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Welcome to ECML PKDD 2011

Welcome to the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2011) held in
Athens, Greece, during September 5–9, 2011. ECML PKDD is an annual confer-
ence that provides an international forum for the discussion of the latest high-
quality research results in all areas related to machine learning and knowledge
discovery in databases as well as other innovative application domains. Over
the years it has evolved as one of the largest and most selective international
conferences in machine learning and data mining, the only one that provides a
common forum for these two closely related fields.

ECML PKDD 2011 included all the scientific events and activities of big con-
ferences. The scientific program consisted of technical presentations of accepted
papers, plenary talks by distinguished keynote speakers, workshops and tutorials,
a discovery challenge track, as well as demo and industrial tracks. Moreover, two
co-located workshops were organized on related research topics. We expect that
all those scientific activities provide opportunities for knowledge dissemination,
fruitful discussions and exchange of ideas among people both from academia and
industry. Moreover, we hope that this conference will continue to offer a unique
forum that stimulates and encourages close interaction among researchers work-
ing on machine learning and data mining.

We were very happy to have the conference back in Greece after 1995 when
ECML was successfully organized in Heraklion, Crete. However, this was the
first time that the joint ECML PKDD event was organized in Greece and, more
specifically, in Athens, with the conference venue boasting a superb location
under the Acropolis and in front of the Temple of Zeus. Besides the scientific
activities, the conference offered delegates an attractive range of social activities,
such as a welcome reception on the roof garden of the conference venue directly
facing the Acropolis hill, a poster session at “Technopolis” Gazi industrial park,
the conference banquet, and a farewell party at the new Acropolis Museum,
one of the most impressive archaeological museums worldwide, which included
a guided tour of the museum exhibits.

Several people worked hard together as a superb dedicated team to ensure
the successful organization of this conference. First, we would like to express our
thanks and deep gratitude to the PC Chairs Dimitrios Gunopulos, Thomas Hof-
mann, Donato Malerba and Michalis Vazirgiannis. They efficiently carried out
the enormous task of coordinating the rigorous hierarchical double-blind review
process that resulted in a rich, while at the same time, very selective scientific
program. Their contribution was crucial and essential in all phases and aspects of
the conference organization and it was by no means restricted only to the paper
review process. We would also like to thank the Area Chairs and Program Com-
mittee members for the valuable assistance they offered to the PC Chairs in their
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timely completion of the review process under strict deadlines. Special thanks
should also be given to the Workshop Co-chairs, Bart Goethals and Katharina
Morik, the Tutorial Co-chairs, Fosca Giannotti and Maguelonne Teisseire, the
Discovery Challenge Co-chairs, Alexandros Kalousis and Vassilis Plachouras, the
Industrial Session Co-chairs, Alexandros Ntoulas and Michail Vlachos, the Demo
Track Co-chairs, Michelangelo Ceci and Spiros Papadimitriou, and the Best Pa-
per Award Co-chairs, Sunita Sarawagi and Michèle Sebag. We further thank the
keynote speakers, workshop organizers, the tutorial presenters and the organizers
of the discovery challenge.

Furthermore, we are indebted to the Publicity Co-chairs, Annalisa Appice
and Grigorios Tsoumakas, who developed and implemented an effective dissem-
ination plan and supported the Program Chairs in the production of the pro-
ceedings, and also to Margarita Karkali for the development, support and timely
update of the conference website. We further thank the members of the ECML
PKDD Steering Committee for their valuable help and guidance.

The conference was financially supported by the following generous sponsors
who are worthy of special acknowledgment: Google, Pascal2 Network, Xerox, Ya-
hoo Labs, COST-MOVE Action, Rapid-I, FP7-MODAP Project, Athena RIC /
Institute for the Management of Information Systems, Hellenic Artificial Intel-
ligence Society, Marathon Data Systems, and Transinsight. Additional support
was generously provided by Sony, Springer, and the UNESCO Privacy Chair Pro-
gram. This support has given us the opportunity to specify low registration rates,
provide video-recording services and support students through travel grants for
attending the conference. The substantial effort of the Sponsorship Co-chairs,
Ina Lauth and Ioannis Kopanakis, was crucial in order to attract these spon-
sorships, and therefore, they deserve our special thanks. Special thanks should
also be given to the five organizing institutions, namely, University of Bari “Aldo
Moro”, Athens University of Economics and Business, University of Athens, Uni-
versity of Ioannina, and University of Piraeus for supporting in multiple ways
our task.

We would like to especially acknowledge the members of the Local Organiza-
tion team, Maria Halkidi, Despoina Kopanaki and Nikos Pelekis, for making all
necessary local arrangements and Triaena Tours & Congress S.A. for efficiently
handling finance and registrations. The essential contribution of the student vol-
unteers also deserves special acknowledgment.

Finally, we are indebted to all researchers who considered this conference as
a forum for presenting and disseminating their research work, as well as to all
conference participants, hoping that this event will stimulate further expansion
of research and industrial activities in machine learning and data mining.

July 2011 Aristidis Likas
Yannis Theodoridis



Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2011) took place in Athens,
Greece, during September 5–9, 2011. This year we have completed the first
decade since the junction between the European Conference on Machine Learn-
ing and the Principles and Practice of Knowledge Discovery in Data Bases con-
ferences, which as independent conferences date back to 1986 and 1997, respec-
tively. During this decade there has been an increasing integration of the two
fields, as reflected by the rising number of submissions of top-quality research re-
sults. In 2008 a single ECML PKDD Steering Committee was established, which
gathered senior members of both communities.

The ECML PKDD conference is a highly selective conference in both areas,
the leading forum where researchers in machine learning and data mining can
meet, present their work, exchange ideas, gain new knowledge and perspectives,
and motivate the development of new interesting research results. Although tra-
ditionally based in Europe, ECML PKDD is also a truly international conference
with rich and diverse participation.

In 2011, as in previous years, ECML PKDD followed a full week sched-
ule, from Monday to Friday. It featured six plenary invited talks by Rakesh
Agrawal, Albert-László Barabási, Christofer Bishop, Andrei Broder, Marco Gori
and Heikki Mannila. Monday and Friday were devoted to workshops selected
by Katharina Morik and Bart Goethals, and tutorials, organized and selected
by Fosca Giannotti and Maguelonne Teisseire. There was also an interesting in-
dustrial session, managed by Alexandros Ntoulas and Michalis Vlachos, which
welcomed distinguished speakers from the ML and DM industry: Vasilis Agge-
lis, Radu Jurca, Neel Sundaresan and Olivier Verscheure. The 2011 discovery
challenge was organized by Alexandros Kalousis and Vassilis Plachouras.

The main conference program unfolded from Tuesday to Thursday, where
121 papers selected among 599 full-paper submissions were presented in the
technical parallel sessions and in a poster session open to all accepted papers.
The acceptance rate of 20% supports the traditionally high standards of the
joint conference. The selection process was assisted by 35 Area Chairs, each
supervising the reviews and discussions of about 17 papers, and by 270 members
of the Program Committee, with the help of 197 additional reviewers. While the
selection process was made particularly intense due to the very high number of
submissions, we are grateful and heartily thank all Area Chairs, members of the
Program Committee, and additional reviewers for their commitment and hard
work during the tight reviewing period.

The composition of the paper topics covered a wide spectrum of issues. A sig-
nificant portion of the accepted papers dealt with core issues such as supervised
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and unsupervised learning with some innovative contributions in fundamental
issues such as cluster-ability of a dataset.

Other fundamental issues tackled by accepted papers include dimensionality
reduction, distance and similarity learning, model learning and matrix/tensor
analysis. In addition, there was a significant cluster of papers with valuable con-
tributions on graph mining, graphical models, hidden Markov models, kernel
methods, active and ensemble learning, semi-supervised and transductive learn-
ing, mining sparse representations, model learning, inductive logic programming,
and statistical learning.

A significant part of the program covered novel and timely applications of
data mining and machine learning in industrial domains, including: privacy-
preserving and discrimination-aware mining, spatiotemporal data mining, text
mining, topic modeling, learning from environmental and scientific data, Web
mining and Web search, link analysis, bio/medical data, data Streams and sensor
data, ontology-based data, relational data mining, learning from time series data,
time series data.

In the past three editions of the joint conference, the two Springer journals
Machine Learning and Data Mining and Knowledge Discovery published the
top papers in two special issues printed in advance of the conference. These
papers were not included in the conference proceedings, so there was no double
publication of the same work. A novelty introduced this year was the post-
conference publication of the special issues in order to guarantee the expected
high-standard reviews for top-quality journals. Therefore, authors of selected
machine learning and data mining papers were invited to submit a significantly
extended version of their paper to the special issues. The selection was made
by Program Chairs on the basis of their exceptional scientific quality and high
impact on the field, as indicated by conference reviewers.

Following an earlier tradition, the Best Paper Chairs Sunita Sarawagi and
Michèle Sebag contributed to the selection of papers deserving the Best Pa-
per Awards and Best Student Paper Awards in Machine Learning and in Data
Mining, sponsored by Springer. As ECML PKDD completes 10 years of joint
organization, the PC chairs, together with the steering committee, initiated a
10-year Awards series. This award is established for the author(s), whose paper
appeared in the ECML PKDD conference 10 years ago, and had the most im-
pact on the machine learning and data mining research since then. This year’s,
first award, committee consisted of three PC co-chairs (Dimitrios Gunopulos, Do-
nato Malerba and Michalis Vazirgiannis) and three Steering Committee members
(Wray Buntine, Bart Goethals and Michèle Sebag).

The conference also featured a demo track, managed by Michelangelo Ceci
and Spiros Papadimitriou; 11 demos out of 21 submitted were selected by a
Demo Track Program Committee, presenting prototype systems that illustrate
the high impact of machine learning and data mining application in technology.
The demo descriptions are included in the proceedings. We further thank the
members of the Demo Track Program Committee for their efforts in timely
reviewing submitted demos.
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Finally, we would like to thank the General Chairs, Aristidis Likas and Yannis
Theodoridis, for their critical role in the success of the conference, the Tutorial,
Workshop, Demo, Industrial Session, Discovery Challenge, Best Paper, and Local
Chairs, the Area Chairs and all reviewers, for their voluntary, highly dedicated
and exceptional work, and the ECML PKDD Steering Committee for their help
and support. Our last and warmest thanks go to all the invited speakers, the
speakers, all the attendees, and especially to the authors who chose to submit
their work to the ECML PKDD conference and thus enabled us to build up this
memorable scientific event.

July 2011 Dimitrios Gunopulos
Thomas Hofmann

Donato Malerba
Michalis Vazirgiannis
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Michèle Sebag



Organization XIII

Area Chairs

Elena Baralis
Hendrik Blockeel
Francesco Bonchi
Gautam Das
Janez Demsar
Amol Deshpande
Carlotta Domeniconi
Tapio Elomaa
Floriana Esposito
Fazel Famili
Wei Fan
Peter Flach
Johannes Furnkranz
Aristides Gionis
George Karypis
Ravi Kumar
James Kwok
Stan Matwin

Michael May
Taneli Mielikainen
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Elena Montañés, José Ramón Quevedo, and Juan José del Coz
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Abstract. Learning underlying mechanisms of data generation is of
great interest in the scientific and engineering fields amongst others.
Finding dependency structures among variables in the data is one possi-
ble approach for the purpose, and is an important task in data mining.
In this paper, we focus on learning dependency substructures shared
by multiple datasets. In many scenarios, the nature of data varies due
to a change in the surrounding conditions or non-stationary mecha-
nisms over the multiple datasets. However, we can also assume that the
change occurs only partially and some relations between variables remain
unchanged. Moreover, we can expect that such commonness over the mul-
tiple datasets is closely related to the invariance of the underlying mech-
anism. For example, errors in engineering systems are usually caused
by faults in the sub-systems with the other parts remaining healthy. In
such situations, though anomalies are observed in sensor values, the un-
derlying invariance of the healthy sub-systems is still captured by some
steady dependency structures before and after the onset of the error.
We propose a structure learning algorithm to find such invariances in
the case of Graphical Gaussian Models (GGM). The proposed method
is based on a block coordinate descent optimization, where subproblems
can be solved efficiently by existing algorithms for Lasso and the continu-
ous quadratic knapsack problem. We confirm the validity of our approach
through numerical simulations and also in applications with real world
datasets extracted from the analysis of city-cycle fuel consumption and
anomaly detection in car sensors.

Keywords: Graphical Gaussian Model, common substructure, block
coordinate descent.

1 Introduction

In the real world, it is common that multivariate data, such as the stock mar-
ket [1], gene regulatory networks [2], or biomedical measurements [3], to have
a complex dependency structure among variables. Such a structure is closely
tied to the intrinsic data generating mechanism, which one aims to reveal. For
example, we can expect the interaction of brain sub-regions to be reflected by
the dependency structures between fMRI signals [3].
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2 S. Hara and T. Washio

The dependency structure among variables also plays an important role in the
analysis of multiple datasets. It is frequently seen that datasets collected under
different conditions have different dependency structures, which is caused by a
change in the underlying mechanism [2,4]. On the other hand, if some relations
are common to several conditions, we can expect that background mechanism
to have a certain invariance against the change. An illustrative example is an
engineering system where system errors are observed as dependency anomalies
of sensor values [5]. These are usually caused by a fault in a sub-system. The
invariance, which in this example is the remaining healthy sub-systems, is cap-
tured by a steady dependency over the multiple datasets sampled before and
after the error onset.

Motivated by the example above, we propose a method for finding common
dependency structures from multiple datasets. In this paper, we consider the
case of the Graphical Gaussian Model (GGM) [6]. GGM is one of the most basic
models representing linear dependencies among continuous variables. Identifica-
tion of the structure was firstly studied by Dempster [7] where it was referred to
as covariance selection. Though classical approaches have encountered several
difficulties, there is a recent development on the use of �1-regularization [8,9,10],
that enables the design of an efficient Graphical Lasso (GLasso) algorithm [11].
Since this breakthrough, several extensions have been proposed [3,12,13,14,15].
For example, Zhang et al. [12] used a Fused Lasso type formulation [16] to ex-
tract structural changes in a two-sample situation. In the multi-task learning
literature [17], joint estimation algorithms for a set of GGMs with the same
topological structures [3,13,14] have been studied based on a group-Lasso [18],
while Guo et al. [15] proposed iterative re-weighting of GLasso for estimating
multiple GGMs.

Though several GGM learning methods have been proposed, to the best of our
knowledge, there are no general techniques for finding a common substructure
from multiple datasets1. In many practical situations, such as sensor data, the
data is highly noisy and the estimated structures tend to have a high variance,
which masks the invariance we wish to detect. The scarcity of available data is
also a crucial factor in this problem. In our work, we penalized the variation in
resulting structures and formulated the common substructure learning problem
as an extension of the two approaches presented in Zhang et al. [12] and Honorio
et al. [13], respectively. The problem is convex and the solution is obtained
by adopting a block coordinate descent procedure [19]. We further show that
the solution to the subproblem in the coordinate descent can be classified into
three types each of which can be derived efficiently using existing methods. We
confirm the validity of our approach through numerical simulations and also in
an application with real world datasets derived from the analysis of city-cycle
fuel consumption and anomaly detection in car sensors.

1 Zhang et al. [12] considered a similar problem and although their approach provides
a common substructure, it is limited to only two-sample situations. The approach
by Chiquet et al. [14] adopted commonness only with respect to its signs.
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The remainder of this paper is organized as follows; We first review exist-
ing methods for GGM learning and its extensions to joint estimation settings in
Section 2. We formulate the common substructure learning problem in
Section 3 and then, in Section 4, we present the block coordinate descent al-
gorithm. Section 5 contains numerical simulations to show the validity of the
proposed method using synthetic and real world data. Finally, we conclude the
paper in Section 6.

2 Structure Learning of Graphical Gaussian Model

In this section, we review the GGM estimation problem [8,9,10,11] and extensions
to joint estimation of multiple GGMs [12,13].

2.1 Graphical Gaussian Model

In multivariate analysis, covariance or correlation are commonly used as an indi-
cator of the relationship between two variables. However, in general, the covari-
ance between two variables xj and xj′ is affected by a third variable. Therefore,
we need to remove such effects to estimate the essential dependency structure,
which is obtained by searching conditional dependency among variables. If a d-
dimensional random variable x = (x1, x2, . . . , xd)� is Gaussian, the conditional
dependency between two variables is expressed by a precision matrix Λ ∈ R

d×d

(or inverse covariance). Under multivariate Gaussian distribution, the following
property exists:

Λjj′ = 0 ⇔ xj ⊥⊥xj′ | other variables (1)

where ⊥⊥ denotes statistical independence. With this property, GGM is defined as
a graph where each node corresponds to a random variable xj and the adjacency
matrix is given by Λ. In a GGM, there is an edge between two nodes only if the
corresponding two variables are conditionally dependent. In the case that only
a few pairs of variables are dependent, most of the off-diagonal elements in Λ
are zero and the corresponding graph expression is sparse, which allows us to
visually inspect the underlying relations.

2.2 Sparse Estimation of GGM

The maximum likelihood estimator of a precision matrix is given as the inverse
of the sample covariance matrix Σ̂. This estimator is usually dense and the
corresponding GGM is a complete graph, which states that every pair of variables
is dependent. The difficulty arises here in that this occurs even when the true
precision matrix is sparse and masks the underlying intrinsic relationships. To
avoid this unfavorable property, Meinshausen and Bühlmann [8] proposed the
use of Lasso for the sparse graph identification, which is later reformulated as a
�1-regularized maximum likelihood problem [9,10]:

max
Λ∈Rd×d

�(Λ; Σ̂) − ρ‖Λ‖1

subject to Λ � 0 (2)
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where ρ is a regularization parameter and �(Λ; Σ̂) is the log-likelihood of a Gaus-
sian distribution defined as

�(Λ; Σ̂) = log det Λ − tr
(
Σ̂Λ

)
. (3)

The constraint is imposed since Λ must be positive definite as a valid preci-
sion matrix. The solution to (2) is sparse due to the effect of an additional �1-
regularization term. An efficient algorithm, using a block coordinate descent [11],
is available to solve this problem.

2.3 Learning Structural Changes

When comparing two GGMs representing similar models, some common edges
may exist whose weights are close to one another. Zhang et al. [12] proposed the
use of a Fused Lasso type regularization [16] to round these similar values to ex-
actly the same value, thus allowing only the significant differences between two
GGMs to be extracted. Their original idea is based on the work of Meinshausen
and Bühlmann [8], which can naturally be transformed to an �1-regularized max-
imum likelihood type setting:

max
Λ1,Λ2

2∑
i=1

{
�(Λi; Σ̂i) − ρ‖Λi‖1

}
− γ

∑
j �=j′

|Λ1,jj′ − Λ2,jj′ |

subject to Λ1, Λ2 � 0 (4)

where ρ and γ are regularization parameters. The last term forces the difference
between certain elements of two matrices to be zero. They also provided an
efficient technique for solving the subproblem of (4) which makes the entire
procedure fast.

2.4 Multi-task Approach for Learning a Set of GGMs

The ordinary GGM estimation problem (2) aims to learn a single GGM from
one dataset. Apart from the GGM estimation, it is known that jointly solving
multiple similar tasks often improves the learning performance, which is referred
to as multi-task learning [17]. Honorio et al. [13] assumed that all GGMs have the
same topological structures, i.e., the same zero patterns in all precision matrices,
and adopted the group-Lasso [18] approach, which is formulated as:

max
{Λi}N

i=1

N∑
i=1

ti�(Λi; Σ̂i) − ρ
∑
j �=j′

max
i

|Λi,jj′ |

subject to Λ1, Λ2, . . . , ΛN � 0 (5)

where ρ is a regularization parameter and t1, t2, . . . , tN are non-negative con-
stants. The regularization term ensures that the joint structure Λ̃jj′=maxi |Λi,jj′ |
is sparse, where Λ̃jj′ = 0 denotes that the corresponding (j, j′)-th entries are
commonly zero in all N precision matrices.
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3 Common Substructure Learning

The aim of the common substructure learning is to find a dependency structure
between variables that is invariant to changes in the surrounding conditions. For-
mally, we have N covariance matrices Σ̂1, Σ̂2, . . . , Σ̂N each of which is calculated
from datasets sampled under different conditions. The task is to identify com-
mon elements shared by all precision matrices Λ1, Λ2, . . . , ΛN . To begin with, we
assume that the number of variables in each condition is the same, i.e., all have
d-dimensions. Also, the identities of each variable are the same, e.g., x1 is always
the value from the same sensor while surrounding conditions may change. Then,
we define a common substructure of multiple GGMs as follows:

Definition 1 (Common Substructure of Multiple GGMs)
Let Λ1, Λ2, . . . , ΛN be the corresponding precision matrices of each GGM. Then,
their common substructure is expressed by an adjacency matrix Θ defined as

Θjj′ =
{

Λ1,jj′ , if Λ1,jj′ = Λ2,jj′ = . . . = ΛN,jj′

0 , otherwise . (6)

The common substructure defined here has an edge between nodes only if the
corresponding edge weights among all GGMs are equal. We expect to find such
a substructure in the estimated precision matrices. To that end, we impose two
regularizations and formulate the following problem:

max
{Λi}N

i=1

N∑
i=1

ti �(Λi; Σ̂i) −
∑
j �=j′

(
ρ max

i
|Λi,jj′ | + γ max

i,i′
|Λi,jj′ − Λi′,jj′ |

)
subject to Λ1, Λ2, . . . , ΛN � 0 (7)

where ρ, γ are regularization parameters and t1, t2, . . . , tN are non-negative con-
stants that satisfy

∑N
i=1 ti = 1. Here, constants ti are weighting parameters,

usually chosen as ti = ni/
∑N

i=1 ni where ni is the size of the i-th dataset. The
second regularization term is a generalization of the one in (4) for N ≥ 3, which
ensures that some entries in the resulting precision matrices are common to all
matrices. Since the second regularization does not impose any sparsity on the
resulting precision matrices, we added the joint regularization term appearing
in (5). The resulting common substructure Θ is obtained by applying Definition 1
to the estimated precision matrices Λ̂1, Λ̂2, . . . , Λ̂N .

4 Algorithm

The problem (7) is a concave maximization with convex constraints. In this sec-
tion, we introduce the solution algorithm based on the block coordinate descent
method [19], where the approach is justified by the following theorem.

Theorem 1. The solution sequence generated by the block coordinate descent
for problem (7) is bounded and every cluster point2 is a solution.
2 A point where the sequence converges.
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4.1 Block Coordinate Descent

In the block coordinate descent, we fix elements in Λi corresponding to variables
x1, . . . , xm−1, xm+1, . . . , xd and update entries related to a variable xm. Since
(7) is invariant for permutations of rows and columns in matrices, we can always
arrange xm-related entries located in the last row and column. Then, we partition
each matrix into four parts, namely, one matrix, two vectors, and a scalar:

Λi =
[

Zi zi

z�
i ωi

]
, Σ̂i =

[
Pi pi

p�
i qi

]
. (8)

Now, we fix Z1, Z2, . . . , ZN and derive the subproblem on {zi, ωi}N
i=1:

max
{zi,ωi}N

i=1

N∑
i=1

ti
{
log

(
ωi − z�

i Z−1
i zi

)− 2p�
i zi − qiωi

}
−2

∑
j

(
ρ max

i
|zij | + γ max

i,i′
|zij − zi′j |

)
(9)

where zij is the j-th entry of zi. By setting the derivative over ωi to zero, we get:

ωi = z�
i Z−1

i zi + q−1
i . (10)

Here, Zi � 0 and ωi − z�
i Z−1

i zi = q−1
i > 0 guarantee the positive definiteness

of Λi. Therefore, by choosing the initial Λi to be positive definite, that property
is always preserved by the updating procedure of the block coordinate descent.
Next, by substituting (10) into (9), we derive:

min
{zi}N

i=1

N∑
i=1

ti

(qi

2
z�

i Z−1
i zi + p�

i zi

)
+
∑

j

(
ρ max

i
|zij | + γ max

i,i′
|zij − zi′j |

)
.(11)

Instead of solving this problem, we again adopt a coordinate descent approach
and further decompose it into subproblems. We solve (11) only for elements
related to the variable xm′ (m′ �= m) and fix the other entries. As before, we
arrange the corresponding elements into the last of the vectors and matrices:

zi =
[

vi

wi

]
, pi =

[
ri

si

]
, Z̃−1

i =
[

Hi hi

h�
i gi

]
. (12)

Then, we derive the following subproblem of (11) over w = (w1, w2, . . . , wN )�:

min
w

1
2
w�diag(a)w − b�w + ρ‖w‖∞ + γ max

i,i′
|wi − wi′ | (13)

with coefficients ai = tiqigi and bi = −ti
(
qih

�
i vi + si

)
. The dual problem is

min
ξ

1
2
(b − ξ)�diag(a)−1(b − ξ)

subject to |1�
Nξ| ≤ ρ, ‖ξ‖1 ≤ ρ + 2γ (14)

where ξ = b−diag(a)w. This is the subproblem for the block coordinate descent
of (7). In the next section, we show that this problem has three types of solutions
each which can be derived efficiently.
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4.2 Subproblem

First, we can see that subproblem (14) has a solution ξ = b when |1�
Nb| ≤ ρ

and ‖b‖1 ≤ ρ + 2γ. In the case of |1�
Nb| > ρ or ‖b‖1 > ρ + 2γ, the solution

is on the boundary of the constraint set and can be classified into three types.
Here, we give the solution procedure for each of these. The entire procedure is
summarized in Algorithm 1.

