
unary cost among all assignments 〈vi, ai〉 ∈ L. ��

Proposition 11. A{0,1}({>, 1}) is tractable.

Proof. Let I be an instance from A{0,1}({>, 1}) without any unary constraints;
i.e. all constraints are binary. Observe that every variable-value assignment
〈vi, a〉, where a ∈ Di, is included in zero-cost assignment-pairs involving at most
one other variable; i.e. there is at most one variable vj , such that cij(a, b) = 0
for some b ∈ Dj . In order to minimise the total cost, we have to maximise the
number of zero-cost assignment-pairs. In a global assignment, no two zero-cost
assignment-pairs can involve the same variable, which means that this can be
achieved by a reduction to the maximum matching problem, a problem solvable
in polynomial time [15]. We build a graph with vertices given by the variables
of I, and there is an edge {vi, vj} if and only if there is a ∈ Di and b ∈ Dj such
that cij(a, b) = 0.

To complete the proof, we show that unary constraints do not make the prob-
lem more difficult to solve; it suffices to perform a preprocessing step before the
reduction to maximum matching. Let vi be an arbitrary variable of I. If ci(a) = 1
for all a ∈ Di, then we can effectively ignore the unary cost function ci since it
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simply adds a cost of 1 to any solution. Otherwise, we show that all a ∈ Di such
that ci(a) = 1 can be ignored. Take an arbitrary assignment s to all variables
such that s(vi) = a, where ci(a) = 1. Now take any b ∈ Di such that ci(b) = 0.
We claim that assignment s′ defined by s′(vi) = b and s′(vj) = s(vj) for every
j �= i does not increase the total cost compared with s. Since the assignment
〈vi, a〉 can occur in at most one zero-cost assignment-pair, there are two cases to
consider: (1) if there is no 〈vj , c〉 with s(vj) = c such that cij(a, c) = 0, then the
claim holds since ci(a) = 1 and ci(b) = 0, so the overall cost can only decrease
if we replace a by b; (2) if there is exactly one j �= i such that cij(a, c) = 0 and
s(vj) = c, then again the cost of s′ cannot increase because the possible increase
of cost by 1 in assigning b to vi is compensated by the unary cost function ci.
Therefore, before using the reduction to maximal matching, we can remove all
a ∈ Di such that ci(a) = 1 and keep only those a ∈ Di such that ci(a) = 0. ��

Results from this section, together with Proposition 1, complete the complexity
classification, as depicted in Figure 2: white nodes represent tractable cases and
shaded nodes represent intractable cases.

Theorem 5. For |D| ≥ 2 a class of binary unweighted Max-CSP instances de-
fined as A{0,1}(S), where S ⊆ {<,>, 0, 1}, is intractable if and only if either
{<,>, 0} ⊆ S, {<,>, 1} ⊆ S, or {>, 0, 1} ⊆ S.

5 VCSP

In this section, we will focus on finite-valued and general-valued VCSP. First,
we focus on the valuation structure Ω = Q+; that is, the finite-valued VCSP.

The set of possible cost types is D = {�, <,>,=}. As AQ+(D) allows all finite-
valued VCSPs, AQ+(D) is intractable [5] as it includes the Max-SAT problem
for the exclusive or predicate [11].

Proposition 12. AQ+(D) is intractable unless |D| ≤ 1.

The joint-winner property [9] for finite-valued VCSPs gives

Corollary 3 (of Theorem 1). AQ+({<,=}) is tractable.

Proposition 13. AQ+({�}) is intractable unless |D| ≤ 1.

Proof. We show a reduction from Max-Cut, a well-known NP-hard problem [17].
An instance of Max-Cut can be easily modelled as a Boolean finite-valued VCSP
instance: every vertex of the graph is represented by a variable with the Boolean
domain {0, 1}, and every edge yields cost function f , where f(x, y) = 1 if x = y
and f(x, y) = 0 if x �= y. However, the constructed instance does not belong
to AQ+({�}). Nevertheless, we can amend the VCSP instance by infinitesimal
perturbations: all occurrences of the cost 0 are replaced by different numbers that
are very close to 0, and all occurrences of the cost 1 are replaced by different
numbers very close to 1. Now since all the cost are different, clearly the instance
belongs to AQ+({�}). ��
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Proposition 14. AQ+({>}) is intractable unless |D| ≤ 1.

Proof. We prove this by a perturbation of the construction in the proof of Propo-
sition 8, which shows intractability of AQ+({>,=}). In order to simplify the
proof, similarly to the proof of Proposition 8, we prove that maximising the
total cost in the class AQ+({<}) is NP-hard.

In the construction in the proof of Proposition 8 we add iε to each binary cost
cij(a, b), where i < j, if cij(a, b) was equal to 1. We assume that ε is very small
(nε < 1). This simply ensures that each triple of costs {1, 1, 1} in a triangle of
assignments is now perturbed to become {1 + iε, 1 + iε, 1 + jε}.

In the reduction from Max-2SAT, for each literal l, let Cl be the set of all
variable-value assignments corresponding to l (in both the xji and the zk vari-
ables). Recall that all binary costs for pairs of the assignments within Cl were
1 and all binary costs for pairs of the assignments from distinct Cl, Cl′ were
all 0 in the VCSP encoding of the Max-2SAT instance. We place an arbitrary
ordering on the literals l1 < l2 < · · · < lr. We then add iε to each binary cost
between two variable-value assignments whenever these assignments correspond
to literals li, lj with i < j. This simply ensures that each triple of costs {0, 0, 0}
in a triangle of assignments is now perturbed to become {0 + iε, 0 + iε, 0 + jε}.

The resulting VCSP instance is in AQ+({>}) and correctly codes the original
Max-2SAT instance for sufficiently small ε. ��

Results from this section, together with Proposition 1, complete the complexity
classification, as depicted in Figure 3: white nodes represent tractable cases and
shaded nodes represent intractable cases.

∅

� < > =

�, < �, > �,= <,> <,= >,=

�, <,> �, <,= �, >,= <,>,=

�, <,>,=

Fig. 3. Complexity of finite-valued VCSPs AQ+(S), S ⊆ {�, <, >,=}.
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Theorem 6. For |D| ≥ 2 a class of binary finite-valued VCSP instances defined
as AQ+(S), where S ⊆ {�, <,>,=}, is tractable if and only if S ⊆ {<,=}.

We now consider the case of general-valued VCSPs. In other words, we consider
the valuation structure Ω = Q+. Theorem 6 applies to this valuation structure
as well. Indeed, the hard cases remain intractable when we allow more triangles
(involving infinite costs), and the only tractable case, AQ+({<,=}), remains
tractable: A

Q+
({<,=}) is tractable by Theorem 1.

Theorem 7. For |D| ≥ 2 a class of binary general-valued VCSP instances de-
fined as AQ+

(S), where S ⊆ {�, <,>,=}, is tractable if and only if S ⊆ {<,=}.

6 Conclusions

In the CSP and Max-CSP case, we have obtained a complete dichotomy concern-
ing the tractability of problems defined by placing restrictions on the possible
combinations of binary costs in triangles of variable-value assignments. In the
case of finite-valued and general-valued VCSP, we have obtained a complete di-
chotomy with respect to the equivalence classes which naturally follow from the
total order on the valuation structure. In particular, we have shown that the
joint-winner property is the only tractable class for finite-valued and general-
valued VCSPs.
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Abstract. The connection between the complexity of constraint lan-
guages and clone theory, discovered by Cohen and Jeavons in a series
of papers, has been a fruitful line of research on the complexity of
CSPs. In a recent result, Cohen et al. [14] have established a Galois
connection between the complexity of valued constraint languages and
so-called weighted clones. In this paper, we initiate the study of weighted
clones. Firstly, we prove an analogue of Rosenberg’s classification of min-
imal clones for weighted clones. Secondly, we show minimality of several
weighted clones whose support clone is generated by a single minimal
operation. Finally, we classify all Boolean weighted clones. This classi-
fication implies a complexity classification of Boolean valued constraint
languages obtained by Cohen et al. [13]

1 Introduction

The general constraint satisfaction problem (CSP) is NP-hard, and so is unlikely
to have a polynomial-time algorithm. However, there has been much success
in finding tractable fragments of the CSP by restricting the types of relation
allowed in the constraints. A set of allowed relations has been called a con-
straint language [20]. For some constraint languages the associated constraint
satisfaction problems with constraints chosen from that language are solvable in
polynomial-time, whilst for other constraint languages this class of problems is
NP-hard [21,20,19]; these are referred to as tractable languages and NP-hard lan-
guages, respectively. Dichotomy theorems, which classify each possible constraint
language as either tractable or NP-hard, have been established for constraint
languages over 2-element domains [27], 3-element domains [8], for conservative
constraint languages [10,3], and maximal constraint languages [6,7].

The general valued constraint satisfaction problem (VCSP) is also NP-hard,
but again we can try to identify tractable fragments by restricting the types of
allowed cost functions that can be used to define the valued constraints. A set of
allowed cost functions has been called a valued constraint language [13]. Much
less is known about the complexity of the optimisation problems associated with
different valued constraint languages, although some results have been obtained
for certain special cases. In particular, a complete characterisation of complexity
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has been obtained for valued constraint languages over a 2-element domain with
real-valued or infinite costs [13]. This result generalises a number of earlier results
for particular optimisation problems such as Max-Sat [15] and Min-Ones [16].
Recently, the complete classification of conservative valued languages has been
obtained for finite-valued [22] and general-valued languages [23].

In the classical CSP framework it has been shown that the complexity of any
constraint language over any finite domain is determined by certain algebraic
properties known as polymorphisms [21,20]. This result has reduced the problem
of the identification of tractable constraint languages to that of the identification
of suitable sets of polymorphisms. The set of polymorphisms of a constraint
language forms a clone of operations and a tight (one to one) correspondence
has been shown to exist between clones and constraint languages (closed under
expressibility). In other words, we can study properties of constraint languages
by studying properties of clones. This algebraic approach has been laid out
in detail in [9] and has already proved fruitful in classifying the complexity
of constraint languages over finite domains of arbitrary size [19,9,2,4,1,5]. In
particular, by considering the set of minimal clones, it has been possible to
classify the complexity of all maximal constraint languages on a finite domain
D [6,7] (these are the constraint languages which can express all relations over
D if we add a single new type of constraint).

Recently, it has been shown that the complexity of valued constraint lan-
guages can be determined by studying properties known as weighted polymor-
phisms1 [11,14]. The set of weighted polymorphisms of any valued constraint
language form an object called a weighted clone and is has been shown that
there exists a tight (one to one) connection between weighted clones and valued
constraint languages (closed under expressibility) [14]. Previously, a special type
of weighted polymorphism, called a multimorphism, has been used to analyse the
complexity of certain valued constraint languages [13]. In particular, multimor-
phisms have been used to show that there are precisely eight maximal tractable
valued constraint languages over a 2-element domain with real-valued or infinite
costs, and each of these is characterised by having a particular form of multi-
morphism [13]. Furthermore, it was shown that many known maximal tractable
valued constraint languages over larger finite domains are precisely characterised
by a single multimorphism and that key NP-hard examples have (essentially) no
multimorphisms [13,12].

Contributions. In this paper, we initiate the study of weighted clones. In par-
ticular, we focus on minimal weighted clones, which define maximal valued con-
straint languages. As the main contribution, we demonstrate that the theory
developed by Cohen et al. [14] can be used for answering non-trivial questions
concerning the complexity of valued constraint languages. We see this paper as
a first step towards using the theory of weighted clones in the study of the com-
plexity of valued constraint languages. We believe that the techniques from this
paper can be used for other problems as well.

1 In [11] these were called fractional polymorphisms.
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On the technical side, we prove a Rosenberg-type classification for mini-
mal weighted clones. Furthermore, we prove minimality of several interesting
weighted clones, which correspond to well-studied maximal valued constraint
languages. Finally, for Boolean domains, we provide a complete classification
of weighted clones. This implies a complexity classification of Boolean valued
constraint languages.

Paper organisation. The rest of the paper is organised as follows. In Section 2,
we define valued constraint satisfaction problems (VCSPs), the notion of ex-
pressibility, weighted operations and weighted clones. In Section 3 we prove an
analogue of Rosenberg’s Classification Theorem [26] for weighted clones, which
establishes certain properties minimal weighted clones must satisfy. Then, in Sec-
tion 4 we give several examples of minimal weighted clones. Finally, in Section 5
we show how the results of the preceding sections can be used to obtain the
Boolean classification of [13]. Although this paper does not identify any novel
tractable valued constraint languages, we believe the tools described herein will
prove invaluable in future efforts to identify the tractable cases of the VCSP.

2 Preliminaries

2.1 VCSP

We will use [k] to denote the set {1, . . . , k} for any positive integer k. We shall
denote by Q+ the set of all non-negative rational numbers. We define Q+ =
Q+∪{∞} with the standard addition operation extended so that for all a ∈ Q+,
a+ ∞ = ∞. Members of Q+ are called costs. Throughout the paper, we denote
by D any fixed finite set, called a domain, consisting of values.

A function φ from Dr to Q+ will be called a cost function on D of arity r.
If the range of φ lies entirely within Q+, then φ is called a finite-valued cost
function. If the range of φ is {0,∞}, then φ is called a crisp cost function. A
language is a set of cost functions with the same domain D. Language Γ is called
finite-valued (crisp) if all cost functions in Γ are finite-valued (crisp). A language
Γ is Boolean if |D| = 2.

Definition 1. An instance of the valued constraint satisfaction problem,
(VCSP), is a 3-tuple P = 〈V,D,C〉 where V is a finite set of variables; D is
a set of possible values; C is a multi-set of constraints. Each element of C
is a pair c = 〈σ, φ〉 where σ is a tuple of variables called the scope of c, and
φ : D|σ| → Q+ is a |σ|-ary cost function on D. An assignment for P is a
mapping s : V → D. The cost of an assignment s, denoted CostP (s), is given
by the sum of the costs for the restrictions of s onto each constraint scope, that
is,

CostP (s) def=
∑

〈〈v1,v2,...,vm〉,φ〉∈C
φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.
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We define VCSP(Γ ) to be the set of all VCSP instances in which all cost functions
belong to Γ . A valued constraint language Γ is called tractable if, for every finite
subset Γf ⊆ Γ , there exists an algorithm solving any instance P ∈ VCSP(Γf ) in
polynomial time. Conversely, Γ is called NP-hard if there is some finite subset
Γf ⊆ Γ for which VCSP(Γf ) is NP-hard.

2.2 Weighted Relational Clones

We denote by ΦD the set of cost functions on D taking values in Q+ and by
Φ(r)
D the r-ary cost functions in ΦD. Any cost function φ : Dr → Q+ has

an associated cost function which takes only the values 0 and ∞, known as its
feasibility relation, denoted Feas(φ), which is defined as Feas(φ)(x1, . . . , xr) =
0 if φ(x1, . . . , xr) <∞, and Feas(φ)(x1, . . . , xr) = ∞ otherwise.

We say φ, φ′ ∈ ΦD are cost-equivalent, denoted by φ ∼ φ′, if there exist
α, β ∈ Q+ with α > 0 such that φ = αφ′ + β. We denote by Γ∼ the smallest set
of cost functions containing Γ which is closed under cost-equivalence.

We now define a closure operator on cost functions, which adds to a set of
cost functions all other cost functions which can be obtained from that set by
minimising over a subset of variables:

Definition 2. For any VCSP instance P = 〈V,D,C〉, and any list L = 〈v1, . . . , vr〉
of variables of P, the projection of P onto L, denoted πL(P), is the r-ary cost
function defined as follows:

πL(P)(x1, . . . , xr)
def= min

{s:V→D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s) .

We say that a cost function φ is expressible over a constraint language Γ if
there exists a VCSP instance P ∈ VCSP(Γ ) and a list L of variables of P such
that πL(P) = φ. We define Express(Γ ) to be the expressive power of Γ ; that
is, the set of all cost functions expressible over Γ .

Note that the list of variables L may contain repeated entries, and we define the
minimum over an empty set of costs to be ∞.

Example 1. Let P be the VCSP instance with a single variable v and no con-
straints, and let L = 〈v, v〉. Then, by Definition 2,

πL(P)(x, y) =
{

0 if x = y
∞ otherwise .

Hence for any valued constraint language Γ , over any set D, Express(Γ ) contains
this binary cost function, which will be called the equality cost function.

Definition 3. We say a set Γ ⊆ ΦD is a weighted relational clone if it con-
tains the equality cost function and is closed under cost-equivalence and feasibil-
ity, rearrangement of arguments, addition of cost functions, and expressibility.
For each Γ ⊆ ΦD we define wRelClone(Γ ) to be the smallest weighted relational
clone containing Γ .
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It is known that for any Γ ⊆ ΦD, Express(Γ ∪Feas(Γ ))∼ = wRelClone(Γ ) [14].
Moreover, it follows from [11] that Γ is tractable if and only if wRelClone(Γ )
is tractable. Hence, the search for tractable valued constraint languages corre-
sponds to a search for suitable weighted relational clones.

2.3 Weighted Clones

First we recall some basic terminology from clone theory [18]. A function f :
Dk → D is called a k-ary operation on D. We denote by OD the set of all
finitary operations on D and by O(k)

D the k-ary operations in OD. The k-ary
projections on D, defined for i = 1, . . . , k, are the operations e(k)

i (a1, . . . , ak) =
ai. (We drop the superscript (k) if it is clear from the context.) Let f ∈ O(k)

D and
g1, . . . , gk ∈ O(l)

D . The superposition of f and g1, . . . , gk is the l-ary operation
f [g1, . . . , gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1 . . . , xl)).

A set F ⊆ OD is called a clone of operations if it contains all the projections
on D and is closed under superposition.

For each F ⊆ OD we define Clone(F ) to be the smallest clone containing
F . For any clone C, we use C(k) to denote the k-ary terms in C. We say a
clone C is minimal if any non-trivial operation in C generates C, i.e. for all
f ∈ C other than the projections, we have C = Clone({f}). An operation f in a
minimal clone C is called minimal if f has smallest arity among the non-trivial
operations in C.

It has been shown [21] that crisp constraint languages are in one to one cor-
respondence with clones. Recently, Cohen et al. [14] have shown that a similar
correspondence exists between valued constraint languages and objects called
weighted clones. We will now briefly describe their results.

Definition 4. We define a k-ary weighted operation on a set D to be a func-
tion ω : O(k)

D → Q such that ω(f) < 0 only if f is a projection and
∑

f∈dom(ω)

ω(f) = 0 .

The domain of ω, denoted dom(ω), is the subset of O(k)
D on which ω is defined.

We denote by ar(ω) = k the arity of ω.

We denote by WD the finitary weighted operations on D and by W(k)
D the k-ary

weighted operations in WD.

Definition 5. Let C be a clone of operations on D. We define the k-ary zero
weighted operation supported by C to be the k-ary weighted operation which
satisfies ω(f) = 0 for all f ∈ C(k).

Definition 6. Let C be a clone of operations on D. A weighted clone sup-
ported by C is a set of weighted operations that contains all zero-weighted op-
erations whose domains are subsets of C and is closed under:
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proper translation. Given a k-ary weighted operation ω : C(k) → Q and t =
〈g1, . . . , gk〉, where g1, . . . , gk ∈ C(�), we define the translation of ω by
g1, . . . , gk, denoted as ω[g1, . . . , gk] or simply ω[t], to be the function ω′ :
C(�) → Q satisfying

ω′(f ′) =
∑

f∈C(k):f ′=f [g1,...,gk]

ω(f) ,

for each f ′ ∈ C(�). A translation is called a proper translation if ω′ is a
weighted operation.

addition. Given a pair of k-ary weighted operations ω1, ω2 : C(k) → Q, we
define the addition ω1 + ω2 to be the weighted operation ω′ satisfying

ω′(f) = ω1(f) + ω2(f) ,

for each f ∈ C(k).
scaling. Let ω be a k-ary weighted operation supported by C and let α > 0. We

define the α-scaling of ω, αω, to be the weighted operation ω′ satisfying

ω′(f) = αω(f) ,

for each f ∈ C(k).

Example 2. Let ω be the 4-ary weighted operation on D given by

ω(f) =
{

−1 if f is a projection
+1 if f ∈ {max(x1, x2),min(x1, x2),max(x3, x4),min(x3, x4)}

,

and let
〈g1, g2, g3, g4〉 =

〈
e
(3)
1 , e

(3)
2 , e

(3)
3 ,max(x1, x2)

〉
.

Then, by Definition 6, the translation of ω by 〈g1, g2, g2, g3〉 is:

ω[g1, g2, g3, g4](f) =

⎧⎨
⎩

−1 if f is a projection
+1 if f ∈ {max(x1, x2, x3), min(x1, x2), min(x3, max(x1, x2))}
0 if f = max(x1, x2)

.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 4 and hence is a
weighted operation. Hence the translation is proper.

For each W ⊆ WD we define wClone(W ) to be the smallest weighted clone con-
tainingW . In particular, we write wClone(ω) for the smallest weighted clone con-
taining weighted operation ω. Note that the support of wClone(W ) is the clone
generated by the domains of the elements of W ; i.e. the support of wClone(W )
is given by Clone(∪ω∈W dom(ω)). The following is a direct consequence of the
definition of weighted clones.

Proposition 1. Let ω be a weighted operation supported by a clone C. Then
every k-ary element of wClone(ω) can be obtained as a weighted sum of transla-
tions of ω by tuples of terms from C(k).
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Proposition 1 can be used to decide whether μ ∈ wClone(ω), where μ ∈ W(�)
D

and ω ∈ W(k)
D are weighted operations. We define the translation matrix of

ω to be the matrix Aω whose columns correspond to the translations of ω by
g1, . . . , gk where g1, . . . , gk ∈ C(�). By Proposition 1, μ ∈ wClone(ω) if and only
if we can find a non-negative solution to the system of equations Aωx = μ.

Definition 7. Let φ ∈ Φ(r)
D and let ω ∈ W(k)

D . We say that ω is a weighted
polymorphism of φ if, for any x1, x2, . . . , xk ∈ Dr such that φ(xi) < ∞ for
i = 1, . . . , k, we have ∑

f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk)) ≤ 0 . (1)

If ω is a weighted polymorphism of φ we say φ is improved by ω.

Note that, because a∞ = ∞ for any value a ∈ Q+ (in particular, 0∞ = ∞), if
inequality (1) holds we must have φ(f(x1, . . . , xk)) < ∞, for all f ∈ dom(ω),
i.e., each f ∈ dom(ω) is a polymorphism of φ [14].

Example 3. Consider the class of submodular set functions [24]. These are pre-
cisely the cost functions on {0, 1} satisfying

φ(min(x1, x2)) + φ(max(x1, x2)) − φ(x) − φ(y) ≤ 0 .

In other words, the set of submodular functions are defined as the set of cost
functions on {0, 1} with the 2-ary weighted polymorphism

ω(f) =
{

−1 if f ∈ {e(2)
1 , e(2)

2 }
+1 if f ∈ {min(x1, x2),max(x1, x2)}

.

This shows that weighted polymorphisms capture an important class of sub-
modular functions, which have been studied within various contexts in computer
science [29].

3 Weighted Rosenberg

Rosenberg’s Classification Theorem [26], given below, gives certain conditions
that minimal clones must satisfy. This has been a major tool in the efforts to
identify all tractable maximal constraint languages [6,7] and, furthermore, in
efforts to classify all tractable constraint languages [8,10].

For a unary operation we define f1 = f and f i(x) = f(f i−1(x)). A unary op-
eration f is a retraction if f2(x) = f(x) for all x ∈ D, and a cyclic permutation
of prime order if fp(x) = x for some prime p and all x ∈ D.

An operation f is idempotent if f(x, . . . , x) = x for all x ∈ D. A k-ary, k ≥ 3,
operation f is a semiprojection if there is 1 ≤ i ≤ k such that f(x1, . . . , xk) =
e(k)
i = xi for all x1, . . . , xk ∈ D such that x1, . . . , xk are not pairwise distinct. A

ternary operation f is a majority operation (denoted by Mjrty) if f(x, x, y) =
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f(x, y, x) = f(y, x, x) = x for all x, y ∈ D. A ternary operation f is a minority
operation (denoted by Mnrty) if f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all
x, y ∈ D. A ternary operation f is a Pixley operation if f(y, y, x) = f(x, y, x) =
f(y, x, x) = y for all x, y ∈ D (up to permutations of inputs). We say a k-ary
operation f is sharp if f is not a projection but the operation obtained by
equating any two inputs in f is a projection. The following lemma shows that
the only sharp operations of arity k ≥ 4 are semiprojections.

Lemma 1 (Świerczkowski’s Lemma [30]). Given an operation of arity ≥ 4,
if every operation arising from the identification of two variables is a projection,
then these projections coincide.

Świerczkowski’s Lemma can be used to prove Rosenberg’s Classification Theo-
rem [26], stated below.

Theorem 1 (Rosenberg). If C is a minimal clone on D, then C must contain
an operation f satisfying one of the following conditions:

1. f is a retraction or a cyclic permutation of prime order.
2. f is binary and idempotent.
3. f is a ternary minority operation of the form f(x, y, z) = x − y + z, where

addition is over some elementary 2-group2.
4. f is a ternary majority operation.
5. f is a n-ary semiprojection, n ≥ 3.

In this section, we define minimal weighted clones, and give some necessary
conditions for a weighted operation to generate a minimal weighted clone. These
results can be viewed as an analogue to Rosenberg’s Classification Theorem for
weighted clones.

Definition 8. Let W be a weighted clone. We say W is minimal if every non-
zero ω ∈W generates W , i.e., for all non-zero ω ∈W , W = wClone(ω).

For a minimal weighted clone W , we say ω ∈ W is a minimal weighted
operation if ω has smallest arity amongst non-zero elements of W and ω assigns
weight −1 to each projection.

The following lemma shows that every minimal weighted clone is generated by
a minimal weighted operation.

Lemma 2. Let ω be a non-zero weighted operation. There exists some ω′ ∈
wClone(ω) of equal arity which assigns weight −1 to each projection.

Proof. Suppose ω a is non-zero weighted operation of arity k. Let Cycle(k) de-
note the set of cyclic permutations of [k]. For each permutation σ ∈ Cycle(k),
let tσ =

〈
e(k)
σ(1), . . . , e

(k)
σ(k)

〉
. Then, the weighted operation

∑
σ∈Cycle(k) ω[tσ] as-

signs equal weight to each projection. Thus, by a suitable scaling we can obtain
a k-ary weighted operation ω′ ∈ wClone(ω) satisfying ω′(e(k)

i ) = −1 for each
i ∈ [k]. ��
2 An elementary 2-group is an Abelian group of order 2, i.e. for every element x of the

group, x + x = 0.



218 P. Creed and S. Živný

We will use the following shorthand for candidate minimal weighted operations
(weighted operations which assign weight −1 to each projection):

{(ω(f), f) : ω(f) > 0} .

We can now give our classification theorem for minimal weighted operations.
The format, and indeed the proof, follow directly from Rosenberg [26], see
also [17]. Our result is slightly weaker, because we cannot rule out the possi-
bility of sharp, but non-minimal, operations occurring with negative weight in a
minimal weighted operation.

Theorem 2. The set of operations assigned positive weight by a minimal
weighted operation is one of the following four types:

1. A set of unary operations.
2. A set of binary idempotent operations.
3. A set consisting of sharp ternary operations, i.e. majority operations, mi-

nority operations, Pixley operations and semiprojections.
4. A set of k-ary semiprojections (k > 3).

Proof. Suppose ω is a minimal weighted operation of arity at least two. Then,
every f with ω(f) > 0 must be idempotent since otherwise translating by
〈e1, . . . , e1〉 would yield a non-zero unary weighted operation μ. If wClone(μ) =
wClone(ω), then since ω has bigger arity than μ we get a contradiction with ω
being a minimal weighted operation; if wClone(μ) �= wClone(ω), then wClone(ω)
is not a minimal weighted clone.

Next, suppose that ω is a ternary minimal weighted operation. We cannot have
any f with ω(f) > 0 for which identifying two variables gives a non-projection
operation, since otherwise ω would generate a minimal binary weighted opera-
tion. There are precisely 8 types of sharp ternary operations, given in Table 1.

The first and last correspond to majority and minority respectively. The sec-
ond, third and fifth correspond to semiprojections, and the other three corre-
spond to Pixley operations.

Finally, suppose ω is a minimal weighted operation of arity 4 or greater.
Every f with ω(f) > 0 must become a projection when we identify any two
variables. Thus, by the Świerczkowski Lemma (Lemma 1) each such f must be
a semiprojection. ��

Table 1. Sharp ternary operations

Input 1 2 3 4 5 6 7 8
(x,x,y) x x x x y y y y
(x,y,x) x x y y x x y y
(y,x,x) x y x y x y x y
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4 Simple Weighted Clones

In classical clone theory, every minimal clone is generated by a single opera-
tion. Rosenberg’s classification of minimal operations [26] gives unary opera-
tions (retractions and cyclic permutations of prime orders), binary idempotent
operations, majority operations, minority operations, and semiprojections.

Definition 9. For any k-ary operation f we define the canonical weighted
operation of f , ωf , to be {(k, f)}.

In other words, ωf assigns weight k to f , and weight −1 to each projection.
In the rest of this section we prove that for some minimal operations f , the

canonical weighted operation ωf is a minimal weighted operation. In particular,
we prove this for retractions, certain binary operations, majority operations, and
minority operations.

Theorem 3. If f is a retraction, then ωf is a minimal weighted operation.

Proof. Let f be a minimal unary operation which is a retraction; i.e. f(f(x)) =
f(x) for all x ∈ D. Let ωf be the canonical weighted operation of f . Since f
is a retraction, it is the only non-trivial operation in Clone(f). Hence, given
any μ ∈ wClone(k)(ωf ), translating by

〈
e(k)
1 , . . . , e(k)

k

〉
and applying a suitable

scaling yields ωf . ��

Theorem 4. If f is a binary operation, then ωf is minimal whenever f is a
semilattice operation or a conservative commutative operation.

Proof. Whenever f is a conservative commutative operation or a semilattice
operation, we have that f is the only non-trivial binary operation in Clone(f).
Thus, given any μ ∈ Clone(k)(ωf ) we can find some tuple of binary projections
t satisfying g[t] = f(x1, x2), for some g with μ(g) > 0. That is, μ′ = μ[t] is a
binary weighted operation with μ′(f) > 0. Finally, since f is commutative, the
weighted operation obtained from μ′ by Lemma 2 must be equal to ωf . ��

Theorem 5. If f is a majority operation, then ωf is a minimal weighted oper-
ation.

Proof. It is well known that any ternary operation generated by f is a majority
operation since f is a majority operation. (This can be proved by induction on
the number of occurrences of f .) We want to show that ωf is minimal; that is,
given μ ∈ wClone(ωf ), we need to show that ωf ∈ wClone(μ).

Let μ be a k-ary weighted operation from wClone(ωf ) such that μ(g) > 0
for some non-projection g, where g ∈ Clone(k)(f). From the argument above,
there exists some k-tuple of ternary projections, t, such that g[t] is a majority
operation. Let μ′ = μ[t]. If μ′ = cωf for some c > 0 then we are done. Otherwise,
by Lemma 2, there is ternary μ′ ∈ wClone(μ) such that μ′ assigns weight -1 to
projections and positive weight to some (possibly different) majority operations
g1, . . . , gk ∈ Clone(3)(f).
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Translating μ′ by 〈xj , xj , f〉, for j ∈ [3], gives the weighted operation 2ωj,f ,
where

ωj,f (g) =

⎧⎨
⎩

−1 g = ej
+1 g = f

0 otherwise
. (2)

Since ωf = ω1,f + ω2,f + ω3,f , we have proved that ωf ∈ wClone(μ). ��

Theorem 6. If f is a minimal minority operation, then ωf is a minimal weighted
operation.

Proof. Recall that a minority operation f : D3 → D is minimal if and only
if f(x, y, z) = x − y + z, where addition is taken over an elementary 2-group
〈D,+〉. An elementary 2-group 〈D,+〉 satisfies 2x = 0 for all x ∈ D. Thus, we
can conclude that f is the only ternary operation in Clone(f). Now, given any
μ ∈ wClone(k)(ωf ), we can find some k-tuple of ternary projections t such that
μ[t](f) > 0. Then, using Lemma 2, we can obtain a ternary weighted operation
μ′ ∈ wClone(μ) which satisfies μ′(ei) = 1 for i = 1, 2, 3. Since f is the only
ternary operation in Clone(f) then, necessarily, μ′ = ωf . ��

Due to space constraints, we only state the following result:

Proposition 2. Let f be the ternary semiprojection on D = {0, 1, 2} which
returns 0 on every input with all values distinct, and the value of the first input
otherwise. The weighted clone wClone(ωf ) is not minimal.

Proposition 2 tells us that not all minimal operations have canonical minimal
weighted operations. It is known that the constraint languages preserved by
semiprojections are not tractable, so the weighted clones supported by semipro-
jection clones are of less interest to us.

An operation f is tractable if the set of cost functions invariant under f ,
denote by Inv(f), is a tractable valued constraint language; see [14] for more de-
tails. Having proved minimality of weighted clones corresponding to well-known
tractable operations, we finish this section with a conjecture.

Conjecture 1. If f is a minimal tractable operation, then ωf is a minimal weighted
operation.

5 Boolean Classification

In this section, we consider minimal weighted clones on Boolean domain D =
{0, 1}. Since there are no semiprojections on a Boolean domain, we only need
to consider the first three cases of Theorem 2. Moreover, for the third case, we
need only consider weighted operations assigning negative weight to Mnrty and
Mjrty. Post [25] has classified the minimal clones on a Boolean domain.

Theorem 7. Every minimal clone on a Boolean domain is generated by one of
the following operations:
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1. f0(x) = 0
2. f1(x) = 1
3. f(x) = 1 − x
4. min(x1, x2) returns the minimum of the two arguments
5. max(x1, x2) returns the maximum of the two arguments
6. Mnrty(x1, x2, x3) returns the minority of the three arguments
7. Mjrty(x1, x2, x3) returns the majority of the three arguments

First, we show that the canonical weighted operations corresponding to the min-
imal operations given in Theorem 7 are minimal.

Theorem 8. For each minimal Boolean operation f , the weighted operation ωf
is minimal.

Proof. Let f(x) = 1−x. Notice that f2(x) = x; that is, f is a cyclic permutation
of order 2. Therefore, the only non-trivial unary operation in Clone(f) is f .
Moreover, for any k > 1, the only non-trivial operations in Clone(k)(f) are
of the form g(x) = 1 − xi for some i ∈ [k]. Translating an operation of this
form by the k-tuple of unary projections will yield f . Thus, given any non-zero
μ ∈ wClone(k)(ωf ), we can translate by the k-tuple of unary projections and
apply a suitable scaling to obtain ωf . Hence, wf is minimal. All other cases
follow from Theorems 3, 4, 5, and 6. ��

Next, we show that there are precisely two other minimal weighted operations
on a Boolean domain.

Theorem 9. On a Boolean domain, there are precisely two minimal weighted
operations other than the 7 canonical weighted operations arising from the min-
imal operations. These are the binary weighted operations {(1,min), (1,max)}
and {(1,Mnrty), (2,Mjrty)}.

Proof. We first consider the binary case. Every binary minimal operation other
than ωmin and ωmax must be of the form ωa = {(a,min), (2 − a,max)} (0 < a <
2). We will show that ωa is minimal if and only if a = 1.

First, suppose a = 1. Let ω = ω1. It is easy to check that the only non-
zero translation is ω[e1, e2]. Thus, by Proposition 1, every non-zero weighted
operation in wClone(2)(ω) is equal to cω, for some c > 0.

There is precisely one sharp operation of arity ≥ 3 in Clone(min,max): the
majority operation Mjrty. Since {(3,Mjrty)} /∈ wClone(ω) (we can check this
using Proposition 1), it follows that any non-zero μ ∈ wClone(k)(ω) must assign
weight to an operation of the form min(xi, xj) or max(xi, xj), or a non-sharp
operation of arity k, for any k > 2. We can translate any such μ by a k-tuple
of binary projections to obtain some non-zero μ′ ∈ wClone(2)(μ). Since μ′ must
necessarily be contained in wClone(ω), and since every binary weighted operation
in wClone(ω) is equal to cω, for some constant c > 0, it follows that ω ∈
wClone(μ). Hence, ω is minimal.

Now, suppose a < 1 (the other case is symmetric). Consider the weighted
operations μi = ωa + a

1−aωa[ei,min] (i = 1, 2), which by Proposition 1 are
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contained in wClone(ωa). Since min(x,min(x, y)) = min(x, y), we have that min
is assigned weight a− 1 in ωa[ei,min], and hence 0 in μi. To be precise, μi is the
weighted operation which assigns weight a−1 to ei, −1 to eī (̄i ∈ {1, 2}\{i}), and
2−a to max. Thus, by adding μ1 and μ2 and applying a suitable scaling, we can
obtain the weighted operation {(2,max)}. Since {(2,max)} generates a minimal
clone which does not contain ωa, we can conclude that ωa is not minimal.

We now move on to the ternary case. Suppose ω is a ternary weighted oper-
ation and ω /∈ wClone(ωf ) for f ∈ {Mnrty,Mjrty}. From Theorem 2 and the
fact that there are no Boolean semiprojections, ω can only assign positive weight
to Mjrty, Mnrty and the three Boolean Pixley operations f1, f2 and f3 (corre-
sponding to the fourth, sixth and seventh columns of Table 1). We first show
that we can restrict our attention to weighted operations assigning weight 0 to
all Pixley operations.

Let ω be a ternary weighted operation which assigns positive weight to some
Pixley operations. Composing 〈f1, f2, f3〉 with the tuples of projections 〈e2, e3, e1〉
and 〈e3, e1, e2〉 yields 〈f2, f3, f1〉 and 〈f3, f1, f2〉 respectively. Thus, the weighted
operation 1

3ω + 1
3ω[e2, e3, e1] + 1

3ω[e3, e1, e2] assigns equal weight to each Pixley
operation. Hence, from here on we assume we are working with a weighted oper-
ation ω which assigns equal weight to each Pixley operation, as well as assigning
weight −1 to each projection (see Lemma 2).

Suppose each Pixley operation is assigned weight a < 1 by ω, so at least one of
Mjrty and Mnrty is assigned positive weight. We observe that fi(f1, f2, f3) = ei
for each i = 1, 2, 3. Moreover, Mjrty(f1, f2, f3) = Mnrty and Mnrty(f1, f2, f3) =
Mjrty. Thus, the weighted operation ω + aω[f1, f2, f3] is non-zero and assigns
weight 0 to each Pixley operation.

Next, suppose each Pixley operation is assigned weight 1 by ω. Let μ1 =
ω[e1, e2, f1]. Since f1(e1, e2, f1) = Mjrty, f2(e1, e2, f1) = e1 and f3(e1, e2, f1) =
e2, we have that μ1 assigns weight −1 to f1, +1 to Mjrty, and is 0 everywhere
else. For i = 2, 3, we can obtain μi, which assigns weight −1 to fi and +1
to Mjrty, by a similar translation. Then the weighted operation obtained as
ω + μ1 + μ2 + μ3 will be equal to {(3,Mjrty)}.

Thus, the weighted clone generated by any minimal ternary weighted oper-
ation will contain a non-zero ternary weighted operation assigning weight 0 to
all Pixley operations. Hence, when searching for minimal ternary weighted op-
erations other than ωMnrty and ωMjrty, we can restrict our attention to weighted
operations of the form ωa = {(a,Mnrty), (3 − a,Mjrty)} (0 < a < 3). We will
now show that ωa is minimal if and only if a = 1.

Let ω = ω1. Using Proposition 1, we can check that every ternary weighted
operation in wClone(ω) which assigns positive weight to Mnrty and Mjrty only
is of the form cω for some c > 0. Since there are no semi-projections, we can
translate any non-zero μ ∈ wClone(k)(ω) by a k-tuple of ternary projections to
obtain ternary non-zero μ′ ∈ wClone(ω). We have shown that we can obtain
some non-zero μ′′ ∈ wClone(μ′) which assigns positive weight to Mnrty and
Mjrty only. Since μ′′ must be in wClone(ω), it follows that μ′′ = cω, for some
c > 0, so we can obtain ω by scaling. Hence, ω is a minimal weighted operation.
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Suppose a < 1. Let μi = ωa + a
1−aωa[ei, ei,Mnrty] (i ∈ {1, 2, 3}). It is easy to

check that μi(ei) = −1+a, μi(ej) = −1 (j �= i), μi(Mjrty) = 3−a, and μi(f) = 0
everywhere else. Then, as in the binary case, we can obtain {(3,Mjrty)} by
adding μ1, μ2, and μ3 and applying a suitable scaling. Similarly, if a > 1 we
can show {(3,Mnrty)} ∈ wClone(ωa). In both cases, we have found non-zero
μ ∈ wClone(ωa) such that ωa /∈ wClone(μ), so ωa cannot be minimal. ��

We remark that the proof of maximality of ω〈min,max〉 in Theorem 9 actually
proves a stronger result: minimality of ω〈min,max〉 over arbitrary distributive lat-
tices with min and max being the lattice meet and join operations.

6 Conclusions

We have studied minimal weighted clones using the algebraic theory for valued
constraint languages developed by Cohen et al. [14]. Thus we have shown that
the general theory from [14] can be used to answer interesting questions on the
complexity of valued constraint languages.

We have shown an analogue of Rosenberg’s classification of minimal clones
for weighted clones. Furthermore, we have shown minimality of several weighted
clones whose support clone is generated by a single minimal operation. On the
other hand, we have demonstrated that this is not true in general: there are
minimal operations which give rise to non-minimal weighted clones. We have
conjectured that minimal tractable operations give rise to minimal weighted
clones. Finally, we have classified all Boolean weighted clones. Consequently, we
have been able to determine all maximal Boolean valued constraint languages,
using proofs based on the algebraic characterisation of [11,14]. This has been
originally proved in [13] using gadgets.

We believe that the techniques presented in this paper will be useful in iden-
tifying new tractable valued constraint languages and proving maximality of
valued constraint languages.
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Abstract. Maxsat is an optimization version of Satisfiability aimed at
finding a truth assignment that maximizes the satisfaction of the theory.
The technique of solving a sequence of SAT decision problems has been
quite successful for solving larger, more industrially focused Maxsat in-
stances, particularly when only a small number of clauses need to be
falsified. The SAT decision problems, however, become more and more
complicated as the minimal number of clauses that must be falsified in-
creases. This can significantly degrade the performance of the approach.
This technique also has more difficulty with the important generalization
where each clause is given a weight: the weights generate SAT decision
problems that are harder for SAT solvers to solve. In this paper we intro-
duce a new Maxsat algorithm that avoids these problems. Our algorithm
also solves a sequence of SAT instances. However, these SAT instances
are always simplifications of the initial Maxsat formula, and thus are
relatively easy for modern SAT solvers. This is accomplished by moving
all of the arithmetic reasoning into a separate hitting set problem which
can then be solved with techniques better suited to numeric reasoning,
e.g., techniques from mathematical programming. As a result the perfor-
mance of our algorithm is unaffected by the addition of clause weights.
Our algorithm can, however, require solving more SAT instances than
previous approaches. Nevertheless, the approach is simpler than previous
methods and displays superior performance on some benchmarks.

1 Introduction

Maxsat is an optimization version of Satisfiability (SAT) that is defined for
formulas expressed in Conjunctive Normal Form (CNF). Whereas SAT tries to
determine whether or not a satisfying truth assignment exists, Maxsat tries
to find a truth assignment that maximizes the satisfaction of the formula. In
particular, if each clause of the CNF formula is given a weight, Maxsat tries to
find a truth assignment that maximizes the sum of the weights of the clauses it
satisfies (or equivalently minimizes the weight of the clauses it falsifies).

Various special cases can be defined. With only unit weights, Maxsat be-
comes the problem of maximizing the number of satisfied clauses. If some of the
clauses must be satisfied (hard clauses) they can be given infinite weight, while
the other clauses are given unit weight indicating that they can be falsified if
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necessary (soft clauses). In this case we have a Partial Maxsat problem. If
we allow non-unit weights, but no hard clauses, we have a Weighted Maxsat

problem. Finally, with non-unit weights and hard clauses we have a Weighted
Partial Maxsat problem.

In this paper we provide a new approach for solving Maxsat problems that
can be applied to any of these special cases. Our algorithm uses the approach
of solving Maxsat by solving a sequence of SAT tests. Recent international
Maxsat Evaluations have provided empirical evidence that the sequence of SAT
tests approach tends to be more effective on the larger more industrially focused
problems used in the evaluation. In contrast, the competitive approach of using
branch and bound search seems to traverse its search space too slowly to tackle
these larger problems effectively.

Previous works employing a sequence of SAT tests have used various
techniques to convert the optimization problem into a sequence of decision prob-
lems, each of which is then encoded as a SAT problem and solved with a modern
SAT solver. Letting W be the sum of the weights of the soft clauses, the typ-
ical decision problem used is “are W − wt soft clauses along with all of the
hard clauses satisfiable.” Typically wt starts off at zero and is increased to the
next feasible value every time the answer to the decision problem is no. The
solution to the Maxsat problem is the smallest value of wt for which the de-
cision problem becomes satisfiable. This approach is very successful when only
a few decision problems must be posed before a solution is found. However,
each SAT decision problem is harder to solve than the previous, and perfor-
mance can be significantly degraded as more and more decision problems must
be solved.

In our approach, on the other hand, we utilize a sequence of SAT problems
that become progressively easier. In particular, the SAT solver is only ever asked
to solve problems that are composed of a subset of the clauses of the original
Maxsat problem. Our approach moves the arithmetic optimization component
of the Maxsat problem off into a different solver that is more suitable for such
reasoning. Modern SAT solvers are based on resolution, and hence can have
difficulties with inferences that require counting and other arithmetic reasoning.
By separating the two components of satisfiability and optimization present in
Maxsat problems our approach can more effectively utilize the strengths of
a SAT solver as well as exploiting the strengths of other solvers, like integer
programming solvers, that are known to provide powerful arithmetic reasoning.

In the rest of the paper we first present some necessary background. After this
we prove a simple theorem from which we obtain our new algorithm, prove its
correctness, and then provide some further insights which allow us to improve
our algorithm. The algorithm we present is very simple, but there are some issues
that arise when implementing it. We discuss some of these next, followed by a
discussion of the most closely related work. We then present various empirical
results demonstrating that our approach is viable, and finally we close with some
conclusions.
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2 Background

A propositional formula in CNF is a conjunction of clauses, each of which is
a disjunction of literals, each of which is a propositional variable or the nega-
tion of a propositional variable. Given a CNF formula a truth assignment is an
assignment of true or false to all of the propositional variables in the formula.

A Maxsat problem is specified by a CNF formula F along with a real valued
weight for every clause in the formula (previous works have often required the
weights to be integer but we do not require such restrictions in our approach).
Let wt(c) denote the weight of clause c. We require that wt(c) > 0 for every
clause. (Clauses with weight zero can be removed from F without impact).

Some clauses might be hard clauses, indicated by them having infinite weight.
Clauses with finite weight are called soft clauses. We use hard(F) to indicate the
hard clauses of F and soft(F) the soft clauses. Note that F = hard(F)∪soft(F).

We define the function cost as follows: (a) if H is a set of clauses then cost(H)
is the sum of the clause weights in H (cost(H) =

∑
c∈H wt(c)); and (b) if π is a

truth assignment to the variables in F then cost(π) is the sum of the weights of
the clauses falsified by π (

∑
{c | π �|=c} wt(c)).

A solution to F is a truth assignment π to the variables of F with minimum
cost. (Equivalently π maximizes the sum of the weights of the satisfied clauses).
We let mincost(F) denote the cost of a solution to F .

For simplicity, in our formal results we will assume that hard(F) is satisfiable
and that F is unsatisfiable. It is straightforward to extend our formal results to
deal with these corner cases, but doing so is a distraction from the core ideas.
Furthermore, from a practical point of view both conditions can be easily tested
with a SAT solver and if either is violated we immediately know mincost(F): if
hard(F) is unsatisfiable then mincost(F) = ∞ and any truth assignment is a
“solution”; and if F is satisfiable then mincost(F) = 0 and the SAT solution is
also an Maxsat solution.

A core κ for a Maxsat formula F is a subset of soft(F) such that κ∪hard(F)
is unsatisfiable. That is, all truth assignments falsify at least one clause of κ ∪
hard(F). Cores can be fairly easily extracted from modern SAT solvers.

Given a set of cores K a hitting set, hs , of K is a set of soft clauses such
that for all κ ∈ K we have that hs ∩ κ �= ∅. Since every core κ is a set of soft
clauses it is not restrictive to also force hs to be a set of soft clauses. We say
that hs is a minimum cost hitting set of K if it is (a) a hitting set and (b)
cost(hs) ≤ cost(H) for every other hitting set H of K.

There have been two main approaches to building Maxsat solvers. The first
approach is to utilize the logical structure of the CNF input to enable the com-
putation of lower-bounds during a branch and bound search, e.g., [7,11]. The
second approach is to reduce the problem to solving a sequence of SAT prob-
lems. In previous work (see Section 4) these SAT problems typically encode the
decision problem: “is mincost(F) = k.” Starting with k = 0, when the answer
from the SAT solver is no (i.e., the formula is unsatisfiable), the next lowest pos-
sible value k+ for k is computed from the core returned by the SAT solver. The
next SAT problem then encodes the decision problem “is mincost(F) = k+”.
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Recent Maxsat Evaluations [3] have indicated that these two approaches have
different coverage. That is, on some problems the branch and bound approach is
significantly better, while on other problems the sequence of SAT problems ap-
proach is significantly better. In previous work we had investigated using clause
learning to improve the lower bounds computed by a branch and bound solver
[5]. In working to improve the performance of this lower bounding technique,
related ideas were uncovered that lead to a new approach to solving Maxsat

using a sequence of SAT problems. Since this approach was likely to solve a dif-
ferent set of problems than our branch and bound solver we implemented these
ideas in a new solver. This paper reports on our new approach.

3 Solving Maxsat with Simpler SAT Instances

The approach we present in this paper involves solving Maxsat by solving a
sequence of SAT problems. In contrast to prior approaches, however, the SAT
problems we need to solve become simpler rather than more complex. In partic-
ular, the various encodings of the decision problem mincost(F) = k that have
been used in previous work involve an increasing amount of arithmetic reasoning
or involve increasing the size of the theory. For example, in the recent approach
of [2] the decision problems contain an increasing number of pseudo-boolean
constraints (linear constraints over boolean variables). Counting and arithmetic
reasoning is often difficult for a SAT solver since such solvers are based on reso-
lution. There are a number of known examples, e.g., the Pigeon Hole Principle,
where resolution requires an exponential number of steps to reach a conclusion
that can be quickly deduced by, e.g., reasoning directly with linear equations.

In our approach we split the problem into two parts. In one part we compute
minimum cost hitting sets, while in the other part we test the satisfiability of
subsets of the original problem. In this way we move the arithmetic reasoning
into the hitting set solver, allowing the SAT solver to deal with only the logi-
cal/satisfiability structure of the original problem. Furthermore, the sequence of
satisfiability problems that have to be solved can only become easier. However,
the hitting set computations can and do become harder. Our thesis is that by
splitting the problem in this manner we can more effectively exploit both the
strengths of modern SAT solvers as well the strengths of solvers that are effec-
tive at performing the arithmetic reasoning required, e.g., integer programming
solvers like CPLEX. Our empirical results provide some evidence in support of
our thesis, but also indicate that there is a rich design space in exactly how best
to perform this split between satisfiability testing and hitting set computations
that remains to be more fully explored.

Our approach is based on a simple theorem.

Theorem 1. If K is a set of cores for the Maxsat problem F , hs is a mini-
mum cost hitting set of K, and π is a truth assignment satisfying F − hs then
mincost(F) = cost(π) = cost(hs).

Proof: mincost(F) ≤ cost(π) as mincost(F) is the minimum over all possible
truth assignments. cost(π) ≤ cost(hs) as the clauses π falsifies are a subset of hs
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Algorithm 1. Algorithm 1 for Solving Maxsat

Maxsat-solver-1
(F)1

K = ∅2

while true do3

hs = FindMinCostHittingSet(K)4

(sat?,κ) = SatSolver(F − hs)5

; // If SAT, κ contains the satisfying truth assignment.
; // If UNSAT, κ contains an UNSAT core.
if sat? then6

break ; // Exit While Loop7

// Add new core to set of cores
K = K ∪ {κ}8

return
(
κ, cost(κ)

)
9

(π satisfies all clauses in F−hs). On the other hand mincost(F) ≥ cost(hs). Any
truth assignment must falsify at least one clause from every core κ ∈ K. Thus
for any truth assignment τ , cost(τ) must include at least the cost of a hitting set
of K. This cannot be any less than cost(hs) which has minimum cost.

Theorem 1 immediately yields the simple algorithm for solving Maxsat shown
as Algorithm 1. The algorithm starts off with an empty set of cores K. At each
stage it computes a minimum cost hitting set hs via the function “FindMin-
CostHittingSet” and calls a SAT solver to determine if F − hs is satisfiable. If
it is the SAT solver returns (true, κ) with κ set to a satisfying assignment for
F−hs , otherwise the SAT solver returns (false, κ) with κ set to a core of F−hs .
New cores are added to K, while satisfying assignments cause the algorithm to
terminate.

Observation 1. Algorithm 1 correctly returns a solution to the inputted
Maxsat problem F . That is, it returns a truth assignment κ for F that achieves
mincost(F).

Proof: First we observe that Algorithm 1 only returns when it breaks out of
the while loop, and this occurs only when the current F −hs is satisfiable. Since
in this case hs is a minimum cost hitting set of a set of cores and κ is a truth
assignment satisfying F−hs, we have by Theorem 1 that cost(κ) = mincost(F).
This shows that the algorithm is sound.

Second, to show that the algorithm is complete we simply need to observe that
it must terminate. Notice, that since F is a finite set of clauses, the set of cores
of F must also be finite. Each iteration of the while loop computes a new core
of F and adds it to K. This core cannot be the same as any previous core, hence
the while loop must eventually terminate. Consider the hitting set hs computed
at line 4 prior to the computation of κ at line 5. κ ∩ hs = ∅ since κ ⊆ (F − hs).
However, for any previously computed core κ− we have that κ− ∩ hs �= ∅ since
hs is a hitting set of all previous cores. Hence for all previous cores κ− we have
that κ �= κ−.
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3.1 Realizable Hitting Sets

In this section we show that the hitting sets considered by Algorithm 1 can be
further constrained. This can benefit both the time spent calculating the hitting
sets, and the overall number of iterations or SAT solving episodes.

Definition 1. A hitting set H (i.e., a set of clauses) is realizable in a Maxsat

problem F if there exists a truth assignment τ such that (a) for each clause
c ∈ H, τ �|= c, and (b) τ |= hard(F). Otherwise H is said to be unrealizable.

An example of an unrealizable hitting set is one that contains clauses c1, c2 with
a variable x ∈ c1 and ¬x ∈ c2, since all truth assignments satisfy either c1 or c2.
Next, we show that Algorithm 1 does not gain anything by encountering such
unrealizable minimum hitting sets.

Corollary 1 (Of Theorem 1). Let K be a set of cores of F and hs be a
minimum cost hitting set of K. If hs is unrealizable, then F −hs is unsatisfiable.

Proof: For contradiction, suppose π |= F − hs . Then π |= hard(F) and
since hs is unrealizable, π satisfies some clause in hs . So Fπ the set of clauses
falsified by π (a) is a strict subset of hs and (b) is a hitting set of K. But then
cost(Fπ) < cost(hs) which contradicts the fact that hs is a minimum cost hitting
set of K.

Corollary 1 means that any time line 5 of Algorithm 1 returns an unrealizable
hs , at least one more iteration of the while loop will be required. Yet in fact,
there might be enough information already in the set of cores K to terminate
right away. To see this, remember the aim in solving Maxsat is to find a truth
assignment of minimum cost. Let π be any truth assignment and let Fπ =
{c|π �|= c} be the set of clauses falsified by π. Given a set of cores K we know
that π must falsify at least one clause from each core in K. This means that
we can partition Fπ into two sets, hsπ a hitting set of K, and Fπ − hsπ the
remaining falsified clauses. This also partitions the cost of π into two components,
cost(π) = cost(hsπ) + cost(Fπ − hsπ).

Theorem 1 says that if cost(hsπ) is minimum (less than or equal to the cost of
any hitting set of K), and cost(Fπ−hsπ) is zero (i.e., Fπ−hsπ = ∅), then π must
be a minimum cost truth assignment as no other truth assignment can achieve a
lower cost. Looking more closely, however, we can see that the first condition is
more stringent than necessary. We do not need hsπ to be a minimum cost hitting
set of K, we only need that cost(hsπ) ≤ cost(hsτ ) for all other truth assignments
τ . We will then have that cost(π) = cost(hsπ)+0 ≤ cost(hsτ )+cost(Fτ−hsτ ) =
cost(τ) for all other truth assignments τ . That is, π will be a solution. Going
even further we see that we do not need to consider all truth assignments τ .
If τ falsifies a hard clause of F it will immediately have cost ∞, and thus will
necessarily be at least as expensive as π.

Realizable hitting sets are relevant because the minimum cost hitting set of
K might not be realizable. In particular, given the current set of cores K in
Algorithm 1, there might be some truth assignment π which satisfies F − hsπ
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Algorithm 2. Algorithm 2 for Solving Maxsat

Maxsat-solver-2
(F , COND

)
1

; // COND must be satisfied by all hitting sets realizable in F .
Identical to Algorithm 1 except we replace
hs = FindMinCostHittingSet(K)
by
hs = FindMinCostHittingSetSatisfyingCondition(K,COND )

(i.e., Fπ − hsπ = ∅) and for which cost(hsπ) ≤ cost(hsτ ) for any other truth
assignment τ where τ |= hard(F). This means that (a) hsπ is a minimum cost
realizable hitting set of K, (b) if we pass F −hsπ to the SAT solver it will return
π (or some equally good truth assignment) as a satisfying assignment, and (c)
we have solved F .

However, hsπ might not be a minimum cost hitting set of K. There might be
another hitting set hs that has minimum cost that is lower than the cost of hsπ,
but is unrealizable. In Algorithm 1, hs would be selected and the SAT solver
invoked with F − hs . This will necessarily cause another core to be returned,
and Algorithm 1 will then have to go through another iteration.

Corollary 1 indicates that we can improve on Theorem 1 and Algorithm 1
by computing minimum cost realizable hitting sets rather than unconstrained
minimum cost hitting sets. Realizability requires a SAT test so it can be ex-
pensive. Hence, we improve Theorem 1 and Algorithm 1 in a more general way.
In particular, we can search for a minimum cost hitting set that satisfies any
condition that is satisfied by all realizable hitting sets. For example, realizability
is one such condition. A simpler condition that is easy to test is to ensure that
no clauses in the hitting set contain conflicting literals: this condition is also
satisfied by all realizable hitting sets.

Theorem 2. If K is a set of cores for the Maxsat problem F , COND is a
condition satisfied by all hitting sets that are realizable in F , hs is a hitting
set of K that satisfies COND and has minimum cost among all hitting sets
of K satisfying COND, and π is a truth assignment satisfying F − hs then
mincost(F) = cost(π) = cost(hs).

Proof: mincost(F) ≤ cost(π) ≤ cost(hs) by exactly the same argument as for
Theorem 1. Furthermore mincost(F) ≥ cost(hs). Any truth assignment that
satisfies hard(F) must falsify a hitting set of K that satisfies COND . Thus for
any truth assignment τ , cost(τ) must include at least the cost of a hitting set
of K that is at least as great as cost(hs): cost(hs) is minimum among all hitting
sets of K satisfying COND .

The improved version of Algorithm 1 is shown as Algorithm 2. Algorithm 2 takes
as input a condition satisfied by all hitting sets that are realizable in F . It now
searches for a minimum cost hitting set that satisfies this condition. This can
potentially cut down the number of iterations of the while loop, reducing the
number of cores that have to be generated.
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Observation 2. Algorithm 2 correctly returns a solution to the inputted
Maxsat problem F .

Proof: The proof that Algorithm 1 is correct applies using Theorem 2 in place
of Theorem 1.

Finally, we close this section with a brief comment about complexity. The worst
case complexity of solving Maxsat with a branch and bound solver is 2O(n)

where n is the number of variables. However, the worst case complexity of our
algorithm is worse. There are 2O(m) possible cores where m is the number of
clauses. This provides a worst case bound on the number of iterations executed
in the algorithm. Each iteration requires solving a SAT problem of 2O(n) and
a hitting set problem of 2O(m) (one has to examine sets of clauses to find a
hitting set). This leaves us with 2O(m) × 2O(m) = 2O(m) as the worst case com-
plexity. Typically the number of clauses m is much larger than the number of
variables n.

However, from a practical point of view we only expect our algorithm to work
well when the number of cores it has to compute is fairly small. The empirical
question is whether or not this tends to occur on problems that arise in various
applications.

3.2 Implementation Techniques

There are two issues to be addressed in implementing our algorithm. First is the
use of a SAT solver to compute new cores, and second is the computation of
minimum cost hitting sets.

Extracting Cores. We use MiniSat-2.0 to compute cores and satisfying assign-
ments. There is a simple trick that can be employed in MiniSat to make extract-
ing cores easy. Following previous work we add a unique “relaxation variable”
to each clause of soft(F). So soft clause ci becomes ci ∪ {bi} where bi appears
nowhere else in the new theory. The hard clauses of F are unchanged. If bi is set
to true, ci becomes true and imposes no further constraints on the theory. If bi is
set to false, ci is returned to its original state. To solve F − hs we set the b vari-
ables associated with the clauses in hs to true, and all other b variables to false.
These b variable assignments are added as “assumptions” in MiniSat. MiniSat
then solves the remaining problem F − hs and if this is UNSAT it computes a
conflict clause over the assumptions—the set of assumptions that lead to failure.
The true b variables do not impose any constraints so they cannot appear in the
conflict clause. Instead, the conflict claused contains the set of false b variables
that caused UNSAT. The core is simply the set of clauses associated with the b
variables of the computed conflict.

An important factor in the performance of our algorithm is the diversity of the
cores returned by the SAT solver. In the first phase, we compute as many disjoint
cores as possible. The hitting set problems for disjoint cores are easy, and the cost
of the minimum cost hitting set increases at each iteration. Typically, however,
it is necessary to continue beyond this disjoint phase. Nevertheless we want the
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SAT solver to return a core that is as different as possible from the previous cores.
To encourage this to happen we employ the following two techniques in the SAT
solver. (1) Although it can be shown to be sound to retain learnt clauses and
reuse them in subsequent SAT solving calls, we found that doing so reduces the
diversity of the returned core. Hence we removed all previously learnt clauses at
the start of each SAT call. (2) We inverted the VSIDS scores that were computed
during the previous SAT call. The VSIDS score makes the SAT solver branch
on variables appearing most frequently in the learnt clauses of the previous SAT
call. By inverting these scores the SAT solver tends to explore a different part
of the space and tends to find a more diverse new core. Finally, it is also useful
to obtain cores that are as small as possible (such cores are more constraining
so they make the hitting set problem easier to solve). So after computing a core
κ we feed it back into the SAT solver to see if a subset of κ can be detected to
be UNSAT. We continue to do this until κ cannot be minimized any further.

Computing a minimal cost hitting set. We employed two different techniques
for computing minimal cost hitting sets. The first technique is to encode the
problem as an integer linear program (ILP) and invoke an ILP solver to solve it.
In our case we utilized the CPLEX solver. The minimal cost hitting set problem
is the same as the minimum cost set cover problem and standard ILP encodings
exist, e.g., [13]. We used the encoding previously given in [5]. Briefly, for each
clause ci appearing in a core there is a 0/1 variable xi; for each core there is the
constraint that the sum over the xi variables of the clauses it contains is greater
or equal to 1; and the objective is to minimize the sum of wt(ci) × xi. Using
CPLEX worked well, but it is not clear how to solve for minimal cost realizable
hitting sets—to do so would seem to require adding the satisfiability constraints
of the hard clauses to the ILP model, and it is well known that ILP solvers are
not very effective at dealing with these highly disjunctive constraints.

The second approach we used was our own branch and bound hitting set
solver. We utilized a dancing links representation of the hitting set problem [9],
and at each node branched on whether or not a clause was to be included or
excluded from the hitting set. The main advantage of the dancing links repre-
sentation is that it allowed us to simplify the representation after each decision.
We performed two types of simplification. First, we simplified the representa-
tion to account for the decision made (e.g., if we decide to include a clause ci
we could remove all cores that ci hit from the remaining hitting set problem).
These simplifications are well described by Knuth in [9]. Second, we use the
simplifications provided in [14] to further reduce the remaining problem. These
latter simplifications involve two rules (a) if a core κ1 has now become a subset
of another core κ2 we know that in hitting κ1 we must also hit κ2 so κ2 can be
removed; and (b) if a clause c1 now appears in a subset of the cores that another
clause c2 appears in and wt(c1) ≥ wt(c2) we know that we can replace c1 with
c2 in any hitting set so c1 can be removed. These simplifications take time but
overall in our implementation we found that they yielded a net improvement in
solving times.
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We additionally experimented with various lower bounds in the hitting set
solver. In particular, we tried both of the simple to compute lower bounds given
in [5]. Eventually, however, we found that a linear programming relaxation, al-
though more expensive, yielded sufficiently superior bounds so as to improve the
overall solving times. This LP relaxation was simply the current reduced hitting
set problem encoded using the ILP encoding specified above with the integrality
constraints removed. We used CPLEX to solve the LP.

We found that our branch and bound solver did not solve the hitting set
problem as efficiently as CPLEX with the ILP encoding. However, with it we were
able to implement the realizability condition forcing the solver to find a minimum
cost realizable hitting set. This was accomplished by making additional calls to
a SAT solver. At each node of the search tree, we performed the following test.
If H was the set of clauses currently selected by the branch and bound solver to
be in the hitting set, then we applied unit propagation to the theory containing
all of the hard clauses of F along with the negation of every literal in every
clause in H . If unit propagation revealed an inconsistency, we backtracked from
the node since it could not lead to a realizable hitting set. Whenever branch and
bound found a better-cost hitting set, we used the complete SAT test to check
if it was realizable. Enforcing realizability also forced us to turn off the second
simplification rule given above: removing a clause ci because it is subsumed by
another clause cj is no longer valid as ci rather than cj might be needed for the
hitting set to be realizable.

With the addition of realizability we found that our branch and bound hitting
set solver was much more competitive with CPLEX on some problems. There are
still a number of other improvements to our branch and bound that remain to be
tested, including OR-Decomposition [8], caching, and alternate lower bounding
techniques like Lagrangian relaxation [15].

4 Related Work

The main prior works utilizing a sequence of SAT tests to solve Maxsat began
with the work of Fu and Malik [6], and include SAT4J [4], WPM1, PM2, and
WPM2 [1,2], and Msuncore [12]. As mentioned above there has also been work
on branch and bound based solvers but such solvers are not directly comparable
with the sequence of SAT solvers: each type of solver is best suited for different
types of problems.

All of the sequence of SAT solvers utilize relaxation variables added to the
soft clauses of F as described in Section 3.2, along with arithmetic constraints
on which of these relaxation variables can true. Let soft(F) = {c1, . . . , ck} and
the corresponding relaxation variables be {b1, . . . , bk}. SAT4J adds to F the
constraint

∑i=k
i=1 wt(ci)bi < UB encoded in CNF where UB is the current upper

bound on mincost(F). If this theory (with the numeric constraint encoded into
SAT) is satisfiable UB is decreased and satisfiability retested until the theory
transitions from SAT to UNSAT.

The other algorithms, like our approach, work upwards from UNSAT to SAT.
And like SAT4J they add arithmetic constraints on the b variables as more
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cores are discovered. PM2 works only with unweighted clauses. At each iteration
that produces a core, PM2 increments the upper bound on the total number
of b variables that can be true. PM2 also uses the cores to derive lower bounds
on different subsets of b variables. In the case of WPM2, each SAT test that
returns UNSAT yields a core. This core is widened to include all previous cores
it intersected with, and then an arithmetic constraint is added saying that the
sum of the b variables in the widened core must have an increased weight of
true b variables. Simultaneously another arithmetic constraint is added placing
an upper bound on the weight of true b variables in the widened core. These
constraints are formulated in such a manner that when the theory transitions
from UNSAT to SAT, mincost(F) has been computed.

The arithmetic constraints used in WPM1 and Msuncore are simpler. How-
ever, the theory is becoming more complex as the approach involves duplicating
clauses. In particular, all of the clauses of the discovered core are duplicated. One
copy gets a new b variable and a clause weight equal to the minimum weight
clause of the core, while the other copy has the same weight subtracted from it.
Finally, a new constraint is added to make the new b variables sum to one.

In contrast to these approaches the approach we present here involves a se-
quence of simpler SAT problems. There are no arithmetic constraints added to
the SAT problem and no clauses are duplicated. Instead, the arithmetic con-
straints specifying that at least one clause from every core needs to be falsified
are dealt with directly by the minimum hitting set solver. In addition, none of
the previous approaches have looked at the issue of making sure that the relaxed
clauses (i.e., the clauses with turned on b variables) are realizable.

Another closely related work is [5]. Although this work was focused on a
branch and bound method, it also utilized the deep connection between hitting
sets and Maxsat solutions that we were able to further exploit here.

5 Empirical Results

We investigated the performance of our proposed algorithms on a variety of
industrial and crafted instances, covering all weight categories: unweighted (MS),
partial (PMS), weighted (WMS) and weighted partial (WPMS) Maxsat. Our
results suggest that our approach can solve 17 problems that have not been
solved before, and can reasonably handle a variety of Maxsat problems. We
also present results on problems with diverse weights, to further illustrate the
advantages of our approach.

We ran experiments with all available Maxsat solvers that use a sequence
of SAT problem approach: Msuncore, WBO [12], PM2, WPM1, WPM2 [1,2],
SAT4J [4], and Qmaxsat [10].

In order to evaluate the effectiveness of our approach on industrial instances,
we ran tests on all 1034 unsatisfiable Industrial instances from the 2009 Maxsat

Evaluation [3], as well as the 116 unsatisfiable WMS instances from the Crafted
category. All experiments were conducted with a 1200 second timeout and 2.5GB
memory limit, on 2.6GHz AMD Opteron 2535 processors.
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In Table 1, we report the number of instances solved and the total runtime
on solved instances, by benchmark family. Results are shown for SAT4J, WPM1
and WPM2, since these three solvers represent all existing algorithms that use
a sequence of SAT approach and can handle weighted clauses (WPM1 solved
more instances overall than Msuncore and WBO). The last two columns show
our results for a version of our solver that implements Algorithm 1 and uses
CPLEX to solve the ILP formulation of the hitting set problem. Although we
don’t solve the most problems overall, the families where we do perform best
are highlighted in bold. In general, Algorithm 2 solved fewer problems than
Algorithm 1 so its results are omitted from this table.

However, there were four benchmark families in which enforcing the realiz-
ability condition paid off. In particular, Algorithm 2 solved 44 instances that
Algorithm 1 could not solve. These instances are shown in Table 2, which lists
the number of instances solved, their average optimum, the average number of
iterations Algorithm 1 performed before the timeout, and the number of iter-
ations and runtime for Algorithm 2. We observe that the number of iterations
that Algorithm 2 requires to solve the problem is usually significantly fewer than
Algorithm 1 performs. This demonstrates that constraining the hitting sets to
be realizable can reduce the number of iterations, on some problems.

Table 1. The number of instances solved, and total runtime on solved instances for
the 2009 Maxsat Evaluation industrial and WMS crafted instances

SAT4J WPM1 WPM2 Alg1:CPLEX
Family # # Time # Time # Time # Time

ms/CirDeb 9 7 600 9 178 8 1051 9 395

ms/Sean 108 27 2890 86 6952 73 7202 73 6775

pms/bcp-fir 59 10 38 55 1470 48 2379 21 1873

pms/bcp-simp 138 132 415 131 796 137 1272 131 1326

pms/bcp-SU 38 9 591 13 1596 21 5299 19 3287

pms/bcp-msp 148 96 698 24 731 69 3282 5 2085

pms/bcp-mtg 215 199 1280 181 2651 215 172 102 2384

pms/bcp-syn 74 24 2851 33 731 34 511 60 2761

pms/CirTrace 4 4 2013 0 0 4 1193 0 0

pms/HapAsbly 6 0 0 2 771 5 143 5 85

pms/pbo-logenc 128 128 4229 72 5535 72 8799 78 856

pms/pbo-rtg 15 15 3236 15 16 15 131 14 453

pms/PROT 12 3 876 1 22 3 486 1 9

wpms/up-10 20 20 71 20 109 20 525 20 62

wpms/up-20 20 20 74 20 119 20 601 20 78

wpms/up-30 20 20 77 20 124 20 658 20 146

wpms/up-40 20 20 76 20 134 20 731 20 94

wms/KeXu 34 8 3774 1 395 16 1978 10 1342

wms/RAM 15 4 186 2 326 2 208 1 2

wms/CUT-DIM 62 2 0 4 0 3 0 4 847

wms/CUT-SPIN 5 1 7 0 0 0 0 1 132

Total 1150 749 23990 709 22665 805 36631 614 25002
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Table 2. Results on instances Algorithm 2 can solve within 1200 s but Algorithm 1
cannot

Avg Alg1:CPLEX Alg2:B&B
Family # OPT Iter Iter Time

ms/Sean 4 1 13 67 434

pms/bcp-msp 26 99 460 121 204

pms/bcp-mtg 13 8 2198 757 258

pms/bcp-syn 1 6 80 53 295

Table 3. Detailed results on newly solved instances, from the industrial PMS bcp-syn
family. ‘-’ in the Time columns indicates timeout.

Alg1:CPLEX Alg1:B&B Alg2:B&B
Instance OPT Iter |Core| MxN HS Time Iter Nodes HS Time Iter Nodes HS Time

saucier.r 6 80 2885 40x2167 15 - 3 1195 - 53 5 5 295

1 1 10 15 10 89 12 44x77 0 26 86 10 0 40 85 11 0 39

1 1 10 10 12 95 10 47x75 0 44 93 10 0 78 93 12 1 117

300 10 20 17 96 14 48x147 1 148 94 14 1 142 97 17 1 152

300 10 14 19 93 11 46x130 0 35 89 12 0 46 88 16 0 37

300 10 15 19 99 12 49x144 0 62 95 13 1 106 96 17 1 134

300 10 10 21 95 9 47x119 0 13 95 14 0 47 95 18 0 42

ex5.r 37 285 28 132x294 0 116 281 24 4 1187 260 46 5 -

ex5.pi 65 304 25 137x267 0 72 301 23 3 924 271 50 2 511

pdc.r 94 413 10 176x212 0 14 408 19 0 99 389 86 1 537

test1.r 110 278 6 119x176 0 3 277 9 0 17 271 85 0 67

rot.b 115 626 23 288x453 0 304 363 40 4 - 345 91 4 -

bench1.pi 121 330 8 149x290 0 25 331 28 1 298 328 113 1 264

max1024.r 245 747 5 323x377 0 153 734 28 1 1016 635 179 2 -

max1024.pi 259 724 5 310x358 0 200 720 25 2 - 663 187 2 -

prom2.r 278 935 6 385x498 0 61 968 21 0 717 733 225 2 -

prom2.pi 287 914 6 372x484 0 40 966 26 1 846 747 249 2 -

Average 100 364 180 159x368 1 82 347 18 71 397 308 83 2 200

In Table 3 we present more detailed results on 17 instances amoung those in
Table 1. These were selected based on the fact that none of the competing solvers
were able to solve them, and furthermore, they weren’t solved by any other
solver in the 2009 and 2010 Maxsat Evaluations. We report results of using
Algorithms 1 and 2 with our B&B solver for the hitting set problem, as well as
Algorithm 1 with CPLEX for the hitting set. For each version of our solver, and
each instance, we list the number of iterations (i.e. SAT episodes), the average
time to solve the hitting set problems (columns ‘HS’), and the total runtime.
We also report some information about the size of the hitting set problems
encountered. Column ‘|Core|’ reports the average number of clauses in the cores.
Column ‘MxN’ reports the average dimensions of the hitting set problem given
to CPLEX after the simplification rules have been applied. The ‘Nodes’ columns
give the average number of nodes searched by B&B while solving the hitting
set problems. The time the SAT solver takes to generate each core is always
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Table 4. The number of iterations and runtimes (s) for an industrial WPMS instance
as the number k of distinct weights is increased. ‘-’ indicates failure to solve within
1200 s.

SAT4J WPM1 WPM2 WBO Alg1:CPLEX
k Opt Iter Time Iter Time Iter Time Iter Time Iter Time

1 101 1 3 101 2 102 13 80 4 199 4

2 149 1 - 112 3 133 16 80 4 191 3

4 250 1 - 122 3 140 17 79 4 227 3

8 441 1 - 128 4 163 20 80 2 190 2

10 554 2 - 129 4 175 24 80 4 193 3

16 750 1 - 125 5 3751 - 80 3 161 2

32 1621 3 - 127 7 3066 - 79 2 218 4

64 2857 1 - 126 8 3104 - 80 4 172 3

100 4667 1 - 122 16 95 - 80 4 247 5

128 5994 1 - 126 17 3900 - 79 3 192 2

1000 47187 1 - 128 125 1644 - 80 2 193 3

10000 480011 4 763 127 1069 3074 - 80 3 182 2

100000 5057882 1 - 47 - 3108 - 80 4 184 3

less than 0.02s, so this is not included in the table. Our algorithms seem to be
particularly suited to these problems. All three versions of our solver do well,
whereas all previous Maxsat methods fail. This is somewhat surprising since
all of the instances are of the PMS type, with no clause weights. However, most
of these instances have quite large optimums and therefore require many clauses
to be relaxed. This is challenging for prior sequence of SAT approaches, even
though the cores of the original Maxsat theory are quite small. Our approach
is able to succeed on these instances because it better exploits the SAT solver’s
ability to very quickly generate many cores of the original theory.

Sequence of SAT solvers are well suited to industrial problems, which are very
large but easily refuted by existing SAT solvers. However, their performance can
be adversely affected by the distribution of weights on the soft clauses. At the
moment, most of the industrial WPMS benchmark problems have a very small
number of distinct weight values. Many real-world applications will require a
greater diversity of weights.

In order to investigate our solver’s performance on problems with diverse
weights, we created a new set of WPMS instances by increasing the diversity of
weights on an existing benchmark instance. We selected an industrial problem
that is easy for sequence of SAT solvers, the Linux Upgradeability family in the
WPMS Industrial category of the 2009 Max-SAT Evaluation. Note that all in-
stances in this family already have the same underlying CNF, just different weights.
We generated 13 new instances for an increasing number k ∈ {20, 21, ..., 26} ∪
{101, 102, ..., 106} of distinct weights. Given k, the weight for each soft clause was
randomly chosen (with replacement) from the set {1, 2, ..., k}. The number of it-
erations and the runtime on each instance is shown in Table 4. We see that WBO
and our solver are immune to this type of weight diversification. Their number of
SAT solving episodes and their runtimes remain steady as the number of distinct
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weights is increased. Although the number of iterations required by WPM1 also
doesn’t increase with k, the runtimes do increase. We observe that both the num-
ber of iterations required, and the runtimes increase significantly for WPM2.
SAT4J also has difficulty with these problems.

6 Conclusion

We have presented a new approach to solving Maxsat via a sequence of SAT
problems. We proposed to separate the arithmetic reasoning from the satisfia-
bility testing, allowing the sequence of SAT problems to be simpler rather than
more difficult as in previous approaches. The new technique is competitive with
previous solvers, and is able to solve some problems previous approaches could
not solve. It is also a very simple approach that opens the door for many future
improvements.
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Abstract. Many cumulative problems are such that the horizon is fixed
and cannot be delayed. In this situation, it often occurs that all the
activities cannot be scheduled without exceeding the capacity at some
points in time. Moreover, this capacity is not necessarily always the same
during the scheduling period. This article introduces a new constraint for
solving this class of problems. We adapt two filtering algorithms to our
context: Sweep and P. Viĺım’s Edge-Finding algorithm. We emphasize
that in some problems violations are imposed. We design a new filtering
procedure specific to this kind of events. We introduce a search heuristic
specific to our constraint. We successfully experiment our constraint.

1 Introduction

Scheduling problems consist of ordering activities. In cumulative scheduling, each
activity has a duration and requires for its execution the availability of a certain
amount of a renewable resource, its consumption (or capacity demand). Usually
the objective is to minimize the horizon (maximum due date of an activity in the
schedule), while at any point in time the cumulated consumption of activities
should not exceed a limit on the available resource, the capacity.

However, many industrial problems require of their activities to be scheduled
within a given time window, that is, the horizon is fixed and cannot be delayed.
In this situation, it may occur that all the activities cannot be scheduled without
exceeding the capacity at some points in time. To obtain a solution, exceeds can
be tolerated under a certain limit provided operational rules that guarantee
the practical feasibility are satisfied. Furthermore, in some problems the time
window is partitioned: the capacity is not the same for each interval of the
partition. Figure 1 depicts such a situation with overloads.

We introduce a new constraint, SoftCumulative, which extends the work
presented in [9] to consider overloaded cumulative problems where different local
capacities are defined for disjoint intervals of time. Several violation measures
can be used for quantifying exceeds of local capacities as well as for computing
the global objective value: one may wish to minimize the highest overload, or to
minimize the sum of overloaded areas.
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c© Springer-Verlag Berlin Heidelberg 2011



Filtering Algorithms for Discrete Cumulative Problems 241

Three intervals with capacities 3, 2 and 3

t=mt=0 1 2 3 4 5 6 7 8

Over−loads of capacity

Fixed horizon

Fig. 1. A cumulative problem with a fixed horizon (m = 9) and 3 intervals with
capacities respectively equal to 3, 2 and 3. Each activity requires 2 units of resource.
The first one starts at t = 0 and ends at t = 3, the second one starts at t = 2 and ends
at t = 7, the third one starts at t = 5 and ends at t = 7. There are two overloads of
capacity: one in the first interval at time 2, one in the third interval at times 5 and 6.

We discuss concrete problems that can be encoded using SoftCumulative to-
gether with additional constraints. Some of these constraints may lead to situ-
ations where overloads are imposed at some intervals in time. The need of this
propagation for imposed violations emphasizes that, for solving over-constrained
applications, it is not always sufficient to consider only maximum violation
values.

Our main contribution is a new filtering algorithm associated with SoftCumu-

lative, which also considers imposed overloads, decomposed into three phases.
The first phase is an adaptation of the O(n·log(n)) sweep algorithm for Cumula-

tive [4], where n is the number of activities. In our case, the time complexity also
depends on the number p of user-defined local capacities: O((n+ p) · log(n+ p)).
The advantages of sweep are preserved: the profile is computed and the starting
time variables of activities are pruned in one sweep, and the complexity does
not depend on the number of points in time. To perform an energetic reason-
ing1 complementary to the profile-based reasoning of sweep, in a second phase
we adapt the O(k · n · log(n)) Edge-Finding algorithm of P. Viĺım [13], where
k is the number of distinct capacity demands. In our case, time complexity is
O(p · k ·n · log(n)). In the two phases lower bounds of the objective are included
into pruning conditions without increasing the complexity. The third phase is
a new specific propagation for events on minimum values of variables which
express violations of local capacities, without increasing the time complexity.

Section 2 presents the background for understanding our contributions and
defines SoftCumulative. Section 3 presents some motivating examples. Section 4
describes the filtering algorithm of SoftCumulative. Section 5 presents a new
dedicated search strategy and the experiments we performed using choco [1].

1 Deductions based on the comparison between the consumed and available resource.
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2 Definitions and Notations

We consider a set A of non-preemptive activities, that is, activities which cannot
be interrupted. An activity is defined by some variables. Given a variable x, x
(resp. x) denotes the minimum (resp. maximum) value in its domain D(x).

Definition 1 (Activity). An activity ai ∈ A is defined by four variables: sai
represents its starting point in time; dai, its duration; cai, its completion date
such that cai = sai+dai; and rai ≥ 0, the discrete amount of resource consumed
by ai at any point in time between its start and its completion.

We denote by e(ai) the minimum energy of an activity ai ∈ A, equal to dai ∗
rai. Given Ω ⊆ A, e(Ω) is the minimum energy of Ω, equal to

∑
ai∈Ω e(ai).

We denote mins(Ω) = minai∈Ω(sai), maxs(Ω) = minai∈Ω(sai), minc(Ω) =
maxai∈Ω(cai), maxc(Ω) = maxai∈Ω(cai). The time horizon m is the maximum
possible ending time of activities. We impose ∀ai ∈ A, cai ≤ m. At last, an
instantiation of A is an assignment of all variables defining activities in A.

In CP, cumulative problems can be encoded using the Cumulative con-
straint [2]. We first recall its definition before introducing SoftCumulative.

Definition 2 (Height). Given one resource and an instantiation of a set A
of n activities, at each point in time t the cumulated height ht of the activities
overlapping t is ht =

∑
ai∈A,sai≤t<cai

rai.

Definition 3 (Cumulative). Given one resource with a capacity limited by capa
and an instantiation of a set A of n activities, the Cumulative(A, capa) con-
straint is satisfied iff the two following constraints are both satisfied:

– C1: For each activity ai ∈ A, sai + dai = cai, and
– C2: At each point in time t, ht ≤ capa.

We now define the new SoftCumulative, a constraint representing cumulative
problems with a fixed horizon, cost variables expressing overloads of capacity at
some intervals in time, and an objective variable aggregating the costs.

Definition 4 (SoftCumulative). Consider one resource with a capacity limited
by capa and a set A of n activities such that maxc(A) ≤ m. We define:

– A partition P = [p0, . . . , pk−1] of [0,m) in p consecutive intervals such that
each pj is defined by its start and its end : pj = [spj , epj).

– A sequence of local capacities Loc = [lc0, . . . , lck−1] one-to-one mapped with
P , such that a local capacity lcj ≤ capa is associated with each interval pj.

– A sequence of integer cost variables Cost = [cost0, . . . , costk−1] one-to-one
mapped with P , such that a variable costj is associated with the interval pj.

– An objective variable obj.
– A flag costC ∈ {max , sum} indicating how variables in Cost are computed

(i.e. considering the maximum exceed or the surface on top).
– A flag objC ∈ {max , sum} indicating how the variable obj is computed (i.e.

considering the maximum or the sum of the variables in Cost).
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capa

t=mt=0 1 2 3 4 5 6 7 8

lc0

lc1

lc2

p1 p2p0

Fig. 2. An instance of SoftCumulative representing the problem of Figure 1. If
costC= max, cost0 = 1, cost1 = 0, cost2 = 1 and if objC= max, obj = 1, if objC=
sum, obj = 2. If costC= sum, cost0 = 1, cost1 = 0, cost2 = 2. If objC= max, and if
objC= max, obj = 2, if objC= sum, obj = 3.

Given an instantiation of A, the SoftCumulative(A, capa, P, Loc,
Cost , obj,costC ,objC ) constraint is satisfied iff the four following conditions are
all satisfied:

– C1 and C2 (see Definition 3).
– C3: ∀j ∈ [0, k − 1]: costj = costCt∈pj (max(0, ht − lcj))

– C4: An objective constraint: obj = objCj∈[0,k−1](costj).

Compared to SoftCumulativeSum [9], our constraint splits the time horizon in
different intervals with its own length and capacity. overloads are quantified by
a cost variable on each interval, depending on costC , and an objective variable
aggregating the costs and depending on objC (see Figure 2).

Notation 1. For a given point in time t, pj(t) = [spj(t), epj(t)), costj(t) and
lcj(t) are respectively the interval pj ∈ P , the variable costj ∈ Cost and the local
capacity lcj ∈ Loc such that t ∈ pj.

3 Practical Problems

Cumulative problems with a fixed horizon may involve additional constraints
on variables in Cost , to distinguish solutions having a practical interest from
solutions that will be rejected by the end-user [9]. We discuss two usual cases.

Fair distribution of overloads. In many applications, e.g., time tabling prob-
lems where employees have to perform extra-hours of work to achieve their
activities in overloaded periods, exceeds of local capacities have to be fairly dis-
tributed. This need was highlighted in [11]. Later, several global constraints were
designed for balancing solutions [8,10,12]. For simple cases, classical cardinality
constraints can be used. Using SoftCumulative, one may define a partition on
the set Cost and impose in each class of the partition that the minimum number
of cost variables equal to 0 is strictly positive (see Figure 3).

Smooth cost variations. A frequent requirement consists in limiting the num-
ber of big variations w.r.t. overloads. This can be done by adding on Cost vari-
ables an instance of Smooth(N, tol,Cost) [3], where N is a variable and tol an
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Fig. 3. A solution satisfying additional cardinality constraints on the partition
{(cost0 , cost1 ), (cost2 , cost3 ), (cost4 , cost5 , cost6 )} with costC = max: at least one cost
equal to 0.

integer. It imposes that the number of times that |cost i+1−costi | > tol is equal to
the value of N (i.e. N represents the limit). For example, when a company hires
extra-employees their number should not vary too much from one day to another.
Figure 3 is a solution satisfying both SoftCumulative and Smooth(N, tol,Cost)
with N = 1 and tol = 1. In some applications, imposing primitive constraints of
type |cost i+1 − costi | ≤ tol is convenient.

Overloads lead to violations of capacities and cumulative problems with a fixed
horizon can be viewed as over-constrained problems. In [9], experiments show
that, in over-constrained problems with additional constraints on variables rep-
resenting violations, propagating efficiently additional constraints is mandatory
to solve instances. In the case of fairly distributed solutions, such a propagation
corresponds to events occurring when the maximum value of a cost variable is
reduced. More generally, when solving over-constrained problems, it is admitted
that violations should be minimized and are never imposed [7]. The example
of smooth cost variations contradicts this assumption. Consider the case where
the primitive constraint |cost i+1 − costi | ≤ 1 is imposed. If cost i = 2 then it is
mandatory to have cost i+1 ≥ 1. Therefore, to be efficient in all possible contexts,
the filtering of SoftCumulative should deal with events on minimum values for
variables in Cost . Section 4.5 presents a filtering algorithm dedicated to such
events. Regarding the state of the art, in [5] this kind of propagation is studied
for SoftAllDifferent and SoftAllEqual.

4 Filtering Algorithms

4.1 Background

Sweep for Cumulative The goal is to reduce the domains of start variables
according to the cumulated profile, which is built from compulsory parts.

Definition 5 (Compulsory part [6]). The Compulsory Part cp(ai) of an
activity ai ∈ A is the intersection of all feasible schedules of ai. It is defined by
[sai, cai) (therefore, it is not empty iff sai < cai), and a height equal to rai on
[sai, cai), and null elsewhere.
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Definition 6 (Cumulated profile). The Cumulated Profile CumP is the min-
imum cumulated resource consumption, over time, of all the activities. For a
given point in time t, the height of CumP at t is equal to

∑
ai∈A,t∈[sai,cai)

rai.
That is, the sum of the contributions of all compulsory parts that overlap t.

The sweep algorithm [4] moves a vertical line Δ on the time axis from one
event to the next event. In one sweep, it builds the cumulated profile and prunes
activities in order not to exceed capa. An event corresponds either to the start or
the end of a compulsory part, or to the release date sai of an activity ai ∈ A. All
events are initially computed and sorted in increasing order according to their
date. The position of Δ is δ. At each step of the algorithm, a list ActToPrune
contains the activities to prune.

– Compulsory part events are used for building CumP : All such events at date
δ are used to update the height sumh of the current rectangle in CumP ,
by adding the height if it is the start of a compulsory part or removing the
height otherwise. The first compulsory part event with a date strictly greater
than δ gives the end δ′ of the rectangle, finally denoted by 〈[δ, δ′), sumh〉.

– Events corresponding to release dates sai such that δ ≤ sai < δ′ add some
new candidate activities to prune, according to 〈[δ, δ′), sumh〉 and capa (ac-
tivities overlaping 〈[δ, δ′), sumh〉). They are added to the list ActToPrune.

For each ai ∈ ActToPrune that has no compulsory part in the rectangle
〈[δ, δ′), sumh〉, if its height is greater than capa−sumh then we prune its starting
time so that ai doesn’t overlap the current rectangle of CumP . If cai ≤ δ′ then
ai is removed from ActToPrune. After pruning activities, δ is updated to δ′.

Pruning Rule 1. If ai ∈ ActToPrune has no compulsory part in
〈[δ, δ′), sumh〉 and sumh + rai > capa then ]δ − dai, δ

′) can be removed from
D(sai).

Time complexity of Sweep is O(n · log(n)) where n is the number of activities.

Edge-Finding for Cumulative This section summarizes Viĺım’s edge-finding
two steps algorithm [13]. First, it detects precedences among activities, and then
it prunes starting dates of activities. In both steps, it uses an energetic reasoning:
It compares the resource required by a set of activities in a given interval I =
[a, b) of points in time with the available resource within this interval. This
available resource is given by the capacity capa and the size of the interval.

Definition 7. (Available area). Given an interval in time I = [a, b), we de-
note by Area(a, b) the maximum available resource, equal to (b− a) ∗ capa.

(Energy envelope). Let Ω be a set of activities s.t. Ω ⊆ A. The energy enve-
lope of Ω is: Env(Ω) = maxΘ⊆Ω(Area(0,mins(Θ)) + e(Θ)).

(Precedence). An activity ai ∈ A ends before the end of an activity aj ∈ A iff,
in all solutions cai ≤ caj. It is denoted by the relation ai�aj. It can be extended
to a set of activities Ω: Ω � aj.
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To detect precedences w.r.t. an activity aj , we consider all the activities ai having
a latest completion time cai less than or equal to caj .

Definition 8 (Left Cut). The Left Cut of A by an activity aj ∈ A is a set of
activities such that: LCut(A, aj) = {ai ∈ A, cai ≤ caj}.

GivenΩ ⊆ A (in the algorithm systematically a Left Cut of A by an activity), the
energy envelope is used to compute a lower bound lb(minc(Ω)) for the earliest
completion time minc(Ω) of Ω. From [13], lb(minc(Ω)) =  Env(Ω)/capa!. Once
the energy envelopes are available, it is possible to detect precedences.

Precedence Rule 1. If lb(minc(LCut(A, aj) ∪ {ai})) > caj, then
LCut(A, aj) � ai, which is equivalent to: If Env(LCut(A, aj) ∪ {ai}) >
Area(0, caj), then LCut(A, aj) � ai.

From precedences, Viĺım’s algorithm updates the starting time sai for each activ-
ity that ends necessarily after the end of a set of activitiesΩ. It is based on the no-
tion of competition: Ω competes with ai iff, e(Ω) > Area(mins(Ω),maxc(Ω))−
rai ∗ (maxc(Ω) −mins(Ω)).

Pruning Rule 2. If Ω � ai and Ω competes with ai then [sai, mins(Ω) +⌈
e(Ω)−Area(mins(Ω),maxc(Ω))+rai∗(maxc(Ω)−mins(Ω))

rai

⌉
) can be removed from D(sai).

Viĺım’s algorithm uses a tree data structure to compute the energy envelope
Env(Ω) for a given set Ω ⊆ A, the Θ-tree, leading to an overall time complexity
of O(k · n · log(n)) where k is the number of distinct rai for activities ai in A.

4.2 Filtering from Maximum Costs

Some deductions can be made from events on upper bounds of variables in
Cost . Since interactions with variable obj correspond to classical sum or max
constraints, we focus on the filtering of start variables.

Sweep for SoftCumulative The pruning does not only depend on the capacity
capa, but also on the maximum values of the variables in Cost , and thus on
costC . The notion of cumulative profile is the same. We add a new class of events:
the start and the end of each user-interval pj ∈ P . As a result, the rectangle
defined by 〈[δ, δ′), sumh〉 has a unique local capacity lcj and corresponds to a
unique cost variable costj . We have two properties: (1) These new events do not
modify the incremental computation of sumh within the sweep. (2) Contrary to
Pruning Rule 1, the maximum capacity capaj to consider for a given rectangle
depends on lcj , costj and costC . We first consider costC = max.

Pruning Rule 3 (costC = max). Let ai ∈ ActToPrune, which has no compul-
sory part recorded within the rectangle 〈[δ, δ′), sumh〉. If sumh+rai > lcj+costj
then ]δ − dai, δ

′) can be removed from D(sai).
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Proof. Any ai in ActToPrune is such that there exists at least one point in time
t in [sai, cai) such that δ ≤ t < δ′. By Definitions 2 and 6, the height ht of any
solution extending the current partial instantiation is such that ht ≥ sumh+rai.
Therefore, if sumh + rai − lcj > costj , constraint C3 of Definition 4 is violated.
The same reasoning applies on each point in time within [δ, δ′) ∩ [sai, cai). ��

If costC = sum, in each user-defined interval pj, costj corresponds to the area
that exceeds the local capacity lcj within this interval. Recall that in a given
interval [δ, δ′) defined in the sweep algorithm, the local capacity lcj and the
height of the profile sumh remain constant by definition. The consumption of
the profile is sumh ∗ (δ′ − δ) and the total available area that does not lead to
an overload is lcj ∗ (δ′ − δ). We try to add an activity ai which has a release
date sai within the interval [δ, δ′). If ai has a minimum duration such that ai
can fit in [δ, δ′), then its minimum energy in this interval is e(ai). Otherwise, its
minimum completion date is outside [δ, δ′), and its energy within this interval is
(δ′ − sai) ∗ rai. We compare the total energy (δ′ − δ) ∗ sumh + min((δ′ − sai) ∗
rai, e(ai)) to the maximum available resource lcj ∗ (δ′ − δ)+ costj . We prune sai
if costj is exceeded.

Pruning Rule 4 (costC = sum). Let ai ∈ ActToPrune, which has no compul-
sory part recorded within the rectangle 〈[δ, δ′), sumh〉 and such that δ ≤ sai < δ′.
If (δ′ − δ) ∗ sumh + min((δ′ − sai) ∗ rai, e(ai)) > lcj ∗ (δ′ − δ) + costj then

[sai,min(δ′, δ′ −
⌊
(costj + (lcj − sumh) ∗ (δ′ − δ))/(rai)

⌋
))

can be removed from D(sai).

Proof. Given ai ∈ A such that δ ≤ sai < δ′, assume ai starts at t = sai. If cai <
δ′, its minimum energetic contribution is e(ai) in [δ, δ′), else it is rai ∗ (δ′− t). By
Definitions 2 and 6, (δ′−δ)∗ht ≥ (δ′−δ)∗(sumh+rai) and (δ′−δ)∗(sumh+rai) ≥
(δ′−δ)∗sumh+min((δ′−t)∗rai, e(ai)). Therefore, if (δ′−δ)∗sumh+min((δ′−t)∗
rai, e(ai))− lcj ∗ (δ′−δ) > costj (pruning condition), constraint C3 of Definition
4 is violated. costj + (lcj − sumh) ∗ (δ′ − δ) is the area remaining available and
" costj+(lcj−sumh)∗(δ′−δ)

rai
# is the number of points in time that can be taken by

ai in [δ, δ′) without violating the pruning condition. ai cannot start before δ′,
which leads to min(δ′, δ′ −

⌊
(costj + (lcj − sumh) ∗ (δ′ − δ))/(rai)

⌋
). ��

The number of events in the sweep depends both on the number of user-intervals
and the number of activities. Time complexity is O((n+ p) · log(n+ p)).

Edge-Finding for SoftCumulative To extend Viĺım’s algorithm to the Soft-

Cumulative case, we consider intervals in P and local capacities in Loc instead of
a single capacity capa. Definition 7 (available area) needs to be adapted. Within
an interval I = [a, b), the available resource depends on the local capacities and
the maximum values of the variables in Cost . We need to study the case where
a and b are in the same user interval and the case where pj(a) �= pj(b).
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Definition 9 (Available area). Given an interval in time I = [a, b), we denote
by Area(a, b) the maximum available resource. We distinguish two cases:

– If costC = max
• If pj(a) = pj(b), Area(a, b) = (b− a) ∗ (lcj(a) + costj(a))
• Else, Area(a, b) = (epj(a)−a)∗(lcj(a)+costj(a))+(b−spj(b))∗(lcj(b)+
costj(b)) +

∑
pi∈(pj(a),pj(b))

(epi − spi) ∗ (lci + costi)
– If costC = sum

• If pj(a) = pj(b), Area(a, b) = (b− a) ∗ lcj(a) + costj(a)
• Else, Area(a, b) = (epj(a)− a) ∗ lcj(a)+ costj(a)+ (b− spj(b)) ∗ lcj(b)+
costj(b) +

∑
pi∈(pj(a),pj(b))

((epi − spi) ∗ lci + costi)

Definition 10 (Free area). Given an interval in time I = [a, b), we denote
by FreeArea(a, b) the maximum resource available without creating any new
increase in overloads. The calculation is similar to Definition 9 except that max-
imum values of cost variables (“costj” and “costi”) are replaced by 0.

The principles for computing the energy envelope and the left cut (see Definitions
7 and 8) remain the same as in the Cumulative case, except that the available
area is now computed according to Definition 9. Furthermore, Precedence Rule
1 remains also the same. To prove this, we introduce the following notation
(there is no need to explicitly compute this quantity in the algorithm).

Notation 2 (inf ). Given a set Ω of activities in A, and its energy envelope
Env(Ω), inf (Ω) is the greatest index j such that Area(sp0, spj) ≤ Env(Ω).

As in the Cumulative case, given a set of activities Ω ⊆ A (which is, within
the algorithm, systematically a Left Cut), we adapt the calculation of a lower
bound lb(minc(Ω)) for the earliest completion time minc(Ω) in the case where
costC = max. 2 Recall spinf(Ω) is the start of the user-defined interval of inf (Ω).

Proposition 1. lb(minc(Ω)) = spinf(Ω) +
⌈
Env(Ω) −Area(sp0, spinf(Ω))

lcinf(Ω) + costinf(Ω)

⌉

Proof. lb(minc(Ω)) is the first point in time before which Env(Ω) can fit, start-
ing from sp0 (see [13]). By Definition 2, spinf(Ω) ≤ lb(minc(Ω)) < spinf(Ω)+1.
Env(Ω)−Area(sp0, spinf(Ω)) fits in [spinf(Ω), spinf(Ω)+1) in a minimum number
of points in time  (Env(Ω)−Area(sp0, spinf(Ω))) / (lcinf(Ω) + costinf(Ω))!. ��

From Proposition 1, the equivalence of precedence rule 1 remains true.

Property 1. The two following conditions are equivalent: (1) lb(minc(LCut(A, aj)∪
{ai})) > caj . (2) Env(LCut(A, aj) ∪ {ai}) > Area(sp0, caj).

2 We only give the proof in the case where costC = max. In the case where costC =
sum the demonstration is the same, except the computation of lb(minc(Ω)) which

is equal to lb(minc(Ω)) = spinf(Ω) + �Env(Ω) − Area(sp0, spinf(Ω)) − costinf(Ω)

lcinf(Ω)

�.
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Proof. From Proposition 1 and Definition 7, with Ω = LCut(A, aj) ∪ {ai}. ��

With the new computation of the available area, the notion of competition and
Pruning Rule 2 remains the same as for Cumulative. At each leaf of Viĺım’s
Θ-tree, the available area takes O(p) instead of O(1) (see Definition 9). The com-
putation of internal nodes remains the same as in Viĺım’s algorithm. Therefore,
updating of starting times of activities takes O(n·p), while detecting precedences
and thus the overall complexity is O(p · k · n · log(n)).

4.3 Lower Bounds of Costs and Objective

This section shows how we can update the minimum of cost variables and we can
compute lower bounds of the objective, from the domains of activity variables.
These lower bounds can be used to update obj.

Within the sweep algorithm. Variables in Cost can be directly updated
within the sweep algorithm, while the profile is computed.

Pruning Rule 5. Consider the current rectangle 〈[δ, δ′), sumh〉 in the sweep.

– If (costC = max) then if sumh − lcj(δ) > costj(δ) then [costj(δ), sumh −
lcj(δ)) can be removed from D(costj(δ)).

– If (costC = sum) then if (δ′ − δ) ∗ (sumh − lcj(δ)) > costj(δ) then
[costj(δ), (sumh − lcj(δ)) ∗ (δ′ − δ)) can be removed from D(costj(δ)).

Proof. From Definitions 5 and 6. ��

Lower bounds for the objective variable are: if objC = sum then LB =∑
j∈[0,k−1] costj and if objC = max then LB = maxj∈[0,k−1](costj). These lower

bounds can be incrementally computed without any increase in time complexity.

Within the Edge-Finding algorithm. Deductions on the minimum values
of variables in Cost using edge-finding are weak. Therefore, we only focus on the
computation of a lower bound for the objective.

For each activity ai ∈ A, the minimum energy of e(LCut(A, ai)) is computed
by the Edge-finding algorithm. This energy should fit within the area defined by
the interval [sp0, cai) by Definition 8. If not, it implies overloads and it is likely
to modify the minimum value of the objective variable. Following this process,
for each activity we compute a specific lower bound LB(ai) for the objective
variable.

To keep a simple computation of each LB(ai), the following proposition con-
siders that there is no maximum limit on the cost of each interval. We denote
by P a set containing all the user intervals pj such that spj ≤ cai.

Proposition 2. Let ai be an activity in A, and LCut(A, ai) the Left Cut of A
by ai. If e(LCut(A, ai)) > FreeArea(sp0, cai) then
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– If (costC = max and objC = sum) then LB(ai) =
 e(LCut(A,ai))−FreeArea(sp0,cai)

maxpj∈P(min(cai,spj+1)−spj))
!.

– If (costC = max and objC = max) then LB(ai) =
 e(LCut(A,ai))−FreeArea(sp0,cai)

cai−sp0 !.
– If (costC = sum and objC = sum) then LB(ai) = e(LCut(A, ai)) −
FreeArea(sp0, cai).

– If (costC = sum and objC = max) then LB(ai) =
 e(LCut(A,ai))−FreeArea(sp0,cai)

|P| !.

Proof. By Definition 8, e(LCut(A, ai)) is the minimum energy that is necessar-
ily placed before cai. The maximum energy that fits within [sp0, cai) without
leading to an overload is FreeArea(sp0, cai) by Definition 10. As a result, if
e(LCut(A, ai)) > FreeArea(sp0, cai) then it induces a lower bound on obj.
Assume costC = max and objC = sum. W.l.o.g. we consider that all the over-
loading area can be put in the maximum length interval I starting at spj , that
is, we consider maxpj∈P(min(cai, spj+1) − spj): considering one or more addi-
tional intervals having, by definition, a length less than or equal to the length
of I, would necessarily lead to a greater or equal total sum of overloads (re-
call that we do not consider maximum limits on costs). LB(ai) is equal to
 e(LCut(A,ai))−FreeArea(sp0,cai)

maxpj∈P(min(cai,spj+1)−spj))
!. If costC = max and objC = max then we

spread out the overload on the greateest possible interval that is [sp0, cai). If
costC = sum and objC = sum, the lower bound is the same whatever the dis-
tribution of overloads is among the user-defined intervals. If costC = sum and
objC = max, by spreading out the overload e(LCut(A, ai))−FreeArea(sp0, cai)
on the intervals in P we obtain the smallest maximum possible cost. ��

Note that considering maximum limits on cost can only increase the computed
lower bounds. The computation of LB(ai) is integrated in the edge-finding al-
gorithm and is performed in O(p). Therefore, the overall complexity when inte-
grating this algorithm within edge-finding is still O(k · p · n · log(n)).

4.4 Integrating Objective Lower Bounds

In this section, we consider that filtering procedures 4.2 have been performed.
Our aim is to filter activity variables using the lower bounds of the objective
variable computed in section 4.3.

We perform this integration in two phases. The first one is a second sweep
procedure, while the second one is an energetic reasoning. Without loss of gen-
erality, we consider that obj = LB.

Sweep. In this section we use the lower bound LB of the objective computed in
Section 4.3. We consider activities that have no compulsory part in the current
rectangle 〈[δ, δ′), sumh〉, and the corresponding local capacity lcj .
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Recall that LB and costj have been computed in the first sweep phase. There-
fore, if costC = max then costj ≥ max(sumh− lcj, 0), and if costC = sum then
costj ≥ (δ′ − δ) ∗max(sumh − lcj, 0).

We try to add an activity ai in the interval [δ, δ′), and then we compute the
cost obtained by assuming that ai is scheduled in [δ, δ′). If the computed cost
is strictly superior to costj , then we can consider an increased LB under the
condition that ai is scheduled in [δ, δ′).

Definition 11. Let ai ∈ ActToPrune, which has no compulsory part recorded
within the rectangle 〈[δ, δ′), sumh〉, and pj the unique interval containing [δ, δ′).
We define costai

j as:

– If(costC = max) then costai

j = max (sumh + rai − lcj , 0 ).
– If(costC = sum) then we consider only activities ai such that δ ≤ sai < δ′

and costai

j = max ((δ′ − δ) ∗ (sumh − lcj ) + min((δ′ − sai) ∗ rai, e(ai)), 0).

Pruning Rule 6. Let ai ∈ ActToPrune, which has no compulsory part recorded
within the rectangle 〈[δ, δ′), sumh〉, and pj the unique interval containing [δ, δ′).

– If(costC = max and objC = sum) then if LB+max(costai

j −costj , 0) > obj

then ]δ − dai, δ
′) can be removed from D(sai).

– If(costC = max and objC = max) then if costai

j > obj then ]δ − dai, δ
′)

can be removed from D(sai).
– If(costC = sum and objC = sum) then if LB+max(costai

j −costj , 0) > obj
then

[sai,min(δ′, δ′ −
⌊

(obj − LB + costj) + (lcj − sumh) ∗ (δ′ − δ)

rai

⌋
))

can be removed from D(sai).
– If(costC = sum and objC = max) then if costai

j > obj then

[sai,min(δ′, δ′ −
⌊
obj + (lcj − sumh) ∗ (δ′ − δ)

rai

⌋
))

can be removed from D(sai).

Proof. costai

j represents the minimum cost within an interval [δ, δ′) ⊆ pj if we
add the activity ai to [δ, δ′). By Definition 4, the increase in LB is max(costai

j −
costj , 0) if objC = sum. If this increase is superior to the margin allowed by
obj, then we can prune sai. If costC = max, any point in time taken by ai in
[δ, δ′) can be responsible for the increase then ]δ − dai, δ

′) can be removed from
D(sai). If costC = sum, the maximum costj allowed by obj is obj−LB+ costj .
We then prune the interval the same way as in Pruning Rule 4. The reasoning
is similar for objC = max except that we do not measure an increase, but we
directly compare the induced cost with obj. ��
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Energetic reasoning. The Edge-finding algorithm computes, for each activity
ai ∈ A, the minimum energy of e(LCut(A, ai)). We then consider the lower
bound LB(ai) of the objective variable computed in Section 4.3. We try to add
an activity aj such that saj < cai and aj /∈ LCut(A, ai) in the interval [sp0, cai).
Then we compute the total energy obtained by assuming that aj is scheduled
in [sp0, cai). If the computed energy minus the available area in this interval is
strictly greater than LB(ai), then we can consider an increased LB(ai) under
the condition that ai is scheduled in [sp0, cai). Then if this lower bound is strictly
greater than obj, we can prune sai.

Definition 12. Let ai and aj two activities such that sp0 ≤ saj < cai. We
define e(ai, aj) as the energy of aj in this interval under the condition that aj
begins at saj: e(ai, aj) = min(e(aj), (cai − saj) ∗ raj).

We focus here on costC = max and objC = sum. Other cases are similar.

Pruning Rule 7 (costC = max and objC = sum). Let ai and aj be two
activities in A s.t. saj < cai and aj /∈ LCut(A, ai), and LB(ai) the lower

bound of obj computed in 4.3. If LB(ai) +  e(ai,aj)
maxpk∈P(min(cai,spk+1)−spk))! > obj,

[saj ,min(cai, cai − " (obj−LB(ai))∗(maxpj∈P(min(cai,spj+1)−spj))

raj
#)) can be removed

from D(saj).

Proof. LB(ai) ignores aj /∈ LCut(A, ai). From Proposition 2, the rule holds. ��

4.5 Filtering from Minimum Costs

In most cases, in CP, we prune activities from upper-bounds of the cost vari-
ables. Section 3 shows that performing deductions from increases on minimum of
domains of variables in Cost can be of interest. We introduce a technique based
on the notion of enveloping part which is dual to the notion of compulsory part.

Definition 13. (Enveloping part). The Enveloping Part ep(ai) of an activity
ai ∈ A, is the union of all feasible schedules of ai. It is defined by the interval
[sai, cai) and a height equal to rai on [sai, cai), and null elsewhere.

(Enveloping cumulated profile). The Enveloping cumulated Profile EnvP
is the maximum cumulated resource consumption, over time, of all the ac-
tivities. For a given point in time t, the height of EnvP at t is equal to∑

ai∈A,t∈[sai,cai)
rai (sum of the contributions of all envelopes overlapping t).

To prune activities from minimum values of cost variables, we apply a sweep
procedure on the enveloping cumulated profile and on the profile of compulsory
parts. To do so, we propose to add a new class of events: the start and the
end of the envelope of each activity. These new events do not modify the in-
cremental computation of sumh within the sweep. Additionally, we consider a
new height sume, which is the height of the cumulated envelope profile in the
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current rectangle. Intuitively, the principle of the pruning is the following: While
building EnvP , at each event equal to the start of a user-interval spj we check
if there is a unique rectangle 〈[δ, δ′), sume〉 in EnvP between spj and epj such
that sume ≥ lcj + costj . If it is true we prune ai ∈ A with the following rule.

1. Remove from EnvP the contribution of ai.
2. Prune the bounds of D(sai) in order to ensure that if ai starts at sai or sai

then at any point in time t between 0 and m, EnvP can reach costj(t).

Pruning Rule 8 (costC= max). Consider a rectangle 〈[δ, δ′), sume〉 and an
interval pj such that 〈[δ, δ′), sume〉 is the unique rectangle satisfying sume ≥
lcj + costj. Let ai ∈ ActToPrune, if sume− rai < lcj + costj then: [sai, δ− dai]
and [δ′, sai] can be removed from D(sai).

Proof. If sume−rai < lcj+costj then ai should intersect [δ, δ′), otherwise in any
solution extending the current partial instantiation no point in time t in [δ, δ′)
will satisfy ht ≥ lcj + costj . Constraint C3 of Definition 4 will be violated. ��

We consider that, for each event corresponding to the start of a user-defined
interval we try to apply Pruning Rule 8 according to the previous user-defined
interval. This can be done in O(1). We add O(n) events to the sweep and the
existence and position of the unique rectangle 〈[δ, δ′), sume〉 satisfying sume ≥
lcj + costj can be maintained in O(1). The overall complexity does not change.

5 Search Strategies and Experiments

We designed SCStrategy, a search strategy specific to the problem represented
by our constraint. It is based on two priority rules. (1) Variable selection: Select
the set of activities maximizing the height, and among them select the start
variable of one activity maximizing the duration. (2) Value selection: Given the
selected variable, compute the set of points in time minimizing the increase in the
objective, thanks to a sweep. Order this set according to the energy remaining
free when adding the activity at this point, in a non decreasing order.

We implemented SoftCumulative using choco [1], with costC = max and
objC = sum. Benchmarks were randomly generated w.r.t. durations (between 1
and 4), heights (between 1 and 3), local capacities (between 3 and 6) and user-
intervals length. Maximum costs were fixed at 6. Activities can be scheduled
between 0 and the horizon. Results in tables are average on 50 instances for
each class of problem, using a 2.53 Ghz Intel Core 2 CPU with 4 GB.

In a first benchmark we checked the scalability of our constraint, with 16 or
32 user-intervals. With our implementation, using only the sweep algorithm to
find a first solution is the most effective approach w.r.t. time. The top table
gives the results obtained by unplugging the Edge-finding algorithm, and shows
that SoftCumulative can be used to find a solution for problems involving
1000 activities. SCStrategy generally provides, more quickly, a solution with
a better objective value (±20%), compared with an heuristic assigning statically
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Table 1. Top: Average time and number of backtracks for finding a first solution.
Comparison of a Random strategy with SCStrategy. # solved is the number of
solved instances with, in parenthesis, the number of instances where the objective
variable is the smallest among the instances that can be solved by both strategies.
Bottom: Average time and number of backtracks for finding an optimum solution with
side constraints. W.r.t to the number of proved unfeasible and solved instances, “EF”
means we used the Edge Finding algorithm, while “No EF” means we unplugged it.

# activities / user-interval # solved (with the best obj) average time (# backtracks)
# user-intervals max length Random SCStrategy Random SCStrategy

500 / 16 40 48 (1) 49 (47) 2.2s (51) 2.1s (46)
500 / 32 20 50 (0) 50 (50) 3.5s (59) 2.8s (11)
1000 / 16 80 49 (1) 39 (38) 31.7s (221) 22.4s (150)
1000 / 32 40 49 (1) 46 (45) 67.3s (382) 49.5s (136)

# activities / user-interval # proved # solved # solved average time (#backtracks)
# user-intervals max length unfeasible with obj = 0 with obj �= 0 for obj �= 0

No EF EF No EF EF No EF EF No EF EF
50 / 4 20 0 10 11 11 0 27 > 2mn 1.0s (2183)
50 / 8 10 0 6 9 9 0 32 > 2mn 8.1s (7512)
100 / 4 41 0 12 8 8 0 27 > 2mn 4.9s (5534)
100 / 8 21 0 2 8 8 0 33 > 2mn 21.8s (11494)
125 / 4 51 0 6 8 8 0 34 > 2mn 9.6s (8540)
125 / 8 25 0 2 5 5 0 36 > 2mn 47.5s (19058)

start variables with a random value (the best default heuristic in choco w.r.t.
our instances). As time complexity of the sweep depends on the number of
intervals, finding a solution takes more time when there are more intervals.

In a second benchmark we try to find optimum solutions. The bottom table
shows clearly that, in this case, using Edge-Finding improves the solving process.
Instances involve either 4 or 8 user-intervals, and side constraints. To define such
constraints we partitioned the costs by classes of 4 variables, on which we impose:
(1) At least one cost variable equal to 0 within each class of the partition, and
(2) ∀i such that 0 ≤ i < |Cost |− 1, |cost i+1 − costi | ≤ 2. Instances in the second
table were run using the default search heuristic in choco, as SCStrategy is
not relevant for proving optimum. This second table highlights that, using Edge-
Finding, we are able to find optimum solutions for problems with 125 activities.

6 Conclusion

We presented a new constraint for solving overloaded cumulative problems. We
adapted a sweep algorithm and Viĺım’s Edge-Finding algorithm to our context.
We proposed a filtering procedure specific to overloads imposed from outside.
We designed a dedicated search heuristic. Future work will attempt to consider
also relaxation of precedence relations among activities.
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Abstract. The ability to specify CP programs in terms of a declara-
tive model and a search procedure is instrumental to the industrial CP
successes. Yet, writing search procedures is often difficult for novices or
people accustomed to model & run approaches. The viewpoint adopted in
this paper argues for the synthesis of a search from the declarative model
to exploit the problem instance structures. The intent is not to eliminate
the search. Instead, it is to have a default that performs adequately in the
majority of cases while retaining the ability to write full-fledged proce-
dures. Empirical results demonstrate that the approach is viable, yielding
procedures approaching and sometimes rivaling hand-crafted searches.

1 Introduction

Constraint programming (CP) techniques are successfully used in various in-
dustries and quite successful when confronted with hard constraint satisfaction
problems. Parts of this success can be attributed to the considerable amount of
flexibility that arises from the ability to write completely tailored search proce-
dures. The main drive is based on the belief that

CP = Model+ Search

where the model provides a declarative specification of the constraints, while
the search specifies how to explore the search space. In some CP languages, the
search can be quite sophisticated. It can concisely specify variable and value se-
lection heuristics, search phases [14], restarting strategies [9], large neighborhood
search [1], exploration strategies like depth-first-search, best-first search, or lim-
ited discrepancy search [12] to name just a few. This flexibility is mostly absent
in mathematical programming where the so-called black-box search is controlled
through a collection of parameters affecting pre-processing, cut generation, or
the selection of predefined global heuristics. Users of mathematical programming
solely rely on modeling techniques and reformulations to indirectly influence and
hopefully strengthen the search process effectiveness.

Newcomers discovering CP often overlook the true potential of open (i.e.,
white-box ) search specification and fail to exploit it. The observation prompted
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a number of efforts to rethink constraint programming tools and mold them after
LP and MIP solvers by eliminating open search procedures in favors of intelligent
black-box procedures. Efforts of this type include [14] and [6] while others, e.g.,
[21] provide a number of predefined common heuristics. Our contention is that it
is possible to get the best of both worlds: retaining the ability to write tailored
search procedures, and synthesizing instance-specific search procedures that are
competitive with procedures hand-crafted by experts.

The central contribution of this paper is Cp-as, a model-driven automatic
search procedure generator written in Comet [24]. Cp-as analyzes a CP model
instance at runtime, examines the variable declarations, the arithmetic and log-
ical constraints, as well as the global constraints and synthesizes a procedure
that is likely to perform reasonably well on this instance. Empirical results on a
variety of representative problems (with non-trivial tailored search procedures)
demonstrate the effectiveness of the approach. The rest of the paper is organized
as follows: Section 2 presents related work. Section 3 provides details about the
synthesis process, while Section 4 illustrates the process on a popular CP appli-
cation. Experimental results are reported in Section 5 and Section 6 concludes.

2 Related Work

The oldest general purpose heuristics follow the fail-first principle [11] and or-
der variables according to the current size of their domains. Impacts [18] were
introduced as a generic heuristic driven by the effect of labeling decisions on the
search space contraction. wdeg and dom/wdeg [3] are inspired by SAT solvers and
use conflicts to drive a variable ordering heuristic. Activity-based search [15] is
driven by the number of variables involved in the propagation after each decision
and is the latest entry among black-box general purpose heuristics.

Minion [6] offers a black-box search and combines it with matrix based model-
ing, aiming for raw speed alone to produce ‘model and run’ solutions. CPhydra

[17] is a portfolio approach exploiting a knowledge base of solved instances. It
combines machine learning techniques with the partitioning of CPU-time among
portfolio members to maximize the expected number of solved instances within
a fixed time budget. Model-driven derivation of search first appeared in [26]
for Constraint-Based Local Search (CBLS). Given a model, a CBLS synthesizer
derives a local search algorithm for the chosen meta-heuristic. It analyzes the
instance and synthesizes neighborhoods as well as any other necessary compo-
nents. The Aeon synthesizer [16] targets the scheduling domain where combi-
natorial structures are easier to recognize and classify. Note that Aeon handles
both complete and incomplete (CBLS) solvers. The first extension to generic CP
models was proposed in [4] and is extended here with a larger rule set for global
constraints that now uses many variable and value selection heuristics.

3 The Synthesis Process

Cp-as defines rules meant to recognize combinatorial structures for which good
heuristics exist. Each rule, when fired, produces a set of recommendations
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characterized by a fitness score, a subset of variables, and two heuristics for
variable and value selection as well as dynamic value symmetry breaking when-
ever appropriate. This set of recommendations is the blueprint for the search
itself. The section describes the entire process.

3.1 Preliminaries

A CSP (Constraint Satisfaction Problem) is a triplet 〈X,D,C〉, where X is a set
of variables, D is a set of domains, and C is a set of constraints. Each x ∈ X is
associated with a domain D(x), i.e., with a totally ordered finite set (i.e., a well-
ordered set) of discrete values over some universe U . A constraint c(x1, · · · , xn),
specifies a subset of the Cartesian product D(x1) × · · · × D(xn) of mutually-
compatible variable assignments. X is the type of a variable, while X[] denotes
the type of an “array of variables”. D = 2U is the type of a domain and C is the
type of a constraint. A COP (Constraint Optimization Problem) 〈X,D,C,O〉 is
a CSP with an objective function O.

Common notations. vars(c) denotes the variables appearing in constraint c while
cstr(x) is the subset of constraints referring to variable x. The static degree
deg(x) of variable x is deg(x) =

∑
c∈cstr(x)(|vars(c)|−1). Variables can be orga-

nized as arrays in the model and this is captured by a special tautological “con-
straint” array(x) that states that the subset of variables x ⊆ X forms an array.
T (c) denotes the type of a constraint c (e.g., knapsack,sequence,array,etc.).
Finally, T (C) = {T (c) : c ∈ C} is the set of constraint types in C.

Definition 1. A variable ordering heuristic hx : X[] → N → X is a function
which, given an array of n variables [x0, · · · , xn−1], defines a permutation π of
0..n−1 that produces a partial function [0 $→ xπ(0), · · · , n−1 $→ xπ(n−1)] : N → X.

Example 1. The static variable ordering denoted hstatic simply produces the
variable ordering partial function hstatic = [0 $→ x0, · · · , n− 1 $→ xn−1].

Example 2. The static degree ordering denoted hdeg uses a permutation π : N →
N of 0..n− 1 satisfying

∀i, j ∈ 0..n− 1 : i ≤ j ⇒ deg(xπ(i)) ≥ deg(xπ(j))

to define the partial function hdeg = [0 $→ xπ(0), · · · , n− 1 $→ xπ(n−1)].

Example 3. The classic dom variable ordering denoted hdom will, when given an
array of variables x, uses a permutation π : N → N of 0..n− 1 satisfying

∀i, j ∈ 0..n− 1 : i ≤ j ⇒ |D(xπ(i))| ≤ |D(xπ(j))|

to produce a partial function capturing a permutation of x. For instance, invoking
hdom([x1, x2, x3]) with D(x1) = {1, 2, 3}, D(x2) = {1}, D(x3) = {3, 4} returns
the partial function [0 $→ x2, 1 $→ x3, 2 $→ x1]. The result produced by hdom is
dynamic, i.e., the embedded permutation π will use the domains of the variables
in x when it is invoked.
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Example 4. The dom/wdeg [3] variable ordering denoted hwdeg will, when given
an array of variables x, use a permutation π : N → N of 0..n− 1 satisfying

∀i, j ∈ 0..n− 1 : i ≤ j ⇒
|D(xπ(i))|
αwdeg(xπ(i))

≥
|D(xπ(j))|
αwdeg(xπ(j))

with αwdeg(xi) =
∑

c∈C weight[c]|vars(c) % xi∧|futV ars(c)| > 1. Following [3],
weight[c] is a counter associated to constraint c that tracks the number of con-
flicts discovered by c during the search. The expression futV ars(c) denotes the
set of uninstantiated variables in c.

Definition 2. A value ordering heuristic hv : D → N → U is a function which,
given a domain d = {v0, · · · , vk−1} of cardinality k, uses a permutation π to
produce a serialization function for d defined as [0 $→ vπ(0), · · · k− 1 $→ vπ(k−1)].

Example 5. The min-value heuristic (denoted hmv) applied to the domainD(x) =
{v0, · · · , vk−1} of a variable x uses a permutation π : N → N satisfying

∀a, b ∈ 0..k − 1 : a ≤ b ⇒ vπ(a) ≤ vπ(b)

to produce a serialization partial function [0 $→ vπ(0), · · · , k − 1 $→ vπ(k−1)]. For
instance, invoking hmv({3, 7, 1, 5}) returns [0 $→ 1, 1 $→ 3, 2 $→ 5, 3 $→ 7].

Definition 3. A value symmetry breaking heuristic hs : D → D is a function
that maps a set of k values from U to a subset of non-symmetric values.

3.2 Rules and Recommendations

Definition 4. Given a CSP 〈X,D,C〉, a rule r is a tuple 〈G,S,V ,H〉 where

G : 2C → 22C

is a partitioning function that breaks C into G1 · · ·Gn such that
∪ni=1Gi ⊆ C and Gi ∩Gj = ∅ ∀i �= j.

S : 〈2X, 2D, 2C〉 → R is a scoring function,
V : 〈2X, 2D, 2C〉 → 2X is a variable extraction function,
H : 〈2X, 2D, 2C〉 → 〈hx, hv〉 is a heuristic selection function.

All scores are normalized in 0..1 with 1 representing the strongest fit.

Definition 5. Given a rule 〈G,S,V ,H〉, a CSP 〈X,D,C〉, and a partition
G(C) = {G1 · · ·Gn} the rule’s recommendations are {〈Si, Vi, Hi〉 : 0 < i ≤ n}
with Si = S(X,D,Gi), Vi = V(X,D,Gi), and Hi = H(X,D,Gi).

Generic Partitioning. Several rules use the same partitioning scheme G̃. A rule r
focusing on constraints of type t uses the function G̃ to only retain constraints of
type t and yields one group per constraint. Namely, let n = |{c ∈ C : T (c) = t}|
in G̃(C) = {{c1}, · · · , {cn}} with all the ci constraints in C of type t.
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3.3 Rules Library

Rules are meant to exploit combinatorial structures expressed with arrays, global
constraints, arithmetic constraints, and logical constraints. Structures can be
explicit (e.g., global constraints), or implicit (e.g., the static degree of a variable).
Cp-as offers one rule per combinatorial structure that can produce a set of
recommended labeling decisions. Global constraints play a prominent role in the
analysis and their rules are described first. A brief discussion of a generic scoring
function used by most rules starts the section.

Generic Scoring. The generic scoring applies to a group (i.e., a subset) G ⊆ C
of constraints and attempts to capture two characteristics: the homogeneity of
the entire set C and the coupling of the variables in each constraint of the group
G. A homogeneous constraint set contains few distinct constraint types that
might be easier to deal with. The homogeneity of C is measured by 1

|T (C)| which
ranges in 0..1 and peaks at 1 when only one type of constraint is present in C.
The variable coupling for a single constraint c ∈ G is an indicator of the amount
of filtering to be expected from c.

When vars(c) is a super-set of a user-specified array from the model, the ratio
of the maximal variable degree in vars(c) to the maximal overall degree (r1(c)
below) is used to estimate c’s coupling. Otherwise, the simpler ratio r2(c) is used.

r1(c) =
maxx∈vars(c) deg(x)

maxx∈X deg(x)
r2(c) =

|vars(c)|
| ∪k∈C:T (k)=T (c) vars(k)|

The generic scoring function for G ⊆ C is then

S̃(G) =
1

|T (C)| · max
c∈G

({
r1(c) ∃ a ∈ C : T (a) = array∧ vars(c) ⊇ vars(a)
r2(c) otherwise

)

Observe how r1(c) and r2(c) are both in the range 0..1 delivering a generic
score in the 0..1 range. The rest of the section defines the rules. Each definition
specifies the partitioning G, scoring S, variable extraction V , and the heuristic
selection H functions. Each of these function names is subscripted by a two letter
mnemonic that refers to the rule name.

Alldifferent(ad) Rule. The alldifferent(x) constraint over the array x of n
variables holds when all variables are pairwise distinct. The rule uses the generic
partitioning G̃ and the generic scoring S̃. The variable selection heuristic is simply
hdom (i.e., the smallest domain), while the value selection heuristic is hmv (i.e.,
min-value). The variable extraction simply restricts the scope of the rule to
the variables of the constraint, namely Vad(X,D, {c}) = vars(c). The heuristic
selection Had returns 〈hdom, hmv〉. Note that Vad will always receive a singleton
as the rule uses the generic partitioning that always produces partitions with
singletons. The rule is thus 〈G̃, S̃,Vad,Had〉.
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Knapsack(ks) Rule. The knapsack(w,x,b) constraint over the array x of n
variables holds when

∑n−1
i=0 wi · xi ≤ b. The knapsack rule uses the generic

partitioning G̃ and the generic scoring S̃.
A customized variable ordering heuristic is desirable when a user-specified

array of variables coincides with the array x. If true, the rule favors a variable
ordering for x based on decreasing weights in w and breaks ties according to
domain sizes. Let π : N → N be a permutation of the indices 0..n − 1 into x
satisfying

∀i, j ∈ 0..n− 1 : i ≤ j ⇒ 〈wπ(i),−|D(xπ(i))|〉 & 〈wπ(j),−|D(xπ(j))|〉

where & denotes the lexicographic ordering over pairs. The variable ordering is
then a partial function hks = [0 $→ xπ(0), · · · , n−1 $→ xπ(n−1)]. When x does not
correspond to a model array, the heuristic is simply hdom. The heuristic selection
function H is

Hks(X,D, {c}) =
〈
hks if ∃ a ∈ C : T (a) = array ∧ vars(a) = vars(c)
hdom otherwise , hmv

〉

The variable extraction simply restricts the scope of the rule to the vari-
ables of the constraint, namely Vks(X,D, {c}) = vars(c). The rule is thus
〈G̃, S̃,Vks,Hks〉.

Spread(sp) Rule. The spread(x,s,δ) constraint over an array x of n variables
and a spread variable δ holds whenever s =

∑n−1
i=0 xi ∧N ·

∑n−1
i=0 (xi − s/n)2 ≤ δ

holds. It constrains the mean to the constant s/n and states that δ is an upper
bound to the standard deviation of x [19]. The rule uses the generic partitioning
and generic scoring functions. To minimize δ, one must minimize each term in
the sum and thus bias the search towards values in D(xi) closest to s/n. This
suggests both a variable and a value selection heuristic. The value selection can
simply permute the values of the domain to first consider those values closer to
s/n. Namely, let π : N → N be a permutation of the range 0..k − 1 satisfying

∀i, j ∈ 0..k − 1 : i ≤ j ⇒ |vπ(i) −
s

n
| ≤ |vπ(j) −

s

n
|

in the definition of the value ordering hvsp = [0 $→ vπ(i), · · · , k $→ vπ(k−1)] for
the domain D(x) = {v0, · · · , vk−1}. Given hvsp, the ideal variable ordering is
maximum regret. Namely, the variable with the largest difference between the
first two values suggested by its hvsp ought to be labeled first. Let τ : N → N be
a permutation for the range 0..n− 1 satisfying

∀i, j ∈ 0..n− 1 : i ≤ j ⇒
hvsp(D(xτ(i)))(1) − hvsp(D(xτ(i)))(0) ≥ hvsp(D(xτ(j)))(1) − hvsp(D(xτ(j)))(0)

in the variable ordering hxsp = [0 $→ xτ(0), · · · , n− 1 $→ xτ(n−1)]. Note how the
value ordering hvsp : D → N → U is passed the domains of the two chosen vari-
ables xτ(i) and xτ(j) to form the regret between the best two values according to
hvsp. The heuristic selection Hsp returns 〈hxsp, hvsp〉 and the variable extraction
Vsp returns x (the variables of the spread) in the rule 〈G̃, S̃,Vsp,Hsp〉.
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Sequence(sq) Rule. The classic sequence(x,d,p,q,V) global constraint [2] re-
quires that for every window of length q in array x, at most p variables take
their values in V and the demands in d for values in V are met by the sequence.
The sequence rule overrides the partitioning function G̃ to group sequence con-
straints that pertain to the same sequence x and same demand d, to exploit the
tightness of the various sequencing requirement and to yield better variable and
value orderings. Let Gsq(C) = {G1, · · · , Gk} where G1 through Gk satisfy

∀a, b ∈ Gi : vars(a) = vars(b) ∧ d(a) = d(b) ∧ T (a) = T (b) = sq

The refined scoring function

Ssq(X,D,G) = S̃(X,D,G) ·
(∑

c∈G U(c)
)

|G| where U(c) =
c.q

c.p
·
∑

j∈c.V dj

n

scales the generic score S̃ with the average constraint tightness of a group G
and the tightness of a single sequence constraint. The tightness of sequence c is
proportional to c.q/c.p and to the overall demand for values in c.V .

Following [20], the ideal variable and value selection heuristics attempt to
avoid gaps in the sequence while labeling and give preference to values that
contribute the most to the constraint tightness. The permutation πx : N → N of
0..n− 1 satisfies

∀i, j ∈ 0..n− 1 : i ≤ j → |xπx(i) − n/2| ≤ |xπx(j) − n/2|

(πx prefers variables that are closer to the middle of the sequence) and is used to
define the variable ordering hxsq = [0 $→ xπx(0), · · · , n−1 $→ xπx(n−1)]. The value
selection heuristic is driven by the tightness of a value j in all the constraints of
group G

Ū(j) =
∑
c∈G

U(c) · (j ∈ c.V )

The permutation πv of the values in D(x) = 0..k− 1 makes sure that i precedes
j in πv if it has a higher utility, i.e., πv satisfies

∀i, j ∈ 0..k − 1 : i ≤ j ⇒ Ū(πv(i)) ≥ Ū(πv(j))

and leads to the value ordering hvsq = [0 $→ vπv(0), · · · , k − 1 $→ vπv(k−1)]. The
heuristic selection Hsq returns 〈hxsq, hvsq〉 while the variable extraction function
Vsq returns ∪c∈Gvars(c) for a group G of sequence constraints. The sequence
rule is 〈Gsq,Ssq,Vsq,Hsq〉.

Weighted-Sum(ws) Rule. The rule applies to a COP 〈X,D,C,O〉 with O ≡∑n−1
i=0 wi · xi where all the wi are positive coefficients. The objective (without

loss of generality, a minimization) can be normalized as a linear constraint c
defined as o =

∑n−1
i=0 wi · xi with a fresh variable o. The partitioning function

Gws returns the singleton {o =
∑n−1

i=0 wi · xi} while the scoring function Sws
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always returns 1. To minimize the objective, it is natural to first branch on
the term with the largest weight and choose a value that acts as the smallest
multiplier. Yet, variables in o are subject to constraints linking them to other
decision variables and it might be preferable to first branch on those if these
variables are more tightly coupled. Let Z(x) = ∪i∈0..n−1 ∪c∈cstr(xi) vars(c)\ {x}
denotes the set of variables one “hop” away from variables in array x. The
decision to branch on x or on Z(x) can then be based upon an estimation of
the coupling among these variables. Like in the generic scoring, the expression
maxy∈S deg(y) can be used to estimate the coupling within set S and drives the
choice between x and Z(x) delivering a simple variable extraction function Vws

Vws(X,D, {c}) =
{
x if maxy∈x deg(y) ≥ maxy∈Z(x) deg(y)
Z(x) otherwise

The variable ordering over x can directly use the weights in the objective. But
a variable ordering operating on Z(x) must first determine the contributions of
a variable y ∈ Z(x) to the terms of the objective function. Note how Z(y) ∩ x
identifies the terms of the objective function affected by a decision on y. It is
therefore possible to define a weight function that aggregates the weights of the
term affected by a decision on y. Let

w(y) =
∑

z∈Z(y)∩x
c.w(z) : ∀y ∈ Z(x)

denote the aggregate weights for variable y where c.w(z) is the actual weight
of variable z in the objective. A permutation π : N → N of the variable indices
ranging over the n variables in x (respectively, over the n variables in Z(x))
satisfies

∀i, j ∈ 0..n− 1 : i ≤ j ⇒ w(xπ(i)) ≥ w(xπ(j))

and is key to define the variable ordering hws = [0 $→ xπ(0), · · · , n−1 $→ xπ(n−1)].
The heuristic selection function Hws returns 〈hws, hmv〉 (the value selection is
min-value) and the entire rule is 〈Gws,Sws,Vws,Hws〉.

Pick-Value-First(pv) Rule. If the number of values to consider far outnumbers
the variables to label, it is desirable to first choose a value and then a variable
to assign it to. This rule generates one recommendation for each variable array
and the partitioning function is thus Gpv(C) = {{c} ∈ C : T (c) = array}. The
scoring function measures the ratio array size to number of values

Spv(X,D, {array(x)}) =

{
1 − |x|

|∪a∈xD(a)| if | ∪a∈x D(a)| ≥ |x|
0 otherwise
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The variable extraction function Vpv simply returns the variables in the array x
while Hpv(X,D, {array(x)}) = 〈hstatic, hmv〉. The rule is 〈Gpv,Spv,Vpv,Hpv〉.

Degree(deg) Rule. The rule partitions C with Gdeg(C) = {{c} ∈ C : T (c) =
array} and issues and uses a scoring that conveys the diversity of the static
degrees of the variables in the arrays. The index of diversity is based on the
relative frequencies of each member of the collection [8] and is the first factor
in the definition of Sdeg. The index tends to 1 for diverse populations and to 0
for uniform populations. The second factor captures the relative coupling of the
variables in the array and also belongs to the 0..1 range. The score function is

Sdeg(X,D, {array(x)}) =

(
1 −

z∑
d=1

p2
d

)
· maxy∈x deg(y)
maxy∈X deg(y)

where z is the number of distinct degrees, pd = freqd/|x| and freqd = |{a ∈
x : deg(a) = d}|. Note that, when all the variables in x have the same static
degree the diversity index is equal to 0, sending the overall score to 0. The
variable extraction is Vdeg(X,D, {array(x)}) = x. The variable ordering follows
hdeg, i.e., it selects variables with largest degree first. The value selection is hmv
leading to a definition for the heuristic selection Hdeg that returns 〈hdeg, hmv〉
and the rule is 〈Gdeg,Sdeg,Vdeg,Hdeg〉.

The Default Rule. The rule ensures that all variables are ultimately labeled and
its score is the lowest (i.e., a small constant ε bounded away from 0). The rule
could effectively use any black-box heuristic like Activity-based search, Impact-
based search, dom/wdeg, dom/ddeg, or even the simple dom heuristic. In the
following, it defaults to the dom heuristic. Gdef (C) = C, Sdef (X,D,C) = ε.
Vdef (X,D,C) = X to make sure that all variables are labeled. The variable or-
dering is hdom and the value ordering is hmv. The overall heuristic selection func-
tion Hdef returns 〈hdom, hmv〉 and the rule boils down to 〈Gdef ,Sdef ,Vdef ,Hdef 〉.

3.4 Symmetry Breaking

The symmetry-breaking analysis is global, i.e., it considers the model as a whole
to determine whether symmetries can be broken dynamically via the search
procedure. When conclusive, the analysis offers a partitioning of the values into
equivalence classes that the search can leverage.

While breaking symmetries statically is appealing for its simplicity, it can in-
terfere with the dynamic variable and value selection heuristics. Breaking sym-
metries dynamically through the search sidesteps the issue. A global symmetry
analysis of the model identifies equivalence classes among values in domains and
avoid the exploration of symmetric labeling decisions. The automatic derivation
of value symmetry breaking in Cp-as follows [23,5], where the authors propose
a compositional approach that detects symmetries by exploiting the properties
of the combinatorial sub-structures expressed by global constraints.
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1 forall(r in rec.getKeys()) by (−rec{r}.getScore()) {
2 rec{r}.label();
3 if (solver.isBound()) break;
4 }

Fig. 1. A Skeleton for a Synthesized Search Template

3.5 Obtaining and Composing Recommendations

Given a CSP 〈X,D,C〉 and a set of rules R, the synthesis process computes a
set of recommendations rec defined as follows

let {G1, · · · , Gk} = Gr(C)
in
rec =

⋃
r∈R (∪i∈1..k{〈Sr(〈X,D,Gi〉),Vr(〈X,D,Gi〉),Hr(〈X,D,Gi〉)〉})

Namely, each rule decomposes the set of constraints according to its parti-
tioning scheme and proceeds with the production of a set of recommendations,
one per partition. When a rule does not apply, it simply produces an empty
set of recommendations. Once the set rec is produced, the search ranks the rec-
ommendation based on their scores and proceeds with the skeleton shown in

1 interface Recommendation {
2 void label();
3 var<CP>{int}[] getVars();
4 set{int} getValues(var<CP>{int} x);
5 int hx(var<CP>{int}[] x,int rank);
6 int hv(set{int} vals,int rank);
7 }
8 class VariableRecommendation implements Recommendation { ...
9 void label() {

10 var<CP>{int}[] x = getVars();
11 forall(rank in x.getRange()) {
12 var<CP>{int} pxi = hx(x, rank);
13 if (|D(pxi)| == 1) continue;
14 set{int} d = getValues(pxi);
15 int vr = 0;
16 while (vr < |d|) {
17 int pvr = hv(d,vr++);
18 if (pvr ∈ pxi)
19 try<cp> cp.label(pxi, pvr); | cp.diff(pxi, pvr);
20 }
21 }
22 }
23 }
24 class ValueRecommendation implements Recommendation ...

Fig. 2. The Variable/Value Recommendation Classes
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Figure 1. Line 2 invokes the polymorphic labeling method of the recommenda-
tion. The search ends as soon as all the variables are bound (line 3). Note that
since ⋃

〈Sr,Vr ,Hr〉∈rec
(∪x∈Vr) = X

the search is guaranteed to label all the variables. Figure 2 depicts the label
method for a variable first recommendation, i.e., a recommendation that first
selects a variable and then chooses a value. Line 10 retrieves the variables the
recommendation operates on, and line 12 selects a variable according to the
variable ordering hx embedded in the recommendation. Line 14 retrieves the
values that are to be considered for the chosen variable pxi. The getValues
method is responsible for only returning non-symmetrical values when value
symmetries can be broken (it returns the full domain of pxi otherwise). The
index vr spans over the ranks of these values in d and line 17 retrieves the vrth

value from d. If the value is still in the domain, line 19 uses it to label pxi.
Line 24 alludes to the fact that value-first recommendation also have their own
implementation of the Recommendation interface to support their control flow.

4 A Walk-Through Example

The synthesis process is illustrated in detail on one representative COP featuring
arithmetic, reified as well as global constraints. In the scene allocation problem,
shown in Figure 3, one must schedule a movie shoot and minimize the production
costs. At most 5 scenes can be shot each day and actors are compensated per
day of presence on the set. The decision variable shoot[s] (line 2) represents
the day scene s is shot while variable nbd[a] represents the number of days an
actor a appears in the scenes.

The objective function is a weighted sum leading to a score of 1 for the ws
rule. On a given instance, all the nbd variables have the same static degree (16)
while the remaining variables (shoot) all have a static degree of 18. Therefore,
maxy∈nbd deg(y) < maxy∈shoot deg(y) and the rule recommends to branch on the
connected (1-hop away) variables Z(nbd), i.e., on the shoot variables. The rule
proceeds and creates synthetic weights for each entry in shoot that aggregates
the weight of terms influenced by the scene being shot.

1 Solver<CP> m();
2 var<CP>{int} shoot[Scenes](m,Days);
3 var<CP>{int} nbd[Actor](m,Days);
4 int up[i in Days] = 5;
5 minimize<m> sum(a in Actor) fee[a] ∗ nbd[a] subject to {
6 forall(a in Actor)
7 m.post(nbd[a]==sum(d in Days) (or(s in which[a]) shoot[s]==d));
8 m.post(atmost(up,shoot),onDomains);
9 }

Fig. 3. A Model for the Scene Allocation Problem
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Table 1. Experimental Results

Benchmark Tailored CPAS ABS IBS WDEG
μ(T ) σ(T ) TO μ(T ) σ(T ) TO μ(T ) σ(T ) TO μ(T ) σ(T ) TO μ(T ) σ(T ) TO

car-1 0.1 0.0 0 0.1 0.0 0 80.7 63.1 1 300.0 0.0 25 88.3 111.1 5
car-2 0.1 0.0 0 0.1 0.0 0 38.8 42.2 0 221.2 95.7 14 53.7 78.9 1
car-3 0.7 0.1 0 0.6 0.0 0 266.4 66.1 19 300.0 0.0 25 276.8 80.2 23
debruijn 0.6 0.1 0 0.5 0.0 0 300.0 0.0 25 301.2 0.7 25 300.0 0.0 25
gap 13.8 1.3 0 10.5 0.3 0 44.7 2.3 0 15.4 0.6 0 91.1 5.9 0
golomb 3.4 0.3 0 2.6 0.2 0 32.3 14.8 0 137.2 60.0 1 15.3 0.2 0
color 24.9 2.5 0 193.6 0.7 0 300.0 0.0 25 300.0 0.0 25 300.0 0.0 25
gcolor(5-6) 2.7 0.2 0 2.3 0.1 0 22.1 14.3 0 5.3 0.8 0 83.8 1.0 0
knapCOP-1 0.8 0.0 0 0.0 0.0 0 0.5 0.0 0 0.4 0.1 0 1.3 0.0 0
knapCOP-2 10.4 0.1 0 3.2 0.1 0 2.7 0.5 0 5.0 2.0 0 13.4 0.3 0
knapCOP-3 300.0 0.0 25 34.6 0.5 0 64.7 13.8 0 213.7 64.4 3 300.0 0.0 25
knapCSP-1 0.6 0.0 0 0.1 0.0 0 0.1 0.1 0 0.1 0.1 0 0.3 0.2 0
knapCSP-2 3.2 0.0 0 0.8 0.0 0 1.0 0.4 0 2.0 1.0 0 4.2 2.5 0
knapCSP-3 300.0 0.0 25 9.3 0.1 0 13.8 11.4 0 63.0 37.9 0 282.4 40.8 20
magic Sq-10 4.6 4.2 0 300.0 0.0 25 2.3 2.8 0 1.3 1.6 0 89.2 126.5 6
magic Sq-11 7.9 9.2 0 300.0 0.0 25 9.2 17.2 0 3.8 2.5 0 249.6 87.6 16
magicseries 5.8 0.7 0 5.7 0.1 0 2.8 1.6 0 2.7 0.4 0 1.9 3.0 0
market 5.8 0.2 0 5.2 0.1 0 30.4 21.9 0 37.2 27.1 0 47.3 36.5 0
nurse(z3) 0.3 0.0 0 4.6 0.1 0 40.3 17.2 0 18.9 6.9 0 163.4 49.8 0
nurse(z5) 0.1 0.0 0 2.1 0.0 0 53.8 6.0 0 13.0 9.4 0 61.4 15.6 0
perfectSq 0.2 0.0 0 0.2 0.0 0 300.0 0.0 25 300.0 0.0 25 300.0 0.0 25
progressive1 0.1 0.0 0 0.1 0.0 0 67.3 96.4 2 41.1 34.7 0 3.7 2.3 0
progressive2 0.6 0.0 0 0.7 0.0 0 112.3 125.7 7 278.8 64.6 22 175.4 114.8 9
progressive3 0.1 0.0 0 0.1 0.0 0 19.2 58.8 1 46.2 84.4 2 153.4 142.7 11
radiation1 2.3 0.0 0 0.5 0.0 0 0.4 0.1 0 1.7 0.1 0 0.1 0.0 0
radiation2 7.3 0.8 0 300.0 0.0 25 2.2 0.4 0 8.7 1.3 0 0.6 0.2 0
radiation3 198.1 3.9 0 300.0 0.0 25 0.5 0.1 0 2.4 0.2 0 0.1 0.0 0
radiation4 2.0 0.0 0 0.2 0.0 0 1.0 0.2 0 5.5 0.2 0 0.6 0.3 0
radiation5 0.0 0.0 0 12.4 0.1 0 1.1 0.2 0 5.6 0.5 0 0.3 0.2 0
radiation6 1.1 0.0 0 300.0 0.0 25 1.1 0.2 0 6.5 0.9 0 0.2 0.0 0
radiation7 1.3 0.0 0 11.2 0.3 0 1.3 0.4 0 10.0 0.7 0 0.2 0.1 0
radiation8 6.8 0.0 0 300.0 0.0 25 2.1 0.6 0 9.5 2.8 0 0.5 0.1 0
radiation9 300.0 0.0 25 4.8 0.1 0 2.1 0.5 0 9.5 0.7 0 1.1 0.6 0
RRT 4.7 0.0 0 4.9 0.1 0 145.4 131.9 10 243.2 105.9 17 91.3 94.8 3
scene 0.4 0.0 0 0.7 0.0 0 156.7 45.8 0 47.1 16.1 0 300.0 0.0 25
slab1 5.3 0.0 0 2.6 0.4 0 300.0 0.0 25 300.0 0.0 25 290.6 47.2 24
slab2 2.9 0.0 0 3.6 0.2 0 300.0 0.0 25 300.0 0.0 25 266.3 93.5 22
slab3 300.0 0.0 25 7.7 0.5 0 300.0 0.0 25 300.0 0.0 25 288.1 59.5 24
sport 6.6 1.1 0 5.4 0.1 0 151.2 123.9 7 255.3 96.3 20 131.8 111.1 5

Total 1526 100 2131 150 3170 197 4113 279 4428 294

Beyond ws, two rules produce additional recommendations. The degree rule
produces a single recommendation, while the default rule produces another.Yet,
the score of the degree rule is 0 since all the variables have the same degree forcing
the diversity index to 0. The default rule issues a recommendation with a score
of ε to label any remaining variables not handled by the ws recommendation.

The value-symmetry analysis determines that the value (days) assigned to the
scenes (i.e., shoot) are fully interchangeable as reported in [13]. The symmetries
are broken dynamically with the getValues method of the recommendation.
The method returns the subset of values (days) already in use (these are no
longer symmetric and each one forms one equivalence class) along with one
unused day. Comparatively, the tailored search in [22] iterates over the scenes
and always chooses to first label the scene with the smallest domain and to break
ties based on the costliest scene first.
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5 Experimental Results

Experiments were carried out on a mix of feasible CSP and COP that benefit
from non-trivial tailored search procedures. Each benchmark is executed 25 times
with a timeout at 300 seconds. Results are reported for Activity Based Search
(ABS), Impact-Based Search (IBS), Weighted Degree search (WDeg), a state-
of-the-art hand-written tailored search, and the search synthesized by Cp-as.
ABS, IBS and WDeg all use a slow restarting strategy based on an initial
failure limit of 3 · |X | and a growth rate of 2 (i.e., the failure limit in round i is
li = 2·li−1. Table 1 reports the average CPU time μ(T ) (in seconds), its standard
deviation σ(T ) and the number of runs that timed out (TO). The analysis time
for Cp-as is negligible. Timeouts are “charged” 300 seconds in the averages.

The tailored search procedures are taken from the literature and do ex-
ploit symmetry breaking when appropriate. The steel mill instances come from
CSPLib [7,10] and the hand-crafted search is from [25]. The car sequencing in-
stances come from CSPLib and the tailored search uses the best value and vari-
able orderings from [20]. The nurse rostering search and instances are from [19].
The progressive party instances come from [7] and the tailored search labels a pe-
riod fully (using first-fail) before moving to the next period. The multi-knapsack
as well as the magic square instances are from [18]. The tailored search for the
magic square uses restarts, a semi-greedy variant of hdom for its variable order-
ing and a randomized (lower or upper first) bisection for domain splitting. Grid
coloring and radiation models and instances were obtained from the MiniZinc
Challenge1. All the COP searches are required to find a global optimum and
prove optimality. All results are based on Comet 3.0 on 2.8 GHz Intel Core 2
Duo machine with 2GB RAM running Mac OS X 10.6.7.

Rule’s adequacy. The intent of Cp-as was to produce code reasonably close to
procedures produced by experts and competitive with generic black-box searches.
The evaluation suite contains additional benchmarks (quite a few classic CSP)
that terminate extremely quickly for all the search algorithms and are therefore
providing no insights into Cp-as’s behavior. Figure 4 graphically illustrates how
often the various rules contribute to the search procedure of a model. Unsurpris-
ingly, a rule like “pick-value-first” is used extremely rarely (only on the perfect
square) as the overwhelming majority of benchmarks do not have this property.
The other rules are used substantially more often. The fallback rule is used fairly
rarely as well. Overall, the rules do not overfit the benchmarks, i.e., we are far
from equating one-rule with one benchmark.

Tailored Search. Procedures written by experts are often sophisticated with sym-
metry breaking and rich variable/value ordering using multiple criteria. The per-
formance of custom searches is therefore a target to approach and possibly match
on a number of benchmarks. Cp-as is successful in that respect and only falls short

1 Available at http://www.g12.csse.unimelb.edu.au/minizinc/

http://www.g12.csse.unimelb.edu.au/minizinc/
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on models like radiation (it cannot generate a bisecting search), or graph color-
ing (it branches on the chromatic number too early). On the magic square Cp-as

cannot exploit semantics not associated with any one global constraint.

ks 16%

ad 16%

def 4%

deg 36%

pv 2%
ws 16%

sq 5%

sp 4%

Fig. 4. Rule Usage

Black-box searches. Compared to
black-box searches, Cp-as is gener-
ally competitive, especially in terms
of robustness. Sometimes, the black-
box heuristics perform better (e.g.,
on radiation) and this needs to be
further investigated with a much
lengthier set of experiments with and
without restarting. Finally, it is pos-
sible and maybe even desirable to
switch to a fallback rule that uses an
effective black-box search techniques
that dominates a plain dom heuris-
tic. This was intentionally left out to
avoid confusions about the true causes
of Cp-as behavior. The grand total of running times and number of timeouts
across the 5 searches is particularly revealing.

6 Conclusion

Cp-as automatically generates search algorithms from high-level CP models.
Given a CP model, Cp-as recognizes and classifies its structures to synthesize
an appropriate algorithm. Empirical results indicate that the technique can be
competitive with state-of-the-art procedures on several classic benchmarks. Cp-

as is able to generate searches that split variables into groups/phases and uses
specialized variable and value ordering heuristics within each group. Cp-as also
relies on a global value symmetry breaking analysis that follows [23,5] and whose
results are exploited within each group of variables.
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Abstract. This paper revisits the tree constraint introduced in [2]
which partitions the nodes of a n-nodes, m-arcs directed graph into a
set of node-disjoint anti-arborescences for which only certain nodes can
be tree roots. We introduce a new filtering algorithm that enforces gen-
eralized arc-consistency in O(n + m) time while the original filtering
algorithm reaches O(nm) time. This result allows to tackle larger scale
problems involving graph partitioning.

1 Introduction

In the recent history of constraint programming, global constraints constitute a
powerful tool for both modeling and resolution. Today still, the most commonly
used global constraints are based on an intensive use of concepts stemming from
graph theory. Of these, the most important are cardinality constraints [12,13]
and automaton based constraints [8,9,7]. More generally, the reader should refer
to the catalogue of constraints [1] to gain a more complete idea of the graph
properties used in global constraints. In the same way, difficult problems modeled
and solved thanks to graph theory have been successfully tackled in constraint
programming and, more particularly, thanks to global constraints. This mainly
consists of constraints around graph and subgraph isomorphism [17,19], search
paths in graphs [11,10,16], even minimum cost spanning trees [14] and graph
partitioning constraints like the tree constraint [2] Such a constraint is mainly
involved in practical applications like vehicle routing, mission planning, DNA
sequencing, or phylogeny.

The tree constraint enforces the partitioning of a directed graph G = (V,E)
into a set of L node-disjoint anti-arborescences, where |V | = n, |E| = m and L is
an integer variable. In [2], it is shown that Generalized Arc-Consistency (GAC)
can be enforced in O(nm) time, while feasibility can be checked in O(n + m)
time. The bottleneck of the filtering algorithm relies on the computation of
strong articulation points which, at this moment, could not be performed in
linear time. However, based on the works of [15,3], Italiano et. al. [5] solved
this open problem by giving an O(n +m) time algorithm for computing strong
articulation points of a directed graph G. Their main contribution is the link
they made between the concept of strong articulation point in a directed graph
and the concept of dominator in a directed flow graph. This recent improvement

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 271–285, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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in graph theory made us revisit the tree constraint to see whether the complete
filtering algorithm could now be computed in linear time or not.

In this paper, Section 2 first recalls some basic notions of graph theory as
well as the integration of graph theory in a classical constraint programming
framework. Next, Section 3 proposes a short survey about the tree constraint.
First, a decomposition of the constraint is discussed in Section 3.1. Next, Sec-
tion 3.2 shows that dominator nodes were already used in a different way to
enforce reachability between nodes. Finally, Section 3.3 proposes a brief sum
up of the original tree constraint filtering algorithm. This leads us to discuss
the relevance of the approach showing that strong articulation points is a much
too strong notion for this problem whereas the notion of dominators in a flow
graph perfectly fits our needs. Thus, Section 4 presents a new complete filtering
algorithm, closer to the definition of a tree, that runs in O(n + m) worst-case
time complexity. Finally, Section 5 concludes the paper with a short evaluation
of the algorithm to illustrate how large scale problems can be tackled thanks to
this new filtering algorithm.

2 Graph Theory Definitions

A graph G = (V,E) is the association of a set of nodes V and a set of edges
E ⊆ V 2. (x, y) ∈ E means that x and y are connected. A directed graph (digraph)
is a graph where edges are directed from one node to another, it is generally noted
G = (V,A). (x, y) ∈ A means that an arc goes from x to y but does not provide
information about whether an arc from y to x exists or not.

A connected component (CC) of a digraph G = (V,A) is a maximal subgraph
GCC = (VCC , ACC) of G such that a chain exists between each pair of nodes. A
strongly connected component of a digraph G = (V,A) is a maximal subgraph
GSCC = (VSCC , ASCC) ofG such that a directed path exists between each pair of
nodes. A graph is said (strongly) connected if it consists in one single (strongly)
connected component.

A strong articulation point (SAP) of a digraph G = (V,A) is a node s ∈ V
such that the number of strongly connected components of G\{s} is greater than
the one of G. In other words s ∈ V is a SAP of G if there exists two nodes x
and y in V , x �= s, y �= s, such that each path from x to y goes through s and a
path from y to x exists.

A flow graph G(r) of a directed graphG = (V,E) is a graph rooted in the node
r ∈ V which maintains the following property: for each node v ∈ V a directed
path from r to v exists. A dominator of a flow graph G(r) where G = (V,A)
is a node d ∈ V , d �= r such that there exists at least one node v ∈ V , v �= d,
for which all paths from the root r to v go through d. We extend this notion
to arcs as following: an arc-dominator of a flow graph G(r) where G = (V,A)
is an arc (x, y) ∈ A, x �= y, such that there exists at least one node v ∈ V , for
which all paths from the root r to v go through (x, y). This definition can easily
be simplified into: an arc (x, y) ∈ A is an arc-dominator of G(r) if and only if
x �= y and all paths from the root r to y go through (x, y).
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A tree T = (V,E) is an acyclic, connected and undirected graph. One of its
directed variants is the anti-arborescence, a directed graph T = (V,A) such that
every node v ∈ V has exactly one successor w ∈ V and with one root r ∈ V ,
such that (r, r) ∈ A and for each node v ∈ V , a directed path from v to r exists.
It can be seen that an anti-arborescence can be transformed into a tree easily.
In the paper we study the case of an anti-arborescence but use for simplicity the
term tree rather than anti-arborescence. Thus the following definitions will be
used as references:

Definition 1. A tree T = (X,Y ) is a connected digraph where every node v ∈ X
has exactly one successor w ∈ X and with one root r ∈ X such that (r, r) ∈ Y
and for each node v ∈ X, a directed path from v to r exists.

Definition 2. Given a digraph G = (V,A), a tree partition of G is a subgraph
P = (V,A2), A2 ⊆ A, such that each connected component is a tree.

Then, the two previous definitions directly provide the proposition:

Proposition 1. Given a digraph P = (V,A2), subgraph of a digraph G = (V,A),
and a set R = {r|r ∈ V, (r, r) ∈ A2}, then P is a tree partition of G if and only
if each node in V has exactly one successor in P and for each node v ∈ V there
exists a node r ∈ R such that a directed path from v to r exists in P .

In a constraint programming context a solution to the tree constraint is a tree
partition of an input graph G = (V,A). A Graph Variable is used to model the
partitioning of G. It is composed of two graphs: the envelope, GE = (V,AE),
contains all arcs that potentially occur in at least one solution (Figure 1(a))
whereas the kernel, GK = (V,AK), contains all arcs that occur in every solution
(Figure 1(b)). It has to be noticed that AK ⊆ AE ⊆ A. During the resolution,
filtering rules will remove arcs from AE and decisions that add arcs to AK
will be applied until the Graph Variable is instantiated, i.e. when AE = AK
(Figure 1(c)). The problem has no solution when |AE | < |V |.

Definition 3. An instantiated Graph Variable is a tree partition of a digraph
G, if and only if its kernel GK is a tree partition of G. A partially instantiated
Graph Variable can lead to a tree partition of a digraph G, if and only if there
exists at least one tree partition of its envelope GE .
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(a) Envelope GE = (V, AE)
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(b) Kernel GK = (V, AK)
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(c) A solution (AE = AK)

Fig. 1. A graph variable associated with a directed graph G = (V, A)
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In the following, a node r ∈ V is a root if and only if (r, r) ∈ AK . It is called a
potential root if (r, r) ∈ AE .1

3 The tree Constraint: A Survey

This section introduces first a decomposed constraint programming model for
the tree constraint. Such a model does not ensure any consistency level for the
constraint. Next, we show how the DomReachability constraint can be used as
a propagator for the tree constraint. Finally, we recall the initial GAC filtering
algorithm of the constraint.

3.1 A Basic Decomposition

Our objective in this section is to convince the reader of the importance in
proposing a global constraint for directed tree partitioning. In order to do so, we
will introduce a broken down model for this problem. It is necessary to define an
integer variable L characterizing the number of trees admitted in the partition.
Next, taking G = (V,E) a graph of order n, we link to each node i an integer
variable vi of enumerated domain [1;n] defining the successor of i in G, an integer
variable ri of bounded domain [0;n−1] defining the height of i in a solution and
a boolean variable bi characterizing the root property for node i. Note that the
set of decision variables (to be used for branching) is v and that r is introduced
to prevent from the creation of circuits. As such, the problem can be defined in
the following way:

vi = j ∧ i �= j ⇒ ri > rj , ∀i ∈ [1;n] (1)
bi ⇔ vi = i, ∀i ∈ [1;n] (2)

L =
n∑
i=1

bi (3)

The correctness of the model is proved when we consider the following cases: (1)
the model does not accept a solution containing more than L well-formed trees,
(2) the model does not admit a solution containing fewer than L well-formed
trees, (3) the model does not accept a solution containing a circuit and (4) the
model does not accept a solution containing a single node without a loop. Given
G = (V,E), a directed graph of order n and F a partition of G into α well-formed
trees:

– case (1), let us suppose that α > L so that if α >
∑n

i=1 bi this means that
there are more well-formed trees in F than nodes which are potential roots,
which is impossible according to constraint (2);

– case (2), let us suppose that α < L so that if α <
∑n

i=1 bi this means that
F contains more loops than trees so that some contain more than one loop.
However, since each node has exactly one successor, it is a contradiction;

1 Notice that in this definition, a root is also a potential root.
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– case (3), if there is f ∈ F such that f contains a cycle, then, there are two
nodes i and j in f such that we have an elementary path from i to j and an
elementary path from j to i and, consequently, according to the constraint(1)
we have ri < rj and rj < ri: it is a contradiction;

– case (4) is obvious because each variable must be fixed to a value, which is
equivalent to saying that each node must have exactly one successor.

3.2 The DomReachability Constraint

Luis Quesada et. al. introduced the DomReachability constraint [11,10,16] for
solving path partitioning problems. It uses a similar graph variable description
[4] .Their constraint maintains structural relationships between a flow graph,
its dominator tree and its transitive closure. In particular, it can ensure that
all nodes are reachable from a given source node, which is very close to the
concept of a tree. Plus, and as it will be shown in the next subsection, dominance
relationships are very useful information in that context. Thus one could think
that it could be a good propagator for solving tree partitioning problems. We
will show that the use of such a constraint is not appropriate.

DomReachability runs in O(nm) worst case time complexity. This cost is
due to the algorithm used for maintaining the transitive closure, which is not
necessary for tree partitioning. The first algorithm [11] consisted in performing
one DFS per node whereas the current algorithm [16] works on a reduced graph.

DomReachabilitydoes not enable to build a tree partition directly. As it needs
a single source node it can only compute a single tree. To get a tree partition
of cardinality k, then a trick would consist in adding a fictive source node s to
the input graph and declare that each of its successors is a root node of a tree
and add a propagator which would ensure that the outdegree of s is k. In the
same way, even if one single tree is expected, when the root node is not known
in advance then it is necessary to use the previous trick with k = 1.

DomReachability does not ensure GAC over tree partitioning. This is pretty
obvious because the reachability property does not exclude cycles whereas tree
properties do. Nevertheless they use DomReachability for path partitioning
through the global constraint Simple Path with Mandatory Nodes (SPMN)
[11,10,16]. As tree partitioning is a polynomial relaxation of path partitioning, a
complete filtering over tree partitioning could be expected. However, to the best
of our knowledge, SPMN does not reap the benefit of dominators by missing the
following major pruning rule: if i dominates j then the arc (j, i) does not belong
to any solution which, regarding their notation, can be expressed as:

〈i, j〉 ∈ Edges(Min(EDG))
Edges(Max(FG)) := Edges(Max(FG)) \ {〈j, i〉} (4)

For a better understanding of this rule, it has to be considered that they work
on arborescences instead of anti-arborescences.
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3.3 The Original tree Constraint

This part is a fast sum up of the tree constraint described in [2]. The constraint
is composed of two main algorithms. The first one enables to check whether a
partially instantiated Graph Variable can lead to at least one solution or not.
This algorithm can be run in O(n+m) worst case time complexity. The second
algorithm enables to prune every arc that does not belong to any solution in
O(nm) worst case time complexity. It is the focus of this paper.

Feasibility Condition. The original paper defines an integer variable L =
[�; �] that represents the cardinality of the tree partition and two bounds: �∗,
the number of sink components2, and �

∗
, the number of potential roots. Those

two bounds can easily be evaluated in linear time: all the strongly connected
components of GE can be computed in O(n+m) using Tarjan’s algorithm [18].
Thus, the sink components can be detected in O(m) time, which provides �∗.
Moreover a simple breadth first search exploration of GE enables to compute �

∗
.

The feasibility condition can be decomposed into two parts. The first one
is directly related to the number of trees allowed into the partition, while the
second one is related to the definitions of directed tree: dom(L)∩ [�∗; �

∗
] �= ∅, and

all sink components of GE must contain at least one potential root. The original
paper provides the proof of sufficiency of those conditions which can obviously
be checked in linear time.

Complete Filtering Algorithm. The complete filtering algorithm can be split
into two propagators: bound filtering and structural filtering. The bound filter-
ing focuses on the cardinality of the expected partition whereas the structural
filtering ensures the generalized arc-consistency over tree partitioning proper-
ties. Both algorithms are complementary and form together a complete filtering
algorithm for tree constraint.

The bound filtering is pretty simple. First of all, it consists in ensuring that
dom(L)∩ [�∗; �

∗
] �= ∅ by removing the values of L that are out of range. Secondly,

it consists in pruning infeasible arcs when L is instantiated to one of its extrema:
If dom(L) = {�∗} then any potential root in a non sink component is infeasible
and thus removed from the envelope; If dom(L) = {�∗} then any potential root
must be instantiated as a root thus all their outgoing arc that are not a loop are
removed from the envelope.

The structural filtering detects all arcs that belong to no tree partition. For
this purpose, several notations are required: A door is a vertex v ∈ V such that
there exists (v, w) ∈ AE where w does not belong to the same strongly connected
component as v. A winner is a vertex v ∈ V which is a potential root or a door.
Let’s consider S, a strongly connected component of GE , and p a strong artic-
ulation point in S; Δp is the set of the new strongly connected components ob-
tained by the removal of p from S:Δp = {Si|Si strongly connected component of
S \ {p}}. Δp

in is the subset of Δp such that all paths from each of its strongly

2 The number of strongly connected components with no outgoing arcs.
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connected component to any winner of S go through p. Δp
out is the subset of

Δp such that a path exists from each of its strongly connected component to a
winner of S without going through p. Remark, Δp

in

⊕
Δp
out = Δp. Pruning is

then performed according to three following rules:

1. If a sink component of GE contains one single potential root r, then all the
outgoing arc of r except the loop (r, r) are infeasible.

2. If a strongly connected component C ⊆ GE contains no potential root but
one single door d, then all arcs (d, v), v ∈ C are infeasible.

3. An outgoing arc (p, v) of a strong articulation point p of GE that reaches a
vertex v of a strongly connected component of Δp

in is infeasible.

Rules 1 and 2 are obvious. Rule 3 basically means that enforcing such an arc
would lead to some strongly connected components with no winners, thus sinks
with no potential roots which is a contradiction.

About time complexity, pruning among rules 1 and 2 can easily be performed
in linear time but when the paper was published, computing efficiently the strong
articulation points of a digraph remained an open problem and the worst case
time of the pruning procedure was thus O(nm). In response to that claim, Ital-
iano et. al. [5] recently showed an O(m+n) worst case time complexity algorithm
for computing strong articulation points of a digraph. This work enabled to fas-
ten the pruning in practice. However, the theoretic time complexity remains
O(nm): rule 3 needs to withdraw strong articulation points one by one and
compute new strongly connected components each time. The strongly connected
components can be computed in O(n + m) time using Tarjan’s algorithm but
there can be up to n strong articulation points, thus the total processing has a
O(n2 + nm) = O(nm) worst case time complexity.

We will now show that the concept of strong articulation point is not well
appropriate and propose a new formulation of the pruning conditions based on
dominance relationship.

4 Linear Time Algorithm for the tree Constraint

The contribution of this paper relies on a new formulation of the filtering rule
related to the strong articulation points. The first point to notice is that, given
a strong articulation point p of a strongly connected component SCCi ⊆ GE ,
Δp
in may be empty (Figure 2(a)), thus the initial algorithm may perform sev-

eral expensive and useless computations. The second important point is that
the initial filtering algorithm does not require the concepts of doors, winners,
strong articulation points and strongly connected components. Actually, their
use, which implies paths in two directions, is not natural in our context because
only a one way path from each node to a root is required. For instance, given
three nodes u, v and w in V such that w is the unique potential root reachable
from u. If every path from u to w requires v, then any path from v to u has to
be forbidden (Figure 2(b)).

The filtering rule proposed by the initial algorithm can be reformulated by:
Any arc (x, y) ∈ SCCi ⊆ GE , x �= y is infeasible if and only if all paths from y to
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(a) A strong articulation
point C such that ΔC

in = ∅

u wv

(b) Main pruning rule

Fig. 2. Structural pruning observations

any winner of SCCi go through x. However, as a winner in a strongly connected
component is either a potential root, or a door that can thus lead to a potential
root (each sink has at least one potential root), it can be rephrased: Any arc
(x, y) ∈ SCCi ⊆ GE , x �= y is infeasible if and only if all paths from y to any
potential root of GE go through x. Moreover, assume (x, y) is an arc of the
digraph GE and there exists a path from y to x then x and y belong to the same
strongly connected component, so the condition can be simplified in the following
way: Any arc (x, y) ∈ GE , x �= y is infeasible if and only if all paths from y to any
potential root of GE go through x. This condition is much closer to definition 1,
it can be noted that it is also quite similar with the dominance definition: Let
R be the set of potential roots, i.e. R = {v|v ∈ V, (v, v) ∈ AE}. Let us consider
the graph GES = (V ∪ s,AE ∪ S) where s /∈ V and S =

⋃
r∈R((r, s) ∪ (s, r)).

Let the digraph G−1
ES be the inverse graph of GES (obtained by reversing the

orientation of arcs of GES). The previous definition can be transposed into:
(x, y) ∈ GE , x �= y, is infeasible if and only if x is a dominator of y in the flow
graph G−1

ES(s). The main interest is that algorithms do exist to find dominators
of a flow graph in linear time [15,3].

4.1 Feasibility and Filtering Conditions

We now consider a partially instantiated graph variable GV = (GE , GK) that
represents a subgraph of an input directed graph G = (V,A). We have GE =
(V,AE), GK = (V,AK) and AK ⊆ AE ⊆ A (Section 2).

Proposition 2. Given a partially instantiated graph variable GV of a digraph
G, there exists a tree partition of G if and only if for each node v ∈ V the two
following conditions hold:

1. |{(v, w)|(v, w) ∈ AE}| ≥ 1 and |{(v, w)|(v, w) ∈ AK}| ≤ 1
2. there exists a potential root r ∈ V such that a directed path from v to r exists

in GE.

Proof. If there exists a node v ∈ V such that |{(v, w) | (v, w) ∈ AK}| > 1 then
v has more than one successor in all solutions, if |{(v, w) | (v, w) ∈ AE}| < 1
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then v has no successors in AE and thus in all solutions because AK ⊆ AE .
Both cases are in contradiction with Proposition 1 thus cannot lead to any tree
partitioning. If there exists a node v ∈ V such that v can reach no potential root
with a directed path in GE then, as AK ⊆ AE , v cannot reach any root in any
solution which is in contradiction with Proposition 1 and thus cannot lead to
any tree partitioning.

Let us now suppose that conditions 1 and 2 are respected. Let us instantiate
all potential roots r ∈ V , i.e. add all arcs (r, r) ∈ AE to AK and delete all other
outgoing arcs of r from AE . At this step condition 2 still holds so for each node
v ∈ V there exists a potential root r ∈ V such that a path from v to r exists in
GE . Let’s add that path in GK (by adding its arcs to AK). The result of this
procedure is an instantiated Graph Variable that is a tree partition of G. ��

Remark 1. Condition 1 did not appear in previous models because they used
integer variables which immediately ensured that property.

Proposition 3. Given a partially instantiated graph variable GV of a digraph
G, if there exists a tree partition of G then, an arc (x, y) ∈ AE, x �= y, does not
belong to any solution if and only if one of the following conditions holds:

1. there exists a node w ∈ V,w �= y, such that (x,w) ∈ AK ,
2. all directed paths in GE from y to any potential root r ∈ V go through x.

Proof. Let x and w be two nodes in V such that (x,w) ∈ AK then w is a successor
of x in every solution. Definition 1 implies that w is the unique successor of x,
thus any arc (x, y) ∈ AE such that y �= w belongs to no solution. Let x and
y be two distinct nodes of V such that all directed paths in GE from y to any
potential root r ∈ V go through x and that (x, y) ∈ AE . Then Proposition 1
implies that there will be a directed path from y to x in every solution. Using arc
(x, y) ∈ AE would thus create a cycle which is in contradiction with definition 1
so (x, y) belong to no solution.

Let now suppose that there exists an arc (x, y) ∈ AE which belongs to no
solution and such that conditions 1 and 2 are both false. Condition 1 is false if
and only if (x, y) ∈ AK or no outgoing arc of x belongs to AK . If (x, y) ∈ AK then
all solutions contains arc (x, y) which is a contradiction so it can be supposed
that no outgoing arc of x belongs to AK . As condition 2 is false then at least one
directed path exists in GE from y to any potential root without going through x.
If (x, y) is added to AK then the two conditions of Proposition 2 hold, thus the
graph variable GV still lead to at least one solution which is a contradiction. ��

Proposition 4. Given a partially instantiated graph variable GV of a digraph
G, if each infeasible arc has been removed from GV , then an arc (x, y) ∈ AE,
x �= y, belongs to all solutions if and only if all paths in GE from x to any
potential root go through the arc (x, y).

Proof. Given an arc (x, y) ∈ AE , if all paths from x to any potential root go
through (x, y), as a path should exist from x to a potential root in each solution,
(x, y) belongs to all solutions. Given an arc (x, y) ∈ AK , then x has only one
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single successor y in GE , otherwise all infeasible arcs have not been pruned
(because each node should have exactly one successor). Thus all outgoing paths
of x go through (x, y) and as the problem is feasible at least one path from x to
any potential root exists. ��

4.2 Filtering Algorithm

Keeping the previous notations about the graph variable GV , we assume that
any graph is represented by two arrays of lists: successors and predecessors of
nodes. The list of index i in the successors array represents the successors of the
node i ∈ V . In order to make the complexity study easier, we introduce several
basic notations: n = |V |, m = |A|, mE = |AE | with mE ≤ m (Section 2).

Proposition 5. An O(m + n) worst case time complexity algorithm exists to
check whether GV can lead or not to a tree partition of G.

Proof. Considering the list representation of the graph, condition 1 of Proposi-
tion 2 can be checked in O(n) by computing the size of the list of successors of
each node, once in GE and once in GK .

Let R be the set of potential roots, i.e. R = {v|v ∈ V, (v, v) ∈ AE}. Let’s
consider the graph GES = (V ∪ s,AE ∪ S) where s /∈ V , AE ∩ S = ∅ and
S =

⋃
r∈R((r, s) ∪ (s, r)). Let the digraph G−1

ES be the graph inverse of GES
(obtained by reversing the orientation of arcs of GES). A simple Depth-First
Search (DFS) exploration of G−1

ES from node s will check whether each node
v ∈ V is reachable or not from s using directed paths in G−1

ES . So it checks
whether each node v ∈ V can reach or not a potential root using a directed path
in GE . Thus it checks condition 2 of Proposition 2. The time complexity of a
DFS of a graph of mE arcs is O(mE). The total worst case time complexity of
this algorithm is so O(n+mE). As AE ⊆ A, mE ≤ m. Thus this algorithm runs
in O(n+m) worst case time complexity. ��

Proposition 6. If the graph variable GV , associated with the digraph G to par-
tition, can lead to a tree partition of G, an O(m+n) worst case time complexity
algorithm exists to detect and remove all the arcs (x, y) ∈ AE that do not belong
to any tree partition of G.

Proof. In this context pruning an arc (x, y) consists in removing it from AE .
We will now describe such an algorithm, which relies upon two main steps that
respectively correspond to conditions 1 and 2 of Proposition 3.

Condition 1: for each node v ∈ V , either v has one successor in GK or v has
no successor in GK . If v has one successor w in GK then the list of successors of
v in GE is cleared and (v, w) is put back into GE . This is done in constant time
so the whole complexity of step 1 is O(n).

Condition 2: let us consider the graph G−1
ES previously described. Then condi-

tion 2 of Proposition 3 to ensure that the arc (x, y) ∈ GE belongs to no solution
is equivalent to "x dominates y in the flow graph G−1

ES(s)". Several algorithms
enable to find immediate dominators in a flow graph [15,3] in O(n+mE) worst
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case time complexity. Let’s compute I the dominance tree of the flow graph
G−1
ES(s) with one of those algorithms.
Then a node p ∈ V dominates v ∈ V in G−1

ES if and only if p is an ancestor of
v in I. Such a query can be answered in constant time thanks to a O(n) space
and O(n + m) time preprocessing. Let’s create two n-size arrays opening and
closure, perform a depth first search of I from s and record pre-order and post-
order numbers of each node in respectively opening and closure. Then, p is an
ancestor of v if and only if: opening[p] < opening[v] and closure[p] > closure[v].
There are at most mE requests (one for each arc) so the whole worst case time
complexity of step two is O(n+m). ��

Proposition 7. If the graph variable GV , associated with the digraph G to par-
tition, can lead to a tree partition of G and if all its infeasible arcs have been
pruned, an O(m+ n) worst case time complexity algorithm exists to add all the
arcs (x, y) ∈ AE , x �= y, that belong to all tree partitions of G, into AK .

Proof. In this context enforcing an arc (x, y) consists in adding it to AK . Let’s
consider the previously introduced flow graph G−1

ES(s). It should be noticed that
the condition for enforcing an arc (x, y) ∈ AE of Proposition 4 is equivalent to:
(x, y) ∈ AE belong to all solutions if and only if (y, x) is an arc-dominator in
G−1
ES(s). Thus computing arc-dominators of G−1

ES(s) is all we have got left.
In [5] and [10], it is suggested to insert a fictive node inside each arc of the input

graph and then compute dominators (in linear time). If a dominator is a fictive
node, then the corresponding arc is an arc-dominator. Thus, the total processing
time remains in O(n+m) worst case time complexity. However, (y, x) is an arc-
dominator of a flow graph G(s) if and only if y is the immediate dominator of x
in G(s) and for each predecessor p of x such that p �= y, x dominates p in G(s).
Thus we present an alternative method which we claim to be faster in practice
and less space-consuming.

We assume that the pruning algorithm has been performed. Thus the dom-
inance tree I, of G−1

ES , is already computed and the preprocessing for ancestor
relationships in I introduced in Proposition 6 has been done. A Depth First
Search (DFS) exploration of G−1

ES is then performed from the node s. For each
encountered arc (y, x), such that (x, y) ∈ I and (x, y) /∈ AK , for each predecessor
p of x, a request to know whether x is an ancestor of p in I is computed. If one
of those queries return false then (y, x) is not an arc-dominator of G−1

ES(s). Oth-
erwise (x, y) can be enforced i.e. added into AK . This algorithm computes O(m)
constant time queries. It is thus in O(n+m) worst case time complexity. ��

Remark 2. In our problem, each node has exactly one successor and all infeasi-
ble arcs are detected. Thus it is not useful to compute arcs that belong to all
solutions explicitly: they will be deduced from the filtering algorithm. However
in the general case, unlike integer variables, graph variables enable a node to
have 0 or many outgoing arcs. Then the identification of arcs that belong to
all solutions cannot be immediately deduced from pruning and thus provides
important additional information.
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Proposition 8. Given the input graph G and an integer variable L, a partition
of G into L trees, if one exists, can be found within O(nm) worst case time
complexity.

Proof. Each of the n nodes must have exactly one successor. Then n ≤ m. If
the decision used in the propagation engine is "enforce an arc a ∈ AE , a /∈ AK"
then, as the pruning is complete the number of nodes in the tree search is O(n).
Plus it has just been shown that each propagation runs in O(n+m) worst case
time complexity. Thus the total solving time is O(n(n + m)) = O(nm) worst
case time complexity. ��

4.3 Implementation Details

The new tree constraint consists in the conjunction of 3 propagators: OneSucc
enforces that each node must have exactly one successor; Ntrees controls the
cardinality of the partition as described in [2]; TreeProps ensures a complete
filtering over tree partitioning properties, which is the focus of the paper.

Algorithm 1. TreeProps propagator of the tree constraint
Require: two digraphs GE = (VE , AE), G−1

E s.t. s /∈ VE is its unique source
Ensure: each arc of GE that does not belong to any solution has been removed
1: TE ← dominatorTree(G−1

E , s); {dominance tree of G−1
E }

2: int[] opening, closure ← ancestorPreProcess(TE , s); {pre/post-order of TE}
3: for all node v ∈ VE do
4: for all node w ∈ AE .getSucc(v) s.t. w �= v do
5: if opening[v] < opening[w] ∧ closure[v] > closure[w] then
6: AE ← AE \ {(v, w)};
7: end if
8: end for
9: end for

The structural filtering of TreeProps is based on the dominatorTree(G, s)
algorithm which computes the immediate dominators of the flow graph G(s)
and return its dominance tree. It can be run in O(n+m) worst case time [15,3].
However, for practical reasons, the current implementation uses the Lengauer-
Tarjan algorithm [6] which runs in O(mα(n,m)) worst case time complexity,
where α(n,m) is the inverse of the Ackermann function and thus grows very
slowly. The function ancestorPreProcess(T, s) returns the pre-order and the
post-order (starting from node s) labels of the nodes involved in the tree T . This
can be done in O(n) time if T involves n nodes.

5 Experimental Study

This section enables to compare several previously exposed models: the decom-
position model of Section 3.1, the original tree constraint of Section 3.3 and
the new linear time algorithm introduced by Section 4. Each algorithm consists
in providing a tree partition of a randomly generated input graph. For practical
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interest, two cases of the new tree constraint have been tested. Both uses ex-
actly the same constraint implementation but one uses graph variables with a
matrix representation whereas the second one uses adjacency lists. Technically,
the matrix representation uses bitset arrays instead of boolean matrix. For ho-
mogeneity reasons, all those experiments use the same branching strategy which
consists in enforcing a randomly selected arc. All algorithms are implemented
within the Choco open source Java Library. The source code is not included in
the current distribution but is available on demand. The experiment has been
performed on a Mac mini 4.1, with a 2.4 Ghz Intel core 2 duo processor and 3
Go of memory allocated to the Java Virtual Machine.

As the study focuses on structural filtering, the cardinality of the expected
partition has not been restricted and input graphs were generated connected. We
note d the density of the input graph and d+ the average outdegree of its nodes.
We have d = m

n2 = d+

n . For each parameters combination (n, d+) thirty graphs
have been randomly generated and partitioned into trees. Then, for each method,
the number of solved instances and their mean solving time have been recorded.
The time limit has been set to one minute. This enables to get information about
the stability of those algorithms and about the relevance of our measures.

Table 1 highlights that all approaches with a complete pruning are stable
whereas the decomposition is unreliable. The computation time (column time)
is provided in seconds, while the solved column denotes the percentage of solved
instances. The decomposition is the worst choice for sparse graphs whereas it is
better than the original tree constraint for dense graphs. This is due to the fact
that the decomposition pruning is faster and that the denser the input graph,
the higher the chance of any given arc to belong to at least one solution.

Figure 3 shows that the new tree constraint clearly outperforms the previous
version by an important scaling factor. It can solve problems with up to 750
vertices when the graph is complete and up to 4500 vertices when the graph is
sparse. Those results confirm the complexity of O(nm) in theory (Proposition 8)

Table 1. Stability and performance study

Instances Decomp. Original Matrix List
n d+ time solved time solved time solved time solved

50
5 1.1 80 0.5 100 0 100 0 100

20 0.1 100 1.3 100 0 100 0 100
50 0.1 100 1.2 100 0 100 0 100

150

5 2.6 60 4.5 100 0 100 0 100
20 3.1 80 11.3 100 0 100 0 100
50 0.6 87 25.3 100 0.1 100 0.2 100

150 2.8 100 - 0 0.3 100 1.4 100

300

5 0.1 20 51.6 100 0.1 100 0 100
20 0.4 47 - 0 0.2 100 0.3 100
50 1.7 53 - 0 0.5 100 1 100

300 17.7 77 - 0 2.4 100 30 100
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(a) Sparse graphs (d+ = 5) (b) Complete graphs (d+ = n)

Fig. 3. Scalability and data structure

and O(nmα(n,m)) in practice (Section 4.3). Moreover they highlight the impact
of the chosen data structure according to the input graph density. We observed
a critical density dc = 35

n : when d < dc a list representation should be preferred
whereas a matrix representation should be more relevant for denser graphs.

The last experiments we provide concerns scalability. For this purpose, the
time limit is increased from one minute to two minutes and we observe the
size of the graphs which can be treated within this time. In the case of sparse
digraphs, a list representation in our algorithm improves the size of the largest
treated digraph by 31% (up to 5900 nodes), while the original approach only
allows to handle digraphs about 17% bigger (about 350 nodes). In the case of
complete digraphs, a matrix representation in our algorithm improves the results
by 20% (up to 900 nodes), while the original approach reaches 28% (about 160
nodes).

6 Conclusion

In this paper we have presented a non incremental linear time filtering algorithm
that ensures generalized arc consistency for the tree constraint. Its correctness
and worst case time complexity have been demonstrated and enforced by an
experimental study. Even with an implementation in O(mα(n,m)) of the filtering
phase (due to the Lengauer-Tarjan algorithm) the constraint gains a mean scale
factor of approximately ten. Moreover, two different types of data structures
have been tested: matrix and adjacency lists. We experimentally showed that
the lists representation clearly outperforms the matrix representation for sparse
graphs and that this trend reverses when the input graph density grows enough.
All those results are encouraging for further works as path partitioning. Also, we
might work on incremental algorithms, however the dominance property seems
too global to let us hope in significant improvements.
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Abstract. Usually propagation-based constraint solvers construct a
constraint network as a conjunction of constraints. They provide propa-
gators for each form of constraint c. In order to increase expressiveness,
systems also usually provide propagators for reified forms of constraints.
A reified constraint b ↔ c associates a truth value b with a constraint
c. With reified propagators, systems can express complex combinations
of constraints using disjunction, implication and negation by flattening.
In this paper we argue that reified constraints should be replaced by
half-reified constraints of the form b → c. Half-reified constraints do not
impose any extra burden on the implementers of propagators compared
to unreified constraints, they can implement reified propagators without
loss of propagation strength (assuming c is negatable), they extend au-
tomatically to global constraints, they simplify the handling of partial
functions, and can allow flattening to give better propagation behavior.

1 Introduction

Constraint programming propagation solvers solve constraint satisfaction prob-
lems of the form ∃V. ∧c∈C c, that is an existentially quantified conjunction of
primitive constraints c. But constraint programming modeling languages such
as OPL [16], Zinc/MiniZinc [9,10] and Essence [6] allow much more expressive
problems to be formulated. Modeling languages map the more expressive for-
mulations to existentially quantified conjunction through a combination of loop
unrolling, and flattening using reification.

Example 1. Consider the following “complex constraint” written in Zinc syntax

constraint i <= 4 -> a[i] * x >= 6;

which requires that if i ≤ 4 then the value in the ith position of array amultiplied
by x must be at least 6. This becomes the following existentially quantified
conjunction through flattening and reification:

constraint b1 <-> i <= 4; % b1 holds iff i <= 4
constraint element(i,a,t1); % t1 is the ith element of a
constraint mult(t1,x,t2); % t2 is t1 * x
constraint b2 <-> t2 >= 6; % b2 holds iff t2 >= 6
constraint b1 -> b2 % b1 implies b2

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 286–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The complex logic (implication) is encoded by “reifying” the arguments and in
effect naming their truth value using new Boolean variables b1 and b2. The term
structure is encoded by “flattening” the terms and converting the functions to
relations, introducing the new integer variables t1 and t2. Note that the newly
introduced variables are existentially quantified. ��

The translation given in the above example is well understood, but potentially
flawed, for three reasons. The first is that the flattening may not give the intuitive
meaning when functions are partial.

Example 2. Suppose the array a has index set 1..5, but i takes the value 7. The
constraint element(i, a, t1) will fail and no solution will be found. Intuitively if
i = 7 the constraint should be trivially true. ��

The simple flattening used above treats partial functions in the following manner.
Application of a partial function to a value for which it is not defined gives value
⊥, and this ⊥ function percolates up through every expression to the top level
conjunction, making the model unsatisfiable. For the example (t1 ≡) a[7] = ⊥,
(t2 ≡) ⊥ × x = ⊥, (b2 ≡) ⊥ ≥ 6 = ⊥, (b1 ≡) 7 ≤ 4 = false , false → ⊥ = ⊥.
This is known as the strict semantics [5] for modeling languages.

The usual choice for modeling partial functions in modeling languages is the
relational semantics [5]. In the relational semantics the value ⊥ percolates up
through the term until it reaches a Boolean subterm where it becomes false .
For the example (t1 ≡) a[7] = ⊥, (t2 ≡) ⊥ × x = ⊥, (b2 ≡) ⊥ ≥ 6 = false ,
(b1 ≡) 7 ≤ 4 = false , false → false = true. But in order to implement the
relational semantics, the translation of the original complex constraint needs to
be far more complex.

Example 3. The tool mzn2fzn unrolls, flattens, and reifies MiniZinc models im-
plementing the relational semantics. Assuming i takes values in the set 1..8, and
a has an index set 1..5, its translation of the constraint in Example 1 is
constraint b1 <-> i <= 4; % b1 holds iff i <= 4
constraint element(t3,a,t1);% t1 is the t3’th element of a
constraint mult(t1,x,t2); % t2 is t1 * x
constraint b2 <-> t2 >= 6; % b2 holds iff t2 >= 6
constraint t3 in 1..5 % t3 in index set of a
constraint b3 <-> i = t3; % b3 holds iff i = t3
constraint b3 <-> i <= 5; % b3 holds iff i in index set of a
constraint b4 <-> b2 /\ b3 % b4 holds iff b2 and b3 hold
constraint b1 -> b4 % b1 implies b4

The translation forces the partial function application element to be “safe” since
t3 is constrained to only take values in the index set of a. The reified constraints
defining b3 force t3 to equal i iff i takes a value in the index set of a. ��

A second weakness of reification, independent of the problems with partial func-
tions, is that each reified version of a constraint requires further implementation
to create, and indeed most solvers do not provide any reified versions of their
global constraints.
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Example 4. Consider the complex constraint

constraint i <= 4 -> alldifferent([i,x-i,x]);

The usual flattened form would be

constraint b1 <-> i <= 4; % b1 holds iff i <= 4
constraint minus(x,i,t1); % t1 = x - i
constraint b2 <-> alldifferent([i,t1,x]);
constraint b1 -> b2 % b1 implies b2

but no solver we are aware of implements the third primitive constraint.1 ��

Reified global constraints are not implemented because a reified constraint b ↔ c
must also implement a propagator for ¬c (in the case that b = false). While for
some global constraints, e.g. alldifferent, this may be reasonable to imple-
ment, for most, such as cumulative, the task seems to be very difficult.

A third weakness of the full reification is that it may keep track of more
information than is required. In a typical finite domain solver, the first reified
constraint b1 ↔ i ≤ 4 will wake up whenever the lower bound of i changes in
order to check whether it should set b1 to false. But setting b1 to false will never
cause any further propagation. There is no reason to check this.

Flattening with half-reification is an approach to mapping complex constraints
to existentially quantified conjunctions that improves upon all these weaknesses
of flattening with full reification.

– Flattening with half reification can naturally produce the relational seman-
tics when flattening partial functions in positive contexts.

– Half reified constraints add no burden to the solver writer; if they have a
propagator for constraint c then they can straightforwardly construct a half
reified propagator for b → c.

– Half reified constraints b → c can implement fully reified constraints without
any loss of propagation strength (assuming reified constraints are negatable).

– Flattening with half reification can produce more efficient propagation when
flattening complex constraints.

Our conclusion is that propagation solvers only need to provide half reified ver-
sion of all constraints. This does not burden the solver writer at all, yet it
provides more efficient translation of models, and more expressiveness in using
global constraints.

2 Propagation Based Constraint Solving

We consider a typed set of variables V = VI ∪ VB made up of integer variables,
VI , and Boolean variables, Vb. We use lower case letters such as x and y for
integer variables and letters such as b for Booleans. A domain D is a complete
mapping from V to finite sets of integers (for the variables in VI) and to subsets
of {true, false} (for the variables in Vb). We can understand a domain D as a

1 Although there are versions of soft alldifferent, they do not define this form.



Half Reification and Flattening 289

formula ∧v∈V(v ∈ D(v)) stating for each variable v that its value is in its domain.
A false domain D is a domain where ∃v ∈ V .D(v) = ∅, and corresponds to an
unsatisfiable formula.

Let D1 and D2 be domains and V ⊆ V . We say that D1 is stronger than
D2, written D1 ) D2, if D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2

are equivalent modulo V , written D1 =V D2, if D1(v) = D2(v) for all v ∈ V .
The intersection of D1 and D2, denoted D1 � D2, is defined by the domain
D1(v) ∩ D2(v) for all v ∈ V . We assume an initial domain Dinit such that all
domains D that occur will be stronger i.e. D ) Dinit.

A valuation θ is a mapping of integer and Boolean variables to correspondingly
typed values, written {x1 $→ d1, . . . , xn $→ dn, b1 $→ tf1, . . . , bm $→ tfm}. We
extend the valuation θ to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation,
we define a valuation θ to be an element of a domain D, written θ ∈ D, if
θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint is a restriction placed on the allowable values for a set of variables.
We define the solutions of a constraint c to be the set of valuations θ that make
that constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (|= θ(c))}.

We associate with every constraint c a propagator fc. A propagator fc is a
monotonically decreasing function on domains such that for all domains D )
Dinit: fc(D) ) D and {θ ∈ D | θ ∈ solns(c)} = {θ ∈ fc(D) | θ ∈ solns(c)}. This
is a weak restriction since, for example, the identity mapping is a propagator for
any constraint.

A domain D is domain consistent for constraint c if D(v) = {θ(v) | θ ∈
solns(c) ∧ θ ∈ D}, for all v ∈ vars(c). A domain D is bounds(Z) consistent
for constraint c over variables v1, . . . vn if for each i ∈ {1, . . . , n} there exists
θ ∈ solns(c)∩D s.t. θ(vi) = minD(vi) and minD(vj) ≤ θ(vj) ≤ maxD(vj), 1 ≤
j �= i ≤ n, and similarly exists θ ∈ solns(c) ∩ D s.t. θ(vi) = maxD(vi) and
minD(vj) ≤ θ(vj) ≤ maxD(vj), 1 ≤ j �= i ≤ n. For Boolean variables v we
assume false < true. A domain D is bounds(R) consistent for constraint c if the
same conditions as for bounds(Z) consistency hold except θ ∈ solns(c′) where c′

is the real relaxation of c. Note that we assume Booleans can only take Boolean
values in the real relaxation.

Note that for the pure Boolean constraints domain, bounds(Z) and bounds(R)
consistency coincide.

A propagator fc is X-consistent if f(D) is always X consistent for c, where
X could be domain, bounds(Z) or bounds(R).

A propagation solver for a set of propagators F and current domain D,
solv (F,D), repeatedly applies all the propagators in F starting from domain D
until there is no further change in the resulting domain. solv (F,D) is the weakest
domainD′ ) D which is a fixpoint (i.e. f(D′) = D′) for all f ∈ F . In other words,
solv (F,D) returns a new domain defined by solv (F,D) = gfp(λd.iter (F, d))(D)
where iter(F,D) = �f∈F f(D), where gfp denotes the greatest fixpoint w.r.t )
lifted to functions.
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2.1 A Language of Constraints

For simplicity of presentation we restrict ourselves in this paper to the follow-
ing simple grammar of constraints (a subset of MiniZinc), in which the cons
nonterminal defines constraints, and the term nonterminal defines integer terms:

cons −→ true | false | bvar| term relop term
−→ not cons | cons /\ cons | cons \/ cons | cons -> cons | cons <-> cons
−→ pred(term1, . . . , termn)

term −→ int | ivar | term arithop term | array[term] | bool2int( cons )

The grammar uses the symbols bvar for Boolean variables, relop for relational
operators { ==, <=, <, !=, >=, > }, pred for names of builtin predicate constraints,
int for integer constants, ivar for integer variables, arithop for arithmetic operators
{ +, -, *, div } and array for array constants. The main missing things are looping
constructs, long linear and Boolean constraints, and local variables.

We assume each integer variable x is separately declared with a finite initial
set of possible values Dinit(x). We assume each array constant is separately
declared as a mapping {i $→ d | i ∈ idx (a)} where its index set idx (a) is a
finite integer range. Given these initial declarations, we can determine the set
of possible values of any term t in the language as {θ(t) | θ ∈ Dinit}. Note also
while it may be prohibitive to determine the set of possible values for any term
t, we can efficiently determine a superset of these values by building a superset
for each subterm bottom up using approximation.

Given a cons term defining the constraints of the model we can split its cons
subterms as occurring in kinds of places: positive contexts, negative contexts,
and mixed contexts. A Boolean subterm t of constraint c, written c[t], is in a
positive context iff for any solution θ of c then θ is also a solution of c[true], that
is c with subterm t replaced by true. Similarly, a subterm t of constraint c is in
a negative context iff for any solution θ of c then θ is also a solution of c[false ].
The remaining Boolean subterms of c are in mixed contexts.

Example 5. Consider the constraint expression c
constraint i <= 4 -> x + bool2int(b) = 5;

then i ≤ 4 is in a negative context, x+ bool2int(b) = 5 is in a positive context,
and b is in a mixed context. If the last equality were x+ bool2int(b) ≥ 5 then
b would be in a positive context. ��

One can classify most contexts as positive or negative using a simple top-down
analysis of the form of the expression. The remaining contexts can be considered
mixed without compromising the correctness of the rest of the paper.

Our small language contains two partial functions: div returns ⊥ if the divisor
is zero, while a[i] returns ⊥ if the value of i is outside the domain of a. We can
categorize the safe terms and constraints of the language, as those where no ⊥
can ever arise in any subterm. A term or constraint is safe if all its arguments
are safe, and either the term is not a division or array access, or it is a division
term t1 div t2 and the set of possible values of t2 does not include 0, or it is an
array access term a[t] and the set of possible values of t are included in idx (a).
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3 Flattening with Full Reification

Since the constraint solver only deals with a flat conjunction of constraints,
modeling languages that support more complex constraint forms need to flatten
them into a form acceptable to the solver. The usual method for flattening
complex formula of constraints is full reification. Given a constraint c the full
reified form for c is b ↔ c, where b �∈ vars(c) is a Boolean variable naming the
satisfied state of the constraint c.

The pseudo-code for flatc(b,c) flattens a constraint expression c to be equal to
b, returning a set of constraints implementing b ↔ c. We flatten a whole model c
using flatc(true, c). In the pseudo-code the expressions new b and new v create
a new Boolean and integer variable respectively.

The code assumes there are reified versions of the basic relational constraints
r available, as well as reified versions of the Boolean connectives. Flattening of
arbitrary constraint predicates aborts if not at the top level of conjunction. The
code handles unsafe terms by capturing them when they first arrive at a Boolean
context using safen.

flatc(b,c)
switch c
case true: return {b}
case false: return {¬b}
case b′ (bvar): return {b ↔ b′}
case t1 r t2 (relop): return safen(b, flatt(new i1, t1) ∪ flatt(new i2, t2)) ∪ {b ↔ i1 r i2}
case not c1: return flatc(new b1, c1) ∪ {b ↔ ¬b1}
case c1 /\ c2: if (b ≡ true) return flatc(true , c1) ∪ flatc(true , c2)

else return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b ↔ (b1 ∧ b2)}
case c1 \/ c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b ↔ (b1 ∨ b2)}
case c1 -> c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b ↔ (b1 → b2)}
case c1 <-> c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b ↔ (b1 ↔ b2)}
case p (t1, . . . , tn) (pred):

if (b ≡ true) return safen(b,∪n
j=1flatt(new vj , tj)) ∪ {p(v1, . . . , vn)}

else abort

The code flatt(v, t) flattens an integer term t, creating constraints that equate the
term with variable v. It creates new variables to store the values of subterms,
replaces integer operations by their relational versions, and array lookups by
element.

flatt(v,t)
switch t
case i (int): return {v = i}
case v′ (ivar): return {v = v′}
case t1 a t2 (arithop): return flatt(new v1, t1) ∪ flatt(new v2, t2) ∪ {a(v1, v2, v)}
case a [ t1 ]: return flatt(new v1, t1) ∪ {element(v1, a, v)}
case bool2int( c1 ): return flatc(new b1, c1) ∪ {bool2int(b1, v)})

The procedure safen(b, C) enforces the relational semantics for unsafe expres-
sions, by ensuring that the unsafe relational versions of partial functions are
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made safe. Note that to implement the strict semantics as opposed to the re-
lational semantics we just need to define safen(b, C) = C. If b ≡ true then the
relational semantics and the strict semantics coincide, so nothing needs to be
done. The same is true if the set of constraints C is safe. For div(x, y, z), the
translation introduces a new variable y′ which cannot be 0, and equates it to y
if y �= 0. The constraint div(x, y′, z) never reflects a partial function application.
The new variable b′ captures whether the partial function application returns
a non ⊥ value. For element(v, a, x), it introduces a new variable v′ which only
takes values in idx (a) and forces it to equal v if v ∈ idx (a). A partial function
application forces b = false since it is the conjunction of the new variables b′.
The %HALF% comments will be explained later.

safen(b,C)
if (b ≡ true) return C
if (C is a set of safe constraints) return C
B := ∅; S := ∅
foreach c ∈ C

if (c ≡ div(x, y, z) and y can take value 0)
B := B ∪ {new b′}
S := S ∪ {new y′ �= 0, b′ ↔ y �= 0, b′ ↔ y = y′, div(x, y′, z)}
%HALF% S := S ∪ {b′ ↔ y �= 0, b′ → div(x, y, z)}

else if c ≡ element(v, a, x) and v can take a value outside the domain of a)
B := B ∪ {new b′}
S := S ∪ {new v′ ∈ idx(a), b′ ↔ v ∈ idx(a), b′ ↔ v = v′, element(v′, a, x)}
%HALF% S := S ∪ {b′ ↔ v ∈ idx(a), b′ → element(v, a, x)}

else S := S ∪ {c}
return S ∪ {b ↔ ∧b′∈Bb′})

The flattening algorithms above can produce suboptimal results in special cases,
such as input with common subexpressions. Our implementation avoids gener-
ating renamed-apart copies of already-generated constraints, but for simplicity
of presentation, we omit the algorithms we use to do this.

4 Half Reification

Given a constraint c, the half-reified version of c is a constraint of the form b → c
where b �∈ vars(c) is a Boolean variable.

We can construct a propagator fb→c for the half-reified version of c, b → c,
using the propagator fc for c.

fb→c(D)(b) = {false} ∩D(b) if fc(D) is a false domain
fb→c(D)(b) = D(b) otherwise
fb→c(D)(v) = D(v) if v �≡ b and false ∈ D(b)
fb→c(D)(v) = fc(D)(v) if v �≡ b and false �∈ D(b)

In practice most propagator implementations for c first check whether c is sat-
isfiable, before continuing to propagate. For example,

∑
i aixi ≤ a0 determines
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L =
∑

iminD(aixi) − a0 and fails if L > 0 before propagating; Regin’s domain
propagator for alldifferent([x1, . . . , xn]) determines a maximum matching be-
tween variables and values first, if this is not of size n it fails before propagating;
the timetable cumulative constraint determines a profile of necessary resource
usage, and fails if this breaks the resource limit, before considering propagation.
We can implement the propagator for fb→c by only performing the checking part
until D(b) = {true}.

Half reification naturally encodes the relational semantics for partial function
applications in positive contexts. We associate a Boolean variable b with each
Boolean term in an expression, and we ensure that all unsafe constraints are
half-reified using the variable of the nearest enclosing Boolean term.

Example 6. Consider flattening of the constraint of Example 1. First we will
convert it to an equivalent expression with only positive contexts
i > 4 \/ a[i] * x >= 6

There are three Boolean terms: the entire constraint, i > 4 and a[i]×x ≥ 6, which
we name b0, b1 and b2 respectively. The flattened form using half reification is
constraint b1 -> i > 4;
constraint b2 -> element(i,a,t1);
constraint mult(t1,x,t2);
constraint b2 -> t2 >= 6;
constraint b1 \/ b2;

The unsafe element constraint is half reified with the name of its nearest enclos-
ing Boolean term. Note that if i = 7 then the second constraint makes b2 = false .
Given this, the final constraint requires b1 = true, which in turn requires i > 4.
Since this holds, the whole constraint is true with no restrictions on x. ��

Half reification can handle more constraint terms than full reification if we as-
sume that each global constraint predicate p is available in half-reified form.
Recall that this places no new burden on the solver implementer.

Example 7. Consider the constraint of Example 4. Half reification results in
constraint b1 -> i > 4;
constraint minus(i,x,t1); % t1 = i - x
constraint b2 -> alldifferent([i,t1,x]);
constraint b1 \/ b2 % b1 or b2

We can easily modify any existing propagator for alldifferent to support the
half-reified form, hence this model is executable by our constraint solver. ��

Half reification can lead to more efficient constraint solving, since it does not
propagate unnecessarily.

Example 8. Consider the task decomposition of a cumulative constraint (see
e.g. [15]) which includes constraints of the form
constraint sum(i in Tasks where i != j)
(bool2int(s[i] <= s[j] /\ s[i]+d[i] > s[j]) * r[i]) <= L - r[j];
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which requires that at the start time s[j] of task j, the sum of resources r used
by it and by other tasks executing at the same time is less than the limit L.
Flattening with full reification produces constraints like this:

constraint b1[i] <-> s[i] <= s[j];
constraint plus(s[i],d[i],e[i]); % e[i] = s[i] + d[i]
constraint b2[i] <-> e[i] > s[j];
constraint b3[i] <-> b1[i] /\ b2[i];
constraint bool2int(b3[i], a[i]); % a[i] = bool2int(b3[i])
constraint sum(i in Tasks where i != j)( a[i] * r[i] )\! <= L - r[j];

Whenever the start time of task i is constrained so that it does not overlap time
s[j], then b3[i] is fixed to false and a[i] to 0, and the long linear sum is awoken.
But this is useless, since it cannot cause failure. The Boolean expression appears
in a negative context, and half-reification produces

constraint b1[i] -> s[i] > s[j];
constraint plus(s[i],d[i],e[i]); % e[i] = s[i] + d[i]
constraint b2[i] -> e[i] <= s[j];
constraint b3[i] -> b1[i] \/ b2[i];
constraint b4[i] <-> not b3[i];
constraint bool2int(b4[i], a[i]); % a[i] = bool2int(b4[i])
constraint sum(i in Tasks where i != j)( a[i] * r[i] ) <= L - r[j];

which may seem to be more expensive since there are additional variables (the
b4[i]), but since both b4[i] and a[i] are implemented by views [14], there is no
additional runtime overhead. This decomposition will only wake the linear con-
straint when some task i is guaranteed to overlap time s[j]. ��

Half reification can cause propagators to wake up less frequently, since variables
that are fixed to true by full reification will never be fixed by half reification.
This is advantageous, but a corresponding disadvantage is that variables that
are fixed can allow the simplification of the propagator, and hence make its
propagation faster. We can reduce this disadvantage by fully reifying Boolean
connectives (which have low overhead) where possible in the half reification.

Flattening with Half Reification. The procedure halfc(b, c) defined below
returns a set of constraints implementing the half-reification b → c. We flatten
a whole model c using halfc(true, c). The half-reification flattening transforma-
tion uses half reification whenever it is in a positive context. If it encounters a
constraint c1 in a negative context, it negates the constraint if it is safe, thus
creating a new positive context. If this is not possible, it defaults to the usual
flattening approach using full reification. Note how for conjunction it does not
need to introduce a new Boolean variable. Negating a constraint expression is
done one operator at a time, and is defined in the obvious way. For example,
negating t1 < t2 yields t1 >= t2, and negating c1 /\ c2 yields not c1 \/ not c2.
Any negations on subexpressions will be processed by recursive invocations of
the algorithm.



Half Reification and Flattening 295

halfc(b,c)
switch c
case true: return {}
case false: return {¬b}
case b′ (bvar): return {b → b′}
case t1 r t2 (relop): return halft(b,new i1, t1) ∪ halft(b,new i2, t2) ∪ {b → i1 r i2}
case not c1:

if (c1 is safe) return halfc(b, negate(c1))
else return flatc(new b1, not c1) ∪ {b → b1}

case c1 /\ c2: return halfc(b, c1) ∪ halfc(b, c2)
case c1 \/ c2: return halfc(new b1, c1) ∪ halfc(new b2, c2) ∪ {b → (b1 ∨ b2)}
case c1 -> c2: return halfc(b, not c1 \/ c2)
case c1 <-> c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b → (b1 ↔ b2)}
case p (t1, . . . , tn) (pred): return ∪n

j=1halft(b,new vj , tj) ∪ {b → p(v1, . . . , vn)}

Half reification of terms returns a set of constraints that enforce v = t if the
term t is safe, and b → v = t otherwise. The most complex case is bool2int(c1),
which half-reifies c1 if it is in a positive context, negates c1 and half-reifies the
result if c1 is safe and in a negative context, and uses full flattening otherwise.

halft(b,v,t)
if (t is safe) return flatt(v, t)
switch t
case i (int): return {b → v = i} % unreachable
case v′ (ivar): return {b → v = v′} % unreachable
case t1 a t2 (arithop): halft(b,new v1, t1) ∪ halft(b,new v2, t2) ∪ {b → a(v1, v2, v)}
case a [ t1 ]: halft(b,new v1, t1) ∪ {b → element(v1, a, v)}
case bool2int( c1 ):

if (c1 is in a positive context) return halfc(new b1, c1) ∪ {b → bool2int(b1, v)})
else if (c1 is safe and in a negative context)

halfc(new b1, negate(c1)) ∪ {b → bool2int(new b2, v), b2 ↔ ¬b1})
else return flatc(new b1, c1) ∪ {b → bool2int(b1, v)}

Half reified constraints can also simplify the process of enforcing the relational
semantics for full reification, since we have a half-reified version of the div and
element constraints. The safen operation can be improved by replacing the lines
above those labeled %HALF% by the lines labeled %HALF%.

Full Reification using Half Reification. Usually splitting a propagator into
two will reduce the propagation strength. We show that modeling b ↔ c for
primitive constraint c using half-reified propagators as b → c, b ↔ ¬b′, b′ → ¬c
does not do so.

To do so independent of propagation strength, we define the behaviour of the
propagators of the half-reified forms in terms of the full reified propagator.

fb→c(D)(b) = D(b) ∩ ({false} ∪ fb↔c(D)(b))
fb→c(D)(v) = D(v) if v �≡ b, false ∈ D(b)
fb→c(D)(v) = fb↔c(D)(v) if v �≡ b, otherwise
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and
fb′→¬c(D)(b′) = D(b′) if {false} ∈ fb↔c(D)(b)
fb′→¬c(D)(b′) = D(b′) ∩ {false} otherwise
fb′→¬c(D)(v) = D(v) if v �≡ b′, false ∈ D(b′)
fb′→¬c(D)(v) = fb↔c(D)(v) if v �≡ b, otherwise

These definitions are not meant describe implementations, only to define how
the half reified split versions of the propagator should act.

Theorem 1. ∀D. solv ({fb↔c, fb′↔¬b})(D) = solv ({fb→c, fb′→¬c, fb′↔¬b}, D).

Proof. Let V = vars(c). We only consider domains D at a fixpoint of the prop-
agators fb′↔¬b, i.e. D(b′) = {¬d | d ∈ D(b)}. The proof is by cases of D. (a)
Suppose D(b) = {true, false}. (a-i) If ∃θ ∈ solns(c) where θ ∈ D (c can still be
true) and ∃θ′ ∈ D where vars(θ) = V and θ �∈ solns(c) (c can still be false).
then fb↔c does not propagate. Clearly neither do either of fb→c or fb′→¬c. (a-ii)
Suppose c cannot still be false (∀θ ∈ D where vars(θ) = V then θ ∈ solns(c))
then fb↔c(D)(b) = {true} and similarly fb′→¬c(D)(b′) = {false} using the sec-
ond case of its definition. The propagator for fb′↔¬b will then make the domain
of b equal {true}. There is no other propagation in any case. (a-iii) Suppose
c cannot still be true (¬(∃θ ∈ D ∩ solns(c))) then fb↔c(D)(b) = {false} and
fb→c(D)(b) = {false} using the first case of its definition. Again there is no
other propagation in any case except making the domain of b′ equal {true}.
(b) If D(b) = {true} then clearly fb↔c and fb→c act identically on variables in
vars(c). (c) If D(b) = {false} then D(b′) = {true} and clearly fb↔c and fb′→¬c
act identically on variables in vars(c). ��

The reason for the generality of the above theorem which defines the half-reified
propagation strength in terms of the full reified propagator is that we can now
show that for the usual notions of consistency, replacing a fully reified propaga-
tor leads to the same propagation. Note that the additional variable b′ can be
implemented as a view [14] in the solver and hence adds no overhead.

Corollary 1. A domain (resp. bounds(Z), bounds(R)) consistent propagator for
b ↔ c propagates identically to domain (resp. bounds(Z), bounds(R)) consistent
propagators for b → c, b ↔ ¬b′, b′ → ¬c. ��

5 Experiments

We ran our experiments on a PC with a 2.80GHz Intel i7 Q860 CPU and 4Gb of
memory. www.cs.mu.oz.au/~pjs/half has our experimental MiniZinc models
and instances. The first experiment considers “QCP-max” problems which are
defined as quasi-group completion problems where the alldifferent constraints
are soft, and the aim is to satisfy as many of them as possible.

int: n; % size
array[1..n,1..n] of 0..n: s; % 0 = unfixed 1..n = fixed
array[1..n,1..n] of var 1..n: q; % qcp array;



Half Reification and Flattening 297

Table 1. QCP-max problems: Average time (in seconds), number of solved instances
(300s timeout)

FD FD + Explanations
Instances full half half-g full half half-g

qcp-10 (x15) 20.1 14 20.0 14 20.0 14 0 15 0 15 0 15

qcp-15 (x15) 204.6 6 179.9 7 174.1 7 2.5 15 1.5 15 1.0 15

qcp-20 (x15) 300.0 0 289.0 1 286.0 1 115.7 11 127.5 10 114.2 10

constraint forall(i,j in 1..n where s[i,j] > 0)(q[i,j] = s[i,j]);
solve maximize

sum(i in 1..n)(bool2int(alldifferent([q[i,j] | j in 1..n]))) +
sum(j in 1..n)(bool2int(alldifferent([q[i,j] | i in 1..n])));

predicate alldifferent(array[int] of var int: x) =
forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

Note that this is not the same as requiring the maximum number of disequality
constraints to be satisfied. The alldifferent constraints, while apparently in a
mixed context, are actually in a positive context, since the maximization in fact
is implemented by inequalities forcing at least some number to be true.

In Table 1 we compare three different resulting programs on QCP-max prob-
lems: full reification of the model above, using the alldifferent decomposi-
tion defined by the predicate shown (full), half reification of the model using
the alldifferent decomposition (half), and half reification using a half-reified
global alldifferent (half-g) implementing arc consistency (thus having the
same propagation strength as the decomposition). We use standard QCP exam-
ples from the literature, and group them by size. We compare both a standard
finite domain solver (FD) and a learning lazy clause generation solver (FD +
Explanations). We use the same fixed search strategy of labeling the matrix in
order left-to-right from highest to lowest value for all approaches to minimize
differences in search.

Half reification of the decomposition is more efficient, principally because it
introduces fewer Boolean variables, and the direct implementation of the half
reified constraint is more efficient still. Note that learning can be drastically
changed by the differences in the model and full solves one more instance in
qcp-20, thus winning in that case. Apart from this instance, the half reified
versions give an almost uniform improvement.

The second experiment shows how half reification can reduce the overhead
of handling partial functions correctly. Consider the following model for deter-
mining a prize collecting path, a simplified form of prize collecting traveling
salesman problem [2], where the aim is define an acyclic path from node 1 along
weighted edges to collect the most weight. Not every node needs to be visited
(pos[i] = 0).
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Table 2. Prize collecting paths: Average time (in seconds) and number of solved in-
stances with a 300s timeout for various number of nodes

FD FD + Explanations
Nodes full half extended full half extended

15-3-5 (x 10) 0.31 10 0.25 10 0.26 10 0.21 10 0.17 10 0.17 10

18-3-6 (x 10) 1.79 10 1.37 10 1.52 10 0.70 10 0.51 10 0.58 10

20-4-5 (x 10) 5.30 10 4.04 10 4.51 10 1.28 10 0.97 10 1.17 10

24-4-6 (x 10) 46.03 10 34.00 10 40.06 10 7.28 10 4.91 10 6.37 10

25-5-5 (x 10) 66.41 10 50.70 10 57.51 10 9.75 10 6.58 10 8.28 10

28-4-7 (x 10) 255.06 5 214.24 8 241.10 6 38.54 10 23.27 10 34.83 10

30-5-6 (x 10) 286.48 1 281.00 2 284.34 1 100.54 10 60.65 10 92.19 10

32-4-8 (x 10) 300.00 0 297.12 1 300.00 0 229.86 5 163.73 10 215.16 8

int: n; % size
array[1..n,0..n] of int: p; % prize for edge (i,j) Note p[i,0] = 0
array[1..n] of var 0..n: next; % next posn in tour
array[1..n] of var 0..n: pos; % posn on node i in path, 0 = notin
array[1..n] of var int: prize = [p[i,next[i]] | i in 1..n];

% prize for outgoing edge
constraint forall(i in 1..n)(

(pos[i] = 0 <-> next[i] = 0) /\
(next[i] > 1 -> pos[next[i]] = pos[i] + 1));

constraint alldifferent_except_0(next) /\ pos[1] = 1;
solve minimize sum(i in 1..n)(prize[i]);

It uses the global constraint alldifferent except 0 which constrains each el-
ement in the next array to be different or equal 0. The model has one unsafe
array lookup pos[next[i]]. We compare using full reification (full) and half reifi-
cation (half) to model this problem. Note that if we extend the pos array to have
domain 0..n then the model becomes safe. We also compare against this model
(extended). We use graphs with both positive and negative weights for the tests.
The search strategy fixes the next variables in order of their maximum value.
First we note that extended is slightly better than full because of the simpler
translation, while half is substantially better than extended since most of the
half reified element constraints become redundant. Learning increases the ad-
vantage because the half reified formulation focusses on propagation which leads
to failure which creates more reusable nogoods.

In the final experiment we compare resource constrained project scheduling
problems (RCPSP) where the cumulative constraint is defined by the task de-
composition as in Example 8 above, using both full reification and half-reification.
We use standard benchmark examples from PSPlib [12]. Table 3 compares
RCPSP instances using full reification and half reification. We compare using
J30 instances (J30 ) and instances due to Baptiste and Le Pape (BL). Each line
in the table shows the average run time and number of solved instances. The
search strategy tries to schedule the task with the earliest possible start time.
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Table 3. RCPSP: Average time (in seconds) and number of solved instances with a
300s timeout

FD FD + Explanations
Instances full half full half

BL (x 40) 277.2 5 269.3 5 17.1 39 15.4 39

J30 (x 480) 116.1 300 114.3 304 16.9 463 12.9 468

We find a small and uniform speedup for half over full across the suites, which
improves with learning, again because learning is not confused by propagations
that do not lead to failure.

6 Related Work and Conclusion

Half reification on purely Boolean constraints is well understood, this is the same
as detecting the polarity of a gate, and removing half of the clausal representation
of the circuit (see e.g. [11]). The flattening of functions (partial or total) and the
calculation of polarity for Booleans terms inside bool2int do not arise in pure
Boolean constraints.

Half reified constraints have been used in constraint modeling but are typically
not visible as primitive constraints to users, or produced through flattening.
Indexicals [17] can be used to implement reified constraints by specifying how
to propagate a constraint c, propagate its negation, check disentailment, and
check entailment, and this is implemented in SICstus Prolog [4]. A half reified
propagator simply omits entailment and propagating the negation. Half reified
constraints appear in some constraint systems, for example SCIP [1] supports
half-reified real linear constraints of the form b→

∑
i aixi ≤ a0 exactly because

the negation of the linear constraint
∑
i aixi > a0 is not representable in an LP

solver so full reification is not possible.
While flattening is the standard approach to handle complex formula involv-

ing constraints, there are a number of other approaches which propagate more
strongly. Schulte [13] proposes a generic implementation of b ↔ c propagating
(the flattened form of) c in a separate constraint space which does not affect the
original variables; entailment and disentailment of c fix the b variable appropri-
ately, although when b is made false the implementation does not propagate ¬c.
This can also be implemented using propagator groups [8]. Brand and Yap [3]
define an approach to propagating complex constraint formulae called controlled
propagation which ensures that propagators that cannot affect the satisfiability
are not propagated. They note that for a formula without negation, they could
omit half their control rules, corresponding to the case for half reification of a
positive context. Jefferson et al [7] similarly define an approach to propagat-
ing positive constraint formulae by using watch literal technology to only wake
propagators for reified constraints within the formula when they can affect the
final result. They use half reified propagators, which they call the “reifyimplied”
form of a constraint, in some of their constraint models, though they do not
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compare half reified models against full reified models. We can straightforwardly
fit these stronger propagation approaches to parts of a constraint formula into
the flattening approach by treating the whole formula as a predicate, and the
implementation of the stronger propagation as its propagator.

We suggest that all finite domain constraint solvers should move to supporting
half-reified versions of all constraints. This imposes no further burden on solver
implementors, it allows more models to be solved, it can be used to implement
full reification, and it can allow translation to more efficient models.

We are currently extending the translator from MiniZinc to FlatZinc, mzn2fzn,
to also support half-reification. This means also extending FlatZinc to include
half-reified versions of constraints.

Acknowledgments. NICTA is funded by the Australian Government as rep-
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Economy and the Australian Research Council.
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Abstract. We investigate the parameterized complexity of deciding
whether a constraint network is k-consistent. We show that, parame-
terized by k, the problem is complete for the complexity class co-W[2].
As secondary parameters we consider the maximum domain size d and
the maximum number � of constraints in which a variable occurs. We
show that parameterized by k + d, the problem drops down one com-
plexity level and becomes co-W[1]-complete. Parameterized by k + d + �
the problem drops down one more level and becomes fixed-parameter
tractable. We further show that the same complexity classification ap-
plies to strong k-consistency, directional k-consistency, and strong direc-
tional k-consistency.

Our results establish a super-polynomial separation between input
size and time complexity. Thus we strengthen the known lower bounds
on time complexity of k-consistency that are based on input size.

1 Introduction

Local consistency is one of the oldest and most fundamental concepts of con-
straint solving and can be traced back to Montanari’s 1974 paper [26]. If a
constraint network is locally consistent, then consistent instantiations to a small
number of variables can be consistently extended to an additional variable.
Hence local consistency avoids certain dead-ends in the search tree, in some
cases it even guarantees backtrack-free search [1,20]. The simplest and most
widely used form of local consistency is arc-consistency, introduced by Mack-
worth [25], and later generalized to k-consistency by Freuder [19]. A constraint
network is k-consistent if each consistent assignment to k − 1 variables can be
consistently extended to any additional kth variable.

Consider a constraint network of input size s where the constraints are given
as relations. It is easy to see that k-consistency can be checked by brute force in
time O(sk) [10]. Hence, if k is a fixed constant, the check is polynomial. However,
the algorithm runs in “nonuniform” polynomial time in the sense that the order
of the polynomial depends on k, hence the running time scales poorly in k and
becomes impractical already for k ≥ 3. Also more sophisticated algorithms for
k-consistency achieve only a nonuniform polynomial running time [8].
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In this paper we investigate the possibility of a uniform polynomial-time al-
gorithm for k-consistency, i.e., an algorithm of running time O(f(k)sc) where
f is an arbitrary function and c is a constant independent of k. We carry
out our investigations in the theoretical framework of parameterized complexity
[15,17,27] which allows to distinguish between uniform and nonuniform polyno-
mial time. Problems that can be solved in uniform polynomial time are called
fixed-parameter tractable (FPT), problems that can be solved in nonuniform
polynomial time are further classified within a hierarchy of parameterized com-
plexity classes forming the chain FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · , where all
inclusions are believed to be strict.

Results. We pinpoint the exact complexity of k-consistency decision in general
and under restrictions on the given constraint network in terms of domain size d
and the maximum number � of constraints in which a variable occurs.

We show that deciding k-consistency is co-W[2]-complete for parameter k,
co-W[1]-complete for parameter k+d, and fixed-parameter tractable for param-
eter k+d+�. Hence, subject to complexity theoretic assumptions, k-consistency
cannot be decided in uniform polynomial-time in general, but admits a uniform
polynomial-time solution if domain size and variable occurrence are bounded.
The hardness results imply a super-polynomial separation between input size
and running time for k-consistency algorithms.

We further show that all three complexity results also hold for deciding strong
k-consistency, for deciding directional k-consistency, and for deciding strong di-
rectional k-consistency. A constraint network is strongly k-consistent if it is
j-consistent for all 1 ≤ j ≤ k. Directional local consistency takes a fixed order-
ing of the variables into account, the variable to which a local instantiation is
extended is ordered higher than the previously instantiated variables [12].

Known Lower Bounds. In previous research, lower bounds on the running time
of k-consistency algorithms have been obtained [8,10]. These lower bounds are
based on instances of large input size, and the observation that any k-consistency
algorithm needs to read the entire input. For instance, to decide whether a given
constraint network on n variables is k-consistent one needs to check each con-
straint of arity r ≤ k at least once (the arity of a constraint is the number of
variables that occur in the constraint). Since there can be

∑k
i=1

(
n
i

)
such con-

straints, Ω(nk) provides a lower bound on the running time of any k-consistency
algorithm. Taking the domain size d into account, this lower bound can be im-
proved to Ω((dn)k) [10]. However, the constraint networks to which this lower
bound applies are of size s = Ω((dn)k). Therefore the known lower bounds do
not provide a separation between input size and running time.

2 Preliminaries

2.1 Constraint Networks and Local Consistency Problems

A constraint network (or CSP instance) N is a triple (X,D,C), where X is a
finite set of variables, D is a finite set of values, and C is a finite set of constraints.
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Each constraint c ∈ C is a pair (S,R), where S = var (C), the constraint scope,
is a finite sequence of distinct variables from X , and R, the constraint relation,
is a relation over D whose arity matches the length of S, i.e., R ⊆ Dr where r is
the length of S. The size of N is s = |N | = |X |+ |D|+

∑
(S,R)∈C |S| · (1 + |R|).

Let N = (X,D,C) be a constraint network. A partial instantiation of N
is a mapping α : X ′ → D defined on some subset var(α) = X ′ ⊆ X . We
say that α satisfies a constraint c = ((x1, . . . , xr), R) ∈ C if var(c) ⊆ var (α)
and (α(x1), . . . , α(xr)) ∈ R. If α satisfies all constraints of N then it is a
solution of N ; in this case, N is satisfiable. We say that α is consistent with
a constraint c ∈ C if either var (c) is not a subset of var (α) or α satisfies c. If
α is consistent with all constraints of N we call it consistent. The restriction
of a partial assignment α to a set of variables Y is denoted α|Y . It has scope
var(α) ∩ Y and α|Y (x) = α(x) for all x ∈ var(α|Y ).

Let k > 0 be an integer. A constraint network N = (X,D,C) is k-consistent
if for all consistent partial instantiations α of N with |var (α)| = k − 1 and
all variables x ∈ X \ var (α) there is a consistent partial instantiation α′ such
that var(α′) = var (α) ∪ {x}, and α′|var(α) = α. In such a case we say that α′

consistently extends α to x. A constraint network is strongly k-consistent if it is
j-consistent for all j = 1, . . . , k.

For further background on local consistency we refer to other sources [2,11].
We consider the following decision problem.

k-Consistency

Input: A constraint network N = (X,D,C) and an integer k > 0.
Question: Is N k-consistent?

The problem Strong k-Consistency is defined analogously, asking whether
N is strongly k-consistent.

It is easy to see that k-Consistency is co-NP-hard if k is unbounded. Take
an arbitrary constraint network N = (X,D,C) and form a new network N ′

from N by adding a new variable x, and |X | + 1 new constraints with empty
relations, namely the constraint whose scope contains all variables, and all pos-
sible constraints of arity |X | having x in their scope. Let k = |X | + 1. Now
N ′ is k-consistent if and only if N is not satisfiable. Since k is large this reduc-
tion seems somehow unnatural and breaks down for bounded k. This suggests
to “deconstruct” this hardness proof (in the sense of [24]) and to parameterize
by k.

The constraint network N is directionally k-consistent with respect to a total
order ≤ on its variables if every consistent partial instantiation α of k−1 variables
of N can be consistently extended to every variable that is higher in the order
≤ than any variable of var(α). The corresponding decision problem is defined
as follows.

Directional k-Consistency

Input: A constraint network N = (X,D,C), a total order ≤ on X , and
an integer k > 0.
Question: Is N directionally k-consistent with respect to ≤?
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A constraint network is strongly directionally k-consistent if and only if it is
directionally j-consistent for all j = 1, . . . , k. The strong counterpart of the Di-

rectional k-Consistency problem is called Strong Directional k-Con-

sistency.
We will consider parameterizations of these four problems by k, by k+d, and

by k + d+ �, where d = |D| and � denotes the maximum number of constraints
in which a variable occurs.

2.2 Parameterized Complexity

We define the basic notions of Parameterized Complexity and refer to other
sources [15,17] for an in-depth treatment. A parameterized problem can be con-
sidered as a set of pairs (I, k), the instances, where I is the main part and k is the
parameter. The parameter is usually a non-negative integer. A parameterized
problem is fixed-parameter tractable if there exists an algorithm that solves any
instance (I, k) of size n in time f(k)nO(1), where f is a computable function.
FPT denotes the class of all fixed-parameter tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This the-
ory is based on a hierarchy of complexity classes

FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · .
where all inclusions are believed to be strict. A W[i+1]-complete problem is con-
sidered harder than a W[i]-complete problem similar to a classical problem that
is complete for the i+1-th level of the Polynomial Hierarchy is considered harder
than one that is complete for the i-th level. Hence it is of significance to identify
the exact location of a parameterized problem within the W-hierarchy. Each
class W[i] contains all parameterized decision problems that can be reduced to
a canonical parameterized satisfiability problem Pi under parameterized reduc-
tions. These are many-to-one reductions where the parameter for one problem
maps into the parameter for the other. More specifically, a parameterized prob-
lem L reduces to a parameterized problem L′ if there is a mapping R from
instances of L to instances of L′ such that (i) (I, k) is a Yes-instance of L if
and only if (I ′, k′) = R(I, k) is a Yes-instance of L′, (ii) there is a computable
function g such that k′ ≤ g(k), and (iii) there is a computable function f and a
constant c such that R can be computed in time O(f(k) · nc), where n denotes
the size of (I, k).

A parameterized problem is in co-W[i], i ∈ N, if its complement is in W[i],
where the complement of a parameterized problem is the parameterized problem
resulting from reversing the Yes and No answers. If any co-W[i]-complete prob-
lem is fixed-parameter tractable, then co-W[i] = FPT = co-FPT = W[i] follows,
which causes the Exponential Time Hypothesis to fail [17]. Hence co-W[i]-
completeness provides strong theoretical evidence that a problem is not fixed-
parameter tractable.



306 S. Gaspers and S. Szeider

2.3 Tries, Turing Machines, and Gaifman Graphs

Tries. A trie [9,18] is a tree for storing strings in which there is one node for
every prefix of a string. Let T be a trie that stores a set S of strings on an
alphabet Σ. At a given node v of T , corresponding to the prefix p(v), there is an
array with one entry for every character c of Σ. If p(v).c is a prefix of a string
of S, the entry corresponding to c has a pointer to the node corresponding to
the prefix p(v).c (the dot denotes a concatenation). If p(v).c is not a prefix of
a string of S, the entry corresponding to c has a null pointer. Thus, a trie uses
space O(|S| · |Σ|), while inserting or searching a string s can be done in time
O(|s|) using the ordinal values for characters as array indices.

Turing Machines. A nondeterministic Turing Machine (NTM ) [4,17] with t
tapes is an 8-tuple M = (Q,Γ, β, $, Σ, δ, q0, F ), where

– Q is a finite set of states,
– the tape alphabet Γ is a finite set of symbols,
– β ∈ Γ is the blank symbol, the only symbol allowed to occur on the tape(s)

infinitely often,
– $ ∈ Γ is a delimiter marking the (left) end of a tape,
– Σ ⊆ Γ is the set of input symbols,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states,
– σ ⊆ Q \F ×Γ t×Q×Γ t×{L,N,R}t is the transition relation. A transition

(q, (a1, . . . , at), q′, (a′1, . . . , a′t), (d1, . . . , dt)) ∈ σ allows the machine, when it
is in state q and the head of each tape Ti is positioned on a cell containing the
symbol ai, to transition in one computation step into the state q′, writing the
symbol a′i into the cell on which the head of each tape Ti is positioned, and
shifting this head one position to the left if di = L, one position to the right
if di = R, or not at all if di = N . On each tape, $ cannot be overwritten
and allows only right transitions, which is formally achieved by imposing
that whenever (q, (a1, . . . , at), q′, (a′1, . . . , a

′
t), (d1, . . . , dt)) ∈ σ, then for all

i ∈ {1, . . . , t} we have ai = $ if and only if a′i = $, and ai = $ implies di = R.

Initially, the first tape contains $wββ . . ., where w ∈ Σ∗ is the input word, all
other tapes contain $ββ . . ., M is in state q0, and all heads are positioned on the
first cell to the right of the $ symbol. We speak of a single-tape NTM if t = 1
and of a multi-tape NTM if t > 1. M accepts the input word w in k steps if
there exists a transition path that takes M with input word w to a final state
in k computation steps.

Graphs. The Gaifman graph G(N) of a constraint network N = (X,D,C) has
the vertex set V (G(N)) := X and its edge set E(G(N)) contains an edge {u, v} if
u and v occur together in the scope of a constraint of C. In a graph G = (V,E),
the (open) neighborhood of a vertex v is the subset of vertices sharing an edge
with v and is denoted Γ (v), its closed neighborhood is Γ [v] := Γ (v) ∪ {v}, and
the degree of v is d(v) := |Γ (v)|. The maximum vertex degree of G is denoted
Δ(G). For a vertex set S, Γ [S] :=

⋃
v∈S Γ [v]. S is independent in G if no two

vertices of S are adjacent in G. S is dominating in G if Γ [S] = V .
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3 k-Consistency Parameterized by k

In this section, we consider the most natural parameterization of k-Consis-

tency. Theorem 1 shows that the problem is co-W[2]-hard, parameterized by k,
and Theorem 2 shows that it is in co-W[2]. These results are also extended to the
strong and directional versions of the problem, resulting in Corollary 1, which
says that all four problems are co-W[2]-complete when parameterized by k.

Theorem 1. Parameterized by k, the following problems are co-W[2]-hard: k-
Consistency, Strong k-Consistency, Directional k-Consistency, and
Strong Directional k-Consistency.

Proof. We show a parameterized reduction from Independent Dominating

Set to the complement of k-Consistency. The Independent Dominating

Set problem was shown to be W[2]-hard by Downey and Fellows [13] (see also [7]
where W[2]-completeness is established).

Independent Dominating Set

Input: A graph G = (V,E) and an integer k ≥ 0.
Parameter: k.
Question: Is there a set S ⊆ V of size k that is independent and domi-
nating in G?

Let G = (V,E) and k ≥ 0 be an instance of Independent Dominating Set.
We construct a constraint network N = (X,D,C) as follows. We take k + 1
variables and put X = {x1, . . . , xk+1}. For 1 ≤ i ≤ k + 1 we put D(xi) = V .
The set C contains

(
k+1
2

)
constraints ci,j = ((xi, xj), RE), 1 ≤ i < j ≤ k + 1,

where RE = { (v, u) ∈ V ×V | u �= v, {u, v} /∈ E }. This completes the definition
of the constraint network N .

Claim 1. G has an independent dominating set of size k if and only if N is not
(k + 1)-consistent.

We refer to [23] for the proof of Claim 1, which has been omitted here due to
space restrictions.

Evidently N can be obtained from G in polynomial time. Thus we have
established a parameterized reduction from Independent Dominating Set to
the complement of k-Consistency. The co-W[2]-hardness of k-Consistency,
parameterized by k, now follows from the W[2]-hardness of Independent Do-

minating Set.
The co-W[2]-hardness of Strong k-Consistency, parameterized by k, is

proved analogously by reducing from the variant of Independent Domina-

ting Set which asks for an independent dominating set of size at most k. This
variant is also W[2]-hard, as shown by Downey et al. [16].

To show that the directional versions of the problem are co-W[2]-hard, pa-
rameterized by k, we use the same reductions and additionally specify a total
ordering of the vertices. We use the total order by increasing indices of the
variables, and observe that the variable to which the partial order α cannot
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be extended is the last variable in this order in both directions of the proof of
Claim 1. Thus, this modification of the reductions shows that Directional

k-Consistency and Strong Directional k-Consistency are also co-W[2]-
hard parameterized by k.

The reductions of Theorem 1 actually show somewhat stronger results, namely
that the four problems are co-W[2]-hard when parameterized by k + �. This
follows from the observation that the number of variables in the target problems
is k+1. From Theorem 2, the co-W[2]-membership of this parameterization will
follow. Thus, the problems are co-W[2]-complete when parameterized by k + �.

For the co-W[2]-membership proof, we build a multi-tape nondeterministic
Turing machine that reaches a final state in f(k) steps, for some function f , if
and only if N is not k-consistent. As this reduction needs to be a parameterized
reduction, we need avoid that the size of the Turing machine (and the time
needed to compute it) depends on O(|X |k) or O(dk) terms, which would have
been very handy to model constraint scopes and constraint relations. We counter
this issue via organizing the states of the NTM in tries. There is a first level
of tries to determine whether a certain subset of variables is the scope of some
constraint. There is a second level of tries to find out whether a certain partial
instantiation is allowed by a constraint relation. A second issue that needs
particular attention is the size of the transition table. The number of tapes of
the NTM is d + 4, and we cannot afford a transition for each combination of
characters that the head of each tape might be positioned on. We use Cesati’s
information hiding trick [4] to avoid this issue, which means that the machine
does the computations in such a way that in each state, it knows for most tapes
(i.e., all, except a constant number of tapes) which characters are in the cell on
which the corresponding head is positioned.

Theorem 2. Parameterized by k, the following problems are in co-W[2]: k-
Consistency, Strong k-Consistency, Directional k-Consistency, and
Strong Directional k-Consistency.

Proof. Cesati [4] showed that the following parameterized problem is in W[2].

Short Multi-tape NTM Computation

Input: A multi-tape NTM M , a word w on the input alphabet of M ,
and an integer k > 0.
Parameter: k.
Question: Does M accept w in at most k steps?

We reduce the complement of k-Consistency to Short Multi-tape NTM

Computation. Let (N = (X,D,C), k) be an instance for k-Consistency.
We will construct an instance (M,w, k′) which is a Yes-instance for Short

Multi-tape NTM Computation if and only if (N, k) is a No-instance for
k-Consistency.

Let us describe how M = (Q,Γ, β, $, Σ, q0, F, σ) operates. M has d+4 tapes,
named Gx,Gd,Gxk , S, d1, . . . , dd, and the input word w is empty. Thus, all the
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information about N is encoded in the states and transitions of M . The tape
alphabet of M is Γ = {β, $} ∪X ∪D ∪ {T, F, 1, 0}.

In the initialization phase, M writes a ’T ’ symbol on the tapes d1, . . . , dd and
it positions the head of each tape on the first blank symbol of this tape. This
can be done in one computation step.

In the guess phase, M nondeterministically guesses x(1), . . . , x(k) ∈ X such
that x(i) < x(i+1) for all i ∈ {1, . . . , k − 2}, and it guesses d(1), . . . , d(k−1) ∈ D.
Here, ≤ is an arbitrary order on the variables, and a < b means a ≤ b and a �= b.
It appends x(1), . . . , x(k − 1) to the tape Gx, it appends d(1), . . . , d(k − 1) to
the tape Gd, and it appends x(k) to the tape Gxk. The goal is to make M halt
in a final state after a number of steps only depending on k if and only if the
partial instantiation α, with α(x(i)) = d(i), 1 ≤ i ≤ k − 1, is consistent, but α
cannot be consistently extended to x(k). See Figure 1 for a typical content of
the tapes during the execution of M .

The remaining states of M are partitioned into |X | parts, one part for each
choice of x(k). M reads x(k) on the tape Gxk and moves to the initial state in
the part corresponding to x(k).

Gx: $ x(1) x(2) x(3) · · · x(k− 1)

Gd: $ d(1) d(2) d(3) · · · d(k − 1)

Gxk: $ x(k)

S: $ 0 0 1 · · · 0

d1: $ T F F

d2: $ T

d3: $ T F

· · ·
dd: $ T F F

Fig. 1. A typical content of the tapes during an execution of M (blank symbols are
omitted)

On the S tape, M now enumerates all binary 0/1 strings of length k−1. The
strings in {0, 1}k−1 represent subsets of {x(1), . . . , x(k − 1)}, i.e., all possible
scopes of the constraints that could be violated by the partial instantiation α.
For each such binary string, representing a subset X ′ of {x(1), . . . , x(k − 1)},
M moves to a state representing X ′ if there is a constraint with scope X ′,
otherwise it moves to a state calculating the next subset X ′. This is achieved
by a trie of states; each node of this trie represents a subset X ′′ of X which
is the subset of the first few variables of the scope of some constraint (i.e., X ′′

represents the prefix of a constraint scope, if we imagine all constraint scopes
to be strings of increasing variable names). Thus, the size of this trie does not
exceed O(|C|·|X |), and the node corresponding to X ′ (or the evidence that there
is no node corresponding to X ′) is found in O(|X ′|) = O(k) steps. Without loss
of generality, we may assume that for each subset of X , there is at most one
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constraint with that scope; otherwise merge constraints with the same scope. If
there is a node representing X ′, there is a constraint c with scope X ′. A trie
of states starting at this node represents all tuples that belong to the constraint
relation R of c. This trie has size O(|R| · |X ′|). Moreover, M can determine
in time O(|X ′|) whether the tuple t, setting x(i) to d(i) for each i such that
x(i) ∈ X ′, is in R. If so, it moves to a state representing t, otherwise it moves to
a non-accepting state where is loops forever (as the selected partial instantiation
α is not consistent). At the state representing t, it appends ’F ’ to all tapes dj
such that there exists a constraint with scope X ′ ∪ {x(k)} and its constraint
relation does not contain the tuple setting x(i) to d(i) for each x(i) ∈ X ′ and
setting x(k) to dj . Then, it moves to the state computing the next set X ′. The
machine can only move to a final state if the last symbol on each di-tape is ’F ’,
meaning that the calculated partial instantiation α(x(i)) = d(i), 1 ≤ i ≤ k − 1
is consistent (otherwise the machine loops forever in a non-accepting state), but
cannot be consistently extended to x(k) (otherwise some di-tape does not end
in ’F ’), which certifies that (N, k) is a No-instance for k-Consistency.

The number of states of M is clearly polynomial in |N | + k. The transition
relation has also polynomial size as we use Cesati’s information hiding trick [4],
and place the head of the tapes d1, . . . , dd always on the first blank symbol, ex-
cept for the final check of whether M moves into a final state. If the machine can
reach a final state, it can reach one in a number of steps which is a function of k
only. This proves the co-W[2]-membership of k-Consistency, parameterized
by k.

Checking whether a network is a No-instance for Strong k-Consistency

can be done by checking whether it is a No-instance for j-Consistency for
some j ∈ {1, . . . , k}. Thus, it is sufficient to build k NTMs as we described,
one for each value of j ∈ {1, . . . , k}, nondeterministically guess the integer j for
which N is not j-consistent in case N is a No-instance, and move to the initial
state of the jth NTM checking whether N is a No-instance for j-Consistency.
Thus, Strong k-Consistency parameterized by k is in co-W[2].

For the directional variants of the problem, the order ≤ is the one given in the
input. It is sufficient to additionally require x(k) to represent a variable that is
higher in the order ≤ than all variables x(1), . . . , x(k − 1). Thus, our condition
that x(i) < x(i + 1) for all i ∈ {1, . . . , k − 2} is extended to i ∈ {1, . . . , k − 1}.
We conclude that the parameterizations of Directional k-Consistency and
Strong Directional k-Consistency by k are in co-W[2] as well.

From Theorems 1 and 2, we obtain the following corollary.

Corollary 1. Parameterized by k, the following problems are co-W[2]-complete:
k-Consistency, Strong k-Consistency, Directional k-Consistency,
and Strong Directional k-Consistency.

As mentioned before, the corollary also holds for the parameterization by k+ �.
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4 k-Consistency Parameterized by k + d

In our quest to find parameterizations that make local consistency problems
tractable, we augment the parameter by the domain size d. We find that, with
this parameterization, the problems become co-W[1]-complete. The co-W[1]-
hardness follows from a parameterized reduction from Independent Set.

Theorem 3. Parameterized by k + d, the following problems are hard for
co-W[1]: k-Consistency, Strong k-Consistency, Directional k-Consis-

tency, and Strong Directional k-Consistency.

Proof. To show that the complement of k-Consistency is W[1]-hard, we reduce
from Independent Set, which is well-known to be W[1]-hard [14].

Independent Set

Input: A graph G = (V,E) and an integer k ≥ 0.
Parameter: k.
Question: Is there an independent set of size k in G?

Let G = (V,E) with V = {v1, . . . , vn} and k ≥ 0 be an instance of Independent

Set. We construct a constraint network N = (X,D,C) as follows.
The set of variables isX = {x1, . . . , xn, c}. The set of values isD = {0, . . . , k}.

The constraint set C contains the constraints

(a) ((xi, xj), {(a, b) : a, b ∈ {0, . . . , k} and (a = 0 or b = 0)}), for all vivj ∈ E,
constraining at least one of xi and xj to take the value 0 if vivj ∈ E,

(b) ((xi, c), {(a, b) : a, b ∈ {0, . . . , k} and (a = 0 or a �= b)}), for all i ∈ {1, . . . , n},
constraining c to be set to a value different from j if any xi is set to j > 0,
and

(c) ((c), {(1), . . . , (k)}), restricting the domain of c to {1, . . . , k}.

This completes the definition of the constraint network N . See Figure 2 for an
illustration of N .

Claim 2. G has an independent set of size k if and only if N is not (k + 1)-
consistent.

To show the (⇒)-direction, suppose S =
{
vs(1), . . . , vs(k)

}
is an independent set

in G. Consider the partial instantiation α such that α(xs(i)) = i, i = 1, . . . , k.
This partial instantiation is consistent, but cannot be consistently extended to c.

To show the (⇐)-direction, suppose α is a consistent partial instantiation of k
variables and x is a variable such that α cannot be consistently extended to x.
As the only constraint preventing a variable to be set to 0 is the constraint (c)
restricting the domain of c to {1, . . . , k}, we have that x = c. Now, that c cannot
take any of the values in {1, . . . , k} is achieved by the constraints of type (b) by
having α bijectively map k variables xs(1), . . . , xs(k) to the set {1, . . . , k} without
violating any constraint. As two distinct vertices can only be assigned values
different from 0 each if they are not adjacent, by the constraints of type (a), we
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have that
{
xs(1), . . . , xs(k)

}
is an independent set of size k. Hence Claim 2 is

shown true.
Evidently N can be obtained from G in polynomial time. Thus we have es-

tablished a parameterized reduction from Independent Set to the complement
of k-Consistency with d = k + 1. The co-W[1]-hardness of k-Consistency,
parameterized by k + d, now follows from the W[1]-hardness of Independent

Set.
For the co-W[1]-hardness of Strong k-Consistency, parameterized by k+

d, just observe that any partial instantiation of fewer than k variables can be
extended to any other variable. Thus, G has an independent set of size k if
and only if N is not strongly k-consistent, and the co-W[1]-hardness of Strong

k-Consistency, parameterized by k + d, follows analogously.
For the directional versions of the problem, we use the same reduction and

define the ordering in the target problem to be some ordering which has c as its
last element. Observing that c is the variable to which the partial instantiation
α cannot be extended in both directions of the proof of Claim 2, the co-W[1]-
hardness of Directional k-Consistency and Strong Directional k-Con-

sistency, parameterized by k + d, follows.

It remains to show co-W[1]-membership, which easily follows from the parame-
terized reduction from Theorem 2 (we designed the proof of Theorem 2 in such a
way that the same parameterized reduction shows co-W[1]-membership for the
parameterization by k + d).

Theorem 4. Parameterized by k+ d, the following problems are in co-W[1]: k-
Consistency, Strong k-Consistency, Directional k-Consistency, and
Strong Directional k-Consistency.

Proof. Cesati and Di Ianni [6] showed that the following parameterized problem
is in W[1] (see also [3] where W[1]-completeness is established for the single-tape
version of the problem).

x1

{0, . . . , k}
. . . xi . . . xj . . . xn

{0, . . . , k}

c

{1, . . . , k}

vivj ∈ E ⇒
xi = 0 ∨ xj = 0

xi = j > 0
⇒ c �= j

Fig. 2. The target constraint network in the parameterized reduction from Indepen-

dent Set
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Short Bounded-tape NTM Computation

Input: A t-tape NTM M , a word w on the input alphabet of M , and an
integer k > 0.
Parameter: k + t.
Question: Does M accept w in at most k steps?

Now, the proof follows from the proof of Theorem 2, which gives a parameterized
reduction from the four problems to Short Multi-tape NTM Computation

where the number of tapes is bounded by d+ 4.

From Theorems 3 and 4, we obtain the following corollary.

Corollary 2. Parameterized by k + d, the following problems are co-W[1]
-complete: k-Consistency, Strong k-Consistency, Directional k-Con-

sistency, and Strong Directional k-Consistency.

5 k-Consistency Parameterized by k + d + �

We further augment the parameter by �, the maximum number of constraints in
which a variable occurs. For this parameterization, we are able to show that the
considered problems are fixed-parameter tractable. Bounding both d and � is a
reasonable restriction, as it still admits constraint networks whose satisfiability is
NP-complete. For instance, determining whether a graph with maximum degree
4 is 3-colorable is an NP-complete problem [22] that can be naturally expressed
as a constraint network with d = 3 and � = 4.

For checking whether there is a partial assignment that cannot be extended
to a variable x, our FPT algorithm uses the fact that the number of constraints
involving x is bounded by a function of the parameter. As constraints with a
scope on more than k variables are irrelevant, it follows that the number of vari-
ables whose instantiation could prevent x from taking some value can also be
bounded by a function of the parameter. For strong k-consistency, these obser-
vations are already sufficient to obtain an FPT algorithm as all instantiations
of subsets of size at most k − 1 of the relevant variables can be enumerated.
For (non-strong) k-consistency, the algorithm tries to select some independent
variables to complete the consistent partial assignment, which must be of size
exactly k − 1. If such a set of independent variables does not exist, the size
of the considered constraint network is actually bounded by a function of the
parameter and can be solved by a brute-force algorithm.

Theorem 5. Parameterized by k + d + �, the following problems are fixed-pa-
rameter tractable: k-Consistency, Strong k-Consistency, Directional

k-Consistency, and Strong Directional k-Consistency.

Proof. Consider an input instance N = (X,D,C) for k-Consistency. In a first
step, discard all constraints c with |var(c)| > k, as they cannot influence whether
N is k-consistent. The algorithm goes over all |X | possibilities for choosing the
vertex x to which a consistent partial instantiation α on k − 1 variables cannot
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be extended. If |X | ≤ k · (1 + k · �), then the number of constraints is at most
|X | · � ≤ k · (1 + k · �) · � and each constraint has size at most k · (1 + dk). It
follows that

|N | ≤ k · (1 + k · �) + d+ (1 + k · �) · k2 · � · (1 + dk).

Thus, N is a kernel, i.e., its size is a function of the parameter, and any algorithm
solving k-Consistency for N (brute-force search or Cooper’s algorithm [8]) has
a running time that can be bounded by a function of the parameter only.

Therefore, suppose |X | > k · (1+ k · �). Let G := G(N) be the Gaifman graph
of N . The algorithm chooses a set S of k− 1 variables for the scope of α. To do
this, it goes over all δ = 0, . . . , k− 1, where δ represents the number of variables
in S∩Γ (x). The number of possibilities for choosing these δ variables is at most(
k·�
δ

)
as d(x) ≤ k · �. The remaining k − 1 − δ variables of S need to be chosen

from V \ Γ [S ∪ {x}]. Note that these variables do not influence whether α can
be extended to x as they do not occur in a constraint with x. So, it suffices to
choose them such that α remains consistent if α|Γ (x) was consistent. To do this,
the algorithm chooses an independent set of size k − 1 − δ in G \ Γ [S ∪ {x}],
which exists and can be obtained greedily due to the lower bound on |X | and
because every variable has degree at most k · �. This terminates the selection
of the k − 1 variables for the scope of α. The algorithm then goes over all
dk−1 partial instantiations with scope S. For each such partial instantiation
α, check in polynomial time whether it is consistent, and if so, whether it can
be consistently extended to x. If any such check finds that α is consistent,
but cannot be consistently extended to x, answer No, otherwise answer Yes.
This part of the algorithm takes time 2k·� · dk−1 · |N |O(1). We conclude that
k-Consistency, parameterized by k + d+ �, is fixed-parameter tractable.

The algorithm for the Strong k-Consistency problem is simpler. After
having chosen x, there is no need to consider variables that do not occur in a
constraint with x. To choose S, it goes over all subsets of Γ (x) of size at most
k − 1, and proceeds as described above.

To solve the Directional k-Consistency and Strong Directional k-
Consistency problems, after having chosen x, the algorithm deletes all vari-
ables from N that occur after x in the ordering ≤, and it also removes the
constraints whose scope contains at least one of the deleted variables. Then, the
algorithm proceeds as above.

Using Frick and Grohe’s meta-theorem [21], we can extend this result and show
that k-Consistency parameterized by k+d is fixed-parameter tractable for con-
straint networks whose Gaifman graph (obtained after discarding all constraints
on more than k variables) belongs to a graph class of locally bounded treewidth.
In contrast, if we bound the average number �̂ of constraints in which a variable
occurs, then k-Consistency parameterized by k+d is co-W[1]-complete, as we
can use Theorem 3 and bound �̂ by a padding argument.

Once a local inconsistency in a constraint network is detected, one can add a
new (redundant) constraint to the network that excludes this local inconsistency.
More specifically, if we detect that a constraint network N = (X,D,C) is not
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k-consistent because some partial instantiation α to a set S = {x1, . . . , xk−1} of
variables cannot be extended to some variable x, we add the redundant constraint
((x1, . . . , xk−1), Dk−1 \ {(α(x1), . . . , α(xk−1))}) to the network. We repeat this
process until we end up with a network N∗ that is k-consistent. One says that
N∗ is obtained from N by enforcing k-consistency [2]. Similar notions can be
defined for strong/directional k-consistency.

It is obvious that the computational task of enforcing k-consistency is at
least as hard as deciding k-consistency. Hence, by Theorems 1 and 3, enforcing
(strong/directional) k-consistency is co-W[1]-hard when parameterized by k+ d
and co-W[2]-hard when parameterized by k.

The fixed-parameter tractability result of Theorem 5 does not directly ap-
ply to enforcing, since one can construct instances with small d and � that re-
quire the addition of a large number of redundant constraints that exceeds any
fixed-parameter bound. However, we can obtain fixed-parameter tractability by
restricting the enforced network N∗. Let �∗ denote the maximum number of
constraints in which a variable occurs after k-consistency is enforced. The proof
of Theorem 5 shows that enforcing k-consistency is fixed-parameter tractable
when parameterized by k + d+ �∗.

6 Conclusion

In recent years numerous computational problems from various areas of com-
puter science have been identified as fixed-parameter tractable or complete for a
parameterized complexity class W[i] or co-W[i]. The list includes fundamental
problems from combinatorial optimization, logic, and reasoning (see, e.g., Ce-
sati’s compendium [5]). Our results place fundamental problems of constraint
satisfaction within this complexity hierarchy.

It is perhaps not surprising that the general local consistency problems are
fixed-parameter intractable. The drop in complexity from co-W[2] to co-W[1]
when we include the domain size as a parameter shows that domain size is of
significance for the complexity of local consistency. Somewhat surprising to us is
Theorem 5 which shows that under reasonable assumptions there is still hope for
fixed-parameter tractability. This result suggests to look for other less restricted
cases for which local consistency checking or even enforcing is fixed-parameter
tractable.
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Abstract. Symmetry-breaking constraints in the form of inequalities between
variables have been proposed for a few kind of solution symmetries in numeric
CSPs. We show that, for the variable symmetries among those, the proposed in-
equalities are but a specific case of a relaxation of the well-known LEX constraints
extensively used for discrete CSPs. We discuss the merits of this relaxation and
present experimental evidences of its practical interest.

Keywords: Symmetries, Numeric constraints, Variable symmetries.

1 Introduction

Numeric constraint solvers are nowadays beginning to be competitive and even to out-
perform, in some cases, classical methods for solving systems of equations and in-
equalities over the reals. As a consequence, their application has raised interest in
fields as diverse as neurophysiology and economics [18], biochemistry, crystallography,
robotics [13] and, more generally, in those related to global optimization [9]. Symme-
tries naturally occur in many of these applications, and it is advisable to exploit them in
order to reduce the search space and, thus, to increase the efficiency of the solvers.

Considerable work on symmetry breaking has been performed for discrete Constraint
Satisfaction Problems (CSPs) in the last decades [7,19]. Two main symmetry-breaking
strategies have been pursued: 1) to devise specialized search algorithms that avoid sym-
metric portions of the search space [14,8]; and 2) to add symmetry-breaking constraints
(SBCs) that filter out redundant subspaces [5,16]. Contrarily to this, there exists very
little work on symmetry breaking for numerical problems. For cyclic variables per-
mutations, an approach divides the initial space into boxes and eliminates symmetric
ones before the solving starts [17]. The addition of SBCs has also been proposed, but
only for specific problems or specific symmetry classes, as inequalities between vari-
ables [6,11,3].

In Section 2, we show that such inequalities are but a relaxation of the lexicographic-
ordering based SBCs [4] widely used by the discrete CSP community. This relaxation
allows us to generalize these previous works to any variable symmetry and can be de-
rived automatically knowing the symmetries of a problem. In Section 3 we discuss its

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 317–324, 2011.
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merits with respect to lexicographic-ordering based SBCs. In Section 4 we assess its
practical interest. We provide tracks for future developments in Section 5.

2 Symmetry-Breaking Constraints for NCSPs

We are interested in solving the following general Numeric Constraint Satisfaction
Problem (NCSP) (X,D,C): Find all points X = (x1, . . . , xn) ∈ D ⊆ Rn satisfying
the constraint C(X), a relation on Rn, typically a conjunction of non-linear equations
and inequalities.

A function s : Rn → Rn is a symmetry of a NCSP if it maps bijectively solutions
to solutions1, i.e., for all X ∈ D such that C(X) holds, s(X) ∈ D and C(s(X))
also holds. In this case, we say X and s(X) are symmetric solutions, and by extension
for any point Y ∈ D, s(Y ) is a symmetric point. We consider only symmetries that
are permutations of variables. Let Sn be the set of all permutations of {1, . . . , n}. The
image of i by a permutation σ is iσ, and σ is described by [1σ, 2σ, . . . , nσ]. A symmetry
s is a variable symmetry iff there is a σ ∈ Sn such that for any X ∈ D, s(X) =
(x1σ , . . . , xnσ ). We identify such symmetries with their associated permutations and
denote both by σ in the following. Consequently, the set of variable symmetries of a
NCSP is isomorphic to a permutation subgroup of Sn, which are both identified and
denoted by Σ in the following.

Example 1. The 3-cyclic roots problem is: find all (x1, x2, x3) ∈ R3 satisfying (x1 +
x2+x3 = 0) ∧ (x1x2+x2x3+x3x1 = 0) ∧ (x1x2x3 = 1). This problem has six vari-
able symmetries including identity, Σ = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2],
[3, 2, 1]}. Hence, all its variables are interchangeable. �

We say that the symmetries of a CSP are completely broken when a single represen-
tative in each set of symmetric solutions is retained. To this end, it is possible to add
symmetry-breaking constraints (SBCs) which will exclude all but a single represen-
tative of the symmetric solutions [7,19]. Crawford et al. [4] proposed lexicographic
ordering constraints (LEX) that completely break any variable symmetry. Recall that
given X and Y both in Rn the lexicographic order is defined inductively as follows:

for n = 1, X lex Y ≡ (x1 ≤ y1)
for n > 1, X lex Y ≡ (x1 < y1) ∨

(
(x1 = y1) ∧ (X2:n lex Y2:n)

)
where X2:n = (x2, . . . , xn), and the same for Y . For a given symmetry σ, Crawford et
al. define the corresponding SBC LEXσ(X) ≡ X lex σ(X). Intuitively, this constraint
imposes a total order on the symmetric solutions, hence allowing to retain a single
one w.r.t. a given symmetry σ. One such constraint is thus imposed for each of the
symmetries of a problem in order to break them all. The strength of these constraints is
that they reduce the search space by a factor equal to #Σ, the order of the symmetry
group Σ of the problem. One critical issue however is that the number of SBCs can be
exponential with respect to the number of variables.

1 Nothing is required for non-solution points, i.e., we consider solution symmetries [1].
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Example 2. Excluding the identity permutation, a symmetry of any problem which is
irrelevant to break, the LEX constraints for the symmetries of the 3-cyclic-roots problem
are: (x1, x2, x3) lex (x1, x3, x2), (x1, x2, x3) lex (x2, x1, x3), (x1, x2, x3) lex

(x2, x3, x1), (x1, x2, x3) lex (x3, x1, x2), and (x1, x2, x3) lex (x3, x2, x1). �

Since they offer a good trade-off between the solving time reduction they allow, and
the difficulty to handle them, partial SBCs (PSBCs), that retain at least one repre-
sentative of the symmetric solutions, have often been considered. Especially for NC-
SPs, several classes of variable symmetries have been broken using PSBCs having the
form of inequalities between variables. For instance, Gasca et al. [6] proposed PSBCs
xi ≤ xi+1 (i ∈ {1, . . . , n − 1}) for full permutations (Σ = Sn), and PSBCs x1 ≤ xi
(i ∈ {2, . . . , n}) for cyclic permutations (Σ = Cn)2. Similar PSBCs have been pro-
posed for numeric optimization problems with more peculiar symmetry groups, e.g.,
Σ = C2 × Sn in [3] and Σ =

∏
i Spi in [11].

Example 3. Considering again the 3-cyclic-roots problem, Gasca et al.’s PSBCs are:
x1 ≤ x2 and x2 ≤ x3. Indeed, these inequalities filter out all but a single of the six
symmetries of any solution to this problem. �

The corner stone of our approach is to note that all the PSBCs mentioned above can
be obtained by relaxing Crawford’s SBCs as follows: For σ ∈ Sn different from the
identity permutation, and X = (x1, . . . , xn), we define the constraint RLEXσ(X) ≡
xkσ ≤ xkσ

σ , where kσ is the smallest integer in {1, . . . , n} such that kσ �= kσ
σ . The

following proposition establishes that this constraint is a relaxation of a LEX constraint,
i.e., a PSBC: it cannot remove any solution preserved by LEX constraint.

Proposition 1. LEXσ(X) =⇒ RLEXσ(X)

Proof. Since i < kσ implies i = iσ , we have xi = xiσ for all i < kσ . Therefore
LEXσ(X), which is X lex σ(X), is actually equivalent to Xkσ :n lex σ(X)kσ :n, i.e.,

(xkσ < xkσ
σ ) ∨

(
(xkσ = xkσ

σ) ∧ (Xkσ+1:n lex σ(X)kσ+1:n)
)
,

which logically implies (xkσ < xkσ
σ) ∨ (xkσ = xkσ

σ ), that is RLEXσ(X). ��

The ad-hoc inequalities proposed so far to partially break specific classes of variable
symmetries in NCSPs are just special cases of the RLEX constraints. For instance, when
Σ = Sn, Gasca et al.’s PSBCs are xi ≤ xi+1 (i ∈ {1, . . . , n− 1}) [6]. In this case, kσ
takes all possible values in {1, . . . , n−1} and kσ

σ all possible values in {kσ+1, . . . , n}.
Hence the corresponding RLEX constraints are xi ≤ xj (i < j). Since all the inequali-
ties xi ≤ xj with i+1 < j among them are redundant, they can be eliminated, yielding
the inequalities proposed by Gasca et al.. A similar verification is easily carried out
for the other specific variables symmetries tackled in [6,3,11]. Hence, RLEX constraints
generalize these PSBCs to any variable symmetries.

Example 4. Continuing Example 2, the corresponding RLEX constraints are respec-
tively: x2 ≤ x3, x1 ≤ x2, x1 ≤ x2, x1 ≤ x3 and x1 ≤ x3. This set of inequalities can
be simplified to x1 ≤ x2 and x2 ≤ x3, i.e., that presented in Example 3. �

2 Cn = {[k, . . . , n, 1, . . . , k − 1] : k ∈ {1, . . . , n}}.
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3 RLEX vs LEX

Advantages. First, we draw the reader’s attention to the simplicity of the relaxed con-
straints w.r.t. the original ones: RLEX constraints are just binary inequalities while LEX

constraints involve all the variables of the symmetries in a large combination of logi-
cal operations. Hence, we expect it is much more efficient to prune RLEX constraints
(no specific algorithm is required) and to propagate the obtained reductions (successful
reductions trigger only constraints depending on two variables), than LEX constraints.

Second, and more prominently, the number of RLEX constraint is always smaller
than the number of LEX constraints, and it is bounded upward by n(n−1)

2 (number of
different pairs (xi, xj) with i < j), or only n − 1 if one considers a non-redundant
subset of inequalities as we explained previously. In contrast, there can be exponentially
many LEX constraints, one for each permutation in Sn. As remarked by Crawford et al.,
this makes the use of LEX constraints impractical in general and has yielded research
towards simplifying and relaxing them [4]. Oppositely, adding O(n) RLEX constraints
to a CSP model should never be a problem for its practical treatment by a solver.

Similar constraints xkσ < xkσ
σ were proposed by Puget in [15] as SBCs for (dis-

crete) problems where the variables are subject to an all different constraint. It is thus
possible to obtain the RLEX constraints without having to compute all LEX constraints
by applying the group theory results already used by Puget: From a generating set of the
symmetries Σ of a problem, it is possible to derive a stabilizer chain, i.e., a sequence
of permutation subgroups such that each is contained in the preceding and the permu-
tations in the ith subgroup map all integers in {1, . . . , i} to themselves. The orbit of
the integer i + 1 in the ith subgroup, i.e., all the integers it can be mapped to by any
permutation in this subgroup, thus define exactly the pairs for which we must impose
an inequality. These pairs can be obtained with the Shreier-Sims algorithm which runs
in O(n2 log3(#Σ) + tn log(#Σ)), where t is the cardinality of the input generating
set3. Since #Σ is at most n! (whenΣ = Sn), this algorithm runs in polynomial time in
n and t.

Hence, RLEX constraints constitute a generalization of the inequalities proposed so
far for NCSPs that remains of tractable size and can be computed in polynomial time
for any variable symmetries.

Drawbacks. The RLEX constraints break only partially the symmetries that LEX con-
straints break completely. Let us describe more precisely symmetric solutions which
are discarded by LEX but not by RLEX.

Given a symmetry σ and a solution X = (x1, . . . , xn), if σ(X) is discarded by
the corresponding LEX constraint, it means that there exists i such that xi < xiσ and
∀j ∈ {1, . . . , i − 1}, xj = xjσ . If σ(X) is not discarded by the corresponding RLEX

constraint xkσ ≤ xkσ
σ , it means that kσ < i. Thus, xkσ = xkσ

σ while kσ �= kσ
σ by

definition, i.e., X must lie on a given hyperplaneHuv = {X |xu = xv}.
Hence, all the symmetric solutions that are discarded by LEX constraints (w.r.t. all the

symmetries of the problem) but not by RLEX constraints belong to such hyperplanes.
Because the volume of these hyperplanes is null in Rn, the set of points filtered out

3 A minimal generating set is O(n) for any subgroup of variable symmetries.
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by LEX constraints and preserved by RLEX constraints represents a null volume of the
search space. We conclude that RLEX constraints reduce the search space volume by a
factor #Σ identical to that achieved with LEX constraints.

Moreover, numerical constraint solvers cannot eliminate these singular symmetric
solutions even with LEX constraints since they do not distinguish strict and non-strict
inequalities. Indeed, they perform computations using intervals and thus cannot approx-
imate open sets differently from closed ones.

In conclusion, since the aim of PSBCs is essentially to enhance the solvers perfor-
mances by allowing quick and easy reduction of the search space, it appears RLEX

constraints are a very good trade-off between simplicity and efficiency: they are easy to
derive, simple to handle, and still filter out most of the symmetric search space.

4 Experimental Results

We provide experimental evidences of the important performance gains RLEX con-
straints can bring when solving symmetric NCSPs. Indeed, the solving time of a given
NCSP is in general proportional to its search space. We expect RLEX constraints allow
to quickly eliminate large portions of the search space, isolating an asymmetric sub-
search space whose volume is divided by #Σ w.r.t. the initial search space. As a result,
we expect to observe computation time gains proportional to #Σ.

All experiments are conducted on a dual-core equipped machine (2.5GHz, 4Gb
RAM) using the Realpaver [10] constraint solver with default settings.

Preliminary analysis: We first consider homemade scalable problems whose solutions
either lie outside any hyperplane Huv (problems P1, P2), all lie on such hyperplanes
(problems P3, P4), or lie at the intersection of all these hyperplanes (problems P5,
P6). In all cases, we consider problems with only cyclic permutations (P1, P3, P5) and
others with full permutations (P2, P4, P6), i.e., problems for which the volume of the
asymmetric search space is 1

n and 1
n! of that of the initial search-space respectively :

P1 : X ∈ [−n, n]n,
∏
σ∈Cn

||σ(X) −X∗|| = 0

P2 : X ∈ [−n, n]n,
∏
σ∈Sn

||σ(X) −X∗|| = 0

P3 : X ∈ [−2, 2]n,
∏n
j=1(

∑n
i=1(x((i+j) mod n) + (−1)i)2) = 0

P4 : X =∈ [0, 1]n, ∀i ∈ 1..n
∑

j �=i x
2
j + xi cos(

∑n
j=1 xj) = 0

P5 : X ∈ [−2, 2]n,
∑n
i=1(x

2
i − 1)2 = 0

P6 : X ∈ [0, 1]n, ∀i ∈ 1..n
∑n−1

j=1 (
∏n−1
l=1 x(i+j+l)modn) = 1

where X∗ is the point (1, . . . , n) ∈ Rn. The solutions of P1 are all cyclic permuta-
tions of X∗ while that of P2 are all permutations of X∗. The solutions of P3 are the
cyclic permutations4 of (−1, 1, . . . ,−1, 1) ∈ Rn; that of P4 are all points of the form
{−1, 1}n. P5 and P6 both have a single (very symmetric) solution: 0n.

4 Note there are only 2 different solutions when n is even, n solutions when it is odd.
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Fig. 1. Time ratios for homemade problems

Figure 1 presents the variation of the ratio between the computation time without
RLEX and the computation time with it (called gain in the following) when the dimen-
sion n varies. In addition to the measured gains, the figure displays (in dotted gray) the
functions of n that best approximate them.

The gains for P1 and P2 follow very closely the reduction factor of their search space
volume, hence confirming our expectations. Note that although the gains are not as im-
pressive for P1 as for P2, they are already significant: E.g., for n = 50 the computation
time is 1124s (> 18min) without RLEX and 29s with RLEX. For P2 they are really out-
standing: E.g., for n = 6, the computations time is 12863s (> 3.5h) without RLEX but
only 19s with RLEX.

For the other problems, the results are more varied: P3 presents only an (almost)
constant gain;P4 shows a gain closer to the reduction factor of the size of its solution set
than to its search space volume reduction factor; P5 offers a (quite flat) linear gain, i.e.,
proportional to its search space volume reduction factor; the gain for P6 follows closely
its search space volume reduction factor5. The factors that could explain this diversity of
behaviors are numerous (e.g., relative pruning power of the original constraints w.r.t. the
added PSBCs, proportion of symmetric solutions with and without RLEX, ...). Further
experiments will be necessary to distinguish the exact effects of all these factors.

The conclusion we draw from these results is that one cannot always expect as much
gain as the search space volume reduction factor, especially when the problem has sin-
gular solutions; still, the gains can be outstanding, and adding RLEX constraints did not
induce any uncompensated overhead in any of the settings we have considered.

5 Computations for P6 could not be performed further because the timings were becoming too
large, e.g., 41751s (> 11.5h) for n = 6 without RLEX, as compared to 49.5s with it.
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Table 1. Results for various problems from the literature

Problem n Sol #Σ Time Time gain
w/RLEX w RLEX

Brown 5 S n! 0.95 0.24 3.9
8 1218 5.32 229.0

Cyclic 4 GS∗ 2n 260 32.1 8.1
roots 5 S 46.6 4.7 9.7

6 S 2017 183 10.9
Cyclohexane 3 S n! 0.24 0.16 1.5
Extended 20 S n

2
! 0.41 0.26 1.6

Freudenstein 140 422 315 1.3
Extended 16 S nn

2
! 1.42 0.03 47.3

Powell 30 844 0.1 8442.0
Feigenbaum 11 GS n 7.30 0.81 9.0

23 10924 1027 10.6

Standard benchmark: We also consider a benchmark composed of standard problems
picked from [2]. Their characteristics and the results obtained are reported in Table 1.
For scalable problems we report timings for the smallest and largest dimension n we
tested, allowing one to imagine the gain variation with the dimension. Column ”Sol”
indicates the type of solutions of the problem: G=Generic (i.e., out of any hyperplane
Huv) and S=Singular. Note that most of these standard problems are of type S. Problem
4-cyclic-roots is markedGS∗ because this problem has a continuous solution set which
intersects some Huv hyperplanes. For this problem, timings correspond to paving its
solution manifold with 10−2-wide boxes.

For problems Brown, Cyclic-roots and Extended-Powell, the gain closely follows
the search space volume reduction factor (column #Σ). Still, for problems Extended-
Freudenstein and Feigenbaum the gains remain almost constant as the dimension grows.
These experiments support the preliminary analysis we have performed: We can achieve
important gains for highly symmetric problems and the introduction of RLEX con-
straints at least does not appear counterproductive.

5 Conclusion and Future Prospects

We have presented a generalization of the PSBCs proposed so far for variable symme-
tries in NCSPs. It corresponds to a relaxation of the famous LEX constraints used for
breaking symmetries essentially for discrete CSPs so far. We have discussed the merits
of this relaxation w.r.t. LEX constraints and illustrated its practical interest for NCSPs.

All the arguments we have used are also valid for continuous optimization and con-
strained optimization problems. Considering that many of them are not specific to nu-
meric problems or solvers, it would also be interesting to consider this relaxation in
discrete domains. Hence, we should also consider Mixed-Integer Linear/Nonlinear Pro-
gramming and Integer Linear Programming where some of the PSBCs we have gener-
alized have been proposed [3,12].
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Abstract. In a minimal binary constraint network, every tuple of a constraint re-
lation can be extended to a solution. It was conjectured that computing a solution
to such a network is NP hard. We prove this conjecture. We also prove a conjec-
ture by Dechter and Pearl stating that for k ≥ 2 it is NP-hard to decide whether
a constraint network can be decomposed into an equivalent k-ary constraint net-
work, and study related questions.

1 Introduction

In his seminal 1974 paper [11], Montanari introduced the concept of minimal constraint
network. Roughly, a minimal network is a constraint network where each partial instan-
tiation corresponding to a tuple of a constraint relation can be extended to a solution.
Each arbitrary binary network N having variables {X1, . . . , Xv} can be transformed
into an equivalent binary minimal network M(N) by computing the set sol(N) of all
solutions to N and creating for 1 ≤ i < j ≤ v a constraint cij whose scope is (Xi, Xj)
and whose constraint relation consists of the projection of sol(N) to (Xi, Xj). The
minimal network M(N) is unique and its solutions are exactly those of the original
network, i.e., sol(N) = sol(M(N)).

Obviously,M(N), which can be considered a heavily pruned compiled version ofN ,
is hard to compute. However, with M(N) at hand, we can answer a number of queries
in polynomial time that would otherwise be NP hard. Typically, these are queries that
involve one or two variables only, for example, ”Is there a solution for whichX5 < 8?”
or ”what is the maximal value of X3 such that X7 is minimized?”. In applications such
as computer-supported interactive product configuration, such queries arise frequently,
but it would be useful to be able to exhibit at the same time a full solution together with
the query answer, that is, an assignment of values to all variables witnessing this answer.
It was even unclear if it is tractable to compute an arbitrary single solution on the ba-
sis of M(N). Gaur [7] formulated this as an open problem. He showed that a stronger
version of the problem, where solutions restricted by specific value assignments to a
pair of variables are sought, is NP hard, but speculated that finding arbitrary solutions
could be tractable. However, since the introduction of minimal networks in 1974, no
one came up with a polynomial-time algorithm for this task. This led Dechter to con-
jecture that this problem is hard [4]. Note that this problem deviates in two ways from

� Future improvements and extended versions of this paper will be published in CORR
at http://arxiv.org/abs/1103.1604

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 325–339, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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classical decision problems: First, it is a search problem rather than a decision problem,
and second, it is a promise problem, where it is ”promised” that the input networks,
which constitute our problem instances, are indeed minimal — a promise whose veri-
fication is itself NP-hard (see Section 4.1). We therefore have to clarify what is meant
by NP-hardness, when referring to such problems. The simplest and probably cleanest
definition is the following: The problem is NP hard if any polynomial algorithms solv-
ing it would imply the existence of a polynomial-time algorithm for NP-hard decision
problems, and would thus imply NP=P. In the light of this, we can formulate Dechter’s
conjecture as follows:

Conjecture 1 (Dechter[4]). Unless P=NP, computing a single solution to a non-empty
minimal constraint network cannot be done in polynomial time.

While the problem has interested a number of researchers, it has not been solved un-
til recently. Some progress was made by Bessiere in 2006. In his well-known hand-
book article ”Constraint Propagation” [1], he used results of Cros [2] to show that no
backtracking-free algorithm for computing a solution from a minimal network can ex-
ist unless the Polynomial Hierarchy collapses to its second level (more precisely, until
Σp

2 = Πp
2 ). However, this does not mean that the problem is intractable. A backtrack-

free algorithm according to Bessiere must be able to recognize each partial assignment
that is extensible to a solution. In a sense, such an algorithm, even if it computes only
one solution, must have the potential to compute all solutions just by changing the
choices of the variable-instantiations made at the different steps. In more colloquial
terms, backtrack-free algorithms according to Bessiere must be fair to all solutions.
Bessiere’s result does not preclude the existence of a less general algorithm that com-
putes just one solution, while being unable to recognize all partial assignments, and
thus unfair to some solutions.

In the first part of this paper, we prove Dechter’s conjecture by showing that ev-
ery polynomial-time search algorithm A that computes a single solution to a minimal
network can be transformed into a polynomial-time decision algorithmA∗ for the clas-
sical satisfiability problem 3SAT. The proof is carried-out in Section 3. We first show
that each SAT instance can be transformed in polynomial time into an equivalent one
that is highly symmetric (Section 3.1). Such symmetric instances, which we call k-
supersymmetric, are then polynomially reduced to the problem of computing a solution
to a minimal binary constraint network (Section 3.2). The minimal networks in the
proof, however, have an unbounded number of domain values. We further consider the
case of bounded domains, that is, when the input instances are such that the cardinality
of the overall domain of all values that may appear in the constraint relation is bounded
by some fixed constant c. We show that even in the bounded domain case, the problem
of computing a single solution remains NP-hard (Section 3.3).

In Section 4, we deal with problems of network minimality checking and structure
identification. In Section 4.1, we generalize and slightly strengthen a result by Gaur [7]
by showing that it is NP hard to determine whether a k-ary network is minimal, even
in case of bounded domains. Then, in Section 4.2, we study the complexity of check-
ing whether a network N consisting of a single constraint relation (typically of arity
≥ k) can be represented by an equivalent k-ary constraint network. Note that this is
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precisely the case iff there exists a k-ary minimal network for N . Dechter and Pearl [5]
conjectured that this problem is NP-hard for k ≥ 2. We prove this conjecture.

The paper is concluded in Section 5 by a brief discussion of the practical significance
of our main result, a proposal for the enhancement of minimal networks, and a hint at
possible future research.

2 Preliminaries and Basic Definitions

While most of the definitions in this section are adapted from the standard literature on
constraint satisfaction, in particular [4,1], we sometimes use a slightly different notation
which is more convenient for our purposes.

Constraints, networks, and solutions. A k-ary constraint c is a tuple (scope(c), rel(c)).
The scope scope(c) of c is a sequence of k variables scope(c) = (Xi1 , . . . , Xik), where
each variable Xij has an associated finite domain dom(Xij ). The relation rel(c) of
c is a subset of the Cartesian product dom(Xi1) × dom(Xi2) × · · · × dom(Xik ).
The arity arity(c) of a constraint c is the number of variables in scope(c). The set
{Xi1 , . . . , Xik} of all variables occurring in constraint c is denoted by var(c).

A Constraint Network N consists of

– a finite set of variables var(N) = {X1, . . . , Xv} with associated domains
dom(Xi) for 1 ≤ i ≤ v, and

– a set of constraints cons(N) = {c1, . . . , cm}, where for 1 ≤ i ≤ m, var(ci) ⊆
var(N).

The domain dom(N) of a constraint network N as defined above consists of the union
of all variable domains: dom(N) =

⋃
X∈var(N) dom(X). The schema of N is the set

schema(N) = {scope(c)|c ∈ cons(N)} of all scopes of the constraints of N . We call
N binary (k-ary) if arity(c) = 2 (arity(c) = k) for each constraint c ∈ cons(N).

Let N be a constraint network. An instantiation mapping for a set of variablesW ⊆
var(N) is a mapping W −→ dom(W ), such that for each X ∈ var(N), θ(X) ∈
dom(X). We call θ(W ) an instantiation ofW . An instantiation of a proper subsetW of
var(N) is called a partial instantiation while an instantiation of var(N) is called a full
instantiation (also total instantiation). A constraint c ofN is satisfied by an instantiation
mapping θ : W −→ dom(W ) if whenever var(c) ⊆ W , then θ(scope(c)) ∈ rel(c).
An instantiation mapping θ : W −→ dom(W ) is consistent if it is satisfied by all
constraints. By abuse of terminology, in case θ is understood and is consistent, then we
also say that θ(W ) is consistent. A solution to a constraint network N is a consistent
full instantiation for N . The set of all solutions of N is denoted by sol(N). Whenever
useful, we will identify the solution set sol(N) with a single constraint whose scope is
var(N) and whose relation consists of all tuples in sol(N). We assume without loss of
generality, that for each set of variables W ⊆ var(N) of a constraint network, there
exists at most one constraint c such that the variables occurring in scope(c) are precisely
those ofW . (In fact, if there are two or more constraints with exactly the same variables
in the scope, an equivalent single constraint can always be obtained by intersecting the
constraint relations.)
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Complete networks. We call a k-ary constraint network N complete, if for each set U
of k of variables, there is a constraint c such that U = var(c). For each fixed con-
stant k, each k-ary constraint network N can be transformed by a trivial polynomial
reduction into an equivalent complete k-ary network N+ with sol(N) = sol(N+).
In fact, for each set U = {Xi1 , . . . , Xik} that is in no scope of N , we may just
add the trivial constraint +U with scope(+U ) = (Xi1 , . . . , Xik) and rel(+U ) =
dom(Xi1)×dom(Xi2)×dom(Xik). For this reason, we may, without loss of generality,
restrict our attention to complete networks. Some authors, such as Montanari [11] who
studies binary networks, make this assumption explicitly, others, such as Dechter [4]
make it implicitly. We here assume unless otherwise stated, that k-ary networks are
complete. In particular, we will assume without loss of generality, that when a binary
constraint network N is defined over variablesX1, . . . , Xv, that are given in this order,
then the constraints are such that their scopes are precisely all pairs (Xi, Xj) such that
1 ≤ i < j ≤ v. For a binary constraint network N over variables {X1, . . . , Xv}, we
denote the constraint with scope (Xi, Xj) by cNij .

Intersections of networks, containment, and projections. Let N1 and N2 be two con-
straint networks defined over the same schema S (that is, the same set S of constraint
scopes). The intersection M = N1 ∩ N2 of N1 and N2 consists of all constraints cs,
for each s ∈ S, such that scope(cs) = s and rel(cs) = rel(cs1) ∩ rel(cs2), where c1
and c2 are the constraints having scope s of N1 and N2, respectively. The intersection
of arbitrary families of constraint networks defined over the same schema is defined in
a similar way. For two networks N1 and N2 over the same schema S, we say that c1
is contained in c2, and write N ⊆ N ′, if for each s ∈ S, and for c1 ∈ cons(N1) and
c2 ∈ cons(N2) with scope(c1) = scope(c2) = s, rel(c1) ⊆ rel(c2). If c is a constraint
over a set of variables W = {X1, . . . , Xv} and V ⊆ W , then the projection ΠV (c) is
the constraint whose scope is V , and whose relation is the projection over V of rel(c).
Let c be a constraint and S a schema consisting of one or more scopes contained in
scope(c), then ΠS(c) = {Πs(c)|s ∈ S}. If N is a constraint network and S a schema
all of whose variables are contained in var(N), then ΠS(N) = {ΠS(c)|c ∈ N}.

Minimal networks. If c is a constraint over variables var(c) = {X1, . . . , Xv}, we
denote by Sk(c) the k-ary schema over var(c) having as scopes precisely all (ordered)
lists of k variables from var(c), i.e., all scopes (Xi1 , Xi2 , . . . , Xik), where 1 ≤ i1 <
i2 < · · · < ik−1 < ik ≤ v. Thus ΠSk

(c) is the constraint network obtained by
projecting c over all ordered lists of k variables from var(C). In particular, ΠS2(c)
consists of all constraints ΠXi,Xj (c) such that Xi and Xj are variables from var(c)
with i < j.

It was first observed in [11] that for each binary constraint network N , there is a
unique binary minimal network M(N) that consists of the intersection of all binary
networksN ′ for which sol(N ′) = sol(N). Minimality here is with respect to the above
defined “⊆”-relation among binary networks. More generally, for k ≥ 2, each k-ary
network there is a unique k-ary minimal network Mk(N) that is the intersection of all
k-ary networks N ′ for which sol(N ′) = sol(N). (For the special case k = 2 we have
M2(N) = M(N).) The following is well-known [11,12,4,1] and easy to see:
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– Mk(N) = ΠSk
(sol(N));

– Mk(N) ⊆ N ′ for all k-ary networksN ′ with sol(N ′) = sol(N);
– A k-ary network N is minimal iff ΠSk

(sol(N)) = N .
– A k-ary network N is minimal iff Mk(N) = N .
– A k-ary network N is satisfiable (i.e., has at least one solution) iff Mk(N) is

nonempty.

It is obvious that for k ≥ 2, Mk(N), is hard to compute. In fact, just deciding whether
for a network N , Mk(N) is the empty network (i.e., has only empty relations as con-
straint relations) is co-NP complete, because this decision problem is equivalent to de-
ciding whether N has no solution. (Recall that deciding whether a network N has a
solution is NP-complete [8].) In this paper, however, we are not primarily interested
in computing Mk(N), but in computing a single solution, in case Mk(N) has already
been computed and is known.

Graph theoretic characterization of minimal networks. An n-partite graph is a graph
whose vertices can be partitioned into n disjoint sets so that no two vertices from the
same set are adjacent. It is well-known (see, e.g., [13]) that each binary constraint net-
work N on n variables can be represented as n-partite graph GN . The vertices of GN
are possible instantiations of the variables by their corresponding domain values. Thus,
for each variable Xi and possible domain value a ∈ dom(Xi), there is a vertex Xa

i .
Two vertices Xa

i and Xb
j are connected by an edge in GN iff the relation of the con-

straint cNij with scope (Xi, Yj) contains the tuple (a, b). Gaur [7] gave the following
nice characterization of minimal networks: A solvable complete binary constraint net-
workN on n variables is minimal iff each edge ofN is part of a clique of size n ofGN .
Note that by definition of GN as an n-partite graph, there cannot be any clique in GN
with more than n vertices, and thus the cliques of n vertices are precisely the maximum
cliques of GN .

Satisfiability problems. An instance C of the Satisfiability (SAT) problem is a con-
junction of clauses (often just written as a set of clauses), each of which consists of
a disjunction (often written as set) of literals, i.e., of positive or negated propositional
variables. Propositional variables are also called (propositional) atoms. If α is a set of
clauses or a single clause, then we denote by propvar(α) the set of all propositional
variables occurring in α.

3 NP Hardness of Computing Minimal Network Solutions

To show that computing a single solution from a minimal network is NP hard, we will
do exactly the contrary of what people — or automatic constraint solvers — usually do
whilst solving a constraint network or a SAT instance. While everybody aims at break-
ing symmetries, we will actually introduce additional symmetry into a SAT instance
and its corresponding constraint network representation. This will be achieved by the
Symmetry Lemma to be proved in the next section.
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3.1 The Symmetry Lemma

Definition 1. A SAT instance C is k-supersymmetric if C is either unsatisfiable or if
for each set of k propositional variables {p1, . . . , pk} ⊆ propvar(C), and for each
arbitrary truth value assignment η to {p1, . . . , pk}, there exists a satisfying truth value
assignment τ for C that extends η.

Lemma 1 (Symmetry Lemma). For each fixed integer k ≥ 1, there exists a
polynomial-time transformation that transforms each 3SAT instance C into a k-
supersymmetric instance C∗ which is satisfiable if and only if C is satisfiable.

Proof. We first prove the lemma for k = 2. Consider the given 3SAT instance
C. Let us create for each propositional variable p ∈ propvar(C) a set New(p) =
{p1, p2, p3, p4, p5} of fresh propositional variables. Let Disj+(p) be the set of all dis-
junctions of three distinct positive atoms from New(p) and let Disj− be the set of all
disjunctions of three distinct negative literals corresponding to atoms in New(p). Thus,
for example (p2 ∨ p4 ∨ p5) ∈ Disj+(p) and (p̄1 ∨ p̄4 ∨ p̄5) ∈ Disj−(p). Note that
Disj+(p) and Disj−(p) each have exactly

(
5
3

)
= 10 elements (we do not distinguish

between syntactic variants of equivalent clauses containing the same literals).
Consider the following transformation T , which eliminates all original literals from

C, yielding C∗:

Function T:
BEGIN C′ := C.
WHILE propvar(C) ∩ propvar(C′) �= ∅ DO

{ pick any p ∈ propvar(C) ∩ propvar(C′); C′ := elim(C′, p)};
Output(C′)
END.

Here elim(C′, p) is obtained from C′ and p as follows:

FOR each clause K of C′ in which p occurs positively or negatively DO

BEGIN
let δ be the disjunction of all literals in K different from p and from ¬p;1

if p occurs positively in K , replace K in C′ by the conjunction Γ+(K) of all clauses
of the form α ∨ δ, where α ∈ Disj+(p);

if p occurs negatively in K , replace K in C′ by the conjunction Γ−(K) of all clauses
of the form α ∨ δ, where α ∈ Disj−(p);

END.

Let C∗ = T (C) be the final result of T . C∗ contains no original variable from
propvar(C). Note that C∗ can be computed in polynomial time from C. In fact, note

that every clause of three literals of C gives rise to exactly
(
5
3

)3
= 103 = 1000 clauses

of 9 literals each in C∗. We can actually replace each clause of C at once and in-
dependently by the corresponding 1000 clauses, which –assuming appropriate data

1 An empty δ is equal to false, and it is understood that α ∨ false is simply α.
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structures– can be done in linear time. The entire transformation from C to C∗ can
thus be done in linear time.

We now need to prove (1) that C∗ is satisfiable iff C is and (2) that C∗ is 2-
supersymmetric.

Fact 1: C∗ is satisfiable iff C is. It is sufficient to show that, when at each step of
algorithm T , C′ is transformed into its next value C′′ = elim(C′, p), then C′ and
C′′ are satisfaction-equivalent. The statement then follows by induction. Assume C′ is
satisfied via a truth value assignment τ ′. Then let τ ′′ be any truth value assignment to
the propositional variables of C′′ with the following properties:

– For each propositional variable q of C′′ different from p, τ ′′(q) = τ ′(q);
– if τ ′(p) = true, then at least 3 of the variables in New(p) are set true by τ ′′, and
– if τ ′(p) = false, then at most two of the variables in New(p) is set true by τ ′′

(and at least three are thus set false).

By definition of C′′, τ ′′ must satisfy C′′. In fact, assume first τ ′(p) = true. Let K
be a clause of C in which p occurs positively. Then, given that at least three variables
in New(p) are set true by τ ′′, each element of Disj+(p) must have at least one atom
made true by τ ′′, and thus each of the clauses of Γ+(K) of C′′ evaluates to true via
τ ′′. All other clauses of C′′ stem from clauses of C′ that were made true by literals
corresponding to an atom q different from p. But, by definition of τ , these literals keep
their truth values, and hence make the clauses true. In summary, all clauses of C′′ are
satisfied by τ ′′. In a very similar it is shown shown that τ ′′ satisfiesC′′ if, τ(p) = false.
Vice-versa, assume some truth value assignment τ ′′ satisfies C′′. Then it is not hard to
see that C′ must be satisfied by the truth value assignment τ ′ to C′ defined as follows:
If a majority (i.e. 3 or more) of the five atoms in New(p) are made true via τ ′′, then
let τ ′(p) = true, otherwise let τ ′(p) = false; moreover, for all propositional variables
q �∈ New(p), let τ ′(q) = τ ′′(q).

To see that τ ′ satisfies C′, consider first the case that three or more of the propo-
sitional variables of New(p) are assigned true by τ ′′. Note that all clauses of C′ that
neither contain p nor p̄ are trivially satisfied by τ ′, as τ ′ and τ ′′ coincide on their atoms.
Now let us consider any clause K of C′ in which p occurs positively. Then the only
clauses that contain positive occurrences of elements of New(p) of C′′ are the sets
Γ+(K). If τ ′′ is such that it makes at least three of the five atoms in New(p) true,
then any clause in Γ+(K) is made true by atoms of Newp. Thus when replacing these
atoms by p and assigning p true, the resulting clause K remains true. Now consider
a clause K = p̄ ∨ δ of C′ in which p occurs negatively. The only clauses containing
negative New(p)-literals in C′′ are, by definition of C′′, those in Γ−(K). Recall we
assumed that that τ ′′ satisfies at least three distinct atoms from New(p). Let three of
these satisfied atoms be pi, pj , and pk. By definition, Γ−(K) contains a clause of the
form p̄i∨p̄j∨p̄k∨δ. Given that this clause is satisfied by τ ′′, but τ ′′ falsifies p̄i∨p̄j∨p̄k,
δ is satisfied by τ ′′, and since δ contains no New(p)-literals, δ is also satisfied by τ ′.
Therefore,K = p̄∨ δ is satisfied by τ ′. This concludes the case where three or more of
the propositional variables ofNew(p) are assigned true by τ ′′. The case where three or
more of the propositional variables of New(p) are assigned false by τ ′′ is completely
symmetric, and can thus be settled in a totally similar way. ♦
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Fact 2: Proof thatC∗ is 2-supersymmetric Assume C∗ is satisfiable by some truth value
assignment η. Then C is satisfiable by some truth value assignment τ , and thus C∗ is
satisfiable by some truth value assignment τ∗ constructed inductively as described in
the proof of Fact 1. Note that, for any initially fixed pair of propositional variables
pi, qj ∈ propvar(C∗), where 1 ≤ i, j ≤ 5, the construction of τ∗ gives us a large
enough degree of freedom so to choose τ∗ in order to let pi, qj take on any arbitrary
truth value assignment among of the four possible joint truth value assignments. In
fact, however we choose the truth value assignments for two among the variables in
{p1, . . . , p5, q1, . . . , q5}, there is always enough flexibility for assigning the remaining
variables in this set some truth values that ensure that the majority of variables has the
truth value required by the proof of Statement 1 for representing the original truth value
of p via τ ′. (This holds even in case p and q are one and the same variable, and we
thus want to force two elements from {p1, . . . , p5} to take on some truth values, see the
second example below.) Let us give two examples that illustrate the two characteristic
cases to consider. First, assume p and q are distinct and τ satisfies p and falsifies q.
We would like to construct, for example, a truth value assignment τ∗ that falsifies p2

and simultaneously satisfies q4. In constructing τ∗, the only requirements on New(p)
and New(q) are that more than three variables from New(p) need to be satisfied by
τ∗, but no more than two from New(q) need to be satisfied by τ∗. For instance, we
may then set τ∗(p1) = τ∗(p3) = τ∗(p4) = τ∗(p5) = true and τ∗(p2) = false and
τ∗(q1) = τ∗(q2) = τ∗(q3) = τ∗(q5) = false and τ∗(q4) = true. This achieves the
desired truth value assignment to p2 and q4. An extension to a full satisfying truth value
assignment τ∗ for C∗ is guaranteed. Now, as a second example, assume that τ(p) =
false, but we would like τ(p1) and τ(p2) to be simultaneously true in a truth value
assignment satisfyingC∗. Note that in this case, the only requirement onNew(p) in the
construction of τ∗ is that at most two atoms fromNew(p) must be assigned true. Here
we have a single option only: set τ∗(p1) = τ∗(p2) = true and τ∗(p3) = τ∗(p4) =
τ∗(p5) = false. This option works perfectly, and assigns the desired truth values to p1

and p2. In summary,C∗ is 2-supersymmetric. ♦

The proof of for k > 2 is totally analogous, except for the following modifications:

– Instead of creating for each propositional variable p ∈ propvar(C) a set
New(p) = {p1, p2, . . . , p5} of five new variables, we now create a set New(p) =
{p1, p2, . . . , p2k+1} of 2k + 1 new propositional variables.

– The set Disj+ is now defined as the set of all disjunctions of k + 1 positive atoms
from New(p). Similarly, Disj− is now defined as the set of all disjunctions of
k + 1 negative literals obtained by negating atoms from New(p).

– Whe replace the numbers 2 and 3 by k and k + 1, respectively.

– We note that now each clause of C is replaced no longer by
(
5
3

)3
clauses but by(

2k+1
k+1

)3
clauses.

– We note that the resulting clause set C∗ is now a 3(k + 1)-SAT instance.

It is easy to see that the proofs of Fact 1 and Fact 2 above go through with these modi-
fications.
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Finally, let us observe that any 2-supersymmetric SAT instance is trivially also 1-
supersymmetric, which settles the theorem for the case k = 1 (that we consider for
completeness reasons only). �

3.2 Intractability of Computing Solutions

Let us use the Symmetry Lemma for proving our main result about the intractability of
computing solutions from a minimal constraint network.

Theorem 2. For each fixed constant k ≥ 2, unless NP=P, computing a single solution
from a minimal k-ary constraint network N cannot be done in polynomial time. The
problem remains intractable even if the cardinality of each variable-domain is bounded
by a fixed constant.

Proof. We first prove the theorem for k = 2. Assume A is an algorithm that computes
in time p(n), where p is some polynomial, a solution A(N) to each nonempty minimal
binary constraint network N of size n. We will construct a polynomial-time 3SAT-
solver A∗ from A. The Theorem then follows.

Let us first define a simple transformation S from SAT instances to equivalent bi-
nary constraint networks. S transforms each clause set C = {K1, . . . ,Kr} into a
binary constraint network S(C) = NC as follows. The set of variables var(NC) is
defined by var(NC) = C = {K1, . . . ,Kr}. For each variable Ki of NC , the do-
main dom(Ki) consists exactly of all literals appearing in Ki. For each distinct pair of
clauses (Ki,Kj), i < j, there is a constraint cij having scope(cij) = (Ki,Kj) and
rel(cij) = (dom(Ki) × dom(Kj)) − {(p, p̄), (p̄, p) | p ∈ propvar(C)}. It is easy to
see that C is satisfiable iff NC is solvable. Basically, NC is solvable, iff we can pick
one literal per clause such that the set of all picked literal contains no atom together
with its negation. But this is just equivalent to the satisfiability of C. Obviously, the
transformation S is feasible in polynomial time.

Let us now look at constraint networks NC∗ = S(C∗), where C∗ is obtained via
transformation T as in Lemma 1 from some 3SAT instance C, i.e., C∗ = T (C). In a
precise sense,NC∗ inherits the high symmetry present inC∗. In fact, ifC∗ is satisfiable,
then, by Lemma 1, for every pair �1, �2 of distinct non-contradictory literals, there is a
satisfying assignment that makes both literals true. In case NC∗ is solvable, given our
particular construction of NC∗ , this means that for every constraint cij , we may pick
each pair (�1, �2) in rel(cij) as part of a solution. No such pair is useless. It follows that
if NC∗ is solvable, then M(NC∗) = NC∗ . On the other hand, if C∗ (and thus C) is not
satisfiable, thenM(NC∗) is the empty network. ThusC is satisfiable iffM(NC∗) = NC∗

i.e., iffNC∗ is minimal2 Note thatC∗, as constructed in the proof of Theorem 2, is a 9SAT
instance, hence the cardinality of the domain of each variable ofNC∗ is bounded by 9.

We are now ready for specifying our 3SAT-solverA∗ that works in polynomial time,
and hence witnesses NP=P. To a 3-SAT input instance C, A∗ first applies T and com-
putes C∗ = T (C) in polynomial time. Then A∗ transforms C∗ via S in polynomial
time to NC∗ . If NC∗ is empty, then, C∗ and C are not satisfiable, and A∗ outputs ”un-
satisfiable” and stops. Otherwise, A∗ submits NC∗ to A and proceeds as follows:

2 From this, by the way, it follows that checking whether a given binary network is minimal is
NP-hard, and thus NP-complete; see also Section 4.1.
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1. If A on input NC∗ does not produce any output after p(|NC∗ |) steps, then A∗ out-
puts unsatisfiable and stops. (This is justified as follows: if C∗ (and hence C) was
satisfiable, then, by construction,NC∗ would be a satisfiable minimal network, and
hence, by definition of A, A(NC∗) would output a solution after at most p(|NC∗ |)
steps. Contradiction.)

2. If A produces an output w, then A∗ checks if w is effectively a solution to NC∗ .
3. If w is not a solution to NC∗ , then NC∗ cannot be minimal. Thus A∗ outputs ”un-

satisfiable” and stops.
4. If w is a solution to NC∗ , then NC∗ is solvable, and so is C∗ and C. Thus A∗

outputs ”satisfiable” and stops.

In summary,A∗ is a polynomial-time 3SAT checker. The theorem for k = 2 follows.
For k > 2, the proof is analogous to the one for k = 2. The only significant change

is that now the transformation S now creates a k-ary constraint cK for each ordered list
of k clauses from C, rather than a binary one. The resulting constraint NC∗ = S(C∗),
where C∗ is as constructed in Lemma 1 then does the job. �

3.3 The Case of Bounded Domains

Theorem 2 says that the problem of computing a solution from a non-empty minimal
binary network is intractable even in case the cardinalities of the domains of all variables
are bounded by a constant. However, if we take the total domain dom(N), which is
the set of all literals of C∗, its cardinality is unbounded. We show that even in case
|dom(N)| is bounded, computing a single solution from a minimal network N is hard.

Theorem 3. For each fixed k ≥ 2, unless NP=P, computing a single solution from a
minimal k-ary constraint network N cannot be done in polynomial time, even in case
|dom(N)| is bounded by constant.

Proof sketch. We prove the result for k = 2; for higher values of k, the proof is
totally analogous. The key fact we exploit here is that each variable Ka of NC∗ in
the proof of Theorem 2 has a domain of exactly nine elements, corresponding to the
nine literals occurring in clause Ka of C∗. We ”standardize” these domains by simply
renaming the nine literals for each variable by the numbers 1 to 9. Thus for each Ka

we have a bijection fa : dom(Ka) ←→ {1, 2, . . . , 9}. Of course the same literal �
may be represented by different numbers for different variable-domains, i.e., it may
well happen that fa(�) �= fb(�). Similarly, a value i in for Xa may correspond to a
completely different literal than the same number i for Xb, i.e., f−1

a (i) may well differ
from f−1

b (i). Let us thus simply translateNC∗ into a networkN#
C∗ , where each literal �

in each column of a variableXa is replaced by fa(�). It is easy to see thatNC∗ andN#
C∗

are equivalent and that the solutions of NC∗ and N#
C∗ are in a one-to-one relationship.

Obviously, N#
C∗ inherits from NC∗ the property to be minimal in case it is solvable.

Therefore, computing a solution to a network in which only nine values occur in total
in the constraint relations is intractable unless NP=P. �
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4 Minimal Network Recognition and Structure Identification

In this section we first study the complexity of recognizing whether a k-ary networkM
is the minimal network of a k-ary networkN . We then analyze the problem of deciding
whether a k-ary network M is the minimal network of a single constraint.

4.1 Minimal Network Recognition

An algorithmic problem of obvious relevance is recognizing whether a given network
is minimal. Using the graph-theoretic characterization of minimal networks described
in Section 2, Gaur [7] has shown the following for binary networks:

Proposition 1 (Gaur [7]). Deciding whether a complete binary network N is minimal
is NP-complete under Turing reductions.

We generalize Gaur’s result to the k-ary case and slightly strengthen it by showing NP
completeness under the standard notion of polynomial-time many-one reductions:

Theorem 4. For each k ≥ 2, deciding whether a complete k-ary networkN is minimal
is NP-complete, even in case of bounded domain sizes.

Proof. Membership in NP is easily seen: We just need to guess a candidate solution
st from sol(N) for each of the polynomially many tuples t of each constraint c of N ,
and check in polynomial time that st is effectively a solution and that the projection
of st over scope(c) yields t. For proving hardness, revisit the proof of Theorem 2 .
For each k ≥ 2, from a 3SAT instance C, we there construct in polynomial time a
highly symmetric k-ary network with bounded domain sizes NC∗ , such that NC∗ is
minimal (i.e., Mk(NC∗) = NC∗ iff C is satisfiable). This is clearly a standard many-
one reduction from 3SAT to network minimality. �

4.2 Structure Identification and k-Representability

This section is dedicated to the problem of representing single constraints (or single-
constraint networks)through equivalent k-ary minimal networks with smaller relations.
By a slight abuse of terminology, we will here identify a single-constraint network {ρ}
with its unique constraint ρ.

Definition 2. A complete k-ary network M is a minimal k-ary network of ρ iff

1. sol(M) = ρ, and
2. every k-tuple occurring in some constraint r of M is the projection of some tuple t

of ρ over scope(r).

We say that a constraint relation ρ is k-representable if there exists a (not necessarily
complete) k-ary constraint network M such that sol(M) = ρ. The following proposi-
tion seems to be well-known and follows very easily from Definition 2 anyway.

Proposition 2. Let ρ be a constraint. The following three statements are equivalent:
(i) ρ has a minimal k-ary network; (ii) sol(ΠSk

(ρ)) = ρ; (iii) ρ is k-representable.
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Note that the equivalence of ρ being k-representable and of ρ admitting a minimal k-
ary network emphasizes the importance and usefulness of minimal networks. In a sense
this equivalence means that the minimal network of ρ, if it exists, already represents all
k-ary networks that are equivalent to ρ.

The complexity of deciding whether a minimal network for a relation ρ exists has
been stated as an open problem by Dechter and Pearl in [5]. More precisely, Dechter
and Pearl consider the equivalent problem of deciding whether sol(ΠSk

(ρ)) = ρ holds,
and refer to this problem as a problem of structure identification in relational data [5].
The idea is to identify the class of relations ρ that have the structural property of being
equivalent to the k-ary network ΠSk

(ρ), and thus, of being k-representable. Dechter
and Pearl formulated the following conjecture:

Conjecture 5 (Dechter and Pearl [5]). For each positive integer k ≥ 2, deciding
whether sol(ΠSk

(ρ)) = ρ is NP-hard3.

As already observed by Dechter and Pearl in [5], there is a close relationship between
the k-representability of constraint relations and some relevant database problems. Let
us briefly digress on this. It is common knowledge that a single constraint ρ can be
identified with a data relation in the context of relational databases (cf. [4]). The de-
composition of relations plays an important role in the database area, in particular in
the context of normalization [9]. It consists of decomposing a relation ρ without loss
of information into smaller relations whose natural join yields precisely ρ. If ρ is a
concrete data relation (i.e., a relational instance), and S is a family of subsets (sub-
schemas) of the schema of ρ, then the decomposition of ρ over S consists of the pro-
jection ΠS = {Πs(ρ) | s ∈ S} of ρ over all schemes in S. This decomposition is
lossless iff the natural join of allΠs(ρ) yields precisely ρ, or, equivalently, iff ρ satisfies
the join dependency ∗[S]. We can thus reformulate the concept of k-decomposability in
terms of database theory as follows: A relation ρ is k-decomposable iff it satisfies the
join dependency ∗[Sk], i.e., iff the decomposition of ρ into schema Sk is lossless. The
following complexity result was shown as early as 1981 in [10]4.

Proposition 3 (Maier, Sagiv, and Yannakakis [10]). Given a relation ρ and a family
S of subsets of the schema of ρ, it is coNP-complete to determine whether ρ satisfies
the join dependency ∗[S], or equivalently, whether the decomposition of ρ into schema
S is lossless.

Proposition 3 is weaker than Conjecture 5 and does not by itself imply it, nor so does
its proof given in [10]. In fact, Conjecture 5 speaks about the very specific sets Sk for
k ≥ 2, which are neither mentioned in Proposition 3 nor used in its proof. To prove
Conjecture 5 we thus developed an new and independent hardness argument.

3 Actually, the conjecture stated in [5] is somewhat weaker: Given a relation ρ and an integer
k, deciding whether sol(ΠSk(ρ)) = ρ is NP-hard. Thus k is not fixed and part of the input
instance. However, from the context and use of this conjecture in [5] it is clear that Dechter
and Pearl actually intend NP-hardness for each fixed k ≥ 2.

4 As mentioned by Dechter and Pearl [5], Jeff Ullman has proved this result, too. In fact, Ullman,
on a request by Judea Pearl, while not aware of the specific result in [10], has produced a totally
independent proof in 1991, and sent it as a private communication to Pearl. The result is also
implicit in Moshe Vardi’s 1981 PhD thesis.



On Minimal Constraint Networks 337

Theorem 6. Given a single constraint ρ and an integer k ≥ 2, deciding whether
sol(ΠSk

(ρ)) = ρ, and thus whether ρ is k-decomposable, is co-NP complete.

Proof. We show that deciding whether sol(ΠSk
(ρ)) �= ρ is NP-complete.

Membership. Note that membership already follows from Proposition 3, but let us
still give a short proof here for reasons of self-containment. Clearly, ρ ⊂ sol(ΠSk

(ρ)).
Thus sol(ΠSk

(ρ)) �= ρ iff the containment is proper, which means that there exists a
tuple t in sol(ΠSk

(ρ)) not contained in ρ. One can guess such a tuple t in polynomial
time and check in polynomial time that for each k-tuple of variables Xi1 , . . . , Xik of
var(ρ), i < j, the projection of t to (Xi1 , . . . , Xik) is indeed a tuple of the correspond-
ing constraint of Sk. Thus determining whether sol(ΠSk

(ρ)) �= ρ is in NP.
Hardness. We first show hardness for the binary case, that is, the case where k = 2.

We use the NP-hard problem 3COL of deciding whether a graph G = (V,E) with
set of vertices V = {v1, . . . , vn} and edge set E is three-colorable. Let r, g, b be
three data values standing intuitively for the three colors red, green, and blue, respec-
tively. Let N3COL be the following constraint network: var(N3COL) = {X1, . . . , Xn},
dom(Xi) = {r, g, b} for 1 ≤ i ≤ n, and the schema ofN3COL be precisely S2. Moreover
for all 1 ≤ i < j ≤ n, N3COL has a constraint cij with schema (Xi, Xj) and constraint
relation rij defined as follows: if (i, j) ∈ E, then rij the set of pairs representing all
legal vertex colorings, i.e., rij = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}; otherwise
rij = {r, g, b}2. N3COL is thus a straightforward encoding of 3COL over schema S2, and
obviously G is 3-colorable iff sol(N3COL) �= ∅. Thus the deciding sol(N3COL) �= ∅ is NP
hard. Now let us construct from N3COL a single constraint ρ with schema {X1, . . . , Xn}
and constraint relation s as follows. For each constraint cij of N3COL, ρ contains a tuple
t whose Xi and Xj correspond to those of rij , and whose X� value, for all 1 ≤ � ≤ n,
� �= i, � �= j, is a fresh “dummy” constant dtij , different from all other used values.
We claim that sol(ΠS2(ρ)) �= ρ iff sol(N3COL) �= ∅ (and thus iff G is 3-colorable. This
clearly implies the NP-hardness of deciding sol(ΠSk

(ρ)) �= ρ.
We now show that the claim holds. Trivially, ρ ⊆ sol(ΠS2(ρ)). It thus follows that

sol(ΠS2(ρ)) �= ρ iff there exists a tuple t0 ∈ sol(ΠSk
(ρ)) such that t0 �∈ ρ. We will

argue that t0 can contain values from {r, g, b} only and must be a solution of N3COL.
First, assume that t0 contains two distinct “dummy” constants, say, d, in column Xa

and d′ in column Xb with a < b. This would mean that ΠXaXb
(ρ) contains the tuple

(d, d′), and thus, that ρ itself contains a tuple with the two distinct dummy values d,
and d′, which clearly contradicts the definition of ρ. It follows that at most one dummy
value d may occur in t0. However, each such dummy value d = dtij occurs precisely
in one single tuple t of ρ, and thus each relation of ΠSk

(ρ)) has at most one tuple
containing d. It follows that there is only one tuple containing dtij in sol(ΠSk

(ρ)),
which is t itself, but t ∈ ρ. Therefore, t0 cannot contain any dummy value at all, and
can be made of “color” elements from {r, g, b} only. However, by definition of ρ, each
tuple tij ∈ {r, g, b}2 occurring in a relation with schema (Xi, Xj) of ΠS2(ρ) also
occurs in the corresponding relation ofN3COL, and vice-versa. Thus sol(ΠSk

(ρ)) �= ρ iff
sol(N3COL) �= ∅ iff G is 3-colorable, which proves our claim.

For each fixed k > 2 we can apply exactly the same line of reasoning. We define
Nk

3COL as the complete network on variables {X1, . . . , Xn} of all k-ary correct “color-
ing” constraints, where the relation with schema Xi1 , . . . , Xik expresses the correct
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colorings of vertices vi1 , . . . , vik of graph G. We then define ρ in a similar way as for
k = 2: each k-tuple of a relation of Nk

3COL is extended by use of a distinct dummy value
to an n-tuple of ρ. Given that k is fixed, ρ can be constructed in polynomial time, and so
ΠSk

(ρ). It is readily seen that two distinct dummy values cannot jointly occur in a tuple
of sol(ΠSk

(ρ)), and that each tuple of sol(ΠSk
(ρ)) that contains a dummy value is al-

ready present in ρ because for each dummy value d, each relation ofΠSk
(ρ) contains at

most one tuple involving d. Hence, any tuple in sol(ΠSk
(ρ)) − ρ involves values from

{r, g, b} only, and is a solution to Nk
3COL and thus a valid 3-coloring of G. �

5 Discussion and Future Research

In this paper we have tackled and solved two long standing complexity problems related
to minimal constraint networks:

– As solution of an open problem posed by Gaur [7] in 1995, and later by Dechter [4],
we proved Dechter’s conjecture and showed that computing a solution to a minimal
constraint network is NP hard.

– We proved a conjecture made in 1992 by Dechter and Pearl [5] by showing that for
k ≥ 2, it is coNP complete to decide whether sol(ΠSk

(ρ)) = ρ, and thus whether
ρ is k-decomposable.

We wish to make clear that our hardness results do not mean that we think minimal net-
works are useless. To the contrary, we are convinced that network minimality is a most
desirable property when a solution space needs to be efficiently represented for appli-
cations such as computer-supported configuration [6]. For example, a user interactively
configuring a PC constrains a relatively small number of variables, say, by specifying
a maximum price, a minimum CPU clock rate, and the desired hard disk type and ca-
pacity. The user then wants to quickly know whether a solution exists, and if so, wants
to see it. In presence of a k-ary minimal constraint network, the satisfiability of queries
involving k variables only can be decided in polynomial time. However, our Theorem 2
states that, unless NP=P, in case the query is satisfiable, there is no way to witness
the satisfiability by a complete solution (in our example, by exhibiting a completely
configured PC satisfying the user requests).

Our Theorem 2 thus unveils a certain deficiency of minimal networks, namely, the
failure of being able to exhibit full solutions. However, we have a strikingly simple pro-
posal for redressing this deficiency. Rather than just storing k-tuples in a k-ary minimal
network Mk(N), we may store a full solution t+ with each k-tuple, where t+ coin-
cides with t on the k variables of t. Call the so extended minimal network M+

k (N).
Complexity-wise, M+

k (N) is not harder to obtain than Mk(N). Moreover, in practical
terms, given that the known algorithms for computingMk(N) fromN require to check
for each k-tuple t whether it occurs in some solution t+, why not just memorizing t+

on the fly for each “good” tuple t? Note also that the size ofM+
k (N) is still polynomial,

and at most by a factor |var(N)| larger than the size of Mk(N).
We currently work on the following problem: Show that deciding if ρ is k-

decomposable remains coNP complete for bounded domains, even if k = 3 and dom(ρ)
is 2-valued, or if k = 2 and dom(ρ) is 3-valued. This will hopefully allow us to confirm
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a further conjecture (Conjecture 3.27 in [5]) about the identification of CNF formulas.
Note that for k = 2 and two-valued domains, the problem is tractable for reasons similar
to those for which binary 2-valued constraint networks can be solved and minimized in
polynomial time [3,7]. Another interesting research problem is the following. We may
issue queries of the following form againstM+

k (N): SELECT A SOLUTION WHERE
φ. Here φ is Boolean combination on constraints on the variables of N . Queries, where
φ is a simple combination of range restrictions on k variables can be answered in poly-
nomial time. But there are much more complicated queries that can be answered effi-
ciently, for example, queries that involve aggregate functions and/or re-use of quantified
variables. It would thus be nice and useful to identify very large classes of queries to
M+
k (N) for which a single solution – if it exists – can be found in polynomial time.
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Abstract. Several variants of the Constraint Satisfaction Problem have
been proposed and investigated in the literature for modeling those
scenarios where solutions are associated with costs. Within these frame-
works, computing an optimal solution (short: Min problem), enumer-
ating the best K solutions (Top-K ), and computing the next solution
following one that is given at hand (Next) are all NP-hard problems.
In fact, only some restricted islands of tractability for them have been
singled out in the literature. The paper fills the gap, by studying the
complexity of Min, Top-K , and Next over classes of acyclic and nearly
acyclic instances, as they can be identified via structural decomposition
methods. The analysis is provided for both monotone cost-functions and
non-monotone ones (which have been largely ignored so far). Also, multi-
criteria optimization is considered, as instances may have a number of
cost functions to be minimized together, according to a given precedence
relationship. Large islands of tractability are identified and, for classes of
bounded-arity instances, the tractability frontier of constraint optimiza-
tion is precisely charted.

1 Introduction

By solving a Constraint Satisfaction Problem (CSP) instance we usually mean
finding an assignment of values to variables satisfying all the constraints (see,
e.g., [7]). However, whenever assignments are associated with some cost because
of the semantics of the underlying application domain, computing an arbitrary
solution might not be enough. In these cases, one is rather interested in the
corresponding optimization problem of computing the solution of minimum cost
(short: Min problem), whose modeling is accounted for in several variants of
the basic CSP framework, such as fuzzy, probabilistic, weighted, lexicographic,
penalty, valued, and semiring-based CSPs (see [25,2], and the references therein).
Moreover, one is also often interested in the Top-K problem of enumerating the
best K solutions in a ranked manner (see, e.g., [8,4]),1 or even in the recently
formalized and analyzed Next problem of computing the next solution following
one that is given at hand [3].
1 Relevant related works and results on graphical models, conjunctive query evalua-

tion, and computing homomorphisms are transparently recalled hereinafter in the
context of constraint satisfaction.
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Since solving CSPs—and the above extensions—is an NP-hard problem, much
research has been spent to identify classes of instances over which (the best) solu-
tions can efficiently be computed. In this paper, structural decomposition methods
are considered [12], which identify tractable classes by exploiting the structure
of constraint scopes as it can be formalized either as a hypergraph (whose nodes
correspond to the variables and where each group of variables occurring in some
constraint induces a hyperedge) or as a suitable binary encoding of such a hy-
pergraph. In fact, motivated by the tractability of acyclic instances [30], such
methods are aimed at transforming any given cyclic instance into an equivalent
acyclic one, by organizing its atoms or variables into a polynomial number of
clusters, and by arranging these clusters as a tree, called decomposition tree.
The original CSP instance is then evaluated via this tree, with a cost that is
exponential in the cardinality of the largest cluster, also called width of the
decomposition, and polynomial if the width is bounded by some constant.

Several deep and useful results have been achieved for structural decompo-
sition methods applied to classical CSPs (see, e.g., [14,19,15,20,16,17,9,6,5]). In
particular, the tractability frontier has precisely been charted in the bounded-
arity case, i.e., over classes of instances whose constraints involve k variables
at most, where k > 0 is some fixed natural number—for instance, k = 2 gives
rise to classes of binary CSPs. Indeed, on bounded-arity instances, tree decom-
position [27] emerged as the most powerful decomposition method [20,17]. On
unbounded-arity instances, instead, things are not that clear, as various meth-
ods have been proposed, but none of them has been shown to precisely chart
the tractability frontier. In fact, by relaxing the polynomial-time tractability re-
quirement and by focusing instead on fixed-parameter tractability, certain tight
characterizations have been shown for a notion called submodular width [24].

Structural methods for CSP extensions tailored to model optimization prob-
lems have received considerably less attention in the literature. Basically, we
just knew that Min is feasible in polynomial time and Top-K with polynomial
delay2 over CSP instances equipped (essentially) with monotonic functions, and
whose underlying hypergraphs are acyclic [21], have bounded treewidth [10,8], or
have bounded hypertree width [11,26]. Instead, Next can be (weakly) NP-hard
even in these settings, except for specific kinds of optimization frameworks [3].
Thus, the following questions did not find any answer in earlier literature:

(i) Can tractability results for Min, Top-K , and Next be extended to more
general kinds of functions, possibly non-monotonic?

(ii) Can we precisely chart the tractability frontier for Min, Top-K and Next

(at least in the bounded-arity case)?
(iii) Can we exhibit classes of queries over which Top-K is feasible not only with

polynomial delay, but also in polynomial space?
2 As CSP instances may have exponentially many solutions, a class is said tractable if

the solutions of its instances may be computed with polynomial delay (WPD): The
first solution is computed in polynomial time, and any other solution is computed
within polynomial time from the previous one.
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Problem No Restriction Monotone Smooth

Min NP-hard in P in P
Next NP-hard NP-hard in P
Top-K NP-hard WPD WPD & PS

Fig. 1. Left: Summary of complexity results for acyclic instances. Right: Relationships
among the different kinds of evaluation functions studied in the paper.

1.1 Contribution

In this paper, we depict a clear picture of the complexity issues arising with
constraint optimization problems, by providing positive answers to the questions
illustrated above. Our contributions are as follows—see Figure 1:

(1) We define a framework to study constraint optimization problems, where
solutions are ranked according to evaluation functions defined on top of to-
tally ordered domains, or of domains that are made total via some lineariza-
tion [3]. In particular, we study both monotone functions and non-monotone
ones, with the latter being largely ignored by earlier complexity studies. As
an extension, the framework allows the user to equip each instance with an
arbitrary number of evaluation functions, and a lexicographical mechanism
is adopted to provide semantics to multi-criteria optimization.

(2) We analyze the complexity of Min, Top-K , and Next on acyclic CSP
instances equipped with arbitrary evaluation functions. It emerges that non-
monotonicity is a serious obstruction to tractability, as all the problems are
NP-hard even in very simple settings.

(3) We re-consider the computational complexity of the above problems over
monotone functions and again over acyclic CSP instances. In this setting
(where Next is NP-hard [3]), Min and Top-K turned out to be feasible in
polynomial time and with polynomial delay, respectively, even in the case of
lexicographic multi-criteria optimization.

(4) As a trade-off between monotone and non-monotone functions, we define
the notion of smooth evaluation functions, i.e., of functions that manipulate
“small” (in fact, polynomially-bounded) values and that can be even non-
monotone—see Figure 1, for an illustration. These functions are likely to
occur in many practical applications, but they were not analyzed in earlier
literature. As an example, finding a solution minimizing the number of vari-
ables that are mapped to a given domain value can be modeled as a smooth
evaluation function, as its possible output values are bounded by the total
number of variables. Note that this function is smooth and monotone, as it
is often the case for functions based on counting. Instead, as an example of
non-monotone smooth evaluation-function, consider the following function
assigning the least value to those solutions with an odd number of vari-
ables mapped to some element, say ‘a’: for any solution, take the product of
weights associated with variable assignments, where every variable mapped
to ‘a’ is weighed −1, and all the others get 1. In general, such functions
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involving multiplications are non-monotone, but they are smooth if their
output values are polynomially bounded (w.r.t. the input size).

(5) We show that Min and Next can be efficiently solved on acyclic CSP
instances equipped with smooth evaluation functions. To deal with non-
monotone functions, we found useful and simple to exploit a technical ma-
chinery based on non-deterministic alternating Turing machines, which do
not find any counterpart in earlier approaches for solving constraint opti-
mization problems. As an immediate consequence of such positive results, it
emerges that Top-K can be solved, in this scenario, with polynomial delay
and polynomial space (PS). Establishing such (stronger) tractability result
for Top-K was a major motivation for addressing the Next problem in [3].

(6) We point out that all the above tractability results can be extended to
classes of nearly acyclic CSPs for which a decomposition tree can efficiently
be constructed via decomposition methods. Moreover, on classes of bounded-
arity instances, we show that having bounded treewidth is a necessary and
sufficient condition for tractability, under typical complexity assumptions.

Organization. The rest of the paper is organized as follows. Section 2 reports
basic notions. Section 3 illustrated the formal framework for CSP optimization
exploited in the paper. Complexity results for arbitrary, monotone, and smooth
evaluation functions are reported in Section 4, Section 5, and Section 6, respec-
tively. The tractability frontier for the bounded-arity case is charted in Section 7.

2 Preliminaries

Constraint Satisfaction. Assume that a set Var of variables and a domain U of
constants are given. Following [22], we shall exploit the logic-based characteriza-
tion of a CSP instance as a pair (Φ,DB), where DB is the constraint database,
i.e., a set of ground atoms of the form ri(a1, ..., ak), and where Φ is the constraint
formula, i.e., a conjunction of atoms of the form r1(u1)∧· · ·∧ rm(um) such that
u1, ...,um are lists of terms (i.e., variables in Var or constants in U). The set of all
atoms occurring in Φ is denoted by atoms(Φ). A solution to the instance (Φ,DB)
is a substitution θ : X̄ $→ U such that X̄ = Var and rj(θ(uj)) ∈ DB, for each
atom rj(uj) ∈ atoms(Φ). The set of all solutions to (Φ,DB) is denoted by ΦDB.

Substitutions are always intended from variables (in some X̄ ⊆ Var) to con-
stants in U , and will sometimes extensively denoted as the set of all pairs of
the form X/u, where u ∈ U is the value to which variable X is mapped. A
substitution θ is partial if it is undefined on some variable, i.e., |X̄| < |Var |.
Structural Properties. The structure of a constraint formula Φ is best represented
by its associated hypergraph H(Φ) = (V,H), where V = Var and where, for each
atom in atoms(Φ), the set H of hyperedges contains a hyperedge including all
its variables; and no other hyperedge is in H . A hypergraph H is acyclic iff it
has a join tree [1]. A join tree JT (H) for a hypergraph H is a tree whose vertices
are the hyperedges of H such that, whenever the same node X ∈ V occurs in
two hyperedges h1 and h2 of H, then X occurs in each vertex on the unique
path linking h1 and h2 in JT (H).
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Orders. Let D be a domain of values, and & be a binary relation over D × D.
We say that & is a preorder if it is reflexive (i.e., x & x) and transitive (i.e.,
x & y and y & z implies x & z). For the preorder &, we denote by - the binary
relation such that x - y if, and only if, x & y and y �& x, i.e., y & x does not
hold. A preorder & that is antisymmetric (i.e., x & y and y & x implies x = y)
is a partial order. A partial order is a total order if x �& y implies that y & x. If
& is a total order, then - is a strict total order.

Computational Setting. In all complexity results, we assume that functions are
explicitly listed in the input. Moreover, we adopt the usual simple approach of
counting 1 each (“mathematical”) operation. Observe that in this approach one
may compute in polynomial-time (operations) values whose size is exponential
w.r.t. the input size. We thus explicitly care about the size of values computed
during the execution of algorithms, and look for output polynomial-space algo-
rithms where the size of these values is bounded by the size of actual results.

3 Formal Framework

Throughout the following sections, assume that a set Var of variables and a
domain U of constants are given.

Constraint Optimization Formulas. Let D be a domain of values and let & be a
total order over it. Then, a valuation function F over D and & is a tuple 〈w,⊕〉
with w : Var × U $→ D and where ⊕ is a commutative, associative, and closed
binary operator with identity element over D. For a substitution θ �= ∅, F(θ) is
the value

⊕
X/u∈θ w(X,u); and, conventionally, F(∅) is the identity w.r.t. ⊕.

The evaluation function F = 〈w,⊕〉 is monotone if F(θ) & F(θ′) implies that
F(θ) ⊕F(θ′′) & F(θ′) ⊕F(θ′′), for each substitution θ′′.

Let L = [F1, ...,Fm] be a list of evaluation functions, where Fi is defined over
a domain Di and a total order &i, ∀i ∈ {1, ...,m}. Then, for any substitution θ,
L(θ) denotes the vector of values (F1(θ), ...,Fm(θ)) ∈ D1 × · · · × Dm.

To compare elements of D1 × · · · × Dm, we consider the total order &lex ,
inducing a hierarchy over the preference relations in each domain. Let x =
(x1, ..., xm) and y = (y1, ..., ym) be two vectors with xi, yi ∈ Di, for each i ∈
{1, ...,m}. Then, x &lex y, if either x = y, or there is an index i ∈ {1, ...,m}
such that xi -i yi and xj = yj holds, for each j ∈ {1, ..., i− 1}.

Let L = [F1, ...,Fm] be a list of evaluation functions. Then, we define &L as
the binary relation such that, for each pair θ1 and θ2 of substitutions, θ1 &L θ2
if, and only if, L(θ1) &lex L(θ2). Note that &L is a preorder, which might be not
antisymmetric, as L(θ1) = L(θ2) does not imply that θ1 = θ2.

A constraint formula Φ equipped with a list L of evaluation functions is called
a constraint optimization formula, and is denoted by ΦL.

Example 1. Let U be the domain {a, b} of constants, and let Var be the set
{X1, ..., X4} of variables. Consider the constraint optimization formula ΦL where
Φ is the constraint formula r1(X1, X2, X3)∧ r2(X1, X4)∧ r3(X4, X3), and where
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L is the list [F1,F2] of the evaluation functions over the set of real values R
(compared according to the standard ordering ≥) defined as follows. For each
i ∈ {1, 2}, Fi is the pair 〈wi,+〉 where:
– w1(X1/a) = 1, w1(X1/b) = 0, and w1(Xi/u) = 0, ∀i ∈ {2, 3, 4} and ∀u ∈ U ;
– w2(X4/a) = 0, w2(X4/b) = 1, and w2(Xi/u) = 0, ∀i ∈ {1, 2, 3} and ∀u ∈ U .
Consider now the three substitutions θ1 = {X1/b,X2/b,X3/b,X4/b}, θ2 =

{X1/b,X2/b,X3/b,X4/a}, and θ3 = {X1/b,X2/a,X3/a,X4/b}, and note that
L(θ1) = (0, 1), L(θ2) = (0, 0), and L(θ3) = (0, 1). Thus, θ1 -L θ2 and θ3 -L θ2.
In fact, &L is not antisymmetric as θ1 &L θ3 and θ3 &L θ1, but θ1 �= θ3. �
As the ordering induced over the solutions of a constraint formula might even
not be a partial order at all, it is natural to exploit linearization techniques, as
discussed in [3]. In this paper, we adopt a very simple and natural linearization
method, based on variable and domain orderings (in fact, analyzed in [3]).

Let &U be an arbitrary total order defined over U . Let � = [X1, ..., Xn] be a list
including all the variables in Var , hereinafter called linearization. Then, we define
&�
L as the binary relation such that, for each pair θ1 and θ2 of substitutions,

θ1 &�
L θ2 if, and only if, (i) θ1 = θ2, or (ii) θ1 &L θ2 and θ2 �&L θ1, or (iii)

θ1 &L θ2, θ2 &L θ1, and there is a variable Xi such that θ1(Xi) -U θ2(Xi), and
θ1(Xj) = θ2(Xj), for each j ∈ {1, ..., i− 1}.

Note that &�
L is a total order, where ties in &L are resolved according to �

and the total order &U over U . In fact, &�
L is a refinement of &L. For instance,

consider again Example 1, assume that a -U b, and let � be the linearization
[X1, X2, X3, X4]. Then, &�

L is the total order: θ3 -�
L θ1 -�

L θ2.

Computational Problems. Three problems that naturally arise with evaluation
functions are stated below. All of them receive as input a set of variables Var ,
a domain U with an associated ordering &U , a constraint optimization formula
ΦL, a constraint database DB, and a linearization �:3
Min(ΦL,DB, �): Compute the solution θ ∈ ΦDB such that there is no solution

θ′ ∈ ΦDB with θ -�
L θ

′; Answer NONE, if ΦDB = ∅.
Next(ΦL,DB, �, θ): Given a solution θ ∈ ΦDB, compute the solution θ′ ∈ ΦDB

such that θ′ -�
L θ and there is no solution θ′′ ∈ ΦDB such that θ′ -�

L θ
′′ -�

L θ.
Answer NOMORE if there is no such a solution.

Top-K (ΦL,DB, �): Compute the list [θ1, ..., θK′ ], where K ′ = min{K, |ΦDB|}
and for each j ∈ {1...,K ′}, there is no θ′ ∈ ΦDB \

⋃j−1
i=1 θi with θj -�

L θ
′.

Note that, for K = |U||Var |, Top-K coincides with the problem of enumerating
all solutions in ΦDB according to &�

L.

Example 2. Consider again the setting discussed in Example 1. Moreover, con-
sider the constraint database DB over U = {a, b} such that DB = {r1(b, b, b),
r1(b, a, a), r2(b, b), r2(b, a), r3(b, b), r3(a, b), r3(b, a)}. Then, it is easily seen that
θ1, θ2, and θ3 are all the solutions in ΦDB. Thus, the answer to Min(ΦL,DB, �)
is the solution θ2, the answer to Top-K (ΦL,DB, �), with K = 3, is the list
[θ2, θ1, θ3], and (e.g.) the answer to Next(ΦL,DB, �, θ2) is the solution θ1. �
3 For the sake of simplicity, Var , U , and �U are always assumed to be given as input,

and thus are not listed explicitly.
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4 Arbitrary Evaluation Functions

In this section, we analyze the complexity of Min, Next, and Top-K , in case of
arbitrary (in particular, not necessarily monotone) valuation functions. Results
are bad news about their tractability, even on classes of acyclic instances.

Theorem 1. Min is NP-hard for any linearization, even on classes of con-
straint optimization formulas ΦL where H(Φ) is acyclic (and where L is a list
of formulas defined over a domain with two elements at most).

Proof. Let ψ = c1 ∧ . . . ∧ cm be a Boolean formula in conjunctive normal form
over a set {X1, ..., Xn} of variables, where m ≥ 2 and each clause contains three
variables. Recall that deciding the satisfiability of such formulas is NP-hard.

Let Var be the set {Xj
i | i ∈ {1, ..., n}, j ∈ {1, ...,m}} of variables, and let U

be the set {t, f}, where the constant t (resp., f) is meant to encode the fact that
a variable evaluates true (resp., false).

Consider the CSP instance (Φ,DB) built as follows. For each clause cj, with
j ∈ {1, ...,m}, over the variables Xα, Xβ , and Xγ , let aj denote the atom
clausej(Xj

α, X
j
β, X

j
γ), and define Φ = a1 ∧ · · · ∧ am. Moreover, for the clause cj ,

DB contains all the ground atoms of the form clausej(uα, uβ , uγ) such that cj is
satisfied by mapping Xα, Xβ, and Xγ to the truth values encoded in uα, uβ, and
uγ . No further atoms are in DB. Note that each variable occurs in one constraint
at most and hence H(Φ) is clearly acyclic.

Let us now equip Φ with a list of evaluation functions. To this end, for each
i ∈ {1, ..., n} and j ∈ {2, ...,m}, let F j

i be the monotone evaluation function
〈wji ,×〉 over {−1, 1} (with 1 - −1) such that:
– wji (X

1
i , t) = 1; wji (X

1
i , f) = −1; wji (X

j
i , t) = −1; wji (X

j
i , f) = 1;

wji (X
j′
i , t) = wji (X

j′
i , f) = 1, for each j′ ∈ {1, ...,m} \ {1, j}; and

– wji (X
j′
i′ , t) = wji (X

j′
i′ , f) = 1, for each i′ ∈ {1, ..., n} \ {i} and j′ ∈ {1, ...,m}.

Let L be any arbitrary listing of all functions of the form F j
i , and θ : Var $→ U be

a substitution. Let i ∈ {1, ..., n} and note that, for any j ∈ {2, ...,m}, F ji (θ) = −1
if, and only if, θ(Xj

i ) = θ(X1
i ). It follows that L(θ) = −1 (i.e., the vector

where each component is −1) if, and only if, for each i ∈ {1, ..., n} and for each
j ∈ {2, ...,m}, θ(Xj

i ) = θ(X1
i ). That is, L(θ) = −1 if, and only if, θ induces

a truth assignment σ to the variables of ψ, such that σ(Xi) evaluates to true
(resp., false) if θ(X1

i ) = t (resp., θ(X1
i ) = f). Moreover, given the construction

of the constraint database DB, a solution θ ∈ ΦDB is such that L(θ) = −1 if,
and only if, the assignment σ satisfies ψ.

In order to conclude the proof, note that L(θ′) -lex −1 holds, for each substi-
tution θ′ such that L(θ′) �= −1. It follows that the answer θ to Min(ΦL,DB, �)
is such that L(θ) = −1 if, and only if, ψ is satisfiable—in particular, note
that the linearization � is immaterial. Computing this answer is therefore
NP-hard. �
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As just computing the minimum element is NP-hard, the enumeration problem
is NP-hard as well.

Corollary 1. Top-K is NP-hard for any linearization, even on classes of con-
straint optimization formulas ΦL where H(Φ) is acyclic (and where L is a list
of formulas defined over a domain with two elements at most).

We now complete the picture by addressing the complexity of Next. In fact,
Next has already been shown to be NP-hard on acyclic structures and mono-
tone functions [3], by exhibiting a reduction to the weakly NP-hard subset sum
problem. Here, we observe that with arbitrary evaluation functions, a strong
NP-hardness result can be obtained.

Theorem 2. Next is NP-hard for any linearization, even on classes of con-
straint optimization formulas ΦL where H(Φ) is acyclic (and where L is a list
of formulas defined over a domain with three elements at most).

Proof (Idea). Modify the construction in the proof of Theorem 1 as follows:
add a novel constant o getting value −2 in all evaluation functions, and add a
number of constraints so that the overall structure is a chain (instead of a set of
disconnected hyperedges). The role of these constraints is just to guarantee that,
in any solution, either all variables are mapped to o, or no variable is mapped to
o. Thus, the solution following the best one (where all variables are mapped to
o) coincides with the best solution in the original reduction, whose computation
allows us to decide the satisfiability of the given Boolean formula. �

5 Monotone Evaluation Functions

The main source of complexity identified in the above section lies in the non-
monotonicity of the evaluation functions. In this section, we study whether the
setting where lists of monotone evaluation functions are considered is any easier.

We start by recalling the bad news proven in [3], suitably reformulated to fit
our framework.

Proposition 1 (cf. [3]). Next is NP-hard for any linearization, even on
classes of constraint optimization formulas Φ[F ] where H(Φ) is acyclic, and F
is a monotone evaluation function.

Concerning the Min problem, its tractability is already known in the literature
for classes of acyclic instances and by considering one monotone function to be
optimized (see, e.g., [21,10,8,11,26]). Here, we strengthen the result by showing
that it remains tractable over acyclic instances even if the goal is to lexicograph-
ically optimize a list of (possibly many) monotone functions.

Theorem 3. On classes of constraint optimization formulas ΦL where H(Φ) is
acyclic and where L is a list of monotone evaluation functions, Min is feasible
in polynomial time and output-polynomial space.
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Proof (Idea). We propose a polynomial time and output-polynomial space algo-
rithm, which is based on a dynamic-programming scheme implemented on top
of a given join tree provided as input. The algorithm is based on two notions:

Total Order ‘&L�
’: Let � = [X1, ..., Xn] be a linearization and let U be the

underlying domain of constants equipped with the total order &U . Let
rU : U $→ {0, ..., |U| − 1} be the bijective mapping such that rU (u) > rU (v)
if, and only if, u -U v, and consider the evaluation function F� = 〈w�,+〉
over R such that w�(Xi, u) = |U|n−i × rU (u). Let L = [F1, ...,Fm] be a list
of monotone evaluation functions and define L� as the list [F1, ...,Fm,F�].
It is immediate to check that θ1 &�

L θ2 if, and only if, θ1 &L�
θ2.

Conformance: For a pair of substitutions θ1, θ2, we say that θ1 is conform with
θ2, denoted by θ1 ≈ θ2, if for each variable Xi that the domains of θ1 and
θ2 have in common, Xi/u ∈ θ1 ⇔ Xi/u ∈ θ2.

Armed with the notions above, the idea is then to solve Min(ΦL,DB, �) by
traversing a given join tree T = (N,E) of H(Φ) from the leaves to the root r, by
means of a bottom-up procedure. Recall first that each vertex v ∈ N corresponds
to a hyperedge of H(Φ) and, hence, (w.l.o.g.) to one atom av in atoms(Φ), and
define (initially) relv as the set of all solutions in aDB

v (i.e., the CSP restricted to
the one atom av). Then, in the bottom-up procedure, at each (non-leaf) vertex
v, for each child c of v in T , we find the substitution θ̄c in relc with θv ≈ θ̄c and
such that θc ∪ θv &L�

θ̄c ∪ θv, over all the possible substitutions θc ∈ relc with
θv ≈ θc. That is, we find the solution for the constraints associated with vertices
in the subtree of T rooted at c, which is the best one (w.r.t. &�

L) over all solutions
conforming with θv. Eventually, θv is enlarged to include θ̄c. Thus, after that an
internal node v is processed, relv contains solutions that are substitutions for all
the variables that occur in the subtree of T rooted at v. Hence, after that the
root r is reached, a solution is computed as one getting the best evaluation over
those in relr. As it is based on a dynamic programming scheme, correctness of
the approach can be shown by structural induction on the subtrees of T . �

An important consequence of the above result is the tractability of Top-K .

Theorem 4. On classes of constraint optimization formulas ΦL where H(Φ)
is acyclic and where L is a list of monotone evaluation functions, Top-K is
feasible with polynomial delay.

Proof (Sketch). The result can be established by exploiting a method proposed
by Lawler [23] for ranking solutions to discrete optimization problems. In fact,
the method has been already discussed in the context of inference in graphical
models [8] and in conjunctive query evaluation [21]. Reformulated in the CSP
context, for a CSP instance over n variables, the idea is to first compute the op-
timal solution (w.r.t. the functions specified by the user), and then recursively
process n constraint databases, obtained as suitable variations of the database
at hands where the current optimal solution is no longer a solution (and no rel-
evant solution is missed). By computing the optimal solution over each one of
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Input: A set Var of variables,
a CSP instance (Φ,DB), a smooth list L = [F1, ...,Fk] of evaluation functions,
where Fi = 〈wi,⊕i〉 is a function over Di, for each i ∈ {1, ..., k},
a vector (v1, ..., vk) ∈ D1 × · · · × Dk, and
a join tree T = (N,E) of the hypergraph H(Φ);

Output: true if, and only if, there is a solution θ ∈ ΦDB such that L(θ) = (v1, ..., vk);
————————————————————————————————————————–

Procedure findSolution(v ∈ N, θp, θv : Var �→ U , (a1, ..., ak) ∈ D1 × · · · × Dk));
begin

let c1, ..., cr be the children of v in T ;
for each i ∈ {1, ..., r} do

guess a vector (a
ci
1 , ..., a

ci
k ) ∈ D1 × · · · × Dk;

guess a substitution θci
∈ relci

;
end for
let θ′v := θv \ θp;
check that all the following conditions hold

C1: (a1, ..., ak) = (F1(θ
′
v) ⊕1 a

c1
1 ⊕1 · · · ⊕1 a

cr
1 , ...,Fk(θ′v) ⊕k a

c1
k ⊕k · · · ⊕k a

cr
k );

C2: θv ≈ θc1 ,....,θv ≈ θcr ;
if this check fails then return false;
for each i ∈ {1, ..., r} do

if not findSolution(ci, θv , θci
, (a

ci
1 , ..., a

ci
k )) then return false;

return true;
end;

————————————————————————————————————————–
begin (* MAIN *)

let r be the root of T ;
guess a substitution θr ∈ relr;
return findSolution(r, ∅, θr, (v1, ..., vk));

end.

Fig. 2. Algorithm SolutionExistence

these new constraint databases, we get n candidate solutions that are progres-
sively accumulated in a priority queue over which operations (e.g., retrieving any
minimal element) take logarithmic time w.r.t. its size. Therefore, even when this
structure stores data up to exponential space, its operations are feasible in poly-
nomial time. The procedure is repeated until K (or all) solutions are returned.
Thus, whenever the Min problem of computing the optimal solution is feasible
in polynomial time (over the instances generated via this process), we can solve
with WPD the Top-K problem of returning the best K-ranked ones. �

6 Smooth Evaluation Functions

In this section, we focus on a class of non-monotone evaluation functions.
An evaluation function F is smooth (w.r.t. Φ and DB) if, for each substitu-

tion θ, F(θ) is polynomially-bounded by the size of Φ, DB, and F . A list L of
evaluation functions is smooth if it consists of k smooth evaluation functions,
where k is some fixed natural number. Note that, by requiring that smooth lists
comprise a constant number of functions, we focus in fact on polynomially-many
combinations of polynomially-bounded values. This is to inhibit the source of in-
tractability emerged in the hardness construction in Theorem 1, which is based
on a long list of smooth evaluation functions.
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Before facing problems Min and Next, we find convenient to consider the
problem Check(ΦL,DB, (v1, ..., vk)) of deciding whether there is a solution
θ ∈ ΦDB such that L(θ) coincides with a given vector (v1, ..., vk) of values. In
fact, Check is NP-hard even on acyclic instances (as it can be easily seen by
inspecting the proof of Theorem 1). Below, we show that it becomes tractable
on smooth evaluation functions.

Consider the non-deterministic algorithm SolutionExistence, shown in
Figure 2—notation is the same as in the proof of Theorem 3. In a nutshell,
SolutionExistence is based on a recursive non-deterministic Boolean func-
tion findSolution that, at the generic step, receives as its inputs a node v of the
join tree, a solution θv ∈ relv, a solution for the parent p of v in T (which is
the empty set if v is the root), and a vector (a1, ..., ak) of values. For each child
ci of v, the function guesses a substitution θci and a vector (aci

1 , ..., a
ci

k ), thus
revealing its non-deterministic nature. Then, it checks that θci conforms with
θv, so that θci can be seen as an attempt of extending the current solution θv
to the variables covered at the vertex ci. Moreover, it checks that each entry aj
of the vector provided as input can be written as the aggregation (w.r.t. ⊕j) of
the corresponding values guessed over the children, plus the value given by the
evaluation function Fj(θ′v), where θ′v is the restriction of θv over the variables
occurring for the first time in v, in a top-down visit of the join tree.

Lemma 1. On classes of constraint optimization formulas ΦL where H(Φ) is
acyclic and where L is smooth, Check is feasible in polynomial time.

Proof (Idea). Because of its non-deterministic nature, it is not hard (though,
rather technical) to check that SolutionExistence is correct. Concerning its
running time, by exploiting the arguments introduced in [13], we can note that
SolutionExistence can be implemented as a logspace alternating Turing ma-
chine M with a polynomially-bounded computation tree, from which feasibility
in polynomial time (actually, membership in the class LOGCFL) follows by the
results in [29]. Indeed, each guess of SolutionExistence can be implemented
with existential configurations of M , while checks can be implemented with uni-
versal configurations. Importantly, all the information that has to be kept in
each configuration of the machine can be encoded in logspace. In fact, solu-
tions associated with each vertex of the join tree can be indexed in logspace.
Moreover, values associated with each of the k smooth evaluation functions are
polynomially-bounded. Thus, they can be again represented in logspace, as k is a
fixed constant. The only sensible issue is that findSolution is invoked recursively
for each child c of v, and requires logspace for storing the information associated
with each child c (and, hence, in principle polynomial space). Here, the problem
can be faced by a pre-processing step, which modifies T into a binary tree such
that v has two children at most (and by allowing duplicate nodes in join trees).
Binarization is always possible, and is feasible in polynomial time. �

Good news on Check imply good news on Min and Next.
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Theorem 5. On classes of constraint optimization formulas ΦL where H(Φ) is
acyclic and where L is smooth, Min and Next are feasible in polynomial time
and polynomial space.

Proof (Sketch). Let us consider Min on input ΦL, DB, and �. As L is smooth,
the set of all vectors L(θ) for any substitution θ contains polynomially-many
elements. Thus, we can iterate over them starting with the minimum possible one
according to &L: Given the current vector, we decide in polynomial time whether
there is an actual solution with such an associated vector (by Lemma 1), and we
stop as soon as the test succeeds or if all vectors have been tested and no solution
was found. In the latter case, we conclude that the answer to Min is NONE.
Otherwise, let (a1, ..., ak) be the vector such that Check(ΦL,DB, (v1, ..., vk))
was noticed to be true. The goal of the remaining part of the computation is to
find the solution θ̄ such that θ -L�

θ̄, for each solution θ �= θ̄ with L(θ) = L(θ̄).
Let � = [X1, ..., Xn] and let [u1, ..., um] be the list of all the elements

of the underlying domain U agreeing with the total order &U . For a pair
i ∈ {1, ..., n} and j ∈ {1, ...,m}, and for a substitution θ over X1, ..., Xi−1,
let Φi,j,θ = Φ∧ r1(X1)∧· · ·∧ ri(Xi), where r1, ..., ri are fresh relational symbols,
and let DBi,j,θ be the database obtained by adding to DB the ground atoms
r1(θ(X1)), ...., ri−1(θ(Xi−1)), and ri(um−j+1). Note that H(Φi,j,θ) is acyclic as
long as H(Φ) is acyclic. Then, we proceed as follows: Starting with θ = ∅ and
i = 1, we repeatedly check whether Check(Φi,j,θL

,DBi,j,θ, (v1, ..., vk)) evaluates
to true for increasing values of j. Assume that j̄ is the first index where Check

is true. Then, we include in θ the substitution Xi/um−j̄+1, and we repeat the
process for the subsequent value of i. At the end of the process, i.e., when all
possible values of i have been processed, θ is returned as the answer to Min.
In fact, as we know that there is at least one solution with associated value
(a1, ..., ak), the goal of the procedure is construct one solution starting from the
most significant variable and assigning to it the least significant domain value,
and iterating over all the remaining variables.

A similar line of reasoning can be applied to solve Next on input ΦL, DB, �,
and θ. In fact, note that we can find the best solution θ̄ restricted over the set of
solutions having an associated value following L(θ) exactly as discussed above.
The difference is that we need now also to check whether there is another solution
θ̄ following θ in the linearization and such that L(θ̄) = L(θ). To this end, we
can adapt the method above, by checking whether there is a solution obtained
modifying θ by changing the assignment starting from the least significative
variable, and testing the values that follow the current one in θ. �

As a consequence of the above results, we get that Top-K is feasible with poly-
nomial delay and polynomial space. Indeed, in polynomial time (thus, space) we
can find the best solution and any next solution following the one given at hand,
till the desired K solutions are obtained or no further solution exists.

Corollary 2. On classes of constraint optimization formulas ΦL where H(Φ)
is acyclic and where L is smooth, Top-K is feasible with polynomial delay and
output-polynomial space.
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7 Beyond Acyclicity and the Tractability Frontier

Many attempts have been made in the literature for extending good results about
acyclic instances to relevant classes of nearly acyclic structures, by exploiting
decomposition methods that are based on “acyclicization”.

In fact, those positive results for constraint optimization formulas that hold
over acyclic instances can be straightforwardly extended to classes of nearly
acyclic ones for which a decomposition tree can efficiently be computed. Indeed,
given a decomposition tree for a CSP instance (Φ,DB), it is possible to build in
polynomial time an acyclic CSP instance (Φ′,DB′) that is equivalent to the orig-
inal one, i.e., solutions and their associated costs are preserved (cf. [11]). Hence,
tractability results in Figure 1 hold for all classes of instances having hypertree
width [14] or treewidth [27] bounded by some fixed constant k > 0.

A natural question is then to find the largest class of nearly-acyclic instances
over which (optimal) solutions can be efficiently computed. On plain CSPs, it
is known that, over classes of bounded-arity instances, the tree decomposition
method is essentially the most powerful one: Let C be any recursively enumerable
class of bounded-arity constraint formulas. Under standard complexity theoretic
assumptions (FPT�= W[1]), deciding whether ΦDB �= ∅, for every formulas Φ ∈ C
and constraint database DB, is feasible in polynomial time if, and only if, C has
bounded treewidth modulo homomorphic equivalence [20]. Moreover, assuming
that C is closed under taking minors, computing all solutions over any given set
of desired variables O, for every formula Φ ∈ C and database DB, is feasible
with polynomial delay if, and only if, C has bounded treewidth [17].

In this section, we provide dichotomy results for Next, Min and Top-K ,
which show that tree decomposition precisely charts the tractability frontier for
constraint optimization problems. In particular, differently from known results
for plain CSPs, note that homomorphic equivalence will not play any role, and
that we will not need to focus the analysis on classes closed under taking minors.

For any problem P, let P(C) be restriction of P over the set of all the possible
instances receiving as input a constraint formula Φ ∈ C, and P[SM](C) the further
restriction over smooth lists of evaluation functions.

Theorem 6. Assume FPT �= W[1]. Let C be any recursively-enumerable
bounded-arity class of constraint formulas. Then, the following are equivalent:

(1) C has bounded treewidth;
(2) Min[SM](C) can be solved in polynomial time and polynomial space;
(3) Next[SM](C) can be solved in polynomial time and polynomial space;
(4) Min(C) can be solved in polynomial time and output-polynomial space;
(5) Top-K [SM](C) can be solved with polynomial delay and output-polynomial

space;
(6) Top-K (C) can be solved with polynomial delay.

Proof (Sktech). From our results and given the definition of the problems, we
have that (1) ⇒ (2) ∧ (3) ∧ (4); (2) ∧ (3) ⇒ (5); (4) ⇒ (6); (6) ⇒ (4); and
(5) ⇒ (2). The fact that (2) ⇒ (1) and (4) ⇒ (1) hold can be shown by applying
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results in [18], and details are omitted due to space limits. To complete the
picture we show that (3) ⇒ (1), by providing a self-contained proof idea.

Let G be a graph instance of the W[1]-hard p-Clique problem of deciding
whether G has a clique of cardinality h,where h ≥ 2 is the fixed parameter of the
problem. We enumerate the recursively enumerable class C until we eventually
find a constraint formula Φ whose Gaifman graph contains as a minor the (h×H)-

grid, where H =
(
h
2

)
, which exists by the Excluded Grid Theorem [28]. Let k

be the treewidth of H(Φ). Note that searching for Φ and computing its treewidth
k depend on the fixed parameter h only (in particular, it is independent of G).

We now claim that, for any graph G, we can build in fixed-parameter poly-
nomial time a constraint database DBΦ,G and a set of constants U(X), for each
variable X in Φ, such that: there is a solution θ ∈ ΦDBΦ,G with θ(X) ∈ U(X),
∀X ⇔ G contains an h-clique. Indeed, the result follows by inspecting the proof
of the grid-based construction in [20]. In that construction, based on Φ, the
database DBΦ,G is build such that, if Q is a core, then G contains an h-clique if
and only if ΦDBΦ,G is not empty. In fact, constants in DBΦ,G are “typed” w.r.t.
the variables of Φ, and the role of the core is precisely to guarantee that each
variable X is mapped into a constant taken from U(X).

W.l.o.g., assume that H(Φ) is connected—otherwise, just modify Φ as to
include a fresh variable connected with all the other ones, via binary relations
taking in the constraint database all possible pairs of values in the domain. Let
DB′ be the database obtained by adding into DBΦ,G a new fact r(o, ..., o), of
the appropriate arity, for each relation r , and where o is fresh constant. Thus,
for each solution θ ∈ ΦDBΦ,G , either θ maps each variable to o, or no variable
is mapped to o. Consider now the smooth evaluation function F = 〈w,+〉 such
that w(X,u) = 1 if u ∈ U(X); w(X, o) = 0 , and w(X,u′) = 2 if u′ �∈ U(X)∪{o},
for each variable X . Let n be the number of variables, and note that for each
substitution θ, F(θ) = n if, and only if, θ(X) ∈ U(X), for each variableX . Hence,
there is a solution θ ∈ ΦDBΦ,G such that F(θ) = n if, and only if, G contains
an h-clique. Moreover, there is no solution θ ∈ ΦDBΦ,G such that F(θ) < n and
F(θ) > 0, while F(θ̄) = 0, where θ̄ is the solution such that θ̄(X) = o, for each
variable X . It follows that G contains an h-clique if, and only if, the answer to
Next(Φ[F ],DBΦ,G, �, θ̄) is any solution θ with F(θ) = n—here the linearization
is immaterial. Therefore, we have a fixed parameter algorithm that, given a
solution to Next, can decide whether G has a clique of cardinality h. This is
impossible, under the assumption that FPT �= W[1]. Hence, (3) ⇒ (1) holds. �
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Abstract. Recently, a variety of constraint programming and Boolean satisfiabil-
ity approaches to scheduling problems have been introduced. They have in com-
mon the use of relatively simple propagation mechanisms and an adaptive way to
focus on the most constrained part of the problem. In some cases, these methods
compare favorably to more classical constraint programming methods relying on
propagation algorithms for global unary or cumulative resource constraints and
dedicated search heuristics. In particular, we described an approach that combines
restarting, with a generic adaptive heuristic and solution guided branching on a
simple model based on a decomposition of disjunctive constraints.

In this paper, we introduce an adaptation of this technique for an important
subclass of job shop scheduling problems (JSPs), where the objective function
involves minimization of earliness/tardiness costs. We further show that our tech-
nique can be improved by adding domain specific information for one variant of
the JSP (involving time lag constraints). In particular we introduce a dedicated
greedy heuristic, and an improved model for the case where the maximal time lag
is 0 (also referred to as no-wait JSPs).

1 Introduction

Scheduling problems come in a wide variety and it is natural to think that methods
specifically engineered for each variant would have the best performance. However,
it was recently shown this is not always true. Tamura et al. introduced an encoding
of disjunctive and precedence constraints into conjunctive normal form formulae [22].
Thanks to this reformulation they were the first to report optimality proofs for all open
shop scheduling instances from three widely studied benchmarks. Similarly the hy-
brid CP/SAT solver lazy-FD [10] was shown to be extremely effective on Resource-
Constrained Project scheduling (RCPSP) [21].

Previously, we introduced an approach for open and job shop problems with a variety
of extra constraints [12,13] using simple reified binary disjunctive constraints combined
with a number of generic SAT and AI techniques: weighted degree variable ordering
[5], solution guided value ordering [3], geometric restarting [25] and nogood recording
from restarts [15]. It appears that the weighted degree heuristic efficiently detects the
most constrained parts of the problem, focusing search on a fraction of the variables.
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The simplicity of this approach makes it easy to adapt to various constraints and
objective functions. One type of objective function that has proven troublesome for
traditional CP scheduling techniques involves minimizing the sum of earliness/tardiness
costs, primarily due to the weak propagation of the sum objective [8]. In this paper we
show how our basic JSP model can be adapted to handle this objective. Experimental
results reveal that our approach is competitive with the state of the art on the standard
benchmarks from the literature.

Moreover, we introduce two refinements of our approach for problems with maxi-
mum time lags between consecutive tasks, where we incorporate domain specific infor-
mation to boost performance. These time lag constraints, although conceptually very
simple, change the nature of the problem dramatically. For instance, it is not trivial
to find a feasible schedule even if we do not take into account any bound on the to-
tal makespan (unless scheduling jobs back to back). This has several negative conse-
quences. Firstly, it is not possible to obtain a trivial upper bound of reasonable quality
may be found by sequencing the tasks in some arbitrary order. The only obvious up-
per bound is to sequence the jobs consecutively. Secondly, since relaxing the makespan
constraint is not sufficient to make the problem easy, our approach can have difficulty
finding a feasible solution for large makespans, even though it is very effective when
given a tighter upper bound. However because the initial upper bound is so poor, even
an exploration by dichotomy of the objective variable’s domain can take a long time.

We introduce a simple search strategy which, when given a large enough upper bound
on the makespan, guarantees a limited amount of backtracking whilst still providing
good quality solutions. This simple strategy, used as an initial step, greatly improves
the performance of our algorithm on this problem type. We report several new best
upper bounds and proofs of optimality on these benchmarks. Moreover, we introduce
another improvement in the model of the particular case of No wait JSP where the
tasks of each job must be directly consecutive. This variant has been widely studied,
and efficient metaheuristics have been proposed recently. We report 5 new best upper
bound, and close 9 new instances in standard data sets.

Finally, because there are few comparison methods in the literature for problems
with strictly positive time lags, we adapted a job shop scheduling model written in Ilog
Scheduler by Chris Beck [3], to handle time lag constraints. Our method outperforms
this model when time lag constraints are tight (short lags), however when time lags are
longer, the Ilog Scheduler model together with geometric restarts and solution guided
search is better than our method.

2 Background and Previous Work

An n×m job shop problem (JSP) involves a set of nm tasks T = {ti | 1 ≤ i ≤ nm},
partitioned into n jobs J = {Jx | 1 ≤ x ≤ n}, that need to be scheduled on m
machines M = {My | 1 ≤ y ≤ m}. Each job Jx ∈ J is a set of m tasks Jx =
{t(x−1)∗m+y | 1 ≤ y ≤ m}. Conversely, each machine My ∈ M denotes a set of n
tasks (to run on this machine) such that: T = (

⋃
1≤x≤n Jx) = (

⋃
1≤y≤mMy).

Each task ti has an associated duration, or processing time, pi. A schedule is a map-
ping of tasks to time points consistent with sequencing and resource constraints. The
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former ensure that the tasks of each job run in a predefined order whilst the latter ensure
that no two tasks run simultaneously on any given machine. In the rest of the paper, we
shall identify each task ti with the variable standing for its start time in the schedule.
We define the sequencing (2.1) and resource (2.2) constraints in Model 1.

Moreover, we shall consider two objective functions: total makespan, and weighted
earliness/tardiness. In the former, we want to minimize the the total duration to run
all tasks, that is, Cmax = maxti∈T (ti + pi) if we assume that we start at time 0. In
the latter, each job Jx ∈ J has a due date, dx. There is a linear cost associated with
completing a job before its due date, or the tardy completion of a job, with coefficient
wex and wtx, respectively. (Note that these problems differ from Just in Time job shop
scheduling problems[2], where each task has a due date.) If txm is the last task of job
Jx, then txm + pxm is its completion time, hence the cost of a job is then given by:
ETsum =

∑
Jx∈J (max(wex(dx − txm − pxm), wtx(txm + pxm − dx)))

model 1 . JSP

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (2.1)

ti + pi ≤ tj ∨ tj + pj ≤ ti ∀My ∈ M, ti �= tj ∈ My (2.2)

2.1 Boolean Model

In previous work [13] we described the following simple model for open shop and
job shop scheduling. First, to each task, we associate a variable ti taking its value in
[0,∞] that stands for its starting time. Then, for each pair of tasks sharing a machine
we introduce a Boolean variable that stands for the relative order of these two tasks.
More formally, for each machine My ∈ M, and for each pair of tasks ti, tj ∈ My, we
have a Boolean variable bij , and constraint (2.2) can be reformulated as follows:

bij =
{

0 ⇔ ti + pi ≤ tj
1 ⇔ tj + pj ≤ ti

∀My ∈ M, ti �= tj ∈ My (2.3)

Finally, the tasks of each job Jx, are kept in sequence with a set of simple precedence
constraints ti + pi ≤ ti+1 for all ti, ti+1 ∈ Jx.

For n jobs andmmachines, this model therefore involvesnm(n−1)/2 Boolean vari-
ables, as many disjunctive constraints, and n(m − 1) precedence constraints. Bounds
consistency (BC) is maintained on all constraints. Notice that state of the art CP mod-
els use instead m global constraints to reason about unary resources. The best known
algorithms for filtering unary resources constraints implement the edge finding, not-
first/not-last, and detectable precedence rules with a O(n log n) time complexity [24].
One might therefore expect our model to be less efficient as n grows. However, the
quadratic number of constraints – and Boolean variables – required to model a resource
in our approach has not proven problematic on the academic benchmarks tested on to
date.
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2.2 Search Strategy

We refer the reader to [12] for a more detailed description of the default search strategy
used for job shop variants, and we give here only a brief overview.

This model does not involve any global constraint associated to a strong propagation
algorithm. However, it appears that decomposing resource constraints into binary dis-
junctive elements is synergetic with adaptive heuristics, and in particular the weighted-
degree-based heuristics [5]. (We note that the greater the minimum arity of constraints
in a problem, the less discriminatory the weight-degree heuristic can be.) A constraint’s
weight is incremented by one each time the constraint causes a failure during search.
This weight can then be projected on variables to inform the heuristic choices.