1) The solution is on the boundary ‖ξ‖1 = ρ+2γ : In this case, we ignore
the first constraint in (14) and solve only for the second constraint. Moreover,
this problem is shown to be equivalent to the following continuous quadratic
knapsack problem [13]:

min
y

N∑
i=1

1
2ai

(|bi| − yi)
2 subject to y ≥ 0 , 1�

Ny = ρ + 2γ (15)

which relates to ξ by ξi = sgn(bi)yi where sgn(∗) is a sign function. We give the
solution procedure for this problem [13] in Section 4.3. Here, we note that the
resulting ξ may violate the constraint |1�

Nξ| ≤ ρ since we have ignored it. In this
case, we discard the solution and move on to the next case.

2) The solution is on the boundary |1�
Nξ| = ρ : This time, we ignore the

second constraint in (14) and solve

min
ξ

1
2
(b − ξ)�diag(a)−1(b − ξ) subject to |1�

Nξ| ≤ ρ . (16)

This problem has the following single variable Lasso for its dual:

min
w0

a

2
w2

0 − bw0 + ρ|w0| (17)

with a =
∑N

i=1 ai and b =
∑N

i=1 bi, and the solution is obtained as

w0 = sgn(b)
(|b| − ρ)+

a
(18)

where (∗)+ = max(∗, 0) is a soft-thresholding operator. Again, the resulting value
ξ = b−w0a may violate ‖ξ‖1 ≤ ρ + 2γ. In this case, the solution is on the edge
of the intersection of two constraints, and is obtained by the next procedure.

3) The solution is on both boundaries |1�
Nξ| = ρ and ‖ξ‖1 = ρ + 2γ :

Here, we solve (14) with two equality constraints. The procedure in this section
is based on the following theorem.

Theorem 2. Let the solution to (16) be ξ̃. Then, the solution to (14) has the
same signs as ξ̃, i.e. ξ̃iξi ≥ 0 for 1 ≤ i ≤ N .
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From this result, we can factorize the objective function into the sum of two
components

∑
ξ̃i≥0

1
2ai

(bi−ξi)2 and
∑

ξ̃i<0
1

2ai
(bi−ξi)2. The constraint terms can

also be expressed as
∑

ξ̃i≥0 ξi+
∑

ξ̃i<0 ξi = ρ (or −ρ) and
∑

ξ̃i≥0 ξi−
∑

ξ̃i<0 ξi =
ρ + 2γ. As a result, we derive two independent problems:

min
y+

∑
ξ̃i≥0

1
2ai

(
y+

i − bi

)2
subject to y+ ≥ 0 ,

∑
ξ̃i≥0

y+
i = α+ , (19)

min
y−

∑
ξ̃i<0

1
2ai

(
y−

i + bi

)2
subject to y− ≥ 0 ,

∑
ξ̃i<0

y−
i = α− . (20)

The solutions to these problems relate to ξ in that ξi = y+
i for ξ̃i ≥ 0 and ξi =

−y−
i for ξ̃i < 0. The parameters α+ and α− are ρ+γ and γ, respectively if the so-

lution is on 1�
Nξ = ρ, and γ and ρ+γ, respectively, for 1�

Nξ = −ρ. These problems
are once again continuous quadratic knapsack problems and the solutions can be
efficiently obtained by using the algorithm presented in [13]. We can derive the
final solution by solving these problems for both cases 1�

Nξ = ρ and 1�
Nξ = −ρ,

and choosing the one with the smaller objective function value in (14).

4.3 Continuous Quadratic Knapsack Problem

In this section, we briefly summarize the algorithm for solving the following
continuous quadratic knapsack problem presented in [13]:

min
y

N∑
i=1

1
2ci

(yi − di)
2 subject to y ≥ 0 , 1�

Ny = α . (21)

Note that this formulation is common to (15), (19) and (20). From the KKT
condition, the solution to this problem is given as yi(ν) = max(di − νci, 0) with
some constant ν. Moreover, the optimal ν is what satisfies 1�

Ny(ν) = α. Since
1�

Ny(ν) is a decreasing piecewise linear function with breakpoints di

ci
, we can

find a minimum breakpoint ν0 = di0
ci0

that satisfies 1�
Ny(ν0) ≤ α by sorting the

N breakpoints. Then, the optimal ν is given as

ν =

∑
di−ν0ci≥0 di − α∑

di−ν0ci≥0 ci
. (22)

4.4 Hyper-Parameters ρ and γ

The choice of hyper-parameters ρ and γ affects the resulting graphical models.
There are several approaches for choosing these, such as cross validation [9,15]
or the Bayesian information criterion [15]. Apart from selection techniques, the
following result gives us some insight into ρ and γ, and is helpful for analyzing
the data more intensively.
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Algorithm 1. Pseudo Code for Common Substructure Learning
Input : sample covariances Σ̂1, Σ̂2, . . . , Σ̂N , regularization parameters ρ, γ

constants t1, t2, . . . , tN > 0,
∑N

i=1 ti = 1
Output : precision matrices Λ1, Λ2, . . . , ΛN

1: initialize Λi ← Σ̂−1
i for each 1 ≤ i ≤ N ;

2: repeat
3: for xm : m = 1 to d do
4: for xm′ : m′ �= m do
5: if |1�

Nb| ≤ ρ and ‖b‖1 ≤ ρ + 2γ then
6: ξ ← b;
7: else
8: solve continuous quadratic knapsack problem (15);
9: if the solution does not satisfy |1�

Nξ| ≤ ρ then
10: solve (16) with single variable Lasso;
11: if the solution does not satisfy ‖ξ‖1 ≤ ρ + 2γ then
12: solve (19) and (20) for [α+, α−] = [ρ + γ, γ];
13: solve (19) and (20) for [α+, α−] = [γ, ρ + γ];
14: adopt one of the two solutions with the smaller value for (14);
15: end if
16: end if
17: end if
18: w ← diag(a)−1(b − ξ);
19: update (m,m′)-th and (m′, m)-th elements of Λi with wi for 1 ≤ i ≤ N ;
20: end for
21: update (m,m)-th element of Λi by (10);
22: end for
23: until Λ1, Λ2, . . . , ΛN converges

Proposition 1. In the bivariate case, the off-diagonal elements of the precision
matrices λi have the following property:

|ri| ≤ ρ + 2γ for 1 ≤ i ≤ N and

∣∣∣∣∣
N∑

i=1

tiri

∣∣∣∣∣ ≤ ρ ⇒ λi = 0 (23)

where ri is the covariance between two variables in the i-th dataset.

Although the result is specific to the bivariate case, we can interpret γ̃ = ρ + 2γ
and ρ as thresholding parameters. If we wish to treat dependencies higher than
some level as significant and expect them to be non-zero, γ̃ should not exceed
that level. We can also see that ρ is the threshold for the average covariance and
the parameter that controls the existence of common substructures.

Motivated by this result, we adopt a heuristic approach for the selection of
γ. We interpret the parameter 2γ as the difference in characteristic scalings
between ri and r̃ =

∑N
i=1 ri. Here, we approximate the distributions of ri and

r̃ =
∑N

i=1 ri with Gaussians and adopt their 1 − α levels as their characteristic
scalings. Then we set γ to be a half of their difference.
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5 Simulation

In this section, we present numerical results of the proposed method both in a
synthetic setting and using real world datasets.

5.1 Synthetic Experiment

The aim of this experiment is to evaluate the common substructure detection per-
formance of the proposed method. For the sake of comparison, we adopted GLasso
[11] as discussed in Section 2.2 and multi-task structure learning (MSL) [13] from
Section 2.4 as baseline methods. Since neither method was designed for common
substructure learning, we thresholded the variation in the estimated precision
matrices Λ̂1, Λ̂2, . . . , Λ̂N and heuristically extracted the substructure Θ̂ by

Θ̂jj′ =
{

θ̂jj′ , if maxi,i′ |Λ̂i,jj′ − Λ̂i′,jj′ | < ε
0 , otherwise

(24)

where ε is some given threshold for the maximum variation. Here, to avoid
selecting zero edges as common substructures, we set θjj′ to zero if Λ̂i,jj′ = 0
for all i and one otherwise.

We generated sparse precision matrices in the following manner. First, we
divided d variables x1, x2, . . . , xd into non-overlapping subsets for each of the N
conditions and generated small precision matrices3 for each subset. In this step,
we set some variable subsets and the corresponding matrices to be common to all
N conditions so that the substructure could be shared by all GGMs. Finally, we
combined these small matrices by adding some edges between them and derived
N precision matrices Λ1, Λ2, . . . , ΛN . In the experiment, we set the dimension-
ality of the data d = 20 and the number of conditions N = 5. We selected the
size of the variable subsets to be 4 and therefore, the generated GGMs were
composed of 5 cliques. The resulting GGM structure is shown in Figure 1.

For the simulation, we generated 100 samples according to the Gaussian dis-
tribution with Λi in each condition and scaled each variable to have a unit
variance. We then compared the common substructure detection rates of the
three methods. We repeated the simulations for 100 random realizations of the
datasets and drew average ROC curves by varying the hyper-parameter ρ as
shown in Figure 3. In this experiment, we chose parameter γ from the procedure
presented in Section 4.4 with α = 0.05. In Figure 3(a), we set the threshold
ε = 10 for GLasso and MSL, which means that almost all edges were actually
treated as common substructures. The resulting curves clearly show that the
proposed method outperforms the two baseline methods. If we set ε to a smaller
value, e.g. ε = 1 in Figure 3(b), the ROC curves for GLasso and MSL are no
longer monotone increasing for ρ. Here, we note that ε = 1 is already a very

3 We set the diagonal elements in the matrix to one and the off-diagonals elements to
a uniformly random value in [−0.8,−0.1]∪ [0.1, 0.8], although this uniformity might
be slightly skewed due to the positive definiteness constraint.
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Fig. 1. A GGM structure: edges in the
top two cliques (solid lines) are com-
mon dependencies, while others are not
(dashed lines)

0 2 4 6 8 100

20
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80

Fig. 2. Histogram of the variation
in precision matrices estimated by
GLasso with ρ = 0.0032. The vertical
line denotes the threshold ε = 1.

(a) ε = 10 (b) ε = 1

Fig. 3. ROC curves. The horizontal axis is the false positive detection rate of common
substructures, while the vertical axis is the true positive rate.

optimistic choice. An example of the histogram showing the variation in preci-
sion matrices estimated by GLasso with ρ = 0.0032 is depicted in Figure 2. In
this example, 74% of the estimated non-zero elements have variation less than
ε = 1 and are judged to be common dependencies. However, only 38% of the
true common edges are actually included in the histogram below ε = 1, while the
other 62% are in the remaining 26% of the estimated non-zero elements. This
means that the estimated edge weights using GLasso or MSL for true common
substructures vary greatly across the matrices. This example clearly shows the
limitation of the existing approaches in that common substructures can easily
be masked by estimation variances.

5.2 Analysis of City-Cycle Fuel Consumption Data

We applied the proposed method to the Auto MPG dataset from the UCI Ma-
chine Learning Repository [20]. The dataset consists of 398 different car data
entries containing MPG (Miles Per Gallon), number of cylinders, displacement,
horsepower, weight, and acceleration data. Although the name of the car, its
model year and the originating region are included in the data, we discarded
these fields since they seem to be irrelevant to the other variables. We rear-
ranged the data according to the number of cylinders, giving 199 entries for 4
cylinder cars, 83 for 6 cylinders, and 103 for 8 cylinders. We discarded the data
for 3 and 5 cylinders since there were only few entries.
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DisplacementWeight

MPG
0.110.38

-0.72

-0.33

0.68

-0.39

Acceleration Horsepower

(a) ρ = 0.1, γ = 0.062

DisplacementWeight

MPG
0.090.28

-0.53

-0.05

0.38

-0.19

Acceleration Horsepower

0.20

(b) ρ = 0.2, γ = 0.062

Fig. 4. Estimated dependency structures for MPG data. The solid lines denote common
relations among cars with different numbers of cylinders while the dashed lines are vary-
ing dependencies. The numbers attached to solid lines denote the common edge weights.

We applied the proposed method to the 3 datasets containing data for cars
with different numbers of cylinders. Each dataset was composed of 5 variables.
Empirically, the number of cylinders is closely related to the displacement and
the horsepower. The aim of the analysis was to find relations between variables
that are irrelevant to the number of cylinders, which might be related to the un-
derlying functional mechanism of cars. As pre-processing, we scaled each variable
to have a unit variance.

Figure 4 shows the results for the two settings, ρ = 0.1 and 0.2. We chose
γ based on the proposed heuristic. In the estimated graph, there are two ma-
jor cliques composed of weight, horsepower and acceleration and MPG, weight
and displacement, respectively. In the first clique, the relations between mass
(weight), acceleration, and force (horsepower) are those expressed by Newton’s
motion equation. Since each variable has been scaled to unit variance, it is natu-
ral that the relation between them is steady. Data fields in the second clique, we
believe, they are related to the quality of the car. Typically, expensive cars have
many more features including a high specification engine which results in greater
weight, higher displacement, and improved MPG. What the results suggest is
that this tendency is common to cars with any number of cylinders. We conclude
that the proposed method successfully found some reasonable common relations
between variables without using any prior knowledge about the datasets.

5.3 Application to Anomaly Detection

In this section, the proposed method is applied to an anomaly detection problem.
The task is to identify contributions of each variable to the difference between
two datasets. Correlation anomalies [5], or errors on dependencies between vari-
ables, is known to be difficult to detect using existing approaches especially with
noisy data. To overcome this problem, the use of sparse precision matrices was
proposed by Idé et al. [5], since the sparse approach reasonably suppresses the
pseudo correlation among variables caused by noise and improves the detection
rate. Here, we propose to use the common substructure learning approach. There
is a clear indication that the proposed method can further suppress the variation
in the estimated matrices. In particular, we expect that dependency structures
among healthy variables are estimated to be common, which reduces the risk
that such variables are mis-detected and only anomalies are enhanced.
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best AUC ρ

Proposed 0.97 0.05
GLasso 0.96 0.20
MSL 0.97 0.05

Fig. 5. Anomaly detection : best AUC values and corresponding ROC curves
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Fig. 6. Anomaly scores. All plots are normalized so that their maximum values are the
same. Dotted lines denote true faulty sensors.

We evaluated the anomaly detection performances using the sensor error
data [5]. The dataset comprised 42 sensor values collected from a real car in 79
normal states and 20 faulty states. The fault was caused by mis-wiring of the
24-th and 25-th sensors, resulting in correlation anomalies. We compared three
methods, GLasso, MSL and our proposed method with the anomaly score pro-
posed by Idé et al. [5] which is based on the KL-divergence between two datasets.
Since sample covariances are rank deficient in some datasets, we added 10−3 on
their diagonal to avoid the singularity. For simulation, we randomly sampled 20
datasets from the normal states and 5 datasets from the faulty states, and esti-
mated sparse precision matrices with each method. We set the weight ti in MSL
and the proposed method as ti = 1

40 for normal datasets and ti = 1
10 for faulty

datasets to balance the effects from the two states. Since the anomaly score was
designed only for a pair of datasets, we calculated anomaly scores for each of
20 × 5 pairs and reported the average score and detection rate. We tested each
method by varying the parameter ρ between 0.05 and 0.30.

We repeated the above procedure 100 times and drew ROC curves of the
average anomaly detection rate with the best area under curve (AUC) results
shown in Figure 5. First, we see that MSL and the proposed method surpass the
detection rate of GLasso. This is because these two methods estimate precision
matrices with joint regularizations. This reduces the estimation variance among
matrices while GLasso conducts the estimation separately resulting in more var-
ied estimators, which masks the correlation anomalies. Secondly, though the de-
tection performances are competitive between MSL and the proposed method,
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we can see further differences in the resulting anomaly scores in Figure 6. Clearly,
the scores for the proposed method show lower significance for normal variables,
especially for variables from 16 to 21 and 33 to 42, whereas anomaly variables
are still enhanced. This is what we expected in the beginning; that is, the pro-
posed method successfully reduces the nuisance effects and highlights only those
variables with correlation anomalies. The remaining peaks at some normal vari-
ables are caused by the effect of the two faulty variables, since the correlation
anomaly is calculated as faults of a pair of variables.

6 Conclusion

In this paper, we formulated the common substructure learning problem of mul-
tiple GGMs and presented an optimization algorithm based on the block coor-
dinate descent. We further showed that the subproblem of the block coordinate
descent has three types of solutions and can be solved efficiently with techniques
for Lasso and the continuous quadratic knapsack problem. Numerical results on
synthetic and real world datasets indicated the clear advantage of the proposed
method over existing GGM structure learning methods.

Several future works have been identified: the analysis of the asymptotic prop-
erty of (7), and the extension of the current formulation to the adaptive Lasso [21]
type one to guarantee the oracle property [21] of the estimator. Applying the
notion of commonness to more general dependency models is also an important
work, e.g. non-linear relations or the commonness based on higher order moment
statistics.
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for Scientific Research(B) #22300054. The authors would like to thank Tsuyoshi
Idé and his colleagues for providing the sensor error datasets for our simulation.
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Appendix

Proof of Theorem 1: The non-differentiable term in (7), i.e., the regulariza-
tion term, is continuous and convex, and is a sum of O(d2) terms where each
term is composed of variables Λ1,jj′ , Λ2,jj′ , . . . , ΛN,jj′ . Moreover, (7) is continu-
ous in a compact level set. Then, the claim follows from Theorem 4.1 in [19]. �


Proof of Theorem 2: We prove this for the case ‖ξ̃‖1 > ρ+2γ, otherwise ξ̃ is
a solution to (14) and the claim holds. Let f be the objective function in (14) and
ξ0 be one of the feasible solutions. Then, for ξ′

0 = ξ0 + ε(ξ̃− ξ0) with 0 < ε ≤ 1,
f(ξ′

0) ≤ f(ξ0) holds from the convexity of f . Therefore, ξ′
0 is a better solution

to problem (14) as long as |1�
Nξ′

0| ≤ ρ and ‖ξ′
0‖1 ≤ ρ + 2γ are satisfied. The

first condition always holds because |1�
Nξ′

0| ≤ (1 − ε)|1�
Nξ0| + ε|1�

N ξ̃| ≤ ρ. On
the other hand, the latter condition ‖ξ′

0‖1 =
∑N

i=1 |ξ0,i + ε(ξ̃i − ξ0,i)| ≤ ρ + 2γ

is no longer valid if ‖ξ0‖1 = ρ + 2γ and sgn(ξ0,i) = sgn(ξ̃i − ξ0,i), which results
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in ξ̃iξ0,i ≥ 0. This is the necessary condition for the solution to (14). Otherwise,
we can always improve the solution by the above procedure which contradicts
its optimality. �


Proof of Proposition 1: Here, we use the alternative expression of (7):

max
Θ,{Ωi}N

i=1

N∑
i=1

ti �(Θ + Ωi; Σ̂i) −
∑
j �=j′

(
ρ|Θjj′ | + γ̃ max

i
|Ωi,jj′ |

)
subject to Θ + Ω1, Θ + Ω2, . . . , Θ + ΩN � 0 (25)

where Λi = Θ+Ωi and γ̃ = ρ+2γ. The equivalence can be proved by comparing
their dual problems. In the bivariate case, let matrices Θ, Ωi and Σ̂i be

Θ =
[

0 θ
θ 0

]
, Ωi =

[
ui ωi

ωi vi

]
, Σ̂i =

[
ai ri

ri bi

]
.

Since
∑N

i=1 ti|ωi| ≤ maxi |ωi|, the objective function (25) is upper-bounded by

L(θ, {ui, vi, ωi}N
i=1; {ri}N

i=1) =
N∑

i=1

ti
{
log

(
uivi − (θ + ωi)2

)
−(aiui + bivi) − 2(riωi + γ̃|ωi|)} − 2

N∑
i=1

tiriθ − 2ρ|θ| . (26)

Moreover, this coincides with (25) if ωi = 0 for all i. Therefore, if ωi = 0 (1 ≤
i ≤ N) is a maximizer of L, it is also the solution to (25). From the derivative
of L over ωi, we get that ωi = 0 is a maximizer if

− (γ̃ + ri) ≤ θ

uivi − θ2
≤ (γ̃ − ri) . (27)

This is a sufficient condition for (25) to have ωi = 0 (1 ≤ i ≤ N) as its optimal
value. If |ri| ≤ γ̃ holds for all i, the problem (25) coincides with the �1-regularized
maximum likelihood (2) with the above constraints on θ:

max
θ

log
(
ũṽ − θ2

)− (
ãũ + b̃ṽ

)
− 2 (r̃θ + ρ|θ|)

subject to θ bounded by (27) , (28)

where r̃ =
∑N

i=1 tiri, and ũ, ṽ are diagonal components of the resulting common
structure. Since the bound of θ involves 0, we see that θ = 0 if |r̃| ≤ ρ from
Proposition 1 in [5], and hence λi = θ + ωi = 0. �
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Abstract. Recently the problem of mining social influence has attracted lots
of attention. Given a social network, researchers are interested in problems such
as how influence, ideas, information propagate in the network. Similar problems
have been proposed on co-authorship networks where the goal is to differentiate
the social influences on research topic level and quantify the strength of the in-
fluence. In this work, we are interested in the problem of mining topic-specific
influence between academia and industry. More specifically, given a co-authorship
network, we want to identify which academia researcher is most influential to a
given company on specific research topics. Given pairwise influences between
researchers, we propose three models (simple additive model, weighted addi-
tive model and clustering-based additive model) to evaluate how influential a
researcher is to a company. Finally, we illustrate the effectiveness of these three
models on real large data set as well as on simulated data set.

1 Introduction

In recent years, the problem of mining influence in networks, especially social net-
works, has attracted tremendous attention [5] [7] [9] [10]. In traditional social network,
nodes are usually individuals and edges indicate friendship between the pair of individ-
uals. One of the key questions in social network is how ideas, information or influence
spreads (cascades) through the network.

Different to traditional social network, in co-authorship network, nodes are researchers
and edges indicate the co-author relationship of the pair of researchers. There are weights
associated with the edges, indicating the number of publications co-authored by the pair
of researchers. Another important difference is there are events, or actions, associated
with individuals in the traditional social network. These actions are usually temporal,
namely each action has a specific occurrence time. For example, if the action is “pur-
chase ipad”, a person and his/her friends in the network may take the action at different
times. This temporal property allows quantification of the influences between different
individuals and the study of the influence spread model in the traditional social network.
The co-authorship network, on the contrary, usually do not have the temporal property.
A researcher always publishes papers the same time with his co-authors. Therefore, the
influence in the co-authorship network should be defined differently.

In this work, we are specifically interested in the topic-level influence between
academia and industry. We believe this is an important problem in that it helps peo-
ple to evaluate which academia researcher has better connection to a company, and vice

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 17–31, 2011.
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versa. This can be very useful in many cases. For example, when a student is seeking
an advisor and his career goal is to be a researcher in a company’s research lab, he
may want to choose an advisor who has tight connection to the company. Another ex-
ample is funding agencies may choose to award certain type of grants to researchers
who work closely with industry companies. Companies may also want to collaborate
with academia researchers who have tight industry connection in the same fields. To our
knowledge, there is no prior work on mining influence between academia and industry.

A model using Topical Affinity Propagation (TAP) to learn the topic-level social
influence on large networks has been proposed recently [13]. Based on the topic-level
influence identified by TAP, we proposed three models to mine the topic-level influence
of a researcher to a company: (1) simple additive model where we simply sum the
influence of the researcher to all the researchers in the company. (2) weighted additive
model where we weight the researchers in the company by their internal influence in the
company. (3) clustering-based additive model where the researchers in the company are
clustered first and then each cluster of closely related researchers (who often publish
together) is considered as a “super researcher”. We then evaluate the three models on
real co-authorship network as well as on simulated co-authorship networks.

2 Related Work

There have been lots of work recently on the problem of mining influence in networks,
especially social networks. These work are mainly focused on two main categories of
problems: influence probabilities between nodes in the network are pre-defined or these
probabilities need to be learned.

For the first category, Domingos and Bichardson [5] studied the viral marketing prob-
lem, which targets the most influential users in the network, by viewing the market as a
social network and modeled it as a Markov random field. Kempe et al. [7] studied the
influence maximization problem, which selects an initial set of users who eventually
influence the largest number of users in the social network. A greedy algorithm as well
as the first provable approximation guarantees for efficient algorithms are provided.
Leskovec et al. [9] modeled the outbreak detection problem as selecting nodes in a net-
work in order to detect the spreading of a virus or information as quickly as possible.
Rodriguez et al. [10] developed an approximation algorithm for the problem of identi-
fying optimal diffusion network from temporal data. The algorithm is able to be scaled
to large network to trace paths of diffusion and influence through networks and to infer
the optimal network that best explains the influence propagation. Chen et al. [4] develop
methods to improve the efficiency of the greedy algorithm in [7] to maximize influence.
New degree discount heuristics that improve influence spread are further proposed.

For the second category, Goyal et al. [6], studied the problem of learning influence
probabilities from historical user action data and try to predict when the users will get
activated from the learned probabilities. Saito et al. [11] applied EM algorithm to solve
the same problem focusing on the Independent Cascade model of propagation.

Tang et al. [13] introduced a topic-specific social influence problem. Instead of
friends, the nodes in the networks are co-authors of one another. Each researcher of
the network is associated with a distribution of topics, which are the research topics the
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researcher had publication in. Topic models [12] are applied to automatically extract
topics from the publications and to initialize the topic distribution of each node. Given
a co-authorship network and the topic distribution of the nodes, a topical factor graph
[8] is built, in which the observation data are cohesive on both local attributes and rela-
tionships. The nodes and edges in the co-authorship network represent the observation
data and the relationship in the factor graph, respectively. Three kinds of feature func-
tions are proposed: (1) Node feature function which measures the similarity of the nodes
based on their topical similarity or topical interaction strength (using co-authorship in-
formation); (2) Edge feature function which measures if there is an edge between the
two nodes in the network; (3) Global feature function which measures the representative
node on a specific topic. A joint likelihood function is then proposed as the product of
the three feature functions for all the nodes in the graph. A Topical Affinity Propagation
(TAP) on the factor graph is designed to maximize the likelihood function. The topic
specific influence from node a to node b is then defined using a sigmoid function based
on two messages in the propagation: how likely node a thinks it influences node b and
how likely node b thinks it is influenced by node a on the topic. Therefore, the influence
between two nodes are usually not symmetric. Two different propagation frameworks
were proposed: a message passing framework and a Map-Reduce framework. We refer
to the paper [13] for the details of the model.

3 Models

Since the focus of this work is to model the influence between academia and industry
in stead of influence between individual researchers, we first assume we already iden-
tify pairwise influences between researchers in the co-authorship network, where the
influence needs to be a value of real number. There are multiple methods to identify
pairwise influences between researchers. Maybe the most naive method is based on the
number of co-authored papers. The influence from author A to author B can be defined
as the percentage of their co-authored papers in all the papers published by B. However,
this naive method considers a pair of authors as independent to other authors, which is
usually not the case. On the contrary, the TAP method [13] applies affinity propagation
and therefore is able to better model influences between multiple researchers. In this
work, we take the TAP method to estimate the pairwise influences, which are within
t the range of [0, 1]. The influences are directed and therefore usually not symmetric.
Next we discuss three different models to mine influence from an academia researcher
to a company. The influence from industry to academia can be obtained using the same
models but with reverse influence direction.

3.1 Simple Additive Model

In this model, we simply sum the topic-specific influence from a researcher to all the
researchers in a company. Then we take the sum as the topic-specific influence be-
tween the researcher and the company. Therefore, the topic-specific influence from a
researcher to a company under Simple Additive Model is defined as the following:

It(r, C) =
n∑

i=1

It(r, Ci) (1)
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where r is the researcher, C is the company, It(r, C) is the influence from r to C for
topic t, Ci is the i-th researcher in company C, It(r, Ci) is the influence from r to Ci

for topic t. Naturally the influence from an university to a company It(U, C) is defined
as the following:

It(U, C) =
n∑

i=1

It(Ui, C) (2)

where It(Ui, C) is the influence from the i-th researcher in university U to the company
C. Therefore, the influence from an university to a company is simply the sum of the
influence from every researcher in the university to the company.

3.2 Weighted Additive Model

The simple additive model has a problem that all the researchers in the company are
weighted equally. This is usually not the case. For example, a manager should have a
higher influence in the company than a junior researcher. Therefore, the same influence
to the manager and to the junior researcher should not mean equal influence to the
company.

To address the above problem, we first compute the internal influence for the re-
searchers in a company. Then each researcher is weighted according to their internal
influence. The weights are applied to the researchers when we sum the influences to
them. The Weighted Additive Model is defined as the following:

Wt(Ci) =

∑n
j=1 It(Ci, Cj)∑j=n,k=n

j=1,k=1 It(Ck, Cj)
(3)

It(r, C) =
n∑

i=1

It(r, Ci) × Wt(Ci) (4)

Where Wt(Ci) is the weight for the i-th researcher in company C for topic t. Similarly,
the influence from an university to a company can be computed via Equation 2.

3.3 Clustering-Based Additive Model

The weighted additive model may still have a problem. We show the problem by an
example in Figure 1. In this example, A, B are academia researchers. C, D, F, E, G, H
are researchers in the same company. Let’s assume C, D always publish paper together.
Therefore the influences between C, D are relatively high. E influences F, G, H but
the influence is lower than the influence between C, D. Therefore, it’s possible that the
weights of C, D are higher than the weight of E. Thus even though A influences C, D
the same extent as B influences E, higher weight of C, D makes A more influential to
the company.

However, it may be the case that one of C, D is a senior researcher and the other is a
junior researcher. On the contrary, all the researchers E, F, G, H are senior. Therefore,
although E has lower influence to F, G, H , E should naturally have a higher influence
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Fig. 1. Example to illustrate the potential issue of weighted additive model

in the company. Thus to determine the weight of a researcher, we may not simply sum
the influence of the researcher to others in the same company. Instead, we should con-
sider how the researchers in the company correlates with each other, or how often they
publish paper together. By using the correlations, we can cluster the researchers that
collaborate a lot into clusters. We then consider each cluster as a super researcher. We
average the influence in a cluster. Then we can apply the weighted additive model on the
clusters instead of on researchers. We call the model Clustering-based Additive Model.
The benefit of the clustering-based additive model is we address the correlation between
researchers in the same company such that the weights on more correlated researchers
can be adjusted appropriately.

There are many existing clustering algorithms such as K-means, EM etc.. The prob-
lem of these existing clustering algorithms is that the number of clusters is not known
and different numbers affect the results of the clustering algorithm. Methods such as
modularity based clustering [3] are able to figure out the most likely cluster numbers au-
tomatically. However, modularity based clustering only considers the number of nodes
in the cluster. It does not consider the distances between the nodes. In our co-authorship
network, besides the information that whether the authors collaborate with each other,
we also care about how much they collaborate. Therefore the distances between the
nodes are important information and should not be ignored. We next present a new
method that takes into account the distances between the nodes.

In order to avoid choosing a cluster number, we can build a graph G = (V, E)
where each researcher is a node and ei,j ∈ E iff the similarity between node i and j,
si,j ≥ t and t is a similarity threshold. si,j is defined as the Jaccard’s coefficient of the
publications of researcher i and j, namely:

si,j =
|P (i) ∩ P (j)|

|P (i)| + |P (j)| − |P (i) ∩ P (j)| (5)

where P (i) is the set of publications of researcher i, |P (i)| is the number of publications
for set P (i), P (i)∩P (j) is the set of publications co-authored by researchers i and j. We
use co-authorship instead of influence to define the similarity since the co-authorship is
symmetric while the influence is directed and not symmetric.

Once we have the graph, we can cluster the nodes in the graph such that the nodes
in the same cluster are fully-connected, namely each cluster is a clique. We can apply
clique searching algorithms to easily find cliques. However, one problem is a node may
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Fig. 2. Example to illustrate a node B is shared by two cliques {A, B, C} and {B, E,D}

Input: A Graph G = (V, E) and a threshold t
Output: A set of clusters clustert

1. While (there are nodes to be selected)
2. Randomly select a node a
3. Remove a and all the edges associated with a from G
4. assignCluster(a)
5. End
6. Output all the clusters

Fig. 3. Algorithm to generate clusters from a graph given a similarity threshold t

be shared by two possible cliques, as shown in Figure 2. We take a greedy strategy
that during the clique searching process, once we assign a node to a clique, we remove
the node as well as all the edges connected to the node from the graph. Thus given a
threshold t, we can generate a set of clusters clustert. The algorithm to generate a set
of clusters given a threshold t is shown in Figure 3. In line 4, the function assignClus-
ter(node) assigns the node to an existing cluster such that the resulting cluster is still a
clique. If there is no such existing cluster, we create a new cluster and assign the node
to the new cluster. Since assigning the node to a cluster requires checking the distance
of the node to all the nodes in the cluster, the time complexity of assignCluster(node)
is O(n). Therefore the complexity of the algorithm is O(n2) because we need to assign
cluster for all the n nodes.

Next we want to determine a good threshold t automatically. We first define an ob-
jective distance function as the following:

F (t) = ||
k=|clustert|∑

k=1

∑
i,j∈clustert

k

(1 − si,j) − |clustert||| (6)

where t is a similarity threshold, clustert is the set of clusters when using threshold t,
clustert

k is the k-th cluster, si,j is the similarity between nodes i, j, |clustert| is the
number of clusters. We use 1 − si,j instead of si,j directly since the more similar two
nodes are, the shorter the distance between the two nodes.

The objective function is based on the motivation that we want to minimize the dis-
tances of the nodes within the same cluster. Therefore nodes far from each other won’t
be put in the same cluster. But since obviously the more clusters, or the smaller number
of nodes each cluster has, the smaller the distances of the nodes within the same cluster.
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If we do not consider the number of clusters, then t=1 will always minimize F (t) since
with t=1, the graph contains no edges (we assume the similarity of any pair of nodes is
less than 1 and all the nodes will by themselves be a cluster. Thus F (t)=0.Therefore,
we need to take into consideration the number of clusters. This is similar to how people
select a model using AIC or BIC scores [2]. To select a best model, besides minimizing
the objective function, the number of the parameters in the model is also taken into ac-
count such that the model with smaller parameters is preferred. We noticed that similar
ideas have been used in the work of [14].

To find a threshold t to minimize F (t), an extensive search is not applicable since
t is continuous. However, in our problem, the number of researchers, or nodes, in the
graph is finite. We can compute the pairwise similarity of the nodes in the graph as
s1,2, s1,3, . . . , sn,1, sn,2, . . . , sn,n−1 where n is the total number of nodes. Thus we can
try t as si,j for all i’s, j’s such that 1 ≤ i, j ≤ n and i �= j and we show at least one of
the t = si,j’s minimizes F (t).

Lemma 1. At least one of the si,j’s for 1 ≤ i, j ≤ n is able to minimize F (t).

Proof: We can sort the n2 si,j’s in ascending order to s1, . . . , sn2 then we have sk ≤
sk+1 for all 1 ≤ k ≤ n2. For all sk < t < sk+1, the edges in the graph will be exactly
the same as the edges in the graph where t=sk. Therefore, the set of clusters when
sk < t < sk+1 will also be identical to the set of clusters when t=sk and F (t) for both
cases are also identical. Thus for any given t, there will be a corresponding sk such that
sk < t < sk+1 and F (t)=F (sk). Thus we can conclude that at least one of the si,j’s
for 1 ≤ i, j ≤ n is able to minimize the function F (t).

Therefore, the number of trials for t is O(n2). The overall complexity of our method is
thus O(n4) since for each trial of t, we need to run the algorithm shown in Figure 3 to
obtain clusters, whose complexity is O(n2).

The complexity of our method seems very high, but in reality, n for a company is
usually small. The number of trials can be smaller than n2 as well since the similarity
of different pair of nodes can be the same and we only need to try unique values of
t. Also most researchers only have a small number of collaborators. If we assume a
researcher has constant number h << n of collaborators, instead of O(n2) edges, the
graph has O(n×h) edges. Therefore the total complexity of the algorithm is O(n2×h2).
Since h is constant, the complexity approximates to O(n2). So enumerating all si,j’s
is not a problem. In our experiments on real data set, the running time is actually in
seconds. Once we find a threshold to minimize F (t), we obtain a set of clusters using
the algorithm shown in Figure 3. Then to compute the influence of a researcher to a
company, we deploy a hierarchical framework.

We first compute the weight of each researcher in every cluster as the following

Wt(Li) =

∑n
j=1 It(Li, Lj)∑j=n,k=n

j=1,k=1 It(Lk, Lj)
(7)

where Li is the i-th researcher in the cluster L on topic t, It(Li, Lj) is the influence
between Li and Lj on topic t. We then compute the influence between clusters L and
K , It(L, K) in the same company on topic t as the following:
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It(L, K) =
i=|L|,j=|K|∑

i=1,j=1

It(Li, Kj) × Wt(Li) × Wt(Kj)

where Wt(Li) and Wt(Kj) are computed via the Equation 7, It(Li, Kj) is the influence
between researchers Li and Kj on topic t. As we can see, the influence between two
clusters are weighted on the researchers in both clusters. We call the influence It(L, K)
as the cluster-based influence. The general procedure to cluster the researchers in a
company and to comput the corresponding weights of the cluster in shown in Figure
4. Finally we consider each cluster as a super researcher where the weighted additive
model can be applied directly. The influence of each academia researcher r to each
cluster L in the company C is computed using the weighted additive model described
previously. For each cluster we only consider the researchers in the same cluster and
the influence It(r, L) is computed in the following way:

It(r, L) =
n∑

i=1

It(r, Li) × Wt(Li)

Thus we compute the influence from a research r in academia to a company C on topic
t, It(r, C) as the following:

Wt(CL) =

∑
K∈cluster(C) It(CL, CK)∑

L∈cluster(C),K∈cluster(C) It(CL, CK)

It(r, C) =
n∑

L∈cluster(C)

It(r, CL) × Wt(CL)

where Wt(CL) is the weight of the cluster L in company C computed via the cluster-
based influence.

Input: A Graph G = (V, E) for researcher in a company
Output: A set of clusters and their weights
1. Compute the optimal similarity threshold
2. Generate clusters given the threshold
3. For each cluster
4. compute the weights of the researchers in the cluster
5. End
6. Compute the weights of each cluster
7. Return the clusters and their corresponding weights

Fig. 4. Procedure to cluster the researchers in a company and to compute the weights of the
clusters
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4 Experimental Results

4.1 Experiments Settings

We use the same data set used by Tang et al. [13]. There are totally eight different
topics. The number of researchers in each topic is shown in Table 1. Notice the same
researcher may have multiple research areas. We also show the number of companies
and universities working on the topics. Similarly, the same company or university may
have multiple research areas. The numbers of companies and universities may not be ac-
curate though since there are researchers with missing affiliation information. We obtain
the pairwise topic-specific influence between researchers using the model in [13]. The
influences are directed and therefore usually not symmetric. The affiliation information
of the researchers is actually annotated in the data set of [13]. And each researcher has
only one affiliation in the data set. We just use the researchers with affiliation annotation
and ignore the others without such information. As we discussed before, most of the re-
searchers should have much fewer collaborators than the total number of researchers.
In the data set, on each topic, we observe the researchers influence on average less than
5 researchers from the same company. Therefore our clustering algorithm runs very fast
and is able to finish in seconds.

Table 1. Topics in our data set and the number of corresponding researchers, companies, univer-
sities for each topic

Topics #Researchers #Companies #Universities

Data Mining 679 33 99
Machine Learning 976 48 97
Database System 1127 66 116

Information Retrieval 657 49 87
Web Services 400 27 48
Semantic Web 671 38 35

Bayesian Network 554 24 45
Web Mining 348 25 47

4.2 Influence of Academia Researchers to Company

We first show the top-5 most influential researchers to the company ‘Microsoft’ and
‘IBM’ on ‘Data Mining’ under different models. The researchers are ranked by their
influences under different models. As we can see, in Table 2, For IBM, the most influ-
ential researchers and their corresponding ranks are identical under the three models.
This is due to the number of researchers in IBM on Data Mining in the collected data
set is relatively small (5 in total). The models did change the influences of these re-
searchers but the ranks of them still remain the same. On the contrary, the rank of the
most influential researchers changed for Microsoft under these models. The reason the
ranks of some researchers become lower from simple additive model to weighted addi-
tive model is because in our data set the researchers at Microsoft that were influenced
by these academia researchers have relatively low influence in the company.

When the researchers in the company is clustered, the influence of the researchers
who have high influence on the clustered researchers will be changed dramatically.
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Table 2. The top-5 most influential researchers to the company Microsoft and IBM on data mining
under different models. The researchers are ranked by their influences under different models.

Data Mining (Microsoft) Data Mining (IBM)
simple additive weighted additive clustering-based additive simple additive weighted additive clustering-based additive

Jiawei Han Huan Liu Clark Glymour Jiawei Han Jiawei Han Jiawei Han
Huan Liu Clark Glymour Huan Liu Philip S. Yu Philip S. Yu Philip S. Yu

Xifeng Yan Michail Vlachos Michail Vlachos Michail Vlachos Michail Vlachos Michail Vlachos
Clark Glymour Xuanhui Wang Padhraic Smyth Tao Tao Tao Tao Tao Tao

Philip S. Yu Padhraic Smyth Bing Liu Ricardo Vilalta Ricardo Vilalta Ricardo Vilalta

Table 3. The top-5 most influential researchers to the company Microsoft and IBM on database
systems under different models. The researchers are ranked by their influences under different
models.

Database Systems (Microsoft)
simple additive weighted additive clustering-based additive

Calton Pu Venkatesh Ganti Sharad Mehrotra
Jiawei Han Luis Gravano Jiawei Han

Sharad Mehrotra Sharad Mehrotra Jeffrey F. Naughton
Venkatesh Ganti Jeffrey F. Naughton Venkatesh Ganti

Jeffrey F. Naughton Jiawei Han Luis Gravano

Database Systems (IBM)
simple additive weighted additive clustering-based additive

Kevin Chen-Chuan Chang Joseph M. Hellerstein Joseph M. Hellerstein
Joseph M. Hellerstein Kevin S. Beyer Kevin S. Beyer

Renee J. Miller Renee J. Miller Min Wang
Kevin S. Beyer Michael J. Franklin Kevin Chen-Chuan Chang

Michael J. Franklin Kevin Chen-Chuan Chang Michael J. Franklin

For the researchers at Microsoft on data mining, we identified two researchers who
publish together frequently. More specifically, one researcher published 39 papers, the
other published 118 papers and they co-authored 32 papers. It might be the case that
one researcher is relatively senior and the other researcher is relatively junior. We then
further identified the title of the researcher that is suspected to be senior and he is indeed
a manager of Microsoft. The two researchers are grouped in one cluster and therefore
the weights of the two researchers are adjusted appropriately. This leads to the change
of the influence for academia researchers who influence these two researchers.

One thing to notice is that our data set actually misses affiliation information for
many researchers. Therefore, the rank of the most influential researcher on the compa-
nies may not be accurate. But the data set is big enough to show the effectiveness of our
models and algorithms.

We also show the top-5 most influential researchers to the company ‘Microsoft’ and
‘IBM’ on ‘Database Systems’ and ‘Machine Learning’ under different models in Ta-
ble 3 and 4, respectively. Similarly, for database systems researchers at Microsoft, we
identify 4 clusters consist of one senior researcher and one junior researcher. We identi-
fied the title of those senior researchers and all of them are manager or principal/senior
researcher. We show the number of publications by each of them and the number of
their co-authored publications in Table 5. As we can see, the junior researchers pub-
lished at least half or even 80% of their papers with the senior researchers. Therefore,
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Table 4. The top-5 most influential researchers to the company Microsoft and IBM on machine
learning under different models. The researchers are ranked by their influences under different
models.

Machine Learning (Microsoft)
simple additive weighted additive clustering-based additive

Brendan J. Frey Aaron Hertzmann Aaron Hertzmann
Aaron Hertzmann Michael I. Jordan Michael I. Jordan

Andrew McCallum Andrew McCallum Andrew McCallum
Michael I. Jordan Brendan J. Frey William T. Freeman

William T. Freeman William T. Freeman Yoav Freund

Machine Learning(IBM)
simple additive weighted additive clustering-based additive

Inderjit S. Dhillon Inderjit S. Dhillon Inderjit S. Dhillon
Adam R. Klivans Manfred K. Warmuth Manfred K. Warmuth
Nader H. Bshouty Roni Khardon Roni Khardon

Joydeep Ghosh Geoffrey J. Gordon Geoffrey J. Gordon
Manfred K. Warmuth Gerald Tesauro Gerald Tesauro

Table 5. The number of publications by the relatively senior researcher and the relatively junior
researcher and the number of their co-authored publications for the topic ‘database systems’ at
Microsoft.

Senior Junior Co-authored

47 23 11
64 16 9
62 18 11
94 28 22

the clustering-based additive model is able to adjust the weights of the two types re-
searchers. Similar clusters are also observed for the topic ‘Machine Learning’.

Due to lack of ground-truth, we do not compare the performance of our clustering
algorithm with other clustering algorithm such as modularity based clustering, K-means
etc. However, our experimental results clearly show that our method is able to capture
the senior-junior groups accurately.

4.3 Influence of Universities to Company

We next show our experiments on the influence of universities to companies. We show
the top-5 most influential universities to the company ‘Microsoft’ on Data Mining and
to the company ‘IBM’ on Database Systems in Table 6. It is fairly hard to determine if
a rank is good or not since different people have different criteria and therefore there
is even no ground-truth for comparison. What’s more, our data set is not complete and
lots of affiliation information for researchers is missing. Therefore, we do not report a
detailed analysis of our ranking in this work. By simply looking at the ranks, we can
see the universities that are well-known for their research in data mining and database
systems such as ‘wisc’, ‘uiuc’, ‘cmu’, ‘berkeley’ etc. are ranked high in their influence
to the two companies. Some other universities such as ‘uic’ also have high ranks. The
National Center for Data Mining of University of Illinois Chicago is the member of
the Data Mining Group [1] and therefore they have good connections with industry
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Table 6. The top-5 most influential schools/research institutions to the company Microsoft on
data mining and to the company IBM on database systems under different models. The schools
are ranked by their influences under different models.

Data Mining (Microsoft) Database Systems(IBM)
simple additive weighted additive clustering-based additive simple additive weighted additive clustering-based additive

uiuc asu ucr berkeley wisc wisc
cmu ucr cmu wisc berkeley berkeley
uic cmu asu uiuc toronto toronto
asu uic uic toronto umd umd

ucsb uiuc uci umd uiuc uiuc

companies. Again, the rank is completely based on our current dataset and may not be
accurate due to the missed affiliation information.

4.4 Simulated Data

Due to lack of ground-truth and missing affiliation information, we are not able to val-
idate and compare the three models we proposed on the real data set. Thus we conduct
the following set of experiments on simulated data. For simplicity, we only consider one
topic. In our simulation, we generate a company with 200 researchers, which is com-
parable to the number of researchers of the real companies. We randomly select 20 of
them as managers who are relatively influential in the company. For each manager, we
assign the remaining researchers to his/her group randomly and we set up a significant
influence threshold and a low influence threshold as 0.5 and 0.2, respectively. We as-
sume the managers have significant influence to their group members thus we randomly
generate influence from the managers to the other group members. The influences are in
the range of [0.5, 1]. Each manager and his/her group then naturally represent a cluster.

Then we generate 400 researchers in the academia. Our ground-truth is we have
two types of researchers in academia that have high influence to the company: (1) the
researchers in academia who influence many researchers of the company (we call this
type of researchers influence many researchers). (2) the researchers in academia who
influence “important” researchers, namely managers of the company (we call this type
of researchers influence important researchers). For type one researchers, we set up an
influence many threshold as 30, where these researchers influence at least 30 researchers
of the company. The influences, however, are all below the low influence threshold
0.2. For type two researchers, we set up an influence important threshold as 3, where
these researchers influence at least 3 managers. The influences are above the significant
influence threshold 0.5 and below 1.