It is sufficient to decide the relative sequencing of the tasks, that is, the value of the
Boolean variables standing for disjuncts. Because the domain size of these variables
are all equal, we use a slightly modified version of the domain over weighted-degree
heuristic, where weights and domain size are taken on the two tasks whose relative
ordering is decided by the Boolean variable. Let w(ti) be the number of times search
failed while propagating any constraint involving task ti, and let min(ti) and max(ti)
be, respectively, the minimum and maximum starting time of ti at any point during
search. The next disjunct bij to branch on is the one minimizing the value of:

(max(ti) +max(tj) −min(ti) −min(tj) + 2)/(w(ti) + w(tj))

A second important aspect is the use of restarts. It has been observed that weighted
heuristics also have a good synergy with restarts [11]. Indeed, failures tend to happen
at a given depth in the search tree, and therefore on constraints that often do not involve
variables corresponding to the first few choices. As a result, early restarts will tend to
favor diversification until enough weight has been given to a small set of variables, on
which the search will then be focused. We use a geometric restarting strategy [25] with
random tie-breaking. The geometric strategy is of the form s, sr, sr2, sr3, ... where s is
the base and r is the multiplicative factor. In our experiments the base was 256 failures
and the multiplicative factor was 1.3. Moreover, after each restart, the dead ends of the
previous explorations are stored as clausal nogoods [15].

A third very important feature is the idea of guiding search (branching choices) based
on the best solution found so far. This idea is a simplified version of the solution guided
approach (SGMPCS) proposed by Beck for JSPs [3]. Thus our search strategy can be
viewed as variable ordering guided by past failures and value ordering guided by past
successes.

Finally, before using a standard Branch & Bound procedure, we first use a dichotomic
search to reduce the gap between lower and upper bound. At each step of the dichotomic
search, a satisfaction problem is solved, with a limit on the number of nodes.

3 Job Shop with Earliness/Tardiness Objective

In industrial applications, the length of the makespan is not always the preferred objec-
tive. An important alternative criterion is the minimization of the cost of a job finishing
early/late. An example of a cost for early completion of a job would be storage costs



360 D. Grimes and E. Hebrard

incurred, while for late completion of a job these costs may represent the impact on
customer satisfaction.

Although the only change to the problem is the objective function, our model requires
a number of additional elements. When we minimize the sum of earliness and tardiness,
we introduce 4n additional variables. For each job Jx we have a Boolean variable ex
that takes the value 1 iff Jx is finished early and the value 0 otherwise. In other words,
ex is a reification of the precedence constraint txm + pxm < dx. Moreover, we also
have a variable Ex standing for the duration between the completion time of the last
task of Jx and the due date dx when Jx is finished early: Ex = ex(dx − txm − pxm).
Symmetrically, for each job Jx we have Boolean variable lx taking the value 1 iff Jx is
finished late, and an integer variable Lx standing for the delay (Model 2).

model 2. ET-JSP

minimise ETsum subject to :

ETsum =
∑

Jx∈J
(we

xEx + wt
xLx) (3.1)

ex ⇔ (txm + pxm < dx) ∀Jx ∈ J (3.2)

Ex = ex(dx − txm − pxm) ∀Jx ∈ J (3.3)

lx ⇔ (txm + pxm > dx) ∀Jx ∈ J (3.4)

Lx = lx(txm + pxm − dx) ∀Jx ∈ J (3.5)

(constraints 2.1) & (constraints 2.3)

Unlike the case where the objective involves minimizing the makespan, branching
only on the disjuncts is not sufficient for these problems. Thus we also branch on the
early and late Boolean variables, and on the variables standing for start times of the last
tasks of each job. For these extra variables, we use the standard definition of domain
over weighted degree.

4 Job Shop Scheduling Problem with Time Lags

Time lag constraints arise in many scheduling applications. For instance, in the steel
industry, the time lag between the heating of a piece of steel and its moulding should be
small [27]. Similarly when scheduling chemical reactions, the reactives often cannot be
stored for a long period of time between two stages of a process to avoid interactions
with external elements [19].

4.1 Model

The objective to minimise is represented by a variable Cmax linked to the last task
of each job by n precedence constraints: ∀x ∈ [1, . . . , n] txm + pxm ≤ Cmax. The
maximum time lag between two consecutive tasks is simply modelled by a precedence
constraint with negative offset. LettingL(i) be the maximum time lag between the tasks
ti and ti+1, we use the following model:
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model 3. TL-JSP

minimise Cmax subject to :

Cmax ≥ txm + pxm ∀Jx ∈ J (4.1)

ti+1 − (pi + L(i)) ≤ ti ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (4.2)

(constraints 2.1) & (constraints 2.3)

4.2 Greedy Initialization

In the classical job shop scheduling problem, one can consider tasks in any order com-
patible with the jobs and schedule them to their earliest possible start time. The resulting
schedule may have a long makespan, however such a procedure usually produces rea-
sonable upper bounds. With time lag constraints, however, scheduling early tasks of a
job implicitly fixes the start times for later tasks, thus making the problem harder. In-
deed, as soon as tasks have been fixed in several jobs, the problem becomes difficult
even if there is no constraint on the length of the makepsan. Standard heuristics can
thus have difficulty finding feasible solutions even when the makespan is not tightly
bounded. In fact, we observed that this phenomenon is critical for our approach.

Once a relatively good upper bound is known our approach is efficient and is often
able to find an optimal solution. However, when the upper bound is, for instance, the
trivial sum of durations of all tasks, finding a feasible solution with such a relaxed
makespan was in some cases difficult. For some large instances, no non-trivial solution
was found, and on some instances of more moderate size, much computational effort
was spent converging towards optimal values.

We therefore designed a search heuristic to find solutions of good quality, albeit
very quickly. The main idea is to move to a new job only when all tasks of the same
machine are completely sequenced between previous jobs. Another important factor
is to make decisions based on the maximum completion time of a job, whilst leaving
enough freedom within that job to potentially insert subsequent jobs instead of moving
them to the back of the already scheduled jobs.

Algorithm 1. Greedy initialization branching heuristic
fixed jobs ← ∅; jobs to schedule ← J ;
fixed jobs ← ∅; jobs to schedule ← J ;
while jobs to schedule �= ∅ do

pick and remove a random job Jy in jobs to schedule; fixed jobs ← fixed jobs∪ {Jy};
next decisions ← {bij | Jx(i), Jx(j) ∈ fixed jobs};
while next decisions �= ∅ do

1 pick and remove a random disjunct bij from next decisions;
if Jx(i) = Jy then branch on ti + pi ≤ tj else branch on tj + pj ≤ ti;

2 branch on txm ≤ min(t(x−1)m+1)+ stretched(Jy);
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We give a pseudo-code for this strategy in Algorithm 1. The set jobs to schedule
stands for the jobs for which sequencing is still open, whilst fixed jobs contains the
currently processed job, as well as all the jobs that are completely sequenced. On the
first iteration of the outer “while” loop, a job is chosen. There is no disjunct satisfying
the condition in Line 1, so this job’s completion time is fixed to a value given by the
stretched procedure (Line 2), that is, the minimum possible starting time of its first
task, plus its total duration, plus the sum of the possible time lags.

On the second iteration and beyond, a new job is selected. We then branch on the
sequencing decisions between this new job and the rest of the set fixed jobs before
moving to a new job. We call Jx(i) the job that contains task ti, and observe that for
any unassigned Boolean variable bij , either Jx(i) or Jx(j) ∈ fixed jobs must be the
last chosen job Jy . The sequencing choice that sets a task of the new job before a task
of previously explored jobs is preferred, i.e., considered in the left branch. Observe
that a failure due to time lag constraints can be raised only in the inner “while” loop.
Therefore, if the current upper bound on the makespan is large enough, this heuristic
will ensure that we never backtrack on a decision on a task. We randomize this heuristic
and use several iterations (1000 in the present set of experiments) to find a good initial
solution.

4.3 Special Case: Job Shop with No-Wait problems

The job shop problem with no-wait refers to the case where the maximum time-lag is
set to 0, i.e. each task of a job must start directly after its preceding task has finished. In
this case one can view the tasks of the job as one block.

In [12] we introduced a simple improvement for the no-wait class based on the fol-
lowing observation: if no delay is allowed between any two consecutive tasks of a job,
then the start time of every task is functionally dependent on the start time of any other
task in the job. The tasks of each job can thus be viewed as one block. We therefore use
a single variable Jx standing for the starting times of the job of same name.

We call Jx(i) the job of task ti, and we define hi as the total duration of the tasks
coming before task ti in its job Jx(i). That is, hi =

∑
k∈{k | k<i ∧ tk∈Jx(i)} pk. For

every pair of tasks ti ∈ Jx, tj ∈ Jy sharing a machine, we use the same Boolean
variables to represent disjuncts as in the original model, however linked by the following
constraints:

bij =
{

0 ⇔ Jx + hi + pi − hj ≤ Jy
1 ⇔ Jy + hj + pj − hi ≤ Jx

Although the variables and constants are different, these are the same constraints as used
in the basic model. The no-wait JSP can therefore be reformulated as shown in Model 4,
where the variables J1, . . . , Jn represent the start time of the jobs and f(i, j) = hi +
pi − hj .

However, we can go one step further. For a given pair of jobs Jx, Jy the set of disjunct
between tasks of these jobs define as many conflict intervals for the start time of one job
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model 4. NW-JSP

minimise Cmax subject to :

Cmax ≥ Jx +
∑

ti∈Jx

pi ∀Jx ∈ J (4.3)

bij =

{
0 ⇔ Jx(i) + f(i, j) ≤ Jx(j)

1 ⇔ Jx(j) + f(j, i) ≤ Jx(i)
∀My ∈ M, ti �= tj ∈ My (4.4)

(a) Sample problem

Machine 1 2 3 4
ti, tj t1, t5 t2, t7 t3, t8 t4, t6
pi 20 50 80 50
hi 0 20 70 150
pj 60 20 25 45
hj 0 105 125 60
−f(j, i) -60 -105 -80 45
f(i, j) 20 -35 25 140

(b) Values of p, h and f

Fig. 1. Computation of conflict intervals

relative to the other. For two tasks ti and tj , we have Jx(j) �∈ ]Jx(i) − f(j, i), Jx(i) +
f(i, j)[. However, these intervals may overlap or subsume each other. It is therefore
possible to tighten this encoding by computing larger intervals, that we shall refer to
as maximal forbidden intervals, hence resulting in fewer disjuncts. We first give an
example, and then briefly describe a procedure to find maximal forbidden intervals.

In Figure 1a we illustrate two jobs Jx = {t1, t2, t3, t4} and Jy = {t5, t6, t7, t8}.
The number and shades of grey stand for the machine required by each task. The length
of the tasks are respectively {20, 50, 80, 50} for Jx and {60, 45, 20, 25} for Jy . In Fig-
ure 1b we give, for each machine, the pair of conflicting tasks, their durations and the
corresponding forbidden intervals.

For each machine Mk, let ti be the task of Jx and tj the task of Jy that are both pro-
cessed on machine Mk. Following the reasoning used in Model 4, we have a conflict
interval (represented by black arrows in Figure 1a) for each pair of tasks sharing the
same machine: Jy �∈ ]Jx− f(j, i), Jx+ f(i, j)[. In the example the forbidden intervals
for Jy are therefore: ]Jx−60, Jx+20[. . .]Jx−105, Jx−35[. . .]Jx−80, Jx+25[. . .]Jx+
45, Jx+140[. However, these intervals can be merged, yielding larger (maximal) forbid-
den intervals, in which case we have: Jy �∈]Jx−105, Jx+25[ ∧ Jy �∈]Jx+45, Jx+140[.

Given two jobs Jx and Jy , Algorithm 2 computes all maximal forbidden intervals
efficiently (in O(m logm) steps). First, we build a list of pairs whose first element is
an end point of a conflict interval, and second element is either +1 if it is the start,
and −1 otherwise. Then these pairs are sorted by increasing first element. Now we
can scan these pairs and count, thanks to the second element, how many intervals are
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Algorithm 2. get-F-intervals.
Data: Jx = {tx1 , . . . , txm}, Jy = {ty1 , . . . , tym},M
Iin ← [];
foreach txi ∈ Jx, tyj ∈ Jy such that M(txi) = M(tyj ) do

Iin ← Iin extended with [(−f(j, i), +1), (f(i, j),−1)];

sort Iin by increasing first element;
Iout ← []; open ← 0;
while not-empty(I) do

(a, z) ← remove first element from Iin;
if open = 0 then append a to Iout;
open ← open + z;
if open = 0 then append a to Iout;

return Iout;

simultaneously open. When we go from 0 to 1 open intervals, this marks the start of
a maximal forbidden interval, and conversely the end when we go from 1 to 0 open
intervals. The list Iout has 2k elements, and the 2i+1th and 2i+2th elements are read
as the start and end of a forbidden interval.

Given this set of forbidden intervals, we can represent the conflicts between Jx and
Jy with the following set of Boolean variables and disjunctive constraints:

bxy
105,25 =

{
0 ⇔ Jy + 105 ≤ Jx
1 ⇔ Jx + 25 ≤ Jy

bxy
45,140 =

{
0 ⇔ Jy − 45 ≤ Jx
1 ⇔ Jx + 140 ≤ Jy

In the previous encoding we would have needed 4 Boolean variables and as many dis-
junctive constraints (one for each pair of tasks sharing a machine). We believe, however,
that the main benefit is not the reduction in size of the encoding. Rather, it is the tighter
correlation between the model and the real structure of the problem which helps the
heuristic to make good choices.

model 5 . NW-JSP
minimise Cmax subject to :

Cmax ≥ Jx +
∑

ti∈Jx

pi ∀Jx ∈ J (4.5)

bij
a,b =

{
0 ⇔ Jy − a ≤ Jx

1 ⇔ Jx + b ≤ Jy
∀Jx �= Jy ∈ J , [a, b] ∈ get-F-intervals(Jx, Jy,M)(4.6)

5 Experimental Evaluation

The full experimental results, with statistics for each instance, as well as benchmarks
and source code are online: http://homepages.laas.fr/ehebrard/
jsp-experiment.html.
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5.1 Job Shop with Earliness/Tardiness Objective

The best complete methods for handling these types of problem are the CP/LP hybrid
of Beck and Refalo [4] and the MIP approaches of Danna et al. [9], and Danna and
Perron [8], while more recently Kebel and Hanzalek proposed a pure CP approach [14].
Danna and Perron also proposed an incomplete approach based on large neighborhood
search [8].

Our experiments were run on an Intel Xeon 2.66GHz machine with 12GB of ram
on Fedora 9. Each algorithm run on a problem had an overall time limit of 3600s, and
there were 10 runs per instance. We report our results in terms of the best and worst
run. We tested our method on two benchmarks which have been widely studied in the
literature. The comparison experimental results are taken from [9] and [8], where all
experiments were performed on a 1.5 GHz Pentium IV system running Linux. For the
first benchmark, these algorithms had a time limit of 20 minutes per instance, while for
the second benchmark the algorithms had a time limit of 2 hours.

The comparison methods are as follows:

– MIP: Default CPLEX in [9], run using a modified version of ILOG CPLEX 8.1
– CP: A pure constraint programming approach introduced by Beck and Refalo in

[4], run using ILOG Scheduler 5.3 and ILOG Solver 5.3
– CRS-ALL: A CP/LP hybrid approach proposed by Beck and Refalo in [4], run using

ILOG CPLEX 8.1, ILOG Hybrid 1.3.1, ILOG Scheduler 5.3 and ILOG Solver 5.3
– uLNS: An unstructured large neighborhood search MIP method proposed by Danna

and Peron in [8], run using a modified version of ILOG CPLEX 8.1
– sLNS: A structured large neighborhood search CP/LP method proposed by Danna

and Peron in [8], run using ILOG Scheduler 5.3, ILOG Solver 5.3 and ILOG
CPLEX 8.1

The first benchmark consists of 9 sets of problems generated by Beck and Refalo [4] us-
ing the random JSP generator of Watson et al. [26]. For instance size J xM, there were
three sets of ten JSPs of size 10x10, 15x10 and 20x10 generated. The second bench-
mark is taken from the genetic algorithms (GA) literature and was proposed by Morton
and Pentico [18]. There are 12 instances, with problem size ranging from 10x3 to 50x8.
Jobs in these problems do have release dates. Furthermore earliness and tardiness costs
of a job are equal.

We present results on the randomly generated ETJSPs in Table 1 in terms of number
of problems solved to optimality and sum of the upper bounds, for each algorithm.1

Here, the column “Best” for our method means the number of problems solved to opti-
mality on at least one of the ten runs on the instance, while the column “Worst” refers
to the number of problems solved to optimality on all ten runs. We also report the mean
cpu time in seconds for our method.

We first consider the number of problems solved to optimality (columns “Opt.”).
While there is little difference in the performance of our method and that of uLNS and
CRS-ALL on the looser instances (looseness factor of 1.3 and 1.5), we see that our
method is able to close three of the 23 open problems in the set with looseness factor

1 Note that sLNS is not complete, hence it never proved optimality.
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Table 1. ET-JSP - Random Problems, Number Proven Optimal and Upper Bound Sum

lf MIP CP uLNS sLNS CRS-All
Model 2

Best Worst Avg.
opt.

∑
ub opt.

∑
ub opt.

∑
ub

∑
ub opt.

∑
ub opt.

∑
ub opt.

∑
ub Time (s)

1.0 0 654,290 0 1,060,634 0 156,001 52,307 7 885,546 10 30,735 8 38,416 2534.86
1.3 14 26,930 6 1,248,618 30 8,397 8,397 30 8,397 30 8,397 30 8,397 0.36
1.5 27 7,891 6 1,672,511 30 6,964 6,964 30 6,964 30 6,964 30 6,964 0.18

Notes: Comparison results taken from [9], except uLNS, taken from [8].
Figures in bold are the best result over all methods.

1.0. An obvious reason for this improvement with our method would be the difference
in time limits and quality of machines. However, analysis of the results reveals that of
the 68 problems solved to optimality on every run of our method, only 8 took longer
than one second on average, and only one took longer than one minute (averaging 156s).
Furthermore, uLNS only solved two problems to optimality when the time limit was in-
creased to two hours [8]. Clearly our method is extremely efficient at proving optimality
on these problems.

The previous results suggest that CRS-ALL is much better than uLNS on these prob-
lems. However, as was shown by Danna et al. [9], this may not be the case when the
algorithms are compared based on the sum of the upper bounds found over the 30 “hard”
instances (i.e. with looseness factor 1.0). In order to assess whether there was a similar
deterioration in the performance of our method as for CRS-ALL on the problems where
optimality was not proven, we report this data in the columns “

∑
ub” of Table 1.

We find, on the contrary, that the performance of our approach is even more im-
pressive when algorithms are compared using this metric. The two large neighborhood
search methods found the best upper bounds of the comparison algorithms with sLNS
the most efficient by a factor of 2 over uLNS. However, there are a couple of points
that should be noted here. Firstly sLNS is an incomplete method so cannot prove opti-
mality, and secondly the sum of the worst upper bounds found by our method was still
significantly better than that found by sLNS. Indeed, there was very little variation in
performance for our method across runs, with an average difference of 256 between the
best and worst upper bounds found.

Danna and Perron also provided the sum of the best upper bounds found on the hard
instances over all methods they studied [8], which was 36,459. This further underlines
the quality of the performance of our method on these problems. Finally, we investi-
gated the hypothesis that the different time limit and machines used for experiments
could explain these results. We compared the upper bounds found by our method after
the dichotomic search phase, where the maximum runtime of this phase over all runs
per instance was 339s. The upper bound sums over the hard instances were 32,299 and
49,808 for best and worst respectively, which refutes this hypothesis.

Table 2 provides results on the second of the benchmarks (taken from the GA lit-
erature). Following the convention of previous work on these problems [23][4][9], we
report the cost normalized by the weighted sum of the job processing times. We include
the best results found by the GA algorithms as presented by Vázquez and Whitley [23].
We also provide an aggregated view of the results of each algorithm using the geometric
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Table 2. ET-JSP - GA Problems, Normalized upper bounds

Instance Size MIP CP uLNS sLNS CRS-All
GA Model 2
Best Best Worst

jb1 10x3 0.191* 0.474 0.191* 0.191 0.191* 0.474 0.191* 0.191*
jb2 10x3 0.137* 0.746 0.137* 0.137 0.531 0.499 0.137* 0.137*
jb4 10x5 0.568* 0.570 0.568* 0.568 0.568* 0.619 0.568* 0.568*
jb9 15x3 0.333* 0.355 0.333* 0.333 1.216 0.369 0.333* 0.333*
jb11 15x5 0.233 0.365 0.213* 0.213 0.213* 0.262 0.221 0.235
jb12 15x5 0.190* 0.239 0.190* 0.190 0.190* 0.246 0.190* 0.190*

GMR 1.015 1.774 1 1 1.555 1.610 1.006 1.017

ljb1 30x3 0.215* 0.847 0.215* 0.215 0.295 0.279 0.215 0.221
ljb2 30x3 0.622 1.268 0.508 0.508 1.364 0.598 0.590 0.728
ljb7 50x5 0.317 0.614 0.123 0.110 0.951 0.246 0.166 0.256
ljb9 50x5 1.373 1.737 1.270 1.015 2.571 0.739 1.157 1.513
ljb10 50x8 0.820 1.569 0.558 0.525 1.779 0.512 0.499 0.637
ljb12 50x8 1.025 1.368 0.488 0.605 1.601 0.399 0.537 0.623

GMR 1.943 3.233 1.213 1.170 4.098 1.220 1.299 1.686

Overall GMR 1.329 2.434 1.084 1.068 2.305 1.408 1.118 1.256

Comparison results taken from [9]. Figures in bold indicate best upper bound
found over the different algorithms. “*” indicates optimality was proven by the algorithm.

mean ratio (GMR), which is the geometric mean of the ratio between the normalized up-
per bound found by the algorithm and the best known normalized upper bound, across
a set of instances.

The performance of our method was less impressive for these problems, solving two
fewer problems to optimality than uLNS, and achieving a worse GMR than either of the
large neighborhood search methods. However, we remind the reader that all comparison
methods had a 2 hour time limit on these instances, except the GA approaches for which
the time limit was not reported. We further note that we find an improved solution for
one instance (ljb10) and outperform all methods other than uLNS and sLNS.

5.2 Job Shop Scheduling Problem with positive Time Lags

These experiments were run using the same settings as in Section 5.1. However, be-
cause of the large number of instances and algorithms, we used only 5 random runs per
instance.

There are relatively few results reported for benchmarks with positive maximum
time lag constraints, as most publications focus on the “no wait” case. Caumond et
al. introduced a genetic algorithm [7]. Then, Artigues et al. introduced a Branch &
Bound procedure that allowed them to find lower bounds of good quality [1]. There-
fore, in order to get a better idea of the efficiency of our approach, we adapted a model
written by Chris Beck for Ilog Scheduler (version 6.3) to problems featuring time lag
constraints. This model was used to showcase the SGMPCS algorithm [3]. We used
the following two strategies: In the first, the next pair of tasks to schedule is chosen
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following the Texture heuristic/goal predefined in Ilog Scheduler and restarts following
the Luby sequence [16] are performed, this was one of the default strategies used as
a reference point in [3]. In the second, branching decisions are selected with the same
“goal”, however the previous best solution is used to decide wich branch should be ex-
plored first, and geometric restarts [25] are performed, instead of the Luby sequence. In
other words, this is SGMPCS with a singleton elite solution. We denote the first method
Texture-Luby and the second method Texture-Geom+Guided. These two methods were
run on the same hardware with the same time limit and number of random runs as our
method. Finally, we report results for our approach without the greedy initialization
heuristic (Algorithm 1) in order to evaluate its importance.

We used the benchmarks generated by Caumond et al. in [7] by adding maximal
time lag constraints to the Lawrence JSP instances of the OR-library2. Given a job shop
instance N, and two parameters x and y, a new instance N x y is produced. For each job
all maximal time lags are given the value ym, where m is the average processing time
over tasks of this job. The first parameter x corresponds to minimal time lags and will
always be 0 in this paper.

Table 3. TL-JSP - Comparison with related work (Time & Upper bound)

Instance
[AHL] [CLT] Model 3

time (s) Cmax time (s) Cmax time (s) Cmax

la06 0 10 707.00 927 0.00 926 0.03 926
la06 0 1 524.00 1391 1839.00 1086 70.60 926
la07 0 10 518.00 1123 25.00 890 3600.00 890
la07 0 1 754.00 1065 1914.00 1032 3600.00 896
la08 0 10 260.00 863 2.00 863 0.07 863
la08 0 1 587.00 1052 1833.00 1048 615.80 892
average 558.33 1070 935.50 974 1314.41 898
PRD 18.88 8.32 0.00

Due to space limitations, we present most of our results in terms of each solver’s
average percentage relative deviation (PRD) given by the following formula: PRD =
((CAlg−CRef )/CRef )∗100, whereCAlg is the best makespan found by the algorithm
and CRef is the best upper bound among all considered algorithms3. In Table 3, we
first report a comparison with the genetic algorithm described in [7], denoted [CLT]
and the adhoc Branch & Bound algorithm introduced in [1], denoted [AHL]. We used
only instances for which results were reported in both papers, and where the time lags
were strictly positive, hence the relatively small data set. Despite that, and despite the
difference in hardware and time limit, it is quite clear that our approach outperforms
both the complete and heuristic methods on these benchmarks.

Next, in Table 4, we report results on all modified Lawrence instances for both Ilog
Scheduler models, and the two version of Model 3, with and without the greedy initial-
ization heuristic. Since there are 280 instances in total, the results are aggregated by the

2 http://people.brunel.ac.uk/˜mastjjb/jeb/info.html
3 To the best of our knowledge, these are the best known upper bounds.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 4. TL-JSP - Comparison with Ilog Scheduler (Proofs of optimality & Upper bound PRD)

Instance Sets
Texture Model 3

Luby Geom+Guided no init. init. heuristic
Opt. PRD Opt. PRD Opt. PRD Opt. PRD

la[1,40] 0 0 0.12 25.37 0.12 16.15 0.37 10.42 0.35 0.06
la[1,40] 0 0.25 0.20 22.98 0.25 12.01 0.37 3.46 0.40 0.00
la[1,40] 0 0.5 0.22 19.47 0.25 5.17 0.37 2.62 0.42 0.00
la[1,40] 0 1 0.35 15.76 0.42 1.18 0.40 17.43 0.45 0.47
la[1,40] 0 2 0.67 7.35 0.75 0.13 0.67 74.16 0.70 0.37
la[1,40] 0 3 0.75 3.47 0.92 0.00 0.75 95.91 0.77 0.29
la[1,40] 0 10 0.95 0.10 0.97 0.00 0.92 0.04 0.92 0.05

level of tightness of the time lag constraints. For each set, we give the ratio of instances
that were solved to optimality in at least one of the five runs in the first column, as well
as the mean PRD in the second column.

First, we notice the great impact of the new initialization heuristic on our method.
Without it, the Ilog Scheduler model was more efficient for instances with y = 1,
and the overall results are extremely poor for larger values of y. However, the mean
results are deceptive. Without initialization, Model 3 can be very efficient, although in
a few cases no solution at all can be found. Indeed, relaxing the makespan does not
necessarily makes the problem easy for this model. The weight of these bad cases in the
mean value can be important, hence the poor PRD. On the other hand, we can see that
the Ilog Scheduler model is more robust to this phenomenon: a non-trivial upper bound
is found in every case. It is therefore likely that the impact of the initialization heuristic
will not be as important on the Ilog model as on Model 3.

We also notice that solution guidance and geometric restarts greatly improve Ilog
Scheduler’s performance. Interestingly, we observe that our approach is best when the
time lag constraints are tight. On the other hand, Scheduler is slightly more efficient on
instances with loose time lag constraints and in particular proves optimality more often
on these instances. However, whereas our method always finds near-optimal solutions
(the worst mean PRD is 0.47 for instances with y = 1), both scheduler models find
relatively poor upper bounds for small values of y.

5.3 Job Shop Scheduling Problem with no wait constraints

For the no-wait job shop problem, the best methods are a tabu search method by Schus-
ter (TS [20]) and a hybrid constructive/tabu search algorithm introduced by Bożejko
and Makuchowski in 2009 (HTS [6]). We also report the results of a Branch & Bound
procedure introduced by Mascis and Pacciarelli [17]. This algorithm was run on a Pen-
tium II 350 MHz.

For the no-wait class we used the same data sets as Schuster [20] and Bożejko et
al. [6] where null time lags are added to instances of the OR-library. We report the best
results of each paper in terms of average PRD. It should be noted that for HTS, the
authors reported two sets of results. The former were run with a time limit based on
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Table 5. NW-JSP - Comparison with related work (Upper bound PRD)

Instance
Mascis et al. Schuster Bożejko et al. Model 4 Model 5

B&B TS HTS HTS+ tdom+bw tdom/tw tdom+bw tdom/tw

la[1-10] 0.00 4.43 1.77 1.77 0.00 0.00 0.00 0.00
la[11-20] 31.66 7.93 3.49 0.95 0.14 0.10 0.00 0.31
la[21-30] 61.09 10.43 7.25 0.08 1.16 0.57 0.25 0.84
la[31-40] 73.73 10.95 8.33 0.15 4.42 1.77 2.68 1.36
abz[5-9] 47.04 9.01 5.95 0.78 2.47 1.14 1.13 1.20
orb[1-10] 0.00 2.42 0.77 0.77 0.00 0.00 0.00 0.00
swv[1-5] 60.85 3.94 3.67 0.00 2.54 0.77 0.00 0.43
swv[6-10] 57.82 4.99 4.19 0.00 4.78 1.71 0.44 1.00
swv[11-15] 70.98 0.68 2.48 0.60 19.50 6.53 17.54 5.18
swv[16-20] 76.81 5.71 3.98 0.00 10.92 68.94 4.47 3.17
yn[1-4] 72.74 12.40 8.85 0.32 5.60 5.75 2.37 2.88
overall 44.72 6.51 4.36 0.52 3.53 5.50 1.97 1.13

Table 6. NW-JSP - New best upper bounds and optimality proofs

Instance
Schuster Bożejko Model 4 Model 5

BKS TS HTS HTS+ tdom+bw tdom/tw tdom+bw tdom/tw

la11 0 0 2821 1737 1704 1621 1622 1619 1619* 1621
la13 0 0 2650 1701 1696 1580 1582 1590 1580* 1580
la14 0 0 2662 1771 1722 1610 1578 1578 1578* 1612
la15 0 0 2765 1808 1747 1686 1692 1679 1671* 1691
la26 0 0 4268 2664 2738 2506 2624 2511 2488 2540
la28 0 0 4478 2886 2741 2552 2640 2605 2546 2569
la30 0 0 4097 2939 2791 2452 2452 2452 2452* 2508
la34 0 0 6380 3957 3936 3659 3914 3693 3817 3657
la39 0 0 4295 2804 2725 2687 2660 2660 2660* 2660
swv01 3824 2396 2424 2318 2344 2343 2318* 2333
swv02 3800 2492 2484 2417 2440 2418 2417* 2417
swv05 3836 2482 2489 2333 2433 2333 2333* 2333
yn2 4025 2705 2647 2370 2486 2603 2427 2353
yn4 4109 2705 2630 2513 2532 2573 2499 2582

the runtimes reported in [20] and varying from 0.25 seconds for the easiest instances
to 2360 seconds for the hardest. The latter (in italic font, and referred to as HTS+ in
Table 5) were run “without limit of computation time”. We use bold face to mark the
best result amongst methods that had time limits, i.e. excluding HTS+. We ran two
variable ordering heuristics for our method. First, the heuristics used for ET-JSP and
TL-JSP, where the Boolean variable minimizing the value of (max(ti) + max(tj) −
min(ti) −min(tj) + 2)/(w(ti) + w(tj)) is chosen first, denoted tdom/tw. Second,
we used another heuristic, denoted tdom+bw that selects the next Boolean variable to
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branch on solely according to the tasks’ domain sizes (max(ti)+max(tj)−min(ti)−
min(tj) + 2), and break ties with the Boolean variable’s own weight w(bij).

In Table 6 we report the results on no-wait instances for which we obtained new
upper bounds (5 instances) or new proofs of optimality (9 instances), thanks to the
model introduced here.

6 Conclusions

We have shown that the simple constraint programming approach introduced in [13]
can be successfully adapted to handle the objective of minimizing the sum of earli-
ness/tardiness costs. These problems have traditionally proven troublesome for CP ap-
proaches because of the weak propagation of the sum objective [8].

Then we introduced a new heuristic to find good initial solutions for job shop prob-
lems with maximal time lag constraints. The resulting method greatly improves over
state of the art algorithms for this problem. However, as opposed to the other aspects of
the method (adaptive variable heuristic, solution guided branching, restarts with nogood
storage) this new initialization heuristic is dedicated to job shop problems with time lag
constraints.

Finally, we showed that domain-specific information can also be used to improve
our model for no-wait job shop scheduling problems, allowing us to provide several
improved upper bounds and prove optimality in many cases.
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Abstract. Max Restricted Path Consistency (maxRPC) is a promising domain 
filtering consistency for binary constraints. In existing algorithms, the process of 
searching for PC-witnesses requires most constraint checks. And the computing 
speed of this process significantly affects the efficiency of the whole algorithm. 
In this paper, we propose a new method based on bitwise operations to speed up 
the computations of this process. Two algorithms maxRPCbit and maxRPCbit+rm 
utilizing this new method are proposed. Both algorithms and their light versions 
outperform the best ones among existing algorithms by a large margin. 
Significantly, our experiments, which compare the search algorithms applying 
light maxRPC with the one maintaining arc consistency, demonstrate that 
maxRPC is a much more promising filtering technique than what we thought. 

1   Introduction 

Filtering techniques are used to remove some local inconsistencies in the search 
algorithms solving the instances of the Constraint Satisfaction Problem (CSP). They 
can be used in a preprocessing step or during the search. In [1], a promising local 
consistency property has been proposed: the max-restricted path consistency 
(maxRPC). Computational experiments give evidence that maxRPC offers a 
particularly good compromise between computational cost and pruning efficiency [2]. 
Stronger than AC, maxRPC removes not only the values that have no AC-supports, but 
also those that have no PC-supports. A value (xj, b) is an AC-support of value (xi, a) if 
((xi, a), (xj, b)) is allowed by cij. An AC-support (xj, b) of (xi, a) is a PC-support of (xi, a) 
iff at least one PC-witness exists in the domain of each third variable xk which is 
constrained with both xi and xj. A PC-witness of the value pair ((xi, a), (xj, b)) is a value 
which is consistent with both (xi, a) and (xj, b). 

Several algorithms have been proposed to enforce maxRPC. The first one maxRPC1 
[1] is a fine-grained algorithm and requires a relatively high space cost. To reduce the 
space cost, a coarse-grained algorithm maxRPC2 [3] was proposed. Both maxRPC1 
and maxRPC2 are not suited for use during search, thus in [4], maxRPCrm was 
proposed, it makes use of the residues[5, 6] and can be better suited for use during 
search. Recently in [7], it was pointed out that the two coarse-grained algorithms 
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maxRPC2 and maxRPCrm both suffer from the overhead caused by the redundant 
constraint checks in the process of searching for PC-witnesses, and although maxRPC1 
doesn’t perform these redundant checks, it requires higher space cost. Recently, 
maxRPC3 [7] and maxRPC3rm [7] were proposed, they can largely eliminate the 
redundant constraint checks with lower space complexity than maxRPC1. The 
experiments in [7] showed that maxRPC3, lmaxRPC3 and lmaxRPC3rm are the most 
efficient algorithms among existing algorithms when used stand-alone, and 
lmaxRPC3rm displays the best performance during search. 

The key of improving the performance of maxRPC algorithms is to speed up the 
process of searching for PC-witnesses since this process can be performed many times 
and the most constraint checks are performed in this process. The outstanding 
performances of (l)maxRPC3 and (l)maxRPCrm are mainly due to the improvement of 
searching for PC-witnesses. In this paper, we propose a new method of searching for 
PC-witnesses. Our method exploits the bitwise operations to speed up the 
computations. If the computer is equipped with a x-bit processor, when searching for a 
PC-witness in D(xk), the new method tests x values of xk simultaneously instead of 
testing them one by one as the existing algorithms do. Based on this new method, we 
give a precise description of two coarse-grained algorithms maxRPCbit and 
maxRPCbit+rm which can be regarded as the variants of maxRPC2 and maxRPC3rm 
respectively. Our experiments compare the new algorithms with the most efficient ones 
among the existing maxRPC algorithms. The results demonstrate that all the new 
algorithms outperform existing algorithms by a large margin when used stand-alone, 
and lmaxRPCbit+rm displays a much better performance than lmaxRPC3rm during 
search. Most importantly, the improvement of searching for PC-witnesses enables 
maintaining lmaxRPC outperforms MAC on much more problems. 

2   Background 

A Constraint Satisfaction Problem (CSP) is defined as a triple (X, D, C), where X is a 
finite set of variables, D is the set of domains, and C is a finite set of constraints. Each 
domain in D(xi)∈D denotes the current domain of xi, i.e. it denotes the possible values 
for xi. Each constraint c∈C involves a subset of variables of X, called the scope of c and 
denoted by vars(c), and has an associated relation, denoted rel(c), which specifies the 
allowed combinations of values for the variables in vars(c). In this paper, we assume 
that all the constraints are binary, i.e., each constraint cij∈C is defined over two 
variables xi and xj. If ((xi, a), (xj, b)) ∈rel(cij), we then say that (xj, b) is an AC-support of 
(xi, a) on cij. An instantiation I of a set of n variables S is an indexed set of n values s.t. 
the ith value Ii belongs to the domain of the ith variable xi in S. An instantiation I satisfies 
a constraint cij if {xi, xj}⊈ S or ((xi, Ii ), (xj, Ij))∈rel(cij). An instantiation is consistent if 
it satisfies all the constraints. 

Definition 1 (PC-support [1]). A pair of values ((xi, a), (xj, b)) is path consistent if 

∀xk∈X s.t. xj≠xk≠xi≠xj, this pair of values can be extended to a consistent instantiation 

of {xi, xj, xk}. (xj, b) is a PC-support of (xi, a) if ((xi, a), (xj, b)) is path consistent. 
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Definition 2 (maxRPC [1]). A binary CN is max-restricted path consistent iff ∀xi∈X, 

D(xi) is a non empty arc consistent domain and, ∀ a∈D(xi), for all xj∈X linked to xi, 

∃ b∈D(xj) s.t. ((xi, a), (xj, b)) ∈rel(cij) and for all xk ∈X linked to both xi and xj, 

∃ c∈D(xk) s.t. ((xi, a), (xk, c)) ∈rel(cik)∧((xk, c), (xj, b))∈rel(cjk).  

 

Light maxRPC [4] is an approximation of maxRPC that only propagates the loss of 
AC-supports and not the loss of PC-witnesses. Several algorithms have been proposed 
to establish maxRPC and light maxRPC. maxRPC1 is a fine-grained algorithm. It has 
optimal O(end3) time complexity but it requires O(end) space complexity. maxRPC2 
has a smaller space complexity O(ed) and an optimal time complexity O(end3).  
(l)maxRPCrm makes use of the residues and can be better suited for use during search. 
However, both maxRPC2 and maxRPCrm suffer from the overhead as following. When 
searching for a PC-witness for a pair of values ((xi, a), (xj, b)) in a third variable xk, they 
always start the search from scratch, i.e. from the first available value in D(xk). As these 
searches can be repeated many times during search, there can be many redundant 
constraint checks [7]. In contrast, maxRPC3 and maxRPC3rm eliminate the redundant 
constraint checks with lower space complexity than maxRPC1. maxRPC3 has a good 
performance when used during the preprocessing step. And the light version of 
maxRPC3rm which takes advantage of residues is very efficient when used during 
search. Both maxRPC3 and maxRPC3rm utilize data structures called LastPC and 
LastAC. For each value (xi, a), maxRPC3 uses LastPCxi, a, xj and LastACxi, a, xj to record 
the smallest PC and AC-supports of (xi, a) in D(xj), while maxRPC3rm uses them to 
record the most recently discovered PC and AC-supports.  

When searching for a PC-witness for a pair of values ((xi, a), (xj, b)) in a third variable 
xk, all existing algorithms need to perform constraint checks to confirm whether a value 
(xk, c) satisfies ((xi, a), (xk, c))∈rel(cik) and ((xj, b), (xk, c))∈rel(cjk). The differences at 
this process in these algorithms are from which value in D(xk) the search starts. 
maxRPC2 and maxRPCrm start the search from scratch thus there are redundant 
constraint checks, maxRPC1 and maxRPC3 avoid these redundant constraint checks, 
and maxRPC3 requires only two constraint checks when LastACxi, a, xk or LastACxj, b, xk 
happens to be the PC-witness, but this is not always the case.  

In the new method proposed below, bitwise operations are performed instead of 
constraint checks when searching for PC-witnesses. Assuming that the size of D(xk) is d 
and the computer is equipped with a 32-bit processor, in the worst case, only 2*⎡d/32⎤ 
bitwise operations need to be performed. The idea of exploiting bitwise operations to 
improve the efficiency of local arc consistency algorithms is not new. In particular, 
AC3bit [8] which exploits bitwise operations can save a large amount of constraint checks 
in the process of determining whether or not a value has an AC-support. In [8], the arrays 
of words were used to represent domains and constraints. An array of words can be 
regarded as a bit sequence since each word is a sequence of 32 bits. Two 2-dimensional 
arrays bitdom and bitSup were introduced to respectively present domains and 
constraints. Each bit in bitdom[X] can be associated with the index of any value in the 
domain of X. When a bit is set to 1 (resp. 0), it means that the corresponding value is 
present in the domain (resp. absent from it). bitSup[cij, xi, a] represents the binary 
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representation of the supports of (xi, a) in cij. For each value in the domain of xj, there is a 
corresponding bit in bitSup[cij, xi, a] to mark whether this value is a support of (xi, a). 

The algorithms introduced in this paper are based on the same binary representations 
as [8]. In the paper, length is used to denote the size of an array and we consider that the 
computer is equipped with a 32-bit processor, thus if the domain of xj has a size of d, the 
size of bitdom[xj] and bitSup[cij, xi, a] is ⎡d/32⎤, i.e. both bitdom[xj] and bitSup[cij, xi, a] 
consist of ⎡d/32⎤ words.  

3   Exploiting Bitwise Operations to Enforce maxRPC 

3.1   A New Method of Searching for PC-Witnesses 

In existing algorithms, when testing whether a value (xk, c) is a PC-witness of the value 
pair ((xi, a), (xj, b)), constraint checks need to be performed to judge whether ((xi, a), 
(xk, c)) ∈ rel(cik) and ((xj, b), (xk, c)) ∈rel(cjk). The values of xk need to be tested one by 
one until a PC-witness is found. This manner is not very efficient. 

The new method tests 32 values simultaneously each time and aims at finding out 
whether there is at least one PC-witness instead of finding out which value is the 
PC-witness. Based on the binary representations in [8], the following instructions can 
be used when determining if a value pair ((xi, a), (xj, b)) has at least one PC-witness in a 
third variable xk:  

1.   foreach w∈{0, … , bitSup[cik, xi, a].length-1} do 

2.       if (bitSup[cik, xi, a][w] AND bitSup[cjk, xj, b][w] 

AND bitdom[xk][w]) ≠ ZERO  

3.       then return true; 

4.   return false; 

ZERO denotes a sequence of 32 bits all set to 0. AND is the bitwise operator that 
simultaneously performs a logical AND operation on 32 pairs of corresponding bits. If 
the result of “bisup[Cik, xi, a][w] AND bisup[Cjk, xj, b][w]” is not ZERO, there must be 
common supports for (xi, a) and (xj, b) in the initial domain of xk. Thus, if the result of 
the logical operations in line 2 is not equal to ZERO, there must be at least one 
PC-witness in the current domain of xk. This method is very efficient, consider that xk 
has a domain with the size of 100, only 8 bitwise operations need to be performed in the 
worst case, and these 8 bitwise operations can test all the values in xk, in contrast, 8 
constraint checks can only test 4 to 8 values in existing algorithms. 

3.2   (l)maxRPCbit, (l)maxRPCbit+rm 

In this section, we propose two coarse-grained algorithms called maxRPCbit and 
maxRPCbit+rm. In the new algorithms, the process of searching for PC-witnesses uses  
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Algorithm 1. maxRPCbit/maxRPCbit+rm 

/*  Initialization  */  

1:   for each xi ∈ X do 

2:     for each a ∈ D(xi) do 

3:       for each xj∈ X s.t. cij ∈ C do 

4:          if HavenoPCsup(xi, a, xj) then 

5:             SetbitFalse(bitdom[xi], a); 

6:             if D(xi) ≠ ∅ then  

7:                Dellist = Dellist∪{xi}; 

8:             else return false; 

  /*  Propagation  */ 

9:  while Dellist ≠ ∅ do 

10:    Dellist = Dellist - {xj};                      

11:    for each xi ∈ X s.t. cij ∈ C do              

12:       for each a ∈ D(xi) do 

13:            if LastPCxi, a, xj 
∉D(xj) and HavenoPCsup 

               (xi, a, xj) then 

14:                  SetbitFalse(bitdom[xi], a); 

15:                  if D(xi) ≠ ∅ then  

16:                      Dellist = Dellist∪{xi}; 

17:                  else return false; 

18:             else  

19:              if PCwitLose(xi, a, xj) then 

20:                  SetbitFalse(bitdom[xi], a); 

21:                  if D(xi) ≠ ∅ then  

22:                      Dellist = Dellist∪{xi}; 

23:                  else return false; 

24:  return true; 
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the new method based on bitwise operations. Meanwhile the advantages of existing 
algorithms are kept. maxRPCbit can be regarded as a variant of maxRPC2, and 
maxRPCbit+rm can be regarded as the variant of maxRPC3rm. The pseudo code for the 
unified description of maxRPCbit and maxRPCbit+rm is given in Algorithms 1 to 6. A 
Boolean variable rm is used to determine whether the algorithm presented is 
instantiated to maxRPCbit or to maxRPCbit+rm. If rm is true, the algorithm used is 
maxRPCbit+rm. Otherwise, the algorithm is maxRPCbit. 

As described in Algorithm 1, both algorithms consist of two main steps: the 
initialization step and the propagation step. During the initialization phase, for each 
value a of each variable xi, we check if it is maxRPC. For each value (xi, a) which is not 
maxRPC, the corresponding bit in bitdom is set to false. And each variable which has 
its domain filtered is added to the propagation list called Dellist. In the propagation 
step, until Dellist is not empty, we extract a variable xj from Dellist. And for each 
variable xi constrained with xj, we establish whether it is still maxRPC. If LastPCxi, a, xj is 
not valid and (xi, a) has no other PC-supports in D(xj), the corresponding bit of a in 
bitdom is set to false. Otherwise, PCwitLose(xi, a, xj) is called to check the PC-witness 
loss in D(xj).  

Algorithm 2.  HavenoPCsup(xi, a, xj):boolean
 

1:   if ¬ rm and LastPCxi, a, xj
 ≠ NIL then 

2:       v = LastPCxi, a, xj+1; 

3:   else  

4:       v = first value in D(xj); 

5:   for each b ∈ D(xj), b ≥ v do 

6:      PCwitness=true; 

7:      if IsbitTrue( bitSup[cij, xi, a], b) then 

8:          for each xk ∈ X s.t. cik ∈ C and cjk ∈ C do  

9:             if ¬ HavePCwit( xi, a, xj, b, xk) then 

10:                  PCwitness=false; break; 

11:         if PCwitness ≠ false then 

12:            LastPCxi, a, xj = b; 

13:            if rm then  

14:               LastPCxj, b, xi = a; LastACxi, a, xj = b div 32; 

15:            return false; 

16:  return true; 
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maxRPCbit uses LastPCxi, a, xj to record the smallest PC-support of (xi, a) in D(xj) as 
maxRPC2 does. maxRPCbit+rm uses LastPC and LastAC as residues. Differently from 
maxRPC3rm, in maxRPCbit+rm, whenever a PC-witness is detected, LastAC records its position 
in bitSup, i.e. in which word of bitSup the corresponding bit of the PC-witness is. In both 
maxRPCbit and maxRPCbit+rm, LastPC and LastAC are set to a special value NIL initially. 

HavenoPCsup(xi, a, xj) (Algorithm 2) determines if (xi, a) has a PC-support in D(xj). 
maxRPCbit starts the search from the value after LastPCxi, a, xj since LastPCxi, a, xj was the 
smallest PC-support of (xi, a). While maxRPCbit+rm searches from the first value in 
D(xj), it is because in maxRPCbit+rm, LastPC is used as a residue and it does not always 
record the smallest PC-support. To find a value (xj, b) such that ((xi, a), (xj, b))∈rel(cij), 
function IsbitTrue is called, it returns true if the corresponding bit of b in bitSup[cij, xi, 
a] is 1. If such a value is found, for each third variable xk, HavePCwit(xi, a, xj, b, xk) is 
called to establish whether at least one PC-witness of ((xi, a), (xj, b)) exists in D(xk), if 
not, PCwitness is set to false and the value after b in D(xj) is to be checked. When a 
PC-support b is found, then maxRPCbit sets LastPCxi, a, xj to b. Like maxRPC3rm,  
 

Algorithm 3.  HavePCwit( xi, a, xj, b, xk):boolean
 

1:  if rm then 

2:    if LastACxi, a, xk
 ≠ NIL then 

3:       i = LastACxi, a, xk; 

4:          if ( bitSup[cik, xi, a][i] AND bitSup[cjk, xj, b][i] 
AND bitdom[xk][i]) ≠ ZERO 

5:       then return true; 

6:    if LastACxj, b, xk
 ≠ NIL then 

7:       j= LastACxj, b, xk; 

8:         if ( bitSup[cik, xi, a][j] AND bitSup[cjk, xj, b][j] 
AND bitdom[xk][j]) ≠ ZERO 

9:       then return true; 

10:  for each i∈{0, … , bitSup [cik, xi, a].length-1} do 

11:      if ( bitSup[cik, xi, a][i] AND bitSup[cjk, xj, b][i] 
AND bitdom[xk][i]) ≠ ZERO then  

12:          if rm then 

13:              LastACxi, a, xk = i; LastACxj, b, xk = i; 

14:          return true; 

15:  return false; 
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maxRPCbit+rm exploits the multi-directionality of residues, it sets LastPCxi, a, xj to b and 
sets LastPCxj, b, xi

 to a. However, it does not set LastACxi, a, xj to b as maxRPC3rm does, as 
in line 13, LastACxi, a, xj is set to the position of b in bitSup. 

HavePCwit( xi, a, xj, b, xk) (Algorithm 3) checks whether at least one PC-witness of 
((xi, a), (xj, b)) exists in D(xk). In this process, the method introduced in Section 3 is 
utilized. In maxRPCbit+rm, the residual position is first checked, and when one 
PC-witness is detected, its position in bitSup is recorded.  

PCwitLose(xi, a, xj) (Algorithm 4) is called to check for the PC-witness loss. For 
each variable xk constrained with both xi and xj, if LastPC xi, a, xk is valid, it checks 
whether there is still a PC-witness of the value pair ((xi, a), (xk, LastPC xi, a, xk)) in D(xj). 
If such a PC-witness exists, LastPC xi, a, xk is still the PC-support of (xi, a). If LastPC xi, a, 

xk is not valid or it is no longer the PC-support of (xi, a), as in line 6 to 8, we need to 
establish whether some other value in D(xk) can be found as the PC-support of (xi, a). 

 

Algorithm 4.  PCwitLose(xi, a, xj):boolean
 

1:   for each xk ∈ X s.t. cik ∈ C and cjk ∈ C do   

2:      witloss = true; 

3:      if LastPC xi, a, xk ∈ D(xk) then  

4:           if HavePCwit(xi, a, xk, LastPC xi, a, xk
, xj) then 

5:               witloss = false;  

6:         if witloss and exists c > LastPC xi, a, xk ∈ D(xk) then 

7:            if ¬ HavenoPCsup(xi, a, xk) then  

8:               witloss = false; 

9:      if witloss then return true;       

10:  return false; 

Algorithm 5 and Algorithm 6 give the details of two basic functions. t is an array of 
words. SetbitFalse(t, a) is used to set the corresponding bit of value a in t to 1, and 
IsbitTrue(t, a) is used to verify whether the corresponding bit of value a in t is 1. For 
both functions, i denotes in which word of t the value a is, and j denotes which bit of t[i] 
is the corresponding bit of value a. div denotes the integer division, mod the remainder 
operator. Like in [8], the structure masks1(resp. masks0) is a predefined array of 32 
words that contains in its ith square a value that represents a sequence of 32 bits which 
are all set to 0 (resp. 1) except for the ith one. 

Two algorithms lmaxRPCbit and lmaxRPCbit+rm which are respectively the light 
versions of maxRPCbit and maxRPCbit+rm can be used to enforce light maxRPC. They 
can be obtained by omitting the call to the PCwitLose function in Algorithm 1 since 
light maxRPC only propagates the loss of AC-supports. lmaxRPCbit+rm can be used 
during search. And when it is used during search, the step of initialization is omitted 
and Dellist is initialized with the currently assigned variable. 
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Algorithm 5.   SetbitFalse (t, a) 

1:   i = a div 32; 

2:   j = a mod 32;  

3:   t[i] = t[i] AND masks0[j]; 

Algorithm 6.   IsbitTrue (t, a): boolean 

1:   i = a div 32; 

2:   j = a mod 32;  

3:   return ( t[i] AND masks1[j] ) • ZERO; 

 
Actually, (l)maxRPCbit can be regarded as the variant of (l)maxRPC2, which 

transforms the step of searching PC-witnesses through constraint checks into the new 
method exploiting bitwise operations. In the new method of searching for 
PC-witnesses, a relatively large number of constraint checks are saved and only several 
bitwise operations need to be performed, but the time complexity of the new method is 
the same as the old one. Although in the worst case, only 2*⎡d/32⎤ bitwise operations 
need to be performed, the time complexity of searching for a PC-witness is still O(d). 
Since the time costs of (l)maxRPCbit and (l)maxRPC2 are both bound by the cost of 
searching for PC-witnesses, (l)maxRPCbit has the same time complexity as 
(l)maxRPC2 which is O(end3). In a similar way, the time complexities of lmaxRPCbit+rm 
and maxRPCbit+rm are the same as maxRPC3rm and lmaxRPC3rm respectively since 
(l)maxRPCbit+rm can be regarded as the variant of (l)maxRPC3rm. When used stand 
alone, the time comlexities of lmaxRPCbit+rm and maxRPCbit+rm are O(end4) and 
O(en2d4) respectively. And when lmaxRPCbit+rm is used during search, it also has a time 
complexity of O(end4).  

The extra space required by the binary representations cause an overhead of O(ed2). 
It is not suitable for the problems with huge domains. However, the space costs of the 
new algorithms are acceptable in most problems because in both arrays bitdom and 
bitSup, representing each domain requires only ⎡d/32⎤ words.  

4   Experiments 

In order to show the practical interest of the algorithms presented in this paper, we  
have performed experiments on series of structured CSP problems which are available 
from http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html. We compare the new 
algorithms with the most efficient ones among existing algorithms. Performances have 
been measured in terms of cpu time in seconds (cpu) and the number of constraint 
checks (#ccks). Note that for the new algorithms, #ccks corresponds to the number of 
bitwise operations. Average results for all the instances are grouped into specific 
problem classes. Both satisfiable and unsatisfiable instances are contained.  
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Table 1 compares the performance of algorithms used stand-alone. We can observe 
that the numbers of bitwise operations performed by the new algorithms are much 
smaller than that of constraint checks performed by the old ones. Benefiting from these 
substantial reductions of operations, our algorithms are 4 to 7 times faster than the old 
ones. And the results also show that our algorithms have the similar performances. We 
have also compared the performances of search algorithms that apply lmaxRPCbit+rm 
and lmaxRPC3rm. Both search algorithms use the dom/wdeg [9] heuristic. Table 2 
demonstrates that lmaxRPCbit+rm always outperforms lmaxRPC3rm when used during 
search. In most problems, a speed-up of more than 3 times can be obtained.  

Table 1. Average stand-alone performance on series of structured instances; cpu time (cpu) 
given in seconds 

 maxRPC3 lmaxRPC3 lmaxRPC3rm 

cpu 
#ccks 

7.471 
32.67M 

7.342 
32.19M 

7.677 
32.5M 

 

 maxRPCbit maxRPCbit+rm lmaxRPCbit lmaxRPCbit+rm 

Graphs 
(14 instances) 

cpu 
#ccks 

1.500 
5.01M 

1.545 
5.29M 

1.455 
4.65M 

1.446 
5.00M 

 maxRPC3 lmaxRPC3 lmaxRPC3rm 

cpu 
#ccks 

1.626 
1.75M 

1.624 
1.75M 

1.391 
1.88M 

 

 maxRPCbit maxRPCbit+rm lmaxRPCbit lmaxRPCbit+rm 

ehi-85 
(20 instances) 

cpu 
#ccks 

0.404 
0.98M 

0.418 
1.06M 

0.399 
0.98M 

0.343 
1.06M 

 maxRPC3 lmaxRPC3 lmaxRPC3rm 

cpu 
#ccks 

5.726 
20.98M 

5.950 
20.93M 

6.333 
20.93M 

 

 maxRPCbit maxRPCbit+rm lmaxRPCbit lmaxRPCbit+rm 

rlfapScens 
(11 instances) 

cpu 
#ccks 

2.257 
4.19M 

3.671 
4.68M 

1.827 
4.08M 

1.353 
4.01M 

 maxRPC3 lmaxRPC3 lmaxRPC3rm 

cpu 
#ccks 

2.031 
5.39M 

2.026 
5.39M 

2.159 
5.48M 

 

 maxRPCbit maxRPCbit+rm lmaxRPCbit lmaxRPCbit+rm 

jobshop enddr1 
(9 instances) 

cpu 
#ccks 

0.348 
1.57M 

0.465 
1.93M 

0.348 
1.57M 

0.349 
1.93M 

 maxRPC3 lmaxRPC3 lmaxRPC3rm 

cpu 
#ccks 

2.772 
8.76M 

2.728 
8.76M 

2.842 
8.91M 

 

 maxRPCbit maxRPCbit+rm lmaxRPCbit lmaxRPCbit+rm 

jobshop ewddr2 
(10 instances) 

cpu 
#ccks 

0.418 
2.01M 

0.431 
1.99M 

0.410 
2.01M 

0.418 
1.99M 
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Table 2. Average search performance on series of structured instances; cpu time (cpu) given in 
seconds 

  lmaxRPC3rm lmaxRPCbit+rm 

Graphs 
(14 instances) 

cpu 
#ccks 

9.713 
35.93M 

2.975 
7.23M 

jobshop ewddr2 
(10 instances) 

cpu 
#ccks 

3.560 
11.66M 

0.994 
5.04M 

jobshop enddr1 
(9 instances) 

cpu 
#ccks 

2.722 
7.34M 

0.796 
4.08M 

jobshop enddr2 
(6 instance) 

cpu 
#ccks 

3.463 
11.35M 

1.012 
4.89M 

rlfapScens 
(11 instances) 

cpu 
#ccks 

10.285 
23.49M 

1.910 
5.04M 

ModeScens 
(12 instances) 

cpu 
#ccks 

18.532 
39.72M 

1.304 
3.58M 

Table 3. Some instances on which the search algorithms applying lmaxRPC outperforms MAC; 
cpu time (cpu) given in seconds 

  lmaxRPC3rm lmaxRPCbit+rm ACrm 

queenAttacking5 cpu 
#ccks 

2.016 
4.84M 

0.953 
5.32M 

19.766 
3.98M 

queensKnights-15-15-5
-mul 

cpu 
#ccks 

64.093 
262.06M 

21.438 
89.65M 

54.985 
22.91M 

scen3-f11 cpu 
#ccks 

13.75 
27.58M 

3.781 
12.88M 

7.047 
1.71M 

scen11-f8 cpu 
#ccks 

32.797 
55.08M 

9.562 
22.51M 

145.562 
36.48M 

scen6-w1-f2 cpu 
#ccks 

1.359 
2.31M 

0.672 
1.01M 

11.438 
3.54M 

scen6-w1-f3 cpu 
#ccks 

1.172 
1.94M 

0.609 
0.71M 

5.312 
1.99M 

scen9-w1-f3 cpu 
#ccks 

1.922 
4.23M 

0.516 
1.03M 

1.266 
0.69M 

qcp-order15-holes120-
balanced-21-QWH-15 

cpu 
#ccks 

39.938 
7.17M 

4.843 
5.96M 

6.344 
0.43M 

 
 
The experiments in [7] showed that a search algorithm applying lmaxRPC can be 

competitive with MAC on many instances. In our experiments, we found that because 
of the speed-up of the process of searching for PC-witnesses, maintaining lmaxRPC 
during search can outperform MAC much more than we thought. We found that there 
are many instances on which MAC is not outperformed by lmaxRPC3rm but by 
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lmaxRPCbit+rm (e.g. queensKnights-15-15-5-mul and scen3-f11). And for the instances 
on which lmaxRPC3rm outperforms MAC, lmaxRPCbit+rm outperforms MAC by a much 
larger margin (e.g. queenAttacking5 and scen11-f8). Some such instances are shown in 
Table 3, the version of MAC used is MACrm[5, 6].  

5   Conclusions 

In this paper, we have introduced a method based on bitwise operations to speed up the 
processes of searching for PC-witnesses. Based on the new method, we presented two 
algorithms maxRPCbit and maxRPCbit+rm. Both algorithms and their light versions 
outperform the best ones among existing algorithms by a large margin. Significantly, 
our experiments show that maxRPC is a much more promising filtering technique than 
what we thought because lmaxRPCbit+rm outperforms MAC on a much larger number of 
instances and by a larger margin than lmaxRPCrm does. In the future, we will do further 
research to find out in which situations can maxRPC be more preferable than AC. 
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Abstract. This work studies the solving of challenging SAT problem instances
in distributed computing environments that have massive amounts of parallel
resources but place limits on individual computations. We present an abstract
framework which extends a previously presented iterative partitioning approach
with clause learning, a key technique applied in modern SAT solvers. In addition
we present two techniques that alter the clause learning of modern SAT solvers
to fit the framework. An implementation of the proposed framework is then ana-
lyzed experimentally using a well-known set of benchmark instances. The results
are very encouraging. For example, the implementation is able to solve challeng-
ing SAT instances not solvable in reasonable time by state-of-the-art sequential
and parallel SAT solvers.

1 Introduction

This work studies the solving of hard instances of the propositional satisfiability prob-
lem (SAT) using a massively parallel master-worker environment such as a grid or a
cloud where several clusters are scattered around a large geographical area. Grids and
clouds typically provide large amounts of computing power at a relatively low cost
making them increasingly appealing for users.

This work considers a grid computing model where each worker executes a job for
a limited amount of time and can communicate the results only to the master. The
run time limits are typically quite low, in this work approximately one hour. Jobs with
modest computing requirements are in many ways beneficial in practice. For example,
a job requiring a single CPU core for a relatively short time can often be scheduled
to a time slot unsuitable for jobs requiring several CPUs for an extended time period.
Furthermore, should a job fail, e.g., due to a service break in a cluster, the cost of
recovering from the failure is at most the duration of the job.

Most approaches to parallel SAT solving fall into the following two categories:

– In the portfolio approach the speed-up results from running slightly varied solvers
with the same input simultaneously and obtaining the result from the first finishing
solver (see, e.g., [10]). The idea generalizes to many related algorithms [18,12].

– In the guiding path approach the instance is constrained to several solution disjoint
subproblems solved in parallel, usually aided with load balancing for dealing with
unequally sized subproblems [25,27,22].

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 385–399, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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It is not straightforward to implement approaches from either of the two categories in an
environment which limits job run times, as they naturally assume unlimited run times.

This work discusses an iterative partitioning approach which scales to thousands of
jobs. Even current grid middlewares with relatively high latencies allow us to run tens
of jobs simultaneously. The approach was introduced in [13] and further developed
in [15]. A job for solving an instance is first submitted to the parallel environment,
and at the same time constrained to several solution disjoint formulas. These derived
formulas are then also submitted and the constraining applied iteratively to each derived
formula resulting in a recursively constructed partition tree. During the solving process
the solvers learn clauses that are used to prune the search space of the instance they are
solving [20]. This work extends [15] by taking the clauses produced by a timed out job
and integrating them to the partition tree to constrain the search spaces of the subsequent
jobs. The challenge in this is that the learned clauses may depend on the partitioning
constraints. As a solution to this problem we present two ways of determining how the
learned clauses depend on the constraints.

The resulting implementation is able to solve several challenging SAT in-
stances, some of which were not solved in the SAT Competition 2009 (see
http://www.satcompetition.org/).

The learning partition tree approach compares favorably to several state-of-the-art
parallel shared memory SAT solvers as well as to grid-based approaches.

1.1 Related Work

The iterative partitioning approach differs from the portfolio approach in that the de-
rived formulas become increasingly constrained and hopefully easier to solve deeper
in the partition tree. The approach is closely related to divide-and-conquer approaches
such as the guiding path. However, in the iterative partitioning approach the search is or-
ganized redundantly (see Sect. 3). While this might seem counter-intuitive, it has proved
to be a surprisingly good strategy; for example, it can be shown that the redundancy in
solving can help prevent some anomalies related to increasing expected run times in
unsatisfiable formulas [16]. The constraints used for producing derived formulas in this
work are not limited to unit clauses, but can instead be arbitrarily long formulas. We are
not aware of guiding path implementations that would use such constraints. Most liter-
ature, to our knowledge, assumes unbounded run times for jobs, while in [13,14,15] the
current authors have studied SAT solving in environments where maximum run time of
a job is much lower than typical time required to solve an instance.

The guiding path type constraining dates at least back to [25,4]. Much work has been
invested in finding “good” guiding paths (see, e.g. [6], as an improper construction re-
sults in the worst case in increased expected run times [16]. The partition tree approach
followed in this work attempts to solve both a formula and all its derived formulas in
parallel being therefore immune to the increase. The partitioning approaches used in
this work are described in [13] and [15]. Similar ideas based on running the VSIDS
heuristic [23] to produce good constraints are discussed in [21].

Guiding path based parallel SAT solvers for distributed computing environments
have been implemented both without clause learning [17,27] and with different strate-
gies for sharing the learned clauses [3,24,5]. The approach discussed in this work differs

http://www.satcompetition.org/
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from these by limiting the run time of jobs, by using the iterative partitioning approach
for the basis of parallelism and by using a more general approach to constructing the
derived formulas. In particular the latter strengthens the clauses as they need not be log-
ical consequences of the original instance. Although this makes clause sharing tedious
to implement efficiently, the approach performs well in experiments.

Algorithm portfolio based parallel solvers with clause sharing (see, e.g, [9,2]) work
surprisingly well in shared memory environments. They have been adapted also to grid
environments by the current authors as the CL-SDSAT framework [14] while the learn-
ing partition tree approach discussed in this work can be seen as an extension of CL-
SDSAT.

2 Preliminaries

We assume the standard notations of satisfiability and basic knowledge conflict-driven
clause learning (CDCL) SAT solvers (see e.g. [19]). Let V be a set of Boolean variables.
The set {x,¬x | x ∈ V } is the set of literals, a clause is a set (disjunction) of literals
and formula a conjunction of clauses. A formula is satisfiable if there is a set of literals
τ such that for no x ∈ V both x,¬x ∈ τ and each clause contains a literal from τ . Such
a τ is called a satisfying truth assignment, and in case one does not exist, the formula is
unsatisfiable. Let φ and ψ be formulas. If all satisfying truth assignments of ψ satisfy φ,
then φ is a logical consequence of ψ, denoted ψ � φ. If ψ and φ are satisfied by exactly
the same truth assignments, they are logically equivalent and we write ψ ≡ φ.

Many of the ideas in this work are based on the fact that a CDCL SAT solver, while
solving a formula φ, produces during the search huge amounts of clauses C such that
φ |= C. The clauses are used in guiding the further search so that in general the size
of the search space decreases. Typically one clause is learned each time the solver finds
that a truth assignment does not satisfy the formula. Of particular interest are learned
clauses containing a single literal l. Since l is true in any satisfying truth assignment
of φ, its negation ¬l can be removed from all clauses, resulting not only in smaller
remaining search space but also in shorter clauses, decreased memory foot print and
better cache performance.

3 Iterative Partitioning with Clause Learning

In this section, we first review and formalize the partition tree approach used, e.g., in
[13]. We then extend the approach to allow the use of learned clauses, i.e., clauses that
are logical consequences of the original formula or of the iteratively partitioned derived
formulas in the partition tree, and discuss how they can be found and maintained in
practice. Two implementation approaches that can make a modern CDCL SAT solver
to produce such learned clauses are then described in the next section.

3.1 Partition Trees

The idea in the iterative partitioning approach is to construct a partition tree of formulas
rooted at φ such that the satisfiability of φ can be deduced once a sufficient amount of
the formulas in the tree have been solved.
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Fig. 1. The Iterative Partitioning approach. Nodes represent derived formulas, and the nodes in
the shaded area are being solved simultaneously. Terminated jobs are marked either indet or unsat
depending on whether they run out of resources or prove unsatisfiability, and annotated with the
termination order (1 terminates first and 4 last). Some learned clauses from earlier terminated
jobs can be transferred to the newly submitted jobs, illustrated by the dashed arrows. The tree is
constructed in breadth-first order.

Given a formula ψ, the partitioning function computes the set of partitioning con-
straints P(ψ) = {Π1, . . . , Πn} that, when conjoined with ψ, result in the formulas
ψi = ψ∧Πi such that (i) ψ ≡ ψ1 ∨ . . . ∨ ψn, and (ii) ψi∧ψj is unsatisfiable whenever
i �= j. A trivial way to get a partitioning function would be to select two variables a and
b occurring in the formula ψ, and letting P(ψ) = {a ∧ b, a ∧ ¬b,¬a ∧ b,¬a ∧ ¬b}.

In the following discussion we make a distinction between the nodes of the tree and
the formulas representing the nodes. Formally, the partition tree Tψ of a formula ψ is a
rooted finite n-ary tree with the set of nodes N . Each node ν ∈ N is labeled with the
partitioning constraint constr(ν) as follows:

1. The root node ν0 is constrained with constr(ν0) = true (i.e. the empty conjunc-
tion).

2. Let νk be a node in the tree, ν0ν1 . . . νk the path from the root node ν0 to νk, and
νk,1, . . . , νk,n the child nodes of νk. The constraints constr(νk,i) = Πi are then ob-
tained by computing the set P(ψ∧constr(ν0)∧. . .∧constr(νk)) = {Π1, . . . , Πn}.

Given a node νk, the formula form(νk) = ψ ∧ constr(ν0) ∧ . . . ∧ constr(νk) is the
derived formula at νk. Based on the properties of partitioning functions it is evident that
(i) if a derived formula is satisfiable, then so is the original formula ψ, and (ii) if the
leaves of a sub-tree rooted at ψ are all unsatisfiable, then so is the formula ψ.

Example 1. Figure 1 illustrates how the partition tree is constructed on-the-fly in breadth-
first order starting from the root using eight CPU cores in a grid and when the partition
factor n = 2. In the left tree the derived formulas at nodes are sent to the environment
to be solved (in parallel) with a SAT solver, and the nodes are further partitioned into
child nodes at the same time. The derived formula at the root node ν0 (i.e., the original
formulaψ) is first sent to be solved in the environment; while it is being solved, the root
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ν0 is partitioned into nodes ν0,1, ν0,2 and these are sent to be solved in the environment;
then partitioning is applied to ν0,1, ν0,2 and so on in the similar breadth-first manner,
until finally the derived formulas in the shaded nodes are running simultaneously. If the
derived formula at a node were found satisfiable, then the original formula would be
declared satisfiable and the process would end. In the right tree, the nodes ν0,1,2 and
ν0,1,1,1 are first solved, and shown unsatisfiable. We therefore know that all derived in-
stances below these are unsatisfiable, and are therefore not submitted. Instead the nodes
ν0,1,1,2 and ν0,2,1,1 are submitted to the newly freed cores. Later the node ν0,1,1,2 is
shown unsatisfiable. We could now finish the solving of ν0,1,1 since we know it unsat-
isfiable. The solving is not terminated in the example as the clauses learned there might
still prove useful in other parts of the partition tree, and instead the next node ν0,2,1,2
is submitted. Finally the node ν0,1 times out and the derived formula in node ν0,2,2,1 is
submitted for solving.

3.2 Adding Clause Learning

Since its introduction and popularization in Grasp [20] and zChaff [23] solvers, con-
flict driven clause learning has been a major search space pruning technique applied in
sequential SAT solvers. Basically, at each conflict reached during the search the SAT
solver adds a new learned clause C that (i) is a logical consequence of the formula φ
under consideration, and (ii) prevents similar conflicts from happening in future search.
In this paper, our main goal is to exploit such learned clauses produced during solv-
ing one derived formula when solving other derived formulas in a partition tree. As a
learned clause produced when solving a derived formula may depend on the partitioning
constraints, it is not necessarily a logical consequence of some other derived formulas
and cannot thus be used when solving those. We first give a very abstract framework
of partitioning trees where arbitrary logical consequences can be incorporated and then
discuss the current realization of the framework based on using learned clauses derived
during the search tree construction.

Assume a node νk in the tree with the associated derived formula form(νk) =
ψ ∧ constr(ν0) ∧ ... ∧ constr(νk). A formula form(νk)′ is a simulating derived for-
mula, denoted by form(νk)′ ∼ form(νk), if it is of form ψ′ ∧ constr(ν0) ∧ Σ(ν0) ∧
constr(ν1) ∧Σ(ν1) ∧ ... ∧ constr(νk) ∧Σ(νk) such that (i) ψ′ ≡ ψ, and (ii) for each
0 ≤ i ≤ k, ψ∧constr(ν0)∧ ...∧constr (νi) � Σ(νi). That is, (i) the original formulaψ
may be substituted with an equivalent one (in practice: simplified with additional infor-
mation obtained during the tree construction) and (ii) “learned clauses” Σ(νi) can be
added as long as they are logical consequences of the corresponding partitioning con-
straints. Now the second rule in the definition of the partition tree Tψ can be replaced
with

2’. Let νk be a node in the tree, ν0ν1...νk the path from the root node ν0 to νk, and
νk,1, . . . , νk,n the child nodes of νk. The constraints constr(νk,i) = Πi are then ob-
tained by computing the set P(ψ′∧Σ(ν0)∧constr(ν1)∧Σ(ν1)∧. . .∧constr(νk)∧
Σ(νk)) = {Π1, . . . , Πn}

Similarly, any simulating formula form(ν)′ ∼ form(ν) at a node ν can be sent to
be solved in the distributed computing environment instead of form(ν). Due to the
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definition of simulating derived instances, the same construction algorithms and termi-
nation criteria can be applied as in the base case of partition trees without learning.

Let S be a CDCL solver. If a simulating derived formula φ = form(νk)′ is found
satisfiable by S, then the original formula ψ is also satisfiable and the construction of
the partition tree can be terminated. However, if S found φ unsatisfiable or S could
not solve φ within the imposed resource limits, we would like to obtain new learned
clauses to help in solving other nodes in the partitioning tree. That is, we would like
S to produce new sets Σ′

i of clauses such that for each 0 ≤ i ≤ k, ψ ∧ constr(ν1) ∧
... ∧ constr(νi) � Σ′

i. Each new clause set Σ′
i can be used when solving any node

having νi as its ancestor, since the constraints of νi are a subset of the constraints of its
descendant by the rule 2’. Naturally, of particular interest are the partitioning constraint
independent learned clausesΣ′

0 that can be used when solving any node in the tree; the
transfer of these clauses is illustrated by the dashed arrows in the right tree of Fig. 1.
Two techniques for obtaining such clauses are discussed in the next section.

In the experiments discussed in this work, we currently use two schemes for main-
taining the sets of learned clauses. Firstly, we maintain a database of partitioning con-
straint independent learned clauses; when such new learned clauses are obtained from
a job, they are inserted into the database. To limit the size of the database, only a fixed
amount of clauses are kept in it; currently we prefer to keep the shortest learned clauses
found. The found unit learned clauses are used to simplify the database. Secondly, we
maintain for each node νk a limited set Σ(νk) of learned clauses specific to that node
(i.e. form(νk) � Σ(νk)). For the sake of space efficiency, these sets currently contain
only unary learned clauses.

3.3 Partitioning Functions

This work considers two partitioning functions studied earlier in [15]. Both approaches
take as input the formula form(νk)′ and produce n partitioning constraints. The first,
called vsids in this work, is based on running a SAT solver with the VSIDS branching
heuristic [23] for a fixed amount of time (5 minutes in the experiments) and using the
obtained heuristic values to pick literals lij to construct the partitioning constraints

Πi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(l11) ∧ . . . ∧ (l1d1) if i = 1,

(¬l11 ∨ . . . ∨ ¬l1d1) ∧ . . . ∧ (¬li−1
1 ∨ . . . ∨ ¬li−1

di−1
)∧

(li1) ∧ . . . ∧ (lidi
) if 1 < i < n,

(¬l11 ∨ . . . ∨ ¬l1d1) ∧ . . . ∧ (¬ln−1
1 ∨ . . . ∨ ¬ln−1

dn−1
) if i = n.

The resulting constraints are not necessarily sets of unit clauses, but instead might con-
tain clauses of length di. The value of di is selected so that the partitions have equal
search spaces (see [15] for details).

The second partitioning function is based on the unit propagation lookahead [11],
where the idea is to always branch on the most propagating literal. The lookahead parti-
tioning function is analyzed further in [15], while in this work we chose not to produce
the disjunctions as above, but instead to use constraints of unit clauses.
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4 Learned Clause Tagging CDCL Solvers

We now study the problem of determining the “constraint dependency” of new learned
clauses as discussed above. Assume a partition tree node νk with a simulating derived
formula form(νk)′ = ψ∧Σ(ν0)∧constr (ν1)∧Σ(ν1)∧ . . .∧constr(νk)∧Σ(νk), sent
to the grid to be solved with a CDCL solver S, and that the solving terminates either
due to exhausting the resource limits or to conclusion that form(νk)′ is unsatisfiable.
To further exploit the work done by the solver S, we would like the solver to give new
learned clauses to help in solving other nodes in the partition tree. That is, we would like
S to produce new sets Σ(νi)′ of clauses such that ψ � Σ(ν0)′ and, for each 1 ≤ i ≤ k,
ψ ∧ constr(ν1) ∧ . . . ∧ constr(νi) � Σ(νi)′. A clause set Σ(νi)′ can always be used
when solving any descendant node of νi; we are therefore particularly interested in
the partitioning constraint independent learned clauses Σ(ν0)′ that can be used when
solving any node in the tree.

In this section we describe two techniques that can be used to “tag” the learned
clauses produced by a CDCL solver so that they can be classified as either partitioning
constraint independent (i.e. belong to Σ(ν0)′) or belonging to a set Σ(νi)′ for some
1 ≤ i ≤ k.

4.1 Assumption-Based Learned Clause Tagging

Our first, more fine grained clause tagging technique uses the concept of assumption
variables for tagging partition constraints. Each constraintΠ is annotated with a newly
introduced variable a with the conjunctionΠ∨¬a. The constraintΠ is then enabled by
setting a true. When learned clauses are deduced by the CDCL solver during its search,
these special literals are “inherited” in learned clauses, thus also tagging which parti-
tion constraints the newly derived learned clause depended on. The assumption variable
technique was introduced in [7] for dynamically adding and removing clauses in a for-
mula between subsequent satisfiability tests in the context of bounded model checking;
it has also been used in a folklore method for unsatisfiability core extraction [1].

Given a simulating derived formula form(νk)′ = ψ′∧Σ(ν0)∧constr(ν1)∧Σ(ν1)∧
. . . ∧ constr(νk) ∧Σ(νk), the idea in the assumption based tagging is that the CDCL
solver considers the straightforward CNF translation of the formula form(νk)� = ψ′ ∧
Σ(ν0)∧ (¬a1 ∨ (constr(ν1)∧Σ(ν1)))∧ . . .∧ (¬ak ∨ (constr(νk)∧Σ(νk))) instead,
where a1, . . . , ak are k disjoint assumption variables not occurring in form(νk)′. Thus,
for each clause C = (l1 ∨ . . . ∨ lm) in a “constraint subformula” constr(νi) ∧ Σ(νi)
in form(νk)′, there is a corresponding “ai-triggered clause” (¬ai ∨ l1 ∨ . . . ∨ lm)
in form(νk)�. Obviously, both form(νk)′ and form(νk) are satisfiable if and only if
form(νk)� ∧ (a1) ∧ . . . ∧ (ak) is.

To deduce whether form(νk)� ∧ (a1) ∧ . . . ∧ (ak) is satisfiable (and thus whether
form(νk) is), the CDCL solver is now invoked on form(νk)� with a list of “assump-
tions” [a1, . . . , ak]. That is, its branching heuristic is forced to always branch on these
variables first and to make the assumption that their values are true; these assumptions
activate the “ai-triggered clauses”. After the assumptions the search continues as usual
in a CDCL solver; the beauty of this technique is that when a learned clause is deduced
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 1000

 10000

 1000  10000

W
ith

 le
ar

ni
ng

 (
tim

e 
in

 s
)

Without learning (time in s)

timeout

timeout

10

100

1000

10000

100000

10 100 1000 10000 100000

M
in
iS
a
t
2
.2
.0

a
ss
u
m
p
ti
o
n
ta
g
g
in
g

MiniSat 2.2.0 no learned clauses

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100 10000 1e+06 1e+08 1e+10

M
in
iS
a
t
2
.2
.0

a
ss
u
m
p
ti
o
n
ta
g
g
in
g

MiniSat 2.2.0 no learned clauses

Fig. 2. The effect of learning in partition trees with assumption based tagging

during the search because a conflict was encountered, then the learned clause will in-
clude the literal ¬ai iff the deduction of the clause depended on any clause in the derived
formula constr(νi) ∧ Σ(νi) (this follows from [7]). Therefore, recalling that ψ′ ≡ ψ
and ψ′ ∧ constr(ν1) ∧ . . . ∧ constr(νi) � Σ(νi) for each 1 ≤ i ≤ k, we get for each
learned clauseC = (¬a1∨. . .∨¬aj∨l1∨. . .∨lm) where aj is the assumption variable
with the largest index occurring in C, that ψ′ ∧

∧
0≤i≤j constr(νi) � (l1 ∨ . . . ∨ lm).

Thus the learned clause (l1 ∨ . . . ∨ lm) can be used in the learned clause set Σ(νj) in
the simulating derived formula form(νn) of any child node of νj . The important special
case is when j = 0 and thus (l1 ∨ . . . ∨ lm) can be used in the partitioning constraint
independent learned clause set Σ(ν0) in the simulating derived formula form(ν) of any
node ν in the partition tree.

In addition to learned clause tagging, the assumption variables can also be used to
deduce an unsatisfiability level 0 ≤ U ≤ k such that, if form(νk)� ∧ (a1) ∧ . . . ∧ (ak)
is unsatisfiable, then so is ψ′ ∧

∧
1≤i≤U constr(νi). This is because at the end of the

search, when the solver deduces that not all the assumptions can be true at the same time
(and thus form(νk)� ∧ (a1) ∧ . . . ∧ (ak) is unsatisfiable), it can invoke a special form
of conflict analysis that deduces on which assumptions this “final conflict” depended on;
this is implemented, e.g., in the current version 2.2.0 of MiniSat solver. Thus if U < k,
we know that already the derived formula form(νU ) of the ancestor node νU of νk is
unsatisfiable and can backjump to νU−1 (or report that the original formula ψ is unsat-
isfiable if U = 0) and skip all the other children of νU . Unfortunately, our preliminary
experiments show that such backjumping rarely occurs in real life benchmarks when
a non-naive partitioning function is applied; it seems that the partitioning constraints
imposed by the function are almost never totally irrelevant for the unsatisfiability proof
found by the solver for form(νk)� ∧ (a1) ∧ . . . ∧ (ak) (and thus for form(νk)′). Thus,
and due to space limits, we do not analyze this tree backjumping technique further in
this paper.

In Fig. 2 we analyze the assumption-based tagging approach using 36 application
category instances from SATCOMP-2009. The instances are selected so that most of
them are challenging for modern SAT solvers; 19 of them were not solved by any
solver in the competition. We attempted solving of all the instances with the parti-
tion tree approach both with and without learning, constructing the subproblems with
lookahead and vsids partitioning functions. The leftmost figure is a scatter plot compar-
ing the learning and non-learning partition tree approaches, where each point represents
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an instance solved either with lookahead or vsids (marked ◦ and ×, respectively). Based
on the results the learning, in fact, slows down the solving process compared to the
approach without learning. The two rightmost figures illustrate the reason for this slow-
down. Each point in the figures represents one job that was constructed while running
the learning partition tree approach in the leftmost figure. Note that a single point in the
leftmost figure might correspond to thousands of such points. The middle figure shows
the run time of the jobs both with and without the learned clauses. The vertical axis is
the run time with learned clauses solved with an assumption-based learned clause tag-
ging solver, whereas the horizontal axis is the run time without learned clauses solved
with an unaltered solver. Hence if a point is above the diagonal in the figure, the over-
head caused by learning is not compensated by the reduction of the search space by
the learned clauses. In particular it is interesting to note that the number of failures,
shown as dots on the edges of the graph, is much higher when learning is used. Most
of these result from memory exhaustion. The rightmost figure shows that the number
of decisions made in the jobs decreases with learning. We may draw the conclusion
that the solver with assumption based tagging consumes significantly more memory
than the unaltered solver. This perhaps surprising result can be explained as follows.
The conflict clauses deduced during the search can, for some real life formulas, contain
large amounts of literals that (i) are implied by unit propagation after the assumption
variables have been set to true, but (ii) are not (or have not been found to be by the
solver) logical consequences of form(νk)� = ψ′ ∧ Σ(ν0) ∧ (¬a1 ∨ (constr(ν1) ∧
Σ(ν1))) ∧ . . . ∧ (¬ak ∨ (constr(νk) ∧ Σ(νk))). If the CDCL solver would consider
form(νk)′ = ψ′ ∧Σ(ν0) ∧ constr(ν1) ∧Σ(ν1) ∧ . . . ∧ constr(νk) ∧Σ(νk) as a “flat
formula” without assumption variables instead, such implied literals would not be in-
cluded in conflict clauses as they are logical consequences of form(νk)′. Such long
clauses can consume excessive amounts of memory and also slow down the solver. We
will shortly return to this perhaps surprising result in Example 2. The phenomenon has
not, to our knowledge, been reported previously in parallel SAT solving, and we believe
it plays a role also in the approaches based purely on guiding paths.

4.2 Flag-Based Learned Clause Tagging

To overcome the previously described challenge in assumption-based learned clause
tagging, we describe here a light-weight version for clause learning similar to the one
used in [26]. The intuition is to over-approximate the dependency of a learned clause
from the constraints by flagging clauses which potentially depend on the assumptions.

Given a node νk with a simulating derived formula form(νk)′ = ψ′ ∧ Σ(ν0) ∧
constr(ν1) ∧Σ(ν1) ∧ . . . ∧ constr(νk) ∧Σ(νk), our second clause tagging technique
executes a CDCL solver “as is” on the formula except that in the beginning it marks the
clauses in φ ∧Σ(ν0) as “safe”. Whenever a new learned clause (including learned unit
clauses which are expressed as new “decision level 0” implied literals inside the solver)
is derived, it is also marked “safe” if its derivation depended only on “safe” clauses.
As a consequence, and recalling φ � Σ(ν0), learned clauses marked “safe” are logical
consequences of φ and can thus be included in the constraint-independent learned clause
set Σ(ν0) in any other node μm of the partition tree. The learned clauses not marked
“safe” may depend on constr(ν1) ∧ Σ(ν1) ∧ . . . ∧ constr(νk) ∧ Σ(νk) and are thus
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Fig. 3. The effect of learning in partition trees with flag based tagging

only guaranteed to be logical consequences of φ∧ constr(ν0)∧ . . .∧ constr(νk); they
can only be included in the constraint-dependent clause set Σ(νk) when considering
any descendant node νl of νk.

This technique has the advantage of solving the above discussed “long clause prob-
lem” and adding only a very minimal overhead on the CDCL solver but, as shown be-
low, the disadvantage that it can produce fewer constraint-independent learned clauses
than the assumption based technique.

Figure 3 illustrates the effect of using flag-based learned clause tagging to the run
time of the partition tree approach and to each job. We first note that based on the
results in the leftmost graph using learned clauses seems to provide speed-up to the
solving in most of the instances from the benchmark set. The per-job results in the
two rightmost figures show that the previously observed failures are roughly equally
common both with the flag-based solver with learned clauses and the unaltered solver
without learned clauses. In particular the more difficult instances seem to be solved
faster with the learned clauses (middle figure). The effect is also seen in the number of
decisions (rightmost figure).

To shortly illustrate the two tagging techniques and to see that the assumption based
one can produce more constraint-independent, although longer, learned clauses, con-
sider the following simple example.

Example 2. Let the original formula φ include the clauses (x1 ∨x2 ∨x3)∧ (x2 ∨¬x3)
and let constr(ν1) = (¬x1) while Σ(ν0) = Σ(ν1) = ∅.

In the assumption based tagging, the solver will start with the formula φ extended
with the assumption-encoded clause (a1∨¬x1). Making first the assumption branch on
¬a1 and then the non-assumption branch on ¬x2, the solver will learn the constraint-
independent learned clause (x1 ∨ x2); note that ¬x1 is not (necessarily) a logical con-
sequence of φ and thus (x1 ∨ x2) is not simplified to x2 by resolving on ¬x1.

When using flag based tagging, the solver starts with an instance having the clauses
(x1 ∨ x2 ∨ x3)s ∧ (x2 ∨ ¬x3)s ∧ (¬x1) where the superscript s denotes a “safe”
clause. Similarly branching on ¬x2 results in a non-safe (and thus, correctly, constraint-
dependent) learned clause (x2); here ¬x1 is trivially a logical consequence of the input
formula φ ∧ constr(ν1) and thus (x1 ∨ x2) is simplified to x2 by resolving on the
non-safe unit clause ¬x1.
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5 The Main Experimental Results

This section compares our implementation of the iterative partitioning approach with
clause learning to some other SAT solver implementations using all the 292 SATCOMP-
2009 application benchmarks. These main experiments use the flag based learned clause
tagging with the vsids heuristic, as it seems to perform slightly better than the lookahead
heuristic (see the leftmost graph in Fig. 3). The remaining parameters, discussed in this
section, are not particularly tuned for the benchmark set. They can be seen as reasonable
guesses, but a closer study would likely reveal better values for these instances. The
comparison uses the implementations below.

– MiniSat 2.2.0, a sequential SAT solver we have used as a basis for the grid-based
approaches.

– Part-Tree, a grid-based iterative partitioning implementation without clause shar-
ing [15].

– Part-Tree-Learn, a grid-based implementation of the learning iterative partitioning
approach described in this work.

– Cl-Sdsat, a grid-based portfolio approach [14]. Learned clauses are collected from
the timed-out jobs and used in subsequent jobs. Underlying solver is MiniSat 2.2.0.

– ManySat 1.1 and ManySat 1.5, multi-core portfolio solvers using 4 cores [9].
– Plingeling 276, a multi-core portfolio solver which won the SAT-Race 2010. The

results reported in this work are obtained with 12 cores [2].

The Cl-Sdsat, Part-Tree, and Part-Tree-Learn approaches use the M-grid environment
currently consisting of nine clusters with CPUs purchased between 2006 and 2009.
For more detailed information, see http://wiki.hip.fi/gm-fi/. The learned
clauses transferred with the jobs are limited so that they contain in total 100 000 liter-
als in these approaches. The other implementations were run using twelve-core AMD
Opteron 2435 nodes from the year 2009.
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Fig. 4. Cumulative queuing time distribu-
tion in M-grid

As discussed before, each grid-based ap-
proach consists of a work flow of several rel-
atively short lived jobs. The jobs enter the
clusters through a batch queue system after
a varying queuing time dqueuing which is af-
fected, for example, by the background load
of the grid. Figure 4 shows the cumulative
distribution of the queuing time measured
over 200 000 jobs between 2010 and 2011;
time t is shown on the horizontal axis, and
the vertical axis gives the probability that the
queuing time dqueuing is at most t; median
queuing time is approximately two minutes.
The queuing time is included in the reported run times of the grid based approaches.
Actual parallelism in the grid experiments depends on the queuing time and on the time
required to construct the jobs, which in these experiments is at most 43 seconds per
derived formula. As a result, the amount of parallelism varies typically between 8 and
60 simultaneously running jobs.

http://wiki.hip.fi/gm-fi/
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Fig. 5. Comparing Part-Tree-Learn to Part-Tree (left), and Cl-Sdsat (right). Satisfiable instances
are marked with crosses (×) and unsatisfiable with boxes (�).

5.1 Comparing the Grid-Based Approaches

We first compare the grid-based Part-Tree and Part-Tree-Learn implementations in left
of Fig. 5. The crosses (×) denote satisfiable and boxes (�) unsatisfiable instances from
the SATCOMP-2009 benchmarks, and a mark below the diagonal means that Part-Tree-
Learn performed better on that instance. An instance not solved in 6 hours is considered
timed out. The 6 hour limit is marked on the graphs with the two inner lines on top and
on the right of the graphs, and timed out instances are placed on the edges of the graph.
The results suggest that learning may slow down the solving of easy instances but, as the
run time of Part-Tree increases, the learned clauses decrease the run time of Part-Tree-
Learn. The initial learned clauses are usually long and cause overhead in the search.
The “quality” of the learned clauses improves as the search proceeds, which probably
explains the speed-up for the more difficult instances.

The second experiment compares Cl-Sdsat against Part-Tree-Learn. The high
number of time-outs for Cl-Sdsat compared to Part-Tree-Learn suggests that usually
Part-Tree-Learn performs better than Cl-Sdsat. This is an interesting result, since most
state-of-the-art parallel SAT solvers are based on a Cl-Sdsat-style portfolio approach,
where several SAT solvers are running in parallel and sharing learned clauses. However,
Cl-Sdsat is able to solve some instances not solved by Part-Tree-Learn, an indication
that search space partitioning might not be the best solving approach for all instances.

5.2 Comparison to Parallel SAT Solvers

We now compare Part-Tree-Learn to three multi-core SAT solvers and the sequential
MiniSat 2.2.0 underlying Part-Tree-Learn. The jobs of Part-Tree-Learn ran in the grid
with 2GB memory and approximately 1 hour time limit. All other solvers ran with
24GB memory and 6 hour time limit in relatively modern 12-core nodes so that no
other process could cause, e.g., memory bus intereference with the solver. As the nodes
are to our knowledge faster than the nodes in the grid and each job of Part-Tree-Learn
experienced in addition the queue delay, we feel that the comparison should be rela-
tively fair to our “competitors”. The number of cores used by the other solvers is lower
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Table 1. Instances that were not solved in SATCOMP-2009

Name Type Plingeling ManySat 1.1 ManySat 1.5 Part-Tree-Learn Part-Tree

9dlx vliw at b iq8 Unsat 3256.41 2950.52 2750.39 — —
9dlx vliw at b iq9 Unsat 5164.00 4240.00 3731.00 — —
AProVE07-25 Unsat — — — 9967.24 9986.58
dated-5-19-u Unsat 4465.00 11136.00 18080.00 2522.40 4104.30
eq.atree.braun.12.unsat Unsat — — — 4691.99 5247.13
eq.atree.braun.13.unsat Unsat — — — 9972.47 12644.24
gss-24-s100 Sat 2929.92 — 6575.00 3492.01 1265.33
gss-26-s100 Sat 18173.00 1232.17 — 10347.41 16308.65
gus-md5-14 Unsat — — — 13890.05 13466.18
ndhf xits 09 UNSAT Unsat — — — 9583.10 11769.23
rbcl xits 09 UNKNOWN Unsat — — — 9818.59 8643.21
rpoc xits 09 UNSAT Unsat — — — 8635.29 9319.52
sortnet-8-ipc5-h19-sat Sat 2699.62 10785.00 7901.00 4303.93 20699.58
total-10-17-u Unsat 3672.00 6392.00 10755.00 4447.26 5952.43
total-5-15-u Unsat — — — 18670.33 21467.79
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Fig. 6. Learning Partition Tree against MiniSat 2.2.0 (left) and Plingeling (right)

than that used by Part-Tree-Learn, but we see this as an architectural limitation. For
Plingeling we experimented with several numbers of cores. The 12-core configuration
seemed to give the best result, whereas the default 4-core configuration was used for
ManySat 1.1 and ManySat 1.5. Of course, MiniSat 2.2.0 was run with a single core.

Table 1 reports those of the 63 instances not solved in SATCOMP-2009 that were
solved by at least one of the implementations in our experiments. The solvers Mini-
Sat 2.2.0 and Cl-Sdsat are omitted as they solved none of the unsolved instances. Based
on the results, both Part-Tree and Part-Tree-Learn perform well on these hard instances,
solving more instances than the other implementations. However, we do note that there
are two instances from this benchmark set that Part-Tree and Part-Tree-Learn could not
solve and three more where the solving time was lower in some other approach.

The Part-Tree-Learn approach is compared against MiniSat 2.2.0 and Plingeling on
the left and right hand side of Fig. 6, respectively, using the full set of application in-
stances from SATCOMP-2009. We first note that Part-Tree-Learn performs in almost
all more difficult instances significantly better than MiniSat 2.2.0. There are still some
instances that cannot be solved with Part-Tree-Learn, an indication that the bounded job
run times might limit the capabilities of Part-Tree-Learn. The comparison to the win-
ner of SAT-Race 2010 Plingeling reveals that from the 292 instances, Part-Tree-Learn
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could solve 227 and Plingeling 234. Based on the scatter plot there are several instances
that are much faster solved with Plingeling although the number of cores available to
Plingeling was lower. It is interesting to note that there are still many instances that
solved quickly with Part-Tree-Learn which, based on the results in Table 1, are such
that they are difficult for many other solvers competing in SATCOMP-2009. One could
read the right-hand side plot of Fig. 6 so that if an instance can be solved, it is either
solved quickly with Plingeling or Part-Tree-Learn. It is interesting, although beyond
the scope of this work, to contemplate whether an implementation of Part-Tree-Learn
based on Plingeling would indeed result in an even higher performance.

Finally we report that we could use Part-Tree-Learn to show unsatisfiable a chal-
lenge instance called aes-top-22-symmetryBreaking posed in a footnote of [8] in ap-
proximately 45 hours. Neither Plingeling, ManySat 1.1, ManySat 1.5, nor MiniSat 2.2.0
could produce the result in three days, and this is indeed the fastest wall-clock time
known computation of unsatisfiability for this instance.

6 Conclusions

This work introduces a new approach to solving hard SAT instances in a grid or cloud
computing environment where a master sends jobs to workers having tight limits on
their resources. The approach is based on partitioning iteratively a given formula to
increasingly constrained derived formulas while maintaining a learned clause collec-
tion of heuristically increasing quality. Promising sets of learned clauses are selected
from the collection for each job based on the constraints of the corresponding derived
formula. Two techniques for clause learning in the workers are studied: the more fine-
grained assumption-based tagging and the light-weight flag-based tagging. Two parti-
tion functions are used to produce the partitioning constraints.

The results indicate that the clause-learning partition tree approach compares favor-
ably to state-of-the-art SAT solvers particularly in the most challenging SAT instances.
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of Finland (project 122399) and the valuable comments of the anonymous reviewers.
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Abstract. Dial-a-Ride problems (DARPs) arise in many urban transportation ap-
plications. The core of a DARP is a pick and delivery routing with multiple vehi-
cles in which customers have ride-time constraints and routes have a maximum
duration. This paper considers DARPs for which the objective is to minimize
the routing cost, a complex optimization problem which has been studied exten-
sively in the past. State-of-the-art approaches include sophisticated tabu search
and variable neighborhood search. This paper presented a simple constraint-based
large neighborhood search, which uses constraint programming repeatedly to find
good reinsertions for randomly selected sets of customers. Experimental evi-
dence shows that the approach is competitive in finding best-known solutions
and reaches high-quality solutions significantly faster than the state of the art.

1 Introduction

The Dial-a-Ride Problem (DARP) is a variant of the Pickup and Delivery Problem
(PDP), frequently arising in door-to-door transportation services for elderly and dis-
abled people or in services for patients. In recent years, dial-a-ride services have been
steadily increasing in response to popular demand. [8]. A DARP consists of n customers
who want to be transported from an origin to a destination. Requests can be classified
as outbound (say from home to the hospital) or inbound (from hospital back to the
home). DARPs can be rather diverse and there is no standard formulation in literature.
Various formulations try to balance the cost of the route and user inconvenience via
soft and hard constraints. One formulation minimizes the weighted sum of total routing
cost, time-window violations, and the number of vehicles used [1]. Another has multi-
ple depots, a heterogeneous fleet, service times, time windows, and maximum customer
ride times [13]. Yet another minimizes the weighted sum of the customer transportation
times, the excess customer ride time with respect to direct and maximum ride time,
time-window violations, customer waiting time and excess work time [10]. A survey of
various DARP models and the algorithms used to solve them is given in [8].

This paper studies the formulation of Cordeau et al. [7] defined in terms of a fixed
number m of vehicles, which makes sense in practice. There is only one depot. There
are time-window constraints on the pickup or delivery vertex depending on whether the
request is inbound or outbound. We also have service times, maximum ride time, and
maximum route duration constraints. The objective is to minimize the total routing cost,

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 400–413, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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i.e., the travel distance. A tabu-search procedure to solve the static version of the prob-
lem where the requests are known in advance was presented by Cordeau et al [7] while a
Variable Neighborhood Search procedure was proposed recently by Parragh et al. [11].
A procedure for testing the satisfiability of an instance was given by Berbeglia et al. [5].
A procedure for testing the satisfiability for the dynamic version of the problem, where
only a subset of requests is known in advance, was presented in [4]. In general, one
is interested in finding high-quality solutions to DARPs since, as the name indicates,
customers call for a service.

This paper presents a large neighborhood search for DARPs and makes the following
contributions:

1. It proposes a large neighborhood search LNS-FFPA (FFPA will be defined in Sec-
tion 6) which significantly outperforms the traditional LNS algorithm used in vehi-
cle routing (e.g., [12,3,2]).

2. It shows that LNS-FFPA significantly improves the quality of the routings found
under tight time constraints compared to the state-of-the-art variable neighborhood
search and tabu-search algorithms.

3. It shows that LNS-FFPA compares very well with the state-of-the-art constraint-
programming approach to find feasible solutions to DARPs.

From a technical standpoint, LNS-FFPA features two novelties. First, it does not im-
pose that the neighborhood search must find an improving solution. Second, LNS-FFPA
terminates the neighborhood search after finding a feasible solution. This solution is ac-
cepted using a Probabilistic criterion, which allows worse solutions to be accepted for
subsequent iterations. As mentioned earlier, the diversification resulting from these two
design decisions is key in finding high-quality solutions under time constraints. It is also
important to emphasize that LNS-FFPA, which is a very generic search technique, im-
proves solution quality under very tight constraints over highly dedicated local search
implementations. This makes it ideal for the highly dynamic environments in which
DARPs arise.

The rest of the paper is organized as follows. We first present the problem formula-
tion and give an overview of the state-of-the-art. This review should give readers a sense
of the sophistication of the existing approaches. We then present our large neighborhood
algorithm LNS-FFPA, report the experimental results, and conclude the paper.

2 Formulation

The input to DARP consists of the number m of vehicles, n requests, the maximum ride
time L for customers, the maximum route duration D, and the planning time horizon
T , i.e., the hours between which the vehicles can operate. A DARP is defined on a
complete graph G = (V,E) where V = {v0, v1, . . . , v2n} is the set of vertices and
E = {(vi, vj) : vi, vj ∈ V, i �= j} is the set of edges. Vertex v0 denotes the depot.
Each request i (1 ≤ i ≤ n) consists of a pair of vertices (vi, vi+n). With each vertex vj
is associated a service duration dj ≥ 0 , a load qj and a time window [ej , lj ]. We also
have d0 = 0, q0 = 0, and e0 = 0, l0 = T . Service duration is the time needed to service
a vertex. Requests are either inbound or outbound. If i is an outbound request, then
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the pickup vertex vi has the time window [0, T ] and is called non-critical, whereas the
delivery vertex is called critical. If i is an inbound request, then the delivery vertex vi+n
has time window [0, T ] and is non-critical whereas the pickup vertex is critical. The
matrix ti,j also denotes the distance between vertices i and j. Given these definitions,
a DARP consists in finding a route for each of the m vehicles such that (1) the route
begins and ends at the depot; (2) The load of a vehicle k never exceeds its capacity
Qk; (3) The total duration (i.e., the difference between the end time and the start time)
never exceeds a preset bound Tk; (4) For each request i, vi and vi+n are serviced by
the same vehicle and vi+n is visited after vi; (5) The ride time of any customer (i.e., the
difference between the serving time at the delivery vertex and the departure time at the
pickup vertex) does not exceed L; (6) For each vertex vi, the starting time of its service
lies between [ei, li]; and (7) The total routing cost of all vehicles is minimized. In our
formulation as in [7], the total routing cost is equal to the total distance traveled by the
vehicles.

3 A Constraint Programming Approach

Berbeglia et al [5] use a Constraint Programming (CP) approach for the DARP formula-
tion in [7], except they do not model the route duration constraint and do not attempt to
minimize the routing cost. Their focus is to check the satisfiability of DARP instances.

The Model. Each vertex vi has a successor variable s[i] and there is an AllDifferent
constraint on all successor variables. The precedence, time window, ride time, and max-
imum vehicle capacity constraints are modeled via auxiliary variables representing the
load, serving vehicle, and serving time for each vertex. The routes are constructed by
branching on the successor variables.

Variable Selection. Let S be the set of all successor variables with the smallest domains.
For every value v in the domain of some variable in S, the CP algorithm computes v#,
the number of times that value appears in the domain of some variable in S. Denote by
S′ the set of all variables in S for which the sum

∑
v∈domain(Si)

v# is maximized. The
CP algorithm randomly select a variable from S′.

Value Selection. Let s be the chosen variable. The partial route of s is defined as the
sequence of vertices vi, vi+1, . . . , vj such that the successor s[vk] of vk is vk+1 and
vj = s. The value-selection heuristic considers the following vertices in sequence:

1. a delivery vertex whose corresponding pickup vertex is in the partial route of s;
2. a pickup vertex randomly selected from the domain of s;
3. a delivery or a depot vertex.

Filtering Algorithms. Berbeglia et al. [5] developed two dedicated filtering algorithms
for DARPs. The first filtering algorithm is based on solving exactly the Pickup and
Delivery Problem with Fixed Partial Routes (PDP-FPR), a relaxed version of the DARP.
The PDP-FPR takes into account the precedence and the capacity constraints and is
strongly NP-complete [6]. The authors proposed a dynamic-programming algorithm to
solve it exactly and use that to develop a filtering algorithm for PDP-FPR.
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The second filtering algorithm is a partial filtering algorithm for the basic DARP with
Ride Time Constraint problem, also a relaxation of the original problem with only the
ride time constraint which is NP-complete [6]. For every unassigned successor variable
s, the algorithm examines every pickup vertex p in the partial route of s and calculates
a lower bound on the minimum time needed to get from p to the corresponding delivery
vertex d. If this bound exceeds the maximum ride time, then some values from the
domain of s can be removed. A similar procedure is executed for the delivery vertices
in the partial routes of the vertices in the domain of s. The filtering algorithms are too
complex to be described given space constraints but readers can consult [5] for the full
details.

4 A Tabu Search Approach

A Tabu-Search approach was developed by Cordeau et al. [7]. The algorithm starts with
a random initial solution s0 and, at every iteration t, moves from solution st to a solu-
tion in its neighborhood. To prevent cycling, certain attributes of previous solutions are
declared tabu unless those attributes form part of a new best solution. A diversification
mechanism is in place to reduce the likelihood of being trapped in a local minimum. In
addition, every κ iterations, every request is sequentially removed from its current route
and inserted in the best possible location. Some important aspects of the algorithm are
briefly described 1below.

Relaxation Mechanism. One of the key features of the tabu-search algorithm is that it
allows the exploration of infeasible solutions. The time window, ride time, capacity, and
route duration constraints are relaxed and their violation is penalized in the objective.
The objective is defined as f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s) where
α, β, γ, τ are self-adjusting positive parameters, c(s) is the routing cost, q(s) the load
violation, d(s) the route duration violation, w(s) the time window violation, and t(s)
the ride-time violation. The search tries to minimize the routing cost and the violations
simultaneously to get good solutions that satisfy all the constraints.

Neighborhood. The neighborhood of a solution consists of moving a request i from
a route r to a route r′. In such a case, the attribute (i, r) is put in the tabu list. If an
attribute (i, r′) is in the tabu list, then the request i cannot be moved to route r′. As a
form of aspiration, if moving request i to route r′ would result in a smaller cost than the
best known solution which has request i in route r′, then the tabu status of the attribute
(i, r′) is revoked.

Penalty Adjustment. The penalties for the violations are adjusted dynamically through
the course of the search. At every iteration, if a constraint is being violated in the current
solution, the penalty for that constraint is multiplied by a factor (1 + δ) (δ > 0). If on
the other hand, the constraint is not violated, the penalty is divided by the same factor.
If a penalty reaches a fixed upper bound, then it is reset to 1.1

1 This particular aspect is not mentioned in [7] but was learned through personal communication.
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Neighborhood Evaluation. Cordeau et al. [7] uses three different schemes for choosing
where to insert a request on a route. The simplest one only minimizes the time-window
violations. The second does the same and also minimizes the route duration violations
without increasing the ride-time violations. Both are linear time algorithms. The third
evaluation procedure minimizes first the time-window violations, then the route dura-
tion violations and then the ride-time violations without increasing the time window
or route duration violations. It is a quadratic time procedure. To reduce the size of the
neighborhood, the algorithm first looks for the best insertion place for the critical ver-
tex (ride-time violations are ignored in this step) and then the best insertion place for
the non-critical vertex, while keeping the critical vertex in its best insertion place. In
particular, different insertion places for the critical vertex are not considered.

5 A Variable Neighborhood Approach

A Variable Neighborhood Search (VNS) procedure for the DARP was proposed by [11].
The search starts with an initial solution s0 generated by taking into account the spatial
and temporal closeness of vertices. Then, at every iteration t with solution st, a random
solution s′ is generated in the neighborhood Nk(st) in a step called shaking. Here k
indicates which neighborhood is being used. The heuristic uses three different types
of neighborhoods with multiple neighborhood sizes for a total of 13 different neighbor-
hoods. Following that, a local search step is applied to s′ to get solution s′′. A simulated
annealing type criterion is used to decide whether s′′ replaces st and become the new
incumbent solution. If st is not replaced, the next (larger) neighborhood is tried. Oth-
erwise, s′′ replaces st and the search begins with the first neighborhood, i.e., k is reset
to 1. If k reaches 13, the maximum number of neighborhoods, it is also reset to 1. In-
feasible solutions are also permitted in this framework and they are incorporated into
the objective as in [7]. The neighborhood evaluation is also the same. Their results are
competitive with the results obtained by [7]. A few other important aspects of the solver
are highlighted below.

Neighborhood Structure. Three different types of neighborhoods are employed. In the
swap neighborhood, two sequences of requests are chosen from two randomly selected
routes. Those requests are then ejected from their current route and inserted in the
other selected route in the best possible position. The chain neighborhood applies the
ejection chain idea [9]. First two routes are randomly chosen and a sequence of re-
quests is ejected from the first route and inserted in the best possible way in the second
route. Then a sequence of requests which would decrease the evaluation function value
of that route the most is ejected from the second route and moved to a third route (which
may even be the first route). This last step is repeated a fixed number of times. The size
of the sequences is also fixed. The third type of neighborhood is the zero-split neighbor-
hood which is parameterless. Define a natural sequence to be one where the load at the
beginning and end of the sequence is zero. Then the neighborhood is based on the idea
that quite often multiple such natural sequences exist in routes. Thus a random number
of such natural sequences are ejected from a route. Each of them is then inserted inde-
pendently in a random route at their best insertion point. By varying the parameters of
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the first two neighborhoods, along with the zero-split neighborhood, a sequence of 13
different neighborhoods is obtained.

Local Search. After the shaking step, a local search step is applied. Requests are se-
quentially removed from their current position and inserted in the first position that
would improve the route’s evaluation function value. If no such position exists for
a request, then the request is kept at its original place. Since this procedure is time-
consuming, it is only called if the solution after the shaking step is considered a promis-
ing solution, i.e., a solution that has a good possibility of becoming the new incumbent
solution. Further details are in [11].

6 The LNS-FFPA Algorithm

The large neighborhood search algorithm (LNS-FFPA) is the main contribution of the
paper. LNS-FFPA, where FFPA stands for First Feasible Probabilistic Acceptance, is
inspired by the LNS algorithm described in [12,2,3] to minimize the travel distance for
vehicle routing problems in [12] and pickup and delivery problems in [2]. However,
LNS-FFPA contains some novel design decisions which are key to obtaining high-
quality solutions on DARPs.

The Model. Each vertex vi has a successor variable si. The routes are constructed
by inserting a non-scheduled request ri with pickup vertex vi and delivery vertex vj
in the route. The pickup vertex is inserted in between two other vertices vp and vs
which are parts of a route and similarly for the delivery vertex. In other words, each
branching decision in LNS-FFPA corresponds to the insertion of a request in a route.
Every time LNS-FFPA branches, it adds the following constraints for both the pickup
and the delivery vertex of the request

bi ≥ bp + dp + tp,i

bs ≥ bi + di + ti,s

where bi is the serving time of the pickup or delivery vertex in question, di is the serving
duration of a vertex and ti,j is the distance between two vertices as specified in Section
2. These constraints are removed upon backtracking.

The Feasibility Search. At a high level, LNS-FFPA is a constraint-programming search
to find a feasible solution to DARPs, coupled with a large neighborhood algorithm to
minimize travel distance. Algorithm 1 describes the algorithm for finding feasible so-
lutions. The algorithm receives a partial solution, i.e., a set of partial routes for the ve-
hicles. As long as there are unassigned customers, the algorithm selects such a request
r (line 3). It then considers all its possible insertion points (line 4) and calls the algo-
rithm recursively for each such insertion point p (line 6–8). If the recursive call finds
a feasible solution, the algorithm returns. Otherwise, it removes the request and tries
the remaining insertion points. Note that the insertion points are explored in increasing
order of e(r, p) which is defined as (α and β are positive constants)

α · costIncrease(r, p)− β · slackAfterInsertion(r, p)
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Algorithm 1. Tree-Search(PartialSolution)
1: if no unassigned requests left then
2: return PartialSolution
3: r ← GetUnassignedRequest()
4: for all feasible insertion points p for r in increasing order of e(r, p) do
5: Insert r at point p in the PartialSolution
6: ret = Tree-Search(PartialSolution)
7: if ret is a solution then
8: Return ret {Feasible solution found in sub-branch}
9: Remove r from PartialSolution

10: return False {No feasible solution found for this sub-branch}
The Algorithm for Finding a Feasible Solution Given a Partial Solution.

Algorithm 2. GetUnassignedRequest()
1: S1 ← {r : r is an unassigned request and the number of routes in which r can be inserted is

minimized}.
2: S2 ← {r : r ∈ S1 and the number of insertion points for r is minimized}.
3: S3 ← {r : r ∈ S2 and the best insertion point for r increases e(r, p) by the least amount}.
4: return a randomly chosen element from S3.

Request Selection Heuristic

where costIncrease(r, p) denotes the increase in routing cost produced by inserting
request r at insertion point p and slackAfterInsertion(r, p) denotes the gap between
the serving times of the pickup and delivery vertices and their successors and predeces-
sors after the insertion. The gap for a vertex vi is given by

servingTime [succ(vi)]−servingTime [vi]+servingTime[vi]−servingTime [pred(vi)]

and the gap for the pickup and delivery vertices is the sum of the gaps of the individual
vertices. In other words, the insertion points are chosen to minimize the increase in the
routing cost and maximize the available slack.

Algorithm 2 specifies which requests are inserted first, i.e., how line 3 in Algorithm 1
is implemented. It selects a request which can be inserted in the fewest vehicles (set S1),
which has the fewest insertion points (set S2), and whose best insertion point produces
the smallest amount in objective value.

Algorithm 1 is used both for finding an initial solution and for reinserting vertices
during the large neighborhood search. In [12,2,3], the corresponding algorithm uses
Limited Discrepancy Search (LDS) and limits the number of feasible insertion points
explored at every search node. Moreover, such a neighborhood search is constrained
to produce only improving solutions. In contrast, no such restrictions are imposed on
Algorithm 1: It is a pure depth-first search algorithm, exploring all potential insertion
points and returning the first feasible solution extending the input partial configuration.

For some instances with high (number of requests/number of vehicle) ratios, restarts
improve performance: Algorithm 1 restarts after max(γ ·m, τ) failures where γ and τ
are positive constants. This is only used for finding an initial feasible solution.
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Algorithm 3. MinimizeRoutingCost(s,maxSize, range, numIter, timeLimit, d)
1:
2: best← s
3: current← s
4: for i← 2; i ≤maxSize-range; i← i + 1 do
5: for j ← 0; j ≤range; j ← j + 1 do
6: for k ← 0; k ≤numIter; k ← k + 1 do
7: RelaxedSolution← Randomly select i + j requests and
8: remove them from current
9: new← Tree-Search(RelaxedSolution)

10: pr← random number between 0 and 1
11: if f(new) < f(current) OR pr < d then
12: current = new
13: if f(current) < f(best) then
14: best = current
15: if timeLimit reached then
16: return best
17: return best

The LNS-FFPA Algorithm for DARPs.

The Large Neighborhood Search Algorithm 3 describes the LNS-FFPA algorithm to
minimize the routing cost. It takes as input an initial feasible solution s and an up-
per bound on the number of requests that can be relaxed maxSize. To explore smaller
neighborhoods first, LNS-FFPA uses a parameter range to increase the neighborhood
size progressively. Finally, the procedure receives as inputs the number of iterations per
neighborhood (t), the time limit for running the algorithm (timeLimit) and the proba-
bility d of accepting a worse solution. In addition, the function f used in the procedure
returns the routing cost of a solution. The current solution is first initialized to the initial
solution passed in to the procedure (line 3). Then the neighborhood is explored as given
in lines 4-6. The number of requests that can be relaxed is steadily increased (line 4).
Once it reaches the upper bound, it is effectively reset to 1. For a particular neighbor-
hood size, a small range of neighborhoods starting from that size are explored (line 5).
Every neighborhood size in that range is explored for numIter iterations (line 6). The
number of requests equal to the neighborhood size are relaxed (line 7). The requests to
relax are chosen at random. More sophisticated methods to select the requests to relax
including the one used in [12,2,3] were tried but the random heuristic was significantly
better for DARPs. Our conjecture is that the side constraints in DARPs, in particular the
ride time, make it much harder to select a set of spatially related requests that could lead
to a better solution than for more traditional VRPs without the ride constraint [12,2,3].
The search then attempts to complete the relaxed solution by calling Algorithm 1 to
find a satisfying solution (line 9). The current solution is replaced by the new solution
(which might be the same as the old solution) if either (1) the routing cost of the new
solution is lower than the current solution; or (2) with some probability d (line 10). If
the current solution is better than the best solution, then the best solution is updated
(line 13). At the end or if the time limit is reached, the best solution found is returned
(line 14-15 and line 16).
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LNS-FFPA has some unique features compared to the standard LNS algorithms.
First, during the neighborhood exploration, LNS-FFPA does not search for a solution
with a routing cost better than the current solution, just a feasible solution. This diver-
sifies the search and, equally importantly, enables LNS-FFPA to explore many reinser-
tions effectively. Indeed, since the selection of the requests to relax is randomized, it is
not very likely that the search can discover better solutions for a given reinsertion set.
Hence, it is not cost-effective to explore the sub-neighborhood exhaustively in the hope
of finding a better solution. We could limit the number of insertion points per requests
as is done in [12,2,3] but the algorithm would still take significant time on unsuccessful
searches, while reducing the probability of finding high-quality solutions. Instead, we
simply let Algorithm 1 find the first feasible, but not necessarily improving, solution, its
variable and value heuristics guiding the search towards good solutions. Since finding a
feasible solution is fast, LNS-FFPA explores many reinsertions, while providing a good
diversification. This aspect is critical and led to significant improvements in quality, as
will be demonstrated shortly.

7 Numerical Results

This section presents the experimental results, justifies the design decisions underlying
our LNS-FFPA algorithm, and compares the algorithm with prior algorithms.

The Algorithms. We compared our LNS-FFPA algorithm against the CP approach of
Berbeglia et al. [5], the tabu search by Cordeau et al. [7], and the variable neighborhood
search by Parragh et al. [11]. For the parameters for Algorithm 1, we set α = 80 and
β = 1. For the parameters for the restart strategy, we set γ = 200 and τ = 1000. For the
LNS Search, we set maxSize = n/2, where n is the number of requests, range = 4,
numIter = 300, and d = 0.07.

The LNS-FFPA and Variable Neighborhood Search algorithms2 were tested on a In-
tel Core 2 Quad Q6600 machine with 3 GB of RAM. The Comet language was used
to implement the LNS-FFPA algorithm and is in general 3–5x slower than comparable
C++ code. As the code for VNS and Tabu Search is implemented in C++, we conserva-
tively divide the amount of time LNS-FFPA takes by a factor of 3 for this evaluation.

The code for the the tabu search was unavailable and hence, we can only compare
with the tables given in [7] which report results for only one or two runs of the algo-
rithm.3 This comparison is much less reliable than the comparison with the most recent
Variable Neighborhood Search [11] but is given for completeness.

The Instances. The Dial-a-Ride instances are taken from Parragh et al. [11] and Cordeau
et al. [7]. They are based on realistic assumptions and data provided by the Montreal
Transit Commission (MTC). Half of the requests are outbound and half inbound. They
are divided into classes a and b, the difference being that class a instances have tighter
time windows. In the instances, m denotes the number of vehicles and n is the number
of requests.

2 Many thanks to Parragh et al. for providing us with the code for the VNS search.
3 As the tabu search was run on a 2 GHZ machine, when it is compared with the LNS-FFPA

algorithm, the time for LNS-FFPA is divided by 2.5 instead of 3.
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Table 1. The Benefits of LNS-FFPA

5 minute run
Class a LNS LNS-FFPA

m n Mean Best Mean Best
3 24 191.14 190.02 190.77 190.02
4 36 302.77 296.36 292.86 291.71
5 48 318.50 312.12 304.45 303.03
6 72 537.10 526.54 505.15 494.91
7 72 577.13 547.69 547.39 542.83
8 108 768.08 736.14 711.60 696.51
9 96 660.67 636.50 595.05 588.80

10 144 987.70 950.01 911.18 891.98
11 120 722.87 696.95 662.56 653.57
13 144 915.34 905.03 832.74 816.79

Avg. 598.13 579.74 555.38 547.02

5 minute run
Class b LNS LNS-FFPA

m n Mean Best Mean Best
3 24 170.29 167.78 164.46 164.46
4 36 263.27 252.99 248.31 248.21
5 48 318.51 308.51 301.67 299.27
6 72 509.89 494.97 477.75 469.73
7 72 548.22 530.45 504.69 494.01
8 108 682.50 647.85 633.51 620.54
9 96 611.66 595.32 566.48 557.61

10 144 952.60 918.76 857.95 838.65
11 120 671.87 650.27 610.33 602.19
13 144 870.30 846.16 785.13 771.69

Avg. 559.91 541.31 515.03 506.64

The Benefits of LNS-FFPA. Before comparing LNS-FFPA with prior art, it is use-
ful to evaluate our main design decision and compare LNS and LNS-FFPA. Standard
LNS algorithms (e.g., [12,3,2]) always search for an improving solution and limit the
number of insertion points to explore the “good” parts of the subproblems. In contrast,
LNS-FFPA does not require the subproblem to find an improving solution: It simply
searches for the first feasible solution to the subproblem using the heuristic to drive the
search toward a high-quality solution. Moreover, LNS-FFPA may accept the solution
to the subproblem even if it degrades the best-known solution, using a Probabilistic
acceptance criterion.

Table 1 compares LNS and LNS-FFPA and reports the mean and best solutions found
over 10 different 5-minute runs for each instance. In the table, m denotes the number
of vehicles and n the number of requests. The experimental results indicate that LNS-
FFPA leads to solutions of significantly higher quality and to a more robust algorithm.
The average improvement for the Class a instances is about 8% and is higher for the
larger instances. For Class b, the average improvement is also around 8% and, for larger
instances, improvement of almost 10% are observed. It is also important to stress how
robust LNS-FFPA is, since the difference in quality between the best and the average
solutions is rather small.

Table 2 evaluates the impact of the two novel aspects of LNS-FFPA: It reports the
results of LNS-FF which never accepts any worse solution. The results show that the
two additional components of LNS-FFPA are complementary but with the First Fea-
sible criterion having a slighly larger effect. Indeed, without Probabilistic acceptance
criterion, the average improvement drops from 8% to 4.2% on Class a instances and
from 8% to 4.5% on Class b.

It is also important to mention that simply adding the Probabilistic criterion to the
standard LNS was not effective. In other words, accepting the best solution found in
the neighborhood with a Probabilistic criterion actually deteriorated performance, in-
dicating that it is the combination of stopping at the first feasible solution and using
the Probabilistic criterion which is key to obtain enough search diversity. A potential
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Table 2. The Impact of the Acceptance Criterion

5 minute run
Class a LNS LNS-FF

m n Mean Best Mean Best
3 24 191.14 190.02 190.224 190.019
4 36 302.77 296.36 297.419 293.038
5 48 318.50 312.12 307.449 304.051
6 72 537.10 526.54 518.945 507.672
7 72 577.13 547.69 556.872 546.893
8 108 768.08 736.14 736.739 714.860
9 96 660.67 636.50 626.956 598.675

10 144 987.70 950.01 937.208 912.302
11 120 722.87 696.95 685.016 670.116
13 144 915.34 905.03 875.007 849.761

Avg. 598.13 579.74 573.18 558.74

5 minute run
Class b LNS LNS-FF

m n Mean Best Mean Best
3 24 170.29 167.78 166.57 164.46
4 36 263.27 252.99 257.02 255.96
5 48 318.51 308.51 309.43 299.02
6 72 509.89 494.97 488.90 478.19
7 72 548.22 530.45 526.87 511.35
8 108 682.50 647.85 645.20 624.61
9 96 611.66 595.32 593.90 574.23

10 144 952.60 918.76 903.58 883.29
11 120 671.87 650.27 640.77 615.96
13 144 870.30 846.16 811.58 795.23

Avg. 559.91 541.31 534.38 520.28

explanation is that LNS-FFPA can exploit the diversification of accepting a worse solu-
tion a lot better since it explores a lot more neighborhoods whereas the standard LNS
algorithm spends too much time trying to find a better solution in fewer neighborhoods.

Overall, these results show that LNS-FFPA is a critical aspect of this research. For
Dial-a-Ride problems, more diversification is key to improving quality. This diversifi-
cation can be obtained either by accepting worse solutions or by exploring more neigh-
borhoods since the search terminates as soon as a feasible solution is found.

Comparison with the Variable Neighborhood Search. We now compare LNS-FFPA
with the state-of-the-art Variable Neighborhood Search (VNS) of Parragh et al. [11].
Table 3 depicts the results for class a instances.4 Except for small instances with three
vehicles, LNS-FFPA produces results that are consistently better on average and fre-
quently better in terms of the best solutions. As the n/m ratio rises, the difficulty and
the instance size increase and the LNS-FFPA produces increasing benefits. For the 1.6
min runs, LNS-FFPA improves the quality of the solution by 6.1% in average and by
24.2% in the best case. For the 5 min runs, LNS-FFPA produces improvement of about
3% in average and 14% in the best case.

These results indicates that LNS-FFPA is a very effective approach to find high-
quality solutions under severe time constraints to complex Dial-a-Ride problems.

Comparison with the Tabu Search. Table 4 compares LNS-FFPA and the tabu search
of [7] on short runs for the classes a and b. As mentioned earlier, Cordeau did not release
his algorithm whose results seem very hard to reproduce. The table reports the tabu-
search results as given in [7] where the quality of a single solution, and the time to obtain
it, are given. The results for LNS-FFPA are obtained by snapshots of the execution,
selecting the best-found solution within the time reported by the tabu search. The tabu

4 A comparison against the class b instances was not possible as the solver seemed to require
some user interaction during the search on those instances.
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Table 3. Comparing VNS and LNS-FFPA

1.6 minute run
Class a VNS LNS-FFPA

m n Mean Best Mean Best
3 24 190.02 190.02 191.02 190.79
4 36 294.42 291.71 294.00 291.71
5 48 306.10 302.45 305.30 303.39
6 72 507.54 501.31 506.65 494.91
7 72 553.85 536.23 548.76 542.94
8 108 843.64 783.24 723.64 699.95
9 96 611.86 592.91 607.06 597.98

10 144 1223.18 1189.36 926.98 909.51
11 120 724.52 681.1 667.45 655.16
13 144 991.18 976.85 856.84 846.56

Avg. 624.63 604.48 562.77 553.29

5 minute run
Class a VNS LNS-FFPA

m n Mean Best Mean Best
3 24 190.02 190.02 190.77 190.02
4 36 293.77 291.71 292.86 291.71
5 48 305.84 302.45 304.45 303.03
6 72 507.21 501.31 505.15 494.91
7 72 552.54 536.23 547.39 542.83
8 108 730.48 701.71 711.60 696.51
9 96 610.30 602.40 595.05 588.80

10 144 1059.52 1021.72 911.18 891.98
11 120 686.11 672.23 662.56 653.57
13 144 885.67 869.56 832.74 816.79

Avg. 582.15 568.93 555.38 547.02

Table 4. Comparing Tabu Search and LNS-FFPA

Class a Tabu LNS-FFPA

m n 1 Run Time Mean Mean Time
3 24 191.05 0.19 191.13 0.40
4 36 292.80 0.44 296.99 0.40
5 48 304.04 0.81 306.73 0.80
6 72 506.62 2.4 506.65 2.40
7 72 550.48 1.72 549.84 1.60
8 108 732.12 5.51 711.60 5.20
9 96 597.32 2.88 602.15 2.80

10 144 933.22 8.75 909.17 8.40
11 120 691.55 4.62 664.58 4.40
13 144 870.66 5.39 834.40 5.20

Avg. 566.99 3.27 557.32 3.16

Class b Tabu LNS-FFPA

m n 1 Run Time Mean Mean Time
3 24 165.31 0.19 167.67 0.40
4 36 253.04 0.42 255.45 0.40
5 48 304.73 0.83 305.99 0.80
6 72 495.31 2.29 480.27 2.00
7 72 510.86 1.85 509.38 1.60
8 108 657.96 5.13 632.89 4.80
9 96 563.24 3.12 570.02 2.80

10 144 909.58 9.24 857.49 9.20
11 120 615.36 5.43 616.31 5.20
13 144 810.65 7.37 788.33 7.20

Avg. 528.60 3.59 518.38 3.44

search is slightly better on the small instances. However, as the instances get larger and
harder with the n/m ratio increasing, LNS-FFPA gives much better results. In the best
case, LNS-FFPA produces a 5.7% improvement while producing a 1.1% improvement
on average. However, when restricting attention to larger instances (m > 5), LNS-FFPA
algorithm produces an improvement of about 2% which becomes 3% if the largest three
instances are considered. Given the high-quality and sophistication of both the VNS and
the tabu-search algorithm, these improvements are significant.

These results are particularly appealing given the severe time constraints. For many
problems, a dedicated local search produces solutions of higher quality than LNS early
on, since LNS is a general-purpose technique on top of an existing optimization algo-
rithm and does not have dedicated neighborhood operators. On Dial-a-Ride problems
however, LNS-FFPA produces better solutions than highly-tuned tabu search or vari-
able neighborhood search within short time limits, especially on the large instances.
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This gives LNS-FFPA a significant advantage in dynamic settings since high-quality
solutions would need to be found quickly in that scenario. A potential explanation is
that the complexity of the side-constraints increases the cost of local moves in tabu and
variable neighborhood searches, making LNS-FFPA very competitive.

Comparison with the Constraint-Programming Approach. We conclude this sec-
tion with a comparison to the constraint-programming approach of Berbeglia et al. [5]
who report the time taken to find a satisfying solution for their CP solver and for the
tabu-search solver. These feasibility problems are tested on different instances: They
have vertices located in a [−20, 20]2 square, over a time horizon of 12 hours, with time
windows of 15 minutes, and vehicle capacity of 3 for instances from set a and 6 for
instances from set b. The ride time is 30 minutes. The time taken by Algorithm 1 to find
a satisfying solution is 0.5-2 seconds which is comparable to the time taken by tabu
search and, on average, 12 times faster than the CP approach of Berbeglia et al [5]. The
exception is instance b5-40 where it cannot find a solution for a time limit of 60s. Algo-
rithm 1 can also detect infeasibility in less than a second for all the infeasible instances
described in [5] which were obtained by reducing the maximum ride time.

8 Conclusions and Future Work

This paper considered Dial-a-Ride applications, which are complex multiple-vehicle
routing problems with pickups and deliveries, time windows, and constraints on the
ride time. Moreover, these applications are typically dynamic, as customers dial for
rides. As a result, optimization algorithms must return high-quality solutions quickly.

The paper presented a novel large neighborhood search LNS-FFPA, which contains
two key technical contributions. First, LNS-FFPA does not search the neighborhoods
for improving solutions and rather returns the first feasible solution. Second, such a
feasible solution is accepted if it improves the existing incumbent solution or using a
Probabilistic criterion.

Experimental results for benchmarks based on realistic assumptions and data pro-
vided by the Montreal Transit Commission (MTC) show the effectiveness of LNS-
FFPA. On short runs (of 1.6 and 5.0 minutes), LNS-FFPA significantly outperforms the
state-of-the-art VNS and tabu search algorithms which are both rather sophisticated.
LNS-FFPA also compares very favourably with the constraint-programming approach
for finding feasible solutions, often producing significant improvements in efficiency.
The experimental results also demonstrate the benefits of LNS-FFPA over a traditional
LNS approach, as it improves solution quality by about 8%. Finally, LNS-FFPA was
particularly effective on the largest instance, where its benefits are larger.

Future work will study if the spatial and temporal structure of Dial-A-Ride appli-
cations can be exploited in the choice of the neighborhood instead of relying on pure
random selections. Moreover, it would be interesting to study the dynamic problem in
the framework of online stochastic optimization to evaluate if stochastic information
would be valuable in this setting.
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Abstract. This paper tackles the problem of deciding whether a given
clause belongs to some minimally unsatisfiable subset (MUS) of a for-
mula, where the formula is in conjunctive normal form (CNF) and un-
satisfiable. Deciding MUS-membership helps the understanding of why
a formula is unsatisfiable. If a clause does not belong to any MUS, then
removing it will certainly not contribute to restoring the formula’s con-
sistency. Unsatisfiable formulas and consistency restoration in particular
have a number of practical applications in areas such as software verifica-
tion or product configuration. The MUS-membership problem is known
to be in the second level of polynomial hierarchy, more precisely it is
ΣP

2 -complete. Hence, quantified Boolean formulas (QBFs) represent a
possible avenue for tackling the problem. This paper develops a num-
ber of novel QBF formulations of the MUS-membership problem and
evaluates their practicality using modern off-the-shelf solvers.

1 Introduction

Unsatisfiable formulas, representing refutation proofs or inconsistencies, appear
in various areas of automated reasoning. This article focuses on helping us to
understand why a certain formula is unsatisfiable. If a formula is represented
in conjunctive normal form (CNF), it is sufficient to consider only certain sub-
sets of clauses to see why it is unsatisfiable. In particular, a set of clauses is
called a minimally unsatisfiable subset (MUS) if it is unsatisfiable and any of its
proper subsets is satisfiable. The question addressed in this article is to deter-
mine whether a given clause belongs to some MUS of a formula. This is referred
to as the MUS-membership problem.

Deciding whether a clause belongs to some MUS is important when one wants
to restore consistency of a formula: removing a clause that is not part of any
MUS, will certainly not restore consistency. Restoring consistency is an active
area of research in the area of product configuration [20,22]. For example, when
configuring a product, some sets of its features result in an inconsistent config-
uration. Approaches for resolving conflicting features often involves user inter-
vention, e.g. to decide which features to deselect. Clearly, it is useful for the user
to know if a feature is relevant for the inconsistency.

Earlier work on the MUS-membership problem consisted on complexity
characterizations [13,12] and an algorithm based on heuristically-guided MUS
enumeration [7]. In contrast, this article proposes four alternative solutions for
solving MUS-membership problem with Quantified Boolean Formulas (QBF).

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 414–428, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Two of these solutions follow directly from the problem’s definition, and either
involve a QBF3,∃ formula or a QBF2,∃ formula that grows quadratically with
the size of the original formula. The paper also exploits the relationship be-
tween MUSes and Maximally Satisfiable Subsets (MSSes), and derives a QBF2,∃
model for the MUS-membership problem that grows linearly with the size of
the original formula. Furthermore, this relationship is also used for relating the
MUS-membership with the problem of inference in propositional circumscrip-
tion, which can be represented as a QBF2,∃ with a specific structure. In turn, this
enables the use of specialized algorithms for propositional circumscription [8].
Experimental results obtained on representative classes of problem instances
demonstrate that the recent abstraction refinement algorithm [8] consistently
outperforms all other approaches.

The paper is organized as follows. Section 2 introduces the notation and defini-
tions used throughout the paper. Section 3 develops different models for solving
the MUS-membership problem. Section 4 analyzes results obtained on repre-
sentative classes of problem instances. Finally, Section 5 concludes the paper.

2 Preliminaries

Throughout this paper, φ and ψ denote Boolean formulas, defined on a set
of variables X = {x1, . . . , xn}. Where necessary, additional sets of variables are
considered, e.g. R, X ′. A Boolean formula φ in Conjunctive Normal Form (CNF)
is a conjunction of disjunctions of literals and a literal is a variable or its negation.
A disjunction of literals is called a clause and it is preferably represented by ω.
Unless specified otherwise, φ is assumed to be of the form {ω1, . . . , ωn}. Where
appropriate, a CNF formula is interpreted as a set of sets of literals.

A truth assignment μX is a mapping from a set of variables X to {0, 1}, μX :
X → {0, 1}. A truth assignment is represented by the set MX of true variables
in μX , MX = {xi ∈ X |μX(xi) = 1}. In what follows, truth assignments will be
represented by the set of true variables, since the definition of μX is implicit,
given X and MX . Moreover, MX |= φ is used to denote that truth assignment
μX is a model of φ, i.e. that μX satisfies all clauses in φ. Truth assignments will
also be defined for other sets of variables, as needed, e.g. MS, MSa , MSb

. When
a formula is defined over distinct sets of variables, e.g. X and S, MS ,MX |= φ
denotes that the truth assignment to the variables in S and the variables in X
satisfies φ. Finally, a truth assignment represented by MX implicitly denotes
that MX ⊆ X . Similarly, MR implicitly denotes that MR ⊆ R. To simplify the
notation, the set containment relation will be omitted in all formulas.

A QBF is a Boolean formula where each variable is either universally or ex-
istentially quantified. We write QBFk,∃ to denote the class of formulas of the
form Q1X1 . . .QkXk. φ where Qi = ∃ if i is odd and Qi = ∀ if i is even. In the
context of QBF we write φ(X) to denote a formula that is built on the variables
from X . An important result from the complexity theory is that the validity of
a formula in QBFk,∃ is ΣP

k -complete [18].
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2.1 Minimal Unsatisfiability and Maximal Satisfiability

This section introduces the concepts of minimally unsatisfiable and maximally
satisfiable sets of clauses as well as related decision problems.

Definition 1 (MUS). A set of clauses ψ ⊆ φ is a Minimally Unsatisfiable
Subset (MUS) iff ψ is unsatisfiable and any set ψ′ � ψ is satisfiable.

Definition 2 (MSS). A set of clauses ψ ⊆ φ is a Maximally Satisfiable Subset
(MSS) iff ψ is satisfiable and any set ψ′ ⊆ φ such that ψ � ψ′ is unsatisfiable.

Definition 3 (MCS). A set of clauses ψ ⊆ φ is a Minimally Correction Subset
(MCS) if φ \ ψ is satisfiable and for any subset ψ′ � ψ, φ \ ψ′ is unsatisfiable.

Deciding whether a CNF formula is an MUS is DP -complete [21]. Algorithms
for computing MUSes have been the subject of comprehensive research over the
years [6,2,16]. Moreover, this article considers the following decision problems.

Name: MUS-membership

Given: A CNF formula φ and a clause ω ∈ φ.
Question: Is there an MUS ψ of φ such that ω ∈ ψ?

Name: MUS-overlap

Given: CNF formulas φ and γ ⊆ φ.
Question: Is there an MUS ψ of φ such that γ ∩ ψ �= ∅?

Name: MSS-membership

Given: A CNF formula φ and a clause ω ∈ φ.
Question: Is there an MSS ψ of φ such that ω /∈ ψ?

We make several observations regarding the definitions. MUS-overlap can
be expressed as a disjunction of k instances of MUS-membership, where k
is the number of clauses in the formula γ. Hence, we mainly focus on MUS-

membership. We require ω ∈ φ, which is done convenience, and the decision
problems for ω /∈ φ are trivial. In MUS-membership we are looking for an
MUS containing ω whereas in MSS-membership, we are looking for an MSS
that does not contain ω. Later on we show that the problems are convertible to
one another.

To obtain the complexity classification of MUS-membership, we realize that
an MUS is a special case of irredundancy: an MUS is a subset-minimal rep-
resentation that is equivalent to the original formula. The question whether a
clause belongs to some minimal irredundant representation is known to be ΣP

2 -
complete [13]. Hence, MUS-membership is in ΣP

2 . In fact, it has been shown
that MUS-membership itself is ΣP

2 -hard (and therefore complete) [12].
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2.2 Propositional Circumscription

Circumscription was introduced by McCarthy as a form of nonmonotonic reason-
ing [17]. While the original definition of circumscription is for first-order logic,
for the purpose of this article we consider its propositional version.

Definition 4 (Circumscription). Let P , Z be sets of variables and φ a for-
mula on the variables P ∪ Z. Circumscription of φ is defined as follows:

CIRC(φ;P ;Z) = φ(P,Z) ∧ (∀P ′, Z ′)((φ(P ′, Z ′) ∧ (P ′ → P ))→ (P → P ′)) (1)

where P ′ → P stands for
∧
x∈P (x′ → x).

We should note that circumscription often considers another set of variables Q,
which comprises variables that remain fixed. However, this set is not needed for
the purpose of this article. Circumscription is closely related to model minimiza-
tion introduced by the following two definitions.

Definition 5 (Model Orderings). Let M and N be models of φ and let P be
a set of variables. We write M �P N iff M ∩P ⊆ N ∩P and we write M ≺P N
iff M �P N and M �= N .

Definition 6 (Minimal Models). A model M of φ is P -minimal iff there is
no model N of φ such that N ≺P M . We write MM(φ, P ) to denote the set of
all P -minimal models of φ. For formulas φ and ψ we write φ |=circ

P ψ iff ψ holds
in all P -minimal models of φ.

In short, the ordering � is a bit-wise ordering on the variables from P and
minimal models are the minimal elements of this ordering. The relation between
circumscription and minimal models is well-known [19,15,1,3]. The following
well-known result is used throughout the paper [1].

Proposition 1. Let φ and ψ be formulas using only variables from P ∪ Z. It
holds that CIRC(φ;P ;Z) |= ψ iff φ |=circ

P ψ.

Proposition 1 tells us that inference from the set of minimal models is equivalent
to inference from circumscription. Another observation we make is that the en-
tailment in propositional circumscription is immediately expressible as a 2-level
QBF.

Observation 1. For formulas φ and ψ, CIRC(φ;P ;Z) � ψ iff

∃P,Z.¬ψ(P,Z) ∧ φ(P,Z) ∧ (∀P ′, Z ′)((φ(P ′, Z ′) ∧ (P ′ → P ))→ (P → P ′)) (2)

Note that the QBF above expresses that P,Z should satisfy (1) and violate ψ,
and thus serve as a counterexample to the entailment. Naturally, the entailment
can be expressed positively by negating the QBF.

Hence, propositional circumscription can be seen as reasoning over minimal
models or as a special case of a QBF; in the remainder of the paper we treat
these properties of propositional circumscription interchangeably.
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MUS-membership

MSS-membership

Circ-InferQBF2,∃, O(n)

QBF3,∃, O(n) QBF2,∃, O(n2)

Proposition 3

Proposition 2 Proposition 2

Proposition 8Proposition 4

Fig. 1. Translating between problems

Name: Circ-Infer

Given: CNF formulas φ and ψ and sets of variables P and Q.
Question: Does ψ hold in all 〈P,Q〉-minimal models of φ, i.e. φ |=circ

〈P,Q〉 ψ?

2.3 Related Work

The MUS-membership problem has been studied mostly from a theoretical
perspective [13,12]. Motivated by practical applications, recent work addressed
the development of algorithms for this problem [7]. These algorithms are based
on explicit and implicit enumeration of MUSes. A simple algorithm for solving
the MUS-membership problem is to run an MUS enumerator (e.g. [14]) and
check whether any MUS contains the target clause ω ∈ φ. This algorithm was
improved in [7] where heuristics are proposed for reducing the sets of clauses to
consider. The tool cmMUS [10] represents recent work on the MUS membership
problem. cmMUS builds upon the work described in the present paper, namely the
connection between MUS membership and propositional circumscription, which
is detailed in Section 3.3.

3 Deciding MUS-membership

Figure 1 depicts the relations between the problems investigated in the remain-
der of this section. The motivation for these translations is to derive QBF for-
mulas for the MUS-membership problem. We show that a direct translation
of MUS-membership leads to QBF3,∃ despite the problem being in ΣP

2 . Al-
ternatively, we propose a QBF2,∃ model, that is quadratic in the size of the
original problem. Alternative QBF formulations are developed by exploiting the
relationship between MUSes and MSSes. As a result, we derive a QBF2,∃ that is
linear in the size of the original problem, and also relate MSS-membership with
Circ-Infer. The QBF models can be solved with standard QBF algorithms,
whereas for the Circ-Infer, a dedicated algorithm can be used [8].

3.1 MUS-membership with QBF

This section investigates the translation of MUS-membership to QBF. Since
MUS-membership has been shown to be ΣP

2 -complete [13], the problem must
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be expressible as a QBF2,∃ formula. We begin by a straightforward translation
from the problem statement following the following schema:

exists ψ ⊆ φ s.t. ω ∈ ψ and ψ is unsatisfiable and forall ψ′ � ψ is satisfiable

To be able to quantify over subsets of φ, we introduce its relaxed form.

Definition 7 (relaxation φ∗). Let φ be a set of clauses then its relaxation φ∗

is defined as follows:
φ∗ = {ω ∨ rω | ω ∈ φ} (3)

where rω are variables not appearing in φ. We refer to rω as the relaxation
variable of the clause ω and if rω has the value 1, we say that the clause ω is
relaxed.

In the following text we use R to denote the set of relaxation variables (and
X for the set of original variables as before). The intuition behind relaxation
variables is that once a clause is relaxed, it is equivalent to not having the clause
in the formula. For succinctness, we introduce a dual term of selected clauses,
which are clauses that are not relaxed.

Definition 8. Let φ∗ be a relaxation of φ and MR be a subset of the pertaining
relaxation variables. The set of selected clauses S(φ∗,MR) is defined as follows:

S(φ∗,MR) = {ω | rω /∈MR} (4)

Example 1. Let φ = {x,¬x, y}, then φ∗ = {x ∨ r1,¬x ∨ r2, y ∨ r3}. Let MR =
{r1, r2} then S(φ∗,MR) = {y}. Observe that for any MX s.t. y ∈MX the inter-
pretation MR ∪MX is a model of φ∗: when the clauses x and ¬x are relaxed,
they do not need to be satisfied. However, if a clause is not relaxed (the corre-
sponding relaxation variable is 0), the clause must be satisfied. Hence for a given
MR, satisfying φ∗ is equivalent to satisfying S(φ∗,MR).

The following observation establishes a relation between the set of selected
clauses and the relaxed formula.

Observation 2. An assignment MR ∪MX is a model of φ∗ iff MX is a model
of S(φ∗,MR).

In the following QBF the relaxed formula appears in two versions: a non-primed
version (φ∗(R,X)), and, a primed version—where all the variables are replaced
with their primed copy (φ∗(R′, X ′)).

Observe that relaxing a clause results into removing it from the set of se-
lected clauses, and therefore for any relaxations MR and M ′

R, the requirement
S(φ∗,MR) ⊆ S(φ∗,M ′

R) is equivalent to M ′
R ⊆MR. In the following QBFs, the

requirement M ′
R ⊆MR is captured by the formula R < R′ defined as follows:

R < R′ ≡
∧
z∈R

z → z′ ∧
∨
z∈R
¬z ∧ z′ (5)

Now let us express the MUS-membership as a QBF formula:

∃R. ¬rω ∧ (∀X.¬φ∗(R,X)) ∧ (∀R′.(R < R′)→ ∃X ′.φ∗(R′, X ′)) (6)
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The formula expresses that we are searching for a relaxation R for which the
clause ω is not relaxed (¬rω). The set of selected clauses induced by the re-
laxation R is unsatisfiable (∀X.¬φ∗(R,X)). If R is relaxed anymore, then the
induced set of selected clauses is satisfiable (∀R′.(R < R′)→ ∃X ′.φ∗(R′, X ′)).

Formula (6) can be reformulated if we realize that a set of clauses is an MUS
iff removing any clause yields a satisfiable set of clauses:

∃R. ¬rω ∧ (∀X.¬φ∗(R,X)) ∧
∧

rωi
∈R

(¬rωi → ∃Xωi .φ∗[rωi/1](R,Xωi)) (7)

Where φ∗[rωi/1] is the substitution of 1 for rωi in φ∗ and Xωi is a fresh copy of
the variables X for each rωi ∈ R.

Since the variables X appear only in the first half of the formula, it can be
rewritten into 2QBF as follows:

∃R∃Xω1 . . . ∃Xωn∀X. ¬rω ∧¬φ∗(R,X)∧
∧

rωi
∈R

(¬rωi → φ∗[rωi/1](R,Xωi)) (8)

Altogether, a solution MR to either of the formulas (6), (7), or (8) represents an
MUS containing the clause ω, which enables us to state the following proposition.

Proposition 2. The clause ω belongs to some MUS of the formula φ iff (6),
(7), or (8) is valid.

3.2 QBF for MUS-membership Using MSS-membership

We observe that the equations developed above are problematic from a practical
perspective. Equation (6) uses 3 levels of quantifiers despite the problem being
in ΣP

2 [12]. Equation (8) has only 2 levels of quantifiers but uses a quadratic
number of variables.

The following describes how to construct a QBF with 2 quantifiers using a
linear number of variables by first translating the problem to MSS-membership.
In order to get to show the relation between MUS-membership and MSS-

membership, we invoke the following lemma [11]:

Lemma 1 (Lemma 4.3 in [11]). Let MU(φ) denote the set of all MUSes of φ
and let MS(φ) denote the set of all MSSes of φ. Then the following equality
holds: ⋃

MU(φ) = φ \
⋂

MS(φ) (9)

An immediate consequence of Lemma 1 is that a clause ω is included in some
MUS of φ if and only if ω is not included in some MSS of φ. This consequence
is stated in the following proposition.

Proposition 3. A clause ω belongs to some MUS of φ iff there exists an MSS ψ
of φ such that ω /∈ ψ.

Example 2. Let φ = {¬x, x, z}. The formula φ has only one MUS {¬x, x} while
it has two MSSes {x, z} and {¬x, z}. Observe that the clause z is in both MSSes
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and not in the MUS; for both of the clauses x, ¬x there is an MSS without the
clause and both are in the MUS.

The relation between MUSes and MSSes established by Proposition 3 motivates
the following quantified Boolean formula for MUS-membership (again we use
the notation R′ < R introduced earlier).

∃R∃X∀R′∀X ′. (rω ∧ φ∗(R,X) ∧ (R′ < R→ ¬φ∗(R′, X ′))) (10)

The formula expresses that we are looking for a relaxation in which ω is re-
laxed (rω). The relaxation is satisfiable (φ∗(R,X)) and any relaxation relaxing
less clauses yields an unsatisfiable set of clauses (R′ < R→ ¬φ∗(R′, X ′)). Alto-
gether, a solution MR to the equation (10) corresponds to an MSS that does not
contain the clause ω.

Proposition 4. The answer to MUS-membership is “yes” iff (10) is valid.

Observe that the quantified formula has two levels of quantifiers and linear num-
ber of variables.

Equation (10) provides a solution for testing whether a clause ω is included in
an MUS of φ. However, it does not provide a witness, i.e. an MUS containing ω.
Nevertheless, a witness can be computed by exploiting the properties of MSSes
and MUSes.

Lemma 2. Let ψ be an MSS of φ such that ω /∈ ψ, than any MUS of ψ ∪ {ω}
contains ω.

Proof (sketch). Since ψ is an MSS, adding any clause from φ to ψ will make
the result unsatisfiable. Therefore, adding ω to ψ, ψ′ = ψ ∪ {ω}, results in an
unsatisfiable formula. Let ψ′′ ⊆ ψ′ be an MUS of ψ′, then ω ∈ ψ′′ as otherwise
ψ′′ ⊆ ψ would lead to a contradiction because ψ is satisfiable.

Lemma 2 enables the use of standard MUS extraction algorithms to extract an
MUS witness given an MSS not containing ω.

Proposition 5. Let φ be a CNF formula and ω ∈ φ. For a clause ω, if the
answer to the MUS-membership problem is “yes”, then a witness for the MUS-

membership problem is any MUS of an MSS not containing ω.

Proof. Immediate consequence of Proposition 4 and Lemma 2.

3.3 MUS-membership with Circ-Infer

Proposition 3 lets us translate MUS-membership to MSS-membership. In this
section we show how to translate MSS-membership to Circ-Infer.

Recall that Circ-Infer is the problem of deciding whether a formula ψ
holds in all P -minimal models of a formula φ, for some set of variables P
(Proposition 1). We begin by showing a relation between minimal models and
MSSes.
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As in the previous section, we operate on the relaxed formula φ∗ where set-
ting the relaxation variable rω to 1 effectively eliminates the clause (relaxes the
clause). Dually, setting the variable rω to 0 results into adding the clause ω
into the set of selected clauses (Definition 8). Consequently, MSSes correspond
to minimal models of the relaxed formula, which is captured by the following
proposition.

Proposition 6. For an interpretation MR, the set of selected clauses S(φ∗,MR)
is an MSS of φ iff there exists MX such that MR ∪MX is an R-minimal model
of φ∗.

Proof (sketch). If the set S(φ∗,MR) is an MSS, then it must be satisfiable and
therefore it must have some model MX . Due to Observation 2, MR ∪MX is a
model of φ∗. The model MR ∪MX must be R-minimal because otherwise we
would obtain a relaxation corresponding to a strict superset of S(φ∗,MR) ren-
dering it not maximal. If MR∪MX is an R-minimal model of φ∗ then S(φ∗,MR)
is satisfied by MX due to Observation 2. The set S(φ∗,MR) must be an MSS
otherwise MR ∪MX would not be R-minimal.

Example 3. Let φ = {x,¬x, y ∨ z,¬y ∨ ¬z}, then φ∗ = {x ∨ r1,¬x ∨ r2, y ∨ z ∨
r3,¬y∨¬z ∨ r4} for the relaxation variables R = {r1, r2, r3}. In order to achieve
consistency, one of the clauses x and ¬x must be relaxed. Hence, the formula φ∗

has the following four R-minimal models: two models have the clause ¬x relaxed
{r2, x, y}, {r2, x, z} and two models have the clause x relaxed {r1, y}, {r1, z}.
These models correspond to the MSSes {x, y∨z,¬y∨¬z} and {¬x, y∨z,¬y∨¬z}.
Observe that the clauses y∨z and ¬y∨¬z are in both MSSes, which means that
the corresponding variables r2 and r3 have the value 0 in all R-minimal models
(they never need to be relaxed).

Proposition 6 establishes a relation between the MSSes of a formula and minimal
models of the corresponding relaxed formula. Consequently, in order to solve
MUS-membership for a clause ω, we need to look for a minimal model with
the clause relaxed.

Proposition 7. A clause ω belongs to some MUS of φ iff there exists a model
M ∈ MM(φ,R) such that M |= rω, equivalently:

φ∗ �circ
R ¬rω (11)

Proof (sketch). A clause ω belongs to some MUS of φ iff there exists an MSS
ψ ⊆ φ s.t. ω /∈ ψ (Proposition 3). There exists an MSS ψ of φ s.t. ω /∈ ψ iff there
exists an R-minimal model M of φ∗ s.t. M |= rω (Proposition 6). To relate to
the circumscription inference notation we observe that there exists an R-minimal
model M s.t. M |= rω iff φ∗ |=circ

R ¬rω does not hold.

Proposition 7 is easily generalized for MUS-overlap by observing that we only
need to find a minimal model where at least one of the clauses in question is
relaxed.
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Proposition 8. A set of clauses ω1, . . . , ωn overlaps with some MUS of φ iff
there exists M ∈ MM(φ,R) such that M |= rω1 ∨ · · · ∨ rωn , equivalently:

φ∗ �circ
R (¬rω1 ∧ · · · ∧ ¬rωn) (12)

Observe that in Propositions 6 and 8 Circ-Infer appears in a negative sense.
This again agrees with the known complexity classification, as MUS-membership

is ΣP
2 -complete [12] and circumscription is ΠP

2 -complete [3]. Moreover, although
the relationship with QBF is simple (see Section 2.2), we opt to solve Circ-Infer

with a dedicated algorithm [8].

3.4 Algorithms for MUS-membership

Theprevious two sectionsdevelopanumber ofproperties of theMUS-membership

problem.This section summarizes the concrete algorithms that theseproperties en-
able us to consider. The algorithms are classified into three classes: enumeration,
QBF, and circumscription inference. These classes are discussed in turn.

The simplest approach for deciding MUS-membership is to enumerate MUSes
(e.g. [14]). Practical algorithms for MUS-membership follow this approach [7],
but are coupled with heuristics for reducing the number of MUSes to enumer-
ate. An alternative solution, also based on enumeration, consists of enumerating
MSSes, using Proposition 3. Given that MUS enumeration algorithms start by
enumerating MSSes [14], an algorithm based on enumerating MSSes is guaran-
teed to outperform näıve solutions based on MUS enumeration. It should be
noted that existing algorithms (e.g. [14]) are based on MCS enumeration. How-
ever, since an MCS is the complement of an MSS, a clause is in an MUS iff it is
included in some MCS.

A second class of algorithms consists of using the mapping to QBF and solving
the resulting problem instances with a QBF solver. This paper develops 3 al-
ternative approaches for encoding MUS-membership into QBF (see Figure 1).
The first approach uses 3 levels of quantifiers and produces a formula linear in
the size; second approach uses 2 levels of quantifiers but produces a formula of
quadratic size; the third approach uses the relation between MUSes and MSSes
and provides a 2-level formulation of linear size.

Finally, a third class of algorithms exploits the relationship between MSSes
and Circ-Infer. As noted in preliminaries, Circ-Infer is a special case of a
2-level QBF formula. Hence, a general QBF solver could be used. However, this
formulation also enables the use of specialized algorithms for Circ-Infer [8].

4 Experimental Results

Following the discussion in Section 3.4, the following concrete tools were used
for the evaluation.

MUSer is a tool for extracting MUSes [16]. The tool was used to obtain a
witness MUS in approaches based on MSSes (see Proposition 5).

AReQS is a recently developed solver, implemented by the authors, for 2QBF
formulas based on counterexample guided refinement (CEGAR). The solver was
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used for all QBF formulas with 2 levels of quantifiers since previous research
showed that it consistently outperforms the available solvers on these types of
formulas [9].

cmMUS is a tool that solves MSS-membership using propositional circum-
scription (implemented by the authors) [10]. Just as AReQS, it uses counterex-
ample guided abstraction refinement approach but tailored for propositional cir-
cumscription [8].

look4MUS is a tool dedicated to MUS-membership based on MUS enumer-
ation, guided by heuristics based on a measure of inconsistency [7].

QuBE 7.1 is a QBF solver1 which solved the most instances in the 2CNF track
of QBF Evaluation 20102 and overall ranks high in all categories. QuBE has a
powerful built-in preprocessor, which significantly improves its performance [5]
(all of the preprocessing techniques were switched on for the purpose of the
evaluation). The solver was used to evaluate 3-level formulas (see (6)). The
downside of QuBE 7.1 is that it does not provide a model. Hence, even though a
solution to (6) is immediately an MUS containing the desired clause, it cannot
be retrieved from the answer of QuBE 7.1.

sSolve is a QBF solver which returns a solution for valid formulas, unlike
QuBE 7.1 [4]. The solver was used to evaluate 3-level formulas (see (6)).

MSS enum. The tool CAMUS [14] was used to enumerate MSSes of the given
formula. If the enumeration is looking for an MSS that overlaps with a set of
clauses γ, then it immediately stops once it finds an MSS ψ that does not contain
at least one of the clauses from γ, i.e. γ � ψ �= ∅.

4.1 Benchmarks

A variety of unsatisfiable formulas was selected from SAT competitions bench-
marks3 and from well-known applications of SAT (namely ATPG and product
configuration). The selected formulas are relatively easy for modern SAT solvers
because MUS-membership is significantly harder than satisfiability. Even so,
instances with tens of thousands of clauses were used (e.g. dining philosophers).

For each of these formulas, the MUS-overlap was computed using the vari-
ous approaches. The 1st, 3rd, 5th, and 7th clauses in the formula’s DIMACS rep-
resentation were chosen as the set γ for which the overlap was to be determined—
this evaluation methodology was also used in [7].

4.2 Results

All experimental results were obtained on an Intel Xeon 5160 3GHz with 4GB
of memory. The experiments were obtained with a memory limit of 2GB and
time limit of 1,000 seconds. The results of the measurements are presented by
Table 1 and Figure 2. Table 1 presents the number of solved instances by each
of the approaches for each set of benchmarks. Figure 2 presents the computation

1 Available at www.star.dist.unige.it/~qube/
2 http://www.qbflib.org/
3 http://www.satcompetition.org/

www.star.dist.unige.it/~qube/
http://www.qbflib.org/
http://www.satcompetition.org/
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Table 1. Number of solved instances by the different approaches

cmMUS look4MUS MSS enum. 2lev. lin.
Nemesis (bf) (223) 223 223 31 29
Daimler-Chrysler (84) 46 13 49 36
dining phil. (22) 17 17 4 8
dimacs (87) 87 82 51 51
ezfact (41) 20 11 11 10
total (457) 393 346 146 134

2lev. qv. 3lev. lin. (QuBE) 3lev. lin. (sSolve)
Nemesis (bf) (223) 9 13 0
Daimler-Chrysler (84) 0 4 0
dining phil. (22) 2 1 0
dimacs (87) 18 25 4
ezfact (41) 0 0 0
total (457) 29 43 4

times with cactus plots—the horizontal axis represents the number of instances
that were solved within the time represented by the vertical axis.

The QBFs derived in Section 3.1 and Section 3.2 are denoted as: 2-level
linear—2-level linear formula using MSS; 2-level quadratic—2-level quadratic
formula directly yielding a witnessing MUS; 3-level linear—3-level linear for-
mula directly yielding a witnessing MUS. The results for the approaches that
first find an MSS include the runtime of MUSer, which was used to obtain the
witnessing MUS (see Section 3.2).

Out of the presented approaches, the circumscription-based approach (cmMUS)
turned out to be the most robust one: it has solved the most instances (393) and
except for one class of benchmarks it exhibits the shortest overall running times.
The set of benchmarks where cmMUS came second are the Daimler-Chrysler, for
which the simple MSS enumeration solved 3 more instances.

The dedicated algorithm look4MUS came second in terms of the number of
solved instances (346). However, it turned out not to be robust, e.g. a small
number of instances were solved for Daimler-Chrysler and ezfact.

The use of general QBF solvers yielded significantly poorer results. As ex-
pected, out of these, the 2-level linear formulation (solved by AReQS +MUSer)
had the best performance with 134 solved instances. Even though both AReQS
and cmMUS use CEGAR to solve the problem, cmMUS uses a refinement specific
to circumscription (cf. [8,9]) and that turned out to be important for the per-
formance. The 3-level linear approach using QuBE 7.1 solved significantly more
than both sSolve with 3-level approach and AReQS with quadratic 2-level for-
mulation. However, we recall that QuBE 7.1 does not provide a model. In most
cases when the quadratic formulation approach did not succeed it was because
of exceeding the memory limit.
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Fig. 2. Cactus plots for the measurements (number of instances x solved in less than
y seconds)

We should note that the runtime of MUSer affected very little the overall
runtimes of the approaches based on MSSes. Mostly, the runtime of MUSer was
below 1 second. Only two instances where the desired MUS was not found in
time appeared (in dining philosophers and ezfact).

5 Conclusions

This article addresses the problem of deciding whether a given clause belongs to
some minimal unsatisfiable subset (MUS) of some CNF formula. This is a well-
known ΣP

2 -complete problem [13,12], for which recent work proposed heuristic-
guided algorithms based on enumeration of MUSes [7]. In contrast, this paper
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develops new solutions for the MUS-membership problem based on QBF. Some
of the QBFs follow from the problem’s definition, whereas the others exploit the
relationship between MUSes and MSSes [11]. The proposed solutions include
one QBF3,∃ and two QBF2,∃ formulations. One additional solution consists of
mapping MUS-membership to Circ-Infer, the propositional circumscription
inference problem, itself expressible as a QBF2,∃. Given well-known mappings
of propositional circumscription to other formalisms, this yields additional algo-
rithms to solve the MUS-membership problem. Experimental results obtained
on a wide range of well-known benchmarks, demonstrate that the most effective
approach consists of using a recent counterexample guided abstraction refine-
ment algorithm for the propositional circumscription inference problem [8].

The promising experimental results suggest considering the use of dedicated
algorithms for propositional circumscription inference in other settings, namely
other ΣP

2 -complete and ΠP
2 -complete decision problems.

Acknowledgement. This work is partially supported by SFI PI grant BEA-
CON (09/IN.1/I2618), EC FP7 project MANCOOSI (214898), FCT grants AT-
TEST (CMU-PT/ELE/0009/2009), and INESC-ID multiannual funding from
the PIDDAC program funds.
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On the Relative Efficiency of
DPLL and OBDDs with Axiom and Join�

Matti Järvisalo

Department of Computer Science, University of Helsinki, Finland

Abstract. This paper studies the relative efficiency of ordered binary decision di-
agrams (OBDDs) and the Davis-Putnam-Logemann-Loveland procedure (DPLL),
two of the main approaches to solving Boolean satisfiability instances. Especially,
we show that OBDDs, even when constructed using only the rather weak ax-
iom and join rules, can be exponentially more efficient than DPLL or, equiva-
lently, tree-like resolution. Additionally, by strengthening via simple arguments
a recent result—stating that such OBDDs do not polynomially simulate unre-
stricted resolution—we also show that the opposite holds: there are cases in which
DPLL is exponentially more efficient out of the two considered systems. Hence
DPLL and OBDDs constructed using only the axiom and join rules are polynomi-
ally incomparable. This further highlights differences between search-based and
compilation-based approaches to Boolean satisfiability.

1 Introduction

Many algorithms for Boolean satisfiability (SAT) are based on either resolution (in-
cluding most state-of-the-art search-based solvers today) or (reduced) ordered binary
decision diagrams (OBDDs). Recently, there has been a lot of interest in the relative effi-
ciency of satisfiability checking methods based on resolution and OBDDs [1,2,3,4,5,6].
While OBBDs in general are known to be in cases exponentially more efficient that un-
restricted resolution [7], it has been recently shown [6] that the restricted OBDDaj proof
system, consisting only of the rather weak Axiom and Join rules which correspond to the
Apply OBDD operator (i.e., disallowing symbolic quantifier elimination and reorder-
ing), does not polynomially simulate unrestricted resolution. In other words, there is an
infinite family {Fn}n of unsatisfiable CNF formulas such that (i) there is a polynomial-
size resolution proof of Fn w.r.t. n for every n, whereas (ii) minimum-size OBDDaj

proofs of Fn for every n are of exponential size w.r.t. n (and of super-polynomial
size w.r.t. the number of clauses in Fn). A practical implication of this result is that
OBDDaj (under any variable ordering) does not polynomially simulate typical restarting
conflict-driven clause learning SAT solvers—often the most efficient ones for practical
applications of SAT, and which have been recently shown to polynomially simulate un-
restricted resolution [8]. However, the results in [6] leave open the question of pinpoint-
ing the (in)efficiency of OBDDaj more exactly: Does it even polynomially simulate the
Davis-Putnam-Logemann-Loveland procedure (DPLL) [9,10] that is known to be ex-
ponentially weaker than clause learning? Does DPLL polynomially simulate OBDDaj?

� This work is financially supported by Academy of Finland (grant 132812).

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 429–437, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper we show that the answer to both of these questions is negative: 1. We
show that DPLL (with an optimal branching heuristic) does not polynomially simulate
OBDDaj (using a suitable variable ordering). 2. Strengthening the result of [6] via sim-
ple arguments, we show that the OBDDaj proof system (under any variable ordering)
does not polynomially simulate DPLL (known to be equivalent to the tree-like resolu-
tion refinement). Hence OBDDaj and DPLL are polynomially incomparable.

Theorem 1. OBDDs constructed using the Axiom and Join rules and DPLL (equiva-
lently, tree-like resolution) are polynomially incomparable.

This provides further understanding on the general question of the relative efficiency
of DPLL and variants of OBDDs, highlighting further the differences between search-
based and compilation-based approaches to Boolean satisfiability.

2 Preliminaries

CNF Satisfiability. A literal is a Boolean variable x or its negation ¬x. A clause is a
disjunction (∨) of literals and a CNF formula is a conjunction (∧) of clauses. When
convenient, we view a clause as a finite set of literals and/or a CNF formula as a finite
set of clauses. The set of variables occurring in a CNF formula F is denoted by vars(F ),
and the set of literals occurring in a clause C by lits(C). An assignment τ is a function
that maps literals to elements in {0, 1}, where 1 and 0, resp., stand for true and false,
resp. If τ(x) = v, then τ(¬x) = 1 − v, and vice versa. A clause is satisfied by τ if
it contains at least one literal l such that τ(l) = 1. An assignment τ satisfies a CNF
formula if it satisfies every clause in the formula.

DPLL. The DPLL procedure [9,10] is a classical complete search algorithm for de-
ciding satisfiability of CNF formulas. It can be summarized as the following non-
deterministic algorithm.

DPLL(F )
If F is empty report satisfiable and halt
If F contains the empty clause return
Else choose a variable x ∈ vars(F )

DPLL(Fx)
DPLL(F¬x)

Here Fx denotes the formula resulting from applying unit propagation until fixpoint on
F , i.e., removing all clauses containing x and all occurrences of ¬x from F , and re-
peating until fixpoint for all single-literal clauses in F . Practical implementations make
DPLL deterministic by implementing a branching heuristic for choosing a variable.
However, here we do not restrict this non-deterministic choice. A DPLL proof of an
unsatisfiable CNF formula F is a search tree of DPLL(F ). The size of a DPLL proof is
the number of nodes in the tree.

Resolution. The well-known Resolution proof system (RES) is based on the resolution
rule that allows one to directly derive the clause (C ∪ D) \ {x,¬x} from the clauses
{x} ∪ C and {¬x} ∪ D by resolving on the variable x. Given an unsatisfiable CNF
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formula F , a RES proof of F is a sequence of clauses π = (C1, C2, . . . , Cm = ∅),
where each Ci, 1 ≤ i ≤ m, is either (i) a clause in F (an initial clause) or (ii) directly
derived with the resolution rule from two clauses Cj , Ck where 1 ≤ j, k < i. The
size of π, denoted by |π|, is m. Any RES proof π = (C1, C2, . . . , Cm = ∅) can be
presented as a directed acyclic graph. The clauses occurring in π label the nodes. The
edge relation is defined so that there are edges from Ci and Cj to Ck, if and only if
Ck has been directly derived from Ci and Cj . Tree-like Resolution (T-RES) proofs are
representable as trees. It is well-known that T-RES proofs are polynomially equivalent
to search trees traversed by the DPLL procedure.

In Extended Resolution (E-RES) [11] one can first apply the extension rule to add
a conjunction of clauses (an extension) to a CNF formula F in a restricted manner,
before using the resolution rule to construct a RES proof of the resulting formula. In
more detail, for a given CNF formula F , the extension rule allows for iteratively adding
definitions of the form x ≡ l1 ∧ l2 (i.e. the clauses (x ∨ ¬l1 ∨ ¬l2), (¬x ∨ l1), and
(¬x ∨ l2)) to F , where x is a new variable and l1, l2 are literals in the current formula.
The resulting formula F ∧ E then consists of the original formula F and the extension
E, the conjunction of the clauses iteratively added to F using the extension rule.

OBDDs with Axiom and Join. A binary decision diagram (BDD) over a set of Boolean
variables V is a rooted directed acyclic graph that consists of (i) decision nodes labelled
with distinct variables from V and (ii) two terminal nodes (of out-degree zero) labelled
with 0 and 1. Each decision node v has two children, low(v) and high(v). The edge
from v to low(v) (to high(v), resp.) represents assigning v to 0 (to 1, resp.). A BDD is
ordered according to a total variable order≺ if its variables appear in the order given by
≺ on all paths from the root to the terminal nodes. An ordered BDD is reduced (simply,
an OBDD from here on) if its (i) isomorphic subgraphs have been merged, and (ii) the
nodes that have isomorphic children have been eliminated. Given any propositional
formula φ and a total variable order ≺ over vars(φ), there is a unique OBDD B(φ,≺)
that represents φ. The size of B(φ,≺), denoted by size(Bi(φi,≺)), is the number of its
nodes.

Given an unsatisfiable CNF formula F and a total variable order ≺ over vars(F ),
an OBDDaj proof of F (i.e., an OBDDaj derivation of the OBDD for 0) is a sequence
ρ = (B1(φ1,≺), . . . ,Bm(φm,≺)) of OBDDs, where (i) Bm(φm,≺) is the single-node
OBDD representing 0, and (ii) for each i ∈ {1, . . . ,m}, either

– φi is a clause in F , or
– φi = φj ∧ φk for some Bj(φj ,≺) and Bk(φk,≺), 1 ≤ j < k < i, in ρ.

In the former case Bi(φi,≺) is an axiom, and in the latter Bi(φi,≺) is the join of
Bj(φj ,≺) and Bk(φk,≺). The size of an OBDDaj proof ρ is Σm

i=1size(Bi(φi,≺)).

3 DPLL Does Not Polynomially Simulate OBDDaj

In this section we show that DPLL does not polynomially simulate OBDDaj. For the sep-
aration, we consider so-called pebbling contradictions Peb(G), first introduced in [12],
based on the structure of a directed acyclic graph (DAG) G. Taking two variables xi,0
and xi,1 for each node in G, Peb(G) is the conjunction of the following clauses.
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– (xi,0 ∨ xi,1) for each source node (in-degree 0) i of G;
– (¬xi,0) and (¬xi,1) for each sink node (out-degree 0) i of G;
– (¬xi1,a1 ∨· · ·∨¬xik ,ak

∨xj,0 ∨xj,1) for each non-source node j, where i1, . . . , ik
are the predecessors of j, and for each (a1, . . . , ak) ∈ {0, 1}k.

The following theorem helps us in achieving polynomial-size OBDDaj proofs.

Theorem 2 ([13]). For any Boolean function f over n variables, and any variable
order ≺, size(B(f,≺)) = O(2n/n).

Corollary 1. For any unsatisfiable CNF formula F over n variables, and any variable
order ≺, there is an OBDDaj proof of F of size 2O(n).

The following two lemmas play a key role in this work. For proving the lemmas we
rely on a similar proof strategy as the one applied in [14] used in a different context (for
showing that tree-like resolution does not polynomially simulate ordered resolution).

Lemma 1. Let G be a DAG on n nodes, and j a node in G with parents i1, . . . , ik where
k = O(log n). Consider the clauses (xi1,0 ∨ xi1,1),. . . , (xik,0 ∨ xik ,1) and (¬xi1,a1 ∨
· · · ∨ ¬xik ,ak

∨ xj,0 ∨ xj,1) for all (a1, . . . , ak) ∈ {0, 1}k. For any variable order ≺,
there is a polynomial-size OBDDaj derivation of B((xj,0∨xj,1),≺) from these clauses.

Proof. Consider the unsatisfiable CNF formula consisting of the clauses (xi1,0∨xi1,1),
. . . , (xik ,0 ∨ xik ,1) and (¬xi1,a1 ∨ · · · ∨ ¬xik ,ak

) for all (a1, . . . , ak) ∈ {0, 1}k. The
number of variables in this formula is O(log n), and hence by Corollary 1 there is
a polynomial-size OBDDaj proof of this formula for any variable order ≺. Such an
OBDDaj proof can be transformed into a OBDDaj derivation of B((xj,0 ∨ xj,1),≺′) by
defining ≺′ as ≺ to which xj,0 and xj,1 have been added as the last two elements, and
by replacing B(φ,≺) with B(φ ∨ xj,0 ∨ xj,1,≺) for each B(φ,≺) in the proof such
that either φ is (¬xi1,a1 ∨ · · · ∨ ¬xik,ak

) or B(φ,≺) has been derived starting from the
axiom B((¬xi1 ,a1 ∨ · · · ∨ ¬xik ,ak

),≺). For each such B(φ,≺), B(φ ∨ xj,0 ∨ xj,1,≺)
is B(φ,≺) with the terminal node 0 replaced by B((xj,0 ∨ xj,1),≺). �

Lemma 2. There are polynomial-size OBDDaj proofs of Peb(G) for any DAG G with
node in-degree bounded by O(log n).

Proof. Fix any ordering ≺ of the variables in Peb(G) that respects a topological or-
dering of G. Label each source j of G with B((xj,0 ∨ xj,1),≺). For each non-source
node j of G with parents i1, . . . , ik, k = O(log n), replace j with the polynomial-
size OBDDaj derivation of B((xj,0 ∨ xj,1),≺) (Lemma 1) under ≺. The result is a
polynomial-size OBDDaj derivation of B((xt,0 ∨ xt,1),≺) for the single sink t of G
(analogously for multiple sinks). To complete the proof, join B((xt,0 ∨ xt,1),≺) with
the axioms B((¬xt,0),≺) and B((¬xt,1),≺). �

Combined with the following lemma, we have that DPLL (equivalently, T-RES) does
not polynomially simulate OBDDaj (using a suitable variable order for OBDDaj).

Lemma 3 ([12]). There is an infinite family {Gn} of DAGs with constant node
in-degree (from [15]) such that minimum-size T-RES proofs of Peb(Gn) are of size
2Ω(n/ logn).
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4 OBDDaj Does Not Polynomially Simulate DPLL

In [6] it was shown that OBDDaj does not polynomially simulate unrestricted resolution
RES. In this section we show the stronger result that OBDDaj is not only weaker than
RES, but also exponentially weaker than DPLL (equivalently, T-RES).

4.1 OBDDaj Does Not Benefit from the Extension Rule

As an auxiliary result, we prove the following lemma as an extension of [6, Lemma 8].
The original lemma was restricted to a particular CNF formula PHPn+1

n and a particular
extension of PHPn+1

n . This more general version states that OBDDaj proofs cannot be
made smaller by first adding an extension to the input unsatisfiable CNF formula.

Lemma 4. Assume an arbitrary unsatisfiable CNF formula F and extension E to F ,
and any satisfiable F ′ ⊂ F and E′ ⊆ E. Then, for every variable order ≺ over
vars(F ′) ∪ vars(E′), size(B(F ′ ∧E′,≺)) ≥ size(B(F ′,≺)).

Following the proof strategy for [6, Lemma 8], we first state a simple extension of [6,
Lemma 7], simply stating that no extension E of a CNF formula F can affect the set of
satisfying assignments of F (restricted to F ).

Lemma 5. Assume an arbitrary CNF formula F and extension E to F , any satisfiable
F ′ ⊂ F and E′ ⊆ E, and an assignment τ that satisfies F ′. Then there is an assignment
τ ′ such that (i) τ ′(x) = τ(x) for each x ∈ vars(F ′), and (ii) τ ′ satisfies F ′ ∧ E′.

Proof. Assume that the clauses in E = C1 ∧ · · · ∧Ck were introduced using the exten-
sion rule in the order of the sequence (C1, . . . , Ck). Fix an arbitrary satisfiable F ′ ⊆ F
and assignment τ that satisfies F ′. Let τ ′(x) = τ(x) for each x ∈ vars(F ′). By in-
duction, assume that, for an arbitrary i, τ ′ satisfies all Cj for j < i. Let Ci be part of a
definition xi ≡ l∧ l′. To satisfy Ci, we extend τ ′ as follows. If both l and l′ are assigned
under τ ′, then assign xi so that the semantics of xi ≡ l∧ l′ is respected. If l (or l′, resp.)
is not assigned under τ ′ (this is possible in case l or l′ do not appear in F ′), first assign
it an arbitrary value. �

For the following, a function f depends essentially on a variable x if f |x=0 �= f |x=1,
where f |x=c denotes the function f with x assigned to a constant c ∈ {0, 1}. Again
following [6], we make use of a structural theorem from [16].

Theorem 3 ([16]). For any Boolean function f(x1, . . . , xn) and i < n, let Si be the
set {f |x1=c1,...,xi−1=ci−1 : c1, . . . , ci−1 ∈ {0, 1}} of sub-functions which depend es-
sentially on xi. Then the OBDD for f under the variable order x1 ≺ · · · ≺ xn contains
exactly |Si| nodes labelled with xi in correspondence with the sub-functions in Si.

In the following, for an assignment τ over a set X of variables and a variable order ≺
over V , let τ≺x be the restriction of τ to the variables preceding x ∈ X under≺.

Proof of Lemma 4. We show that, for any F ′, E′,≺, i < |vars(F ′)|, and xi ∈ vars(F ′),
where xi is the ith variable in vars(F ′) under ≺, it holds that if B(F ′,≺) has k nodes
labelled with xi, then B(F ′ ∧ E′,≺) has at least k nodes labelled with xi.
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Take any satisfying assignment τ over vars(F ′) such that F ′|τ≺xi
depends essen-

tially on xi. By Theorem 3, corresponding to any such F ′|τ≺xi
there is a node nτ≺xi

in B(F ′,≺) labelled with xi. Based on τ , consider an assignment τ ′ for F ′ ∧ E′ as
in Lemma 5. By the construction of τ ′, (F ′ ∧ E′)|τ ′≺xi

depends essentially on xi.
By Theorem 3, for any such nτ≺xi

, there is a distinct node nτ ′≺xi
(corresponding to

(F ′ ∧ E′)|τ ′≺xi
) in B(F ′ ∧ E′,≺). �

The following is an immediately corollary of Lemma 4.

Corollary 2. Let F be an unsatisfiable CNF formula and E an extension to F . For any
variable order ≺ over vars(F ) ∪ vars(E), if F ∧E has a OBDDaj proof of size s, then
F has a OBDDaj proof of size s.

4.2 DPLL and the Extension Rule

Let F be an arbitrary unsatisfiable CNF formula and let πF = (C1, . . . , Cm = ∅) be
a RES proof of F . We define the extension E(πF ) of F based on πF , defining new
variables ei ≡ Ci for i = 1, . . . ,m− 1 using the extension rule, as the CNF formula

E(πF ) :=
m−1∧
i=1

(
(¬ei ∨Ci) ∧

∧
l∈lits(Ci)

(
ei ∨ ¬l

))
.

This formulation originates from a construction that was used to polynomially simulate
Frege systems by tree-like Frege systems [17], and was also applied in [18].

Lemma 6. Let F be an unsatisfiable CNF formula and let πF be a RES proof of F .
There is a DPLL proof of F ∧ E(πF ) of size O(|πF |).
Proof. Choose variables in the order e1 ≺ · · · ≺ em−1. For each i = 1, . . . ,m− 1, the
call DPLL(F ∧E(πF )e1,...,ei−1,¬ei) returns immediately since F ∧E(πF )e1,...,ei−1,¬ei

contains the empty clause due to emptying either a clause in F , or one of the two clauses
in πF used to directly derive the resolvent Ci. The call DPLL(F ∧ E(πF )e1,...,em−1 )
returns immediately since there are the two unit clauses (x) and (¬x) in πF for some
variable x. �
In fact, as similarly observed in [18], full one-step lookahead with unit propagation is
enough for constructing the DPLL proof presented in the proof of Lemma 6.

4.3 Separating DPLL from OBDDaj

The well-known pigeon-hole principle states that there is no injective mapping from
an m-element set into an n-element set if m > n (that is, m pigeons cannot sit in
fewer than m holes so that every pigeon has its own hole). We will consider the case
m = n + 1 encoded as the CNF formula

PHPn+1
n :=

n+1∧
i=1

( n∨
j=1

pi,j

)
∧

n∧
j=1

n∧
i=1

n+1∧
i′=i+1

(
¬pi,j ∨ ¬pi′,j

)
,

where each pi,j is a Boolean variable with the interpretation “pi,j is 1 if and only if the
ith pigeon sits in the jth hole”. Notice that PHPn+1

n contains O(n2) clauses.
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Theorem 4 ([19]). There is no polynomial-size RES proof of PHPn+1
n .

In contrast, Cook [20] showed that there is a polynomial-size E-RES proof of PHPn+1
n .