We also generate another group of 20 academia researchers who influence researchers
in the same group of the company. We call this set of researcher influence same group
researchers. The motivation is they neither influence many researchers of the company
nor any manager of the company. Therefore they do not belong to the influential re-
searchers to the company. However, they do have significant influence to certain amount
of researchers in the same group of the company. This is exactly the same situation as
shown in Figure 1. As we discussed before, the simple additive model and the weighted
additive model may not be able to distinguish them from the real influential researchers
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since both models do not consider the relationship of the researchers of the company. On
the contrary, the clustering-based additive model may be able to tell the influence is only
on a small group of researchers who collaborate quite often, rather than company-wise
influence. To validate this, we test the case where the group of researchers collaborating
quite often, namely they have significant influence to each other as well as the case the
group of researchers collaborating less often, namely they have low influence to each
other.

The reason that we choose the above parameter settings is that these parameters are
able to illustrate the effectiveness of the clustering-based additive model. With these
parameters, both influence many and influence important researchers are indeed very
influential, while the influence same group researchers may or may not be influential,
depending on the correlation of the researchers in the group. With too extreme pa-
rameter settings, such as significant influence threshold as 0.9, or influence important
threshold as 10, there might be no chance for the influence same group researchers to
be as influential as the two types of researchers who are truly influential.

To compare the performance of difference models, we rank the researchers according
to their influence to the company by the three different models we proposed. We then
evaluate whether the ranks of the influential researchers to the company are indeed
high or not. For the 10 “influence many” researchers and the 10 “influence important”
researchers, we expect them to be ranked as the top-20 most influential researchers.
Therefore if their ranks drop below 20, we think the model makes errors. As to the 20
“influence same group” researchers, we expect them to be ranked below the “influence
important” and the “influence many” researchers. Therefore if their ranks are above
20, we think the model makes errors. We randomly simulate 10 data sets and show the
averaged number of errors by each model for each type of researchers. The results are
shown in Figure 5.
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Fig. 5. Comparison of the performance of the three models
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As we can see, when the group of researchers have low influence to each other, the
ranks of the “influence many” researchers are all good for all three models. The ranks of
the “influence important” researchers are good for the weighted additive model and the
clustering-based additive model. The ranks are bad for the simple additive model since
the “influence important” researchers only influence three researchers in the company,
and the model doesn’t consider the importance of these researchers. The ranks of the
“influence same group” researchers are bad for the simple additive model as expected
since they do not influence many researchers. The ranks for the weighted additive model
and the clustering based additive model are comparable and are both good.

When the group of researchers have significant influence to each other, the perfor-
mance of all three models drop for all three types of researchers since it becomes harder
to distinguish the “influence same group” researchers with the “influence many” and the
“influence important” researchers. For the “influence many” researchers, the ranks of all
three models are still ok. For the “influence important” researchers, the ranks of the sim-
ple and weighted additive models are both bad since both models think the “influence
same group” researchers are really influential to the company. The clustering-based ad-
ditive model, on the contrary, integrates the information that the researchers of the com-
pany being influenced are from the same group and collaborate with each other quite
often, and thus obtain relatively better ranks. For the same reason, the clustering-based
additive model again achieves the best performance for the “influence same group”
researchers.

As a conclusion, the simple additive model tends to assign high ranks to the “influ-
ence many” researchers, or the researchers who influence many researchers of the com-
pany and the influences are not necessarily significant. The weighted additive model
tends to assign high ranks to the “influence important” researchers, or the researchers
who influence only a few but important researchers of the company. The clustering-
based additive model is not very different from the weighted additive model if the
researchers of the company within the same group do not have significant influence
to each other. However, when these researchers do have significant influence to each
other, the clustering-based additive model has higher accuracy to assign relatively high
ranks to the “influence important” researchers and relatively low ranks to the “influence
same group” researchers.

5 Conclusion

In this work, we addressed the problem of mining research topic-specific influence be-
tween academia and industry. Based on the influence between individual researchers,
we proposed three models – simple additive model, weighted additive model, clustering-
based additive model – to learn the influence of individual researcher in academia to a
company on specific research topics. We further derived the topic-specific influence
from a research institution to a company. The influence from industry to academia can
be obtained using the same models but with reverse influence direction. In our future
work, we’d like to manually complete the missing affiliation information of researchers
such that our experimental results are more accurate and the ranks we obtained are more
meaningful.
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Abstract. Presents an analysis of the structure of mixed-membership models
into elementary blocks and their numerical properties. By associating such model
structures with structures known or assumed in the data, we propose how models
can be constructed in a controlled way, using the numerical properties of data
likelihood and Gibbs full conditionals as predictors of model behavior. To illus-
trate this “bottom-up” design method, example models are constructed that may
be used for expertise finding from labeled data.

1 Introduction

In many areas of data mining, it is of interest to re-enact the structure that exists or is
assumed in the data by a model that then quantifies this structure for analysis purposes.
A good example is knowledge discovery in social community data. Such data often
exist in the form of text in documents, which have associated with them meta-data like
annotations and ratings, comments and tags, as well as or relational information like
authorship, citation and linkage on the Web.

Analysis of such data (that in similar structure arise in other fields, from bioinfor-
matics to computer vision) has often been associated with latent-variable models, and
one specific type of such models has empirically led to robust results in the presence of
sparsity and noise in the data and especially with complex interrelations between items
of different modalities. These latent-variable models cover mixed membership, that is,
each document etc. may be a member of a mixture of latent variables, which them-
selves may be interpreted as a “topic”, a group of items/words etc. of similar meaning.
Simple models of this model family (also referred to as topic models) were based on
handling co-occurrence between words in documents, as in latent Dirichlet allocation
(LDA) [1], or words associated to authors, as in the author–topic model (ATM) [2], and
these seminal approaches have been extended into various directions.

Typically, in the literature such models are designed by assuming generative pro-
cesses to re-enact observations, for example each word in LDA is thought to be gen-
erated by sampling a topic indicator from a document-specific topic multinomial and a
word from a topic-specific vocabulary multinomial.

While this viewpoint of generative processes is intuitive in the sense of explain-
ing models, it remains somewhat “short-sighted” in terms of the connection of model
structures and behavior to data structures: The actual behavior of data likelihood (as an

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 32–47, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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essential objective measure of model quality given trained parameters) is not directly
found from the model structure. So is the structure of the inference equations necessary
to find the optimum model parameters, typically by running approximative EM-type
optimization.

On the other hand, meanwhile generic formulations of mixed-membership/topic
models have been proposed, such as [3] and [4], that derive numerical properties across
particular models and may allow some deeper look into correspondence between model
and data structure.

Objectives and Outline. In this article, we complement the pure Bayesian-network
viewpoint adopted in the literature by simplifying model structures. We aim at using
these structures as building blocks to construct models in a principled way, keeping
track of the model behavior when assembling the pieces to fit to data structures in
question.

In particular, we will give a deeper introduction of latent-variable models in Sec. 2,
reviewing a generic formulation. Based on this, we present a typology of model sub-
structures in Sec. 3 that will serve as the basis for model construction in Sec. 4. Finally,
we present a brief empirical study of the proposed approach in Sec. 5.

2 Networks of Mixed Membership

In [3], a generic view on topic models has been taken that formulates their structure
as what we may call here “networks of mixed membership” (NoMMs). A NoMM is a
directed acyclic graph whose nodes represent sets of mixture components and whose
edges transmit variables to child nodes. Selection of components is achieved as a func-
tion of the incoming edge values, and values sampled from selected components are
transmitted to child nodes. This process ultimately leads to observations at one or more
terminal nodes.

Graphically, a simple NoMM structure is shown in Fig. 1, using the seminal LDA
model as an example and introducing generic quantities. By default, NoMMs are Bayes-
ian mixture models whose nodes include component parameters along with their prior
distributions, and in the typical case, components, with index k� ∈ [1,K�], have multi-
nomial parameters, �ϑ�k, with conjugate Dirichlet priors with hyperparameters �α�. Edges
represent variables, x�i ∈ [1, T �], that run along sequences, i� ∈ I�. In this notation, a
superscript like ·� indicates a “mixture level” in the network (a node with its direct child
edges) and by convention also extends to variable indices, that is, x�i ≡ x�

i�
.

Opposed to Bayesian networks (BNs [5]), the NoMM representation strictly distin-
guishes model variables (that grow with the data) and model parameters (that control
variable generation), representing them as edges and nodes, respectively. In connection
to this, two types of BN plates are distinguished: On one hand, “sequence plates” run
over the data points and correspond to NoMM sequence indices i� as part of the data
“streamed” along edges, x�i . On the other, “component plates” index mixture compo-
nents. In NoMMs, they correspond to the indices k� in nodes, which depend on incom-
ing information as arguments of component selection functions, k� = f �k (parents(x�i ), i

�).
The resulting structure is a domain-specific compact alternative to BNs that directly

visualises the flow of (typically discrete) information through the generative model,
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zm,n�ϑmα

n ∈ [1,Nm]
m ∈ [1,M]

wm,n �ϕk

k ∈ [1,K]

β

�ϑm |α
m

�ϕk | β
wm,n

[K]
{M,Nm}[V][M]

k ∈ [1,K]

m ∈ [1,M], n ∈ [1,Nm]

k = zm,n

�ϑ�k | �α�
x�iparents(x�i )

[T �]
k� = f �k (parents(x�i ), i�)

x�i ∈ [1,T �]

i� ∈ I�

generic quantities example in LDA

[K][M]

[K�]

NoMM:

BN:

mapping:

zm,n=k

parameters

variable

seq. plate

node (�ϑ�k |�α�) edge x�i seq. i� seq. range I�component k�

comp. plate

var. range T � comp. range T �

Fig. 1. NoMM notation and correspondence to Bayesian network for example model LDA and
generically

mimicking a “systems view” with the nodes representing sub-systems and the edges
signals processed by them. Clearly, the NoMM representation is focussed on the domain
of mixture models, and especially such models that use complex interactions between
different mixtures, such as mixed-membership models and topic models.

2.1 Numerical Properties

With conjugate distributions in NoMM nodes, there exist closed-form solutions for ap-
proximate Bayesian inference that lead to good empirical results [1,6], and for collapsed
Gibbs sampling [3] and variational inference [4] meta-algorithms have been proposed
that may be specialised to a wide range of models. Due to its relatively simple forms
[3], especially Gibbs sampling may bear some intuitive meaning.

For the following considerations, let upper-case symbols denote sets of their lower-
case counterparts introduced above. That is, Θ, A, and X correspond to all component
parameters, hyperparameters and variables of a given model. If a superscript ·� is given,
symbols are specific to a level. Among variables, X, we further distinguish the sets of
hidden and visible variables, H and V .

Posterior. Aside from being the key to model training, the posterior, p(H, Θ|V, A), may
provide insight into the expected behaviour of a model. In a collapsed Gibbs sampler as
used for LDA-like models [6,7], the posterior is represented by full conditional distribu-
tions, the marginals of hidden variables at single data points i, p(hi|V,H−i, A), given all
other information except the parameters Θ, which are integrated out in collapsed infer-
ence. Here the index −i denotes exclusion of i. The set of these distributions forms the
transition matrix of a Markov chain, and round-robin sampling through i over time leads
to a stationary state that simulates the true posterior. Full conditionals may therefore be
seen as a low-dimensional representations of the true posterior.
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In NoMMs, full conditionals have the following form [3]:1

p(hi |V,H−i, A) ∝
∏

�

∏

k�

B(�n�k + �α
�)

B(�n�k,−i + �α
�)

(1)

where B(�x) is the multidimensional beta function [8] and �n�k = {nkt}�t the “co-occurrence”
count vector between component index k� and node output values t�. Note that hi are
dependent hidden variables for an observation vi across different levels �.

To illustrate the principle that underlies (1), it may be noted that its factors reduce
to simple quotients of sums if the exclusion of the current sample (with −i) from the
vectors corresponds to a unit difference between numerator and denonimator:

p(hi |V,H−i, A) ∝ na
kt,−i + α

a
t∑

t na
kt,−i + α

a
t
· nb

kt,−i + α
b
t∑

t nb
kt,−i + α

b
t

· · · , (2)

that is, the normalised and smoothed co-occurrence counts reinforce the respective sam-
pling weights in a “rich-get-richer” manner, which is known from Pólya urn sampling
schemes associated with the Dirichlet–multinomial compound distribution.

Likelihood. Another descriptive property is the likelihood under the set of trained
model parameters. Node parameters,Θ� = {{ϑ�kt}t}k, themselves are simply the expecta-
tions of the Dirichlet priors given the co-occurrences, ϑkt ∝ nkt + αt, and based on this,
the likelihood of observations under the model, Θ, may be expressed as:1

p(vi|Θ) =
∑

hi

∏

�

ϑ�kt (3)

where the summation over hi refers to all configurations of values of the dependent
hidden variables.

Model Structure Influence. In the full conditional and the likelihood, the structure of
the NoMM and its component selection functions f �k control the association of values
k� and t� of each level with model variables hi and vi, corresponding to paths over levels
� that assemble the products in (1) and (3). This and the appearance of the intuitive
co-occurrence counts in both likelihood and full conditional may be a key for model
design. Consequently, we consider building models from network sub-structures.

3 Model Structure

In the following, we study the decomposition of NoMMs into sub-structures, first taking
a look at how models are generically decomposed and then at specific sub-structures.

Notation. For notational simplicity, we define a shorthand for the factors in the generic
full conditional (1):

q(k, t) �
B(�n�k + �α

�)

B(�n�k,−i + �α
�)

case of (2)
=

nkt,−i + αt∑
t nkt,−i + αt

, (4)

1 This is a simplifying view for clarity, see Appendix A for details.
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emphasizing the interrelation of indices that is expected to play a vital role in design-
ing models. We introduce other conventions: Indexes added up with ⊕ refer to sums of
the indexed counts, for instance q(a, b ⊕ c) contains nab + nac. Furthermore, if hyper-
parameters, α, are considered explicitly, the notation is augmented to q(k, t |α); if this
information is clear from context, it is omitted to avoid notational clutter.

3.1 Model Decomposition

As a prerequisite to analyzing models, it is of interest to know how they decompose
into sub-structures in terms of their full conditional and likelihood functions.

Full Conditional. Decomposing (1), it may be seen that partial full conditionals of
sub-structures, w(·), can be factored with other parts of the model: p(·) = ∏c wc(·) =∏

c
∏

d qd(·). This enables us to indeed look at the sub-structures separately. For exam-
ple, considering two sub-structures with hidden variables x and y to be connected with a
hidden variable b, constructing a full conditional term w(x, y, b|a, c) from the sub-terms
w(x|a, b) and w(y|b, c) just multiplies their “q-terms” q(a, x)q(x, b) and q(b, y)q(y, c).

Likelihood. The data likelihood as an indicator of expected model performance (i.e.,
the best result it can in principle achieve) may like the full conditional be partitioned
into substructures. From (3), it may be inferred that the inner terms of the likelihood of
the complete model factor into that of sub-models. If two dependent substructures are
joined, the marginal sums

∑
h need to be taken care of, which is done by summing over

hidden variables that connect the sub-structures. For example, considering two sub-
structures with hidden variables x and y that are to be connected with a hidden variable
b, the likelihood becomes: p(c|a) =

∑
b p(c|b)p(b|a) =

∑
b(
∑

y ϑb,yϑy,c
∑

x ϑa,xϑx,b).

3.2 Typology of Sub-structures

In order to analyze the structure of NoMMs usable in practice, we adopted an inductive
approach based on an extensive study of the state of the art in topic models. This study
resulted in a set of primitive structures that NoMMs are topologically composed of,
in particular characterizing these structures (1) according to probability distributions
their nodes use, (2) the way how models branch node information, that is, distribute
samples of a given node, and finally (3) the way how models merge information, that
is, how incoming data index components of a node. For reference, an overview of the
described structures is given in Fig. 2, along with the numerical behavior of the Gibbs
full conditional and the likelihood of observations. In these quantities, dependencies on
A andΘ have been omitted. Although this set of structures is not considered a complete
one, it fully covers all of the example models mentioned in this article, except non-
parametric ones.

1. Node Types. Besides the standard Dirichlet–multinomial node with hidden parame-
ters used in models like LDA [1](N1; we introduce alphanumeric structure class labels),
there are special types that use alternative parameter distributions. First of all, N1 types
may have different variants: While N1a uses a single hyperparameter, N1b introduces a
selection function for �α j that may be used to add an additional level of grouping among
components (see App. A).
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ID.
Name

Structure diagram Gibbs sampler weight w, Likelihood p for single token i
Modelled aspect, Example models

N1, E1, C1.
Dir–Mult
nodes,
unbranched �=1 �=2

ziai
�ϑk |α

bi,n
�ϑa | �αj

C1b: k = fk(zi, i)N1b: j = fj(ai, i)

E1b: n ∈ i

C1a: k = zi

E1a

N1a: j ≡ 1

w(z|a, b) = q(a, z)q(z, b) E1b:q(a, z)q(z, b1 ⊕ b2 ⊕ . . . bNi )

p(b|a) =
∑

z ϑa,zϑz,b

Mixture/admixture: LDA [1], PAM [9]; LDCC [10] (E1b)

N2.

Observed
parameters �=1 �=2

ziai
�ϑz |α�ϑc

a

bi
w(z|a, b) = ϑc

a,z q(z, b)

p(b|a) =
∑

z ϑ
c
a,zϑz,b

Label distribution: ATM [2]

N3.

Non-Dirichlet
prior �=2

ziai
�ϑz |α

bi

�=1

�ϑa | λϑ
�ϑa ∼ p(�ϑa |λϑ)

w(z|a, b; �ϑa) = p(zi |ai, �ϑa)q(z, b) ; M-step: estimate �ϑa[11]

p(b|a) =
∑

z ϑa,zϑz,b

Alternative distributions on the simplex: CTM [11]: �ϑa ∝
exp �η, �η∼N(�μ, Σ); TLM [12]: hierarchy of Dirichlet priors

N4.

Non-discrete
output �=1

ziai
�ϑa |α

�=2

θz | λθ
vi

θz ∼ p(θz |λθ)

w(z|a, v; θ) = q(a, z)p(vi | θz) ; M-step: estimate θz
p(v|a) =

∑
z ϑa,z p(v | θz)

Non-multinomial observ.: Corr-LDA [13], GMM [14]:
p(v|θ) = N(�x | �μ, Σ)

N5, E4.

Regression

�=2
zi

�ϑz |α
bi

�=3

�=1

ai
�ϑa |α �zm

�η��ζm| μ,σ
vm

�ζm ∝ ∑ j∈m δ(z − zj)
regression

w(z|�zm , vm , a, b) = q(a, z) q(z,w)N(vm |�η�v �ζm, σ2) ;
M-step: estimate �ηv, σ

2 |�z, �v (for linear regression)

prediction: vm = �η
�
v
�ζm

Regression/supervised learning: Supervised LDA [15]

E2.

Independent
edges �=1

�=2
xi

ai
�ϑx |α

bi

�ϑa |α

�=3

yi

�ϑy |α
ci

xi ⊥ yi | �ϑa

w(x, y|a, b, c) = q(a, x ⊕ y)q(x, b)q(y, c)

p(b, c|a) =
∑

x ϑa,xϑx,b
∑

y ϑa,yϑy,c

Common mixture of causes: Multimodal LDA [16]

E3.

Coupled
edges �=1

�=2
zi

ai
�ϑz |α

bi

�ϑa |α

�=3

�ϑz |α
ci

w(z|a, b, c) = q(a, z)q(z, b)q(z, c)

p(b, c|a) =
∑

z ϑa,zϑz,bϑz,c

Common cause: Hidden relational model (HRM) [17],
Link-LDA [18]

C2.

Combined
indices

�=1
�ϑa |α

�=2

�ϑb |α

ai

bi

�=3

�ϑk

ci

xi

yi |α
k = fk(xi, yi, i)

w(x, y|a, b, c) = q(a, x)q(b, y)q(k, c)

p(c|a, b) =
∑

x[ϑa,x
∑

y ϑb,yϑ(k, c)] , k = fk(x, y, i)

Different correlated causes, relation: hPAM [19], HRM
[17], Multi-LDA [20]

C3.

Coupled
indices

�=1
�ϑa |α

�=2

�ϑb |α

ai

bi

�=3

|α ci

zi

�ϑz

w(z|a, c) = q(a, z)q(z, c ⊕ c̃), w(z|b, c) = q(b, z)q(z, c̃ ⊕ c)

p(c|a, b) =
∑

z(ϑa,z + ϑb,z)/2 · ϑz,c

Different causes, same effect: (proposed here)

C4.

Switch

�=1
�ϑa |α

�=2

�ϑb |α

ai

bi

�ϑz |α

�ϑz |α

�=3
ci

�=4

di

zi

si

s ?
=0

s ?
=1

w(z, s|a, b, c, d) = q(a, z)[q(b, c)q(z, c)]δ(s,1)

· [q(b, d)q(z, d)]δ(s,2)

p(c, d|a, b) =
∑

z ϑa,z[ϑb,s=0ϑz,c + ϑb,s=1ϑz,d]

Select complex submodels: Multi-grain LDA [21], Entity-
topic models [22]

C5.

Node
coupling

�=1
�ϑa |α

�=2

�ϑb |α

ai

bi

�ϑx |α

�ϑy |α

�=3
ci

�=4

di

xi

yi

w(x, y|a, b, c, d) = q(a, x)q(b, y)[q(x, c ⊕ d)]δ(x,y)

· [q(x, c ⊕ d̃)q(y, c̃ ⊕ d)]1−δ(x,y)

p(c, d|a, b) =
∑

x ϑa,xϑx,c
∑

y ϑb,yϑy,d

Correlation of submodels, relations: Simple relational
component model [23], Relational topic model [24]

Fig. 2. NoMM sub-structure types. Notation (also see (4)): a ⊕ b adds counts n·a + n·b; c̃ means
that the count is not decremented with −i in (1).
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Other node types vary the distributions they represent: One important type uses ob-
served parameters to accommodate label information, as authorship metadata in the
author–topic model [2]. In this case, the prior is lost (N2). Furthermore, there are mod-
els with alternative prior distributions (N3), such as “structured” Dirichlet distributions
(N3a) [12], and non-conjugate priors for the parameters, such as logistic-normal (N3b)
[11]. Varying the output distributions allows modelling of non-discrete observations
(N4), for instance using Gaussian with conjugate Gaussian and inverse-Wishart priors,
esp. in media mining [13,25]. Another type of non-discrete output may be produced by
regression nodes (N5). In connection with aggregation edges (E4, below), N5 nodes ap-
ply a regression model to subsets �zm of hidden values, �z , allowing supervised learning
approaches within the framework of mixed-membership models.

2. Forks / Edge Structures. When connecting nodes of the network, there are different
configurations if nodes that receive the output of a given node. The most frequent type
of connection is an unbranched edge to a single node (E1). Beside standard unbranched
edges (E1a), type E1b incorporates aggregation of a subsequence, such as words as part
of sentences: From a single sample of the parent node zi, e.g., a sentence topic, a whole
sub-sequence of tokens �bi is produced, as in [10]. To sample zi, the corresponding Gibbs
full conditional term becomes q(zi, �bi), which causes (1) to deviate from its standard
form, (2).

Apart from E1 edges, branching edges to several nodes is a common structure. Here
either the samples are generated independently (E2), or both children are forced to the
same latent variable (E3).

As an interpretation, branching may be seen as a common cause to several observed
modalities. Note that the ⊕ in the E2 Gibbs weighting function in Fig. 2 expands to:

q(a, x ⊕ y) =
B(�n (x)

a + �n
(y)
a + α)

B(�n (x)
a,−i + �n

(y)
a,−i + α)

=
(n̂ax,−i + α − δ(x, y))(n̂ay,−i + α)

(
∑

t n̂at,−i + α)((
∑

t n̂at,−i + α) + 1)
(5)

where n̂at corresponds to the added contributions of both branches and δ(x, y) the Kro-
necker delta.

The last edge type (E4) converts a sequence of values to a vector that may be used
for instance for regression, thus complementing the regression node type (N5).

3. Joins /Component Selectors. The dual structure type to a fork is a join, a structure in
the network that collects edges at the input of a node and computes an index k from the
set of incoming values. Such index structures may trivially collect a single edge value
as in LDA (C1a), use an edge value and a sequence index as in pachinko allocation
models (PAM) [9] (C1b) or be constructed out of several hidden values (C2), as in [19].
Such multi-inputs are made dependent by observed node output and may be used to
merge several influences. It is illustrative to verify this by using the information in Fig.
2. The Gibbs weighting term for the C2 structure is w(x, y|a, b, c) = q(a, x)q(b, y)q(k, c),
and if the indices x and y simply refer to the dimensions of k, i.e., k = fk(x, y) = (x, y),
one component exists for each combination of input values. With c an observed edge,
x and y become dependent, and the full conditional tends to be high wherever n(x,y)c as
part of q(k, c) is high. According to the clustering property of the Dirichlet, sampling
(x, y) jointly with c further increases n(x,y)c.
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While branching structures have coupled and independent variants (E3 and E2), so
far there seems to exist no structure in literature that does the same for component in-
dices. A desirable structure that complements C2 may take values from multiple inputs
and map them into the same variable range. As an approach to this, we propose a sub-
structure that duplicates the sampling process for incoming branches, with the merging
node collecting counts from both, and Fig. 2) shows this as structure C3.

Looking at the Gibbs weighting term in Fig. 2 is illustrative. The shorthand w(z|a, c) =
q(a, z)q(z, c⊕ c̃) corresponds to:

w(z|a, c) =
naz,−i + α∑
z naz,−i + α

n(a)
zc,−i + n(b)

zc + α
∑

z n(a)
zc,−i + n(b)

zc + α
(6)

and analogously for w(z|b, c).2 The contributions of both incoming edges, n(a)
zc and n(b)

zc ,
are summed in the second quotient, effectively superimposing their influences. Com-
pared to C2, this behavior is slightly different: While the effect of a C2 structure is
comparable to an intersection of the co-occurrences between pairs (x, c) and (y, c), the
C3 structure is likely to behave closer to a union operator.

Another variant of component selector structures is to switch input edges according
to the value of a parent node (C4) [21,22]. This allows control of the influence of more
complex sub-models in the branches switched.

The final component selector structure results from sharing parameters among dif-
ferent nodes (C5). This allows coupling of different sub-models without additional need
for edges and has been of particular interest in analyzing relational data, see, e.g., [23].

4 Towards a Model Design Method

Different to approaches to design models representable by NoMMs, including mixed-
membership/topic models, we propose a design method based the “library” of model
structures collected in Fig. 2. This method directly takes into account model assump-
tions and formalizes the actual steps to reach viable structures in a straight-forward
workflow. In the following, we outline the general method and subsequently illustrate
it with an example design.

4.1 Designing a Design Method

From Sec. 3, we have discussed how the likelihood reflects the general potential of
reaching some model quality (likelihood of held-out data is a standard metric in topic
modeling), and that Gibbs full conditionals may serve as an indicator of how such an
optimization may be achieved: As a low-dimensional “excerpt” of the posterior, a Gibbs
sampler will maximize the weights for those latent dimensions that lead to the best
model given the data in a Bayesian sense.

Along with any special metrics to capture model quality or computational complex-
ity, these two measures may also be used as predictors of model behavior. For NoMMs,
one may develop a design method from them, a strategy to design models is proposed
as follows:

2 For simplicity, we assume they are sampled in two distinct sweeps.
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1. Define data input: modalities (type of documents, metadata, relational structure)
and dimensions available.

2. Define model output: results expected, under which metrics. This may include re-
trieval measures and computational complexity.

3. Make assumptions: e.g., “topics⇔ document semantics”, “labels⇔ topics”, where
“⇔” refers to a correspondence via correlation or co-occurrence. This will be elab-
orated below.

4. Structure model: with artefacts from Fig. 2, map assumptions to structures, often a
correspondence,“⇔”, leads to a node in the model.

5. Predict behaviour: Gibbs + likelihood (Fig. 2) and metrics.
6. Iterate model: optionally go to Step 3 or 4.

For the design, Step 3 is central, and a rule of thumb is to gather as many assump-
tions as are needed to “connect” all modalities and hidden assumed structures (like
topics). Typically assumptions are qualitative and may be based on correlation or, on
the token/item-level, co-occurrence, for instance, terms co-occur in documents and in
topics, etc. If topics co-occur in other topics, we obtain a hierarchy of topics. Alterna-
tively, viewpoints of mixing or generative processes may be adopted: Mixing assumes
that the output of a node is a mixture of its components, and the generative-process per-
spective is that used in traditional topic modelling with Bayesian networks. By analogy
between BN and NoMM representations (cf. Fig. 1), assumptions can be transformed
between them.

Ideally, there exists a one-by-one correspondence between data modalities and as-
sumed hidden structures on one side and model structures on the other. Empirically, the
strategy works best with one assumption on each data structure in question, excluding
relationships that are transitive, like document⇔ label = (document⇔ topic) ◦ (topic
⇔ label). Under-determination of structure by assumptions leaves more structures ar-
bitrary, increasing room for experimentation. For over-determination, assumptions may
be prioritized.

For Step 4, some intuition is required to map assumptions to models. Currently, a set
of rules is being developed to formalize this process. The next step in this direction is to
develop a clearer mapping between the structure types and assumptions, complement-
ing the considerations undertaken on likelihood and full conditional properties in Sec.
3. Furthermore, criteria like scalability are important, as adding any dependent hidden
variables increases model complexity considerably: Computational load is on the order
of O(

∏
h� T �) for dependent h�.

4.2 Example: Expert–Tag–Topic Model

To illustrate model design, we consider an example scenario: For expert finding, a com-
munity of authors is to be indexed to recommend the best expert given a term query or a
subject descriptor. While the former may be solved using the author–topic model (ATM)
[2], the latter is special to our scenario: Subject descriptors, such as ACM CCS or Med-
line MeSH, have a controlled vocabulary and are added to the documents authored by
experts. For such a scenario, we construct an “expert–tag–topic” (ETT) model using the
method above:
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document
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prior ηa for (7f)
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∑

x am,x
∑

z ϑx,zϕz,w wmn ⊥ cm j |Θ
p(cm |a, Θ) =

∑
y ϑa,yζy,c

p(a|cq, Θ) ∝ p(cq |a, Θ)p(a|Θ) , p(a|Θ) ∝ ∑mn δ(xmn−a)

p(a|�wq, Θ) ∝ ∑n δ(xqn−a) , xqn∼ Gibbs (7a) with a(·) = q(m, x | ηa)

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

xmj

Fig. 3. Expert–Tag–Topic model, iteration 1

1. Input: document text �w = {{wmn}Nm=1
n=1 }Mm , subject labels �c = {cm}Mm=1, authorship

�a = {{amx}Am

x=1}Mm=1.
2. Output: expert recommendations p(a|�wq) and p(a|cq) for queries �wq and subject

labels cq; metric: subjective consistency of topics estimated.
3. Assumptions: (a) topics zmn ⇔ document text wmn (semantic similarity of items

represented by topics), (b) authors a ⇔ topics zmn∀m : a ∈ �am, (c) authors amx ⇔
document text wmn, (d) topics zmn ⇔ labels cm j.

4. Structure: Topics zmn appear as the central variable, and we combine on one hand
the author–topic model, which fulfills assumptions (a)–(c) and introduces an author–
word association xmn, and on the other hand a branch with an N1 node that gen-
erates an observable label from a topic, corresponding to assumption (d). The
resulting model, “ETT1”, is shown in Fig. 3, with the author–topic model in the
upper branch and the label branch below. With the E2 branching structure in cen-
ter, the Gibbs sampling term of the author–topic distribution, �ϑx, becomes q(x, z⊕y),
and it can be seen that words and categories influence the association of topics to
authors directly. By setting the number of label samples per document, Jm, we can
control their influence on the topics.

5. Prediction: Model properties are derived from Fig. 2 and shown in Fig. 3, with
full conditionals (7a–b) and likelihoods (7c–d), as well as recommendation tasks in
(7e–f). The Gibbs sampler in (7f) makes the node �am unsupervised and starts with
a fair distribution aqx = 1/A, updating for �wq.

ETT1 has the disadvantage that it only supports a single label per document and that it
does not directly model the dependence between words and labels (see (7c)). Therefore,
we iterate the structure:
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ymn
�ϕz | β

�ζy|α

wmn
z1

mn

[V]
[K]

m
�cm[|ηc]

[Cm]

document label

topic

word

[M]

(a)

xmn
�ϑx|α

m
�am[|ηa]

[Am]

document author

[M]
(d)

(b)

p({xmn= x, z1
mn=k |wmn=w, {�x, �y,�z1, �w}−mn,�z 2) ∝ am,xq(x, k)q(k,w ⊕ w̃)

p(wmn |�am, �cm, Θ) =
∑

z(
∑

x am,xϑx,z +
∑

y cm,yζy,z)/2 · ϕz,w

p(a|cq, Θ) =
∑

z p(a|z, Θ)p(z|cq, Θ) ∝ ∑z ϑa,z p(a|Θ)ζcq ,z , p(a|Θ) ∝ ∑mn δ(xmn−a)

p(a|�wq, Θ) ∝ ∑n δ(xqn−a) , xqn∼ Gibbs (8a,b) with am,x=q(m, x|ηa)

(8a)

(8b)

(8c)

(8d)

{M,Nm}z2
mn

p({ymn=y, z2
mn=k |wmn=w, {�c, �x,�z 2, �w}−mn,�z1) ∝ cm,yq(y, k)q(k, w̃ ⊕ w)

(8e)

(c)

Fig. 4. Expert–Tag–Topic model, iteration 2

6. Iteration: To allow multiple labels, we may actually use the same structure as the
ATM for labels and merge both with a C2 or C3 structure. Here label and author-
generated topics merge. The “ETT2” model is shown in Fig. 4 with properties (8a–
e). For unseen documents with unknown labels or authors, the sampler is run using
(8e) analogous to (7f), using unsupervised �aq and �cq with priors η·.

Beyond these variants of an Expert–Tag–Topic model, there are various alternatives, for
instance, instead of the central E2 and C3 structures we may use the E3 and C2 ones
and may obtain a more straight-forward recommendation rule than (8d) in Fig. 4. As has
been discussed above, the basic approach of model design needs to be complemented
with guidelines for the selection of model structures given a task and dataset at hand,
so the best structure types may be identified from the outset.

Furthermore, actual model performance is likely to depend on the finer details of
co-occurrence structure in the data and the questions asked about them, and with these
details the mileage of different models may vary. Looking at the summing structure in
likelihoods (7c) and (8c) indicates that at least the models are in principle able to reach
the likelihood of LDA, while full conditionals (7a–b) and (8a–b) seem to create the
right “gradient” in this direction, increasing co-occurrences in hidden nodes where they
are assumed in the data.

5 Empirical Analysis

Testing a complete framework of models like the one in question is the necessary step to
prove the applicability of the design method. However, this larger task is ongoing work.
In this paper, we limit ourselves to a verification of the results of the design approach
taken and performed a proof-of-concept test of the ETT models.
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Fig. 6. ETT likelihood against baseline

As data set, we consider the NIPS corpus commonly used in topic model research,
with M = 1740 documents, V = 13649 unique terms, W = 2301375 words, A = 2037
authors with WA = 3990 authorship relations, and C = 50 categories with MC = 1254
labelled documents (conference tracks and manual labels). For both models ETT1 and
ETT2, Gibbs sampling was run over a range of K and the tasks performed on the trained
parameters for 20 topics, 10 labels and 10 experts.

Precision of recommendations was measured by human judgements of five expert
voters in the spirit of a topic-coherence experiment [26]: Voters are presented with
groups of (a) 6 topic words and (b) 4 document topics and asked to detect the least
consistent item. In every question, items presented have high probability according to
the model, except for an unlikely “intrusion” item that participants may easier identify
in semantically coherent groups. For our scenario, beside topic coherence we adapted
the experiment to test associations of experts with labels (showing titles and frequent
words of experts’ papers), as well as topics for both experts and labels to check topic
coherence. We measured the model precision and topic log odds from [26]. Results are
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shown in Fig. 5, and it generally can be seen that both ETT models produce coherent
output with low intrusion votings (higher values better), validating the model.

We also tested the log likelihood of held-out documents (prediction of second half
of test documents, as proposed by [2]) as a “control metric” and compared against the
baseline model LDA, and the result is given in Fig. 6. The ETT models are slightly
inferior, but this is in line with results of [26] that report some deviation of human
perception of topic coherence from model generalizability measured by likelihood. Our
model creates different topics; it is not designed to compete with LDA that can freely
adapt to the data available, taking constraints from author and label contexts. Notably,
for the scenario considered here, the proposed NoMM structure C3 turns out as a viable
alternative with low model complexity.

6 Conclusions and Future Work

In this article, we have shown how mixed-membership models can be separated into
sub-structures, and how the sub-structures may be used as a “library” to create mod-
els according to a straight-forward design workflow. The method proposed is based on
mapping qualitative assumptions to model structures and allows to stay aware of quan-
tities like full conditional distributions of Gibbs samplers and data likelihood, important
predictors of the model performance to be expected.

We have applied the design method successfully to an example scenario of expertise
finding from labeled documents, but more work needs to be done in order to refine and
validate the method itself. Ongoing work [27] applies the method to other scenarios and
looks into refined mapping rules between data properties and model structures in order
to obtain clearer modeling guidelines. A more extensive validation will be based on
synthetic data with controlled properties that benchmark the different model structures,
and a special aspect to look at in this context is the relation between model structures
and higher-order co-occurrences in multimodal data, analogous to language data [28].

Finally, we will study how “networks of mixed membership”, the model representa-
tion used here, may be used as a generalized representation of the finite models discussed
here and non-parametric variants with Dirichlet or Pitman-Yor process priors [29].
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A NoMM Gibbs Sampling

To keep this paper self-contained, Gibbs sampling in NoMMs is outlined for the case
of multinomial levels with Dirichlet priors.

NoMMs estimate latent variables using two assumptions: (1) Models consist of a
set of discrete mixtures whose multinomial parameters are generated from conjugate
Dirichlet distributions. Each discrete mixture is governed by the following generative
process (omitting level superscripts �):

xi ∼ Mult(xi|�ϑk) �ϑk ∼ Dir(�ϑk|�α j) (9)

where xi is one discrete data point (token), latent or observed, �ϑk is a vector of multi-
nomial parameters with k the mixture component index and �α j the parameter of the
Dirichlet prior distribution (scalar or vector). These discrete mixtures are (2) coupled
by discrete variables xi to choose a component k:

k = fk(parents(xi), i) . (10)

This results in dependencies between the xi (and �ϑk) of different levels, which allows
modelling of complex co-occurrences in the data. Further, components may be grouped
by drawing them from different hyperparameters �α j, where the group indicator j may
be a function of values known at the time of generating �ϑk due to (9):

j = fj(known parents(xi), i) . (11)

The conjugacy between the multinomial and Dirichlet distributions of model levels
leads to a simple complete-data likelihood:

p(X, Θ|A) =
∏

�

∏

i

Mult(x�i |�ϑ�, k�)
∏

k

Dir(�ϑ�k|�α�j) (12)

=
∏

�

⎡⎢⎢⎢⎢⎢⎣
∏

k

B(�nk + �α j)

B(�α j)
Dir(�ϑk |�nk + �α j)

⎤⎥⎥⎥⎥⎥⎦
�

(13)

where brackets [·]� enclose a particular level �.
Gibbs full conditionals are derived for groups of dependent hidden edges, Hd ⊂ X

(with dependent tokens hd
i ∈ Hd) and their “surrounding” edges Sd (with sd

i ∈ Sd)
considered observed. We also define the set of all tokens co-located with a particular
observation, xd

i = {hd
i , s

d
i }where i (actually id) is the sequence of token indices for group

d. For each of the dependency groups thus defined, a full conditional is created, using
(13) with Θ integrated out:
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(14)

where L(Hd) is the set of all levels � whose variables interact with the edges in the set
Hd. For a single hidden variable set Hd, this leads to (1). Note that \xd

i ≡ \xd
id

excludes
more than a single token from a particular edge if a token with index id at node input
corresponds to multiple tokens c ∈ i� at its output, which leads more complex terms than
(2). This occurs in Fig. 2 for structures E2 and when data aggregations are explicitly
modelled using E1b structures (e.g. [10]). In (3), this case of “sub-tokens” is excluded
for simplicity, and a complete formulation may redefine the parameter ϑkt as a product
of sub-token likelihoods: ϑkt =

∏
c∈i� ϑktc . This expands to a hierarchy of products for

recursive sub-sequences.
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Abstract. Efficient algorithms of time series data mining have the com-
mon denominator of utilizing the special time structure of the attributes
of time series. To accommodate the information of time dimension into
the process, we propose a novel instance-level cursor based indexing tech-
nique, which is combined with a decision tree algorithm. This is bene-
ficial for several reasons: (a) it is insensitive to the time level noise (for
example rendering, time shifting), (b) its working method can be inter-
preted, making the explanation of the classification process more un-
derstandable, and (c) it can manage time series of different length. The
implemented algorithm named ShiftTree is compared to the well-known
instance-based time series classifier 1-NN using different distance metrics,
used over all 20 datasets of a public benchmark time series database and
two more public time series datasets. On these benchmark datasets, our
experiments show that the new model-based algorithm has an average
accuracy slightly better than the most efficient instance-based methods,
and there are multiple datasets where our model-based classifier exceeds
the accuracy of instance-based methods. We also evaluated our algorithm
via blind testing on the 20 datasets of the SIGKDD 2007 Time Series
Classification Challenge. To improve the model accuracy and to avoid
model overfitting, we provide forest methods as well.

Keywords: model-based time series classification, decision trees, forest
building methods.

1 Introduction

With the spread of automatic data collection systems, the role of time series has
been increasing in business intelligence applications in the domains of entertain-
ment, industry and of mobile devices. Even though the traditional source of time
series databases is the financial sector, due to the decrease in the pricing of sensors,
more and more time series data are collected from everyday electrical devices.

For example, most new cellular phones and laptops have a gyroscope for
the collection of acceleration data. By processing these time series data, hand
gesture controlled interfaces can be built into many applications. There seems
to have been an increase in the number of time series based applications on the
end-user level. Time series data can also be found in the fields of medicine and

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 48–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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biology (e.g.: the ECG(electrocardiographic signal)), finance, system monitoring
and logistics.

Naturally, supervised and unsupervised learning tasks also appear connected
to time series data. These data mining tasks can be organized into the following
categories:

1. Data mining of single time series
(a) Next value prediction in time series (e.g. Stock market prediction [3] )
(b) Clustering of segments of the time series (e.g. Time series subsequence

clustering)
(c) Classification of segments of the time series (e.g. Hand gesture recogni-

tion in accelerator data [15])
(d) Motif (similar subsequences) discovery in a longer time series [14]

2. Data mining of multiple time series
(a) Clustering of time series (e.g. Segmentation of customers of an electricity

provider by clustering the time series of their charging)
(b) Classification of time series (e.g. Analyzing heart function by classifica-

tion of ECG signals [2] )

The complexity of this hierarchy can be reduced if we consider the fact that
Points 1.b and 1.c can be incorporated into Case 2. by the segmentation of the
original time series.

The reason for the difficulty of these tasks is rooted in the multi-dimensional
problem space and the special connection between the attributes (element or
values of time series): the sequence of attributes (elements) carries information
about the source entity. In the case of traditional vector-based data representa-
tion, there is no information in the order of attributes, but time series elements,
which are close to each other, have special connection through the dimension of
time. For example, if the values are shifted in a time series by one position (for
example, value of attributes i is replaced by attributes i-1), then the classification
label or cluster ID of the time series will probably stay the same. The effective
algorithms of time series data mining typically have some additional aspect to
handle the effect of this time-dimension structure. Our new method is capable
of considering time level aspects of time series.

Our approach is a novel model-based classification method labeling different
time series by learning from the database with unknown labels. We named this
algorithm ShiftTree. The beneficial properties of the method are the following:

– accuracy level similar to other techniques
– interpretable model
– capable of handling datasets of time series with different lengths
– preprocessing not necessary
– expert knowledge can be built into the modeling process.
– correspondences coded in time dimension can be interpreted

The rest of this paper is organized as follows: Section 2 reviews the time series
classification techniques, Section 4 presents the concept of our novel approach
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ShiftTree, whereas its formal definition is described in Section 5. After the Sec-
tion about interpretability, the Section 6 provides two other techniques to im-
prove the accuracy. Section 7 summarizes the numerical results, finally, Section
8 sums up our experiments.

2 Related Works

Time series specific classification algorithms usually belong to two categories:
instance-based (memory-based) learning methods form hypotheses directly from
the training instances themselves, whereas model-based learning methods create
general coherence by describing the implicit information of training data.

The key aspects of instance-based time series classifiers (e.g. k-nearest neigh-
bor algorithm and its variations) are the representation methods and the
(de)similarity measures. Time series representation techniques deal with the
transformation of the high-dimensional time series data to an other feature space.
The well-known representation methods are the Discrete Fourier Transformation
(DFT) [8] , Singular Value Decomposition (SVD) [8] , Discrete Wavelet Trans-
formation (DWT) [4] etc.

Their main functions are noise filtering and feature extraction. The similarity
measures have more connections to the special attribute structure of time series,
some of them are called elastic measures because they tolerate partial shifting or
spreading of the time series values. Dynamic Time Warping (DTW) [11] and the
edit distance based methods (Longest Common SubSequence(LCSS) [18] , Edit
Distance on Real Sequence (EDR) [6] and Edit Distance with Penalty (EDP)
[5]) are very efficient elastic similarity measures.

Typically, instance-based methods in time series classification provide efficient
and accurate solutions [7] , but the selection of the appropriate representation
method and the similarity measure require difficult cross-validation steps, more
running time and expert knowledge. Extensive experimental comparision of rep-
resentation and simirality measure can be read in [7].

Most model-based methods include some submethods to generate or predict
the time series. For example, a Hidden Markov Model (HMM) can be built on
time series with the same label, thus a time series in the test set is associated
with the class of which HMM has the highest probability to generate the given
time series.[17]. Similarly to this method, an other time series prediction method
can be used in a classification algorithm, in which case the higher accuracy of
the prediction method determines the labeling of the predicted time series. One
member of the most popular and efficient time series prediction method family is
the recurrent neural networks [10]. The classifiers based on these neural networks
are accurate, however, their models are non-interpretable.

Typically, the instance-based method can not handle time series with different
lengths, they require time series with equal lengths, whereas the prediction-based
solutions can handle difference in the length of time series as well.
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3 Classification of Time Series

3.1 Problem Definition

Time series Θ is a structured data, a finite vector of time value and observation
vector pairs (Θ = {< ti, xi >}T

i=1 where xi =< x1
i , x

2
i , . . . , x

m
i >, xj

i ∈ �). The
vector is ordered by the time parameter of its elements (ti ≤ ti+1). In this paper
we concentrate on equally sampled time series where ti+1 − ti equals tj+1 − tj ,
and we assume that ti equals i, so we can simplify Θ to {xi}T

i=1 (i.e. a vector of
observation vectors). Although the ShiftTree is also capable of classifying time
series with multiple observations (i.e. multinomial time series), we concentrate
on a simpler task in this paper: the xi observation vector is replaced by xi

observation scalar. This type of structured data is also called value series in the
literature. In the rest of this paper time series Θ refers to a series of xi values.

In the classification task, we are given a training set of time series with class
labels (TR = {< Θn, Ln >}NTR

n=1 ) and a set of time series with unknown class
labels. The task is to determine the value of the class labels of the elements of
the latter set. The class labels get their values from a finite (and often small)
set of values (Ln ∈ CL = {l1, l2, ..., lNC}). For the evaluation and comparison of
different classifiers, a test set is used (TE = {< Θn, Ln >}NTE

n=1 ). The TR and
TE sets have no common elements.

There are many metrics for evaluating classifiers. In this paper we use accu-
racy. The classifier assigns a predicted class label L̂n to the nth series of the TE
set. We define #hits as the number of correctly predicted class labels and the

accuracy of the classifier as Accuracy = #hits
NT E

=
∑NTE

n=1 Ind{Ln=L̂n}
NTE

3.2 Notation

– TR → The training set.

• NTR → The number of time series in the training set.
• TR[n] =< Θn, Ln >→ The nth element of the training set, a time series

and class label pair.
• Θn → The nth series in the training set.
• Ln → The class label of the nth series in the training set.

– TE → The test set. The meaning of NTE , TE[n], Θte
n and Lte

n are similar
to NTR, TR[n], Θn and Ln. (The nth series of the TR and TE sets are
distinguished by the superscript te.)

– CL → The set of the possible class labels {l1, l2, ..., lNC}.
• NC → The number of different class labels.

– Θ → A time series.

• Θ[i] → The ith observation value of the time series Θ (i.e. xi).
• T → The length of the time series.
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4 Concept

In this paper we propose a novel decision tree based algorithm called ShiftTree.
In a node of an ordinary decision tree, the data set splitting criteria belongs to
only a certain attribute xi, but in the case of time series, adequate information
is usually not in the same attribute xi for each time series, as it may be found
in an different attribute position for each time series. For example, the global
maximum of time series would be an efficient splitting attribute, but their values
can not be assigned to an exact position i in time series, to a certain attributes
xi, so the approach of vector based attribute representation is not adequate in
this case.