Cook basically applies the E-RES extension rule to add a conjunction EXTn of O(n3)
clauses to PHPn+1

n , based on defining new variables pki,i ≡ pk−1
i,j ∨ (pk−1

i,n ∧ pk−1
n+1,j),

where 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n − 1, and each p0
i,j is the variable

pi,j ∈ vars(PHPn+1
n ). These equivalences1 are presented as the CNF formula

EXTn :=
∧n−1

k=1

∧n
i=1

∧n−1
j=1((

pk
i,j∨¬pk−1

i,j

)∧(pk
i,j∨¬pk−1

i,n ∨¬pk−1
n+1,j

)∧(¬pk
i,j∨pk−1

i,j ∨pk−1
i,n

)∧(¬pk
i,j∨pk−1

i,j ∨pk−1
n+1,j

))
.

Theorem 5 ([20]). There is a RES proof of PHPn+1
n ∧ EXTn of size O(n4).

Explicit constructions of a RES proof of sizeO(n4) of PHPn+1
n ∧EXTn are presented

in [18,6]. On the other hand, these proofs are not tree-like, and it is not apparent whether
there is a polynomial-size DPLL proof of PHPn+1

n ∧ EXTn. However, we can use the
extension trick from Sect. 4.2 for achieving a short DPLL proof.

Corollary 3. There is an extension E to PHPn+1
n such that there is a polynomial-size

DPLL proof of PHPn+1
n ∧ E.

Proof. Take an arbitrary RES proof π of PHPn+1
n ∧ EXTn such that |π| ∈ O(n4)

(there is such a π by Theorem 5). Define E as EXTn ∧ E(π). By Lemma 6 there is a
polynomial-size DPLL proof of PHPn+1

n ∧ EXTn ∧ E(π). �

To separate DPLL from OBDDaj, we observe the following.

Theorem 6 ([6]). For any variable order≺, minimum-size OBDDaj proofs of PHPn+1
n

are of size 2Ω(n).

Corollary 4. Let E be an arbitrary extension of PHPn+1
n . For any variable order ≺,

minimum-size OBDDaj proofs of PHPn+1
n ∧ E are of size 2Ω(n).

Proof. Follows directly from Corollary 2 and Theorem 6. �

The fact that OBDDaj does not polynomially simulate DPLL (equivalently, T-RES) now
follows directly from Corollaries 3 and 4.

5 Conclusions

We showed that the standard DPLL procedure and OBDDs constructed using the ax-
iom and join rules (OBDDaj) are polynomially incomparable. This further highlights
the differences between search-based and compilation-based approaches to Boolean

1 Although Cook introduces directly clauses representing pk
i,i ≡ pk−1

i,j ∨ (pk−1
i,n ∧pk−1

n+1,j) which
does not follow the original definition of the extension rule, it is easy to see that this can be
simulated with the original rule by first introducing an auxiliary variable for (pk−1

i,n ∧ pk−1
n+1,j).

This more general way of defining the extension does not affect the results of this paper.
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satisfiability. Especially, although OBDDaj is intuitively rather weak, it can still be ex-
ponentially more efficient than DPLL. However, in contrast to DPLL, OBDDaj cannot
exploit particular types of redundancy in CNF (introduced by the extension rule). As a
result, DPLL can be in cases exponentially more efficient than OBDDaj.

Whether there is a resolution refinement that polynomially simulate OBDDaj is an
interesting open question. Another interesting question is the relative efficiency of tree-
like and DAG-like OBDDaj proofs. Especially, the OBDDaj proofs constructed in
Lemma 2 are not tree-like.
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Abstract. We report new results on the complexity of the valued con-
straint satisfaction problem (VCSP). Under the unique games conjec-
ture, the approximability of finite-valued VCSP is fairly well-understood.
However, there is yet no characterisation of VCSPs that can be solved
exactly in polynomial time. This is unsatisfactory, since such results are
interesting from a combinatorial optimisation perspective; there are deep
connections with, for instance, submodular and bisubmodular minimisa-
tion. We consider the Min and Max CSP problems (i.e. where the cost
functions only attain values in {0, 1}) over four-element domains and
identify all tractable fragments. Similar classifications were previously
known for two- and three-element domains. In the process, we introduce
a new class of tractable VCSPs based on a generalisation of submodular-
ity. We also extend and modify a graph-based technique by Kolmogorov
and Živný (originally introduced by Takhanov) for efficiently obtaining
hardness results in our setting. This allow us to prove the result with-
out relying on computer-assisted case analyses (which is fairly common
when studying VCSPs). The hardness results are further simplified by
the introduction of powerful reduction techniques.

Keywords: Constraint satisfaction problems, combinatorial optimisa-
tion, computational complexity, submodularity, bisubmodularity.

1 Introduction

This paper concerns the computational complexity of an optimisation problem
with strong connections to the constraint satisfaction problem (CSP). An in-
stance of the constraint satisfaction problem consists of a finite set of variables,
a set of values (the domain), and a finite set of constraints. The goal is to de-
termine whether there is an assignment of values to the variables such that all
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the constraints are satisfied. CSPs provide a general framework for modelling a
wide variety of combinatorial decision problems [4].

Various optimisation variations of the constraint satisfaction framework have
been proposed and many of them can be seen as special cases of the valued
constraint satisfaction problem (VCSP). This is an optimisation problem which
is general enough to express such diverse problems as Max CSP, where the
goal is to maximise the number of satisfied constraints, and the minimum cost
homomorphism problem (Min HOM), where all constraints must be satisfied,
but each variable-value tuple in the assignment is given an independent cost.
We have the following formal definition.

Definition 1. Let D be a finite domain, and let Γ be a set of functions fi :
Dki → Q≥0∪{∞}. By VCSP(Γ ) we denote the following minimisation problem:

Instance: A set of variables V , and a sum
∑m

i=1 �ifi(xi), where �i ∈ Q≥0,
fi ∈ Γ , and xi is a list of ki variables from V .

Solution: A function σ : V → D.
Measure: m(σ) =

∑m
i=1 �ifi(σ(xi)), where σ(xi) is the list of elements from D

obtained by applying σ component-wise to xi.

The set Γ is referred to as the constraint language. We say that a class of VCSPs
X is polynomial-time solvable if VCSP(Γ ) is polynomial-time solvable for every
Γ ∈ X . Finite-valued functions, i.e. functions with a range in Q≥0, are sometimes
called soft constraints. A prominent example is given by functions with a range
in {0, 1}; they can be used to express instances of the well-known Min CSP and
Max CSP problems (which, for instance, include Max k-Cut, Max k-Sat,
and Nearest Codeword as subproblems). On the other side we have crisp
constraints which represent the standard type of CSP constraints. These can be
expressed by cost functions taking values in {0,∞}.

A systematic study of the computational complexity of the VCSP was ini-
tiated by Cohen et al. [2]. This led to a large number of complexity results
for VCSP: examples include complete classifications of conservative constraint
languages (i.e. languages containing all unary cost functions) [5,9], {0, 1} lan-
guages on three elements [8], and the Min Hom problem [16]. We note that
some of these results have been proved by computer-assisted search—something
that drastically reduces the readability, and insight gained from the proofs. We
also note that there is no generally accepted conjecture stating which VCSPs
are polynomial-time solvable.

The picture is clearer concerning the approximability of finite-valued VCSP.
Raghavendra [14] has presented algorithms for approximating any finite-valued
VCSP. These algorithms achieve an optimal approximation ratio for the con-
straint languages that cannot be solved to optimality in polynomial time, given
that the unique games conjecture (UGC) is true. For the constraint languages
that can be solved to optimality, one gets a PTAS. No characterisation of the set
of constraint languages that can be solved to optimality follows from Raghaven-
dra’s result. Thus, Raghavendra’s result does not imply the complexity results
discussed above (not even conditionally under the UGC).
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The goal of this paper is to study VCSPs with {0, 1} cost functions over four-
element domains: we show that every such problem is either solvable in polyno-
mial time or NP-hard. Such a dichotomy result is not known for CSPs on four-
element domains (and, consequently, not for unrestricted VCSPs on four-element
domains). Our result proves that, in contrast to the two-element, three-element,
and conservative case, submodularity is not the only source of tractability. In
order to outline the proof, let Γ denote a constraint language with {0, 1} cost
functions over a four-element domain D. We will need one new tractability result
for our classification; this result can be found in Section 3 and our algorithm is
based on a combination of submodular and bisubmodular minimisation [6,12,15].
The hardness proof consists of three parts. Section 4 concerns the problem of
adding (crisp) constant unary relations to Γ without changing the computa-
tional complexity of the resulting problem, and Section 5 introduces a graph
construction for studying Γ . This graph provides information about the com-
plexity of VCSP(Γ ) based on the two-element sublanguages of Γ . Similar graphs
have been used repeatedly in the study of VCSP, cf. [9,16]. Equipped with these
tools, we prove our main classification result, Theorem 18, in Section 6. Due to
space constraints, some proofs have been left out.

2 Preliminaries

Throughout this paper, we will assume that Γ is a finite set of {0,1}-valued
functions. By Min CSP(Γ ) we denote the problem VCSP(Γ ). Note that
Min CSP(Γ ) is polynomial-time equivalent to Max CSP({1− f |f ∈ Γ}). This
implies, for instance, that the dichotomy theorem for Max CSP over domains
of size three also can be viewed as a dichotomy result for Min CSP. It turns
out to be convenient to work with a slightly more general problem, in which we
allow additional crisp constraints on the solutions.

Definition 2. Let Γ be a set of {0, 1}-valued functions on a domain D, and let
Δ be a set of finitary relations on D. By Min CSP(Γ,Δ) we denote the following
minimisation problem:

Instance: A Min CSP(Γ )-instance I, and a finite set of constraint applications
{(yj;Rj)}, where Rj ∈ Δ and yj is a matching list of variables from V .

Solution: A solution σ to I such that σ(yj) ∈ Rj for all j.
Measure: The measure of σ as a solution to I.

2.1 Weighted pp-Definitions and Expressive Power

We continue by defining two closure operators that are useful in studying the
complexity of Min CSP. Let I be an instance of Min CSP(Γ,Δ), and let
x = (x1, . . . , xs) be a sequence of distinct variables from V (I). Let πxOptsol(I)
denote the set {(σ(x1), . . . , σ(xs)) | σ is an optimal solution to I }, i.e. the pro-
jection of the set of optimal solutions onto x. We say that such a relation has a
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weighted pp-definition in (Γ,Δ) (cf. primitive positive (pp-) definitions in pred-
icate logic.) Let 〈Γ,Δ〉w denote the set of relations which have a weighted pp-
definition in (Γ,Δ). For an instance J of Min CSP, we define Opt(J ) to be
the optimal value of a solution to J , and to be undefined if no solution exists.
The following definition is a variation of the concept of the expressive power of a
valued constraint language, see for example Cohen et al. [2]. Define the function
Ix : Dk → Q≥0 by letting Ix(a1, . . . , ak) = Opt(I ∪ {(xi; {ai}) | 1 ≤ i ≤ k}).
We say that Ix is expressible over (Γ,Δ). Let 〈Γ,Δ〉fn denote the set of total
functions expressible over (Γ,Δ).

Proposition 3. Let Γ ′ ⊆ 〈Γ,Δ〉fn and Δ′ ⊆ 〈Γ,Δ〉w be finite sets. Then,
Min CSP(Γ ′, Δ′) is polynomial-time reducible to Min CSP(Γ,Δ).

Proof (sketch): The reduction from Min CSP(Γ ′, Δ′) to Min CSP(Γ,Δ′) is
a special case of Theorem 3.4 in [2]. We allow weights as a part of our instances,
but this makes no essential difference. To prove that there is a polynomial-time
transformation from Min CSP(Γ,Δ′) to Min CSP(Γ,Δ), we need a way to
‘force’ constraints in Δ′ \ Δ to hold in every optimal solution. This can quite
easily be guaranteed by using large weights, and one sees that the representation
size of these weights needs to grow only linearly in the size of the instance. ��

2.2 Multimorphisms and Submodularity

We now turn our attention to multimorphisms and tractable minimisation prob-
lems. Let D be a finite set. Let f : Dk → D be a function, and let x1, . . . ,xk ∈
Dn, with components xi = (xi1, . . . , xin). Then, we let f(x1, . . . ,xk) denote the
n-tuple (f(x11, . . . , xk1), . . . , f(x1n, . . . , xkn)). A (binary) multimorphism [2] of
Γ is a pair of functions f, g : D2 → D such that for any n-ary h ∈ Γ , and tuples
x,y ∈ Dn, h(f(x,y)) + h(g(x,y)) ≤ h(x) + h(y).

Definition 4 (Multimorphism Function Minimisation). Let X be a finite
set of triples (Di; fi, gi), where Di is a finite set and fi, gi are functions mapping
D2
i to Di. MFM(X) is a minimisation problem with

Instance: A positive integer n, a function j : {1, . . . , n} → {1, . . . , |X |}, and a
function h : D → Z where D =

∏n
i=1 Dj(i). Furthermore,

h(x) + h(y) ≥ h(fj(1)(x1, y1), fj(2)(x2, y2), . . . , fj(n)(xn, yn)) +
h(gj(1)(x1, y1), gj(2)(x2, y2), . . . , gj(n)(xn, yn))

for all x,y ∈ D. The function h is given to the algorithm as an oracle, i.e.,
for any x ∈ D we can query the oracle to obtain h(x) in unit time.

Solution: A tuple x ∈ D.
Measure: The value of h(x).

For a finite set X we say that MFM(X) is oracle-tractable if it can be solved
in time O(nc) for some constant c. It is easy to see that when (f, g) is a mul-
timorphism of Γ , and MFM(D; f, g) is oracle-tractable, then Min CSP(Γ ) is
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tractable. However, MFM is more general than the problem of minimising a
function with a specific multimorphism; each coordinate may have its own do-
main and its own pair of functions.

We now give two examples of oracle-tractable problems. A partial order on D
is called a lattice if every pair of elements a, b ∈ D has a greatest lower bound
a∧b (meet) and a least upper bound a∨b (join). A chain on D is a lattice which
is also a total order. For i = 1, . . . , n, let Li be a lattice on Di. The product
lattice L1 × · · · × Ln is defined on the set D1 × · · · ×Dn by extending the meet
and join component-wise. A function f : Dk → Z is called submodular on the
lattice L = (D;∧,∨) if f(a ∧ b) + f(a ∨ b) ≤ f(a) + f(b) for all a,b ∈ Dk.
A set of functions Γ is submodular on L if every function in Γ is submodular
on L. This is equivalent to (∧,∨) being a multimorphism of Γ . It follows from
known algorithms for submodular function minimisation that MFM(X) is oracle-
tractable for any finite set X of finite distributive lattices (e.g. chains) [6,15].

The second example is strongly related to submodularity, but here we use a
partial order that is not a lattice to define the multimorphism. Let D = {0, 1, 2},
and define the functions u, v : D2 → D by letting u(x, y) = min{x, y}, v(x, y) =
max{x, y} if {x, y} �= {1, 2}, and u(x, y) = v(x, y) = 0 otherwise. A function
h : Dk → Z is bisubmodular if h has the multimorphism (u, v). The main result
of [12] implies that MFM({D;u, v}) is oracle-tractable.

3 A New Tractable Class

In this section, we introduce a new class of multimorphisms which ensures
tractability for Min CSP (and more generally for VCSP).

Definition 5. Let b and c be two distinct elements in D. Let (D;<) be a partial
order which relates all pairs of elements except for b and c. Assume that f, g :
D2 → D are two commutative functions satisfying the following conditions:

– If {x, y} �= {b, c}, then f(x, y) = x ∧ y and g(x, y) = x ∨ y.
– If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) < g(x, y).

We call (D; f, g) a 1-defect chain (over (D;<)), and say that {b, c} is the defect
of (D; f, g). If a function has the multimorphism (f, g), then we also say that
(f, g) is a 1-defect chain multimorphism.

Three types of 1-defect chains are shown in Fig. 1(a–c). Note this is not an
exhaustive list, e.g. for |D| > 4, there are 1-defect chains similar to Fig. 1(b),
but with f(b, c) < g(b, c) < b, c. When |D| = 4, type (b) is precisely the product
lattice shown in Fig. 1(d). We denote this lattice by Lad.

Example 6. Let D = {a, b, c, d}, and assume that (D; f, g) is a 1-defect chain,
with defect {b, c}, and that a = f(b, c), d = g(b, c). If a < b, c < d, then f and
g are the meet and join of Lad, cf. Fig. 1(d). When a < d < b, c we have the
situation in Fig. 1(a), and when b, c < a < d we have the situation in Fig. 1(c).
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(a)

f(b, c)

g(b, c)

b c

(b)

f(b, c)

b c

g(b, c)

(c)

g(b, c)

f(b, c)

b c

(d)

a

b c

d

Fig. 1. Three types of 1-defect multimorphisms with defect {b, c}. (a) f(b, c) < g(b, c) <
b, c. (b) f(b, c) < b, c < g(b, c). (c) b, c < f(b, c) < g(b, c). (d) The Hasse diagram of the
lattice Lad, a special case of (b).

In the two latter cases, f and g are given by the two following multimorphisms
(rows and columns are listed in the order a, b, c, d, e.g. g1(c, d) = c):

f1 :

a a a a
a b a d
a a c d
a d d d

g1 :

a b c d
b b d b
c d c c
d b c d

f2 :

a b c a
b b a b
c a c c
a b c d

g2 :

a a a d
a b d d
a d c d
d d d d

The proof of tractability for languages with 1-defect chain multimorphisms is
inspired by Krokhin and Larose’s [10] result on maximising supermodular func-
tions on Mal’tsev products of lattices. First we will need some notation and a
general lemma on oracle-tractability of MFM problems.

For an equivalence relation θ on D we use x[θ] to denote the equivalence class
containing x ∈ D. The relation θ is a congruence on (D; f, g), if f(x1, y1)[θ] =
f(x2, y2)[θ] and g(x1, y1)[θ] = g(x2, y2)[θ] whenever x1[θ] = x2[θ] and y1[θ] =
y2[θ]. We use D/θ to denote the set {x[θ] | x ∈ D} and f/θ : (D/θ)2 → D/θ to
denote the function (x[θ], y[θ]) �→ f(x, y)[θ].

Lemma 7. Let f, g be two functions that map D2 to D. If there is a congruence
relation θ on (D; f, g) such that 1) MFM(D/θ; f/θ, g/θ) is oracle-tractable; and
2) MFM({(X ; f |X , g|X) | X ∈ D/θ}) is oracle-tractable, then MFM(D; f, g) is
oracle-tractable.

Proof. Let h : Dn → Z be the function we want to minimise. We define a new
function h′ : (D/θ)n → Z by

h′(z1, z2, . . . , zn) = min
xi∈zi

h(x1, x2, . . . , xn).

It is clear that minz∈(D/θ)n h′(z) = minx∈Dn h(x). By assumption 2 in the state-
ment of the lemma we can compute h′ in polynomial time given z1, z2, . . . , zn.
To simplify the notation we let u = f/θ and v = g/θ. We will now prove that h′

is an instance of MFM(D/θ;u, v).
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Let x,y ∈ Dk and choose x′
i ∈ xi[θ] and y′i ∈ yi[θ] so that h′(x[θ]) = h(x′)

and h′(y[θ]) = h(y′). We then have

h′(x[θ]) + h′(y[θ]) = h(x′) + h(y′) (1)
≥ h(f(x′,y′)) + h(g(x′,y′)) (2)
≥ h′(f(x′,y′)[θ]) + h′(g(x′,y′)[θ]) (3)
= h′(f(x,y)[θ]) + h′(g(x,y)[θ])) (4)
= h′(u(x[θ],y[θ])) + h′(v(x[θ],y[θ])). (5)

Here (1) follows from our choice of x′ and y′, (2) follows from the fact that h
is an instance of MFM(D; f, g), (3) follows from the definition of h′, and finally
(4) and (5) follows as θ is a congruence relation of f and g. Hence, h′ is an
instance of MFM(D/θ;u, v) and can be minimised in polynomial time by the
first assumption in the lemma. ��

Armed with this lemma and the oracle-tractability of submodular and bisub-
modular functions described in the previous section, we can now present a new
tractable class of Min CSP-problems.

Proposition 8. If Γ has a 1-defect chain multimorphism, then Min CSP(Γ )
is tractable.

Proof. Assume that Γ has a 1-defect chain multimorphism (f, g) over (D;<)
with defect {b, c}. We prove that MFM(D; f, g) is oracle-tractable.

Assume that b and c are maximal elements, i.e. x < b, c for all x ∈ D\{b, c}. In
this case the equivalence relation θ with classes A = D\{b, c}, B = {b}, C = {c}
is a congruence relation of (D; f, g). Furthermore, MFM({A,B,C}; f/θ, g/θ) and
MFM(A; f |A, g|A) are oracle-tractable [12,15]. It now follows from Lemma 7 that
MFM(D; f, g) is oracle-tractable. The same argument works for the case when
b and c are minimal elements.

If f(b, c) < g(b, c) < b, c, but b and c are not maximal, then we can use the
congruence relation θ′ with classes A = {x | x ≤ b or x ≤ c} and B = D \ A.
Here, ({A,B}; f/θ′, g/θ′) and (B; f |B, g|B) are chains, and (A; f |A, g|A) is a
1-defect chain of the previous type. One can show that when MFM(X) and
MFM(Y ) are both oracle-tractable, then so is MFM(X ∪ Y ). Combining this
with the technique used above, we can now solve the minimisation problem. An
analoguous construction works in the case when b, c < f(b, c), g(b, c), using the
congruence consisting of the class {x | x ≥ b or x ≥ c} and its complement.
Finally, when f(b, c) < b, c < g(b, c), we can use the congruence relation θ′′ with
classes B = {x | x ≤ b} and C = {x | x ≥ c}. Here, ({B,C}, f/θ′′, g/θ′′),
(B, f |B, g|B), and (C, f |C , g|C) are all chains and thus the MFM problem for
these triples is oracle-tractable [15]. ��

We now turn to prove a different property of functions with 1-defect chain mul-
timorphisms. It is based on the following result for submodular functions on
chains, which was derived by Queyranne et al. [13].
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Lemma 9. A function f : Dk → Z is submodular on a chain (D;∧,∨) if and
only if the following holds: every binary function obtained from f by replacing
any given k − 2 variables by any constants is submodular on this chain.

It is straightforward to extend this lemma to products of chains, such as Lad.
Here, we outline the proof of the corresponding property for arbitrary 1-defect
chains, which will be needed in Section 6.

Lemma 10. A function h : Dk → Z, k ≥ 2, has the 1-defect chain multimor-
phism (f, g) if and only if every binary function obtained from h by replacing
any given k − 2 variables by any constants has the multimorphism (f, g).

Proof (sketch): Every function obtained from h by fixing a number of vari-
ables is clearly invariant under every 1-defect chain multimorphism of h. For the
opposite direction, assume that h does not have the multimorphism (f, g). We
want to prove that there exist vectors x,y ∈ Dk such that

h(x) + h(y) < h(f(x,y)) + h(g(x,y)), (6)

with dH(x,y) = 2, where dH denotes the Hamming distance on Dk, i.e. the
number of coordinates in which x and y differ.

Assume to the contrary that the result does not hold. We can then choose a
function h of minimal arity such that min{ dH(x,y) | x and y satisfy (6) } > 2.
The arity of h must in fact be equal to the least dH(x,y). Otherwise, we could
obtain a function h′ of strictly smaller arity by fixing the variables in h on which
x and y agree. This would contradict the minimality in the choice of h.

This means that for any vectors which share an element in some coordinate,
the reverse (non-strict) inequality holds in (6). It is possible to combine such
inequalities to prove that there are x and y, with dH(x,y) = k, and satisfying
(6), such that {xi, yi} �= {b, c} for all i, where {b, c} is the defect of (f, g).

Let D′ = D \ {b, c} ∪ {B}. For each i, let ϕi : D′ → D be an injection which
fixes D \ {b, c}, and sends B to b or c in such a way that {xi, yi} ⊆ ϕi(D).
Let (D′; f ′, g′) be the chain defined by x <′ y if x, y �= B and x < y, x <′ B
if x < b, c, and B <′ y if b, c < y. Then, ϕi(f ′(x, y)) = f(ϕi(x), ϕi(y)), and
ϕi(g′(x, y)) = g(ϕi(x), ϕi(y)), for all i. Let ϕ(z) = (ϕ1(z1), . . . , ϕk(zk)), and let
x′,y′ ∈ (D′)k be such that ϕ(x′) = x and ϕ(y′) = y. Define h′(z′) = h(ϕ(z′)).
Then, h′(x′) + h′(y′) = h(x) + h(y) < h(f(x,y)) + h(g(x,y)) = h′(f ′(x′,y′)) +
h′(g′(x′,y′)). It follows that h′ is not submodular on (D′, f ′, g′). By Lemma 9,
there are elements z′,w′ ∈ (D′)k with dH(z′,w′) = 2 such that h′(z′)+h′(w′) <
h′(f ′(z′,w′)) + h′(g′(z′,w′)). Hence, h(ϕ(z′)) + h(ϕ(w′)) = h′(z′) + h′(w′) <
h′(f ′(z′,w′)) + h′(g′(z′,w′)) = h(f(ϕ(z′), ϕ(w′))) + h(g(ϕ(z′), ϕ(w′))), and we
have dH(ϕ(z′), ϕ(w′)) = 2. This contradicts the original choice of h. ��

4 Endomorphisms, Cores and Constants

In this section, we show that under a natural condition, it is possible to add
constant unary relations to Γ without changing the computational complexity
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of the corresponding Min CSP-problem. Let h : Dk → {0, 1}. A function g :
D → D is called an endomorphism of h if for every k-tuple (x1, . . . , xk) ∈ Dk,
it holds that h(x1, . . . , xk) = 0 =⇒ h(g(x1), . . . , g(xk)) = 0. The function g is
an endomorphism of Γ if it is an endomorphism of each function in Γ . A set of
functions, Γ , is said to be a core if all of its endomorphisms are injective. The
idea is that if Γ is not a core, then we can apply a non-injective endomorphism
to every function in Γ , and obtain a polynomial-time equivalent problem on a
strictly smaller domain. We can then use results previously obtained for smaller
domains [2,8]. Thus, we can restrict our attention to the case when Γ is a core.

The set of all endomorphisms of Γ is denoted by End (Γ ). Recall that a
bijective endomorphism is called an automorphism and that the automorphisms
of Γ form a group under composition.

Jeavons et al. [7] defined the notion of an indicator problem of order k for
CSPs. We will exploit indicator problems of order 1 here, adapted to the setting
of Min CSP. Let Γ be a finite set of {0, 1}-valued functions over D. Let XD

denote the set containing a variable xd for each d ∈ D, and for a = (a1, . . . , ak) ∈
Dk, let xa = (xa1 , . . . xak

) ∈ Xk
D. The indicator problem IP(Γ ) is defined as the

instance of Min CSP(Γ ) with variables XD, and sum
∑

fi∈Γ
∑

a∈f−1
i (0) fi(xa),

where ki is the arity of the function fi.
Let CD = {{d} | d ∈ D} be the set of constant unary relations over D.

The proof of the following result follows the lines of similar results for related
problems, such as the CSP decision problem.

Proposition 11. Let Γ be a core over D. Then, Min CSP(Γ, CD) is polynomial-
time reducible to Min CSP(Γ ).

Proof. Let ι : D → XD be the function defined by ι(d) = xd. Theorem 3.5 in [7]
implies the following property of IP(Γ ): the set of optimal solutions to IP(Γ )
is equal to {σ : XD → D | σ ◦ ι ∈ End (Γ )}.

Let J be an instance of Min CSP(Γ, CD). The only way for J to be unsat-
isfiable is if it contains two contradicting constraint applications (y; {a}) and
(y; {b}), with a �= b. This is easily checked in polynomial time.

Otherwise, let x be a list of the variables XD, and let R = πxOptsol(IP(Γ )).
Now modify J to an instance J ′ of Min CSP(Γ,R) as follows. Add the variables
in XD to V (J ′), and add the constraint application (x;R). Furthermore, remove
each constraint (y; {a}), and replace y by xa throughout the instance. Let σ′ be
an optimal solution to J ′. Since Γ is a core, g = σ′|XD ◦ ι is an automorphism
of Γ , and so is its inverse, g−1. Hence, σ = g−1 ◦σ′ is also an optimal solution to
J ′. From σ we easily recover a solution to J of equal measure, and conversely,
any solution to J can be interpreted as a solution to J ′. It follows that we
have a reduction from Min CSP(Γ, CD) to Min CSP(Γ,R). By Proposition 3,
we finally have a reduction from Min CSP(Γ,R) to Min CSP(Γ ). ��

For a, b ∈ D, let eab : D → D denote the function eab(a) = b and eab(x) = x for
x �= a. The proof of the following lemma is straightforward.
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Lemma 12. If eab �∈ End (Γ ), then 〈Γ, CD〉fn contains a unary {0, 1}-valued
function u such that u(a) = 0 and u(b) = 1.

5 A Graph of Partial Multimorphisms

Let Γ be a core over D. In this section, we define a graph G = (V,E) which en-
codes either the NP-hardness of Min CSP(Γ, CD) or provides a multimorphism
for the binary functions in 〈Γ, CD〉fn. The graph is a variation of a graph defined
by Kolmogorov and Živný [9].

Let V be the set of partial functions (f, g) : D2 → D2 such that (1) f and g
are defined on a subset {a, b} ⊆ D; (2) f and g are idempotent and commutative;
and (3) {f(a, b), g(a, b)} = {a, b} or {f(a, b), g(a, b)}∩{a, b} = ∅. We allow a = b
in the definition of V so there is precisely one vertex for each singleton in D. For
a, b ∈ D, we let G[a, b] denote the graph induced by the set of vertices defined
on {a, b}. Let (f1, g1) ∈ G[a1, b1] and (f2, g2) ∈ G[a2, b2]. There is an edge in E
between (f1, g1) and (f2, g2) if there is a binary function h ∈ 〈Γ, CD〉fn such that

min{h(a1, a2) + h(b1, b2), h(a1, b2) + h(b1, a2)} <

h(f1(a1, b1), f2(a2, b2)) + h(g1(a1, b1), g2(a2, b2)). (7)

We can now see how G describes multimorphisms of binary functions in 〈Γ, CD〉fn.

Lemma 13. Let I ⊆ V be an independent set in G with precisely one ver-
tex (f{x,y}, g{x,y}) from each subgraph G[x, y] Then, every binary function h ∈
〈Γ, CD〉fn has the multimorphism (f, g) defined by f(x, y) = f{x,y}(x, y) and
g(x, y) = g{x,y}(x, y).

Proof. Assume to the contrary that (f, g) is not a multimorphism of h. Then,
there are tuples (a1, a2), (b1, b2) ∈ D2 such that

h(a1, a2) + h(b1, b2) < h(f(a1, b1), f(a2, b2)) + h(g(a1, b1), g(a2, b2)).

But this would imply that {(f{a1,b1}, g{a1,b1}), (f{a2,b2}, g{a2,b2})} ∈ E, which is
a contradiction since I is an independent set. ��

For distinct a, b ∈ D, let
−→
ab denote the vertex (f, g) ∈ G[a, b] such that f(a, b) = a

and g(a, b) = b. We say that such a vertex is conservative. Let V ′ denote the set
of all conservative vertices, and let G′ = G[V ′] be the subgraph of G induced
by V ′. Let V ′

Γ ⊆ V ′ be the set of vertices −→xy such that {x, y} ∈ 〈Γ, CD〉w . For
conservative vertices

−−→
a1b1 and

−−→
a2b2, condition (7) reduces to:

h(a1, b2) + h(b1, a2) < h(a1, a2) + h(b1, b2). (8)

For a vertex x = (f, g), we let x denote the vertex (g, f). It follows immediately
from (7) that {x, y} ∈ E iff {x, y} ∈ E. We also need to establish a number of
additional properties of the graph G.
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Lemma 14. If {−−→a1b1,
−−→
a2b2} ∈ E, then there exists a function h ∈ 〈Γ, CD〉fn

such that h(a1, b2) = h(b1, a2) < h(a1, a2) = h(b1, b2).

The proof of Lemma 14, and of properties (1–3) of the following lemma are
very similar to the proof of Lemma 11 in Kolmogorov and Živný [9]. The main
difference is that we do not have access to all unary functions, so we must be a
bit more careful. Property (4) provides a way to deduce the existence of a set of
neighbours for non-isolated conservative vertices; (5) and (6) follow from (4).

Lemma 15. Let x1, . . . , xn be conservative vertices.

1. If {x1, x2}, {x2, x3} ∈ E and x2 ∈ V ′
Γ , then {x1, x3} ∈ E.

2. Let (x1, . . . , xn), n ≥ 2, be a path in G, with x2, . . . , xn−1 ∈ V ′
Γ . If n is even,

then {x1, xn} ∈ E, otherwise {x1, xn} ∈ E.
3. If (x1, . . . , xn, x1), n ≥ 3 is an odd cycle in G and x2, . . . , xn ∈ V ′

Γ , then
there is a loop on x1.

4. If {−−→a1b1,
−−→
a2b2} ∈ E, then for each element x �= a2, b2, either {−−→a1b1,

−→a2x} ∈ E

or {−−→a1b1,
−→
xb2} ∈ E.

5. If {−→xy,−→yx}, {−→yz,−→zy} ∈ E and {−→xy,−→yz} �∈ E, then {−→xy,−→zx}, {−→yz,−→zx} ∈ E.
6. If there is a loop on −→xz, but −→xy and −→yz are loop-free, then {−→xy,−→yz} ∈ E.

6 Classification for |D| = 4

We will now completely classify the complexity of Min CSP over a four-element
domain. From here on, we assume that D is the domain {a, b, c, d}. First, we
prove a result which describes the structure of the unary functions in 〈Γ, C〉fn,
when Γ is a core. Let Σ = {{x, y} ⊆ D | x �= y}, Σ0 = Σ \ {{b, c}, {a, d}}, and
let ΣΓ = 〈Γ, CD〉w ∩ Σ. For distinct x, y ∈ D, let uxy(z) = 0 if z ∈ {x, y}, and
uxy(z) = 1 otherwise.

Proposition 16. Let Γ be a core over {a, b, c, d} and assume that {b, c} �∈ ΣΓ .
Then, Σ0 ⊆ ΣΓ and for all unary functions u ∈ 〈Γ, CD〉fn, we have u(a)+u(d) ≤
u(b) + u(c). If Σ0 = ΣΓ , then u(a) + u(d) = u(b) + u(c).

Proof (sketch): Let U be the set of unary functions in 〈Γ, CD〉fn. If {b, c} �∈ ΣΓ ,
then ubc �∈ U . Since Γ is a core, eba, eca, ebd, ecd �∈ End (Γ ), so by Lemma 12,
there must be a number of unary {0, 1}-valued functions in U to witness this.
The set {ubd, ucd, uab, uac} fulfils this condition, and due to the absence of ubc,
one can argue that this set must indeed lie entirely in U . The last part of the
proposition can be shown using the observation that this set can express every
unary function u such that u(a) + u(d) = u(b) + u(c), and considering what
happens when one adds a function v with v(a) + v(d) < v(b) + v(c). ��

We can link properties of G′ to the existence of certain multimorphisms. Note
that if {x, y} ∈ ΣΓ , then −→xy,−→yx ∈ V ′

Γ . Proposition 16 therefore gives us good con-
trol over the size of V ′

Γ . In general G[V ′
Γ ] needs to be bipartite unless Min CSP(Γ )

is NP-hard (cf. the proof of Theorem 18), so a lower bound on Σ implies that
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a large induced subgraph of G′ needs to be bipartite. This connection is made
formal by the following proposition, the proof of which is deferred to Appendix
A. We are then ready to state and prove the main theorem.

Proposition 17. Assume Σ0 ⊆ ΣΓ . If G′ is bipartite, then the set of binary
functions in 〈Γ, CD〉fn is submodular on a chain. Otherwise, if G[V ′

Γ ] is bipartite,
then the set of binary functions in 〈Γ, CD〉fn has a 1-defect chain multimorphism.

Theorem 18. Let Γ be a core over D = {a, b, c, d}. If Γ is submodular on
a chain, or if Γ has a 1-defect chain multimorphism, then Min CSP(Γ ) is
tractable. Otherwise, it is NP-hard.

Proof. Assume that G[V ′
Γ ] has a loop on a vertex −→xy. It then follows from

Lemma 14 that there is a function h ∈ 〈Γ, CD〉fn such that h(x, y) = h(y, x) <
h(x, x) = h(y, y), and {x, y} ∈ 〈Γ, CD〉w. By Proposition 5.1 in [2], the problem
Min CSP(Γ, CD) is NP-hard. By Proposition 11, Min CSP(Γ, CD) reduces to
Min CSP(Γ ). Hence, the latter problem is NP-hard as well.

If instead G[V ′
Γ ] is loop-free, then it is bipartite, by Lemma 15(3). We may

assume that Σ0 ⊆ ΣΓ : this is trivial if ΣΓ = Σ. If ΣΓ is strictly contained in Σ,
then up to an automorphism we may assume that {b, c} �∈ ΣΓ , and the inclusion
follows by Proposition 16. For a k-ary function h ∈ Γ , let Φ(h) be the set of
binary functions which can be obtained from h by fixing k− 2 variables, and let
Γ ′ be the union of Φ(h) over all h ∈ Γ .

Now, if G′ is bipartite, then by Proposition 17, the set of binary functions
in 〈Γ, CD〉fn is submodular on a chain. Since this set contains Γ ′, we may con-
clude, by Lemma 9, that Γ is submodular on this chain as well. It follows that
Min CSP(Γ ) is tractable [15].

Otherwise, G′ is not bipartite, and by Proposition 17, the set of binary func-
tions in 〈Γ, CD〉fn have a 1-defect chain multimorphism. Since this set contains
Γ ′, we may conclude, by Lemma 10 this time, that Γ has a 1-defect chain multi-
morphism. It now follows from Proposition 8 that Min CSP(Γ ) is tractable. ��

7 Discussion

We have presented a complete complexity classification for Min CSP over a
four-element domain. More importantly, we have compiled a powerful set of tools
which will allow further systematic study of this problem. In particular, we have
shown that it is possible to add (crisp) constants to an arbitrary core, without
changing the complexity of the problem. This result holds in the more general
case of finite-valued VCSP as well, thus answering Question 4 in Živný [17]. We
have also demonstrated that the techniques used by Krokhin and Larose [10]
for lattices can be used effectively in the context of arbitrary algebras, and in
doing so, we have given the first example of an instance of Min CSP where
submodularity does not suffice to explain tractability. Finally, we have shown
that graph representations such as the one defined by Kolmogorov and Živný [9]
can be used to great effect, even in a non-conservative setting.
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The curious readers may ask themselves several questions at this point, and
the following one is particularly important: do 1-defect chain multimorphisms
define genuinely new tractable classes? There is still a possibility that the
tractability can be explained in terms of submodularity. We answer this question
negatively with the following example.

Example 19. Consider the language Γ = {ubd, ucd, uab, uac, h} where h : D2 →
{0, 1} is defined such that h(x, y) = 1 if and only if x = c or y = b. Γ is a core on
{a, b, c, d} but it is not submodular on any lattice. However, Γ has the 1-defect
chain multimorphisms (f1, g1) and (f2, g2) from Example 6.

A related question is why bisubmodularity does not appear in the classification
of Min CSP over domains of size three [8]. The reason is that for any cost
function h : {0, 1, 2}k → {0, 1} which is bisubmodular, the tuple (0, 0, . . . , 0)
minimises h. It follows that any {0, 1} constraint language over three elements
which is bisubmodular is not a core.

There are several ways of extending this work, and one obvious way is to study
VCSP instead of Min CSP. It is known that the fractional polymorphisms of the
constraint language, introduced by Cohen et al. [1], characterise the complexity
of this problem (see also [3]). Multimorphisms are a special case of fractional
polymorphisms. As for Min CSP, it is currently not known whether submod-
ularity over every finite lattice implies tractability for VCSP. This is known
to be true for distributive lattices, and for certain constructions on lattices,
e.g. homomorphic images and Mal’tsev products [10]. The five element modular
non-distributive lattice (also known as the diamond) implies tractability for un-
weighted VCSP [11]. Finally, it is known that submodularity over finite modular
lattices implies containment in NP ∩ coNP [11]. It is thus clear that in order to
approach further classification of either Min CSP or VCSP, it will be necessary
to study the complexity of minimising submodular cost functions over new finite
lattices.
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A Proof of Proposition 17

We will need three supporting lemmas, which are stated here without proofs.
They follow without too much difficulty from the definition of the graph G,
Lemma 15, and Proposition 16. Let Σad = Σ \ {{b, c}}.

Lemma 20. If Σ0 ⊆ ΣΓ , and x ∈ V ′ is not isolated in G′, then {x, x} ∈ E.

Lemma 21. Assume that ΣΓ ⊆ Σad and that there is an edge {(f, g), z} ∈ E,
z ∈ V ′. Then, {−→ab, z} ∈ E or {−→ac, z} ∈ E, and {−→bd, z} ∈ E or {−→cd, z} ∈ E.

Lemma 22. Assume that ΣΓ ⊆ Σ0. If there is a loop on
−→
bc or

−→
ad, then there

is a loop on at least one of the vertices
−→
ab, −→ac, −→bd, −→cd.

Proposition 17. Assume Σ0 ⊆ ΣΓ . If G′ is bipartite, then the set of binary
functions in 〈Γ, CD〉fn is submodular on a chain. Otherwise, if G[V ′

Γ ] is bipartite,
then the set of binary functions in 〈Γ, CD〉fn has a 1-defect chain multimorphism.

Proof. We start by proving the case when G′ is bipartite. For an independent set
I in G′, let RI denote the binary relation on D defined by (x, y) ∈ RI iff −→xy ∈ I.
Let {I, J} be a 2-colouring of the subgraph of G′ induced by the non-isolated
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vertices. We first show that RI is a partial order on D. Let (x, y), (y, z) ∈ RI .
Then, −→xy and −→yz have the same colour in I, and it follows that {−→xy,−→yz} �∈
E. Hence, by Lemma 15(5), we have {−→xy,−→zx}, {−→yz,−→zx} ∈ E. By Lemma 20,
{−→zx,−→xz} ∈ E, so −→xz ∈ I and (x, z) ∈ RI . Now, let (D;<) be a linear extension of
RI (i.e. a total order on D containing RI), and let I ′ ⊇ I be the corresponding
subset of V ′. The set I ′ is independent since I is independent and I ′ \ I is a
set of isolated vertices in G′. Since there are no edges from V ′ to the singleton
vertices in G, we can add all of these to I ′ as well. Thus, by Lemma 13, every
binary function in 〈Γ, CD〉fn is submodular on the chain (D;∧,∨), where ∧ and
∨ are defined with respect to (D;<).

Let (f, g) denote the vertex in G given by f(b, c) = f(c, b) = a and g(b, c) =
g(c, b) = d. We follow a similar strategy for the case when G′ is not bipartite.
However, instead of using G′ we now consider the graph G[V ′

ad ∪{(f, g), (g, f)}],
where V ′

ad = V ′ \ {−→bc,−→cb}. First, we show that G[V ′
ad] is bipartite. If ΣΓ = Σad,

then G[V ′
ad] = G[V ′

Γ ] is bipartite by assumption. Otherwise, ΣΓ = Σ0. Since
G[V ′

Γ ] = G[V ′
0 ] is loop-free, we know from Lemma 22 that there is no loop on

−→
bc, nor on

−→
ad. Thus, by Lemma 15(3), G[V ′

ad] is bipartite.
Assume for the moment that the following holds:

For y ∈ D \ {b, c}, there is an odd path in G[V ′
ad] from

−→
by to −→yc . (9)

Let {I, J} be a 2-colouring of the subgraph of G[V ′
ad] induced by the non-isolated

vertices. We claim that RI is a partial order on D. Let (x, y), (y, z) ∈ RI and
observe that (9) implies {x, z} �= {b, c}. As in the case for bipartite G′, we can
argue that −→xz is connected by even paths to both −→xy and −→yz. Since {x, z} �= {b, c},
it follows that (x, z) ∈ I. Now take a transitive extension of RI which orders all
pairs of elements except for b and c, and let I ′ ⊇ I be the corresponding subset
of V ′

ad. We can assume (possibly by swapping I and J) that
−→
ad ∈ I ′.

Next we show that I ′∪{(f, g)} is independent. This will ensure that f(b, c) =
a < d = g(b, c) holds in the constructed multimorphism. If (f, g) is not con-
nected to any vertex in V ′

ad, then I ′ ∪ {(f, g)} is trivially independent. Other-
wise, by Lemma 21, (9), and Lemma 20, we can show that from any z ∈ V ′

ad

such that {(f, g), z} ∈ E, there are odd paths in G[V ′
ad] to each vertex in the

set S = {−→ab,−→ac,−→bd,−→cd}. Since G[V ′
ad] is bipartite, it follows that {−→ab,−→bd} �∈ E,

so {−→ab,−→da} ∈ E by Lemma 15(5). Hence, I ′ = I = S ∪ {−→ad}, and z �∈ I ′.
It remains to verify that I ′ ∪ {(f, g)} together with the singleton vertices in

G also form an independent set. By condition (7) this is equivalent to saying
that each unary function obtained from a binary function in 〈Γ, CD〉fn by fixing
one argument to a constant is submodular on Lad. This follows from Proposi-
tion 16. By Lemma 13, every binary function in 〈Γ, CD〉fn has the 1-defect chain
multimorphism corresponding to I ′ ∪ {(f, g)}.

Finally, we prove property (9). If ΣΓ = Σad, then by Lemma 15(3), and the
fact that G′ contains an odd cycle, we have a loop on

−→
bc. Since

−→
by and −→yc are

loop-free for y ∈ D \ {b, c}, we have {−→by,−→yc} ∈ E by Lemma 15(6). Otherwise,
ΣΓ = Σ0. We argued above that G′ does not contain any loop in this case.
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Thus, by Lemma 15(3), every odd cycle C in G′ must intersect both {−→bc,−→cb}
and {−→ad,−→da}. Now, by repeatedly applying Lemma 15(2) to C, we obtain a
triangle on a subset of {−→bc,−→cb,−→ad,−→da}. By Lemma 20, we can conclude that
G′ in fact contains the complete graph on these four vertices. In particular, we
have both {−→ad,−→bc} ∈ E and {−→da,−→bc} ∈ E. By Lemma 15(4), we therefore have
either {−→ad,−→ba} ∈ E or {−→ad,−→ac} ∈ E, and furthermore, either {−→da,−→ba} ∈ E or
{−→da,−→ac} ∈ E. Since there is no loop on

−→
ad, we conclude that either the path

(
−→
ba,
−→
ad,
−→
da,−→ac) or the path (

−→
ba,
−→
da,
−→
ad,−→ac) is in G[V ′

ad]. In the same way, we find
an odd path from

−→
bd to

−→
dc. ��
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Abstract. Algorithm portfolios aim to increase the robustness of our
ability to solve problems efficiently. While recently proposed algorithm
selection methods come ever closer to identifying the most appropriate
solver given an input instance, they are bound to make wrong and, at
times, costly decisions. Solver scheduling has been proposed to boost the
performance of algorithm selection. Scheduling tries to allocate time slots
to the given solvers in a portfolio so as to maximize, say, the number of
solved instances within a given time limit. We show how to solve the
corresponding optimization problem at a low computational cost using
column generation, resulting in fast and high quality solutions. We inte-
grate this approach with a recently introduced algorithm selector, which
we also extend using other techniques. We propose various static as well
as dynamic scheduling strategies, and demonstrate that in comparison to
pure algorithm selection, our novel combination of scheduling and solver
selection can significantly boost performance.

1 Introduction

The constraint reasoning community has a long tradition of introducing and re-
fining ideas whose practical impact often goes far beyond the field’s scope. One
such contribution is that of robust solvers based on the idea of algorithm portfo-
lios (cf. [28,11,20,21,41,25]). Motivated by the observation that solvers have com-
plementary strengths and therefore exhibit incomparable behavior on different
problem instances, algorithm portfolios run multiple solvers in parallel or select
one solver, based on the features of a given instance. Portfolio research has led to
a wealth of different approaches and an amazing boost in solver performance in
the past decade. One of the biggest success stories is that of SATzilla [40], which
combines existing Boolean Satisfiability (SAT) solvers and has now dominated
various categories of the SAT Competition for about half a decade [29]. Another
example is CP-Hydra [25], a portfolio of Constraint Programming (CP) solvers
which won the CSP 2008 Competition. Instead of choosing a single solver for
an instance, Silverthorn and Miikkulainen [30] proposed a Dirichlet Compound
Multinomial distribution to create a schedule of solvers to be run in sequence.
Other approaches (e.g., [17]) dynamically switch between a portfolio of solvers

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 454–469, 2011.
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based on the predicted completion time. Alternatively, ArgoSmart [24] and Hy-
dra [38] focus on not only choosing the best solver for an instance, but also the
best parametrization of that solver. For a further overview of the state-of-the-art
in portfolio generation, see the thorough survey by Smith-Miles [31].

A recently proposed algorithm selector for SAT based on nearest-neighbor
classification [23] serves as the foundation for our work here. First, we present
two extensions to it involving distance-based weighting and cluster-guided adap-
tive neighborhood sizes, demonstrating moderate but consistent performance
improvements. Then we develop a new hybrid portfolio that combines algorithm
selection and algorithm scheduling, in static and dynamic ways. To this end
we present a heuristic method for computing solver schedules efficiently, which
O’Mahony et al. [25] identified as an open problem. This also enables us to
quantify the impact of various scheduling strategies and to report those findings
accordingly. Finally, we are able to show that a completely new way of solver
scheduling consisting of a combination of static schedules and solver selection is
able to achieve significantly better results than plain algorithm selection.

Using SAT as the testbed, we demonstrate through extensive numerical ex-
periments that our approach is able to handle even highly diverse benchmarks,
in particular a mix of random, crafted, and industrial instance categories, with
a single portfolio. This is in contrast to, for example, SATzilla, which has his-
torically excelled only in different versions that were specifically tuned for each
category. Our approach also works well even when the training set is not fully
representative of the test set that needs to be solved.

2 Nearest-Neighbor-Based Algorithm Selection

Malitsky et al. [23] recently proposed a simple yet highly effective algorithm se-
lector for SAT based on nearest-neighbor classification. We review this approach
here, before proposing two improvements to it in Section 3 and algorithm sched-
ules in Section 4.

Nearest-neighbor classification (k-NN) is a classic machine learning approach.
In essence, we base our decision for a new instance on prior experience with
the k training instances most similar to it. As the similarity measure between
instances, we simply use the Euclidean or L2 distance on 48 core features of SAT
instances that SATzilla is based on [40]. Each feature is (linearly) normalized
to fit the interval [0, 1] across all training instances. As the solver performance
measure, we use the PAR10 score of the solver on these k instances. PAR10
score for a given timelimit T is a hybrid measure, defined as the average of the
runtimes for solved instances and of 10× T for unsolved instances. It is thus a
combined measure of number of instances solved and average solution time.

It is well-known in machine learning that 1-NN (i.e., k = 1) often does not
generalize well to formerly unseen examples, as it tends to over-fit the training
data. A very large value of k, on the other hand, defeats the purpose of consider-
ing local neighborhoods. To find the “right” value of k, we employ another classic
strategy in machine learning, namely random sub-sampling validation. The idea
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Algorithm 1. Algorithm Selection using Nearest-Neighbor Classification

k-NN-Algorithm-Selection Phase1

Input : a problem instance F
Params: nearest neighborhood size k, candidate solvers S , training instances

Ftrain along with feature vectors and solver runtimes
Output: a solver from the set S
begin2

compute normalized features of F3

F ← set of k instances from Ftrain that are closest to F4

return solver in S that has the best PAR10 score on F5

end6

Training Phase7

Input : candidate solvers S , training instances Ftrain, time limit Tmax

Params: neighborhood range [kmin, kmax], number of sub-samples m, split ratio
mb/mv

Output: best performing k, reduced Ftrain along with feature and runtimes
begin8

run each solver S ∈ S for time Tmax on each F ∈ Ftrain; record runtimes9

remove from Ftrain instances solved by no solver, or by all within 1 second10

compute feature vectors for each F ∈ Ftrain11

for k ∈ [kmin, kmax] do12

score[k]← 013

for i ∈ [1..m] do14

(Fbase,Fvalidation)← a random mb/mv split of Ftrain15

add to score[k] performance of k-NN portfolio on Fvalidation using16

training instances Fbase and solver selection based on PAR10

score[k]← score[k]/m; kbest ← argminkscore[k]17

return (kbest, Ftrain, feature vectors, runtimes)18

end19

is to repeat the following process several times: Randomly split the training data
into a base set and a validation set, train on the base set, and assess how well the
learned approach performs on the validation set. We use a 67/33 base-validation
split and perform random sub-sampling 100 times. We then finally choose the k
that yields the best PAR10 performance averaged across the 100 validation sets.

Algorithm 1 gives a more formal description of the entire algorithm, in terms
of its usage as a portfolio solver (i.e., algorithm selection given a new instance,
as described above) and the random sub-sampling based training phase per-
formed to compute the best value for k to use. The training phase starts out by
computing the runtimes of all solvers on all training instances. It then removes
all instances that cannot be solved by any solver in the portfolio within the
time limit, or are solved by every solver in the portfolio within marginal time
(e.g., 1 second for reasonably challenging benchmarks); learning to distinguish
between solvers based on data from such instances is pointless. Along with the
estimated best k, the training phase passes along this reduced set of training
instances, their runtimes for each solver, and their features to the main solver
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Table 1. Comparison of Baseline Solvers, Portfolios, and VBS Performances: PAR10,
average runtime in seconds, and number of instances solved (timeout 1,200 seconds)

Pure Solvers Portfolios
VBSagw- agw- gnov- SAT-

march
pico-

kcnfs
SAT-

k-NN
sat0 sat+ elty+ enstein sat zilla

PAR10 5940 6017 5874 5892 8072 10305 6846 3578 3151 2482
Avg Time 634 636 626 625 872 1078 783 452 442 341
# Solved 290 286 293 292 190 83 250 405 427 457
% Solved 50.9 50.2 51.4 51.2 33.3 14.6 43.9 71.1 74.9 80.2

selection phase. We emphasize that the training phase does not learn any sophis-
ticated model (e.g., a runtime prediction model); rather, it simply memorizes the
training performances of all solvers and “learns” only the value of k.

Despite the simplicity of this approach – compared, for example, to the de-
scription of SATzilla [40] – it is highly efficient and outperforms SATzilla2009 R,
the Gold Medal winning solver in the random category of SAT Competition 2009.
In Table 1 we compare simple k-NN algorithm selection with SATzilla R, using
the 2,247 random category instances from SAT Competitions 2002-2007 as the
training set and the 570 such instances from SAT Competition 2009 as the test
set. Both portfolios are based on the following local search solvers: Ag2wsat0 [36],
Ag2wsat+ [37], gnovelty+ [26], Kcnfs04 [8], March dl04 [16], Picosat 8.46 [3], and
SATenstein [19], all in the versions that are identical to the ones that were used
when SATzilla09 R [39] entered the 2009 competition. To make the comparison
as fair as possible, k-NN uses only the 48 core instance features that SATzilla is
based on and is trained for Par10-score. For both training and testing, we use
a time limit of 1,200 seconds. Table 1 shows that SATzilla boosts performance
of individual solvers dramatically.1 The pure k-NN approach pushes the perfor-
mance level substantially further. It solves 22 more instances and closes about
one third of the gap between SATzilla R and the virtual best solver (VBS),2

which solves 457 instances.

3 Improving Nearest-Neighbor-Based Solver Selection

We now discuss two mutually orthogonal techniques to further improve the per-
formance of the algorithm selector outlined in Section 2.

Distance-Based Weighting. A natural extension of k-NN is to scale the scores of
the k neighbors of an instance based on the Euclidean distance to it. Intuitively
speaking, inspired by O’Mahony et al. [25], we assign larger weights to instances
that are closer to the test instance assuming that closer instances more accurately
1 The exact runtimes in Table 1 are lower than the ones reported in [23] due to faster

machines: dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors with 24
GB of DDR-3 memory. The relative drop in the performance of kcnfs, we believe, is
also due to this hardware difference.

2 VBS refers to the “oracle” that always selects the solver that is fastest on the given
instance. Its performance is the best one can hope to achieve with algorithm selection.
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reflect the properties of the instance at hand. Hence, in Lines 5 and 16 of Algo-
rithm 1, when computing the PAR10 score for solver selection for an instance
F , we scale a solver S’s penalized runtime (i.e., actual runtime or 10×Tmax) on
a neighbor F ′ by

(
1− dist(F,F ′)

totalDist

)
, where totalDist corresponds to the sum of all

distances from F to instances in the neighborhood under consideration.

Clustering-Based Adaptive Neighborhood Size. Rather than learning a single
value for k, we adapt the size of the neighborhood based on the properties
of the given test instance. To this end, we partition the instance feature space
by clustering the training instances using g-means clustering [13]. An instance
is considered to belong to the cluster it is nearest to (breaking ties arbitrarily).
Algorithm 1 can be easily adapted to learn one k for each cluster. Given a test
instance, we first determine the cluster to which it belongs and then use the
value of k learned for this cluster during training. We note that our clustering is
used to select only the size of the neighborhood based on instance features, not
to limit the neighborhood itself; neighboring instances from other clusters can
still be used when determining the best solver based on PAR10 score.

3.1 Experimental Setup and Evaluation

We now describe the benchmark used for portfolio evaluation in the rest of
this paper. Note that such a benchmark involves not only training and testing
instances but also the base solvers used for building portfolios. The challenging
benchmark setting we consider mixes incomplete and complete SAT solvers, as
well as industrial, crafted, and random instances. After describing these, we will
assess the impact of weighting, clustering, and their combination, on pure k-NN.
Note that the reported runtimes include all overhead incurred by our portfolios.

Benchmark Solvers. We consider the following 21 state-of-the-art complete
and incomplete SAT solvers: 1. Clasp[9], 2. CryptoMiniSat [32], 3. Glucose [1],
4. Lineling [5], 5. LySat i [12], 6. LySat c [12], 7. March-hi [14], 8. March-nn [15],
9. MiniSAT 2.2.0 [33], 10. MXC [6], 11. PrecoSAT [4], 12. Adaptg2wsat2009 [22],
13. Adaptg2wsat2009++ [22], 14. Gnovelty+2 [27], 15. Gnovelty+2-H [27],
16. HybridGM3 [2], 17. Kcnfs04SAT07 [8], 18. Picosat [3], 19. Saps [18],
20. TNM [35], and 21. SATenstein [19]. We in fact use six different parametriza-
tions of SATenstein, resulting in a total of 26 base solvers. In addition, we prepro-
cess all industrial and crafted instances with SatElite (version 1.0, with default
option ‘+pre’) and let the following solvers run on both original and preprocessed
version of each instance:3 1. Clasp, 2. CryptoMiniSat, 3. Glucose, 4. Lineling,
5. LySat c, 6. LySat i, 7. March-hi, 8. March-nn, 9. MiniSat, 10. MXC, and 11.
Precosat. Our portfolio is thus composed of 37 solvers.

Benchmark Instances. We selected 5, 464 instances from all SAT Competitions
and Races during 2002 and 2010 [29], whereby we discarded all instances that
3 Preprocessing usually does not improve performance on random instances.
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Table 2. Average Performance Comparison of Basic k-NN, Weighting, Clustering,
and the combination of both using the k-NN Portfolio. Numbers in braces show in
how many of the 10 training-test splits does incorporating weighting and clustering
outperform basic k-NN (column 2).

Basic k-NN Weighting Clustering Weight.+Clust.

# Solved 1609 1611 1615 1617 (9/10)
# Unsolved 114 112 108 106 (9/10)
% Solved 93.5 93.6 93.8 93.9 (9/10)

Avg Runtime 588 584 584 577 (7/10)
PAR10 Score 3518 3459 3369 3314 (8/10)

cannot be solved by any of the aforementioned solvers within the competition
time limit of 5,000 seconds (i.e., the VBS can solve 100% of all instances).

Now, we need to partition these instances into disjoint sets of training and
testing instances. In research papers, we often find that only one training-test
split of the instances is considered. Moreover, commonly this split is computed
at random, thereby increasing the likelihood that the training set is quite repre-
sentative of the test set. We propose to adopt some best practices from machine
learning and to consider multiple splits as well as a more challenging partitioning
into training and test sets. Our objective for the latter is to generate splits where
entire benchmark families are completely missing in the training set, while for
other families some instances are present in both the training and in the test
partition. To asses which instances are related, we use the the first three charac-
ters in the prefix of an instance name and assume that instances starting with
the same three characters belong to the same benchmark family. We select, at
random, about 5% of benchmark families and include them fully in the test
partition; this typically resulted in roughly 15% of all instances being in the test
partition. Next, we randomly add more instances to the test partition until it
has about 30% of all instances, resulting in a 70-30 split. The 10 such partitions
used in our experimentation are available online for future reference.4

Results. Table 2 summarizes the performance gain from using weighting, cluster-
ing, and the combination of the two. We show the average performance (across
the 10 training-test splits mentioned above) in terms of number of instances
solved/not solved, average runtime, and PAR10 score. Depending on the perfor-
mance measure, the combination of weighting and clustering is able to improve
performance of basic k-NN on anywhere from 7 to 9 out of the 10 splits (shown
in braces in the rightmost column). The gain is modest but serves as a good
incremental step for the rest of this paper.

For completeness, we remark that these modest gains also translate to the
benchmark discussed in Table 1, where the combination of weighting and clus-
tering solves 7 more instances than basic k-NN and 29 more than SATzilla R.
We will return to this benchmark towards the end of this paper.

4 http://www.cs.toronto.edu/~horst/CP2011-Training-Test-Splits.zip

http://www.cs.toronto.edu/~horst/CP2011-Training-Test-Splits.zip
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4 Building Solver Schedules

To further increase the robustness of our approach we consider computing sched-
ules that define a sequence of solvers to try, along with individual time limits,
given an instance. The general idea was previously introduced by Streeter [34]
and in CP-Hydra [25]. In fact, Streeter [34] uses the idea of scheduling to gener-
ate algorithm portfolios. While he suggested using schedules that can suspend
solvers and let them continue later on in exactly the same state they were sus-
pended in, we will focus on solver schedules without preemption, i.e., each solver
will appear in the schedule at most once. This setting was also used in CP-Hydra,
which computes a schedule of CP solvers based on k nearest neighbors.

We note that a solver schedule can never outperform the VBS. In fact, a
schedule is no better than the VBS with a reduced captime of the longest run-
ning solver in the schedule. Therefore, trivial schedules that split the available
time evenly between all solvers have inherently limited performance. The reason
why we may be interested in solver schedules nevertheless is to hedge our bets:
We often observe that instances that cannot be solved by one solver even in a
very long time can in fact be solved by another very quickly. Consequently, by
allocating a reasonably small amount of time to other solvers we can provide a
safety net in case our solver selection happens to be unfortunate.

4.1 Static Schedules

The simplest approach is to compute a static schedule of solvers. For example,
we could compute a schedule that solves the most training instances within the
allowed time (cf. [25]). We propose to do slightly more, namely to compute a
schedule that, first, solves most training instances and that, second, requires the
lowest amount of time among all schedules that are able to solve the same amount
of training instances. We can formulate this problem as an integer program (IP),
more precisely as a resource constrained set covering problem (RCSCP), where
the goal is to select a number of solver-runtime pairs that together “cover” (i.e.,
solve) as many training instances as possible:

Solver Scheduling IP:

min (C + 1)
∑

i

yi +
∑
S,t

txS,t (1)

s.t. yi +
∑

(S,t) | i∈VS,t

xS,t ≥ 1 ∀i (2)

∑
S,t

txS,t ≤ C (3)

yi, xS,t ∈ {0, 1} ∀i, S, t (4)

Binary variables xS,t correspond to sets of instances that can be solved by
solver S within a time t. These sets have cost t and a resource consumption
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coefficient t. To make it possible that all training instances can be covered even
when they remain unsolved, we introduce additional binary variables yi. These
correspond to the set that contains only item i, they have cost C + 1 and time
resource consumption coefficient 0. The constraints (2) in this model enforce that
we cover all training instances, the additional resource constraint (3) that we do
not exceed the overall captime C. The objective is to minimize the total cost.
Due to the high costs for variables yi (which will be 1 if and only if instance
i cannot be solved by the schedule), schedules that solve most instances are
favored, and among those the fastest schedule is chosen (as the cost of xS,t is t).

4.2 A Column Generation Approach

The main problem with the above formulation is the sheer number of variables.
For our most up-to-date benchmark with 37 solvers and more than 5,000 training
instances, solving the above problem is impractical, even when we choose the
timeouts t smartly such that from timeout t1 to the next timeout t2 at least
one more instance can be solved by the respective solver (VS,t1 � VS,t2). In our
experiments we found that the actual time to solve these IPs may at times still
be tolerable, but the memory consumption was often prohibitively high.

We therefore propose to solve the above problem approximately, using col-
umn generation (aka Dantzig-Wolfe decomposition) – a well-known technique
for handling linear programs (LPs) with a lot of variables [7,10]. We discuss it
briefly in the general setting. Consider the LP:

min cTx s.t. Ax ≥ b, x ≥ 0 (5)

In the presence of too many variables, it is often not practical to solve the
large system (5) directly. The core observation underlying column generation is
that only a few variables (i.e., “columns”) will be non-zero in any optimal LP
solution (at most as many as there are constraints). Therefore, if we knew which
variables are important, we could consider a much smaller system A′ x′ = b
where A′ contains only a few columns of A. When we choose only some columns
in the beginning, LP duality theory tells us which columns that we have left out
so far are of interest for the optimization of the global LP. Namely, only columns
with negative reduced costs (which are defined based on the optimal duals of the
system A′ x′ = b) can help the objective to decrease further.

Column generation proceeds by considering, in turn, a master problem (the
reduced system A′ x′ = b) and a subproblem where we select a new column to
be added to the master based on its current optimal dual solution. This process
is iterated until there is no more column with a negative reduced cost. At this
point, we know that an optimal solution to (5) has been found – even though
most columns have never been added to the master problem!

When using standard LP solvers to solve the master problem and obtain its
optimal duals, all that is left is solving the subproblem. To develop a subproblem
generator, we need to understand how exactly the reduced costs are computed.
Assume we have a dual value λi ≥ 0 for each constraint in A′. Then, the reduced
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Algorithm 2. Subproblem: Column Generation
begin

minRedCosts ←∞
forall Solvers S do

T ← 0
forall i do

j ← π(i); T ← T + λj ; t̂← Time(S, j)
redCosts ← t̂(1− μ)− T
if redCosts < minRedCosts then

Solver ← S
timeout ← t̂
minRedCosts ← redCost

if minRedCosts < 0 then return xSolver,timeout

else return None
end

cost of a column α := (α1, . . . , αz)T is defined as c̄α = cα−
∑

i λiαi, where cα is
the cost of column α.

Equipped with this knowledge, we can apply column generation to solve the
continuous relaxation of the Solver Scheduling IP. To this end, we begin the
process by adding, at the start, all columns corresponding to variables y to our
reduced system A′. Next, we repeatedly generate and solve a subproblem whose
goal is to suggest a solver-runtime pair that is likely to increase the objective
value of the (continuous) master problem the most. Hence, each column we add
regards an xS,t variable, specifically the one with minimal reduced cost.

To find such an xS,t, first, for all solvers S, we compute a permutation π of
the instances such that the time that S needs to solve instance πS(i) is less than
or equal that the solver needs to solve instance πS(i+1) (for appropriate i). See
Algorithm 2. Obviously, we only need to do this once for each solver and not
each time we want to generate a new column. Now, let us denote with λi ≥ 0 the
optimal dual value for the restriction to cover instance i (2). Moreover, denote
with μ ≤ 0 the dual value of the resource constraint (3) (since that constraint
enforces a lower-or-equal restriction μ is guaranteed to be non-positive). Finally,
for each solver S we iterate over i and compute the term T ←

∑
k≤i λπS(k)

(which in each iteration we can obviously derive from the previous value for
T ). Let t̂ denote the time that solver S needs to solve instance π(i). Then, the
reduced costs of the column that corresponds to variable xS,t are t̂− t̂μ−T . We
choose the column with the most negative reduced costs and add it to the master
problem. If there is no more column with negative reduced costs, we stop.

We would like to point out two things. First, note that what we have actually
done is to pretend that all columns were present in the matrix and computed the
reduced costs for all of them. This is not usually the case in column generation
approaches where most columns are usually found to have larger reduced costs
implicitly rather than explicitly. Second, note that the solution returned from
this process will in general not be integer but contain fractional values. Therefore,
the solution obtained cannot be interpreted as a solver schedule directly.
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This situation can be overcome in two ways. The first is to start branching
and to generate more columns – which may still be needed by the optimal integer
solution even though they were superfluous for the optimal fractional solution.
This process is known in the literature as branch-and-price.

What we propose, and that is in fact the reason why we solved the original
problem by means of column generation in the first place, is to stick to the
columns that were added during the column generation process and to solve the
remaining system as an IP. Obviously, this is just a heuristic that may return
sub-optimal schedules for the training set. However, we found that this process is
very fast and nevertheless provides high quality solutions (see empirical results in
Section 4.4). Even when the performance on the training set is at times slightly
worse than optimal, the performance on the test set often turned out as good or
sometimes even better than that of the optimal training schedule – a case where
the optimal schedule overfits the training data.

The last aspect that we need to address is the case where the final sched-
ule does not utilize the entire available time. Recall that we even deliberately
minimize the time needed to solve as many instances as possible. Obviously, at
runtime it would be a waste of resources not to utilize the entire time that is at
our disposal. In this case, we scale each solver’s time in the schedule equally so
that the total time of the resulting schedule will be exactly the captime C.

4.3 Dynamic Schedules

O’Mahony et al. [25] found that static schedules work only moderately well.
Therefore, they introduced the idea of computing dynamic schedules: At run-
time, for a given instance, CP-Hydra considers the ten nearest neighbors (in
case of ties, up to fifty) and computes a schedule that solves as many of these
instances as possible in the given time limit. Accordingly, the constraints in the
Solver Scheduling IP are limited to the few instances in the neighborhood, which
allows CP-Hydra to use a brute-force approach to compute dynamic schedules
at runtime. This is reported to work well thanks to the small neighborhood size
and the fact that CP-Hydra only has three constituent solvers.

Our column generation approach, yielding potentially sub-optimal but usually
high quality solutions, works fast enough to handle even 37 solvers and over 5,000
instances within seconds. This allows us to embed the idea of dynamic schedules
in the previously developed nearest-neighbor approach which selects optimal
neighborhood sizes by random subsampling validation – which requires us to
solve hundreds of thousands of these IPs.

Both cluster-guided adaptive neighborhood size and weighting discussed ear-
lier can be incorporated into solver schedules as well. For the latter, we suggest a
slightly different approach than CP-Hydra. Specifically, when given an instance
F , we adapt the objective function in the Solver Scheduling IP by multiplying
the costs for the variables yi, which were originally C + 1, with 2 − dist(F,Fi)

totalDist .
This favors schedules that solve more training instances that are closer to F .

We thus obtain four variations of dynamic schedules. We also used a setting
inspired by the CP-Hydra approach: size 10 neighborhood size and weighting
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Table 3. Average performance of semi-static schedules compared with no schedules
and with static schedules based only on the available solvers. Numbers in braces show
in how many of the 10 training-test splits does semi-static scheduling with weighting
and clustering outperform the same approach without scheduling (column 2).

No Sched. Static Sched. Semi-Static Schedules
Wtg+Clu Wtg+Clu Basic k-NN Weighting Clustering Wtg+Clu

# Solved 1617 1572 1628 1635 1633 1636 (7/10)
# Unsolved 106 151 95 88 90 87 (7/10)
% solved 93.9 91.2 94.6 94.9 94.8 95.0 (7/10)

Avg Runtime 577 562 448 451 446 449 (10/10)
PAR10 score 3314 4522 2896 2728 2789 2716 (8/10)

scheme as in [25]. We refer to this approach as SAT-Hydra. In our experiments
with dynamic schedules as well as SAT-Hydra, we found the gain over and above
k-NN solver selection with weights and clustering (the rightmost column in Ta-
ble 2) was marginal. SAT-Hydra and dynamic schedule without weights and
clustering, for example, each solved only 4 more instances. Due to limited space,
we omit detailed experimental numbers and instead move on to scheduling strate-
gies that turned out to be more effective.

4.4 Semi-static Solver Schedules

Observe that the four algorithm selection portfolios that we developed in Sec-
tion 2 can themselves be considered solvers. We can add the portfolio itself to
our set of constituent solvers and compute a “static” schedule for this augmented
collection of solvers. We quote “static” here because the resulting schedule is of
course still instance-specific. After all, the algorithm selector portfolio chooses
one of the constituent solvers based on the test instance’s features. We refer to
the result of this process as semi-static solver schedules.

Depending on which of our four portfolios from Section 2 we use, we obtain
four semi-static schedules. We report their performance Table 3. We observe
that semi-static scheduling improves the overall performance in anywhere from
7 to 10 of the 10 training-test splits considered, depending on the performance
measure used (compare with column 2 in the table for the best results without
scheduling). All semi-static schedules here solve at least 20 more instances within
the time limit. Again, the combination of weighting and clustering achieves the
best performance and it narrows the gap to VBS in percentage of instances
solved to nearly 5%. For further comparison, in the column 3 we show the per-
formance of a static schedule that was trained on the entire training set and is
the same for all test instances. We can confirm the earlier finding [25] that static
solver schedules are indeed inferior to dynamic schedules, and find that they are
considerably outperformed by semi-static solver schedules.

Quality of results generated by Column Generation. Table 4 illustrates the per-
formance of our Column Generation approach. We show a comparison of the
resulting performance achieved by the optimal schedule. In order to compute the
optimal solution to the IP we used Cplex on a machine with sufficient memory
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Table 4. Comparison of Column Generation and the Solution to the Optimal IP

Schedule by # Solved # Unsolved % Solved Avg Runtime (s) PAR10 score

Optimal IP 1635.8 87.1 95.0 442.5 2708.4
Column Generation 1635.7 87.2 95.0 448.9 2716.2

and a 15 second resolution to fit the problem into the available memory. As we
can observe the column generation is able to determine a high quality schedule
that results in a performance that nearly matches the one of the (coarse-grained)
optimal schedule according to displayed measures.

4.5 Fixed-Split Selection Schedules

Based on this success, we consider a parametrized way of computing solver sched-
ules. As discussed earlier, the motivation for using solver schedules is to increase
robustness and hedge against an unfortunate selection of a long-running solver.
At the same time, the best achievable performance of a portfolio is that of the
VBS with a captime of the longest individual run. In both dynamic and semi-
static schedules, the runtime of the longest running solver(s) was determined
by the column generation approach working solely on training instances. This
procedure inherently runs the risk of overfitting the training set.

Consequently, we consider splitting the time between an algorithm selection
portfolio and the constituent solvers based on a parameter. For example, we
could allocate 90% of the available time for the solver selected by the portfolio.
For the remaining 10% of the time, we run a static solver schedule. We refer to
these schedules as 90/10-selection schedules. Note that choosing a fixed amount
of time for the schedule of constituent solvers is likely to be suboptimal for the
training set but offers the possibility of improving test performance.

Table 5 captures the corresponding results. We observe that using this re-
stricted application of scheduling is able to outperform our best approach so far
(semi-static scheduling, shown again in the first column, which is outperformed
consistently in 9 out of 10 training-test splits). We are able to solve nearly 1642
instances on average which is 6 more than we were able to solve before and
the gap to the virtual best solver is narrowed down to 4.69%. Recall that we

Table 5. Average performance comparison of basic k-NN, weighting, clustering, and
the combination of both using the k-NN Portfolio with a 90/10 fixed-split static sched-
ule. Numbers in braces show in how many of the 10 training-test splits does fixed-split
scheduling with weighting and clustering outperform the same approach with semi-
static scheduling (column 2).

Semi-Static Fixed-Split Schedules
Wtg+Clu Basic k-NN Weighting Clustering Wtg+Clu

# Solved 1636 1637 1641 1638 1642 (9/10)
# Unsolved 87 86 82 85 81 (9/10)
% solved 95.0 95.0 95.3 95.1 95.3 (9/10)

Avg Runtime 449 455 446 452 445 (9/10)
PAR10 score 2716 2683 2567 2652 2551 (9/10)
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consider a highly diverse set of benchmark instances from the Random, Crafted,
and Industrial categories. Moreover, we do not work with plain random splits,
but splits where complete families of instances in the test set are not represented
in the training set at all.

Compared to the plain k-NN approach of Malitsky et al. [23] that we started
with (column 2 of Table 2), the fixed-split selection schedules close roughly one
third of the gap to the VBS. The performance gain, as measured by Welch’s T-
test, is significant in most of the training-test splits. For example, the p-value for
the T-test of an instance being solved or not by the two approaches has a median
value of 0.05. Similarly, the median p-value across the 10 splits for the penalized
runtime is 0.04, indicating the improvements are statistically significant.

5 Summary and Discussion

We considered the problem of algorithm selection and scheduling so as to maxi-
mize performance when given a hard time limit within which we need to provide
a solution. We considered two improvements for simple nearest-neighbor solver
selection, weighting and adaptive neighborhood sizes based on clustering. Then,
we developed a light-weight optimization algorithm to compute near-optimal
schedules for a given set of training instances. This allowed us to provide an ex-
tensive comparison of pure algorithm selection, static solver schedules, dynamic
solver schedules, and semi-static solver schedules which are essentially static
schedules combined with an algorithm selector.

While quantifying the performance of the various scheduling strategies we
found out that dynamic schedules are only able to achieve rather minor im-
provements and that semi-static schedules work the best among these options.
Finally, we compared two alternatives: use the optimization component or use a
fixed percentage of the allotted time when deciding how much time to allocate
to the solver suggested by the algorithm selector. In either case, we used a static
schedule for the remaining time. This latter parametrization allowed us to avoid
overfitting the training data and overall resulted in the best performance.

We tested this approach on a highly diverse benchmark set with random,
crafted, and industrial SAT instances where we even deliberately removed entire
families of instances from the training set. 90/10 fixed-split selection schedules
demonstrated a convincing performance and solved, on average, over 95% of the
instances that the virtual best solver is able to solve.

As an insight into the selection strategy of our fixed-split selection schedule,
Figure 1 shows the fraction of test instances across all training-test splits on
which any given solver was chosen and resulted in a successful run. The special
bar labeled ‘unsolved’ shows how often the portfolio made a choice that resulted
in failing to solve an instance (which here equals the gap to the VBS). Note that
out of the 37 possible choices, our portfolio chose only 18 solvers in successful
runs. Further, the black portion of the bars indicates how often was the selected
solver nearly the best possible choice, defined as the solver taking within 10%
of VBS time or solving the instance within 5 seconds. The predominant black
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Fig. 1. Frequency of solver selection by 90-10 fixed-split schedule

Table 6. Comparison of Major Portfolios for the SAT-Rand Benchmark (570 test
instances, timeout 1,200 seconds). Values in braces denote p-value of Welch’s T-test
for the considered solver improving upon SATzilla R as the baseline.

SATzilla R SAT-Hydra k-NN 90-10 VBS

# Solved 405 419 427 (0.071) 435 (0.022) 457
# Unsolved 165 151 143 — 135 — 113
% solved 71.5 73.5 74.9 — 76.3 — 80.2

Avg Runtime 452 489 442 (0.367) 400 (0.042) 341
PAR10 score 3578 3349 3151 (0.085) 2958 (0.022) 2482

regions, with the exception of Clasp, indicate that our portfolio often selected
solvers with performance close to that of the VBS.

As a final remark, in Table 6, we close the loop and consider again the first
benchmark set from Section 2 which compared portfolios for SAT Competition’s
random category instances, based on the same solvers as the gold-medal winning
SATzilla R. Overall, we go up from 405 (88.6% of VBS) for SATzilla R to 435
(95.1% of VBS) instances solved for our fixed-split solver schedules. In other
words, fixed-split selection schedule closes over 50% of the performance gap
between SATzilla R and the VBS. The p-values of Welch’s T-test being below
0.05 (shown within braces) indicate that the performance achieved by our fixed-
split selection schedule is statistically significantly better than SATzilla R.
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Abstract. We present a simple modification to the idea of impact-based search
which has proven highly effective for several applications. Impacts measure the
average reduction in search space due to propagation after a variable assignment
has been committed. Rather than considering the mean reduction only, we con-
sider the idea of incorporating the variance in reduction. Experimental results
show that using variance can result in improved search performance.

Keywords: Search Strategies, Impact-based Search, Robust Search.

1 Introduction

Impact-based search strategies give efficient variable and value ordering heuristics to
solve decision problems in constraint programming [12]. This method learns informa-
tion about the importance of variables and values choices by averaging the observed
search space reduction due to constraint propagation after an assignment. It’s a simple
way to exploit parts of the search tree that are apparently not useful because they do not
lead to a solution.

Other impact measures have been designed and subjected to experimental validation.
They refine or take into account more information in order to obtain better strategies.
In [14] the solution density of constraints and occurrences of values in constraints’
feasible assignments are used to guide search. In [1] the measure of the impact of an
assignment is based on explanations provided by the constraint programming solver.
These approaches can be more effective than regular impacts on some problems.

We propose in this paper a new way to refine the classical averaging of impact ob-
servations by taking into account the variance of the observations. In practice, when
one needs to choose between two variables that have the same average impact, one can
break this tie by taking into account the distribution of the observed impacts. Assuming
that the two distributions have different variances, a risk-free choice will choose the
variable with the smallest variance, while an optimistic choice will choose the variable
with the largest variance.

Incorporating variance in impact based search is rather natural since impacts are
based on taking the mean of observed domain reductions. Moreover, in practice, impact
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values are normally distributed [13]. Experimental validation was performed to deter-
mine the best way to use variance in practice. We present our results on quasi-group
completion problems, magic squares and on the Costas array problem. Our results show
that including variance can be rewarding in several cases and that it is an enhancement
to be considered for impact-based search implementations.

2 Impact-Based Search

In constraint programming (CP) we strive to find feasible solutions, and our main in-
ference mechanism is constraint propagation. Namely, by considering the problem con-
straints, one at a time, we eliminate potential values for the variables involved in the
constraint. We iterate this process until no one constraint alone can eliminate values
from the domain of variables anymore.

If we want to avoid an explicit enumeration of all potential solutions, we must ob-
viously rely on constraint propagation to discard most of these solution candidates
implicitly. Therefore, the way how we partition the space needs to enable constraint
propagation to function well.

There are several ways how search methods try to provide the underlying inference
mechanism with the necessary “grip.” One traditional method is based on the fail-first
principle which states: “To succed, try first where you are most likely to fail.” [7]. To
list only a few others, solution-density guided search [14] finds a constraint where one
variable clearly favors one value in the sense that in most assignments that obey this
constraint the variable is overwhelmingly assigned to the respective value. The method
branches over that variable in the hope that the constraint will fail quickly when one of
the other values is assigned to it. 1

In mathematical programming a well-known and successful technique is pseudo-cost
branching. While solution-density guided search looks ahead, pseudo-cost branching
keeps a running average of the change in relaxation objective value due to the branching
on a variable. That is, pseudo-cost branching extrapolates the past search experience to
make predictions which search partition is likely to affect the inference mechanism
the most.

Impact-based search in constraint programming is following the same motivation.
Lacking an objective function, [12] proposes to keep a running average of the reduction
in search space that is observed after committing a variable assignment X = v. Assume
the Cartesian product of the variables’ domains before committing the assignment has
size B ∈ N and the product of all domain sizes after committing and propagating the
assignment is A ∈ N. Then, the impact of the assignment is defined as

I(X = v) = 1− A

B
.

The running average of these values is denoted with Ī(X = v).
From these values we can derive the expected search space reduction factor (ERF)

for a variable. Namely, the sum of the Cartesian products of all domain sizes after

1 Note that this is our summary which does not quite align with the motivation given in [14].
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committing in turn X = v for all values v in the domain D(X) is expected to be
multiplied by

ERF(X) = 1−
∑

v∈D(X)

Ī(X = v).

In [12] it was proposed to branch over the variable with the lowest corresponding ERF:
As we assume that we are searching an infeasible part of the search space, we expect
that all alternative values for X must be explored. The lower the ERF, the smaller we
expect the union of the remaining search spaces to be after committing assignments
X = v for all v ∈ D(X). This method has since proven to work very well in various
domains such as latin square completion, magic square, and multi-knapsack problem.

3 Impact Variance

Obviously, when estimating the ERF by computing a running average of reductions in
search space that we observe, our estimate will come with some uncertainty.

3.1 Variance

To assess the confidence that we have in our estimate, variance is the statistical quantity
that comes to mind first. Between two variables that have the same low ERF, being risk
averse clearly we would favor the one that has exhibited less variance in search space
reduction. On the other hand, if we are optimistic we might want to choose a variable
that offers the potential of significantly reducing the search space.

If we incorporate variance, we now have two quantities that we want to optimize.
The natural question is what should be the right trade-off between both objectives. If
we assumed that the ERFs of a variable are normally distributed, then

– with about 68% probability the real reduction factor will be lower than the mean
plus the standard deviation (i.e., the square root of the variance),

– with about 95% probability the real reduction factor will be lower than the mean
plus two times the standard deviation, and

– with about 99.7% probability the real reduction factor will be lower than the mean
plus three times the standard deviation.

Alternatively, if we take the optimistic viewpoint and value variables with larger poten-
tial more, for a normal distribution we can argue that

– with about 32% probability the real reduction factor will be lower than the mean
minus the standard deviation, and

– with about 5% probability the real reduction factor will be even lower than the
mean minus two times the standard deviation.

Even though we cannot assume that the real reduction factors will be exactly normally
distributed, the trend will be the same for all distributions. We therefore propose to
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choose an α ∈ Q (where α > 0 means we are risk averse, and α < 0 means “we are
feeling lucky”) and to compute the adjusted reduction factor

ARFα(X) = ERF(X) + α
√

VAR(X).

Then, we choose as branching variable

X = argminY ARFα(Y ).

If we choose a large α, then we compare variables by their ability to shrink the search
space which we can expect with some higher probability. On the other hand, if we
choose a low value for α, we compare variables based on their potential to shrink the
search space a lot.

Note that the idea to use a factor α < 0 somewhat resembles the idea of upper
confidence trees (UCTs) [10]. As a very high-level description, in the UCT method we
probe a tree and achieve estimates of the quality of a subtree by the samples drawn
from the probes over the different child nodes. The question arises which probes should
be launched next. Based on a very nice theory it was proven that it pays off to op-
timistically consider subtrees first which combine a good current estimate and larger
uncertainty [10].

Our situation is of course different, as each “probe” can incur a significant cost.
Essentially, without nogood-learning, with each unfortunate choice of the branching
variable we could multiply the minimally required search effort. Therefore, in this paper
we compare risk-averse and optimistic impact-based search in an empirical study.

3.2 Computing a Variance-Estimate

To implement the approach outlined above we obviously need to assess the quantity
VAR(X). We can achieve this based on the variance that we observe for the variable
assignment impacts I(X = v). Since the random variable ERF is based on the sum of
these random variables, if we assume that the I(X = v) (for various v) are independent,
then the variance of the ERF will be simply the sum of the variances of the I(X = v).
In other words, the variance can be estimated as

VAR(X) =
∑

v∈D(X)

VAR(X = v).

All that is left to develop now is a way for estimating the variance of the I(X = v). We
could of course keep a history of these values and compute the variance from scratch.
However, there is a much more elegant way, namely, after a new value for I(X = v) or
ERF(X) is observed, we can update the variance online.

This is trivial for the mean of a sequence. Given numbers a1, . . . , an−1 and their

mean μn−1 =
∑

i ai

n−1 , and a new number an, for the new mean it obviously holds

μn =
(n− 1)μn−1 + an

n
.
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A similar update rule holds for the sum of square differences SDn−1 =
∑

i(ai −
μn−1)2 [9]:

SDn = SDn−1 + (an − μn)(an − μn−1).

Therefore, we maintain three numbers for each I(X = v): The number of times n we
have observed a value, the current mean μn, and the current sum of square differences
SDn. Then, to choose a branching variable we use the unbiased [9] variance estimate
SDn

n−1 .

4 Numerical Results

We now present empirical results demonstrating the benefits obtained by incorporat-
ing variance information as well as impacts when branching. We implemented the new
heuristic in IBM Ilog Solver, and studied a number of problems. The goal of our exper-
iments is to compare the relative performance of these three different variable selection
heuristics:

– Impact-based search (IBS).
– Impact-based search with addition of variable variance. That is, α is set to 1 or to

2, which means we favor variables with low variance.
– Impact-based search with subtraction of variable variance. That is, α is set to -1 or

to -2, which means we favor variables with high variance.

To conduct a fair test of the different variable selection heuristics we use a randomized
value selection strategy and perform multiple runs of the same instance with different
random seeds. The initial mean and variance value are obtained by probing each value
of the domain of the variable. This gives a first impact for each value. Then a second
impact is computed by performing a few steps of a dichotomic search to approximate
impacts as described in [12]. Thus we have enough values at the beginning to compute
the impact mean and the unbiased variance. In the instances we consider here, the over-
head of probing the whole variable domain is negligible compared to the solution time.
All approaches ran on identical models with the DFS search implementation of IBM
ILOG Solver. The experiments were run on dual processor dual core Intel Xeon 2.8
GHz computers with 8GB of RAM.

4.1 Quasigroup Completion

Problem Definition. A quasigroup completion problem [5] is tasked with completing
an n× n partially filled matrix such that the numbers from 1 to n exactly once in each
row and column

Quasigroup completion problems are a well-known combinatorial problem. These prob-
lems, unlike latin square or quasigroup with holes problems, are not strictly satisfiable.
We consider two sets of 100 instances. One set with order 40 and 640 unassigned cells
(“holes”), and another one with order 50 and 1250 unassigned cells. They are gener-
ated randomly using a standard tool provided by the authors of [5]. We used depth-first
search to solve the problems and four standard deviation factors α = {−2,−1, 1, 2}.
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Table 1. Results for the Quasigroup Completion Problem (order = 40, holes = 640)

α value -2 -1 0 (IBS) 1 2

Time 302 320 336 374 408

# Success 596 555 523 439 355

Table 2. Results for the Quasigroup Completion Problem (order = 50, holes = 1250)

α value -2 -1 0 (IBS) 1 2

Time 166 187 184 247 333

# Success 864 825 805 739 567

When setting α to 0, the strategy is simply the standard impact-based strategy. We per-
form 10 runs for each instance with as many different random seeds. The time limit
is 2000 seconds. We report the average running time in seconds and the number of
instance solved (the maximum is 1000 for each set).

The results of our evaluation is presented in Table 1 and Table 2. We can see that
a risk-optimistic approach outperforms both the classical and risk-averse impact-based
search on the instances. The optimistic strategy solves considerably more instances in
substantially less time. On the other hand, risk-averse strategy marks the worse perfor-
mance. It is slower and solves the least number of instances.

4.2 Magic Square

Problem Definition: A magic square [11] of order n is an n×n square that contains
all numbers from 1 to n2 such that each row, column and both main diagonals add up
to the “magic sum” n(n2 − 1)/2).

Magic squares are a much studied problem in the domain of combinatorial solvers.
Although polynomial-time construction methods exist for creating magic squares, the
problem poses a challenge for constraint programming based approaches. The current
best systematic approach was presented in [4] and can only construct magic squares of
orders up to 18 efficiently.

We again evaluate the performance of impact based search (when α is 0) and impact
based search incorporated with standard deviation using factors α = {−2,−1, 1, 2}.
We consider magic squares of orders between 5 and 16. We use 50 different seeds for
each order. The time limit is set to 2000 seconds. We compare the average runtime and
the average number of successful trials.

Table 3 summarizes our results for the magic square problem. We observe that risk-
optimistic approaches and impact-based search perform similarly, while the best perfor-
mance is achieved when alpha is set to -2, i.e., when the most risk-optimistic strategy
is used. On the contrary, risk-averse approaches depict an inferior performance in terms
of both running time and number of successful trials.
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Table 3. Results for the Magic Square Problem

α value -2 -1 0 (IBS) 1 2

Time 680 691 686 705 735

# Success 34.3 34.2 34.2 33.8 33

Table 4. Results for the Costas array problem

α value -2 -1 0 (IBS) 1 2

Time 224 218 220 234 234

# Success 46.8 46.9 46.8 46.4 46.8

4.3 Costas Array

Problem Definition: A Costas array [6] is a pattern of n marks on a n×n grid, such
that each column or row contains only one mark, and all of the n(n − 1)/2 vectors
between the marks are all different.

Costas arrays are a mathematical structure that is studied in a number of domains. It is
a combinatorial structure with links to number theory, and is used to provide a template
for generating radar and sonar signals with ideal ambiguity functions [2,3].

We consider Costas arrays of orders between 10 and 19, and evaluate impact-based
search, and impact-based search with standard deviation incorporated using factors
alpha = {−2,−1, 1, 2}. We use 50 different seeds for each order. The time limit is
set to 2000 seconds. We compare the average running time, and the average number of
successful trials.

Our results are presented in Table 4. While the best performance is achieved with a
risk-optimistic approach, it is better than impact-based search with only a small margin.
The risk-averse approaches again perform worse than other strategies.

Overall, we tried to determine the best way to use variance information in practice on
three different constraint satisfaction problems. We have shown that including variance
in a risk-optimistic setting can improve the search performance in several cases. We
attribute the improved performance of the optimistic strategy to its ability to select
variables that have high potential to reduce the search space.

5 Conclusion

In this paper we presented a new search heuristic which is based on a simple modi-
fication to impact-based search. The modification is to take variance information into
account as well as impact values when selecting a branching variable. We consider a
risk-averse and a risk-optimistic version of impact-based search with different coef-
ficients, and provide experimental results that compare their relative performance on
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three different problems. Our findings suggest that a risk-optimistic approach can im-
prove the search performance, hence it has potential to be a useful search heuristic, and,
in general, variance information is an enhancement to be considered for impact-based
search implementations.
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Abstract. The cumulative scheduling constraint, which enforces the
sharing of a finite resource by several tasks, is widely used in constraint-
based scheduling applications. Propagation of the cumulative constraint
can be performed by several different filtering algorithms, often used in
combination. One of the most important and successful of these filter-
ing algorithms is edge-finding. Recent work by Viĺım has resulted in a
O(kn log n) algorithm for cumulative edge-finding, where n is the num-
ber of tasks and k is the number of distinct capacity requirements. In this
paper, we present a sound O(n2) cumulative edge-finder. This algorithm
reaches the same fixpoint as previous edge-finding algorithms, although
it may take additional iterations to do so. While the complexity of this
new algorithm does not strictly dominate Viĺım’s for small k, experimen-
tal results on benchmarks from the Project Scheduling Problem Library
suggest that it typically has a substantially reduced runtime. Further-
more, the results demonstrate that in practice the new algorithm rarely
requires more propagations than previous edge-finders.

1 Introduction

Edge-finding is a filtering technique commonly used in solving resource-
constrained project scheduling problems (RCPSP). An RCPSP consists of a set
of resources of finite capacities, a set of tasks of given processing times, an acyclic
network of precedence constraints between tasks, and a horizon (a deadline for
all tasks). Each task requires a fixed amount of each resource over its execution
time. The problem is to find a start time assignment for every task satisfying the
precedence and resource capacity constraints, with a makespan (i.e., the time at
which all tasks are completed) equal at most to the horizon. Edge-finding reduces
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the range of possible start times by deducing new ordering relations between the
tasks: for a task i, an edge-finder searches for a set of tasks Ω that must end
before the end (or alternately, start before the start) of i. Based on this newly
detected precedence, the earliest start time (or latest completion time) of i is
updated. Note that we consider here only non-preemptive scheduling problems;
that is, once started a task executes without interruption until it is completed.
For disjunctive scheduling (i.e., scheduling on a resource of capacity C = 1) on a
set of n tasks, there are well-known O(n log n) edge-finding algorithms [3], [11].
In cumulative scheduling, where tasks may have different capacity requirements,
edge-finding is more challenging. Early work by Nuijten [9] and Baptiste [2]
resulted in cumulative edge-finding algorithms of complexity O(n2k) (where k
is the number of distinct capacity requirements among the tasks) and O(n2),
respectively. Mercier and Van Hentenryck [8] demonstrated that both of these
algorithms were incomplete, and provided a correct O(n2k) algorithm. More re-
cently, Viĺım [13] gave a O(kn log n) algorithm, using an extension of the Θ-tree
data structure which had previously been used [11] to improve the complexity
of disjunctive edge-finding.

In this paper, we present a new cumulative edge-finding algorithm with a
complexity of O(n2). This algorithm uses the maximum density and minimum
slack of sets of tasks to quickly locate the set Θ that provides the strongest
update to the bounds of i.

The paper is organized as follows. Section 2 defines the cumulative scheduling
problem, and the notations used in the paper. Section 3 gives a formal definition
of the edge finding rules; Section 4 provides dominance properties of these rules.
Section 5 presents the new edge-finding algorithm and a proof of its soundness.
Section 6 discusses the overall complexity of the algorithm. Section 7 reports
experimental results.

2 Cumulative Scheduling Problem

The cumulative scheduling problem (CuSP) is a sub-problem of the RCPSP,
where precedence constraints are relaxed and a single resource is considered at a
time; both problems are NP-complete [1]. In a CuSP, there is a finite set of tasks
or activities with fixed processing times and resource requirements. Each task
has a defined earliest start and latest completion time. The problem consists
of deciding when to execute each task so that time and resource constraints are
satisfied. Tasks are assumed to be processed without interruption. Formally, this
problem is defined as follows:

Definition 1 (Cumulative Scheduling Problem). A Cumulative Scheduling
Problem (CuSP) is defined by a set T of tasks to be performed on a resource of
capacity C. Each task i ∈ T must be executed without interruption over pi units
of time between an earliest start time ri (release date) and a latest end time di
(deadline). Moreover, each task requires a constant amount of resource ci. It is
assumed that all data are integer. A solution of a CuSP is a schedule that assigns
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0 3 6 9 12 15

A B C

D E F

r{A,C,D}=1 d{A,C,D}=8

rF=0 r{B,E}=5 d{B,E}=7 dF=16

Fig. 1. A scheduling problem of 6 tasks sharing a resource of capacity C = 3

a starting date si to each task i such that:

∀i ∈ T : ri ≤ si ≤ si + pi ≤ di (1)

∀τ :
∑

i∈T, si≤τ<si+pi

ci ≤ C (2)

The inequalities in (1) ensure that each task is assigned a feasible start and end
time, while (2) enforces the resource constraint. An example of a CuSP is given
in Fig. 1.

We define the energy of a task i as ei = ci · pi. This notation, along with that
of earliest start and latest completion time, may be extended to non-empty sets
of tasks as follows:

rΩ = min
j∈Ω

rj , dΩ = max
j∈Ω

dj , eΩ =
∑
j∈Ω

ej (3)

By convention, if Ω is the empty set, rΩ = +∞, dΩ = −∞, and eΩ = 0.
Throughout the paper, we assume that for any task i ∈ T , ri + pi ≤ di and
ci ≤ C, otherwise the problem has no solution. We let n = |T | denote the
number of tasks, and k = |{ci, i ∈ T }| denote the number of distinct capacity
requirements.

Clearly, if there exists a set of tasks Ω ⊆ T which cannot be scheduled in the
window from rΩ to dΩ without exceeding the capacity, then the CuSP has no
feasible solution. Overload checking algorithms typically enforce the following
relaxation of this feasibility condition, which may be computed in O(n log n)
time [12], [14]:

Definition 2 (E-Feasibility). [8] A problem is E-feasible if ∀Ω ⊆ T, Ω �= ∅

C (dΩ − rΩ) ≥ eΩ . (4)

It is obvious that a CuSP that fails the E-feasibility condition cannot have a
feasible solution. In the rest of the paper, we only consider E-feasible CuSPs.

3 The Edge-Finding Rule

The main idea of edge-finding is to discover a set of tasks Ω ⊂ T and a task
i /∈ Ω such that, in any solution, all the tasks in Ω end before the end of i;
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following [13], we denote this relationship Ω � i. Once an appropriate Ω and i
have been located, the earliest start time of i can be adjusted using the following
rule:

Ω � i =⇒ ri ≥ rΘ +
⌈

1
ci

rest(Θ, ci)
⌉

(5)

for all Θ ⊆ Ω such that rest(Θ, ci) > 0, where

rest(Θ, ci) =

{
eΘ − (C − ci) (dΘ − rΘ) if Θ �= ∅
0 otherwise

. (6)

The condition rest(Θ, ci) > 0 states that the total energy eΩ that must be
scheduled in the window [rΩ, dΩ) is strictly larger than the energy that could
be scheduled without making any start time of i in that window infeasible. The
proof of these results can be found in [2], [9].

It remains to define what tasks and sets of tasks satisfy the condition Ω � i.
Proposition 1 provides conditions under which all tasks of a set Ω of an E-feasible
CuSP end before the end of a task i.

Proposition 1. Let Ω be a set of tasks and let i /∈ Ω be a task of an E-feasible
CuSP.

eΩ∪{i} > C
(
dΩ − rΩ∪{i}

)
⇒ Ω � i , (EF)

ri + pi ≥ dΩ ⇒ Ω � i . (EF1)

Proof. (EF) is the traditional edge-finding rule; proof can be found in [9,2]. The
addition of (EF1), proposed in [13], strengthens the edge-finding rule; the proof
follows trivially from the fact that ri + pi ≥ dΩ implies that task i ends before
all tasks in the set Ω. ��

In the example shown in Fig. 1, the rule (EF) correctly detects Ω � F for Ω =
{A,B,C,D,E}. Using the set Θ = Ω in formula (5), shows that the release
date of F may be updated to 5; however, allowing Θ = {B,E} instead yields an
updated bound of 6. A value of Ω = {B,E} would not meet the edge-finding
condition in (EF); the set {A,B,C,D,E} is needed to detect the precedence
condition.

Combining (EF) and (EF1) with (5) gives us a formal definition of an edge-
finding algorithm:

Definition 3 (Specification of a complete edge-finding algorithm). An
edge-finding algorithm receives as input an E-feasible CuSP, and produces as
output a vector of updated lower bounds for the release times of the tasks
〈LB1, . . . , LBn〉, where:

LBi = max

(
ri, max

Ω ⊆ T
i /∈ Ω
α (Ω, i)

max
Θ ⊆ Ω

rest(Θ, ci) > 0

rΘ +
⌈

1
ci

rest(Θ, ci)
⌉)

(7)
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with

α (Ω, i)
def
=

(
C
(
dΩ − rΩ∪{i}

)
< eΩ∪{i}

)
∨ (ri + pi ≥ dΩ) (8)

and

rest(Θ, ci) =
{

eΘ − (C − ci) (dΘ − rΘ) if Θ �= ∅
0 otherwise (9)

4 Dominance Properties of the Rules

Clearly an edge-finder cannot efficiently consider all sets Θ ⊆ Ω ⊂ T to update
a task i. In order to reduce the number of sets which must be considered, we
first consider the following definition:

Definition 4 (Task Intervals). (After [4]) Let L,U ∈ T . The task intervals
ΩL,U is the set of tasks

ΩL,U = {j ∈ T | rL ≤ rj ∧ dj ≤ dU} . (10)

It is demonstrated in [8] that an edge-finder that only considers sets Ω ⊆ T
and Θ ⊆ Ω which are also task intervals can be complete. Furthermore, we can
reduce the number of intervals that must be checked according to the following
propositions:

Proposition 2. [8] Let i be a task and Ω, Θ be two task sets of an E-feasible
CuSP with Θ ⊆ Ω. If the edge-finding rule (EF) applied to task i with pair (Ω,Θ)
allows to update the earliest start time of i then

(i) there exists four tasks L, U , l, u such that rL ≤ rl < du ≤ dU < di ∧ rL ≤ ri
(ii) the edge-finding rule (EF) applied to task i with the pair (ΩL,U , Ωl,u) allows

at least the same update of the earliest start time of task i.

Proposition 3. Let i be a task and Ω, Θ be two task sets of an E-feasible CuSP
with Θ ⊆ Ω. If the edge-finding rule (EF1) applied to task i with pair (Ω,Θ)
allows to update the earliest start time of i then

(i) there exists four tasks L, U , l, u such that rL ≤ rl < du ≤ dU < di
(ii) the edge-finding rule (EF1) applied to task i with the pair (ΩL,U , Θl,u) allows

at least the same update of the earliest start time of task i.

Proof. The proof of Proposition 3 is similar to that of Proposition 2, given in [8].

5 A New Edge-Finding Algorithm

In this section, we present a quadratic edge-finding algorithm that reaches the
same fix point as the well known edge-finding algorithm proposed by Viĺım [13].

We start by considering the O(n2) edge-finding algorithm proposed in [2]
and [9], which finds the set Θ for the inner maximization of Definition 3 by
locating the task intervals with the minimum slack, as given by the following
definitions.
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rG=rH=1 dG=dH=5

rI=2 dI=10

Fig. 2. Three tasks to be scheduled on a resource of capacity C = 3

Definition 5. Let Ω be a task set of an E-feasible CuSP. The slack of the task
set Ω, denoted SLΩ, is given by: SLΩ = C(dΩ − rΩ)− eΩ.

Definition 6. Let i and U be two tasks of an E-feasible CuSP. τ(U, i), where
rτ(U,i) ≤ ri, defines the task intervals with the minimum slack: for all L ∈ T
such that rL ≤ ri,

C(dU − rτ(U,i))− eΩτ(U,i),U ≤ C(dU − rL)− eΩL,U .

For a given task i, the algorithm detects Ω � i by computing SLΩ < ei for all
Ω = Ωτ(U,i),U such that dU < di and rτ(U,i) ≤ ri. Furthermore, if the interval
Θl,u that yields the strongest update to ri is such that rl ≤ ri, then Θl,u will
be the interval of minimum slack. This is the situation shown in Fig. 2. Rather
than determine rl, the new algorithm computes a potential update to ri using
rest(Ω, ci). However, if the strongest updating interval Θl,u has ri < rl, then
Θl,u need not be the interval of minimum slack. For this case, we introduce the
notion of interval density.

Definition 7. Let Θ be a task set of an E-feasible CuSP. The density of the
task set Θ, denoted DensΘ, is given by: DensΘ = eΘ

dΘ−rΘ
.

Definition 8. Let i, u be two tasks of an E-feasible CuSP. ρ(u, i), where ri <
rρ(u,i), defines the task intervals with the maximum density: for all task l ∈ T
such that ri < rl,

eΘl,u

du − rl
≤

eΘρ(u,i),u

du − rρ(u,i)
.

If the strongest updating interval Θl,u has ri < rl, then Θl,u will be the interval of
maximum density. Consequently, the new algorithm computes a second potential
update for each ri: for each task u such that du ≤ dU , the task intervals of
maximum density Θρ(u,i),u with rρ(u,i) > ri is computed according to Definition
8, and the strongest update of any of these intervals becomes the second potential
update. The algorithm does not determine in advance whether rl ≤ ri or not;
that is, whether minimum slack or maximum density is the correct method to
locate the strongest update. For each i, both potential updates are computed,
and the stronger update is applied.
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Consider the scheduling problem shown in Fig. 1. With Ω = {A,B,C,D,E}
and i = F , the rule (EF) detects the condition Ω � i. However, the algorithm
from [9] fails to adjust rF , because for all Θ ⊆ Ω we have rΘ > rF . We can
update rF using a task intervals of maximum density, Θρ(u,i),u where du ≤ dΩ .
For u ∈ {A,C,D}, the interval of maximum density is ΘA,D = {A,B,C,D,E},
which has a density of 18/7 ≈ 2.6. Using (5) with ΘA,D shows that we can
strengthen the release date of F to rF ≥ 5. For u ∈ {B,E}, however, the interval
of maximum density is ΘB,E = {B,E}, which has a density of 5/2 = 2.5. Using
(5) with ΘB,E yields a new release date for F of rF ≥ 6, which is in fact the
strongest update we can make.

Algorithm 1 performs these computations for all i ∈ T in O(n2) time. The
outer loop (line 3) iterates through the tasks U ∈ T forming the possible upper
bounds of the task intervals, selected in the order of non-decreasing deadlines.
The first inner loop (line 5) selects the tasks i ∈ T that comprise the possible
lower bounds for the task intervals, in non-increasing order by release date. If
di ≤ dU , then the energy and density of Ωi,U are calculated; if the new density
is higher than Ωρ(U,i),U , ρ(U, i) becomes i. If di > dU , then instead the potential
update Dupdi to the release date of i is calculated, based on the current ρ(U, i).
This potential update is stored only if it is greater than the previous potential
update value calculated for this task using the maximum density. The second
inner loop (line 16) selects i in non-decreasing order by release date. The energies
stored in the previous loop are used to compute the slack of the current interval
Ωi,U . If the slack is lower than that of Ωτ(U,i),U , τ(U, i) becomes i. Any task
with a deadline greater than dU is checked to see if it meets either edge-finding
criteria (EF) or (EF1); if it does, a new potential update SLupdi for the task’s
release date is calculated using τ(U, i). This potential update is stored only if it
is greater than the previous potential update value calculated for this task using
the minimum slack. At the next iteration of the outer loop, ρ(U, i) and τ(U, i)
are re-initialized.

Before showing that Algorithm 1 is correct, let us prove some properties of
its inner loops.

Proposition 4. For each task i, Algorithm 1 calculates a potential update Dupdi
to ri based on the task intervals of maximum density such that

Dupdi = max
U : dU<di∧rest(Θρ(U,i),U ,ci)>0

(
rρ(U,i) +

⌈
rest(Θρ(U,i),U , ci) ·

1
ci

⌉)
. (11)

Proof. Let i ∈ T be any task. Each choice of U ∈ T in the outer loop (line 3)
starts with the values rρ = −∞ and maxEnergy = 0. The inner loop at line 5
iterates through all tasks i′ ∈ T (T sorted in non-increasing order of release
date). For any task i′ ∈ T such that ri′ > ri, if di′ ≤ dU , then i′ ∈ Θi′,U , so ei′ is
added to Energy (line 7). Hence Energy = eΘi′,U

at each iteration. The test on
line 8 ensures that rρ and maxEnergy = eΘρ,U are updated to reflect ρ(U, i) for
the current task intervals Θi′,U . Therefore, at the ith iteration of the inner loop, if
di > dU then line 11 computes rest(i, U) = rest(Θρ(U,i),U , ci), and the potential
update value: rρ + �rest(i, U) · 1

ci
� if rest(i, U) > 0, and −∞ otherwise. On



A Quadratic Edge-Finding Filtering Algorithm 485

Algorithm 1. Edge-finding algorithm in O(n2) time and O(n) space

Require: T is an array of tasks
Ensure: A lower bound LB′

i is computed for the release date of each task i
for i ∈ T do1

LB′
i := ri, Dupdi := −∞, SLupdi := −∞;2

for U ∈ T by non-decreasing deadline do3

Energy := 0, maxEnergy := 0, rρ := −∞;4

for i ∈ T by non-increasing release dates do5

if di ≤ dU then6

Energy := Energy + ei;7

if
(

Energy
dU−ri

> maxEnergy
dU−rρ

)
then8

maxEnergy := Energy, rρ := ri ;9

else10

rest := maxEnergy− (C − ci)(dU − rρ);11

if (rest > 0) then12

Dupdi := max(Dupdi, rρ + � rest
ci
�);13

Ei := Energy ;14

minSL := +∞, rτ := dU ;15

for i ∈ T by non-decreasing release date do16

if (C(dU − ri)− Ei < minSL) then17

rτ := ri, minSL := C(dU − rτ )− Ei ;18

if (di > dU ) then19

rest′ := ci(dU − rτ )−minSL ;20

if (rτ ≤ dU ∧ rest′ > 0) then21

SLupdi := max(SLupdi, rτ + � rest′
ci
�);22

if (ri + pi ≥ dU ∨minSL− ei < 0) then23

LB′
i := max(LB′

i, Dupdi, SLupdi);24

for i ∈ T do25

ri := LB′
i;26

line 13, Dupdi is updated only if rρ + �rest(i, U) · 1
ci
� is larger than the current

value of Dupdi; since the outer loop selects the task U in non-decreasing order
by dU , we have:

Dupdi = max
U : dU<di∧rest(i,U)>0

rρ + �rest(i, U) · 1
ci
� . (12)

Hence formula (11) holds and the proposition is correct. ��

Proposition 5. For each task i, Algorithm 1 calculates a potential update SLupdi
to ri based on the task intervals of minimum slack such that

SLupdi = max
U : dU<di∧rest(Ωτ(U,i),U ,ci)>0

(
rτ(U,i) +

⌈
rest(Ωτ(U,i),U , ci) ·

1
ci

⌉)
.

(13)

Proof. Let i ∈ T be any task. Each choice of U in the outer loop (line 3) starts
with the values rτ = dU and minSL = +∞ (line 15). The inner loop at line 16
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iterates through all tasks i′ ∈ T (T sorted in non-decreasing order of release
dates). For every task i′ ∈ T , eΩi′,U has already been computed in the first
loop and stored as Ei′ (line 14); this is used to compute the slack of Ωi′,U .
If SLΩi′,U < minSL, the values rτ = ri′ and minSL = C(dU − ri′ ) − eΩi′,U

are updated to reflect τ(U, i) for the current task intervals Ωi′,U . At the ith

iteration, if di > dU , then line 20 computes rest′(i, U) = rest(Ωτ(U,i),U , ci), and
the potential update value: rτ + �rest′(i, U) · 1

ci
� if rτ ≤ dU ∧ rest′(i, U) > 0, and

−∞ otherwise. On line 22, SLupdi is updated only if rτ + �rest′(i, U) · 1
ci
� is

larger than the current value of SLupdi. Since the outer loop selects the task U
in non-decreasing order by dU we have:

SLupdi = max
U : dU≤di∧rτ≤dU∧rest′(i,U)>0

rτ + �rest′(i, U) · 1
ci
� . (14)

Hence formula (13) holds and the proposition is correct. ��

We now provide a proof that the edge-finding condition (EF) can be checked
using minimum slack.

Theorem 1. For any task i ∈ T and set of tasks Ω ⊆ T \ {i},

eΩ∪{i} > C(dΩ − rΩ∪{i}) ∨ ri + pi ≥ dΩ (15)
if and only if

ei > C
(
dU − rτ(U,i)

)
− eΩτ(U,i),U ∨ ri + pi ≥ dU (16)

for some task U ∈ T such that dU < di, and τ(U, i) as specified in Definition 6.

Proof. Let i ∈ T be any task.
It is obvious that (EF1) can be checked by ri + pi ≥ dU for all tasks U ∈ T

with di > dΩ . In the rest of the proof, we focus on the rule (EF). We start by
demonstrating that (15) implies (16). Assume there exists a subset Ω ⊆ T \ {i}
such that C(dΩ − rΩ∪{i}) < eΩ + ei. By (EF), Ω � i. By Proposition 2, there
exists a task intervals ΩL,U � i, such that di > dU and rL ≤ ri. By Definition 6
we have

C(dU − rτ(U,i))− eΩτ(U,i),U ≤ C(dU − rL)− eΩL,U . (17)
Adding −ei to both sides of (17) and using the fact that

C(dU − rL) < eΩL,U + ei , (18)
it follows that

C
(
dU − rτ(U,i)

)
< eΩτ(U,i),U + ei . (19)

Now we show that (16) implies (15). Let U ∈ T such that dU < di, and τ(U, i) ∈
T , be tasks that satisfy (16). By the definition of task intervals, di > dU implies
i /∈ Ωτ(U,i),U . Since rτ(U,i) ≤ ri, we have

eΩτ(U,i),U + ei > C(dU − rτ(U,i)) ≥ C(dΩτ(U,i),U − rΩτ(U,i),U∪{i}) . (20)

Hence, (15) is satisfied for Ω = Ωτ(U,i),U . ��
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Proposition 5 has shown that τ(U, i) and the minimum slack are correctly com-
puted by the loop at line 16. Combined with Theorem 1 this justifies the use
of minSL− ei < 0 on line 23 to check (EF), where the condition (EF1) is also
checked. Thus, for every task i Algorithm 1 correctly detects the sets Ω ⊆ T \{i}
for which rules (EF) and (EF1) demonstrate Ω � i.

A complete edge-finder would always choose the set Θ for each task i that
yielded the strongest update to the bound of i. In the following theorem, we
demonstrate that our algorithm has the slightly weaker property of soundness;
that is, the algorithm updates the bounds correctly, but might not always make
the strongest adjustment to a bound on the first iteration.

Theorem 2. For every task i ∈ T , and given the strongest lower bound LBi
as specified in Definition 3, Algorithm 1 computes some lower bound LB′

i, such
that ri < LB′

i ≤ LBi if ri < LBi, and LB′
i = ri if ri = LBi.

Proof. Let i ∈ T be any task. LB′
i is initialized to ri. Because the value LB′

i

is only updated by max(Dupdi, SLupdi, LB′
i) (line 24) after each detection, it

follows that LB′
i ≥ ri. If the equality LBi = ri holds, then no detection is found

by Algorithm 1, and thus LB′
i = ri holds from the loop at line 25. In the rest of

the proof, we assume that ri < LBi. By Propositions 2 and 3, there exist two
task sets Θl,u ⊆ ΩL,U ⊆ T \ {i} such that rL ≤ rl < du ≤ dU < di and rL ≤ ri,
for which the following holds:

α (ΩL,U , i) ∧ LBi = rΘl,u
+
⌈

1
ci

rest(Θl,u, ci)
⌉

. (21)

As demonstrated by Proposition 5 and Theorem 1, Algorithm 1 correctly detects
the edge-finding condition; it remains only to demonstrate the computation of
update values. Since (EF) and (EF1) use the same inner maximization, the
following two cases hold for both rules:

1. ri < rl: Here we prove that the update can be made using the task intervals
of maximum density. According to Definition 8, we have

eΘl,u

du − rl
≤

eΘρ(u,i),u

du − rρ(u,i)
. (22)

Since (ΩL,U , Θl,u) allows the update of the release date of task i, we have
rest(Θl,u, ci) > 0. Therefore,

eΘl,u

dΘl,u
− rΘl,u

> C − ci . (23)

By relations (22) and (23), it follows that rest(Θρ(u,i),u, ci) > 0. ri < rρ(u,i)
implies rρ(u,i) +

⌈
1
ci

rest
(
Θρ(u,i),u, ci

) ⌉
> ri. According to Proposition 4,

the value Dupdi = rρ(u,i) +
⌈

1
ci

rest
(
Θρ(u,i),u, ci

) ⌉
> ri is computed by Al-

gorithm 1 at line 13. Therefore, after the detection condition is fulfilled at
line 23, the release date of task i is updated to LB′

i = max(Dupdi, SLupdi) ≥
Dupdi > ri.
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2. rl ≤ ri: Here we prove that the update can be made using the task intervals
of minimal slack. By Definition 6, we have:

C(du − rτ(u,i))− eΘτ(u,i),u ≤ C(du − rl)− el,u . (24)

Adding−ci(du−rτ(u,i))−ci·rτ(u,i) to the left hand side and−ci(du−rl)−ci·rl
to the right hand side of (24) we get

−ci · rτ(u,i) − rest(Θτ(u,i),u, ci) ≤ −ci · rl − rest(Θl,u, ci) . (25)
Therefore,

rτ(u,i) +
1
ci

rest(Θτ(u,i),u, ci) ≥ rl +
1
ci

rest(Θl,u, ci) (26)

and

rτ(u,i) +
1
ci

rest(Θτ(u,i),u, ci) > ri (27)

since rl + 1
ci

rest(Θl,u, ci) > ri. From inequality (27), it follows that

rest(Θτ(u,i),u, ci) > 0 (28)
since rτ(u,i) ≤ ri. According to Proposition 5, the value

SLupdi = rτ(u,i) +
1
ci

rest
(
Θτ(u,i),u, ci

)
> ri (29)

is computed by Algorithm 1 at line 20. Therefore, after the detection condi-
tion is fulfilled at line 23, the updated release date of task i satisfies LB′

i > ri.

Hence, Algorithm 1 is sound. ��

6 Overall Complexity

According to Theorem 2, Algorithm 1 will always make some update to ri if an
update is justified by the edge-finding rules, although possibly not always the
strongest update. As there are a finite number of updating sets, Algorithm 1 must
reach the same fixpoint as other correct edge-finding algorithms. This “lazy”
approach has recently been used to reduce the complexity of not-first/not-last
filtering for cumulative resources [6], [10]; the situation differs from the previous
quadratic edge-finder [9], which missed some updates altogether. Now we demon-
strate that in most cases Algorithm 1 finds the strongest update immediately;
when it does not, it requires at most n− 1 propagations.

Theorem 3. Let i ∈ T be any task of an E-feasible CuSP. Let Θ ⊆ T \ {i} be
a set used to perform the maximum adjustment of ri by the edge-finding rule.
Let ρ(u, i) be a task as given in Definition 8, applied to i, u ∈ T with du = dΘ.
Then Algorithm 1 performs the strongest update of ri in the following number of
iterations:

1. If rΘ ≤ ri, then on the first iteration,
2. If ri < rΘ then:

(a) If ri < rΘ ≤ rρ(u,i), then also on the first iteration,
(b) If ri < rρ(u,i) ≤ rΘ, then after at most n− 1 iterations.
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Proof. Given i ∈ T , let Θ ⊆ T \ {i} be a task set used to perform the maximum
adjustment of ri by the edge-finding rule. Let ρ(u, i) be the task of Definition 8
applied to i and u ∈ T with du = dΘ.

1. Assume rΘ ≤ ri. By Propositions 1 and 2, and the proof of the second
item of Theorem 2, formula (26) holds. By Proposition 5, when Algorithm 1
considers u in the outer loop and i in the second inner loop, it sets

Dupdi = rτ(u,i) +
⌈

1
ci

rest(Θτ(u,i),u, ci)
⌉
≥ rΘ +

⌈
1
ci

rest(Θ, ci)
⌉

. (30)

As the adjustment value of Θ is maximal, ri is updated to rΘ+� 1
ci

rest(Θ, ci)�.
2. Assume ri < rΘ. We analyze two subcases:

(a) ri < rΘ ≤ rρ(u,i): According to definition of task ρ(u, i), we have

eΘ
dΘ − rΘ

≤
eΘρ(u,i),u

du − rρ(u,i)
. (31)

Removing
eΘρ(u,i),u

dΘ−rΘ
from each side of (31), we get

eΘ − eΘρ(u,i),u ≤
eΘρ(u,i),u

du − rρ(u,i)
(rρ(u,i) − rΘ) . (32)

As the problem is E-feasible, we have
eΘρ(u,i),u

du − rρ(u,i)
≤ C . (33)

Combining inequalities (32) and (33) gives

CrΘ + eΘ ≤ Crρ(u,i) + eΘρ(u,i),u . (34)

Obviously, inequality (34) is equivalent to

rΘ +
⌈

1
ci

rest(Θ, ci)
⌉
≤ rρ(u,i) +

⌈
1
ci

rest(Θρ(u,i),u, ci)
⌉

. (35)

Proposition 4 shows that when Algorithm 1 considers u in the outer loop
and i in the first inner loop, it sets

Dupdi = rρ(u,i) +
⌈

1
ci

rest(Θρ(u,i),u, ci)
⌉
≥ rΘ +

⌈
1
ci

rest(Θ, ci)
⌉

. (36)

As the adjustment value of Θ is maximal, ri is updated to rΘ +
⌈

1
ci

rest
(Θ, ci)

⌉
.

(b) ri < rρ(u,i) ≤ rΘ: Let Θk
≤i := {j, j ∈ T ∧ rj ≤ ri ∧ dj ≤ dΘ} and

Θk
>i := {j, j ∈ T ∧ rj >ri ∧ dj ≤ dΘ} be sets of tasks defined at the kth

iteration of Algorithm 1. If the maximum adjustment is not found after
this iteration, then at least one task is moved from Θk

>i to Θk
≤i. Indeed,

if at the kth and k+1th iteration, Θk
≤i = Θk+1

≤i , Θk
>i = Θk+1

>i and the
maximum adjustment is not found, then the tasks τ(u, i) ∈ Θk

≤i = Θk+1
≤i

(Definition 6) and ρ(u, i) ∈ Θk
>i = Θk+1

>i (Definition 8) are the same for
both iterations. Therefore, at the k+1th iteration, no new adjustment
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is found, yet the maximum adjustment of the release date of task i is
not reached, thus contradicting the soundness of Algorithm 1. Hence,
the maximum adjustment of the release date of task i is reached after at
most |Θ1

>i| ≤ n− 1 iterations. ��

We argue that, in practice, the possibility of our algorithm using multiple prop-
agations to find the strongest bound is not significant. In the first place, edge-
finders are not idempotent; adjustment to the release dates and deadlines of the
tasks is not taken into account during one iteration, so additional propagations
are always required to reach a recognizable fixpoint. Furthermore, in actual cu-
mulative problems, there are typically a relatively small number of task sets
that could be used to update the start time of a given task, so the number of
propagations should not normally approach the worst case. This claim is borne
out by the experimental observations reported in the next section.

7 Experimental Results

The new edge-finding algorithm presented in section 5 was implemented in c ++
using the Gecode 3.4.2 [5] constraint solver. The Gecode cumulative propagator
for tasks of fixed duration is a sequence of three filters: the O(kn log n) edge-
finding algorithm from [13], overload checking, and time tabling. We tested this
propagator against a modified version that substituted the new quadratic edge-
finding filter for the Θ-tree filter.

Tests were performed on the single-mode J30, J60, and J90 test sets of the
well-established benchmark library PSPLib [7]. Each data set consists of 480
instances, of 30, 60, and 90 tasks respectively; these tasks require multiple shared
resources, each of which was modeled with a cumulative constraint. Precedence
relations were enforced as a series of linear relations between task start and end
times. Branch and bound search was used to find the minimum end time for
the project; variables were selected by minimum domain size, with ties broken
by selecting the variable occuring in the most propagators, while values were
selected starting with the minimum. Tests were performed on a 3.07 ghz Intel
Core i7 processor with a time limit of 300 seconds; only tests for which both
propagators were able to find the best solution within 300 seconds are included
in Fig. 3 (8 instances in which only the quadratic propagator was able to find
a solution in the time available were discarded)1. Each instance was run three
times, with the best result for each filtering algorithm reported.

Our tests showed that the quadratic edge-finder was faster in almost all test
instances, with a proportional speedup increasing with the size of the instance.
Of the 1034 instances solved by both filters, only four instances from the j3036
group and the j601 1 instance were solved more quickly by the Θ-tree filter.
Figure 3a compares the runtimes of the hardest instances (with runtime greater
than 1 second on the Θ-tree filter).

1 Detailed experimental results: http://user.it.uu.se/~jossc163/quadef2011.

http://user.it.uu.se/~jossc163/quadef2011
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(a) runtimes (b) propagations vs. nodes

Fig. 3. Two comparisons of Θ-tree vs. quadratic edge-finding: (a) runtimes for in-
stances where both methods found the best solution, and (b) the proportion of
quadratic to Θ-tree propagation counts, and node counts.

In order to determine the difference in propagation strength between the two
filters, we instrumented the two propagators to count the number of executions of
the cumulative propagator in each of the 1034 solved instances. As expected, the
number of propagations was different in 122 of these instances; however, only in
35 of those instances was the number of propagations required by the quadratic
filter greater. While this could suggest that the quadratic filter reaches fixpoint
more quickly than the Θ-tree filter in some cases, a more likely explanation
is that the domain reductions made by the two filters before reaching fixpoint
were different enough to affect the filtering strength of the other propagators
used in the problem. Figure 3b compares the number of propagations (shown as
the proportion of quadratic propagations to Θ-tree propagations) to the number
of nodes in the search tree for each algorithm. We observe that, even in those
instances where the quadratic filter required a larger number of propagations,
the number of nodes in the search tree of the quadratic algorithm was always less
than equal to those in the Θ-tree filter search tree, implying that the quadratic
algorithm reaches at least as strong a fixpoint as the Θ-tree filter.

8 Conclusion

In this paper, we have presented a quadratic edge-finding filtering rule for cumu-
lative scheduling that reaches the same fixpoint as previous algorithms, possibly
after more propagations. While its complexity does not strictly dominate that
of Viĺım’s O(kn logn) algorithm, experimental results demonstrate that on a
standard benchmark suite our algorithm is substantially faster. Future work
will focus on finding a complete quadratic edge-finder, a similar algorithm for
extended edge-finding, and investigating the use of Θ-trees to increase the effi-
ciency of finding maximum density.

Acknowledgements. The third author is supported by grant 2009-4384 of the
Swedish Research Council (VR). The authors would also like to thank Christian
Schulte for his assistance with the Gecode cumulative propagator.
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13. Viĺım, P.: Edge Finding Filtering Algorithm for Discrete Cumulative Resources in
O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009)

14. Wolf, A., Schrader, G.: O(n log n) overload checking for the cumulative constraint
and its application. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel,
D., Takata, O., et al. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 88–101.
Springer, Heidelberg (2006)

http://www.gecode.org


A CSP Solver Focusing on FAC Variables �

Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure
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Abstract. The contribution of this paper is twofold. On the one hand, it
introduces a concept of FAC variables in discrete Constraint Satisfaction Prob-
lems (CSPs). FAC variables can be discovered by local search techniques and
powerfully exploited by MAC-based methods. On the other hand, a novel syn-
ergetic combination schema between local search paradigms, generalized arc-
consistency and MAC-based algorithms is presented. By orchestrating a
multiple-way flow of information between these various fully integrated search
components, it often proves more competitive than the usual techniques on most
classes of instances.

1 Introduction

These last decades, many research efforts have been devoted in the Artificial Intelli-
gence community to the design of general algorithms and solvers for discrete Constraint
Satisfaction Problems (in short, CSPs). Tracing back to the seminal work on simulated
annealing by Kirkpatrick et al. [17], stochastic local-search approaches (SLS) were
investigated successfully in early pioneering works, mainly based on the so-called min-
conflicts heuristic developed by Minton et al. [24]. They were considered powerful
paradigms for CSPs -and their specific SAT case- in light of the results by e.g. Gu [13],
Selman et al. [27] and Cheeseman et al. [4].

However, apart from the specific SAT domain and with only a few exceptions (e.g.
[10], [16], [7], [8]), the current mainstream approaches to general CSPs solving rely
on complete methods that do not include SLS components as main tools (e.g., Abscon
[23,19], Choco [29], Mistral [14], Sugar [28], etc.). One reason lies in the fact that SLS
is not an exhaustive search paradigm and does not allow by itself to prove the absence
of any solution for a CSP. Moreover, SLS often entails significant computations and
search-space explorations that advanced complete techniques are expected to attempt to
avoid, at least partially. Finally, it is sometimes (but wrongly) believed that SLS should
merely be devoted to situations where solutions are densely distributed throughout the
state space, justifying some possible random aspects in the search.
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On the contrary, this paper shows that complete and SLS techniques for solving CSPs
can benefit one another. More precisely, it presents a synergetic combination of local
search and elements of complete techniques that often outperforms the usual complete,
SLS, or basic hybrid approaches involving (generalized) arc-consistency and SLS, in
the following sense. This method is not only complete, it is also robust in the sense that
it solves both satisfiable or unsatisfiable (structured or random) CSPs instances quite
indifferently. Actually, our comprehensive experimental studies show that it solves more
instances than the currently existing techniques.

One key issue is that the SLS computation that is guided as much as possible to-
wards the most difficult subparts of the CSP can provide powerful oracles and infor-
mation when some further steps of a complete search are required. Although this latter
idea was already exploited in some previous works in the SAT domain [21], it is re-
fined here thanks to an original concept of FAC variables. FAC variables of a CSP, as
Falsified in All Constraints, are variables occurring in all falsified constraints under
some intrepretation, and thus in at least one constraint per minimal core (also called
MUC, for Minimal Unsatisfiable Core) of the CSP when such cores exist. Interestingly,
SLS often allows FAC variables to be detected efficiently and complete MAC-based
techniques focusing first on FAC variables can have their efficiency boosted on many
instances. Likewise, e.g. powerful heuristics (especially the dom/wdeg [3]) developed
within complete CSP techniques can play an essential role in the SLS computation.
Actually, the proposed method, called FAC-SOLVER, is an elaborate imbrication of SLS
and steps of complete techniques that orchestrates a multiple-way flow of information
between various fully integrated search components.

The paper is organized as follows. In the next Section, some basic technical back-
ground about CSPs is provided. Then, the FAC variable concept is presented. In Section
4, the architecture of the FAC-SOLVER method is presented globally, before each com-
ponent is detailed. Comprehensive experimental studies are discussed in Section 5. In
the conclusion, the focus is on perspectives and promising paths for future research.

2 CSPs Technical Background

A CSP or Constraint Network CN is a pair 〈X , C〉 where X is a finite set of n variables
s.t. each variable X of X is associated with a finite set dom(X) of candidate values
for X . C is a finite set of m constraints on variables from X s.t. each constraint C
in C is associated with one relation rel(C) indicating the set of tuples of authorized
values for the variables occurring in C. An assignment I of CN associates a value
I(X) ∈ dom(X) to every variable X ∈ X . We note false(X , C, I) the set of variables
that appear in at least one falsified constraint under the assignment I. 〈X , C〉|X=v is the
resulting CSP obtained from the CSP 〈X , C〉 by reducing dom(X) to the singleton
{v} while 〈X , C〉|X �=v is obtained by deleting the v value in dom(X). We say that
the assignment I is a local minimum for CN when no single change of value of any
variable leads to a decrease of the total number of falsified constraints of CN .

Solving a constraint network CN consists in checking whether CN admits at least
one assignment that satisfies all constraints of CN and in delivering such an assignment
in the positive case.
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In the following, we consider both binary and non-binary constraints. Most current
complete approaches to solve constraints networks are based on algorithms implement-
ing maintaining arc consistency techniques (in short, MAC) [25]. Roughly, these tech-
niques perform a depth-first search procedure with backtracking, while maintaining
some forms of local (Generalized Arc) Consistency (in short GAC and AC), which are
filtering techniques expelling detected forbidden values (see e.g. [20,2,18]).

3 FAC Variables

One key factor of the efficiency of the FAC-SOLVER approach relies on the following
FAC (Falsified in All Constraints) variable concept.

Definition 1. Let CN be a constraint network under an assignment I. A FAC variable
is a variable occurring in every falsified constraint of CN under I.

This concept can be related to the notion of boundary point introduced by Goldberg in
the SAT domain [12]. For a CNF formula, a variable is boundary under an assignment
of all propositional variables if this variable belongs to all clauses that are falsified
by the assignment. This definition is similar to the FAC one, but we have adopted an
alternative name for a simple reason: in the CSP context, this kind of variables is not at
the so-called “boundary”, i.e., a situation where it is sufficient to inverse the truth value
of a boundary variable to satisfy all falsified clauses. A FAC variable in the SAT domain
thus draws a boundary line between satisfiabiliy and unsatisfiability of a part of the
formula. In CSP, changing the value of a FAC variable does not ensure that constraints
become satisfied. Accordingly, the notion of boundary as underlied by Goldberg cannot
be applied in theCSP domain. For this reason we have decided to not use the same
name. Nevertheless some interesting properties of boundary are preserved which can
help understand the possible role of FAC variables for solving unsatisfiable CSPs.

Property 1. Any FAC variable X of CN occurs in at least one constraint per MUC of
CN when CN is unsatisfiable.

Indeed, under any assignment I, any MUC contains at least one falsified constraint.
Thus, if a variable occurs within all constraints that are falsified under I, it occurs
within at least one constraint per MUC.

Property 2. Unsatisfiable CSPs that exhibit at least two MUCs sharing no variable do
not possess any FAC variable.

FAC variables can play a key role in the inconsistency of a CSP since they are involved
in all of its unresolvable minimal sets of conflicting constraints. Accordingly, focusing
a MAC-based search component first on FAC variables (when they exist) might thus
help.

In the worst case, checking whether a constraint belongs to at least one MUC, be-
longs to the Σp

2 complexity class [9]. Moreover, a CSP can possess an exponential
number of MUCs. Thus, detecting FAC variables by first computing all MUCs is un-
tractable in the worst case. On the contrary, SLS provides a heuristic way to detect FAC
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variables at low cost. One direct but inefficient way to detect some of them would con-
sist in looking for FAC variables for each assignment crossed by SLS. For efficiency
reasons, we will look for FAC variables only for assignments that are local minima w.r.t.
the number of currently falsified constraints of the CSP.

Satisfiable CSPs can also exhibit FAC variables. Interestingly, it appears that FAC

variables can also be expected to play a positive role for solving those CSPs. Indeed, to
some extent, these variables can also be expected to take part in the difficult part of those
CSPs since they are involved in all falsified constraints under at least one assignment.
Accordingly, it could be also useful to focus on them during a complete search.

Finally, it must be noted that when some variables are instantiated, a new CSP is
actually created. FAC variables w.r.t. this new CSP can exist; they are not necessarily
FAC variables w.r.t. the initial CSP.

In the FAC-SOLVER method, all FAC variables that can be detected when local min-
ima are reached during a SLS will be collected. When a MAC-based component must be
run thereafter, it will focus first on the FAC variables in hope for an improved efficiency.

Using FAC variables in a further systematic search component appears to be a
refinement of some heuristics e.g. used in the SAT framework and involving hybrid
SLS-DPLL algorithms. For example, [21] advocates to select the next variables to be
assigned in a DPLL-based search for satisfiability among the variables belonging to the
most often falsified clauses during a preliminary failed SLS, as those variables proba-
bly belong to minimal cores of the instance. Also [11] recommends the use of critical
clauses, i.e., falsified clauses during a failed SLS that are such that any flip of a variable
causes at least another clause to be falsified. Critical clauses were also shown to often
belong to minimal cores. Branching on variables occurring in them appeared to boost
the further complete search process [1]. FAC variables do not only occur in one minimal
core but in all of them. Branching on them might thus increase the efficiency of the
search process even more significantly. The FAC-SOLVER method described in the next
Section was intended to implement and check these ideas on a large panel of instances.

4 FAC-SOLVER Approach

The FAC-SOLVER approach deeply integrates three search components in a novel syn-
ergetic way: a SLS, a MAC and an hybrid solver, which is itself mixing SLS and GAC.
These components interact in several ways and share all information about the current
global search process. The global architecture of FAC-SOLVER is described in Figure
1. Roughly, the process starts with a call to one SLS solver, then in the case of failure
a hybrid solver is run followed by a limited MAC. Calls between different compo-
nents depend on dynamical threshold values for two variables that play a strategic role,
namely SLSprogress and #conflicts.

Algorithm 1 describes the FAC solver. First, a call to GAC ensures arc-consistency
(or delivers a final inconsistency proof) and leads to some possible filterings (lines 4-5).
Next, while a solution is not found or the problem is not proved inconsistent, the solver
sequentially performs the three components described in the next sections. The number
of conflicts maxConf controls the restart associated to the Hybrid and MAC parts. It
is initialized to 10 (line 2) and is geometrically increased at each iteration step of the
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Fig. 1. Interactions between FAC-SOLVER basic search components

main loop (line 16). The complete assignment used by the local search is initialized
randomly. The CSP 〈X , C〉 is shared by all components. It is simplified by successive
assignments and refutations. At each new iteration, this CSP is reinitialized (only the
filtering computed at level 0 are kept (line 9)). The SLSprogress variable controls the
duration of the SLS component run. It is initialized to maxConf×8. This variable will
be increased and decreased by the SLS component. All components are detailed in the
next sections.

4.1 The SLS Component

Let us detail the SLS procedure first which is described in a simplified way in the algo-
rithm named Procedure SLS. It is a random-walk local search procedure à la walksat
[26] with a novelty escape strategy [22]. In parallel, this SLS also tries to detect FAC

variables each time a local minimum is reached. The variable controlling the progress
of the SLS is SLSprogress, which is increased in two situations: when the number
of falsified constraints reaches a new minimum value (line 13) and when FAC variables
are discovered (line 5). It is decreased when no FAC variable is discovered in a local
minimum (line 6). This variable is intialized to 10.000 if the CSP is binary and to 1.000
otherwise. This way to estimate the progress of the SLS is inspired from the adaptative
noise introduced by Hoos et al. in [15]. When the SLS fails to prove the consistency
of the CSP but seems rather stuck in its exploration, the SLSprogress < 0 test (line
7) allows the so-called Hybrid component to be activated, which will exploit in its turn
all the information collected so-far. Intuitively, in addition to looking for an assignment
satisfying the CSP, the SLS solver collects information about FAC variables. Due to the
larger increment of the SLSprogress control variable when FAC variables are discov-
ered, it focuses its exploration on assignments that are close to local minima involving
FAC variables.
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Algorithm 1. FAC-solver
Data: A CSP 〈X ,C〉
Result: true if the CSP is satisfiable, false otherwise
result←− unknown ;1

maxConf ←− 10 ;2

Se ←− ∅ ; //Set of FAC var. found with their FAC values3

GAC() ;4

if ∃X ∈ X s.t. dom(X) = ∅ then return false ;5

A ←− a random assignment of X ;6

while (result = unknown) do7

initialize SLSprogress variable ;8

Backjump(0) ; // backjump to level 09

SLS() ;10

if (result �= unknown) then return true ;11

Hybrid() ;12

if (result �= unknown) then return result ;13

MAC() ;14

if (result �= unknown) then return result ;15

maxConf ←− maxConf × 1.5 ;16

The SLS procedure is also used by the hybrid component. When this procedure is
called by the hybrid component, the SLS works on a sub-CSP that is downsized by
the various calls to the FIX procedure which is described in the next section. At the
opposite, during the initial local search, SLS is handling the full CSP.

4.2 Hybrid SLS-GAC Component

The hybrid component allows to focus on expected difficult subparts of the instance.
This allows to get FAC variables that are linked to the (expected) most difficult subparts
to satisfy. This component is described in Procedure Hybrid. Roughly, starting with
the current assignmentA provided by the SLS component, a variable in a violated con-
straint is selected and is assigned according to A (lines 4-5). The dom/wdeg heuristic
[3] is used as a tiebreaker amongst the set of variables of a violated constraint. A call
is made to the FIX procedure (line 6), which operates and propagates GAC (General-
ized Arc-Consistency) filtering steps. This procedure detects also conflicts (i.e., empty
domains for variables in X ) which trigger a backtrack on the last fixed variables (line
4-11). The GAC version used in the solver is based on AC3 [20]. The FIX procedure
reduces the domain variables of X which is shared by all components. In fact, during
the Hybrid procedure, SLS is still running but waits for decisions and does neither
revise them nor the propagations done by the FIX procedure. The assignment A, used
by SLS, is thus in part fixed by this hybridization. In some sense, those fixed variables
are tabu for SLS.

The variable #conf measures the number of encountered conflicts. After the FIX
procedure and when this number has become strictly larger than the dynamical max-
Conf threshold, it is estimated that the hydrid component is stuck and a call to MAC is
made. When this threshold is not reached the search goes back to the SLS component,
the collected filtering information being preserved.



A CSP Solver Focusing on FAC Variables 499

Procedure. SLS
while ∃C ∈ C s.t. C is violated by A do1

if a local minimum is reached then2

if ∃ FAC variables then3

add new FAC variables to Se;4

SLSprogress←− SLSprogress + 1000 ;5

else SLSprogress←− SLSprogress− 1 ;6

if SLSprogress < 0 then return;7

else8

Change the value inA of one var. of X according to the novelty escape9

strategy ;

else10

Change the value in A of one var. of X s.t. the number of violated constraints11

decreases ;

if A new best configuration is obtained then12

SLSprogress←− SLSprogress + 1000 ;13

result←− true ;14

Procedure. Hybrid

level←− 0;1

#conf ←− 0 ;2

while (#conf < maxConf ) do3

X ←− pick a variable according to dom/wdeg s.t. X appears in violated constraint4

by A ;
v ←− the value of X in A ;5

FIX(X, v) ;6

if (result = false) then return ;7

SLS() ;8

4.3 MAC-Based Component

The MAC-based component starts with the initial CSP with the exception of filterings
computed at level 0 during the SLS and the calls to FIX (line 1). This procedure is
a standard MAC algorithm except that the focus is on collected FAC variables. The
heuristic used to selected variable is dom/wdeg. For the first choices (lines 8-9), the
variable is selected amongst the FAC variables collected during the SLS procedure. The
next choices (line 11) are made within all variables. The use of FAC variables only for
the first choices can be explained by the fact that the dom/wdeg heuristics allows to
focus on the same inconsistent part (i.e., on the same core) whereas fixing another FAC
variable can lead the search to be dispersed and slowing down the discovery of a small
proof of inconsistency.

The weights used by the dom/wdeg heuristic are preserved from one iteration to the
next one in Algorithm 1, and are shared by all search components.

Moreover, this MAC procedure does not necessarily perform a complete search since
if the number of conflicts #conf becomes larger than the maxConf before a final
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Procedure. FIX(X, v)

dom(X)←− {v} ;1

level←− level + 1;2

GAC() ;3

while ∃X ′ ∈ X s.t. dom(X ′) = ∅ do4

if level = 0 then5

result←− false ;6

return;7

Backtrack() ;8

level←− level − 1;9

#conf ←− #conf + 1 ;10

dom(X)←− dom(X) \ {v};11

GAC() ;12

decision is obtained, then the process goes back to the SLS component. In this latter
case, the maxConf control variable is increased in a geometric manner.

As maxConf is increased whenever the MAC component fails, this component
will eventually give a final result when this boundary becomes larger than the number
of conflicts needed by MAC to solve the CSP. Accordingly, FAC-SOLVER is complete.

Procedure. MAC
Backjump(0) ; // backjump to level 01

level←− 0;2

#conf ←− 0 ;3

while (#conf < maxConf ) do4

if X = ∅ then5

result←− true ;6

return ;7

if (#conf = 0) and (∃X ∈ Se ∩ X ) then8

X ←− pick a variable in Se ;9

else10

X ←− pick a variable according to dom/wdeg ;11

v ←− pick randomly a value in dom(X) ;12

FIX(X, v) ;13

if (result = false) then return ;14

5 Experimental Results

In order to assess the efficiency of FAC-SOLVER, we have considered benchmarks from
the last CSP competitions [5,6], which include binary vs. non-binary, random vs. real-
life, satisfiable vs. unsatisfiable CSP instances. They were classified according to four
types: 635 CSPs made of binary constraints in extension (BIN-EXT), 696 CSPs made of
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binary constraints in intension (BIN-INT), 704 CSPs involving n-ary constraints in ex-
tension (N-EXT) and 716 instances of CSPs of n-ary constraints in intention (N-INT).
We have run four methods on all those instances: namely, our own implementation of
SLS Walksat+Novelty, of an hybrid method combining SLS and GAC, of MAC and
FAC-SOLVER. All tests have been conducted on a Xeon 3.2 GHz (2 G RAM) under
Linux 2.6. Time-out has been set to 1200 seconds while a space limit has been set to
900 Mbytes. Note that the MAC version used in the experimentations makes use of
a geometric restart policy that is similar way to our solver. Similarly, the SLS solver
(Walksat+Novelty) used in our experimental comparison uses the same novelty heuris-
tic than our solver. Note that, the solved unsatisfiable instances by novelty have been
solved by GAC on the initial instance.

Table 1 summarizes the results in terms of the numbers of satisfiable and unsatisfiable
instances that were solved. In each horizontal “total”-line, the solver that solves the most
instances has been emphasized in gray. The main result is that FAC-SOLVER managed
to solve more instances than any of the other methods globally for either satisfiable
(SAT) or unsatisfiable (UNSAT) instances, and considering the subclasses of instances
separately, for three types of CSPs. For the last type (binary CSP in extension), let us
stress that the best solver is different in each of the three columns (SAT, UNS(AT) and
TOT(AL)) and in each case, the number of solved instances by FAC-SOLVER is very
close to the best one.

In Figure 2, five scatter points diagrams are given for a more detailed analysis. In
each of them, two of the methods are pairwise compared w.r.t. instances that were
solved by at least one of them. The X-axis represents the computing times in seconds
by FAC-SOLVER whereas the Y-axis provides the performance of the second method.
Results are expressed in seconds and represented according to a logarithmic scale.
Instances were divided within the four classes detailed above. We provide separate
diagrams for SAT and UNSAT instances. FAC-SOLVER is not compared with Walk-
sat+Novelty on UNSAT instances since these instances are out of scope for the latter
technique. The main information that can be drawn from these diagrams is as follows.

– More instances are located on the Y=1200 line than on the X=1200 one. This
shows, as Table 1 summarizes it, that FAC-SOLVER solves more instances than any
of the other considered methods.

– With the exceptions of UNSAT instances for MAC, there are more points located
above the diagonals showing that FAC-SOLVER is generally more efficient than
the other methods. Also, for UNSAT instances, the difference of time performance
between pairs of methods is globally smaller than for SAT instances (points are less
dispersed and are closer to the diagonal). FAC-SOLVER is generally more efficient
than a mere combination of SLS and GAC. It is also more efficient than MAC on
SAT instances (mainly due to the power of SLS). But there is no free lunch, the time
spent on SLS by FAC-SOLVER on UNSAT instances leads to some small and very
acceptable time overheads, compared with MAC. This is perhaps the price to pay
to solve more unsatisfiable instances than MAC within the same price constraints,
thanks to the collected information by SLS.
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An important issue is the way according to which the efficiency of FAC-SOLVER might
depend on the specific initial assignment selected by its SLS component. Actually, it
appears that, on average, this dependency is weak and is not a serious troubling factor
affecting the results. To show this robustness, we have selected 96 instances within the
above benchmarks in a random fashion but according to their relative importance in
each of the four classes of instances. For each of these instances, 50 successive runs of
FAC-SOLVER have been conducted with a different initial (randomly generated) assign-
ment. When an instance was solved by at least one run, it was also solved by the 49
other runs in 97 % of the situations, with a very low 2.52 seconds average deviation.

To show the importance of FAC variables, we have run our solver with and without
computing and using the FAC variables. Table 2 provides typical results. The use of
FAC variables allows more instances to be solved. Most of the time, the use of FAC

variables can solve benchmarks more quickly. In rare cases, the use of FAC variables
wastes time. This is because the solver wastes time to compute FAC variables that are
not used when the instance is solved directly by the SLS solver or when the benchmarks
is globally inconsistent. In this case, all variables are potentially FAC variables and their
computation also wastes time.

Table 1. Experimental results

NOVELTY SLS+GAC MAC FAC-SOLVER

SAT UNS TOT SAT UNS TOT SAT UNS TOT SAT UNS TOT

2-
E

X
T

ACAD 7 0 7 7 2 9 7 2 9 7 2 9
PATT 106 0 106 100 38 138 83 38 121 99 39 138

QRND 24 0 24 24 51 75 24 51 75 24 51 75
RAND 206 0 206 197 105 302 194 110 304 193 106 299
REAL 6 0 6 7 0 7 7 0 7 7 0 7

TOTAL 349 0 349 335 196 531 315 201 516 330 198 528

2-
IN

T

ACAD 38 7 45 37 40 77 37 40 77 38 40 78
BOOL 0 1 1 0 1 1 0 1 1 0 1 1
PATT 112 0 112 150 60 210 146 62 208 152 62 214
REAL 47 74 121 74 102 176 75 103 178 75 103 178

TOTAL 197 82 279 261 203 464 258 206 464 265 206 471

N
-E

X
T

BOOL 70 1 71 74 75 149 74 70 144 74 74 148
PATT 6 0 6 30 0 30 29 0 29 30 0 30

QRND 43 0 43 40 40 80 33 40 73 45 40 85
RAND 70 0 70 68 32 100 72 34 106 70 34 104
REAL 41 29 70 45 114 159 47 115 162 47 115 162

TOTAL 230 30 260 257 261 518 255 259 514 266 263 529

N
-I

N
T

ACAD 40 0 40 39 23 62 36 23 59 40 23 63
BOOL 145 1 146 156 12 168 146 12 158 162 13 175
PATT 88 5 93 103 19 122 95 20 115 102 18 120
REAL 85 2 87 152 3 155 150 3 153 152 3 155

TOTAL 358 8 366 450 57 507 427 58 485 456 57 513
TOTAL 1134 113 1247 1293 717 2010 1255 724 1979 1317 724 2041
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(a) FAC-SOLVER vs. NOVELTY

(b) FAC-SOLVER vs. SLS+GAC

Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (a) (b) (c) satisfiable
instances/(d) (e) unsatisfiable instances
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(c) FAC-SOLVER vs. MAC

(d) FAC-SOLVER vs. SLS+GAC

Fig. 2. (continued)
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(e) FAC-SOLVER vs. MAC

Fig. 2. (continued)

Table 2. Using or not FAC variables in FAC-SOLVER: typical results

Instance SAT/UNSAT? time (FAC-SOLVER) time (FAC-SOLVER without
FAC variables)

uclid-elf-rf8 UNSAT 305.15 time out
uclid-37s-smv UNSAT 387.50 659.58

par-16-5 SAT 168.87 329.06
primes-10-40-2-7 SAT 891.01 time out
primes-20-20-2-7 SAT 976.68 313.31

queensKnights-100-5-add UNSAT 1,120.18 time out
queensKnights-100-5-mul UNSAT 1,165.81 time out
queensKnights-80-5-mul UNSAT 343.68 time out

rand-2-40-18 UNSAT 41.47 1.61

6 Perspectives and Conclusions

In this paper a FAC variables concept has been introduced and investigated w.r.t. CSP
solving. One goal of this study was to develop a CSP solving method that would at least
match the efficiency of each best current approach on each class of traditional CSPs
instances. In this respect, our experimental results show the extent to which this goal
has been met.
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One question that naturally arises is the extent to which the various findings and
components implemented in FAC-SOLVER do actually take part in the increased effi-
ciency. Actually, it appears that each finding and search component (FAC variables, use
of dom/wdeg heuristic in SLS, hybrid method involving SLS and filtering techniques)
were necessary to ensure the supremacy of the method. Especially, we have e.g. mea-
sured that FAC variables were detected in 56 % of the instances and that they play a
crucial role even in consistent instances.

FAC-SOLVER remains a basic algorithm and could be fine-tuned in several ways. Es-
pecially, comprehensive experimental studies could allow to optimize its various control
variables and factors, which we fixed quite arbitrarily. Moreover, our implementation
does not include usual CSP simplification techniques like the exploitation of symme-
tries or global constraints. We believe that the integration of these techniques could also
dramatically improve FAC-SOLVER. Also, it would be interesting to explore the relax-
ation of the FAC variable concept to encompass also variables that occur in most or some
preferred falsified contraints (instead of all of them). This could prove useful for e.g.
CSP instances containing non-overlapping MUCs.

Finally, we believe that the FAC variable concept is a good trade-off between the
effective computational cost spent by SLS to find some of them, and what would be
the theoretically best branching variable for MAC-based algorithm giving rise to the
shortest proofs. FAC variables are variables taking part in all unsatisfiable minimal sub-
sets of constraints, which often appear to be the difficult parts of unsatisfiable CSPs.
However, it is easy to find out unsatisfiable CSPs where FAC variables do not conceptu-
ally take part in the real causes of unsatisfiability but rather simply appear as variables
occurring in all MUCs while, at the same time, they are not related to the actual con-
flicting information. Refining the FAC variable concept to better capture the essence of
unsatisfiability while keeping efficient heuristics that can help finding them remains an
exciting challenge.
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Abstract. Motivated by an important and challenging task encountered
in material discovery, we consider the problem of finding K basis patterns
of numbers that jointly compose N observed patterns while enforcing
additional spatial and scaling constraints. We propose a Constraint Pro-
gramming (CP) model which captures the exact problem structure yet
fails to scale in the presence of noisy data about the patterns. We allevi-
ate this issue by employing Machine Learning (ML) techniques, namely
kernel methods and clustering, to decompose the problem into smaller
ones based on a global data-driven view, and then stitch the partial solu-
tions together using a global CP model. Combining the complementary
strengths of CP and ML techniques yields a more accurate and scalable
method than the few found in the literature for this complex problem.

1 Introduction

Consider a setting where our goal is to infer properties of a system by observing
patterns of numbers (e.g., discretized waveforms, locations of peak intensities in
a signal, etc.) at N sample points. Suppose these N patterns are a combination
of K unobserved basis patterns. The pattern decomposition problem seeks to
identify, given patterns at the N sample points as input, K basis patterns that
generate the observed patterns and which of these basis patterns appear at any
given sample point. The sample points are often embedded in the Euclidean
space, enforcing a constraint that points near each other should generally be
explained by a similar subset of patterns (except for a few transition boundaries).

Variants of this problem arise in a number of scenarios. For example, in the
well-known cocktail party problem, the observed patterns are mixtures of voices
of people as recorded by various microphones and the task is to decompose the
signal at each microphone into the voices of individuals – the basis patterns –
contributing to that signal. The microphones observe a spatial correlation, in
the sense that if person’s voice is heard at a microphone, it is likely that it is
also heard at a neighboring microphone but not at a far away one.

Problems such as these fall under the category of source separation problems.
Typically, purely data-driven methods are used for these, relying heavily on pat-
tern recognition from a global analysis of the available data. A limitation of this
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approach, however, is that it makes it very difficult to enforce hard constraints.
While one may argue that the spatial and other requirements in problems such
as the cocktail party problem are somewhat “soft”, the setting we consider in
this paper is motivated by a materials science problem that imposes hard con-
straints dictated by physics. When solving this problem, even slight deviation
from the requirements of the underlying physics makes “solutions” meaningless.
Moreover, in this setting, observed patterns are allowed to be superpositions of
basis patterns stretched by a small multiplicative scaling factor, leading to what
we call the Decomposition Problem With Scaling. This problem generalizes a
known NP-complete problem, namely, the Set Basis Problem [19].

Faced with the challenge of handling hard constraints and scaling factors,
we propose a Constraint Programming (CP) approach to solve our variant of
the pattern decomposition problem. Our CP formulation captures the desired
constraints in a detailed and exact fashion. However, as expected, it does not
scale well with problem size once we introduce errors and noise in the input data.
To alleviate this issue, we turn to Machine Learning (ML) and use kernel-based
clustering as a way to guide the CP solver by creating multiple smaller sub-
problems within its reach. After solving these smaller sub-problems with CP,
we take a step back and combine the multiple partial solutions into a consistent
global solution, using the original, global CP model.

Our contributions include bringing this intriguing and challenging problem
to the CP community, providing a CP model for it, and enhancing the global
scalability of the model while preserving local accuracy by exploiting ML meth-
ods for designing a divide-and-conquer approach. Using data from our material
discovery application as a testbed, we demonstrate that the proposed hybrid
ML-CP approach yields more accurate and meaningful solutions than existing,
mostly data-driven approaches.

1.1 Pattern Decomposition for Material Discovery

The particular variant of the pattern decomposition problem considered in this
paper is motivated by an important application in the area of material discovery.
Specifically, a detailed analysis of libraries of inorganic materials has become an
increasingly useful technique in this line of work, as evident from the number and
variety of recently published methods for combinatorial materials research [e.g.,
2, 16]. These libraries can be screened for a desired property, providing an un-
derstanding of the underlying material system. This is an important direction
in computational sustainability [8], and aims to achieve the best possible use of
our available material resources.

A fundamental property of inorganic materials is their crystallographic phase,
and thus creating a “phase map” of an inorganic library across various compo-
sitions is a key aspect of combinatorial materials science. Often, correlations
between the phase map and other material properties provide important in-
sights into the behavior of the material system. For example, a recent study of a
Platinum-Tantalum library revealed an important correlation between crystal-
lographic phase and improved catalytic activity for fuel cell applications [10].
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The most common technique for creating such a phase map is to first use Xray
diffraction to generate diffraction patterns (continuous waveforms) for sample
points with different compositions. Inferring the phase map from these diffraction
patterns is then done using a laborious manual inspection. Doing this automat-
ically, without human interaction, is a long standing problem in combinatorial
crystallography. Several recent algorithms have been proposed which correctly
solve the phase map for limited cases [3, 4, 14, 15]. In 2007, Long et al. [15]
suggested a hierarchical agglomerative clustering (HAC) approach which aims
to cluster the observed patterns that involve the same subset of basis patterns,
but relies on a manual inspection in order to discover the actual basis patterns.
In a follow-up paper, Long et al. [14] applied non-negative matrix factorization
(NMF), which approximates (through gradient descent) the observed diffraction
patterns with a linear combination of positive basis patterns. A main limitation
of both approaches lies in the assumption that peaks of a phase will always ap-
pear at the same position and with the same relative intensities in any pattern.
However, the position and intensity of diffraction peaks typically scale as a func-
tion of composition due to chemical alloying. Also, these approaches are unable
to enforce hard constraints such as connectivity requirements.

Our goal is to take the actual physics behind the crystallographic process
(e.g., the nature of scalings in the patterns and connectivity) into account in
order to design a robust and scalable method for solving this problem in the
presence of experimental noise.

2 Problem Description

From a computational perspective, we are interested in solving the following
constraint reasoning (and optimization) problem. We will define this problem
over rational numbers, Q, rather than reals as this ensures that the problem
is within NP; if there is a solution, using rational numbers will allow us to
compactly represent and verify its correctness. We will refer to a set P ⊆ Q+ of
positive rationals as a pattern over positive rational. For a scaling factor s ∈ Q,
let us define the scaled pattern sP as the pointwise scaled version of the pattern
P , namely, sP = {sp | p ∈ P}.

Informally speaking, the problem is the following. Suppose we are given a
graph over N vertices and, associated with each vertex vi, a pattern Pi consisting
of a finite set of numbers. Given K ≤ N , the goal is to decompose these N
patterns into K patterns that form a “basis” in the following sense: each Pi
must be the union of at most M scaled basis patterns (i.e., scaled versions of at
most M basis patterns must appear at each vertex), and the subgraph formed
by the vertices where the k-th basis pattern appears must be connected.

The problem, illustrated in Figure 1, is formally defined as follows:

Definition 1 (Problem: Pattern Decomposition With Scaling). Let

– G = (V,E) be an undirected graph with V = {v1, . . . , vN},
– P = {P1, . . . , PN} be a collection of N patterns over a finite set S ⊆ Q+,
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Fig. 1. Left: Toy example illustrating Def. 1. Right: Solution for M = K = 2 and δ = 2
.

– M ≤ K ≤ N be positive integers, and δ ≥ 1 be a rational.

Determine whether there exists a collection B of K basis patterns over S and
scaling factors sik ∈ {0} ∪ [1/δ, δ] for 1 ≤ i ≤ N, 1 ≤ k ≤ K, such that:

(a) ∀i: Pi is the union of scaled basis patterns, i.e., Pi =
⋃K
k=1 sikBk;

(b) ∀i: the number of basis patterns with a non-zero coefficient at vertex vi is at
most M , i.e., |{k | sik > 0}| ≤M ; and

(c) ∀k: the subgraph of G induced by Vk = {vi ∈ V | sik > 0} is connected.

Noisy Data. In practice, one may not have accurate information about the pat-
tern Pi at each vertex vi. Indeed, in our material discovery application to be
discussed shortly, it is very common for several types of noise to be present in
the patterns provided as input to this problem. For the purposes of this paper,
we will assume that there may be false negatives in the N observed patterns, but
no false positives. In other words, our models will be designed to tolerate missing
elements in patterns, by relaxing the first condition in the problem definition to
Pi ⊆

⋃
k sikBk rather than requiring a strict equality. Note that this relaxation

severely limits the propagation that a constraint enforcing this condition might
be able to perform, as we can no longer remove an element from a candidate
basis pattern Bk even if that element (appropriately scaled) does not appear in
the observed pattern Pi. We will discuss this issue in more detail in Section 3.

Further, we will make the assumption that for every basic pattern, there is
at least one recurrent element that is not missing in every observed pattern
involving this basic pattern. This assumption is often quite realistic in many
applications where elements of a pattern are, for example, locations of peaks in
a waveform. Indeed, even though the highest peak of a given basic pattern might
not be observed as the highest one in each pattern where it appears, it is quite
unlikely to completely disappear due to noise.

Other Dimensions to the Elements of a Pattern. Depending on the particular
application under consideration, the elements of a pattern may have associated
with them other dimensions as well that an algorithm may be able to exploit.
E.g., when elements correspond to “locations” of peaks in a waveform, they
naturally have height and width of the corresponding peaks associated with
them as well. We will use these additional dimensions, specifically height, in
the material discovery application experiments in order to control the amount of
tolerable error. The machine learning part of our hybrid method will also exploit
height and width indirectly when computing the similarity between patterns.
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Fig. 2. Left: Pictorial depiction of the problem, showing 29 sample locations each cor-
responding to a composition and associated with an observed x-ray diffraction pattern.
The green, blue, yellow, and red colored regions denote pure phase regions. Also shown
are two mixed regions, formed by the overlap of α + β and γ + δ. Right: Multiplicative
shift in waveforms as one moves from one point to an adjacent one; waveforms are
shown stacked up vertically to highlight the shift.

2.1 Motivating Application: Phase Identification in Materials

A combinatorial method for discovering new materials involves sputtering three
metals (or oxides) onto a silicon wafer, resulting in a so-called thin film. The goal
is to identify structural regions in thin films. Any location on a thin film corre-
sponds to a crystal with a particular composition of the three sputtered metals
(or oxides); a number of such locations are sampled during experimentation, as
shown with black dots in Figure 2. The structural information of this crystal
lattice is usually characterized by its x-ray diffraction pattern – a continuous
waveform obtained by electromagnetic radiation. The resulting diffraction pat-
tern associated with each location represents the intensity of the electromagnetic
waves as a function of the scattering angle of radiation (see Figure 2).

The pattern observed at any location is often a superposition of a number
of basis patterns, known as phases, possibly stretched by a small multiplicative
scaling factor; the shifts are depicted in the right panel of Figure 2 where adjacent
lines correspond to waveforms observed at adjacent locations. In other words, a
thin film involves a small number of basic crystallographic phases, and the crystal
corresponding to each sampled location lies either in a pure region comprising
of just one phase, or a mixed region made from a superposition of multiple,
possibly stretched phases (e.g., the waveform shown in the middle of the left
panel of Figure 2 is the superposition of the ones shown above and below it).

Given the diffraction patterns at N sampled locations, the problem is to com-
pute the most likely phase map, i.e., the set of phases that are involved at any
location of the thin film and in which proportion. A sub-problem, often consid-
ered in the literature [e.g., 15], is to cluster the sampled locations such that
locations in each cluster are superpositions of the same subset of phases.

When three metals are used for this experiment, the result is referred to as a
ternary diagram. A physical constraint in a ternary diagram is that independent
of the total number of phases present, the number of phases that may appear
at any given location is at most 3. Furthermore, if 3 phases do appear at a
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location, then it does not leave any degree of freedom for the aforementioned
shifts to happen, i.e., only pure regions or mixed regions comprising 2 phases
exhibit shifting.

We can cast this problem as the Pattern Decomposition With Scaling prob-
lem discussed earlier, with an additional constraint enforcing scaling factors to
be precisely 1 when 3 phases appear at a location. The idea is to pre-process
these x-ray diffraction patterns by performing peak detection, for which reliable
techniques are available in the context of materials science. This results in a
finite set of scattering angles – a pattern in our earlier notation – at which peaks
are observed at a given sampled location. Specifically, N is the number of sam-
pled locations, G is obtained by Delaunay triangulation over the sampled points
based on their given x-y coordinates on the thin film, P is the set of such patterns
associated with each location, M = 3, δ is typically 1.15 (i.e., allowing shifts by
a maximum scaling factor of 15%), K is the number of underlying phases or
basis patterns we are interested in discovering. Without loss of generality, we fix
S to be the set of all scattering angles (i.e., pattern elements) at which a peak
is observed in the sampled locations.

In general, the goal from a material discovery perspective is two-fold: explain
the diffraction patterns observed at the N locations with the fewest number K
of phases, while also minimizing the error resulting from missing peaks and other
noise in the data. We will assume for the purposes of this paper that although
we might miss some peaks (i.e., false negatives), the scattering angle where we
do observe a peak is accurate (i.e., no false positives). Given the small range of
K in reality (typically 5-8), we will take K to be a parameter of the problem
and attempt to minimize error introduced due to missing peaks. As a practically
relevant objective function, we use the sum of the estimated heights of missing
peaks. Note that “heights” and “peaks” are not part of the formal definition of
the satisfaction problem, Pattern Decomposition With Scaling. Nonetheless, this
data is readily available for this material discovery application and we use it to
enhance the problem with a realistic objective function. In fact, when discussing
the machine learning part to boost scalability, we will use for computing “simi-
larity” between locations not only the scattering angles where peaks appear but
also a discretized version of the complete waveforms.

2.2 NP-Completeness

In order to prove that the Pattern Decomposition With Scaling problem as
defined above is NP-hard, we simplify it in three steps to what is called the Set
Basis Problem, which is known to be NP-complete. First, let M = K, i.e., allow
the K basis patterns to appear at any vertex. Second, let the underlying graph
G be a clique, thereby trivially satisfying the third condition in the problem
definition (subgraph connectivity). Finally, let δ = 1, thereby forcing all scaling
factors sij to be either 0 or 1. With these three modification steps, our problem
simplifies to what is known in the literature as the Set Basis Problem, defined
as follows and known to be NP-complete [19]:
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Definition 2 (Set Basis Problem [19]). Given a collection P = {P1, . . . , PN}
of N subsets of S and an integer K satisfying 2 ≤ K ≤ N , is there a collection
B of K subsets of S such that for all 1 ≤ i ≤ N there exist Bi ⊆ B such that
Pi = ∪B∈BiB?

To see that the Pattern Decomposition With Scaling problem is within NP, we
observe that given a candidate solution to the problem, namely a collection B
of K subsets of S and scaling factors sik ∈ Q for 1 ≤ i ≤ N, 1 ≤ k ≤ K, one
can easily verify in polynomial time that all requirements of the problem are
satisfied. Note that defining the problem over Q rather than the reals ensures
that if an instance has a solution, then there is also one with all sik ∈ Q, allowing
succinct representation and efficient verification of a candidate solution.

Together, these imply that this problem is NP-complete.

3 A Constraint Programming Formulation

We first describe a CP formulation of this problem assuming no errors, i.e., no
missing elements in patterns nor experimental noise in the element value. A
natural way to encode this problem is to have one variable for each element of
each of the N patterns indicating which of the K basic patterns “explains” this
element. This formulation, however, results in too many variables and also fails
to account for overlaps, i.e., that an element of an observed pattern may in fact
be explained by multiple basic patterns (since we take the union of basic pat-
terns in the problem definition). An alternative formulation can try to analyze
the N given patterns to identify which elements are shared between neighboring
vertices of G, and use this as a basis for creating basis patterns. This formulation
too results in too many variables and constraints. We present below a formu-
lation that proved to be the most successful. This formulation explicitly uses
the underlying basis patterns as the central variables, and merges sets of large
numbers of constraints into global ones in order to reduce memory consumption.

In a preprocessing step, we compute the set rij as Pi normalized by its jth

element. For example, if P5 corresponds to {1, 2, 4}, then r5,2 becomes {1/2, 1, 2}.

Variables. We model whether a basis pattern k is present in a pattern Pi using a
decision variable pki. According to the assumption mentioned in Section 2, there
is at least one element of any basis pattern that appears in all sample points
in which this basis pattern is present. As a result, if we use this element as a
normalizing one, the set of elements of this basis pattern becomes the same in all
of these sample points. We represent the normalizing element of basis pattern k in
sample point Pi as pki, whose domain is {0, 1, ..., |Pi|} and where value 0 denotes
that basis pattern k is not present in pattern Pi. Furthermore, auxiliary Boolean
variable aki indicates whether basis pattern k appears in Pi while auxiliary set
variable qk represents the normalized elements of pattern k and initially ranges
over all possible scaled elements. The domain representation used for the qik
variables is the classical subset-bound, yet more advanced representations ([see
eg. 7, 11]) might further enhance the model.
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Constraints. We first express the relationship between the auxiliary variables
aki and the decision variables pki as follows:

(aki = 0) ⇐⇒ (pki = 0) ∀ 1 ≤ k ≤ K, 1 ≤ i ≤ n (1)

At this point, we can directly enforce that a pattern has to be composed of at
least one basis pattern, and at most M :

1 ≤
K∑

s=1

asi ≤M ∀ 1 ≤ i ≤ n (2)

Next, anytime a pattern Pi involves a particular basis pattern k, every element
of k has to match one of the normalized elements of Pi. Formally:

(pki = j)⇒ (qk ⊆ rij) ∀ 1 ≤ k ≤ K, 1 ≤ i ≤ n, 1 ≤ j ≤ |Pi| (3)

Nonetheless, in order to fully determine qk from the pki’s, we require that all
elements of a pattern appear in one of the basis patterns that compose this point.
First, if a pattern is made of only one basis pattern, their elements should be
identical, up to a scaling factor. It means that if pki is set to be equal to j, then
rij also has to be a subset of qk. Second, if a pattern Pi is made of two basic
patterns k and k′, then every element of Pi has to appear in qk or in q′k, when
normalized by their respective scaling factor. The first case translates into:

(pki = j ∧
K∑

s=1

asi = 1)⇒ (rij ⊆ qk) ∀ 1 ≤ k ≤ K, 1 ≤ i ≤ n, 1 ≤ j ≤ |Pi| (4)

while the second one entails the following equation:

(pki = j ∧ pk′i = j′ ∧
K∑

s=1

asi = 2)⇒(
member(rij[j

′′], qk) ∨member(rij′ [j
′′], qk′)

)
∀ 1 ≤ k, k′ ≤ K, 1 ≤ i ≤ n, 1 ≤ j, j′, j′′ ≤ |Pi| (5)

Similarly, we derive constraints for points that are made of g basis patterns,
where 3 ≤ g ≤M . Then, we guarantee that the scaling factors of a basis pattern
belong to a valid range. For two patterns to be composed of the same basis
pattern, these constraints require that the two respective normalizing elements
are not too far apart in the pattern. This step relies as well on a preprocessing
step of the data, in order to compute the relative distances and to post the
required constraints. For a given δ ≥ 1, we consider that this preprocessing step
yields a set Φ = {(i, j, i′, j′) | Pi[j]

P ′
i [j′] < 1/δ∨ Pi[j]

P ′
i [j′] > δ, i < i′} of pairs of elements

that do not satisfy this property (typically δ ≤ 1.15). It yields:

(pki = j)⇒ (pki′ �= j′) ∀ 1 ≤ k ≤ K, (i, j, i′, j′) ∈ Φ (6)

Finally, we implement a special-purpose global constraint, called basisPattern-
Connectivity which maintains the set of basis patterns in every connected com-
ponent. Formally, if aki1 = 1 and akit = 1, then there exists an undirected
path i1 → i2 · · · → it such that akiu = 1 for all 1 ≤ u ≤ t. We could perform
propagation based on component and bridge information [see 13, 17], however in
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practice this extra filtering does not seem to justify the added overhead for our
particular problem setting. Instead we simply make sure that the aforementioned
statement is not violated. We define this constraint as:

basisPatternConnectivity({aki|1 ≤ i ≤ n}) ∀ 1 ≤ k ≤ K (7)

During search, the branching variables are the pkis. The variable ordering using
an arbitrary BFS on G to statically order the vertices vi, and dynamically select
k such that a neighbor of vi has set its phase k, proved to be the most successful.

Symmetry Breaking. In order to break symmetries, we systematically assign
either an already existing basis pattern or the lowest one available. This means
that for example, given the three basis patterns q1, q2 and q3, and considering
a new pattern Pi, the variables p5,i, ..., pK,i must be assigned value 0. This is
reminiscent, for example, of work on the Steel Mill Slab Design [12].

3.1 Handling Errors and Noisy Data

In order to handle missing elements, we adapt constraints (3) to allow for ele-
ments of qk not to appear in Pi, even if the sample point Pi involves basis pattern
k. Therefore, the propagation of constraints (3) gets weaker, as we can no longer
filter out an element of qk that is anomalously missing from a sample point (see
following section). Also, to avoid a trivial solution in which all possible elements
belong to qk, we introduce an optimization objective that aims to minimize ei-
ther the overall number of missing elements or the overall relative importance
of the missing elements. The importance of an element is application specific,
and in the case of our motivating application, a natural way to penalize for a
missing peak is to consider its inferred height: the higher the missing peak, the
worse the solution. Finally, note that handling missing elements does not affect
constraints (4) nor (5), as we do not allow for false positives.

Also, in order to account for noise, we introduce a precision value that repre-
sents how far off an observed value can be from its true one. Thus, in constraints
(3) to (5), when checking whether an element belongs to a set, we use this
precision to assess whether the element appears as a slightly different value.

3.2 Limitations of the Pure CP Approach: Scaling

Although this CP model captures the details of the problem very well, it scales
very poorly – especially when errors are introduced in the data in terms of
missing peaks. In Table 1, we show the running time of the CP model on (small)
instances of various sizes from our material discovery application. Experiments
were conducted using IBM ILOG CP Solver version 6.5 deployed on 3.8 GHz
Intel Xeon machines with 2GB memory running Linux 2.6.9-22.ELsmp. The time
limit used was 1,200 seconds. The observed patterns in each of these instances
can, in reality, be explained by K = 6 basic patterns. We create simpler versions
of the problem by fixing some of these basic patterns as a partial solution, leaving
K ′ ∈ {0, 1, . . . , 6} unknown basic patterns, for each of which we have a row in
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Table 1. Scaling of the pure CP model, without errors (pure) and with errors. Rows:
num. of unknown basic patterns. Cols: num. of observed patterns. Timeout 1,200 sec.

N = 10 N = 15 N = 18 N = 28 N = 219
pure errors pure errors pure errors pure errors pure errors

K′ = 0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.1 3.5
K′ = 1 0.0 0.1 0.0 0.1 0.0 0.3 0.1 0.4 115.3 343.2
K′ = 2 0.0 0.2 0.0 0.3 1.0 — 1.4 — — —
K′ = 3 0.5 717.3 0.5 — 384.8 — 276.0 — — —
K′ = 4 668.5 — 824.2 — — — — — — —
K′ = 5 — — — — — — — — — —

the table (K ′ = 6 is omitted as all instances timed out in this case). As we see,
for all N , the instances go from being solvable in a fraction of a second to not
solvable in 20 minutes extremely fast. Moreover, when errors are introduced in
the form of missing peaks, the scaling behavior becomes worse. Finally, even
with a very small problem size such a N = 10 and the ideal case of no errors,
we cannot solve for all 6 (or even 5) basic patterns. It becomes evident that we
need a methodology that can allow us to scale to instances of realistic sizes (e.g.,
over 100 patterns and with K ′ = 6). This will be the subject of the rest of this
paper.

4 Boosting Scalability: Exploiting Kernel-Based
Clustering to Guide the CP Formulation

The CP approach discussed thus far attempts to accurately solve the full prob-
lem under certain assumptions and, as we saw, fails to scale up to instance sizes
of interest as soon as errors are introduced. We discuss in this section how we
can leverage ideas from machine learning (ML), specifically kernel-based simi-
larity measures and clustering, in order to make the problem solving task easier
for the CP formulation. This integration of the two approaches is inspired by
their complementary strengths: While CP techniques are excellent at enforcing
detailed constraints at a local level, data-driven ML methods are more robust
to noise and good at recognizing global patterns of similarity.

The integration uses the following 4-step “divide-and-conquer” process:

i. use kernel methods to analyze the patterns Pi at a global scale in order to
compute a robust similarity measure between pairs of patterns;

ii. use clustering with this similarity measure to “over-segment” the N vertices
into J clusters and choose a set V (j) of vertices associated with each cluster
based on their distance to the cluster centroid; the vertices in these V (j) are
expected to be explained by the same subset of basis patterns;

iii. solve the CP formulation, without the connectivity constraint, on the sub-
graph induced by the vertices in each V (j) to obtain a partial solution defined
by a collection of basis patterns B(j) each of size at most M ; and

iv. glue the basis patterns B(j) found for the J sub-problems together using a
global CP formulation in order to obtain the full set B of K basis patterns.
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4.1 Kernels as Robust Similarity Measures

Assuming D is an upper bound on the number of elements in each input pattern,
we will think of the N input patterns as the input dataset X ∈ QN×D where
each of the N patterns is represented by its D “features” in the D-dimensional
space. One can model rich, non-linear relationships between the D base features
by instead representing the N patterns in a much larger feature space, one of
dimension L D. Thus, instead of modeling non-linear relationships directly in
D dimensions, one achieves the same effect more easily by still modeling linear
relationships but in a much higher dimensional space, using an expanded feature
representation φ(X) ∈ QN×L.

The problem, of course, is that explicitly constructing this L-dimensional
space and working in it can be computationally prohibitive. Kernel methods
solve this issue by allowing us to directly model the desired inner product, i.e.,
the “similarity” measure, 〈φ(X),φ(X)〉, and reduce the dimensionality we must
deal with while leaving open, in principle, the possibility of even an infinite-
dimensional underlying feature expansion (L =∞). Note that this inner product
computation results in the construction of a symmetric positive semi-definite
N × N matrix, independent of the dimension L of the much expanded feature
space. This matrix is known as the kernel.

Typically used generic kernel functions include the linear or cosine kernel
x

T

i xj , the polynomial kernel (x
T

i xj + 1)k of degree k, and the Gaussian or radial
basis function (RBF) kernel exp(− ||xi−xj||2

2σ2 ). Two specific material-discovery
characteristics, however, pose a big challenge when computing similarity between
x-ray diffraction waveforms – the inherent peak shifts (with multiplicative scal-
ing) and varying peak intensity or height levels. This is especially true in cases
where the presence of small peaks indicates a novel phase and the existence of
a new crystal structure. In order to address this we propose to use the dynamic
time warping technique [18] to construct a global alignment kernel. Such a ker-
nel was recently used successfully in the context of Bayesian classification [6].
The idea is to construct a kernel from minimum-cost alignment of two sequences

xi,xj based on DTW: kDTW(xi,xj) = exp
(
− ||ci − cj ||2

2σ2

)
where ci is the ith

row of the minimum-cost alignment matrix. We refer the reader to Damoulas
et al. [6] for further details.

4.2 Clustering and Sample Selection

Having constructed the kernel matrix capturing similarity between the patterns
at the N vertices of our underlying graph G, we now seek to create small sub-
sets V (j), 1 ≤ j ≤ J , of the vertices such that all vertices within each V (j) are
the unions of the same subset of basis patterns, scaled appropriately. The sub-
problems induced by these small subsets will be passed on to the CP model to be
solved exactly to discover the basic patterns appearing in each of these subsets.
Therefore, we would ideally like these subsets to be small enough to be solvable
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by the CP model, and at the same time large enough so that if there is shifting
involved, the corresponding scaling factor can be recovered by the CP model.

To this end, we use k-means algorithm [5] with multiple initializations (cen-
troids of clusters) and the Euclidean distance d(ki,kj) =

(∑N
n=1 (kin − kjn)2

)1/2
as metric. We over-segment the kernel by choosing a large number of clusters
when performing k-means. The final proposed vertices, V (j), are chosen from
within each cluster based on their proximity to the cluster centroid.

4.3 Scaling CP: Solving Sub-problems and Fusing Solutions

Assuming the vertices of V (j) are the unions of the same subset of basis patterns,
we know by definition of the problem that at most M basis patterns compose all
the patterns of these vertices. Therefore, this is in fact a pattern decomposition
problem with scaling by itself, where N = |V (j)| and K = M . If this subproblem
is within the reach of the CP model (cf. Section 3.2), then we will have uncovered
M of the initial K basis patterns. Otherwise, or if our previous assumption about
the vertices of V (j) turns out to be wrong, the CP model will simply not be able
to solve the instance, and will then consider the next cluster of points. Hence,
every cluster may provide up to M basis patterns and contribute to a pool of
basis patterns. After taking care of redundancy within this pool (which, is in the
worst case, exponential in M), the pool is made of at most K basis patterns,
and is used to initialize the basis patterns of the global CP model, thus typically
becoming a much simpler problem (again, cf. Section 3.2).

5 Empirical Validation

In order to evaluate the performance of the hybrid method described above, we
use our material discovery application as the testbed. As discussed in Section 3.2,
the pure CP approach suffers from very poor scaling. On the other end, data-
driven approaches such as non-negative matrix factorization (NMF) used in the
literature [14] for such problems suffer, as we will show, from low accuracy – to
the point that “solutions” found by them for material discovery instances can be
meaningless. Our hybrid method avoids both of these extreme kinds of failures,
in scaling and in accuracy.

Instance Generation. We use the same underlying known phase map for the
Al-Li-Fe system [1] that was used for the instances discussed in Section 3.2.
Specifically, this is a ternary system composed of 6 phases or basis patterns,
α, β, γ, δ, ε, and ζ; see Figure 3 for a pictorial depiction. These 6 phases appear
together at various locations in the “triangle” in different combinations to gener-
ate 7 mixed regions, such as {α, δ}, {α, γ, δ}, etc. Recall that each location in the
ternary diagram corresponds to a certain composition of the three constituent
elements, in this case Al, Li, and Fe and these compositions can be sampled
at various granularities. For the rest of this paper, we will focus on a realistic
instance size, 219, and a smaller instance size, 91.
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Fig. 3. Ternary system com-
posed of Al, Li, and Fe

Fig. 4. DTW-Gaussian kernel as a similarity mea-
sure. Left: N = 91. Right: N = 219

For these instances, we generated synthetic x-ray diffraction data by start-
ing with known diffraction patterns of constituent phases from the JCPDS
database [1] with parameters reflecting those of a recently developed combi-
natorial crystallography technique [9]. This diffraction data was then converted
into a set of peaks to generate discrete patterns with typically 20-30 peaks. The
effect of experimental noise on the inability to detect low-intensity peaks was
simulated by the random removal of Gaussian peaks from the synthetic data
with probability proportional to the square of the inverse peak height. The total
heights of the peaks removed was provided as a parameter for instance genera-
tion. This noise model intends to legitimately reflect not only the true underlying
physics (e.g., overlapping peaks), but also experimental imperfections of the thin
film on which the metals/oxides are sputtered during experimentation.