In order to handle these problems, we assign a cursor (or eye) - denoted C - to
every time series. The task of the cursor is to appoint an element of time series,
and it can be interpreted as a position of its time series. This cursor can move
back and forward on the time axis of the time series throughout the duration
of our method. Initially, the cursors are set to the first position/attribute of
the time series (It’s assigned the attribute x1, its value is 1). In our algorithm,
every node of the decision tree has an operation of cursor, for example the
cursor has to move to the next local maximum of time series. The result of
this operation would be different for different time series, so this method has the
possibility of implementing a time-elastic handling of time dimension. Attributes
are computed dynamically using the position of the cursor, the value of the time
series in that position and the surrounding values.

Every node of ShiftTree has an operation of computing the attribute, for
example the attribute is the average of the values in the surroundings of the
cursor with a radius of 5. In this way, each branch of the ShiftTree gives an
interpretable description of the time series. An other important advantage of this
approach is that the expert of the application field can define suitable operations
to create a more accurate model for a specific problem.

The training of the novel decision tree model is based on selecting the ap-
propriate operators (moving of cursor, attribute calculator) for each node. Our
proposed training method is described in Section 5. The accuracy of the model
depends on the set of usable operations from which a node can choose an ap-
propriate one. One of our main goals was to create a general algorithm which
is applicable to different fields, which we will display in Section 7, by using a
basic set of operations to show that the accuracy of the models is satisfying on
severely different time series classification problems. The accuracy can be further
improved by using forest building methods. In section 6 we present two forest
building methods based on boosting and cross-validation.

5 The ShiftTree Algorithm

5.1 The Structure of a ShiftTree Node

The main structure of our proposed algorithm is the ShiftTree, which is similar
to the structure of decision tree algorithms: it is a binary tree with a root node,
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Fig. 1. Structure of a ShiftTree node

the leaf node contains the classification labels and decision points are associated
with the not leaf nodes. As we mentioned above every node of the ShiftTree
contains two operators: the first one describes how to move the cursor, the sec-
ond one describes how to compute a dynamic attribute. The family of the first
operator type is called EyeShifter operator (ESO) the second group is called
ConditionBuilder operator (CBO).

Each node of the ShiftTree can be represented by the following structure of
six elements < ESOj , CBOk, TV, PLabel, ChL, ChR >. ESOj is an EyeShifter
operator selected from a predefined set of ESOs (j ∈ [1..NESO]). An EyeShifter
Operator ESOj describes a shifting mode of a cursor on the given time series. It
is important to understand that an ESOj can shift the cursor on different time
series to different positions. That is why the method can handle time series of
different lengths in one classification task. CBOk is a ConditionBuilder operator
selected from a predefined set of CBOs (k ∈ [1..NCBO]). CBOk generates a
dynamic attribute called Calculated Value (CV ) using the position of the cursor
C, the value of the time series in that position (Θ[C]) and the nearby values. ChL

and ChR are pointers to the left and right subtrees of the current node. If the
node is a leaf then these two values are null. TV is called the threshold value.
If the corresponding attribute of the time series is smaller than TV then the
branch pointed by ChL will be the next one, in other cases the branch pointed
by ChR will process the time series. The function PLabel describes the labeling
information in the node, PLabel(li) returns with the confidence (probability) of
the label li in the given node. The structure of a node is shown in Figure 1.

We present some simple operator examples for both ESO and CBO. The current
position of the cursor is denoted by C, Cnew is the new position of the cursor after
applying the ESO, Cprev is the previous position of the cursor. The parameters of
the operators are predefined, they are not changing during the learning process.
We will show in Section 7 that a ShiftTree can be accurate using only this simple
operator set.
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Operator Examples

– ESONext(ΔT ) → Cnew = min(C+ΔT, T ). Similar operator: ESOPrev(ΔT ).
– ESONextMax(X) → Cnew = (i|Θ[i] > max{Θ[i ± 1]}, C < i,∑i−1

k=C+1 IΘ[k]>max{Θ[k±1]} = X − 1). Similar operator: ESOPrevMax(X),
ESONextMin(X), ESOPrevMin(X).

– ESOMax(global) → Cnew = argmaxi(Θ[i]). Similar operator:
ESOMin(global).

– ESOMax(sofar) → Cnew = argmaxi=1...C(Θ[i]). Similar operator:
ESOMin(sofar).

– ESOClosestMax → Cnew = min|C−i|(i|Θ[i] > Θ[i − 1], Θ[i] ≥ Θ[i + 1])
Similar operator: ESOClosestMin.

– ESOGreaterMax → Cnew = argmax(Θ[ESONextMax(1)],
Θ[ESOPrevMax(1)]) Similar operators: ESOGreaterMin, ESOLesserMax,
ESOLesserMin.

– ESOMaxInNextInterval(ΔT ) → Cnew = argmaxi=0...ΔT (Θ[C + i]). Sim-
ilar operators: ESOMaxInPrevInterval(ΔT ), ESOMinInNextInterval(ΔT ),
ESOMinInPrevInterval(ΔT ).

– ComplexESO → This operator is a vector of two or more ESOs. It moves
the cursor by its first ESO then by its second ESO and so on.

– CBOSimple → CV = Θ[C]

– CBONormal(μ,σ,X) → CV = average{exp− μ2

2σ2 Θ[C], exp− (|i|−μ)2

2σ2 Θ[C ±
i]|i = 1 . . .X}

– CBOExp(λ,X) → CV = average{λΘ[C], exp−λ|i| Θ[C ± i]|i = 1 . . .X}
– CBOLinear(X) → CV = average{Θ[C], 1

|i|Θ[C ± i]|i = 1 . . .X}
– CBOAVG(X) → CV = average{Θ[C], Θ[C ± i]|i = 1 . . .X}
– CBODeltaT(norm/abs) → CV = C − Cprev or CV = |C − Cprev |
– CBOTimeSensitive(norm/abs) → CV = Θ[C]

C−Cprev
or CV = Θ[C]

|C−Cprev|
– CBO[Average/Variance](sofar/delta)→ Returns the average/variance of the

values {Θ[1], ..., Θ[C]} or {Θ[Cprev], ..., Θ[C]}
– CBO[Max/Min][AVG/VAR/Count](sofar/delta) → Returns the average/

variance/number of the local maximums/minimums in the subseries of
{Θ[1], ..., Θ[C]} or {Θ[Cprev], ..., Θ[C]}.

– CBOMedian(B, F ) → CV = median{Θ[C − B], Θ[C − B + 1], ..., Θ[C], ...,
Θ[C + F − 1]Θ[C + F ]}

5.2 Classification Process

The ShiftTree’s classification process for time series Θ can be written by the
next recursive process (see Algorithm 5.1). The input of the first call has to be
a ShiftTree represented by its root node R and the unlabeled time series Θ and
the initial cursor position (C = 0).

The function ShiftCursor(ESOj , Θ, C) shifts the cursor of time series from
position C to a new one by applying EyeShifter operator ESOj , the function
CalculateV alue(CBOk, Θ, C) calculates a value over time series Θ by using
ConditionBuilder operator CBOk and the cursor position C.
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Algorithm 5.1. Labeling process of the ShiftTree
Input: node R, time series Θ, cursor C
Output: label L ∈ [l1, ..., lNL ] for time series Θ
procedure ShiftTreeLabel(R, Θ, C)

1: R→< ESOj , CBOk, TV, PLabel,ChL, ChR >
2: if R is not a leaf then
3: Cnew ← ShiftCursor(ESOj , Θ, C)
4: CV ← CalculateValue(CBOk, Θ, Cnew)
5: if CV < TV then
6: L← ShiftTreeLabel(ChL, Θ, Cnew)
7: else
8: L← ShiftTreeLabel(ChR, Θ, Cnew)
9: end if

10: else
11: L← argmaxliPLabel(li), li ∈ [l1, ..., lNL ]
12: end if
13: return L

end procedure

5.3 Training Process

The learning process of the ShiftTree is more complicated (see Algorithm 5.2).
The process is defined by the generation method of only one ShiftTree node,
because the training method can be defined as a recursive algorithm. In this
case the input is a training set TR = {< Θn, Ln >}NTR

n=1 . The output of process
is a subtree of the ShiftTree represented by its root node R. The process tries to
find an accurate ESOj , CBOk and TV setting, because this triple determines
a splitting criteria in a given node. The algorithm selects the best splitting
criteria by minimizing the entropy of the child nodes. Note that this is the same
as maximizing the information gain of the splitting. The entropy is defined as
follows:

Ent(TRL, TRR) = −
∑

X∈[L,R]

NX

N

NC∑
i=1

(PXi ∗ log2 PXi) (1)

TRL and TRR are the two sets of time series label pairs. N , NL and NR are
the number of time series in TRL

⋃
TRR, TRL and TRR. PLi and PRi are the

relative frequency of the label li in TRL and TRR. NC is the number of class
labels.

The function StoppingCriteria(PLabels) return true if PLabels(li) = 1 for
a class label value li ∈ CL. We experimented with other stopping criteria
but this one gave the best results on the benchmark datasets. If the node is
not a leaf, every ESOj CBOk pairs are examined by the training algorithm.
ShiftCursor(ESOj , Θ, C) and CalculateV alue(CBOk, Θ, C) are the same as
they were in algorithm 5.1. When the CV s are calculated for all time series
in TR, every sensible threshold value is examined. The easiest way to do this
is to sort the CV s and set TV to be the mean of every two adjacent CV s
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Algorithm 5.2. Recursive learning method of ShiftTree
Input: a set of labeled time series TR = {< Θn, Ln >}NT R

n=1 and their cursors {Cn}NT R
n=1

Output: Node R that represents the newly created subtree of the ShiftTree
procedure BuildShiftTree(TR,{Cn}NT R

n=1 )

1: New node R
2: for all li ∈ CL do
3: PLabels(li)← |{n|Ln=li}|

NT R

4: end for
5: if StoppingCriteria(PLabels) = true then
6: R← leaf
7: else
8: for all ESOj ∈ ESO do
9: for all CBOk ∈ CBO do

10: for n = 1..NTR do
11: Cj,n

new ← ShiftCursor(ESOj ,Θn,Cn)
12: CV j,k,n ← CalculateValue(CBOk,Θn,Cj,n

new)
13: end for
14: [CV j,k,1, CV j,k,2, . . . , CV j,k,NT R ]← Sort([CV j,k

1 , CV j,k
2 , . . . , CV j,k

NT R
])

15: for m = 1..NTR − 1 do
16: TV j,k,m ← (CV j,k

m + CV j,k
m+1)/2

17: TRj,k,m
L ← {Θn|CV j,k,n < TV }

18: TRj,k,m
R ← {Θn|CV j,k,n ≥ TV }

19: Ej,k,m ← Ent(TRj,k,n
L , TRj,k,n

R )
20: end for
21: end for
22: end for
23: < j′q, k

′
q, m

′
q >

Q

q=1
= {< j, k, m > |Ej,k,m = minj,k,mEj,k,m}

24: j′, k′, m′ = argmaxj′q,k′
q,m′

q
H1({CV

j′q,k′
q

n }NT R
n=1 , TV j′q ,k′

q,m′
q )

25: for n = 1..NTR do
26: Cn ← Cj′,n

new

27: end for
28: TRL ← TRj′,k′,m′

L

29: TRR ← TRj′,k′,m′
R

30: CursorsL ← {Cn|Θn ∈ TRL}
31: CursorsR ← {Cn|Θn ∈ TRR}
32: ChL ← BuildShiftTree(TRL,CursorsL)
33: ChR ← BuildShiftTree(TRR,CursorsR)

34: R←< ESOj′ , CBOk′ , TV j′,k′,m′
, PLabels,ChL, ChR >

35: end if
36: return R

end procedure
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(line 14 - 19), because by doing so we examine every possible splitting of the TR
set by the current dynamical attribute. Lines 23 - 24 select the best splitting. As
we mentioned above the algorithm selects the splitting which minimizes the en-
tropy of the child nodes. In case of small training datasets, there may be several
< j, k, m > triplets that minimizes the expression in line 23. One should think
that selecting one from equally good triplets is meaningless but our experiments
have shown that the selection can significantly affect the accuracy of the model.
The training set contains no trivial information to distinct these triplets prop-
erly so we rely on heuristics. We defined two similar heuristics that were based
on the fact that the CV j,k,n values should be as far away from TV as possible.
It can be assumed that a member of the test set has lower probability of ending
up on the wrong side of the splitting if the CV s of the element of TRL and TRR

are more distinct. We also had to use some kind of normalization because the
CBOs might work in different range. This can be achieved in many ways, we
found the following heuristic satisfying:

H1({CV j,k
n }NTR

n=1 , TV j,k,m) =
CV j,k

m+1 − CV j,k
m

CV j,k
NT R

− CV j,k
1

(2)

If a triplet < j, k, m > maximizes formula (2), then the CV s of the elements of
TRj,k,m

L and TRj,k,m
R are rather distinct from each other. There may be some

nodes where more than one < j′, k′, m′ > triplets minimize (1) and maximize
(2), but those nodes don’t seem to be significant as they usually have a TR set of
only a couple of time series. In that case the first appropriate triplet is selected.

At the end of the process (lines 25 - 34) we set cursor C to its new position,
split the TR set into two sets (TRL, TRR), create the child nodes using the
same process on the elements of TRL and TRR. Note that Algorithm 5.2 is
for demonstrative purposes only, for example collecting all possible TV s is not
optimal and there are other issues one should consider when implementing this
algorithm. Computational complexity may seem to be high, but a semi-optimal
implementation of the ShiftTree was much faster than 1-NN using Eucledian
distance or DTW.

5.4 About Interpretability

Interpretability is often underestimated but it can be of great importance in
practical applications as most of the users do not trust machine learning algo-
rithms unconditionally. If a model is interpretable, one can check if it learned an
unimportant feature of the data or noise. An other advantage of interpretability
- besides gaining trust of the users - is that we can learn the previously unknown
properties of a problem. If a ShiftTree model is analyzed, special decision sce-
narios can be created by following different branches of the tree. If the ESOs
and CBOs are simple interpretable operations, the experts can be understood
deeper correspondences by considering the cursor scenarios.
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6 Forest Methods for ShiftTree

It is a common method to create different models for a given classification prob-
lem and then combine the output of those model in order to achieve improved
accuracy. The models can be the results of one or many algorithms. Building and
combining only decisions trees is often called forest building. In this section we
briefly introduce two forest approaches which we used to improve the accuracy
of ShiftTree models.

6.1 Boosting

One of the most common methods for combining is boosting [9]. This iterative
method assigns weights to the elements of the training set, trains a model and
assigns a weight to the model, based on its weighted classification error. The
weights assigned to the elements of the training set is also modified in a way
that the weights of the correctly classified elements decrease and the weights of
the rest of the elements increase. The combined output is a weighted vote on
the label. The widely used AdaBoost [9] technique has a precondition that the
weighted classification error of the model must be lesser than 50%. This is the
same error rate as the error of random guessing on a classification problem of
2 classes. Since we tested our algorithm on some problems which have many
classes (up to 50), we selected an other boosting technique that has a less strict
precondition. This boosting technique is called SAMME [19] and requires an
error rate lesser than 100% − 1

NC
which is the same as the error of random

guessing on a problem with NC classes. This method assigns the weight Wm

to the model and increases the weight of the wrongly classified elements. The
weights of the correctly classified elements are not updated but after the update
the sum of all weight is normalized to 1. Like AdaBoost, this method also stops
when the error of the model is 0%. We had to solve the problem that the ShiftTree
often creates a model that fits to the entire training set (in other words, the model
classifies every single element of the training set correctly). We experimented
with many pruning techniques. Every one of them decreased the accuracy of
the models on the test set. In the case of low accuracy the combined models
are better than an accurate single model. We used the common chi-square post-
pruning [16].

6.2 XV Method

This combination technique receives its name after cross-validation. Only a part
of the training set is used for training, the other part serves as a validation set
(V A) on which we measure the predicted accuracy of the model. We assign the
predicted accuracy to the model as the weight of the model. The combined output
is a weighted vote on the label, so this method implements a simple ensambled
method over ShiftTree construction. The two parameters of this method are the
iteration number M and the ratio of the sizes of the V A and (original) TR sets.
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7 Numerical Results

In this section we present the results of the ShiftTree on some datasets and com-
pare them to the accuracy of widely used instance-based methods. We examined
both the basic algorithm and the forest building methods. We also did blind
tests that took place in a contest environment and compared our results to the
results of the participants of that competition.

7.1 Datasets and Testing Environment

We used three databases for the evaluation. The first database is one of the
largest publicly available time series databases [13] often used as a benchmark
database. It will be referred to as the UCR database. This database consists
of 20 classification problems (datasets). Each set is originally divided into a
training and a test set. We used these original splits. About half of the training
sets in this database are small. While it is important to check the results of
ShiftTree on these classification problems too, we do not expect high accuracy
on these problems as ShiftTree is a model-based algorithm. The second database
consists of the 2 datasets of the Ford Classification Challenge [1]. These datasets
were originally divided into 3 sets (training, validation, test). We merged the
training and validation sets into a training set by both datasets and used the
test set for testing. This database will be referred to the Ford database. These two
databases were used for the normal testing of our algorithm. The third database
comprises the data of the SIGKDD2007 Time Series Classification Challenge
[12]. This database will be referred to the TSC database. This database consists
of 20 classification problems and the properties of the datasets are similar to the
properties of the UCR database. We used the TSC data for the blind tests. The
properties of the datasets can be seen in figure 2.

As one of our goals was to create a generally accurate algorithm, we decided to
use the same operators for every problem. The description of these operators is
in section 5. The parameters of the operators were also the same by all problems.
The value of the parameters were determined based on the minimal and maximal
length of time series of all datasets. Some operators were used more than once
(with different parameterization). A total of 130 ESOs and 48 CBOs were used,
so 6240 dynamic attributes were considered in each node.

7.2 Results of the Basic ShiftTree

Figure 2 shows the accuracy values for the problems of the UCR and Ford
databases. The weighted accuracy is the number of correctly classified series in
all test sets divided by the number of test samples (i.e. the weights are the sizes
of the test sets). The accuracy of the widely used 1-NN algorithm with both
Euclidian distance and DTW are also shown. We used the results reported on
[13] for 1-NN.

ShiftTree has the highest overall accuracy of the 3 algorithms, but the ranking
of the algorithms at different problems vary. As it is expected from a model based
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Fig. 2. Results of the basic ShiftTree, 1-NN (Euclidian) and 1-NN (DTW). Also con-
tains some basic properties of the datasets.

Fig. 3. Results of the basic ShiftTree, 1-NN (Euclidian) and 1-NN (DTW) on datasets

with greater and lesser |TR|
NC

values than a moving threshold

method, ShiftTree is less effective on smaller datasets. The average accuracy of
the algorithms on smaller/larger datasets are shown on figure 2. We considered
datasets “smaller” if the average number of instances per a class in the training
set ( |TR|

NC
) is lesser than than a threshold value (40). ShiftTree outperforms the

neighbor based algorithms if it is provided with enough samples of every class,
but loses to them if there are only a few samples available. Figure 3 shows the
accuracy of all three algorithms on both “smaller” and “larger” datasets using
different threshold values. At a threshold value Th the datasets of the UCR and
Ford databases were divided into two groups: the ones with lesser |TR|

NC
value than

Th were considered “smaller” an the others “larger”. We computed the weighted
accuracy (all correctly classified test samples divided by all test samples) for both
groups. By increasing the threshold, ShiftTree gains greater advantage on 1-NN
using the “larger” datasets. By lowering the threshold the gap between ShiftTree
and 1-NN widens on “smaller” datasets. This proves our assumption that our
model based approach performs well mostly on larger datasets.

The average running time of the basic ShiftTree (training) algorithm was
6.48 seconds per dataset in case of UCR dataset collection (minimum 0,144
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sec - CBF; maximum 33,99 sec - 50Words). The running times on the larger
FordA and FordB datasets were 200.5 and 173.5 seconds.

7.3 Results of the Forest Methods

We made several experiments with the forest building techniques (described in
6). We found that the accuracy of boosting increases continuously as the number
of iterations is increased. We finally set the number of iterations to 100 which
is an acceptable trade-off between speed and accuracy. The significance level of
pruning was set to 0.01% (strict pruning). Increasing number of iterations by
the XV method did not really affect the accuracy above 20 so we used 20 as the
M parameter. The XV method has another parameter: the size of the validation
set (S). If it is set too low then the variance of the predicted accuracy values
will be high and these accuracies are useless as model weights (because they are
inaccurate). If we set S too high, then the ShiftTree models will be inaccurate as
there are only a few samples for the training. We found 30% to be the optimal
value for S. The results of both methods (using the optimal parameters) and
the basic method can be seen in Figure 4. Boosting seems to be the better

Fig. 4. LEFT: Results of the basic ShiftTree, boosting used 100 iterations and XV used
20 iterations and 30% of the training set as the validation set. A dataset is considered
“smaller” if its training set contains less than 70 series.
RIGHT: Results of the basic ShiftTree and the ShiftForest on the blind test.

forest building technique. But if we look closer, the XV greatly outperforms
boosting on some datasets. The common property of these datasets is that their
training set is small. If we examine the average accuracy on datasets having less
than 70 samples for training (smaller sets), even the basic method outperforms



62 B. Hidasi and C. Gáspár-Papanek

boosting by a bit. The reason for this is that even the pruned ShiftTree model fits
perfectly to the small set of training data therefore the boosting stops after one
iteration. Thus we basically get the original ShiftTree algorithm back. XV uses
different training sets that insures to build different models. And by averaging
those models, improved accuracy can be achieved even on smaller datasets. But
XV is much more simpler than boosting so if enough training data is available,
boosting will surpasses XV. We found that “enough” means 70 training samples
by the UCR database. By using the appropriate method for all datasets, an
average accuracy of 93.57% can be achieved.

7.4 Results of the Blind Tests

As we mentioned above, we used the datasets of the SIGKDD2007 Time Series
Challenge to evaluate our algorithm in a blind test. We did one test for the basic
algorithm and one for the best forest method. The parameterization of the basic
method is the same as in the previous subsections. The parameterization of the
forest method is the same as the best parameterization for the UCR datasets: on
datasets having a training set of less than 70 examples, we used XV (M = 20,
S = 30%), on the rest we used boosting with 100 as the number of iterations.
We calculated the points for ShiftTree as it had taken part in the competition:
10 point for a 1st place, 9 for a 2nd and so on. We also modified the points of the
other participants, if the ShiftTree surpassed the accuracy of their algorithms.
The two methods took part in two separate tests (i.e. they were not competing
each other). Figure 4 shows the results.

Out of 12+1 participants basic ShiftTree gained a total rank of 8. We consider
this to be a great success as the operators/parameters were not optimized and
we assume that most of the participants used blended algorithms. Interestingly,
ShiftTree ranked 1st place 5 times out of 20 which is the same amount as the
overall winner has. We think that the reason for this is that ShiftTree is accu-
rate on datasets with greater average training examples per class values. The
ShiftTree forest improves the overall results: it gains one more 1st place as the
overall winner loses one and moves forward to the 6th place of the challenge.

8 Conclusion

We proposed a new model-based time series classifier called ShiftTree, which is
an important advance in this research field because of its unique benefits: thanks
to its model-base approach, the decision tree based model can be interpretable,
this property is infrequent in this data mining domain, where the instance-based
algorithms are overrepresented.

The key aspect of time series classification is the handling of correspondences
of time dimension. Instead of an elastic time approach, we propose a novel at-
tribute indexing technique: a cursor is assigned to each instance of the time series
dataset. By determining the cursor operators, our algorithm can classify with
high accuracy. The supervised learning method of the ShiftTree is an extension
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of the decision tree building methods, where the cursor operator and attribute
calculator modes are designated beyond the splitting value.

The numerical results of 22 datasets of a benchmark collection show that
our algorithm has similar accuracy to other techniques, moreover its accuracy
exceeds the best instance-based algorithms on some datasets. As it is typical
of model-based algorithms, the ShiftTree algorithm can work more efficiently
than the instance-based methods when the size of training dataset is larger. The
proposed forest extension of ShiftTree, the cross-validation based and boosting
techniques are to improve the accuracy level of ShiftTree. The efficiency of the
algorithm can be further enhanced by defining domain specific cursor operators
and attribute calculators, where the specific characteristics of the dataset are
also used.