Results. All experiments were conducted on the same machine and using the
same CP solver as in Section 3.2. We first used the DTW-Gaussian kernel as a
measure of similarity between sampled locations. Figure 4 depicts the resulting
similarity matrix for N = 91 and 219; the latter is admittedly hard to understand
visually because of too fine a granularity. A point (x, y) in this symmetric matrix
is depicted as white if x and y are deemed to be similar, and 0 otherwise; e.g., the
main diagonal, representing (x, x) similarity, is white. A similarity matrix such
as this is generally considered to be good if areas within it have clear rectangular
boundaries, thus identifying small groups of points that are similar to each other
but different from the rest of the points. Compared to other standard kernels,
we found this DTW-Gaussian kernel to perform the best.

Starting with this kernel as the similarity measure, we used k-means cluster-
ing to obtain 50 clusters and asked for 4 points closest to the resulting cluster
centroids to generate 50 very small sub-problems for the CP model. Note that
these 50 sub-problems are not necessarily disjoint. We then solved each sub-
problem with a corresponding CP model (without the connectivity constraint,
as mentioned earlier), each of which was either easily solved (average 0.4 sec)
when feasible or discarded after 30 seconds if no solution was found in that
time. Note that we need to solve a sub-problem this way first for M = 1 and
then for M = 2, which takes 60 seconds in the worst case. When solved, each
of them identified 1 or 2 basic patterns or phases; recall that the sub-problem
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Fig. 5. Results: appearance (white) or not (black) of the 6 phases underlying the Al-Li-
Fe system. Top: the true values. Middle: phases found by our hybrid method. Bottom:
phases found by the competing NMF approach.

data is insufficient to distinguish between 1 and 3 basic patterns. In the final
‘global’ phase, we used these partial solutions to initialize a full CP model of the
complete instance as discussed in Section 4.3.

The resulting 6 basic patterns found by the hybrid model are depicted in
Figure 5, where the spread of each basis pattern over the composition space
appears in white. The top line shows the true answer, which we know from the
construction of the instance. The middle row shows the result as produced by
our hybrid method. We observe that this solution is extremely close to the true
answer in each one of the 6 basic patterns, except for some noise at the bound-
aries, and it translates into a precision/recall performance across all sampled
points, averaged over individual phases of 77.4% / 84.2%.

The bottom row shows the results obtained by the NMF approach recently
proposed for this problem. Comparatively, it results in a precision/recall perfor-
mance of 39.5% / 77.9%. We see that this “solution” is in fact nowhere close to
the true answer. Moreover, it violates the hard constraints imposed by physics,
such as connectivity (violated for patterns β and ζ) and no more than 3 basis
patterns appearing at any location (violated essentially everywhere). This high-
lights the inability of purely data-driven approaches to effectively deal with hard
constraints – a clear strength of CP based approaches.

On the instance with fewer locations (91), we also obtained similar results
(and faster) but we omit them here due to lack of space.

6 Conclusion

We explored the use of CP techniques to solve a challenging and interesting
problem studied for the most part by researchers in data-driven sub-fields of
computer science, or by application domain experts such as physicists in the
case of our motivating application — a deeper understanding and discovery of
new materials. Our CP model captures the details of the Pattern Decomposition
With Scaling problem much better than, say, a matrix factorization or clustering
approach, but at the high expense of poor scaling. We therefore introduce a
hybrid model that avoids the pitfalls of CP and ML individually, and results in
meaningful solutions respecting hard constraints while preserving scalability.
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Abstract. Consistency checking plays a central role in qualitative spatial and
temporal reasoning. Given a set of variables V , and a set of constraints Γ taken
from a qualitative calculus (e.g. the Interval Algebra (IA) or RCC-8), the aim is
to decide if Γ is consistent. The consistency problem has been investigated exten-
sively in the literature. Practical applications e.g. urban planning often impose, in
addition to those between undetermined entities (variables), constraints between
determined entities (constants or landmarks) and variables. This paper introduces
this as a new class of qualitative constraint satisfaction problems, and investigates
the new consistency problem in several well-known qualitative calculi, e.g. IA,
RCC-5, and RCC-8. We show that the usual local consistency checking algorithm
works for IA but fails in RCC-5 and RCC-8. We further show that, if the land-
marks are represented by polygons, then the new consistency problem of RCC-5
is tractable but that of RCC-8 is NP-complete.

1 Introduction

Qualitative constraints are widely used in temporal and spatial reasoning (cf. [1,10,7]).
This is partially because they are close to the way humans represent and reason about
commonsense knowledge, easy to specify, and provide a flexible way to deal with in-
complete knowledge.

Usually, these constraints are taken from a qualitative calculus, which is a set M
of relations defined on an infinite universe U of entities [8]. Well-known qualitative
calculi include the Interval Algebra [1], RCC-5 and RCC-8 [10], and the cardinal di-
rection calculus (for point-like objects) [7]. A central problem of reasoning with such
a qualitative calculus is the consistency problem. For a qualitative calculusM on U ,
an instance of the consistency problem overM is a network Γ of constraints like xαy,
where x, y are variables taken from a finite set V , and α is a relation inM. Unlike clas-
sical constraint solving, the domain of the variables appeared in a qualitative constraint
is usually infinite.

Consistency checking has applications in many areas, e.g. temporal or spatial query
preprocessing, planning, natural language understanding; and the consistency problem
has been extensively studied for many different qualitative calculi (cf. [3]). These works
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almost unanimously assume that qualitative constraints involve only unknown entities.
In other words, the precise (geometric) information of every object is totally unknown.
In practical applications, however, we often meet constraints that involve both known
and unknown entities, i.e. constants and variables.

For example, consider a class scheduling problem in a primary school. In addition to
constraints between unknown intervals (e.g. a Math class is followed by a Music class),
we may also impose constraints involving determined intervals (e.g. a P.E. class should
be during afternoon).

Constraints involving known entities are especially common in spatial reasoning
tasks such as urban planning. For example, to find a best location for a landfill, we
need to formulate constraints between the unknown landfill and significant landmarks,
e.g. lake, university, hospital etc.

In this paper, we explicitly introduce landmarks (defined as known entities) into
the definition of the consistency problem, and call the consistency problem involving
landmarks the hybrid consistency problem. In comparison, we call the usual consistency
problem (involving no landmarks) the pure consistency problem.

In general, solving constraint networks involving landmarks is different from solving
constraint networks involving no landmarks. For example, consider the simple RCC-5
algebra. Suppose x, v1, v2, v3 are spatial variables which are interpreted as regions in
the plane. Consider the following RCC-5 constraint network:

Γ = {v1POv2, v1POv3, v2POv3} ∪ {xPPv1, xPPv2, xPPv3}.

where PP is the proper part relation, PO is the partially overlap relation. It is clear
that Γ is consistent, and a solution of Γ is shown in the following figure (left), where
v1, v2, v3, x are interpreted by regions l1, l2, l3, a respectively.

Therefore, the network

Γ1 = {xPPl1, xPPl2, xPPl3},

which involves three landmarks l1, l2, l3, is consistent. Note that the RCC-5 constraint
between any two landmarks is the actual RCC-5 relation between them,

Suppose l′1, l
′
2, l

′
3 are regions shown in the above figure (right). The network

Γ2 = {xPPl′1, xPPl′2, xPPl′3}

is not consistent, because l′1 ∩ l′2 ∩ l′3 = ∅. The RCC-5 relation between any two of
l′1, l

′
2, l

′
3 is PO, which is the same relation as that between any two landmarks l1, l2, l3

in Γ1. Therefore, the consistency problem for RCC-5 networks involving landmarks
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can not be decided by the RCC-5 relations between the landmarks alone. Note that
(l1, l2, l3) and (l′1, l

′
2, l

′
3) are partial solutions of Γ , so the problem is equivalent to de-

cide whether a particular partial solution can be extended to a global one.
The aim of this paper is to investigate how landmarks affect the consistency of con-

straint networks in several very important qualitative calculi. The rest of this paper
proceeds as follows. Section 2 introduces basic notions in qualitative constraint solving
and examples of qualitative calculi. The new consistency problem, as well as several
basic results, is also presented here. Assuming that all landmarks are represented as
polygons, Section 3 then provides a polynomial decision procedure for the consistency
of hybrid basic RCC-5 networks. Besides, if the network is consistent, a solution is
constructed in polynomial time; Section 4 shows that consistency problem for hybrid
basic RCC-8 networks is NP-hard. The last section then concludes the paper.

2 Qualitative Calculi and the Consistency Problem

Most qualitative approaches to spatial and temporal knowledge representation and rea-
soning are based on qualitative calculi. Suppose U is a universe of spatial or temporal
entities. Write Rel(U) for the algebra of binary relations on U . A qualitative calculus
on U is a sub-Boolean algebra of Rel(U) generated by a set B of jointly exhaustive and
pairwise disjoint (JEPD) relations on U . Relations in B are called basic relations of the
qualitative calculus. We next recall the well-known Interval Algebra (IA) [1] and the
two RCC algebras.

Example 1 (Interval Algebra). Let U be the set of closed intervals on the real line.
Thirteen binary relations between two intervals x = [x−, x+] and y = [y−, y+] are
defined by comparing the order relations between the endpoints of x and y. These are
the basic relations of IA.

Example 2 (RCC-5 and RCC-8 Algebras1). Let U be the set of bounded regions in the
real plane, where a region is a nonempty regular set. The RCC-8 algebra is generated
by the eight topological relations

DC,EC,PO,EQ,TPP,NTPP,TPP∼,NTPP∼, (1)

where DC,EC,PO,TPP and NTPP are defined in Table 1, EQ is the identity re-
lation, and TPP∼ and NTPP∼ are the converses of TPP and NTPP, respectively,
see the following figure for illustration. The RCC-5 algebra is the sub-algebra of RCC-8
generated by the five part-whole relations

DR,PO,EQ,PP,PP∼, (2)

where DR = DC ∪EC, PP = TPP ∪NTPP, and PP∼ = TPP∼ ∪NTPP∼.

A qualitative calculus provides a useful constraint language. SupposeM is a qualita-
tive calculus defined on an infinite domain U . Relations inM can be used to express

1 We note that the RCC algebras have interpretations in arbitrary topological spaces. In this
paper, we only consider the most important interpretation in the real plane.
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Table 1. A topological interpretation of basic RCC-8 relations in the plane, where a, b are two
bounded plane regions, and a◦, b◦ are the interiors of a, b, respectively

Relation Meaning Relation Meaning
DC a ∩ b = ∅ TPP a ⊂ b, a �⊂ b◦

EC a ∩ b �= ∅, a◦ ∩ b◦ = ∅ NTPP a ⊂ b◦

PO a �⊆ b, b �⊆ a, a◦ ∩ b◦ �= ∅ EQ a = b

constraints about variables which takes values in U . A constraint has the form x1αx2,
where α is a relation inM, xi is either a constant in U (called landmark in this paper),
or a variable. Such a constraint is basic if α is a basic relation inM.

Given a finite set Γ of constraints, we write V (Γ ) (L(Γ ), resp.) for the set of vari-
ables (constants, resp.) appearing in Γ , and assume that the constraint between two
landmarks a, b is the actual basic relation inM that relates a to b. A solution of Γ is an
assignment of values in U to variables in V (Γ ) such that all constraints in Γ are satis-
fied. If Γ has a solution, we say Γ is consistent or satisfiable. Two sets of constraint Γ
and Γ ′ are equivalent if they have the same set of solutions.

A set Γ of constraints is said to be a complete constraint network if there is a unique
constraint between each pair of variables/constants appearing in Γ . It is straightforward
to show that a non-complete constraint network Γ can be transformed into an equivalent
complete constraint network Γ ′ in polynomial time.

Definition 1. LetM be a qualitative calculus on U . The hybrid consistency problem
ofM is, given a constraint network Γ in M, decide the consistency of Γ in M, i.e.
decide if there is an assignment of elements in U to variables in Γ that satisfies all the
constraints in Γ . The pure consistency problem ofM is the sub-consistency problem
that considers constraint networks that involve no landmarks.

The hybrid consistency problem of M can be approximated by a variant of the path-
consistency algorithm. We say a complete constraint network Γ is path-consistent if for
any three objects li, lj , lk in V (Γ ) ∪ L(Γ ), we have

αij = α∼
ji & αij ⊆ αik ◦w αkj , (3)

where ◦w is the weak composition [6,8] inM and α ◦w β is defined to be the smallest
relation inM which contains the usual composition of α and β, i.e.

α ◦w β =
⋃
{γ is a basic relation inM : γ ∩ α ◦ β �= ∅}. (4)
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We note that the above notion of path-consistency for qualitative constraint network is
very different from the classical notion (cf. [5,3]).

It is clear that each complete network can be transformed in polynomial time into an
equivalent complete network that is path-consistent. Because the consistency problem
is in general NP-hard, we do not expect that a local consistency algorithm can solve
the general consistency problem. However, it has been proved that the path-consistency
algorithm suffices to decide the pure consistency problem for large fragments of some
well-known qualitative calculi, e.g. IA, RCC-5, and RCC-8 (cf. [3]). This shows that, at
least for these calculi, the pure consistency problem can be solved by path-consistency
algorithm and by applying the backtracking method to constraints [3].

The remainder of this paper will investigate the hybrid consistency problem for the
above calculi. In the following discussion, we assume Γ is a complete basic network
that involves at least one landmark.

For IA, we have

Proposition 1. Suppose Γ is a basic network of IA constraints that involves landmarks
and variables. Then Γ is consistent iff it is path-consistent.

Proof. If we replace each landmark in Γ by a new interval variable, and constrain any
two new variables with the actual relation between the corresponding landmarks, then
we obtain a basic network Γ ∗ of IA constraints that involves no landmarks. Note that
each path-consistent IA basic network is globally consistent. The landmarks (as a partial
solution of Γ ∗) can also be extended to a solution. ��

This result shows that, for IA, the hybrid consistency problem can be solved in the
same way as the pure consistency problem. Similar conclusion also holds for some
other calculi, e.g. the Point Algebra, the Rectangle Algebra, and the Cardinal Direction
Calculus (for point-like objects) [7].

This property, however, does not hold in general. Take the RCC-5 as example. If
a basic network Γ involves no landmark, then we know Γ is consistent if it is path-
consistent. If Γ involves landmarks, we have seen in the introduction a path-consistent
but inconsistent basic RCC-5 network.

In the next two sections, we investigate how landmarks affect the consistency of
RCC-5 and RCC-8 topological constraints. We stress that, in this paper, we only con-
sider the standard (and the most important) interpretation of the RCC language in the
real plane, as given in Example 2. When restricting landmarks to polygons, we first
show that the consistency of a hybrid basic RCC-5 network can still be decided in poly-
nomial time (Section 4), but that of RCC-8 networks is NP-hard.

3 The Hybrid Consistency Problem of RCC-5

We begin with a short review of the realization algorithm for pure consistency problem
of RCC-5 [4,5]. Suppose Γ involves only spatial variables v1, v2, · · · , vn. We define a
finite set Xi of control points for each vi as follows:
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– Add a point Pi to Xi;
– For any j > i, add a new point Pij to both Xi and Xj if (viPOvj) ∈ Γ ;
– For any j, put all points in Xi into Xj if (viPPvj) ∈ Γ .

Take ε > 0 such that the distance between any two different points in
⋃n
i=1 Xi is greater

than 2ε. Let B(P, ε) be the closed disk with radius ε centred at P . By the choice of ε,
different disks are disjoint. Let ai =

⋃
{B(P, ε) : P ∈ Xi}. It is easy to check that the

assignment is a solution of Γ , if Γ is consistent.
Assume Γ is a basic RCC-5 network involving landmarks L = {l1, · · · , lm} in the

real plane and variables V = {v1, · · · , vn}. Write ∂L for the union of the boundaries
of the landmarks. A block is defined to be a maximal connected component of R2 \ ∂L,
which is an open set. It is clear that the complement of the union of all landmarks (which
are bounded) is the unique unbounded block. We write B for the set of all blocks.

For each landmark li, we write I(li) for the set of blocks that li contains, and write
E(li) for the set of rest blocks, i.e. the blocks that are disjoint from li. That is,

I(li) = {b ∈ B : b ⊆ li}, E(li) = {b ∈ B : b ∩ li = ∅}. (5)

It is clear that each block is in either I(li) or E(li), but not both, i.e., I(li)∪E(li) = B
and I(li) ∩ E(li) = ∅.

These constructions can be extended from landmarks to variables as

I(vi) =
⋃
{I(lj) : ljPPvi}, (6)

E(vi) =
⋃
{I(lj) : ljDRvi} ∪

⋃
{E(lj) : viPPlj}. (7)

Intuitively, I(vi) is the set of blocks that vi must contain, and E(vi) is the set of blocks
that should be excluded from vi. We now give an example.

Example 3. Consider the network Γ1 that involves landmarks l1, l2, l3 and variable v,
where l2DRl3 and l1 = l2 ∪ l3 (see the following figure). The constraints in Γ1 are
specified as vPPl1, vDRl2 and vDRl3. We have B = {b1, b2, b3}, and

I(l1) = {b1, b2}, I(l2) = {b1}, I(l3) = {b2},
E(l1) = {b3}, E(l2) = {b2, b3}, E(l3) = {b1, b3},
I(v) = ∅ E(v) = E(l1) ∪ I(l2) ∪ I(l3) = B.

The following proposition claims that no block can appear in both I(vi) and E(vi).

Proposition 2. Suppose Γ is a basic RCC-5 constraint network that involves at least
one landmark. If Γ is path-consistent, then I(vi) ∩E(vi) = ∅.
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Proof. Assume b ∈ I(vi)∩E(vi). There exists some lj such that ljPPvi and b ∈ I(lj).
Furthermore, there exists some lk such that either (i) lkDRvi and b ∈ I(lk), or (ii)
viPPlk and b ∈ E(lk).

Both cases lead to contradiction. For the first case, we know that b ⊆ lj∩lk, while the
path-consistency of Γ implies that ljDRlk. For the second case, the path-consistency
of Γ implies ljPPlk, but b ⊆ lj and b ∩ lk = ∅. ��

We have the following theorem.

Theorem 1. Suppose Γ is a basic RCC-5 constraint network that involves at least one
landmark. If Γ is consistent, then we have

– For any vi ∈ V ,
E(vi) � B. (8)

– For any vi ∈ V and w ∈ L ∪ V such that (viPOw) ∈ Γ ,

E(vi) ∪ E(w) � B, (9)

E(vi) ∪ I(w) � B, (10)

I(vi) ∪ E(w) � B. (11)

– For any vi ∈ V and lj ∈ L such that (viPPlj) ∈ Γ ,

I(vi) � I(lj). (12)

– For any vi ∈ V and lj ∈ L such that (ljPPvi) ∈ Γ ,

E(vi) � E(lj). (13)

– For any vi, vj ∈ V such that (viPPvj) ∈ Γ ,

I(vi) ∪ E(vj) � B. (14)

Proof. Note the inclusion part of these equations are clear. We only focus on the in-
equality. Suppose {v̄1, · · · , v̄n} is a solution of Γ . Because each v̄i has nonempty inte-
rior, there exists at least one block b such that b ∩ v̄i is nonempty. Clearly, b �∈ E(vi)
since blocks in E(vi) are all disjoint from v̄i. Therefore, E(vi) �= B.

If (viPOw) ∈ Γ , then by assumption we have v̄iPOw̄, where w̄ is lj if w = lj . By
definition of PO (see Table 1), we know v̄i and w̄ have a common interior point. This
implies that there exists a block b that contains an interior point of v̄i ∩ w̄. This block is
neither in E(vi) nor in E(w). That is, E(vi) ∪ E(w) �= B. Similarly, we know neither
E(vi) ∪ I(w) nor I(vi) ∪E(w) is B. If (viPPlj) ∈ Γ , then v̄iPPlj . Because lj is the
regularized union of all the blocks it contains, we know there exists at least one block in
I(lj) that is not in I(vi). This shows I(vi) �= I(lj). The rest situations are similar. ��

These conditions are also sufficient to determine the consistency of a path-consistent
basic RCC-5 network. We show this by devising a realization algorithm. The construc-
tion is similar to that for the pure consistency problem. For each vi, we define a finite
set Xi of control points as follows, where for clarity, we write

P (vi) = B− I(vi)− E(vi). (15)



530 W. Liu et al.

– For each block b in P (vi), select a fresh point in b and add the point into Xi.
– For any j > i with (viPOvj) ∈ Γ , select a fresh point in some block b in P (vi) ∩

P (vj) (if it is not empty), and add the point into Xi and Xj .
– For any j, put all points in Xj into Xi if (vjPPvi) ∈ Γ .

We note that the points selected from a block b for different vi, or in different steps,
should be pairwise different. Recall that each point in

⋃n
i=1 Xi is not at the boundary

of any block. We choose ε > 0 such that B(P, ε) does not intersect either the boundary
of a block or another disk B(Q, ε). Furthermore, we can assume that ε is small enough
such that the union of all the disks B(P, ε) does not cover any block in B.

Let

âi =
⋃
{B(P, ε) : P ∈ Xi} ∪

⋃
{lj : ljPPvi}. (16)

We claim that {â1, · · · , ât} is a solution of Γ . We first prove the following lemma.

Lemma 1. Let Γ be a path-consistent basic RCC-5 constraint network that involves at
least one landmark. Suppose B is the block set of Γ . Then, for each b ∈ B, we have

– b ∈ I(vi) iff b ⊆ âi.
– b ∈ E(vi) iff b ∩ âi = ∅.
– b ∈ P (vi) iff b 	 âi and b ∩ âi �= ∅.

Proof. We first prove the necessity part.
Suppose b ∈ I(vi). There exists a landmark l such that lPPvi and b ⊆ l. The first

statement follows directly from b ⊆ l and l ⊆ âi.
Assume b ∈ E(vi). By definition, there is a landmark l such that either (i) b ⊆ l

and lDRvi or (ii) b ∩ l = ∅ and viPPl. In both cases, we have b ∩ l′ = ∅ for any
landmark l′ with l′PPvi. We next show b ∩ B(P, ε) = ∅ for any P in Xi, which is
equivalent to that there is no control point in Xi in b. Now suppose P is a control point
in Xi and P ∈ b. Since b ∈ E(vi), we know P is not generated by the first two rules.
That is, P must be a control point of some vj and vjPPvi. In this case, it can be proved
that b ∈ E(v) by path-consistency. Therefore we find a different variable vj such that
b ∈ E(vj) and b ∩ âj �= ∅. Because the variables are finite, we will get a contradiction
by repeating this procedure. As a conclusion, we have b∩ âi = ∅ whenever b ∈ E(vi).

Now assume b ∈ P (vj). The first step of the construction algorithm shows that a
control point of vj is taken from b. Therefore, b ∩ âj �= ∅. Since b �∈ I(vj), we know
b is not contained in any landmark l with lPPvi. Moreover, b is not contained in the
union of all B(P, ε) due to the choice of ε. This implies b �⊆ âi.

Since {I(vi), E(vi), P (vi)} is a partition of the blocks in B, it is easy to see the
conditions are also sufficient. ��

We next prove that {â1, · · · , ât} is a solution of Γ .

Theorem 2. Suppose Γ is a complete basic RCC-5 network involving landmarks L and
variables V . Assume Γ is path-consistent and satisfies the conditions in Theorem 1.
Then Γ is consistent and {â1, · · · , ât}, as constructed in (16), is a solution of Γ .
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Proof. By (8) we know there is at least one block b in either I(vi)∪P (vi). By Lemma 1
we know âi is nonempty. We next prove all constraints in Γ are satisfied.

We first consider the constraint viαlj between variable vi and landmark lj . The cases
that α = PP,PP∼,DR can be directly checked by Lemma 1. Now suppose viPOlj .
By (9), we know that E(vi) ∪ E(lj) � B. That is, there is some block b in I(lj) but
outside E(vi). By Lemma 1, we know b∩ âi �= ∅. By b ⊆ lj , âi and lj have a common
interior point. Furthermore, by E(vi) ∪ I(lj) � B (10), we know there is a block b′ in
E(lj) that is outside E(vi). By b′ ∈ E(lj), we have b′ ∩ lj = ∅; by b′ �∈ E(vi) and
Lemma 1, we have b′∩ âi �= ∅. So âi �⊆ lj . Similarly, we can show lj �⊆ âi. Therefore,
âiPOlj .

Now we consider constraints between two variables vi and vj .
(1) If (viPPvj) ∈ Γ , we have Xi ⊂ Xj and I(vi) ⊆ I(vj). By definition, âi ⊆ âj .

Moreover, by I(vi) ∪ E(vj) � B (14), we know there is a block b that is outside both
I(vi) and E(vj). By Lemma 1, this implies that b �⊆ âi and b ∩ âj �= ∅. If b ∩ âi = ∅
or b ⊆ âj , then âi �= âj . If otherwise, then b ∈ P (vj). Hence, there is a fresh control
point P of vj in b. By the choice of P , we know P is not in Xi, hence not in âi. So in
this case we also have âi �= âj . Therefore, we have âiPPâj .

(2) If (viPP∼vj) ∈ Γ , we know that Γ also contains constraint (vjPPvi). Because
we have proved that âjPPâi, constraint viPP∼vj is also satisfied by âi and âj .

(3) If (viDRvj) ∈ Γ , we show that Xi ∩ Xj = ∅. Otherwise, there exists some
vk such that vkPPvi and vkPPvj , which contradicts viDRvj by path-consistency. It
remains to prove Xi ∩ l = ∅ if (lPPvj) ∈ Γ , and Xj ∩ l′ = ∅ if (l′PPvi) ∈ Γ .

Let P be a control point of vi,and l is a landmark such that lPPvj . We next show
P �∈ l. By viDRvj and lPPvj , we know lDRvi. Hence E(l) ⊆ E(vi). For any block
b ∈ E(l), by b ∈ E(vi) and Lemma 1, we know b∩ âi = ∅. Because P ∈ âi, we know
P �∈ b for any b ∈ E(l). This implies that P �∈ l. Therefore, Xi ∩ l = ∅ if lPPvj . That
Xj ∩ l′ = ∅ if l′PPvj is similar. In conclusion, we have âiDRâj .

(4) If (viPOvj) ∈ Γ , we show âi and âj have a common interior point. We prove
this by contradiction. Suppose viPOvj but âi and âj have no common interior point.
For any b ∈ I(vi), we have b ⊆ âi. Since b is an open set, b ∩ âj cannot be nonempty
(otherwise âi and âj shall have a common interior point). Therefore b ∈ E(vj), ac-
cording to Lemma 1. In other words, I(vi) ⊆ E(vj). Symmetrically, we have I(vj) ⊆
E(vi). Hence I(vi)∪I(vj)∪E(vi)∪E(vj) = E(vi)∪E(vj). Note the right hand side of
the above equation is a proper subset of B (cf. (9)). This implies that P (vi)∩P (vj) �= ∅.
By the construction of control points, we know there exists P ∈ Xi ∩Xj , where P is a
control point selected from a block in P (vi) ∩ P (vj). Because P is a common interior
point of both âi and âj , this clearly contradicts our assumption. Therefore, âi and âj
have a common interior point. That âi and âj are incomparable is similar to the case of
(viPOlj). As a result, we know âiPOâj .

In summary, all constraints are satisfied and {â1, · · · , ât} is a solution of Γ . ��

It is worth noting that the complexity of deciding the consistency of a hybrid basic
RCC-5 network includes two parts, viz. the complexity of computing the blocks, and
that of checking the conditions in Theorem 1. The latter part alone can be completed in
O(|B|n(n+m)) time, where |B| is the number of the blocks. In the worst situation, the
number of blocks may be up to 2m. This suggests that the decision method described
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above is in general inefficient. The following theorem, however, asserts that this method
is still polynomial in the size of the input instance, provided that the landmarks are all
represented as polygons.

Before proving Theorem 3, we review some notions and results in computational ge-
ometry. The reader is referred to [2] and references therein for more details. A (planar)
subdivision is the map induced by a planar embedding of a graph. The embedding of
nodes (arcs, resp.) of the graph is called vertices (edges, resp.) in the subdivision, where
each edge is required to be a straight line segment. A face of the subdivision is a max-
imal connected subset of the remaining part of the plane excluded by all the edges and
vertices. The complexity of a subdivision is defined to be the sum of the number of ver-
tices, the number of edges, and the number of faces in the subdivision. The overlay of
two subdivisions S1 and S2 is the subdivision of the plane induced by all the edges from
S1 and S2. Let S1 and S2 be two subdivisions with complexities n1 and n2. The overlay
of S1 and S2 can be computed in O(n log n + k logn) time, where n = n1 + n2 and k
is the complexity of the overlay [2, Section 2.3]. Note that this complexity is sensitive
to the output. Polygons can be viewed as special cases of subdivisions.

Theorem 3. SupposeΓ is a basic RCC-5 constraint network, and V (Γ )={v1, · · · , vn}
and L(Γ ) = {l1, · · · , lm} are the set of variables and, respectively, the set of landmarks
appearing in Γ . Assume each landmark li is represented by a planar subdivision with
complexity ki. Let K be the sum of all ki. Then the consistency of Γ can be decided in
O((n + m)3 + n(n + m)K2 + m2K2 logK) time.

Proof. We first compute the overlay of all landmarks. Then we calculate I(li) and E(li)
for each landmark (li), and I(vi) and E(vi) for each variable vi. Finally we check the
conditions listed in Theorem 1.

Let Ok be the overlay of the first k landmarks, and write O = Om. Recall each
overlay is a subdivision. We show that the complexity of O is O(K2). Each vertex
in the subdivision O is either a vertex of some landmark, or the intersection of two
edges of the landmarks. Because the total number of vertices (edges, resp.) is less than
K , we have that the number of vertices in O is O(K2). Each edge in O is clearly
a part of an edge of some landmark. Moreover, each edge in a landmark is divided
into at most K edges in O, so the number of edges in O is O(K2). Let l′i be the
subdivision obtained by replacing the line segments in li with lines. 2 It is obvious that
the overlayO′ of all l′i is finer than O. Because K lines partition the plane into at most
1+1+2+ · · ·+K = O(K2) faces, we know that the number of faces inO′ is O(K2),
which further implies that the number of faces in O is also O(K2). In summary, the
complexity of subdivision O is O(K2). It is clear that the faces in O are actually the
blocks we defined.

Now consider how to compute subdivisionOi+1, the overlay of subdivision Oi and
landmark li+1. Regarded as a subdivision, the complexity of li+1 is O(K). The com-
plexities ofOk andOi+1 are no more than that ofO, which is O(K2). By the computa-
tional geometry result stated before the theorem, the subdivisionOi+1 can be computed
in O(K2 logK) time. Therefore, the overlay O of all the landmarks can be computed
in O(mK2 logK) time.

2 Note here we allow the edges in a subdivision to be rays.
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To record whether a face is contained in a landmark or not, we attach to each face f
(in some overlay Oi) a label which is the set of landmarks that contain face f . When
computing the overlayOi+1 ofOi and li+1, the labels of faces inOi+1 can be computed
as well. This is because, each face in Oi+1 is the intersection of some face f1 from Oi
and some face f2 from li+1, and its label is the union of the labels of f1 and f2, which
can be computed in O(m) time. Computing the labels of faces increases the complexity
of calculating the subdivisionO to O(m2K2 logK) time.

For each landmark li, I(li) is the set of faces in O such that the labels of which
contain li. So I(li) can be obtained by scanning the labels of all the faces in O. This
takes O(K2) time, since the number of faces in O is O(K2). Therefore, all I(li) and
E(li) can be computed in O(mK2) time. By definition, all I(vi) and E(vi) can be
computed in O(nmK2) time. Each of the O(n(n + m)) conditions in Theorem 1 can
be checked in O(K2) time, so these conditions can be checked in O(n(n+m)K2) time
if the overlay is computed. In conclusion, the consistency can be checked in O((n +
m)3 +n(n+m)K2 +m2K2 logK) time, where the term (n+m)3 is the time needed
to decide the path-consistency of the network. ��

4 The Hybrid Consistency Problem of RCC-8

Suppose Γ is a complete basic RCC-8 network that involves no landmarks. Then Γ
is consistent if it is path-consistent [9,11]. Moreover, a solution can be constructed for
each path-consistent basic network in cubic time [4,5]. This section shows that, how-
ever, when considering polygons, it is NP-hard to determine if a complete basic RCC-8
network involving landmarks has a solution. We achieve this by devising a polynomial
reduction from 3-SAT.

In this section, for clarity, we use upper case letters A,B,C (with indices) to denote
landmarks, and use lower case letters u, v, w (with indices) to denote spatial variables.

The NP-hardness stems from the fact that two externally connected polygons, say
A,B, may have more than one tangential points. Assume v is a spatial variable that is
required to be a tangentially proper part of A but externally connected to B. Then it is
undetermined at which tangential point(s) v and B should meet.

Precisely, consider the configuration shown in Fig. 1 (a), where A and B are two
externally connected landmarks, meeting at two tangential points, say Q+ and Q−.
Assume {u, v, w} are variables that are subject to the following constraints

uTPPA, uECB,

vTPPB, vECA,wTPPB,wECA,

uECv, uDCw, vDCw.

It is clear that u is required to meet B at either Q+ or Q−, but not both (cf Fig. 1(b,c)).
The correspondence between these two configurations and the two truth values (true or
false) of a propositional variable is exploited in the following reduction.

Let φ =
∧m
k=1 ϕk be a 3-SAT instance over propositional variables set {p1, · · · , pn}.

Each clause ϕk has the form p∗r ∨ p∗s ∨ p∗t , where literal p∗i is either pi or ¬pi for
i = r, s, t. We next construct a set of polygons L and a complete basic RCC-8 network
Γφ, such that φ is satisfiable iff Γφ is satisfiable.
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(a) (b) (c)

Fig. 1. Two landmarks A, B that are externally connected at two tangential points Q+ and Q−

First, we define A,B1, B2, · · · , Bn such that for each 1 ≤ i ≤ n, A is externally
connected to Bi at two tangential points Q+

i and Q−
i , as shown in Fig. 2.

Fig. 2. Illustration of landmarks A,B1, · · · , Bn

The variable set of Γ is V = {u, v1, · · · , vn, w1, · · · , wn}. We impose the following
constraints to the variables in V .

uTPPA, uECBi, (17)

viECA, viTPPBi, viDCBj (j �= i), (18)

wiECA, wiTPPBi, wiDCBj (j �= i), (19)

uECvi, uDCwi, (20)

viDCwj , viDCvj (j �= i), wiDCwj (j �= i). (21)

Therefore, u is required to meet each Bi, at either Q−
i or Q+

i but not both.
For each clause ϕk, we introduce an additional landmark Ck, which externally con-

nects A at three tangential points, and partially overlaps Bi. The three tangential points
of Ck and A are determined by the literals in ϕk. Precisely, suppose ϕk = p∗r ∨ p∗s ∨ p∗t ,
then the first tangential point of A and Ck is constructed to be Q+

r if p∗r = pr, or Q−
r

if p∗r = ¬pr. The second and the third tangential points are selected from {Q+
s , Q−

s }
and {Q+

t , Q
−
t } similarly. Take clause pr ∨ ¬ps ∨ pt for example, the tangential points

between landmarks Ck and A should be Q+
r , Q−

s , and Q+
t , as shown in Fig. 3.

The constraints between Ck and variables in V are specified as

uECCk, viPOCk, wiPOCk. (22)

Since Ck and A have three tangential points, the constraints uTPPA and uECCk
imply that u should occupy at least one of the three tangential points. This corresponds
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Fig. 3. Illustration of landmark Ck

to the fact that if ϕk is true under some assignment, then at least one of its three literals
is assigned true.

Lemma 2. Suppose φ =
∧m
k=1 ϕk is a 3-SAT instance over propositional variables

set {p1, p2, · · · , pn}. Let Γφ be the basic RCC-8 network composed with constraints
in (17)-(22), involving landmarks {A,B1, · · · , Bn, C1, · · · , Cm} and spatial variables
{u, v1, · · · , vn, w1, · · · , wn}. Then φ is satisfiable iff Γφ is satisfiable.

Proof. Suppose φ is satisfiable and π : P → {true, false} is a truth value assign-
ment that satisfies φ. We construct regions ū, v̄1, · · · , v̄n, w̄1, · · · , w̄m that satisfy all
constraints in Γφ.

Region ū is composed of n pairwise disjoint triangles in A. The lower vertex of
the i-th triangle is Q+

i if π(pi) = true, and Q−
i otherwise. Fig. 4 shows the case that

π(p1) = true, π(p2) = false, π(pn) = true.

Fig. 4. Construction of variable u

Regions v̄i and w̄i are constructed as, respectively, a triangle inside Bi. If π(pi) =
true, then Q+

i is a vertex of v̄i and Q−
i is a vertex of w̄i (see Fig. 5(a)). Oppositely,

if π(pi) = false, then Q−
i is a vertex of v̄i and Q+

i is a vertex of w̄i (see Fig. 5(b)).
Moreover, v̄i and w̄i are properly chosen to make them partially overlap with each Ck.

By the construction, it is easy to see that all constraints in (17)-(22), except uECCk,
are satisfied. We next show uECCk is also satisfied. That is, ūECCk . Because π satis-
fies φ, it also satisfies ϕk. That is, at least one of the three literals in ϕk, say p∗r , is true
under the assignment π. If p∗r = pr, then Q+

r is at the boundary of Ck by construction.
In this case, we have π(pr) = true. By the construction of ū, we know Q+

r is also at the
boundary of ū. Similarly, if p∗r = ¬pr, then we can prove Q−

r is a tangential point of
Ck and ū. Therefore, in both cases, the RCC-8 relation between Ck and u is EC. This
shows that the constructed regions ū, v̄1, · · · , v̄n, w̄1, · · · , w̄m satisfy all constraints in
Γφ. Hence, Γφ is satisfiable.
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(a) (b)

Fig. 5. Construction of variable vi and wi. π(pi) = true (a), π(pi) = false (b)

On the other hand, suppose {ū, v̄1, · · · , v̄n, w̄1, · · · , w̄n} is a solution of the network
Γφ. It is straightforward to verify that v̄i has exactly one tangential point with A, namely
either Q−

i or Q+
i . We define a truth value assignment π : P → {true, false} as

π(pi) =
{

true, if v̄i ∩A = Q+
i ,

false, otherwise.
(23)

We assert that π(ϕk) = true for each ϕk in φ. Otherwise, suppose π(ϕk) = false for
some ϕk = p∗r ∨ p∗s ∨ p∗t in φ. This only happens when π(p∗i ) = false for i = r, s, t.
Therefore, for i = r, s, t, if p∗i is positive, then by (23), we know that v̄i ∩ A = Q−

i .
Since ū ⊂ A and v̄iECū, we have Q−

i ∈ ū, which implies Q+
i is not in ū. Similarly

if p∗i is negative, then Q−
i is not in ū. This is to say, all the three tangential points of A

and Ck are not in ū, which contradicts with ūECCk. Therefore, φ is satisfiable. ��

Corollary 1. Deciding the consistency of a complete basic RCC-8 network involving
landmarks is NP-hard.

Is this problem still in NP? As long as the landmarks are polygons, the answer is yes!
Recall that we write O for the overlay of all landmarks (cf. Theorem 3). As a subdi-
vision, O consists of faces, edges and vertices. For RCC-5, only faces in O (i.e., the
blocks) affect the consistency. For RCC-8, the vertices and the edges in O also need
to be considered. We denote I(li) (E(li), B(li) resp.) for the set of faces, edges, and
vertices contained in the interior (exterior, boundary resp.) of landmark li, and define
I(vi) (E(vi) resp.) to be the set of faces, edges and vertices that are required to be in
the interior (exterior resp.) of variable vi. Each RCC-8 constraint between a variable v
and a landmark l is equivalent to several requirements about I(v), E(v) and the bound-
ary of v, with respect to I(l), E(l) and B(l). For example, vTPPl is equivalent to (i)
E(v) ⊇ E(l), (ii) I(v) ⊂ I(l), and (iii) the boundary of v has nonempty intersection
with some edge or vertex in B(l). The NP-hardness of the hybrid consistency problem
of RCC-8 is mainly related to the last kind of requirement which involves the boundary
of v, i.e., to decide whether a vertex is on the boundary of variable v. This can be re-
solved by a non-deterministic algorithm that guesses whether each vertex inO is on the
boundary of v. Once the guessing is made, we can prove that, for example, either (iii)
automatically holds, or it is satisfiable iff I(v) ∪ E(v) 	 B(l), moreover, the RCC-8
constraint network can be expressed by a set of necessary conditions about I(vi) and
E(vi), without involving the boundary of vi. These conditions are also sufficient and
can be checked in polynomial time.
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Theorem 4. Suppose all landmarks in a hybrid basic RCC-8 network are represented
by (complex) polygons. Then deciding the consistency of a complete basic RCC-8 net-
work involving at least one landmark is an NP-complete problem.

5 Conclusion and Further Discussions

In this paper, we introduced a new paradigm of consistency checking problem for qual-
itative calculi, which supports definitions of constraints between a constant (landmark)
and a variable. Constraints like these are very popular in practical applications such as
urban planning and schedule planning. Therefore, this hybrid consistency problem is
more practical. Our examinations showed that for some well-behaved qualitative cal-
culi such as PA and IA, the new hybrid consistency problem can be solved in the same
way; while for some calculi e.g. RCC-5 and RCC-8, the usual composition-based rea-
soning approach fails to solve the hybrid consistency problem. We provided necessary
and sufficient conditions for deciding if a hybrid basic RCC-5 network is consistent.
Under the assumption that each landmark is represented as a polygon, these conditions
can be checked in polynomial time. As for the RCC-8, we show that it is NP-complete
to determine the consistency of a basic network that involves polygonal landmarks.

The hybrid consistency problem is equivalent to determining if a partial solution can
be extended to a complete solution. This is usually harder than the pure consistency
problem. More close connections between the pure and hybrid consistency problems
are still unknown. For example, suppose the consistency problem is in NP (decidable,
resp.), is the hybrid consistency problem always in NP (decidable, resp.)?
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Abstract. A Doubly Self Orthogonal Latin Square (DSOLS) is a Latin square
which is orthogonal to its transpose to the diagonal and its transpose to the back
diagonal. It is challenging to find a non-trivial DSOLS. For the orders n = 2 (mod
4), the existence of DSOLS(n) is unknown except for n = 2, 6. We propose an
efficient approach and data structure based on a set system and exact cover, with
which we obtained a new result, i.e., the non-existence of DSOLS(10).

1 Introduction

Latin squares (quasigroups) are very interesting combinatorial objects. Some of them
have special properties. It can be quite challenging to know, for which positive integer n,
a latin square of size n (with certain properties) exists. Mathematicians have proposed
several construction methods to generate bigger Latin squares from smaller ones. For
the small Latin squares, some can be found or constructed by hand easily, but the others
are very hard to generate. Computer search methods can be helpful here. In fact, many
open cases in combinatorics have been solved by various programs [2,8].

In this paper, we study a special kind of Latin square named doubly self-orthogonal
Latin square (DSOLS) which is related to the so-called perfect Latin squares [4]. In
[1], Du and Zhu proved the existence of DSOLS(n) for n = 0, 1, 3 (mod 4), except for
n = 3. For the orders n = 2 (mod 4), the existence of DSOLS(n) is unknown except
for n = 2, 6. So the existence of DSOLS(10) is the smallest open case.

2 Preliminaries and Notations

A Latin square L of order n is an n×n table where each integer 0, 1, . . . , n−1 appears
exactly once in each row and each column. We call each of the n2 positions of the table
a cell. For instance, the position at row x column y is called cell (x, y) and the value of
cell (x, y) is denoted as L(x, y), where x, y, L(x, y) all take values from [0, n − 1]. If
∀i ∈ [0, n− 1], L(i, i) = i, L is called an idempotent Latin square.

Two Latin squares L1 and L2 are orthogonal if each pair of elements from the two
squares occurs exactly once, or alternatively,

L1(x1, y1) = L1(x2, y2) ∧ L2(x1, y1) = L2(x2, y2)→ x1 = x2 ∧ y1 = y2

� This work is partially supported by the National Natural Science Foundation of China (NSFC)
under grant No. 60673044. Corresponding author: Jian Zhang. We are grateful to the anony-
mous reviewers for their comments, to Lie Zhu and Feifei Ma for their help in this research.

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 538–545, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Searching for Doubly Self-orthogonal Latin Squares 539

Definition 1. A DSOLS of order n, denoted as DSOLS(n), is a Latin square A which
is orthogonal to both its transpose to the diagonal AT and its transpose to the back
diagonal A∗.

A DSOLS A of order n can also be characterized using first order logic formulas:

A(x, y) = A(x, z)→ y = z (1)

A(x, y) = A(z, y)→ x = z (2)

A(x1, y1) = A(x2, y2) ∧A(y1, x1) = A(y2, x2)→ x1 = x2 ∧ y1 = y2 (3)

A(x1, y1) = A(x2, y2) ∧ A(n− 1− y1, n− 1− x1) = A(n− 1− y2, n− 1− x2)

→ x1 = x2 ∧ y1 = y2 (4)

Table 1 gives an example of DSOLS(4).

Table 1. A DSOLS(4) and Its two Transposes

0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3

A

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

AT

3 0 2 1
1 2 0 3
0 3 1 2
2 1 3 0

A∗

A closely related concept is doubly diagonal orthogonal latin squares (DDOLS) [3],
which refers to a pair of orthogonal latin squares with the property that each square has
distinct elements on the main diagonal as well as on the back diagonal. A DSOLS can
be viewed as a special kind of a DDOLS. The existence problem for DDOLS has been
solved completely later on.

3 Finding a DSOLS Using SAT and CSP

3.1 SAT Encoding of the Problem

We first encode the problem of finding DSOLS(n) into a SAT instance. Since each cell
of Latin square can take one and only one value from the domain [0, n−1], we introduce
one boolean variable for each possible value of each cell. For each row i ∈ [0, n − 1],
each column j ∈ [0, n− 1] and each candidate value k ∈ [0, n− 1], a boolean variable
Vijk is introduced. The variables Vijk should satisfy some inherent constraints. For
instance, each cell should take a value from [0, n− 1], so we have:

∀i, j ∈ [0, n− 1], Vij0 ∨ Vij1 ∨ · · · ∨ Vij(n−1)

But each cell should not take more than one values from [0, n− 1] at the same time, so
∀i, j ∈ [0, n− 1], we have formulas like the following:

¬Vij0 ∨ ¬Vij1 ¬Vij0 ∨ ¬Vij2 · · · ¬Vij(n−2) ∨ ¬Vij(n−1)
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Besides these constraints, we also have to encode the problem-specific constraints in
formulas 1, 2, 3, 4 into SAT clauses. There can also be other constraints. For instance,
we may add unit clauses Viii(i ∈ [0, n− 1]) to force the cell (i, i) to take the value i.

Then we send the SAT instance to the state-of-the-art SAT solver MiniSAT. The tool
is very efficient. But we still can not solve DSOLS(10) in one week.

3.2 Classical Constraint Satisfaction Problem (CSP)

In [2], Dubois and Dequen employ the CSP model and develop a specific quasigroup
generator qgs for QG2, another well known combinatorial problem which is quite diffi-
cult. With qgs, they first proved the non-existence of QG2(10) in 140 days of sequential
computation. Due to the similarity of QG2 and DSOLS, we tried to use the technique
of qgs to find DSOLS(10).

From the CSP’s viewpoint, DSOLS can be formulated as a series of overlapping
Alldifferent constraints in which no two variables involved are allowed to take
the same value. For each cell of DSOLS(n), ∀i, j ∈ [0, n− 1], we associate a variable
A(i, j) with a domain Dn = [0, n − 1]. The constraints of DSOLS can be formulated
as follows:

Alldifferent{A(i, j)|i ∈ [0, n− 1]}, ∀j ∈ [0, n− 1] (5)

Alldifferent{A(i, j)|j ∈ [0, n− 1]}, ∀i ∈ [0, n− 1] (6)

Alldifferent{A(j, i)|A(i, j) = v}, ∀v ∈ [0, n− 1] (7)

Alldifferent{A(n− 1− j, n− 1− i)|A(i, j) = v}, ∀v ∈ [0, n− 1] (8)

When a variable A(a, b) is assigned a value v0 in the domain Dn, the constraint
propagation procedure would be enabled. For example, in every Alldifferent con-
straint in which A(a, b) appears, the value v0 will be deleted from the domains of the
other variables of the constraint. Some Alldifferent constraints will be changed
dynamically as well based on constraint 7 and 8. For example, the assignment of v0 to
A(a, b) will affect the variables A(b, a) and A(n − 1 − b, n − 1 − a) involved in the
following constraints

Alldifferent{A(j, i)|A(i, j) = v0}

Alldifferent{A(n− 1− j, n− 1− i)|A(i, j) = v0}
Once enabled, the constraint propagation procedure will be carried out recursively until
no propagation can be done.

We developed a solver based on the classical CSP model. The basic idea of the
solver was similar to the method by Dubois and Dequen [2]. In the implementation,
arc-consistency was enforced for the Alldifferent constraints, but the propaga-
tion method was light-weight and we did not use any novel techniques for constraint
propagation. But for the Alldifferent constraints 7 and 8, since the variables in
the constraints dynamically depend on the values of other cells, we designed a specific
propagator to maintain the constraints instead of using a general-purpose CSP solver.
We also used some simple techniques like fixing all the cells on the diagonal to break
symmetry and tried several common heuristics for selecting variables and for assigning
values. With the tool, we still failed to solve the DSOLS(10) problem in one week.
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4 An Approach Based on Set System and Exact Cover

Combinatorial objects can also be viewed as set systems [6]. A set system is defined as a
collection of subsets of a given set X , S = {S1, S2, ..., Sm} (Si ⊆ X), which has some
additional properties. From the set system’s point of view, some combinatorial object
searching problems can be formulated as the clique problem [6]. Thus the solution to a
set system can be constructed via cliques in certain problem-specific graphs. In the set
system representation, lots of inherent symmetries like value symmetry automatically
do not exist any more, as compared with other representations. So in some cases, the
set system representation may induce surprisingly efficient performance on some com-
binatorial object searching problem. Based on this observation, Vasquez [7] developed
an efficient algorithm for the queen graph coloring problem and obtained some new
results. Motivated by this idea, we treat the constraints of DSOLS as a set system.

The set X consists of all cells of the Latin square and S = {S1, S2, ..., S2|X|−1} is
the powerset of X where Si ⊆ X(i ∈ [1, 2|X|− 1]) (the empty set is not included). For
all i, define STi = {(y, x)|(x, y) ∈ Si} and S∗

i = {(n− 1− y, n− 1−x)|(x, y) ∈ Si}.

Definition 2 (admissible). Si is admissible iff Si satisfies the following constraints:

(1) |Si| = n
(2) ∀(x1, y1), (x2, y2) ∈ Si, if (x1, y1) �= (x2, y2), then x1 �= x2 and y1 �= y2

(3) if (x, y) ∈ Si and x �= y then (y, x) /∈ Si
(4) if (x, y) ∈ Si and (x, y) �= (n− 1− y, n− 1−x) then (n− 1− y, n− 1−x) /∈ Si

Definition 3 (compatible). Two elements of S (Si and Sj , i �= j) are compatible iff

(1) Si ∩ Sj = ∅
(2) |Si ∩ STj | = 1
(3) |Si ∩ S∗

j | = 1

Theorem 1. There exists a solution to DSOLS(n) if and only if there is a collection of
n admissible subsets of X each pair of which are compatible.

It is easy to prove that the theorem holds. On the one hand, if there exists a DSOLS(n),
we can partition the n2 cells into n sets such that cells are in the same set if and only if
they have the same value. According to the definition of DSOLS, it is obvious that these
n sets are admissible subsets of X and they are mutually compatible. On the other hand,
suppose there are a collection of n admissible subsets of X and they are compatible. The
cells in the same set can be assigned with the same value while the cells in different sets
can be assigned with different values. The Latin square constructed by these n2 cells is
a DSOLS(n).

A set system of DSOLS(n) can be represented as a graph whose vertices correspond
to the admissible sets and edges correspond to the compatible set pairs. Any clique of
this graph is also a set system and a clique with n vertices corresponds to a solution
of DSOLS(n). If the number of vertices in each maximum clique of the graph is less
than n, we can conclude the non-existence of DSOLS(n); otherwise we can conclude
the existence of a DSOLS(n).



542 R. Lu, S. Liu, and J. Zhang

Algorithm Framework and Data Structure

It is straightforward to use clique algorithms to construct a (partial) solution of a given
combinatorial problem which is represented as a set system. If the solution of the com-
binatorial problem corresponds to the exact cover of the set system, a substantially more
efficient algorithm can be utilized because of this property.

Definition 4 (exact cover). Given a set X and a collection S of subsets of X , an exact
cover is a subcollection T of S such that each element in X falls into exactly one
element of T .

T is actually a partition of X . If the element e ∈ X is contained in the set t ∈ T , then
the element e is said to be covered by the set t.

Knuth uses an efficient data structure DLX to index the subsets in the exact cover
problem, and develops Algorithm X to solve the classical exact cover problem [5].
In DSOLS(n), all elements in X should also be covered because each cell should be
assigned a value. However, a set system of DSOLS(n) is not the general exact cover
problem since the compatibility of a pair of subsets requires additional constraints like
|Si ∩ STj | = 1 and |Si ∩ S∗

j | = 1 besides Si ∩ Sj = ∅. So the constraints of the set
system of DSOLS(n) are tighter than those of the general exact cover problem.

Our algorithm for DSOLS(n) includes two steps. First, we enumerate all admissible
sets of DSOLS(n), then from these admissible sets, we try to find n sets such that each
pair of them are compatible. The framework of our algorithm is given below.

1: if all cells have been labeled then
2: A solution is found;
3: return ;
4: end if
5: Select an unlabeled cell c from the set X and mark c as labeled;
6: for each subset Si containing c do
7: S∗ = S;
8: S∗ = S∗ − {Sj |Si ∩ Sj �= ∅};
9: S∗ = S∗ − {Sj ||Sj ∩ ST

i | �= 1 OR |Sj ∩ S∗
i | �= 1};

10: Search(S∗);
11: end for
12: restore c as unlabeled;
13: return ;

Algorithm 1. The Algorithm Search(S)

It is an exhaustive search algorithm with a filtering scheme to reduce the search space.
When the algorithm chooses a subset Si to constitute the solution, it applies a propaga-
tion procedure which removes the remaining subsets not compatible with Si.

For computational reason, {Sj |Si∩Sj �= ∅} is removed first since these subsets can
be indexed conveniently while removing {Sj ||Sj ∩ STi | �= 1 OR |Sj ∩ S∗

i | �= 1} needs
to scan the whole remaining subsets to select the right ones to be removed. Suppose that
a subset Si is chosen to constitute the solution, m subsets remain and r subsets violate
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the constraint Si ∩ Sj = ∅, it takes r× n operations to remove the r subsets which are
not compatible with Si, (m − r) × n operations to compute the remaining subsets not
compatible with Si and at most (m− r) × n operations to remove them.

It seems that the computational complexity is very high since the number of ad-
missible sets is huge. However, after selecting a subset Si, the number of the remaining
subsets which are compatible with Si decreases dramatically. Table 2 shows the average
number of admissible subsets at different levels of the backtracking search tree.

Table 2. Average Number of Admissible Subsets in Different Search Levels

Level
n 0 1 2 3 4 5 6 7 8 9

7 208.0 12.0 7.0 7.0 7.0 7.0 7.0 - - -
8 2784.0 124.8 11.5 8.4 8.2 8.0 8.0 8.0 - -
9 20556.0 870.8 52.0 9.8 9.1 9.1 9.0 9.0 9.0 -
10 200960.0 8750.3 423.4 40.0 16.0 0 0 0 0 0

(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)(3,0)(3,1)(3,2)(3,3)(0,0)(0,1)(0,2)

S1

S2

S3

S4

S5

S6

S7

S8

Fig. 1. Data Structure for DSOLS(4)

It does not take much time to enumerate all admissible sets of DSOLS(n) when n is
not bigger than 10. Even using a naive method such as enumerating all permutation of
n, the computation is only 10!=3628800 steps when n = 10. The first column of Table 2
shows the number of admissible sets of DSOLS(n) (n � 10). It is even impossible to
store all pairs of these compatible sets in a desktop computer, not to speak of using
general clique algorithms including stochastic algorithms to handle such a big graph.

For enumerating all compatible collections of size n in the set system of DSOLS(n),
we modify the algorithm for exact cover to take into account the two extra compatibility
constraints, |Si ∩ STj | = 1 and |Si ∩ S∗

j | = 1. A big sparse table is used to index the
subsets so that given a cell c it is convenient to access all subsets containing c and
given a subset Si it is convenient to access all cells in Si. Each cell has a CELL list
that contains all subsets covering this cell. Each subset T keeps a list recording the
positions of T in the CELL lists besides the cells it covers. For example, DSOLS(4) has
8 admissible subsets (S1, S2, . . . , S8) which are represented in the way shown in Fig. 1.
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(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)(3,0)(3,1)(3,2)(3,3)(0,0)(0,1)(0,2)

S1

S2

S3

S4

S5

S6

S7

S8

Fig. 2. Data Structure for DSOLS(4) after removing S5

When removing a subset Si, Si in the subsets list and the nodes in the CELL lists rep-
resenting Si need to be removed. Instead of deleting these nodes from the lists directly,
these nodes are moved to the end of the lists and the length of each list is decreased
by 1. For example, after removing S5 from Figure 1, the updated structure is shown
in Figure 2. One benefit of this method is that, when the search needs to restore the
subsets during the backtracking, the only operation needed is to recover the length of
CELL lists no matter how many subsets had been removed.

5 Experimental Results

Using the algorithm and data structures described in the previous section, we devel-
oped a DSOLS generator named DSOLver. To compare the performance of different
approaches, we carried out some experiments on a desktop computer (Fedora 10 with
1.5G memory, 2.13GHz CPU, Intel Core2 6400). Table 3 lists the time1 and branch
nodes of MiniSAT, light-weight CSP program (LCSP) and DSOLver on proving the
existence of DSOLS(n) where n ranges from 6 to 9. Table 4 lists the time and branch
nodes of LCSP and DSOLver on finding all idempotent solutions of DSOLS. Because
classical MiniSAT only specializes in finding one solution but not in enumerating all
solutions, we do not list its results in Table 4.

These two tables show that DSOLver is better on both CPU time and number of
branches. Note that selecting one subset in DSOLver corresponds to assigning n differ-
ent cells’ values in CSP model. So one branch in DSOLver is equivalent to n branches
in SAT and CSP. But even if the branch number of DSOLver is multiplied by n, the
result is still much smaller than that of SAT and CSP. The reason probably is that each
admissible subset has already summed up all the constraints of the n cells involved
into one scheme. This kind of scheme can be reused as a package without consid-
ering the internal constraint structure again and again as compared with the classical
CSP model.

1 With a different SAT encoding, Hantao Zhang implemented a method which found the first
solution of DSOLS(9) in 4 seconds (Private communication with Jian Zhang, July 2010).



Searching for Doubly Self-orthogonal Latin Squares 545

Table 3. Comparison of MiniSAT, LCSP and DSOLver on finding one solution

DSOLS(n) MiniSAT LCSP DSOLver
n exist? time(second) #branches time(second) #branches time(second) #branches
6 no 0.036 119 0.002 104 0 0
7 yes 0.125 47 0.005 1537 0 7
8 yes 0.716 6140 0.003 856 0.008 33
9 yes 48.201 137083 7.123 3140786 0.071 49

Table 4. Comparison of LCSP and DSOLver on finding all solutions of DSOLS

LCSP DSOLver
n #solutions time(second) #branches time(second) #branches
7 64 0.025 8966 0 116
8 1152 8.403 3421189 0.109 4710
9 28608 14515.26 1945836918 28.917 570365
10 0 - - 83733 606458896

6 Conclusion

Finding a DSOLS is a hard combinatorial search problem. It can be a challenging
benchmark for constraint solving and constraint programming. In this paper we dis-
cuss how to solve the problem using various techniques with different formulations.
We propose an efficient exhaustive search algorithm based on the set system represen-
tation and exact cover, with which we obtained a new result, i.e., the non-existence of
DSOLS(10). There remain some open cases on the existence of DSOLS(n). In the fu-
ture, we plan to improve the current algorithm and design new data structures to handle
even bigger open instances, e.g., DSOLS(14).
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Abstract. We study the (non-uniform) quantified constraint satisfac-
tion problem QCSP(H) as H ranges over partially reflexive forests. We
obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or is
NP-hard. The separating condition is related firstly to connectivity, and
thereafter to accessibility from all vertices of H to connected reflexive
subgraphs. In the case of partially reflexive paths, we give a refinement
of our dichotomy: QCSP(H) is either in NL or is Pspace-complete.

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template
(structure) B, is a popular generalisation of the constraint satisfaction problem
CSP(B). In the latter, one asks if a primitive positive sentence (the existential
quantification of a conjunction of atoms) ϕ is true on B, while in the former this
sentence may be positive Horn (where universal quantification is also permitted).
Much of the theoretical research into CSPs is in respect of a large complexity
classification project – it is conjectured that CSP(B) is always either in P or NP-
complete [11]. This dichotomy conjecture remains unsettled, although dichotomy
is now known on substantial classes (e.g. structures of size ≤ 3 [16,6] and smooth
digraphs [13,3]). Various methods, combinatorial (graph-theoretic), logical and
universal-algebraic have been brought to bear on this classification project, with
many remarkable consequences. A conjectured delineation for the dichotomy was
given in the algebraic language in [7].

Complexity classifications for QCSPs appear to be harder than for CSPs. Just
as CSP(B) is always in NP, so QCSP(B) is always in Pspace. However, no overar-
ching polychotomy has been conjectured for the complexities of QCSP(B), as B
ranges over finite structures, but the only known complexities are P, NP-complete
and Pspace-complete (see [4,14] for some trichotomies). It seems plausible that
these complexities are the only ones that can be so obtained.

In this paperwe study the complexity ofQCSP(H), whereH is a partially reflex-
ive (undirected) forest, i.e. a forest with potentially some loops. CSP(H), in these
instances, will either be equivalent to 2-colourability and be in L (ifH is irreflexive
and contains an edge) or will be trivial (if H contains no edges or some self-loop).
Thus, CSP(H) is here always (very) easy. We will discover, however that QCSP(H)
may be either in NL or be NP-hard (and is often Pspace-complete).
� The author is supported by EPSRC grant EP/G020604/1.
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It is well-known that CSP(B) is equivalent to the homomorphism problem
Hom(B) – is there a homomorphism from an input structure A to B? A simi-
lar problem, Sur-Hom(B), requires that this homomorphism be surjective. On
Boolean B, each of CSP(B), Sur-Hom(B) and QCSP(B) display complexity-
theoretic dichotomy (the first two between P and NP-complete, the last between
P and Pspace-complete). However, the position of the dichotomy is the same
for QCSP and Sur-Hom, while it is different for CSP. Indeed, the QCSP and
Sur-Hom are cousins: a surjective homomorphism from A to B is equivalent to
a sentence Θ of the form ∃v1, . . . , vkθ(v1, . . . , vk)∧ ∀y(y = v1 ∨ . . .∨ y = vk), for
θ a conjunction of atoms, being true on B. This sentence is certainly not posi-
tive Horn (it involves some disjunction), but some similarity is there. Recently, a
complexity classification for Sur-Hom(H), whereH is a partially reflexive forest,
was given in [12].1 The separation between those cases that are in P and those
cases that are NP-complete is relatively simple, those that are hard are precisely
those in which, in some connected component (tree), the loops induce a dis-
connected subgraph. Their work is our principle motivation, but our dichotomy
appears more complicated than theirs. Even in the basic case of partially reflex-
ive paths, we find examples P whose loops induce a disconnected subgraph and
yet QCSP(P) is in NL. In the world of QCSP, for templates that are partially
reflexive forests H, the condition for tractability may be read as follows. If H
is disconnected (not a tree) then QCSP(H) is in NL. Otherwise, let λH be the
longest distance from a vertex in H to a loop in H. If either 1.) there exists no
looped vertex or 2.) there exists a single reflexive connected subgraph T0 ⊆ H,
such that there is a λH -walk from any vertex of H to T0, then QCSP(H) is in
NL (we term such an H quasi-loop-connected). In all other cases, QCSP(H) is
NP-hard. In the case of partially reflexive paths, we may go further and state
that all other cases are Pspace-complete.

In the world of partially reflexive trees, we derive our NL membership re-
sults through the algebraic device of polymorphisms, together with a logico-
combinatorial characterisation of template equivalence given in [9]. In the first
instance, we consider trees in which the loops induce a connected subgraph:
so-called loop-connected trees – including irreflexive trees. Such trees T are
shown to possess certain (surjective) polymorphisms, that are known to col-
lapse the complexity of QCSP(T ) to a polynomially-sized ensemble of instances
of CSP(T c) (the superscript suggesting an expansions by some constants) [8].
Although CSP(T c) may no longer trivial, T c still admits a majority polymor-
phism, so it follows that CSP(T c) is in NL [10].

We prove that every loop-connected tree T admits a certain majority poly-
morphism, and deduce therefore that QCSP(T ) is in NL. However, we also prove
that loop-connected trees are the only trees that admit majority polymorphisms,
and so we can take this method no further. In order to derive the remaining
tractability results, we use the characterisation from [9] for equivalent templates
– the first time this method has been used in complexity classification. If there

1 Their paper is in fact about partially reflexive trees, but they state in the conclusion
how their result extends to partially reflexive forests.
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exist natural numbers t and s such that there are surjective homomorphisms
from T t to S and from Ss to T (the superscript here indicates direct power),
then it follows that QCSP(T ) = QCSP(S), i.e. T and S agree on all positive
Horn sentences. Of course it follows immediately that QCSP(T ) and QCSP(S)
are of the same complexity. It turns out that for every quasi-loop-connected tree
T , there is a loop-connected tree S such that QCSP(T ) = QCSP(S), and our
tractability classification follows (indeed, one may even insist that the loops of
S are always contiguous with some leaves).

For our NP-hardness proofs we use a direct reduction from not-all-equal 3-
satisfiability (NAE3SAT), borrowing heavily from [15]. (In the paper [12] the
NP-hardness results follow by reduction from the problem matching cut, which is
proven NP-complete in [15] by reduction from NAE3SAT.) Our Pspace-hardness
proofs, for partially reflexive paths only, use a direct reduction from quantified
not-all-equal 3-satisfiability (QNAE3SAT). We require several different flavours
of the same reduction in order to cover each of the outstanding cases. We conjec-
ture that all NP-hardness cases for partially reflexive trees (forests) are in fact
Pspace-complete.

The paper is organised as follows. After the preliminaries and definitions, we
give the cases that are in NL in Section 3, and the cases that are NP-hard
and Pspace-complete in Section 4. For the cases that are in NL, we first give
our result for loop-connected trees. We then expand to the case of quasi-loop-
connected paths (for pedagogy and as an important special subclass) before
going on to all quasi-loop-connected trees. For the cases that are hard, we
begin with the Pspace-completeness results for paths and then give the NP-
hardness for the outstanding trees. A full version of this paper is available at
http://arxiv.org/abs/1103.6212. The author is grateful for assistance with
majority operations from Tomás Feder and Andrei Krokhin. We give here our
main results.

Theorem 1 (Pspace Dichotomy). Suppose P is a partially reflexive path.
Then, either P is quasi-loop-connected, and QCSP(P) is in NL, or QCSP(P) is
Pspace-complete.

Proof. This follows immediately from Theorems 3 (tractability) and 4 (Pspace-
completeness).

Theorem 2 (NP Dichotomy). Suppose H is a partially reflexive forest. Then,
either H is disconnected or quasi-loop-connected, and QCSP(H) is in NL, or
QCSP(H) is NP-hard.

Proof. For tractability, if H is a tree then we appeal to Corollary 1. If H is a
forest that is not a tree, then it follows that H is disconnected, and that that
QCSP(H) is equivalent to QCSP(H) with inputs restricted to the conjunction of
sentences of the form “∀x∃yϕ(x, y)”, where ϕ is a conjunction of positive atoms
(see [14]). The evaluation of such sentences on any partially reflexive forest is
readily seen to be in NL.

For NP-hardness, we appeal to Theorem 5.
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2 Preliminaries and Definitions

Let [n] := {1, . . . , n}. A graph G has vertex set G, of cardinality |G|, and edge
set E(G). Henceforth we consider partially reflexive trees, i.e. trees potentially
with some loops (we will now drop the preface partially reflexive). For a sequence
α ∈ {0, 1}∗, of length |α|, let Pα be the undirected path on |α| vertices such that
the ith vertex has a loop iff the ith entry of α is 1 (we may say that the path P
is of the form α). We will usually envisage the domain of a path with n vertices
to be [n], where the vertices appear in the natural order. The centre of a path is
either the middle vertex, if there is an odd number of vertices, or between the
two middle vertices, otherwise. Therefore the position of the centre of a path on
m vertices is at m+1

2 . In a path on an even number of vertices, we may refer to
the pair of vertices in the middle as centre vertices. Call a path P loop-connected
if the loops induce a connected subgraph of P . Call a path 0-eccentric if it is of
the form α1b0a for b ≥ 0 and |α| ≤ a. Call a path weakly balanced if, proceeding
from the centre to each end, one encounters at some point a non-loop followed
by a loop (if the centre is loopless then this may count as a non-loop for both
directions). Call a weakly-balanced path P 0-centred if the centre vertex is a
non-loop (and |P | is odd) or one of the centre vertices is a non-loop (and |P | is
even). Otherwise, a weakly-balanced path P is 1-centred.

In a rooted tree, the height of the tree is the maximal distance from any vertex
to the root. For a tree T and vertex v ∈ T , let λT (v) be the shortest distance
in T from v to a looped vertex (if T is irreflexive, then λT (v) is infinite). Let
λT be the maximum of {λT (v) : v ∈ T }. A tree is loop-connected if the self-
loops induce a connected subtree. A tree T is quasi-loop-connected if either 1.)
it is irreflexive, or 2.) there exists a connected reflexive subtree T0 (chosen to
be maximal under inclusion) such that there is a walk of length λT from every
vertex of T to T0. The quasi-loop-connected paths are precisely those that are
0-eccentric.

The problems CSP(T ) and QCSP(T ) each take as input a sentence ϕ, and
ask whether this sentence is true on T . For the former, the sentence involves the
existential quantification of a conjunction of atoms – primitive positive logic. For
the latter, the sentence involves the arbitrary quantification of a conjunction of
atoms – positive Horn logic.

The direct product G × H of two graphs G and H has vertex set {(x, y) :
x ∈ G, y ∈ H} and edge set {((x, u), (y, v)) : x, y ∈ G, u, v ∈ H, (x, y) ∈
E(G), (u, v) ∈ E(H)}. Direct products are (up to isomorphism) associative and
commutative. The kth power Gk of a graph G is G × . . . × G (k times). A ho-
momorphism from a graph G to a graph H is a function h : G → H such that,
if (x, y) ∈ E(G), then (h(x), h(y)) ∈ E(G) (we sometimes use −→→ to indicate
existence of surjective homomorphism). A k-ary polymorphism of a graph is a
homomorphism from Gk to G. A ternary function f : G3 → G is designated a
majority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = x, for all x, y ∈ G.

In a matrix, we refer to the leading diagonal, running from the top left to
bottom right corner, and the rising diagonal running from the bottom left to
top right corner.
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The computational reductions we use will always be comprised by local sub-
stitutions that can easily be seen to be possible in logspace – we will not mention
this again. Likewise, we recall that QCSP(T ) is always in Pspace, thus Pspace-
completeness proofs will only deal with Pspace-hardness.

3 Tractable Trees

We now explore the tree templates T such that QCSP(T ) is in NL. We de-
rive our tractability results through majority polymorphisms and equivalence of
template.

3.1 Loop-Connected Trees and Majority Polymorphisms

Majority operations on (irreflexive) trees It is known that all (irreflexive)
trees admit a majority polymorphism [1]; however, not just any operation will
suffice for our purposes, therefore we define a majority polymorphism of a certain
kind on a rooted tree T whose root could also be a leaf (i.e. is of degree
one). In a rooted tree let the root be labelled 0 and let the numbering propagate
upwards from the root along the branches (probably non-uniquely). For x, y ∈ T
define the meet(x, y) to be the highest (first) point at which the paths from
the root to x and the root to y meet. If x and y are on the same branch, and
the closer to the root is x, then meet(x, y) is x. In the following definition, we
sometimes write, e.g., d [−1], to indicate that the function takes either value d
or d−1: this is dependent on the dominant parity of the arguments which should
be matched by the function. Define the following ternary function f on T .

f0(x, y, z) :=

⎧⎪⎪⎨
⎪⎪⎩

d [−1] x, y, z all the same parity; d is highest of
meet(x, y), meet(y, z) and meet(x, z) A

meet(u, v) [−1] two of x, y, z (u and v) same parity;
other different B

Lemma 1. Let T be a rooted (irreflexive) tree whose root has degree one. Then
f0 is a majority polymorphism of T .

Majority operations on reflexive trees. It is known that reflexive trees
admit a majority polymorphism [2], but it will be a simple matter for us to
provide our own. If x, y, z are vertices of a (not necessarily reflexive) tree T then
we define their median to be the unique point where the paths from x to y, y to
z and x to z meet. It follows that median is a majority operation. If x, y and z
are all on a single branch (path), then we have given the standard definition of
median. On a tree, the median function need not be conservative (i.e. we do not
in general have median(x, y, z) ∈ {x, y, z}). The following is easy to verify.

Lemma 2. Let T be a reflexive tree. Then the median function is a majority
polymorphism of T .
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Amalgamating these operations. Let T be constructed by attaching rooted
(irreflexive) trees – called tree-components – whose roots have degree one, to the
branches of some reflexive tree – the centre – such that the resulting object is
a partially reflexive tree (loop-connected, of course). The roots maintain their
labels 0 despite now having a loop there. These special looped vertices are consid-
ered both part of their tree-component(s) and part of the centre. For the sake of
well-definition, we preferentially see a vertex 0 as being in some tree-component.
Thus a looped vertex 0 and the vertex 1 above it, in its tree-component, consti-
tute two vertices in the same tree-component. It is possible that a looped vertex
0 is simultaneously the 0 in multiple tree-components. This will mean we have
to verify well-definition. Define the following ternary operation on T .

f1(x, y, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x, y, z) x, y, z in same tree-component A
meet(u, v) [−1] two of x, y, z (u and v) in the same

tree-component; other elsewhere;
and u, v same parity B

0 from {u, v}’s comp. two of x, y, z (u and v) in the same
tree-component; other elsewhere;
and u, v different parity C

median(x, y, z) otherwise D

Lemma 3. Let T be a loop-connected tree. Then f1 is well-defined and a ma-
jority polymorphism of T .

Proposition 1. If T is a loop-connected tree, then QCSP(T ) is in NL.

Proof. Since T admits a majority polymorphism, from Lemma 3, it follows from
[8] that QCSP(T ) reduces to the verification of a polynomial number of instances
of CSP(T c), each of which is in NL by [10]. The result follows.

In fact, for our later results, we only require the majority polymorphism on trees
all of whose loops are in a connected component involving leaves. However, we
give the fuller result because it is not much more difficult and because we can
show these are the only trees admitting a majority polymorphism.

Proposition 2. Let T be a tree that is not loop-connected, then T does not
admit a majority polymorphism.

3.2 Paths of the Form α0a Where |α| ≤ a + 1

We will now explore the tractability of paths of the form α0a, where |α| ≤ a+1.
In the proof of the following lemma we deviate from the normalised domain of
[n] for a path on n vertices, for pedagogical reasons that will become clear.

Lemma 4. There is a surjective homomorphism from P10m
2 to P0m10m .
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Proof. Let [a, b] := {a, . . . , b}. Let E(P10m) := {(i, j) : i, j ∈ [0,m], j = i +
1} ∪ {(0, 0)}. Let P0m10m be the undirected 2m-path (on 2m + 1 vertices) such
that the middle vertex has a self-loop but none of the others do. Formally,
E(P0m10m) = {(i, j) : i, j ∈ [−m,m], j = i + 1} ∪ {(0, 0)}. The numbering of the
vertices is important in the following proof. We will envisage P10m

2 as a square
(m+1)× (m+1) matrix whose top left corner is the vertex (0, 0) which has the
self-loop. The entry in the matrix tells one where in P0m10m the corresponding
vertex of P10m

2 is to map. It will then be a straightforward matter to verify that
this is a surjective homomorphism. By way of example, we give the matrix for
m+ 1 := 7 in Figure 2 (for all smaller m one may simply restrict this matrix by
removing rows and columns from the bottom right). 0 is sometimes written as
−0 for (obvious) aesthetic reasons – we will later refer to the two parts plus and
minus of the matrix.

0 2

3

4

4

5

6

6

0

1

2

1 3 5

Fig. 1. P106
2 and its . . .

−0 0 −0 0 −0 0 −0

1 −1 1 −1 1 −1 1

−0 2 −2 2 −2 2 −2

1 −1 3 −3 3 −3 3

−0 2 −2 4 −4 4 −4

1 −1 3 −3 5 −5 5

−0 2 −2 4 −4 6 −6

Fig. 2. . . . homomorphism to P06106

We refer to the far left-hand column as 0. Note that the leading diagonal
enumerates −0, ...,−m. Beneath the leading diagonal, the matrix is periodic in
each column (with period two). In general, the jth column of this matrix will
read, from top to bottom:

(−1)j−1.0, (−1)j.1, (−1)j+1.2, . . . , (−1)j+j−2.(j−1), −j, j+1, −j, j+1, etc.

Further verification that this is a surjective homomorphism appears in the full
version of this paper.

Proposition 3. If P is of the form α0a where |α| ≤ a+1, then QCSP(P) is in
NL.

Proof. Let P be of the form α0a where |α| ≤ a + 1. If P is irreflexive then
the result follows from [14]. Otherwise, P contains a loop, the right-most of
which is m vertices in from the right-hand end (on or left of centre). We claim
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that P −→→ P10m and P10m
2 −→→ P . It then follows from [9] that QCSP(P) =

QCSP(P10m), whereupon membership in NL follows from Proposition 1.
The surjective homomorphism from P to P10m is trivial: map all vertices to

the left of the right-most loop of P to the loop of P10m , and let the remainder of
the map follows the natural isomorphism. The surjective homomorphism from
P10m

2−→→ P follows from the obvious surjective homomorphism from P0m10m to
P , via Lemma 4.

3.3 Paths of the Form α1b0a Where b ≥ 1 and |α| = a

Proof of the following proceeds similarly to that of Lemma 4.

Lemma 5. For b ≥ 1, there is a surjective homomorphism from P1a1b0a
2 to

P0a1b0a .

Proposition 4. If P is of the form α1b0a for b ≥ 1 and |α| = a, then QCSP(P)
is in NL.

Proof. Let P be of the form α1b0a where |α| = a and b ≥ 1. We claim that
P −→→ P1a1b0a and P1a1b0a

2−→→ P . It then follows from [9] that QCSP(P) =
QCSP(P1a1b0a), whereupon membership in NL follows from Proposition 1.

The surjective homomorphism from P to P1a1b0a is the identity. The surjective
homomorphism from P1a1b0a

2 to P follows from the surjective homomorphism
from P0a1b0a to P (the identity), via Lemma 5.

Theorem 3. If P is quasi-loop-connected (0-eccentric), then QCSP(P) is in
NL.

Proof. If P is quasi-loop-connected (0-eccentric), then either P is of the form
α0a, for |α| ≤ a+1, or α1b0a, for |α| = a and b ≥ 1 (or both!). The result follows
from Propositions 3 and 4.

3.4 The Quasi-Loop-Connected Case

Suppose that T is a quasi-loop-connected tree, that is neither reflexive nor ir-
reflexive, with associated T0 and λT , as defined in the preliminaries. Let vλ ∈ T
be such that there is no (λT − 1)-walk to a looped vertex but there is a λT -walk
to the looped vertex l of the maximal (under inclusion) connected reflexive sub-
tree T0 (such a vλ exists). Let T1 be the maximal subtree of T rooted at l that
contains vλ.

Lemma 6. If T and vλ are as in the previous paragraph, then vλ is a leaf.

Proof. If not, then vλ has a neighbour w on the path in the direction from
l towards and beyond v. But the distance from this vertex to the connected
component T0 containing l is λT + 1, which contradicts maximality of λT .
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Note that if T were an arbitrary tree, i.e. not quasi-loop-connected, then there
is no need for vλ, at maximal distance from a loop, to be a leaf. E.g., let P101

be the path on three vertices, the two ends of which are looped. λP101 = 1 and
vλ would be the centre vertex.

So, as before, let T be a quasi-loop-connected tree that is neither reflexive
nor irreflexive, and let some vλ ∈ T be given (vλ, of course, need not be unique).
There is an irreflexive path P ⊆ T1 of length λT from the leaf vλ to l ∈ T0. There
may be other paths joining this path, of course. Let T ′ be T with these other
paths pruned off (see Figure 3). We need to take a short diversion in which we
consider graphs with a similar structure to T ′. Proof of the following is again
similar to that of Lemma 4.

.... . . l

T0

P
vλ

Sk

S1

Fig. 3. Anatomy of T ′

Lemma 7. Suppose H consists of a graph G, with a looped vertex l, onto which
an irreflexive path P of length λ is attached. Let H′ be constructed as H but with
the addition of two (disjoint) paths P onto the looped vertex l. Then there is a
surjective homomorphism from H2 to H′.

Lemma 8. There is a surjective homomorphism from T to T ′. There exists
p ∈ N such that there is a surjective homomorphism from (T ′)p to T .

Proof. The surjective homomorphism from T to T ′ takes the paths constituted
by T1 \ P and folds them back towards l. These paths may have loops on them,
but never at distance < λT from vλ, which explains why this will be a homo-
morphism.

The surjective homomorphism from (T ′)p to T comes from the multiplication
of the paths P – by iteration of Lemma 7 – in powers of T ′ (note that nothing
may be further than λT from l in T1, without violating maximality of λT or
uniqueness of T0). To cover T1 in T we require no more than |T1| copies of the
path P . According to the previous lemma, we may take p := |T1| − 1 (in fact it
is easy to see that �log |T1|� suffices).

Now, it may be possible that in T ′ there are subtrees S1, . . . , Sk rooted in T0
whose first vertex, other than their root, is a non-loop (because we chose T0 to
be maximal under inclusion). The height of these trees is ≤ λT . Let T ′′ be T ′

with these subtrees S1, . . . ,Sk being reflexively closed.

Lemma 9. There is a surjective homomorphism from T ′ to T ′′. There is a p
such that there is a surjective homomorphism from (T ′′)p to T ′.
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Corollary 1. Let T be quasi-loop-connected, then QCSP(T ) is in NL.

Proof. If T is actually loop-connected, then the result is Proposition 1. Other-
wise, QCSP(T )= QCSP(T ′)= QCSP(T ′′), and tractability of the last follows
from Proposition 1.

4 Hard Cases

4.1 Pspace-Completeness Results for Paths That Are Not
0-Eccentric

P101 and weakly balanced 0-centred paths. In the following proof we
introduce the notions of pattern and ∀-selector that will recur in future proofs.
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l1

l2

l3
v1 v2

∀

Fig. 4. Variable and clause gadgets in reduction to QCSP(P101)

Proposition 5. QCSP(P101) is Pspace-complete.

Proof. For hardness, we reduce from QNAE3SAT, where we will ask for the
extra condition that no clause has three universal variables (of course, any such
instance would be trivially false). From an instance Φ of QNAESAT we will build
an instance Ψ of QCSP(P101) such that Φ is in QNAE3SAT iff Ψ in QCSP(P101).
We will consider the quantifier-free part of Ψ , itself a conjunction of atoms, as
a graph, and use the language of homomorphisms. The constraint satisfaction
problem, CSP(P101), seen in this guise, is nothing other than the question of
homomorphism of this graph to P101. The idea of considering QCSP(P101) as a
special type of homomorphism problem is used implicitly in [5]2 and explicitly
in [14].

We begin by describing a graph GΦ, whose vertices will give rise to the vari-
ables of Ψ , and whose edges will give rise to the facts listed in the quantifier-free
part of Ψ . Most of these variables will be existentially quantified, but a small
handful will be universally quantified. GΦ consists of two reflexive paths, labelled
! and ⊥ which contain inbetween them gadgets for the clauses and variables
of Φ. We begin by assuming that the paths ! and ⊥ are evaluated, under any

2 The journal version of this paper was published much later as [4].
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homomorphism we care to consider, to vertices 1 and 3 in P101, respectively (the
two ends of P101); later on we will show how we can effectively enforce this. Of
course, once one vertex of one of the paths is evaluated to, say, 1, then that whole
path must also be so evaluated – as the only looped neighbour of 1 in P101 is 1.
The gadgets are drawn in Figure 4. The pattern is the path P101, that forms the
edges of the diamonds in the clause gadgets as well as the tops and bottoms of the
variable gadgets. The diamonds are braced by two horizontal edges, one joining
the centres of the top patterns and the other joining the centres of the bottom
patterns. The ∀-selector is the path P10, which travels between the universal
variable node v2 and the labelled vertex ∀.

For each existential variable v1 in Φ we add the gadget on the far left, and for
each universal variable v2 we add the gadget immediately to its right. There is a
single vertex in that gadget that will eventually give rise to a variable in Ψ that
is universally quantified, and it is labelled ∀. For each clause of Φ we introduce
a copy of the clause gadget drawn on the right. We then introduce an edge
between a variable v and literal li (i ∈ {1, 2, 3}) if v = li (note that all literals
in QNAE3SAT are positive). We reorder the literals in each clause, if necessary,
to ensure that literal l2 of any clause is never a variable in Φ that is universally
quantified. It is not hard to verify that homomorphisms from GΦ to P101 (such
that the paths ! and ⊥ are evaluated to 1 and 3, respectively) correspond
exactly to satisfying not-all-equal assignments of Φ. The looped vertices must
map to either 1 or 3 – ! or ⊥ – and the clause gadgets forbid exactly the
all-equal assignments. Now we will consider the graph GΦ realised as a formula
Ψ ′′, in which we will existentially quantify all of the variables of Ψ ′′ except: one
variable each, v� and v⊥, corresponding respectively to some vertex from the
paths ! and ⊥; all variables corresponding to the centre vertex of an existential
variable gadget; all variables corresponding to the centre vertex of a universal
variable gadget, and all variables corresponding to the extra vertex labelled ∀ of
a universal variable gadget. We now build Ψ ′ by quantifying, adding outermost
and in the order of the quantifiers of Φ:

– existentially, the variable corresponding to the centre vertex of an existential
variable gadget,

– universally, the variable corresponding to the extra vertex labelled ∀ of a
universal variable gadget, and then existentially, the variable corresponding
to the centre vertex of a universal variable gadget.

The reason we do not directly universally quantify the vertex associated with
a universal variable is because we want it to be forced to range over only the
looped vertices 1 and 3 (which it does as its unlooped neighbour ∀ is forced
to range over all {1, 2, 3}). Ψ ′(v�, v⊥) is therefore a positive Horn formula with
two free variables, v� and v⊥, such that, Φ is QNAE3SAT iff P101 |= Ψ ′(1, 3).
Finally, we construct Ψ from Ψ ′ with the help of two ∀-selectors, adding new
variables v′� and v′⊥, and setting

Ψ := ∀v′�, v′⊥∃v�, v⊥ E(v′�, v�)∧E(v�, v′�)∧E(v′⊥, v⊥)∧E(v⊥, v′⊥)∧Ψ ′(v�, v⊥).
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The purpose of universally quantifying the new variables v′� and v′⊥, instead of
directly quantifying v� and v⊥, is to force v′� and v′⊥ to range over {1, 3} (recall
that E(v�, v�) and E(v⊥, v⊥) are both atoms of Ψ). This is the same reason we
add the vertex ∀ to the universal variable gadget.

We claim that P101 |= Ψ ′(1, 3) iff P101 |= Ψ . It suffices to prove that P101 |=
Ψ ′(1, 3) implies P101 |= Ψ ′(3, 1), Ψ ′(1, 1), Ψ ′(3, 3). The first of these follows by
symmetry. The second two are easy to verify, and follow because the second
literal in any clause is forbidden to be universally quantified in Φ. If both paths
! and ⊥ are w.l.o.g. evaluated to 1, then, even if some l1- or l3-literals are forced
to evaluate to 3, we can still extend this to a homomorphism from GΦ to P101.

Proposition 6. Let P0a10b10c be such that its centre is between its loops (a+b ≥
c and b + c ≥ a). Then QCSP(0a10b10c) is Pspace-complete.

Proposition 7. Let P be a weakly balanced 0-centred path, then QCSP(P) is
Pspace-complete.

P10101 and weakly balanced 1-centred paths. We begin with the simplest
weakly balanced 1-centred path, P10101, which in some sense is also the trickiest.

Proposition 8. QCSP(P10101) is Pspace-complete.

Proof. We work as in Proposition 5, but with pattern P10101 and ∀-selector P10.
We will need more sophisticated variable gadgets, along with some vertical bracing
in the diamonds. The requisite gadgets are depicted in Figures 5 and 6. Finally,
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Fig. 7. Degenerate mappings in QCSP(P10101)

not only is v1 (likewise, v2) connected by an edge to a literal li (if v1 = li), but on
the other side v′1 is also connected by an edge to l′i. We assume for now that the
paths! and⊥ are evaluated to 1 and 5. We need the extra edge from l′i to v′1 as an
evaluation of l1 on a clause diamond to, e.g., 1, no longer, in itself, enforces that
l′i be evaluated to 5. In the existential variable gadgets, v1 must be evaluated to
either 1 or 5, and v′1 must be evaluated to the other. In a universal gadget, the loop
adjacent to the vertex ∀ will be evaluated to any of 1, 3 or 5 – but v2 and v′2 must
still be evaluated to opposites in 1 and 5. We depict an example of the situation
where the loop adjacent to ∀ is evaluated to 3, but the other vertices are mapped
so as to set v2 to 1 and v′2 to 5 (this is the left-hand diamond of Figure 7).

Finally, we must explain what happens in the degenerate cases in which v� and
v⊥ are not evaluated to 1 and 5, respectively (or vice-versa). It is not hard to see
that this is no problem, even when universal variables are evaluated anywhere.
Two examples of these degenerate cases, when v� and v⊥ are evaluated firstly to
1 and 1, and, secondly, to 1 and 3 are drawn in the centre and right of Figure 7.
In both cases, we consider what happens when the evaluation of a universal
variable forces the left-hand node of the gadget to be evaluated to 5.

It may be asked why we did not consider using a pattern of P101 and ∀-
selector P10 in the previous proof, while, instead of beginning with ∀v′�, v′⊥,
using ∃v′�∀v′⊥. This would then select the centre loop for v� along with at least
once an outer loop for v⊥. This proof would work for a simulation of the NP-hard
NAE3SAT, but breaks down for the quantified variables of QNAE3SAT.

Proposition 9. For all d, QCSP(P101d01) is Pspace-complete.

Proposition 10. If P is a weakly balanced 1-centred path, then QCSP(P) is
Pspace-complete.

Remaining path cases. We are close to having exhausted the possible forms
that a partially reflexive path may take.

Proposition 11. Let P be of the form α1b0a such that P is not 0-eccentric and
|α| + 1 ≤ |α|+b+a+1

2 ≤ |α| + b (the centre is in the 1b segment), then QCSP(P)
is Pspace-complete.
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Theorem 4. If P is not a 0-eccentric path, then QCSP(P) is Pspace-complete.

Proof. Suppose P is not a 0-eccentric path. Then, if P is weakly balanced,
the result follows from Propositions 7 and 10. Otherwise, P is of the form of
Proposition 11, and the result follows from that proposition.

4.2 NP-hardness for Remaining Trees

Theorem 5. Let T be a tree that is not quasi-loop-connected. Then QCSP(T )
is NP-hard.

Proof. Let T and its associated λ := λT be given. Define μ(x, y) to be the mini-
mum distance between some reflexive subtree Tx (at distance λ from x) and some
reflexive subtree Ty (at distanceλ from y). Note that we are considering all possible
reflexive subtrees Tx and Ty . In particular, since μ(x, y) is a minimum, it is suffi-
cient to consider only such reflexive subtrees that are maximal under inclusion.
Let μ := max{μ(x, y) : x, y ∈ T }. Since T is not quasi-loop connected, μ > 1. A
subpath P ⊆ T is said to have the μ-property if it connects two (maximal under
inclusion) reflexive subtrees Tx and Ty that witness the maximality of μ, as just
defined. Let ν be the size of the largest induced reflexive subtree of T .

Let P be the set of induced subpaths P of T that have the μ-property, re-
labelled with vertices {1, . . . , n := |P |} in the direction from Tx to Ty. Note
that the paths in P have loops on neither vertex 2 nor vertex n − 1. Note also
that P is closed under reflection of paths (i.e., the respective mapping of 1, . . . , n
to n, . . . , 1). We would like to reduce from NAE3SAT exactly as in the proof of
Proposition 5, with pattern P10μ−11 and ∀-selector P1ν0λ . The sentence we would
create for input for QCSP(T ) has precisely two universal quantifiers, at the be-
ginning (i.e. this is the only use of the ∀-selector). The point is that somewhere
we would forcibly stretch v� and v⊥ to be at distance μ (when this distance
is less, it will only make it easier to extend to homomorphism). However, this
method will only succeed if there is the path P10μ−11 ∈ P.

For P ∈ P, let Δ(P) be the distance from the end of the path P (vertex n)
to the nearest loop. Let Δ := max{Δ(P) : P ∈ P}. We build an input Ψ for
QCSP(T ) as in the proof of Proposition 5, with pattern P10Δ−11, except for the
point at which we have only the variables v� and v⊥ remaining free (i.e., the one
place we would come to use a ∀-selector). Here, we use the ∀-selector P0μ−11ν0λ

for v� and P1ν0λ for v�. For the correctness of this, note that a walk of μ−1 will
always get you to the penultimate loop along a path P ∈ P, which is sometimes
at distance Δ from the end (and is always at distance ≤ Δ from the end).
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Abstract. For a connected graph G = (V, E), a subset U ⊆ V is called a
disconnected cut if U disconnects the graph and the subgraph induced by U is
disconnected as well. We show that the problem to test whether a graph has a
disconnected cut is NP-complete. This problem is polynomially equivalent to
the following problems: testing if a graph has a 2K2-partition, testing if a graph
allows a vertex-surjective homomorphism to the reflexive 4-cycle and testing if
a graph has a spanning subgraph that consists of at most two bicliques. Hence,
as an immediate consequence, these three decision problems are NP-complete as
well. This settles an open problem frequently posed in each of the four settings.

1 Introduction

We solve an open problem that showed up as a missing case (often the missing case)
in a number of different research areas arising from connectivity theory, graph covers
and graph homomorphisms. Before we explain how these areas are related, we briefly
describe them first. Throughout the paper, we consider undirected finite graphs that
have no multiple edges. Unless explicitly stated otherwise they do not have self loops
either. We denote the vertex set and edge set of a graph G by VG and EG, respectively.
If no confusion is possible, we may omit the subscripts. The complement of a graph
G = (V,E) is the graph G = (V, {uv /∈ E | u �= v}). For a subset U ⊆ VG, we
let G[U ] denote the subgraph of G induced by U , which is the graph (U, {uv | u, v ∈
U and uv ∈ EG}).

1.1 Vertex Cut Sets

A maximal connected subgraph of G is called a component of G. A vertex cut (set) or
separator of a graph G = (V,E) is a subset U ⊂ V such that G[V \U ] contains at least
two components.

Vertex cuts play an important role in graph connectivity, and in the literature various
kinds of vertex cuts have been studied. For instance, a cut U of a graph G = (V,E) is
called a k-clique cut if G[U ] has a spanning subgraph consisting of k complete graphs;
a strict k-clique cut if G[U ] consists of k components that are complete graphs; a stable
cut if U is an independent set; and a matching cut if EG[U ] is a matching. The problem

� This work is supported by EPSRC (EP/G020604/1 and EP/G043434/1).

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 561–575, 2011.
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that asks whether a graph has a k-clique cut is solvable in polynomial time for k = 1,
as shown by Whitesides [22], and for k = 2 as shown by Cameron et al. [4]. The latter
authors also showed that deciding if a graph has a strict 2-clique cut can be solved
in polynomial time. On the other hand, the problems that ask whether a graph has a
stable cut or a matching cut, respectively, are NP-complete, as shown by Chvátal [6]
and Brandstädt et al. [1], respectively.

For a fixed constant k ≥ 1, a cut U of a connected graph G is called a k-cut of G
if G[U ] contains exactly k components. Testing if a graph has a k-cut is solvable in
polynomial time for k = 1, whereas it is NP-complete for every fixed k ≥ 2 [15]. For
k ≥ 1 and  ≥ 2, a k-cut U is called a (k,  )-cut of a graph G if G[V \U ] consists of
exactly  components. Testing if a graph has a (k,  )-cut is polynomial-time solvable
when k = 1,  ≥ 2, and NP-complete otherwise [15].

A cut U of a graph G is called disconnected if G[U ] contains at least two compo-
nents. We observe that U is a disconnected cut if and only if V \U is a disconnected cut
if and only if U is a (k,  )-cut for some k ≥ 2 and  ≥ 2. The following question was
posed in several papers [12,15,16] as an open problem.

Q1. How hard is it to test if a graph has a disconnected cut?

The problem of testing if a graph has a disconnected cut is called the DISCONNECTED

CUT problem. A disconnected cut U of a connected graph G = (V,E) is minimal if
G[(V \U) ∪ {u}] is connected for every u ∈ U . Recently, the corresponding decision
problem called MINIMAL DISCONNECTED CUT was shown to be NP-complete [16].

1.2 H-Partitions

A model graph H with VH = {h0, . . . , hk−1} has two types of edges: solid and dotted
edges, and an H-partition of a graph G is a partition of VG into k (nonempty) sets
V0, . . . , Vk−1 such that for all vertices u ∈ Vi, v ∈ Vj and for all 0 ≤ i < j ≤ k − 1
the following two conditions hold. Firstly, if hihj is a solid edge of H , then uv ∈ EG.
Secondly, if hihj is a dotted edge of H , then uv /∈ EG. There are no such restrictions
when hi and hj are not adjacent. Let 2K2 be the model graph with vertices h0, . . . , h3

and two solid edges h0h2, h1h3, and 2S2 be the model graph with vertices h0, . . . , h3

and two dotted edges h0h2, h1h3. We observe that a graph G has a 2K2-partition if and
only if its complement G has a 2S2-partition.

The following question was mentioned in several papers [5,7,8,11,18] as an open
problem.

Q2. How hard is it to test if a graph has a 2K2-partition?

One of the reasons for posing this question is that the (equivalent) cases H = 2K2

and H = 2S2 are the only two cases of model graphs on at most four vertices for
which the computational complexity of the corresponding decision problem, called
H-PARTITION, is still open; all other of such cases have been settled by Dantas et
al. [7]. Especially, 2K2-partitions have been well studied, see e.g. three very recent
papers of Cook et al. [5], Dantas, Maffray and Silva [8] and Teixeira, Dantas and
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de Figueiredo [18]. The first two papers [5,8] study the 2K2-PARTITION problem for
several graph classes, and the second paper [18] defines a new complexity class of
problems called 2K2-hard.

By a result on retractions of Hell and Feder [9], which we explain later, the list
versions of 2S2-PARTITION and 2K2-PARTITION are NP-complete. A variant on H-
partitions that allows empty blocks Vi in an H-partition is studied by Feder et al. [10],
whereas Cameron et al. [4] consider the list version of this variant.

1.3 Graph Covers

Let G be a graph and S be a set of (not necessarily vertex-induced) subgraphs of G
that has size |S|. The set S is a cover of G if every edge of G is contained in at least
one of the subgraphs in S. The set S is a vertex-cover of G if every vertex of G is
contained in at least one of the subgraphs in S. If all subgraphs in S are bicliques, that
is, complete connected bipartite graphs, then we speak of a biclique cover or a biclique
vertex-cover, respectively. Testing whether a graph has a biclique cover of size at most
k is polynomial-time solvable for any fixed k; it is even fixed-parameter tractable in k
as shown by Fleischner et al. [12]. The same authors [12] show that testing whether
a graph has a biclique vertex-cover of size at most k is polynomial-time solvable for
k = 1 and NP-complete for k ≥ 3. For k = 2, they show that this problem can be
solved in polynomial time for bipartite input graphs, and they pose the following open
problem.

Q3. How hard is it to test if a graph has a biclique vertex-cover of size 2?

The problem of testing if a graph has a biclique vertex-cover of size 2 is called the 2-
BICLIQUE VERTEX-COVER problem. In order to answer question Q3 we may without
loss of generality restrict to biclique vertex-covers in which every vertex is in exactly
one of the subgraphs in S (cf. [12]).

1.4 Graph Homomorphisms

A homomorphism from a graph G to a graph H is a mapping f : VG → VH that
maps adjacent vertices of G to adjacent vertices of H , i.e., f(u)f(v) ∈ EH whenever
uv ∈ EG. The problem H -HOMOMORPHISM tests whether a given graph G allows a
homomorphism to a graph H called the target which is fixed, i.e., not part of the input.
This problem is also known as H-COLORING. Hell and Nešetřil [14] showed that H-
HOMOMORPHISM is solvable in polynomial time if H is bipartite, and NP-complete
otherwise. Here, H does not have a self-loop xx, as otherwise we can map every vertex
of G to x.

A homomorphism f from a graph G to a graph H is surjective if for each x ∈ VH
there exists at least one vertex u ∈ VG with f(u) = x. This leads to the problem of
deciding if a given graph allows a surjective homomorphism to a fixed target graph H ,
which is called the SURJECTIVE H -HOMOMORPHISM or SURJECTIVE H -COLORING

problem. For this variant, the presence of a vertex with a self-loop in the target graph H
does not make the problem trivial. Such vertices are called reflexive, whereas vertices
with no self-loop are said to be irreflexive. A graph that contains zero or more reflexive
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vertices is called partially reflexive. In particular, a graph is reflexive if all its vertices are
reflexive, and a graph is irreflexive if all its vertices are irreflexive. Golovach, Paulusma
and Song [13] showed that for any fixed partially reflexive tree H , the SURJECTIVE

H -HOMOMORPHISM problem is polynomial-time solvable if the (possibly empty) set
of reflexive vertices in H induces a connected subgraph of H , and NP-complete oth-
erwise [13]. They mention that the smallest open case is the case in which H is the
reflexive 4-cycle denoted C4.

Q4. How hard is it to test if a graph has a surjective homomorphism to C4?

The following two notions are closely related to surjective homomorphisms. A homo-
morphism f from a graph G to an induced subgraph H of G is a retraction from G
to H if f(h) = h for all h ∈ VH . In that case we say that G retracts to H . For a
fixed graph H , the H-RETRACTION problem has as input a graph G that contains H
as an induced subgraph and is to test if G retracts to H . Hell and Feder [9] showed that
C4-RETRACTION is NP-complete.

We emphasize that a surjective homomorphism is vertex-surjective. A stronger no-
tion is to require a homomorphism from a graph G to a graph H to be edge-surjective,
which means that for any edge xy ∈ EH with x �= y there exists an edge uv ∈ EG
with f(u) = x and f(v) = y. Note that the edge-surjectivity condition only holds
for edges xy ∈ EH ; there is no such condition on the self-loops xx ∈ EH . An edge-
surjective homomorphism is also called a compaction. If f is a compaction from G to
H , we say that G compacts to H . The H-COMPACTION problem asks if a graph G
compacts to a fixed graph H . Vikas [19,20,21] determined the computational complex-
ity of this problem for several classes of fixed target graphs. In particular, he showed
that C4-COMPACTION is NP-complete [19].

1.5 The Relationships between Questions Q1–Q4

Before we explain how questions Q1–Q4 are related, we first introduce some new ter-
minology. The distance dG(u, v) between two vertices u and v in a graph G is the
number of edges in a shortest path between them. The diameter diam(G) is defined as
max{dG(u, v) | u, v ∈ V }. The edge contraction of an edge e = uv in a graph G
replaces the two end-vertices u and v with a new vertex adjacent to precisely those ver-
tices to which u or v were adjacent. If a graph H can be obtained from G by a sequence
of edge contractions, then G is said to be contractible to H . The biclique with partition
classes of size k and  is denoted Kk,�; it is called nontrivial if k ≥ 1 and  ≥ 1.

Proposition 1 ([15]). Let G be a connected graph. Then statements (1)–(5) are equiv-
alent:

(1) G has a disconnected cut.
(2) G has a 2S2-partition.
(3) G allows a vertex-surjective homomorphism to C4.
(4) G has a spanning subgraph that consists of exactly two nontrivial bicliques.
(5) G has a 2K2-partition.

If diam(G) = 2, then (1)–(5) are also equivalent to the following statements:
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(6) G allows a compaction to C4.
(7) G is contractible to some biclique Kk,� for some k,  ≥ 2.

Due to Proposition 1, questions Q1–Q4 are equivalent. Hence, by solving one of them
we solve them all. Moreover, every graph of diameter 1 has no disconnected cut, and
every graph of diameter at least 3 has a disconnected cut [12]. Hence, we may restrict
ourselves to graphs of diameter 2. Then, by solving one of Q1–Q4 we also determine the
computational complexity of C4-COMPACTION on graphs of diameter 2 and BICLIQUE

CONTRACTION on graphs of diameter 2; the latter problem is to test if a graph can be
contracted to a biclique Kk,� for some k,  ≥ 2. Recall that Vikas [19] showed that C4-
COMPACTION is NP-complete. However, the gadget in his NP-completeness reduction
has diameter 3 as observed by Ito et al. [16].

Our Result. We solve question Q4 by showing that the problem SURJECTIVE C4-
HOMOMORPHISM is NP-complete, even for graphs of diameter 2 that have a dominat-
ing non-edge. A pair of vertices in a graph is a dominating (non-)edge if the two vertices
of the pair are (non-)adjacent, and any other vertex in the graph is adjacent to at least
one of them. In contrast, Fleischner et al. [12] showed that this problem is polynomial-
time solvable on input graphs with a dominating edge. As a consequence of our result,
we find that the problems DISCONNECTED CUT, 2K2-PARTITION, 2S2-PARTITION,
and 2-BICLIQUE VERTEX-COVER are all NP-complete. Moreover, we also find that
the problems C4-COMPACTION and BICLIQUE CONTRACTION are NP-complete even
for graphs of diameter 2.

Our approach to prove NP-completeness is as follows. As mentioned before, we can
restrict ourselves to graphs of diameter 2. We therefore try to reduce the diameter in the
gadget of the NP-completeness proof of Vikas [19] for C4-COMPACTION from 3 to 2.
This leads to NP-completeness of SURJECTIVE C4-HOMOMORPHISM, because these
two problems coincide for graphs of diameter 2 due to Proposition 1. The proof that C4-
COMPACTION is NP-complete [19] has its roots in the proof that C4-RETRACTION is
NP-complete [9]. So far, it was only known that C4-RETRACTION stays NP-complete
for graphs of diameter 3 [16]. We start our proof by showing that C4-RETRACTION is
NP-compete even for graphs of diameter 2. The key idea is to base the reduction from
an NP-complete homomorphism (constraint satisfaction) problem that we obtain only
after a fine analysis under the algebraic conditions of Bulatov, Krokhin and Jeavons
[3]. We perform this analysis in Section 2 and present our NP-completeness proof for
C4-RETRACTION on graphs of diameter 2 in Section 3. This leads a special input graph
of the C4-RETRACTION problem, which enables us to modify the gadget of the proof of
Vikas [19] for C4-COMPACTION in order to get its diameter down to 2, as desired. We
explain this part in Section 4.

For reasons of space some simple proofs are omitted, these can be found in the full
version of this paper [17].

2 Constraint Satisfaction

The notion of a graph homomorphism can be generalized as follows. A structure is
a tuple A = (A;R1, . . . , Rk), where A is a set called the domain of A and Ri is an
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ni-ary relation on A for i = 1, . . . , k, i.e., a set of ni-tuples of elements from A. Note
that a graph G = (V,E) can be seen as a structure G = (V ; {(u, v), (v, u) | uv ∈ E}).
Throughout the paper we only consider finite structures, i.e., with a finite domain.

Let A = (A;R1, . . . , Rk) and B = (B;S1, . . . , Sk) be two structures, where each
Ri and Si are relations of the same arity ni. Then a homomorphism from A to B is a
mapping f : A → B such that (a1, . . . , ani) ∈ Ri implies (f(a1), . . . , f(ani)) ∈ Si
for every i and every ni-tuple (a1, . . . , ani) ∈ Ani . The decision problem that is to
test if a given structure A allows a homomorphism to a fixed structure B is called
the B-HOMOMORPHISM problem, also known as the B-CONSTRAINT SATISFACTION

problem.
LetA = (A;R1, . . . , Rk) be a structure. The power structureA� has domain A� and

for 1 ≤ i ≤ k, has relations

R�
i := {((a1

1, . . . , a
1
�), . . . , (a

ni
1 , . . . , ani

� )) | (a1
1, . . . , a

ni
1 ), . . . , (a1

� , . . . , a
ni

� ) ∈ Ri}.

An (l-ary) polymorphism of A is a homomorphism fromA� to A for some integer  . A
1-ary polymorphism is an endomorphism. The set of polymorphisms of A is denoted
Pol(A).

A binary function f on a domain A is a semilattice function if f(h, (f(i, j)) =
f(f(h, i), j), f(i, j) = f(j, i), and f(i, i) = i for all i, j ∈ A. A ternary function f
is a Mal’tsev function if f(i, j, j) = f(j, j, i) = i for all i, j ∈ A. A ternary function
f is a majority function if f(h, h, i) = f(h, i, h) = f(i, h, h) = h for all h, i ∈ A.
On the Boolean domain {0, 1}, we may consider propositional functions. The only two
semilattice functions on the Boolean domain are the binary function ∧, which maps
(h, i) to (h ∧ i), which is 1 if h = i = 1 and 0 otherwise, and the binary function ∨
which maps (h, i) to (h∨ i), which is 0 if h = i = 0 and 1 otherwise. We may consider
each of these functions on any two-element domain (where we view one element as 0
and the other as 1). For a function f on B, and a subset A ⊆ B, let f|A be the restriction
of f to A.

A structure is a core if all of its endomorphisms are automorphisms, i.e., are invert-
ible. We will make use of the following theorem from Bulatov, Krokhin and Jeavons [3]
(it appears in this form in Bulatov [2]).

Theorem 1 ([2,3]). Let B = (B;S1, . . . , Sk) be a core and A ⊆ B be a subset of size
|A| = 2 that as a unary relation is in B. If for each f ∈ Pol(B), f|A is not majority,
semilattice or Mal’tsev, then B-HOMOMORPHISM is NP-complete.

Let D be the structure on domain D = {0, 1, 3} with four binary relations

S1 := {(0, 3), (1, 1), (3, 1), (3, 3)} S3 := {(1, 3), (3, 1), (3, 3)}
S2 := {(1, 0), (1, 1), (3, 1), (3, 3)} S4 := {(1, 1), (1, 3), (3, 1)}.

Proposition 2. The D-HOMOMORPHISM problem is NP-complete.

Proof. We use Theorem 1. We first show that D is a core. Let g be an endomorphism
of D. If g(0) = 3 then g(1) = 3 by preservation of S2, i.e., as otherwise (1, 0) ∈ S2

does not imply (g(1), g(0)) ∈ S2. However, (1, 1) ∈ S4 but (g(1), g(1)) = (3, 3) /∈
S4. Hence g(0) �= 3. If g(0) = 1 then g(3) = 1 by preservation of S1. However,
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(3, 3) ∈ S3 but (g(3), g(3)) = (1, 1) /∈ S3. Hence g(0) �= 1. This means that g(0) = 0.
Consequently, g(1) = 1 by preservation of S2, and g(3) = 3 by preservation of S1.
Hence, g is the identity mapping, which is an automorphism, as desired.

Let A = {1, 3}, which is in D in the form of S1(p, p) (or S2(p, p)). Suppose that
f ∈ Pol(D). In order to prove Proposition 2, we must show that f|A is neither majority
nor semilattice nor Mal’tsev.

Suppose that f|A is semilattice. Then f|A = ∧ or f|A = ∨. If f = ∧, then either
f(1, 1) = 1, f(1, 3) = 3, f(3, 1) = 3, f(3, 3) = 3, or f(1, 1) = 1, f(1, 3) = 1,
f(3, 1) = 1, f(3, 3) = 3 depending on how the elements 1, 3 correspond to the two
elements of the Boolean domain. The same holds for f = ∨. Suppose that f(1, 1) = 1,
f(1, 3) = 3, f(3, 1) = 3, f(3, 3) = 3. By preservation of S4 we find that f(1, 3) = 1
due to f(3, 1) = 3. This is not possible. Suppose that f(1, 1) = 1, f(1, 3) = 1,
f(3, 1) = 1, f(3, 3) = 3. By preservation of S3 we find that f(1, 3) = 3 due to
f(3, 1) = 1. This is not possible.

Suppose that f|A is Mal’tsev. By preservation of S4, we find that f(1, 1, 3) = 1 due
to f(3, 1, 1) = 3. However, because f(1, 1, 3) = 3, this is not possible.

Suppose that f|A is majority. By preservation of S1, we deduce that f(0, 3, 1) ∈
{0, 3} due to f(3, 3, 1) = 3, and that f(0, 3, 1) ∈ {1, 3} due to f(3, 1, 1) = 1. Thus,
f(0, 3, 1) = 3. By preservation of S2, however, we deduce that f(0, 3, 1) ∈ {0, 1}
due to f(1, 3, 1) = 1. This is a contradiction. Hence, we have completed the proof of
Proposition 2. ��

3 Retractions

In the remainder of this paper, let H denote the reflexive 4-vertex cycle C4, on vertices
h0, . . . , h3, with edges h0h1, h1h2, h2h3, h3h0, h0h0, h1h1, h2h2 and h3h3. We prove
that H-RETRACTION is NP-complete for graphs of diameter 2 by a reduction from
D-HOMOMORPHISM.

Let A = (A;R1, . . . , R4) be an instance of D-HOMOMORPHISM, where we may
assume that each Ri is a binary relation. From A we construct a graph G as follows.
We let the elements inA correspond to vertices of G. If (p, q) ∈ Ri for some 1 ≤ i ≤ 4,
then we say that vertex p in G is of type  and vertex q in G is of type r. Note that a
vertex can be of type  and r simultaneously, because it can be the first element in a pair
in R1 ∪ · · · ∪R4 and the second element of another such pair. For each (p, q) ∈ Ri and
1 ≤ i ≤ 4 we introduce four new vertices ap, bp, cq, dq with edges app, apbp, bpp, cqq,
cqdq and dqq. We say that a vertex ap, bp, cq, dq is of type a, b, c, d, respectively; note
that these vertices all have a unique type.

We now let the graph H be an induced subgraph of G (with distinct vertices h0, . . . ,
h3). Then formally G must have self-loops h0h0, . . . , h3h3. However, this is irrelevant
for our problem, and we may assume that G is irreflexive (since H is reflexive, it does
not matter – from the perspective of retraction – if G is reflexive, irreflexive or anything
inbetween). In G we join every a-type vertex to h0 and h3, every b-type vertex to h1

and h2, every c-type vertex to h2 and h3, and every d-type vertex to h0 and h1. We also
add an edge between h0 and every vertex of A.
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We continue the construction of G by describing how we distinguish between two
pairs belonging to different relations. If (p, q) ∈ R1, then we add the edges cqp and
qh2; see Figure 1. If (p, q) ∈ R2, then we add the edges h2p and bpq; see Figure 2. If
(p, q) ∈ R3, then we add the edges h2p, h2q and apcq; see Figure 3. If (p, q) ∈ R4,
then we add the edges h2p, h2q and bpdq; see Figure 4. We also add an edge between
any two vertices of type a, between any two vertices of type b, between any two vertices
of type c, and between any two vertices of type d. Note that this leads to four mutually
vertex-disjoint cliques in G. We call G a D-graph. The proof of Lemma 1 proceeds by
a simple analysis (a diameter table appears in the full version of this paper [17]).

bp

cq

ap

dq
h30h

h1 h2

q

p

Fig. 1. The part of a D-graph G for a pair
(p, q) ∈ R1

bp

dq

cq

ap

h1 h2

h30h

p

q

Fig. 2. The part of a D-graph G for a
pair (p, q) ∈ R2

ap bp

cq

dq 0h

h1 h2

h3

p

q

Fig. 3. The part of a D-graph G for a pair
(p, q) ∈ R3

ap bp

cq

dq 0h

h2

h3

h1

q

p

Fig. 4. The part of a D-graph G for a
pair (p, q) ∈ R4

Lemma 1. Every D-graph has diameter 2 and a dominating non-edge.

Recall that Feder and Hell [9] showed that H-RETRACTION is NP-complete. Ito et
al. [16] observed that H-RETRACTION stays NP-complete on graphs of diameter 3.
We need the following. Lemma 1 and Theorem 2 together imply that H-RETRACTION

is NP-complete for graphs of diameter 2 that have a dominating non-edge.
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Theorem 2. The H-RETRACTION problem is NP-complete even for D-graphs.

Proof. We recall that H-RETRACTION is in NP, because we can guess a partition of
the vertex set of the input graph G into four (non-empty) sets and verify in polynomial
time if this partition corresponds to a retraction from G to H . From an instanceA ofD-
HOMOMORPHISM we construct aD-graph G. We claim thatA allows a homomorphism
to D if and only if G retracts to H .

First suppose that A allows a homomorphism f to D. We construct a mapping g
from VG to VH as follows. We let g(a) = hi if f(a) = i for all a ∈ A and g(hi) = hi
for i = 0, . . . , 3. Because f is a homomorphism from A to D, this leads to Tables 1–4,
which explain where ap, bp, cq and dq map under g, according to where p and q map.
From these, we conclude that g is a retraction from G to H . In particular, we note that
the edges cqp, bpq, apcq , and bpdq each map to an edge or self-loop in H when (p, q)
belongs to R1, . . . , R4, respectively.

Table 1. g-values when (p, q) ∈ R1

p q ap bp cq dq

h0 h3 h0 h1 h3 h0

h1 h1 h0 h1 h2 h1

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 2. g-values when (p, q) ∈ R2

p q ap bp cq dq

h1 h0 h0 h1 h3 h0

h1 h1 h0 h1 h2 h1

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 3. g-values when (p, q) ∈ R3

p q ap bp cq dq

h1 h3 h0 h1 h3 h0

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 4. g-values when (p, q) ∈ R4

p q ap bp cq dq

h1 h1 h0 h1 h2 h1

h1 h3 h0 h1 h3 h0

h3 h1 h3 h2 h2 h1

To prove the reverse implication, suppose that G allows a retraction g to H . We
construct a mapping f : A→ {0, 1, 2, 3} by defining f(a) = i if g(a) = hi for a ∈ A.
We claim that f is a homomorphism fromA to D. In order to see this, we first note that
g maps all a-type vertices to {h0, h3}, all b-type vertices to {h1, h2}, all c-type vertices
to {h2, h3} and all d-type vertices to {h0, h1}. We now show that (p, q) ∈ Ri implies
that (f(p), f(q)) ∈ Si for i = 1, . . . , 4.

Suppose that (p, q) ∈ R1. Because p is adjacent to h0, we obtain g(p) ∈ {h0, h1, h3}.
Because q is adjacent to h0 and h2, we find that g(q) ∈ {h1, h3}. If g(p) = h0,
then g maps cq to h3, and consequently, g(q) = h3. If g(p) = h1, then g maps
cq to h2, and consequently dq to h1, implying that g(q) = h1. If g(p) = h3, then
we do not investigate further; we allow g to map q to h1 or h3. Hence, we find that
(f(p), f(q)) ∈ {(0, 3), (1, 1), (3, 1), (3, 3)} = S1, as desired.

Suppose that (p, q) ∈ R2. Because p is adjacent to h0 and h2, we find that g(p) ∈
{h1, h3}. Because q is adjacent to h0, we find that g(q) ∈ {h0, h1, h3}. If g(q) =
h0, then g maps bp to h1, and consequently, g(p) = h1. If g(q) = h1, then we do
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not investigate further; we allow g to map p to h1 or h3. If g(q) = h3, then g maps
bp to h2, and consequently, ap to h3, implying that g(p) = h3. Hence, we find that
(f(p), f(q)) ∈ {(1, 0), (1, 1), (3, 1), (3, 3)} = S2, as desired.

Suppose that (p, q) ∈ R3. Because both p and q are adjacent to both h0 and h2, we
find that g(p) ∈ {h1, h3} and g(q) ∈ {h1, h3}. If g(p) = h1, then g maps ap to h0, and
consequently, cq to h3, implying that g(q) = h3. Hence, we find that (f(p), f(q)) ∈
{(1, 3), (3, 1), (3, 3)} = S3, as desired.

Suppose that (p, q) ∈ R4. Because both p and q are adjacent to both h0 and h2, we
find that g(p) ∈ {h1, h3} and g(q) ∈ {h1, h3}. If g(q) = h3, then g maps dq to h0, and
consequently, bp to h1, implying that g(p) = h1. Hence, we find that (f(p), f(q)) ∈
{(1, 1), (1, 3), (3, 1)} = S4, as desired. This completes the proof of Lemma 2. ��

4 Surjective Homomorphisms

Vikas [19] constructed the following graph from a graph G = (V,E) that contains H as
an induced subgraph. For each vertex v ∈ VG\VH we add three new vertices uv, wv, yv
with edges h0uv, h0yv, h1uv, h2wv, h2yv, h3wv, uvv, uvwv, uvyv, vwv, wvyv. We say
that a vertex uv, wv and yv has type u, w, or y, respectively. We also add all edges
between any two vertices uv, uv′ and between any two vertices wv, wv′ with v �= v′.
For each edge vv′ in EG\EH we choose an arbitrary orientation, say from v to v′, and
then add a new vertex xvv′ with edges vxvv′ , v

′xvv′ , uvxvv′ , wv′xvv′ . We say that this
new vertex has type x. The new graph G′ obtained from G is called an H-compactor
of G. See Figure 5 for an example. This figure does not depict any self-loops, although
formally G must have at least four self-loops, because G contains H as an induced
subgraph. Just as for retractions, this is irrelevant, and we assume that G is irreflexive.

xvv’

v v’

yv

yv’
uv’ uv

h0

h1 h2

h3

wv’wv

Fig. 5. The part of G′ that corresponds to edge vv′ ∈ EG \ EH as displayed in [19]
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Vikas [19] showed that a graph G retracts to H if and only if an (arbitrary) H-
compactor G′ of G retracts to H if and only if G′ compacts to H . Recall that an H-
compactor is of diameter 3 as observed by Ito et al. [16]. Our aim is to reduce the
diameter in such a graph to 2. This forces us to make a number of modifications. Firstly,
we must remove a number of vertices of type x. Secondly, we can no longer choose the
orientations regarding the remaining vertices of type x arbitrarily. Thirdly, we must
connect the remaining x-type vertices to H via edges. In more detail, let G be a D-
graph. For all vertices in G we create vertices of type u, v, w, y with incident edges as
in the definition of a compactor. We then perform the following three steps.

1. Not creating all the vertices of type x
We do not create x-type vertices for the following edges in G: edges between two a-
type vertices, edges between two b-type vertices, edges between two c-type vertices,
and edges between two d-type vertices.

2. Choosing the “right” orientation of the other edges of G \H
For (p, q) ∈ Ri and 1 ≤ i ≤ 4, we choose x-type vertices xapp, xpbp , xapbp , xqcq ,
xqdq , and xdqcq . In addition we create the following x-type vertices. For (p, q) ∈ R1

we choose xpcq . For (p, q) ∈ R2 we choose xqbp . For (p, q) ∈ R3 we choose xapcq . For
(p, q) ∈ R4 we choose xdqbp .

3. Connecting the created x-type vertices to H
We add an edge between h0 and every vertex of type x that we created in Step 2. We
also add an edge between h2 and every such vertex.

We call the resulting graph a semi-compactor of G and give two essential lemmas (proof
of the first proceeds by simple analysis – a diameter table appears in the full version of
this paper [17]).

Lemma 2. Let G be a D-graph. Every semi-compactor of G has diameter 2 and a
dominating non-edge.

Lemma 3. Let G′′ be a semi-compactor of aD-graph G. Then the following statements
are equivalent:

(i) G retracts to H;
(ii) G′′ retracts to H;

(iii) G′′ compacts to H;
(iv) G′′ has a vertex-surjective homomorphism to H .

Proof. We show the following implications: (i) ⇒ (ii), (ii) ⇒ (i), (ii) ⇒ (iii),
(iii)⇒ (ii), (iii)⇒ (iv), and (iv)⇒ (iii).

“(i)⇒ (ii)” Let f be a retraction from G to H . We show how to extend f to a retraction
from G′′ to H . We observe that every vertex of type u can only be mapped to h0 or h1,
because such a vertex is adjacent to h0 and h1. We also observe that every vertex of
type w can only be mapped to h2 or h3, because such a vertex is adjacent to h2 and
h3. This implies the following. Let v ∈ VG \ VH . If f(v) = h0 or f(v) = h1, then
wv must be mapped to h3 or h2, respectively. Consequently, uv must be mapped to h0

or h1, respectively, due to the edge uvwv . If f(v) = h2 or f(v) = h3, then uv must



572 B. Martin and D. Paulusma

be mapped to h1 or h0, respectively. Consequently, wv must be mapped to h2 or h3,
respectively, due to the edge uvwv . Hence, f(v) fixes the mapping of the vertices uv or
wv , and either uv is mapped to h1 or wv is mapped to h3. Note that both vertices are
adjacent to yv. Then, because yv can only be mapped to h1 or h3 due to the edges h0yv
and h2yv, the mapping of yv is fixed as well; if uv is mapped to h1 then yv is mapped
to h1, and if wv is mapped to h3 then yv is mapped to h3.

What is left to do is to verify whether we can map the vertices of type x. For this
purpose we refer to Table 5, where v, v′ denote two adjacent vertices of VG \VH . Every
possible combination of f(v) and f(v′) corresponds to a row in this table. As we have
just shown, this fixes the image of the vertices uv, uv′ , wv , wv′ , yv′ and yv. For xvv′ we
use its adjacencies to v, v′, uv and wv′ to determine potential images. For some cases,
this number of potential images is not one but two. This is shown in the last column of
Table 5; here we did not take into account that every xvv′ is adjacent to h0 and h2 in
our construction. Because of these adjacencies, every xvv′ can only be mapped to h1

or h3. In the majority of the 12 rows in Table 5 we have this choice; the exceptions are
row 4 and row 9. In row 4 and 9, we find that xvv′ can only be mapped to one image,
which is h0 or h2, respectively. By construction, we have that (v, v′) belongs to

{(ap, p), (p, bp), (ap, bp), (q, cq), (q, dq), (dq, cq), (p, cq), (q, bp), (ap, cq), (dq , bp)}.

We first show that row 4 cannot occur. In order to obtain a contradiction, suppose that
row 4 does occur, i.e., that f(v) = h1 and f(v′) = h0 for some v, v′ ∈ VG \VH . Due to
their adjacencies with vertices of H , every vertex of type a is mapped to h0 or h3, every
vertex of type b to h1 or h2, every vertex of type c to h2 or h3 and every vertex of type
d to h0 or h1. This means that v can only be p, q, bp, or dq , whereas v′ can only be p, q,
ap or dq . If v = p then v′ ∈ {bp, cq}. If v = q then v′ ∈ {cq, dq, bp}. If v = bp then v′

cannot be chosen. If v = dq then v′ ∈ {cq, bp}. Hence, we find that v = q and v′ = dq .
However, then f is not a retraction from G to H , because cq is adjacent to dq, q, h2, h3,
and f maps these vertices to h0, h1, h2, h3, respectively. Hence, row 4 does not occur.

We now show that row 9 cannot occur. In order to obtain a contradiction, suppose
that row 9 does occur, i.e., that f(v) = h2 and f(v′) = h3. As in the previous case, we
deduce that every vertex of type a is mapped to h0 or h3, every vertex of type b to h1 or
h2, every vertex of type c to h2 or h3 and every vertex of type d to h0 or h1. Moreover,
every vertex of type  or r cannot be mapped to h2, because it is adjacent to h0. Then
v can only be bp or cq , and v′ can only be p, q, ap or cq . However, if v = bp or v = cq
then v′ cannot be chosen. Hence, row 9 cannot occur, and we conclude that f can be
extended to a retraction from G′′ to H , as desired.
“(ii) ⇒ (i)” Let f be a retraction from G′′ to H . Then the restriction of f to VG is a
retraction from G to H . Hence, this implication is valid.

“(ii)⇒ (iii)” Every retraction from G′′ to H is an edge-surjective homomorphism, so
a fortiori a compaction from G′′ to H .

“(iii) ⇒ (ii)” Let f be a compaction from G′′ to H . We will show that f is without
loss of generality a retraction from G′′ to H . Our proof goes along the same lines as
the proof of Lemma 2.1.2 in Vikas [19], i.e., we use the same arguments but in addition
we must examine a few more cases due to our modifications in steps 1–3; we therefore
include all the proof details below.
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Table 5. Determining a retraction from G′′ to H

v v′ uv uv′ wv wv′ yv yv′ xvv′

h0 h0 h0 h0 h3 h3 h3 h3 h0/h3

h0 h1 h0 h1 h3 h2 h3 h1 h1

h0 h3 h0 h0 h3 h3 h3 h3 h0/h3

h1 h0 h1 h0 h2 h3 h1 h3 h0

h1 h1 h1 h1 h2 h2 h1 h1 h1/h2

h1 h2 h1 h1 h2 h2 h1 h1 h1/h2

h2 h1 h1 h1 h2 h2 h1 h1 h1/h2

h2 h2 h1 h1 h2 h2 h1 h1 h1/h2

h2 h3 h1 h0 h2 h3 h1 h3 h2

h3 h0 h0 h0 h3 h3 h3 h3 h0/h3

h3 h2 h0 h1 h3 h2 h3 h1 h3

h3 h3 h0 h0 h3 h3 h3 h3 h0/h3

We let U consist of h0, h1 and all vertices of type u. Similarly, we let W consist of
h2, h3 and all vertices of type w. Because U forms a clique in G, we find that f(U) is
a clique in H . This means that 1 ≤ |f(U)| ≤ 2. By the same arguments, we find that
1 ≤ f(W ) ≤ 2.

We first prove that |f(U)| = |f(W )| = 2. In order to derive a contradiction, suppose
that |f(U)| �= 2. Then f(U) has only one vertex. By symmetry, we may assume that
f maps every vertex of U to h0; otherwise we can redefine f . Because every vertex
of G′′ is adjacent to a vertex in U , we find that G′′ contains no vertex that is mapped
to h2 by f . This is not possible, because f is a compaction from G′′ to H . Hence
|f(U)| = 2, and by the same arguments, |f(W )| = 2. Because U is a clique, we find
that f(U) �= {h0, h2} and f(U) �= {h1, h3}. Hence, by symmetry, we assume that
f(U) = {h0, h1}.

We now prove that f(W ) = {h2, h3}. In order to obtain a contradiction, suppose
that f(W ) �= {h2, h3}. Because f is a compaction from G′′ to H , there exists an edge
st in G′′ with f(s) = h2 and f(t) = h3. Because f(U) only contains vertices mapped
to h0 or h1, we find that s /∈ U and t /∈ U . Because we assume that f(W ) �= {h2, h3},
we find that st is not one of wvh2, wvh3, h2h3. Hence, st is one of the following edges

vwv, wvyv, vxvv′ , yvh2, vh2, vh3, vv
′, v′xvv′ , wv′xvv′ , xvv′h2,

where v, v′ ∈ VG \ VH . We must consider each of these possibilities.
If st ∈ {vwv, wvyv, vxvv′} then f(uv) ∈ {h2, h3}, because uv is adjacent to

v, wv, yv, xvv′ . However, this is not possible because uv ∈ {h0, h1}. If st = yvh2, then
f(wv) = h2 or f(wv) = h3, because wv is adjacent to yv and h2. If f(wv) = f(yv),
then f(wv) �= f(h2), and consequently, {f(wv), f(h2)} = {h2, h3}. This means that
f(W ) = {h2, h3}, which we assumed is not the case. Hence, f(wv) �= f(yv). Then
f maps the edge wvyv to h2h3, and we return to the previous case. We can repeat the
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same arguments if st = vh2 or st = vh3. Hence, we find that st cannot be equal to
those edges either.

If st = vv′, then by symmetry we may assume without loss of generality that f(v) =
h2 and f(v′) = h3. Consequently, f(uv) = h1, because uv ∈ U is adjacent to v, and
can only be mapped to h0 or h1 By the same reasoning, f(uv′) = h0. Because wv
is adjacent to v with f(v) = h2 and to uv with f(uv) = h1, we find that f(wv) ∈
{h1, h2}. Because wv′ is adjacent to v′ with f(v′) = h3 and to uv′ with f(wv′) = h0,
we find that f(wv′) ∈ {h0, h3}. Recall that f(W ) �= {h2, h3}. Then, because wv
and wv′ are adjacent, we find that f(wv) = h1 and f(wv′) = h0. Suppose that xvv′

exists. Then xvv′ is adjacent to vertices v with f(v) = h2, to v′ with f(v′) = h3, to
uv with f(uv) = h1 and to wv′ with f(wv′) = h0. This is not possible. Hence xvv′
cannot exist. This means that v, v′ are both of type a, both of type b, both of type c or
both of type d. If v, v′ are both of type a or both of type d, then f(h0) ∈ {h2, h3},
which is not possible because h0 ∈ U and f(U) ∈ {h0, h1}. If v, v′ are both of type b,
we apply the same reasoning with respect to h1. Suppose that v, v′ are both of type c.
Then both v and v′ are adjacent to h2. This means that f(h2) ∈ {h2, h3}. Then either
{f(v), f(h2)} = {h2, h3} or {f(v′), f(h2)} = {h2, h3}. Hence, by considering either
the edge vh2 or v′h2 we return to a previous case. We conclude that st �= vv′.

If st = v′xvv′ then f(v) ∈ {h2, h3}, because v is adjacent to v′ and xvv′ . Then
one of vv′ or vxvv′ maps to h2h3, and we return to a previous case. Hence, we obtain
st �= v′xvv′ . If st = wv′xvv′ then f(v′) ∈ {h2, h3}, because v′ is adjacent to w′

and xvv′ . Then one of vv′ or v′xvv′ maps to h2h3, and we return to a previous case.
Hence, we obtain st �= wv′xvv′ . If st = xvv′h2 then f(wv′) ∈ {h2, h3}, because wv′

is adjacent to xvv′ and h2. Because f(W ) �= {h2, h3}, we find that f(wv′) = f(h2).
Then wv′xvv′ is mapped to h2h3, and we return to a previous case. Hence, st �= xvv′h2.
We conclude that f(W ) = {h2, h3}.

We now show that f(h0) �= f(h1). Suppose that f(h0) = f(h1). By symmetry we
may assume that f(h0) = f(h1) = h0. Because f(U) = {h0, h1}, there exists a vertex
uv of type u with f(uv) = h1. Because wv with f(wv) ∈ {h2, h3} is adjacent to uv, we
obtain f(wv) = h2. Because h2 with f(h2) ∈ {h2, h3} is adjacent to h1 with f(h1) =
h0, we obtain f(h2) = h3. However, then yv is adjacent to h0 with f(h0) = h0, to uv
with f(uv) = h1, to wv with f(wv) = h2, and to h2 with f(h2) = h3. This is not
possible. Hence, f(h0) �= f(h1). By symmetry, we may assume that f(h0) = h0 and
f(h1) = h1. Because h2 is adjacent to h1 with f(h1) = h1, and f(h2) ∈ {h2, h3}
we obtain f(h2) = h2. Because h3 is adjacent to h0 with f(h0) = h0, and f(h3) ∈
{h2, h3} we obtain f(h3) = h3. Hence, f is a retraction from G′′ to H , as desired.
“(iii) ⇒ (iv)” and “(iv) ⇒ (iii)” follow from the equivalence between statements 3
and 6 in Proposition 1, after recalling that G′′ has diameter 2 due to Lemma 2. ��

Our main result follows from Lemmas 2 and 3, in light of Theorem 2 (note that all
constructions may be carried out in polynomial time).

Theorem 3. The SURJECTIVE H -HOMOMORPHISM problem is NP-complete even for
graphs of diameter 2 with a dominating non-edge.
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Abstract. Distributed constraint optimization problems (DCOPs) have
been studied as a basic framework of multi-agent cooperation. The Re-
source Constrained DCOP (RCDCOP) is a special DCOP framework
that contains n-ary hard constraints for shared resources. In RCDCOPs,
for a value of a variable, a certain amount of the resource is consumed.
Upper limits on the total use of resources are defined by n-ary resource
constraints. To solve RCDCOPs, exact algorithms based on pseudo-trees
employ virtual variables whose values represent use of the resources. Al-
though, virtual variables allow for solving the problems without increas-
ing the depth of the pseudo-tree, they exponentially increase the size
of search spaces. Here, we reduce the search space of RCDCOPs solved
by a dynamic programming method. Several boundaries of resource use
are exploitable to reduce the size of the tables. To employ the bound-
aries, additional pre-processing and further filtering are applied. As a
result, infeasible solutions are removed from the tables. Moreover, mul-
tiple elements of the tables are aggregated into fewer elements. By these
modifications, redundancy of the search space is removed. One of our
techniques reduces the size of the messages by an order of magnitude.

1 Introduction

Distributed constraint optimization problems (DCOPs) [3,5,7,8,11,13] have been
studied as a basic framework of multi-agent cooperation. With DCOPs, the sta-
tus of agents and the relationship between agents are represented as discrete
optimization problems that consist of variables, constraints and functions. El-
ements of the problem are placed at various agents. Therefore, the problem is
solved using a distributed search algorithm. The Resource Constrained DCOP
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(RCDCOP) [9] is a special DCOP framework that contains n-ary hard con-
straints for shared resources. In RCDCOPs, for a value of a variable, a certain
amount of the resource is consumed. Upper limits on the total use of resources
are defined by n-ary resource constraints. The resource constraint can be con-
sidered as a kind of global constraint. Several problems in multi-agent systems
that consume shared energy or budget can be formalized as RCDCOPs. On
the other hand, basic solvers for DCOPs that handle binary constraints/func-
tions have to be extended to support the n-ary constraints of RCDCOPs. To
solve RCDCOPs, exact algorithms based on pseudo-trees employ virtual vari-
ables whose values represent use of the resources. The virtual variables allow for
solving the problems without increasing the depth of the pseudo-tree. However,
the virtual variables exponentially increase the size of search spaces. Therefore,
reducing the search space is an important problem. In a previous study [6],
a dynamic programming method for a specialized class of RCDCOP has been
proposed. The problem is motivated by a kind of power network and its charac-
teristics are exploited to reduce the tables of the dynamic programming. Since
their study mainly aims to handle this specific problem, several dedicated struc-
tures and constraints that represent feeder trees on the power supply network
are employed in their formalism and solver. Therefore, their problem definition
and representation is different from the RCDCOP in [9]. On the other hand,
our contribution is to show several methods to reduce the search space of the
RCDCOPs. Several issues about that point will be discussed in Section 2.4.

Here, we reduce the search space of RCDCOPs solved by a dynamic program-
ming method. Several boundaries of resource use are exploitable to reduce the
size of the tables. To employ the boundaries, additional pre-processing and fur-
ther filtering is applied. As a result, infeasible solutions are removed from the
tables. Moreover, multiple elements of the tables are aggregated into fewer ele-
ments. By these modifications, redundancy of the search space is removed. The
rest of the paper is organized as follows. In Section 2, we give the background for
the study, and related works are addressed. Our proposed methods are described
in Sections 3. The methods are experimentally evaluated in Section 4, and we
conclude our study in Section 5.

2 Background

2.1 Resource Constrained DCOP

A DCOP is defined by a set A of agents, a set X of variables and a set F of binary
functions. Agent i has its own variable xi. xi takes a value from a discrete finite
domain Di. The value of xi is controlled by agent i. The cost of an assignment
{(xi, di), (xj , dj)} is defined by a binary function fi,j(di, dj) : Di × Dj → N0.
The goal is to find a global optimal solution A that minimizes the global cost
function: ∑

fi,j∈F, {(xi,di),(xj ,dj)}⊆A
fi,j(di, dj). (1)
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In a RCDCOP, resource constraints are added to a DCOP. Resource con-
straints are defined by a set R of resources and a set U of resource requirements.
A resource r ∈ R has its capacity defined by C(r) : R→ N0. Each agent requires
resources according to its assignment. For an assignment (xi, di) and a resource
r, a resource requirement is defined by ui(r, di) : R×Di → N0. For each resource,
the total amount of requirements must not exceed its capacity. The global re-
source constraint is defined as follows: ∀r ∈ R,

∑
ui∈U, {(xi,di)}⊆A ui(r, di) ≤

C(r). The resource constraint takes arbitrary arity. In the following, we may use
the notation ui(r, d) even if xi does not relate to resource r. In that case, the
values of ui(r, d) are always zero. An example of RCDCOP that consists of 5
variables and 2 resources is shown in Figure 1(a). In this example, x0, x2 and
x3 are constrained by resource r0. x0, x1 and x4 are constrained by resource r1.

2.2 Pseudo Tree Ignoring Resource Constraints

Several exact solvers for DCOPs depend on a variable ordering defined by a
pseudo-tree [4,13,14]. The edges of the original constraint network are catego-
rized into tree edges and back edges of the pseudo-tree. The tree edges are the
edges of the spanning tree. The other edges are back edges. The tree edges rep-
resent the partial order relation between the two variables. In the following,
vertices, variables, and agents may not be strictly distinguished. The following
notations are used:

– prnti: the parent variable of xi.
– Chldi: the set of child variables of xi.
– NbrUi

1: the partial set of neighboring ancestor variables of xi. The variables
in NbrUi are related to xi by constraints.

– AncSti: the partial set of descendent-neighboring ancestor variables of xi.
Let xk denote a variable in AncSti. For at least one variable xj that is
contained in the pseudo-tree rooted at xi, xk has the relationship xk ∈
NbrUj .

There is no edge between different subtrees. By employing this property, search
processing can be performed in parallel.
1 In related works, NbrUi is called “pseudo parent”.
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When a DCOP contains an n-ary constraint, variables related to the constraint
have to be placed in a single path of a pseudo-tree. That increases the depth
of the pseudo-tree. Moreover, each variable depends on other ancestor variables
related with the n-ary constraint. In such pseudo-trees, it is difficult to apply
dynamic programming [13] because the size of its table exponentially increases
with the arity of the n-ary constraint.

By employing certain properties of the resource constraints, search can be
performed based on pseudo-trees that ignore resource constraints. An example
of such pseudo-trees is shown in Figure 1(b). Because resource constraints relate
to different subtrees of the pseudo tree, an additional scheme is necessary to
share the resources between the subtrees. A known solution is based on virtual
variables whose values represent use of the resources. Solvers process original
variables and virtual variables based on the pseudo-trees. However, the virtual
variables exponentially increase the size of search spaces. Therefore, reducing
the search space arises as a new problem. In a previous study [6], a dynamic
programming based solver called DPOP that employs a similar scheme has been
applied to a specialized class of RCDCOPs. Its search space is reduced using
several methods and characteristics of the problem.

2.3 DPOP with Virtual Variables

In this study, we focus on DPOP for general RCDCOPs. As the first step, we out-
line the cost computation using pseudo-trees without resource constraint [11,13].
In the following expressions, it is assumed that agents have already received both
variables’ values and cost values from other agents. Agent i’s computation is
based on the partial solution si of AncSti. si is called context. Si denotes the set
of all si. The local cost δi(si∪{(xi, d)}) for context si and value d of variable xi is
defined as δi(si∪{(xi, d)}) =

∑
(xj ,dj)∈si, j∈NbrUi

fi,j(d, dj). Optimal cost g∗(si)
for context si and the subtree routed at xi are recursively defined as follows.

g∗i (si) = min
d∈Di

gi(si ∪ {(xi, d)}) (2)

gi(si ∪ {(xi, d)}) = δi(si ∪ {(xi, d)}) +
∑

j∈Chldi

g∗j (sj) s.t. sj ⊆ (si ∪ {(xi, d)})

In dynamic programming, the computation of the optimal cost value of subtrees
is performed from leaf agents to a root agent. Then the optimal assignments
are decided from a root agent to leaf agents. There is no iterative processing.
However, the size of the memory and of the messages is exponential in the
induced width of the pseudo-trees because each agent i simultaneously computes
g∗(si) for all assignments of the variables contained in AncSti. When the globally
optimal cost g∗r (φ) is computed for the root variable xr, r determines the optimal
assignment of its variable. Similarly, an optimal solution for the rest of the
problem can be computed in a top-down manner.

Message paths of the dynamic programming are shown in Figure 2. The pro-
cessing consists of two phases of message propagation as follows.
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1 Wi ← φ.
2 foreach si ∪ {(xi, d)} s.t. si ∈ Si, d ∈ Di {
3 g ← δi(si ∪ {(xi, d)}). sv ← φ.
4 foreach r in Ri {
5 if(r relates to xi){ sv ← sv ∪ {(vr, ui(r, d))}. }else{ sv ← sv ∪ {(vr, 0)}. } }
6 computeTable(si ∪ {(xi, d)}, g, sv, Chldi).
7 }
8 end.
9 computeTable(si ∪ {(xi, d)}, g, sv, Chld){

10 if(Chld is empty){
11 if(all assignments of sv are feasible){
12 if(xi is root){ sv ← φ. }
13 if(Wi contains element w s.t. (t(w)↓S = si ∧ t(w)↓V = sv)){
14 g(w)← min(g(w), g). }else{ Wi ←Wi ∪ {(si ∪ sv, g)}. } }
15 }else{
16 xj ← the most prior element of Chld.
17 foreach w s.t. w ∈Wj , t(w)↓S ∈ si ∪ {(xi, d)} {
18 sv′ ← φ.
19 foreach (vr, u) in sv {
20 if(t(w)↓V contains element (vr, u

′)){ sv′ ← sv′ ∪ {(vr, u + u′)}.
21 }else{ sv′ ← sv′ ∪ {(vr, u)}. } }
22 computeTable(si ∪ {(xi, d)}, g + g(w), sv′, Chld\{xj}).
23 } }
24 }

Fig. 3. Computation of table Wi

1. Computation of the globally optimal cost: as shown above, the globally opti-
mal cost is computed in a bottom up manner. Using a COST message2, each
agent sends a table of optimal costs and assignments for the subtree rooted
at the agent’s variable. In the case of RCDCOP, the table also contains
information on resource use.

2. Computation of globally optimal assignments: the globally optimal assign-
ments are determined from the root agent to leaf agents. Using VALUE
messages, each agent sends the optimal assignments. Additionally, the up-
per limit of resource use for each subtree is also sent.

In the case of RCDCOP, use of resources is represented using virtual variables.
Let us denote by vr the virtual variable for resource r. vr takes a value between 0
and C(r). Agent i knows a set Ri of resources that relates to the subtree routed
at xi. Ri can be computed by a bottom-up preprocessing as follows.

Ri = {r|r relates to xi} ∪
⋃

xj∈Chldi

Rj (3)

We also assume that agent i knows the capacity of the resources contained in Ri.
That can be simultaneously propagated with Ri. Each agent i maintains values
of virtual variables for Ri. When xi takes a value di, one can think that the use
of the resource r is aggregated as vr,i = ui(r, di) +

∑
xj∈Chldi

vr,j . However, this

2 To represent the minimizing problem, we prefer to use COST instead of UTIL.
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1 s∗i ← φ. CSV ∗
i ← φ. g∗

i ←∞.
2 foreach (vr, u) in sv∗

prnti,i{ C(r)← u. }
3 foreach d in Di {
4 g ← δi(s

∗
prnti

∪ {(xi, d)}). sv ← φ.
5 foreach r in Ri {
6 if(r relates to xi){ sv ← sv ∪ {(vr, ui(r, d))}. }else{ sv ← sv ∪ {(vr, 0)}. } }
7 computeAssign(s∗prnti

∪ {(xi, d)}, g, sv, φ, Chldi).
8 }
9 end.

10 computeAssign(si ∪ {(xi, d)}, g, sv, CSV , Chld){
11 if(Chld is empty){
12 if(all assignments of sv are feasible){
13 if(g < g∗

i ){ s∗i ← si. CSV ∗
i ← CSV . g∗

i ← g. } }
14 }else{
15 xj ← the most prior element of Chld.
16 foreach w s.t. w ∈Wj , t(w)↓S ∈ si ∪ {(xi, d)} {
17 sv′ ← φ.
18 foreach (vr, u) in sv {
19 if(t(w)↓V contains element (vr, u

′)){ sv′ ← sv′ ∪ {(vr, u + u′)}.
20 }else{ sv′ ← sv′ ∪ {(vr, u)}. } }
21 computeAssign(si ∪ {(xi, d)}, g + g(w), sv′, CSV ∪ {(j, t(w)↓V )}, Chld\{xj}).
22 } }
23 }

Fig. 4. Computation of optimal assignment s∗i and cost allocation CSV ∗
i for children

equation is insufficient because it ignores the assignments of pseudo parents’
original variables in the subtree. Note that the use of resources depends on
the assignments of the original variables. Moreover, the problem can contain
multiple resources. Therefore, assignments of original and virtual variables have
to be handled together.

For agent i, the combination Ti that represents the assignments Si of original
variables and the assignments SVi of virtual variables is defined as Ti = {s ∪
sv|s ∈ Si, sv ∈ SVi} . For an element t of Ti, the notations t↓S and t↓V define
parts of t. t↓S is an element of Si. t↓V is an element of SVi. For the description
of the computation, we use a set Wi of pairs (t, g). Wi represents the table of
dynamic programming in agent i. t is an element of Ti. g is a cost value that
is aggregated for t. We decompose an element w = (t, g), into its components
using notations t(w) and g(w).

When agent i has received all Wj from each child j such that xj ∈ Chldi,
element (t, g) of Wi is computed as shown in Figure 3. Intuitively, this proce-
dure computes the minimum value of g for each t. Each assignment t and its
cost value g are recursively expanded and merged to Wi. Note that all combi-
nations of assignments from children are explored. That is necessary, because
the combinations implicitly represent different contexts of original variables. For
an element (t, g) of Wi, if at least one assignment of a virtual variable vr for
resource r exceeds capacity C(r), the element is infeasible. Therefore such an
element is eliminated before the element is merged to Wi. This efficiently reduces
the size of the search spaces when resource constraints are relatively tight. The
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assignment of xi is removed from t when (t, g) is merged to Wi. To compute
a minimum global cost value, assignments of resource variables are removed at
the root agent. If the problem is globally infeasible, the Wi of the root agent i
is empty. Otherwise, only one element is contained in the Wi of the root agent.
Therefore, the element represents the optimal cost.

Once the computation of the optimal cost value propagates to the root agent,
the root agent determines its optimal assignment, namely one whose cost corre-
sponds to the optimal cost. Then, the optimal assignment is sent to child agents,
and similar computations are propagated to leaf agents. When the agent i de-
termines its optimal assignment, the computation of costs is also performed to
evaluate assignments. The computation of the optimal assignments s∗i is shown
in Figure 4. While the computation resembles the computation of costs in Fig-
ure 3, there are three major differences. The first is that the assignment of AncSti
is fixed to the optimal assignment s∗prnti that is received from its parent node.
The second difference is that, for the optimal assignment, the set CSV ∗

i of as-
signments of virtual variables for all child agents is computed. The assignments
(j, sv∗i,j) in CSV ∗

i are sent to the child agent j with optimal assignment s∗prntj .
The last difference is that, by using assignments sv∗prnti,i of the virtual variables
received from the parent, the maximum use of each resource for the optimal
assignment is limited. Such computation of the virtual variables is similar to the
“child allocation invariant” in ADOPT [11], which is an exact solver based on
pseudo-trees.

2.4 Related Works

An extended DPOP algorithm for a specialized class of RCDCOPs has been
proposed in [6]. Basically, their problem domain is the allocation of feeder trees
on a power supply network. In their DCOP representation, each variable has a
structure that represents a (partial) feeder tree. The variable also represents use
of a resource. There are several hard constraints for the feeder trees. For each as-
signments of variables (i.e. partial feeder tree), a cost value is computed. Please
see [6] for more detailed explanations. In our study, several similar approaches are
applied to general RCDCOPs. The similar points of both methods are as follows.
In [6], an operator called Composite Project generates a tuple of assignments.
That resembles tuples of assignments of original/virtual variables in RCDCOPs,
as shown in Section 2.3. Also, in [6], a pruning called Dominated Pruning is em-
ployed to integrate partial solutions. Moreover, an assignment that represents
a feeder tree that has all leaves is replaced by its root node. That resembles
removing assignments in COST(UTIL) propagation in DPOP for RCDCOPs, as
shown in Section 2.3. On the other hand, several points are different between
the two studies. Basically, the representation in [6] highly depends on the prob-
lem domain of feeder trees although several parts may be translated to generic
RCDCOP. For example, the aggregation for assignments of variables that rep-
resents a (partial) feeder tree is different from the one in generic RCDCOPs. A
single resource (i.e. electrical power) is considered in [6] while multiple resources
are considered in RCDCOP. In [6], hard constraints and dedicated structures
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cost/
resource  use

cost vr0 vr1 vr2

w
w'
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(a) w' is replaced by w (b) w and w' are not aggregated

Fig. 5. Aggregation of assignments
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Fig. 6. Moving evaluation of resource use

represent specific properties of the problem, including Kirchhoff’s law and the
capacity of the power line, while in RCDCOPs the hard constraints model the
total amount of available resources.

In this study, we investigate several methods to reduce the size of the search
space of DPOP. Our main contribution consists in a way of applying a set of
techniques to reduce the size of tables in a variant of DPOP for RCDCOPs.
While several ideas are based on related works, they are re-formalized for the
RCDCOPs and the solver. Also, they can be consistently integrated. These tech-
niques can be applied to the ADOPT-based solver shown in [9]. In [9], authors
propose an efficient method that employs upper bounds on the use of resources.
It can be considered as a simple version of the method shown in Section 3.5,
that employ feasible solutions. However, its effect has been relatively small. We
clarified the effect of the feasible solution and integrated it with other meth-
ods that employ infeasible solutions. In [1,12], extended classes of DCOPs that
contains slightly different types of resource constraints are shown. Although
modifications to handle the different types of the resource constraints are nec-
essary, the methods shown in our study will be effective for those classes of
problems.

3 Reducing Search Spaces

The basic algorithm shown in Section 2.3 already reduces search spaces by elim-
inating infeasible solutions. Here, we show additional methods to reduce the
search spaces. These methods consist of preprocessing and/or add-on process-
ing. In the following, to clarify the essence of these computations, we prefer to
use recursive expressions. Actually, the preprocessing can be represented as a
top-down or bottom-up distributed computations. All methods shown in this
section can be consistently combined. While the method shown in Sections 3.3
and 3.4 modify evaluation functions of resource use, they do not contradict each
other. The method in Section 3.5 extends the method in Sections 3.2. Several
possible combinations of the methods are evaluated in Section 4.
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3.1 Root Nodes of Resources

In the basic algorithm, assignments of virtual variables are removed at the root
node of the pseudo-tree. If a resource only relates to variables in a subtree,
the virtual variable for the resource can be removed at the root agent of that
subtree. This approach resembles the method shown in [9]. For this modification,
additional processing is applied to the computation of Ri shown in Expression 3.
When agents compute Ri in a bottom-up manner, the number nRr,i of variables
that relate to resource r in the subtree routed at i is simultaneously computed
as follows.

nRr,i =
∑

xj∈Chldi,r∈Rj

nRr,j +
{

1 xi relates to r
0 otherwise (4)

To evaluate whether nRr,i reaches the arity of the resource constraint for r, at
least one agent that directly relates to the resource r leaks the arity. Then, the
arity of r is also propagated in a bottom-up manner. If nRr,i equals the arity of
r, then the agent i is the root of resource r. Therefore, r, nRr,i and the arity of
r are eliminated when Ri is sent to i’s parent. The limitation of Ri is effective
when multiple resources relate to a small number of variables in a part of the
pseudo-tree.

3.2 Aggregation of Assignments

In the computation shown in Figure 3, elements of Wi are aggregated when their
assignments are completely equal. However, by employing a monotonicity of the
assignments, more effective aggregation can be applied. Let w and w′ denote
elements of Wi. For two assignments t(w)↓V and t(w′)↓V , a relation # is defined
as follows.

t(w)↓V # t(w′)↓V iff ∀(vr , u) ∈ t(w)↓V ∀(vr, u′) ∈ t(w′)↓V , u ≥ u′ (5)

t(w)↓V # t(w′)↓V means that the resource use of t(w′) does not exceed the
use of t(w). By using this relation, the following aggregation is applied when
t(w)↓S = t(w′)↓S :

1. t(w)↓V = t(w′)↓V ∧ g(w) = g(w′): w and w′ are completely equal. They are
integrated as shown in Figure 3.

2. t(w)↓V � t(w′)↓V ∧ g(w) ≤ g(w′): w′ is replaced by w.
3. t(w)↓V # t(w′)↓V ∧ g(w) ≥ g(w′): w is replaced by w′.
4. otherwise: both w and w′ are stored.

The first condition has the highest priority. This aggregation is based on the
fact that if there is an assignment whose cost and resource uses are smaller than
for other assignments, then the other assignments are redundant for minimizing
costs. Figure 5 shows the concept of the aggregation. In this figure, (a) and (b)
represent the second and last conditions. The effects of the aggregation depend
on characteristics of assignments. If many assignments have the relationship
of monotonicity, many assignments can be aggregated to a smaller number of
assignments.
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3.3 Global Lower Bounds of Resource Use

When the minimum value of resource use is greater than zero, a common amount
of the use can be extracted as the global lower bound of the resource use. This
modification is a simple case of soft arc consistency [2,10]. Because RCDCOPs
in this work contain only unary functions of resource use, each agent only needs
to consider the assignment of its variable. The lower bound uLi,r for agent i’s use
of resource r is computed as follows: uLi,r = mind∈Di ui(r, d). Then, function ui
is modified to subtract uLi,r. For all d in Di, ui(r, d)← ui(r, d)− uLi,r.

Values of uLi,r are summed in a bottom-up manner. Agent i computes a total
amount uL∗i,r of a lower bound of resource use as uL∗i,r = uLi,r+

∑
xj∈Chldi

uL∗j,r. The
computation propagates to the root agent of resource r. In the root agent i of r,
the capacity of r is modified to subtract uL∗i,r : C(r)← C(r)−uL∗i,r . Then, to update
the capacity in descendant agents, C(r) is propagated in a top-down manner.
This computation implicitly propagates resource use among different subtrees.
Because the capacities of resources are reduced, the number of infeasible solutions
can be increased. Therefore, the number of elements in Wi can be reduced.
Obviously, if uLi,r is zero in all agents, the processing has no effect.

3.4 Moving Evaluation of Resource Use

To improve the efficiency of the pruning based on feasible solutions, the pruning
should be applied in lower levels of the pseudo-trees. If the lowest agent that is
related to a resource evaluates all assignments for the resource, that increases
the number of infeasible assignments detected in the agent. This approach is
similar to the serialization technique of the variables for n-ary constraints [1,12].
However, the extra assignments increase the size of the search space.

Instead of that, similar techniques can be applied for two variables that are
directly related with an original cost function. Because assignments of the higher
variable are already contained in assignments for AncSti of the lower variable xi,
the modification does not increase the size of the search space. The evaluation of
resource use is moved as follows. In the first phase, a bottom-up computation is
performed to compute the set XL

r,i,j of lower peer variables of variable xi. Each
variable in XL

r,i,j directly relates to xi with both a cost function and a resource r.
For the bottom-up computation, descendant agent j of i maintains XL

r,i,j and
propagates XL

r,i,j to its parent using the following steps.

1. XL
r,i,j ← ∪xk∈Chldj,k has XL

r,i,k
XL
r,i,k

2. if (XL
r,i,j is empty) ∧ (xj relates to xi by a cost function) ∧ (xj and xi relate

to resource r), then XL
r,i,j ← {xj}

As a result of the computation, agent i knows XL
r,i,i, which represents lower peer

variables of variable xi. If there are lower peer variables in multiple subtrees,
XL
r,i,i contains multiple variables. Then, for all d in Di, agent i decides a share

of resource use ui,j(r, d) for each variable xj in XL
r,i,i. In this study, the values of
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ui,j(r, d) are shared by peer variables as evenly as possible. The value of ui,j(r, d)
is subtracted from the function ui of resource use. Then ui,j(r, d) is sent to xj .
Agent j aggregates ui,j(r, d) when the assignment of the virtual variable for r is
computed. An example is shown in Figure 6. In this example, the resource use
of x0 is completely subtracted. Then, the resource use is shared with agents 2
and 3. These agents evaluate the use of the resource instead of agent 0.

3.5 Feasible Solutions

In the above, infeasible or redundant solutions are considered to reduce the num-
ber of elements in Wi. If capacities of resources are sufficient, it is unnecessary
to consider any resource constraints. However, the effectiveness of the pruning
methods based on infeasible solutions decreases when the capacity of resources
increases. In completely feasible problems, they have no effects. Therefore, in
easy problems, considering feasible solutions is necessary to reduce the number
of elements of Wi. To detect the feasibility in a subtree, resource use in other
parts of the pseudo-tree is necessary. Because we do not use iterative search
processing for each context, upper bounds of the resource use are computed
in a pre-processing. In the first step, a bottom-up processing is performed to
compute the upper bounds in subtrees. Similarly to the computation shown in
Section 3.3, the upper bounds uUi,r for agent i and resource r are computed as
uU∗
i,r = maxd∈Di ui(r, d) +

∑
xj∈Chldi

uU∗
j,r . Then, upper bounds uU+

i,r of resource
use in other parts of the subtree are computed as follows.

uU+
i,r = maxd∈Dprnti

uprnti(r, d) + uU+
prnti,r +

∑
xj∈Chldprnti

\{i} uU∗
j,r (6)

For element w of Wi, the feasibility of assignment t(w)↓V is evaluated using uU+
i,r .

For all (vr, u) in t(w)↓V , if u + uU+
i,r ≤ C(r), then w is feasible.

Now the aggregation of the elements w and w′ of Wi is generalized. When
t(w)↓S = t(w′)↓S , the feasibility of w and w′ is evaluated. If both of w and w′

are feasible, they are aggregated as follows.

1. g(w) = g(w′): one of w and w′ is replaced by the other one.
2. g(w) < g(w′): w′ is replaced by w.
3. g(w) > g(w′): w is replaced by w′.

Otherwise, the aggregation shown in Section 3.2 is applied.
In contrast to the pruning based on infeasible solutions, the aggregation of

feasible solutions has almost no effect if resource constraints are relatively tight.
Both effects are complementary. When the upper bound uU+

i,r of resource use is
applied with the method shown in Section 3.4, uU+

i,r has to be revised to exclude
the moved use of resource r.

3.6 Correctness and Complexity

The computation of the proposed methods basically resembles conventional
methods based on pseudo-trees. Only redundant solutions are eliminated from
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Fig. 10. Influence of correlation between
cost and resource use (n=20, c=1, virasd)

the tables of the dynamic programming. Therefore, the correctness of the solver
is the same as for the conventional methods. In the worst case, the size of the
table of agent i is

∏
j∈AncSti |Dj | ·

∏
r∈Ri

(C(r) + 1). Although the increments
of computation depend on implementations, the total number of comparisons
of two solutions in generating a table is up to the product of the number of
solutions in the generated table and the number of solutions that are enumer-
ated in the computation of dynamic programming. The encoding of the dynamic
programming table of the new algorithm consists of the full list of assignments.
It is true that the size of compact tables which are encoded as an array of all
cost values that are sorted by an order of solutions can be smaller than the size
of tables using the list of assignments, when the pruning is insufficient. On the
other hand, if the pruning leaves less than 1 / (size of an assignment) of the
assignments, the size of our tables is smaller than the size of compact tables.

4 Evaluation

The proposed methods are experimentally evaluated using random RCDCOPs.
The RCDCOPs consist of n ternary variables, 1.1n binary cost functions and
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Table 1. Influence of size of problems (total num. of assign., u=5, virasdf, incomplete
results are not shown)

r n c
min. 0.25 0.5 0.75 1

1 20 44 254 314 137 118
40 98 1219 1364 338 289
60 181 5658 5695 801 733
80 270 21859 23045 1979 1774

4 20 82 175 1041 235 119
40 181 1302 26606 1522 289
60 327 31607 - 16907 733
80 490 - - - 1774

10 20 105 165 313 186 120
40 237 701 - 8334 297
60 434 - - - 736
80 847 - - - 1780

r n-ary resource constraints. We prefer a very low density of cost functions,
because we focus on the influence of the resource constraint. In the case that there
are multiple resources, a resource relates to n/r agents. Although each agent
consumes only one resource, agents have to maintain use of resources that relate
to a part of pseudo-tree including the agent. Cost values of each cost function
fi,j were randomly set from the interval [1, 5] based on a uniform distribution.
For each value of the variables and each related resources, an amount in interval
[1, u] is consumed. To ensure the minimum resource use n for feasible solutions,
resource use for one value of each variable is forced to the minimum of 1. Using
parameter c, capacity c·u·(n/r) of each resource is determined. Parameters u and
c are common for all resources in a problem instance. The constraint networks
are randomly generated. Results for fifty problem instances are averaged. We
limited the maximum number of assignments in a table to 105. If the size of
a table exceeded the limit value, the computation was aborted. The following
methods are evaluated:

– vi(a basic algorithm in Section 2.3. It removes infeasible assignments),
– vir(vi with removing resource assignments in Section 3.1),
– vira(vir with aggregation of assignments in Section 3.2),
– viras(vira with extracting global lower bounds of resource use in Section 3.3),
– virasd(viras with moving the evaluation of resource use in Section 3.4),
– virasdf(vrasd with detection of feasibility in Section 3.5).

Figure 7 shows the size of tables. The total number of assignments, and the
maximum number of assignments in an agent are evaluated. The resource con-
straints of these problems are relatively tight. Therefore, the methods viras and
virasd that employ infeasibility are effective. virasd is better than other partial
combinations. On the other hand, virasdf has almost no effect. vir efficiently
eliminates virtual variable in the case of r = 10, because several resources are
locally shared by few agents. Figure 8 shows effects of the feasibility. virasdf
reduces the size of the table in loosely constrained problems.

The influence of combinations of resource use is shown in Figure 9. Although
these problems are completely feasible, virasd does not exploit this feasibility.
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Table 2. Approximate method (total num. of assign. and (error ratio), u=10, c=0.5,
incomplete results are not shown)

r n e
0 1 2 3 10 20

1 20 313 (1) 263 (1.03) 229 (1.09) 203 (1.13) 160 (1.31) 159 (1.32)
40 1265 (1) 945 (1.04) 775 (1.09) 652 (1.16) 452 (1.38) 446 (1.40)
60 5349 (1) 3811 (1.03) 2890 (1.09) 2324 (1.16) 1252 (1.40) 1229 (1.43)
80 17380 (1) 11806 (1.03) 8456 (1.09) 6585 (1.15) 3081 (1.39) 2881 (1.43)

4 20 1390 (1) 879 (1.03) 650 (1.07) 464 (1.11) 298 (1.30) 295 (1.31)
40 - 17831 7346 4556 1079 1035
60 - - - 47176 6801 5251
80 - - - - - 24724

10 20 406 (1) 316 (1.02) 268 (1.04) 238 (1.07) 195 (1.18) 194 (1.19)
40 - - 13414 7647 1910 1633
60 - - - - 17451 15707

Therefore, the effect of the aggregation of assignments is emphasized. The effect
decreases when summation of resource use takes various values.

The aggregation of the assignments depends on a monotonicity between the
assignments. We attempted to emphasize this characteristics by sorting re-
source use ui(r, d). For each value di of variable xi, a heuristic value h∗

i (di) =∑
j maxdj∈Dj fi,j(di, dj) is computed. Then, the resource uses are sorted to have

positive or negative correlation with h∗
i (di). The result shown in Figure 10 can

be considered as an influence of the correlation. It can be considered that there
are relatively small opportunities of the aggregation in the case of the negative
correlation.

Table 1 shows results when the size of problems is changed. The scalability
depends on the effects of the pruning methods. In complex problems, relaxation
or approximation in the integration of solutions will be necessary. As a simple
method, we can allow for a bounded error in the aggregation. If errors are al-
lowed in the aggregation of the assignments of virtual variables, incorrect feasible
or infeasible assignments may be inferred. Therefore, we tolerate the bounded
errors for cost values. With the parameter e of the error, the second condition
in Section 3.2 is modified as follows.

2. t(w)↓V � t(w′)↓V ∧ g(w) ≤ g(w′) + e: w′ is replaced by w.

Similarly, the third condition can be modified. The modification abandons op-
portunities to reduce cost values by e. To avoid diffusion of the errors in Wi, only
new assignments can be aggregated with other assignments existing in the table.
Table 2 shows the effects of the approximating approaches when parameter e
is changed. In this experiment, we used parameter u = 10 that increases the
difficulty of the problems especially in the cases of multiple-resources. The size
of tables is reduced in exchange for the errors.

5 Conclusions

In this study, we investigated several methods to reduce the search space of
RCDCOPs solved by dynamic programming methods. The proposed methods are
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based on several boundaries of resource use. Infeasible or suboptimal solutions
are removed from the tables. Multiple elements of the tables are aggregated into
fewer elements. The feasibility of the assignments is also exploited and the solvers
are generalized to process completely feasible problems. By these modifications,
redundancy of the search space is removed.

Future work will include applying these efficient methods to other classes of
resource constrained DCOPs, developing sophisticated criteria for the approxi-
mation methods, and conducting evaluation in practical problems.

Acknowledgments. This work was supported in part by KAKENHI, a Grant-
in-Aid for Scientific Research (B), 23300060.
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Abstract. The presence of symmetries in a constraint satisfaction prob-
lem gives an opportunity for more efficient search. Within the class of
matrix models, we show that the problem of deciding whether some
well known permutations are model symmetries (solution symmetries on
every instance) is undecidable. We then provide a new approach to prov-
ing the model symmetries by way of model transformations. Given a
model M and a candidate symmetry σ, the approach first syntactically
applies σ to M and then shows that the resulting model σ(M) is semanti-
cally equivalent to M . We demonstrate this approach with an implemen-
tation that reduces equivalence to a sentence in Presburger arithmetic,
using the modelling language MiniZinc and the term re-writing language
Cadmium, and show that it is capable of proving common symmetries
in models.

1 Introduction

Solving a constraint satisfaction problem (CSP) can be made more efficient by
exploiting the symmetries of the problem. In short the efficiency is gained by
omitting symmetric regions of the search space. The automated detection of
symmetries in CSPs has recently become a topic of great interest. However, the
majority of research into this area has been directed at individual instances of
CSPs where the exact set of variables, constraints and domains are known before
the detection takes place. The most accurate and complete methods for detecting
solution symmetries are computationally expensive and so limited in the size of
problem they can tackle (e.g. [10,8,1]).

A CSP model represents a class of CSPs and is defined in terms of some
parameters. An instance is generated from the model by assigning values to the
parameters. There are automatic symmetry detection methods for CSP models,
as described in [13,14]. However they are problem-specific or can only detect a
very small collection of simple symmetries, namely piecewise value and piecewise
variable interchangeability.
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Mears et al. [9] proposed a broader framework to detect model symmetries
which only requires explicitly detecting solution symmetries on small instances.
The framework can be described as performing the following steps:
1. Detect symmetries on some collection of small instances of the model,
2. Lift the detected symmetries to model permutations,
3. Filter the model permutations to keep only those that are likely to be sym-

metries for all instances of the model (candidate model symmetries),
4. Prove that the selected model permutations are indeed symmetries for every

instance of the model (model symmetries).

Mears et al. [9] developed an automated implementation of this framework on
matrix models (i.e. the variables of each instance have an underlying matrix
structure) that tackles steps 1, 2 and 3 whilst preliminary attempts at 4, using
graph techniques, can be found in [7]. These graph theoretic approaches were,
however, ad hoc and not automated. Automating step 4 can be approached by
way of automated theorem proving as in [6], where the authors represent their
models in existential second order logic and use a theorem proving application to
verify that a candidate model symmetry is a model symmetry. Whilst potentially
quite powerful, this approach requires a large amount of work to translate a
practical model into the required form.

The distinction between constraint symmetry and solution symmetry proves
to be critical. This paper studies the problem of proving whether a given can-
didate symmetry is a model symmetry. One result that we provide is that, in
general, deciding whether or not some well known candidate symmetries are
model “solution” symmetries is undecidable and indeed undecidable under quite
weak assumptions on the models. These results consider models that can be
viewed as tiling problems and then utilises the standard method of encoding
Turing machines into tiling problems introduced by Robinson [12].

From the other direction, when restricting to constraint symmetries, we pro-
vide a new method that can prove when a given candidate symmetry is a model
symmetry by way of model transformations. Specifically, if we apply our candi-
date symmetry to our model and obtain an “equivalent” model in return, then
we can deduce that our candidate symmetry is indeed a model symmetry (and
indeed a constraint symmetry on every instance of the model). We implement
this idea by attempting to reduce the problem of model equivalence to a first
order sentence in some decidable theory.

Our implementation uses MiniZinc as the modelling language and Cadmium
to perform model transformations and our method focuses on proving simple
matrix symmetries (swapping dimensions, inverting dimensions and permuta-
tions of a dimension) on arbitrary matrix models. Two benefits of our method
are:

1. we act directly on the MiniZinc model, being the same model that could be
used in solving a given instance, and

2. the theoretical steps to transform the model are closely matched to the
Cadmium rules that transform the MiniZinc model.

We present an application of our method to a set of well known bench marks.
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2 Background

A CSP is a tuple (X,D,C) where X represents a set of variables, D a set of
values and C a set of constraints. For a given CSP, a literal is defined to be an
ordered pair (x, d) ∈ X × D and represents the expression x = d. We denote
the set of all literals of a CSP P by lit(P ) and define var(x, d) = x, for all
(x, d) ∈ lit(P ). An assignment A is a set of literals. An assignment over a set
of variables V ⊆ X has precisely one literal (x, d) for each variable x ∈ V . An
assignment over X is called a complete assignment.

A constraint c is defined over a set of variables, denoted by vars(c), and specifies
a set of allowed assignments over vars(c). An assignment A over V ⊆ X satisfies
constraint c if vars(c) ⊆ V and the set {(x, d) ∈ A | x ∈ vars(c)} is allowed by c.
A solution is a complete assignment that satisfies every constraint in C.

A solution symmetry σ of a CSP P is a permutation on lit(P ) that preserves
the set of solutions [1], i.e. σ is a bijection from lit(P ) to lit(P ) that maps
solutions to solutions. A permutation f on the set of variables X induces a
permutation σf on the set of literals lit(P ) in the obvious way, i.e. σf (x, d) =
(f(x), d). A variable symmetry is a permutation of the variables whose induced
literal permutation is a solution symmetry. Similarly, a value symmetry is a
solution symmetry σf (x, d) = (x, f(d)), for some permutation f on D. If d
is a set, then f is a permutation on all possible elements of d. A variable-value
symmetry is a solution symmetry that is neither a variable nor a value symmetry.

The microstructure complement of a CSP P is a graph with vertices X ×D,
and a hyperedge between a set of vertices if that set represents an assignment
disallowed by some constraint, or disallowed because it assigns distinct values
to one variable. A constraint symmetry of a CSP P is an automorphism of the
microstructure of P [1]. Note that every constraint symmetry of a problem is
also a solution symmetry.

A CSP model is a parametrised form of CSP, where the overall structure of
the problem is specified, but particular details such as size are omitted. A model
permutation σ of a CSP model M is a function that takes an instance P of the
model M and produces a permutation on lit(P ), i.e. σ(P ) is a permutation on
lit(P ), for all instances P of M . A model (constraint) symmetry σ of a CSP model
M is a model permutation such that σ(P ) is a solution (constraint) symmetry,
for all instances P of M . For the purposes of this paper, a matrix model is a
model M such that the variables of M form a single n-dimensional matrix of the
following form:

{x[i1, i2, . . . , in] | 1 ≤ ij ≤ dj for all 1 ≤ j ≤ n},

where the dj ’s indicate the size of each dimension and may be determined by
the parameters of the model. See [3] and [4] for more on matrix models.

The models that we will be interested in are those that have parameters
consisting of integers p1, p2, . . . , pn and a fixed number of quantified constraints
of the form

(∀k1, k2, . . . kl)Φ(k1, k2, . . . , kl, p1, p2, . . . , pn)

G({x[I1], x[I2], . . . , x[Im] | Ψ(I1, I2, . . . , Im, k1, k2, . . . , kl, p1, p2, . . . , pn)}) (�)
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where

– G is a constraint (possibly global),
– each Ii represents a list of r (not necessarily distinct) variables for some

fixed r (note that we do not allow nested indexing), and
– Φ and Ψ are arithmetic formulæ, with free variables among those within the

corresponding parenthesis.

Example 1. The N-Queens problem of size N is to construct an N ×N board where
we are required to place N mutually non-attacking queens.

Below is a model of the Boolean N-queens problem of size N , where N is the param-
eter of the model. The model uses N2 zero-one variables – one for each combination
of row and column – where the variable x[i, j] is one if and only if row i and column j
has a queen placed.

X[N ] ={x[i, j] | i, j ∈ R = {1, 2, . . . , N}}
D[N ] ={0, 1}
C[N ] ={(∀j ∈ R)

∑
1≤i≤N

x[i, j] = 1,

(∀i ∈ R)
∑

1≤j≤N

x[i, j] = 1,

(∀k ∈ {3, . . . , 2N − 1})
∑
{x[i, j] | i, j ∈ R, i + j = k} ≤ 1,

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1}.

This problem has many model symmetries; one of them is that the i and j dimensions

can be interchanged (diagonal reflection of the square).

The quantified constraints in the above example are equivalent to those of (!).
Indeed,

(∀j ∈ R)
∑

1≤i≤N

x[i, j] = 1

from above is equivalent to

(∀k)1 ≤ k ∧ k ≤ N
∑
{x[i, j] | 1 ≤ i ∧ i ≤ N ∧ j = k} = 1,

where the constraint G in this case is the global constraint of the sum equaling 1.

3 Undecidability of Model Symmetries

In this section we show that two common permutations cannot be algorithmi-
cally recognised as solution symmetries of CSP models. More precisely we show
that the class of CSP models (with a single 2-dimensional matrix variable x)
admitting the given solution symmetry is not recursively enumerable. As the
consequences of a proof system form a recursively enumerable set, a sort of
incompleteness theorem follows: any proof system for proving the existence of
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solution symmetries from CSP models is incomplete. We prove this for the do-
main inversion symmetry and the dimension swap symmetry, though other cases
(those in Section 4.1) can be treated using similar ideas.

Mancini and Cadoli [6] have provided similar undecidability results with re-
spect to problem specifications which formulates classes of CSPs via scond order
logic. The results given here differ in that we only require a single matrix of
variables, the constraints have extremely simple structure and the models relate
to natural geometric constraint satisfaction problems of independent interest
(symmetric tilings of the plane for example).

We consider CSP models related to tiling grids by square tiles with matching
conditions dictating which tile can be placed in horizontal adjacency and which
can be placed in vertical adjacency. This situation may be viewed as a kind of
directed graph except with two binary relations∼h and ∼v (representing allowed
horizontal and vertical adjacencies resp.) instead of one.

The basic problem of tiling an N ×N grid with tiles from {0, . . . , n− 1} is as
follows (here x[i,j] = k represents tile k being placed at position (i, j)).

X[N ] = {x[i, j] | 0 ≤ i, j ≤ N − 1}
D[N ] = {0, 1, . . . , n− 1}
C[N ] = {(∀i, j ∈ {0, . . . , N − 1}, i > 0)x[i− 1, j] ∼h x[i, j]

(∀i, j ∈ {0, . . . , N − 1}, j > 0)x[i, j − 1] ∼v x[i, j]}

It is well known that the problem of deciding if the full positive quadrant of
the plane may be tiled starting from an arbitrary finite T is undecidable. This
is usually proved by a simple encoding of a Turing machine program into the
tiles so that successfully tiled rows of the plane correspond to successful steps
of computation by the Turing machine. If the Turing machine eventually halts
then the tiling cannot be completed. We exploit this idea by instead allowing
completion of the tiling, but only in a way that violates some symmetry always
present in nonhalting situations.

The results are proved using variations of this CSP model. Note that failure to
exhibit a given solution symmetry is a Σ0

1 property. Thus it remains to show Σ0
1 -

hardness. We reduce the Halting Problem to the failure of a solution symmetry.

3.1 Basic Strategy

The arguments are extensions of the following idea. We use an easy variation of
the Halting problem for deterministic Turing machine programs: given a Turing
machine program T with no halting states, but with some distinguished state q,
is the state q ever reached when T is started on the blank tape? This problem
is Σ0

1 -complete.
Step 1. The program T can be encoded into a set of tiles TT in a standard

way (see Robinson [12] or Harel [5] for example). Successive tiled rows corre-
spond to successive configurations of the machine running T . Let us assume that
tile 0 encodes the Turing machine in initial state reading the blank symbol and
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that tile 1 encodes a transition into state q. Then the following problem is Σ0
1 -

complete: given T , is there a number N and a tiling of the N ×N grid using TT
with tile 0 at position (0, 0) and involving placement of tile 1?

Step 2. Duplicate some part (or all of) TT , creating the solution symmetry of
interest. Then adjust the adjacency conditions applying to tile 1 and compared
to its duplicate so that the solution symmetry is violated in sufficiently large
models if and only if state q is reached by T .

3.2 Swapping of Dimension: x[i, j] �→ x[j, i]

Aside from the domain structure and the input parameter N , the constraints
used in this construction involve only order and successor on indices. First, the
tiling created at step 1 of the basic strategy is adjusted so that it exhibits the
constraint symmetry x[i, j] �→ x[j, i]: moreover in every solution, the value of
x[i, j] is equal to the value of x[j, i], and in no solution can tile 1 be placed on the
diagonal. Step 2 of the basic strategy involves duplication of the distinguished tile
1: say that tile 2 is the exact duplicate of tile 1, with every adjacency condition
for 1 applying identically to tile 2. Add one further constraint c dictating that
tile 1 cannot be placed above the diagonal and that tile 2 cannot be placed below
the diagonal.

If the Turing machine program T does not reach state q, then tile 1 cannot
be placed, and the final constraint c is redundant. In this case the dimension
swapping solution symmetry holds. However if T does eventually reach state q,
then for sufficiently large N , a tiling of the N × N grid will involve, for some
i > j, placement of 1 at some position x[i, j] and 2 at position x[j, i]. This
violates the solution symmetry.

3.3 Inversion of Domain: x[i, j] �→ n − 1 − x[i, j]

Aside from the domain structure and the input parameter N , the constraints
used in this construction involve only successor on indices. Let us assume that
the tiling created at step 1 of the basic strategy has tiles 0, . . . , n − 1. For step
2 we duplicate these tiles to produce tiles 0, . . . , n − 1, n, . . . , 2n − 1, with tile
i ≤ n − 1 corresponding to tile 2n − 1 − i: there are no adjacencies allowed
between tiles from 0, . . . , n − 1 and those from n, . . . , 2n − 1, but within these
two blocks, the adjacency patterns are identical (except in reverse order).

Weaken the constraint x[0, 0] = 0 to x[0, 0] ∈ {0, 2n − 1}: this CSP model
exhibits inversion of domain as a constraint symmetry, and every solution corre-
sponds to a tiling of an N ×N grid with either the tiles 0, . . . , n− 1 or the tiles
n, . . . , 2n−1. Now remove all adjacency capabilities for tile 2n−2 (the duplicate
of the special tile 1): so 2n−2 cannot be placed. The inversion of domain solution
symmetry can hold if and only if no solution involves placement of tile 1, which
is equivalent to program T reaching state q.
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4 Proving Symmetries by Model Transformation

Motivated by the matrix model permutations investigated in [9] (i.e. dimension
swap, dimension inversion and dimension permutations), we describe an auto-
mated method that is capable of proving when such permutations are indeed
model constraint symmetries. Specifically, given a common matrix permutation
σ on the variables of a model M , we prove that σ is a symmetry of M by
showing that σ(M) is semantically equivalent to M . We say that a quantified
constraint c in a model M is equivalent to a quantified constraint c′ in the model
σ(M) if, for every instance of M , the quantified constraint c is equal to c′ in the
corresponding instance of σ(M). Note that we are concerned here with “con-
straint symmetries” in contrast to the previous section where we found that it is
undecidable to determine if such permutations are model solution symmetries.

Given a model with a set of quantified constraints C, and a symmetry σ, the
method has the following steps:

1. Partition the quantified constraints into equivalence classes ΘG where a
quantified constraint c ∈ ΘG if the constraint (refer to (!) in Section 2)
in c is G.

2. Compute σ(c) for each quantified constraint c ∈ C, giving the set C′ =
{σ(c) | c ∈ C} with equivalence classes Θ′

G = σ(ΘG) (we assume that σ
satisfies: if G is the constraint in c then G is also the constraint in σ(c)).

3. Normalise every quantified constraint c′ ∈ C′ by reducing the expressions
used as array indices to single variables by substitution.

4. For each bijection ϕ : C → C′, that preserves the equivalence classes ΘG,
produce a sentence Φϕ(c) (in some decidable theory) that expresses (if true)
the equivalence of c ∈ C with its matched constraint ϕ(c) ∈ C′.