Although the efficiency of our algorithm is significant in some cases, its impor-
tance lies in the fact, that by novel cursor-based attribute indexing, it can solve
some classification problems which can not be answered by the other model-based
or instance-based methods. We think that this attribute indexing technique is
promising and it can be the base of a novel algorithm family in the future in the
field of time series and spatial data mining.
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Abstract. Age-related Macular Degeneration (AMD) is the most com-
mon cause of adult blindness in the developed world. This paper describes
a new image mining technique to perform automated detection of AMD
from colour fundus photographs. The technique comprises a novel hi-
erarchical image decomposition mechanism founded on a circular and
angular partitioning. The resulting decomposition is then stored in a
tree structure to which a weighted frequent sub-tree mining algorithm
is applied. The identified sub-graphs are then incorporated into a fea-
ture vector representation (one vector per image) to which classification
techniques can be applied. The results show that the proposed approach
performs both efficiently and accurately.

Keywords: Hierarchical image decomposition, weighted graph mining,
image partitioning, image classification.

1 Introduction

Vision loss and blindness may be caused by various factors; Age-related Macular
Degeneration (AMD) [17] is the leading cause of adult blindness in the developed
world [21]. AMD is currently incurable and causes total blindness. There are new
treatments that can stem the onset of AMD if detected at a sufficiently early
stage. Drusen, sub-retinal deposits formed by retinal waste, are the first clinical
indicator of AMD. The presence of drusen can be detected by inspection of
retina images. Substantial work has been directed at applying image processing
and content-based image retrieval techniques to support the diagnosis of AMD;
however current performance of these techniques is still not sufficient for wide-
scale clinical application, largely because of the limitations of the segmentation
techniques adopted.
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This paper describes an image mining approach to AMD screening where the
objective is to classify images as being either AMD or non-AMD. A first attempt
at data mining supported AMD screening, that employed a histogram based
representation, is described in [14,13]. The objective was to avoid the segmen-
tation difficulties encountered by previous techniques. The technique produced
reasonable results. The technique described in this paper is founded on a novel
interleaved angular and circular hierarchical decomposition of the image space,
the aim being to isolate instances of drusen. The decomposition is stored in a
tree data structure to which a weighted frequent sub-tree mining algorithm is
applied. The identified frequent sub-trees are then used to define a feature space
which can be used to encode an appropriately labelled training set into a set
of feature vectors (one per image) to which established classification techniques
can be applied. The proposed technique has been evaluated using a sample set of
coloured retinal fundus images featuring both AMD images and a control group.

The main contributions of this paper are:

– The proposed circular and angular based hierarchical decomposition.
– The mechanism for generating feature vectors using weighted frequent sub-

tree mining.
– The application of the above techniques to AMD screening.

The rest of this paper is organised as follows: some previous works with respect
to image decomposition approaches and weighted frequent sub-graph mining is
described in Section 2. Section 3 provides a description of the AMD application
domain, followed by details of the proposed image classification approach in
Section 4. The performance of the proposed approach is extensively evaluated
in Section 5 and some conclusions are presented in Section 6.

2 Previous Work

Hierarchical data structures have been widely applied in various domains, such
as image segmentation [25], image coding [12] and image classification [9]. The
main advantage of this type of data structure is that it provides an effective
representation of the problem domain that can be readily processed [23]. The
most common hierarchical decomposition technique is founded on quadtrees,
where the search space is repeatedly quartered until uniform “tiles” are arrived
at or a maximum decomposition is reached. In the work described in this paper
a new image decomposition technique more suited to retinal images, that uses
an alternating angular and circular partitioning, is presented.

Graph mining techniques can be categorised as being either transaction based
or single graph based [18]. Transaction graph mining aims to discover frequently
occurring sub-graphs in a given graph data set. Weighted frequent sub-graph
mining is founded on the idea that in some cases certain vertices and/or edges
in the input graph set can be deemed to be more significant than others. The
weighted frequent sub-graph mining has demonstrated its advantages over fre-
quent sub-graph mining in a number of studies [9,18], the main advantage is
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that the former spends significantly less run time identifying far fewer patterns
(i.e. frequent sub-graphs) than the latter. A variation of a weighted frequent
sub-graph mining algorithm [18], founded on the well-known gSpan algorithm
[27], is used with respect to the work described in this paper and is described in
detail in Subsection 4.2.

Image processing approaches have been widely used in the detection of drusen
for AMD diagnosis. The earliest work [24] used a morphological mechanism to lo-
calise drusen. Other image processing techniques that have been applied include:
(i) histogram-based adaptive local thresholding [22] , (ii) region growing [19,20];
(iii) wavelet based feature identification coupled with multilevel classification
[3]; (iv) anomaly detection based approaches, that employ Support Vector Data
Description (SVDD), to segment anomalous pixels [11]; and (v) signal based
approaches, namely amplitude-modulation frequency-modulation (AM-FM), to
generate multi-scale features for drusen classification [1,2]. Content-Based Im-
age Retrieval (CBIR) techniques have also been applied. For example, Chaum
et al. [6] have applied CBIR to get a probability of the presence of a particular
pathology (a confidence threshold is then applied on the generated probabilities
to predict the retinal images class).

Most of the existing work on AMD diagnosis is founded on drusen detection
and segmentation. The authors are aware of only three reports of extending
drusen detection to AMD screening [2,3,6]. One issue is the difficulties and chal-
lenges in not only identifying the drusen, but also other retinal structures, in
particular the optic disc and the macula. The challenge is exacerbated by the
natural variation of the appearance of the retina, the image quality and patient
factors (e.g. compliance during image acquisition and media clarity of the eye)
[6,15]. Alternative techniques, not founded on segmentation, therefore seem de-
sirable. An early attempt in this direction has been proposed in [13] whereby a
histogram based representation was used to which Case-Based Reasoning (CBR)
was applied to facilitate the classification of “new” cases. Another approach that
was built based on work in [13] that uses two “case bases” has been proposed in
[15]. Good results were produced, however observations indicated that relying
on the retinal image colour distribution alone was not sufficient. Thus, in [14]
a spatial histogram technique, that include colour and spatial information, was
proposed. The technique gave the best results so far with respect to the test
image dataset. The work described in this paper is directed at improving on
these results.

3 Age-related Macular Degeneration

Some exemplar retinal images are presented in Figure 1. The central region of
the human retina is called the Macula, which is centered at the fovea; this is
the place where acute and central vision is made possible. Figure 1(a) shows
the fovea (indicated by an arrow) and macula (circled). Damage to the macula
causes distortion and loss of the central vision required for (say) reading and
writing. There are various reasons why this might happen, one of which is Age-
related Macular Degeneration (AMD) where the delicate cells of the macula



68 M.H. Ahmad Hijazi et al.

becomes damaged and stops functioning at the later stages of life [17]. AMD can
be categorised into early, intermediate and advanced. Advanced AMD, which can
be further divided into non-neovascular and neovascular, is when severe vision
loss or even total blindness occurs [17]. Although AMD is incurable, the early
detection of AMD is desirable as there are new emerging treatments that can
be given to patients with AMD to slow down or even halt the progress of the
condition.

As noted above, early stage AMD can be diagnosed by the existence of drusen
[8,17], yellowish-white deposits with sizes ranging from less than 63 μm (�small
drusen) to greater than 124 μm (large drusen) in diameter [17]. These can be
detected through manual inspection, by trained clinicians, of the retinal images
collected within screening programmes. This task is however labour intensive
given the increasing incidence of AMD. Thus, the automation or semi automation
of the process is deemed desirable. Figure 1(b) shows a case of intermediate
AMD where the presence of drusen (surrounded by circle) is widespread but the
fovea is still visible (dark area pointed by arrow). Figure 1(c) gives an example of
advanced neovascular AMD where the fovea is totally obscured resulting in total
loss of central vision. Drusen can also be categorised into hard or soft drusen.
Hard drusen is more easy to identify because it has well defined borders, while
soft drusen has indistinct edges that blend into the retinal background.

(a) (b) (c) 

Fig. 1. Grayscaled retinal fundus images: (a) normal, (b) intermediate, and (c) ad-
vanced neovascular

4 AMD Classifier Generation

An overview of the proposed hierarchical decomposition based approach to the
generation of AMD classifiers is presented in Figure 2. The approach commences
with retinal image cleaning. The quality of the retinal fundus images is often af-
fected by various factors that hinder image classification, such as colour variation
and nonuniform illumination. Some image cleaning is therefore required. In the
context of the work described in this paper, an approach used in [14] is reused
to enhanced the images and to identify blood vessel pixels (which we wish to re-
move from the image data so as to “clean” the data). The process then proceeds
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Fig. 2. Block diagram of the proposed classifier generation approach

with the decomposition of the image, this is described in detail in Subsection
4.1 below; the result is a collection of tree represented images (one per image).
Next the weighted frequent sub-graph (sub-tree) mining approach is applied to
the data (the algorithm is detailed in Subsection 4.2). The identified frequent
sub-trees then define the elements of a feature space that is used to encode the
individual input images in the form of feature vectors itemising the frequent
sub-graphs that occur in each image. The feature selection process is described
in Subsection 4.3. Once the feature vector representation has been generated we
can apply established classification techniques (see Subsection 4.4).

4.1 Image Decomposition

The proposed image decomposition method is described in this sub-section. As
noted above hierarchical image decomposition is a well established technique
[12,23,25]. The distinguishing and novel feature of the proposed approach is that
the partitioning is conducted in an interleaving angular and circular manner.
During angular partitioning the decomposition is defined by two radii describing
a minor arc on the circumference of the image “disc”. Circular decomposition
is defined by a pair of arcs radiating out from the center of the retina disc.
Individual regions identified during the decomposition are thus delimited by a
pair of radii and a pair of arcs. Figure 3(a) shows an example of a partitioning
that might be applied to an image; Figure 3(b) presents the associated Tree
storage structure. Note that a numbering convention is used to label individual
regions described by nodes in the tree structure.
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Fig. 3. An example of: (a) circular and angular image decomposition, and (b) the
associate tree data structure

Algorithm 1 shows how the interleaved circular and angular partitioning is
performed. Given a coloured retinal fundus image, I with a size of X pixels.
The RGB (red, green and blue) colour model is used to extract the pixels inten-
sity values, which means each pixel will have three intensity values (red, green,
blue) associated with it, hence initially three trees are generated which are then
merged. The GetCentroids method in line 4 uses a retinal image mask, M , to
identify the centroid of the retina disc. The GetImageBackground method in
line 5 generates a binary format background image, imbg, to be used to distin-
guish the background (areas outside of the field of view of the fundus) pixels and
the blood vessel pixels, V , from the retinal pixels. imbg is defined as:

imbg = M ∩ RV (1)

M(x) =
{

1, if x is a retina pixel
0, otherwise (2)

RV (x) =
{

0, if x is a blood vessels pixel,
1, otherwise (3)

where x ∈ X , and M and RV are both of size of X pixels. The image ROI was
then identified using the GetROI method.

As noted above the proposed hierarchical image partitioning commences with
AngularPartitioning (line 13 of Algorithm 1). On the next iteration CircularPar-
titioning will be applied. Both AngularPartitioning and CircularPartitioning will
then be called alternately until the Dmax tree level is reached or only regions of
uniform intensity are left. Throughout the process the tree data structure is con-
tinuously appended to. The algorithm ends with the merging of the three trees
in T using the MergeTrees method to form a single tree. The merging is done by
calculating the Average Intensity Values (AIV ) for the nodes in T , defined as:



Image Classification for AMD Screening 71

AIVy =
1
n

3∑
k=1

(Tky) (4)

Tky =
1
z

z∑
i=1

(kyi) (5)

where T comprises the red, green and blue colour trees, y is a unique node
identifier in Tfinal, z is number of pixels in node y, and n is number of occurrences
of node y (whenever Tky is not null) in the set of trees T .

Algorithm 1: ImageDecomposition
Data: Coloured retinal fundus image I , retinal image mask M , retinal blood

vessels binary image RV and Dmax

Result: Image decomposition tree Tfinal

1 c count← 1;
2 a count← 1;
3 T ← {null, null, null};
4 centroid← GetCentroid(M);
5 imbg ← GetImageBackground(M,RV );
6 roi← GetROI(imbg, centroid);
7 for k← 0 to 2 do // Generate trees for each colour channel

8 for i← 1 to maxDepth do // Generate trees for each tree level

9 if mod(i/2) = 0 then
10 t← CircularPartitioning(roi, imbg, c count, centroid);
11 c count← c count + 1;

12 else
13 t← AngularPartitioning(roi, imbg, a count, centroid);
14 a count← a count + 1;

15 end
16 tree← UpdateTree(tree, t);

17 end
18 Tk ← tree;

19 end
20 Tfinal ←MergeTrees(T0, T1, T2);

Algorithm 2 describes the CircularPartitioning method. The algorithm re-
turns a set of new nodes B to be added to the tree structure. The input is
the ROI image roi, the mask imbg, the level count for the circular partitioning
(c count) and the centroid of the ROI (retina disk). We first identify how many
circles, m are required for the current iteration (line 1). Then we calculate a set
of new radii to be included in the partitioning; R = {ρ0, ρ1, . . . , ρm} describes a
sequence of concentric circles. We then (line 3) generate the necessary additional
nodes for the tree. Each level c count region is considered in turn and, where
appropriate, c count + 1 regions are constructed.
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Algorithm 2: CircularPartitioning
Data: Retinal image roi, image background imbg, c count and centroid
Result: An array of circular partitioned image regions B

1 m← 2c count ; // To calculate number of circles

2 R← GetRadius(imbg, centroid, m) ; // To calculate radii values

3 B ← SplitImage(roi, imbg,R, centroid);
4 return B

The AngularPartitioning method, as described in Algorithm 3, begins by iden-
tifying the number of radii (m) that are required (line 1). The radii define the an-
gular partitions which are defined in terms of a set of arcs A = {α0, α1, . . . , αm}.
Each arc α is defined by θ = 2π/m, used in the GetTheta method (line 2). As in
the case of the CircularPartitioning algorithm, the SplitImage method is then
called to decompose the image, as indicated, to produce an appropriate set of
nodes B.

Algorithm 3: AngularPartitioning
Data: Retinal image roi, image background imbg, a count and centroid
Result: An array of angular partitioned image regions B

1 m← 2× 2a count ; // To calculate number of angular lines

2 θ ← GetTheta(n) ; // To calculate the angle between angular lines

3 B ← SplitImage(roi, imbg, n, θ, centroid);
4 return B

As noted above, an important feature of the hierarchical image decomposition
is the selection of a termination criterion, ω, which defines the homogeneity of a
particular region in an image and is used to determine if further region splitting
is required. A common definition for ω is in terms of the distance between the
highest and lowest intensity values of the pixels in a region i. If ω is less than
a predefined homogeneity threshold, τ , no further decomposition of the region i
will be undertaken.

In this paper, a similar termination criterion to that described in [12] is
adopted. The ω value is defined according to how well a parent region represents
its two child regions’ intensity values. If the value (derived from the average
intensity values of all pixels in a particular region) of a parent region is similar
(< τ) to that of its two child regions, the parent region is deemed to be homoge-
neous and left unsplit. Otherwise, the parent region will be further partitioned.
Thus ω can be formalised as:

ω =
1
s

s∑
i=1

√
(μp − μi)2 (6)

where s is the number of sub-regions, μp is the average intensity value for
the parent region and μi is the average intensity value for sub-region i. Each
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identified sub-region is represented as a “node” in a tree data structure where
the relationship between sub-regions and their parent form the tree “edges”.

4.2 Weighted Frequent Sub-tree (wFST) Mining

After the image decomposition step introduced in the above subsection, images
were modelled as a collection of trees. According to [18], each tree is defined as
follows: T = {V, E, LV , LE, φ}, where LV and LE are labels for nodes and edges
in T respectively, and φ defines a label mapping function.

In [18] it was suggested that for many applications, such as image mining, some
tree nodes have more significance associated with them than other nodes. In the
case of the hierarchical decomposition described in this paper, nodes that feature
a significant difference in colour intensity when compared to their parent node are
deemed to be more significant (than the parent). The underpinning philosophy
here is that normal retinal background pixels have a similar colour intensity,
while a significant difference in intensity is likely to indicate the presence of
drusen. A weighting scheme was therefore applied to the tree representation so
as to enhance the quality of the information contained within it. Thus, in the
tree representation, the strength of each node v ∈ V was weighted by the average
colour intensity value of the region represented by that node v, and the strength
of each edge e ∈ E, ew, is weighted by:

ew =
√

(Ipar − Iv)2 (7)

where Iv is the average colour intensity value for node v and Ipar is the average
colour intensity value for v’s parent.

By adding node and edge weights into the tree representation, the weighted
tree representation was able to capture more image information than the un-
weighted one. A weighted Frequent Sub-Tree (wFST) mining algorithm, an ex-
tension of the well-known gSpan algorithm [27], was then applied to the tree data
so as to identify frequently occurring trees within the dataset. The wFST algo-
rithm operated in a similar manner to that described in [18], but utilised both
node and edge weightings. In the context of wFST mining, a sub-graph pattern
g is considered to be “interesting”, if it satisfies the following two conditions:

(C1)Nwr × sup(g) ≥ σ, (C2)Ewr ≥ λ (8)

Where: Nwr denotes the node weighting, sup(g) denotes the support (i.e. fre-
quency) of g, and σ denotes a minimum support threshold, Ewr denotes the edge
weighting, and λ denotes a minimum weight threshold. Both the Nwr and Ewr

are computed using a similar scheme to that described in [18].
The number of patterns discovered by the wFST mining algorithm is thus de-

termined by both the σ and λ values. According to initial experiments conducted
by the authors, relatively low σ and λ values are required, in order to extract
a sufficient number of image features (frequent sub-trees). However, setting low
threshold values results in a substantial number of patterns, of which many are
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redundant in terms of the desired classification. Therefore, feature selection was
applied to the discovered patterns, this is discussed in the following subsection.

4.3 Feature Selection

For the AMD application the number of identified wFSTs was substantial, us-
ing low threshold values tens of thousands of wFSTs were identified. To reduce
the number of wFSTs to a manageable number a feature selection strategy was
applied so as to identify those wFSTs that displayed a strong discriminatory
power, which would consequently be able to produce good classification results.
A feature ranking mechansim was therefore used, with respect to the AMD appli-
cation, that used linear Support Vector Machine (SVM) weights to rank features
as proposed in [5]. The main advantage of this approach is its implementation
simplicity and effectiveness in determining relevant features. The identified wF-
STs were ranked by first calculating their weights using the L2-regularized L2-
loss SVM model, and then sorting them in descending order according to their
absolute value [10,16]. The selection of only the top K wFSTs for classification
then concluded the feature selection process.

4.4 Classification Technique

The final stage of the proposed retinal image classification process was the clas-
sification stage. The identified top K wFSTs were used to define a feature space.
Each image was then defined, in terms of this feature space, using a feature
vector representation. Any appropriate classification technique could then be
applied. In the reported experiments (Section 5), two different classifier genera-
tion techniques were used, Näıve Bayes [26] and Support Vector Machine (SVM)
[7]. Näıve Bayes was selected because: (i) it works very well when tested on data
with independent attributes [26], and (ii) it does not require user defined param-
eters. SVM on the other hand was chosen because it is frequently acknowledged
to be one of the most effective classification method in machine learning. In this
paper, the Näıve Bayes classifier available in Weka [26] was used. The second
classifier was built using LibSVM [4] with a radial basis function kernel.

5 Evaluation

The proposed AMD screening approach was applied to two retinal fundus images
datasets, ARIA1 and STARE2. The ARIA dataset comprises 161 images, of
which 101 were AMD and 60 were normal images. The STARE dataset comprised
97 images, of which 59 were AMD and 38 were normal images. The datasets were
merged to create an image set comprising 258 images, of which 160 featured AMD
and 98 were normal. Sensitivity, specificity and accuracy were used to measure
the classification performance.
1 http://www.eyecharity.com/aria_online/
2 http://www.ces.clemson.edu/~ahoover/stare

http://www.eyecharity.com/aria_online/
http://www.ces.clemson.edu/~ahoover/stare
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In the experiments three values for Dmax were used: 5, 6 and 7. The threshold
for node splitting, τ , was set to 2.5%. To train the LibLINEAR (for feature
selection task) and LibSVM classifiers, the default values for the user defined
parameters used in Weka were applied, except for the soft margin parameter C
and gamma parameter γ which were determined using the parameter selection
tool provided with LibLINEAR and LibSVM [4]. The aim of the experiments was
to evaluate: (i) the effect of the value of Dmax on the classification results, (ii)
how feature selection improved the classification performance, and (iii) how well
the proposed approach’s performance compared with other AMD classification
techniques. Most of the reported experiments were conducted using Ten-fold
Cross Validation (TCV).

5.1 Performances Using Different Levels of Decomposition

Tables 1 and 2 shows the performances of the proposed approach when using
the three different levels of decomposition (values for Dmax) and using Näıve
Bayes and LibSVM respectively. Feature selection was not applied in these ex-
periments. Minimum support, σ was used to prune the candidate sub-trees, while
the minimum weight, λ was used to further reduce the number of identified fre-
quent sub-trees according to their edge weights. F denotes the size of the feature
space in terms of the number of identified frequent sub-trees, while Sens, Spec
and Acc refers to sensitivity, specificity and accuracy. Each σ value was tested
against a range of λ values (20, 40, 60 and 80), however in the table (because of
space limitations) only the best performing λ value associated with each σ value
is recorded.

Table 1. TCV Classification results obtained using different levels of decomposition
and Näıve Bayes

σ 5 6 7
(%) λ F Sens Spec Acc λ F Sens Spec Acc λ F Sens Spec Acc

10 40 764 65 60 63 20 7125 64 53 60 80 3433 66 42 57

20 60 291 68 51 62 80 498 70 42 59 80 3433 66 42 57

30 60 291 68 51 62 20 1746 66 49 60 80 3433 66 42 57

40 20 248 66 48 59 80 498 70 42 59 80 3433 66 42 57

50 20 181 69 45 60 80 498 70 42 59 80 3433 66 42 57

60 20 130 67 46 59 20 559 69 45 60 20 3893 66 42 57

70 20 99 69 33 55 20 404 68 34 55 20 2623 69 41 58

80 20 71 80 13 55 20 283 72 27 55 20 1706 70 36 57

90 20 55 86 16 60 20 180 79 22 58 20 955 72 28 55

Inspect of Tables 1 and 2 indicates that the best accuracy was achieved us-
ing Dmax = 5 (63% and 70%). The best sensitivity and specificity were 86%
and 60% (Näıve Bayes) and 100% and 43% (LibSVM) respectively. The best
sensitivity and specificity for both classifiers occurred using different σ and λ
values (but again with Dmax = 5). Experiments were also conducted using an
unweighted FST mining algorithm (gSpan), however these indicated that the
memory requirements and runtime deemed to be unacceptable.
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Table 2. TCV Classification results obtained using different levels of decomposition
and LibSVM

σ 5 6 7
(%) λ F Sens Spec Acc λ F Sens Spec Acc λ F Sens Spec Acc

10 40 764 86 43 70 20 7125 87 39 69 60 11461 96 15 66

20 20 594 89 37 69 20 3103 91 30 68 60 11461 96 15 66

30 20 365 95 16 65 60 1358 89 33 68 60 11461 96 15 66

40 80 118 100 0 62 20 1135 92 30 68 20 9043 97 8 63

50 80 118 100 0 62 20 779 94 11 62 80 3433 96 8 63

60 20 130 83 30 63 20 559 99 1 62 20 3893 96 11 64

70 20 99 99 4 63 20 404 98 0 60 20 2623 99 4 63

80 20 71 100 0 62 20 283 100 1 62 20 1706 97 8 63

90 20 55 99 3 63 20 180 100 0 62 20 955 96 10 63

5.2 Performances of AMD Classification According to the Size of
the Identified Feature Space

Tables 3 and 4 shows the performances of the proposed approach with respect to
different values of K, using Näıve Bayes and LibSVM respectively. Recall that
the size of the feature space was determined by selecting only the top K features
defined as a percentage (P ) of |F | where F is the set of features. Experiments
using five different P values were conducted: 0.05, 0.1, 0.2, 0.4 and 0.6. However,
only the results using a Dmax = 7 and P values of 0.05, 0.1 and 0.4 are presented
in the tables because these produced the best classification performances with
respect to both classifiers. Inspection of the tables indicates how the performance
changes as the size of the feature space is reduced.