5. Prove that the sentence
∨
ϕ

∧
c∈C Φϕ(c) is true.

Since item 4 requires two quantified constraints have the same constraint G
before we attempt to match them, this method will not be complete for model
constraint symmetries.

We now describe steps 2–4 in detail. We restrict ourselves to models in which
the variables have integer, or set of integer, domains and the quantified con-
straints are of the form (!) where Φ and Ψ are first order formulæ in Presburger
arithmetic (considered here to be the first order theory of +,−,≤, 0, 1 over the
integers; a well known decidable theory, see e.g. [2]).

4.1 Computing σ(c)

We consider the following five types of permutations acting on a matrix of vari-
ables (these include permutations from Section 3.)

– Swapping of dimensions j and k:
x[i1, i2, . . . , ij , . . . , ik, . . . , in] �→ x[i1, i2, . . . , ik, . . . , ij , . . . , in],
where j < k and dj = dk,

– Inverting of dimension j:
x[i1, i2, . . . , ij , . . . , in] �→ x[i1, i2, . . . , dj − ij + 1, . . . , in],
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– All permutations of dimension j:
x[i1, i2, . . . , ij , . . . , in] �→ x[i1, i2, . . . , ϕ(ij), . . . , in], where ϕ represents an arbitrary
permutation on {1, 2, . . . , dj},

– All permutations of values:
x[i1, i2, . . . , in] �→ ϕ(x[i1, i2, . . . , in]), where ϕ represents an arbitrary permutation
on the domain of values.

– Inverting of values:
x[i1, i2, . . . , in] �→ u− (x[i1, i2, . . . , in]) + l, where l and u are the lower and upper
bounds of the value domain.

These permutations appear commonly in matrix models. We define the quanti-
fied constraint σ(c) by replacing each occurrence of x[i1, i2, . . . , in] in c with its
image σ(x[i1, i2, . . . , in]) as given above.

Example 2. One of the constraints of the N-Queens problem (Example 1) is:

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1

where R = {1, 2, . . . , N}. Let σ be the symmetry that swaps dimensions 1 and 2:
x[i, j] �→ x[j, i] By substituting x[j, i] for x[i, j], we see that σ(c) is:

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[j, i] | i, j ∈ R, i− j = k} ≤ 1

4.2 Substituting Complex Expressions

The goal of this step is to reduce all array accesses x[e1, e2, . . . , en], where each ej
is an expression, to the form x[i1, i2, . . . , in] where each ij is a single variable
(or constant) and the name of the variables ij are in lexicographical order. In
particular, the name of a variable ij is lexicographically less than the name of ik
if j < k.

We introduce variables ij that will ultimately take the place of the expres-
sions ej . We assume an expression ej is a permutation f of a quantified vari-
able qj . For example, ej could be the expression ϕ(qj) where 1 ≤ qj ≤ N and ϕ
is a permutation on the set {1, 2, . . . , N}.

We introduce a new variable ij and let ij = ej ; therefore qj = f−1(ij). Using
this identity, we replace all occurrences of qj throughout the constraint with
f−1(ij) and as a result, ej becomes ij.

With the names of the introduced variables are generated in lexicographical
order, we perform the substitution of the expressions ej in order that they appear
in the array access; this ensures that after simplification, the names of the ij
variables in x[i1, i2, . . . , in] are in lexicographical order.

Example 3. Consider again one of the constraints of the N-Queens problem (Exam-
ple 1):

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1

where R = {1, 2, . . . , N}. Let σ be the symmetry that inverts dimension 1:

x[i, j] �→ x[N − i + 1, j]
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By substituting x[N − i + 1, j] for x[i, j], we see that σ(c) is:

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[N − i + 1, j] | i, j ∈ R, i− j = k} ≤ 1

Let us now substitute the first expression in the array access. We introduce a new
variables α = N − i + 1 and β = j. We see that α is a function of the quantified
variable i, and that i = N − α + 1. Next, we replace each occurrence of the quantified
variable i with N − α + 1 and each occurrence of j with β, giving:

(∀k ∈ S)
∑
{x[α, β] | N − α + 1, β ∈ R, N − α + 1− β = k} ≤ 1

where S = {2−N, . . . , N − 2}.

4.3 Equivalence via Presburger Forumlæ

In the previous subsections we described how we apply a candidate symmetry to
the quantified constraints and to rewrite them into a reduced form that matches
the form of one or more of the original constraints. We now want to determine
if two model constraints are equivalent; if checking this can be formulated into a
first order statement in some decidable theory, then a theorem prover can prove
or disprove equivalence.

Example 4. In Example 3 we obtained the quantified constraint

(∀k ∈ S)
∑{

x[α, β] | N − α + 1, β ∈ R and N − α + 1− β = k
} ≤ 1

where R = {1, . . . , N} and S = {2 − N, . . . , N − 2}. Renaming α to i and β to j we
obtain

(∀k ∈ S)
∑{

x[i, j] | N − i + 1, j ∈ R and N − i + 1− j = k
} ≤ 1.

It so happens that this quantified constraint is equivalent to one from the original
model, namely

(∀l ∈ {3, . . . , 2N − 1})
∑{

x[i, j] | i, j ∈ R and i + j = l
} ≤ 1.

Since the relations corresponding to the sum global constraint are identical in the
two constraints whenever they have the same arity, the equivalence of the quantified
constraints is equivalent to their scopes being the same; which corresponds to the
following sentences holding in the integers:

(∀i, j, N)(∀k ∈ S)(N − i + 1 ∈ R) ∧ (j ∈ R) ∧ (N − i + 1− j = k)

⇒ (∃l ∈ {3, . . . , 2N − 1})(i ∈ R) ∧ (j ∈ R) ∧ (i + j = l)

and

(∀i, j, N)(∀l ∈ {3, . . ., 2N − 1})(i ∈ R) ∧ (j ∈ R) ∧ (i + j = l)

⇒ (∃k ∈ S)(N − i + 1 ∈ R) ∧ (j ∈ R) ∧ (N − i + 1− j = k)

These sentences are both true and can easily be seen to be equivalent to sentences in

Presburger arithmetic.
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4.4 An Exploration of N-Queens

In this section we further explore the model symmetry σ(i, j) = (j, i) for the
N -queens model described in Section 2.

This model involves two global constraints, both involving
∑

. This gives us
the two equivalence classes

Θ(=1) ={(∀j ∈ R)
∑

1≤i≤N

x[i, j] = 1, (∀i ∈ R)
∑

1≤j≤N

x[i, j] = 1} and

Θ(≤1) ={(∀k ∈ {3, . . . , 2N − 1})
∑
{x[i, j] | i, j ∈ R, i + j = k} ≤ 1,

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1}.

Applying σ to C we obtain C′ = σ(Θ(=1)) ∪ σ(Θ(≤1)), where

σ(Θ(=1)) ={(∀j ∈ R)
∑

1≤i≤N

x[j, i] = 1, (∀i ∈ R)
∑

1≤j≤N

x[j, i] = 1}

and

σ(Θ(≤1)) ={(∀k ∈ {3, . . . , 2N − 1})
∑
{x[j, i] | i, j ∈ R, i + j = k} ≤ 1,

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[j, i] | i, j ∈ R, i− j = k} ≤ 1}.

Notice that, the constraints in C′ are already essentially normalized (the indices
are not lexicographically ordered, however this will not concern us), so we just
need to find a bijection ϕ from C to C′ that maps Θ(=1) to σ(Θ(=1)) and Θ(≤1)

to σ(Θ(≤1)) such that for all c ∈ C, the quantified constraint ϕ(c) is equivalent
to c.

Let ϕ be a bijection from C to C′ such that ϕ(Θ(=1)) = σ(Θ(=1)) and
ϕ(Θ(≤1)) = σ(Θ(≤1)) (there are only 4 such maps). Since our quantified con-
straints are equivalent to those of the form (!), to determine if c ∈ C is equivalent
to ϕ(c) ∈ C′ amounts to proving sentences in Presburger like those we found in
Section 4. In this case, the map ϕ that matches c ∈ Θ(≤1) with its corresponding
σ(c) and matches c ∈ Θ(=1) with c′ ∈ Θ(≤1) where c′ �= σ(c), will produce true
sentences, whilst all other ϕ will produce a sentence that is false.

5 Implementation

The transformations described in the previous section are implemented as Cad-
mium rules that act on a MiniZinc model. Before showing the details of our
implementation, we describe briefly MiniZinc and Cadmium.

A MiniZinc model is a set of items. The items we are interested in are con-
straint items: it is these that we will be manipulating. Consider this example
constraint item:

constraint forall (i,j in 1..N) ((sum (k in 1..N) (x[i,j,k]) = 1));
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The token constraint introduces a constraint item. The forall indicates a
quantification of some variable(s) over some range(s) of values. The first paren-
thesised part (i,j in 1..n) is called a generator and introduces the two vari-
ables that are to be quantified, and that both range over the set of integers from 1
to N inclusive. The body of the quantification is the second parenthesised part.
The left hand side of the = constraint is a sum expression that introduces an
index variable k which also ranges over the set 1 to N , and the expression as a
whole evaluates to the sum of x[i,j,k] for a given i and j over those values of
k. The right hand side is simply the constant 1. This constraint item therefore
represents the constraint:

(∀i, j ∈ R)
∑
k∈R

x[i, j, k] = 1 where R = {1, 2, . . . , N}.

Since we only consider quantified constraints of the form (!) from Section 2, we
only operate on a subset of Minizinc.

MiniZinc models are translated into terms to be manipulated by Cadmium
rules. A Cadmium rule has the following form:

Context \ Head <=> Guard | Body.

The meaning of a rule is that wherever Head occurs in the model it should be
replaced by Body, but only if Guard is satisfied and if Context appears in the
conjunctive context of Head. Roughly, the conjunctive context of a term is the
set of all terms that are joined to it by conjunction. The Context and Guard
parts are optional. Consider the following example Cadmium rules:

-(-(X)) <=> X.
constraint(C) <=> ID := unique_id("con") |

(constraint_orig(ID,C) /\ constraint_to_sym(ID,C)).

The first rule implements a basic arithmetic identity. Identifiers such as X that
begin with an uppercase letter are variables and can match any term. The head
-(-(X)) matches any term X that is immediately preceded by two negations,
and such a term is replaced by the body X. The second rule is more com-
plex. It matches any constraint item constraint(C) and replaces it with the
conjunction constraint_orig(ID,C) /\ constraint_to_sym(ID,C). The body
of the constraint item C is duplicated into two items constraint_orig(ID,C)
and constraint_to_sym(ID,C), where the new names constraint_orig and
constraint_to_sym are arbitrary and do not have any interpretation in Mini-
Zinc. The guard ID := unique_id("con") calls the standard Cadmium function
unique_id to supply a unique identifier to be attached to the constraints. This
guard always succeeds; its purpose is to assign a value to ID.

Each step of the method corresponds to a set of Cadmium rules. In this section
we show excerpts of the relevant parts of the Cadmium rules that implement
these steps. Particular details of Cadmium will be explained as necessary.

5.1 Computing σ(c)

First, the constraints are duplicated and the symmetry is applied.
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% Every constraint C is given a unique ID and is duplicated.
constraint(C) <=> ID := unique_id("con") |

(constraint_orig(ID,C) /\ constraint_to_sym(ID,C)).
% Every constraint in the duplicated set has the symmetry applied.
constraint_to_sym(ID,C) <=> constraint_sym(ID,sigma(C)).

The rule for sigma depends on the particular symmetry to be tested. Here are
three possible definitions, corresponding to the first three kinds of permutation
in Section 4.1. The “all-permutations” symmetries are represented by a syntactic
construct that represents an arbitrary permutation.

% Dimensions 1 and 2 swap: x[i,j,k] -> x[j,i,k]
sigma(aa(id("x"), t([I,J,K]))) <=> aa(id("x"), t([J,I,K])).
% Inverting of dimension 1: x[i,j,k] -> x[n-i+1,j,k]
sigma(aa(id("x"), t([I,J,K]))) <=>

aa(id("x"), t([id("n")+(-I)+i(1),J,K])).
% All permutations of dimension 1: x[i,j,k] -> x[phi(i),j,k]
sigma(aa(id("x"), t([I,J,K]))) <=>

aa(id("x"), t([permutation(phi,I),J,K])).

% Traverse the entire constraint term to apply the symmetry.
sigma(E) <=> ’$arity’(E) ‘$==‘ 0 | E.
sigma(E) <=> [F|A] := ’$deconstruct’(E) |

’$construct’([F | list_map(sigma, A)]).

The term aa(id("x"), t([I,J,K])) represents a MiniZinc array access of the
form x[I,J,K], where I, J and K are arbitrary terms. The id(S) term represents
an identifier with name S (a string), and the t([...]) term represents a tuple
(in this case the indices of the array).

The final two rules implement a top-down traversal of a term. Zero-arity
terms, such as strings, are handled in the first rule: they are left unchanged.
Compound terms, such as constraint_to_sym(ID,C), are broken into their
functor (constraint_to_sym) and their arguments (ID and C), and the sym-
metry is applied recursively to the arguments. The special $deconstruct and
$construct functions respectively break a term into its parts or reconstruct a
term from its parts.

5.2 Substituting Complex Expressions

In this step we find the expressions used in array accesses and replace them with
single variables. Firstly, we find those expressions used in the array accesses.

% Extract array indices in the order that they are used.
% I,J,K may be complex expressions.
extract_indices(aa(_Array, t([I,J,K]))) <=> [I,J,K].
% (Traversal omitted.)

The result is a list of expressions that should be replaced with single variables.
This list is passed as the first argument to the rename_list rule. Note that the
order that the expressions were found in the array access is also the order in
which they are renamed.

rename_list([], T) <=> T.
% Replace in term T the complex expression X with a fresh variable Y.
rename_list([X|Xs], T) <=>

Y := unique_id("index") /\
renaming(From, To) := compute_renaming(X, id(Y)) |

substitute_ids([From ‘maps_to‘ To], T).
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The term X is the expression ej to be replaced. The first part of the guard
Y := unique_id("index") generates the fresh variable ij . As described in Sec-
tion 4.2, we assume that ej = f(qj) and replace all occurrences of qj with
f−1(ij). The rule compute_renaming computes this replacement f−1(ij); the
standard Cadmium rule substitute_ids performs the replacement throughout
the term T.

The compute_renaming begins with the complex expression ej as the first
argument, and the replacement variable ij as the second argument. Parts of the
expression are moved to the second argument until the first argument is a single
variable (a bare identifier).

% The inverse of phi(X) is invphi(X).
compute_renaming(permutation(Phi, X), Y) <=>

compute_renaming(X, inverse_permutation(Theta, Y)).

% If X is a global variable (e.g. a parameter), then move it to
% the right hand side.
% X + Y = Z --> Y = Z - X.
decl(int,id(X),_,global_var,_) \

compute_renaming(id(X)+Y, Z) <=> compute_renaming(Y, Z + (-id(X))).
% -X = Y -> X = -Y.
compute_renaming(-(id(X)), Y) <=> compute_renaming(id(X), -(Y)).
% X + Y = Z --> X = Z - Y.
compute_renaming(id(X)+Y, Z) <=> compute_renaming(id(X), Z + -(Y)).
% -X + Y = Z --> X - Y = -Z.
compute_renaming(-(id(X))+Y, Z) <=> compute_renaming(id(X) + -(Y), -(Z)).

% When the left hand side is a mere identifier, the right hand side
% is the expression to replace it with.
compute_renaming(id(X), Y) <=> renaming(id(X), Y).

Note the use of the contextual guard decl(int,id(X), ,global var, ) in the
second rule. This means that the identifier X is moved to the second argument
only if it is declared as a global variable somewhere in the conjunctive context
of the term being matched to the head. This contextual matching feature of
Cadmium allows parts of the model that occur in distant parts of the model to
be used when determining if a rule should apply. Also note that a pattern such
as id(X)+Y exploits the commutativity and associativity of addition; Cadmium
rearranges the expression as needed to make the pattern match.

5.3 Producing and Proving Presburger Formulæ

Finally, we attempt to match each quantified constraint in C with a quantified
constraint in C′ that is in the same equivalence class ΘG. Ensuring that the two
quantified constraints are in the same class is done by inspecting the structure of
the terms. The test for equivalence of the quantified constraints is then reduced
to a Presburger sentence. We extract from each quantified constraint the expres-
sions for Φ and Ψ (see (!)) and construct a Presburger sentence as described in
Section 4.3. The sentence is then passed to the Presburger solver Omega, which
uses the omega test [11] to prove or disprove the sentence.

For a given symmetry σ, if all constraints in σ(C) can be shown to match a
constraint in C, then we state that σ is a model symmetry.
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Table 1. Summary of Symmetries Proved

Problem Variable Symmetries

Latin Squares (Boolean) x[i,j,k] �→ x[j,i,k] x[i,j,k] �→ x[i,k,j]

x[i,j,k] �→ x[N-i+1,j,k] x[i,j,k] �→ x[ϕ(i),j,k]
x[i,j,k] �→ x[i,ϕ(j),k] x[i,j,k] �→ x[i,j,ϕ(k)]

Latin Squares (integer) x[i,j] �→ x[j,i] x[i,j] �→ x[ϕ(i),j]
x[i,j] �→ x[i,ϕ(j)] x[i,j] �→ ϕ(x[i,j])

Steiner Triples x[i,j] �→ x[ϕ(i),j] x[i,j] �→ x[i,ϕ(j)]

BIBD x[i,j] �→ x[ϕ(i),j] x[i,j] �→ x[i,ϕ(j)]

Social Golfers x[i,j] �→ x[ϕ(i),j] x[i,j] �→ x[i,ϕ(j)]
x[i,j] �→ ϕ(x[i,j])

N-Queens (Boolean) x[i,j] �→ x[j,i] x[i,j] �→ x[N-i+1,j]

N-Queens (integer) x[i] �→ x[N-i+1] x[i] �→ N-x[i]+1

6 Results

We have tested our model transformation approach for symmetries found by
Mears et al. [9] in a suite of benchmark problems modelled in MiniZinc. Table 1
lists, for each problem, the symmetries that our implementation was able to
prove hold.

The results in Table 1 show that we can verify the existence of some common
variable and value symmetries in selected well-known matrix models. In addition,
we have tested symmetries that are known not to hold on the models and verified
that the implementation fails to prove them. Note that for the set variables in the
Social Golfers problem, the value symmetry acts on the elements of the set rather
than the sets themselves. The running time is negligible; for each benchmark,
the execution takes around one second.

Our implementation does not deal with variable-value symmetries that cannot
be expressed as a composition of a variable symmetry with a value symmetry
e.g. the solution symmetry σ taking the literal x[i] = j to x[j] = i. One way
to step around this problem is to translate one’s model into a Boolean model
(in an appropriate way), where now the value symmetries and variable-value
symmetries are simply variable symmetries.

7 Conclusion

The automatic detection of CSP symmetries is currently either restricted to prob-
lem instances, is limited to the class of symmetries that can be inferred from the
global constraints present in the model, or requires the use of (incomplete) auto-
mated theorem provers. This paper, whilst showing that the fundamental problem
is undecidable, provides a new way of proving the existence of model symmetries
by way of model transformations. We show that simple matrix permutations, such
as swapping and inverting dimensions, can be shown to be model symmetries using
this method. Pleasingly, our method has also been successful in showing that an
arbitrary permutation (which represents a large group of symmetries) applied to
a dimension of the matrix of variables is a model symmetry.
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Abstract. We consider the impact of value ordering heuristics on the
search effort required to find all solutions, or proving none exist, to a
constraint satisfaction problem in k-way branching search. We show that
when the variable ordering heuristic is adaptive, the order in which the
values are assigned to variables can make a significant difference in all
measures of search effort. We study in depth an open issue regarding
the relative merit of traditional value heuristics, and their complements,
when searching for all solutions. We also introduce a lazy version of k-way
branching and study the effect of value orderings on finding all solutions
when it is used. This paper motivates a new and fruitful line of research
in the study of value ordering heuristics for proving unsatisfiability.

1 Introduction

The entire search space of a constraint satisfaction problem (csp) is explored
when one is interested in finding all solutions, counting the number of solutions,
or proving that the problem is unsatisfiable. The latter case may also appear as
a sub-problem while solving a satisfiable problem when a globally inconsistent
assignment to a subset of the variables is being explored. While most research
in the area of search heuristics has focused on variable ordering, the question
of determining which value should be assigned to the current variable has not
received much attention. One reason is that it has been generally accepted that
when the entire search space of a csp is explored by a search algorithm that back-
tracks chronologically, the order in which the values are selected does not affect
its search effort, e.g. the number of visited nodes, or the number of failures [4].
A well-known theorem states that this is true for both static and dynamic vari-
able ordering heuristics [4]. In the case of search algorithms that perform binary
branching recent work has shown that search effort is affected by the choice
of value ordering [11]. However, that work was supportive of the conventional
wisdom in the case of k-way branching.

In the case of search algorithms that perform k-way branching we advance
the conventional wisdom related to the role of value ordering heuristics in the
context of csps. We show that the conventional wisdom only applies when non-
adaptive static/dynamic variable ordering heuristics are used. However, when
adaptive dynamic variable ordering heuristics are used, value ordering heuristics
can make a significant difference in the search-effort of a chronological backtrack
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search algorithm, including the mac [9] algorithm, even when the entire search
space is explored using k-way branching. Furthermore, we show that static value
ordering heuristics can make a difference in terms of the number of support
checks for algorithms that maintain arc consistency during search even for k-way
branching, even when there is no difference in the search effort. A preliminary
investigation of how value ordering can affect the search to find all solutions is
reported in [8]. Here, we present a more extensive investigation and explain how
value ordering can affect search effort when using k-way branching.

We also introduce a lazy version of k-way branching whereby instead of se-
lecting and assigning a value to a variable, a value is selected and removed from
the domain of the selected variable. We show that postponing the assignment
decision can help in reducing the number of failures. We further perform a de-
tailed analysis and also demonstrate the effect of value ordering heuristics on the
search effort when using lazy k-way branching. Finally, we perform a detailed
study of value ordering heuristics and their corresponding anti-heuristics with
respect to their relative efficiency. We demonstrate that one can dramatically
out-perform the other depending on the context. A major contribution of this
paper is that it motivates a new and fruitful line of research in the study of value
ordering heuristics for proving unsatisfiability.

Although binary branching is theoretically more efficient than k-way branch-
ing [6], in practice the latter can be more efficient than the former on many
classes of problem [1]. Our goal is not to compare the relative merits of differ-
ent branching schemes but to show that value orderings can have a significant
impact under all branching schemes. We show the various ways in which value
ordering heuristics affect the various elements of search which contribute to an
overall effect. The results presented in this paper complement and complete the
analysis of the effects of value ordering on branching strategies introduced by
Smith and Sturdy in [11] on binary branching.

2 Background

A csp, P , is a triple (X , C, D) where X is a set of variables and C is a set of
constraints. Each variable X ∈ X is associated with a finite domain, which is
denoted by D(X). We use n, d and e to denote the number of variables, the
maximum domain size, and the number of constraints respectively. Each con-
straint is associated with a set of variables on which the constraint is defined.
We restrict our attention to binary csps, where the constraints involve two vari-
ables. A binary constraint CXY between variables X and Y is a subset of the
Cartesian product of D(X) and D(Y ) that specifies the allowed pairs of values
for X and Y . We assume that there is only one constraint between a pair of
variables. A value b ∈ D(Y ) is called a support for a ∈ D(X) if (a, b) ∈ CXY .
Similarly a ∈ D(X) is called a support for b ∈ D(Y ) if (a, b) ∈ CXY .

A value a ∈ D(X) is called arc-consistent (ac) if for every variable Y con-
straining X the value a is supported by some value in D(Y ). A csp is ac if for
every variable X ∈ X , each value a ∈ D(X) is ac. We use ac(P) to denote
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the csp obtained after applying arc consistency. If there exists a variable with
an empty domain in P then P is unsatisfiable and it is denoted by P = ⊥.
Maintaining Arc Consistency (mac) after each decision during search is one of
the most efficient and generic approaches to solving csps. A solution of a csp

is an assignment of values to all the variables that satisfies all the constraints.
A csp is satisfiable if and only if it admits at least one solution; otherwise it is
unsatisfiable. In general, determining the satisfiability of a csp is NP-complete.

Branching Strategies. A branching strategy defines a search tree. The well-
known branching schemes are k-way branching, binary branching [10] and split
branching. In k-way, when a variable X with k values is selected for instantiation,
k branches are formed. Here each branch corresponds to an assignment of a value
to the selected variable. In binary branching, when a variable X is selected, its
values are assigned via a sequence of binary choices. If the values are assigned in
the order v1, v2, . . . , vk, then two branches are formed for the value v1, associated
with X = v1 and X �= v1 respectively. The left branch corresponds to a positive
decision and the right branch corresponds to a negative decision. The first choice
creates the left branch; if that branch fails, or if all solutions are required, the
search backtracks to the choice point, and the right branch is followed instead.
Crucially, the constraint X �= v1 is propagated, before selecting another variable-
value pair. In split branching, when a variable X is selected, its domain is divided
in to two sets: {v1, . . . , vj} and {vj+1, . . . , vk}, where j = �k/2�. Two branches
are formed by removing each set of values from D(X) respectively.

Variable Ordering Heuristics. When a dynamic variable ordering is used the
selection of the next variable to be considered at any point during search depends
on the current node of the search tree. Examples of dynamic variable ordering
heuristics are: dom/deg [2] and dom/wdeg [3]. The dom/deg heuristic selects a
variable which has the smallest ratio of the current domain size to the original
degree of the variable, while the dom/wdeg heuristic selects a variable which
has the smallest ratio of the current domain size to the weighted degree of the
variable. The dom/wdeg heuristic is adaptive while the dom/deg is non-adaptive.
By adaptive we mean that the heuristic measure of a variable at a given node
of the search tree is dependent on previous experience with the search process.
For a non-adaptive variable ordering, the heuristic measure at a particular node
in the search tree is same before and after backtracking to the node. However,
this is not necessarily true for an adpative variable ordering heuristic.

Value Ordering Heuristics. A value ordering heuristic is used to select a
value from the domain of a variable to instantiate that variable during search.
Three value ordering heuristics are total-cost, cruciality, and promise, which are
primarily based on selecting the least constrained value for a variable and are
proposed in [5]. The heuristic total-cost associates each value from the domain of
a variable with the sum of incompatible values in the domains of the other vari-
ables. The values are then considered in the increasing order of this count. The
heuristic cruciality differs slightly from total-cost. It aggregates the percentage
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of the incompatible values in future domains. The heuristic promise associates
each value with the product of the number of compatible values in the domain
of each variable. The value with the highest product is chosen subsequently. For
all these heuristics, the compatibility of each value a in the domain of a variable
x is tested with each value b in the domain of each variable y constrained with x.
This process requiresO(n d2) support checks in the worst-case after each variable
selection during search. Several value ordering heuristics including min-conflict
are presented in [4], which is, in fact, the same as the total-cost of [5].

3 Impact of Value Orderings on MAC

In this section we show that value ordering heuristics can affect the search effort
(i.e. the number of visited nodes, failures etc.) of a backtrack search algorithm
that forms k-way branching when the entire search space of a csp is explored.

3.1 State-of-the-Art on Heuristic Interactions

Frost and Dechter [4] claim that value orderings have no impact on the search
effort of a backtrack search algorithm, when all solutions of a csp are searched,
which includes when no solution exists. This claim has been made both for
static and dynamic variable ordering heuristics [4]. Their argument is that when
a variable X with k values is selected, k subtrees are explored independently,
and the search spaces of these k subtrees are commutative. To find all solutions
or to prove that there are none, every subtree must be explored and therefore
the order in which values are assigned cannot make a difference in cumulative
search effort.

Smith and Sturdy [11] claim that value orderings can make a difference in the
algorithm’s search effort when binary-branching is used, and agree that value or-
dering does not make a difference when k-way branching is used. Their argument
is that in binary-branching, if a variable X and a value x1 ∈ D(X) is selected
then two subtrees are created, X = x1 and X �= x1. If X = x1 fails, then the
constraint X �= x1 is propagated, which can lead to further domain reduction.
This propagation can remove one or more values from the current variable’s do-
main which are not yet considered for instantiation. Hence, the order in which
the values are assigned can affect the search effort even if the entire search space
is explored.

In the following section we show that k subtrees are not always explored
independently in k-way branching. It depends on whether a dynamic variable
ordering heuristic is adaptive or non-adaptive. Notice that the heuristic measures
of variables for a non-adaptive heuristic like dom/deg and an adaptive heuristic
like dom/wdeg are changing during search. When the algorithm backtracks to
a node the heuristic measures of all variables of a non-adaptive heuristic like
dom/deg is restored to the same measures as they were before exploring that
node. However, this does not hold for a dynamic variable ordering heuristic like
dom/wdeg, which is adaptive. Consequently, the search spaces of k subtrees may
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(a) An unsatisfiable csp. (b) lex (c) rlex

Fig. 1. An unsatisfiable csp with five variables (Figure 1(a)), and search trees with
different value orderings (Figure 1(b) and Figure 1(c))

not necessarily be commutative. Therefore, when an adaptive dynamic variable
ordering is used for searching all solutions, k-way branching is sensitive to the
choice of value ordering heuristic.

3.2 The Role of Value Ordering: New Insights

Let us consider a trivial csp whose micro-structure is depicted in Figure 1(a).
There are five variables P , Q, R, S and T . Their domains are D(P ) = {p0, p1},
D(Q) = {q0}, D(R) = {r0, r1}, D(S) = {s0, s1} and D(T ) = {t0, t1}. There
are five binary constraints. Here an edge corresponds to a pair of values that
satisfy the constraint. For any two values ai and aj , we write ai <l aj if ai is
lexicographically smaller than aj . Notice that the csp is inconsistent. The reason
for the inconsistency is the sub-problem restricted to the variables R, S and T .

The search trees shown in Figures 1(b) and 1(c) are the results of applying the
mac algorithm. The variable ordering heuristic employed by the search algorithm
selects a variable having the maximum number of wipeouts with a lexicographical
tie breaker. Initially, the number of wipeouts associated with each variable is
set to 0. The number of wipeouts, vx, associated with a variable x is written
as x → vx. In the search trees, uninstantiated variables are enclosed in the
square brackets in the lexicographical order, e.g. [x → vx, . . . , z → vz ]. The
selected variable is indicated by making it bold. Each assignment of a value to
the selected variable represents a node visited in the search tree. When a node
is underlined, it indicates a failure.

The search tree in Figure 1(b) is the result of using the lexicographical value
ordering heuristic (lex). Initially, the number of wipeouts associated with each
variable is 0, so the lexicographically smallest variable P is selected and it is
instantiated to the lexicographically smallest value p0. Enforcing ac at this point
does not remove any value from any domain. The next lexicographically smallest
variable is Q, which is then initialized to q0. Again, enforcing ac makes no change
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in the domains. When the variable R is selected, each of its instantiations leads
to a domain wipeout. When R is instantiated to r0, first the domain of S is
revised against the domain of R and s0 is removed. Next, the domain of T is
revised against the domains of R and S. This results in removing t0 and t1 and
hence the domain wipeout occurs. When R is initialized to r1, there is again
a domain wipeout associated with T . The search process backtracks to P and
initializes it to p1. This again results in the domain wipeout associated with T ,
since r0 is removed from R while revising its domain against the domain of P ,
which eventually results in the domain wipeout associated with T .

The search tree shown in Figure 1(c) is the result of using the reverse lex-
icographical value ordering heuristic (rlex). First P is initialized to p1 which
results in a domain wipeout. This happens while revising the domain of T . At
this point the number of wipeouts associated with T is incremented by 1. This
influences the selection of the variable T after initializing P to p0 in Figure 1(c).
However, in Figure 1(b), due to a different value ordering, when P is initialized
to p0, Q is selected instead of T , which results in a different number of nodes.

When lex is used the number of search nodes is 5 and when rlex is used
the number of nodes is 4. This difference is due to the interaction between the
variable ordering and the value ordering heuristics. When an assignment fails the
number of wipeouts associated with a variable changes. Different value ordering
heuristics may change the number of wipeouts associated with different variables.
Consequently, the ordering of the values in the previously explored subtrees may
influence the decision of selecting the next variable in the subtrees that are yet to
be explored. This shows that claims made in [4] and [11] that a search algorithm
that forms k-way branching explores k subtrees independently is not always true.
Hence, value orderings can affect the search tree of a backtrack algorithm when
adaptive dynamic variable ordering heuristics are used with k-way branching for
exploring the entire search space.

4 Impact of Value Orderings on AC

We show that static value ordering heuristics can have an impact on the efficiency
of arc consistency algorithms. We focus on the static versions of the heuristics
total-cost, cruciality and promise. The ordering based on these heuristics can be
viewed as arranging the values in increasing order of their constrainedness. This
can be advantageous while revising the domains of the variables, when trying to
make the problem ac. More specifically, putting the least constrained value at
the beginning of the domain list might help values of other domains to find their
support more quickly during revision (on average). This may save failed support
checks since the further the first support is from the start of the domain list, the
more are the failed checks required to find that support for a given value.

To illustrate this, let us consider a constraint X ≤ Y and study the revision
of D(X) against D(Y ) as shown in Figures 2(a) and 2(b). If the values in D(Y )
are arranged in 〈1, 2, 3, 4〉 order, as shown in Figure 2(a), and the search for a
support starts from 1, then the revision of D(X) against D(Y ) will require 10
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(a) Increasing order (b) Decreasing order

Fig. 2. Visualization of the checks of the constraint X ≤ Y where dashed lines refer to
failed checks and solid lines refer to successful checks

support checks in total, using the revise function of AC-3. If the values in D(Y )
are arranged in 〈4, 3, 2, 1〉 order, as shown in Figure 2(b), then the revision of
D(X) against D(Y ) will require only 4 support checks in total, using the revise
function of AC-3. Obviously, different constraints may require different orderings
of values. However, these orderings can be aggregated. For example, one can use
total-cost or promise as measures to sort the values of the domain accordingly.

The fact that ordering the values can reduce support checks during revisions
and thereby improves the average revision time does not seem to have been
observed before. This is the reason that when a static value ordering heuristic
is used in a search algorithm such as mac, it can make a difference at least in
terms of support checks even when the entire search space is explored.

5 Lazy K-Way Branching

In k-way branching a decision corresponds to an assignment of a value to a given
variable and its dual can be seen as removing all but one value from the domain
of the variable. An example of k-way branching is illustrated in Figure 3, where
a box denotes a variable selection and an ellipse denotes selecting and assigning
a value to the selected variable. Here X is the selected variable whose domain
is {a1, a2, a3, a4, a5} and k = 5. A (positive) decision X = a1, is equivalent to
removing a2, a3, a4 and a5 from the domain of X , or in other words enforcing a
conjunction of inequalities, i.e., X �= a2 ∧X �= a3 ∧X �= a4 ∧X �= a5.

We propose a lazy version of the k-way branching scheme whereby instead of
enforcing all (k − 1) inequalities at once each inequality is enforced separately,
e.g., each assignment of a value in Figure 3 corresponds to a sequence of inequal-
ities in Figure 4(a). The k-way branching scheme can be seen as being optimistic

Fig. 3. k-way branching
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(a) Without Sharing Nodes (b) Sharing Nodes

Fig. 4. Lazy k-way branching

whereby, based on some heuristic measure, a most optimistic value is selected
and assigned to the selected variable. Lazy k-way branching can be seen as being
pessimistic whereby a most pessimistic value is selected and removed from the
selected variable. Postponing the instantiation of a variable may help in making
better decisions, thus reducing the number of mistakes.

An additional advantage of enforcing each inequality separately is that one can
infer dependencies between explicitly removed values of the selected variable as
a result of making (negative) decisions, and the implicitly removed values of the
selected variable as a result of enforcing local consistency, such as arc consistency
in the case of MAC. These dependencies can be exploited to reduce the number
of decisions. For example, let us assume that a3 is removed from D(X) when arc
consistency is enforced after taking the negative decisions X �= a5 and X �= a4

in the first branch of Figure 4(a), which is shown by shading the decision node
X �= a3. One can infer the following implication: X �= a5 ∧X �= a4 → X �= a3.
This effectively means that there does not exist any solution in the resulting
subproblem after selecting variable X where X = a3. Therefore, if the decision
of instantiating X to a3 has not yet been tried, then there is no need to try
it. Hence, the third branch of Figure 4(a) is not explored, which is equivalent
to X = a3. This is shown by shading all the corresponding negative decisions:
X �= a5, X �= a4, X �= a2, and X �= a1. This is an original and novel way of
reducing the number of useless branches and failures.

In k-way branching, if k branches are explored after selecting a variable, then
each value is removed at most (k − 1) times, and in algorithms like MAC, the
work required for propagating the impact of removing a value will be repeated.
This repetition can be reduced in lazy k-way branching. Remember that in lazy
k-way branching each assignment of a value to a variable can be seen as a path
consisting of at most k − 1 negative decisions starting after the selection of the
variable and ending at a node when the variable’s domain is singleton. Instead
of having disjoint paths for each assignment of a value, as shown in Figure 4(a),
the idea is to maximize the sharing of negative decisions among different paths
in order to minimize the work required for propagation.



614 D. Mehta, B. O’Sullivan, and L. Quesada

Algorithm 1. MACLK(P , Y )
Require: P : input csp (X , C, D); Y : current variable
1: if X = ∅ then
2: solution found
3: else
4: if Y = null then select and remove any variable X from X
5: else X ← Y
6: V ← ∅; D′ ← D
7: while P �=⊥ ∧|V | < |D(X)| do
8: select and remove any value v from D(X)
9: V ← V ∪ {v}; P ← ac(P)

10: if P �=⊥ then
11: if |D(X)| = 1 then MACLK(P , null) else MACLK(P ,X)
12: D ← D′; D(X)← V ; P ← ac(P)
13: if P �=⊥ then
14: if |D(X)| = 1 then MACLK(P , null) else MACLK(P ,X)

One way of implementing lazy k-way branching in order to share nodes (prop-
agation) is shown in Algorithm 1. Notice that MACLK requires csp P and the
current variable Y . If Y is null then a new current variable is selected (Line
4–5). After the current variable, X , is determined, a set V for storing negative
decisions is initialized to ∅, and the domains of the variables are saved in D′

(Line 8). While |V | < |D(X)| and there is no domain wipe-out, a value v is
selected and removed from D(X), it is added to the set V , and ac is enforced
(Line 7–9). When the loop is terminated and if P is not empty then the left
branch is created (Line 10–11). The right branch is created by restoring the
domains to D′ and setting D(X) to the set of values that were removed in the
loop (Line 12–14). If X is instantiated then MACLK is invoked by setting the
current variable to null, otherwise it is invoked with the current variable X .

An example of sharing nodes is presented in Figure 4(b). In this example
the loop is exited after visiting the node corresponding to X �= a4 (in the left
branch). Notice that the decision associated with the last node and all those
decisions preceding it are shared by all branches originating from this node, thus
reducing the work required for propagation. When the algorithm backtracks it
first removes all those values that are already tried as assignments to the current
variable, e.g., X �= a1∧X �= a2, as well as those values of X that were implicitly
removed while enforcing arc consistency, e.g., X �= a3. This is done in Line 12 of
MACLK when D(X) is set to V , since V contains only a4 and a5. Notice that
X = a3 is never tried since it was inferred as inconsistent in the subproblem
resulting from the selection of variable X .

Similar to the lazy version of k-way branching, lazy versions of binary branch-
ing and split branching are also possible. One can infer and exploit the depen-
dencies between inequality constraints involving values of the same domain to
reduce the number of failures in a lazy version of any branching scheme. However,
this is beyond the scope of the current paper.
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6 Experimental Results

The experiments were conducted using MAC as a backtrack search algorithm.
AC-3 was used as its arc consistency component which was equipped with the
residual support mechanism and revision condition [7]. We conducted exper-
iments with the static versions of min-conflict, max-conflict, cruciality, anti-
cruciality, promise and anti-promise value ordering heuristics. The information
required for these value ordering heuristics was computed prior to search as a pre-
processing step after making the problem initially arc-consistent. We also present
the results obtained by using the default ordering of the values as specified by
the problem instance which is denoted by default. Of course, these heuristics
might not be the best or might be very expensive/inapplicable for one or more
classes of problems. Nevertheless, the purpose of these experiments is not to
prove the efficiency of these value ordering heuristics, but to show that different
value ordering heuristics can have a significant impact on the search effort when
the entire search space of a csp is explored using MAC with k-way branching.
We also wish to demonstrate the effectiveness of lazy k-way branching when
compared with k-way branching.

Search effort was measured in terms of support checks (#c), visited nodes
(#n), failures (#f) and the solution time (time) in seconds. All algorithms are
written in C. The experiments were carried out as a single thread on Dual
Quad Core Xeon CPU, running Linux 2.6.25 x64, with 11.76 GB of RAM, and
2.66 GHz processor speed. We perform experiments on many instances of the
problems that were used as benchmarks in the CP solver competition of the
CPAI’05 workshop.1

Table 1 presents results for different value ordering heuristics when the
dom/deg variable ordering is used to explore the complete search space. The
search nodes for all value orderings is the same as depicted in the first column,

Table 1. Results for exploring the entire search space with dom/deg and k-way branch-
ing. Instances are: (a) bqwh − 15 − 106 − 32 (#n = 33168), (b) frb50 − 23 − 3 − bis
(#n = 230746522 ), (c) graph12 w1 (#n=177059), (d) dual ehi − 85 − 297 − 10 (#n
377649), (e) qk 12 12 5 mul (#n 1996472)

inst default min-conflict max-conflict promise anti-promise
(a) #c 1,174,152 1,181,071 1,176,787 1,178,857 1,179,353

time 0.535 0.534 0.528 0.537 0.533
(b) #c 98,657,596,677 93,687,374,052 103,998,537,736 93,537,311,214 104,177,841,288

time 19,924.439 19,761.988 20,168.810 19,747.415 19,865.577
(c) #c 27,573,288 28,114,893 28,012,342 28,114,952 28,012,414

time 2.565 2.695 2.610 2.624 2.619
(d) #c 374,657,413 363,435,461 382,601,651 362,105,766 382,003,776

time 400.085 400.772 400.746 396.993 399.856
(e) #c 6,283,619,236 6,148,687,117 6,330,315,375 6,148,556,738 6,317,352,246

time 127.459 124.576 127.909 125.882 126.916

1 http://cpai.ucc.ie/05/Benchmarks.html

http://cpai.ucc.ie/05/Benchmarks.html
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which is consistent with the conventional wisdom. However, there is a difference
in terms of support checks. On average fewer checks are required when values
are ordered based on a heuristic than with the corresponding anti-heuristic. The
difference in terms of checks is not significant. The reason is that a huge number
of support checks are replaced and reduced by auxiliary checks performed by the
residual support mechanism and revision condition. For example, for the queens-
knights instance qk 12 12 5 mul , 2% of the checks are saved when values are
ordered by min-conflict when compared with that of max-conflict. However, if a
standard AC-3 is used then 14% of the checks are saved by min-conflict when
compared with max-conflict.

Table 2 presents results for different problem classes when the dom/wdeg
variable ordering is used with different value ordering heuristics and the complete
search space is explored using k-way branching. We have computed the ratio with
respect to the default for each heuristic different to the default. For each instance,
the highest/lowest result is written in bold/italic. The results clearly show that
value ordering heuristics can make a significant difference in terms of the number
of search nodes and time. It is worth emphasizing that for some problems a
heuristic like min-conflict, cruciality, or promise performs better while on some
others, its corresponding anti-heuristic performs better. We did some further
investigation by solving the same instance with 2500 random value orderings.
The results for some of them are presented in Figure 5; in these plots each point
represents the probability of the search effort to solve an instance exceeding the
corresponding number of search nodes on the x-axis. It again shows that value
ordering heuristics can make a difference up to several orders-of-magnitude in
terms of search nodes when the entire search space is explored; the first two
graphs, in fact, exhibit a heavy-tail distribution in search effort.

Table 3 presents results for lazy k-way branching and k-way branching when
the entire search space was explored with different value ordering heuristics. In
the first three rows dom/deg was used while for the remaining dom/wdeg was
used. The first observation is that when different value orderings are used in
conjunction with lazy k-way branching they can result in different search ef-
fort when the entire search space is explored. More importantly, unlike k-way
branching, the difference in the search effort is also observed for dom/deg as
shown in 2nd and 3rd rows. This is because in the lazy k-way branching scheme
a decision corresponds to selecting and removing a value, with ac being enforced
after each value removal. Therefore, depending on the order in which the val-
ues are removed dependencies involving inequalities amongst the values of the
same domain are inferred, which are exploited to reduce the number of decisions.
Moreover, when dom/wdeg is used, the difference in the search effort is also due
to the interaction between variable and value ordering heuristics as explained
in Section 3. Table 3 also confirms that lazy k-way branching can reduce the
number of failures by up to one order-of-magnitude for some instances when
compared with k-way branching. The minimum number of failures between lazy
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Table 2. Results for finding all solutions with dom/wdeg and k-way branching
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bqwh − 15 − 106 − 32 #c 411,235.000 2.996 1.665 1.452 2.451 1.460 2.452
(sat) #n 7,383.000 3.292 1.664 1.483 2.520 1.486 2.520

time 0.197 2.995 1.670 1.452 2.508 1.472 2.518
bqwh − 18 − 141 − 40 #c 602,681,284.000 2.086 1.087 1.788 0.932 1.470 0.988

(sat) #n 10,779,400.000 2.190 1.075 1.846 0.929 1.502 0.981
time 321.383 2.083 1.085 1.773 0.926 1.450 0.984

bqwh − 18 − 141 − 68 #c 21,995,315.000 0.942 0.786 1.595 0.740 2.129 0.929
(sat) #n 371,375.000 0.951 0.748 1.596 0.716 2.086 0.898

time 12.504 0.937 0.783 1.561 0.734 2.099 0.921
frb50 − 23 − 3 − bis #c 81,752,058,491.000 0.960 1.082 0.960 1.082 1.012 1.106

(sat) #n 187,967,335.000 1.007 1.023 1.007 1.023 1.064 1.042
time 16,512.675 1.006 1.032 1.020 1.019 1.053 1.034

qa − 6 #c 21,950,814,589.000 1.121 1.019 1.117 1.084 1.097 1.015
(sat) #n 134,884,052.000 1.089 1.002 1.095 1.063 1.071 0.999

time 3,083.689 1.106 1.011 1.108 1.072 1.096 0.998
graph14 f28 #c 5,142,167.000 0.528 1.387 0.528 1.387 0.528 1.387

(unsat) #n 28,177.000 0.348 1.310 0.348 1.310 0.348 1.310
time 0.751 0.397 1.611 0.399 1.610 0.406 1.617

graph2 f25 #c 65,664,798.000 0.950 0.994 0.029 1.016 0.030 1.016
(unsat) #n 275,917.000 1.000 1.004 0.015 1.029 0.015 1.029

time 8.021 0.982 1.014 0.019 1.037 0.020 1.035
scen6 w1 f2 #c 19,978,058.000 1.114 0.690 1.115 0.741 1.125 0.697

(unsat) #n 52,325.000 1.084 0.627 1.084 0.674 1.107 0.654
time 0.662 1.166 0.690 1.156 0.740 1.162 0.705

dual ehi − 90 − 315 − 97 #c 11,283,716.000 0.280 0.961 0.283 0.228 0.219 0.977
(unsat) #n 6,288.000 0.308 1.022 0.314 0.228 0.253 1.100

time 10.166 0.235 1.024 0.234 0.206 0.160 1.069
qk 20 20 5 add #c 3,001,318,053.000 95.518 0.794 95.518 0.794 84.080 0.304

(unsat) #n 237,139.000 102.069 0.785 28.996 0.207 91.023 0.291
time 51.371 96.175 0.800 27.350 0.222 85.000 0.308

qk 20 20 5 mul(unsat) #c 4,257,470,286.000 59.509 0.602 16.949 0.149 69.584 0.171
#n 360,924.000 64.125 0.587 18.229 0.131 75.216 0.154
time 78.117 58.306 0.586 16.619 0.144 68.420 0.167

composed − 75 − 1 − 40 − 7 #c 205,748.000 1.170 0.756 1.170 0.751 1.167 0.707
(unsat) #n 1,089.000 1.448 0.684 1.448 0.613 1.460 0.613

time 0.020 1.150 0.650 1.150 0.600 1.200 0.650
cril unsat b 1 #c 297,178,340.000 0.810 0.930 0.816 0.930 0.818 0.930

(unsat) #n 1,672,114.000 0.886 0.851 0.886 0.851 0.888 0.851
time 32.854 0.904 0.879 0.904 0.884 0.909 0.885

k-way and k-way branching schemes for each value ordering is made bold in each
row of Table 3.

In some cases, despite failing more, the ratio of checks per node (#c/#n)
is less for lazy k-way branching than with that of k-way branching, e.g., see
the row corresponding to the qk 20 20 5 add instance. The reason is that when
the problem is relatively hard, more nodes are explored. Consequently more
nodes are shared among different branches. Hence, work required for constraint
propagation is also shared, which improves the trade-off between the number of
decision nodes and the work done on each of them.
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Fig. 5. Search effort for exploring the entire search space of different instances with
2500 random value ordering heuristics and dom/wdeg as a variable ordering heuristic

Value ordering heuristics like min-conflict, cruciality, and promise are pro-
posed in the literature to find one solution quickly, and not for exploring the
entire search space. Thus, when it comes to exploring the entire search-space, it
is not surprising to see that, for some problem instances, value ordering heuris-
tics like min-conflict perform significantly better than anti-heuristics like max-
conflict, while for others it is the other way around, and for some there is only
a marginal difference in their performance. We are not aware of any work on
value ordering heuristics for finding all solutions with k-way branching in the
csp context. In fact for a long time it has been believed that value orderings do
not make any difference in the search effort of backtrack algorithm with k-way
branching. Contrary to that, we have shown results where the difference in the
search effort is up to several orders-of-magnitude because of using different value
orderings. These results raise an interesting question: what kind of value order-
ing heuristics should be used with (lazy) k-way branching and adaptive variable
ordering heuristics like dom/wdeg when it comes to exploring the entire search
space.
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7 Conclusions

Given recent developments in the area of variable ordering heuristics, the con-
ventional wisdom with respect to k-way branching and value ordering needed to
be reconsidered. We have presented an analysis in this paper demonstrating that
value ordering can make a considerable difference in search effort. We demon-
strated this phenomenon across multiple problem classes, and for two forms of
k-way branching. One of our k-way branching schemes, lazy k-way, is very novel
and merits a deeper investigation in the context of CSP solving.

A major contribution of this paper is that it motivates a new and fruitful line
of research in the study of value ordering heuristics for proving unsatisfiability.
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2. Bessière, C., Régin, J.-C.: MAC and combined heuristics: Two reasons to for-
sake FC (and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS,
vol. 1118, pp. 61–75. Springer, Heidelberg (1996)

3. Boussemart, F., Hemery, F., Lecoutre, C., Säıs, L.: Boosting systematic search by
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Abstract. We present an approach to propagation based SAT encoding,
Boolean equi-propagation, where constraints are modelled as Boolean
functions which propagate information about equalities between Boolean
literals. This information is then applied as a form of partial evaluation
to simplify constraints prior to their encoding as CNF formulae. We
demonstrate for a variety of benchmarks that our approach leads to
a considerable reduction in the size of CNF encodings and subsequent
speed-ups in SAT solving times.

1 Introduction

In recent years, Boolean SAT solving techniques have improved dramatically.
Today’s SAT solvers are considerably faster and able to manage far larger in-
stances than yesterday’s. Moreover, encoding and modeling techniques are better
understood and increasingly innovative. SAT is currently applied to solve a wide
variety of hard and practical combinatorial problems, often outperforming ded-
icated algorithms. The general idea is to encode a (typically, NP) hard problem
instance, P , to a Boolean formula, ϕP , such that the solutions of P correspond
to the satisfying assignments of ϕP . Given an encoding from problem instances
to Boolean formula, a SAT solver is then applied to solve the problem instances.

Tailgating the success of SAT technology are a variety of tools which can be
applied to specify and then compile problem instances to corresponding SAT
instances. Typically, a constraint based modelling language is introduced and
used to model instances. Then encoding techniques are applied to compile con-
straints to the language of an underlying solver such as SAT, SMT, or others.
Some examples follow: In [5], Cadoli and Schaerf introduce NP-SPEC, a logic-
based specification language which allows to specify combinatorial problems in a
declarative way. At the core of this system is a compiler which translates specifi-
cations to CNF formula. Sugar [20], is a SAT-based constraint solver. To solve a
finite domain linear constraint satisfaction problem it is first encoded to a CNF
formula by Sugar, and then solved using the MiniSat solver [8]. MiniZinc [15], is
a constraint modeling language which is compiled by a variety of solvers to the
low-level target language FlatZinc. FlatZinc instances are solved by fzntini [13]
by encoding them to CNF and in fzn2smt by encoding to SMT-LIB [2].

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 621–636, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The objective of all of these tools is to facilitate the process of providing a high-
level description of how the (constraint) problem at hand is to be solved. Taking
the analogy to programming languages, given such a description, a compiler can
then provide a low-level executable for the underlying machine. Namely, in our
context, a formula for the underlying SAT or SMT solver.

This paper takes a new approach, introducing the notion of equi-propagation.
Similar to how unit propagation is about inferring unit clauses which can then
be applied to simplify CNF formulae, equi-propagation is about inferring equa-
tional consequences. In contrast to unit propagation, equi-propagation derives
information from the higher-level constraints, prior to their encoding to CNF.
Each individual constraint is modelled as a Boolean function which propagates
equalities between Boolean literals that it implies. Given this information, all of
the constraints are simplified by partial evaluation, possibly leading to further
equi-propagation. When equi-propagation provides no further information, the
residual constraints are encoded to CNF.

Drawing on the programming languages analogy, we view our contribution
as an optimizing compiler for SAT encoding where equi-propagation and partial
evaluation facilitate optimization of the constraint model. This, fast (polynomial-
time) optimization phase is followed by the more costly (exponential-time) SAT
solving phase. A novel and efficient implementation of equi-propagation using
binary decision diagrams (BDD’s) [4] is described. Experiments demonstrate for
a variety of constraint problems that equi-propagation significantly reduces the
size of their encoding to CNF formulae as well as the solving time required for
a SAT solver to find a solution.

2 Overview

In this section we illustrate the main ideas we apply to simplify a constraint
model prior to its encoding as a CNF formula. To support the presentation
we first introduce a core portion of the underlying modelling language. Here,
constraints are about finite domain integer variables and viewed as Boolean
functions about the low-level bit representation of these variables. Our compiler
supports both unary and binary integer representations, however in the paper
we focus on a unary representation, the order encoding. Consider the following
three constructs in the modelling language.

1 unaryn(X, [a, b]) 2 diff(X1, X2) 3 allDiff([X1, . . . , Xn])

A constraint unaryn(X, [a, b]) where 0 ≤ a ≤ b ≤ n specifies a finite domain
integer variable X = 〈x1, . . . , xn〉, represented in n bits, which takes values in
the interval [a, b]. We denote by dom(X) the finite set of values that variable X
can take. Initially, dom(X) = {a, . . . , b}. When clear from the context, we drop
n from the notation. A constraint, diff(X1, X2), specifies that integer variables
(bit vectors) X1 and X2 take different values from their respective domains. The
third construct, allDiff(Xs), specifies that integer variables Xs = [X1, . . . , Xm]
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all take different values from their respective domains. The argument of this con-
straint is a list of bit vectors. We denote dom(Xs) = ∪

{
dom(Xi)

∣∣1 ≤ i ≤ m
}
.

In the order encoding (see e.g. [6,1]), the bit vector representation of inte-
ger variable X = 〈x1, . . . , xn〉 constitutes a monotonic decreasing sequence. For
example, the value 3 in 5 bits is represented as 〈1, 1, 1, 0, 0〉. The bit xi (for
1 ≤ i ≤ n) is interpreted as the statement X ≥ i. Throughout the paper, for a
bit vector X = 〈x1, . . . , xn〉 representing an integer in the order-encoding, we as-
sume implicit bits x0 = 1 and xn+1 = 0, and denote X(i) = xi for 0 ≤ i ≤ n+1.

An important property of a Boolean representation for finite domain integers
is the ability to represent changes in the set of values a variable can take. It
is well-known that the order-encoding facilitates the propagation of bounds.
Consider an integer variable X = 〈x1, . . . , xn〉 with values in the interval [0, n].
To restrict X to take values in the range [a, b] (for 1 ≤ a ≤ b ≤ n), it is sufficient
to assign xa = 1 and xb+1 = 0 (if b < n). The variables xa′ for 0 ≥ a′ > a and
b < b′ ≤ n are then determined true and false, respectively, by unit propagation.
For example, given X = 〈x1, . . . , x9〉, assigning x3 = 1 and x6 = 0 propagates
to give X = 〈1, 1, 1, x4, x5, 0, 0, 0, 0〉, signifying that dom(X) ⊆ {3, . . . , 5}. This
property is exploited in Sugar [20] which also applies the order encoding.

We observe an additional property of the order-encoding: its ability to specify
that a variable cannot take a specific value 0 ≤ v ≤ n in its domain by equating
two variables: xv = xv+1. This indicates that the order-encoding is well-suited
not only to propagate lower and upper bounds, but also to represent integer vari-
ables with an arbitrary, finite set, domain. For example, for X = 〈x1, . . . , x9〉,
equating x2 = x3 imposes that X �= 2. Likewise x5 = x6 and x7 = x8 im-
pose that X �= 5 and X �= 7. Applying these equalities to X gives, X =
〈x1, x2, x2, x4, x5, x5, x7, x7, x9〉, signifying that dom(X) = {0, 1, 3, 4, 6, 8, 9}.

The Boolean functions corresponding to constraints 1 — 3 are as follows
(where 1 ≤ a ≤ b ≤ n):

unary(〈x1, . . . , xn〉, [a, b]) =
n∧

i=1

(xi−1 ← xi) ∧ xa ∧ ¬xb+1

diff(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) =
n∨

i=1

(xi xor yi)

allDiff([X1, . . . , Xm]) =
∧

1≤i<j≤m

diff(Xi, Xj)

(1)

For constraint c with integer variable arguments, we denote by cu the conjunction
of c with the statement that its arguments are represented in the order-encoding.
For example, diffu(X,Y ) = diff(X,Y ) ∧ unaryn(X, [0, n]) ∧ unaryn(Y, [0, n]).

The idea in this paper is to simplify constraints, prior to their encoding to
CNF, using a technique we call equi-propagation. We distinguish between low-
level constraints, such as unary(X, [a, b]) and diff(X1, X2), which are about a
fixed number (one and two) of integer variables, and high-level constraints, such
as allDiff([X1, . . . , Xm]). Low-level constraints are simplified and then encoded
directly to CNF, while high-level constraints are simplified and then decomposed
to low-level constraints. We now demonstrate three types of simplification rules
on the constraint diff(X,Y ) where X = 〈x1, x2, x3, x4〉 and Y = 〈y1, y2, y3, y4〉
are integer variables in the unary, order-encoding.
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(1) equi-propagation, where we propagate information about equalities between
Boolean literals and constants. For example, assuming that Y = 〈1, 1, 0, 0〉 we
propagate that (x2 = x3) because diffu(〈x1, x2, x3, x4〉, 〈1, 1, 0, 0〉) |= (x2 = x3).
To see why, consider that X is in the order-encoding, so x2 ≥ x3. Furthermore,
also x2 ≤ x3 as otherwise x2 = 1 and x3 = 0 which implies that X = 〈1, 1, 0, 0〉
(because also x1 ≥ x2 and x3 ≥ x4), contradicting diff(X,Y ). When we detect
such equalities, we apply them to simplify the constraints in a model.

(2) redundant constraint elimination, where we discover that, given informa-
tion about equalities between Boolean literals and constants, a constraint is
redundant. For example, when Y = 〈1, 1, 0, 0〉 and x2 = x3, then diff(X,Y ) is
redundant because unary(X, [0, 4])∧(Y = 〈1, 1, 0, 0〉)∧(x2 = x3) |= diff(X,Y ).

(3) constraint restriction, where we discover that some bits in a constraint c are
“dont-cares” and project c to the remaining variables. For example, when x1=1
and x2=1 then y1 is a don’t care and diff(X,Y ) is equivalent to diff(X ′, Y ′)
where X ′ = 〈x2, x3, x4〉 and Y ′ = 〈y2, y3, y4〉. To see why unary(X, [0, 4]) ∧
unary(Y, [0, 4]) ∧ x1 = 1 ∧ x2 = 1 |= diff(X,Y ) ↔ diff(X ′, Y ′), consider that
if y1 = 0 then also y2 = 0 and both diff constraints are true, and if y1 = 1 then
x1 xor y1 = false and diff(X,Y )↔ diff(X ′, Y ′) follows.

In addition to simplification rules, we apply decomposition rules to high-level
constraints. For example, an allDiff constraint decomposes naturally to a set
of constituent diff constraints. The rule we apply to decompose allDiff con-
straints is as follows:

allDiff([U1, . . . , Um]) �→
{
diff(Ui, Uj)

∣∣1 ≤ i < j ≤ m
}
, (2)

permutation#([U1, . . . , Um])

where permutation# is a redundant constraint.1 Its role is to introduce redun-
dant clauses to accelerate SAT solving for the special case when the allDiff
constraint specifies a permutation (m variables taking m different values). By de-
laying the special treatment of allDiff constraints which specify permutations
we can often detect more permutations than prior to constraint simplification.
The precise specification of the permutation# constraint is given in Section 4.

3 Boolean Equi-propagation

Let B be a set of Boolean variables. A literal is a Boolean variable b ∈ B or its
negation ¬b. The negation of a literal  , denoted ¬ , is defined as ¬b if  = b
and as b if  = ¬b. The Boolean constants 1 and 0 represent true and false ,
respectively. The set of literals is denoted L and L0,1 = L ∪ {0, 1}.

An assignment, A, is a partial mapping from Boolean variables to constants,
often viewed as the set of literals:

{
b
∣∣A(b) = 1

}
∪
{
¬b

∣∣A(b) = 0
}
. For a for-

mula ϕ and b ∈ B, we denote by ϕ[b] (likewise ϕ[¬b]) the formula obtained by
substituting all occurrences of b ∈ B in ϕ by true (false). This notation extends
in the natural way for sets of literals. We say that A satisfies ϕ if ϕ[A] evaluates

1 The symbol # in the name of a constraint indicates that it is redundant.
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to true. A Boolean Satisfiability (SAT) problem consists of a Boolean formula ϕ
and determines if there exists an assignment which satisfies ϕ. The set of (free)
Boolean variables that appear in a Boolean formula ϕ is denoted vars(ϕ).

A Boolean equality is a constraint  =  ′ where  ,  ′ ∈ L0,1. An equi-formula
E is a set of Boolean equalities understood as a conjunction. The set of equi-
formulae is denoted E , and (bi-)implication of equi-formulae is denoted (↔) ⊃.

Equi-propagation is the process of inferring new equational consequences
from the constraints of a model and existing equational information. An equi-
propagator for Boolean formula ϕ is an extensive function μϕ : E → E defined
s.t. for all equi-formula E, ∧

{
e ∈ E

∣∣ϕ ∧ E |= e
}
⊃ μϕ(E) ⊃ E. That is, a con-

junction of Boolean equalities, at least as strong as E, made true by ϕ ∧E. We
say that equi-propagator μϕ is complete if μϕ(E) ↔

{
e ∈ E

∣∣ϕ ∧ E |= e
}
. We

denote a complete equi-propagator for ϕ as μ̂ϕ.
Example 1. Let X = 〈x1, x2, x3, x4〉 and Y = 〈y1, y2, y3, y4〉 and consider E1 ={
y1 = 1, y2 = 1, y3 = 0, y4 = 0

}
and E2 =

{
x2 = ¬y3, x3 = y2

}
. Then,

μ̂diffu(X,Y )(E1) = E1 ∪ {x2 = x3} and also μ̂diffu(X,Y )(E2) = E2 ∪ E1.

The following theorem states that complete equi-propagation for a Boolean for-
mula ϕ will determine at least as many fixed literals as unit propagation for any
clausal representation of ϕ.

Theorem 1. Complete equi-propagation is uniformly stronger than unit propagation.

Proof. Let ϕ be a Boolean formula, E ∈ E , and let  be a literal that follows from
unit propagation from some clasual representation of ϕ and E. Then ϕ ∧E |=  
and hence ( = 1) ∈ μ̂ϕ(E).

Boolean Unifiers. It is convenient to view equi-formula in a generic “solved-
form” as a substitution, θE , which is a (most general) unifier for the equations in
E. Boolean substitutions generalize assignments in that variables can be bound
also to literals. A Boolean substitution is an idempotent mapping θ : B → L0,1

such that dom(θ) =
{

b∈B
∣∣θ(b)�=b

}
is finite and ∀.b∈B. θ(b) �= ¬b. It is viewed

as the set θ=
{

b �→ θ(b)
∣∣ b ∈ dom(θ)

}
. We can apply θ to another substitution

θ′, to obtain substitution (θ · θ′) =
{

b �→ θ(θ′(b))
∣∣ b ∈ dom(θ) ∪ dom(θ′)

}
. A

unifier for equi-formula E is a substitution θ such that |= θ(e), for each e ∈ E.
A most-general unifier for E is a substitution θ such that for any unifier θ′ of
E, there exists substitution γ where θ′ = γ · θ.

Example 2. Consider the equi-formula E ≡ {b1 = ¬b2,¬b3 = ¬b4, b5 = b6, b6 =
b4, b7 = 1, b8 = ¬b7} then a unifier θ for E is {b2 �→ ¬b1, b4 �→ b3, b5 �→ b3, b6 �→
b3, b7 �→ 1, b8 �→ 0}. Note that θ(E) is the trivially true equi-formula {b1 =
¬¬b1,¬b3 = ¬b3, b3 = b3, b3 = b3, 1 = 1, 0 = ¬1}.
Let ≺ be a total (strict) order on B, extended to an order on L0,1 such that 0 ≺ 1
and ∀.b ∈ B, 1 ≺ b and b ≈ ¬b. We define a canonical most-general unifier for
any satisfiable equi-formula E: unifyE = λb.min

{
 ∈ L0,1

∣∣E |= b =  
}
. We

can compute unifyE in almost linear (amortized) time using a variation of the
union-find algorithm [21].
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Example 3. For the equi-formula E and substitution θ from Example 2 we have
that unifyE = θ where the ordering is 0 ≺ 1 ≺ b1 ≺ b2 ≺ · · · ≺ b8.

The following allows us to replace formula ϕ by unifyE(ϕ), and provides an al-
ternative, more efficient to implement, definition for complete equi-propagation.

Proposition 1.
ϕ ∧E ↔ unifyE(ϕ) ∧ E

Proposition 2.
μ̂ϕ(E) ↔ E∧{e ∈ E | unifyE(ϕ) |= e}

Implementing complete equi-propagators. A complete equi-propagator is
straightforward to implement using binary decision diagrams (BDDs). Consider
Boolean formula ϕ and equi-formula E. Then, for equation ( 1 =  2), based on
Proposition 2, we can test the condition, unifyE(ϕ) |= ( 1 ↔  2) using a stan-
dard BDD containment test e.g., “bddLeq” in [19]. This test can be performed for
all relevant equations involving variables from unifyE(ϕ) (and constants 0,1).
Example 4. Consider the BDD shown in Figure 3(a) which represents the for-
mula: ϕ ≡ unary3(A, [0, 3]) ∧ unary3(B, [0, 3]) ∧ diff(A,B). Suppose that E
is { B1 = 1, B2 = 1, B3 = 0 }. The BDD for unifyE(ϕ) is shown in Fig-
ure 3(b). It is easy to see from the BDD that equi-propagation determines that
unifyE(ϕ) |= A2 = A3. Indeed μ̂ϕ(E) = E′ = E ∪ {A2 = A3}.

We apply complete equi-propagation in cases when BDDs are guaranteed to be
polynomial in the size of the constraints they propagate for. The following result
holds for an arbitrary constraint ϕ, so it also holds for unifyE(ϕ).

Proposition 3. Let c(Xs) be an arbitrary constraint about integer variables
Xs = [X1, . . . , Xk] each represented with n bits in the order encoding. Then,
the number of nodes in the BDD representing c(Xs) is bound by O(nk).

Proof. (Sketch) There are only n + 1 legitimate states for each n bit unary
variable, and the BDD cannot have more nodes than possible states. �

Implementing ad-hoc equi-propagators. Most simple constraints have a
fixed small arity and hence complete equi-propagators using BDD are polyno-
mially bounded. However, this is not the case for global constraints where the
arity is not fixed. In this case we define an ad-hoc, possibly incomplete, equi-
propagator. We demonstrate this for the allDiff([U1, . . . , Um]) constraint.

Example 5. Consider Us = [U1, . . . , U5] where the Ui = 〈xi1, . . . , xi9〉 are integer
variables in the range [0, 9]. Given E, we denote unifyE(Us)=[U ′

1, . . . , U
′
5] and

illustrate equi-propagator μϕ(E) = E ∪ E′ for ϕ=allDiffu(Us): (1) Consider
E =

{
x12=1, x13=0

}
. Denoting Ea =

{
x1j = j ≤ 2

∣∣1 ≤ j ≤ 9
}

(e.g. U ′
1 = 2),

and Eb =
{

xi2 = xi3
∣∣2 ≤ i ≤ 5

}
(e.g. U ′

i �= 2 for i > 1), the propagator adds
E′ = Ea ∪ Eb. (2) Consider E = Eb ∪ Ec where Ec =

{
xi5 = 0

∣∣1 ≤ i ≤ 5
}

(e.g. Ui ≤ 4) and Eb is from the previous case. In this case, only U1 can take
the value 2. So a propagator adds equations imposing that U ′

1 = 〈1, 1, 0, . . . , 0〉.
(3) Consider E = Ec ∪ Ed where Ed =

⋃{
xi1 = xi2, xi3 = xi4

∣∣3 ≤ i ≤ 5
}

(e.g. only U1 and U2 can take the values 1 and 3) and Ec is from the previous
case. A propagator adds E′ = ∪

{
xi1 = 1, xi2 = xi3, xi4 = 0

∣∣ i ∈ {1, 2} }.
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(a) BDD for diffu(A, B) (b) Simpl’d wrt B=[1, 1, 0] (c) Simpl’d wrt A2=A3

Fig. 1. BDDs for (a) ϕ ≡ unary3(A, [0, 3])∧unary3(B, [0, 3])∧diff(A,B) (b) unifyE(ϕ)
where E = {B1=1, B2=1, B3=0} and (c) unifyE′(ϕ) where E′ = E ∪ {A2=A3}. Full
(dashed) lines correspond to true (false) edges. Target “F” node is omitted for brevity.

The following is essentially the usual domain consistent propagator for the
allDiff constraint [18] applied to the unary encoding.

Definition 1 (ad-hoc equi-propagator for allDiff). An equi-propagator
for ϕ = allDiffu(Us) where Us = [U1, . . . , Um] is defined as μϕ(E) = E ∪
E′ where E′ =

{
U ′
i(v) = U ′

i(v + 1)
∣∣ i ∈ {1, . . . ,m} −H, v ∈ V

}
if there exists

a Hall set H ⊆ {1, . . . ,m} where V = ∪i∈Hdom(U ′
i), |V | = |H | and denoting

unifyE(Us) = [U ′
1, . . . , U

′
m]. Otherwise, E′ = ∅.

After a Hall set H is detected (and equi-propagation has triggered), we also
apply an additional decomposition rule:

allDiff(Us) �→ allDiff([Ui | i ∈ H ]) ∧ allDiff([Ui | i ∈ {1, . . . ,m} −H ])

The benefit arises because the first allDiff constraint is guaranteed to represent
a permutation so the permutation# constraint gives an advantage.

For the three cases in Example 5 we have: (1) H={1} and V ={2}, (2)
H={2, 3, 4, 5}, and V ={0, 1, 3, 4}, and (3) H={3, 4, 5} and V ={0, 2, 4}. Indeed
we can convert any finite domain propagator to an equi-propagator. The follow-
ing holds simply because the unary encoding can represent arbitrary domains.

Proposition 4. Let E ∈ E and c(Xs) be a constraint over integer variables
Xs = [X1, . . . , Xm]. Let unifyE(Xs) = [X ′

1, . . . , X
′
m]. Suppose D is the mapping

from variables to sets of value D(Xi) = dom(X ′
i) and suppose propagator f for

c(Xs) maps D to D′. Then a correct equi-propagator for c(Xs) discovers new
equality literals E′ = {X ′

i(v) = X ′
i(v +1) | i ∈ {1, . . . ,m}, v ∈ D(Xi)−D′(Xi)}.
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Note that complete equi-propagators can determine more information than finite
domain propagation as illustrated by the example for E2 in Example 1. To
complete this section, consider the following example.

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x51 x52 x53 x54

E1=⇒

1 A A A

1 B B B

C D D 0

E E E F

x51 x52 x53 x54

E2=⇒

1 A A A

1 −A −A −A

D D D 0

E E E 0

G G H 0

E3=⇒

1 A A A

1 −A −A −A

D D D 0

−D −D −D 0

1 1 1 0

(a) (b) (c) (d)

Fig. 2. An example of equi-propagation (See Example 6)

Example 6. Consider constraint ϕ = allDiff(Xs) where Xs = [X1, . . . , X5]
with each Xi in the interval [0, 4], depicted as Fig. 2(a). Consider also the equi-
formula E1 which specifies that X1, X2 ∈ {1, 4}, X3 ∈ {0, 1, 3}, X4 ∈ {0, 3, 4}.
Fig. 2(b) depicts unifyE1

(Xs). Constraint simplification proceeds in two steps.
First, equi-propagation adds equi-formula E2, the affect of which is depicted as
Fig. 2(c) where ϕ is also decomposed: The upper part, allDiff(X1, X2), and
the lower part allDiff(X3, X4, X5). In the second step equi-propagation adds
equi-formula E3, the impact of which is depicted as Fig. 2(d). Constraint ϕ is
now fully solved, Xs is represented using only 2 propositional variables and the
CNF encoding will contain no clauses.

4 Optimized SAT Encodings Using Equi-propagation

Boolean equi-propagation is at the foundation of our optimizing CNF compiler.
The compiler repeatedly applies: equi-propagation, constraint decomposition,
restriction and elimination, and finally outputs CNF encodings. We assume that
each constraint comes with an associated equi-propagator.

Given a conjunction Φ of constraints, we first apply equi-propagators. Each
such application effectively removes at least one bit from the Boolean repre-
sentation of Φ. During this process, when no further equi-propagators can be
applied, we may apply a decomposition rule to a high-level constraint, introduc-
ing additional low-level constraints, but without introducing additional bits in
the system. The actual implementation is of course less naive. It takes care to
wakeup equi-propagators only when they may generate new information, and
it makes use of the most efficient implementation of the equi-propagator pos-
sible, so avoiding BDD based propagators if we have an equivalent propagator
implemented directly.

The complexity of the compiler is measured in the size of the constraint system
Φ it is optimizing. Denote by |Φ|c, the total number of low-level constraints in
Φ after decomposing all high-level constraints, and by |Φ|b the total number of
Boolean variables in the bit representation of Φ. Assuming that equi-propagators
are of polynomial cost, then so is the cost of running the compiler itself.



Boolean Equi-propagation for Optimized SAT Encoding 629

Proposition 5. Let Φ be a conjunction of high- and low-level (finite domain)
constraints. Then the number of equi-propagation steps performed when compil-
ing Φ is bound by O(|Φ|c × |Φ|b).

Proof. (sketch) Each pass of the algorithm covers at most |Φ|c constraints and
removes at least one of the |Φ|b Boolean variables from Φ. �

After equi-propagation and constraint decomposition triggers no more, we ap-
ply constraint restriction and elimination rules. We say that a constraint ϕ is
redundant with respect to an equi-formula E if either (a) unifyE(ϕ) is a tau-
tology or (b) there exists another constraint ϕ′ in the constraint store such that
unifyE(ϕ′) |= unifyE(ϕ). Our implementation is tuned to identify a collection
of ad-hoc cases. However in general, where BDDs have been applied to implement
complete propagators, such tests are particularly easy. Testing for (a) is trivial.
Testing for (b) is also straightforward for BDDs e.g., using “bddLeq” in [19].
However we only apply this rule in a restricted form due to the quadratic time-
complexity of examining all pairs of constraints. Namely, to determine cases of
the form trueu(X1, . . . , Xn) |= c(X1, . . . , Xn) where the constraint is redundant
with respect to the unary encoding of its variables.

Example 7. Take ϕ = diffu(A,B) and E′ from Example 4. The BDD for ϕ′′ =
unifyE′(ϕ) is shown in Figure 3(c). One can check that unary(A, [0, 4]) |= ϕ′′

using “bddLeq” indicating that the original constraint diff(A,B) is redundant.

In the final stage, when no further simplification applies, constraints are encoded
to CNF formula. This can be performed either using their Boolean specification,
or if BDD based propagators were applied, then we can read off the encoding
from the BDD using standard techniques.

Redundant constraints (with subscript # in the name) that were introduced
in the model only to improve equi-propagation need not be encoded to CNF
clauses. However, when we expect such redundant clauses to facilitate unit
propagation during SAT solving, then we do add them. For instance, we add
clauses to encode redundant permutation# constraints. Each such constraint
ϕ′ = permutation#([U1, . . . , Um]) is affiliated with a corresponding allDiff
constraint. If S = ∪mi=1dom(Ui), |S| �= m then the allDiff constraint does not
represent a permutation and nothing is added. Otherwise we create additional
Boolean variables biv to represent the expressions Ui = v, v ∈ S. Let the unary
encoding of Ui be 〈u1, . . . , uk〉. We add clauses encoding biv ↔ (uv ∧ ¬uv+1)
to connect these to the unary encoding, and the clauses ∨mi=1biv, ∀v ∈ S to get
better propagation from permutations.

5 Implementation, Experiments, and Extensions

All experiments were performed on an Intel Core 2 Duo E8400 3.00GHz CPU
with 4GB memory under Linux (Ubuntu lucid, kernel 2.6.32-24-generic).2 Our
2 The benchmark instances and encodings can be viewed at
http://www.cs.bgu.ac.il/~mcodish/Benchmarks/CP2011/

http://www.cs.bgu.ac.il/~mcodish/Benchmarks/CP2011/


630 A. Metodi et al.

Table 1. QCP results for 25× 25 instances with 264 holes

instance compiler Sugar 3D CSP’08 OSC’09 FS’09
num un/sat compl cnf size SAT cnf size SAT cnf size SAT

(sec.) (clauses) (sec.) (clauses) (sec.) (clauses) (sec.) (sec.) (sec.) (sec.)
1 sat 0.41 6509 2.46 140315 37.36 6507 0.09 31.55 34.81 6.44
2 sat 0.33 7475 0.02 140920 234.70 7438 0.74 137.60 99.84 44.80
4 sat 0.38 6818 0.61 141581 90.64 6811 0.08 47.24 273.36 157.58
5 sat 0.35 7082 0.32 140431 206.03 7099 0.14 27.33 24.87 22.30
6 sat 0.33 7055 0.45 140625 67.84 7044 1.11 35.78 108.60 12.58
7 sat 0.33 7711 2.36 142200 60.97 7684 0.08 57.23 67.32 341.62
11 unsat 0.45 6491 0.05 140603 39.02 6534 0.03 19.47 30.92 5.30
12 unsat 0.23 1 0.00 139037 0.58 7393 0.00 0.36 0.05 0.81
14 unsat 0.28 1 0.00 140706 2.25 7173 0.00 1.40 0.29 0.80
15 unsat 0.38 6063 0.05 140224 35.93 6104 0.06 32.39 58.41 4.77

prototype constraint compiler is written in Prolog and run using SWI Prolog
v5.10.2 64-bits. Complete propagators are implemented using the BDD package,
CUDD v2.4.2. Comparisons with Sugar (v1.14.7) are based on the use of identical
constraint models, apply the same SAT solver (CryptoMiniSat v2.5.1), and run
on the same machine. Comparisons with Minion (v0.10) are based on the use of
identical constraint models, and run on the same machine (with minor differences
due to syntax). For each of the example problems we extend (our description of)
the constraint modelling language as required for the benchmarks.

Quasigroup Completion Problems. (QCP) are given as an n × n board of
integer variables (in the range [1, n]) in which some are assigned integer values.
The task is to assign values to all variables, so that no column or row contains
the same value twice. A model is a conjunction of allDiff constraints.

Table 1 illustrates results for 10 (of the largest) instances from the 2008 CSP
competition3 with data for our compiler (compilation time, number of clauses,
SAT solving time), Sugar (number of clauses, subsequent SAT solving time), the
so-called 3D SAT encoding of [12] (number of clauses after unit propagation, SAT
solving time), and from: CSP’08 (the winning result from the 2008 competition),
OSC’09 and FS’09 (results for lazy clause generation solvers reported in [16] and
[9]). It is, by now, accepted that the 3D encoding is strong for QCP problems, a
fact echoed by the results of Table 1. Observe that for 2 instances, unsatisfiable
is detected directly by the compiler (where the CNF contains 1 empty clause).

Table 2. QCP 40× 40. CNF size in million’s clauses

inst. order enc. 3D enc.
800 CNF SAT CNF SAT
holes mCl (sec) mCl (sec)
1 0.11 18.24 0.13 6.87
2 0.11 2.88 0.13 3.70
3 0.11 6.54 0.13 2.50
4 0.11 0.34 0.13 1.47
5 0.11 21.50 0.13 7.09

total 50.05 22.28

inst. order enc. 3D enc.
1000 CNF SAT CNF SAT
holes mCl (sec) mCl (sec)
1 0.31 0.40 0.38 27.78
2 0.31 0.39 0.38 0.33
3 0.31 0.39 0.39 19.76
4 0.31 0.39 0.38 8.73
5 0.31 0.39 0.38 0.35

total 1.96 56.95

Table 2 shows results
for larger (40×40, satisfi-
able) instances4 with 800-
1000 holes. We compare
the order-encoding (com-
piled) and the 3D-encoding
(with unit propagation).
The CNF sizes before com-
pilation/unit propagation are

3 http://www.cril.univ-artois.fr/CPAI08/
4 Generated using lsencode from http://www.cs.cornell.edu/gomes/SOFT

http://www.cril.univ-artois.fr/CPAI08/
http://www.cs.cornell.edu/gomes/SOFT
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circa 2.74 million clauses for the order-encoding and 3.74 for the 3D-encoding.
The advantage of the 3D encoding is no longer clear.

This experiment indicates that our compiler competes with the 3D encoding
for QCP. Other high level models are clearly inferior. The comparison with Sugar
(stunning reduction in CNF size and faster SAT solving) is representative of all
other experiments and hence not highlighted in the following result tables.

Nonogram Problems. are boards of cells to color black or white, given clues
per row and column of a board. A clue is a number sequence indicating blocks of
cells to be colored black. For example, the clue 〈4, 8, 3〉 on a row indicates that it
should contain contiguous blocks of 4, 8 and 3 black cells (in that order) separated
by non-empty sequences of white cells. A Nonogram puzzle is modeled as a
Boolean matrix with constraints per row and column, each about a clue (number
sequence) 〈b1, . . . , bk〉, and about a Boolean vector, V ec (a row or column of the

Table 3. Human Nonograms Results

instance compiler
id size comp cnf sat BGU Walt.
9717 (30x30) 0.13 14496 124.43 ∞ ∞
10000 (50x40) 0.28 44336 40.66 ∞ ∞
9892 (40x50) 0.57 30980 0.44 ∞ ∞
2556 (45x65) 0.13 2870 0.00 15.85 0.4
10088 (63x52) 0.64 78482 1.26 0.27 0.08
2712 (47x47) 0.31 43350 0.92 5.98 4.95
6727 (80x80) 1.11 156138 2.86 0.5 0.17
8098 (19x19) 0.02 3296 0.06 209.54 8.63
6574 (25x25) 0.10 7426 0.03 37.56 2.94

matrix). Each bi is associated with
an integer variable indicating the in-
dex in V ec where block bi starts. For
notation, if U=〈u1, . . . , un〉 is an in-
teger variable (order-encoding) then
U+c is U prefixed by c ones repre-
senting U+c. Similarly, if U is greater
than c then U−c = 〈uc+1, . . . , un〉 rep-
resents U−c. We introduce two addi-
tional constraints

4 block(U1, U2, V ec) 5 leq(U1, U2)

The first specifies that for a bit vector V ec the variables in the indices greater
than value U1 and less equal value U2 (with U1 ≤ U2) are true. The second
specifies that for integer variables U1 and U2 in the order-encoding, U1 ≤ U2.
The Boolean functions corresponding to constraints of these forms are as follows:

block(U1, U2, 〈x1, . . . , xn〉) =
∧n

i=1(¬U1(i) ∧ U2(i)→ xi

leq(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) =
∧n

i=1 xi → yi
(3)

Example 8. The constraints below model the position of block sequence s =
〈3, 1, 2〉 in X = 〈x1, . . . , x9〉. In the first column, integer variables, U1, U2, U3

model the start positions of the three blocks. In the second column, the start
position of a block is required to be at least one after the end position of its prede-
cessor. In the third column, block constraints specify the black cells in the vector
X , and in the fourth column the white cells in the block X̄ = 〈¬x1, . . . ,¬x9〉.

unary(U1, [1, 9]) block(U−1
1 , U+3

1 , X) block(0, U1, X̄)
unary(U2, [1, 9]) leq(U+4

1 , U2) block(U−1
2 , U+1

2 , X) block(U+4
1 , U2, X̄)

unary(U3, [1, 9]) leq(U+2
2 , U3) block(U−1

3 , U+2
3 , X) block(U+2

2 , U3, X̄)
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Tables 3 & 4 compare ours to the two fastest documented Nonogram solvers:
BGU (v1.0.2) [17] and Wolter (v1.09) [24]. Table 3 is about “human-designed”

Table 4. 5,000 Random Nonograms
Results

so
lv

er

time (sec) 0.20 0.50 1.00 10.00 30.00 60.00
BGU 279 3161 4871 4978 4989 4995

Wolter 4635 4782 4840 4952 4974 4976
Compiler 13 4878 4994 5000 5000 5000

instances from [22]. These are the 10
hardest problems for the BGU solver.
The first 8 puzzles have at least 2 so-
lutions. The last 2 have a single so-
lution. Solving time is for determining
the number of solutions (0, 1, or more).
For our compiler, the columns indi-
cate: compilation time, cnf size (num-
ber of clauses) and sat solving time. The final two columns are about the solution
times for the BGU and Wolter solvers (running on the same machine). The time-
out for these solvers (indicated by ∞) is 300 sec. Table 4 reports on a collection
of 5,000 random puzzles from [23]. For each of the three solvers we indicate how
many puzzles it solves within the given allocated time. This experiment indicates
that our compiler is superior to other known methods for Nonograms. We apply
generic SAT solving compared to the other systems which are nonogram-specific.

BIBD Problems. (CSPlib problem 28) are defined by a 5-tuple of positive
integers 〈v, b, r, k, λ〉 and require to partition v distinct objects into b blocks
such that each block contains k different objects, exactly r objects occur in each
block, and every two distinct objects occur in exactly λ blocks. To model BIBD
problems we introduce three additional constraints

6 sumBits([B1, . . . , Bn], U) 7 uadder(U1, U2, U3)

8 pairwise and([A1, . . . , An], [B1, . . . , Bn], [C1, . . . , Cn])

The first (high-level) constraint states that the sum of bits, [B1, . . . , Bn] is the
unary value U . It is defined by decomposition: split the bits into two parts, sum
the parts, then add the resulting (unary) numbers. The sum of two unary num-
bers, U1 +U2 = U3, is specified by the (low-level) constraint uadder(U1, U2, U3).
To compute the scalar product of vectors [A1, . . . , An] and [B1, . . . , Bn] we use
the pairwise and constraint in combination with sumBits.

The model for BIBD instance 〈v, b, r, k, λ〉 is a Boolean incidence matrix with
constraints: sumBits(C, k) (sumBits(R, r)) for each column C (row R); and for
each pair of rows Ri, Rj (i < j), pairwise and(Ri, Rj , V s) and sumBits(V s, λ).
To break symmetry, we reorder rows and columns of the matrix to assign fixed
values in the first two rows and leftmost column: the first row contains r ones,
followed by zeros. The second row contains λ ones, r − λ zeros, r − λ ones, and
then zeros. The left column contains k ones followed by zeros. This information
enables the compiler to simplify constraints.

Table 5 shows results comparing our compiler (compilation time, cnf size, and
sat solving time) using the model we call SymB (for symmetry breaking) with the
Minion constraint solver [11]. Ignore for now the last 3 columns about SatELite.
We will come back to explain these in Section 6. All experiments were run on the
same computer. We consider three different models for Minion: [M’06] indicates
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Table 5. BIBD results (180 sec. timeout)

instance compiler (SymB) Minion SatELite (SymB)

〈v, b, r, k, λ〉 comp cnf size SAT [M’06] SymB SymB+ prepro cnf size SAT
(sec.) (clauses) (sec.) (sec.) (sec.) (sec.) (sec.) (clauses) (sec.)

〈7, 420, 180, 3, 60〉 1.65 698579 1.73 0.54 1.36 0.42 1.67 802576 2.18
〈7, 560, 240, 3, 80〉 3.73 1211941 13.60 0.66 1.77 0.52 2.73 1397188 5.18
〈12, 132, 33, 3, 6〉 0.95 180238 0.73 5.51 ∞ 1.76 1.18 184764 0.57
〈15, 45, 24, 8, 12〉 0.51 116016 8.46 ∞ ∞ 75.87 0.64 134146 ∞
〈15, 70, 14, 3, 2〉 0.56 81563 0.39 12.22 1.42 0.31 1.02 79542 0.20
〈16, 80, 15, 3, 2〉 0.81 109442 0.56 107.43 13.40 0.35 1.14 105242 0.35
〈19, 19, 9, 9, 4〉 0.23 39931 0.09 53.23 38.30 0.31 0.4 44714 0.09
〈19, 57, 9, 3, 1〉 0.34 113053 0.17 ∞ 1.71 0.35 10.45 111869 0.14
〈21, 21, 5, 5, 1〉 0.02 0 0.00 1.26 0.67 0.15 0.01 0 0.00
〈25, 25, 9, 9, 3〉 0.64 92059 1.33 ∞ ∞ 0.92 1.01 97623 8.93
〈25, 30, 6, 5, 1〉 0.10 24594 0.06 ∞ 1.37 0.31 1.2 23828 0.05
Total 36.66 81.24 > 219.14

results using the BIBD model described in [11], SymB uses the same model we
use for the SAT approach, SymB+, is an enhanced symmetry breaking model
with all of the tricks applied also in the [M’06] model. For the columns with
no timeouts we show total times (for the compiler this includes compile time
and sat solving). Note that by using a clever modeling of the problem we have
improved also the previous runtimes for Minion.

This experiment indicates that our compiler is significantly faster than Minion
on its BIBD models ([M’06]). Only when tailoring our SymB model, Minion
becomes competitive with ours (and still total Minion time is double).

Word Design for DNA. (Problem 033 of CSPLib) seeks the largest pa-
rameter n, s.t. there exist a set S of n eight-letter words over the alphabet
Σ = {A,C,G, T } with the following properties: (1) Each word in S has 4 sym-
bols from {C,G}; (2) Each pair of distinct words in S differ in at least 4 positions;
and (3) For every x, y ∈ S: xR (the reverse of x) and yC (the word obtained by
replacing each A by T , each C by G, and vice versa) differ in at least 4 positions.

In [10], the authors present the “template-map” strategy for this problem.
Letters are modelled by bit-pairs 〈ti,mi〉. For each eight-letter word, 〈t1, . . . , t8〉
is the template and 〈m1, . . . ,m8〉 is the map. The authors pose conditions on a set
of templates T and a set of maps M so that the Cartesian product S = T×M will
satisfy the requirements of the original problem. It is this template-map strategy
that we model in our encoding. The authors report a solution composed from
two template-maps 〈T1,M1〉 and 〈T2,M2〉 where |T1| = 6, |M1| = 16, |T2| = 2,
|M2| = 6. This forms a set S with (6 × 16) + (2 × 6) = 108 DNA words. Marc
van Dongen reports a larger solution with 112 words.5 To model this problem
we introduce the two constraints (where Vi are vectors of bits).

9 lexleq([V1, . . . , Vn]) 10 lexleq(V1, V2)
The first specifies that a list of vectors is ordered in the lexicographic order. It
decomposes to low-level constraints (of the second form) that specify that pairs
of vectors are ordered in the lexicographic order.
5 See http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/

http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/


634 A. Metodi et al.

Using our compiler, we find a template and map of size 14 and 8, the Cartesian
product of which gives a solution with 14 × 8 = 112 words. The SAT solving
time is less than 0.2 seconds. H̊akan Kjellerstrand reports finding a 112 word
solution in 36.5s using Comet.6 To show that there is no template of size 15 and
no map of size 9 takes 0.14 and 3.32 seconds respectively. This is a new result
not obtainable using previous solving techniques. We obtain this result when
symmetries are broken by ordering the vectors in T and in M lexicographically.
Proving that there is no solution to the original DNA word problem with more
than 112 words (not via the template-map strategy) is still an open problem.

6 Related Work and Conclusion

There is a considerable body of work on CNF simplification techniques with a
clear trade-off between amount of reduction achieved and invested time. Most
of these approaches determine binary clauses implied by the CNF, which is cer-
tainly enough to determine Boolean equalities. The problem is that determining
all binary clauses implied by the CNF is prohibitive when the SAT model may
involve many thousands of variables. Typically only some of the implied binary
clauses are determined, such as those visible by unit propagation. The trade-
off is regulated by the choice of the techniques applied to infer binary clauses,
considering the power and cost. See for example [7] and the references therein.
There are also approaches [14] that detect and use Boolean equalities during
runtime, which are complementary to our approach.

In our approach, the beast is tamed by introducing a notion of locality. We do
not consider the full CNF. Instead, by maintaining the original representation,
a conjunction of constraints, each viewed as a Boolean formula, we can apply
powerful reasoning techniques to separate parts of the model and maintain effi-
cient preprocessing. Our specific choice, using BDD’s for bounded sized formula,
guarantees that reasoning is always polynomial in cost.

To illustrate one difference consider again Example 6 where equi-propagation
simplifies the constraint so that it is expressed in 2 propositional variables and
requires 0 clauses. In contrast, the CNF representing the allDiff constraint
with the initial equations E1 consists of 76 clauses with 23 variables and after
applying SatELite [7] this is reduced to 57 clauses with 16 variables. Examining
this reduced CNF reveals that it contains binary clauses corresponding to the
equations in E2 but not those from E3.

Finally, we come back to (the last 3 columns in) Table 5 where a comparison
with SatELite is presented. It is interesting to note that in some cases prepro-
cessing results in smaller CNF and faster SAT solving, however in total (even if
not counting the timeout for BIBD instance 〈15, 45, 24, 8, 12〉) equi-propagation
is stronger.

Using equi-propagation on a high level view of the problem allows us to
simplify the problem more aggressively than is possible with a CNF repre-
sentation. The resulting CNF models can be significantly smaller than those
6 See http://www.hakank.org/comet/word_design_dna1.co

http://www.hakank.org/comet/word_design_dna1.co
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resulting from straight translation, and significantly faster to solve. Hence we
believe that Boolean equi-propagation, combined with CNF simplification tools
(such as SatELite), makes an important contribution to the encoding of CSPs
to SAT.
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Abstract. The distance between two graphs is usually defined by means
of the size of a largest common subgraph. This common subgraph may be
an induced subgraph, obtained by removing nodes, or a partial subgraph,
obtained by removing arcs and nodes. In this paper, we introduce two
soft CSPs which model these two maximum common subgraph problems
in a unified framework. We also introduce and compare different CP
models, corresponding to different levels of constraint propagation.

1 Introduction

Graphs are used in many applications to represent structured objects such as,
for example, molecules, images, or biological networks. In many of these appli-
cations, it is necessary to measure the distance between two graphs, and this
problem often turns into finding a largest subgraph which is common to both
graphs [1]. More precisely, we may either look for a maximum common induced
subgraph (which has as many nodes as possible), or a maximum common partial
subgraph (which has as many arcs as possible). Both problems are NP-hard in
the general case [2], and have been widely studied, in particular in bioinformatic
and chemoinformatic applications [3,4].

In this paper, we study how to solve these problems with CP. In Section 2, we
recall definitions and we describe existing approaches. In Section 3, we introduce
two soft CSPs which model these problems in a unified framework. In Section 4,
we introduce different CP models, corresponding to different levels of constraint
propagation. In Section 5, we experimentally compare these different models.

2 Background

2.1 Definitions

A graph G is composed of a finite set NG of nodes and a set AG ⊆ NG × NG

of arcs. We implicitly consider directed graphs, such that each arc is a directed
couple of nodes. Results introduced in this paper may be generalized to non
directed graphs in a straightforward way, by associating two directed arcs (u, v)
and (v, u) with every non directed edge linking u and v.

Let G and G′ be two graphs. G is isomorphic to G′ if there exists a bijective
function f : NG → NG′ which preserves arcs, i.e., ∀(u, v) ∈ NG × NG, (u, v) ∈

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 637–644, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



638 S.N. Ndiaye and C. Solnon

MCPS(G,G’)
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Fig. 1. Example of two graphs G and G′ and their MCIS and MCPS

AG ⇔ (f(u), f(v)) ∈ AG′ . An induced subgraph is obtained by removing nodes,
i.e., G′ is an induced subgraph of G if NG′ ⊆ NG and AG′ = AG ∩NG′ ×NG′ .
A partial subgraph is obtained by removing nodes and arcs, i.e., G′ is a partial
subgraph of G if NG′ ⊆ NG and AG′ ⊆ AG ∩NG′ ×NG′ .

We denote G↓S the subgraph obtained by keeping a subset S of components
of G: If S is a subset of nodes, then G↓S is the induced subgraph obtained by
keeping these nodes (i.e., NG↓S

= S and NG↓S
= AG ∩ S × S); if S is a subset

of arcs, then G↓S is the partial subgraph obtained by keeping these arcs (i.e.,
NG↓S

= {u ∈ NG | ∃v ∈ NG, (u, v) ∈ S ∨ (v, u) ∈ S} and AG↓S
= S).

A common subgraph is a graph which is isomorphic to subgraphs of G and G′.
The similarity of two graphs is usually defined by means of the size of a common
subgraph [1]: the larger the subgraph, the more similar the graphs. The size of a
subgraph is defined differently whether we consider induced or partial subgraphs:
A Maximum Common Partial Subgraph (MCPS) is a common partial subgraph
which has a maximum number of arcs, whereas a Maximum Common Induced
Subgraph (MCIS) is a common induced subgraph which has a maximum number
of nodes. Fig. 1 displays two graphs and an example of MCPS and MCIS.

2.2 Existing Complete Approaches for Solving MCIS and MCPS

Most complete approaches are based on a reformulation of the problem into
a maximum clique problem in a compatibility graph (whose nodes correspond
to couples of nodes that may be matched and edges correspond to pairs of
compatible nodes) [5,6,7]. McGregor [8] proposes a different approach based on
Branch & Bound: Each node of the search tree corresponds to the matching of
two components, and a bounding function evaluates the number of components
that can still be matched so that the current branch is pruned as soon as this
bound becomes lower than the size of the largest known common subgraph.

Conte et al [9] compare these 2 approaches within a same programming frame-
work on a large database of graphs. They show that no approach is outperforming
the other: The best performing approach varies when changing graph features.

Vismara and Valery [10] show how to model and solve MCIS and MCPS with
constraint programming. They consider particular cases of these two problems,
where the subgraph must be connected, and they introduce a global connectiv-
ity constraint for this purpose. However, they ensure that node matchings are
injective by using a set of binary difference constraints. They compare CP with
a clique-based approach, and show that CP obtains better results.
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3 Modeling MCIS and MCPS Problems as Soft CSPs

In this section, we introduce two soft CSPs which respectively model MCIS
and MCPS problems for two graphs G and G′. These two models mainly differ
with respect to their variables: For MCIS, variables are associated with nodes
of G, whereas for MCPS, variables are associated with arcs. In both cases, the
value assigned to the variable associated with a component (node or arc) of G
corresponds to its matched component in G′. As some components may not be
matched, we introduce a joker value ⊥ which denotes the fact that a component
is not matched. Hence, for MCIS, the domain of every variable xu associated
with a node u ∈ NG is D(xu) = NG′ ∪ {⊥} whereas, for MCPS, the domain of
every variable xuv associated with an arc (u, v) ∈ AG is D(xuv) = AG′ ∪ {⊥}.

In both cases, there are two different kinds of constraints. A first set of binary
constraints ensures that neighborhood relations defined by arcs are preserved.
For MCIS, these binary constraints ensure that adjacency relations between
matched nodes are preserved: Given two variables xu and xv respectively asso-
ciated with nodes u and v of G, we define

Carc(xu, xv) ≡ (xu = ⊥) ∨ (xv = ⊥) ∨ ((u, v) ∈ AG ⇔ (xu, xv) ∈ AG′)

For MCPS, these binary constraints ensure that incidence relationships between
matched arcs are preserved: Given two variables xuv and xwy respectively asso-
ciated with arcs (u, v) and (w, y) of G, we define

Carc(xuv, xwy) ≡ (xuv = ⊥) ∨ (xwy = ⊥) ∨ (R((u, v), (w, y), xuv , xwy))

where R is a predicate which checks that (u, v) and (w, y) have the same incidence
relationships as the arcs of G′ assigned to xuv and xwy, i.e.,
R((u, v), (w, y), (u′, v′), (w′, y′)) ≡ (u = v ⇔ u′ = v′)∧(u = w⇔ u′ = w′)∧(u =
y ⇔ u′ = y′) ∧ (v = w ⇔ v′ = w′) ∧ (v = y ⇔ v′ = y′) ∧ (w = y ⇔ w′ = y′).

Finally, we have to express that the matching must be injective (as two differ-
ent components of G must be matched to two different components of G′). This
kind of constraint could be modeled with a global allDiffExcept⊥(X) constraint
which enforces all variables in X to take distinct values, except those variables
that are assigned to a joker ⊥ value [11]. To find a maximum common subgraph,
we search for a partial injective matching which matches as many components
as possible, i.e., we have to minimize the number of variables assigned to ⊥.
This could be achieved by adding an atmost(b − 1, X,⊥) constraint each time
a feasible solution σ is found, where b is the number of variables assigned to
⊥ in σ. However, this model achieves a weak filtering because it separates the
evaluation of the cost function from the allDiff constraint.

Stronger filterings may be achieved by using optimization constraints, which
relate constraints with cost variables to be optimized, as proposed in [12]. In
particular, the soft allDiff constraint [13] relates a set X of variables to an addi-
tional cost variable which is constrained to be equal to the number of variables
of X that should change their value in order to satisfy the allDiff(X) constraint,
and which must be minimized (we consider variable-based violation costs).
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To find an injective partial matching which minimizes the number of non
matched components, we introduce an additional variable x⊥ whose domain is
D(x⊥) = {⊥} and we post a soft allDiff(X∪{x⊥}, cost) constraint. Note that x⊥
is always assigned to ⊥: It ensures that all other variables are assigned to values
different from ⊥ whenever this is possible (e.g., when G and G′ are isomorphic).

Let us now formally define the two soft CSPs modeling MCIS and MCPS. For
the MCIS, we define the soft CSP:

– Variables: X = {xu | u ∈ NG} ∪ {x⊥}
– Domains: D(x⊥) = {⊥} and ∀u ∈ NG, D(xu) = NG′ ∪ {⊥}
– Hard constraints: ∀{u, v} ⊆ NG, Carc(xu, xv)
– Soft constraint: allDiff (X, cost)

For the MCPS, we define the soft CSP :

– Variables: X = {xuv | (u, v) ∈ AG} ∪ {x⊥}
– Domains: D(x⊥) = {⊥} and ∀(u, v) ∈ AG, D(xuv) = AG′ ∪ {⊥}
– Hard constraints: ∀{(u, v), (w, y)} ⊆ AG, Carc(xuv, xwy)
– Soft constraint: allDiff (X, cost)

Computing Maximum Common Subgraphs from soft CSP solutions. A solution
is an assignment σ of the variables of X which satisfies all hard constraints, and
which minimizes the violation cost of the soft constraint so that σ(cost) is equal
to this violation cost. Let σ(X)\⊥ be the set of values different from ⊥ which are
assigned to variables of X . One can easily check that, for MCIS (resp. MCPS),
G′

↓σ(X)\⊥ is isomorphic to an induced (resp. partial) subgraph of G.
Note that we cannot define the common induced subgraph by simply keeping

every node of G whose associated variable is assigned to a value different from
⊥. Indeed, when several nodes of G have the same neighborhood, it may happen
that the variables associated with these nodes are assigned to a same value
(different from ⊥). Let us consider for example the graphs of Fig. 1. For MCIS,
the assignment σ = {x⊥ = ⊥, xa = ⊥, xb = 3, xd = 4, xc = 2, xf = 5, xe = 4}
is an optimal solution. In this case, σ(X) \ ⊥ = {2, 3, 4, 5} and G′

↓σ(X)\⊥ is the
subgraph obtained by removing node 1 from G′. In this solution, both xd and
xe are assigned to 4 because d and e have the same neighborhood.

The size of the common subgraph G′
↓σ(X)\⊥ is equal to c− σ(cost) where c is

the number of components of G (c = |NG| for MCIS and c = |AG| for MCPS),
and σ(cost) is the value of the cost variable of the soft allDiff constraint. As
the value of cost is minimal, the size of G′

↓σ(X)\⊥ is maximal. On our previous
example, we have σ(cost) = 2 and |N | = 6 so that G′

↓σ(X)\⊥ has 4 nodes.

Extension to Labeled Graphs. In labeled graphs, nodes and edges are associated
with labels. In this case, the common subgraph must match components the
labels of which are equal. This kind of constraints is handled in a straightforward
way. For MCIS, we restrict the domain of every variable xu to nodes which
have the same label as u, and we ensure that arc labels are preserved in Carc
constraints. For MCPS, we restrict the domain of every variable xuv to arcs
which have the same label as (u, v) and whose endpoints have the same labels.
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4 Constraint Propagation

The two soft CSP models introduced in the previous section are very similar:
they both combine a set of binary hard constraints with a soft allDiff constraint.
We consider different levels of propagation of these constraints.

Propagation of the soft allDiff constraint. We consider 3 levels of propagation.
The strongest propagation, denoted GAC(allDiff), ensures the generalized arc
consistency as proposed in [13]. More precisely, we search for a maximum match-
ing in the bipartite graph Gb = (X,V,Eb) where X is the set of variables, V is
the set of values in variable domains, and Eb is the set of edges (x, v) ∈ X × V
such that v ∈ D(x). A matching of Gb is a subset of edges of Eb such that no two
edges share an endpoint. The cardinality of a largest matching of Gb gives the
maximum number of variables that may be assigned to different values. There-
fore the number of nodes which are not matched provides an upper bound for
cost. When this number is larger than the lower bound of cost, we cannot filter
variable domains. However, as soon as it is as large as the lower bound of cost,
we can filter domains by searching for every edge (x, v) which does not belong
to any maximum matching in Gb. As proposed in [13,14,15], we use the algo-
rithm of [16] to compute a maximum matching, and we exploit the fact that this
algorithm is incremental: at each node, we update the last computed maximum
matching by removing edges corresponding to removed values, and we complete
this matching until it becomes maximum.

We have considered a weaker filtering, denoted bound(cost)+FC(diff). This
filtering does not ensure the generalized arc consistency, but simply checks if
there exists a matching of Gb such that the number of non matched nodes is
greater than or equal to the lower bound of cost. This is done in an incremental
and lazy way: at each node, once we have updated the last computed matching,
we try to extend it only if its number of non matched nodes is strictly lower than
the lower bound of cost. We combine this with a simple forward-checking of the
binary decomposition of the allDiff constraint which simply removes a value v
such that v �= ⊥ whenever v has been assigned to a variable.

The weakest propagation of the soft allDiff constraint, denoted FC(diff), is
a forward-checking of its binary decomposition which simply removes a value v
such that v �= ⊥ whenever v has been assigned to a variable. The upper bound
of the cost variable is updated each time a variable is assigned to ⊥.

Propagation of the binary hard constraints Carc. When the domain of the cost
variable has not been reduced to a singleton by the propagation of the soft
allDiff constraint, the joker value ⊥ belongs to the domain of every non assigned
variable. In this case, a forward-checking of Carc constraints actually ensures
arc consistency. Indeed, for every pair (xi, xj) of non assigned variables, and for
every value v ∈ D(xi), the value ⊥ belongs to D(xj) and is a support for v as
Carc(xi, xj) is satisfied as soon as xi or xj is assigned to ⊥.

When the domain of cost is reduced to a singleton, ⊥ is removed from the
domain of all non assigned variable. In this case, maintaining arc consistency
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(MAC) may remove more values than a simple forward-checking (FC). Hence, we
have considered two different levels of propagation: FC(Carc) performs forward
checking, whereas MAC(Carc) maintains arc consistency (however, as FC ensures
AC while ⊥ has not been removed from domains, we still perform FC until ⊥ is
removed, and maintain AC only when ⊥ has been removed).

5 Experimental Results

Compared models. We compare the five following models:

– FC = FC(Carc)+FC(diff);
– FC+bound = FC(Carc)+bound(cost)+FC(diff);
– FC+GAC = FC(Carc)+GAC(allDiff);
– MAC+bound = MAC(Carc)+bound(cost)+FC(diff);
– MAC+GAC = MAC(Carc)+GAC(allDiff).

The FC model basically corresponds to the Branch & Bound approach proposed
by McGregor in [8], and to the CP model proposed in [10] (except that, in [10], a
connectivity constraint is added in order to search for connected subgraphs). All
models have been implemented in C. We have considered the minDom variable
ordering heuristic, and values are assigned by increasing order of value.

Test Suites. We consider a synthetically generated database described in [9].
For each graph, there are 3 different labelings such that the number of different
labels is equal to 33%, 50% or 75% of the number of nodes.

We report results obtained on 3 test suites of increasing hardness. Test suite
1 considers MCIS on directed and labeled graphs such that the number of labels
is equal to 33% of the number of nodes (when increasing this ratio, the problem
becomes easier). Test suite 2 considers MCIS on non directed and non labeled
graphs. Test suite 3 considers MCPS on directed and non labeled graphs. We
have adapted the size of the graphs with respect to the difficulty of these test
suites so that they may be solved within a reasonable CPU time limit: in test
suite 1 (resp. 2 and 3), we consider graphs with 40 (resp. 30 and 20) nodes.
For each test suite, we report results obtained on different classes of graphs:
randomly connected graphs with connectivity η ∈ {0.05, 0.2} (r005 and r02); 2D,
3D, and 4D regular meshes (m2D, m3D, m4D); 2D, 3D, and 4D irregular meshes
with ρ = 0.6 (m2Dr, m3Dr, and m4Dr); regular bounded valence graphs with
V ∈ {3, 9} (b03 and b09) and irregular bounded valence graphs with V ∈ {3, 9}
(b03m and b09m). Each class contains 150 pairs of graphs corresponding to the
first 30 instances for each of the 5 possible sizes of the MCIS (i.e., 10%, 30%,
50%, 70% and 90% of the number of nodes of the original graphs).

Discussion. Table 1 compares the 5 CP models on the 3 test suites. It shows us
that the FC model (which basically corresponds to approaches proposed in [8] and
[10]) is clearly outperformed by all other models, which perform stronger filter-
ings. Indeed, FC achieves a kind of passive bounding on the cost variable, by sim-
ply counting the number of variables that must be assigned to⊥. All other models
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Table 1. Comparison of the 5 CP models on the 3 test suites. Each line successively
displays the name of the class and, for each model, the percentage of solved instances
within a CPU time limit of 30mn (%S), the CPU time (time) in seconds on a 2.26
GHz Intel Xeon E5520 and the number of thousands of nodes (#Kn) in the search
tree. CPU time and number of nodes are average results (if an instance is not solved
within 30mn, we consider in the average results the CPU time and the number of nodes
reached when the search was stopped).

FC FC+bound FC+GAC MAC+bound MAC+GAC
%S time #Kn %S time #Kn %S time #Kn %S time #Kn %S time #Kn

T
es

t
S
u
it

e
1

b03 100 105.79 56074 100 20.81 6066 100 24.83 4831 100 13.43 3166 100 13.86 1502
b03m 100 143.74 80297 100 26.17 7754 100 28.86 5651 100 16.91 4021 100 15.06 1742
b09 100 0.11 50 100 0.07 19 100 0.08 17 100 0.06 15 100 0.08 10
b09m 100 0.12 54 100 0.08 22 100 0.09 20 100 0.07 17 100 0.10 11
m2D 100 98.62 53960 100 18.05 5200 100 20.19 3664 100 12.25 2876 100 10.94 1220
m2Dr 100 8.06 3990 100 3.14 864 100 3.65 724 100 2.21 523 100 2.38 291
m3D 100 15.05 7532 100 5.55 1536 100 5.82 1157 100 3.69 865 100 4.86 439
m3Dr 100 3.90 1913 100 1.62 419 100 1.82 359 100 1.14 273 100 1.13 154
m4D 100 97.33 50940 100 12.09 3147 100 12.94 2496 100 8.17 1832 100 9.28 835
m4Dr 100 5.85 2745 100 1.87 471 100 2.04 387 100 1.38 325 100 1.50 169
r005 100 19.47 10540 100 4.72 1295 100 5.68 1040 100 3.17 741 100 3.57 393
r02 100 0.02 10 100 0.02 6 100 0.02 5 100 0.01 4 100 0.02 3

T
es

t
S
u
it

e
2

b03 72 756.25 312080 100 68.87 10256 100 77.93 7728 97 212.41 3679 98 231.77 2301
b03m 57 1081.52 441952 100 101.77 14749 100 121.99 12043 97 343.77 6017 97 397.14 4010
b09 100 147.80 62050 100 35.09 7709 100 40.27 6699 100 41.49 6068 100 44.69 3531
b09m 99 342.89 149613 100 86.07 20054 100 94.98 16364 100 101.07 15347 100 103.71 8439
m2D 61 985.35 394241 100 103.17 16003 100 131.48 13532 96 365.66 7582 95 411.89 4491
m2Dr 62 998.30 383680 100 171.70 29757 100 201.49 24344 99 428.35 17228 98 482.21 9128
m3D 76 737.81 277429 100 81.78 13206 100 101.71 11570 100 240.58 7538 98 284.13 4331
m3Dr 83 681.18 266386 100 115.49 21872 100 156.56 20579 100 254.37 13715 100 316.93 8262
m4D 46 1276.08 498405 100 120.71 17386 100 129.53 13257 100 360.14 8699 96 423.83 5704
m4Dr 50 1448.08 549375 100 165.51 27849 100 195.86 23127 100 421.02 16238 100 467.62 8966
r005 50 1236.75 515935 99 142.04 22122 98 175.62 17625 93 443.26 8601 92 494.76 5099
r02 100 474.12 222831 100 246.16 67044 100 283.70 58036 100 238.91 53792 100 242.84 32445

T
es

t
S
u
it

e
3

b03 100 34.44 9364 100 8.67 1178 100 10.93 1163 100 7.13 582 100 8.37 392
b03m 100 47.41 13809 100 9.62 1350 100 10.41 1172 100 7.33 700 100 7.04 386
b09 0 - - 0 - - 0 - - 0 - - 0 - -
b09m 0 - - 0 - - 0 - - 0 - - 0 - -
m2D 100 214.00 59029 100 32.17 3933 100 33.69 3324 100 26.16 2159 100 25.83 1165
m2Dr 0 - - 0 - - 0 - - 0 - - 0 - -
m3D 90 1122.39 263519 100 206.22 23399 100 282.27 24543 100 187.90 14170 100 226.57 9000
m3Dr 0 - - 0 - - 0 - - 0 - - 0 - -
r005 100 11.28 4333 100 2.12 354 100 2.56 358 100 1.39 144 100 1.56 98
r02 0 - - 0 - - 0 - - 0 - - 0 - -

achieve an active bounding by checking that the number of variables that can be
assigned to different values is large enough. The lazy bounding introduced in Sec-
tion 4 drastically reduces the search space and CPU times of FC+bound are always
significantly lower than those of FC. GAC(allDiff) reduces even more the search
space but the difference is not so obvious so that CPU times of FC+GAC are al-
ways greater than those of FC+bound. This tendency is observed on the 3 test
suites.

Replacing FC(Carc) with MAC(Carc) also significantly reduces the number
of explored nodes but this stronger filtering has a higher time complexity so
that it does not always reduce CPU times: it improves performances on Test
suites 1 and 3 but deteriorates them on Test Suite 2. Hence, the best performing
approaches are MAC+bound and MAC+GAC on Test suites 1 and 3 whereas
the best performing approach is FC+bound on Test suite 2. These results may
be explained by the fact that constraints of instances of Test suites 1 and 3 (such
that graphs are directed or labeled) are tighter than those of Test suite 2.
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Further works. Further work will concern the integration of symmetry breaking
techniques and more advanced propagation techniques such as those proposed
in [17,18,19] for graph and subgraph isomorphism. We shall also study the in-
tegration of ordering heuristics. Indeed, when solving an optimization problem,
ordering heuristics aim at guiding the search towards the best assignments, thus
allowing the bounding functions to prune more branches.

Acknowledgement. This work was done in the context of project Sattic (Anr
grant Blanc07-1 184534).
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14. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: AAAI
1994, pp. 362–367 (1994)

15. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldiff
constraint: An empirical survey. Artificial Intelligence 172(18), 1973–2000 (2008)

16. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

17. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism
problem. Constraints 13(4), 518–537 (2008)

18. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327–353 (2010)

19. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intel-
ligence 174(12-13), 850–864 (2010)



Kangaroo: An Efficient Constraint-Based Local

Search System Using Lazy Propagation

M.A. Hakim Newton1,2, Duc Nghia Pham1,2,
Abdul Sattar1,2, and Michael Maher1,3,4

1 National ICT Australia (NICTA) Ltd.
2 Institute for Integrated and Intelligent Systems, Griffith University

3 School of Computer Science and Engineering, University of New South Wales
4 Reasoning Research Institute, Sydney

Abstract. In this paper, we introduce Kangaroo, a constraint-based
local search system. While existing systems such as Comet maintain
invariants after every move, Kangaroo adopts a lazy strategy, updating
invariants only when they are needed. Our empirical evaluation shows
that Kangaroo consistently has a smaller memory footprint than Comet,
and is usually significantly faster.

1 Introduction

Constraint-based local search (CBLS) has been quite successful in solving prob-
lems that prove difficult for constraint solvers based on constructive search.
Unfortunately, there is little published work on existing implementations that
led to this success – most work has addressed language features [12,7,8] and
applications [5,2]. In this paper we present Kangaroo, a new constraint-based
local search system and expose key details of its implementation. We compare
it with Comet, which has been the state-of-the-art in CBLS for several years.

Kangaroo differs from Comet in several aspects: it currently provides a C++
library, not a separate language; it employs a lazy strategy for updating invari-
ants; it uses well-supported simulation to explore neighbourhoods, rather than
directly using invariants as Comet seems to; and data structures are encapsulated
at the system level instead of at the object level as Comet does. Nevertheless,
Kangaroo provides many of the capabilities of Comet and is also very efficient.
On a benchmark of well-known problems Kangaroo more frequently solves prob-
lems than Comet, and usually solves them faster. It also consistently uses about
half the memory footprint of Comet.

The rest of the paper is organised as follows: Section 2 outlines constraint-
based local search; Section 3 introduces Kangaroo terminology; Section 4 de-
scribes the Kangaroo system in detail; Section 5 discusses the experimental
results and analyses; and finally, Section 6 presents conclusions and future work.

2 Constraint-Based Local Search

Constraint-based local search is based on a view of constraint satisfaction as
an optimization problem. With every constraint c, there is a violation metric

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 645–659, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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function μc that maps variable assignments1 θ to non-negative numbers. We
require of a violation metric only that μc(θ) = 0 iff c is satisfied by θ. For a
set of constraints C, constraint satisfaction is reformulated as the minimisation
problem: minimizeθμC(θ) where μC(θ) =

∑
c∈C wcμc(θ) and the weights wc (often

wc = 1) are to guide the search. If the minimum value of μC is 0 then C is
satisfiable by the assignment that produces this value. If the minimum is non-
zero then C is unsatisfiable, but the assignment that produces the minimum
achieves a “best” partial solution of C.

CBLS uses local search to try to solve this minimization problem. There are
many variants of local search, but common to them all is a behaviour of moving
from one variable assignment θ to another, in search of a better assignment, and
the exploration of a neighbourhood Nθ before selecting the next assignment.
Since this behaviour is repeated continually, key to the performance of local
search is the ability to sufficiently explore the neighbourhood and perform the
move to the next variable assignment quickly.

Comet [6] provides two progressively higher level linguistic concepts to sup-
port the specification of these operations. Invariants are essentially equations
y = f(x1, . . . , xn) which are guaranteed to hold after each move; as the value of
the expression f(x1, . . . , xn) is changed by a move, the value of y is revised. Note
that such an invariant induces a dependency of y on x1, . . . , xn and, transitively,
y depends on the terms that any xi depends on. Differentiable constraints asso-
ciate, with each constraint c, several methods that are often implemented with
many invariants; they provide a way to inspect the effect of neighbouring assign-
ments on c and they support an abbreviated exploration of the neighbourhood,
by providing an estimate of gradients: the amount that the violation measure
might change by changing the value of a given variable. Objective functions, and
expressions in general, can be differentiable.

The invariants and differentiable objects as discussed above provide certain
guarantees, but the job of actually keeping the guarantees is performed by a
CBLS system. Invariants are implemented in the Comet system by a two-phase
algorithm based on a relatively standard approach for one-way constraints [1]:
in a planning phase the invariants are topologically ordered according to the
dependencies between them, and then the execution phase propagates the one-
way constraints, respecting this order. Planning ensures that each invariant is
propagated at most once in each move. In terms of Fig. 1, this is a bottom-up
execution, where a change in a problem variable such as Queens[k] is propagated
through all invariants possibly affected by the change. This approach clearly
keeps the guarantees.

An alternative approach is to perform a propagation only when it is needed.
When a top-level term’s value is needed (for example, the value of the objective
function), those invariants that it depends on and are out-of-date are visited
by a (top-down) depth-first search and recursively, when all children of a node
have been visited, and are up-to-date, the propagation for the invariant at that
node is executed. If an invariant’s value is unchanged by its execution, we can

1 A variable assignment maps each variable to a value in its domain.
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avoid useless propagations. This approach requires that when a move is made
all invariants that might be affected are marked as out-of-date before beginning
evaluation. This approach, which is called mark-sweep, is also well-established
[9]. It also keeps the guarantees. Kangaroo employs a variant of this approach.

There are several languages, toolkits and libraries supporting local search, in-
cluding constraint-based local search. Local search frameworks or libraries such
as HotFrame [3] and EasyLocal++ [4] focus on flexibility, rather than effi-
ciency. They do not seem to support the light-weight inspection/exploration of
neighbourhoods. Nareyek’s system DragonBreath [11] is not described directly;
it appears to require explicit treatment of incrementality (no invariants) and a
devolved search strategy where, at each step, a constraint is delegated to choose
a move. Localizer [10] is a precursor to Comet that incorporated invariants but
not differentiability. The invariant library of the iOpt toolkit [14] is similar to
Localizer in many ways, except it is a Java toolkit, rather than a language, and
it employs a mark-sweep approach to invariants, rather than topological order-
ing. Among SAT solvers employing local search only [13] employs a dependency
structure similar to CBLS systems, and it needs only a simple update strategy
because each move is a single flip. Unfortunately, most of the published litera-
ture focuses on language features, APIs, etc. and their use in applications, rather
than describe details of their implementation. We believe this is the first paper
on CBLS with an implementation focus.

3 Kangaroo Terminology

We introduce some terminology and notation for discussing Kangaroo. Given a
CBLS problem, there is a set K of constants and a set V of problem variables.
Every variable v is assumed to have a finite domain of values it can take. The
basic element of computation in Kangaroo is a term, denoted by τ . If a term
τ has the form f(p1, . . . , pn), we refer to each pi as a parameter and define
P (τ) = {p1, . . . , pn}. Terms other than variables and constants are referred to
as dependent terms. Some dependent terms may be known to have values that
are independent of the values of any variables and hence will not need to be
repeatedly evaluated; the remaining dependent terms are computable. A term is
updatable if it is a variable or is computable. A root term is a term on which no
term depends. Γ is the set of root terms. For each term τ , D(τ) denotes the set
of terms that are directly dependent on τ .

After a move, the values of some terms may be explicitly required; these are
called requisite terms. The set of requisite terms is denoted by R. A computable
term τ is called an enforced term if τ is a requisite term, or some requisite
term depends on τ . All other computable terms are called deferred terms; their
recomputations are deferred until they become enforced terms, or an explicit
one-shot request is made (e.g. by the search algorithm).

An assignment θ maps each variable v to a value in its domain. A partial
assignment maps only some variables to values. We write v ∈ θ if θ maps v to a
value. In the running of Kangaroo, a committed assignment is an assignment θ
that describes the current node of the local search. Any neighbouring assignment
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θ′ of the committed assignment θ can be described by θ and a partial assignment
ϑ specifying the new values that some variables take. That is, a partial assign-
ment specifies a possible move from the committed assignment θ to θ′ where
θ′(v) = if v ∈ ϑ then ϑ(v) else θ(v). Thus, a local search process that runs for N
moves can be viewed as a sequence 〈θ0, ϑ1, · · · , ϑN 〉 of an assignment followed
by a number of partial assignments.

Given a partial assignment ϑ, an updatable term τ is called a candidate term if
τ is a variable in ϑ or depends on such a variable. These are the terms that might
be recomputed if the move described by ϑ is made. Given ϑ and a computable
term τ , the candidate parameters are the parameters of τ that are candidate
terms for ϑ; we denote the set of candidate parameters by Pc(τ, ϑ).

Assume that a deferred term σ is last recomputed at iteration i and the latest
iteration completed is j where 0 ≤ i < j ≤ N . The postponed parameters Pp(σ)
are those parameters of σ that cause σ to recompute. We define them recursively
as follows. A postponed parameter for σ wrt iterations i . . . j is a parameter of
σ that either (i) has actually changed value in an iteration between i and j
(inclusive), or (ii) is a deferred term that has one or more postponed parameters
wrt iterations i . . . j. A deferred term σ is said to be out-of-date at iteration j,
if Pp(σ) is non-empty; otherwise, the term is up-to-date2.

4 Kangaroo System

The Kangaroo architecture as depicted in Fig. 1 has two components: Repre-
sentation Component (RC) and Exploration Component (EC). The RC allows
description of a given CBLS problem in a declarative way while the EC allows
specification of the search algorithms and the heuristics/meta-heuristics. The
RC consists of two units: Assignment Unit (AU) and Propagation Unit (PU).
The AU holds all variables and constants, supports definition of the constants,
and allows run-time assignments of new values to the variables by the EC. The
PU holds all the dependent terms and provides the EC with the up-to-date val-
ues of the updatable terms under assignment of any new values to the variables.
Overall, the RC is responsible for running an assignment-propagation cycle for
each iteration of the search algorithm in the EC. On the other hand, the EC is
responsible for any run-time decision during search, including selections of best
or least-bad assignments and restarting the search at plateaus.

The Kangaroo architecture has a number of notable features: i) on-demand
recomputation of the updatable terms using lazy propagation of the given as-
signments, ii) specialised incremental execution to compute aggregate formula,
iii) specialised incremental simulation boosted by caching when ranges of val-
ues are tried but the variables remain the same or different sets of variables
are tried but the sets differ by just one variable, iv) type-independent linearly
ordered scalar view of domain values to allow unified selection over variables
or values, v) low-level memory management to obtain fast and compact data
2 Note that ‘out-of-date’ refers to terms that are potentially out-of-date; it may be

that a term has the correct value but it is still regarded as out-of-date.
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Fig. 1. The Kangaroo architecture and the view of queens problem

structures, vi) data encapsulation at the system level and unencapsulation at
the object level to allow array-based data storage and faster access through non-
virtual function calls, and vii) implementation as a C++ library to allow easier
integration with large systems and also to get the complete support of a very
well-known programming language and its powerful compiler.

Execution vs. Simulation

In Kangaroo, computations are performed in two different modes: execution and
simulation. In the execution mode, variables can be assigned new values by ac-
cessing the AU. The PU then propagates the effect by recomputing the requisite
terms in a top-down fashion. In the simulation mode, the AU and PU work in
the same way, but the updates are temporary and the effects are not committed.
The simulation mode thus allows a neighbourhood-exploration algorithm to in-
vestigate the effect of potential assignments and then to elect an assignment for
the next execution. Kangaroo has two separate sets of data structures through
out the entire system to run these two modes in an interleaving fashion. The
interleaving facility allows execution of some deferred terms (with the last com-
mitted assignment), if required by the EC, in between performing two simulation
runs.

Note that the simulation in Kangaroo and that in Comet have significantly
different purposes. Comet uses simulation (i.e. the lookahead method) only in
rare cases where moves are very complex and cannot be evaluated incrementally
or are not supported by the differentiable API. The implementation of simulation
in Comet performs execution for a given assignment, obtains the result, and then
reverses the effect of the execution; the simulation is thus typically significantly
slow [6]. In Kangaroo, simulation is at the centre of neighbourhood investigation.
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Our simulation efficiently performs light-weight incremental computation for a
given assignment and does not require reverting to a previous state.

Incremental Computation

For some invariants, it is possible to perform a computation without access-
ing all the parameters. This is particularly attractive when there are many pa-
rameters and only a few are modified. Consider the invariant S =

∑
x∈X x.

When all parameters in X are assigned values for the first time, S is computed
anew, that is, from scratch. In later computation, when only a subset X ′ ⊂ X
of all parameters are changed, then the new value of S can be obtained as
S.oldval +

∑
x∈X′(x.newval − x.oldval). This type of computation is referred to

as incremental computation and involves only the parameters that are changed.
We formulate this as an undo operation with the old value of x and a redo op-
eration with the new value of x, for each modified parameter x. Incremental
computations are useful in both execution and simulation modes.

Top-Down Computation

Kangaroo performs computation of a given term in a top-down fashion. In the
execution mode, when the effect of a partial assignment ϑ is to be propagated,
the PU performs a depth-first recursive exploration, starting from each requisite
term. During this exploration, each visited computable term τ first determines
the set of candidate parameters Pc(τ, ϑ). If any candidate parameter p requires
recomputation, the depth-first exploration moves to that p. Recomputation of
a variable v ∈ Pc(τ, ϑ) involves assigning it the value ϑ(v). When all candi-
date parameters are explored and recomputed, τ is recalculated from only those
candidate parameters that are actually modified.

This process is complicated when the given term τ is a deferred term. This
is tackled by maintaining a list of postponed parameters for each deferred term.
Whenever a term τ ′ has actual modification, it notifies each of its deferred
dependents σ to add τ ′ to Pp(σ). This denotes σ might have a change because
of the modification of τ ′. Consequently, each deferred dependent σ recursively
notifies its deferred dependents of its potential change, resulting in it being added
in their list of postponed parameters. During recomputation of any deferred
term, its postponed parameters are explored and recomputed.

The recomputation of τ is further complicated when an incremental compu-
tation is to deal with the actual modification of a parameter p ∈ Pp(τ) during
the iterations when τ was not recomputed. This is because an incremental com-
putation, to ensure correctness, requires undoing the effect of p’s value that was
used in τ ’s last recomputation. During next recomputation of τ , of course we
would need to redo for the latest value of p. Nevertheless, the undo operation is
performed when p is modified for the first time between these two recomputa-
tions. An undo operation also adds p to τ ’s list of undone parameters. This list
is used in recomputation of τ to determine which parameters need only redo.

In the simulation mode, recomputations are done in the same top-down re-
cursive way as is done in the execution mode. In local search, each execution
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normally follows a range of simulations that are closely related. For example,
during exploration of values for a given variable, the variable remains the same
for all simulation runs; or during exploration of pair-wise swapping between
variables, many potential pairs have one shared variable. Kangaroo exploits this
close relationship by caching once and reusing in all the simulations: the candi-
date parameters, computations performed for postponed parameters, and even
undo operations for the candidate parameters.

It is worth emphasizing here that our lazy top-down approach is different
from the mark-sweep approach taken in [9] for incremental attribute evaluation.
For a given assignment, the mark-sweep approach marks all candidate terms. In
our case, we need not mark the enforced terms; these terms will be explored by
the top-down traversal algorithm starting from the requisite terms. We there-
fore mark only the deferred terms. An actually modified term marks only its
deferred dependents, and consequently these marked deferred dependents recur-
sively mark their deferred dependents.

Data Structures

While implementing Kangaroo, we found that the choice of certain represen-
tations and data structures are key to performance. Although the differential
benefits are not accounted for each individual choices made, their combination
appears to have significant impact on both speed and memory.

1. System Clocks: At the system level, there are two separate assignments ϑe

and ϑs respectively for execution and simulation; to denote the time of change
in the assignments, there are two clocks T ′

e and T ′
s . Also, there are two more

clocks Te and Ts to denote the current propagation cycle in the execution
and simulation modes. Each term tracks when it was last computed, using
timestamps Te and Ts. Clocks Te and Ts help avoid recomputations within
the same cycle while clocks T ′

e and T ′
s help detect need for recomputation of

the intra-term caches.

2. Data Buffers: Each term has three sets of data buffers – Bc, Bp, and Bn to
hold respectively the result of currently completed execution, that of imme-
diately previous execution, and that of the currently completed simulation
(i.e. potentially the next execution). Simulations are always subject to the
currently completed execution; if there is no such simulation, then Bn = Bc.
The 〈Bp, Bc〉 pair is used in incremental execution while the 〈Bc, Bn〉 pair
in incremental simulation. Note that each term also has two more boolean
buffers to hold the values of (Bc �= Bp) and (Bc �= Bn), which saves repeated
checking for actual change.

3. Data Tables: The data buffers described above are stored in array-based ta-
bles within the system and accessed using term indexes. This enables efficient
access to the data without making costlier virtual function calls. However,
this is a violation of data encapsulation at the term level; in the object-
oriented paradigm, data is normally stored within the object. We deal with
this by assigning such responsibilities to the system level.
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4. Term Lists: Kangaroo keeps a list of root terms Γ and another list of requi-
site terms R. The root terms are executed during initialisation or restarting
of the system while the requisite terms are executed in incremental execution
phase. The simulation mode does not require these lists as recomputations
in this mode are performed only based on instant demand.

5. Term Representations: Each updatable term τ stores the dependents
D(τ) and the deferred dependents Dd(τ). The key records for each depen-
dent term δ are parameters P (δ), involved variables3 V(δ), postponed pa-
rameters Pp(δ), undone parameters Pu(δ), candidate parameters Pc(δ, ϑe)
for ϑe, candidate parameters Pc(δ, ϑs) for ϑs, and, for each v ∈ V(δ), the set
Pd(δ, v) of updatable parameters of δ that depend on v. Pd(δ, v) is recom-
puted statically and is used to compute candidate parameters of δ using a
simple set-union.

6. Value Representations: To facilitate implementation of type-independent
selectors and search algorithms, Kangaroo takes the unified approach of using
linear indexes to denote domain values. This eliminates costlier navigation
on the value space through virtual function calls. For discrete variables, such
indexes are a natural choice. For continuous variables, the assumption is to
have a step size that allows discretisation of the value space.

7. Customised Data Structures: To obtain efficiency and better memory us-
age, we implemented customised data structures for arrays, heaps, hash-sets,
and hash-maps. We also have timestamp-based arrays of flags to efficiently
perform set-unions, marking and unmarking operations.

Recomputations

Both in execution and simulation modes, recomputation of a computable term
could be done anew or incrementally. During anew recomputation, each com-
putable term first invokes anew recomputation of all its updatable parameters,
and then recalculates itself from scratch without requiring results of the previous
iterations. Anew recomputations are needed when all the variables are initialised,
and also when a complete restart is required. In this paper, we mainly describe
the procedures required in incremental and deferred recomputations. Refer to
Fig. 2 for pseudocode of the procedures.

1. Potential Recomputations: Initially all computable terms are deferred.
When such a term is marked as a requisite term, its descendant computable
terms recursively become enforced. For conditional terms such as if-then-else,
only the conditional term becomes enforced; depending on the condition, the
then or else term, if not enforced w.r.t. other terms, is executed only on one-
shot request mode. Nevertheless, when a term is no longer a requisite term,
its descendant enforced terms are notified. In this process, a computable

3 For each dependent term δ, the set V(δ) of involved variables of δ is the set of
variables that δ depends on.
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proc τ .execIncr
// τ is computable.
if τ.Te = Te then return;
if |Pu(τ)| = 0 then τ.Bp = τ.Bc;

if τ.T ′
e 
= T ′

e then compute Pc(τ, ϑe);
foreach p ∈ Pp(τ) ∪ Pc(τ, ϑe) do

if p /∈ V then p.execIncr();
if p /∈ Pu(τ) ∧ p.Bp 
= p.Bc then

undo(p.Bp), redo(p.Bc);
// sum.Bc += p.Bc − p.Bp

foreach p ∈ Pu(τ) do
redo(p.Bc) // sum.Bc += p.Bc;

if τ .Deferred then
foreach p ∈ Pp(τ) ∪ Pu(τ) do

p.notifyRecomp (τ);
clear Pp(τ) and Pu(τ);
if τ.Bc 
= τ.Bp then

foreach σ ∈ Dd(τ) do
σ.notifyChange (τ ,true);

clear Dd(τ),
τ.Te = Te;

proc σ.notifyChange(p, isActualChange)
// σ is deferred.
if isActualChange then

if p ∈ Pu(σ) then return;
Pu(σ) = Pu(σ) ∪ {p}
if |Pu(σ)| = 1 then

σ.Bp = σ.Bc;
undo(p.Bp) // sum.Bc –= p.Bp;

else
if p ∈ Pp(σ) then return;
Pp(σ) = Pp(σ) ∪ {p};

foreach σ′ ∈ Dd(σ) do
σ′.notifyChange (σ, false);

proc τ .notifyRecomp(σ)
//τ is updatable.
Dd(τ) = Dd(τ) ∪ {σ}

proc τ .simulIncr
// τ is computable.

if τ.Ts = Ts then return;

if τ.T ′
s 
= T ′

s then
compute Pc(τ, ϑs);
// Cache = τ.Bc
foreach p ∈ Pp(τ) \ Pc(τ, ϑs) do

if p /∈ V then p.simulIncr();
if p /∈ Pu(τ) ∧ p.Bn 
= p.Bc
then

undo(p.Bc), redo(p.Bn);
// Cache += p.Bn − p.Bc

foreach p ∈ Pc(τ, ϑs) \ Pu(τ) do
undo(p.Bc)
// Cache –= p.Bc

foreach p ∈ Pu(τ) \ Pc(τ, ϑs) do
redo(p.Bc); // Cache += p.Bc

// τ.Bn = Cache
foreach p ∈ Pc(τ, ϑs) do

if p /∈ V then p.simulIncr();
redo(p.Bn)// τ.Bn += p.Bn

τ.Ts = Ts;

proc v.execIncr

// v is a variable.
if v.Te = Te then return;
v.Bp = v.Bc, v.Bc = ϑe(v);
if v.Bc 
= v.Bp then

foreach σ ∈ Dd(v) do
σ.notifyChange (v, true);

clear Dd(v);

v.Te = Te;

proc v.simulIncr

// v is a variable.
if v.Ts = Ts then return;
v.Bn = ϑs(v), v.Ts = Ts;

Fig. 2. The Kangaroo algorithms using summation as an example

term, that is neither a requisite term itself nor an enforced term w.r.t. an-
other requisite term, becomes deferred again. Computation of deferred terms
is allowed only after the first iteration. At the end of first iteration, each de-
ferred term executes notifyRecomp to notify each of its parameters that it
has been computed. Each parameter p adds the deferred term to its Dd(p) so
that it can later notify its actual or potential changes to the deferred term.

2. Incremental Execution: During incremental execution, Procedure execIncr
first checks the execution clock to determine whether execution has already
been performed in the current cycle. During incremental execution of a vari-
able v, Bc is saved in Bp and the new value ϑe(v) is assigned to Bc. For com-
putable terms, Bc is saved in Bp, if there is no undone parameter; if there is
any, notifyChange has already done this. Next, the candidate parameters are
recomputed, if T ′

e has changed. All postponed and candidate parameters are
then executed incrementally, but calculation is performed for the given term
only using those parameters that are not modified; the calculations involve un-
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doing with Bp and redoing with Bc. Next, for undone parameters, only redo
operations are performed; undo operations have already been performed in
notifyChange. If the computable term τ is a deferred term, it then executes
notifyRecomp to notify each parameter in Pp(τ) ∪ Pu(τ) that τ has been re-
computed. The computable term then clears the lists of undone and postponed
parameters. For both computable terms and variables, if the term being exe-
cuted has a new value, it notifies this to its deferred dependents by executing
their notifyChange and then clears the list. During execution of notifyChange,
the deferred dependents need to perform undo operations and then recursively
notify each of their deferred dependents about their potential modification.
The execution of a term ends by updating its execution timestamp Te.

3. Incremental Simulation:Procedure simulIncr performs incremental simula-
tion. For variables, incremental simulation involves only assigning new values.
For computable terms, candidate parameters are to be determined first, if T ′

s

has changed. For a new T ′
s , the cache inside the term also needs recomputation.

Cache recomputation involves incremental simulation of all non-candidate post-
poned parameters and both undoing and redoing for the unmodified parame-
ters. It also requires undoing for the candidate parameters (excluding undone
parameters) and redoing for the undone parameters (excluding candidate pa-
rameters). Given the same assignment variables, each simulation run reuses
the cached result and then incrementally simulates the candidate terms and
performs redo for them. Notice that the cache mentioned above could be split
into two parts: one for the postponed parameters, and the other for the candi-
date parameters. The cache for candidate parameters cannot be reused in the
simulations with different assignment variables, but the cache for postponed
parameters could still be reused. The use of cache could further be extended
over assignments that have overlappingvariables (e.g. a range of variable-value
swappings with one variable in common).

Search Controls

Kangaroo currently implements a number of variable selectors, value selectors,
and swap selectors. To support these selectors, especially the variable selectors,
Kangaroo implements a specific type of invariant, called variable ordering. Such
invariant utilises priority queues to maintain candidate variables for selection. In
addition, the taboo heuristic is integrated into the variable ordering invariant,
enabling Kangaroo to ignore calculation of tabooed variables. This is different
from the way taboo variables are handled in Comet.

5 Experiments

We compared Kangaroo and Comet on a set of benchmarks from CSPLib: a prob-
lem library for constraints (www.csplib.org). We selected benchmarks that use
representative elements of key features such as selectors, invariants, constraints,
and taboo and restart heuristics. The benchmarks are: all interval series, golomb
ruler, graph coloring, magic square, social golfer, and vessel loading. We also
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included the well-known n-queens problem. It is worth mentioning here that we
only used satisfaction versions of the benchmarks, although some of them in
CSPLib are optimisation problems. There was insufficient time to run optimisa-
tion benchmarks; we expect similar performance for those benchmarks.

We briefly describe the benchmarks, and also the constraint model and search
algorithm to solve each benchmark. For detailed description of these benchmarks,
please refer to CSPLib.

1. all interval series: The problem is to find a permutation s = (s1, ..., sn) of
Zn = {0, 1, ..., n−1} such that V = (|s2−s1|, |s3−s2|, ...|sn−sn−1|) is a permutation
of Zn − {0} = {1, 2, ..., n− 1}. Problem instances are generated for n = 10, 15, 20,
and 25. The problem model includes an AllDifferent constraint on V . The search
algorithm is based on swapping a pair of variables that leads to the minimum
violation. The length of taboo on variables is 5.

2. golomb ruler: Given M and m, a Golomb ruler is defined as a set of m integers
0 = a1 < a2 < ... < am ≤M such that the m(m− 1)/2 differences aj − ai(1 ≤ i <
j ≤ m) are distinct. In the problem model, the domain of a variable is dynamically
restricted using the values of its neighbours. Problem instances are generated for
4 ≤ m ≤ 11 and M to be equal or close to the minimum M known for m. The
problem model includes an AllDifferent constraint on the differences. The search
algorithm is based on assigning a variable causing maximum violation with a value
that results in the minimum violation (max/min search). Taboo length is 5.

3. graph coloring: Given a k colorable graph generated with n vertices and the
probability of having any edge being p, the problem is to assign k colors to the
vertices such that no two adjacent vertices get the same color. Problems instances
were generated using the graph generator programs written by Joseph Culberson4

with parameter values p = 0.5, k ∈ [3, 10], n ∈ {25, 50, 75, 100} and 5 instances per
setting.5 The problem model uses a not-equal constraint for each pair of adjacent
vertexes. It uses max/min search. Taboo length is 5.

4. magic square: Given a square S of dimension n × n, the problem is to assign
values {1, · · · , n2} to the n2 cells such that the sum of each row, column, and
diagonal is equal to C = n(n2 + 1)/2. The problem instances are generated for
n ∈ [10, 50] in step of 5. The search algorithm is based on swapping between a pair
of variables that leads to the minimum violation. Taboo length is 5.

5. n-queens: Given a chess-board of dimension n × n, put n queens on the board
such that no two queens attack each other. Problems instances were generated for
n ∈ [1000, 50000]. The problem model uses three AllDifferent constraints and an
invariant on most violated queens (this is automatically maintained by the variable
ordering invariant in Kangaroo – see Fig. 1). It uses max/min search.

6. social golfer: Given w weeks, g groups, and p persons per group, the problem is
to find a golf playing schedule such that each person plays every week in a group
with other persons, but no two persons fall in the same group more than once.

4 The generator can be downloaded at
http://webdocs.cs.ualberta.ca/~joe/Coloring/

5 For the graph coloring problem, generating good benchmark instances was difficult:
the generated instances were either too difficult or too easy for both systems. We
included instances that are roughly at the capability horizon of Comet.

http://webdocs.cs.ualberta.ca/~joe/Coloring/
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Problems instances were generated for w ∈ [3, 9], g ∈ [3, 5], and p ∈ [2, 5]. The
problem model uses atmost and exactly constraints. It uses max/min search that
also incorporates random restarts in every given r ∈ {1000, 5000, 15000} iterations.
Taboo length is 5.

7. vessel loading: Given a vessel of size L × W , a number of containers are to
be placed on the vessel such that there is no overlapping among the containers.
The size of each container k is lk × wk where lk, wk ∈ [Dmin, Dmax]. Problems
are generated with 10 ≤ W ≤ L ≤ 20, Dmin = 2, Dmax = 5 and the total area
covered by the containers is varied between 25%, 50%, and 75% of the vessel area.
The problem model uses if-then-else to determine the length and width of the
containers based on their orientations, and the constraints required to ensure non-
overlappings of the containers use invariants that maintain disjunctions. It uses
max/min search. Taboo length is 5.

We ran experiments on the NICTA (www.nicta.com.au) cluster machine with a
maximum limit on the iteration-count. The cluster has a number of machines
each equipped with 2 quad-core CPUs (Intel Xeon @2.0GHz, 6MB L2 Cache)
and 16GB RAM (2GB per core), running Rocks OS (a Linux variant for cluster).
For each benchmark, a number of solvable instances were created, varying the
complexity by specifying the parameters. Both Comet and Kangaroo were run
100 times for each problem instance and the instance distribution was considered
to be non-parametric. When specifying problems, we tried our best to keep the
specifications for Comet and Kangaroo as close as possible both in the problem
models and in the search algorithms (for example, see Fig. 3). The experimental
results of Kangaroo and Comet are summarised in Table 1 and presented in
details in Fig. 4.

Comet.AllIntervalSeries Kangaroo.AllIntervalSeries

range Size = 0..(n− 1);
range Diff = 1..(n− 1);

// Create n vars with a domain Size
var{int} s[Size](m, Size);

// Post an alldiff constraint on intervals
S.post (alldifferent (all (i in Diff)

abs(s[i] − s[i− 1])));

// Assign random permutation to s
RandomPermutation distr (Size);
forall( i in Size ) s[i] := distr.get ();

int tabu[Size] = 0;
while( S.violations() > 0 ){

if it ≥ MaxIt then return;
// Select two vars that, if swapped,
// lead to the min violation delta
selectMin( i in Size: tabu[i] ≤ it,

j in Size: i < j∧ tabu[j] ≤ it )
(S.getSwapDelta(s[i], s[j])) {

s[i] :=: s[j]; // Swap the values
tabu[i] = it + TabuLength;
tabu[j] = it + TabuLength;

}
it = it + 1;

}

defineSolver (Solver);

// Set the tabu tenure: effectively tell Kangaroo
// to automatically maintain the tabu heuristic
setTabuLength (Solver, TabuLength);

// Create n vars with domain [0, n− 1]
forall( i in 0..n− 1 )

defineVar (Solver, s[i], 0, n− 1);

// Create n− 1 intervals abs(s[i] − s[i− 1])
forall( i in 1..n− 1 )

defAbsDiff (Solver, v[i], s[i], s[i− 1]);

// Post an alldiff(v[i], i in 1..n-1) constraint
defAllDifferent (Solver, alldiffConstr, v);

// Create a Selector: selects two non-tabu variables
// leading to the min violation metric, if swapped
defTabuMinSwapSel (Solver, Selector, alldiffConstr);

assign a random permutation of [0..n-1] to s;

while( alldiffConstr.violations() > 0 ){
if it ≥ MaxIt then return;
run Selector to select a pair of vars (s[i], s[j]);
swap the value of s[i] and s[j];
it = it + 1;

}

Fig. 3. Problem specifications for Comet(left) and Kangaroo(right)
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Table 1. Kangaroo and Comet comparison summary

Kangaroo Comet

Instances success #iteration CPU time memory success #iteration CPU time memory

rate (%) (in secs) (in MBs) rate (%) (in secs) (in MBs)

all interval series (4) 75% 21, 734 1.6 20 50% 504, 465 65.1 42

golomb ruler (11) 91% 681, 452 8.0 21 45% not computed 42

graph coloring (20) 100% 774 0.0 22 50% 590 0.3 44

magic square (9) 100% 212 172.6 22 100% 213 103.3 43

n-queens (18) 100% 8, 532 104.7 111 100% 8, 597 140.9 293

social golfer (16) 88% 987, 822 21.7 22 19% not computed 47

vessel loading (45) 100% 212 0.0 24 62% 3, 741, 397 96.4 43

For each benchmark, Table 1 reports the number of instances, the percentage
success rate, the mean-of-median iteration-counts, the mean-of-median solution-
time in seconds, and the mean-of-median memory usage in megabytes. The per-
centage success rate of a benchmark is calculated as the percentage of solved
instances in that benchmark set. Here an instance is considered solved if its suc-
cess rate is at least 50%. Medians are taken over all runs of each instance while
the means are taken over the medians of the instances. Memory statistics are
based on both successful and unsuccessful runs. However, statistics on iteration-
count and solution-time are only on successful runs and when success rate is at
least 50%. For each benchmark, Fig. 4 graphically presents the % success rate
and the median solution-times over the successful runs. Note, when the success
rate for an instance is below 50%, the solution time plotted is not completely
meaningful.

Overall, we found that in all of the above benchmarks, Kangaroo consistently
uses less than 50% of the memory required by Comet. The success rate of Kan-
garoo is significantly higher in all of the benchmarks except magic square and
n-queens, where both systems could solve all problem instances. In terms of so-
lution times, Kangaroo significantly outperforms Comet, except in magic square
where Comet performs better than Kangaroo.

The models and the search algorithms for Comet and Kangaroo are best
matched in magic square and n-queens. This is reflected by the similar number
of iterations required by the two systems to solve instances in these two bench-
marks. The performance of Kangaroo is better in n-queens than that of Comet.
This clearly shows the performance advantage of the Kangaroo architecture.

In magic square Comet performs better than Kangaroo because it uses a spe-
cialised getSwapDelta method to compute the effect of a swap. This specialisation
helps in magic square where constraints are based on summation of variables.
When two variables belonging to the same summation are swapped, the sum-
mation result remains unchanged. Thus, there is no need to compute the effect
of such a swap. In general, this specialisation can be exploited for all invariants
where the changes in swapping variables would nullify each other. By contrast,
Kangaroo currently implements a generic getSwapDelta method that emulates
swaps as assignments of two variables simultaneously. In other words, Kangaroo
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Fig. 4. Kangaroo vs Comet: a detailed comparison on success rate and runtime

has to simulate the changes in both variables and then adds them to obtain the
new summation result. In future, we plan to eliminate such redundant calculation
from Kangaroo.

However, there are many cases where parameters of an invariant consists of
complex functions and a swap between two variables is not necessarily a no-op for
that invariant although it may involve both variables. In such cases, it is a must to
use the generic getSwapDelta method to compute the effect of a swap. There are
also cases where the benefit of a specialised swap is not much different compared
to a generic swap. A strong evidence for such situations is demonstrated in the
all interval series benchmark. Here, a fresh computation of |sk−sk−1| is cheaper
than its incremental computation. Nevertheless, the success rates of Comet and
Kangaroo are significantly different in this benchmark. From the chart, it appears
that Comet search does not progress on the problem instances with (n = 10).
For the time being, we cannot speculate on reasons for that.

In graph coloring, golomb ruler, vessel loading, and social golfer, we found
Comet to be performing very poorly while Kangaroo showed notable perfor-
mance. We reiterate that the models and search algorithms for those bench-
marks are semantically matched. This variation must be due to differences in
implementation but, unfortunately, the implementation details of Comet are not
available to us.
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6 Conclusion and Future Work

We have presented Kangaroo and key details of its implementation. Empirical
results show it to improve on Comet in both time and memory usage. In the
future, we hope to release Kangaroo under an open source license. We plan to
provide a technical report with more details than could be presented in this
paper, and hope to provide a FlatZinc interface, so that Zinc can be used as a
frontend to the system.

Acknowledgements. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Centre of Ex-
cellence program.
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Abstract. A Distributed Constraint Optimization Problem (DCOP) is a funda-
mental problem that can formalize various applications related to multi-agent
cooperation. Since it is NP-hard, considering faster incomplete algorithms is
necessary for large-scale applications. Most incomplete algorithms generally do
not provide any guarantees on the quality of solutions. Some notable exceptions
are DALO, the bounded max-sum algorithm, and ADPOP.

In this paper, we develop a new solution criterion called p-optimality and an
incomplete algorithm for obtaining a p-optimal solution. The characteristics of
this algorithm are as follows: (i) it can provide the upper bounds of the abso-
lute/relative errors of the solution, which can be obtained a priori/a posteriori, re-
spectively, (ii) it is based on a pseudo-tree, which is a widely used graph structure
in complete DCOP algorithms, (iii) it is a one-shot type algorithm, which runs in
polynomial-time in the number of agents n assuming p is fixed, and (iv) it has
adjustable parameter p, so that agents can trade-off better solution quality against
computational overhead. The evaluation results illustrate that this algorithm can
obtain better quality solutions and bounds compared to existing bounded incom-
plete algorithms, while the run time of this algorithm is shorter.

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that
can formalize various applications related to multi-agent cooperation. A DCOP consists
of a set of agents, each of which needs to decide the value assignment of its variables so
that the sum of the resulting rewards is maximized. Many application problems in multi-
agent systems can be formalized as DCOPs, in particular, distributed resource allocation
problems including distributed sensor networks [8] and meeting scheduling [12]. Var-
ious complete algorithms have been developed for finding globally optimal solution
to DCOPs, e.g., DPOP [12], ADOPT [8], and OptAPO [7]. However, finding optimal
DCOP solutions is NP-hard, so considering faster incomplete algorithms is necessary
for large-scale applications. Various incomplete algorithms have been developed, e.g.,
DSA [3], MGM/DBA [10,17], and ALS-DisCOP [18].

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 660–674, 2011.
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Most incomplete algorithms generally do not provide any guarantees on the quality
of the solutions they compute. Notable exceptions are DALO [4], the bounded max-
sum algorithm [13], and ADPOP [11]. Among these algorithms, DALO is unique since
it can provide the bound of a solution a priori, i.e., the error bound is obtained before
actually running the algorithm. Also, the obtained bound is independent of problem
instances. On the other hand, the bounded max-sum algorithm and ADPOP can only
provide the bound of a solution a posteriori, i.e., the error bound is obtained only after
we actually run the algorithm and obtain an approximate solution. Having a priori bound
is desirable, but a posteriori bound is usually more accurate.

In this paper, we develop an incomplete algorithm based on a new solution
criterion called p-optimality. This algorithm can provide the upper bounds of the ab-
solute/relative errors of the solution, which can be obtained a priori/a posteriori, respec-
tively. Our priori bound is determined by the induced width of a constraint graph and
the maximal value of reward functions. Thus, the bounds can be given independently
from problem instances, i.e., all problem instances have the same bound as long as the
induced width and the maximal reward value are the same. Induced width is a parameter
that determines the complexity of many constraint optimization algorithms. This algo-
rithm utilizes a graph structure called a pseudo-tree, which is widely used in complete
DCOP algorithms such as ADOPT and DPOP. This algorithm can obtain an approxi-
mate solution with reasonable quality, while it is a one-shot type algorithm and runs in
polynomial-time in the number of agents n assuming p is fixed. Thus, it is suitable for
applications that need to obtain reasonable quality solutions (with quality guarantees)
very quickly. Furthermore, in this algorithm, agents can adjust parameter p so that they
can trade-off better solution quality against computational overhead.

DALO is an anytime algorithm based on the criteria of local optimality called k-
size/t-distance optimality [4,9] and has adjustable parameters k/t. Compared to this
algorithm, our algorithm is a one-shot type algorithm, while DALO is an anytime al-
gorithm, which repeatedly obtains new local optimal solutions until the deadline and
returns the best solution obtained so far. Also, our algorithm can provide tighter bounds
a priori. Furthermore, in our algorithm, the increase of computation/communication
costs by increasing parameter p is more gradual compared to those for k-size/t-distance-
optimality.

The bounded max-sum algorithm is a one-shot type algorithm. Compared to this
algorithm, our algorithm has adjustable parameter p, while this algorithm has no ad-
justable parameter. Also, our algorithm can obtain a priori bound. Thus, agents can
adjust parameter p before actually running the algorithm to obtain a solution with a de-
sirable bound. Furthermore, the bounded max-sum algorithm works on a factor graph,
while our algorithm works on a standard constraint graph.

Our proposed algorithm is quite similar to ADPOP which is also one-shot type al-
gorithm and has an adjustable parameter. However, in ADPOP, the variable ordering
is found through a depth-first search, and cannot be chosen freely. In contrast, our al-
gorithm allows choosing a variable ordering, which can sometimes be better than a
DFS ordering. Furthermore, our algorithm can obtain a bound on the solution qual-
ity before propagation. We can consider p-optimality gives a simple but theoretically
well-founded method to determine which edges to eliminate in ADPOP.
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The rest of this paper is organized as follows. Section 2 formalizes DCOP and pro-
vides basic terms related to the graphs. Section 3 introduces our incomplete algorithm
and provides methods for estimating the error bound obtained by our algorithm. Sec-
tion 4 evaluates the solution quality and the accuracy of the error bounds obtained by
our algorithm. Section 5 concludes this paper.

2 Preliminaries

In this section, we briefly describe the formalization of Distributed Constraint Opti-
mization Problems (DCOPs) and the basic terms for graphs.

Definition 1 (DCOP). A distributed constraint optimization problem is defined by a set
of agents S, a set of variables X , a set of binary constraint relations C, and a set of
binary reward functions F . An agent i has its own variable xi. A variable xi takes its
value from a finite, discrete domain Di. A binary constraint relation (i, j) means there
exists a constraint relation between xi and xj . For xi and xj , which have a constraint
relation, the reward for an assignment {(xi, di), (xj , dj)} is defined by a binary reward
function ri,j(di, dj) : Di ×Dj → R. For a value assignment to all variables A, let us
denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj,dj)}⊆A
ri,j(di, dj).

Then, an optimal assignment A∗ is given as arg maxAR(A), i.e., A∗ is an assignment
that maximizes the sum of the value of all reward functions.

In this paper, we assume all reward values are non-negative and that the maximal value
of each binary reward function is bounded, i.e., we assume ∀i, ∀j, where (i, j) ∈ C,
∀di ∈ Di, ∀dj ∈ Dj , 0 ≤ ri,j(di, dj) ≤ rmax holds.

A DCOP problem can be represented using a constraint graph, in which a node rep-
resents an agent/variable and an edge represents a constraint. A subgraph is obtained by
removing several edges from the original constraint graph.

Definition 2 (Total ordering among nodes). A total ordering among nodes o is a per-
mutation of a sequence of nodes 〈1, 2, . . . , n〉. We say node i precedes node j (denoted
as i ≺ j), if i occurs before j in o. We also denote ord(i) for the i-th node in a total
ordering o.

Definition 3 (Ancestors). For a graph G = (V,E), a total ordering o, and a node
i ∈ V , we call A(E, o, i) = {j | (i, j) ∈ E ∧ j ≺ i} as i’s ancestors.

Definition 4 (Chordal graph based on total ordering). For a graph G = (V,E) and
a total ordering o, we say G is a chordal graph based on total ordering o when the
following condition holds:

– ∀i, ∀j, ∀k ∈ V , if j, k ∈ A(E, o, i), then (j, k) ∈ E.
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Definition 5 (Induced chordal graph based on total ordering). For a graph G =
(V,E) and a total ordering o, we say a chordal graph G′ = (V,E′) based on total
ordering o, which is obtained by the following procedure, as an induced chordal graph 1

of G based on total ordering o.

1. Set E′ to E.
2. Choose each node i ∈ V from the last to the first based on o and apply the following

procedure.
– if ∃j, ∃k ∈ A(E′, o, i) s.t. (j, k) �∈ E′, then set E′ to E′ ∪ {(j, k)}.

3. Return G′ = (V,E′).

Next, we introduce a parameter called induced width, which can be used as a measure
for checking how close a given graph is to a tree. For example, if the induced width of
a graph is one, it is a tree. Also, the induced width of a complete graph with n variables
is n− 1.

Definition 6 (Width based on total ordering). For a graph G = (V,E), a total or-
dering o, and a node i ∈ V , we call |A(E, o, i)| as the width of node i based on total
ordering o. Furthermore, we call maxi∈V |A(E, o, i)| as the width of graph G based
on total ordering o and is denoted as w(G, o).

Definition 7 (Induced width based on total ordering). For a graph G = (V,E) and
a total ordering o, we call w(G′, o) as the induced width of G based on total ordering
o, where G′ = (V,E′) is the induced chordal graph of G based on total ordering o.

Example 1 (Induced width of induced chordal graph). Figure 1-(a) shows a constraint
graph with ten nodes. (b) presents the induced chordal graph based on total ordering
o = 1 ≺ . . . ≺ 10. The ancestors of node 10 are nodes 7, 8, and 9. Since no edge exists
between ancestors 7 and 9, edge (7, 9) is added. Similarly, several new edges are added
(shown as broken lines). The induced width of (b) is three.

A pseudo-tree is a special graph structure, where a unique root node exists and each
non-root node has a parent node.

Definition 8 (Pseudo-tree representation of chordal graph based on total order-
ing). A chordal graph G = (V,E) based on total ordering o can be assumed as a
pseudo-tree as follows: (i) the node that appears first in o is the root node, and (ii) for
each non-root node i, i’s parent is node j, where j ∈ A(E, o, i) and ∀k ∈ A(E, o, i)
and k �= j, k ≺ j holds.

Definition 9 (Back-edge). When assuming a chordal graph G = (V,E) based on total
ordering o as a pseudo-tree, we say an edge (i, j) is a back-edge of i, if j ∈ A(E, o, i)
and j is not i’s parent. Also, when (i, j1), (i, j2), . . . , (i, jk) are all back-edges of i, and
j1 ≺ j2 ≺ . . . ≺ jk holds, we call (i, j1), (i, j2), . . . , (i, jk) as first back-edge, second
back-edge, . . ., k-th back-edge, respectively. Clearly, a node has at most w(G, o) − 1
back-edges.

1 In constraint reasoning literature [2], such a graph is simply called an induced graph. However,
the term induced is used in a more general meaning in graph theory. Thus, we use a more
specific term, i.e., induced chordal graph in this paper.
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Fig. 1. (a) shows a constraint graph with ten nodes. (b) shows the induced chordal graph of (a)
based on o = 1 ≺ . . . ≺ 10. Induced width of (b) is three. (c) shows the subgraph of (b) obtained
by removing edges (1, 4) and (7, 10). This graph is not chordal.

In the graph theory literature [2], a notion called tree-width is widely used. The
tree-width of a graph G is defined as mino w(G, o), where o is chosen from all possible
total orderings. Finding a total ordering o that minimizes w(G, o) is NP-hard in general.
Thus, in this paper, we assume a particular total ordering o (which is obtained by some
heuristic method and is not necessarily optimal) is given, and develop an approximate
algorithm based on this total ordering.

3 Bounded Incomplete Algorithm Based on Induced Width

In this section, we describe our new incomplete algorithm based on the induced width
of a constraint graph. The basic idea of this algorithm is that we remove several edges
from a constraint graph 2, so that the induced width of the remaining graph is bounded.
Then we compute the optimal solution of the remaining graph, which is used as the
approximate solution of the original graph.

3.1 Incomplete Algorithm and p-Optimality

Our proposed incomplete algorithm has two phases:

Phase 1: Generate a subgraph from the induced chordal graph based on the total or-
dering by removing several edges, so that the induced width of the induced chordal
graph obtained from the subgraph is bounded by parameter p.

2 This idea is similar to edge removal approaches in belief propagation [5,14]. However, our
method can bound the (maximum) number of removed edges a priori.
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Phase 2: Find an optimal solution to the graph obtained in Phase 1 using any complete
DCOP algorithms.

First, let us describe Phase 1. Our goal is to obtain a subgraph so that the induced width
of the induced chordal graph obtained from the subgraph equals p. At the same time, we
want to bound the number of removed edges. This is not easy. One might imagine that
we can easily obtain such a subgraph by just removing the back-edges so that all nodes
have at most p − 1 back-edges. However, by this simple method, we cannot guarantee
that the remaining graph is a chordal graph and we might need to add some edges to
make it a chordal graph. As a result, the induced width of the induced chordal graph
can be more than p.

Example 2 (Simple method does not work). Figure 1-(c) presents the subgraph of (b)
in Example 1. If we simply remove edges (1, 4) and (7, 10), each node has at most two
edges with its ancestors (in (c)). However, the graph shown in (c) is not chordal, i.e.,
edge (1, 4) is missing, while there exist edges (1, 6) and (4, 6).

We develop a method for Phase 1 as follows. We call the obtained subgraph a p-reduced
graph.

Definition 10 (p-reduced graph). For a induced chordal graph G = (V,E) based on
total ordering o, we say a graph G′ = (V,E′) obtained by the following procedure as
p-reduced graph of G (where 1 ≤ p ≤ w(G, o)):

1. Set E′ to E.
2. Repeat the following procedure w(G, o) − p times

– For each i ∈ V where p + 1 ≤ ord(i) ≤ w(G, o)
remove the first back-edge in G′ = (V,E′) from E′ if there is one.

3. Return G′ = (V,E′).

Assuming that the agents know the pseudo-tree among them, running this procedure
by these agents is quite simple. For obtaining the p-reduced graph, each agent i (p +
1 ≤ ord(i) ≤ w(G, o)) simply removes its first back-edge, second back-edge, . . . ,
(w(G, o) − p)-th back-edge.

Theorem 1. For a induced chordal graph G = (V,E) based on total ordering o, for
any 1 ≤ p ≤ w(G, o), and G’s p-reduced graph G′ = (V,E′), the following conditions
hold:

1. G′ is a chordal graph based on total ordering o.
2. w(G′, o) is p.

Proof. When obtaining p-reduced graph G′, for each node i (p + 1 ≤ ord(i) ≤
w(G, o)), its first back-edge is repeatedly removed w(G, o)−p times. Since the number
of back-edges is at most w(G, o) − 1, the number of remaining back-edges is at most
p − 1. Also, there exists at least one node who has exactly w(G, o) − 1 back-edges.
Thus, since the remaining back-edges for the node are p − 1, w(G′, o), i.e., the width
of G′ based on o, is p.
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Fig. 2. (a) presents a part of p-reduced graph G′′ = (V, E′′), where j, k ∈ A(E′′, o, i), and
(j, k) �∈ E′′. (b) presents a situation where (j, k) is not j’s first back-edge in G, i.e., there exists
node l s.t. l ≺ k, (j, l) ∈ E, and (j, l) �∈ E′′.

Next, we show that G′ is a chordal graph based on total ordering o. Since p-reduced
graph G′ is obtained by repeatedly removing first back-edges for each node i (p + 1 ≤
ord(i) ≤ w(G, o)), it suffices to show that graph G′′ = (V,E′′), which is obtained by
removing first back-edges for each node i (p+1 ≤ ord(i) ≤ w(G, o)) in G, is a chordal
graph based on total ordering o. We prove this fact by contradiction, i.e., we derive a
contradiction by assuming that ∃i ∈ V, ∃j, ∃k ∈ A(E′′, o, i), s.t., (j, k) �∈ E′′. Without
loss of generality, we can assume k ≺ j (Fig. 2-(a)).

Since G = (V,E) is a induced chordal graph based on total ordering o, (j, k) ∈ E
holds. Furthermore, since (j, k) �∈ E′′, (j, k) must be the first back-edge of j in G.
Also, since k ∈ A(E′′, o, i), (i, k) ∈ E′′ holds. Thus, there exists node l s.t. l ≺ k,
(i, l) ∈ E, and (i, l) �∈ E′′ holds, i.e., (i, l) is i’s first back-edge in G and is removed in
G′′. Furthermore, since G = (V,E) is a induced chordal graph based on total ordering
o, and (i, l) ∈ E and (i, j) ∈ E hold, (j, l) ∈ E must hold (Fig. 2-(b)). However,
since l ≺ k, (j, k) cannot be j’s first back-edge in G. This is a contradiction. Thus,
G′′ = (V,E′′) must be a chordal graph based on total ordering o.

We introduce a new criterion for approximated solutions.

Definition 11 (p-optimality). We say an assignment A is p-optimal for a distributed
constraint optimization problem 〈X,C,R〉 and a total ordering o, when A maximizes
the total rewards in G′′ = (X,C′′), where G′ = (X,C′) is an induced chordal graph
of G = (X,C) based on total ordering o, and G′′ = (X,C′′) is the p-reduced graph of
G′. More specifically, ∀A′, RC′′(A) ≥ RC′′(A′) holds.

Next, let us describe Phase 2. To find a p-optimal solution, we can use any com-
plete DCOP algorithms. We use the obtained p-optimal solution as an approximate
solution of the original graph. In particular, since we already obtained a pseudo-tree
whose induced width is bounded, using pseudo-tree-based DCOP algorithms would be
convenient.

3.2 Quality Guarantees

We provide two methods for estimating the error of the solution obtained by our al-
gorithm. One method estimates absolute error which can be obtained a priori. Thus,
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agents can choose parameter p based on the estimation before actually obtaining an
approximate solution.

Theorem 2. For a distributed constraint optimization problem 〈X,C,R〉, its constraint
graph G = (X,C), and a total ordering o, if A is p-optimal, then the following condi-
tion holds among R(A∗) and R(A), where A∗ is an optimal assignment:

R(A∗)−R(A) ≤ rmax ×
w(G,o)−p∑
k=1

(|X | − (k + 1))

Intuitively, the absolute error is given by the product of rmax and the maximal number
of removed back-edges. To make a p-reduced graph, we first remove the first back-
edges from all nodes, except the first and the second nodes in the total ordering, since
they have no back-edge (note that we never remove a tree edge). Thus, the number of
the removed first back-edge is at most |X |−2. Next, we remove the second back-edges
from all nodes, except the first, the second, and the third node. Thus, the number of the
removed second back-edge is at most |X | − 3. As a result, the total number of removed

back-edges is given as
∑w(G,o)−p

k=1 (|X | − (k + 1)).
Furthermore, we can compute the upper bound of the relative error using a method

similar to ADPOP [11]. Note that this error bound can be obtained only a posteriori,
i.e., we first need to obtain an approximate solution, then, we know the upper-bound
of the relative error. Intuitively, if we remove a back-edge connecting i and j, we add
an edge that connects i and j′, where j′ is a copy of j but it is connected only to
i and has no unary reward. If we add an equality constraint between j and j′, this
problem is equivalent to the original problem. By ignoring such a constraint, we obtain a
relaxed problem. Note that the induced width of this relaxed problem is p. This method,
which ignores some dependencies among variables, is similar to minibucket elimination
scheme [2].

4 Experimental Evaluation

In this section, we evaluate the solution quality and the accuracy of the error bounds
obtained by our algorithm and show comparisons with DALO-t [16] and the bounded
max-sum algorithm [13]. In our evaluations, we use the following problem instances.
The domain size of each variable is three, and we chose the reward value uniformly at
random from the range [0,..., 99]. Each data point in a graph represents an average of 30
problem instances. We generate random graphs with a fixed induced width. For Phase 2
of our p-optimal algorithm, we use the DPOP algorithm with FRODO [6](version
2.7.1). For comparison, we use the DALO-t algorithm that obtains t-distance-optimal
solutions, since [4] shows that the error bounds for t-distance-optimality are usually
better than that for k-size optimality. In our comparison, we mostly use settings p=1
and t=1.

First, we show (a) the quality of an obtained solution, (b) the estimated quality of
an optimal solution based on the relative error bound, and (c) the estimated quality of
an optimal solution based on the absolute error bound for the p-optimal algorithm. The
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Fig. 3. (a), (b), and (c) in p-optimal algorithm for graphs with 20 nodes, induced width 5, and
density 0.4. Value closer to 1 is desirable.

results of (a), (b), and (c) are normalized by the quality of an actual optimal solution,
where (a) should be less than 1, and (b) and (c) should be more than 1. For all of them,
a value closer to 1 is desirable. Figure 3 shows these values for graphs with 20 nodes,
induced width 5, and the density of the binary constraints 0.4. We vary parameter p
from 1 to 5. Note that when we set the number of nodes to 20 and the induced width
to 5, we cannot create a graph whose density is greater than 0.6. We can see that the
obtained solution quality and estimation are reasonable for most cases, except that (c)
becomes rather inaccurate when p = 1. This is because the number of removed edges
is large. In such a case, we need to increase p to obtain a better estimation.

Next, we compare our algorithm for p=1-optimality and DALO-t=1 for t=1-distance-
optimality. Usually, DALO-t is used as an anytime algorithm, i.e., it continuously
obtains t-optimal solutions. In this paper, we stop DALO-t when the first t-optimal
solution is found. Figure 4-(i) shows (a), (b), and (c) in the p=1-optimal algorithm and
in DALO-t=1 for graphs with 20 nodes and induced width 5, varying the density. A
value closer to 1 is desirable. The broken lines indicate the results for DALO-t=1. We
can see (a), (b), and (c) are better/more accurate in the p=1-optimal algorithm com-
pared with DALO-t=1. Results (b) and (c) for the p=1-optimal algorithm become less
accurate when the density increases. This is because the number of removed edges be-
comes large in the high density region. Figure 4-(ii) shows the results for graphs with 20
nodes and density 0.3, varying the induced width. We can see even the induced width
is increased, (a), (b), and (c) for p=1-optimal algorithm are better/more accurate com-
pared with DALO-t=1. Note that even if the induced width is 19, it does not mean we
eliminate 18 edges from each node. 18 is the maximum value and for most of nodes,
the number of eliminated edges is much smaller. Figure 4-(iii) shows the results for
graphs with density 0.3 and induced width 3, varying the number of nodes. The obtained
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(a) p=1-solution quality
(b) p=1-relative-error
(c) p=1-absolute-error
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Fig. 4. (a), (b), and (c) in p=1-optimal algorithm and DALO-t=1 for graphs with (i) 20 nodes,
induced width 5, (ii) 20 nodes, density 0.3, and (iii) density 0.3, induced width 3. Broken line
indicates results for DALO-t=1. Value closer to 1 is desirable.

results are similar to Fig. 4-(i), i.e., (b) and (c) for the p=1-optimal algorithm become
less accurate when the number of nodes increases.

Moreover, we show the results for large-scale problem instances. For them, obtaining
an optimal solution is infeasible. Figure 5 shows the results for graphs with 1000 nodes
and induced width 5, varying the density. Since we cannot obtain optimal solutions for
these problem instances, we show the values of the obtained reward (which are not
normalized). By setting the induced width to 5, we cannot create a graph whose density
is greater than 0.01. We can see the rewards/run time for the p=1-optimal algorithm are
greater/shorter compared to those for DALO-t=1.

Finally, we compare our algorithm for p=1-optimality and the bounded max-sum
(bmaxsum) algorithm. We used graph coloring problems in the same settings presented
in [13], except that the reward of each binary constraint is in the range [0,. . . ,6]. Fig-
ure 6 shows the results for graphs with induced width 2, varying the number of nodes.
A value closer to 1 is desirable. Broken lines indicate the results for the bounded
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Fig. 5. Obtained rewards (not normalized) and run time (ms) for graphs with 1000 nodes and
induced width 5. Broken line indicates results for DALO-t=1.

max-sum algorithm. We can see (a) and (b) (also (c)) are better in the p=1-optimal
algorithm compared with the bounded max-sum algorithm.

We show the results for large-scale problem instances (graphs with 1000 nodes and
induced width 2) in Fig. 7. Similar to the problem instances used in Fig. 5, obtaining
an optimal solution is infeasible for these problem instances. By setting the induced
width to 2, we cannot create a graph whose density is greater than 0.004. We show the
values of the obtained reward (which are not normalized) as in Fig. 5. We can see the
rewards/run time for the p=1-optimal algorithm are greater/shorter compared to those
for the bounded max-sum algorithm.

In summary, these experimental results reveal that (i) the quality of the obtained
solution of the p=1-optimal algorithm is much better compared with DALO-t=1 and
bounded max-sum algorithms, (ii) the estimated quality of an optimal solution based
on the absolute/relative error bounds for the p=1-optimal algorithm is more accurate
than the other algorithms, and (iii) the run time of our algorithm is much shorter.

Although we did not show the results of ADPOP for space reasons, they are basi-
cally similar to our algorithms, since these two algorithms differ only in the methods
to determine which edges to eliminate. The advantage of our algorithm is that it can
provide the bound of a solution a priori.

Let us consider why our algorithm can obtain better results compared to DALO-t and
the bounded max-sum algorithm. DALO-t obtains approximate solutions of the original
problem, while our algorithm obtains an optimal solution for a relaxed problem. If the
relaxed problem is not so different from the original problem, e.g., the induced width is
small, our algorithm can find a better solution quickly.

It must be mentioned that we require knowledge of the induced width and rmax to
obtain a priori bound based on p-optimality. On the other hand, the error bound obtained
by k/t-optimality is independent from problem instances. If rmax can be extremely
large, while the average of the binary rewards is rather small compared to rmax, the
absolute error bound of p-optimality becomes less informative.
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(c) p=1-absolute-error

(a) bmaxsum-solution quality
(b) bmaxsum-relative-error
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It might sound counter-intuitive that p=1-optimal algorithm performs much better
compared to the bounded max-sum, since these two algorithms look quite similar, i.e.,
they remove edges from a constraint graph to make it cycle-free, and obtain optimal
solutions for the remaining cycle-free graph. Furthermore, the bounded max-sum algo-
rithm considers the importance of edges and removes less important edges, while p=1
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Fig. 8. (a) shows a chain constraint graph with four nodes. (b) shows the corresponding factor
graph to (a). (b) contains a cycle, while (a) is a cycle free.

optimal algorithm does not consider such information and removes edges in a prede-
fined way.

In reality, there exist some fundamental differences in these two algorithms. First,
the graph structures used in these algorithms are completely different. The bounded
max-sum algorithm works on a factor graph, while our algorithm works on a standard
constraint graph. Even if a constraint graph is cycle-free, the corresponding factor graph
inevitably contains a cycle, since a constraint is bi-directional in a DCOP 3. Let us show
an example. Figure 8-(a) shows a constraint graph with four nodes, which form a chain,
and (b) shows the corresponding factor graph, where xi and Fi represent variables and
functions, respectively 4. Clearly, (a) is cycle-free. On the other hand, to make (b) cycle-
free, we need to remove at least three edges, e.g., edges between x1 and F1, x2 and F2,
and x3 and F3, while our p=1-optimal algorithm does not need to remove any edges. In
short, the bounded max-sum algorithm needs to remove more edges compared to our
algorithm.

Second, the meaning of “optimal” solutions obtained by these two algorithms are
different. Let us assume that we remove an edge between x1 and F1 from Figure 8-
(b). This corresponds to make a copy of x1 (which we call x′

1), and assume x′
1 and

x1 are independent (so that the remaining factor graph is cycle-free). However, if we
choose an arbitrary value for x′

1, we cannot bound the solution quality. The bounded
max-sum algorithm assumes that for each value of x2, x′

1’s value is chosen so that F1 is
minimized, i.e., the worst-case value for x′

1 is chosen. In short, the bounded max-sum

3 We can modify the original definition of a factor graph in [13] by assuming each function
node corresponds to one constraint, so that a factor graph has less cycles. For example, in
Fig. 8-(a), we introduce three function nodes F1, F2, F3, where F1 is related to x1 and x2,
F2 is related to x2 and x3, and F3 is related to x3 and x4. Then, the obtained factor graph
is cycle-free. We are not sure how this modification affects the performance of the bounded
max-sum algorithm. Further evaluations are needed to clarify the effect of this modification
for the bounded max-sum algorithm.

4 Function Fi aggregates all reward functions related to xi.
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algorithm obtains a value assignment that optimizes the worst-case reward assuming we
cannot control the value assignment of copied variables. Such a value assignment can
be quite different from an optimal solution (where we can control all variables). On the
other hand, our algorithm obtains an optimal solution for the remaining graph simply
ignoring removed edges (assuming we obtain no reward from the removed edges).

5 Conclusion

We developed a new solution criterion called p-optimality and an incomplete algorithm
for obtaining a p-optimal solution. This algorithm utilizes a graph structure called a
pseudo-tree, which is widely used in complete DCOP algorithms. We provided the
upper bounds of the absolute/relative errors of the solution, which can be obtained
a priori/a posteriori, respectively. We showed that our algorithm for p=1-optimality
can obtain better quality solutions and estimate more accurate error bounds compared
with DALO-t for t=1-distance-optimality and the bounded max-sum algorithm. Fur-
thermore, we showed that the run time for our algorithm for p=1-optimality is much
shorter compared to these existing algorithms. Our future works include developing
an anytime/complete algorithm that utilizes our algorithm as a preprocessing phase. A
similar idea, i.e., using ADPOP as a preprocessing for ADOPT, is presented in [1].
Recently, a new criterion called c-optimality, which is a generalization of k-size/t-
distance-optimality, has been proposed [15]. It provides quality guarantees for region
optimal solutions and tighter bounds compared with k-size/t-distance-optimality. Our
future work includes the comparison with this new criterion.
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Abstract. In this paper we present a QBF solver that is based on BDD
technologies but includes optimizations from search-based algorithms.
We enhance the early quantification technique from model checking,
favoring aggressive quantification over conjunction of BDDs. BDD Con-
straint propagation is also described, a strategy inspired by the effi-
cient simplifications applied to CNFs in DPLL-based algorithms . Some
dynamic variable elimination heuristics that enforce quantification and
bounded space usage are also presented, coping with the difficulties
faced by static heuristics included in previous BDD-based solvers. Ex-
perimental results show that our solver outperforms both symbolic and
search-based competitive solvers in formal verification benchmarks with
practical applications in equivalence checking and theorem proving, by
completing more problems or finishing in less time. Some preliminary
results also show that the solver is able to handle some other hard prob-
lems for symbolic solvers in the planning domain with similar efficiency.
The benchmarks we used contain QBFs of nearly up to 9000 variables
and are available at the QBFLIB website.

Keywords: Quantified boolean formulas, bounded model construction,
equivalence checking, theorem proving, conformant planning, symbolic
decision procedures.

1 Introduction

The satisfiability problem consists of determining whether a given formula is sat-
isfiable or not. The main variations of the problem are satisfiability for boolean
propositional formulas (SAT) and satisfiability for quantified boolean proposi-
tional formulas (QBF)[18][15]. QBFs are the central topic in this paper. Some
problems traditionally expressed as QBFs are conformant planning[27], model
checking[5], equivalence checking[3] and theorem proving for modal logics[21].

Satisfiability solvers are commonly classified as search-based and symbolic.
Algorithms that belong to the search-based category are widely based on the
DPLL procedure[11][12]. In contrast, symbolic solvers proceed over a different
(but co-satisfiable) representation of the original formula, such as Binary Deci-
sion Diagrams, Zero-Suppressed Decision Diagrams, And-Inverted Graphs and
others, and then attempt to determine satisfiability of it. Symbolic satisfiability
solving has not been very successful so far according to experimental compar-
isons with search-based algorithms.

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 675–690, 2011.
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In this paper we present a QBF solver that is based on BDD technologies
but includes optimizations from search-based algorithms. We enhance the early
quantification technique from model checking[7], favoring aggressive quantifica-
tion over conjunction of BDDs. To our knowledge, our BDD Constraint prop-
agation procedure is introduced for the first time, a strategy inspired by the
efficient simplifications applied to CNFs in DPLL-based algorithms [11]. Some
dynamic variable elimination heuristics that enforce quantification and bounded
space usage are also presented, coping with the difficulties faced by static heuris-
tics included in previous BDD-based solvers[1][15]. Conjunction of small sets of
BDDs is sought and quantification is given precedence over conjunction as much
as possible, typically resulting in the simplification of the clauses to a large extent
before the conjunctions are performed.

We refer to our solver as eBDD-QBF (for Efficient BDD-based QBF solver) in
the rest of the paper. We have compared eBDD-QBF with QuBE7.1[14] ,
Semprop[19] and DepQBF[20] on some equivalence checking[3], conformant
planning[27] and theorem proving for modal logic[21] benchmarks publicly avail-
able in the QBFLIB website. These three solvers have been reported to perform
best on the verification domain , and have dominated BDD-based state-of-the-art
approaches; in fact, DepQBF won the main track of the QBFEVAL solver com-
petition in 2010[21]. Instances of up to 9000 variables were solved by our tool,
overcoming scalability issues of established BDD-based solving algorithms. eBDD-
QBF performs best for equivalence checking, followed by Semprop and DepQBF,
and then QuBe7.1. Our solver is mostly efficient on the adder circuit instances.

The eBDD-QBF solver performs comparably well on the conformant planning
benchmarks, and is vastly superior on the theorem proving instances. Therefore,
we conclude that our solver is better for the equivalence checking problem, sig-
nificantly superior on theorem proving for modal logic, while being also robust
enough to handle successfully problems in non-verification domains such as con-
formant planning.

Our goal was to improve previous algorithms for BDD-based solving, which
were clearly dominated by search-based solvers according to experiments. The
results shown in this paper suggest the importance of combining search-based
simplifications in BDD solving in an effective manner to make this approach
practical. The techniques presented in this paper can also be reused in larger
frameworks that involve BDD processing at some point, such as AQME[25] and
AIGSOLVE[23]. The paper is organized as follows : section 2 contains the back-
ground for this work, explaining QBFs, search-based and symbolic algorithms
for the problem. In the third section we explain our algorithm for solving QBF,
with emphasis on novel features. Section 4 contains the experimental results,
and conclusions and future work are the subject of section 5.

2 Background

This section covers the necessary background for understanding the rest of the
paper: QBFs, BDDs, search-based algorithms and symbolic decision procedures
for QBF.
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2.1 Quantified Boolean Formulas

Consider the formula Q1X1Q2X2...QnXnφ , where Qi ∈ {∀, ∃}, Xi is a set of
propositional variables and φ is a propositional formula over the variables defined
in each Xi.

Q1X1Q2X2...QnXn is called the quantifier prefix and φ the matrix. Each QiXi

is called a quantifier, Qi is the quantifier operator and Xi is the variable set of
the quantifier.

The quantified boolean problem consists of determining if there is a satisfying
assignment for the formula stated above. In this paper we deal with matrices in
CNF , so the QBFs have the form:

(1) Q1X1Q2X2...QnXn(C1 ∧ C2 ∧ ... ∧ Cm)

where the quantifier prefix is as defined previously and each Cj is a disjunction
of literals called clause.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph (DAG) that rep-
resents all the satisfying assignments of a formula. Every inner node represents
a variable x of the formula and has two children denoted as high child and low
child; the subgraph starting from the high (low) child corresponds to assigning
x := true (x := false) in the formula represented by the parent node. The leaves
of a BDD are the constants true and false. Every path in the BDD that reaches
the true (false) node represents a(n) (un)satisfying a assignment of the formula.
Imposing the condition that variables occur in the same order in all the paths,
elimination of redundant nodes and merging of isomorphic subgraphs yields the
concept of Reduced Ordered Binary Decision Diagrams (ROBDDs). This data
structure was proposed by Bryant[6], with the accompanying Apply(A,B, op) al-
gorithm that generalizes binary operator applications for pairs of BDDs. Another
important algorithm for ROBDDs is RestrictBy(A,B), proposed by Coudert[9],
which prunes the assignments of A that are inconsistent with B. The RestrictBy
function is important to the understanding of this paper, so the reader is encour-
aged to consult the algorithm in [9]. The intuition for the algorithm is provided
below:

Restricting f by c corresponds to recursively applying shannon expansion over
f according to the variable assignments provided for each variable in c.

2.3 Search-Based Algorithms

Search-based decision procedures for QBF are largely based on the DPLL
algorithm[12], which consists of attempting to find a satisfying assignment in
a top-down fashion. It is labeled as top-down because the main-algorithm con-
sists of splitting the original formula by setting a variable to true and to false
and solving recursively the two sub-formulas; hence, it is inspired by the divide-
and-conquer framework.
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The recursive procedure takes as input the QBF given by the quantifier prefix
and matrix in CNF, selects a variable to assign at each step, checks that the
sub-formula is satisfiable for at least one case if the variable is existential or for
both cases if the variable is universal.

Also important are the unit propagation and pure-literal rules. The first cor-
responds to setting a clause with only one literal to the appropriate value and
propagating the result throughout the formula. The second consists of setting
the corresponding value to literals that occur either only positively or only nega-
tively across the formula. The DPLL version that handles QBFs is traditionally
referred to as Q-DPLL.

Resolution is another simplification rule that leads to a distinct range of search
based approaches[11][28][24].

2.4 Symbolic Algorithms

The distinguishing feature of symbolic procedures for solving QBFs consists in
operating over a co-satisfiable structure obtained from the formula, rather than
the original representation. They typically employ BDDs[4][13][16], ZDDs[8][15],
AIGs[23] and other diagrams. We will describe BDD-based solvers with more
detail, as they form the basis for the work presented in this paper.

A naive procedure to solve a QBF is to create a BDD for each clause Cj in
(1), conjoin all of them iteratively by Bryant’s Apply algorithm into a monolithic
BDD B, and then quantify out all variables, in the order given by the quantifier
prefix, from inner to outermost fashion, i.e. quantify all variables over Xn, then
all variables in Xn−1 and so on. The limitation of this approach is that the
monolithic BDD B generally becomes too big, making it impractical to solve
formulas of over 200-300 variables.

All of this was noted initially in symbolic model checking, which eventually
gave rise to the early quantification technique[7].

Consider a variable xi in the innermost variable set Xn. Without loss of
generality, suppose xi occurs in the clauses C1, ..., Ck and doesn’t appear in
Ck+1, ..., Cm. Then we can rewrite (1) into:

(2) Q1X1Q2X2...Qn−1Xn−1Qn(Xn − {xi})
(Qnxi(C1 ∧ C2 ∧ ... ∧ Ck) ∧ Ck+1 ∧ ... ∧Cm)

The above formulation allows the procedure to focus on simplifying the inner
quantified formula, which is frequently smaller than the original, and then solve
the outer formula. This re-formulation can be done iteratively from inner to
outermost fashion.

To the best of our knowledge, the principal BDD-based solvers[13][16][15] rely
on a variant of directed bucket elimination with static heuristics for variable se-
lection and conjunction scheduling. The variable ordering is generally calculated
statically by using a wide range of graph heuristics, and the BDDs are then or-
dered according to this variable ordering before bucket elimination begins. The
clauses are clustered according to the topmost variable of the BDDs, and then
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the clusters are selected according to the fixed ordering. Elimination of a vari-
able consists of conjoining all the BDDs in the variable’s bucket, performing the
quantification and then putting the resulting BDD into the appropriate bucket.
This is done until termination is detected (all buckets are empty or the Zero
BDD was obtained) or when all variables have been eliminated.

There has been some work involving the combination of search and symbolic
techniques in the past. For example, DPLL for ZDDs has been implemented[8].
Audemard proposed a BDD QBF solver that consists of using a SAT solver to
find solutions and store them into a BDD, [2] but this method didn’t produce
a competitive solver. Similarly, sKizzo[4] uses a SAT solver as an oracle over
a skolemnization of the original formula. CirCUs combines the power of AIGs,
BDDs and SAT solvers into a tool[17]. eBDD-QBF is different in the sense that
only BDD algorithms and operations are used, and no external SAT solvers or
other search based procedure. That is, one of the main contributions of this work
is the introduction of BDD constraint propagation procedures that allow a pure
BDD-based solver to be competitive. Adapting the unit-clause and pure-literal
rules for ZDDs was presented previously[8], but we are not aware of any approach
of this kind involving BDDs.

3 New QBF Solver

We now describe the new BDD-based QBF solving algorithm implemented in
this work. First, we explain our improvements over previous search and symbolic
strategies that lead to a novel component of the solver : BDD constraint propa-
gation. Then follows a presentation of the variable selection dynamic heuristics
that cope to some extent with unsolved issues of static heuristics such as space
explosion. Finally, the main solving algorithm is presented, which differs from the
established bucket elimination framework in most BDD-based solvers in order
to incorporate the new features developed in this work.

3.1 Enhanced Early Quantification

A variation of early quantification was implemented in the solver.
Recall (1) and (2) from the background section. Consider variable xi in the

innermost variable set Xn of (1). Without loss of generality, suppose xi occurs
in the clauses C1, ..., Ck and doesn’t appear in Ck+1, ..., Cm.

If xi is an existential variable then we rewrite (1) into (2) as discussed in the
introduction.

If xi is an universal variable then we make use of the distributivity property
in predicate logic ∀x.P (x) ∧Q(x). ≡ ∀x.P (x). ∧ ∀x.Q(x)., and (1) becomes :

(3) Q1X1Q2X2...Qn−1Xn−1∀(Xn − {xi})
((∀xi(C1) ∧ ∀xi(C2) ∧ ... ∧ ∀xi(Ck)) ∧ Ck+1 ∧ ... ∧ Cm)

The simple reformulation in (3) enforces a more aggressive quantification
mechanism than (2), eliminating the variable xi for each of C1 ,..., Ck before
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conjoining them, making use of the fact that quantification typically reduces the
size of the diagram because a variable is eliminated from the support set - this
argument is not immediately applicable to BDD conjunction.

After performing quantification individually, we conjoin all of the simplified
BDDs, store the result and apply the early quantification procedure iteratively.1

3.2 BDD Constraint Propagation

The BDD constraint propagation strategies were inspired by the unit-propagation
and pure literal rules that DPLL-based procedures employ for CNFs. We present
the BDD unit propagation and BDD pure literal propagation algorithms in this
section. Due to space limitations the detailed correctness proofs are to be con-
sulted in [22].

Definition 1 (Unit Clause):[10] Let f = C1∧C2∧....∧Ci−1∧Ci∧Ci+1∧...∧Ck
be a CNF formula and Ci = xj , where xj is a literal. We call Ci a unit clause
of f . �

Definition 2 (Generalized Unit Clause): Let f be a boolean formula. If
∃ CNF f ′ = C1 ∧ C2 ∧ .... ∧ Ci−1 ∧ Ci ∧ Ci+1 ∧ ... ∧ Ck such that f ′ ≡
f and Ci = xj , where xj is a literal, then Ci is a generalized unit clause
of f . �

Definition 1 is the widely known version of unit clauses for CNF formulas. We
propose definition 2 in order to apply a more general form of unit propagation
in the context of BDDs. Since conjunction and quantification of BDDs results
in intermediate BDDs that are not clauses, it is necessary to detect unit clauses
that appear in equivalent CNF representations to make use of unit propagation
during the solving procedure.

Theorem 1: Let Ci be a clause and Cj = xl be a unit clause (xl is an
existential literal). Then RestrictBy(BDD(Ci), BDD(Cj)) = BDD(Ci[xl :=
true]). �

Corollary 1: Let f = C1 ∧ C2 ∧ ... ∧ Ck be a CNF and Cj = xl be a unit
clause (where xl is a unit literal). Then RestrictBy(BDD(f), BDD(Cj)) =
BDD(f [xl := true]). �

Corollary 2: Let f be a non-trivial propositional formula and Cj = xl be a
generalized unit clause of f (where xl is an existential literal).
Then RestrictBy(BDD(f), BDD(Cj)) = BDD(f [xl := true]). �

The previous theorems and corollaries state that in order to apply unit propa-
gation with regular and generalized unit clauses in the context of BDDs, it is
sufficient to apply RestrictBy with the corresponding literal.
1 It is also possible to avoid conjunction of the results, proceeding with the next

variable elimination step, but we didn’t detect any performance boost during our
preliminary experiments.
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Theorem 2: Let f be a non-trivial propositional formula, xj a literal and f ′

an equivalent CNF representation of f obtained by applying distributivity of ∧
and ∨ and removing trivial clauses. Then xj is a generalized unit clause in f iff
xj is a unit clause in f ′. �

Theorem 3: Let f be a non-trivial propositional formula and xj a literal. Then
xj is a generalized unit clause in f iff f [xj := false] = false. �

Corollary 3: Let f be a non-trivial propositional formula and xl a literal. Then
Cj = xl is a generalized unit clause in f iff RestrictBy(BDD(f), BDD(¬Cj)) =
ZERO BDD. �

Corollary 3 gives us a procedure for extracting unit BDDs. It is important to
note the CNF construction may be exponential in size, but we do not construct it
explicitly in our algorithm; it is only employed for proving purposes. The reader
should also note that extracting the unit BDDs is analogous to computing prime
implicates of a formula, which is NP-Hard. However, our main algorithm only
performs BDD extraction for one BDD at each iteration and not the complete
formula, making the solving procedure computationally practical.

Lemma 1: Let f be a non-trivial propositional formula, and xi, xj two literals.
Then RestrictBy(BDD(f), BDD(xi) ∧BDD(xj)) =
RestrictBy(RestrictBy(BDD(f), BDD(xi)), BDD(xj)). �

Theorem 4: Let f be a non-trivial propositional formula and Ci1 , ..., Cim be
unit clauses of existential literals.

Then g(f, {Ci1 , ..., Cim}) = RestrictBy(f, Ci1 ∧ .... ∧ Cim),
where g(f, l) = g(RestrictBy(f, Ci1), {Ci2 , ..., Cim}) if l = {Ci1 , .., Cim} and

f if l = ∅. �
Theorem 4 justifies the fact that we can perform unit propagation in BDDs by
first conjoining all of the unit BDDs and then applying the restriction operation.

The unit propagation rule is fairly intuitive when all of the BDDs represent
clauses: we can extract BDDs with support set size equal to one and apply
the unit propagation according to the above theorems. The previous procedure
is somewhat limited because it fails to recognize BDDs containing inner unit
BDDs, which occurs for non-clause formulas. This is why we need a unit BDD
extraction algorithm to detect generalized unit clauses.

Considering that any propositional function can be written in CNF and that
BDDs are canonical representations of these functions, then any formula (clause
or non-clause) containing a generalized unit clause can be expressed as li ∧ p,
where li is a literal and p is a propositional formula. Therefore, setting li to
false makes the entire formula unsatisfiable. One can then conclude that for
any variable xi in the support set of a formula F , it holds that xi is a pos-
itive (negative) generalized unit clause iff F [xi := false] ≡ false (F [xi :=
true] ≡ false). Below is the algorithm for detecting inner unit BDDs for a given
BDD b .

Now we will discuss the pure literal rule for BDDs.
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algorithm. UnitBDDExtraction(BDD b, Quantifier Prefix qp):
Set of BDD S := {}
for each variable v in the support set of b do

if RestrictBy(b,Not(bdd(v))) = Zero BDD then
if(isUniversal(v,qp)) then return {Zero BDD}
else S := S ∪ {bdd(b)}

else if RestrictBy(b,bdd(v)) = Zero BDD then
if(isUniversal(v,qp)) then return {Zero BDD}
else S := S ∪ {Not(bdd(b))}

return S

Algorithm for unit BDD extraction

Definition 3 (Pure Literal):[10] Let f = C1 ∧C2 ∧ ...∧Ck be a CNF formula
and xj a literal, where xj only appears positively (negatively) in f . We call xj a
positive (negative) pure literal of f . �

Definition 4 (Generalized Pure Literal): Let f be a boolean formula. If ∃
CNF f ′ = C1 ∧ C2 ∧ .... ∧ Ck such that f ′ ≡ f and xj occurs only positively
(negatively) in f ′, where xj is a literal, then xj is a generalized positive (negative)
pure literal of f . �

Theorem 5: Let f be a non-trivial propositional formula, xj a literal and f ′ an
equivalent CNF representation of f obtained by applying distributivity of ∧ and
∨ and removing trivial clauses. Then xj is a generalized positive (negative) pure
literal in f iff xj is a positive (negative) pure literal in f ′. �

Theorem 6: Let f be a non-trivial formula and xj a literal. xj is a generalized
positive (negatively) pure literal in f iff f [xj := false] = ∀xj(f) (f [xj := true] =
∀xj(f)). �
Theorem 6 entails an algorithm for calculating the polarity of a variable in a
formula.

Corollary 4: Let f be a non-trivial formula and xj a literal. xj is positively (neg-
atively) pure in BDD(f) iff RestrictBy(BDD(f), BDD(¬(xj))) = ∀xj(BDD(f))
(RestrictBy(BDD(f), BDD(xj)) = ∀xj(BDD(f)). �
The pure literal propagation algorithm first constructs the pure literal vector
(which determines the polarity and purity of the variables) and then applies
pure literal propagation accordingly. A universal pure literal is eliminated from
the clauses and an existential pure literal entails the removal of clauses where it
appears.

Similarly to unit propagation, we first consider the case involving only clause
BDDs. Setting a variable in the support set of the BDD to either true or false
results in true iff the formula is a clause. By checking which assignment to the
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variable makes the formula satisfiable the polarity of the variable within the
BDD can be detected. The polarity table is calculated as follows:

algorithm PolarityVectorClauseBDDs(Set of BDD bdds, int numV ars):
Vector of Int v
for i = 1 to numV ars do

v[i] := −2
for each BDD b in bdds do

for each variable v in the support set of b do
if RestrictBy(b,bdd(v)) = One BDD then updatePolarity(polarity,v,1)
else if RestrictBy(b,not(bdd(v)))=One BDD

then updatePolarity(polarity,v,0)
return polarity

Algorithm for calculating the polarity vector from a set of clause BDDs

Initially all variables hold the −2 value, stating that the polarity is undefined.
updatePolarity sets the polarity to 1 or 0 if the polarity was undefined previ-
ously for the variable. Whenever the newly found polarity is different from the
previously held, the polarity of the variable is changed into −1 permanently, and
otherwise keeps the polarity unchanged. After constructing the polarity vector,
the pure-literal propagation eliminates clauses with existential pure variables
and eliminates universal pure variables.

algorithm PureLiteralClauseBDDs(Set of BDD bdds, int numV ars, Quantifier Prefix
qp):

boolean pure var := true
while pure var do

Vector of int polarity := PolarityVectorClauseBDDsPureLiteral(bdds, numV ars)
BDD polarityBDD := One BDD
pure var := false
for each variable v in polarity do

if polarity[v] �= −2 ∧ polarity[v] �= −1 then
pure var := true
if isUniversal(v,qp) then

polarityBDD := polarityBDD∧(polarity[v] = 1?not(bdd(v)) : bdd(v))
else

polarityBDD := polarityBDD∧(polarity[v] = 1?bdd(v) : not(bdd(v)))
for each BDD b in bdds do

RestrictBy(b,polarityBDD)
return bdds

Algorithm for applying the pure literal rule for clause BDDs

Whenever BDDs are not clauses, the polarity of the variables is not obviously
determined. We use universal quantification in this case, according to corol-
lary 4. Consider a formula F that contains a variable xi. If F has xi (¬xi) in
all its clauses, then setting the variable to the appropriate truth value would be
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sufficient to determine the polarity. Distinction between containing both xi
and ¬xi in its clauses and containing only one of them is harder. In ∀xi.F
the variable xi is eliminated. If xi is positively (negatively) pure in F then
F [xi := false] ≡ ∀xi.F (F [xi := true] ≡ ∀xi.F ). Therefore we can quantify
and compare with either F [xi := false] (F [xi := true]) to determine if xi is a
generalized positive (negative) pure literal. In order to employ this pure-literal
rule for non-clause BDDs we only need to change the polarity vector calculation
procedure as follows:

algorithm PolarityVectorNonClauseBDDsPureLiteral(Set of BDD bdds, int
numV ars):

Vector of Int v
for i = 1 to numV ars do

v[i] := −2
for each BDD b in bdds do

for each variable v in the support set of b do
if RestrictBy(b,bdd(v)) = One BDD then updatePolarity(polarity,v,1)
else if RestrictBy(b,not(bdd(v))) = One BDD then

updatePolarity(polarity,v,0)
else if ∀v.b. ≡ RestrictBy(b,not(bdd(v))) then updatePolarity(polarity,v,1)
else if ∀v.b. ≡ RestrictBy(b,bdd(v)) then updatePolarity(polarity,v,0)
else updatePolarity(polarity,v,¬polarity[v])

return polarity

Algorithm for calculating the polarity vector from a set of non-clause BDDs

3.3 Variable Ordering Heuristics

Another feature of our implementation consists of dynamic heuristics for select-
ing variable elimination orders in BDD-based QBF solving. Although dynamic
heuristics have been proposed in the context of model checking[26] and other ar-
eas, their effectiveness varies according to the problem domain, and to the best
of our knowledge all BDD-Based SAT and QBF solvers employ static heuristics.
The main reason is that bucket elimination with BDDs relies on eliminating
only top variables at each iteration, so the ordering must be fixed before start-
ing bucket processing. We have implemented the following: (1) Most occurring
top variable, (2) Most occurring variable, (3) Least occurring top variable, (4)
Least occurring variable, (5) Smallest BDD top variable, (6) Smallest BDD vari-
able, (7) Bounded Most occurring variable with min.

3.4 Main Algorithm

The main procedure simply puts together all of the algorithms mentioned in the
previous subsections.
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algorithm BDD-QBF(CNF F , Quantifier Prefix qp, int numV ars,int heuristic):
Set of BDD bdds := createBDDForEachClause(F )
bdds := ClauseBDDUnitPropagation(bdds,qp)
bdds := PureLiteralClauseBDDsPureLiteral(bdds,numV ars,qp)
while qp �= {} do

if bdds = {} then return QSAT
if Zero BDD ∈ bdds then return Q-UNSAT
Quantifier q := innermostQuantifier(qp)
qp := qp− {q}
while variableSet(q) �= {} do

if bdds = {} then return QSAT
if Zero BDD ∈ bdds then return Q-UNSAT
int var := chooseVariable(bdds,variableSet(q),heuristic)
variableSet(q) := variableSet(q) −{var}
Set of BDD occ bdds :=chooseBDDsWithVariable(bdds,var)
bdds := bdds− occ bdds
if isUniversal(var,qp) then

for each BDD b in occ bdds do
b := ∀var.(b).

BDD bdd conj := ∧b∈occ bddsb
if isExistential(var,qp) then

bdd conj := ∃var.(bdd conj).
bdds := bdds ∪ {bdd conj}
Set of BDD unitBDD := UnitBDDExtraction(bdd conj)
if unitBDD �= {} then

bdds := NonClauseBDDUnitPropagation(bdds,∧b∈unitBDDvectorb)

BDD-Based QBF Solver

4 Experiments

The solver was implemented in C++ and the underlying BDD package is
CUDD[29] from the University of Colorado at Boulder. All experiments were
run on the same machine, an Intel Dual Core 2.13GHz Unix desktop machine
with 4 GB of RAM. We compared eBDD-QBF with other solvers that reportedly
performed best on the verification domain, such as QuBE7.1[14], Semprop[19]
and DepQBF[20]. They also dominated BDD-based solvers according to previous
experiments. In fact, DepQBF is a solver that integrates dependency graphs with
DPLL, and was the winner of the QBFEVAL ’10 main competition[21]. Addi-
tionally, previous research had shown that the first two solvers clearly dominated
BDD-based approaches, so we wanted to determine if our improved BDD-based
algorithm was able to perform better in comparison[10].

We set a 30 minute timeout for each instance, meaning that if the solver took
more than 30 minutes to complete an instance it stopped and went on to the
next one.
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We must mention the fact that we performed preliminary experiments in order
to select a suitable dynamic variable elimination technique, and that the least
occurring variable heuristic turned out as the overall best. This was the only
parameter that needed to be decided before performing the experiments, so we
ran all of the benchmarks using the least occurring variable heuristic. Due to
space constraints, we only present a table summarizing the number of instances
solved, total time taken, variable and clause range for each solver.

The full tables can be consulted in
http://www.cs.utexas.edu/~olivo/CP/App.pdf

First we present experiments for Ayari’s benchmarks[3], which consists of
QBF formulas that are satisfiable iff a given circuit has a satisfying word model
of a bounded depth. The problem is called bounded model construction, and it
is analogous to bounded model checking in the sense that a tool can iteratively
generate QBF formulas for increasing bounds k until it has found a satisfying
model or covered the complete state space.

The benchmarks formulate the problem for ripple-carry adder circuits, D-type
flip-flops, Von Neumann machines, mutual exclusion and Szymanski protocols.
These have practical applications in equivalence checking.

We noticed that the unit propagation and pure-literal rules were only effec-
tive at the start of the solving procedure, and decided to turn off these rules
during variable elimination for this suite. That is, only outer unit propagation
and pure-literal rules were applied in this case. We give detailed information
for the entire suite, except for the Von Neumann instances; these were omitted
because of the impossibility to handle variable indices over 80000 with CUDD.
Therefore, any algorithm based on the current version of CUDD must do pre-
processing before handling these instances, which was intentionally left out in
our pure BDD-based solver.

Solver Instances Solved Total Time Variable Range Clause Range

eBDD-QBF 27 3257.83s 332-5833 127-6084

QuBE7.1 19 304.214s 332-252710 127-334058

Semprop 20 361.614 s 332-57143 127-74975

DepQBF 20 61.107s 332-4558 5-73065

Experimental results for Equivalence Checking instances

eBDD-QBF is the best solver in the overall suite, solving 27 instances, followed
by Semprop and DepQBF with 20, and finally QuBE7.1 with 19. We should
also point out the excellent performance of eBDD-QBF for the adder instances,
which is mainly due, according to our inspections, to the dynamic heuristic and
aggressive universal quantification rather than pure-literal and unit-propagation
for BDDs. We later determined that eBDD-QBF solved Adder2-10-s with 8949
variables and 9664 clauses in 60m7.509s, driven by our curiosity to evaluate
the limits of our tool for adder circuits; that was the largest instance it could
handle, blowing up in space for the larger ones. On the other hand, eBDD-QBF

http://www.cs.utexas.edu/~olivo/CP/App.pdf
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performs badly on flip-flops, where the rest of the solvers have no trouble at
all. We have determined that eBDD-QBF takes too much time executing the
outer pure-literal and unit propagation rules, making it exceed the time limit.
The total time of eBDD-QBF is also marred by a couple of instances in which
it takes a little over 12 minutes to complete. All of this can be confirmed by
reading the appendix on the website.

Presumably, similar preprocessing to that implemented in the other solvers
would make eBDD-QBF more competitive for these instances.

We now present results for Rintanen’s instances[27], which are encodings of
conformant planning problems. The suite includes instances from the implica-
tion chains, sorting networks, blocksworld and bombs in the toilet problems.
In our experiments, we exclude blocksworld problems, as their random gener-
ation is incompatible with the use of BDDs. For this benchmark we employed
both inner and outer unit propagation, and outer pure-literal rule application
for eBDD-QBF.

Solver Instances Solved Total Time Variable Range Clause Range

eBDD-QBF 30 246.75s 10-3290 18-19663

QuBE7.1 27 506.211s 10-2035 18-178750

Semprop 32 75.092s 10-3290 18-178750

DepQBF 23 1984.76s 10-2501 18-178750

Experimental results for Conformant Planning instances

Results are almost equal for the planning instances, Semprop being the overall
winner with 32 benchmarks solved, eBDD-QBF is second with 30, and QuBE7.1
and DepQBF trail behind with 27 and 23 instances solved respectively. eBDD-
QBF is only slower than Semprop for this suite.

We must stress the fact that symbolic methods have not been generally too
successful in the past under this domain, given the structure of the instances.
We attribute the competitive results obtained with eBDD-QBF to the BDD
constraint propagation strategy.

As an additional note, eBDD-QBF was able to solve Castellini’s bombs in the
toilet benchmarks and Letz’s tree instances[21] in just a matter of seconds. These
are related to the conformant planning domain, but we don’t report detailed
results because of space constraints.

The third suite that we present results for consists of Pan’s instances for Modal
Logic K[21]. These are encodings of propositional formulas extended with the
possibility and necessity operators. The problem of satisfiability in modal logics
has applications in artificial intelligence, and program and hardware verification.
Particularly, the instances used for the experiments in this paper have been
proposed in the context of evaluating theorem provers.

Identically to the previous suite, eBDD-QBF was run with both inner and
outer unit propagation, and outer pure-literal rule application.
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Solver Instances Solved Total Time Variable Range Clause Range

eBDD-QBF 269 6283.38s 4-3004 5-131072

QuBE7.1 140 8148.41s 4-11130 5-355294

Semprop 242 10129.9s 4-5320 5-131072

DepQBF 140 12087.7s 4-4558 5-73065

Experimental results for Modal Logic instances

There is a markedly superior performance by eBDD-QBF in this case, both in the
number of instances solved and total execution time. Again, the BDD adaptation
of DPLL techniques was decisive in the excellent performance of our solver. A
distinctive feature of these benchmarks is a larger alternation depth than in
Ayari’s and Rintanen’s instances. This clearly favors the simplification of the
BDDs by repeatedly applying our reformulation of universal variable elimination,
under the assumption that eliminating variables reduces the size of the diagram.

5 Conclusions and Future Work

We have implemented a QBF solver based on BDDs that is competitive with
other efficient decision procedures. The main features were the introduction
of BDD constraint propagation, implementation of dynamic variable selection
and enhanced early quantification. Our solver outperformed competitive search-
based procedures in the verification domain (which in turn also outperformed
previous BDD-based solvers according to previous experiments), dominating in
the bounded model construction and modal logic benchmarks, and performing
comparably for conformant planning - a domain where previous BDD-based ap-
proaches performed terribly.

We found that our solver had a rather complementary performance in com-
parison with the other solvers. For example, eBDD-QBF worked well on Adders
and worse on Dflipflops for Ayari’s benchmarks, whereas the other way around
was the case for the rest of the tools; a similar pattern was present in Pan’s
instances. This suggests the idea of including our BDD algorithms into a more
general framework involving search and symbolic techniques with more elaborate
preprocessing. However, there is still work to do in identifying the structure of
the formulas that are most efficiently handled by our solver, given that our work
is substantially supported by empirical analysis instead of theoretical reason-
ing. We are incorporating the bottom-up approach with a top-down algorithm
based on DPLL, that would potentially allow more flexible dynamic variable
selection heuristics. The inclusion of preprocessing techniques and more robust
BDD constraint propagation algorithms are also being implemented in order to
obtain a comparable solver w.r.t. more elaborate tools such as AIGSOLVE[23]
and AQME[25].
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Abstract. Many real world problems can be modeled using a combi-
nation of hard and soft constraints. Markov Logic is a highly expressive
language which represents the underlying constraints by attaching real-
valued weights to formulas in first order logic. The weight of a formula
represents the strength of the corresponding constraint. Hard constraints
are represented as formulas with infinite weight. The theory is compiled
into a ground Markov network over which probabilistic inference can
be done. For many problems, hard constraints pose a significant chal-
lenge to the probabilistic inference engine. However, solving the hard
constraints (partially or fully) before hand outside of the probabilistic
engine can hugely simplify the ground Markov network and speed prob-
abilistic inference. In this work, we propose a generalized arc consistency
algorithm that prunes the domains of predicates by propagating hard
constraints. Our algorithm effectively performs unit propagation at a
lifted level, avoiding the need to explicitly ground the hard constraints
during the pre-processing phase, yielding a potentially exponential sav-
ings in space and time. Our approach results in much simplified domains,
thereby, making the inference significantly more efficient both in terms
of time and memory. Experimental evaluation over one artificial and two
real-world datasets show the benefit of our approach.

1 Introduction

Combining the power of logic and probability has been a long standing goal
of AI research. The last decade has seen a significant progress towards this
goal, with the emergence of the research area called statistical relational learn-
ing (SRL). Many different representation languages have been proposed which
combine subsets of full-first order logic with various probabilistic graphical repre-
sentations [4]. One such powerful language is Markov Logic [2], which represents
a joint probability distribution over worlds defined by relationships over entities
by attaching weights to formulas in first order logic.

A Markov logic theory can be seen as a combination of hard and soft con-
straints. Hard constraints are modeled by formulas with infinite weight, and must
be satisfied in any world with non-zero probability. The typical approach to infer-
ence in Markov logic involves grounding out the theory and jointly dealing with
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both hard and soft constraints. For many problems, hard constraints can pose
a significant challenge to the underlying probabilistic inference engine, making
it difficult for a sampler to move between different modes. Much work has gone
into the development of probabilistic inference algorithms that are robust in the
face of hard constraints (for example, MC-SAT [11], SampleSearch [5]), but the
general problem of efficiently handling hard constraints is far from solved.

The key idea in this paper is that, intuitively, each hard constraint in the
knowledge base reduces the set of possible worlds that have a non-zero proba-
bility. In particular, a set of hard constraints together can restrict the number
of groundings of a predicate about which we are uncertain (i.e., the probability
of an instance of the predicate holding is strictly between 0 and 1). We refer to
this phenomenon as domain pruning. Domain pruning can significantly simplify
the ground network over which probabilistic inference needs to be done, as the
pruned groundings can be treated as evidence (fully observed). Therefore, we
propose an approach to probabilistic inference which has two components: 1)
Solve the hard constraints (fully or partially) to identify the pruned domains 2)
Use a standard probabilistic inference engine with pruned domains input as evi-
dence. Building on ideas in the area of constraint satisfaction, we propose a novel
generalized arc consistency algorithm for propagating the hard constraints. Since
our algorithm deals only with hard constraints to prune the domains, it is guar-
anteed to produce the same solution as the standard techniques. Our algorithm
can be seen as a form of lifted unit propagation. We show that our approach
can use exponentially less space and time than performing unit propagation on
the grounded theory. Experiments on three different datasets clearly show the
advantage our approach.

The organization of this paper is as follows. We first present some background
on Markov logic and constraint propagation. This is followed by the details of
the generalized arc consistency algorithm. We present our results on two real
and one artificial datasets. Next, we discuss some of the related work in this
area. We conclude with the directions for future work.

2 Background

2.1 Markov Logic

First-order probabilistic languages combine graphical models with elements of
first-order logic, by defining template features that apply to whole classes of
objects at once. One such powerful language is Markov logic [2]. A Markov logic
network (MLN) is a set of weighted first-order formulas. The weight of a formula
represents the strength of the constraint. Soft constraints are formulas with
finite weight, while hard constraints have infinite weight. A theory consists of
a combination of hard and soft constraints. Together with a set of constants
representing the objects of interest, it defines a Markov network with one node
per ground atom and one feature per ground formula. The weight of a feature is
the weight of the first-order formula that originated it. More formally,
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Definition 1. [2] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
(ground atom) appearing in L. The value of the node is 1 if the ground
predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi
(ground formula) in L. The value of this feature is 1 if the ground formula
is true, and 0 otherwise. The weight of the feature is the wi associated with
Fi in L.

For many problems, a set of ground atoms are known to be true or false before
hand. These are known as evidence atoms. The ground atoms whose value is not
known at the inference time are called query atoms. The ground Markov network
ML,C defines the probability of an assignment y to the query atoms Y , given an
assignment x to the evidence atoms X , as

P (Y = y|X = x) =
1
Zx

exp

(∑
k

wkfk(y, x)

)
(1)

where the summation is taken over all the ground formulas. wk is the weight of
the kth ground formula, fk = 1 if the kth ground formula is true, and fk = 0
otherwise, and Zx is the normalization constant. For any state to have a non-zero
probability, all the hard constraints have to be satisfied, in which case the corre-
sponding weight term (infinite) can be factored out from the denominator as well
as the numerator. The evidence atoms can be input to the inference procedure in
the form of a set called evidence database. The value of evidence atoms is set by
fixing the assignment of the corresponding nodes in the network to the respective
truth value. A large evidence results in effectively pruning the network, as the
corresponding nodes assignments can be fixed and removed from the network.
Marginal inference corresponds to the problem of finding the probability of true
assignment to each of the query nodes in the network. Inference can be done
using standard inference techniques such as Gibbs sampling or belief propaga-
tion. More efficient techniques which exploit the nature of the formula (hard or
soft) [11] or the structure of the network [16] have also been proposed. None of
these techniques is able to exploit the fact that the set of hard constraints in the
knowledge base can, in many instances, be solved very efficiently, thereby signif-
icantly pruning the domains of predicates and shrinking the number of ground
formulas.

Any first-order knowledge base can be equivalently converted into a clausal
form by a series of mechanical steps [12]. We deal with finite first order logic,
and all the function evaluations are assumed to be known in advance [2]. Hence,
any existential can be equivalently replaced by a disjunction of corresponding
ground literals. Therefore, without loss of generality, we will deal explicitly with
clauses in the following formulation.
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2.2 Constraint Satisfaction and Local Consistency

A Constraint Satisfaction Problem (CSP) refers to a set of variables X = {X1,
. . . , Xn}, their domains R = {R1, . . . , Rn} and a set of constraints C = {C1,
. . . , Ck} over the variables in X . Every constraint Ci ∈ C is a relation over some
non-empty set of variables in X , and specifies the set of values the variables
appearing in it can take. A solution to a CSP is a set of assignments S to the
variables in X , such that every member s ∈ S satisfies all the constraints in C.
In many instances, finding such a set is computationally challenging. However,
for many problems, for each variable Xi, we can efficiently eliminate a subset of
the values which are not part of any solution to the CSP. Let Vi ⊆ Ri be the set
of allowed values of Xi after eliminating such a subset of values. A variable is
generalized arc consistent (or hyper-arc consistent) with a constraint, if for every
value in its allowed set of values, there is an assignment to the remaining variables
which satisfies the constraint. Consistency with respect to a set of constraints
is defined in a similar manner. Generalized arc consistency only ensures local
consistency i.e. it does not directly enforce any constraints among the variables
which do not share a constraint. One way to ensure generalized arc consistency
is to initialize the set of allowed values, Vi, to the respective domain Ri, and then
iteratively eliminate those values which are not generalized arc consistent with
the set of constraints. The algorithm continues until none of the Vi sets changes.
This simple iterative procedure can lead to significant reduction in domain size
for many problems. There are other forms of local consistency which could be
enforced. A partial assignment to a set S of variables is said to be consistent
if it does not violate any constraints which involve variables only from S. i-
consistency requires that every consistent assignment of i − 1 variables can be
extended by a value of any other variable not violating any of the constraints, and
strong i-consistency ensures k-consistency for every 1 ≤ k ≤ i. For a thorough
introduction to CSPs and local consistency, see [1].

3 Constraint Propagation in Markov Logic

A set of first order clauses impose a set of constraints on the truth assignment to
the ground atoms which participate in the respective ground clauses. Generalized
arc consistency ensures that allowed truth assignments (true/false) to any ground
atom have a corresponding assignment for all the other atoms in the clause such
that the clause is satisfied. An evidence database fixes the assignment of the
ground atoms in the database to true or false. Given a set of first order clauses,
and an evidence database, our goal then, is to devise an algorithm so that the
ground atoms in the domain are generalized arc consistent with the constraints
imposed by the set of ground clauses. Because each atom can take only two
possible assignments, any pruning on the domain of an atom essentially means
that we can fix its assignment (if the whole domain is pruned then the constraints
are inconsistent). Hence, ensuring generalized arc consistency on a set of hard
clauses in a theory is a way to infer the additional truth assignments for some of
the originally unknown ground atoms. These can then be set to evidence with
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the inferred truth value for any following probabilistic inference procedure. This
leads to huge simplification in the network over which probabilistic inference
needs to be performed.

The key idea for enforcing generalized arc consistency is to look at each ground
clause in turn, and identify a ground atom whose assignment needs to be fixed
in order to satisfy the clause, given current assignment to other atoms in the
clause. This can be done iteratively, until no more truth assignments can be fixed.
The main caveat with this approach is that it explicitly involves grounding out
the whole theory, which is often prohibitively expensive. Next, we describe an
algorithm which alleviates this problem.

3.1 Generalized Arc Consistency Algorithm

For the notational convenience, we will explain our algorithm for the case of
untyped predicates; extending it to the more general case is straightforward. Let
KB be a knowledge base with a set of hard constraints. Let L denote a predicate
(or its negation). Let each argument take the values from the set of constants
T . Therefore, the domain of L, denoted as R(L), is T k. Further, let D(L) be the
subset of tuples t ∈ R(L), for which L(t) can be true in some model, i.e. t ∈ D(L)
if L(t) = true is possibly a part of some assignment satisfying the constraints
in KB. Let N(L) be the subset of tuples for which L(t) is necessarily true in
any given model, i.e. t ∈ N(L) if L(t) = true in every assignment satisfying the
constraints in KB. Note that N(L) = R(L) \D(¬L).

The goal of the generalized arc consistency algorithm is to find the maximal
N(L) for every predicate L, while propagating constraints through the hard
clauses. The algorithm starts with an initial set N(L) for every L, and iteratively
increases the size of N(L), using the hard constraints given in the knowledge
base, until none of the N(L) sets can be further extended. The starting points
of the algorithm are the ground atoms supplied in the evidence database. The
algorithm is most easily described in the case where each predicate in a clause
contains the same set of variables. Consider, for example:

C = L1(x) ∨ . . . ∨ Lk(x) (2)

where x is a vector of variables. For every 1 ≤ i ≤ k: N(Li) can be updated as
follows:

N(Li)← N(Li)
⋃⎡

⎣ ⋂
i�=j,1≤j≤k

N(¬Lj)

⎤
⎦ (3)

In words, for every tuple c in the domain of x, we can conclude that Li(c) is true
in every possible world if every other Lj(c) appearing in the clause is false in
every possible world. To generalize the update rule for predicates with different
sets of variables we employ the (database) Join and Project operations. We
define Join for two sets of tuples each of which has a corresponding vector of
variables associated with it. Let Si be a set of tuples andXi be the corresponding
vector of variables (i ∈ {1, 2}). We overload the notation such that Xi also refers
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to the set of variables in the corresponding vector. For now, we assume that a
variable cannot appear more than once in a vector of variables (we will relax this
assumption later in the text). For a tuple s ∈ Si and a variable x ∈ Xi let s[x]
denote the value of the variable x in the tuple s. Let X = X1

⋃
X2 and R(X)

be the full domain formed by the Cartesian product of the individual domains
of the variables in X in some ordering of the variables. The join of the sets of
tuples Si, given corresponding vector of variables Xi, is defined as follows:

Join{〈Xi, Si〉} = 〈X, {c|c ∈ R(X) ∧ ∀i, ∃s ∈ Si ∀x ∈ Xi : s[x] = c[x]}〉 (4)

Join is commutative and associative. The projection of a set S of tuples asso-
ciated with a variable vector X to the variable vector Y is defined as follows:

Project(Y, 〈S,X〉) = {c|c ∈ R(Y ) ∧ ∃s ∈ S ∀y ∈ (Y ∩X) : s[y] = c[y]} (5)

For more details on natural join and project operations, see [3]. Using the above
definitions we can extend the update rule to the general case (where each pred-
icate in a clause can contain an arbitrary subset of variables):

N(Li)← N(Li)
⋃

[Project(Xi, Joinj �=i{〈Xj , N(¬Lj)〉}] (6)

The space and time complexity of Equation (6) is sensitive to the order in which
we perform the Joins (they can be performed in any order since Join is both
commutative and associative). The worst case complexity (both space and time)
is exponential in the number of variables involved in the operation. A number
of different heuristic criteria could be used to decide the join order; we selected
the literal L first with the smallest N(L) set. Additionally, while performing a
series of Joins, if the intermediate result contains a set of variables X ′ such that
an x ∈ X ′ variable does not occur in the remaining Xj sets, i.e., x is guaranteed
not to appear on any other side of a Join and x is also not a member of Xi,
then, we can project this partial result to X ′ \ {x}. This re-ordering of join and
project operations can substantially reduce the space and time complexity of the
algorithm. Consider, e.g.,

H(x) ∨O1(x, y1) ∨O2(x, y2) ∨ . . . ∨Ok(x, yk) (7)

where H is a hidden predicate while O1, O2, . . . , Ok are all observed. Also, let
|R(H)| = N and for every 1 ≤ i ≤ n : |R(Oi)| = N2. For every 1 ≤ i ≤ k we can
perform

Project(x, 〈(x, yi), N(¬Oi)〉) (8)

and feed the results to the Joins instead of using N(¬Oi) in the Joins, because
every yi occurs exactly in one predicate. This way, the space and time complexity
of the algorithm reduces to O(kN2) from O(Nk+1).

Algorithm 1 shows the pseudo-code for our generalized arc consistency algo-
rithm. Line 3 initializes the N(Li) sets based on the evidence database. In line 8
of the algorithm we start iterating through all the hard constraints. In line 10 we
update the N(Li) sets for every positive or negative literal using Equation (6).
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Algorithm 1. Update Algorithm for Generalized Arc Consistency on Clauses
1: for all C ∈ KB do
2: for all Li literal ∈ C do
3: N(Li) = {t|Li(t) = true; given the evidence database}
4: end for
5: end for
6: repeat
7: changed← false
8: for all C ∈ KB do
9: for all Li literal ∈ C do

10: Δ← [Project(Xi, Joinj �=i{〈Xj , N(¬Lj)〉}]
11: if Δ �= ∅ then
12: changed← changed ∨N(Li) �= N(Li)

⋃
Δ

13: N(Li)← N(Li)
⋃

Δ
14: end if
15: end for
16: end for
17: until ¬changed

The algorithm keeps iterating over all the hard constraints until none of the
N(Li) sets change. It is easy to prove the convergence as well as the correct-
ness of our generalized arc consistency algorithm. First, for convergence, clearly,
the algorithm stops if in any iteration, none of the clauses results in a change
in the N(Li) sets. Alternatively stated, each iteration results in at least one of
the N(Li) sets increasing in size. Further, size of each N(Li) is upper bounded
by the size of the corresponding domain R(Li). Therefore, the algorithm termi-
nates in finite steps. By correctness we mean that, if N(Li) is the set obtained for
predicate Li at the end of the algorithm, then, for each tuple ti ∈ N(Li), every
model contains L(ti) in it, i.e. in any satisfying solution to the hard constraints
Li(ti) = true. Let us prove it by induction. Initially, each N(Li) is set using the
evidence database. Hence, the claim is true in the beginning. Next, let the claim
holds at the kth update step (to any of the N(Li)’s) during the execution of the
algorithm. Considering k + 1th update, if an atom ti is added to the set N(Li),
then, there must have been a ground clause, L1(t1)∨L2(t2) · · ·∨Li(tk) · · ·∨Lk(tk),
such that each of Lj(tj) = false,∀j �= i. This follows from the generalized arc
consistency update rule (Equation (6)) and the fact that the claim holds true
at the kth update step. Hence, L(ti) must be true as setting it otherwise would
lead to violation of this clause. Further, since we assumed the claim to be true
at step k, and any new additions to the set N(Li) satisfy the claim by above
argument, the claim is true at step k + 1. Hence, proved.

3.2 Extension to Other Cases

Existentials. We extend the update rule for clauses to allow existentially quan-
tified conjunctions besides regular literals. E.g., consider the formula:

P (x) ∨ ∃y [Q(x, y) ∧R(z, y)] (9)
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For all the instantiations of x when ∃y [Q(x, y) ∧R(z, y)] is necessarily false P (x)
must be true. Thus, all we need to do is to extend the definition of N(Li) to
allow Li to be the negation of an existentially quantified conjunction.

Let F = ¬∃Y [L1(X1) ∧ . . . ∧ Lk(Xk)] where Y ⊆
⋃
iXi. Let X =

⋃
iXi \ Y

and R(X) be the full domain formed by the Cartesian product of the individual
domains of the non-quantified variables in X in some ordering of the variables.
Then:

N(F )← R(X) \ Project(X, Join1≤i≤k{〈Xi, R(Li) \N(¬Li)〉}) (10)

N(F ) has to be updated if N(¬Li) changes for any of the Li’s appearing in F .

Constant Arguments. If a predicate P in a clause has a constant argument
c, we can do the following transformation of the clause to a new clause which
provides an equivalent hard constraint without having constant arguments in
the predicates:

P (x, c) ∨ . . . is replaced byP (x, y) ∨ ¬Ec(y) ∨ . . . (11)

Where Ec(y) is a fully observed predicate and is true if and only if y = c.

Repeated Arguments. If a predicate P in a clause has a variable argument
which appears more than once, the following transformation could handle this
case:

P (x, x) ∨ . . . is replaced byP (x, x′) ∨ ¬E(x, x′) ∨ . . . (12)

Where x′ is a variable not appearing in the original clause, and E(x, x′) is a fully
observed predicate being true if and only if x = x′.

3.3 Relation to Unit Propagation

Running unit propagation on the ground hard clauses using the evidence would
produce exactly the ground unit clauses which correspond to the N sets created
by running the proposed generalized arc consistency algorithm.1 Initially, the N
sets are set according to the evidence, and to the unit clause hard constraints.2

At this point the ground unit clauses available for unit propagation are exactly
the ground unit clauses corresponding to the members of the N sets. Let the
claim holds true after k updates to the N sets. Then, if unit propagation can
derive a new ground unit clause so can the generalized arc consistency algo-
rithm, because the new unit clause is the result of resolving a ground clause
with ground unit clauses to each of which there is a corresponding member of
N . This makes sure that the Joins and Projects in Equation (6) result in a

1 This result holds in general when we do not perform any special pruning for exis-
tential quantifiers (Section 3.2). They are simply treated as disjunction of literals.

2 Algorithm 1 initializes the N sets based only on evidence, but it is easy to see that
both forms of initializations become equivalent after one step of running the original
algorithm on unit clause hard constraints.
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non-empty set containing a member corresponding to the newly derived ground
unit clause. Also, when Equation (6) updates an N(Li) set based on the clause
C = L1(X1)∨. . .∨Ln(Xn), it uses the values inN(¬L1), . . . , N(¬Lj), . . .N(¬Ln)
(i �= j). The ground unit clauses corresponding to these values are available to
unit propagation, hence unit propagation can derive the ground unit clauses
corresponding to the update of N(Li). Therefore, the claim holds true after
k+1 updates to the N sets. Using the induction argument, the claim holds true
for all values of k, and in particular, at the termination of the generalized arc
consistency algorithm.

Although, the end result is the same, the generalized arc consistency algorithm
can use significantly less space and time. Revisiting the example in Equation (7),
there are O(Nk+1) ground clauses created, and hence, unit propagation would
need O(Nk+1) space and time. However, as we pointed out earlier, generalized
arc consistency algorithm requires only O(kN2) space and time.

3.4 Moving Beyond Generalized Arc Consistency

A natural question that may arise is why not use other forms of local consistency
instead of generalized arc consistency (e.g. strong i-consistency). There is a trade-
off between the strength of the consistency requirement and the time spent in
processing the hard constraints. Stronger consistency requirements will typically
result in better pruning but it comes at the cost of increased processing time.
It is easy to see that if l is the maximum length of a clause in the Markov logic
theory, then, strong i-consistency (i ≥ l) subsumes generalized arc consistency.
Following example is illustrative in this regard. Consider the axioms:

1. P (x) ∧Q(x)⇒ O(x)
2. S(x)⇒ P (x)
3. S(x)⇒ Q(x)

where O is an observed predicate such that R(O) = {a, b, c, d} and D(O) =
{a, b, c}. Let R = R(S) = R(P ) = R(Q) = R(O). Together these imply that the
domain of S is limited to {a, b, c}. But this cannot be inferred by generalized
arc consistency on the CSP created from these axioms. Enforcing 3-consistency
on the groundings of P,Q and O will ensure that both P (d) = true and Q(d) =
true cannot hold at the same time. Moreover, enforcing 3-consistency on the
groundings of P,Q and S ensures that for every m ∈ R if at least one of P (m)
and Q(m) is false then S(m) must be false as well. Hence, we could try to enforce
strong i-consistency on the CSP for some value of i ≥ 3. But strong i-consistency
requirements do not fall out naturally from the clausal structure imposed by the
Markov logic theory. However, the same effect can be achieved by applying FOL
resolution [12] to the axioms before creating the CSP. For instance, resolving 1
and 2 yields ¬Q(x) ∨ ¬S(x) ∨O(x). Resolving this with 3 yields ¬S(x) ∨O(x).
This new clause then does allow D(S) = {a, b, c} to be inferred by generalized
arc consistency.

Pre-processing a theory by resolving (hard) constraints can be done exhaus-
tively or in a limited manner; for example, resolution could be performed in a
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breadth-first manner up to a fixed depth. Because a Markov logic theory contains
no uninterpreted function symbols, even exhaustive resolution is guaranteed to
terminate, although in the worst case an exponential number of resolvants would
be created. We did some preliminary experiments with performing resolution to
varying depths before applying generalized arc consistency, but little additional
benefit was obtained on our test domains. Exploring this further is a direction
for future work.

4 Experiments

We experimented on two real and one artificial datasets to compare the time and
memory performances of CPI (Constraint Propagation based Inference) and the
standard approach to inference (i.e. no prior pruning of the predicate domains is
done). We used the freely available Alchemy [9] system for all our experiments.
For the standard approach to inference, we used the Alchemy implementation
as is. For the constraint propagation, we implemented a separate program to
prune the domains by propagating the constraints amongst hard clauses. The
output of this program was passed as additional evidence to Alchemy for the
CPI. For the probabilistic inference in both the approaches, exactly the same
knowledge base was used (including all the soft and hard rules). Since exact
marginal inference was not tractable, we used the MCMC based MC-SAT [11]
algorithm implemented in Alchemy. It was run to collect 1000 samples (default in
Alchemy) for both the approaches. All the experiments were run on a cluster of
nodes with processor speed of 2.4 GHz. We do not report accuracy since both the
approaches are guaranteed to give the same results at the point of convergence
of MC-SAT (Section 4.3 discusses some of the issues relating to the convergence
of MC-SAT). We first describe the datasets in detail followed by our results.

4.1 Datasets

Cora. Entity resolution is the problem of determining which observations (e.g.,
records in a database) correspond to the same objects. We used the version of
McCallum’s Cora database available on the Alchemy website (Kok et al. 2007).
The inference task was to de-duplicate citations, authors and venues (i.e., to
determine which pairs of citations refer to the same underlying paper, and simi-
larly for author fields and venue fields). We used the MLN (formulas and weights)
used by Singla and Domingos [15] in their experiments. This contains first-order
clauses stating regularities such as: if two fields have high TF-IDF similarity,
they are (probably) the same; if two records are the same, their fields are the
same, and vice-versa; etc. For each field, we added the hard rules for deciding
that two fields are a non-match if their TF-IDF similarity was below a thresh-
old. This effectively implements the canopies as described by McCallum [10],
to eliminate obvious non-matches. We also added another set of rules deciding
a pair of citations as non-match if any of the fields did not match. The final
knowledge base contained 25 predicates and 52 formulas (6 hard and 46 soft).
Maximum formula-arity was 4 and maximum predicate domain size was 71,000.
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Capture the Flag (CTF). Our second dataset deals with the task of activity
recognition. Sadilek and Kautz [13] collected this dataset by having subjects
play the game of capture the flag on a University campus. The dataset contains
the details of the GPS location of each player at each time step. The task is to
determine all the captured events during the course of the game. The dataset
contains information about 3 different games with 14 players (divided onto two
teams), running for an average of 625 time steps. Each GPS location was uniquely
snapped (model as hidden predicate) to one of the 6499 cells. We used the
knowledge base hand-coded by Sadilek & Kautz (2010) stating hard facts such
as ”captured players stay at the same location” and soft rules such as ”if two
players from different teams are snapped to the same cell at a time step, then
it is likely to result into a capture event”. We added another hard rule stating
if two agents are at same place, then they must be snapped to nearby cells.
The original knowledge base involves some soft rules with real-valued features.
Since current Alchemy implementation does not support them, we ignored these
rules for our experiments. The final knowledge base contained 9 predicates and
17 formulas (15 hard and 2 soft). Maximum formula-arity was 4 and maximum
predicate domain size was 29 million.

Library. We also experimented with an artificially generated online library
dataset. The goal of the system is to recommend books to each user that they
might like to read. Each user can read books in one or more of the four languages
that they can speak. A user needs to read a book in order to like it. The system
can recommend a book to a user if they have not already read it. These are
modeled as hard constraints. The system recommends a book to a user if the
user shares the liking of another book with a user who likes this book as well.
This is modeled as a soft constraint. Read, available and speaks are modeled as
fully observed. Likes is partially observed. The task is to predict recommends.
The final knowledge base contained 5 predicates and 4 formulas (3 hard and 1
soft). Maximum formula-arity was 4 and maximum predicate domain size was
0.5 million.

We generated a dataset containing 100 users. The number of books was varied
from 500 to 5000, at intervals of 500. For each user (book), the set of languages
spoken (available) was chosen using a Bernoulli trial for each of the 4 languages.
The parameters of the Bernoulli trials were set to model that certain languages
are more popular than others. The number of books read by each user followed
a Gaussian distribution with μ = 30 and σ = 5. The subset of books read by
a user was assigned uniformly at random from the set of books available in the
languages that user could speak. A user left feedback for a book he read with 0.3
probability and the feedback was likes with 0.7 and not likes with 0.3 probability.

4.2 Results

Tables 1 presents the results on the three datasets. For Library, the reported
results are for 2500 books. Standard (Stand.) and CPI refer to the standard ap-
proach to inference, and the constraint propagation based inference, respectively.
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Table 1. Time and memory costs comparing the two inference approaches

Domain Time (in mins) Ground Tuples (in 1000’s)
Const. Propagation Prob. Inference Const. Propagation Prob. Inference
Stand. CPI Stand. CPI Stand. CPI Stand. CPI

CTF 0 0.37 1536.6 528.0 0 585.5 2107.8 1308.7
Cora 0 0.07 181.1 26.2 0 153.6 488.2 81.4

Library 0 0.20 286.4 23.0 0 462.7 366.2 45.9
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Fig. 1. Inference time for varying number of books

We report the running time of the two algorithms as well as the memory require-
ment, measured in terms of number of ground clauses created. For both time
and memory, results are split into two parts a) cost of constraint propagation b)
cost of probabilistic inference. First cost is zero for the standard inference. For
CPI, total time cost is the sum of two costs. As evident from the table, time
cost of constraint propagation is negligible compared to the cost for probabilistic
inference. On CTF, CPI is faster than standard inference by a factor of 3; on
Cora, by a factor of 7. On library, the gain is an order of magnitude.

Since we run the two inference pieces sequentially (constraint propagation
followed by probabilistic inference), memory cost for CPI is the maximum of the
cost for the two parts. For CTF, the cost of probabilistic inference dominates.
Memory cost for CPI for this dataset is about 60% of the standard inference.
For Cora and Library, constraint propagation dominates the memory cost. This
is due to the join operation in the generalized arc consistency algorithm, which
can turn out to be quite expensive. On Cora, CPI saves memory by more than
a factor of 4. On Library the gain is relatively less. Figure 1 shows the inference
time results for the Library dataset as the number of books is varied from 500 to
5000. The time cost for CPI stays almost constant, whereas, it goes linearly up
for standard inference. The number of ground clauses constructed (during actual
probabilistic inference) follows a similar trend. This is attributed to the fact that
as the number of books increases, the problem becomes sparser i.e. chances of two
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people having liked the same book and hence, one causing the recommendation
to the other decreases with increasing number of books. Most recommended
groundings need not be considered for inference and CPI can take advantage of
this. Standard inference, not being able to prune the domains, scales linearly
with increasing number of books. It should be noted that the Library dataset
had to be carefully hand-engineered for the standard inference approach to run
on it, whereas CPI did not have any problems with the intuitive formulation of
the knowledge base.3 Exploring this further is a direction for future work.

Results above demonstrate that hard constraints in Markov logic can be used
to significantly reduce both the time and memory cost of inference. The ad-
vantage can be huge for the problems where domains are already very sparse.
Generalized arc consistency is extremely fast relative to the probabilistic infer-
ence. Its memory requirements can be relatively high sometimes, but still it saves
significant memory in many cases, in comparison to the standard approach.

4.3 Note about MC-SAT Convergence

Alchemy does not give a way to detect if the MC-SAT algorithm has converged.
But we compared the differences in the marginals obtained by two approaches at
the end of 1000 steps of MC-SAT (all our results are obtained by running MC-
SAT for 1000 steps.). On the Cora dataset, 99% of the differences were within 0.01
threshold. For Library, this number was 0.05. For Capture the Flag, we noticed a
much larger variation. This is due the fact that it is a much bigger domain, and
many more samples are needed to converge to the right marginals. Nevertheless,
it should be noted that any increase in the number of samples during probabilistic
inference would lead to even larger gain for our approach. This is because we have
a much simpler network, and collecting each sample takes lesser time compared to
the standard approach. For the same reason, we also expect a faster convergence
(in terms of the number of samples needed) for our approach. Exploring these con-
vergence issues in detail is a direction for future work.

5 Related Work

There has been some related work which exploits the structure of the network to
make inference in Markov logic more efficient, but none has separately analyzed
the hard constraints to reduce the size of the predicate domains over which
network is constructed. LazySAT [15] exploits the fact that for many problems,
most ground atoms are false and most ground clauses are satisfied, hence, a local
solver (such as MaxWalkSAT [7]), does not need to explicitly instantiate them.
Lifted Belief Propagation (LBP) [16] performs inference over a lifted network
by clustering the nodes that would pass the same BP message in the ground
network. None of these approaches are able to explicitly eliminate the nodes
which are categorically false (or true) by virtue of the hard constraints. This

3 Results reported above for the Library dataset are for the hand-engineered case.
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may lead to sub-optimal inference, for instance, flipping a false (inferred) node in
LazySAT, or, putting two false nodes in the different clusters for the case of LBP.
Our approach is orthogonal to the benefits obtained by above algorithms, and
thus can be used in conjunction with them. Jha et al. [6] recently proposed a lifted
inference algorithm which uses techniques from logic and database literature.
Their algorithm handles only the case for exact inference and that, too, for a
small class of very simple MLNs.

Shavlik and Natarajan [14] present an approach to pre-process MLN theory
to reduce the size of the ground Markov network. Their pre-processing effec-
tively implements a fast index based algorithm to eliminate trivially satisfied
(or unsatisfied) clauses. Each clause is processed independently. They do not
allow information to be transferred from one clause to another, which is a key
aspect of our approach. Alchemy already implements their pre-processing step,
and hence, any benefits obtained by our approach are in addition to theirs.

Kisyński and Poole [8] analyze the use of different algorithms for constraint
satisfaction in lifted inference. Their analysis is in the context of FOVE (first-
order variable elimination) where factors are eliminated in some order. It’s not
directly applicable to approximate inference setting. Whether their lifted solver
can be used in place of generalized arc consistency in our framework is a direction
for future work.

Our work can be seen in the light of constraints specified using SQL queries
in Relational Markov Networks (RMNs) [17]. Our approach is more general than
theirs because constraints do not have to be repeated for each clause. Further,
unlike their approach, we propagate information from one constraint to another,
thereby potentially leading to even smaller predicate domains, over which to
construct the network.

6 Conclusion and Future Work

We proposed a generalized arc consistency algorithm to effectively propagate
the hard constraints in a Markov logic theory. We are able to do this at a lifted
level, without ever explicitly grounding out the whole theory. Our algorithm
significantly prunes the predicate domains, thereby, resulting in much simpler
networks and allowing for significant efficiency gains during probabilistic infer-
ence. Directions for future work include experimenting with a wider variety of
domains, trying out other forms of consistency requirements, symbolic manipu-
lation of the theory to propagate the constraints more effectively, and combining
our approach with lifted and lazy inference.
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Abstract. Domains in Continuous Constraint Programming (CP) are
generally represented with intervals whose n-ary Cartesian product (box)
approximates the solution space. This paper proposes a new representa-
tion for continuous variable domains based on octagons. We generalize
local consistency and split to this octagon representation, and we propose
an octagonal-based branch and prune algorithm. Preliminary experimen-
tal results show promising performance improvements on several classical
benchmarks.

1 Introduction

Continuous Constraint Programming (CP) relies on interval representation of
the variables domains. Filtering and solution set approximations are based on
Cartesian products of intervals, called boxes. In this paper, we propose to im-
prove the Cartesian representation precision by introducing an n-ary octagonal
representation of domains in order to improve filtering accuracy.

By introducing non-Cartesian representations for domains, we do not modify
the basic principles of constraint solving. The main idea remains to reduce do-
mains by applying constraint propagators that locally approximate constraint
and domains intersections (filtering), by computing fixpoints of these operators
(propagation) and by splitting the domains to search the solution space. Never-
theless, each of these steps has to be redesigned in depth to take the new domains
into account, since we lose the convenient correspondence between approximate
intersections and domain projections.

While shifting from a Cartesian to a relational approach, the resolution process
is very similar. In the interval case, one starts with the Cartesian product of the
initial domains and propagators reduce this global box until reaching a fixpoint.
In the octagonal case, the Cartesian product of the initial domains is itself an
octagon and each constraint propagator computes in turn the smallest octagon
containing the intersection of the global octagon and the constraint itself, until
reaching an octagonal fixpoint. In both cases, splitting operators drive the search
space exploration, alternating with global domain reduction.

The octagon are chosen for different reasons: they represent a reasonable
tradeoff between boxes and more complex approximation shapes (e.g. polyhe-
dron, ellipsoids) and they have been studied in another context to approximate
numerical computations in static analysis of programs. More importantly, we
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show that octagons allows us to translate the corresponding constraint systems
in order to incorporate classical continuous constraint tools in the resolution.

The contributions of this paper concern the different aspects of octagon-based
solving. First, we show how to transform the initial constraint problem to take
the octagonal domains into account. The main idea here is to combine classical
constraint matrix representations and rotated boxes, which are boxes defined
in different π/4 rotated bases. Second, we define a specific local consistency,
oct-consistency, and propose an appropriate algorithm, built on top of any con-
tinuous filtering method. Third, we propose a split algorithm and a notion of
precision adapted to the octagonal case.

After some preliminary notions on continuous CSPs and octagons (Section 2),
we present in Section 3 the octagon representation and the notion of octagonal
CSP. Section 4 addresses octagonal consistency and propagation. The general
solver, including discussions on split and precision is presented in Section 5.
Finally, experimental results are presented in Section 6, related work in Section
7, while conclusion and future work end the presentation of this work.

2 Preliminaries

This section recalls basic notions of CP and gives material on octagons from [9].

2.1 Notations and Definitions

We consider a Constraint Satisfaction Problem (CSP) on variables V = (v1...vn),
taking their values in domains D = (D1...Dn), with constraints (C1...Cp). The
set of tuples representing the possible assignments for the variables is D = D1×
...×Dn. The solutions of the CSP are the elements ofD satisfying the constraints.
We denote by S the set of solutions, S = {(s1...sn) ∈ D, ∀i ∈ 1..n, Ci(s1...sn)}.

In the CP framework, variables can either be discrete or continuous. In this
article, we focus on real variables. Domains are subintervals of R whose bounds
are floating points, according to the norm IEEE 754. Let F be the set of floating
points. For a, b ∈ F, we can define [a, b] = {x ∈ R, a ≤ x ≤ b} the real interval
delimited by a and b, and I = {[a, b], a, b ∈ F} the set of all such intervals. Given
an interval I ∈ I, we write I (resp. I) its lower (resp. upper) bound, and, for any
real point x, x its floating-point lower approximation (resp. x, upper). A cartesian
product of intervals is called a box. For CSPs with domains in I, constraint solver
usually return a box containing the solutions, that is, an overapproximation for
S.

The notion of local consistency is central in CP. We recall here the defini-
tion of Hull-consistency, one of the most usual local consistency for continuous
constraints.

Definition 1 (Hull-Consistency). Let v1...vn be variables over continuous
domains represented by intervals D1...Dn ∈ I, and C a constraint. The domains
D1...Dn are said Hull-consistent for C iff D1 × ...×Dn is the smallest floating-
point box containing the solutions for C.
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Given a constraint C over domains D1...Dn, an algorithm that computes the
local consistent domains D′

1...D
′
n, such that ∀i ∈ 1...n,D′

i ⊂ Di and D′
1...D

′
n

are locally consistent for C, is called a propagator for C. The domains which
are locally consistent for all constraints are the largest common fixpoints of
all the constraints propagators [2,12]. Practically, propagators often compute
overapproximations of the locally consistent domains. We will use the standard
algorithm HC4 [3]. It efficiently propagates continuous constraints, relying on the
syntax of the constraint and interval arithmetic [10]. It generally does not reach
Hull consistency, in particular in case of multiple occurrences of the variables.

Local consistency computations can be seen as deductions, performed on do-
mains by analyzing the constraints. If the propagators return the empty set,
the domains are inconsistent and the problem has no solution. Otherwise, non-
empty local consistent domains are computed. This is often not sufficient to
accurately approximate the solution set. In that case choices are made on the
variables values. For continuous constraints, a domain D is chosen and split into
two (or more) parts, which are in turn narrowed by the propagators. The solver
recursively alternates propagations and splits until a given precision is reached.
In the end, the collection of returned boxes covers S, under some hypotheses on
the propagators and splits [2].

2.2 Octagons

In geometry, an octagon is a polygon having eight faces in R21. In this paper,
we use a more general definition given in [9].

Definition 2 (Octagonal constraints). Let vi, vj be two real variables. An
octagonal constraint is a constraint of the form ±v1 ± v2 ≤ c with c ∈ R.

For instance in R2, octagonal constraints define straight lines which are parallel
to the axis if i = j, and diagonal if i �= j. This remains true in Rn, where the
octagonal constraints define hyperplanes.

Definition 3 (Octagon). Given a set of octagonal constraints O, the subset of
Rn points satisfying all the constraints in O is called an octagon.

Remark 1. Here follows some general remarks on octagons :

– The geometric shape defined above includes the geometric octagons, but also
other polygons (e.g. in R2, an octagon can have less than eight faces);

– an octagon can be defined with redundant constraints (for example v1−v2 ≤
c and v1 − v2 ≤ c′), but only one of them defines a face of the octagon (the
one with the lowest constant in this example),

– in Rn, an octagon has at most 2n2 faces, which is the maximum number of
possible non-redundant octagonal constraints on n variables,

– an octagon is a set of real points, but, like the intervals, they can be restricted
to have floating-points bounds (c ∈ F).

In the following, octagons are restricted to floating-point octagons. Without loss
of generality, we assume octagons to be defined with no redundancies.
1 http://mathworld.wolfram.com/Octagon.html

http://mathworld.wolfram.com/Octagon.html
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2.3 Matrix Representation of Octagons

An octagon can be represented with a difference bound matrix (DBM) as de-
scribed in [8,9]. This representation is based on a normalization of the octagonal
constraints as follows.

Definition 4 (difference constraints). Let w,w′ be two variables. A differ-
ence constraint is a constraint of the form w − w′ ≤ c for c a constant.

By introducing new variables, it is possible to rewrite an octagonal constraint
as an equivalent difference constraint: let C ≡ (±vi ± vj ≤ c) an octagonal
constraint. Define the new variables w2i−1 = vi, w2i = −vi, w2j−1 = vj , w2j =
−vj . Then

– for i �= j
• if C ≡ (vi − vj ≤ c), then C is equivalent to the difference constraints

(w2i−1 − w2j−1 ≤ c) and (w2j − w2i ≤ c),
• if C ≡ (vi + vj ≤ c), then C is equivalent to the difference constraints

(w2i−1 − w2j ≤ c) and (w2j−1 − w2i ≤ c),
• the two other cases are similar,

– for i = j
• if C ≡ (vi − vi ≤ c), then C is pointless, and can be removed,
• if C ≡ (vi + vi) ≤ c), then C is equivalent to the difference constraint

(w2i−1 − w2i ≤ c),
• the two other cases are similar.

In what follows, regular variables are always written (v1...vn) , and the cor-
responding new variables are written (w1, w2, ...w2n) with: w2i−1 = vi, and
w2i = −vi. As shown in [9], the rewritten difference constraints represent the
same octagon as the original set of octagonal constraints, by replacing the posi-
tive and negative occurrences of the vi variables by their wi counterparts. Storing
difference constraints is thus a suitable representation for octagons.

Definition 5 (DBM). Let O be an octagon in Rn, and its sequence of potential
constraints as defined above. The octagon DBM is a 2n×2n square matrix, such
that the element at row i, column j is the constant c of the potential constraint
wj − wi ≤ c.

An example is shown on Figure 1(c): the element on row 1 and column 3 corre-
sponds to the constraint v2 − v1 ≤ 2 for instance.

At this stage, different DBMs can represent the same octagon. For example
on Figure 1(c), the element row 2 and column 3 can be replaced with 100,
for instance, without changing the corresponding octagon. In [9], an algorithm
is defined so as to optimally compute the smallest values for the elements of
the DBM. This algorithm is adapted from the Floyd-Warshall shortest path
algorithm [6], modified in order to take advantage of the DBM structure. It
exploits the fact that w2i−1 and w2i correspond to the same variable. It is fully
presented in [9].
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3 Boxes Representation

In the following section we introduce a box representation for octagons. This
representation, combined with the DBM will be used to define, from an initial
set of continuous constraints, an equivalent system taking the octagonal domains
into account.

3.1 Intersection of Boxes

In two dimensions, an octagon can be represented by the intersection of one
box in the canonical basis for R2, and one box in the basis obtained from the
canonical basis by a rotation of angle π/4 (see figure 1(b)). We generalize this
remark to n dimensions.

Definition 6 (Rotated basis). Let B = (u1, ..., un) be the canonical basis of
Rn. Let α = π/4. The (i,j)-rotated basis Bi,jα is the basis obtained after a rotation
of α in the subplane defined by (ui, uj), the other vectors remaining unchanged:
Bi,jα = (u1, ..., ui−1, (cos(α)ui+sin(α)uj), ...uj−1, (−sin(α)ui+cos(α)uj), ...un).

By convention, for any i ∈ {1...n}, Bi,iα represents the canonical basis. In what
follows, α is always π/4 and will be omitted. Finally, every variable v living in
the Bi,j rotated basis and whose domain is D will be denoted by vi,j and its
domain by Di,j).

The DBM can also be interpreted as the representation of the intersection of
one box in the canonical basis and n(n − 1)/2 other boxes, each one living in
a rotated basis. Let O be an octagon in Rn and its DBM M , with the same
notations as above (M is a 2n × 2n matrix). For i, j ∈ {1...n}, with i �= j, let
Bi,jO be the box I1 × ...× Ii,ji × ...× I

i,j
j ...× In, in Bi,j , such that ∀k ∈ {1...n}

Ik = − 1
2M [2k − 1, 2k] Ik = 1

2M [2k, 2k− 1]

Ii,ji = − 1√
2
M [2j − 1, 2i] Ii,ji = 1√

2
M [2j, 2i− 1]

Ii,jj = − 1√
2
M [2j − 1, 2i− 1] Ii,jj = 1√

2
M [2j, 2i]

Proposition 1. Let O be an octagon in Rn, and Bi,jO the boxes as defined above.
Then O =

⋂
1≤i,j≤n

Bi,jO .

Proof. Let i, j ∈ {1..n}. We have vi,ji = 1/
√

2(vi + vj) and vi,jj = 1/
√

2(vi − vj)
by definition 6. Thus (v1...v

i,j
i ...vi,jj ...vn) ∈ Bi,jO iff it satisfies the octagonal con-

straints on vi and vj , and the unary constraints for the other coordinates, in
the DBM. The box Bi,jO is thus the solution set for these particular octagonal
constraints. The points in

⋂
1≤i,j≤n

Bi,jO are exactly the points which satisfy all the

octagonal constraints.
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Fig. 1. Equivalent representations for the same octagon: the octagonal constraints 1(a),
the intersection of boxes 1(b), and the DBM 1(c)

Example 1. Considering the DBM Figure 1(c), the boxes are I1 × I2 = [1, 5]×
[1, 5], and I1,2

1 × I1,2
2 = [3/

√
2,+∞]× [−2.5/

√
2,
√

2].

To summarize, an octagon with its DBM representation can also be interpreted
as a set of octagonal constraints (definition in intension) or equivalently as an
intersection of rotated boxes (definition in extension), at the cost of a multipli-
cation / division with the appropriate rounding mode. We show below that the
octagonal constraints (or the bounds in the case of boxes) can be inferred from
the CSP.

3.2 Octagonal CSP

Consider a CSP on variables (v1...vn) in Rn. The goal is now to equip this CSP
with an octagonal domain. We detail here how to build an octagonal CSP from
a regular one, and show that the two systems are equivalent.

First, the CSP is associated to an octagon, by stating all the possible octagonal
constraints±vi±vj ≤ ck for i, j ∈ {1...n}. The constants ck represent the bounds
of the octagon boxes and are dynamically modified. They are initialized to +∞.

The rotations defined in the previous section introduce new axes, that is, new
variables vi,ji . Because these variables are redundant with the regular ones, they
are also linked through the CSP constraints (C1...Cp), and these constraints have
to be rotated as well.

Given a function f on variables (v1...vn) in B, the expression of f in the (i, j)-
rotated basis is obtained by symbolically replacing the i-th and j-th coordinates
by their expressions in Bi,jα . Precisely, replace vi by cos(α)vi,ji − sin(α)vi,jj and
vj by sin(α)vi,ji +cos(α)vi,jj where vi,ji and vi,jj are the coordinates for vi and vj
in Bi,jα . The other variables are unchanged.

Definition 7 (Rotated constraint). Given a constraint Ck holding on vari-
ables (v1...vn), the (i, j)-rotated constraint Ci,jk is the constraint obtained by re-
placing each occurrence of vi by cos(α)vi,ji − sin(α)vi,jj and each occurrence of
vj by sin(α)vi,ji + cos(α)vi,jj .
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Given a continuous CSP < v1...vn, D1...Dn, C1...Cp >, we define an octagonal
CSP by adding the rotated variables, the rotated constraints, and the rotated
domains stored as a DBM. To sum up and fix the notations, the octagonal CSP
thus contains:

– the regular variables (v1...vn);
– the rotated variables (v1,2

1 , v1,2
2 , v1,3

1 , v1,3
3 ...vn−1,n

n ), where vi,ji is the i-th vari-
able in the (i, j) rotated basis Bi,jα ;

– the regular constraints (C1...Cp);
– the rotated constraints (C1,2

1 , C1,3
1 ...Cn−1,n

1 ...Cn−1,n
p ).

– the regular domains (D1...Dn);
– a DBM which represents the rotated domains. It it initialized with the

bounds of the regular domains for the cells at position 2i, 2i−1 and 2i−1, 2i
for i ∈ {1...2n}, and +∞ everywhere else.

In these conditions, the initial CSP is equivalent to this transformed CSP, re-
stricted to the variables v1...vn, as shown in the following proposition.

Proposition 2. Consider a CSP < v1...vn, D1...Dn, C1...Cp >, and the corre-
sponding octagonal CSP as defined above. The solution set of the original CSP
S is equal to the solution set of the (v1...vn) variables of the octagonal CSP.

Proof. Let s ∈ Rn a solution of the octogonal CSP for (v1...vn). Then s ∈
D1 × ... ×Dn and C1(s)...Cp(s) are all true. Hence s is a solution for the orig-
inal CSP. Reciprocally, let s′ ∈ Rn a solution of the original CSP. The regular
constraints (C1...Cp) are true for s′. Let us show that there exist values for the ro-
tated variables such that the rotated constraints are true for s′. Let i, j ∈ {1...n},
i �= j, and k ∈ {1...p} and Ci,jk the corresponding rotated constraint. By defini-
tion 7, Ci,jk (v1...vi−1, cos(α)vi,ji − sin(α)vi,jj , vi+1... sin(α)vi,ji +cos(α)vi,jj ...vn) ≡
Ck(v1...vn). Let us define the two reals si,ji = cos(α)si + sin(α)sj and si,jj =
−sin(α)si + cos(α)sj , the image of si and sj by the rotation of angle α. By re-
versing the rotation, cos(α)si,ji −sin(α)si,jj = si and sin(α)si,ji +cos(α)si,jj = sj ,
thus Ci,jk (s1...s

i,j
i , ...s

i,j
j ...sn) = Ck(s1...sn) is true. It remains to check that

(s1...s
i,j
i , ...si,jj ...sn) is in the rotated domain, which is true because the DBM is

initialized at +∞. ��

For a CSP on n variables, this representation has an order of magnitude n2,
with n2 variables and domains, and pn(n−1)

2 + p constraints. Of course, many
of these objects are redundant. We explain in the next sections how to use this
redundancy to speed up the solving process.

4 Octagonal Consistency and Propagation

We first generalize the Hull-consistency definition to the octagonal domains,
and define propagators for the rotated constraints. Then, we use the modified
version of Floyd-Warshall (briefly described in section 2.3) to define an efficient
propagation scheme for both octagonal and rotated constraints.
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4.1 Octagonal Consistency for a Constraint

We generalize to octagons the definition of Hull-consistency on intervals for any
continuous constraint. With the box representation, we show that any propa-
gator for Hull-consistency on boxes can be extended to a propagator on the
octagons. For a given n-ary relation on Rn, there is a unique smallest octagon
(wrt inclusion) which contains the solutions of this relation, as shown in the
following proposition.

Remark 2. Consider a constraint C (resp. a constraint sequence (C1...Cp)), and
SC its set of solutions (resp. S). Then there exist a unique octagon O such that:
SC ⊂ O (resp. S ⊂ O), and for all octagons O′, SC ⊂ O′ implies O ⊂ O′. O is
the unique smallest octagon containing the solutions, wrt inclusion.

Definition 8 (Oct-Consistency). Consider a constraint C (resp. a constraint
sequence (C1...Cp)), and SC its set of solutions (resp. S). An octagon is said Oct-
consistent for this constraint iff it is the smallest octagon containing SC (resp.
S), wrt inclusion.

From remark 2, this definition is well founded. With the expression of an (i, j)-
rotated constraint Ci,j , any propagator defined on the boxes can be used to
compute the Hull-consistent boxes for Ci,j (although such a propagator, as HC4,
may not reach consistency). This gives a consistent box in basis Bi,j , and can
be done for all the bases. The intersection of the Hull-consistent boxes is the
Hull-consistent octagon.

Proposition 3. Let C be a constraint, and i, j ∈ {1...n}. Let Bi,j be the Hull-
consistent box for the rotated constraint Ci,j , and B the Hull-consistent box for
C. The Oct-consistent octagon for C is the intersection of all the Bi,j and B.

Proof. Let O be the Oct-consistent octagon. By definition 2, a box is an octagon.
Since O is the smallest octagon containing the solutions, and all the Bi,j contain
the solutions, for all i, j ∈ {1...n}, i �= j O ⊂ Bi,j (the same holds for B).
Thus O ⊂

⋂
1≤i,j≤n

Bi,j. Reciprocally, we use the box representation for the Oct-

consistent octagon: O =
⋂

1≤i,j≤n
Bi,jo , where Bi,jo is the box defining the octagon

in Bi,j . Because O contains all the solutions and Bi,jo contains O, Bi,jo also
contains all the solutions. Since Bi,j is the Hull-consistent box in Bi,jα , it is the
smallest box in Bi,jα which contains all the solutions. Thus Bi,j ⊂ Bi,jo . From
there,

⋂
1≤i,j≤n

Bi,j ⊂
⋂

1≤i,j≤n
Bi,jo = O. Again, the same holds for B. The two

inclusions being proven, O =
⋂

1≤i,j≤n
Bi,j. ��

4.2 Propagation Scheme

The propagation scheme presented in subsection 2.3 for the octagonal constraints
is optimal. We thus rely on this propagation scheme, and integrate the non-
octagonal constraints propagators in this loop. The point is to use the octagonal
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float dbm[2n, 2n] /*the dbm containing the octagonal constraints*/
list propagList ← (ρC1

, ...ρCp
, ρ

C
1,2
1

...ρ
C

n−1,n
p

) /*list of the propagators to apply*/

while propagList �= ∅ do
apply all the propagators of propagList to dbm /*initial propagation*/
propagList ← ∅
for i,j from 1 to n do

m ← minimum of (dbm[2i− 1, k]+dbm[k, 2j − 1]) for k from 1 to 2n
m ← minimum(m, dbm[2i− 1, 2i]+dbm[2j, 2j − 1])
if m < dbm[2i− 1, 2j − 1] then

dbm[2i− 1, 2j − 1] ← m /*update of the DBM*/
add ρ

C
i,j
1

...ρ
C

i,j
p

to propagList /*get the propagators to apply*/

end if
repeat the 5 previous steps for dbm[2i−1, 2j], dbm[2i, 2j−1], and dbm[2i, 2j]

end for
end while

Fig. 2. Pseudo code for the propagation loop mixing the Floyd Warshall algorithm
(the for loop) and the regular and rotated propagators ρC1

...ρCp
, ρ

C
1,2
1

...ρ
C

n−1,n
p

, for

an octagonal CSP as defined in section 3.2

constraints to benefit from the relational properties of the octagon. This can be
done thanks to the following remark: all the propagators defined in the previous
subsections are monotonic and complete (as is the HC4 algorithm). It results that
they can be combined in any order in order to achieve consistency, as shown for
instance in [2].

The key idea for the propagation scheme is to interleave the refined Floyd-
Warshall algorithm and the constraint propagators. A pseudocode is given on
figure 2. At the first level, the DBM is recursively visited so that the minimal
bounds for the rotated domains are computed. Each time a DBM cell is modified,
the corresponding propagators are added to the propagation list. The propaga-
tion list is applied before each new round in the DBM (so that a cell that would
be modified twice is propagated only once). The propagation is thus guided by
the additional information of the relational domain. This is illustrated on Figure
3: the propagators ρC1

...ρCp
, ρC1,2

1
...ρCn−1,n

p
are first applied (3(a), 3(b)), then

the boxes are made consistent wrt each other using the refined Floyd-Warshall
algorithm.

We show here that the propagation as defined on figure 2 computes the con-
sistent octagon for a sequence of constraints.

Proposition 4 (Correctness). Let < v1...vn, D1...Dn, C1...Cp > a CSP. As-
sume that, for all i, j ∈ {1...n}, there exists a propagator ρC for the constraint C,
such that ρC reaches Hull consistency, that is, ρC(D1× ...×Dn) is the Hull con-
sistent box for C. Then the propagation scheme as defined on figure 2 computes
the Oct-consistent octagon for C1...Cp.

Proof. This derives from proposition 3, and the propagation scheme of figure 2.
The propagation scheme is defined so as to stop when propagList is empty. This



Octagonal Domains for Continuous Constraints 715

v1

v2
v1,21

v1,22

(a)

v1

v2
v1,21

v1,22

(b)

v1

v2
v1,21

v1,22

(c)

Fig. 3. Example of the Oct-consistency: an usual consistency algorithm is applied in
each basis (Figures 3(a) and 3(b)) then the different boxes are made consistent using
the modified Floyd-Warshall algorithm (Figure 3(c))

happens when ∀i, j ∈ {1...n}, k ∈ {1...2n}, dbm[2i−1, k]+dbm[k, 2j−1], dbm[2i−
1, 2i]+dbm[2j, 2j − 1] ≥ dbm[2i − 1, 2j − 1], the same holds for dbm[2i− 1, 2j],
dbm[2i, 2j − 1], and dbm[2i, 2j]. The octagonal constraints are thus consistent.
In addition, each time a rotated box is modified in the DBM, its propagators are
added to propagList. Hence, the final octagon is stable by the application of all
ρCi,j

k
, for all k ∈ {1...p} and i, j ∈ {1...n}. By hypothesis, the propagators reach

consistency, the boxes are thus Hull-consistent for all the (rotated and regular)
constraints. By proposition 3, the returned octagon is Oct-consistent. ��

The refined Floyd-Warshall has a time complexity of O(n3). For each round in
its loop, in the worst case we add p propagators in the propagation list. Thus the
time complexity for the propagation scheme of figure 2 is O(n3p3). In the end, the
octagonal propagation uses both representations of octagons. It takes advantage
of the relational property of the octagonal constraints (Floyd-Warshall), and of
the usual constraint propagation on boxes (propagators). This comes to the cost
of computing the octagon, but is expected to give a better precision in the end.

v1

v2

v1

v2

v1

v2

Fig. 4. Example of a split: the octagon on the left is cut in the B1,2 basis

5 Solving

Besides the expected gain in precision obtained with octagon consistency, the
box representation of octagons allows us to go a step further and define a fully
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octagonal solver. We thus define an octagonal split, in order to be able to cut
the domains in any octagonal direction, and an octagonal precision, and end up
with a fully octagonal solver.

5.1 Octagonal Split

The octagonal split extends the usual split operator to octagons. Splits can be
performed in the canonical basis, thus being equivalent to the usual splits, or in
the rotated basis. It can be defined as follow:

Definition 9. Given an octagonal domain defined with the box representation
D1...Dn, D

1,2
1 ...Dn−1,n

1 ...Dn−1,n
n , such that Di,j

k = [a, b], a splitting operator for
variable vi,jk , computes the two octagonal subdomains D1...[a, (a+ b)/2]...Dn−1,n

n

and D1...[(a+ b)/2, b]...Dn−1,n
n .

As for the usual split, the union of the two octagonal subdomains is the original
octagon, thus the split does not lose solutions. This definition does not take
into account the correlation between the variables of the different basis. We take
advantage again of the octagonal representation to communicate the domain
reduction to the other basis. A split is thus immediately followed by a Floyd-
Warshall propagation. Figure 4 shows an example of the split.

5.2 Precision

In most continuous solvers, the precision is defined as the size of the largest
domain. For octagons, this definition leads to a loss of information because it
does not take into account the correlation between the variables and domains.

Definition 10. Let O be an octagon, and I1...In, I
1,2
1 ...In−1,n

n its box represen-
tation. The octagonal precision is τ(O) = min1≤i,j≤n(max1≤k≤n(Ii,jk − I

i,j
k )).

For a single regular box, τ would be the same precision as usual. On an oc-
tagon, we take the minimum precision of the boxes in all the bases because
it is more accurate, and it allows us to retrieve the operational semantics of
the precision, as shown by the following proposition: in an octagon of precision
r overapproximating a solution set S, every point is at a distance at most r
from S.

Proposition 5. Let < v1...vn, D1...Dn, C1...Cp > be a CSP, and O an octagon
overapproximating S. Let r = τ(O). Let (v1, ...vn) ∈ Rn be a point of D1 × ...×
Dn. Then ∀1 ≤ i ≤ n, mins∈S |vi− si| ≤ r, where s = (s1...sn). Each coordinate
of all the points in O are at a distance at most r of a solution.

Proof. By definition 10, the precision r is the minimum of some quantities in all
the rotated basis. Let Bi,j be the basis that realizes this minimum. Because the
box Bi,j = D1 × ... × Di,j

i × ...D
i,j
j ... ×Dn is Hull-consistent by proposition 3,

it contains S. Let s ∈ S. Because r = maxk(Dk −Dk), ∀1 ≤ k ≤ n, |sk − vk| ≤
Dk −Dk ≤ r. ��
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Octogone oct
queue splittingList ← oct /*queue of the octagons*/
list acceptedOct ← ∅ /*list of the accepted octagons*/
while splittingList �= ∅ do

Octogone octAux ← splittingList.top()
splittingList.pop()
octAux ← Oct-consistence(octAux)
if τOct(octAux) < r or octAux contains only solutions then

add octAux to acceptedOct
else

Octogone leftOct ← left(octAux) /*left and right are the split operators*/
Octogone rightOct ← right(octAux)
add leftOct to splittingList
add rightOct to splittingList

end if
end while
return acceptedOct

Fig. 5. Solving with octagons

5.3 Octagonal Solver

Figure 5 describes the octagonal solving process. By proposition 4, and the
split property, it returns a sequence of octagons whose union overapproximate
the solution space. Precisely, it returns either octagons for which all points are
solutions, or octagons overapproximating solution sets with a precision r.

An important feature of a constraint solver is the variable heuristic. For con-
tinuous constraints, one usually choose to split the variable that has the largest
domain. This would be very bad for the octagons, as the variable which has
the largest domain is probably in a basis that is of little interest for the prob-
lem (it probably has a wide range because the constraints are poorly propa-
gated in this basis). We thus define a default octagonal strategy which relies on
the same remark as for definition 10: the variable to split is the variable V i,jk
which realizes the minimum of min1≤i,j≤n(max1≤k≤n(Di,j

k −D
i,j
k )). The strat-

egy is the following: choose first a promising basis, that is, a basis in which the
boxes are tight (choose i, j). Then take the worst variable in this basis as usual
(choose k).

6 Experiments

This section compares the octagonal solver with a traditional interval solver on
classical benchmarks.

6.1 Implementation

We have implemented a prototype of the octagonal solver, with Ibex, a C++
library for continuous constraints [4]. We use the Ibex implementation of HC4-
Revise [3] to contract the constraints. The octagons are implemented with their
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Table 1. Results on problems from the Coconut benchmark. The first column gives
the name of the problem, the number of variable and the type of the constraints. In
each cell, the number on the left is the CPU time in seconds. Upper right is the number
of box in the computed solution, lower right the number of created boxes.

First solution All the solutions
In Oct In Oct

h75
41.40

1
0.03

1
> 3 hours > 3 hours

5 ≤ 1 024 085 149

hs64
0.01

1
0.05

1
> 3 hours > 3 hours

3 ≤ 217 67

h84
5.47

1
2.54

1
> 3 hours 7238.74

10 214 322
5 ≤ 87 061 1 407 22 066 421

KinematicPair
0.00

1
0.00

1
53.09

424 548
16.56

39 555
2 ≤ 45 23 893 083 79 125

pramanik
28.84

1
0.16

1
193.14

145 663
543.46

210 371
3 = 321 497 457 2 112 801 1 551 157

trigo1
18.93

1
1.38

1
20.27

12
28.84

347
10 = 10 667 397 11 137 5 643

brent-10
6.96

1
0.54

1
17.72

854
105.02

142
10 = 115 949 157 238 777 100 049

h74
305.98

1
13.70

1
1 304.23

183 510
566.31

700 669
5 = ≤ 8 069 309 138 683 20 061 357 1 926 455

fredtest
3 146.44

1
19.33

1
> 3 hours > 3 hours

6 = ≤ 29 206 815 3 281

DBM representation. Additional rotated variables and constraints are posted
and dealt with as explained above.

An important point is the rotation of the constraints. The HC4 algorithm is
sensitive to multiple occurrences of the variables, and the symbolic rewriting de-
fined in section 3.2 creates multiple occurrences. Thus, the HC4 propagation on
the rotated constraints could be very poor if performed directly on the rotated
constraints. It is necessary to simplify the rotated constraints wrt the number
of multiple occurrences for the variables. We use the Simplify function of Math-
ematica to do this. The computation time indicated below does not include the
time for this treatment, however, it is negligible compared to the solving times.
The propagator is an input of our method: we used a standard one (HC4), but
more recent propagator such as [1] will be considered in the future. It is sufficient
for our needs that the consistency algorithms computes overapproximations of
the Hull-consistent boxes, as it is often the case for continuous propagators.

6.2 Results

We have tested the prototype octagonal solver on problems from the Coconut
benchmark2. These problems have been chosen depending on the type of the
constraints (inequations, equations, or both).
2 This benchmark can be found at
http://www.mat.univie.ac.at/~neum/glopt/coconut/

http://www.mat.univie.ac.at/~neum/glopt/coconut/
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Experiments have been made, with Ibex 1.18, on a MacBook Pro Intel Core
2 Duo 2.53 GHz. Apart from the variable heuristic presented in subsection 5.3,
the experiments have been done with the same configuration in Ibex, in partic-
ular, using the same propagators, so as to compare exactly the octagonal results
with their interval counterparts. Table 1 compares the results obtained by the
interval resolution to those obtained by the octagonal resolution. In the first
four problems the constraints are inequalities, in the three following they are
only equalities and in the last two they are mixed inequalities and equalities.
The octagonal solver needs less time and created less boxes to find the first solu-
tion of a problem. We obtain better results on problems containing inequalities.
Problems with equalities contain multiple occurrences of variables, which can
explain the bad results obtained by the octagonal solver on those problems.

7 Related Works

Our work is related to [9], in static analysis of programs. Their goal is to compute
overapproximations for the traces of a program. The octagons are shown to
provide a good trade off between the precision of the approximation and the
computation cost. We use their matrix representation and their version of the
Floyd-Warshall algorithm.

Propagation algorithms for the difference constraints, also called temporal,
have already presented in [5,11]. They have a better complexity than the one we
use, but are not suited to the DBM case, because they do not take into account
the doubled variables.

The idea of rotating variables and constraints has already been proposed in
[7], in order to better approximate the solution set. Their method is dedicated
to under-constrained systems of equations.

8 Conclusion

In this paper, we have proposed a solving algorithm for continuous constraints
based on octagonal approximations. Starting from the remark that domains in
Constraint Programming can be interpreted as components of a global multi-
dimensional parallelepipedic domain, we have constructed octagonal approxi-
mations on the same model and provided algorithms for octagonal CSP trans-
formations, filtering, propagation, precision and splitting. An implementation
based on Ibex and preliminary experimental results on classical benchmarks are
encouraging, particularly in the case of systems containing inequalities. Future
work involves the experimental study of other interval-based propagators such
as Mohc [1] and extensions to other geometric structures.
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Abstract. Given a sequence of variables X = 〈x0, x1, . . . , xn−1〉, we
consider the IncreasingSum constraint, which imposes ∀i ∈ [0, n − 2]
xi ≤ xi+1, and

∑
xi∈X xi = s. We propose an Θ(n) bound-consistency

algorithm for IncreasingSum.

1 Introduction

Many problems involve sum constraints, for instance optimization problems. In
this paper we consider a specialization of the sum constraint enforcing that
an objective variable should be equal to a sum of a set of variables. Given
a sequence of variables X = 〈x0, x1, . . . , xn−1〉 and a variable s, we propose
an Θ(n) BC algorithm for the IncreasingSum constraint, which imposes that
∀i ∈ [0, n−2], xi ≤ xi+1 ∧

∑
xi∈X xi = s. IncreasingSum is a special case of the

InequalitySum constraint [4], which represents a sum constraint with a graph
of binary inequalities.1

IncreasingSum is useful for breaking symmetries in some problems. For in-
stance, in bin packing problems some symmetries can be broken by ordering bins
according to their use. For each bin i we introduce a variable xi giving the sum
of the heights of the items assigned to i. We can explicitly state that the sum of
the xi’s is equal to the sum of the heights of all the items.

2 Sum Constraints in CP

This section discusses the time complexity for filtering sum constraints. Given
xi ∈ X , we denote by D(xi) the domain of xi, min(xi) its minimum value and
max (xi) its maximum value. We say that an assignment A(X) of values to a set
of integer variables in X is valid iff each value assigned to xi ∈ X , denoted by
A(xi), is such that A(xi) ∈ D(xi) (the domain of xi).

We first recall the usual definitions of GAC and BC.
1 BC can be achieved on InequalitySum in O(n · (m + n · log(n))) time complexity,

where m is the number of binary inequalities (arcs of the graph) and n is the number
of variables.

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 721–728, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Definition 1 (GAC, BC). Given a variable xi and a constraint C(X) such
that xi ∈ X, Value v ∈ D(xi)

– has a support on C(X) iff there exists a valid assignment A(X) satisfying
C with A(xi) = v.

– has a bounds-support on C(X) iff there exists an assignment A(X) sat-
isfying C with A(xi) = v and such that ∀xj ∈ X, xj �= xi, we have
A(xj) ∈ [min(D(xj)),max (D(xj))].

C(X) is Generalized Arc-Consistent (GAC) iff ∀xi ∈ X, ∀v ∈ D(xi), v has a
support on C(X). C(X) is Bounds-Consistent (BC) iff ∀xi ∈ X, min(D(xi))
and max (D(xi)) have a bound-support on C(X).

Given a set X of integer variables and an integer k, we denote by
∑

= k the
problem consisting of determining whether there exists an assignment of values to
variables in X such that

∑
xi∈X xi = k, or not. This problem is NP-Complete [4,

p. 7]: The SubsetSum problem [2, p. 223], which is NP-Complete, is a particular
instance of the feasibility check of a constraint

∑
xi∈X xi = k.

When we consider an objective variable s instead of an integer k, performing
GAC on

∑
xi∈X xi = s is NP-Hard since one has to check the consistency of all

values in D(s), which corresponds to the
∑

= k problem.
Conversely, enforcing BC on

∑
xi∈X xi = s is in P as well as achieving BC on∑

xi∈X,ai∈� ai · xi ≤ s [3].
In practice the constraint

∑
xi∈X xi = s is generally associated with some ad-

ditional constraints on variables in X . Next section presents a BC algorithm for
a sum with increasing variables. This constraint may occur in problems involving
sum constraints on symmetrical variables.

3 BC Linear Algorithm for Increasing Sum

Given a sequence of variables X = 〈x0, x1, . . . , xn−1〉 and a variable s,
this section presents an Θ(n) algorithm for enforcing BC on the constraint
IncreasingSum(X, s) = ∀i ∈ {0, 1, . . . n− 2}, xi ≤ xi+1 ∧

∑
xi∈X xi = s. Follow-

ing Definition 1, and since we consider an algorithm achieving BC, this section
ignores holes in the domains of variables.

Definition 2. Let xi ∈ X be a variable. D(xi) is ≤-consistent iff there exists two
assignments A(X) and A′(X) such that A(xi) = min(xi) and A′(xi) = max (xi)
and ∀j ∈ [0, n− 2], A(xj) ≤ A(xj+1) and A′(xj) ≤ A′(xj+1). X is ≤-consistent
iff ∀xi ∈ X, D(xi) is ≤-consistent.

W.l.o.g., from now we consider that X is ≤-consistent. In practice we
can ensure ≤-consistency of X in Θ(n) by traversing X so as to make for each
i ∈ [0, n−2] the bounds of the variables xi and xi+1 consistent with the constraint
xi ≤ xi+1. After making X ≤-consistent, it is easy to evaluate a lower bound
and an upper bound of the sum s.
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Lemma 1. Given IncreasingSum(X, s), the intervals [min(s),
∑

xi∈X min(xi)[
and ]

∑
xi∈X max (xi),max (s)] can be removed from D(s).

Proof.
∑

xi∈X min(xi) ≤
∑

xi∈X xi ≤
∑

xi∈X max (xi). ��

Lemma 1 does not ensure that IncreasingSum is BC, since we can have min(s) >∑
xi∈X min(xi) and max (s) <

∑
xi∈X max (xi). In this case, bounds of variables

in X may not be consistent, and some additional pruning needs to be performed.
Next example highlights this claim.

Example 1. We consider IncreasingSum(X, s), D(s) = {28, 29} and the se-
quence X = 〈x0, x1, . . . , x5〉. We denote by sum the minimum value of the sum
of variables in X .

D(x0) = { 2, 3, 4, 5, 6 }, sum if x0 = 6 : 28 + 9 = 37
D(x1) = { 4, 5, 6, 7 }, sum if x1 = 7 : 28 + 9 = 37
D(x2) = { 4, 5, 6, 7 }, sum if x2 = 7 : 28 + 6 = 34
D(x3) = { 5, 6, 7 }, sum if x3 = 7 : 28 + 3 = 31
D(x4) = { 6, 7, 8, 9 }, sum if x4 = 9 : 28 + 5 = 33
D(x5) = { 7, 8, 9 }, sum if x5 = 9 : 28 + 2 = 30.

For all xi ∈ X , min(xi) is consistent since
∑
xi∈X min(xi) = 28 = min(s), and

max (xi) is not consistent. The increase in the sum corresponding to max (xi)
(the bold values) is computed by considering that values assigned to variables
having an index greater than i should be at least equal to max (xi). For instance,
if x0 = 6 then sum = 28 + 9 = 37 with 9 = 4 + 2 + 2 + 1 + 0 + 0, where 4 is the
increase with respect to x0, 2 the increase with respect to x1, and so on.

Conversely, once s has been updated thanks to Lemma 1, all values between
min(s) and max (s) are bound-consistent with IncreasingSum.

Property 1. Given IncreasingSum(X, s), if min(s) ≥
∑
xi∈X min(xi), max (s) ≤∑

xi∈X max (xi) and min(s) ≤ max (s) then ∀v ∈ D(s) there exists an assignment
A(X) such that

∑
xi∈X A(xi) = v.

Proof. Let δ ≥ 0 such that v ∈ D(s) and v =
∑

xi∈X min(xi) + δ. If δ = 0
then the property holds. Assume the property is true for δ = k: there exists
an assignment A(X) with

∑
xi∈X A(xi) =

∑
xi∈X min(xi) + k. We prove that

it remains true for δ = k + 1, that is, v =
∑

xi∈X min(xi) + k + 1. First,
if v >

∑
xi∈X max (xi) the property holds (the condition is violated). Oth-

erwise, consider A(X). We have not ∀i ∈ [0, n − 1], A(xi) = max (xi) since
v ≤

∑
xi∈X max (xi). Therefore, consider the greatest index i ∈ [0, n − 1] such

that A(xi) < max (xi). All xj ∈ X such that j > i (if i = n−1 no such xj exists)
satisfy by definition A(xj) = max (xj ). Variables in X are range variables, thus
A(xi) + 1 ∈ D(xi). X is ≤-consistent: if i < n − 1 then A(xi) + 1 ≤ A(xi+1).
Moreover, if i < n − 1, A(xi+1) = max (xi+1) by definition of i. In all cases,
(i < n− 1 or i = n− 1), assignment A′(X) such that A′(xi) = A(xi) + 1 is such
that

∑
xi∈X A

′(xi) =
∑

xi∈X min(xi) + k + 1 = v. The Property holds. ��



724 T. Petit, J.-C. Régin, and N. Beldiceanu

Once Property 1 is satisfied, we have to focus on bounds of variables in X . We
restrict ourself to the maximum values in domains. The case of minimum values
is symmetrical. We consider also that D(s) is not empty after applying Lemma 1,
which entails that no domain of a variable in X can become empty, i.e., we have
at least one feasible solution for IncreasingSum.

In Example 1, all maximum values of domains should be reduced. For all xi in
X , if we assign max(xi) to xi the overload on min(s) (bold values in Example 1)
is too big, i.e., max(s) is exceeded. To reduce the upper bound of a variable xi,
we search for the greatest value v in D(xi) which leads to a value of s less than
or equal to max(s).

Notation 1. Given a value v ∈ D(xj), we denote by bp(X, j, v) (break point)
the minimum value of the sum

∑
xi∈X xi of an assignment A(X) satisfying for

each i ∈ [0, n− 2] the constraint xi ≤ xi+1 and such that xj = v.

To compute this quantity we introduce the notion of last intersecting index,
which allows to split

∑
xi∈X xi in three sub-sums that can be evaluated inde-

pendently.

Definition 3. Given IncreasingSum(X, s), let i ∈ [0, n− 1] be an integer. The
last intersecting index last i of variable xi is equal either to the greatest index in
[i+1, n−1] such that max(xi) > min(xlast i

), or to i if no integer k in [i+1, n−1]
is such that max(xi) > min(xk).

Property 2. Given IncreasingSum(X, s), let i ∈ [0, n − 1] be an integer and
v ∈ D(xi), bp(X, i, v) =⎛
⎝ ∑
k∈[0,...,i−1]

min(xk)

⎞
⎠ + bp(〈xi, . . . , xlast i

〉, i, v) +

⎛
⎝ ∑
k∈[lasti+1,...,n−1]

min(xk)

⎞
⎠

Proof. By Definition 3, any variable xk in {x0, . . . , xi−1} ∪ {xlasti+1, . . . , xn−1}
can be assigned to its minimum min(xk) within an assignment ofX where: (1) xi
is assigned to v, and (2) this assignment satisfies ∀k ∈ [0, n− 2], xk ≤ xk+1. ��

From Property 2, we know that to check the feasibility of the upper bound of xi
we have to compute bp(〈xi, . . . , xlasti

〉, i,max(xi)).

Property 3. Given IncreasingSum(X, s), let i ∈ [0, n − 1] and last i be the last
intersecting index of xi, bp(〈xi, . . . , xlast i

〉, i,max (xi)) =
∑

k∈[i,lasti]
max (xi).

Proof. By Definition 3, last i is the greatest index, greater than i, such that
min(xlast i

) < max (xi), or i if no such an index exists. All variables xk in
〈xi, . . . , xlasti

〉 are such that min(xk) ≤ max (xi), thus assigning max (xi) to xi
implies assigning a value greater than or equal to max (xi) to any xk such that
k ∈ [i + 1, last i], in order to satisfy ∀l ∈ [i + 1, last i] the constraint xl−1 ≤ xl.
Since X is ≤-consistent, for each k ∈ [i, last i] max (xi) ∈ D(xk) and the mini-
mum increase due to xk compared with

∑
xk∈[i,lasti]

min(xk) if xi = max (xi) is
max (xi)−min(xk). ��
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From Property 3 we obtain a consistency check for the maximum value of xi.
We use the following notations:

– margin = max (s)−
∑

k∈[0,n−1] min(xk); we consider
∑
k∈[0,n−1] min(xk) be-

cause our goal is here to reduce upper bounds of domains of variables in X
according to max (s).

– Δi =
∑
k∈[i,last i]

(max (xi)−min(xk)); Δi is the minimum increase with re-
spect to

∑
k∈[0,n−1] min(xk) under the hypothesis that xi is fixed to max (xi).

Lemma 2. Given IncreasingSum(X, s) and i ∈ [0, n− 1], if Δi > margin then
max (xi) is not consistent.

Proof. Obvious from Property 3. ��

We now present our BC algorithm. Algorithm 1 prunes the maximum val-
ues in domains of variables in a ≤-consistent sequence X , using an incre-
mental computation of Δi, starting from the last variable xn−1 and consid-
ering at each step the valid last intersection index. When the condition of
Lemma 2 is satisfied, that is, Δi > margin , Algorithm 1 calls the procedure
FilterMaxVar(xi, last i, Δi,margin) to decrease max(xi). This procedure is
described later.

Algorithm 1. FilterMaxVars(X, s)

minsum := 0;1

for i = 0 to n − 1 do minsum := minsum + min(xi);2

margin := max (s) − minsum; i := n − 1; last i := i; Δi := max(xi) − min(xi);3

while i ≥ 0 do4

if Δi ≤ margin then5

oldmax := max(xi);6

i := i − 1 ;7

if i ≥ 0 then8

while (min(xlasti
) ≥ max (xi)) ∧ (last i > i) do9

Δi := Δi − (oldmax − min(xlasti
));10

last i := lasti − 1;11

Δi := Δi + max (xi) − min(xi) − (last i − i) · (oldmax − max(xi));12

else (last i, Δi) := FilterMaxVar(xi, last i, Δi,margin);13

if i > 0 ∧ max (xi−1) > max (xi)) then max (xi−1) := max (xi);14

Figure 1 illustrates with an example of the incremental update of Δi (lines
9-12 of Algorithm 1) when Δi < margin and i is decremented by one.

We now describe how the procedure FilterMaxVar(xi, last i, Δi,margin)
can be implemented to obtain a time complexity linear in the number of variables
for Algorithm 1. We thus consider that the condition of Lemma 2 is satisfied,
that is, Δi > margin . It is required to reduce max (xi).
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i i
last   = 3
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Fig. 1. Execution of Algorithm 1 with margin = 4 and 4 variables such that D(x0) =
[2, 5], D(x1) = [4, 5], D(x2) = [4, 6], D(x3) = [5, 6]. On the left side, the current index is
i = 2, last2 = 3 and we have Δ2 = 3 (bolded values). Since Δ2 < margin no pruning is
performed and the algorithm moves to the next variable (i = 1). The right side shows
that: (1) Δ1 is first updated by removing the contributions computed with the previous
maximum value of xi (oldmax = max (x2)) at the variable indexed by the previous last
intersecting index last2 = 3 (line 10 of Algorithm 1), and then last i is decreased (line
11). (2) According to the new last1 = 2, Δ1 is increased by the contribution of x1,
while the exceed over max(x2) of variables indexed between i = 1 and last1 = 2 is
removed from Δ1 (line 12).

Our aim is then to update xi and update both last i and Δi while preserving
the property that the time complexity of Algorithm 1 is linear in the number of
variables. The principle is the following.

Algorithm 2. FilterMaxVar(xi, last i, Δi,margin)

while Δi > margin do1

steps := min(�Δi−margin
lasti−i+1

�, max(xi) − min(xlasti
));2

D(xi) := D(xi)\ ]max (xi) − steps, max(xi)] ;3

Δi := Δi − (last i − i + 1) · (steps) ;4

while (min(xlasti
) ≥ max(xi)) ∧ (last i > i) do last i := lasti − 1;5

return (last i, Δi);6

If we assume that all variables 〈xi, xi+1, . . . , xlasti
〉 will be assigned the same

value then the minimum number of horizontal slices to remove (each slice cor-
responding to a same value, that can potentially be assigned to each variable
in 〈xi, xi+1, . . . , xlasti〉) in order to absorb the exceed Δi − margin is equal to
�Δi−margin

lasti−i+1 �. Then, two cases are possible.

1. If �Δi−margin
lasti−i+1 � is strictly less (strictly since one extra slice is reserved for

the common value assigned to xi, xi+1, . . . , xlasti , that is, the new maxi-
mum of xi) than the number of available slices between min(xlast i

) and
max (xi), namely max (xi) − min(xlasti

) + 1, then removing ]max(xi) −
�Δi−margin

lasti−i+1 �,max (xi)] gives the feasible upper bound of xi.
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Fig. 2. Execution of Algorithm 2 with i = 0, margin = 1, Δi = 5, and last0 = 1.
D(x0) = [1, 5], D(x1) = [4, 5], D(x2) = [6, 6], D(x3) = [6, 7]. (1) Δ0 > margin so we
compute �Δ0−margin

1−0+1
� = 2, which is not strictly less than max(x0) −min(x1) + 1 = 2,

so steps = max(x0) − min(x1) = 1 and several phases may be required to prune
x0. (2) D(x0) := D(x0)\ ]5 − 1,max (x0)] = [1, 4]. Δ0 = Δ0 − (1 − 0 + 1) ∗ 1 = 3.
(min(x1) ≥ max(x0)) ∧ (1 > 0) so last0 = 1− 1 = 0. (3) Δ0 > margin so we compute
�Δ0−margin

0−0+1
� = � 3−1

0−0+1
� = 2, which is strictly less than max (x0) − min(x0) + 1 = 4.

D(x0) := D(x0)\ ]4− 2, max(x0)] = [1, 2], and we have Δi = margin = 1.

2. Otherwise, the quantity q = max (xi)−�Δi−margin
lasti−i+1 � is not necessarily a feasi-

ble upper bound of xi. In this case we decrease max (xi) down to min(xlast i
),

that is, we consider the number of available slices consistent with the current
last i. Then we update last i and Δi and we repeat the process.

Algorithm 2 implements these principles. It takes as arguments the variable xi,
the last intersecting index last i of xi, Δi and margin . It prunes the max of xi
and returns the updated pair (last i, Δi). Figure 2 depicts an example where the
pruning of xi requires more than one step.

With respect to time complexity, recall ≤-consistency of X can be achieved in
Θ(n) before runing Algorithm 1 by traversing the sequence and ensuring for each
i ∈ [0, n− 2] that bounds of variables are consistent with xi ≤ xi+1. Therefore,
the time complexity of for achieving BC is linear in the number of variables,
since the following proposition holds with respect to Algorithm 1.

Proposition 1. Time complexity of Algorithm 1 is Θ(n).

Proof. An invariant of both Algorithm 2 and Algorithm 1 is that during the
whole pruning of X , the index last i only decreases. Moreover, in Algorithm 2, if
steps = max (xi) −min(xlasti

) + 1 then last i decreases, otherwise Δi = margin
and the algorithm ends. Thus, the cumulative time spent in the loop of line 5 in
Algorithm 2 as well as the loop of lines 8-9 in Algorithm 1 is in n, the number
of variables in X . Therefore, time complexity of Algorithm 1 is O(n). Since to
reduce domains of all the variables in X we have at least to update each of them,
this time complexity is optimum. The proposition holds. ��
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Furthermore, if minimum values of domains of variables in X are pruned after
maximum values, there is no need to recompute those maximum values: increas-
ing the lower bound min(xi) of a variable xi leads to a diminution of margin
and exactly the same diminution in Δi. Therefore, applying a second time Algo-
rithm 1 cannot lead to more pruning. The reasoning is symmetrical if maximum
values are filtered after minimum values. As a consequence, BC can be achieved
in three phases: the first one to ensure ≤-consistency of X and adjust the bounds
of s, the second one for maximum values in domains of variables in X , and the
third one for minimum values in in domains of variables in X .

4 Conclusion and Future Work

We presented a Θ(n) BC algorithm for IncreasingSum(X, s), where X =
〈x0, x1, . . . , xn〉 is a sequence of variables and s is a variable. This constraint can
be used in problems with variable symmetries involved in a sum. A Choco [1]
implementation is available.

IncreasingSum can be used to enforce BC on the following generalization:
∀i ∈ [0, n− 2], xi ≤ xi+1 + cst ∧

∑
xi∈X xi = s, where cst is a constant. Indeed,

we can add n additional variables X ′, one additional variable s′ and n + 1
mapping constraints: ∀i ∈ [0, n− 1], x′i = xi + cst · i and s′ = s+

∑
i∈[1,n−1] i · k.

Then enforcing BC on IncreasingSum(X ′, s′) also enforces BC on variables in
X and s since we use only mapping (equality) constraints. Time complexity
remains Θ(n) because we add O(n) variables.

With respect to GAC on IncreasingSum, Property 1 is not true when vari-
ables in X may have some holes in their domains. For instance, consider a
sequence X of three variables with D(x0) = D(x1) = D(x2) = {1, 3} and
a variable s with domain D(s) = {3, 6, 9}. Values 3 and 9 in D(s) are con-
sistent with IncreasingSum(X, s) while value 6 in D(s) is not consistent with
IncreasingSum(X, s). From this remark, enforcing GAC may require a check in
O(dn) per value in s. A solution to IncreasingSum corresponds to a “sorted”
solution of the SubsetSum problem, which does not make that problem easier.
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Abstract. Constraint Satisfaction Problems (CSPs) are often highly
symmetric. Symmetries can give rise to redundant search, since sub-
trees may be explored which are symmetric to subtrees already explored.
To avoid this redundant search, constraint programmers have designed
methods, which try to exclude all but one in each equivalence class of
solutions. One problem with many of the symmetry breaking methods
that eliminate all the symmetry is that they can have a large running
overhead. To counter this flaw many CP practitioners have looked for
methods that only eliminate a subset of the symmetries, so called partial
symmetry breaking methods, but do so in an efficient manner. Partial
symmetry breaking methods often work only when the problem is of a
certain type. In this paper, we introduce a new method of finding a small
set of constraints which provide very efficient partial symmetry breaking.
This method works with all problem classes and modelling techniques.

1 Introduction

Constraint Satisfaction Problems (CSPs) are often highly symmetric. Symme-
tries may be inherent in the problem, as in placing queens on a chess board that
may be rotated and reflected. Additionally, the modelling of a real problem as a
CSP can introduce extra symmetry: problem entities which are indistinguishable
may in the CSP be represented by separate variables, leading to n! symmetries
between n variables. Symmetries may be found between variables or values or
variable/value combinations.

Symmetries can give rise to redundant search, since subtrees may be explored
which are symmetric to subtrees already explored. To avoid this redundant
search, constraint programmers have designed methods which try to exclude
symmetrically equivalent solutions.

In recent years CSP practitioners have created ways to automatically detect
symmetry [1,2]. In this paper we consider how a constraint solving system such as
Minion [3] should automatically exclude this detected symmetry. In particular,
we wish to use a method that will increase the efficiency of search by effectively
excluding part of the search space, without incurring an overhead. This will
provide an efficient method for dealing with the occurrence of symmetry, without
requiring user input.
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The symmetry breaking method considered here is the addition of constraints
to the CSP, which exclude some or all symmetric equivalents. The focus of this
paper is to find a small subset of symmetry breaking constraints, the placing
of which has negligible effect on the solver; yet that efficiently excludes a large
proportion of the symmetrically equivalent search space.

In the next section of the paper we discuss the previous work in the area
of symmetry exclusion and in particular partial symmetry breaking. We then
explain how our method choosing the set of symmetry breaking constraints to
be placed. The final section of this paper provide detailed benchmarking for
possible sets of symmetry breaking constraints, across multiple problems.

2 Background

Methods to eliminate symmetry in CSP fall into two broad categories: dynamic
and static. Dynamic symmetry breaking methods eliminate symmetry during
search. Static symmetry breaking methods eliminate symmetry before search
commences. Both of these methods can add a large efficiency overhead to solv-
ing a CSP. To counter this CP practitioners have tried partial methods which
eliminate only a subset of the symmetry. Partial methods have been experi-
mented with in both the dynamic and static contexts. We will look at each of
these in turn.

Symmetry Breaking During Search [4,5] is a dynamic symmetry elimination
method which adds constraints on backtracking. McDonald and Smith [6] con-
sidered using a subset of the full symmetry functions which would be required for
complete symmetry breaking, with SBDS to provide partial symmetry breaking.
They proved that there is indeed a cross over point where by using an increased
number of symmetry functions would not create the efficiency of solving the
problem. The problem with dynamic symmetry breaking methods in general is
that the framework to use them must be available in your solver, many modern
solvers such as Gecode and Minion [3,7] do not have this framework.

Static symmetry breaking methods do not require solver support. The most
common static symmetry breaking method is to add constraints to the CSP.
Crawford et al. [8] give a systematic method for generating symmetry breaking
constraints. Definition 1 explains Crawford ordering constraints.

Definition 1. For a variable symmetry group of size s the Crawford ordering
method produces a set of s − 1 lex constraints that provide complete symmetry
breaking. We first decide on a canonical order for the variables in the CSP, then
post constraints such that this ordering is less than or equal to the permutation
of the ordering by each of the symmetries. Consider the following 2 × 3 matrix
with the symmetries that the rows and columns can be swapped independently.

x11 x12 x13

x21 x22 x23



Automatic Generation of Constraints for Partial Symmetry Breaking 731

Ifwe choose a row-wise canonical variable ordering, in this casex11x12x13x21x22x23,
then we can generate 11 lex constraints to break all the symmetries. For example the
constraint generated for the permutation which swaps the rows of the matrix is:

x11x12x13x21x22x23 ≤lex x21x22x23x11x12x13

The flaw with this complete symmetry breaking method is that if a problem has
many symmetries than a large number of symmetry breaking constraints will be
needed to eliminate all the symmetry. To counter this problem CP practitioners
have tried placing just a small subset of these constraints. The question then
arises as to which subset should be placed? This is the question we tackle in this
paper.

Puget and Smith [9,10] have previously looked at this question and shown
that a small subset of constraints can provide complete symmetry breaking when
there is an alldifferent constraint across all the problem variables.

The constraints presented by Puget and Smith can also be simply used to
create a partial symmetry breaking method on problems without alldifferent
constraints, as demonstrated in Example 1. We will consider these constraints
later in this paper.

Example 1. The algorithm of Puget in [9] would generate for the example in
Definition 1 the set of constraints:

x11 < x12, x11 < x21, x11 < x22, x11 < x23, x12 < x13

These constraints are generating by truncating each Crawford ordering con-
straint at the first index where the variables are different. These can be trans-
formed into a partial set of symmetry breaking constraints for any CSP by
weakening them to:

x11 ≤ x12, x11 ≤ x21, x11 ≤ x22, x11 ≤ x23, x12 ≤ x13

It has also been proposed in SAT and CP that using just the group generators
provided by Nauty [11], after automatic symmetry detection, provide an efficient
set of symmetry breaking constraints [12,13,14]. Our method often improves on
the performance given by the group generators produced by Nauty. While there
has been work into automatically finding the symmetries of CP problems [1,2], so
far the only general symmetry breaking method is to use the generators returned
by the symmetry detection method into Crawford ordering constraints.

A discussion of partial symmetry breaking would not be complete without
mention of Double Lex [15,16]. Double Lex is a method of placing lexicographic
constraints to provide partial symmetry breaking on matrix models of CSPs.
Double Lex is a very widely used symmetry breaking method. However, it has
the limitation of only working when the problem is modelled as a matrix.

3 Overview of Group Theory Required for Our Method

In this section we explain the group theory required to understand how we choose
a subset of constraints. Group theory is the mathematical study of symmetry.
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Stabiliser chains provide an algorithmic method of constructing a small generat-
ing set [17,18] for any group and provide the inspiration for our algorithm. The
stabiliser chain relies on the concept of the point wise stabiliser. We start by
giving the definition of a stabiliser.

Definition 2. Let G be a permutation group acting on the set of points Ω.
Let β ∈ Ω be any point. The stabiliser of β is the subgroup of G defined by:
StabG(β) = {g ∈ G | βg = β}, which is the set of elements in G which fixes or
stabilises the point β. The stabiliser of any point in a group G is a subgroup of
G. The stabiliser of a set of points, denoted StabG(i, j, . . .), is the elements of G
which move none of the points.

The definition of the stabiliser chain follows.

Definition 3. Stabiliser chains are built in an recursive fashion. Given a per-
mutation group G and a point i, the first level of the stabiliser chain is built from
an element of G which represents each of the places i can be mapped to. The next
level of the stabiliser chain is built from applying this same algorithm to StabG(i),
again choosing representative elements for all the places some point j �= i can be
mapped to. The stabiliser chain is finished when the stabiliser generated contains
only the identity element.

Stabiliser chains, in general, collapse quickly to the subgroup containing only
the identity since the order of each new stabiliser must divide the order of the
stabilisers above it. The following example shows the construction of a stabiliser
chain.

Example 2. Consider the group consisting of all 24 permutations of {1, 2, 3, 4}.
We compute a chain of stabilisers of each point, starting arbitrarily with 1 (de-
noted StabS4(1)). 1 can be mapped to 2 by [2, 1, 3, 4], 3 by [3, 1, 2, 4] and 4 by
[4, 1, 2, 3]. These group elements form the first level of the stabiliser chain.

The second level is generated by looking at the orbit and stabiliser of 2 in
StabS4(1). In the stabiliser of 1, 2 can be mapped to both 3 and 4 by the group
elements [1, 3, 2, 4] and [1, 4, 2, 3]. We now stabilise both 1 and 2, leaving only
the group elements [1, 2, 3, 4] and [1, 2, 4, 3]. Here 3 can be mapped to 4 by the
second group element, and once 1, 2 and 3 are all stabilised the only element
left is the identity and the algorithm finishes.

4 Methods of Creating Subset of Symmetry Breaking
Constraints

In this section we will investigate methods of generating both partial and com-
plete sets of symmetry breaking constraints. While in general complete symme-
try breaking is NP-complete, for certain groups it is polynomial and by studying
these groups we hope to derive general principles. We begin by proving a sim-
ple result about Crawford ordering constraints. This result will be used in the
following sections.



Automatic Generation of Constraints for Partial Symmetry Breaking 733

Definition 4. Given a permutation p on the ordered set S = {x1, . . . , xn} other
than the identity permutation, the first moved point of p is the smallest i such
that p(xi) �= xi.

Lemma 1. Consider any permutation p on the ordered set V = {x1, . . . , xn}
which is not the identity permutation, then the Crawford ordering constraint
generated by p is logically equivalent to xi ≤ p(xi) ∧ (xi = p(xi)→ C), where xi
is the first moved point of p and C is some constraint on the elements of V .

Proof. The Crawford ordering constraint generated from p is the constraint
[x1, . . . , xn] ≤lex [p(x1), . . . , p(xn)]. Up until the first moved point of p the vari-
ables in the two arrays are identical, so have no effect. At position i, the first
moved point, the theorem follows from the definition of lexicographic ordering
constraints, with C equal to the constraint [xi+1, . . . , xn] ≤lex [p(xi+1), . . . , p(n)].

��

While Lemma 1 follows fairly directly from the definitions of the Crawford order-
ing and lexicographic ordering constraints, it is useful when analysing subsets of
Crawford ordering constraints. In the next section we will show how important
the first moved point is in generating good sets of partial symmetry breaking
constraints.

4.1 Analysing the Complete Symmetry Group

The complete, or symmetric, group is the group which contains all permutations
on some set. There are many problems which have the complete group of variable
symmetries. There are already known methods of achieving complete symmetry
breaking for the complete group. In this section we will produce a dichotomy
which tells us all subsets of permutations which lead to sets of Crawford ordering
constraints which break all symmetries.

Theorem 1. Given a subset S of the complete symmetry group G on the set
{x1, . . . , xn}, the Crawford ordering constraints generated by S with the ordering
x1, . . . , xn will be complete symmetry breaking constraints for G if and only if:

∀i ∈ {1, . . . , n− 1}. ∃p ∈ S. (p(xi) = xi+1 ∧ ∀j ∈ {1, . . . , i− 1}. p(xj) = xj)

Proof. We will perform this proof in two parts. Firstly by Lemma 1 a permu-
tation where p(xi) = xi+1 ∧ ∀j ∈ {1, . . . , i − 1}. p(xj) = xj implies xi ≤ xi+1.
Therefore these constraints together imply that any assignment to the xi must
be non-decreasing, which leads to complete symmetry breaking.

Now consider any permutation q where for some fixed c:

q(xc) = xc+1 ∧ (∀j ∈ {1, . . . , c− 1}. q(xj) = xj)

does not hold. Then by Lemma 1, the Crawford ordering constraint generated
by this permutation is equivalent to xr ≤ xs ∧ (xr = xs → C), where either
r �= c or s �= c+ 1.



734 C. Jefferson and K.E. Petrie

Consider the assignment where xi = i for all i, and the assignment where
xi = i for all i, except xc is assigned c + 1 and xc+1 is assigned c. Both of
these assignments are accepted by the Crawford ordering constraint generated
from q, as both satisfy the constraint xr < xs for all r < s, except in the case
r = c, s = c+ 1.

This implies that if there is any c where no permutation in S satisfies q(xc) =
xc+1 ∧ ∀j ∈ {1, . . . , c − 1}. q(xj) = xj , then the Crawford ordering constraints
generated from S cannot break all symmetry. ��

Theorem 1 describes all sets of permutations which lead to a complete set of
symmetry breaking constraints for the symmetric group. We can deduce some
interesting properties from the requirements of Theorem 1.

Theorem 1 requires permutations which fix the first i variables of the ordering
used for the Crawford ordering. Such permutations are generated by stabiliser-
chain based algorithms, as these begin by looking for permutations which fix as
many points as possible, in the order given to the algorithm. Such algorithms
are unlikely to arise when chose at random. In particular, any set of permuta-
tions whose Crawford ordering constraints break all symmetry must include the
permutation which fixes all but the last two variables.

While in general we cannot find a polynomial-sized set of permutations which
break all symmetry, Theorem 1 suggests we should investigate sets which contain
permutations which fix many initial points, even when these form a very small
part of the full group.

4.2 Generating Stabiliser Chains

We introduced the concept of a stabiliser chain in Section 3. Nauty [11] and other
graph-theoretic systems generate a stabiliser chain for a group. Permutations in
a stabiliser chain for a group, form a set of generators for that group. Stabiliser
chains also have many other useful properties. In this section we shall analyse the
Crawford ordering constraints the permutations from stabiliser chains generate.

Algorithm 1 shows a very basic outline of an algorithm for finding stabiliser
chains (in . Example 2 shows this algorithm in practice with no optimisations.
Algorithms similar to this basic form are used by Nauty, GAP and other group-
theoretic systems. Most of the complication of the algorithm occurs in line 5,
where the majority of the work is done.

Algorithm 1. Generate Stabiliser Chain: sc(G)
Require: A group G defined over the points [x1, . . . , xn]
1: Initialize Gens: Stabiliser chain for G
2: for all i in [n, . . . , 1] do
3: for all j in [n, . . . , i + 1] do
4: if Optimisation Check Fails then
5: if ∃g ∈ G. (∀k ∈ {1, . . . , i− 1}. g(xk) = xk) ∧ g(xi) = xj then
6: Record g as the permutation mapping xi to xj

7: return Gens
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The interesting part for this paper is the optimisation function used to skip
parts of search when some permutations have been found. These algorithms
ensure that we find a complete set of generators for the group, while skipping
parts of the search space.

In this paper we will consider two possible optimisation conditions, given in
Definition 5. The Nauty optimisation condition is one of the techniques used by
Nauty, Saucy and GAP. The reduced optimisation condition is the one we will
be most interested in here. As the reduced optimisation condition is logically
weaker than the Nauty condition, we do not have to prove that it is valid to
use it to reduce search when searching for stabiliser chains. It should be noted
that the set of constraints produced by the Nauty condition is always a subset
of the subset of constraints obtained from the Reduced condition.

Definition 5.
The Nauty optimisation condition for line 4 of Algorithm 1 is:

∃k. i ≤ k < j and a permutation mapping xk to xj was already found

The Reduced optimisation condition is:

∃k. i < k < j and a permutation mapping xk to xj was already found

The reduced optimisation condition will produce a larger set of generators. These
generators have the property that the Crawford ordering constraints generated
from these permutations subsume the binary ≤ constraints generated by Puget’s
algorithm, as given in Example 1.

Theorem 2. Given a set of generators S for a group G on an ordered list
[x1, . . . , xn] generated by Algorithm 1 with the reduced optimisation condition,
the Crawford ordering constraints generated from S under the ordering [x1, . . . , xn]
will imply xi ≤ xj for every pair of variables if any of the full set of symmetry
breaking constraints for G imply that constraint.

Proof. If the Crawford ordering constraint for some g ∈ G implies xi ≤ xj ,
then by Lemma 1, the permutation g must have smallest moved point xi, which
is moved to xj . We shall prove that all such inequalities are implied by the
Crawford ordering constraint generated from S by contradiction.

If some inequalities are not implied by the Crawford ordering constraints
generated from S, consider some permutation g where the inequality xi ≤ xj
generated by g has the smallest possible value for j − i.

Now, as g ∈ G, then the algorithm would find g when looking for a permuta-
tion which mapped xi to xj while fixing all the xz for z < i, unless this part of
search was skipped over by the reduced optimisation condition. However in this
case there must exist some k with i < k < j such that a permutation mapping
xk to xj was already found. In this situation there are two cases to consider:
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1. S contains a permutation mapping xi to xk which fixes all xz , z < i. In
this case the Crawford ordering constraint generated by this permutation
implies xi ≤ xk and the permutation mapping xk to xj which caused the
reduced optimisation condition to trigger implies the constraint xk ≤ xj .
These constraints together imply xi ≤ xj .

2. S does not contain a permutation mapping xi to xk which fixes all xz, z < i.
Such permutations certainly exist in G, by applying the permutation which
maps xi to xj , and the inverse of the permutation which maps xk to xj .
Therefore permutations of this kind must have been skipped by the re-
duced optimisation condition. Then either there exists some permutation
in G which implies xi ≤ xk in which case we are done, or there does not,
in which case as k − i < j − i our assumption that xi and xj were the pair
where the inequality xi ≤ xj was not generated and j − i was minimised is
false. ��

As we know that the binary inequalities break all symmetry in the presence
of all different constraints, intuitively we might expect them to do well when
breaking symmetries in general. Later in our experimental section we shall test
this hypothesis.

5 Experimental Results

In this section we will compare a number of methods of generating both partial
and complete sets of symmetry breaking constraints, to compare their effective-
ness. In each case we automatically detect the symmetry of the problem using a
variant of the algorithm given in [19] and Nauty. We consider 5 different methods:

Nauty: Crawford ordering constraints created from the set of permutations
generated by Nauty.
ArityOne: ≤ constraints derived from Puget’s algorithm, as in Example 1.
All: Crawford ordering constraints created from all symmetries.
Reduced: Crawford ordering constraints generated from our new algorithm,
described as the reduced optimisation condition in Definition 5
Basic Stabiliser: Crawford ordering constraints generated by running Al-
gorithm 1 with no optimisation condition.

In order to fit our tables into a compressed space, we use a short-hand to label
our results tables:

C: The number of constraints added.
T1: The time taken to find one solution.
N1: The nodes taken to find one solution.
TA: The time taken to find all solutions.
NA: The nodes taken to find all solutions.

S: The total number of solutions.

Due to space limitations, in some tables we use scientific notation to represent
large numbers. For example, 1.3E8 is equal to 1.3× 108.
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5.1 Unconstrained Cycles

Firstly, we consider symmetry breaking in two closely related problems, the
symmetric cycle and the non-symmetric cycle.

The symmetric cycle is given to Nauty as a graph on the n variables of the
problem, with an edge between xi and xi+1 for all i, as well as an edge between
the first and last variables x1 and xn. This problem has 2n symmetries, as
the variables can be rotated and also flipped, by mapping xi to xn−i+1 for all
i. We also consider the symmetric problem without the flip, by giving Nauty
directed rather than undirected edges. There are no constraints in this problem
other than the symmetry breaking constraints produced, meaning that it gives
us a testbed for our method without having to worry about how the symmetry
breaking constraints are interacting with the problem constraints.

The results are given in Table 1. In this problem we see the efficiency of
Nauty in terms of the size of the generating sets it creates, with only 2 gen-
erators for the symmetric cycle and 1 generator for the non-symmetric cycle.
However, these very small sets of constraints do not make good sets of symme-
try breaking constraints. Our reduced algorithm produces 10 constraints which
provide smaller times than both Nauty and ArityOne consistently.

In this problem, as in all the others, we found that the Basic Stabiliser
method generated exactly the same sized search as the Reduced method, while
taking longer and producing more constraints. Therefore we omit it.

Table 1. Solving the unconstrained cyclic problem. All node and solution counts given
in millions. Problems specified as: “variable count . domain size”. N = Not Symmetric
cycle.

ArityOne Nauty All Reduced

C TA NA S C TA NA S C TA NA S C TA NA S

10.4 9 0.6 2.6E6 1.3E6 2 1.1 6.9E6 3.4E6 19 0.3 1.1E6 0.4E6 10 0.4 1.4E6 0.6E6
11.4 10 2.7 13E6 6.5E6 2 5.4 34E6 17E6 21 1.3 4.9E6 2.2E6 10 1.8 8.0E6 3.7E6
12.4 11 13 64E6 32E6 2 25 164E6 82E6 23 6.2 22E6 10E6 11 7.4 31E6 14E6
13.4 12 62 31E7 15E7 2 127 82E7 41E7 25 31 10E7 4.6E7 12 38 17E7 8.1E7
11.5 10 16 83E6 41E6 2 39 252E6 125E6 21 9.0 36E6 16E6 10 11 54E6 25E6

11.5N 10 26 142E6 71E6 1 54 362E6 181E6 10 15 73E6 32E6 10 15 73E6 32E6

5.2 Graceful Graphs

Secondly we consider symmetry breaking in the Graceful Graphs problem [20]. A
labelling f of the nodes of a graph with q edges is graceful if f assigns each node a
unique label from {0, 1, ..., q} and when each edge xy is labelled with |f(x)−f(y)|,
the edge labels are all different (and form a permutation of {1, 2, ..., q}). This
problem has both variable and value symmetry, in this paper we will consider
only the variable symmetry.

The CP model we use has variables for each node of the graph and each edge.
Assigning just the node variables is sufficient to break all symmetry, and these



738 C. Jefferson and K.E. Petrie

Table 2. Solving instances of the Graceful Graphs problem. The last 4 methods all
share a node and solution count.

Graph Nauty Complete Methods
ArityOne All Basic Stab Reduced

C TA NA S C TA C TA C TA C TA NA S

DW4 5 7.3 1.6E6 196 7 3.2 127 3.63 12 3.5 7 3.3 767,613 88
DW5 5 2700 6.9E8 9112 9 856 199 971 15 864 9 856 2.0E8 2432

K4xP2 3 2.7 739,461 572 7 0.2 47 0.2 10 0.2 7 0.2 62,473 30
K5xP2 20 194 4.7E7 20 9 18.2 239 22.16 15 18.1 15 18.1 5.0E6 2

variables must be all different. Therefore we know that the ArityOne constraints
are sufficient to break all symmetry. In fact, we find that the ArityOne, All,
Basic Stabiliser and Reduced problems all generate an identically sized search
tree. Therefore in Table 2, we give the solution and node count for each of these
problems only once.

We use double-wheel and KnxP2 instances of the Graceful Graphs problem
as described in [20]. In Table 2 we see that Reduced and ArityOne are com-
parable. This is somewhat surprising as ArityOne provides complete symmetry
breaking with less constraints then Reduced. The Nauty constraints perform
quite poorly on this problem.

5.3 BIBD

The balanced incomplete block design problem is a commonly used problem
to study symmetry breaking in constraint programming. A balanced incomplete
block design (BIBD) [21] is a v × b Boolean matrix, with the columns summing
to k, the rows summing to r, and exactly λ positions where two rows both have
a 1, for any pair of rows.

Given a (non-) solution to a BIBD, it is possible to freely permute all of the
rows of the matrix to get other (non-) solutions, and it is also possible to freely
reorder the rows. Thus this problem has row and column symmetry. On this
problem, it was not possible to generate the Crawford ordering constraints for
the whole symmetry group, and the results for the ArityOne constraints timed
out.

Our results for the BIBD are given in Table 3. In this particular problem, we
note that all methods generate the same sized search space. Section 5.4 shows
that this is not a characteristic of all problems involving row and column symme-
try, even on domain size 2. As the reduced method generates more constraints,
it is slightly slower on this problem.

It is interesting to note that the Crawford ordering constraints generated
by Nauty for this, and other, problems with a two dimensional matrix with
symmetries of the rows and columns is exactly the Double Lex set of constraints
from [15].
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Table 3. Solving BIBD models with various symmetry breaking methods

Nauty Basic Stabiliser Reduced

Problem N1 NA S C T1 TA C T1 TA C T1 TA

11,11,5,5,2 66 110 1 21 0.03 0.04 210 0.23 0.23 120 0.18 0.17
13,13,4,1,1 105 815 8 24 0.06 0.06 300 0.57 0.55 168 0.38 0.40
16,16,6,6,2 323 78,842 252 30 0.12 0.82 465 1.73 2.48 255 1.03 1.91
7,35,15,3,5 341 600,598 64,601 40 0.04 3.21 820 0.90 4.87 244 0.40 3.97
8,28,14,4,6 2955 1.8E7 2.0E6 34 0.05 123 595 0.73 137 223 0.42 132
7,49,21,3,7 778 3.2E7 2.2E6 54 0.06 194 1485 2.15 274 342 0.80 215
7,56,24,3,8 1107 1.7E8 1.0E7 61 0.08 1079 1891 3.02 1659 391 1.04 1231

5.4 Plain Row and Column Symmetry

To further investigate row and column symmetries, we tested finding all solutions
to a problem with no constraints, placing only symmetry breaking constraints
for row and column symmetries.

Table 4 summarises the results for this problem. Here we can see that the
Reduced method produces both a smaller search and faster time than either
the Nauty or ArityOne method. While generating All symmetry breaking
constraints produces a smaller search, the time taken to solver the problem is
much longer. As in the BIBD problem, the constraints generated by the Nauty
method is the set of constraints commonly referred to as Double Lex. So on this
problem the Reduced method outperforms Double Lex.

Table 4. Solving the unconstrained problem with row and column symmetries. Time
limit one hour.

ArityOne All Nauty Reduced
C TA NA S C TA NA S C TA NA S C TA NA S

2x5 D8 9 5.5 31E6 15E6 239 6.2 10E6 5E6 5 3.8 22E6 11E6 9 2.3 12E6 6.1E6
2x5 D10 9 40.6 23E7 11E7 239 51 9.3E7 4.5E7 5 30 18E7 9.4E7 9 19.7 10E7 5.2E7
3x3 D10 8 18 10E7 5.1E7 35 13 5.6E7 2.7E7 4 15 10E7 5.0E7 8 12 6.8E7 3.4E7
3x5 D4 14 9.0 47E6 23E6 719 6.3 3.5E6 1.7E6 6 1.4 8.4E6 4.2E6 14 1.3 6.1E6 3.0E6
4x4 D4 15 41 214E6 107E6 575 22 16E6 7.8E6 6 13 84E6 42E6 15 10 49E6 24E6
5x5 D2 24 0.8 3.2E7 1.6E7 14,399 1.2 11,269 5,624 8 0.05 162,567 81,284 24 0.03 38,459 19,230
5x5 D3 24 - - - 14,399 - - - 8 455 2.7E9 1.3E9 24 106 4.5E8 2.2E8

5.5 Randomly Generated Sets

So far we have compared various variants of stabiliser chains, and with the ex-
ception of the Basic Stabiliser method, we have found methods which generate
more constraints produce smaller search trees while taking longer per node. In
our experiments, the Reduced method does consistently well. In this section
we will investigate two hypothesises by the use of randomly generated sets of
permutations.
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Fig. 1. Plot of solving a 3 by 5 matrix of variables with domain size 4

Firstly, we test the hypothesis that the sets of permutations we are using are
better than a randomly generated set of the same size. In particular, we are not
simply gaining by increasing the size of the set of permutations we use. Secondly,
we test if in general a set of permutations being a generating set improves their
effectiveness at symmetry breaking.

Arbitrary Random Sets. We consider one problem in depth, a 3 by 5 matrix
of variables with domain size 4 and the Graceful graph problem of the “double
wheel” of size 4. Figures 1 and 2 show how search size varies with the number of
random constraints, compared to the specialised algorithms we have considered.
These graphs clearly show how much our algorithms out-perform a random set of
constraints. This shows that the Reduced method of generating constraints,is
far better than just picking the same number of constraints at random.

Random sets of Generators. Set of generators are used to express groups
compactly, and therefore it makes intuitive sense that they may make good sets
of permutations to generate Crawford ordering constraints. We will investigate
this intuition in this section.

There are two classes of generators we can consider, minimal and non-minimal.
Non-minimal sets of generators are any set of permutations which generate the
group in question. A minimal set of generators is the smallest number of gener-
ators needed to generate a group.

Random sets of constraints are very likely to be sets of generators for most
groups. For example, in the 3 by 5 matrix problem given in Section 5.5, by
experimentation we find over 91% of random sets of permutations of size 6 and
98% of random sets of permutations of size 8 are generating sets. This means
that Figures 1 and 2 can be also be used as a comparison of random sets of
generators, as well as random sets of permutations. Therefore the same results
as Section 5.5 applies to generators – random sets of generators do not perform
well as symmetry breaking constraints.
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Fig. 2. Plot of solving the DW4 Graceful Graph instance

We shall consider in this section the issue of minimal sets of generators. In
particular, we will study if a minimal set of generators produces better Crawford
ordering constraints than an arbitrary set of permutations of the same size.

For each problem in Table 5, we created one thousand random sets of minimal
generators. Then we created one thousand sets of random permutations of the
same size as the minimal generating set. We then found all solutions for each of
these pairs and compared how often an arbitrary random set won over a minimal
generating set.

Table 5 shows the average and minimum performances, and also compares on
each of the thousand runs which of the two methods was fastest. We can see there
is no benefit to considering a set of random generators over an arbitrary random
set of permutations. This table also shows the sizes these minimal generating
sets took. We can see the range of sizes is very small, even when generating a
thousand generating sets. Further, these algorithms performed extremely poorly
when compared to the Reduced algorithm described in this paper. The ex-
periments in Table 5 are a BIBD, a problem with no constraints & row and
column symmetry and anna.col, a graph colouring problem from the Stanford
Graphbase.

This section, and the previous one, show two important results. Firstly random
sets of permutations form poor sets of symmetry breaking constraints, so the

Table 5. Solving problems with 1,000 randomly generated sets of minimal generators

Sizes Average Nodes Minimum Wins Nodes
Problem Gen Any Gen Any Gen Any Reduced

7,7,3,3,1 BIBD 2,3 112264 112056 39031 55837 500 500 23
3x5 D3 2,3,4 8,780,000 8,800,000 2,119,322 2,782,488 508 492 104,129

Anna.col 16 21,485,800 21,489,100 11,471,047 11,789,567 494 506 5,122,183
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effort of defining particular subsets is worthwhile. Further, it is not important
that the specialised sets of permutations we generate are generators, as in general
generators perform no better than an arbitrary set of permutations.

6 Conclusion

The focus of this paper was to find a small reliable set of partial symmetry
breaking constraints, which will work to efficiently eliminate symmetry for any
problem modelled in any manner. To that end we have introduced the Reduced
method of generating a set of partial symmetry breaking constraints. We have
shown that in practice this method generates slightly more constraints than just
using the generators produced by Nauty as the basis for constraints. Although,
both methods are based on the stabiliser chain method. However, this slight in-
crease in the number of constraints produced by the Reduced method, actually
provides more efficient symmetry breaking than the Nauty based constraints.
We have also shown that the Reduced method produces more constraints than
Double Lex does, but again these constraints can provide more efficient sym-
metry breaking. In our BIBD experiment, where this was not the case, the two
methods are comparable. Further, the Reduced method also outperforms a
randomly chosen set of symmetry breaking constraints.

We have improved the understanding of small sets of symmetry breaking
constraints. We show that Nauty, the method generally used in the past because
of it’s simplicity, is competitive, but not because it is a set of generators. We
show strong evidence it is fixing many variables early in the variable ordering,
rather than being generator sets, which make stabiliser chain based algorithms
so effective at generating good sets of partial symmetry breaking constraints.

In general, we feel that the Reduced method is a very reliable way of pro-
viding a small set of partial symmetry breaking constraints, which perform well
across a range of problems.
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Abstract. Quantified Constraint Satisfaction Problems (QCSP) are of-
ten claimed to be adapted to model and solve problems such as two-
player games, planning under uncertainty, and more generally problems
in which the goal is to control a dynamic system subject to uncontrolled
events. This paper shows that for a quite large class of such problems,
using standard QCSP or QCSP+ is not the best approach. The main
reasons are that in QCSP/QCSP+, (1) the underlying notion of system
state is not explicitly taken into account, (2) problems are modeled over
a bounded number of steps, and (3) algorithms search for winning strate-
gies defined as "memoryfull" policy trees instead of winning strategies
defined as "memoryless" mappings from states to decisions. This paper
proposes a new constraint-based framework which does not suffer from
these drawbacks. Experiments show orders of magnitude improvements
when compared with QCSP/QCSP+ solvers.

1 Introduction

Quantified Constraint Satisfaction Problems (QCSP [1]) were introduced to
model and solve CSP involving uncertainty or uncontrollability on the value
taken by some variables. From a formal point of view, a QCSP is defined
by two elements: a set of constraints C, and a quantification sequence Q =
Q1x1 . . . Qnxn where each Qi corresponds to an existential or universal quanti-
fier (∃ or ∀). A QCSP defined byQ = ∃x1∀x2∃x3∀x4 and C = {x1+x3 < x4, x2 �=
x1 − x3} is then to be interpreted as "Does there exist a value for x1 such that
for every value taken by x2 there exists a value for x3 such that for every value
of x4 constraints x1 +x3 < x4 and x2 �= x1−x3 are satisfied?". Solving a QCSP
means answering yes or no to the previous question, and producing a winning
strategy if the answer is yes. If d(x) denotes the domain of variable x and if Ax
denotes the set of universally quantified variables that precede x in the quantifi-
cation sequence, such a winning strategy is generally defined as a set of functions
fx :

∏
y∈Ax

d(y) → d(x) (one function per existentially quantified variable x).
This set of functions can be represented as a so-called policy tree. Various algo-
rithms were defined in the last decade for solving QCSPs, from earlier techniques
based on binary or ternary quantified arc-consistency (QAC [1,2]) or translation
into quantified boolean formulas [3], to techniques based on pure value rules,
n-ary quantified generalized arc consistency [4], conflict-based backjumping [5],
solution repair [6], or right-left traversal of the quantification sequence [7]. Re-
cently, an adaptation of QCSP called QCSP+ [8] was proposed to make QCSP

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 744–758, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Beyond QCSP for Solving Control Problems 745

more practical from the modeling point of view. The idea in QCSP+ is to use
restricted quantification sequences instead of standard quantification sequences.
The former look like ∃x1[x1 ≥ 3] ∀x2[x2 ≤ x1] ∃x3, x4[(x3 �= x4) ∧ (x3 �= x1)]C,
and must be interpreted as "Does there exist a value for x1 satisfying x1 ≥ 3
such that for every value of x2 satisfying x2 ≤ x1, there exists values for x3 and
x4 satisfying x3 �= x4 and x3 �= x1 such that all constraints in C are satisfied?”.

QCSP and QCSP+ can be used to model problems involving a few quantifier
alternations such as adversary scheduling problems [8]. They can also be used
to model problems involving a larger number of quantifier alternations, such as
two-player games or planning under uncertainty. For two-player games, the goal
is to determine a first play for player 1 such that for every play of player 2, there
exists a play of player 1 such that for every play of player 2 ... player 1 wins
the game. The size of the quantification sequence is fixed initially depending on
the maximum number of turns considered. Planning under uncertainty can be
seen as a game against nature and interpreted similarly. More generally, a large
number of quantifier alternations are often useful when QCSP/QCSP+ is used
to model problems of control of the state of a dynamic system subject to events.

The goal of this paper is to show that when that state is completely observable
at each step and when the evolution of the current state is Markovian (i.e.
the state of the system at a given step depends only on the last state and
on the last event, and not on the whole history of events), then using pure
QCSP/QCSP+ is (currently) not the best approach. The paper is organized as
follows. We first illustrate why using pure QCSP/QCSP+ in this context is not
always appropriate (Section 2). We then define a new framework called MGCSP
for Markovian Game CSP (Section 3), and associated algorithms (Section 4).
Experiments show orders of magnitude improvements on some standard QCSP
benchmarks (Section 5). Proofs are omitted for space reasons.

2 Illustrating Example

Let us consider a QCSP benchmark called the NimFibo game. This game involves
two players, referred to as A and B, who play alternatively. Initially, there are
N matches on a table. At the first play, player A can take between 1 and N-1
matches. Then, at each turn, each player takes at least one match and at most
twice the number of matches taken by the last player. The player taking the last
match wins. The problem is to find a winning strategy for player A.

The QCSP/QCSP+ approach. Let us assume that N is odd. To model the Nim-
Fibo game as a QCSP+, it is first possible to introduce N variables r1, . . . , rN
of domain [0..N ] representing the number of matches remaining after each turn
(N variables because there are at most N turns). It is also possible to introduce
decision variables of domain [1..N − 1] modeling the number of matches taken
by each player at each turn: a1, a3, ..., aN for player A and b2, b4, ..., bN−1 for
player B. A QCSP+ modeling the NimFibo game is then:
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∃a1, r1[r1 = N − a1] ∀b2, r2[b2 ≤ 2a1, r2 = r1 − b2]
∃a3, r3[a3 ≤ 2b2, r3 = r2 − a3] ∀b4, r4[b4 ≤ 2a3, r4 = r3 − b4] . . .
∃aN , rN [aN ≤ 2bN-1, rN = rN-1 − aN ] True

Figure 1(a) gives a winning strategy expressed as a policy tree for N = 15
matches. Nodes depicted by circles model all possible decisions of player B.
Nodes depicted by squares represent decisions to be made by player A to win
the game.

State-based approach. Basically, the state of the system at each step is defined
by three state variables: one variable p ∈ {A,B} specifying the next player,
one variable r ∈ [0..N ] modeling the number of remaining matches, and one
variable l ∈ [1..N ] specifying the number of matches taken by the last player.
Two kinds of decisions modify the state (p, r, l): plays of player A and plays of
player B, modeled respectively by decision variables a and b of domain [1..N−1]
representing the number of matches taken by each player at each turn. These
decisions are sequentially made. Variable a is controllable by player A whereas
variable b is not. The goal is to reach, whatever the plays of player B, a state
such as (B, 0, l) in which B cannot take any match, while ensuring that states
of the form (A, 0, l) in which A cannot take any match are never reached be-
fore. A solution to this control problem can be defined as a decision policy
π : {(A, r, l) | r ∈ [1..N ], l ∈ [1..N ]} → d(a) associating a value for a with states
s = (A, r, l) in which A must play and there is at least one remaining match.
Policy π does not need to be specified for all states: it only needs to be specified
for states which are reachable using π. A solution policy is given in Figure 1(b).
Figure 1(c) gives the states which are reachable using this policy, as well as the
possible transitions between states.

Comparison between the two approaches. With 15 matches, the policy tree con-
tains 48 leaves and the decision policy contains only 19 (state,decision) pairs,
although both policies induce the same sequences of states. The size ratio grows
exponentially when the number of matches increases. The main reason is that
the Markovian nature of the system considered together with the complete ob-
servability of the state at each step entail that the strategy encoded as a policy
tree memorizes too many elements. For instance, on the reachability graph of
Figure 1(c), the two sequences of plays seq1 : [a = 2, b = 1, a = 1, b = 1, a = 2]
and seq2 : [a = 2, b = 3, a = 2] are equivalent because they end up in the same
state, (B, 8, 2). The only useful information to be taken into account to act from
that state is the state itself, and not the entire trajectory used to reach it. Said
differently, searching for strategies defined as “memoryfull” policy trees as in
QCSP/QCSP+ is searching in a uselessly large search space, since searching for
"memoryless" decision policies π is sufficient.

Second, explicitly reasoning over the notion of state enables to memorize
whether a state s has already been successfully explored, which means that
it has been already proved that the goal can always be reached from s. This is
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A,15,0 => a=2
A,12,1 => a=1
A,11,2 => a=3
A,10,3 => a=2

A,9,4 => a=1
A,10,1 => a=2
A,9,2 => a=1
A,7,1 => a=2

A,6,2 => a=1
A,5,3 => a=5
A,4,4 => a=4
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A,2,6 => a=2
A,4,1 => a=1
A,3,2 => a=3
A,2,3 => a=2

A,1,4 => a=1
A,2,1 => a=2
A,1,2 => a=1

4

4
a5

5

3
a5

2

6
a5

5

3
a7

4

4
a7

3

2
a9

2

1

1

1

2

12

1

a7

b8

a9

b10

a11 a11

4

1
a9

2

3
a9

2

12

1
a11 a11

3

2
a9

2

3
a9

4

1
a9

3

2
a9

1

1

2

12

1

2

1

a9

b8

a7

b10

a11a11
2

12

1
a11 a11

1

1

1

2
a7

b8

a9

b10

1 2

12
a5

b6

a5

b6

1

2
a7

b8

3

2
a9

1

1
a9

b10

1

1
a3

b4

5

3
a5

4

4
a5

2

12

1
a9 a9

2

12

1
a9 a9

1

2

1

1

3

2

2

3 4

1
a7 a7 a7 a7

b8

b6

a5
2

1

1 3

1 2

2

3
a3

b4

a5

a7 a7

b8

b6

1 3

1 2

2

12

1

a7 a7

b8

a9 a9
2

12

1
a9 a9

21

12

1

1

1

4

3

2

2

3 4

1
b8

a7 a7 a7

b6

a5

a7

a5

b6

b4

a3

2

12

1
a9a9

3

2
a7

2

3
a7

4

1
a7

1 3

1 2

2

12

1

a7 a7

b8

a9a9

1

1
a7

b8

5

3
a5

2
a5

3

2

2

b6

a3

b4

b2

a1

1

2
b6

a5
1

b=2
b=1

b=2b=
1

b=1

b=6

b=
1

b=4

b=2

b=3

b=4

b=2
b=

1

b=1

a=1

a=1

a=3

a=2

a=1

b=1

b=2a=2

a=1

a=5

a=4

a=3

a=2

a=2

a=1
A,12,1

A,11,2

A,10,3

A,15,0

B,13,2

B,11,1

B,8,3

B,8,2

B,8,1

A,9,2

A,7,1

A,5,3

A,6,2

A,4,4

A,3,5

A,2,6

B,5,2

B,5,1

B,0,5

B,0,4

B,0,3

B,0,2

A,4,1

A,3,2

A,2,3

A,1,4

B,3,1

B,0,3

B,0,2

B,0,1

A,2,1

A,1,2

B,0,2

B,0,1

A,10,1

a=2
a=1

a=2

a=3

a=1

b=
1

b=2

b=3

b=4

a=2

A,9,4

(b)

(c)

(a)

Fig. 1. Comparison between QCSP and state-based models on the NimFibo game: (a)
QCSP policy tree; (b) state-based policy; (c) reachability graph using the policy

equivalent to memorizing goods over states. For example, when exploring reach-
able states of Figure 1(c), trajectories rooted in state (B, 8, 2) do not need to
be explored twice (once when (B, 8, 2) is reached from (A, 10, 1) and once when
(B, 8, 2) is reached from (A, 10, 3)). Similarly, if the exploration below state s
leads to a dead-end, then s can be recorded as a nogood, potentially reused
later during search to avoid exploring s again. These notions of goods and no-
goods over states are not handled by QCSP solvers, which can only record goods
and nogoods over variables of the unfolded model. Recording information about
states already explored uses the principles of forward dynamic programming [9].

Third, the state-based approach is able to reason over unbounded horizons.
It does not require the system evolutions to be unfolded over a fixed number of
steps. This leads to models which are more compact than QCSP models.

For all these reasons, we believe that there is a need to introduce a new
constraint-based framework based explicitly on the notion of state, in order
to efficiently model and solve control problems for completely observable and
Markovian dynamic systems.
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3 Markovian Game-CSP (MGCSP)

In the following, S denotes the set of variables describing the system state.
State variables used here differ from those used in Strategic CSP [10]. Every
assignment s ∈ d(S) is called a state (given an ordered set of variables X , d(X)
denotes the Cartesian product of the domains of the variables in X). We consider
two additional sets of variables denoted C and U respectively, corresponding to
the decision made by the ∃-player (resp. the ∀-player) at each decision step.
Every assignment c ∈ d(C) (resp. u ∈ d(U)) is called a controllable (resp.
uncontrollable) decision.

3.1 Control Model

To represent the possible initial and final states, we use a relation I ⊆ d(S)
(“init”) and a relation E ⊆ d(S) (“end”). To represent that some decisions c ∈
d(C) (resp. u ∈ d(U)) cannot be made in some states, due to game rules or to
physical constraints, we use a relation Fc ⊆ d(S) × d(C) (resp. Fu ⊆ d(S) ×
d(U)) called feasibility relation such that Fc(s, c) (resp. Fu(s, u)) holds iff making
decision c (resp. u) is possible in state s. The state evolution scheme is defined by
a transition function Tc : d(S)×d(C)→ d(S) (resp. Tu : d(S)×d(U)→ d(S)),
such that s′ = Tc(s, c) (resp. s′ = Tu(s, u)) means that s′ is the state resulting
from the application of decision c (resp. u) in state s.

Three assumptions are made to guarantee that system evolutions cannot be
blocked: first, there exists at least one possible initial state s, that is one state
such that I(s) = true; second, for every state s which is not terminal (E(s) =
false), there exists at least one feasible decision c (resp. u), that is one decision
such that Fc(s, c) = true (resp. Fu(s, u) = true); third, for every state s which is
not terminal and every decision c (resp. u) feasible in s, Tc(s, c) (resp. Tu(s, u))
is defined; it may be undefined for infeasible decisions. These three assumptions
are actually undemanding: if the first assumption is violated, then it is obvious
that the goal cannot be reached; if the second assumption is violated, it suffices
to add a dummy value for every variable in C (resp. U) to guarantee that at
least doing nothing is always feasible; if the third assumption does not hold, then
feasibility relation Fc (resp. Fu) can be strengthened by considering as infeasible
decisions that induce no successor state. Relations I, E, Fc, Fu, Tc, and Tu are
expressed by sets of constraints. All previous elements are gathered in the notion
of Markovian Game CSP.

Definition 1. A Markovian Game Constraint Satisfaction Problem (MGCSP)
is a tuple M = (S, I, E,C, U, Fc, Tc, Fu, Tu) with:

– S a finite set of finite domain variables called state variables;
– I a finite set of constraints over S called initialization constraints;
– E a finite set of constraints over S called termination constraints;
– C a finite set of finite domain variables called controllable variables
– U a finite set of finite domain variables called uncontrollable variables;
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– Fc and Fu finite sets of constraints over S ∪C and S ∪U respectively, called
feasibility constraints;

– Tc and Tu finite sets of constraints over S∪C∪S′ and S∪U∪S′ respectively,
called transition constraints;

– ∃s ∈ d(S), I(s);
– ∀s ∈ d(S), ¬E(s)→ ((∃c ∈ d(C), Fc(s, c)) ∧ (∃u ∈ d(U), Fu(s, u)));
– ∀s ∈ d(S), ¬E(s) → ((∀c ∈ d(C), Fc(s, c) → (∃!s′ ∈ d(S), Tc(s, c, s′))) ∧

(∀u ∈ d(U), Fu(s, u) → (∃!s′ ∈ d(S), Tu(s, u, s′)))) (“∃!” stands for “there
exists a unique”).

To illustrate the framework, consider the NimFibo game again. In this exam-
ple, the set of state variables S contains variables p, r, and l defined previously,
representing respectively the next player (value in {A,B}), the number of re-
maining matches (value in [0..N ]), and the number of matches taken at the last
play (value in [1..N ]). Set C (resp. U) contains a unique variable a (resp. b) of
domain [1..N − 1] representing the number of matches taken by player A (resp.
B). The different constraint sets are given below. I expresses that initially, there
are N matches and variable l is assigned a default arbitrary value (since there
is no last play). E expresses that the game ends when there is no match left. Fc
and Fu express that at each step, a player can take at most twice the number of
matches taken by the last player. Tc and Tu define the transition function of the
system: e.g., the number of remaining matches r′ is decreased by the number of
matches taken (given a variable x, x′ denotes the value of x at the next step).

I : (p = A) ∧ (r = N) ∧ (l = N) E : (r = 0)
Fc : (a ≤ r) ∧ (a ≤ 2 · l) Fu : (b ≤ r) ∧ (b ≤ 2 · l)
Tc : (p′ = B) ∧ (r′ = r − a) ∧ (l′ = a) Tu : (p′ = A) ∧ (r′ = r − b) ∧ (l′ = b)

3.2 Reachability Control Problems

A MGCSP describes the dynamics of the system considered and induces a set
of possible trajectories.

Definition 2. Let M = (S, I, E,C, U, Fc, Tc, Fu, Tu) be a MGCSP. The set of
trajectories induced by M is the set of (possibly infinite) sequences of state tran-
sitions seq : s1

c1→ s2
u2→ s3

c3→ s4
u4→ s5 · · · such that:

– I(s1) holds, and for every state si which is not the last state of the sequence,
E(si) does not hold (si is not terminal),

– for every transition si
ci→ si+1 in seq, Fc(si, ci) and Tc(si, ci, si+1) hold,

– for every transition si
ui→ si+1 in seq, Fu(si, ui) and Tu(si, ui, si+1) hold.

In order to control the system and restrict its possible evolutions, we use so-
called decision policies π, which are mappings from states s ∈ d(S) to decisions
c ∈ d(C). π(s) = c means that decision c is made when state s is encountered.
Such a decision policy can be partial in the sense that π(s) may be undefined for
some states s ∈ d(S). Partial policies are useful to define the controller behavior
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only over the set of reachable states of the system. We are also interested in
applicable policies, which have the particularity to specify only feasible decisions.
These elements are formalized below.

Definition 3. A policy for a MGCSP M = (S, I, E,C, U, Fc, Tc, Fu, Tu) is a
partial function π : d(S)→ d(C). The domain of a policy π is defined as d(π) =
{s ∈ d(S) |π(s) defined}.

The set of trajectories induced by π is the set of trajectories for M of the
form s1

c1→ s2
u2→ s3

c3→ s4
u4→ s5 · · ·

ui−1→ si obtained by following π, i.e. such that
cj = π(sj) for every transition sj

cj→ sj+1 in the sequence. The trajectory is said
to be complete if it is infinite or if si /∈ d(π).
π is said to be applicable iff for every trajectory s1

c1→ s2
u2→ s3

c3→ s4
u4→

s5 · · ·
ui−1→ si induced by π, either si /∈ d(π), or si ∈ d(π) and Fc(si, π(si)) (i.e.

the policy specifies decisions which are feasible).

Several requirements can be imposed on system-state trajectories. We focus here
on reachability requirements, imposing to find an applicable policy π so that all
trajectories induced by π satisfy a given condition at some step.

Definition 4. A reachability control problem is a pair (M,G) with M a MGCSP
over a set of state variables S, and G a finite set of constraints over S called
goal constraints. A solution to this problem is an applicable policy π for M such
that all complete trajectories s1

c1→ s2
u2→ s3

c3→ s4
u4→ s5 · · · induced by π are finite

and end in a state sn such that G(sn) holds.

The NimFibo problem corresponds to reachability control problem (M,G) with
M the MGCSP defined in Section 3.1 and G : (p = B) ∧ (r = 0) (requirement
of reaching a state in which there is no match left and B must play). A possible
solution policy π for N = 15 is given in Figure 1(b).

3.3 Relationship with QCSP/QCSP+

To relate QCSP and reachability control problems (M,G), let us consider the
following QCSP+, which could be put in prenex normal form:

QN (M,G) : ∀S1[I(S1)]
G(S1) ∨ (¬E(S1) ∧ ∃C1, S2[Fc(S1, C1) ∧ Tc(S1, C1, S2)]
G(S2) ∨ (¬E(S2) ∧ ∀U2, S3[Fu(S2, U2) ∧ Tu(S2, U2, S3)] (1)
G(S3) ∨ (¬E(S3) ∧ ∃C3, S4[Fc(S3, C3) ∧ Tc(S3, C3, S4)]
G(S4) ∨ (¬E(S4) ∧ ∀U4, S5[Fu(S4, U4) ∧ Tu(S4, U4, S5)]
...

G(SN-1) ∨ (¬E(SN-1) ∧ ∃CN-1, SN [Fc(SN-1, CN-1) ∧ Tc(SN-1, CN-1, SN )]
G(SN ))...))))

QN(M,G) can be read as: "Does it hold that for every possible initial state s1,
either G(s1) is satisfied, or s1 is not terminal and there exists a feasible decision
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c1 inducing successor state s2 such that either the goal is reached in s2, or s2 is
not a terminal state and for every feasible decision u2, inducing successor state
s3, either the goal is reached in s3 or s3 is not terminal and there exists a feasible
decision c3 ... such that either G(sN−1) holds or sN−1 is not terminal and there
exists a feasible decision cN−1 inducing a state sN satisfying the goal?".

Proposition 1. There exists a winning strategy for QCSP QN(M,G) given in
Equation 1 if and only if there exists a solution policy π : d(S) → d(C) for
reachability control problem (M,G) such that all complete trajectories induced
by π have less than N steps.

Proposition 1 implies that if a QCSP can be put in a form similar to QN (M,G),
in which the notion of state is made explicit, then searching for a solution policy
for (M,G) suffices to solve the initial QCSP. However, there may exist a solution
policy for (M,G) and no winning strategy for QN(M,G) because QN (M,G)
models a control problem over a bounded horizon. It is possible to take N high
enough, for instance equal to the number of possible states (N = |d(S)|). But as
|d(S)| can be huge and as the number of variables and constraints in QN (M,G)
is linear in N , this approach may not be practically applicable. The problem does
not arise with the MGCSP approach in which we just describe the transition
function of the system instead of unfolding the model. In another direction,
Proposition 1 can be seen as a counterpart of a property of Markov Decision
Processes (MDPs [11]) stating that every MDP has an optimal policy which is
stationary.

Next, in terms of space needed to record a winning strategy, the size of policies
can be exponentially smaller than the size of policy trees, which can be useful
when embedding a controller on-board an autonomous system having limited
memory. More precisely, if Rπ denotes the set of states reachable using π, policy
π can be recorded as a table contains |Rπ| (s, c) pairs. On the other hand, let
W be an equivalent winning strategy for QN (M,G), that is a winning strategy
inducing the same trajectories as π. Strategy W expressed as a policy tree may
contain |d(U)|N/2 leaves, which is exponential in N , and which can be shown to
be always greater than or equal to |Rπ|.

A last remark concerns the semantics of the notion of goal. In QCSP, goal
constraints are specified just after the rightmost quantifier in the quantification
sequence. But there may exist winning strategies which never reach the goal:
these strategies instead block the adversary at some step. In MGCSPs, the goal is
guaranteed to be reached along every trajectory. Both notions of goal are however
equivalent here due to the assumption of existence of a feasible decision in every
non-terminal state, which ensures that no blocking can occur in QN(M,G).

4 Algorithm

The algorithm proposed for solving reachability control problems over MGCSP is
inspired by techniques for planning in non-deterministic domains [12]. One diffe-
rence is the use of constraint programming to reason over the different relations.
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General description. The algorithm is composed of three functions:

– reachMGCSP, responsible for exploring the different initial states,
– exploreC, responsible for exploring the different feasible controllable deci-

sions c ∈ d(C) in a current s,
– exploreU, responsible to do the same for uncontrollable decisions u ∈ d(U).

Search behaves as an And/Or search in which Or nodes correspond to decisions in
C and And nodes to decisions in U . The search space is explored in a depth-first
manner, and only states which are reachable from initial states are considered.

During search, the algorithm maintains a current policy π. It also associates,
with each state s, a mark Mark (s) in {SOLVED,BAD ,PROCESSING,NONE}.
Mark SOLVED means that state s has already been visited during search and
there already exists in current policy π a recipe to reach the goal starting from
s. Mark BAD means that there does not exist any solution policy starting from
s. Mark PROCESSING is associated with states on the trajectory currently
explored. Mark NONE , which is not explicitly stored, is associated with all
other states. In the implementation, state marks are recorded in a hash table,
which is empty initially (all marks set to NONE).

A specificity of the algorithm concerns the handling of loops. A loop is a
situation in which a state marked PROCESSING is encountered again. When
a loop is detected and the goal has not been reached yet, this means that the
adversary has a way to generate an infinite loopy trajectory in which the goal is
never reached. For example, assume that Figure 2 represents the set of feasible
trajectories of a system. Trajectories seq1 : sa

c:0→ sb
u:0→ sc

c:0→ sd
u:1→ se

c:0→ sb

and seq2 : sa
c:0→ sb

u:0→ sc
c:0→ sd

u:1→ se
c:1→ sd respectively loop over sb and sd.

Therefore, trajectory seq3 : sa
c:0→ sb

u:0→ sc
c:0→ sd

u:1→ se cannot be extended to a
solution. Set J = {sb, sd} is called the loop justification of seq3. It corresponds
to the set of past states over which loops are detected when trying to reach
the goal from seq3. The mark of se, the last state of seq3, cannot however be
set to BAD because loops discovered depend on decisions made before se. For
seq4 : sa

c:0→ sb
u:0→ sc

c:0→ sd and seq5 : sa
c:0→ sb

u:0→ sc, the loop justification
is {sb}. For seq6 : sa

c:0→ sb, the loop justification is empty (J = ∅). This
means that in seq6, no state explored strictly before sb is involved in the loops
discovered after sb. The mark of sb can then be set to BAD . More generally, a
state whose exploration does not succeed can be marked as BAD if the current
loop justification is empty.

loop

loop

goal

sb

sd
sf

sb

u=0
c=0sa

sc sd
u=1c=0

se
c=0

c=1
u=1

Fig. 2. Behavior of algorithm reachMGCSP in face of loops
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Pseudo-code. Main function reachMGCSP takes as input a MGCSP M and
a set of goal constraints G. It returns (true, π) if M admits a solution policy π,
(false ,∅) otherwise. To do that, function reachMGCSP starts with an empty
policy and analyzes every possible initial state s, i.e. every state s satisfying the
initialization constraints in I (function getSols used in line 6 returns the set of
solutions of a CSP). Every initial state s which does not satisfy the goal and
whose mark differs from SOLVED is then studied. If s is terminal or has mark
BAD , then the control problem has no solution and (false ,∅) is returned (line 8).
Otherwise, s is explored further using a call to function exploreC (line 10).

1 Input: a MGCSP M and a set of goal constraints G
2 Output: a pair (b, π) with b a boolean and π a policy
3 reachMGCSP(M, G)
4 begin
5 π ← ∅
6 foreach s ∈ getSols(I(S)) do
7 if ¬G(s) ∧ (Mark(s) �= SOLVED) then
8 if E(s) ∨ (Mark(s) = BAD) then return (false, ∅)
9 else

10 (covered, π, .)← exploreC(s, π)
11 if ¬covered then return (false, ∅)

12 return (true , π)

Function exploreC(s, π) explores the possible decisions that can be made is
state s. It returns a triple (b, π′, J). b specifies whether policy π given in input can
be extended so that the goal can always be reached starting from s. If b = true,
π′ is the extended policy covering s. If b = false , J is a set of states justifying
the absence of solution starting from s. J corresponds to the loop justification
described previously. The first part of exploreC (lines 5 to 10) determines all
decisions c that are feasible in state s and all associated possible successor states
s′, by reasoning over CSP Fc ∧ Tc ∧ (S = s). If some successor state s′ obtained
by applying c satisfies the goal or has mark SOLVED , then it suffices to set
π(s) = c to cover state s. The second part of function exploreC (line 11 to 27)
traverses the set of successor states s′ to be explored further. If s′ has mark
SOLVED, then a solution is found to cover state s (line 17). Otherwise, if s′
has mark PROCESSING, the loop justification is extended (line 19). Otherwise,
if s′ has mark NONE , it is further explored via a call to function exploreU
(line 22). If this call returns an extended solution policy, then the mark of s is
set to SOLVED and the new solution policy is returned (line 23). Otherwise,
the loop justification is extended (line 24). If all successor states have been
explored without finding a solution, then current state s is removed from the
loop justification, its mark is set to BAD if the loop justification is empty, and
an inconsistency result is returned (lines 25 to 27).

Function exploreU behaves similarly. The only differences are as follows. In
the initial phase (lines 5 to 11), search can be pruned if there exists a successor
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1 Input: a state s and a current policy π
2 Output: a triple (b, π′, J) with b a boolean, π′ a policy, and J a set of states
3 exploreC(s, π)
4 begin
5 toExplore ← ∅
6 foreach sol ∈ getSols(Fc(S,C) ∧ Tc(S, C, S′) ∧ (S = s)) do
7 (s, c, s′)← (sol↓S , sol↓C , sol↓S′

)
8 if G(s′) ∨ (Mark(s′) = SOLVED) then
9 setMark (s,SOLVED); return (true, π ∪ {(s, c)}, ∅)

10 else if ¬E(s′) then toExplore ← toExplore ∪ {(c, s′)}
11 π′ ← π
12 setMark(s,PROCESSING)
13 J ← ∅
14 while toExplore �= ∅ do
15 Choose (c, s′) ∈ toExplore ; toExplore ← toExplore \ {(c, s′)}
16 if Mark(s′) = SOLVED then
17 setMark (s,SOLVED); return (true, π′ ∪ {(s, c)}, ∅)

18 else if Mark(s′) = PROCESSING then
19 J ← J ∪ {s′}
20 else if Mark(s′) = NONE then
21 π′ ← π′ ∪ {(s, c)}
22 (covered, π′, J ′)← exploreU(s′, π′)
23 if covered then setMark (s,SOLVED); return (true , π′, ∅)
24 else J ← J ∪ J ′; π′ ← π′ \ {(s, c)}
25 J ← J \ {s}
26 if J = ∅ then setMark (s,BAD) else setMark (s,NONE)
27 return (false, π′, J)

state s′ whose mark equals BAD , or such that s′ is a terminal non-goal state.
An inconsistency result is also directly returned if a loop is detected. For the
second phase, in which the rest of the successor states are more finely studied, if
the mark of one successor state s′ equals BAD , then an inconsistency result is
returned (line 17). Otherwise, a call to exploreC is invoked, in order to develop
the different possible decisions that can be made in s′ (line 19).

Proposition 2. Algorithm reachMGCSP is sound and complete: it returns
(true, π) with π a solution policy if reachability control problem (M,G) admits a
solution, and (false ,∅) otherwise.

Algorithmic improvements. The basic algorithm can be improved on several
points. First, in exploreC, CSP Fc(S,C)∧Tc(S,C, S′)∧G(S′) can be considered
in order to faster determine whether there exists a controllable decision c allowing
the goal to be directly satisfied, instead of enumerating all solutions of Fc ∧ Tc
and then checking whether one of them satisfies G. Similarly, it is possible to
consider, in exploreU, CSP Fu(S,U) ∧ Tu(S,U, S′) ∧E(S′) ∧ ¬G(S′) to search
for adversary strategies which directly lead to a non-goal terminal state.
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1 Input: a state s and a current policy π
2 Output: a triple (b, π′, J) with b a boolean, π′ a policy, and J a set of states
3 exploreU(s, π)
4 begin
5 toExplore ← ∅
6 foreach sol ∈ getSols(Fu(S, U) ∧ Tu(S,U, S′) ∧ (S = s)) do
7 s′ ← sol↓S′

8 if (E(s′) ∧ ¬G(s′)) ∨ (Mark(s′) = BAD) ∨ (s = s′) then
9 setMark (s,BAD); return (false, π, ∅)

10 else if Mark(s′) = PROCESSING then return (false, π, {s′})
11 else if Mark(s′) = NONE then toExplore ← toExplore ∪ {s′}
12 π′ ← π
13 setMark(s,PROCESSING)
14 while toExplore �= ∅ do
15 Choose s′ ∈ toExplore ; toExplore ← toExplore \ {s′}
16 if Mark(s′) = BAD then
17 setMark (s,BAD); return (false, π′, ∅)

18 else if Mark(s′) = NONE then
19 (covered, π′, J)← exploreC(s′, π′)
20 if ¬covered then
21 J ← J \ {s}
22 if J = ∅ then setMark(s,BAD) else setMark(s,NONE )
23 return (false, π′, J)

24 setMark(s,SOLVED); return (true, π′, ∅)

In terms of space consumption, the algorithm records marks over reachable
states only. But the set of such states may be large and recording marks may
become expensive. To overcome this difficulty, some state marks could be for-
gotten during search: the algorithm then remains valid but may re-explore some
parts of the search space. This option has not been used in the experiments.

Last, we consider in the MGCSP framework that the ∃-player begins to play.
To handle situations in which the ∀-player begins, it suffices to replace the call
to exploreC in function reachMGCSP by a call to exploreU.

5 Experiments

We ran our experiments on an Intel i5-520, 1.2GHz, 4GB RAM. Maximum com-
putation time is set to one hour. Algorithm reachMGCSP is implemented in
Dyncode, a tool developed on top of constraint programming library Gecode.1
Any constraint available in Gecode can be used in Dyncode. Dyncode was ini-
tially introduced in [13] to handle control problems involving non-determinism
and partial observability. Algorithms in [13] are less efficient than dedicated al-
gorithm reachMGCSP over deterministic and completely observable problems.

1 http://www.gecode.org/
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For the experiments, we used min-domain for the variable choice heuristics and
lexicographic ordering for the value choice.

We first compared Dyncode with Qecode2, a QCSP+ solver based on Gecode.
We performed experiments on three games already encoded in the Qecode distri-
bution: NimFibo, Connect4, and MatrixGame. Figures 3(a) to 3(c) show that on
these problems, Dyncode outperforms Qecode by several orders of magnitude.

For NimFibo (Figure 3(a)), Qecode can solve problems up to 40 matches,
whereas Dyncode can solve instances involving several tens of thousands of
matches. The time complexity observed with Dyncode is even linear in the
number of matches, whereas there is an exponential blowup with Qecode. In
other words, explicitly using the notion of state and recording good/bad states
encountered during search breaks the problem complexity.

Connect4 is a two-player game over a six-row × seven-column board. At each
step, a player puts a token in one column of the board. This token falls at the
bottom of the column by the effect of gravity. A player wins if he manages to
align four of his tokens horizontally, vertically, or diagonally. The game is null
if there is no alignment and the board is full. As in the Qecode distribution,
we consider here that the goal is to play without losing the game over a fixed
number of steps. This variant is referred to as Connect4_Bounded. Figure 3(b)
shows that Dyncode solves more instances than Qecode for this game. This time,
there is an exponential blowup for both solvers, but the slope of the blowup is
weaker for Dyncode. The first reason is again the explicit use of the notion
of state, since in Connect4, several sequences of plays can lead to the same
configuration. The second point is that Qecode initially creates many variables
and constraints to encode the problem over a fixed horizon. In theory, it then
performs so-called cascade propagation over the whole problem. On the opposite,
Dyncode propagates constraints just over the current state and the next state.
This may achieve less pruning, but this is performed much faster. We also realized
experiments with random value choice heuristics and restarts, to see the effect
of search diversification. We observed that randomization in Dyncode speeds
search on some executions (e.g. Connect4_Bounded for game depth equal to 25
may be solved in about 30 minutes), but that it can lead to memory problems
on other executions, due to the recording of state marks.

In MatrixGame, a 0/1 matrix of size 2d is considered. At each turn, the ∃-
player cuts the matrix horizontally and decides to keep the top or bottom part.
The ∀-player then cuts the matrix vertically and keeps the left or right part.
After d turns, the matrix is reduced to a single cell. The ∃-player wins if this
cell contains a 1. Figure 3(c) shows that Dyncode performs better for this game,
whose MGCSP encoding is such that the same state is never encountered twice.
We believe that Dyncode is faster because it reasons over smaller CSPs.

Dyncode was also compared with Queso, a QCSP solver which was shown
in [4] to outperform other QCSP solvers such as BlockSolve or QCSP-solve.
We did not rerun Queso, which is not maintained anymore, but instead directly
took the results provided in [4], obtained with a Pentium 4, 3.06GHz, 1GB RAM.

2 http://www.univ-orleans.fr/lifo/software/qecode
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Fig. 3. Comparison of computation times obtained with Dyncode, Qecode (QCSP+
solver), and Queso (QCSP solver) on games (a) NimFibo, (b) Connect4_Bounded,
(c) MatrixGame, (d) Connect4_Full; y-axis represents CPU time in seconds

Results are given in Figure 3(d) for Connect4, but this time with boards of size
N ×M , and in which the goal for the ∃-player is to win the game. The results
show that Dyncode outperforms Queso. Again, we believe that the notion of
state is really useful here to avoid re-exploring several times the same part of
the search space. Whereas Queso uses techniques called pure value rules and
constraint propagation for reified disjunction constraints, the limited constraint
propagation performed by Dyncode reduces computation times.

Dyncode could be compared against other tools: (a) tools for non-deterministic
planning, e.g. MBP [12]; (b) tools for controller synthesis from the model check-
ing community [14]; (c) tools for solving MDPs [11], by considering MGCSPs
as MDPs with 0/1 probabilities. MDP algorithms exploring the whole state
space, such as basic value/policy iteration, may not scale well for games. And/Or
search algorithms exploring only reachable states may be more competitive, but
their management of probabilities and Bellman backups may induce extra com-
putation times. These comparisons are left for future work. An important as-
pect is the fact that these tools do not offer the flexibility of constraint-based
models.
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6 Conclusion

This paper showed that, at the moment, using QCSP/QCSP+ is not the best
constraint-based way of solving control problems for dynamic systems satisfy-
ing the Markovian and complete observability assumptions. The strengths of
quantified constraints are more appropriate for solving problems in which these
assumptions are violated, or problems involving just a few alternations of quan-
tifiers. In the future, we plan to extend MGCSPs to model control problems in
which the number of uncontrollable transitions between two controllable steps is
not fixed. Requirements more general than reachability could also be considered.
This should be a step to cross-fertilize advances in constraint programming and
work performed in the automata and model checking community.
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Abstract. Mini-Bucket Elimination (MBE) is a well-known approximation of
Bucket Elimination (BE), deriving bounds on quantities of interest over graph-
ical models. Both algorithms are based on the sequential transformation of the
original problem by eliminating variables, one at a time. The order in which vari-
ables are eliminated is usually computed using the greedy min-fill heuristic. In
the BE case, this heuristic has a clear intuition, because it faithfully represents
the structure of the sequence of sub-problems that BE generates and orders the
variables using a greedy criteria based on such structure. However, MBE pro-
duces a sequence of sub-problems with a different structure. Therefore, using the
min-fill heuristic with MBE means that decisions are made using the structure of
the sub-problems that BE would produce, which is clearly meaningless. In this
paper we propose a modification of the min-fill ordering heuristic that takes into
account this fact. Our experiments on a number of benchmarks over two impor-
tant tasks (i.e., computing the probability of evidence and optimization) show that
MBE using the new ordering is often far more accurate than using the standard
one.

1 Introduction

The graphical model paradigm includes very important reasoning tasks such as solving
and counting solutions of CSPs, finding optimal solutions of weighted CSPs, comput-
ing probability of evidences and finding the most probable explanation in Bayesian
Networks. Mini-Bucket Elimination (MBE) [5] is a very popular algorithm deriving
bounds on reasoning tasks over graphical models. The good performance of MBE in
different contexts has been widely proved [5,7,11,12].

MBE is a relaxation of Bucket Elimination (BE) [2] and both algorithms work by
eliminating the problem variables, one at a time. In BE, the order in which variables
are eliminated is important because it determines the complexity of the algorithm. In
MBE, the variable elimination order does not affect the complexity of the algorithm,
which comes determined by a control parameter. However, as we show in this paper,
such order greatly affects the accuracy of the bound.

The most common elimination order for both BE and MBE is the one given by the
min-fill greedy heuristic [3]. This heuristic was originally designed for BE and it is
there where it has a clear rationale: the greedy algorithm that computes the min-fill
ordering takes into account the structure of the sequence of sub-problems that BE will
subsequently produce. Thus, each time the algorithm decides the next variable to be
eliminated it does so by considering the structure of the problem that BE will have at
this point.

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 759–773, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Using the same heuristic for MBE does not seem a good idea, because MBE produces
a sequence of subproblems with a different structure. Thus, when MBE uses the min-fill
heuristic it takes decisions based on a misleading information.

In this paper we show that a better elimination ordering for MBE may be computed
by considering the real structure of its sequence of subproblems. To do that, we repre-
sent these subproblems by induced z-bounded hyper-graphs and compute the elimina-
tion ordering accordingly. We demonstrate that MBE using the new elimination order-
ing is often far more accurate than using the standard one on a number of benchmarks
(i.e., coding networks, real-world genetic linkage analysis, real-world noisy-OR models,
and combinatorial auctions) over two tasks (i.e., computing the probability of evidence,
and finding the complete assignment with minimum cost in a WCSP).

2 Background

2.1 Graphical Models

A graphical model is a tuple (X ,F), where X = (x1, . . . , xn) is an ordered set of
variables and F = {f1, . . . , fr} is a set of functions. Variable xi takes values from
its finite domain Di. Each function fj : Dvar(fj) → A is defined over a subset of
variables var(fj) ⊆ X and returns values from a set A. For example, X = (x1, x2)
with D1 = D2 = {0, 1}, and F = {x1 + x2, x1 ∗ x2} is a graphical model. Abusing
notation, the scope of a set of functions F , noted var(F), is the union of scopes of the
functions it contains.

Given a graphical model, one can compute different reasoning tasks. A reasoning
task is defined by two operations (

⊗
and ⇓) over functions. The combination of f and

g, noted f
⊗
g, is a new function h with scope var(h) = var(f) ∪ var(g), while the

marginalization of a set of variablesW ⊆ X from function f , noted f ⇓W , is a new
function h with scope var(h) = var(f) − W . Computing the reasoning task means
computing (

⊗
f∈F f) ⇓X

The graphical model framework can be used to model a variety of important com-
binatorial problems. For example, if F is a set of cost functions (i.e, returning a non-
negative value representing a cost) the graphical model is a weighted CSP. If we take the
sum as combination and the minimum as marginalization, the reasoning task becomes
minX{

∑
f∈F f)}, which is the minimum cost assignment of the weighted CSP. Alter-

natively, if F is a set of conditional probability tables we have a Bayesian Network. If
we take the product as combination and the sum as marginalization, the reasoning task
becomes

∑
X{

∏
f∈F f)}, which models the probability of the evidence. If F is a set

of hard constraints (i.e, boolean functions) the graphical model is a classical CSP and
the reasoning task

∑
X{

∏
f∈F f)} counts its solutions.

2.2 Graph Concepts

The structure of a graphical model is represented by its associated hyper-graph.

Definition 1. A hyper-graph H is a pair H = (V,E) where V is a set of elements,
called nodes, and E is a set of non-empty subsets of V , called hyper-edges. The width
of hyper-graphH is the size of its largest edge.
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Definition 2. Given a graphical modelP =(X ,F), its associated hyper-graphH(P )=
(V,E) is defined as V = {i | xi ∈ X} and E = {var(f) | f ∈ F}.

The most fundamental structural property considered in the context of graphical models
is acyclicity. Mainly, acyclicity is measured in terms of the induced width.

Definition 3. Let H = (V,E) be a hyper-graph, and let o = {xo1, . . . , xon} be an or-
dering of the nodes in V where xoj is the jth element in the ordering. This induces a
sequence of hyper-graphs Hn, Hn−1, . . . , H1 where H = Hn and Hj−1 is obtained
from Hj as follows. All edges in Hj containing xoj are merged into one edge, called the
induced hyper-edge, and then xoj is removed. Thus, the underlying vertices of Hj−1 are
xo1, . . . , x

o
j−1. The induced width ofH under o, notedw∗(o), is the largest width among

all hyper-graphs Hn, . . . , H1. The induced width of H , noted w∗, is the minimum in-
duced width over all orderings o.

Example 1. Consider a graphical model P = (X ,F) where X = {x1, x2, x3, x4}
and F = {f1(x1, x3), f2(x2, x3), f3(x2, x4), f4(x1, x4)}. Its hyper-graph is H(P ) =
(V,E), where V = {1, 2, 3, 4} andE = {(1, 3), (2, 3), (2, 4), (1, 4)}. The lexicograph-
ical ordering o = {x1, x2, x3, x4} induces the following sequence of hyper-graphs
(where each hyper-graph is represented by its set of hyper-edges):

H4(P ) = {(1, 3), (2, 3), (2, 4), (1, 4)}
H3(P ) = {(1, 3), (2, 3), (1, 2)}
H2(P ) = {(1, 2)}
H1(P ) = {(1)}

The induced width of the problem is 2 - all edges inH4(P ),H3(P ) andH2(P ) achieve
this size.

2.3 Bucket Elimination

Bucket Elimination (BE) [2] (non-serial dynamic programming in [1] and fusion algo-
rithm in [13]) is a general algorithm for the computation of reasoning tasks in graphical
models. BE (Algorithm 1) works as a sequential elimination of variables. Given an ar-
bitrary variable ordering o = {xo1, . . . , xon} (line 1), the algorithm eliminates variables
one by one, from last to first, according to o. The elimination of variable xoj is done as
follows: F is the set of current functions. The algorithm computes the so called bucket
of xoj , noted Bj , which contains all cost functions in F having xoj in their scope (line
3). Next, BE computes a new function gj by combining all functions in Bj and subse-
quently eliminating xoj (line 4). Then, F is updated by removing the functions in Bj
and adding gj (line 5). The new F does not contain xoj (all functions mentioning xoj
were removed) but preserves the value of the result. The elimination of the last variable
produces an empty-scope function (i.e., a constant) which is the result of the problem
(line 7).

The correctness of the algorithm is guaranteed whenever the combination and
marginalization operators satisfy the three Shenoy-Shaffer axioms [13]. The most im-
portant tasks over graphical models satisfy these axioms.
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Algorithm 1. Bucket Elimination

Input : A graphical model P = (X ,F).
Output: Evaluation of (

⊗
f∈F f) ⇓X .

{xo
1, . . . , x

o
n} ← compute-order(P);1

for j ← n to 1 do2

Bj ← {f ∈ F| xo
j ∈ var(f)};3

gj ← (
⊗

f∈Bj
f) ⇓xo

j
;4

F ← (F ∪ {gj}) −Bj ;5

end6

return
⊗

f∈F f ;7

Algorithm 2. Mini-Bucket Elimination

Input : A graphical model P = (X ,F); and the value of the control parameter z.
Output: A bound of (

⊗
f∈F f) ⇓X .

{xo
1, . . . , x

o
n} ← compute-order(P);1

for j ← n to 1 do2

Bj ← {f ∈ F| xo
j ∈ var(f)};3

{Q1, . . . , Qp} ← partition(Bj , z );4

for k ← 1 to p do5

gj,k ← (
⊗

f∈Qk
f) ⇓xo

j
;6

end7

F ← (F ∪ {gj,1, . . . , gj,p})− Bj ;8

end9

return
⊗

f∈F f ;10

Example 2. Consider the graphical model in Example 1. The trace of BE along lexico-
graphical order is as follows.

Bucket
B4 f4(x1, x4) , f3(x2, x4)
B3 f1(x1, x3) , f2(x2, x3) , g4(x1, x2) = (f4

⊗
f3) ⇓x4

B2 g3(x1, x2) = (f1(x1, x3)
⊗
f2(x2, x3)

⊗
g4(x1, x2)) ⇓x3

B1 g2(x1) = g3(x1, x2) ⇓x2

Output g1() = g2(x1) ⇓x1

Since new functions have to be stored explicitly as tables, and their size is exponen-
tial on their arity, the time and space complexity of BE depends on the largest arity
needed. This arity is captured by the structural parameter induced-width (see Section 3
for details).

Theorem 1. Given a variable ordering o, the time and space complexity of BE is
O(exp(w∗(o) + 1)) and O(exp(w∗(o))), respectively.
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2.4 Mini-Bucket Elimination

All variable elimination algorithms are unsuitable for problems with high induced width
due to its exponential time and space complexity. Mini-bucket elimination (MBE) [5]
is an approximation of full bucket elimination that bounds the exact solution when the
induced width is too large.

Given a bucketBj = {f1 . . . , fm}, MBE generates a partitionQ = {Q1, . . . , Qp} of
Bj , where each subsetQk ∈ Q is called mini-bucket. Given an integer control parameter
z, MBE restricts the arity of each of its mini-buckets to z + 1. We say that Q is a z-
partition. Then, each mini-bucket is processed independently. Algorithm 2 shows the
pseudo-code of MBE.

Example 3. Consider our running example. The trace of MBE along lexicographical
order and setting the value of the control parameter z to 1 is as follows.

Bucket
B4 f4(x1, x4) , f3(x2, x4)
B3 f1(x1, x3) , f2(x2, x3)
B2 g42(x2) = f3(x2, x4) ⇓x4 , g32(x2) = f2(x2, x3) ⇓x3

B1 g41(x1) = f4(x1, x4) ⇓x4 , g31(x1) = f1(x1, x3) ⇓x3

Output g1() = (g41(x1)
⊗
g31(x1)) ⇓x1 , g2() = (g42(x2)

⊗
g32(x2)) ⇓x2

Note that since the final set of functions is {g1(), g2()}, the output valuation is g1()
⊗

g2().

The time and space complexity of MBE isO(exp(z+1)) andO(exp(z)), respectively.
The parameter z allows trading time and space for accuracy. In general, higher values of
z results in more accurate bounds. In the limit (e.g., when z is the number of variables
of the problem) MBE behaves as BE and computes the exact result.

3 Variable Elimination Ordering

In this Section we show that the order in which variables are eliminated plays a very
different role in bucket and mini-bucket elimination. In particular, the sequence of sub-
problems generated by both algorithms is different. In spite of this key distinction, MBE
uses the ordering procedure as designed for BE. We propose a modification of this pro-
cedure in order to account for this fact.

3.1 Induced Hyper-Graphs and BE

There exists a close relation between the induced sequence of hyper-graphs and the
elimination process of BE. The trace of BE in Example 2 showed how it is possible to
compute the scopes of the functions that the algorithm will produce without actually ex-
ecuting it. Since the hyper-graph precisely contains this information, we can easily show
that the sequence of induced hyper-graphs is actually the sequence of hyper-graphs as-
sociated with the sequence of subproblems produced by BE.
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Algorithm 3. compute-order

Input : A graphical model (X ,F), and
a variable selection heuristic h.

Output: A variable elimination ordering
{xo

1, . . . , x
o
n}.

for j ← n to 1 do1

xo
j ← arg minxi∈X{h(H(Pj), i)};2

end3

return {xo
1, . . . , x

o
n};4

Algorithm 4. compute-z-order

Input : A graphical model (X ,F), and
a variable selection heuristic h.

Output: A variable elimination ordering
{xo

1, . . . , x
o
n}.

for j ← n to 1 do1

xo
j ← arg minxi∈X{h(H(P j), i)};2

end3

return {xo
1, . . . , x

o
n};4

Given a graphical model P = (X ,F), let Pj−1 be the subproblem produced by BE
once variables xoj , . . . , x

o
n have been eliminated, where by definition Pn = P . Pj−1

is obtained from Pj by computing a new function gj with scope var(Bj) − {xoj}, and
removing the variable from the problem. Similarly, by definition Hn = H(P ), and
induced hyper-graphHj−1 is obtained fromHj by merging all hyper-edges containing
xoj and then removing xoj from the set of vertices. Note that the new hyper-edge is the
scope of gj , while the other hyper-edges are the scopes of the remaining functions in
Pj . Therefore,Hj−1 is the associated hyper-graph of Pj−1 (i.e., Hj−1 = H(Pj−1)).

Example 4. Consider our running example and its BE trace in Example 2. Subproblems
Pj are the following:

P4 = {f1(x1, x3), f2(x2, x3), f3(x2, x4), f4(x1, x4)}
P3 = {f1(x1, x3), f2(x2, x3), g4(x1, x2)}
P2 = {g4(x1, x2), g3(x1, x2)}
P1 = {g2(x1)}

Note that the set of functions’ scopes in each subproblem Pj corresponds to the edges
in hyper-graphHj(P ) in Example 1.

It is clear then that the induced width bounds the bucket’s sizes generated during the
elimination process and, as a consequence, the complexity of the algorithm. The size
of the induced width varies with various variable orderings, leading to different per-
formance guarantees. Finding the best ordering (i.e., the one with the smallest induced
width) is NP-hard. Instead, useful variable selection heuristics as fill-in edges [3], and
width of nodes [6] aim at finding good orderings.

Procedure compute-order (Algorithm 3) is a greedy search guided by the vari-
able selection heuristic h defined on a hyper-graph H = (V,E) and one node i ∈ V ,
noted h(H, i). At iteration j, the algorithm selects the jth variable in the ordering (i.e.,
xoj ) by ranking each node in subproblem Pj according to h and selecting the one min-
imizing it. Note that since the induced hyper-graph Hj(P ) represents subproblem Pj ,
the algorithm selects the best variable in the problem once variables xoj+1, . . . , x

o
n has

been eliminated.
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3.2 Induced z-Bounded Hyper-graphs and MBE

The sequence of induced hyper-graphs differ from the sequence of hyper-graphs asso-
ciated with subproblems produced by MBE. The reason is that MBE partitions buckets
whenever they have more than z + 1 different variables.

Given a graphical model P = (X ,F), let P j−1 be the subproblem once MBE has
eliminated variables xoj , . . . , x

o
n from P , where by definition Pn = P . Consider that

MBE does not partition buckets Bj , . . . ,Bn. Up to this point of the execution, MBE
generates the same subproblems as BE (i.e., Pj = P j , . . . , Pn = Pn) and the in-
duced hyper-graphs correspond to hyper-graphs associated with these subproblems (i.e.,
Hj = H(P j), . . . , Hn = H(Pn)). Now consider that bucket Bj−1 has more than z+1
different variables. MBE will partition this bucket into mini-buckets. Namely, instead of
computing a single function gj over the bucket’s scope, the algorithm will compute a set
of functions gjk over unions of scopes of bucket’s functions. The hyper-graph associ-
ated with subproblem P j−1 would have one hyper-edge for each of the new functions’
scope, while the induced hyper-graphHj−1 has only one hyper-edge over the scope of
the bucket. Therefore,Hj−1 �= H(P j−1).

Example 5. Consider our running example and the trace of MBE in Example 3. Sub-
problems P j are as follows:

P 4 = {f1(x1, x3), f2(x2, x3), f3(x2, x4), f4(x1, x4)}
P 3 = {f1(x1, x3), f2(x2, x3), g41(x1), g42(x2)}
P 2 = {g31(x1), g32(x2), g41(x1), g42(x2)}
P 1 = {g2(), g31(x1), g41(x1)}

Note that induced hyper-graphsH3(P ) andH2(P ) in Example 1 are not associated with
subproblems P 3 and P 2, respectively. The reason is that bucket B4 is partitioned into
mini-buckets {f4(x1, x4)} and {f3(x2, x4)}. The new computed functions are g41(x1)
and g42(x2). None of the functions in P 3 has scope {x1, x2}. However, the induced
hyper-graphH3(P ) has an hyper-edge on {x1, x2}.

Although this important difference, most previous investigations on MBE uses the elim-
ination ordering as designed for BE. This does not seem a good decision because, as
we have seen, the variable selection heuristic h ranks each node according to the given
hyper-graph. Therefore, when computing the ordering for MBE, the heuristic selects
the next variable to eliminate based on an erroneous structure.

We wish to compute the ordering over the hyper-graphs associated with each sub-
problem generated by MBE. Let us call z-bounded hyper-graph, the hyper-graph asso-
ciated with subproblem P j for any j = 1 . . . n, and induced z-bounded hyper-graphs,
the sequence of hyper-graphs associated with the sequence of subproblemsP 1, . . . , Pn.

Example 6. Consider the trace of MBE in Example 3. The sequence of associated in-
duced z-bounded hyper-graphs (represented by their hyper-edges) is,

H(P 4) = {(1, 3), (2, 3), (2, 4), (1, 4)}
H(P 3) = {(1, 3), (2, 3), (1), (2)}
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Iteration j compute-order compute-z-order
4 H(P4) = {(1, 3), (2, 3), (2, 4), (1, 4)} H(P 4) = {(1, 3), (2, 3), (2, 4), (1, 4)}

h(·, 4) = 1 h(·, 4) = 1
h(·, 3) = 1 h(·, 3) = 1
h(·, 2) = 1 h(·, 2) = 1
h(·, 1) = 1 h(·, 1) = 1

xo
j = 4 xo

j = 4

3 H(P3) = {(1, 3), (2, 3), (1, 2)} H(P 3) = {(1, 3), (2, 3), (1), (2)}
h(·, 3) = 0 h(·, 3) = 1
h(·, 2) = 0 h(·, 2) = 0
h(·, 1) = 0 h(·, 1) = 0

xo
j = 3 xo

j = 2

2 H(P2) = {(1, 2)} H(P 2) = {(1, 3), (3), (1)}
h(·, 2) = 0 h(·, 3) = 0
h(·, 1) = 0 h(·, 1) = 0

xo
j = 2 xo

j = 3

1 H(P1) = {(1)} H(P 1) = {(1)}
h(·, 1) = 0 h(·, 1) = 0

xo
j = 1 xo

j = 1

Fig. 1. Trace of compute-order and compute-z-order using number of fill-in edges as
variable selection heuristic h (ties are broken lexicographically). The value of z is 1.

H(P 2) = {(1), (2)}
H(P 1) = {(1)}

We propose to compute the elimination order according to the induced z-bounded
hyper-graphs. We call this procedure compute-z-order (Algorithm 4). The main
difference with respect to compute-order is that, at iteration j, the variable selec-
tion heuristic h will rank nodes in the z-bounded hyper-graph H(P j) instead of rank-
ing nodes in the hyper-graph H(Pj) (line 2 in both algorithms). Note that in the limit
(e.g., when z is the number of variables in the problem) both compute-order and
compute-z-order are equivalent.

Example 7. Consider our running example. Let the variable selection heuristic h be
number of fill-in edges, and let z be 1. In case of ties, the secondary variable selection
heuristic is lexicographical order. Figure 1 shows the behavior of compute-order
and compute-z-order. In summary, procedure compute-order outputs order
o = {x1, x2, x3, x4} while compute-z-order outputs order o′ = {x1, x3, x2, x4}.
Note that under o, MBE will split buckets B4 and B3 into two mini-buckets each. How-
ever, under o′, MBE will split only bucket B4 into two mini-buckets and compute ex-
actly the remaining buckets. As a consequence, the bound will provably be more accu-
rate using o′ (which is based on induced z-bounded hyper-graphs) than using o (which
is based on induced hyper-graphs).

Since compute-z-order needs subproblems P j , computing the order as a pre-
process could have the same complexity as MBE. However, it can be embedded in
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Algorithm 5. Mini-Bucket Elimination with embedded compute-z-order

Input : A graphical model P = (X ,F); and the value of the control parameter z.
Output: A bound of (

⊗
f∈F f) ⇓X .

for j ← n to 1 do1

xo
j ← arg minxi∈X{h(H(X ,F), i)}; // At each iteration P j = (X ,F)2

Bj ← {f ∈ F| xo
j ∈ var(f)};3

{Q1, . . . , Qp} ← partition(Bj , z );4

for k ← 1 to p do5

gj,k ← (
⊗

f∈Qk
f) ⇓xo

j
;6

end7

F ← (F ∪ {gj,1, . . . , gj,p})− Bj ;8

X ← X − {xo
j};9

end10

return
⊗

f∈F f ;11

MBE (Algorithm 5). Note that the time and space complexity of the new algorithm
remains exponential on the control parameter z.

4 Empirical Evaluation

The good performance of mini-bucket elimination over different reasoning tasks has
been already proved [5,7,11,12] . The purpose of these experiments is to evaluate the
effectiveness of the new min-fill heuristic adapted to MBE over two important tasks:
(i) computing the probability of evidence over Bayesian networks, and (ii) finding the
minimum cost assignment of the weighted CSP.

We conduct our empirical evaluation on four benchmarks: coding networks, real-
world linkage analysis models, real-world noisy-OR networks, and combinatorial auc-
tions. The task on the first three benchmarks (all of them included in the UAI’08 evalu-
ation1) is to compute the probability of evidence and MBE obtains upper bounds, while
the task on the latter benchmark is optimization and MBE obtains lower bounds.

When computing the probability of evidence, we report the results using two dif-
ferent bucket partitioning policies as described in [12]: scope-based (SCP) and LMRE
content-based heuristic. We use the number of fill-in edges as variable selection heuris-
tic h with compute-order and compute-z-order (in the following called BE
fill-in and MBE fill-in, respectively).

Unless otherwise indicated, we report the results in tables where the first column
identifies the instance. Then, for each bucket partitioning heuristic we report the bound,
relative error (RE), and cpu time in seconds using BE fill-in and MBE fill-in. For each
instance, the relative error is computed as

RE =
|bound− best bound|

best bound

Moreover, for each row we underline the best bound, and highlight in bold face the best
bound wrt each bucket partitioning heuristic.

1 http://graphmod.ics.uci.edu/uai08/Software
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Table 1. Empirical results on coding networks. BN 126, . . . , BN 134 instances

BN SCP partition heuristic LMRE partition heuristic
inst.’s BE fill-in MBE fill-in BE fill-in MBE fill-in

number ub. RE Time ub. RE Time ub. RE Time ub. RE Time

z = 20

126 1.31E-44 46.96 5.44 2.72E-46 0 6.7 2.49E-45 8.15 26.78 1.15E-45 3.23 24.87
127 1.10E-49 0 7.44 2.75E-46 2491.16 7.87 1.73E-46 1568.50 33.03 2.03E-46 1836.54 35.86
128 1.37E-41 127.18 7.17 1.28E-42 11.00 7.38 5.87E-41 547.40 34.54 1.07E-43 0 31.48
129 1.77E-46 333.65 6.2 5.46E-47 101.99 6.5 2.41E-44 45574.38 25.36 5.30E-49 0 27.84
130 8.22E-47 535.66 6.54 1.53E-49 0 6.45 1.03E-47 66.30 23.7 8.44E-48 54.11 24.59
131 5.03E-46 547.72 6.9 9.16E-49 0 5.41 2.28E-46 248.36 27.64 1.96E-47 20.36 25.94
132 1.29E-46 43.84 6.89 1.04E-47 2.61 6.44 1.05E-47 2.65 29.34 2.88E-48 0 24.66
133 5.03E-46 1.85 6.61 2.97E-45 15.82 7.28 2.70E-42 15296.10 24.93 1.76E-46 0 28.79
134 2.50E-44 8513.76 6.66 2.94E-48 0 6.69 4.06E-45 1381.71 29.69 5.49E-45 1866.70 29.45

z = 22

126 5.21E-43 3.98E+5 26.14 5.72E-46 437.12 25.15 9.70E-45 7422.72 107.16 1.31E-48 0 101.11
127 5.34E-48 0.68 28.17 3.18E-48 0 28.22 2.26E-47 6.11 108.68 2.76E-45 865.35 125.69
128 2.30E-44 1.23 25.58 1.03E-44 0 25.02 9.03E-42 872.98 130.68 1.96E-43 17.98 114.71
129 6.14E-45 5.19E+4 26.85 1.18E-49 0 26.04 3.65E-43 3.08E+6 89.18 3.35E-47 282.32 90.08
130 8.40E-47 1205.90 21.64 1.61E-49 1.31 24.1 2.49E-48 34.73 90.47 6.96E-50 0 77.76
131 9.86E-48 0.25 21.69 6.09E-47 6.72 24.59 2.71E-46 33.32 93.29 7.88E-48 0 81.37
132 1.46E-48 23.50 23.6 5.96E-50 0 20.52 1.49E-48 24.03 93.17 5.44E-49 8.13 90.88
133 8.50E-44 1327.32 23.05 8.66E-45 134.26 24.68 5.21E-45 80.37 99.4 6.40E-47 0 85.04
134 1.57E-46 5.32 26.5 1.09E-46 3.36 28.92 1.01E-46 3.07 105.31 2.49E-47 0 94.95

In all our experiments, we execute MBE in a Pentium IV running Linux with 4 Gb
of memory and 3 GHz.

Coding networks. Our first domain is coding networks from the class of linear block
codes [7]. All instances have 512 variables with domain size 2 and the induced width
varies from 49 to 55. Table 1 shows the results for two different values of the control
parameter z = {20, 22}.

The MBE fill-in computes the best upper bound on eight out of nine instances when
z = 20, and on all instances when z = 22. Among these instances, the improvement
over the best BE fill-in is usually of orders of magnitude for both values of z.

Using the SCP partitioning heuristic, the MBE fill-in outperforms the BE fill-in on
seven instances when z = 20 and on eight instances when z = 22. The improvements
are usually of orders of magnitude. The computation times of both orderings are very
close. Using the LMRE partitioning heuristic, the MBE fill-in outperforms the BE fill-
in on seven instances when z = 20, and on eight instances when z = 22. As for the
previous partitioning heuristic, the improvements are in general of orders of magnitude,
and the computation times are similar.

For space reasons, we do not report the number of mini-buckets processed in each
run of MBE. However, we observed that when using MBE fill-in the algorithm pro-
cesses less mini-buckets than when using the BE fill-in. Note that breaking a bucket
into several mini-buckets is precisely what transforms the variable elimination scheme
from exact (i.e, BE) to approximate (i.e., MBE). The less mini-buckets, the more similar
to the exact algorithm and, as a consequence, the more accurate the bound.
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Table 2. Empirical results on linkage analysis. Pedigree instances.

pedigree SCP partition heuristic LMRE partition heuristic
instance’s BE fill-in MBE fill-in BE fill-in MBE fill-in
number ub. RE Time ub. RE Time ub. RE Time ub. RE Time

z = 17

7 1.34E-49 1.22E+4 4.29 2.22E-51 202.01 4.92 1.84E-53 0.68 8.54 1.10E-53 0 18.14
9 2.58E-66 136.76 1.76 1.88E-68 0 2.51 1.94E-67 9.32 2.72 5.39E-68 1.87 2.71

13 3.24E-15 9.43E+4 1.91 1.39E-16 4059.24 2.23 3.43E-20 0 2.54 1.42E-16 4129.41 3.00
18 4.15E-71 24.54 0.86 3.47E-72 1.13 0.95 2.08E-71 11.80 0.92 1.63E-72 0 0.98
20 3.82E-25 4.73 12.83 6.66E-26 0 15.57 7.61E-26 0.14 14.15 9.75E-26 0.46 23.16
25 1.57E-109 8.83 0.56 1.99E-110 0.24 0.65 3.33E-109 19.85 0.68 1.60E-110 0 0.65
30 4.57E-75 2418.39 1.46 1.86E-77 8.86 1.43 7.14E-76 376.82 1.65 1.89E-78 0 1.75
31 9.21E-51 1.17E+5 9.82 6.67E-53 849.54 11.5 7.84E-56 0 12.08 3.94E-52 5020.51 13.45
33 1.70E-47 17.05 3.53 5.33E-45 5645.31 5.3 9.44E-49 0 10.84 2.92E-46 308.02 8.50
34 2.97E-49 3.39E+4 32.81 1.62E-51 183.85 37.25 3.31E-53 2.79 49.75 8.74E-54 0 63.39
37 4.94E-109 7052.31 110.36 3.19E-111 44.45 131.21 8.86E-110 1263.00 243.17 7.01E-113 0.00 235.84
39 2.58E-99 0.09 1.25 7.35E-99 2.12 1.04 2.35E-99 0 1.28 6.76E-99 1.87 1.42
41 1.96E-61 19.36 69.22 1.48E-62 0.54 29.16 1.06E-61 9.98 90.5 9.62E-63 0 487.54
42 1.22E-26 0.00 15.84 1.69E-26 0.38 39 1.50E-26 0.23 25.7 3.71E-26 2.03 51.06
44 5.81E-55 131.49 1.99 4.39E-57 0 3.08 4.10E-56 8.35 3.58 8.08E-56 17.43 3.69
51 1.74E-53 862.93 3.09 9.76E-52 48484.18 3.53 2.01E-56 0 5.12 6.59E-56 2.27 4.43

z = 19

7 1.35E-53 814.96 24.52 1.63E-50 981031.51 29.49 6.20E-56 2.74 29.24 1.65E-56 0 65.00
9 7.37E-67 9869.66 6.27 8.57E-70 10.47 6.43 1.34E-68 177.77 11.01 7.47E-71 0 12.15

13 2.01E-18 45.03 6.51 1.24E-15 28356.80 8.44 4.36E-20 0 9.98 3.58E-17 821.45 12.60
18 4.16E-76 0 2.72 5.43E-76 0.31 2.78 2.92E-75 6.03 2.76 1.58E-75 2.81 2.81
20 2.24E-27 1.11 51.53 1.52E-27 0.43 43.69 1.12E-27 0.06 51.02 1.05E-27 0.00 87.88
25 4.87E-111 1.76 1.38 4.50E-111 1.55 1.94 1.77E-111 0 1.49 4.21E-111 1.38 1.94
30 5.46E-80 0 5.8 9.05E-80 0.66 5.29 1.03E-79 0.89 6.12 8.02E-80 0.47 5.40
31 7.04E-56 15.60 37.3 1.79E-55 41.28 48.23 4.24E-57 0 42.78 2.48E-56 4.86 60.05
33 3.30E-46 120.34 15.81 7.89E-46 289.04 17.38 2.72E-48 0 15.9 1.03E-46 36.70 24.13
34 1.69E-51 851.77 181.91 7.32E-51 3690.45 223.95 1.98E-54 0 331.9 1.71E-53 7.61 427.58
37 3.75E-113 0.11 206.35 3.53E-113 0.04 203.48 3.39E-113 0 368.57 5.99E-113 0.77 319.95
39 2.08E-100 2.07 8.85 6.77E-101 0 6.75 1.35E-100 0.99 8.88 1.89E-100 1.79 6.84
41 3.00E-63 309.19 266.96 1.14E-61 11784.67 311.98 1.82E-63 187.18 496.47 9.68E-66 0 612.98
42 2.01E-27 1.27 156.51 1.37E-27 0.55 203.89 1.14E-27 0.29 184.97 8.84E-28 0 198.82
44 6.39E-55 62.59 7.36 5.63E-55 55.05 10.34 1.01E-56 0 12.37 7.39E-55 72.60 13.57
51 1.10E-55 269.98 12.21 4.07E-58 0 13.66 1.11E-55 271.12 14.31 2.26E-55 554.91 14.53

Linkage analysis. Our second domain is real-world linkage analysis models. We used
pedigree instances. They have 300 to 1000 variables with domain sizes from 1 (i.e.,
evidence variables) to 5, and induced widths of 20 up to 50. Table 2 shows the results.

The MBE fill-in computes the best upper bound on ten out of sixteen instances when
z = 17, and on seven instances when z = 19. Among these instances, the improvement
over the best BE fill-in is of orders of magnitude on eight out of ten (i.e., on 80% of)
instances when z = 17, and on five out of seven (i.e., on 71%) when z = 19. Among
instances where the BE fill-in computes the best upper bound, the improvement over the
best MBE fill-in is of orders of magnitude on three out of six (i.e., on 50%) instances
when z = 17, and on five out of nine (i.e., on 55%) when z = 19. In other words, when
better, the MBE fill-in is usually orders of magnitude more accurate.

Using the SCP partitioning heuristic, the MBE fill-in outperforms the BE fill-in on
twelve instances when z = 17, and on eight when z = 19. Among these instances, the
improvement over the BE fill-in is always of orders of magnitude when z = 17, and
from 6% up to orders of magnitude (on 37% of these instances) when z = 19. Using
the LMRE partitioning heuristic, the MBE fill-in outperforms the BE fill-in on eight
instances when z = 17, and on seven instances when z = 19. Among these instances,
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Table 3. Empirical results on noisy-OR networks. Promedas instances.

or chain Mean RE or chain Mean RE
numbers Size SCP heuristic LMRE heuristic numbers Size SCP heuristic LMRE heuristic

BE fill-in MBE fill-in BE fill-in MBE fill-in BE fill-in MBE fill-in BE fill-in MBE fill-in
1[0*] 12 916951 165.80 595.83 9.85 21* 10 97025.5 365.01 298.49 1.03
11* 10 163720 1918.51 8785.5 13.05 22* 10 4.98E+06 20.77 493.017 6.34
12* 9 343487 80.44 25293 1.94 23* 9 2.31E+09 126119 1.24E+06 188.58
13* 9 1.52E+07 303.44 10236.7 5491.76 24* 9 548805 113.44 4001.65 23.55
14* 10 54466.7 135.01 759.94 1.79 25* 4 510.92 93.02 54.37 93.62
15* 10 199.96 17.95 35.92 9.86 3* 10 1.00E+10 3.02E+07 4673.18 0.11
16* 10 8.64E+07 58875.3 468.50 4.43 4* 10 461584 33.68 2301.8 1.30
17* 9 1.25E+10 9375.63 311467 12.66 50* 9 1.64E+06 1788.8 71460.5 7.69
18* 9 5.50E+07 204569 19986.2 2.13 6* 10 1.06E+10 1.15E+07 2293.18 10.81
19* 9 1.17E+06 2983.57 208.47 111.36 7* 9 1.98E+10 56410.1 982912 8.86

2[0*] 10 3.59E+06 126.63 980.99 42.66 8* 9 207240 4411.55 90128.1 19.75

the improvement over the BE fill-in is of orders of magnitude on all of them when
z = 17, while on six out of seven (i.e., on 87.5%) instances when z = 19 .

Computation times show the same behavior as in the previous benchmark. Regarding
the number of mini-buckets, a smaller number of mini-buckets is in general attached
to a better accuracy. This suggests a heuristic strategy to select the ordering in a pre-
processed way by selecting the order producing the smallest number of mini-buckets
(or, equivalently, the smallest number of new induced hyper-edges).

Noisy-OR networks. Our third domain is real-world noisy-OR networks generated by
the Promedas expert system for internal medicine [14]. The benchmark contains 238
instances having 23 up to 2133 variables (mean number is 1048) with binary domain
sizes and induced width up to 60.

Table 3 summarizes the results for z = 25. We report the mean relative error among
sets of instances. The first column identifies the instances included in each set as a
regular expression. For example, the first row includes instances with names matching
or chain 1[0*] (e.g., or chain 1, or chain 10, or chain 101, etc). The second column
indicates the size of the set. As before, we underline the best relative error for each
set of instances, and highlight in bold face the best relative error wrt each partition
heuristic. We do not report cpu time because its behavior is the same as for the previous
benchmarks.

The MBE fill-in outperforms the BE fill-in on all sets, with the exception of
or chain 25* (which only has 4 instances). The improvement among the best BE fill-in
is always of orders of magnitude. Using the SCP partitioning heuristic, the MBE fill-in
clearly outperforms the BE fill-in on all sets, while when using the LMRE partitioning
heuristic, the MBE fill-in is superior to the BE fill-in on all sets but or chain 25*.

Combinatorial auctions. Our last domain is combinatorial auctions (CA). They al-
low bidders to bid for indivisible subsets of goods. We have generated CA using the
path model of the CATS generator [8]. We experiment on instances with 20 and 50
goods, varying the number of bids from 80 to 200. For each parameter configuration, we
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Table 4. Empirical results on Combinatorial Auctions. Path distribution.

nb. goods = 20 nb. goods = 50
nb. bids z BE fill-in MBE fill-in BE fill-in MBE fill-in

lb. RE lb. RE lb. RE lb. RE
80 15 493 0.010 498 0 424.9 0 423.3 0.004
85 15 371.5 0.010 375.3 0 439.4 0.010 443.8 0
90 15 463.4 0.000 458.4 0.011 400.7 0.000 398.1 0.006
95 15 524.9 0.001 525.3 0 458.6 0.016 466.1 0

100 15 577.5 0.018 588.1 0 498.8 0.004 500.9 0
105 15 549.9 0.009 555.1 0 550.1 0 539.2 0.020
110 15 631.7 0.001 632.1 0 587.9 0.008 592.7 0
115 15 604 0.023 618 0 581.2 0.006 585 0
120 15 498.4 0.018 507.7 0 555.6 0.016 564.9 0
125 15 659.8 0.003 662 0 566.2 0 558.9 0.013
130 15 623.1 0.017 633.9 0 550.6 0 534.9 0.029
135 15 734.4 0.009 740.7 0 562.2 0 560.2 0.004
140 15 765.5 0.015 776.8 0 702.9 0.015 713.9 0
145 15 746.9 0.001 748 0 502.8 0.025 515.8 0
150 15 680.7 0.012 689 0 697.5 0.000 696.5 0.001
155 15 671.4 0 666 0.008 647 0.016 657.6 0
160 15 744.4 0.002 745.8 0 777.3 0.029 800.9 0
165 15 808.9 0.013 819.2 0 667.3 0.019 680 0
170 15 707.6 0 707.6 0 586.9 0.048 616.2 0
175 15 812.7 0.012 822.6 0 673.5 0.012 682 0
180 15 786 0.011 794.4 0 773.2 0.013 783.1 0
185 15 888.7 0.016 902.9 0 835.7 0.015 848.7 0
190 15 927.3 0.002 929.1 0 648 0.011 655.3 0
195 15 823.6 0.024 844 0 854.8 0.020 872.6 0
200 15 866.8 0.020 884.9 0 781.1 0.020 797.1 0
80 20 513.2 0 512.4 0.002 439.5 0.005 441.8 0
85 20 389.5 0.004 390.9 0 471.8 0 470.6 0.003
90 20 493.1 0.005 495.6 0 424.3 0.002 425.2 0
95 20 564.2 0.008 568.8 0 488.8 0 488.3 0.001

100 20 620.3 0 618 0.004 526.7 0 525 0.003
105 20 593.5 0.003 595.3 0 576.3 0.002 577.5 0
110 20 673.7 0.009 679.5 0 612.8 0.009 618.4 0
115 20 662.2 0.020 675.5 0 622.1 0.005 625.1 0
120 20 549.5 0.015 557.9 0 594.2 0.005 597.2 0
125 20 719.9 0 719.1 0.001 615.8 0 614.3 0.002
130 20 689.6 0.010 696.8 0 587.4 0 581.5 0.010
135 20 802.1 0 792.8 0.012 607.2 0.006 610.7 0
140 20 838.7 0 838 0.001 762.8 0.014 773.7 0
145 20 825.3 0.019 841.3 0 548.2 0.018 558.2 0
150 20 758.9 0.007 764.6 0 763.3 0.016 775.7 0
155 20 749.8 0 749.2 0.001 712.8 0.021 727.9 0
160 20 841.6 0 834.9 0.008 868 0.007 873.7 0
165 20 912.1 0.019 929.8 0 742.6 0.025 761.4 0
170 20 783.6 0.010 791.9 0 669.3 0.021 684 0
175 20 911.1 0.004 914.5 0 756.9 0.020 772 0
180 20 868 0.007 873.8 0 873.2 0.015 886.4 0
185 20 994 0.004 998.2 0 930.1 0.013 942.7 0
190 20 1045.6 0.006 1051.4 0 742.8 0.023 760.3 0
195 20 954.3 0.005 958.8 0 956.4 0.024 980.2 0
200 20 994.5 0.005 999.7 0 900.5 0.002 902.4 0
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generate samples of size 10. Table 4 shows the results for z = {15, 20}. Recall that for
optimization tasks, only the SCP heuristic is defined.

The behavior for both configurations is almost the same. For 20 goods, the MBE fill-
in outperforms the BE fill-in on 23 out of the 25 configurations of different number of
bids when z = 15, and on 18 when z = 19. For 50 goods, the MBE fill-in outperforms
the BE fill-in on 18 configurations of bids when z = 15, and on 20 when z = 19.

It is important to observe that the improvement over the BE fill-in is not as signifi-
cant as for previous benchmarks. One possible reason is the nature of the marginaliza-
tion operator: when summing, the quality of all operands impacts on the quality of the
result; while when minimizing, the quality of the minimum operand is the only one that
determines the quality of the result. Indeed, further investigation is needed.

5 Related Work

There are two early approaches based on mini-bucket elimination which use a variable
elimination ordering different to the one used by bucket elimination: greedy SIP [10]
and Approximate Decomposition (AD) [9].

Greedy SIP solves the problem by iteratively applying bucket elimination over sub-
sets of functions. At each iteration, all variables are eliminated from the current sub-
set and its elimination ordering is the one with induced width bounded by the control
parameter z. The order in which variables are eliminated can be different from one
iteration to another.

AD solves the problem by iteratively eliminating the variables of the problem and
maintaining the width of the new problems bounded by z. If the elimination of a vari-
able causes the width of the new problem to be greater than z, the new function is
approximated with a combination of simpler ones such that the width is maintained
under z.

Our scheme resembles these two approaches on that none of them uses the variable
elimination ordering as dictated by bucket elimination. However, the value of our work
is on clearly showing why a variable elimination heuristic should fit the actual structure
of problems generated after each variable elimination.

6 Conclusions

Bucket Elimination (BE) and Mini-Bucket Elimination (MBE) are based on the sequen-
tial transformation of the original problem by sequentially eliminating variables, one at
a time. The result of eliminating one variable is a new subproblem. Under the same vari-
able elimination ordering, they generate a different sequence of subproblems. Although
this important difference, MBE uses the elimination order obtained by a procedure de-
signed for BE. Since this procedure selects the next variable to eliminate according to
the structure of subproblems produced by BE, it will select erroneous variables accord-
ing to the structure of subproblems generated by MBE.

This paper investigates a modification on how to compute the elimination order-
ing for MBE. Our approach computes the ordering by considering the real structure of
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the sequence of subproblems produced by MBE thanks to induced z-bounded hyper-
graphs. We demonstrate the effectiveness of this new ordering on a number of bench-
marks over two important tasks: computing the probability of the evidence and finding
the minimum cost assignment of a weighted CSP. We observed that the higher im-
provements are obtained on the first task. The nature of the marginalization operator
may explain this fact. We plan to further investigate this issue.

There are other approximation algorithms based on variable elimination orderings
(e.g., Iterative Join Graph Propagation [4]). In our future work we want to study the
impact of our approach on their accuracy.
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Abstract. The ability to model search in a constraint solver can be an essential
asset for solving combinatorial problems. However, existing infrastructure for
defining search heuristics is often inadequate. Either modeling capabilities are
extremely limited or users are faced with a low-level programming language and
modeling search becomes unwieldy. As a result, major improvements in perfor-
mance may remain unexplored.

This paper introduces search combinators, a lightweight and solver
-independent method that bridges the gap between a conceptually simple search
language (high-level, functional and naturally compositional) and an efficient
implementation (low-level, imperative and highly non-modular). Search combi-
nators allow one to define application-tailored strategies from a small set of prim-
itives, resulting in a rich search language for the user and a low implementation
cost for the developer of a constraint solver. The paper discusses two modular
implementation approaches and shows, by empirical evaluation, that search com-
binators can be implemented without overhead compared to a native, direct im-
plementation in a constraint solver.

1 Introduction

Search heuristics often make all the difference between effectively solving a combinato-
rial problem and utter failure. Heuristics make a search algorithm efficient for a variety
of reasons, e.g., incorporation of domain knowledge, or randomization to avoid heavy-
tailed runtimes. Hence, the ability to swiftly design search heuristics that are tailored
towards a problem domain is essential for performance. This paper introduces search
combinators, an approach to modeling search that achieves exactly this.

In CP, much attention has been devoted to facilitating the modeling of combinatorial
problems. A range of high-level modeling languages, such as Zinc [9], OPL [22] and
Comet [20], enable quick development and exploration of problem models. However,
we see very little support on the side of formulating accompanying search heuristics.
Either the design of search is restricted to a small set of predefined heuristics (e.g.,
MiniZinc [10]), or it is based on a low-level general-purpose programming language
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(e.g., Comet [20]). The former is clearly too confining, while the latter leaves much
to be desired in terms of productivity, since implementing a search heuristic quickly
becomes a non-negligible effort. This also explains why the set of available heuristics is
typically small: it takes a lot of time for CP system developers to implement heuristics,
too – time they would much rather spend otherwise improving their system.

In this paper we show how to resolve this stand-off between solver developers and
users with respect to a high-level search language.

For the user, we provide a compositional approach for expressing complex search
heuristics based on an (extensible) set of primitive combinators. Even if the users
are only provided with a small set of combinators, they can already express a vast
range of combinations. Moreover, using combinators to programm application-
tailored search is vastly more productive than resorting to a low-level language.

For the system developer, we show how to design and implement modular combina-
tors. Developers do not have to cater explicitly for all possible combinator com-
binations. Small implementation efforts result in providing the user with a lot of
expressive power. Moreover, the cost of adding one more combinator is small, yet
the return in terms of additional expressiveness can be quite large.

The tough technical challenge we face here does not lie in designing a high-level syn-
tax; several proposals have already been made (e.g., [14]). Our contribution is to bridge
the gap between a conceptually simple search language (high-level, functional and nat-
urally compositional) and an efficient implementation (typically low-level, imperative
and highly non-modular). This is where existing approaches fail; they restrict the ex-
pressiveness of their search specification language to face up to implementation limita-
tions, or they raise errors when the user strays out of the implemented subset.

We overcome this challenge by implementing the primitives of our search language
as mixin components. As in Aspect-Oriented Programming, mixin components neatly
encapsulate the cross-cutting behavior of primitive search concepts, which are highly
entangled in conventional approaches. Cross-cutting means that a mixin component can
interfere with the behavior of its sub-components (in this case, sub-searches). The com-
bination of encapsulation and cross-cutting behavior is essential for systematic reuse
of search combinators. Without this degree of modularity, minor modifications require
rewriting from scratch.

An added advantage of mixin components is extensibility. We can add new features
to the language by adding more mixin components. The cost of adding such a new
component is small, because it does not require changes to the existing ones. Moreover,
experimental evaluation bears out that this modular approach has no significant over-
head compared to the traditional monolithic approach. Finally, our approach is solver-
independent and therefore makes search combinators a potential standard for designing
search. For that purpose we have made our code available at
http://users.ugent.be/~tschrijv/SearchCombinators/.

2 High-Level Search Language

Before we tackle the modular implementation challenge in the next section, we first
present the syntax of our high-level search language and illustrate its expressive power.

http://users.ugent.be/~tschrijv/SearchCombinators/
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s ::= prune | if(c,s1,s2)
prunes the node perform s1 until c is false, then perform s2

| base_search(. . .) | and([s1,s2, . . . ,sn])
label perform s1, on success s2 otherwise fail, . . .

| let(v,e,s) | or([s1,s2, . . . ,sn])
introduce new variable v with perform s1, on termination start s2, . . .
initial value e, then perform s | portfolio([s1,s2, . . . ,sn])

| assign(v,e) perform s1, if not exhaustive start s2, . . .
assign e to variable v and succeed | restart(c,s)

| post(c,s) restart s as long as c holds
post constraint c at every node during s

Fig. 1. Catalog of primitive search heuristics and combinators

In this paper we use a concrete syntax for this language, in the form of nested terms,
that is compatible with the annotation language of MiniZinc [10]. Other concrete syntax
forms are easily supported (e.g., we support C++ and Haskell).

The expression language comprises the typical arithmetic and comparison operators
and literals that require no further explanation. Notable though is the fact that it allows
references to the constraint variables and parameters of the underlying model.

2.1 Primitive Search Heuristics

The search language is used to define a search heuristic, which a search engine applies
to each node of the search tree. For each node, the heuristic determines whether to
continue search by creating child nodes, or to prune the tree at that node.

The search language features a number of primitives, listed in the catalog of Fig. 1, in
terms of which more complex heuristics can be defined. We emphasize that this catalog
is open-ended; we will see that the language implementation explicitly supports adding
new primitives. Primitive search heuristics consist of basic heuristics and combinators.
The former define complete (albeit very basic) heuristics by themselves, while the lat-
ter alter the behavior of one or more other heuristics and combinators. The two basic
search heuristics (base_search and prune) create child nodes in the search tree under
the current node or prune the subtree starting from the current node, while combinators
(all remaining items in Fig. 1) decide e.g. which of their sub-heuristics to apply or to
restart search.

Note that the queuing strategy (such as depth-first traversal) is determined separately
by the search engine, it is thus orthogonal to the search language.

Basic Heuristics. There are two basic heuristics:

– base_search(vars , var-select, value-select) specifies a systematic search. If any
of the variables vars are still not fixed at the current node, it creates child nodes
according to var-select and value-select as variable- and value-selection strategies
respectively. We do not elaborate the different options; these have been extensively
studied in the literature. For example we make use of MiniZinc [10] base searches.
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– prune cuts the search tree below the current node, resulting in a non-exhaustive
search (explained below).

Note that base_search is a CP-specific primitive; other kinds of solvers provide their
own search primitives. The rest of the search language is essentially solver-independent.
While the solver provides few basic heuristics, the search language adds great expres-
sive power by allowing these to be combined arbitrarily using combinators.

Combinators. The expressive power of the search language relies on combinators,
which combine search heuristics (which can be basic or themselves constructed using
combinators) into more complex heuristics.

An example of a combinator from the literature is limited discrepancy search (LDS):
lds(s) denotes a heuristic that performs LDS over an underlying heuristic s, which can
in turn be an arbitrarily complex composition of any of the heuristics listed in Fig. 1.

Now that we have explained the parametrized notation, let us run down the combi-
nators in the catalog:

– let(v, e, s): introduces a new variable v with initial value e and visible in the search
s, then continues with s.

– assign(v, e): assigns the value e to variable v and succeeds. Technically, this is not
a combinator, but we list it here as it is used in combination with let.

– if(c, s1, s2) evaluates condition c at every node. If c holds, then it proceeds with s1.
Otherwise, s2 is used for the node and all its children.

– and([s1, . . . , sn]): and-sequential composition runs s1. At every success leaf of s1,
it runs and([s2, . . . , sn]).

– or([s1, . . . , sn]): or-sequential composition runs s1. Upon fully exploring the tree
of s1, search is restarted with or([s2, . . . , sn]) regardless of failure or success of s1.

– portfolio([s1, . . . , sn]), in contrast, also runs s1 in full, but only if s1 was not ex-
haustive, does it restart with portfolio([s2, . . . , sn]) (see further details on the mean-
ing of exhaustiveness in the next paragraph).

– restart(c, s): repeatedly runs s in full. If s was not exhaustive, it is restarted, until
condition c no longer holds.

– post(c, s): provides access to the underlying constraint solver, posting a constraint
c at every node during s. If s is omitted, it posts the constraint and immediately
succeeds.

The attentive reader may have noticed that lds(s) is actually not listed among the prim-
itive combinators. Indeed, Sect. 2.2 shows next that it is a composition of primitive
combinators. Moreover, as we have already pointed out, the depth-first traversal that is
commonly associated with lds is entirely orthogonal to the search language.

Exhaustiveness. When a search has fully explored the search (sub)tree, without pur-
posefully skipping parts using the prune primitive, it is said to be exhaustive. This infor-
mation is used to decide whether or not to revisit the same search node, as it happens in
the portfolio and restart combinators. For instance, in case of lds(10, s), if the search tree
defined by s has been fully explored with 5 discrepancies, there is no use in restarting
with higher discrepancy bounds as that would simply reexplore the same tree.



778 T. Schrijvers et al.

The prune primitive is the only source of non-exhaustiveness. Combinators propa-
gate exhaustiveness in the obvious way. E.g., and([s1, . . . , sn]) is exhaustive if all si
are, while portfolio([s1, . . . , sn]) is exhaustive if one si is.

Statistics. Several combinators are centered around a conditional expression c. In ad-
dition to the conventional syntax, such a condition may refer to one or more statistics
variables. Such statistics are collected for the duration of a subsearch until the condition
is met. For instance if(depth < 10, s1, s2) maintains the search depth statistic during
subsearch s1. At depth 10, the if combinator switches to subsearch s2.

We distinguish two forms of statistics: Local statistics such as depth and discrep-
ancies express properties of individual nodes. Global statistics such as nodes, time,
failures and solutions are computed for entire search trees.

It is worthwhile to mention that developers (and advanced users) can also define
their own statistics, just like combinators, to complement any predefined ones. In fact,
in the implementation, statistics are a subtype of combinators, that can be queried for
the statistic’s value.

2.2 Composite Search Heuristics

Our search language draws its expressive power from the combination of primitive
heuristics using combinators. The user can create new combinators by effectively defin-
ing macros in terms of existing combinators. The following examples show how to
construct complex search heuristics familiar from the literature.

Limit: The limiting combinator limit(c, s) performs s while c is satisfied. Then it fails:

limit(c, s) ≡ if(c, s, prune)

We can limit search using any of the statistics defined previously, or indeed create and
modify a new let variable to define limits on search.

Once: The well-known once(s) combinator is a special case of the limiting combina-
tor where the number of solutions is not greater than one. This is simply achieved by
maintaining and accessing the solutions statistic:

once(s) ≡ limit(solutions < 1, s)

In contrast to prune, post(false) represents an exhaustive search without solutions. This
is exploited in the exhaustive variant of once:

exh_once(s) ≡ if(solutions < 1, s, post(false))

Branch-and-bound: A slightly more advanced example is the branch-and-bound opti-
mization strategy:

bab(obj , s) ≡ let(best ,∞, post(obj < best ,and([s, assign(best , obj )])))

which introduces a variable best that initially takes value ∞ (for minimization). In
every node, it posts a constraint to bound the objective variable by best. Whenever a
new solution is found, the bound is updated accordingly.
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Restarting branch-and-bound: This is a twist on regular branch-and-bound that restarts
whenever a solution is found.

restart_bab(obj , s) ≡ let(best ,∞, restart(true , and([post(obj < best), once(s),
assign(best , obj )])))

For: The for loop construct (v ∈ [l, u]) can be defined as:

for(v, l, u, s) ≡ let(v, l, restart(v ≤ u,
portfolio([s, and([assign(v, v + 1), prune])])))

It simply runs the search s times, which of course is only sensible if s makes use of
side effects or the loop variable v. Note that assign succeeds, so we need to call prune
afterwards in order to propagate the non-exhaustiveness of s to the restart combinator.

Limited discrepancy search [6] with an upper limit of l discrepancies for an underlying
search s.

lds(l, s) ≡ for(n, 0, l, limit(discrepancies ≤ n, s))
The for construct iterates the maximum number of discrepancies n from 0 to l, while
limit executes s as long as the number of discrepancies is smaller than n. The search
makes use of the discrepancies statistic that is maintained by the search infrastructure.
The original LDS visits the nodes in a specific order. The search described here visits
the same nodes in the same order of discrepancies, but possibly in a different individual
order – as this is determined by the global queuing strategy.

The following is a combination of branch-and-bound and limited discrepancy search
for solving job shop scheduling problems, as described in [6]. The heuristic searches
the Boolean variables prec, which determine the order of all pairs of tasks on the same
machine. As the order completely determines the schedule, we then fix the start times
using exh_once.

bab(makespan , lds(∞, and([base_search(prec, . . . ),
exh_once(base_search(start , . . . ))])))

Fully expanded, this heuristic consists of 17 combinators and is 11 combinators deep.

Iterative deepening [7] for an underlying search s is a particular instance of the more
general pattern of restarting with an updated bound.

id(s) ≡ ir(depth, 0,+, 1,∞, s)
ir(p, l,⊕, i, u, s) ≡ let(n, l, restart(n ≤ u, and([assign(n, n⊕ i),

limit(p ≤ n, s)])))
With let, bound n is initialized to l. Search s is pruned when statistic p exceeds n, but
iteratively restarted by restart with n updated to n ⊕ i. The repetition stops when n
exceeds u or when s has been fully explored. The bound increases geometrically, if we
supply ∗ for ⊕, as in the restart_flip heuristic:

restart_flip(p, l, i, u, s1, s2) ≡let(flip, 1, ir(p, l, ∗, i , u, and([assign(flip, 1− flip),
if(flip = 1, s1, s2)])))
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This alternates between two search heuristics s1 and s2. Using this as its default
strategy in the free search category, the lazy clause generation solver Chuffed scored
most points in the 2010 MiniZinc Challenge1.

Hot start: First perform search heuristic s1 while condition c holds to initialize global
parameters for a second search s2. This heuristic is for example used for initialization
of the widely applied Impact heuristic [13]. Note that we assume here that the values
to be initialized are maintained by the underlying solver and that we omit an explicit
reference to it.

hotstart(c, s1, s2) ≡ portfolio([limit(c, s1), s2])

Radiotherapy treatment planning: The following search heuristic can be used to solve
radiotherapy treatment planning problems [1]. The heuristic minimizes a variable k
using branch-and-bound (bab), first searching the variables N , and then verifying the
solution by partitioning the problem along the row i variables for each row i one at
a time (expressed as a MiniZinc array comprehension). Failure on one row must be
caused by the search on the variables in N , and consequently search never backtracks
into other rows.

bab(k , and([base_search(N, . . . )]++
[exh_once(base_search(row i, . . . )) | i in 1..n]))

Dichotomic search [17] solves an optimization problem by repeatedly partitioning
the interval in which the possible optimal solution can lie. It can be implemented by
restarting as long the lower bound has not met the upper bound (line 2), computing
the middle (line 3), and then using an or combinator to try the lower half (line 5). If
it succeeds, obj − 1 is the new upper bound, otherwise, the lower bound is increased
(line 6).

dicho(s, obj , lb, ub) ≡let(l, lb, let(u, ub, let(h, 0,
restart(l < u,

let(h, l + �(u− l)/2�,
once(or([

and([post(l ≤ obj ≤ h), s, assign(u, obj − 1)]),
and([assign(l, h+ 1), prune])]))

)))))

3 Modular Combinator Design

The previous section caters for the user’s needs, presenting a high-level modular syntax
for our combinator-based search language. To cater for the system developer’s needs,
this section goes beyond modularity of syntax, introducing modularity of design.

1 http://www.g12.csse.unimelb.edu.au/minizinc/challenge2010/

http://www.g12.csse.unimelb.edu.au/minizinc/challenge2010/
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Modularity of design is the one property that makes our approach practical. Each com-
binator corresponds to a separate module that has a meaning and an implementation
independent of the other combinators. This enables us to actually realize the search
specifications defined by modular syntax.

Modularity of design also enables growing a system from a small set of combinators
(e.g., those listed in Fig. 1), gradually adding more as the need arises. Advanced users
can complement the system’s generic combinators with a few application-specific ones.

Solver independence is another notable property of our approach. While a few combi-
nators access solver-specific functionality (e.g., base_search and post), the approach
as such and most combinators listed in Fig. 1 are in fact generic (solver- and even CP-
independent); their design and implementation is reusable.

The solver-independence of our approach is reflected in the minimal interface that
solvers must implement. This interface consists of an abstract type State which repre-
sents a state of the solver (e.g., the variable domains and accumulated constraint prop-
agators) which supports copying. Truly no more is needed for the approach or all of
the primitive combinators in Fig. 1, except for base_search and post which require
CP-aware operations for querying variable domains, the solver status and posting con-
straints. Note that there need not be a 1-to-1 correspondence between an implementation
of the abstract State type and the solver’s actual state representation; e.g., for solvers
based on trailing, techniques such as [11] can be used. We have implementations of the
interface based on both copying and trailing.

In the following we explain how modularity of design is obtained. We show how to
isolate the cross-cutting behavior (Sect. 3.1) and state (Sect. 3.2) of each combinator in
a separate module, and how to compose these modules to obtain the combined effect.

3.1 The Message Protocol

To obtain a modular design of search combinators we step away from the idea that the
behavior of a search combinator, like the and combinator, forms an indivisible whole;
this leaves no room for interaction. The key insight here is that we must identify finer-
grained steps, defining how different combinators interact at each node in the search
tree. Interleaving these finer-grained steps of different combinators in an appropriate
manner yields the composite behavior of the overall search heuristic, where each com-
binator is able to cross-cut the others’ behavior.

Considering the diversity of combinators and the fact that not all units of behavior
are explicitly present in all of them, designing this protocol of interaction is non-trivial.
It requires studying the intended behavior and interaction of combinators to isolate the
fine-grained units of behavior and the manner of interaction. The contribution of this
section is an elegant and conceptually uniform design that is powerful enough to express
all the combinators presented in this paper.

We present this design in the form of a message protocol. The protocol specifies a set
of messages (i.e., an interface with one procedure for each fine-grained step) that have
to be implemented by all combinators. It further stipulates in what order the messages
are sent among the combinators.
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combinator
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combinator 
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successfailure
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more

for every child c

push(c)

next(n',n)

Fig. 2. The modular message protocol

General Setup. A node in the search tree consists of the corresponding solver State
as well as the state information for the combinators. Search starts from the root node,
which consists of a given initial solver State and state that is recursively initialized
by the combinators that make up the search specification. Typically not all combinators
are initialized from the start, e.g., and([s1, s2]) initializes s1 from the start, but s2 only
when a success leaf of s1 is reached.

From the root node, child nodes are derived and pushed onto an empty worklist.
Then in the main loop, a node is popped from the worklist and processed, which may
involve pushing new nodes on the worklist. Note that most systems will actually use a
stack (implementing depth first search) for the worklist, but the protocol is orthogonal
to the particular queuing strategy used.

Node Processing. Fig. 2 outlines the core combinator protocol. The diagram captures
the order and direction of protocol messages between combinators for processing a
single node of the search tree.

While in general a combinator composition is tree-shaped, the processing of any
single search tree node n only involves a stack of combinators. For example, given
or([and([s1, s2]), and([s3, s4])]), either s1, s2 or s3, s4 are active for n. The picture
shows this stack of active combinators on the left. Every combinator in the stack has
both a super-combinator above and a sub-combinator below, except for the top and the
bottom combinators. The bottom is always a basic heuristic, typically a base_search.

The protocol is initiated by sending the enter(n) message (third column) to the
top combinator, with the currently explored node n as an argument. The protocol ends
whenever the combinator that last received a message decides not to pass the message
on (depicted by an arrow to a small black rectangle; explained below).
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The enter(n) message notifies all combinators of the new node n to be processed.
Combinators may update their state, e.g., the node counter may increment its value. If
the bottom is a base_search combinator, it checks the status of the node. If it has failed,
the processing finishes. Otherwise, the base_search combinator checks whether there
are children to be spawned from the current node (e.g., because some variables have not
been instantiated yet). If there are none, the success message is sent. Otherwise, the
children are created and one push(c) message is sent for each child c.

The success message is passed on bottom-up. Any combinator in between may
decide to divert or drop the message. The former happens in the case of a sequential
conjunction combinator and([s1, s2]): if s1 has reached a successful leaf node in its
search tree, a new search tree is spawned for s2 rooted at the leaf of s1.

The push(c) message proceeds top-down through each combinator. For instance,
the number of discrepancies associated with the node c can be recorded. A base_search
combinator records the constraint that is added to the solver state to create node c.
Finally, c is pushed onto the search queue.

After processing of the current node n has finished, the search engine retrieves a new
node n′ from the search queue and re-initiates the protocol using the next(n,n′)mes-
sage. This message enables the combinators to determine whether n and n′ are handled
by exactly the same stack of combinators. That way, timing combinators can record
time per subtree instead of per node, which leads to more accurate time measurements
as timer resolution is usually too coarse to capture the processing of single nodes.

End of Processing. The black boxes in the figure indicate points where a combinator
may decide to end processing the current node. These messages are propagated upwards
from the originating combinator up to the root. One of the ancestor nodes may wish to
react to such a message, in particular based on the following information.

Subsearch Termination and Exhaustiveness. A particular search combinator s is ac-
tivated in a search tree node, then spreads to the children of that node and their descen-
dants. When the last descendant node has been processed, s reverts back to the inactive
status. This transition is important for several (mostly disjunctive) combinators. For in-
stance, the portfolio([s1, s2, . . .]) combinator activates si+1 when si terminates. When-
ever a combinator finishes processing a node (through success, failure or after spawning
children) it communicates to its parent whether it is now terminated as a parameter of
the message. In case of termination, it also communicates its exhaustiveness.

3.2 State Management

Most combinators are stateful in one way or another. For instance, the combinator
if(nodes < 1000, s1, s2) maintains a node count,while and([s1, . . . , sn]) maintains
which of the sub-searches si is currently active.

We have found it useful to partition the state of search combinators in two classes,
global and local state, which are implemented differently: Global state is shared among
all nodes of an active combinator s. An update of the global state at one node is visible
at all other nodes. The node count is an example of global state.

Local state is private to a single node of an active combinator s. An update to the
local state at one node is not visible at another node. Local state is usually immutable
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and changes only through inheritance: child nodes derive their copy of local state from
their parent’s copy in a possibly modified form. For instance, node depth is a local
state, where child nodes inherit the incremented depth of their parent. In and-sequential
search, the index i of the currently active subsearch si is part of the local state.

4 Modular Combinator Implementation

The message-based combinator approach lends itself well to different implementation
strategies. In the following we briefly discuss two diametrically opposed approaches we
have explored: dynamic composition (interpretation) and static composition (compila-
tion). Using these different approaches, combinators can be adapted to the implemen-
tation choices of existing solvers. Sect. 5 shows that both implementation approaches
have competitive performance.

Dynamic composition. To support dynamic composition, we have implemented our
combinators as C++ classes whose objects can be allocated and composed into a search
specification at runtime. The protocol events correspond to virtual method calls between
these objects. For the delegation mechanism from one object to another, we explicitly
encode a form of dynamic inheritance called open recursion or mixin inheritance [2]. In
contrast to the OOP inheritance built into C++ and Java, this mixin inheritance provides
two essential abilities: 1) to determine the inheritance graph at runtime and 2) to use
multiple copies of the same combinator class at different points in the inheritance graph.
In contrast, C++’s built-in static inheritance provides neither.

The C++ library currently builds on top of the Gecode constraint solver2. However, the
solver is accessed through a layer of abstraction that is easily adapted to other solvers
(e.g., we have a prototype interface to the Gurobi MIP solver). The complete library
weighs in at around 2500 lines of code, which is even less than Gecode’s native search
and branching components.

Static composition. In a second approach, also on top of Gecode, we statically com-
pile a search specification to a tight C++ loop. Again, every combinator is a separate
module independent of other combinator modules. A combinator module now does not
directly implement the combinator’s behavior. Instead it implements a code generator
(in Haskell), which in turn produces the C++ code with the expected behavior.

Hence, our search language compiler parses a search specification, and composes
(in mixin-style) the corresponding code generators. Then it runs the composite code
generator according to the message protocol. The code generators produce appropriate
C++ code fragments for the different messages, which are combined according to the
protocol into the monolithic C++ loop. This C++ code is further post-processed by the C++

compiler to yield a highly optimized executable.
As for dynamic composition, the mixin approach is crucial, allowing us to add more

combinators without touching the existing ones. At the same time we obtain with the
press of a button several 1000 lines of custom low-level code for the composition of just
a few combinators. In contrast, the development cost of hand crafted code is prohibitive.

2 http://www.gecode.org/

http://www.gecode.org/
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A compromise between the above two approaches, itself static, is to employ the built-
in mixin mechanism (also called traits) available in object-oriented languages such as
Scala [4] to compose combinators. A dynamic alternative is to generate the combinator
implementations using dynamic compilation techniques, for instance using the LLVM
(Low Level Virtual Machine) framework. These options remain to be explored.

5 Experiments

This section evaluates the performance of our two implementations. It establishes that
a search heuristic specified using combinators is competitive with a custom implemen-
tation of the same heuristic, exploring exactly the same tree.

Sect. 3.1 introduced a message protocol that defines the communication between the
different combinators for one node of the search tree. Any overhead of a combinator-
based implementation must therefore come from the processing of each node using
this protocol. All combinators discussed earlier process each message of the protocol in
constant time (except for the base_search combinators, of course). Hence, we expect at
most a constant overhead per node compared to a native implementation of the heuristic.

In the following, two sets of experiments confirm this expectation. The first set con-
sists of artificial benchmarks designed to expose the overhead per node. The second set
consists of realistic combinatorial problems with complex search strategies.

The experiments were run on a 2.26 GHz Intel Core 2 Duo running Mac OS X. The
results are the averages of 10 runs, with a coefficient of deviation less than 1.5%.

Stress Test. The first set of experiments measures the overhead of calling a single
combinator during search. We ran a complete search of a tree generated by 7 vari-
ables with domain {0, . . . , 6} and no constraints (1 647 085 nodes). To measure the
overhead, we constructed a basic search heuristic s and a stack of n combinators:
portfolio([portfolio([. . . portfolio([s, prune]) . . . , prune]), prune]), where n ranges from
0 to 20 (realistic combinator stacks, such as those from the examples in this paper, are
usually not deeper than 10). The numbers in the following table report the runtime with
respect to using the plain heuristic s, for both the static and the dynamic approach:

n 1 2 5 10 20
static % 106.6 107.7 112.0 148.3 157.5
dynamic % 107.3 117.6 145.2 192.6 260.9

A single combinator generates an overhead of around 7%, and 10 combinators add 50%
for the static and 90% for the dynamic approach. In absolute runtime, however, this
translates to an overhead of around 17 ms (70 ms) per million nodes and combinator
for the static (dynamic) approach. Note that this is a worst-case experiment, since there
is no constraint propagation and almost all the time is spent in the combinators.

Benchmarks. The second set of experiments shows that in practice, this overhead is
dwarfed by the cost of constraint propagation and backtracking. Note that the experi-
ments are not supposed to demonstrate the best possible search heuristics for the given
problems, but that a search heuristic implemented using combinators is just as efficient
as a native implementation.
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Compiled Interpreted Gecode
Golomb 10 0.61 s 101.8% 102.5%
Golomb 11 12.72 s 102.9% 101.8%
Golomb 12 125.40 s 100.6% 101.9%
Radiotherapy 1 71.13 s 105.9% 107.3%
Radiotherapy 2 11.78 s 108.3% 108.1%
Radiotherapy 3 69.89 s 108.1% 98.7%
Radiotherapy 4 106.04 s 109.2% 99.1%
Job-Shop G2 7.25 s 146.3% 101.2%
Job-Shop H5 20.88 s 153.2% 107.0%
Job-Shop H3 52.02 s 162.5% 102.8%
Job-Shop ABZ1-5 2319.00 s 103.7% 100.1%
Job-Shop mt10 2181.00 s 104.5% 99.9%

Fig. 3. Experimental results

Fig. 3 compares Gecode’s optimization search engines with branch-and-bound
implemented using combinators. On the well-known Golomb Rulers problem, both dy-
namic combinators and native Gecode are slightly slower than static combinators. Na-
tive Gecode uses dynamically combined search heuristics, but is much less expressive.
That is why the static approach with its specialization yields better results.

On the radiotherapy problem (see Sect. 2.2), the dynamic combinators show an over-
head of 6–9%. For native Gecode, exh_once must be implemented as a nested search,
which performs similarly to the dynamic combinators. However, in instances 3 and 4,
the compiled combinators lose their advantage over native Gecode. This is due to the
processing of exh_once: As soon as it is finished, the combinator approach processes
all nodes of the exh_once tree that are still in the search worklist, which are now pruned
by exh_once. The native Gecode implementation simply discards the tree. We will in-
vestigate how to incorporate this optimization into the combinator approach.

The job-shop scheduling examples, using the combination of branch-and-bound and
discrepancy limit discussed in Sect. 2.2, show similar behavior. In ABZ1-5 and mt10,
the interpreted combinators show much less overhead than in the short-running in-
stances. This is due to more expensive propagation and backtracking in these instances,
reducing the relative overhead of executing the combinators.

In summary, the experiments show that the expressiveness and flexibility of a rich
combinator-based search language can be achieved without any runtime overhead.

6 Related Work

This work directly extends our earlier work on Monadic Constraint Programming
(MCP) [15]. MCP introduces stackable search transformers, which are a simple form
of search combinators, but only provide a much more limited and low level form of
search control. In trying to overcome its limitations we arrived at search combinators.

Constraint logic programming languages such as ECLiPSe [5] and SICStus Pro-
log [18] provide programmable search via the built-in search of the paradigm, allowing
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the user to define goals in terms of conjunctive or disjunctive sub-goals. The crucial
difference to our combinator approach is that combinators can cross-cut the behavior of
their sub-combinators, in the sense that a combinator higher up in the stack can interfere
with a sub-combinator, while remaining fully compositional. This is not possible with
Prolog goals, so apart from conjunction and disjunction, goal-based heuristics cannot
be combined arbitrarily. ECLiPSe provides user programmable labeling as well as dif-
ferent strategies such as depth bounded, node bounded and limited discrepancy search.
One can change the strategy, e.g., when the depth bound finishes. Users cannot define
their own heuristics in the library, though they could be programmed from scratch.

The Salsa [8] language is an imperative domain-specific language for implementing
search algorithms on top of constraint solvers. Its center of focus is a node in the search
process. Programmers can write custom Choice strategies for generating next nodes
from the current one; Salsa provides a regular-expression-like language for combining
these Choices into more complex ones. In addition, Salsa can run custom procedures at
the exits of each node, right after visiting it. We believe that Salsa’s Choice construct
is orthogonal to our approach and could be incorporated. Custom exit procedures show
similarity to combinators, but no support is provided for arbitrary composition.

Oz [19] was the first language to truly separate the definition of the constraint model
from the exploration strategy [16]. Computation spaces capture the solver state and the
possible choices. Strategies such as DFS, BFS, LDS, Branch and Bound and Best First
Search are implemented by a combination of copying and recomputation of computa-
tion spaces. The strategies are monolithic, there is no notion of search combinators.

IBM ILOG CP Optimizer [3] supports Prolog-style goals in C++ [12], and like Pro-
log goals, these do not support cross-cutting.

Comet [20] features fully programmable search [21], with a clean separation be-
tween search tree specification and exploration strategy. Search trees are specified using
the non-deterministic primitives try and tryall, corresponding to our base_search
heuristics. Exploration is delegated to a search controller, which, similar to our com-
binators, defines what to do when starting or ending a search, failing, or adding a new
choice. Choices are represented as continuations. Complex hybrid heuristics can be con-
structed as custom controllers. The main difference to our approach is that controllers
are not composable, but have to be implemented by inheritance or from scratch.

7 Conclusion

We have shown how combinators provide a powerful high-level language for model-
ing complex search heuristics. The modular implementation relieves system developers
from a high implementation cost and yet imposes no runtime penalty.

For future work, the next step for us will be a full integration into MiniZinc. Further-
more, parallel search on multi-core hardware fits perfectly in our combinator frame-
work. We have already performed a number of preliminary experiments and will further
explore the benefits of search combinators in a parallel setting. We will also explore
potential optimizations (such as the short-circuit of exh_once from Sect. 5) and dif-
ferent compilation strategies (e.g., combining the static and dynamic approaches from
Sect. 4). Finally, combinators need not necessarily be heuristics that control the search.
They may also monitor search, e.g., by gathering statistics or visualizing the search tree.
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Abstract. Variable independence in quantified boolean formulas
(QBFs) informally means that the quantifier structure of the formula can
be rearranged so that two variables reverse their outer-inner relationship
without changing the value of the QBF. Samer and Szeider introduced
the standard dependency scheme and the triangle dependency scheme to
safely over-approximate the set of variable pairs for which an outer-inner
reversal might be unsound (JAR 2009).

This paper introduces resolution paths and defines the resolution-path
dependency relation. The resolution-path relation is shown to be the root
(smallest) of a lattice of dependency relations that includes quadrangle
dependencies, triangle dependencies, strict standard dependencies, and
standard dependencies. Soundness is proved for resolution-path depen-
dencies, thus proving soundness for all the descendants in the lattice.

It is shown that the biconnected components (BCCs) and block trees
of a certain clause-literal graph provide the key to computing dependency
pairs efficiently for quadrangle dependencies. Preliminary empirical re-
sults on the 568 QBFEVAL-10 benchmarks show that in the outermost
two quantifier blocks quadrangle dependency relations are smaller than
standard dependency relations by widely varying factors.

1 Introduction

Variable independence in quantified boolean formulas (QBFs) informally means
that two variables that are adjacent in the quantifier structure can exchange
places without changing the value of the QBF. The motivation for knowing such
shifts are sound (i.e., cannot change the value of a closed QBF, which is true or
false) is that QBF solvers have more flexibility in their choice of which variable
to select for a solving operation. They are normally constrained to obey the
quantifier order.

Samer and Szeider introduced dependency schemes to record dependency pairs
(p, q) such that q is inner to p in the quantifier structure and any rearrangement
that places q outer to p might be unsound. The absence of (p, q) ensures that
there is some sound rearrangement that places q outer to p [6]. The idea is
that the pairs in a dependency scheme can be computed with reasonable effort,
and are a safe over-approximation of the exact relation that denotes unsound
rearrangements of quantifier order. A smaller dependency scheme allows more
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pairs to be treated as independent. They proposed two nontrivial schemes, the
“standard” dependency scheme, which is easiest to compute, but coarse, and the
“triangle” dependency scheme, which is more refined. Lonsing and Biere have
reported favorable results on an implementation of the “standard” dependency
scheme [5]. We are not aware of any implementation of triangle dependencies.
Lonsing and Biere provide additional bibliography and discussion of other ap-
proaches for increasing solver flexibility.

This paper introduces resolution paths in Section 4 to define a dependency
relation that is smaller than those proposed by Samer and Szeider. Resolu-
tion paths are certain paths in the resolution graph [7] associated with the
quantifier-free part of the QBF. A hierarchy of new relations is introduced,
called resolution-path dependencies (smallest), quadrangle dependencies, and
strict standard dependencies. Quadrangle dependencies refine the triangle de-
pendencies; strict standard dependencies refine standard dependencies. The re-
sulting lattice is shown in Figure 1. Soundness is proved for resolution-path
dependencies, thus proving soundness for all the descendants in the hierarchy.
A slightly longer version of this paper contains some details omitted here, due
to the page limit.1

The main obstacle is computing the dependency relation for anything more
refined than standard dependencies or strict standard dependencies. Samer and
Szeider sketched a polynomial-time algorithm, which enabled them to get inter-
esting theoretical results involving triangle dependencies and back-door sets. It
appears to be too inefficient for practical use on large QBF benchmarks and, to
the best of our knowledge, it has not been implemented.

Samer and Szeider used a certain undirected graph, similar to what is called
the clause-variable incidence graph in the literature, for their algorithm. This
clause-literal graph, as we shall call it, is normally already represented in the
data structures of a solver, as occurrence lists, and is practical to use for the
standard dependency relation [5]. It is easy to see standard dependencies (and
strict standard dependencies) are based on the connected components (CCs)
of this graph. Strict standard dependencies, introduced in Definition 5.2, are
essentially a cost-free improvement on standard dependencies, once this fact is
recognized.

This paper shows in Section 6 that the biconnected components (BCCs)
of the clause-literal graph provide the key to identifying dependency pairs for
quadrangle dependencies, introduced in Definition 5.2. Like CCs, BCCs can

1 Please see http://www.cse.ucsc.edu/∼avg/QBFdeps/ for a more detailed version
of this paper and a prototype program.
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be computed in time linear in the graph size. Based on the BCC structure,
the clause-literal graph can be abstracted into a block tree, so-called in the
literature.

Quadrangle dependencies can be determined by paths in the block tree, which
is normally much smaller than the clause-literal graph. Our algorithm could be
modified to compute triangle dependencies, but this would cost the same as
quadrangle dependencies, and produce less independence, so this modification
has not been implemented. We avoid calling the quadrangle dependency relation
a dependency scheme to avoid conflicting with the technical requirements stated
by Samer and Szeider [6].

In a prototype C++ implementation that builds dependency relations, com-
puting BCCs was found to be as cheap as computing connected components
(needed for any dependency relation), on the 568 QBFEVAL-10 benchmarks.
Preliminary empirical results are given in Section 7, mainly consisting of statis-
tics about the BCC structure and size of quadrangle dependency relations in
these benchmarks.

The primary goal of this work to provide methods by which practical QBF
solvers can soundly carry out a broader range of the operations they already
perform. (Readers should be familiar with QBF solver operations to follow these
paragraphs, or come back after reading Section 2.) The universal reduction op-
eration is ubiquitous in QBF solvers. The standard requirement is that all exis-
tential literals must be independent of the universal literal u to be deleted in the
trivial dependency relation. Theorem 4.9 shows that independence in the quad-
rangle relation is sufficient. Search-based QBF solvers make variable assignments
as assumptions (the word “decision” is often used). Normally, an existential vari-
able can be selected only if it is independent of all unassigned universal variables
in the trivial dependency relation. Theorem 4.7 shows that independence in the
quadrangle relation is sufficient.

2 Preliminaries

In general, quantified boolean formulas (QBFs) generalize propositional formulas
by adding universal and existential quantification of boolean variables. See [3] for
a thorough introduction and a review of any unfamiliar terminology. A closed
QBF evaluates to either 0 (false) or 1 (true), as defined by induction on its
principal operator.

1. (∃xφ(x)) = 1 iff (φ(0) = 1 or φ(1) = 1).
2. (∀xφ(x)) = 0 iff (φ(0) = 0 or φ(1) = 0).
3. Other operators have the same semantics as in propositional logic.

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to 1, and player A (Universal) tries to set universal variables to make the QBF
evaluate to 0 (see [4] for more details).
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For this paper QBFs are in prenex conjunction normal form (PCNF),
i.e., Ψ = −→Q.F consists of prenex −→Q and clause matrix F . Clauses may be writ-
ten enclosed in square brackets (e.g., [p, q, r ]). Literals are variables or negated
variables, with overbar denoting negation. Usually, letters e and others near the
beginning of the alphabet denote existential literals, while letters u and others
near the end of the alphabet denote universal literals. Letters like p, q, r de-
note literals of unspecified quantifier type. The variable underlying a literal p is
denoted by |p| where necessary.

The quantifier prefix is partitioned into quantifier blocks of the same quantifier
type. Each quantifier block has a unique qdepth, with the outermost block having
qdepth = 1.

The proof system known as Q-resolution consists of two operations, resolution
and universal reduction. Q-resolution is of central importance for QBFs because
it is a sound and complete proof system [2]. Resolution is defined as usual, except
that the clashing literal is always existential; universal reduction is special to
QBF. Let α, β, and γ be possibly empty sets of literals.

rese(C1, C2) = α ∪ β where C1 = [e, α] , C2 = [ e , β] (1)
unrdu(C3) = γ where C3 = [C]3 = [u, γ] (2)

Resolvents must be non-tautologous for Q-resolution. unrdu(C3) is defined only
if u is tailing for γ, which means that the quantifier depth (qdepth) of u is
greater than that of any existential literal in γ.

A Q-derivation , often denoted as π, is a directed acyclic graph (DAG) in
which each node is either an input clause (a DAG leaf), or a proof operation (an
internal node) with a specified clashing literal or reduction literal, and edge(s)
to its operand(s). A Q-refutation is a Q-derivation of the empty clause.

An assignment is a partial function from variables to truth values, and is
usually represented as the set of literals that it maps to true. Assignments are
denoted by ρ, σ, τ , etc. Applications of an assignment σ to a logical expression
are denoted by q�σ, C�σ, F�σ, etc. If σ assigns variables that are quantified in Ψ ,
those quantifiers are deleted in Ψ�σ, and their variables receive the assignment
specified by σ.

3 Regular Q-Resolution

In analogy with regular resolution in propositional calculus, we define Q-resolu-
tion to be regular if no variable is resolved upon more than once on any path in
the proof DAG. We need the following property for analyzing resolution paths.

Theorem 3.1. Regular Q-resolution and regular tree-like Q-resolution are com-
plete for QBF.

Proof: The proof for regular Q-resolution is the same as in the paper that
showed Q-resolution is complete for QBF [2]. It is routine to transform a regular
Q-resolution derivation into a regular tree-like Q-resolution derivation of the
same clause, by splitting nodes as needed, working from the leaves (original
clauses) up.
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4 Resolution Paths

This section defines resolution paths and resolution-path dependencies, then
states and proves the main results in Theorem 4.7 and subsequent theorems. Let
a closed PCNF Ψ = −→Q.G be given in which the quantifier block at qdepth d+ 1
is existential. Consider the resolution graph G = (V,E) defined as follows [7]:

Definition 4.1. The qdepth-limited resolution graph G = (V,E) at qdepth d+1
is the undirected graph in which:

1. V , the vertex set, consists of clauses in G containing some existential literal
of qdepth at least d+ 1;

2. E, the undirected edge set, consists of edges between clauses Ci and Cj in V ,
where there is a unique literal q such that q ∈ Ci and q ∈ Cj , so that Ci and
Cj have a non-tautologous resolvent. Further, q is required to be existential
and its qdepth must be d + 1 or greater. Each edge is annotated with the
variable that qualifies it as an edge.

A resolution path of depth d+ 1 is a path in G such that no two consecutive
edges are annotated with the same variable. (Nonconsecutive edges with the
same variable label are permitted and variable labels with qdepths greater than
d+ 1 are permitted.)

Definition 4.2. We say that a literal p presses on an existential literal q in the
graph G defined in Definition 4.1 if there is a resolution path of depth d + 1
connecting a vertex that contains p with a vertex that contains q without using
an edge annotated with |q|. Similarly, p presses on q if there is a resolution path
of depth d + 1 connecting a vertex that contains p with a vertex that contains
q without using an edge annotated with |q|.

One may think of “presses on” as a weak implication chain: if all the clauses
involved are binary, it actually is an implication chain. An example is discussed
later in Example 5.4 and Figure 3 after some other graph structures have been
introduced. The intuition is that if literal p presses on literal q, then making p true
makes it more likely that q will need to be true to make a satisfying assignment.
Theorem 4.7 shows that transposing the variable order in the quantifier prefix
is sound, even though many combinations of pressing are present. Only certain
combinations are dangerous.

We say that a sequence S′ is a subsequence of a sequence S if every element
in S′ is also in S, in the same order as S, but not necessarily contiguous in S.

The next theorem shows that Q-resolution cannot bring together variables un-
less there is a “presses on” relationship in the original clauses. This suggests that
resolution paths are the natural form of connection for variable dependencies.

Theorem 4.3. Let Ψ = −→Q.G be a closed PCNF. Let π be a regular tree-like
Q-resolution derivation from Ψ . For all literals p and for all existential literals f ,
if there is a clause (input or derived) in π that contains both p and f , then the
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order of sibling subtrees of π may be swapped if necessary so that a resolution
path from a clause with p to a clause with f appears as a subsequence of the
leaves of π (not necessarily contiguous, but in order).

Proof: The proof is by induction on the subtree structure of π. The base
case is that p and f are together in a clause of G, say D1, which is a leaf of π.
Then D1 constitutes a resolution path from p to f .

For any non-leaf subtree, say π1, assume the theorem holds for all proper
subtrees of π1. That is, assume for all literals q and for all existential literals e,
if there is a clause in a proper subtree of π1, say π2, that contains both q and e,
then the subtrees of π2 may be swapped so that a resolution path from a clause
with q to a clause with e appears as a subsequence of the leaves of π2.

Suppose that clause D1, the root clause of π1 contains both p and f . If p and
f appear in a clause in a proper subtree of π1, then the inductive hypothesis
states that the needed resolution path can be obtained, so assume p and f do
not appear together in any proper subtree of π1.

Arrange the two principal subtrees of π1 so that p is in the root clause of the
left subtree and f is in the root clause of the right subtree (p and/or f might
be in both subtrees). Let the clashing literal be g at the root of π1. That is, g
appears in the left operand and g appears in the right operand of the resolution
whose resolvent is D1.

By the inductive hypothesis, the left subtree has a resolution path PL from a
clause with p to a clause with g as a subsequence of its leaves. Also, the right
subtree has a resolution path PR from a clause with g to a clause with f as a
subsequence of its leaves. Concatenate PL and PR (with the edge being labeled
|g|) to give a resolution path from a clause with p to a clause with f . Since |g| was
a clashing literal at D1, above the two subtrees, by regularity of the derivation,
|g| cannot appear as an edge label in either PL or PR, so the concatenation
cannot have consecutive edges labeled with |g|.
We now consider when transposing adjacent quantified variables of different
quantifier types in the quantifier prefix does not change the value of the QBF.

Definition 4.4. Let a closed PCNF Ψ = −→Q.G be given in which the universal
literal u is at qdepth d and the existential literal e is at some qdepth greater
than d. The pair (u, e) satisfies the resolution-path independence criterion
if (at least) one of the following conditions hold in the depth-limited graph G
defined in Definition 4.1:

(A) u does not press on e and u does not press on e ; or
(B) u does not press on e and u does not press on e .

If u and e are variables, the pair (u, e) satisfies the resolution-path indepen-
dence criterion for variables if any of (u, e) or (u, e ) or (u , e) or (u , e )
satisfies the resolution-path independence criterion for literals.

Definition 4.5. Let universal u and existential e be variables, as in Defini-
tion 4.4. We say the pair (u, e) is a resolution-path dependency tuple if and
only if (at least) one of the following conditions holds in G:
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(C) u presses on e and u presses on e ; or
(D) u presses on e and u presses on e .

Lemma 4.6 states that either this definition or Definition 4.4, but not both,
applies for pairs (u, e) of the correct types and qdepths.

Lemma 4.6. If u and e are universal and existential variables, respectively,
then (u, e) satisfies the resolution-path independence criterion for variables if
and only if e does not have a resolution-path dependency upon u.

Proof: Apply DeMorgan’s laws and distributive laws to the definitions.

We are now ready to state the main theoretical results of the paper. We use
transpose in its standard sense to mean interchange of two adjacent elements
in a sequence.

Theorem 4.7. Let a closed PCNF Ψ = −→Q.G be given in which the universal
literal u is at qdepth d and is adjacent in the quantifier prefix to the existential
literal e at qdepth d + 1. Let (u, e) satisfy the resolution-path independence
criterion for literals (Definition 4.4). Then transposing |u| and |e| in the quantifier
prefix does not change the value of Ψ .

Proof: It suffices to show that transposing u to a later position does not
cause Ψ to change in value from 1 to 0. We show this holds for all assignments σ
to all variables outer to u in Ψ . That is, let −→Qrem be the suffix of −→Q beginning
immediately after ∀u ∃e, and define

Φ = ∀u ∃e−→Qrem.F , where F = G�σ (3)

Φ′ = ∃e ∀u−→Qrem.F . (4)

Note that if the hypotheses (A) and (B) in Definition 4.4 hold for Ψ , then
they also hold for Φ. Throughout this proof “A” and “B” refer to these con-
ditions. Suppose Φ′ evaluates to 0. By Theorem 3.1 there is a regular tree-like
Q-refutation π′ of Φ′. Note that π′ has no redundant clauses; they all contribute
to the refutation. Let us attempt to use π′ as a starter for π, which we want to
be a Q-refutation of Φ. For notation, any primed symbol (such as D′) in Φ′ or
π′ represents the corresponding unprimed symbol (such as D) in Φ or π.

What operation of π′ can be incorrect for π? The only possibilities are a
universal reduction involving a clause containing literals on both |u| and |e|. In
π′, |u| is tailing w.r.t. |e|, whereas in π it is not.

The key observation is that a regular tree-like Q-refutation derivation from
Φ′ cannot produce certain clauses containing literals on both |u| and |e|, due to
Theorem 4.3. Any resolution path in Φ from u or u to e or e that is implied by
applying Theorem 4.3 to π′ cannot contain edges labeled with |e|, by regularity.
So such a path is also a resolution path after the transposition of u and e in the
quantifier prefix. Such a resolution path in Φ′ or Φ is also a resolution path at
the corresponding quantifier depth (i.e., d + 1) in Ψ . The theorem hypothesis
that Definition 4.4 holds, together with Lemma 4.6, prohibits certain resolution
paths that would imply that Definition 4.5 holds.
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As stated, the only cases where the operation in π′ might not be imitated in π
are where the operation is a universal reduction on u or u in a clauseD′. LetD in
π correspond to D′ in π′. Without loss of generality we assume that all universals
other than u or u have already been reduced out ofD′. There are several cases to
examine, to show that the problematic operations in π′ can always be transformed
into correct operations in π that achieve a Q-refutation of Φ. It will follow that
transposing u and e does not change the evaluation of Ψ .

If D′ contains u, in π′ let the clause D′
2 = unrdu(D′). D′

2 must contain e or
e or the same reduction can apply to D.

If D′ contains u and D′
2 contains e, we cannot have case (B), so consider

case (A). The reduced clause D′
2 must resolve on e with some clause, say C′,

that contains e . But C′ cannot contain u . Let π resolve D with C, giving
D2. D2 must be non-tautologous and now u can be reduced out, constructing a
Q-refutation of Φ.

If D′ contains u and D′
2 contains e , neither case (A) nor case (B) is possible.

If D′ contains u , in π′ let the clause D′
3 = unrdu (D′). D′

3 must contain e or
e or the same reduction can apply to D.

If D′ contains u and D′
3 contains e, D′

3 must resolve with some clause, say
C′

3, that contains e . C′
3 cannot contain u in either case (A) or (B). Let π resolve

D with C3, giving D3. D3 must be non-tautologous and now u can be reduced
out, constructing a Q-refutation of Φ.

If D′ contains u and D′
3 contains e , we cannot have case (A), so consider case

(B). The reduced clause D′
3 must resolve with some clause, say C′

4, that contains
e. But C′

4 cannot contain u. Let π resolveD with C4, giving D4. D4 must be non-
tautologous and now u can be reduced out, constructing a Q-refutation of Φ.

Corollary 4.8. If e is an existential pure literal in the matrix of a closed QBF
Ψ , then e may be placed outermost in the quantifier prefix without changing the
value of Ψ . If u is a universal pure literal in a closed QBF Ψ , then u may be
placed innermost in the quantifier prefix without changing the value of Ψ .

Next we consider cases in which u and e are separated by more than one qdepth.
Although it might not be sound to revise the quantifier prefix, we still might be
able to perform universal reduction and other operations soundly.

Theorem 4.9. Let a closed PCNF Ψ = −→Q.G be given in which the universal
literal u is at qdepth d and the existential literals e1, . . ., ek are at qdepths greater
than d. Let C0 = [α, u, e1, . . . , ek] be clause in G, where α (possibly empty)
consists of existential literals with qdepths less than d and universal literals.
For each i ∈ {1, . . . , k}, let (|u|, |ei|) satisfy the resolution-path independence
criterion for variables (Definition 4.4). Then deleting u from C0 does not change
the truth value of Ψ . That is, universal reduction on u in C0 is sound.

Proof: The proof idea is similar to Theorem 4.7, but is more involved because
Theorem 4.3 needs to be invoked on multiple subtrees. It suffices to show that
deletion of u from C0 does not cause Ψ to change from 1 to 0. We show this
holds for all assignments σ to all variables outer to u in Ψ . That is, let −→Q rem be
the suffix of −→Q beginning immediately after ∀u, and define
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Fig. 2. Refutation π′ exhibiting resolution path from u to ej for proof of Theorem 4.9.
Circles contain clashing literals of resolutions that derive clauses immediately above
them.

Φ = ∀u−→Qrem.F , where F = G�σ (5)

Φ′ = ∀u−→Qrem.F ′, (6)

where F ′ is obtained from F by replacing clause C = C0�σ by C′ = C−{u}. For
notation, any primed symbol (such asD′) in Φ′ or π′ represents the corresponding
unprimed symbol (such as D) in Φ or π.

Suppose Φ′ evaluates to 0. By Theorem 3.1 Φ′ has a regular tree-like Q-
refutation, say π′, which we use as a starter for π. The only operation in π′ that
might be incorrect for π is a resolution involving a clause C1 in π, where u ∈ C1,
u has been reduced out of C′

1 in π′, and the extra u causes the resolvent to be
tautologous in π. Thus C1 and C′

1 contain at least one of the literals e1, . . ., ek.
Also C1 and C′

1 resolve with some clause D1 = D′
1 that contains u . We show

this leads to a contradiction.
Figure 2 shows the proof ideas. Let the resolvent of C′

1 and D′
1 in π′ be C′

2

and let the clashing literal in D′
1 be g . By Theorem 4.3 there is a resolution

path from u to g using (some of) the leaves of the subtree rooted at D′
1.

C provides a resolution-path from u to ei in Φ, for each i ∈ {1, . . . , k} so to
establish the contradiction, it suffices to show that there is a resolution path
from u to ej , for some j ∈ {1, . . . , k}. If g is equal to any of e1, . . ., ek, we are
done, so assume not.

Swap the order of sibling subtrees in π′ as necessary to place C′ on the right-
most branch, called the right spline. Find the lowest clause on this spline con-
taining g. Call this clause C′

3 and call its left child D′
4. D′

4 contains g and the
clashing literal used to derive C′

3, say g3 . IfD′
4 contains ej for any j ∈ {1, . . . , k}

rearrange its subtrees to exhibit a resolution path from g to ej and we are done.
Otherwise, rearrange its subtrees to exhibit a resolution path from g to g3 , as
suggested in the figure. Append this to the path from u to g (from the subtree
deriving D′

1), giving a resolution path from u to g3 .
Continue extending the path in this manner down the right spline. That is,

let C′
5 be the lowest clause on this spline containing g3 and let its left child be

D′
6, etc. The figure does not show these details. Eventually, the left child of a

spline clause contains some ej , shown as C′
8 in the figure. (This must occur
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at some point because the first resolution above C′ must use some ej as the
clashing literal.) When ej is reached, a resolution path from u to ej has been
constructed, using the subtree that derives D′

9 for the last segment.

5 Clause-Literal Graphs

Let a closed QBF Ψ be given in which the quantifier block at qdepth d + 1 is
existential. We define qdepth-limited clause-literal graphs as follows:

Definition 5.1. The qdepth-limited clause-literal graph denoted as G =
((V0, V1, V2), E) at qdepth d+1 is the undirected tripartite graph in which: The
vertex set V0 consists of clauses containing some existential literal of qdepth at
least d + 1; The vertex set V1 consists of existential positive literals of qdepth
at least d + 1 that occur in some clause in V0. The vertex set V2 consists of
existential negative literals of qdepth at least d+ 1 that occur in some clause in
V0. The undirected edge set E consists of (ei, ei ), where ei ∈ V1, (ei, Cj), where
ei ∈ V1 and Cj ∈ V0 and ei ∈ Cj , and ( ei , Cj), where ei ∈ V2 and Cj ∈ V0 and
ei ∈ Cj . See examples in Figure 3.

Several dependency relations can be specified in terms of paths in the depth-
limited clause-literal graph G. Simple paths and simple cycles in G are defined
as usual for undirected graphs.

Definition 5.2. Let u be a universal literal at qdepth d and let e be an exis-
tential literal at qdepth d+ 1. A dependency pair (|u|, |e|) means |e| depends on
|u|.
1. Standard dependencies are based on connected components.

stdDepA(|u|, |e|) holds if any path in G connects a clause with universal
literal u or u to a clause with existential literal e or e .

2. Strict standard dependencies are based on connected components of G.
ssDepA(|u|, |e|) holds if some path in G connects a clause with universal
literal u to a clause with existential literal e or e , and some path in G
connects a clause with u to a clause with e or e .

3. Quadrangle dependencies are based on biconnected components and artic-
ulation points of G, because they involve paths that avoid a certain literal.
(Definitions are reviewed at the beginning of Section 6.) Articulation points
are the only vertices that cannot be avoided. quadDepA(|u|, |e|) holds if; (A)
Some path in G connects a clause with universal literal u to a clause with
existential literal e and avoids vertex e ; and (B) some path in G connects
a clause with universal literal u to a clause with existential literal e and
avoids vertex e.

Note that u and e can independently be chosen as positive or negative lit-
erals to satisfy the above conditions (A) and (B). The name “quadrangle” is
chosen because all four literals on |u| and |e| are involved in the requirement.

4. Triangle dependencies are a relaxation of Quadrangle dependencies, also
based on biconnected components and articulation points of G. Specifically,
triDepA(|u|, |e|) holds under the same conditions as quadDepA(|u|, |e|), ex-
cept in condition (B) the path may start at a clause with either u or u .
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Table 1. QBFs for Example 5.4

Ψ1 ∀u ∃e ∀t ∃d
C1 u t d

C2 u t d
C3 e t d

C4 e t d
C5 e t d

C6 e t d

Ψ2 ∀u ∃e ∀t ∃d
C1 u t d

C2 u t d
C3 e t d

C4 e t d
C7 e t d

C6 e t d

C1

C2

d
d

C4

C6

C3

C5

e

e

C1 d

d

C2 d

C3 C5 C4 C6

d d e e

C1

C2

d
d

C4

C6

C3

C7

e

e

C1 d

d

C2 d

C3 C7 C4 C6

d d e e

Ψ1 Ψ2

Fig. 3. (Above) Clause-literal graphs for Example 5.4. (Below) BCC-based block trees.

5. Paths for resolution-path dependencies, denoted by rpDepA(|u|, |e|), are fur-
ther restricted from those for quadrangle dependencies. Restrictions on paths
are as follows: (C) If a path arrives at a literal node from a clause node,
its next step must be to the complement literal. (D) If a path arrives at
a literal node from its complement literal node, its next step must be to a
clause node. If a path goes from C1 to literal q, then to C2, then both C1 and
C2 contain q. This path is allowed for triangle and quadrangle dependencies,
but not for resolution-path dependencies.

Curiously, strict standard dependencies relax quadrangle dependencies in the
opposite way from triangle dependencies. The motivation for strict standard
dependencies is that they seem to be more efficient to compute than quadrangle
dependencies, as discussed later.

Theorem 4.7 implies the following:

Corollary 5.3. With the preceding notation: (1) If the universal variable u at
qdepth d has no tuple (u, e) ∈ quadDepA such that the qdepth of e is less than
d + 2k, where k > 0, then u can be placed at qdepth d + 2k in the quantifier
prefix without changing the value of Ψ . (2) If existential variable e at qdepth
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d + 1 has no tuple (u, e) ∈ quadDepA such that the qdepth of u is greater than
d− 2k, where k > 0, then e can be placed at qdepth d+ 1− 2k in the quantifier
prefix without changing the value of Ψ .

Example 5.4. This example illustrates resolution-path dependencies, quadran-
gle dependencies, and their differences, with reference to various graph struc-
tures. Consider the closed QBFs Ψ1 and Ψ2, given in chart form in Table 1. In
the following, the notation “C1(u)” abbreviates the phrase “C1, which contains
the literal u,” etc., and does not represent any operation on C1.

In both formulas a quadrangle dependency quadDepA(|u|, |e|) is established

by the paths C1(u)
|d|→ C4( e ) and C2(u )

|d|→ C3(e). However, the first path is not
a resolution path because d does not occur with opposite signs in C1 and C4.
Indeed, in Ψ1 neither u nor u presses on e by any resolution path, recalling
that the universal t cannot be used for connection. Therefore e is independent of
u based on rpDepA. It follows that u and e may be exchanged in the quantifier
prefix without decreasing the value of Ψ1 (and such a swap can never increase
the value). Following this exchange, it is easy to see that u may be exchanged
with t, then with d, and universally reduced out of all clauses.

Observe that Ψ2 is the same as Ψ1 except that it has C7 instead of C5. There

is no obvious difference in the chart appearance, but now C1(u)
|d|→ C7( e ) is a

resolution path and rpDepA(|u|, |e|) holds in Ψ2, so transposing u and e in the
quantifier prefix is unsafe by this criterion.

The role of the block trees is explained in Section 6, in connection with bi-
connected components and articulation points of the clause-literal graph. The
definitions are reviewed at the beginning of that section. Here we just note that
the circular node is an articulation point and the rounded rectangular nodes are
biconnected components.

6 Finding Dependency-Related Paths

Now we turn to the issue of computing quadDepA. Biconnected components play
a central role. After reviewing the standard theory, this section describes how
the specific information needed for quadrangle dependencies is extracted.

Recall that a subgraph, say B, of an undirected graph G is biconnected if and
only if removing any one vertex and all edges incident upon that vertex does
not disconnect the remaining subgraph. A biconnected component (BCC) of
any undirected graph G is a maximal biconnected subgraph of G.

Each edge ofG is in exactly one BCC. Also, two BCCs have at most one vertex
in common. A vertex that is in more than one BCC is called an articulation
point (AP). Removal of an articulation point increases the number of connected
components in G.

The BCCs and APs of the depth-limited clause-literal graphG can be found in
time linear in its size. The code in [1, Fig. 7.26] avoids putting edges redundantly
into the BCCs.
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As a by-product, the BCC algorithm can determine simple connected com-
ponents (CCs). An additional by-product of this algorithm is the creation of
an acyclic undirected bipartite graph associated with each CC, called the block
tree, in which the BCCs are collapsed to single vertices and are separated by
the APs (see Figure 3). All universal literals incident upon each BCC can be
collected, as well.

We continue with the terminology of Definition 5.1 for G, d, u, e, etc. It is
easy to determine if there is a path in G between some clause containing u or
u and a literal e in V1: just check if one of those clauses is in the same CC
as e. Since e and e are always in the same CC, the same clauses can reach e .
However, the triangle and quadrangle dependency relations require paths to e
and e that avoid the complement literal. If neither e nor e is an AP of G, both
of these paths must exist. In this case, the relevant universal literals for |e| are
just those that occur in some clause in the same CC as e. These sets of universal
literals can be collected once, during the BCC algorithm.

Now suppose e or e or both are APs of G. The relevant universal literals for
e can be found by starting a graph search of the block tree containing |e|, from
e, and avoiding a visit of e . The relevant universal literals for e can be found
by starting a graph search of the block tree containing |e|, from e , and avoiding
a visit of e. As each BCC is visited, any universal literals at qdepth d can be col-
lected. It appears that adapting this approach to compute triangle dependencies
instead of quadrangle dependencies will not save much time. Details are omitted
for lack of space, but are straightforward.

At this time, the question of whether resolution-path dependencies can be
computed in polynomial time is open. We conjecture that it is possible, but the
requirement that two consecutive edge labels in the resolution graph cannot be
the same makes it difficult.

7 Empirical Data

A prototype program was implemented in C++ with the Standard Template Li-
brary to gauge the amount of variable independence that might be found by
various dependency relations.2 The program computes dependency-related quan-
tities on QBF benchmarks. It was run on the 568 QBFEVAL-10 benchmarks.
Two benchmarks had no universal variables, so the tables include data on 566
benchmarks. The platform was a 2.6 GHz 64-bit processor with 16 GB of RAM,
Linux OS.

The computation was limited to the outermost universal block and the adja-
cent enclosed existential block. The number of “trivial dependencies” is simply
the product of the sizes of these two blocks. The primary purpose of the program
is to find out the relative sizes of the relations for standard dependencies, strict
standard dependencies, and quadrangle dependencies. Only the outermost block
pair is analyzed because this provides a direct comparison between standard

2 Please see http://www.cse.ucsc.edu/∼avg/QBFdeps/ for the prototype program.
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Table 2. Eight largest QBFEVAL-10 benchmarks

Fraction of Trivial
Trivial Strict

Benchmark (000,000) CCs Standard Standard Quadrangle

s3330 d10 u-shuffled 627 1 1 1 0.000076
s3330 d4 s-shuffled 68 1 1 1 0.000069
s499 d15 s-shuffled 15 1 1 1 0.000125
s510 d12 s-shuffled 16 1 1 1 0.000028
s510 d31 s-shuffled 122 1 1 1 0.000082
szymanski-24-s-shuffled 1293 1 1 1 0.001944
vonNeumann-rip...-13-c- 278 1 0.999999 0.999999 0.992812
vonNeumann-rip...-15-c- 627 1 0.999999 0.999999 0.993727

Table 3. Dependency fractions as unweighted ratios

Average Avg. Fraction of Trivial
Benchmark Num. in Trivial Avg. Strict
Group Group (000) CCs Standard Standard Quadrangle

Eight Largest 8 219363 1 1.0000 1.0000 0.2486
Str.Std. Helped 239 158 34.6 0.3722 0.3718 0.1928
Str.Std. No Help 319 359 9.8 1 1 0.7278

dependencies and quadrangle dependencies. Including multiple blocks would ob-
scure the size relationships because standard dependencies use transitive closure
when multiple blocks are involved, while quadrangle dependencies do not.

The benchmarks were partitioned into several groups to try to make the statis-
tics more informative. Table 2 shows data for the eight largest benchmarks, as
measured by the number of trivial dependencies. For six of these benchmarks,
the Quadrangle relation is 3-5 orders of magnitude smaller than the Trivial,
while the Strict Standard gives no reduction. On two others, no relation gives
reduction.

Table 3 shows the eight largest as a group, and separate the remaining bench-
marks according to whether Strict Standard Dependencies gave any reduction
at all. Quadrangle dependencies give substantial additional reductions, beyond
standard and strict standard dependencies. Although Strict Standard gave very
little improvements in this test, they are essentially free, once the overhead of
Standard has been incurred.

A serious question is whether the time needed to compute Quadrangle De-
pendencies pays back in more efficient solving. Experience with depqbf indicates
tentatively that Standard Dependencies pay back in the long run [5]. For the 566
runs to get these statistics, the three longest runs took 75628, 2354, and 1561
seconds. The average of the remaining 563 runs was 9.40 seconds. Only finding
the Strict Standard dependencies and the BCCs averaged 0.50 seconds on all
566 instances.

Concerning the three longest runs, two of these instances have never been
solved by any solver, so in a sense, nothing has been lost. However, the third
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instance, szymanski-24-s-shuffled, is not considered exceptionally difficult. It
took 75628 seconds to find the quadrangle dependencies, yet finding the BBCs
took only three seconds, and computing the Standard Dependencies took only
four additional seconds. We do not have an explanation for this outlier behavior.

8 Conclusion

This paper analyzes several new dependency relations for QBF solving, and
shows they form a hierarchy, together with the standard and triangle relations
proposed by Samer and Szeider. The root of the hierarchy and strongest for
detecting variable independence is the resolution-path dependency relation. Its
soundness is proved; soundness of supersets (more restrictive relations) is a corol-
lary. Whether the resolution-path relation has an efficient implementation is an
open question, so quadrangle dependencies, the next relation down in the lattice
(Figure 1), were studied in more detail. Computational methods for quadrangle
dependencies are described, using the theory of biconnected components, and a
prototype was implemented to gauge the sizes of BCCs and related structures
in benchmarks.

Future work includes a trial implementation of quadrangle dependencies in a
QBF solver, but the publicly available solvers we looked at are not good candi-
dates for such a retrofit by anyone except one of the original programmers, in
most cases because the source code is not public. The few with public source
code tend to lack documentation and contain numerous short-cuts to improve
solver speed. Also, there are numerous ways to use dependencies, so one imple-
mentation experience will not be definitive.

Acknowledgment. We thank Florian Lonsing and Armin Biere for many help-
ful email discussions. We thank the anonymous reviewers for helpful comments.
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Abstract. A depth-first search algorithm can be used to find optimal
solutions of a Constraint Satisfaction Problem (CSP) with respect to a
set of conditional preferences statements (e.g., a CP-net). This involves
checking at each leaf node if the corresponding solution of the CSP is
dominated by any of the optimal solutions found so far; if not, then we
add this solution to the set of optimal solutions. This kind of algorithm
can clearly be computationally expensive if the number of solutions is
large. At a node N of the search tree, with associated assignment b to a
subset of the variables B, it may happen that, for some previously found
solution α, either (a) α dominates all extensions of b; or (b) α does not
dominate any extension of b. The algorithm can be significantly improved
if we can find sufficient conditions for (a) and (b) that can be efficiently
checked. In case (a), we can backtrack since we need not continue the
search below N ; in case (b), α does not need to be considered in any node
below the current node N . We derive a sufficient condition for (b), and
three sufficient conditions for (a). Our experimental testing indicates
that this can make a major difference to the efficiency of constrained
optimisation for conditional preference theories including CP-nets.

1 Introduction

Conditional preference languages, such as CP-nets and more general formalisms
[4,9,6,15,2], can give a natural way for the user of a decision support system
to express their preferences over multivariate options. A basic problem is: given
a set of outcomes, determine which are the undominated ones, i.e., which are
not considered worse than another outcome. For example, in a recommender
system, one can use preference deduction techniques to infer, from the previous
user inputs, which products may be preferred over others, and hence which are
the undominated ones [11].

As shown in [5], one can use a depth-first search algorithm to find optimal
solutions of a Constraint Satisfaction Problem (CSP) with respect to a set of con-
ditional preferences statements (e.g., a CP-net). The algorithm in [5], as well as
related algorithms in [14,15], involve using appropriate variable and value order-
ings so that solutions are generated in an order compatible with the conditional

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 804–818, 2011.
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preference statements. At each leaf node we check to see if the corresponding
solution of the CSP is dominated by any of the optimal solutions found so far;
if not, then we add this solution to the set of optimal solutions.

The standard dominance check for CP-nets and more general languages is
computationally hard, as illustrated by the PSPACE-completeness result in [8].
In this paper we follow [14,16] in using a polynomial dominance relation, which is
an upper approximation of the standard one; this enables much larger problems
to be tackled (see [10] for experimental results regarding a recent implementation
of the standard dominance queries).

Even so, this kind of constrained optimisation algorithm can clearly be com-
putationally expensive if the number of solutions is large, since we have at least
one dominance check (and possibly many) to make for each solution.

At a node N of the search tree, with associated assignment b to a subset of the
variables B, it may happen that, for some previously found solution α, either (a)
α dominates all extensions of b; or (b) α does not dominate any extension of b.
The algorithm can be significantly improved if we can find sufficient conditions
for (a) and (b) that can be efficiently checked (and that hold sufficiently often).
In the positive case, (a), we can backtrack since we need not continue the search
below N , hence pruning a possibly exponentially large part of the search tree.
In the negative case, (b), α does not need to be considered in any node below
the current node N , thus eliminating potentially exponentially many dominance
checks involving α.

In this paper, we derive three polynomial sufficient conditions for (a), and one
for (b). We have implemented and experimentally tested these in the context of
a constrained optimisation algorithm, and they are seen to significantly improve
the algorithm. Section 2 describes the background: the conditional preferences
formalism in Section 2.1, and the polynomial notion of dominance in Section 2.2.
The form of the constrained optimisation algorithm is described in Section 3.
Section 4 describes the three polynomial sufficient conditions for the positive case
(a), and Section 5 derives the polynomial sufficient conditions for the negative
case, (b). Section 6 describes the experimental testing, and Section 7 discusses
extensions.

2 Background Material

2.1 A Language of Conditional Preferences

Let V be a finite set of variables, and for each X ∈ V let X be the set of possible
values of X ; we assume X has at least two elements. For subset of variables
U ⊆ V let U =

∏
X∈U X be the set of possible assignments to set of variables

U . The assignment to the empty set of variables is written !. An outcome is an
element of V , i.e., an assignment to all the variables. For partial tuples a ∈ A
and u ∈ U , we say a extends u, if A ⊇ U and a(U) = u, i.e., a projected to U
gives u. More generally, we say that a is compatible with u if there exists outcome
α ∈ V extending both a and u, i.e., such that α(A) = a and α(U) = u.
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The language L consists of statements of the form u : x > x′ [W ] where u is
an assignment to set of variables U ⊆ V (i.e., u ∈ U), x, x′ are different values
of variable X , and {X}, U and W are pairwise disjoint. Let T = V − ({X}∪U ∪
W ). Such a conditional preference statement ϕ represents that given u and any
assignment to T , x is preferred to x′ irrespective of the values of W . If W = ∅
we sometimes write the statement just as u : x > x′.

The formal semantics is defined using total pre-orders1 on the set V of out-
comes. Formally, we say that total pre-order � satisfies u : x > x′ [W ] if
tuxw � tux′w′ for all t ∈ T ,w,w′ ∈ W , since u is satisfied in both outcomes
tuxw and tux′w′, and variable X has the value x in the first, and x′ in the
second, and they differ at most on {X} ∪W .

If ϕ is the statement u : x > x′ [W ], for u ∈ U and x, x′ ∈ X then we define
uϕ = u, xϕ = x, x′ϕ = x′, Uϕ = U , Xϕ = X and Wϕ = W .

Subsets Γ of the language L are called conditional preference theories (cp-
theories) [13]. For cp-theory Γ , and outcomes α and β we write α#Γβ when
α � β holds for all total pre-orders � satisfying each element of Γ (cf. Theorem
1 of [14]). CP-nets [3,4] can be represented by conditional preference theories that
involve statements with empty W , and TCP-nets [6] with statements involving
empty or singleton W [12].

2.2 Polynomial Dominance for Conditional Preferences

In this section we describe a polynomial dominance2 relation for conditional
preferences. This polynomial dominance relation is less conservative than the
standard one, leading to fewer undominated solutions, which also can be advan-
tageous. The definitions and results in this section come from [14] (and were
generalised further in [16]).

A pre-ordered search tree (abbreviated to a pos-tree) is a rooted directed tree
(which we imagine being drawn with the root at the top, and children below par-
ents). Associated with each node r in the tree is a variable Yr, which is instantiated
with a different value in each of the node’s children (if it has any), and also a total
pre-order �r of the values of Yr. A directed edge in the tree therefore corresponds
to an instantiation of one of the variables to a particular value. Paths in the tree
from the root down to a leaf node correspond to sequential instantiations of differ-
ent variables. We also associate with each node r a set of variablesAr which is the
set of all variables Yr′ associated to nodes r′ above r in the tree (i.e., on the path
from the root to r), and an assignment ar to Ar corresponding to the assignments
made to these variables in the edges between the root and r. The root node r∗ has
Ar∗ = ∅ and ar∗ = !, the assignment to the empty set of variables. Hence r′ is a
child of r if and only if Ar′ = Ar ∪{Yr} (where Ar �, Yr) and ar′ extends ar (with
an assignment to Yr).
1 A total pre-order � is a binary relation that is reflexive (α � α), transitive and

complete (i.e., for all α and β, either α � β or β � α). If both α � β and β � α
then we say that α and β are �-equivalent.

2 The notion of dominance in this paper is quite different from the notion of dominance
as in Symmetry Breaking via Dominance Detection [7] and related work.
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Formally, define a node r to be a tuple 〈Ar, ar, Yr,�r〉, where Ar ⊆ V is a set
of variables, ar ∈ Ar is an assignment to those variables, Yr ∈ V −Ar is another
variable, and �r is a total pre-order on the set Yr of values of Yr. We make two
restrictions on the choice of this total pre-order: firstly, it is assumed not to be
the trivial complete relation on Y , i.e., there exists some y, y′ ∈ Y with y ��r y

′

(so not all y and y′ are �r-equivalent). We also assume that �r satisfies the
following condition (which ensures that the associated ordering on outcomes is
transitive): if there exists a child of node r associated with instantiation Yr = y,
then y is not �r-equivalent to any other value of Y , so that y �r y

′ �r y only
if y′ = y. In particular, �r totally orders the values (of Yr) associated with the
children of r.

For outcome α, define the path to α to be the path from the root which includes
all nodes r such that α extends ar. To generate this, for each node r we reach,
starting from the root, we choose the child associated with the instantiation
Yr = α(Yr) (there is at most one such child); the path finishes when there exists
no such child. Node r is said to decide outcomes α and β if it is the deepest
node (i.e., furthest from the root) that is both on the path to α and on the path
to β. Hence α and β both extend the tuple ar (but they may differ on variable
Yr). We compare α and β by using �r, where r is the unique node that decides
α and β. Each pre-ordered search tree σ has an associated total pre-order �σ

on outcomes which is defined as follows. Let α, β ∈ V be outcomes. We define
α �σ β to hold if and only if α(Yr) �r β(Yr), where r is the node that decides
α and β. We therefore then have that α and β are �σ-equivalent if and only if
α(Yr) and β(Yr) are �r-equivalent. This ordering is similar to a lexicographic
ordering in that two outcomes are compared on the first variable on which they
differ.

Example of a pos-tree. Figure 1 shows an example pos-tree. The bottom left
node in the diagram represents the pos-tree node r = 〈{X1, X3}, x1x3, X2, x2 �r

x2〉. The first component Ar = {X1, X3} is the set of variables assigned above
the node; the second component ar = x1x3 is the assignment to Ar made in the
path from the root to r. The third component Yr = X2 is the variable that is
ordered next, and the fourth component, x2 �r x2 is the local ordering on X2.
Note that the both the local (value) orderings and the variable (importance)
orderings can differ in different branches of a pos-tree. Let α and β be the out-
comes x1x2x3 and x1x2x3, respectively. The path to α includes the three nodes
on the left hand of the figure. The path to β contains the root node and its
left hand child, r′ = 〈{X1}, x1, X3, x3 � x3〉. Node r′ therefore divides α and β.
Since Yr′ = X3, and α(X3) �r′ β(X3), we have α �σ β. �

We say that pre-ordered search tree σ satisfies conditional preference theory Γ
iff �σ satisfies Γ (see Section 2.1). We give an alternative characterisation of
this. Relation �X

a on X is defined to be the transitive closure of the set of pairs
(x, x′) of values of X over all statements u : x > x′ [W ] in Γ such that u is
compatible with a.
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Fig. 1. An example pos-tree σ over binary variables {X1, X2, X3}, and its associated
total pre-order �σ on outcomes. For each node r we only include its associated variable
Yr and the local ordering �r.

Proposition 1 ([14]). The following pair of conditions are necessary and suf-
ficient for a pre-ordered search tree σ to satisfy the cp-theory Γ .

(1) For any ϕ ∈ Γ and outcome α extending uϕ: on the path to α, Xϕ appears
before every element of Wϕ;

(2) for all nodes r in σ, �r ⊇ �Yr
ar

.

Condition (1) relates to the allowable variable orderings in a pre-ordered search
tree satisfying Γ , and condition (2) restricts the value orderings.

For a given cp-theory Γ we define the relation �Γ (abbreviated to �) as
follows: α � β holds if and only if α �σ β holds for all pos-trees σ satisfying Γ
(i.e, all σ such that �σ satisfies Γ ). Proposition 1 of [14] shows that if α#Γβ
then α �Γ β. Importantly, for any outcomes α and β it can be determined in
polynomial time if α �Γ β: see Section 4.2 of [14].

3 Constrained Optimisation

In the constrained optimisation algorithms in [5,14,15] a search tree is used to
find solutions of a CSP, where the search tree is chosen to be compatible with
the cp-theory Γ , i.e., so that its associated total ordering on outcomes extends
relations -Γ and �Γ (defined above in Sections 2.1 and 2.2, respectively). Meth-
ods for finding such search trees have been developed in [15], Sections 5 and 6.
One can use a fixed variable ordering in the search tree if the cp-theory is fully
acyclic—see [15], Section 5.1—i.e., there exists an ordering X1, . . . , Xn of the
variables such that for any statement ϕ ∈ Γ , if Xi ∈ Uϕ then i < j, where
Xϕ = Xj , and if Xi ∈Wϕ then i > j.
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3.1 Basic Constrained Optimisation Approach

We can make use of this compatible search tree as follows: when we find a new
solution β we check if it is �-undominated with respect to each of the current
known set K of �-undominated solutions (i.e., if it is not the case that there
exists α ∈ K with α � β). If so, then β is an �-undominated solution, since
it cannot be �-dominated by any solution found later. We add β to K, and
continue the search. At the end, K will be the complete set of �-undominated
solutions (which is a subset of the set of #Γ -undominated solutions, since � ⊇
#Γ ).

Associated with each node of the search tree is a partial assignment b, which
consists of the assignments to earlier variables B. We choose some uninstantiated
variable Y /∈ B, and assign values to Y in each child node. Also there is associated
a current domain D(X) of each variable X . For X ∈ B, D(X) = {b(X)}. For
other variables X , D(X) is determined by constraint propagation [1], which may
be done in a number of ways. The key property of D(X) is: for eliminated values
x (i.e., x ∈ X−D(X)), there exists no solution β of the CSP extending b and such
that β(X) = x. Backtracking occurs when any of the domains becomes empty,
since there cannot then be any solution extending b. In the experiments described
in Section 6 we enforce arc consistency to generate the current domains; however,
other forms of consistency are possible, for example, global consistency where
a value x is included in the domain of variable X if and only if there exists a
solution β extending b and such that β(X) = x.

3.2 Incorporating Dominance and Non-dominance Conditions

At any node of a depth-first search algorithm for finding solutions of a CSP, we
have an associated partial assignment b to the variables B that have already
been instantiated, and we have the current domain D(X) of each variable X .
We formalise this notion of a collection of domains as follows:

Definition 1. A collection of domains is a function D on V such that D(X) ⊆
X, so that D(X) is a set of possible values of X. For outcome β, we say that β
is of D if β(X) ∈ D(X) for all X ∈ V .

We say that α dominates D if it dominates every β of D, and α non-dominates
D if it doesn’t dominate any β of D:

Definition 2. Let α be an outcome and let D be a collection of domains. We
define:
— α dominates D if α � β for all β of D.
— α non-dominates D if for all β of D, α 
 β.

Suppose that α is a solution we’ve already found, and that we are currently at
a node of the search tree with associated partial assignment b and collection
of domains D. If we can determine that α dominates D then there is no need
to explore nodes in the search tree extending partial assignment b, so we can
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backtrack at this node. If, on the other hand, we can determine that α non-
dominates D then we can eliminate α from the set of current solutions for any
node below the current node, because there is no need to check again that
α 
 β, for solutions β extending b. In Section 4, we describe sufficient conditions
for α dominating D that can be efficiently checked, and in Section 5, an efficient
sufficient condition for α non-dominating D.

4 Sufficient Conditions for Dominance

To show, given particular assumptions, that α dominates collection of domains
D, we need to show that there cannot exist a pos-tree σ satisfying Γ that strictly
prefers some element β of D to α. (Because then α �σ β for all σ satisfying Γ ,
and hence, α � β, for all β of D.) The first rule gives conditions that imply non-
existence of such a σ by just considering its root node; the second rule focuses
on the node of σ that decides α and β.

4.1 The Root-Dominates Rule

We say that α root-dominates collection of domains D if: for all Y /∈
⋃
ϕ∈Γ Wϕ,

(i) α(Y ) �Y
	 y for all y ∈ D(Y )− {α(Y )};

(ii) if α(Y ) ∈ D(Y ) then α(Y ) and y are �Y
	-equivalent for some y ∈ Y −{α(Y )}.

The following result states the soundness of the root-dominates rule.

Proposition 2. If α root-dominates D then α dominates D, i.e., α � β for all
β of D.

Proof: Assume that α root-dominates D, and consider any element β of D,
and any pos-tree σ satisfying Γ . Consider the root node r of σ with associ-
ated variable Y and local ordering �. Proposition 1, condition (1) implies that
Y /∈

⋃
ϕ∈Γ Wϕ. If α and β differ on Y , then the root node decides α and β, and

Proposition 1(2) and condition (i) imply α(Y ) � β(Y ), and hence α �σ β. If,
on the other hand, α(Y ) = β(Y ), then condition (ii) implies, using Proposition
1(2), that α(Y ) is �-equivalent to some other element of Y , which implies, by
the definition of a pos-tree, that the root node has no children. Hence the root
node again decides α and β, and so α �σ β. Since σ was arbitrary, α � β, for
all β of D. �

Example. Let V be the set of variables {X,Y, Z} with initial domains as follows:
X = {x1, x2, x3, x4}, Y = {y1, y2} and Z = {z1, z2}. Let cp-theory Γ consist of
the five statements! : x1 > x3,! : x2 > x3, and! : x2 > x4 [{Z}], x1 : y1 > y2,
and x2 : y2 > y1. Let α be the assignment x2 y2 z2, and let D(X) = {x3, x4},
D(Y ) = Y and D(Z) = Z. Then

⋃
ϕ∈Γ Wϕ = {Z}, and α(X) = x2 �X

	 x3 and
α(X) �X

	 x4. Also, α(Y ) = y2 �Y
	 y1 �Y

	 y2, so α(Y ) and y1 are �Y
	-equivalent.

Hence, α root-dominates D. �

The first half of the definition of root-dominates is actually a necessary condition
for dominance:
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Proposition 3. Suppose that α dominates collection of domains D. Then α(Y )
�Y

	 y holds for all Y /∈
⋃
ϕ∈Γ Wϕ, and for all y ∈ D(Y )− {α(Y )}.

Proof: Suppose there exists some Y /∈
⋃
ϕ∈Γ Wϕ and y ∈ D(Y )− {α(Y )} such

that α(Y ) ��Y
	 y. Then we can create a pos-tree σ with just a root node r, with

associated variable Yr = Y . We choose the local ordering �r so that �r con-
tains �Y

	 and is such that α(Y ) ��r y. (This is possible since α(Y ) ��Y
	 y). By

Proposition 1, σ satisfies Γ . Choose any β of D with β(Y ) = y. Then, α ��σ β,
so α �� β, and hence it is not the case that α dominates D. �

When for all Y /∈
⋃
ϕ∈Γ Wϕ, domain D(Y ) doesn’t include α(Y ), part (ii) of the

definition of root-dominance holds vacuously, so Propositions 2 and 3 imply that
root-dominance is a necessary and sufficient condition for dominance:

Proposition 4. Suppose that D(Y ) �, α(Y ) for all Y /∈
⋃
ϕ∈Γ Wϕ. Then α

root-dominates D if and only if α dominates D.

4.2 The Deciding-Node Dominance Rule

Let α be an outcome and let D be a collection of domains. Define S to be
{Y ∈ V : D(Y ) �, α(Y )}. These are the variables that α and β differ on for all β
of D. Define Ψ to be the set of all ϕ ∈ Γ such that Xϕ ∈ S and uϕ is compatible
with α(V −S). (uϕ is compatible with α(V −S) if and only if for all Y ∈ Uϕ−S,
α(Y ) = uϕ(Y ).) Let α∗ = α(V − S). We will use the relation �Y

α∗ , defined in
Section 2.2 as the transitive closure of all pairs (xϕ, x′ϕ) such that ϕ ∈ Γ ,Xϕ = Y
and uϕ is compatible with α∗.

Definition 3. Using the notation defined above, we say that α deciding-node-
dominates D if α(Y ) �Y

α∗ y for all Y /∈
⋃
ϕ∈Ψ Wϕ and for all y ∈ D(Y )−{α(Y )}.

The following proposition states the soundness of the deciding-node-dominates
rule.

Proposition 5. If α deciding-node-dominates D then α dominates D.

Proof: Consider any element β of D, and any pos-tree σ satisfying Γ . Consider
the node r of σ that decides α and β, with associated variable Y and tuple a ∈ A.
Firstly, A ∩ S = ∅, since α and β agree on A but differ on each variable in S. If
ϕ ∈ Ψ then Xϕ ∈ S, and so Xϕ /∈ A. This implies, using Proposition 1(1), that
Y /∈Wϕ, so we’ve shown that Y /∈

⋃
ϕ∈Ψ Wϕ. We have that α(V − S) extends a

(since A ⊆ V −S and α extends a), which immediately implies that �Y
a contains

�Y
α∗ . If α deciding-node-dominates D then α(Y ) �Y

α∗ β(Y ) or α(Y ) = β(Y ).
Therefore, by Proposition 1(2), α(Y ) �r β(Y ), showing that α �σ β, and hence
α � β, as required. �

Example (continued). Consider again the example in Section 4.1. Then S =
{X}, α∗ equals the partial assignment y2 z2, and

⋃
ϕ∈Ψ Wϕ = {Z}. We have
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α(X) = x2 �X
α∗ x3, and x2 �X

α∗ x4, and α(Y ) = y2 �Y
α∗ y1, showing that α

deciding-node-dominates D, and hence, by Proposition 5, α dominates D.
If we now remove statement x1 : y1 > y2 from Γ we still have α deciding-

node-dominates D but we no longer have α root-dominates D.
In the following example, α does not deciding-node-dominate D but α root-

dominates D, and so α dominates D. Let D(X) = X = {x1, x2}, let D(Y ) =
Y = {y1, y2}, and let D(Z) = Z = {z1, z2, z3}. Let Γ consist of: z1 : x1 > x2,
z2 : x2 > x1, x1 : y1 > y2, x2 : y2 > y1, x1 : z1 > z2, x2 : z2 > z1 and
x1y2 : z1 > z3. Let α = x1 y1 z1. Therefore, root-dominance and deciding-node-
dominance are incomparable, and both are strictly stronger than dominance. �

When, for all variables Y , α(Y ) is not in the current domain D(Y ) of Y , we
have S = V , α∗ = ! and Ψ = Γ . The definition of deciding-node-dominates
then becomes equivalent to part (i) of the definition of root-dominates, with
part (ii) being vacuously satisfied. Using Proposition 4, we therefore have the
following result showing that these dominance definitions are then equivalent.

Proposition 6. Suppose that D(Y ) �, α(Y ) for all Y ∈ V . Then α deciding-
node-dominates D iff α root-dominates D iff α dominates D.

4.3 Projection-Dominance Condition

Let b be an assignment to set of variables B, and let D be a collection of domains
such that D(X) = {b(X)} for X ∈ B. It follows immediately that the condition
(∗) below is a sufficient condition for: α dominates D. (Recall, α(B) means α
restricted/projected to B.)

(∗) γ � β for all outcomes γ ∈ V agreeing with α on B (i.e., γ(B) = α(B)), and
all β ∈ V extending b (i.e., β(B) = b).

In other words, if every outcome, whose projection to B is α(B), dominates every
outcome whose projection to B is b. Condition (∗) can be determined directly
using the polynomial algorithm in Section 5 of [16]. (In the notation of that
paper we determine if Γ ∗ |=Y ψ∗, where Y is the set of singleton subsets of V ,
and ψ is the preference statement α(B) > b ‖ ∅.) However, although this check
is polynomial, it’s a good deal more expensive than the root-dominates rule and
the deciding-node-dominates rule.

5 A Sufficient Condition for Non-dominance

Let α be an outcome and let D be a collection of domains. We say that α root
non-dominates D if there exists Y /∈

⋃
ϕ∈Γ Wϕ such that D(Y ) �, α(Y ) and, for

all y ∈ D(Y ), α(Y ) ��Y
	 y.

Proposition 7. If α root non-dominates D then α non-dominates D, i.e. for
all β of D, we have α �� β.
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Proof: Consider any β of D. Suppose α root non-dominates D, so that there
exists Y /∈

⋃
ϕ∈Γ Wϕ such that D(Y ) �, α(Y ) and α(Y ) ��Y

	 β(Y ). It follows,
using Proposition 1, that we can define a pos-tree σ satisfying Γ with just a root
node with associated variable Y and local ordering � with α(Y ) �� β(Y ). Then
α ��σ β, which shows that α �� β. �

Example (continued). Let Γ be as in the example in Section 4.1, let γ
be the outcome x1 y2 z2, and define D′ by D′(X) = {x4}, D′(Y ) = Y and
D′(Z) = Z. Then γ root non-dominates D′, because X /∈

⋃
ϕ∈Γ Wϕ = {Z}, and

D′(X) �, γ(X) = x1, and γ(X) ��X
	 x4. �

6 Experimental Testing

6.1 Experimental Setup

We performed experiments with four families of cp-theories and several sets
of binary CSP instances. The CSPs were generated using Christian Bessiere’s
random uniform CSP generator (www.lirmm.fr/~bessiere/generator.html).
Experiments were run as a single thread on Dual Quad Core Xeon CPU, running
Linux 2.6.25 x64, with overall 11.76 GB of RAM, and processor speed 2.66 GHz.
We maintain arc consistency during the search algorithm, so that the current
domains D(X) are generated from a partial assignment b by arc consistency [1].
The conditional preferences impose sometimes strong restrictions on the variable
orderings that can be used in the search tree (corresponding to the condition (1)
of Proposition 1), which much reduces the potential benefit of a dynamic variable
ordering; for simplicity, we used a fixed variable ordering (which is possible since
in the experiments we used only fully acyclic cp-theories [15], including acyclic
CP-nets).

Random Generation of Preferences: We consider four families of
cp-theories, CP-nets (CPnet), partial conditional lexicographic orders (Lex ), a
family with varying W component (Rand-W ), and CP-nets with local total or-
derings (CPn-to). These are generated as follows. We order the variables V as
X1, . . . , Xn. For each variable Xi we randomly choose the parents set Ui to be
a subset of cardinality 0, 1 or 2 of {X1, . . . , Xi−1}. For the CPnet family we
set Wi = ∅. For the Lex family we set Wi = {Xi+1, . . . , Xn}. For random-W
(Rand-W ) problems we define Wi to be a random subset of {Xi+1, . . . , Xn}.
Then, for each assignment u to Ui, we randomly choose an ordering x1, . . . , xm

of the domain of Xi (so we’ll usually have different orderings for different u).
We then randomly choose a number of pairs (xj , xk) with j < k, except for the
CPn-to family when we include all pairs (xj , xj+1), for j = 1, . . . , |Xi| − 1. For
each of these pairs we include the corresponding statement u : xj > xk [Wi] in
the cp-theory Γ .

We consider ten versions of the algorithm. They differ according to whether
they use root-dominance (labelled r in the tables), deciding node-dominance
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Table 1. Mean number of optimal solutions for each preference family, and running
times (ms), number of visited nodes and number of dominance checks at leaves for each
preference family and each method. The CSPs were based on 10 four-valued variables,
and averaged around 500 solutions.

CP-nets Rand-W Lex CPn-to

# opt: 87.74 38.42 24.86 13.56
Rules Time #nd chk Time #nd chk Time #nd chk Time #nd chk

Basic 7372 1173 22430 2097 1173 9181 1134 1173 5932 2263 1173 2248
r 10637 1172 22421 3312 971 8903 1609 647 4946 2706 1148 2227
d 4104 536 7956 677 209 1579 236 97 656 223 148 148

r+d 4156 536 7956 689 206 1578 234 97 656 226 148 148
p 32572 1173 89680 2705 291 10725 620 97 2950 11192 1173 12745
n 818 1173 979 675 1173 1817 560 1173 2031 908 1173 560

r+n 1438 1172 978 1896 971 1729 1628 647 1797 1501 1148 545
d+n 515 536 288 371 209 445 205 97 323 124 148 12

r+d+n 514 536 288 363 206 444 206 97 323 126 148 12

p+n 5150 1173 6136 1165 291 3099 386 97 1363 5325 1173 4170

(d), the projection-dominance condition (p), or the root non-dominance condi-
tion (n). These are compared against the basic algorithm (Section 3.1) which
uses none of these additional pruning methods, and we also consider some com-
binations of the methods.

We performed two groups of experiments. The first group focused on compar-
ing the different versions of the algorithm (see Tables 1 and 2). We used CSPs
based on 10 four-valued variables. The second group (see Figure 2) considers how
computation time—of two of the best plus the basic algorithm—varies with the
number n of variables. The computation time clearly depends strongly on the
number of solutions of the CSP. Because of this, we considered families of CSPs
with approximately constant number of solutions, in order to obtain a clearer
picture of the dependence on n. We used three-valued variables and CSPs where
each constraint includes 7 of the 9 possible tuples. We then chose the number of
constraints to be such that the expected number of solutions was around 1000,
further filtering out CSPs differing from this by more than around 10%.

6.2 Discussion of Results

All figures in the tables and graphs are the mean over 50 random instances.
The experimental results confirmed that no optimal solutions were lost by the
additional pruning methods (as implied theoretically by Propositions 2, 5 and 7).
Table 1 shows comparisons between all the methods for CSPs with around 500
solutions. Table 2 concerns CSPs with around 2000 solutions, and with around
10,000 solutions, where, for space reasons, we only include the results for the
basic algorithm plus two of the best combinations, r+d and r+d+n.
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Table 2. Mean number of optimal solutions for each preference family, and running
times (ms) for each family and each method

CPnet Rand-W Lex CPn-to

10 vars, 4 values, Mean 1993 solutions

# opt 221.2 73.0 39.5 16.4

Base 62608 14711 6496 13728

r+d 31998 3204 673 651

r+d+n 2164 1557 509 445

10 vars, 4 values, Mean 9910 solutions

# opt 364.8 204.5 133.8 6.5

Base 564733 183710 110303 29285

r+d 278583 28666 8482 358

r+d+n 18623 14595 5307 352

The deciding-node-dominates rule (d) appears to be much the most effective
of the three positive pruning schemes (i.e., r, d and p). With this rule the number
of visited nodes and the number of dominance checks are reduced significantly
in comparison with the basic algorithm. It seems that root-dominates can be
slightly useful when used in conjunction with the deciding-node-dominates rule
(r+d). The projection-dominates rule was not effective; although for the Lex
and Rand-W families it pruned the search tree considerably, the costliness of
the dominance test—which was applied at all nodes, not just leaf nodes—was
detrimental, except for the Lex family (see Table 1). The root non-dominance
condition can improve the performance of the algorithm considerably, especially
for the CPnet and CPn-to families, since it can greatly reduce the number of
dominance tests. An indication of how fast it is to check conditions r, d and p
is given by considering the average time taken per node by their corresponding
algorithms. In the experiments reported in Table 1, the version of the algorithm
using p can be seen to take much more time per node than the r and d al-
gorithms. For example, for the CP-nets family, algorithms r, d and p average
around 9, 8 and 28 ms per node, respectively.

The results in Figure 2 indicate that the computation time does not increase
very strongly with the number of variables. (By the way, it turns out that for each
preference family, the mean number of optimal solutions does not vary greatly
with n, being centred on around 160, 90, 60 and 9 for the CPnet, Rand-W, Lex
and CPn-to families, respectively.) For the Rand-W family, the new algorithms
do not perform much (if at all) better than the basic algorithm. For the Lex
family, the two new algorithms are mostly twice as fast as the basic one. For
the CP-nets family, the r+d algorithm is only slightly better than the basic
algorithm, but performs excellently on the CPn-to family with mostly an order
of magnitude improvement, as does the r+d+n algorithm, which also shows
more than an order of magnitude speed up for the CP-nets family.
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Fig. 2. Running time(ms) for each family of preferences for n = 10, 15, . . . , 40 variables
(having 3 values each). Each CSP has approximately 1000 solutions.

7 Discussion

The experimental results indicate that this approach to constrained optimisa-
tion for conditional preferences allows computation in a reasonable time even
for problems of significant size (and problems of this kind, such as optimisa-
tion of configurable products, are not necessarily very large in practice). The
additional methods developed in this paper can lead to a major improvement
over the basic algorithm, often an order of magnitude improvement for the two
CP-nets preference families. Interestingly, the non-dominance rule, which saves
dominance checks when they are bound to fail below a node in the search tree,
can be very effective, as well as one of the dominance rules. It could well be worth
constructing and testing non-dominance rules in situations involving other forms
of partially ordered preferences.

There are many ways of extending the approaches. For example, we could gen-
eralise to more expressive comparative preference languages (such as that defined
in [16]); we could attempt to develop the positive dominance rules for propaga-
tion, i.e., for eliminating values in future domains; we could develop an approach
that uses dynamic variable orderings, making use of the consistency conditions
from Section 6 of [15]; we could try to amend the projection-dominance rule to
take into account the reductions in the current domains D; furthermore, unsound
pruning rules can be used, in order to find a reasonable number of solutions very
fast. It would also be interesting to try applying the pruning rule from [5], which
could be effective when the domains are large.
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The approach in this paper was based on a polynomial dominance relation �Γ ,
rather the standard one #Γ . However, the results of this paper are still very rele-
vant if one is interested in finding optimal solutions with respect to the standard
dominance relation, for example, for CP-nets. Let Ω be the set of solutions of the
CSP. We are computing the set Ω′ of solutions α of Ω such that there does not
exist β �= α with β �Γ α. If one uses the standard dominance relation #Γ , then
the set of optimal solutions Ωo consists of all elements α of Ω such that there
does not exist β �= α with β#Γα. Because #Γ is more conservative than �Γ

(i.e., α#Γβ implies α �Γ β), Ω′ is always a subset of Ωo, so any solutions gener-
ated by the approach in this paper are also optimal with respect to the standard
semantics—although they will not generally be all such optimal solutions. If one
wants to generate the setΩo precisely, one can use the depth-first search algorithm
again with the dominance checking at leaf nodes being done with #Γ rather than
with �Γ . The three dominance rules from Section 4 are no longer sound, but the
non-dominance rule from Section 5 is still sound, and so can be used to reduce the
number of dominance checks in the search.

We focused on the constrained optimisation algorithm when we can generate
outcomes using a search tree in an order that is compatible with the conditional
preferences. It is possible to apply our techniques also for the case where the
order of outcomes generated is not necessarily compatible with the conditional
preferences. (We’d need to do this, in particular, if Γ were inconsistent, i.e., if
#Γ were not acyclic, since then there’d be no compatible search tree.) Then,
at a leaf node with associated complete assignment β, we need to check also if
β dominates α, as well as if α dominates β, where α is an element of K, the
current set of solutions. In contrast with the standard case, K is not monotonic
increasing: it can lose elements as well as gain them. Nevertheless, the dominance
rules developed in this paper can again be valuable in pruning the search.

We considered the case where the set Ω of outcomes is expressed as the so-
lutions of a CSP. In other settings, the set of outcomes, representing a set of
available products, for example, is listed explicitly. The new constrained opti-
misation algorithms developed in this paper apply also here. Again we define
dynamic variable and value orderings that determine a search tree compatible
with a set of conditional preferences; this search tree can be used to explore Ω
(which is then implicitly being expressed as a decision tree), and find the optimal
ones, using, as before, the positive and negative dominance rules to prune the
search tree and reduce the dominance checks.
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Abstract. This paper considers feasibility checking and filtering of
global constraints over set variables. It makes four main contributions.
(1) It presents a feasibility checker for the global alldisjoint constraint.
(2) It proposes primal filters for the combination of a global disjoint con-
straint and symmetry-breaking constraints. (3) It proposes dual filters for
global intersection constraints. (4) It presents primal/dual filters for the
combination of a global intersection constraint and symmetry-breaking
constraints. All these contributions are independent of the underlying
domain representation. Experimental results show that these proposals
have complementary benefits, may improve efficiency significantly, and
make it possible to solve larger instances of two standard benchmarks.

1 Introduction

Global set constraints have received very little attention primarily because of
intractability results on both bound consistency and feasibility checking. How-
ever, they still offer significant opportunities for improving the performance of
set solvers, since the alternative, i.e., not to prune the search space, seems even
worse. Recent work explores two possible approaches to deal with these com-
putational difficulties. On the one hand, one may relax the requirement for
polynomial-time algorithms and settle for algorithms that may be exponential in
the worst case but are reasonable in practice and prune substantial parts of the
search tree. On the other hand, one may take the more conventional approach
and relax completeness of the filtering algorithm.

This paper explores both approaches for several global intersection constraints.
It has four main contributions, all of which are independent of the underlying
representations of the set solver:

1. it introduces a feasibility checker for the global alldisjoint constraint for an
explicit set domain representation;

2. it proposes a filter for the primal variables of the combination of a global
alldisjoint constraint and symmetry-breaking constraints;

3. it presents a dual filter for the global atmost-k constraint that constrains the
cardinalities of the dual variables;

4. it introduces primal/dual filters for the combination of a global atmost-k
constraint and symmetry-breaking constraints.
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The dual and primal/dual filters for atmost-k constraint are particularly com-
pelling. Their inference rules are completely different from the alldisjoint con-
straint (the special case where k = 0) since each element can be taken by multiple
variables. They depend on the solutions of some combinatorial problems which
are themselves set-CSPs. In turn, these CSPs can be solved by constraint pro-
grams using the dual filter, which again depends on the solution of some smaller
combinatorial problems which are solved recursively by constraint programming.
Experimental results show that these contributions are orthogonal and may sub-
stantially improve the performance of set solvers on two standard benchmarks,
solving instances that could not be solved in reasonable time before and reducing
CPU times by factors that exceed 1,000.

2 Set CSPs

A Set Constraint Satisfaction Problem (Set-CSP) consists of a set of set vari-
ables, whose domain values are sets of elements drawn from a universe U(n) =
{1, ..., n}, and a set of constraints specifying relations between variables. The
problem is to find a solution, i.e., an assignment of set variables to domain val-
ues satisfying all constraints. A set domain may represent a number of domain
values exponential in the input size. Representations that either approximate the
set domain or are as compact as possible have been investigated heavily. The
subset-bound [1,2], length-lex [3], and some of their variations [4,5] are common
approximate representations. An exact domain representation based on binary
decision diagrams (BDDs) was proposed in [6]. The techniques presented in this
paper are orthogonal to domain representations, although some representations
are best positioned to exploit the inferences. The experimental results consider
both length-lex and the subset-bound domains.

Many Set-CSPs uses dual modeling (e.g., [7]), the idea of jointly using several
models of the same problem. In particular, Set-CSPs often contain a primal and
a dual model. The primal model is a natural encoding of the problem, i.e., its
(primal) variables represent the decisions one is interested in. The dual model
associates a (dual) variable with each element in the universe and the value of a
dual variable is a set of primal variables taking that value (Primal variables are
often represented by their indices). In this paper, we use the term primal filter
for a filtering algorithm on the primal variables and dual filter for a filtering
algorithm on dual variables.

Many Set-CSPs exhibit variable interchangeability: given any solution, it is
possible to generate another by swapping the assignment of two interchange-
able variables. Ideally these symmetries should be eliminated to prevent the
solver from visiting symmetric subtrees. Let X1 and X2 be two interchangeable
set-variables. If [X1 = {1, 2}, X2 = {1, 3}] is a solution, then the assignment
[X1 = {1, 3}, X2 = {1, 2}] is a symmetric solution. To eliminate such symmetric
solutions, the model can post a static ordering constraint X1 � X2. Models over
set variables almost always impose such static lexicographic constraints to break
variable symmetries. The choice of the ordering constraint � is arbitrary. Two
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common choices are the lexicographical [8] and length-lex [3] orderings which
coincide when sets have the same length. This paper uses the lexicographical
ordering for breaking symmetries but obviously the underlying domain represen-
tation can be based on the subset-bound, length-lex, or BDD domains. Adding
static constraints to break symmetries was originally proposed in [9].

3 Contributions and Related Work

This section gives a broad perspectives on our research contributions and their
relationships to prior work.

Exponential-Time Constraint Propagation. The complexity of global intersec-
tion constraints over sets has been investigated in depth in [13]. They showed
that even feasibility checking is hard for global set constraints under some estab-
lished domain representations. Our first contribution is to introduce a feasibility
checker for the global alldisjoint constraint for an explicit set-domain represen-
tation, typically obtained during search from the solutions to a substructure of
the problem. The feasibility checker takes exponential time in the worst case,
since the feasibility of alldisjoint is NP-hard, but may bring significant improve-
ments experimentally. This feasibility checker was motivated by the success of
exponential-time algorithms to enforce bound consistency on unary intersection
constraints [5]. The experimental results provide further evidence that it may be
valuable to shift the exponential behavior from the agnostic search to the con-
straints, where the semantics can be exploited.

Dual Filters for Cardinalities. This paper presents a dual filter for the global
atmost-k constraint which filters the cardinalities of the dual variables. It is a
significant generalization of the atmost-1 filter proposed in [14]. Indeed, if several
variables in an atmost-1 constraint shares an element, all their remaining ele-
ments must be disjoint, which simplifies reasoning considerably. In contrast, our
atmost-k implementation solves a number of combinatorial counting problems to
obtain lower and upper bounds on the cardinalities of dual variables and boost
propagation. These counting problems are solved recursively as Set-CSPs using
the results presented in the paper. The experimental results shows that complex
reasoning about the cardinalities of dual variables may bring significant benefits.

Combining Set Constraints. The paper also illustrates the benefits of combin-
ing set constraints in two different ways. First, it shows that inference rules
combining primal and dual variables can bring significant pruning and deserve
more systematic investigation. Second, it demonstrates the benefits of pushing
symmetry-breaking constraints into global set constraints. The idea of pushing
symmetry-breaking constraints into other constraints has appeared in various pa-
pers. Hnich, Kiziltan, and Walsh [10] proposed a global constraint that combines
symmetry breaking with a sum constraint. Katsirelos, Narodytska, and Walsh
[11] proposed a generic framework for global constraint with symmetry-breaking
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constraints for vectors of variables. Yip and Van Hentenryck [12] proposed a
generic framework for combining arbitrary binary length-lex propagators with
ordering constraints and studied their benefits experimentally.

4 A Feasibility Checker for the AllDisjoint Constraint

This section presents a feasibility checker for the alldisjoint constraint.

Definition 1 (The AllDisjoint Constraint). alldisjoint(X1, ..., Xm) holds
if
∧
i<j Xi ∩Xj = ∅.

Definition 2 (The Feasibility Checker). The (HasSolution) checker
hs〈C〉(X1, ..., Xm) returns ∃x1 ∈ D(X1), ..., xm ∈ D(Xm) : C(x1, ..., xm), where
C is a constraint and D(Xi) is the domain of Xi given as an explicit set of sets.

If the set domains are given explicitly, checking feasibility is NP-hard. A similar
result can also be given for the hybrid subset-bound/length-lex domain.

Theorem 1. hs〈alldisjoint〉(X1, ..., Xm) is NP-hard when D(Xi) is specified
as an explicit set of sets.

Proof. A trivial reduction from the SetPacking problem. Instance: a finite set
S and a collection S of subset of S. Question: determine whether some m sets
in S are pairwise disjoint. A solution to the problem is S′ ⊆ S, where |S′| = m
and sets in S′ are pairwise disjoint.

We first assume all sets in S are not empty. Since otherwise, we can reduce
the parameter m by the number of empty sets in S. Given a SetPacking

instance, we construct a set-CSP such that it is feasible if and only if there
exists m pairwise disjoint sets. In the CSP, there are m set variables with initial
domain S, and an alldisjoint(X1, ..., Xm) constraint. Intuitively, the variables
correspond to the SetPacking solution. The rewriting is obviously polynomial.
⇒ Given a solution to the SetPacking problem, we construct a solution to

the set-CSP. Let S′ = {s1, ..., sm}, we assign Xi = si. Since Xi has a initial
domain of S, si is a feasible domain value. The assignment also satisfies the
alldisjoint constraint, since S′ are pairwise disjoint.
⇐ Given a solution to the set-CSP, we construct a solution to the SetPack-

ing Problem. Consider a solution [X1 = s1, ..., Xm = sm], every pair of si are
pairwise disjoint, and si ∈ S. Moreover, as all si are non-empty sets, we have
si �= sj ∀i < j since they are disjoint. Therefore, S′ = {s1, ..., sm} is a solution
to the SetPacking Problem. ��

The Feasibility Checker. Algorithm 1 is a feasibility checker for the alldisjoint
constraint, assuming that the set variables take their elements in {1..n}. In the
worst case, the checker takes exponential time but experimental results will
demonstrate that it can bring substantial benefits in practice. The checker takes
a set of set variables and returns a Boolean value indicating whether there are
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Algorithm 1. hs〈alldisjoint〉(X1, ...., Xm)
1: for σ in

{
[v1, ..., vn]

∣∣ve ∈ {1, ..., m} ∪ {⊥}} do
2: [T1, ..., Tm, T⊥]← [D(X1), ..., D(Xm),

{{1..n}}]
3: for e = 1 to n do
4: Tσ(e) ← {t ∈ Tσ(e)|e ∈ t}
5: for i in {1, 2, ..., σ(e)− 1, σ(e) + 1, ..., m} do
6: Ti ← {t ∈ Ti|e �∈ t}
7: if

∧
1≤i≤m Ti �= ∅ then

8: return true
9: return false

solutions. Its key idea is to enumerate all the dual assignments (line 1) and to
test whether they satisfy the domain constraints (lines 2–8). Since an element
can be assigned to at most one set, a dual assignment assigns a variable index ve
to each element e (or ⊥ if the element is not assigned to any set). To test whether
a dual assignment is feasible, the checker maintains Ti to denote the feasible sets
for variable Xi. Initially, Ti is initialized to D(Xi). The dual assignment is then
used to filter the Ti’s. In particular, the checker considers each element e in turn
(line 3) and removes from Tσ(e) all the sets not containing e. In other words,
Xσ(e) is the variable e is assigned to and the checker prunes the domain of Xσ(e)

to ensure that they all contain e. It then prunes the domains of the other vari-
ables (lines 5–6) to make sure that they do not contain e. The checker returns
true if no domain has become empty at the end of the computation (lines 7–8).
If none of the dual permutations is a solution, the checker returns false (line 9).
Observe that set T⊥ is never pruned, since it contains the set of all elements
initially. Line 4 can never remove its set and lines 5–6 never considers T⊥.

Example 1. Consider the domains D(X1) =
{
{1, 2}, {1, 4}, {2, 4, 6}

}
, D(X2) ={

{1, 2}, {2, 5}, {2, 6}
}
, D(X3) =

{
{1, 5}, {3}, {5}

}
, and σ = [1, 2,⊥, 1, 3, 2]. The

dual assignment assigns element 1 to variable 1. The algorithm removes domain
values from T1, . . . , T3, giving T1 =

{
{1, 2}, {1, 4}

}
, T2 =

{
{2, 5}, {2, 6}

}
, and

T3 =
{
{3}, {5}

}
. The same domain-reduction process is performed for all ele-

ments. At the end, T1 =
{
{1, 4}

}
, T2 =

{
{2, 6}

}
, and T3 =

{
{5}

}
. Hence, the

dual assignment is a solution. On the other hand, if the initial value of T3 is{
{1, 5}, {3}

}
, it will become empty after processing element 3. In this case, the

dual assignment is infeasible.

5 A Primal Filter for Symmetry-Breaking AllDisjoint

Pushing symmetry-breaking constraints into other constraints has been shown
effective in prior work. This section discusses a primal filter for the combination
of a global alldisjoint constraint and a chain of symmetry-breaking constraints.

Definition 3 (Symmetry-Breaking AllDisjoint). alldisjoint�(X1, ..., Xm)
holds if alldisjoint(X1, ..., Xm) ∧

(∧
i<j Xi � Xj

)
.
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{1,2,3} ... {1,6,7} {2,3,4} ... {2,6,7} {3,4,5} ... {3,6,7} {4,5,6} ... {4,6,7} {5,6,7}

p = {1,...,7}
p = {2,...,7} p = {3,...,7} p = {4,...,7}

Fig. 1. How The Most Significant Set Element Determines the Possible Elements

Intuition. The key observation is that the most significant element of a variable
Xi (i.e., the smallest value in Xi) determines an upper bound of the possible
elements that can be taken by subsequent variables Xj , ∀j > i. Since the global
alldisjoint constraint imposes that all variables take different elements, the total
number of elements taken by all variables is known. If an element in Xi is such
that there are not enough elements left for the variables Xi+1, . . . , Xm, then it
must be the case that Xi contains a smaller element.

Figure 1 depicts the idea and, in particular, the effect of the symmetry-
breaking constraints on the possible values that variables can take. Consider
a domain which contains all sets of cardinality 3 drawn from 1..7 and ordered
lexicographically. The rectangles show how the most significant element deter-
mines the set of possible elements p for a set variable. If the most significant
element of a variable Xi is 2, then its possible set is {2, ..., 7}. Moreover, if there
is a lexicographic constraint between Xi and subsequent variables Xj (j > i),
then the set of possible elements for these subsequent variables is of cardinality
at most 6, since their most significant element have to be at least 2.

Example 2. Consider a CSP with 3 variables X1, X2, X3 of cardinality 3, tak-
ing their elements from 1..9, and a constraint alldisjoint�(X1, X2, X3). As-
sume that X1 ∈

{
{1, 7, 8}, {1, 7, 9}

}
, X2 ∈

{
{2, 3, 4}, ..., {7, 8, 9}

}
, and X3 ∈{

{3, 4, 5}, ..., {7, 8, 9}
}
. The smallest element of X2 cannot be 6, since this would

leave only elements in {6, 7, 8, 9} for filling X2 and X3 which need 6 distinct el-
ements in total. It can be seen that the smallest element of X2 can at most be
4, i.e., X2 ∈

{
{2, 3, 4}, ..., {4, 8, 9}

}
.

More propagation is possible when the required elements of earlier variables
are considered. X1 is taking elements 1 and 7, making it impossible for either
X2 or X3 to take element 7. Suppose X2 takes 4 as its most significant element,
X2 and X3 pick elements from the set {4, 5, 6, 8, 9}, whose size is insufficient to
fulfill the cardinality requirement. Hence, X2 cannot start with element 4.

A Reduction Rule. We present the primal filter for the symmetry-breaking
alldisjoint. For simplicity, all set variables are assumed to be of cardinality c.

Rule 1 (Symmetry-Breaking AllDisjoint: Upper Bound)

1 ≤ i ≤ m ∧
∧
i≤j≤m(|Xj | = c) ∧ f = max{e|ave(i) ≥ (m− i+ 1)c}

alldisjoint�(X1, ..., Xm) �−→ min(Xi) ≤ f ∧ alldisjoint�(X1, ..., Xm)
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where ave(i) = (n− e+ 1)−
∑
j<i |{e′ ∈ req(Xj) | e′ ≥ e}|, and req(Xj) returns

a set of required element in the domain of variable Xj.

The function ave(i) returns an upper-bound on the number of elementsXi,...,Xm

can take, assuming that Xi starts with element e. If the upper-bound is less
than the total cardinality requirement (i.e., (m − i + 1)c), then the constraint
is infeasible. The rule finds the largest element f such that the condition holds
and imposes a constraint on the most significant element of Xi accordingly.

The primal filter is independent of the variable representation: it simply posts
a constraint on the smallest element of variable Xi. If the length-lex representa-
tion for set variables is used, this update is particularly effective, since it directly
updates the upper bound of the length-lex interval.

6 A Dual Filter for the Global Atmost-k Constraint

This section discusses the global atmost-k constraint which guarantees that every
pair of set variables shares at most k elements. It is at least as difficult as the
global disjoint constraint since the latter is a special case where k = 0.

Definition 4 (atmost-k). atmost(k,X1, ..., Xm) holds if
∧
i<j |Xi ∩Xj | ≤ k.

Early versions of the following theorem appeared in [13].

Theorem 2. hs〈atmost(k)〉(X1, ..., Xm), where Xi are subset-bound, length-lex,
or set variables with finite domains, is NP-hard.

We now present a dual filter for the global atmost-k constraint. For simplicity, we
assume that all variables are of the same cardinality c. The basic idea underlying
the dual filter is to state a redundant dual model reasoning on the cardinalities
of the dual variables, knowing that their sum must be equal to mc. The dual
model assumes the existence of a function countAtmost(n,c,k) defined as follows.

Definition 5 (countAtmost). Function countAtmost(n,c,k) returns the max-
imum number of sets of cardinality c taking their values in {1..n} and sharing
at most k values.

The dual filter is depicted in Figure 2. The first two lines define the dual model.
Line (1) defines the dual variables: Ye represents the indices of set variables which
include element e. Line (2) defines the channeling constraints between the primal
and dual variables. Line (3) is the core constraint: It ensures that the sum of the
cardinalities is equal to m × c, i.e., the number of variables multiplied by their
cardinalities. To boost the pruning of this constraint, the key idea is to impose
a lower and upper bound for the number of occurrences of each element e in the
universe. The upper bound on |Ye| computes how many set variables can take an
element e and is thus defined as countAtmost(n−1, c−1, k−1) (Line (4)). Indeed,
consider the set of variables taking element e, each of them has to take c−1 more
elements from a universe of size n−1. To satisfy the intersection constraint, each
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Ye ⊆ {1, ..., n} ∀1 ≤ e ≤ m (1)

e ∈ Xi ⇔ i ∈ Ye ∀1 ≤ i ≤ n, 1 ≤ e ≤ m (2)∑
1≤e≤m

|Ye| = m c (3)

|Ye| ≤ countAtmost(n− 1, c− 1, k − 1) ∀1 ≤ e ≤ m (4)

m− countAtmost(n− 1, c, k) ≤ |Ye| ∀1 ≤ e ≤ m (5)

Fig. 2. The Redundant Dual Filter for atmost(k,X1, ..., Xm).

pair can share at most k − 1 other elements since they are already sharing e.
Hence, the maximum cardinality is bound by countAtmost(n−1, c−1, k−1). The
lower bound on |Ye| is obtained by computing how many set variables can exclude
element e and is thus defined as m−countAtmost(n−1, c, k) (Line (5)). Indeed,
consider the set of variables not taking element e. These variables must draw
elements from a universe of size n− 1, from which they have to pick c elements
and each pair of variables can share at most k elements. The maximum number
of variables not taking element e is therefore bound by countAtmost(n− 1, c, k)
and element e has to occur in at least m − countAtmost(n − 1, c, k) variables.
Observe that the dual filter is independent of the representation of set variables.

Implementation of countAtmost. We now discuss how to implement func-
tion countAtmost. There are at least three possibilities. (1) When available, it
can be a lookup from a combinatorics table [15]; (2) It can be a constant-time
approximation using extremal set theory [16]; (3) It can be implemented as an
optimization problem! The first case is not a complete method since not all com-
binations of parameters are available. For the second case, let s1, ..., sm be sets
of cardinality c and n be their union size. If ∀1 ≤ i < j ≤ m, |si ∩ sj | ≤ k, then

n ≥ c2m

c+ (m− 1)k
.

This inequality can be used to obtain an upper bound onm. However, this bound
is not tight. One can observe that m is not constrained when c2−nk is negative.

Our implementation views the implementation of countAtmost as an opti-
mization problem which can be specified as

maximize m s.t.

|Xi ∩Xj | ≤ k ∀1 ≤ i < j ≤ m
|Xi| = c ∀1 ≤ i ≤ m

Xi ⊆ {1, ..., n} ∀1 ≤ i ≤ m

This optimization problem can be solved by a sequence of feasibility problems
using various values for m. As a result, countAtmost itself can be implemented in
terms of set-CSPs. Moreover, these set-CSPs also use a global atmost-k constraint
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1’ 2’ 3’ 4’ 5’ 6’ 7’

X1’ x x x

... x x x

X?’ x

...

1’’ 2’’ 3’’ 4’’ 5’’ 6’’

X1’’ x x

X2’’ x x

X3’’ x x
countAtmost(n=6,c=2,k=0) = 3

countAtmost(n=7,c=3,k=1) = ?

1’’ 2’’ 3’’ 4’’ 5’’ 6’’

X1’’ x x x

X2’’ x x x

X3’’ x x x

X4’’ x x x

countAtmost(n=6,c=3,k=1) = 4

1’ 2’ 3’ 4’ 5’ 6’ 7’

X1’

...

X?’

...

Sub-Problem P’ Sub-Sub-Problem

1 2 3 4 5 6 7 8

X1 x x x x

X2 x x x x

... x

X? x

...

Original Problem P

countAtmost(n=8,c=4,k=2) = ?

Fig. 3. How Many Set Variables Can Take an Element? (n = 8, c = 4, k = 2)

and hence they can use all the filters presented in this paper. In particular,
our implementation posts the dual filter shown in Figure 2 which obviously
depends on the values countAtmost(n − 1, c − 1, k − 1) and countAtmost(n −
1, c, k). These are computed recursively as two additional optimization problems.
Since these recursive calls may involve the same sub-optimization problems,
our implementation memoizes the result of each suboptimization and reuses
them whenever appropriate in order to avoid solving the same suboptimizations
repeatedly. The computation of these subproblems takes negligible time in our
benchmarks and only takes place at the root of the tree. It is however interesting
to see how the derivation of the dual filter requires the solving of set-CSPs which
in turn uses the dual filter itself on smaller subproblems.

Example 3 (A Recursive Counting Procedure). Let P = countAtmost(8, 4, 2),
a problem with 8 set variables of cardinality 4 drawing their elements from a
universe of size 8 and subject to a global atmost-2 constraint. The dual filter as-
sociated with P needs to compute countAtmost(7, 4, 2) and countAtmost(7, 3, 1)
in order to obtain the lower and upper bounds on |Ye|. We only discuss the upper
bound and the intuition is given in Figure 3. Each row corresponds to a variable
and each column to an element. The symbol x on cell (X1, 1) denotes 1 ∈ X1.

The reasoning is illustrated on element 1 for simplicity but any element would
do: They are undistinguishable. The upper bound on |Y1| is countAtmost(7, 3, 1):
Indeed, if variables X1, X2, ..., X? take element 1, the other elements taken by
these variables (the shaded area on the left side of the figure) can share at most 1
element (since all of them are already sharing element 1 and they are all subject
to a global atmost-2 constraint). Hence, the shaded part can be seen as the sub-
problem P ′ = countAtmost(7, 3, 1) (the middle part) where the universe size is
reduced by 1, the cardinality is reduced by 1, and the intersection constraint
parameter becomes k = 1.

The objective value of P ′ can be found by solving another set-CSP as specified
on the previous page. To boost propagation, we also introduce dual filters for
P ′ and the reasoning is illustrated on the abstract elements 1′, . . . , 7′. We thus
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compute the upper bound countAtmost(6, 2, 0) (top part on the right which
corresponds to the shaded area in the top part in the middle) and countAtmost
(6, 3, 1) (bottom part on the right which corresponds to the shaded area in
the bottom part in the middle). The upper bound countAtmost(6, 2, 0) is easy
to compute since this is a alldisjoint constraint where every set variable has
cardinality 2 and the universe is of size 6: There are at most 3 variables that
can take value 1′. To obtain the lower bound, we exclude abstract element 1′

and need to solve countAtmost(6, 3, 1), since we have one fewer element in the
universe. This value is also found by solving another set-CSP. The maximum
number of sets excluding element 1’ is 4. Hence element 1’ occurs in at least
7−4 = 3 variables in P ′. Now that the lower and upper bounds are available for
the dual filter, the set-CSP for P ′. The optimal value is then found and used in
the dual filter for P which is also solved as a set-CSP.

7 Primal/Dual Filters for Symmetry-Breaking Atmost-k

Section 5 presented a primal filter for the symmetry-breaking alldisjoint. It
recognized that the most significant element determines the size of the possible
sets for a variable and the lexicographically greater variables, enabling to achieve
stronger propagation. Section 6 on the other hand presented a dual filter based
on a dual model: It exploits the observation that an element cannot appear in,
or be excluded from, too many variables, which imposes some strong cardinality
constraint on dual variables. These ideas can be combined for the implementation
of a global atmost-k� constraint, which combines a global atmost-k constraint
and a chain of symmetry-breaking constraints.

Definition 6 (Symmetry-Breaking Atmost-k). atmost�(k,X1, ..., Xm)
holds if atmost(k,X1, ..., Xm) ∧

∧
i<j Xi � Xj.

Intuition. The primal/dual filter aims at answering the following questions
which combines primal and dual aspects:

1. How many set variables must include the first e elements of the universe?
2. How many set variables must exclude the first e elements of the universe?

In general, variables that are greater lexicographically do not take small el-
ements: These are taken by the lexicographically smaller variables. For the
symmetry-breaking alldisjoint constraint, it was relatively easy to answer that
question since every element can be taken by at most one variable. For the
symmetry-breaking atmost-k constraint, this situation is more complicated but
we can reuse the function countAtmost introduced for the dual filter.

Example 4 (Primal/Dual Exclusion). Consider 5 set variables X1, ..., X5

of cardinality 3 taking their values from a universe 1..7 and a global
atmost≤(1, X1, ..., X5). Since countAtmost(6, 3, 1) returns 4, it follows that at
most 4 variables can start with elements greater than or equal to 2. Due to the
lexicographic constraint, X1 must not start with element 2.
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Example 5 (Primal/Dual Inclusion). Consider 5 variables X1, ..., X5 of cardinal-
ity 3 taking their values from {1..7} and a global atmost�(1, X1, ..., X5). There
are at most 3 variables taking element 1 (see Figure 3). Hence, X4 must start
with element greater than 1 and we can post the constraint {2, 3, 4} � X4.

Reduction Rules. We are now ready to present the two primal/dual reduction
rules. The first rule reasons about the maximum number of variables that can
exclude the first e elements and derives a constraint preventing early variables
from starting with large values.

Rule 2 (Symmetry-Breaking Atmost-k: Exclusion)

1 ≤ e ≤ n− c ∧
∧
i≤j≤m |Xj | = c ∧ i = countAtmost(n− e, c, k) ∧ 1 ≤ i ≤ m

atmost�(k,X1, ..., Xm) �−→ min(Xm−i) ≤ e ∧ atmost�(k,X1, ..., Xm)

When the length-lex representation is used for set variables, the derived con-
straint can be used to update the upper bound of the set variables: only the sets
starting with an element no greater than e are left in the domain. The second
rule reasons about the maximum variables that can take the first e elements and
derives a constraint preventing late variables from taking the first e elements.

Rule 3 (Symmetry-Breaking Atmost-k: Inclusion)

1 ≤ e ≤ k ∧
∧
i≤j≤m |Xj| = c ∧ i = countAtmost(n− e, c− e, k − e) ∧ 0 ≤ i < m

atmost�(k,X1, ..., Xm) �−→ l � Xi+1 ∧ atmost�(k,X1, ..., Xm)

where l = {1, ..., e− 1} 0 {e+ 1, ..., c+ 1}

When the length-lex representation is used for set variables, the derived con-
straint can be used to update the lower bound of the set variables which must
become at least l = {1, ..., e−1}0{e+1, ..., c+1}. Observe that the rule prevents
Xi+1 from taking all elements in {1, .., e}. The smallest set lexicographically not
taking all elements in e starts with 〈1, ..., e−1〉, excludes e, and fills the remaining
free slots with as small elements as possible, i.e., 〈e+ 1, e+ 2, . . . , c+ 1〉.

8 Experimental Evaluation

This section evaluates the performance of all global set constraints. Two stan-
dard benchmark problems are used: the error correcting code and the social golfer
problems. We assess the impact of the global constraint both on the length-lex
domain, the subset-bound domain and, whenever possible, their hybridization.
All models and algorithms are implemented in the Comet system. Our experi-
ments are run on a Core2Duo 2.4GHz laptop with 4GB of memory. The symbol
x indicates a timeout of 1800 seconds. Instances solved within 2% of the best
time are bolded, and those with the smallest number of failures are also bolded.
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Table 1. Error Correcting Code, Hamming Distance: The Length-Lex Domain

atmost-k (Fig. 2) ✔ ✔

atmost-k
 (Rules 2&3) ✔ ✔

(l,d,w) Opt Time Fails Time Fails Time Fails Time Fails

(9,4,4) 18 13.25 46003 3.61 14229 0.1 31 0.09 23
(9,4,5) 18 21.83 66527 0.76 1931 0.49 1003 0.14 208
(10,4,3) 13 1.96 12399 1.00 6869 0.05 42 0.05 42
(10,4,4) 30 149.76 227707 3.62 14301 0.15 39 0.13 31
(10,4,5) 36 x x 7.83 22352 29.11 14211 3.53 6425
(10,4,6) 30 512.88 676025 5.81 10434 26.36 17460 4.57 8067
(10,4,7) 13 2.82 12680 0.58 2384 0.08 32 0.09 25
(11,4,3) 17 40.72 167518 12.48 64772 0.09 211 0.1 211

Table 2. Error Correcting Code, Hamming Distance: The Subset-Bound Domain

atmost-k ✔ ✔

atmost-k
 ✔ ✔

(l,d,w) Opt Time Fails Time Fails Time Fails Time Fails

(9,4,4) 18 x x 223.09 574188 0.48 279 0.45 207
(9,4,5) 18 x x 43.74 100988 13.64 50552 2.54 6749
(10,4,3) 13 812.6 2218607 24.93 65568 0.3 244 0.28 190
(10,4,4) 30 x x 235.6 591496 1.38 1360 1.13 1072
(10,4,5) 36 x x x x x x x x
(10,4,6) 30 x x x x x x x x
(10,4,7) 13 x x 24.3 64158 0.57 1487 0.39 517
(11,4,3) 17 x x 885.1 1952008 0.9 2137 0.85 1661

The Error Correcting Code Problem. The error correcting code problem
is defined in terms of three parameters: (l, d, w). It is an optimization problem
that finds the largest number of codewords satisfying the following constraints:
a codeword is a 0/1-vector of length l, the sum of the vector is w, and every
pair of codewords have a Hamming distance of at least d. The problem can
be modelled using set variables whose characteristic function is the 0/1-vector.
This has been used as a very challenging benchmark since the optimality proof
requires an implicit enumeration of the whole search tree. Our basic model is
based on [17]: it is solved as a feasibility problem, starting with an upper bound
ub = countAtmost(n− 1, c− 1, k− 1) + countAtmost(n− 1, c, k) and decreasing
the bound by 1 each time until a solution is found.

Since the contributions of this paper apply to any domain representation, this
section evaluates the global filtering techniques both on length-lex and subset-
bound variables. The standard model [12] applies binary symmetry-breaking
constraints and dual modeling for breaking value symmetries. The atmost-k con-
straint is posted as a collection of binary intersection constraints. The model
is augmented with two sets of constraints. First, the dual filter imposes car-
dinality constraints on the dual variables (Section 6). Second, the primal/dual
filter reasons jointly about the symmetry-breaking constraints and the atmost-k
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Table 3. The Social Golfer Problem: The Length-Lex and Subset-Bound Domains

Length-Lex Subset-Bound

alldisjoint ✔ ✔

(Alg.1)

alldisjoint
 ✔ ✔

(Rule 1)

(g,s,w) Time Fails Time Fails Time Fails Time Fails

(5,3,7) 8.49 52008 5.08 12211 420.09 1726521 19.13 40401
(5,4,6) 59.43 303376 39.39 120438 297.09 1106954 160.73 346424
(6,5,6) 60.61 221033 16.86 27545 47.26 97991 39.13 34773
(6,6,4) 602.83 2049826 649.00 1890962 x x x x
(7,3,9) x x 1274.18 2837356 x x x x
(8,3,10) 150.67 668785 47.51 88817 1373.11 2091583 273.07 204773
(9,3,11) 15.57 61924 1.99 2724 744.94 760027 5.83 3557

constraints (Section 7). The dual and primal dual filters depend on the solutions
to several optimization subproblems for the various calls to countAtmost. The
experimental results report the total CPU time and the total number of failures,
i.e., the sum of the CPU time and number of failures for all the sub-problems.

Table 1 and 2 present the results for length-lex variables and subset-bound
variables respectively. On the length-lex domains, both the dual and primal/dual
filters bring substantial improvements in performance when used independently
and their benefits are almost always cumulative. Instance (10,4,5) is now in
the reach of the length-lex representation and the times to solve (10,4,4) and
(11,2,3) are reduced by factors of 1152 and 407. Similar benefits are observed
on the subset-bound representation, although it is clearly inferior to the length-
lex representation. Nevertheless, the results indicates the dual and primal dual
filters provide significant benefits for both representations.

The Social Golfer Problem. The social golfer problem is defined by three
parameters (g, s, w). The goal is to find a tournament schedule for n = g × s
golfers for w weeks. In each week, golfers are allocated into g groups of size s.
Every pair of golfers play in the same group at most once. We use the model
and labeling strategy for hybrid length-lex/subset bound domain in [5].

The standard model uses the binary symmetry-breaking constraints in [12].
Two sets of constraints are added to the model. First, the alldisjoint global
constraint expresses that all groups of the same week are disjoint. The atmost1
unary constraint generates a list of domain values for every primal variable, and
our alldisjoint feasibility checker uses such list (but is only applied if the domain
size is no greater than 200). Such a alldisjoint constraint is posed for each week
and is propagated at the end of every choice point. Second, the global constraint
alldisjoint� is applied to the first group of every week. These groups contains
player 1, are mutually disjoint, and are in increasing order. Our model introduces
a set of auxiliary variables sbx1[wi] which removes player 1 from sbx[wi,1]
and posts the alldisjoint�(sbx1[1], ..., sbx1[w]) constraint.
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Table 4. The Social Golfer Problem: The Hybrid Length-Lex/Subset-Bound Domain

alldisjoint ✔ ✔

alldisjoint
 ✔ ✔

(g,s,w) Time Fails Time Fails Time Fails Time Fails

(5,3,7) 10.2 30828 5.39 10909 13.78 27278 5.84 9291
(5,4,6) 58.85 118160 59.1 113802 51.55 82746 52.06 79902
(6,5,6) 39.66 59269 40.82 59269 20.35 19317 20.25 19317
(6,6,4) 1184.88 1799472 1233.69 1799472 1263.32 1763316 1319.54 1763316
(7,3,9) 1530.09 2212836 1142.77 1375063 1558.92 1726504 1146.88 1018831
(8,3,10) 62.71 65205 48.88 49955 51.31 43055 46.08 31547
(9,3,11) 5.07 3191 5.06 3191 2.92 1169 3.07 1169
(9,6,6) 44.73 34624 46.28 34624 2.67 172 2.74 172
(9,8,4) 28.31 29021 29.42 29021 4.31 77 4.38 77

(12,4,11) 31.12 10858 31.66 10858 18.89 3384 18.9 3384
(13,3,16) x x 3.98 1191 x x 3.36 47
(13,5,10) 284.07 116615 298.78 116615 13.88 489 13.93 489
(13,6,8) 20.16 7067 20.07 7067 3.56 153 3.72 153
(13,8,6) 92.91 52326 99.53 52326 71.88 6670 70.69 6670
(13,9,5) 7.2 3016 7.32 3016 4.38 530 4.37 530

Table 3 first evaluates the alldisjoint constraint both on length-lex and
subset-bound domains. Regardless of the domain representation, models using
the alldisjoint checker and the symmetry-breaking filter obtain the best results
in general. On instance (9, 3, 11) for the subset-bound model, our contributions
reduce the solving time by more than 120 times. Some previously out of reach
instances, such as (7, 3, 9), are now solved by the length-lex domain.

To evaluate the impact of each technical contributions independently and
jointly, Table 4 reports the results for the various combinations of the contribu-
tions on the hybrid length-lex/subset-bound domain. Using alldisjoint� allows
the model to solve (13, 3, 16) trivially, although it was out of scope for the hybrid
length-lex/subset-bound representation so far. It also produces non-negligible
improvements on several instances, including (5, 3, 7), (8, 3, 10), while incurring
minimal overhead in general. The table also shows that the feasibility checker
for alldisjoint has a huge impact: It reduces the number of failures and the
CPU time tremendously on a substantial number of benchmarks. For instance,
it reduces the CPU time on (13, 5, 10) by a factor more than 20. In general, the
model using both sets of global constraints is the most robust and improves the
state of the art on most of the instances.

9 Conclusion

This paper studied feasibility checking and filtering for global constraints over
set variables. It proposed an exponential-time feasibility checker for the alldis-
joint constraint, by taking a dual perspective and enumerating all possible dual
assignments. The paper also presented primal, dual, and primal/dual filters for
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the symmetry-breaking alldisjoint, the atmost-k, and the symmetry-breaking
atmost-k constraints. The dual and primal/dual filters need to answer various
counting problems (e.g., How many set variables must include/exclude the first e
elements of the universe) which are viewed as optimization problems and solved
using the filters recursively on smaller atmost-k constraints. Experimental results
on two standard benchmark problems, the social golfer problem and the error
correcting code, show that the feasibility checker and the filters are very effective
and significantly improve state-of-the-art results on these problems. In particu-
lar, they are able to solve open instances for set representations and reduce CPU
times by a factor greater than 1,000 on some instances.
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