Table 3. TCV Classification results using feature selection, a decomposition level
(Dmax) of 7, and Näıve Bayes

σ P0.05 P0.1 P0.4

(%) λ K Sens Spec Acc λ K Sens Spec Acc λ K Sens Spec Acc

10 20 3671 94 96 95 20 7342 92 92 92 40 16278 73 67 71

20 20 1407 91 93 91 20 2814 88 82 85 20 11257 71 65 68

30 20 748 88 82 85 20 1496 86 78 83 20 5983 71 61 67

40 20 452 85 80 83 20 904 84 72 79 20 3618 71 56 65

50 20 291 85 72 80 80 343 86 64 78 20 2330 73 52 65

60 20 195 84 68 78 20 389 86 67 78 20 1558 76 51 66

70 20 131 83 63 75 20 262 83 56 72 20 1050 74 47 64

80 20 85 82 45 68 20 171 81 50 69 20 683 74 45 63

90 20 48 83 37 65 20 96 84 41 67 20 382 78 37 62

Tables 3 and 4 demonstrate that the best results were obtained using lower
numbers of features, where P = 0.05 and K = 3671. The best accuracy for
Näıve Bayes was 95% while LibSVM recorded a full 100% accuracy. The highest
sensitivity and specificity was 100% (LibSVM). High sensitivity and specificity
were also achieved using the Näıve Bayes classifier with a corresponding accuracy
of 94% and 96% respectively. All of the best results were generated using σ = 10%
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Table 4. TCV Classification results using feature selection, a decomposition level
(Dmax) of 7, and LibSVM

σ P0.05 P0.1 P0.4

(%) λ K Sens Spec Acc λ K Sens Spec Acc λ K Sens Spec Acc

10 20 3671 100 100 100 20 7342 100 100 100 40 16278 99 81 92

20 80 172 100 0 62 80 343 100 0 62 60 4585 99 8 65

30 20 748 99 80 92 20 1496 99 94 97 20 5983 98 70 87

40 80 172 100 0 62 80 172 100 0 62 80 1374 99 5 64

50 20 291 97 54 81 20 583 96 84 91 20 2330 95 56 80

60 80 172 100 0 62 80 172 100 0 62 80 1374 99 5 64

70 20 131 100 0 62 20 262 100 0 62 20 1050 100 2 63

80 20 85 100 0 62 20 171 100 1 62 20 683 99 6 64

90 20 48 100 0 62 20 96 100 1 62 20 382 98 10 65

and λ = 20% were applied. The accuracy increased as the σ value decreased
for all K values. The results produced show that the larger the feature space
the better the classification performance. It should be noted that the results
reported in Subsection 5.1, where feature selection was not applied are not as
good as those reported here. Feature selection clearly improves the classification
performance.

5.3 Performance Comparison of AMD Classification Using Various
Classification Techniques

Table 5 compares the classification results obtained using the spatial histogram
based approach [14] referred to earlier in Section 2 and the AMD screening ap-
proach proposed in this paper using the LibSVM classifier. Both approaches were
applied to the ARIA dataset. The parameters were set to: σ = 30%, λ = 20%
and Dmax = 7. These values were chosen as they produced the best classification
results through series of experiments conducted. The results clearly indicate the
superiority of the proposed approach.

Table 5. Comparison of proposed AMD screening approach with alternative histogram
based approach

Approach Features Sensitivity Specificity Accuracy

Histogram based [14] 640 86 56 74

Proposed approach 1354 100 100 100

Table 6 compares the performance of the proposed approach with other re-
ported approaches: Barriga et al. [2], Chaum et al. [6] and Brandon and Hoover
[3]. For comparison we also used the leave-one-out testing method used by them.
The reported results in [2] were generated using the drusen classification tech-
nique described in [1]. For this experiment, the proposed approach utilised the
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Table 6. Comparison of proposed AMD screening approach with alternative
approaches

Approach Dataset size Sensitivity Specificity Accuracy

Barriga et al. [2] 100 75 50 -

Brandon and Hoover [3] 97 - - 87

Chaum et al. [6] 395 - - 88

Proposed approach 258 89 99 93

Näıve Bayes classifier with σ = 10% and λ = 20% (K = 3671). A decomposition
level of Dmax = 7 was used.

Table 6 includes some missing values because these were not reported in the
literature and could not be derived by the authors. The result obtained by Bar-
riga et al. [2] only reported sensitivity and specificity. On the other hand, the
work of Brandon and Hoover [3] only reported accuracy3, no sensitivity and
specificity values were reported. It should also be noted that the approach of
Chaum et al. [6] was actually applied in a multi-class setting, of which 12 of
the AMD images were classified as “unknown” and excluded from the accuracy
calculation (if included this would give an accuracy of 75%). Overall, the results
demonstrate that the proposed AMD screening approach outperforms the other
approaches by 14% (sensitivity), 49%(specificity) and 5% (accuracy).

6 Conclusions

An AMD screening approach founded on a hierarchical circular and angular
image decomposition technique has been described. The decomposition results
in a tree data structure to which a weighted tree mining technique was applied
so as to identify frequent occurring sub-trees. The generated weighted frequent
sub-trees were then used to recast the input data (the training set) into a fea-
ture vector representation. AMD classifiers were then built using the feature
vector representation as the input data. For evaluation purpose the proposed
approach was applied to retinal fundus images data from two publically avail-
able databases. A 100% accuracy was produced using the LibSVM classifier. A
more straightforward and parameter-free classification technique, Näıve Bayes,
was also experimented with and also generated good results (95% accuracy).
Further experiments demonstrated the superiority of the proposed approach
compared to some other reported techniques for AMD detection. Our current
work is directed at extending the proposed approach to address multi-class prob-
lems. The authors are also interested in grading the severity of AMD, as well as
using the approach for the screening of other retinal diseases, such as diabetic
retinopathy.

3 http://www.parl.clemson.edu/stare/drusen/

http://www.parl.clemson.edu/stare/drusen/
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Abstract. Most existing learning methods for Markov Logic Networks
(MLNs) use batch training, which becomes computationally expensive
and eventually infeasible for large datasets with thousands of training
examples which may not even all fit in main memory. To address this
issue, previous work has used online learning to train MLNs. However,
they all assume that the model’s structure (set of logical clauses) is given,
and only learn the model’s parameters. However, the input structure
is usually incomplete, so it should also be updated. In this work, we
present OSL—the first algorithm that performs both online structure
and parameter learning for MLNs. Experimental results on two real-
world datasets for natural-language field segmentation show that OSL
outperforms systems that cannot revise structure.

1 Introduction

Statistical relational learning (SRL) concerns the induction of probabilistic knowl-
edge that supports accurate prediction for multi-relational structured data [9].
Markov Logic Networks (MLNs) [28], sets of weighted clauses in first-order logic,
are a recently developed SRL model that generalizes both full first-order logic
and Markov networks which makes MLNs an expressive and powerful formalism.
MLNs have also been successfully applied to a variety of real-world problems [4].

However, all existing methods for learning the structure (i.e. logical clauses)
of an MLN [13,21,1,14,15] are batch algorithms that are effectively designed for
training data with relatively few mega-examples [20]. A mega-example is a large
set of connected facts, and mega-examples are disconnected and independent
from each other. For instance, in WebKB [30], there are four mega-examples,
each of which contains data about a particular university’s computer-science de-
partment’s web pages of professors, students, courses, research projects and the
hyperlinks between them. However, there are many real-world problems with a
different character — involving data with thousands of smaller structured ex-
amples. For example, a standard dataset for semantic role labeling consists of
90, 750 training examples where each example is a verb and all of its semantic
arguments in a sentence [2]. In addition, most existing weight learning methods
for MLNs employ batch training where the learner must repeatedly run inference

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 81–96, 2011.
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over all training examples in each iteration, which becomes computationally ex-
pensive for datasets with thousands of training examples. To address this issue,
previous work has applied online learning to set MLN weights [29,22,11]; how-
ever, to the best of our knowledge, there is no existing online structure learning
algorithm for MLNs.

In this work, we present the first online structure learner for MLNs, called
OSL, which updates both the structure and parameters. At each step, based
on the model’s incorrect predictions, OSL finds new clauses that fix these er-
rors, then uses an adaptive subgradient method with l1-regularization to update
weights for both old and new clauses. Experimental results on natural language
field segmentation on two real-world datasets show that OSL is able to find useful
new clauses that improve the predictive accuracies of well-developed MLNs.

The remainder of the paper is organized as follows. Section 2 provides some
background on MLNs and the field segmentation task. Section 3 presents our
proposed algorithm. Section 4 reports the experimental evaluation on two real-
world datasets. Section 5 and 6 discuss related and future work, respectively.
Section 7 presents our conclusions.

2 Background

2.1 Terminology and Notation

There are four types of symbols in first-order logic: constants, variables, predi-
cates, and functions [8]. Here, we assume that domains do not contain functions.
Constants represent entities in the domain and can have types. Variables range
over entities in the domain. Predicates represent properties and relations in the
domain and each has a fixed number of arguments. Each argument can have
a type specifying the type of constant that can fill it. We denote constants by
strings starting with upper-case letters, and variables by strings starting with
lower-case letters. A term is a constant or a variable. An atom is a predicate ap-
plied to terms. A ground atom is an atom all of whose arguments are constants.
A positive literal is an atom, and a negative literal is a negated atom. A (pos-
sible) world is an assignment of truth values to all ground atoms in a domain.
A formula consists of literals connected by logical connectives (i.e. ∨ and ∧). A
formula in clausal form, also called a clause, is a disjunction of literals.

For mathematical terms, we use lower case letters (e.g. η, λ) to denote scalars,
bold face letters (e.g. x, y, w) to denote vectors, and upper case letters (e.g.
W, X) to denote sets. The inner product between vectors w and x is denoted
by 〈w, x〉. The [a]+ notation denotes a truncated function at 0, i.e. [a]+ =
max(a, 0).

2.2 MLNs

An MLN consists of a set of weighted first-order clauses. It provides a way
of softening first-order logic by making situations in which not all clauses are
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satisfied less likely but not impossible [28]. More formally, let X be the set of all
ground atoms, C be the set of all clauses in the MLN, wi be the weight associated
with clause ci ∈ C, Gci be the set of all possible groundings of clause ci. Then
the probability of a possible world x is defined as [28]:

P (X = x) =
1
Z

exp

⎛⎝∑
ci∈C

wi

∑
g∈Gci

g(x)

⎞⎠ =
1
Z

exp

(∑
ci∈C

wini(x)

)

where g(x) is 1 if g is satisfied and 0 otherwise, ni(x) =
∑

g∈Gci

g(x) is the number

of true groundings of ci in the possible world x, and Z =
∑
x∈X

exp
(∑

ci∈C wini(x)
)

is the normalization constant.
In many applications, we know a priori which predicates provide evidence and

which are used in queries, and the goal is to correctly predict query atoms given
evidence atoms. If we partition the ground atoms in the domain into a set of
evidence atoms X and a set of query atoms Y, then the conditional probability
of y given x is:

P (Y = y|X = x) =
1

Zx
exp

(∑
ci∈C

wini(x,y)

)

where ni(x,y) is the number of true groundings of ci in the possible world (x,y)
and Zx =

∑
y∈Y

exp
(∑

ci∈C wini(x,y)
)

is the normalization constant.

2.3 Natural Language Field Segmentation

In this work, we look at an information extraction task, called field segmentation
[10], a sample real-world problem where the data contains many, relatively small,
structured examples in the form of short documents. A document is represented
as a sequence of tokens, and the goal is to segment the text into fields, i.e.
label each token in the document with a particular field. For example, when
segmenting advertisements for apartment rentals [10], the goal is to segment
each ad into fields such as Features, Neighborhood, Rent, Contact, etc.. Below
are descriptions of some key predicates:

– Token(string, position, docID): the token at a particular position in a doc-
ument such as Token(Entirely, P4, Ad001)

– InF ield(field, position, docID): the field label of the token at a particular
position in a document such as InF ield(Features, P4, Ad001)

– Next(position, position): the first position is next to the second, such as
Next(P01, P02)

InF ield is a target predicate, the rest are evidence predicates.
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3 Online Max-Margin Structure and Parameter Learning

In this section, we describe our new online max-margin learning algorithm,
OSL, for updating both the structure and parameters of an MLN. In each step,
whenever the model makes wrong predictions on a given example, based on the
wrongly predicted atoms the algorithm finds new clauses that discriminate the
ground-truth possible world from the predicted one, then uses an adaptive sub-
gradient method with l1-regularization to update weights for both old and new
clauses. Algorithm 1 gives the pseudocode for OSL. Lines 3 to 20 are pseudocode
for structure learning and lines 21 to 35 are pseudocode for parameter learning.

3.1 Online Max-Margin Structure Learning with Mode-Guided
Relational Pathfinding

Most existing structure learning algorithms for MLNs only consider ground-
truth possible worlds and search for clauses that improve the likelihood of those
possible worlds. However, these approaches may spend a lot of time exploring
unhelpful clauses that are true in most possible worlds. Therefore, instead of
only considering ground-truth possible worlds, OSL also takes into account the
predicted possible worlds, i.e. the most probable possible worlds predicted by
the current model. At each step, if the predicted possible world is different from
the ground-truth one, then OSL focuses on where the two possible worlds differ
and searches for clauses that differentiate them. This is related to the idea of
using implicit negative examples in inductive logic programming (ILP) [34]. In
this case, each ground-truth possible world plays the role of a positive example
in traditional ILP. Making a closed world assumption [8], any possible world that
differs from the ground-truth possible world is incorrect and can be considered as
a negative example (the predicted possible world in this case). In addition, this
follows the max-margin training criterion which focuses on discriminating the
true label (the ground-truth possible world) from the most probable incorrect
one (the predicted possible world) [33].

At each time step t, OSL receives an example xt, produces the predicted label
yP

t = argmaxy∈Y〈wC, nC(xt,y)〉, then receives the true label yt. Given yt and
yP

t , in order to find clauses that separate yt from yP
t , OSL first finds atoms that

are in yt but not in yP
t , Δyt = yt \ yP

t . Then OSL searches the ground-truth
possible world (xt,yt) for clauses that are specific to the true ground atoms in
Δyt.

A simple way to find useful clauses specific to a set of atoms is to use re-
lational pathfinding [27], which considers a relational example as a hypergraph
with constants as nodes and true ground atoms as hyperedges connecting the
nodes that are its arguments, and searches in the hypergraph for paths that
connect the arguments of an input literal. A path of hyperedges corresponds
to a conjunction of true ground atoms connected by their arguments and can
be generalized into a first-order clause by variabilizing their arguments. Start-
ing from a given atom, relational pathfinding searches for all paths connecting
the arguments of the given atom. Therefore, relational pathfinding may be very



Online Structure Learning for Markov Logic Networks 85

slow or even intractable when there are a large (exponential) number of paths.
To speed up relational pathfinding, we use mode declarations [23] to constrain
the search for paths. As defined in [23], mode declarations are a form of lan-
guage bias to constrain the search for definite clauses. Since our goal is to use
mode declarations for constraining the search space of paths, we introduce a new
mode declaration: modep(r, p) for paths. It has two components: a recall number
r which is a positive integer, and an atom p whose arguments are place-makers.
A place-maker is either ‘+’ (input), ‘-’ (output), or ‘.’ (don’t explore). The recall
number r limits the number of appearances of the predicate p in a path to r. The
place-maker restricts the search of relational pathfinding. Only paths connecting
‘input’ or ‘output’ nodes will be considered. A ground atom can only added to
a path if one of its arguments has previously appeared as ‘input’ or ‘output’
arguments in the path and all of its ‘input’ arguments are ‘output’ arguments
of previous atoms. Here are some examples of mode declarations for paths:

modep(2, T oken(., +, .)) modep(1, Next(−,−)) modep(2, InF ield(.,−, .)

The above mode declarations require that a legal path contains at most two
ground atoms of each of the predicates Token and InF ield and one ground
atom of the predicate Next. Moreover, the second argument of Token is an ‘in-
put’ argument; the second argument of InF ield and all arguments of Next are
‘output’ arguments. Note that, in this case, all ‘input’ and ‘output’ arguments
are of type position. These ‘input’ and ‘output’ modes constrain that the position
constants in atoms of Token must appeared in some previous atoms of Next or
InF ield in a path. From the graphical model perspective, these mode declara-
tions restrict the search space to linear chain CRFs [31] since they constrain the
search to paths connecting ground atoms of two consecutive tokens. It is easy
to modify the mode declarations to search for more complicated structure. For
example, if we increase the recall number of Next to 2 and the recall number of
InF ield to 3, then the search space is constrained to second-order CRFs since
they constrain the searches to paths connecting ground atoms of three consec-
utive tokens. If we add a new mode declaration modep(1, LessThan(−,−)) for
the predicate LessThan, then the search space becomes skip-chain CRFs [31].
Algorithm 2 presents the pseudocode for efficiently constructing a hypergraph
based on mode declarations by only constructing the hypergraph corresponding
to input and output nodes. Algorithm 3 gives the pseudocode for mode-guided
relational pathfinding, ModeGuidedF indPaths, on the constructed hypergraph.
It is an extension of a variant of relational pathfinding presented in [14].1 Start-
ing from each true ground atom r(c1, ..., cr) ∈ Δyt, it recursively adds to the
path ground atoms or hyperedges that satisfy the mode declarations. Its search
terminates when the path reaches a specified maximum length or when no new
hyperedge can be added. The algorithm stores all the paths encountered during
the search. Below is a sample path found by the algorithm:
1 In this variant, a path does not need to connect arguments of the input atom. The

only requirement is that any two consecutive atoms in a path must share at least
one argument.
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{InF ield(Size, P29, Ad001), Token(And, P29, Ad001), Next(P29, P30),
Token(Spacious, P30, Ad001) InF ield(Size, P30, Ad001)}

A standard way to generalize paths into first-order clauses is to replace each
constant ci in a conjunction with a variable vi. However, for many tasks such
as field segmentation, it is critical to have clauses that are specific to a par-
ticular constant. In order to create clauses with constants, we introduce mode
declarations for creating clauses: modec(p). This mode declaration has only one
component which is an atom p whose arguments are either ‘c’ (constant) or ‘v’
(variable). Below are some examples of mode declarations for creating clauses:

modec(Token(c, v, v)) modec(Next(v, v)) modec(InF ield(c, v, v)

Based on these mode declarations, OSL variablizes all constants in a conjunc-
tion except those are declared as constants. Then OSL converts the conjunction
of positive literals to clausal form since this is the form used in Alchemy.2 In
MLNs, a conjunction of positive literals with weight w is equivalent to a clause
of negative literals with weight −w. Previous work [14,15] found that it is also
useful to add other variants of the clause by flipping the signs of some literals in
the clause. Currently, we only add one variant—a Horn version of the clause by
only flipping the first literal, the one for which the model made a wrong predic-
tion. In summary, for each path, OSL creates two type of clauses: one with all
negative literals and one in which only the first literal is positive. For example,
from the sample path above, OSL creates the following two clauses:

¬InF ield(Size, p1, a) ∨ ¬Token(And, p1, a) ∨ ¬Next(p1, p2) ∨
¬Token(Spacious, p2, a) ∨ ¬InF ield(Size, p2, a)

InF ield(Size, p1, a) ∨ ¬Token(And, p1, a) ∨ ¬Next(p1, p2) ∨
¬Token(Spacious, p2, a) ∨ ¬InF ield(Size, p2, a)

Finally, for each new clause c, OSL computes the difference in the number of
true groundings of c in the ground-truth possible world (xt,yt) and the predicted
possible world (xt,yP

t ), Δnc = nc(xt,yt)−nc(xt,yP
t ). Then, only clauses whose

difference in number of true groundings is greater than or equal to a predefined
threshold minCountDiff will be added to the existing MLN. The smaller the
value of minCountDiff, the more clauses will be added to the existing MLN at
each step.

3.2 Online Max-Margin l1-Regularized Weight Learning

The above online structure learner may introduce a lot of new clauses in each
step, and some of them may not be useful in the long run. To address this is-
sue, we use l1-regularization which has a tendency to force parameters to zero

2 The standard software for MLNs: alchemy.cs.washington.edu

alchemy.cs.washington.edu
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Algorithm 1. OSL
Input: C: initial clause set (can be empty)

mode: mode declaration for each predicate
maxLen: maximum number of hyperedges in a path
minCountDiff : minimum number of difference in true groundings for selecting

new clauses
λ, η, δ: parameters for the l1-regularization adaptive subgradient method
ρ(y,y′): label loss function

Note: Index H maps from each node γi to set of hyperedges r(γ1, ..., γi, ..., γn)
containing γi

Paths is a set of paths, each path is a set of hyperedges
1: Initialize: wC = 0, gC = 0, nc = |C|
2: for i = 1 to T do
3: Receive an instance xt

4: Predict yP
t = arg maxy∈Y〈wC , nC(xt,y)〉

5: Receive the correct target yt

6: Compute Δyt = yt \ yP
t

7: if Δyt �= ∅ then
8: H = CreateHG((xt,yt), mode)
9: Paths = ∅

10: for each true atom r(c1, ..., cr) ∈ Δyt do
11: V = ∅
12: for each ci ∈ {c1, ..., cr} do
13: if isInputOrOutputVar(ci,mode) then
14: V = V ∪ {ci}
15: end if
16: end for
17: ModeGuidedF indPaths({r(c1, ..., cr)}, V, H,mode, maxLen,Paths)
18: end for
19: end if
20: Cnew = CreateClauses(C, Paths, mode)
21: Compute ΔnC , ΔnCnew :
22: ΔnC = nC(xt,yt)− nC(xt,y

P
t )

23: ΔnCnew = nCnew (xt,yt)− nCnew (xt,y
P
t )

24: for i = 1 to |C| do
25: gC,i = gC,i + ΔnC,i ∗ΔnC,i

26: wC,i = sign
(
wC,i + η

δ+
√

gC,i
ΔnC,i

) [∣∣∣wC,i + η
δ+

√
gC,i

ΔnC,i

∣∣∣ − λη
δ+

√
gC,i

]
+

27: end for
28: for i = 1 to |Cnew| do
29: if ΔnCnew,i ≥ minCountDiffer then
30: C = C ∪ Cnew,i

31: nc = nc + 1
32: gC,nc = ΔnCnew,i ∗ΔnCnew,i

33: wC,nc =
[

η
δ+

√
gC,nc

(ΔnCnew,i − λ)
]
+

34: end if
35: end for
36: end for



88 T.N. Huynh and R.J. Mooney

Algorithm 2. CreateHG(D,mode)
Input: D: a relational example

mode: mode declaration file
1: for each constant c in D do
2: H [c] = ∅
3: end for
4: for each true ground atom r(c1, ..., cr) ∈ D do
5: for each constant ci ∈ {c1, ..., cr} do
6: if isInputOrOutputVar(ci,mode) then
7: H [ci] = H [ci] ∪ {r(c1, ..., cr)}
8: end if
9: end for

10: end for
11: return H

Algorithm 3. ModeGuidedF indPaths(CurrPath, V, H, mode, maxLen, Paths)
1: if |CurrPath| < maxLen then
2: for each constant c ∈ V do
3: for each r(c1, ..., cr) ∈ H [c] do
4: if canBeAdded(r(c1, ..., cr), CurrPath,mode) == success then
5: if CurrPath /∈ Paths then
6: CurrPath = CurrPath ∪ {r(c1, ..., cr)}
7: Paths = Paths ∪ {CurrPath}
8: V ′ = ∅
9: for each ci ∈ {c1, ..., cr} do

10: if ci /∈ V and isInputOrOutputVar(ci,mode) then
11: V = V ∪ {ci}
12: V ′ = V ′ ∪ {ci}
13: end if
14: end for
15: ModeGuidedF indPaths(CurrPath,V, H,mode, maxLen,Paths)
16: CurrPath = CurrPath \ {r(c1, ..., cr)}
17: V = V \ V ′

18: end if
19: end if
20: end for
21: end for
22: end if
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by strongly penalizing small terms [18]. We employ a state-of-the-art online l1-
regularization method—ADAGRAD FB which is a l1-regularized adaptive sub-
gradient method using composite mirror-descent update [6]. At each time step
t, it updates the weight vector as follows:

wt+1,i = sign

(
wt,i − η

Ht,ii
gt,i

)[∣∣∣∣wt,i − η

Ht,ii
gt,i

∣∣∣∣− λη

Ht,ii

]
+

(1)

where λ is the regularization parameter, η is the learning rate, gt is the subgra-

dient of the loss function at step t, and Ht,ii = δ + ||g1:t,i||2 = δ +
√∑t

j=1(gj,i)2

(δ ≥ 0). Note that, ADAGRAD FB assigns a different step size, η
Ht,ii

, for each
component of the weight vectors. Thus, besides the weights, ADAGRAD FB
also needs to retain the sum of the squared subgradients of each component.

From the equation 1, we can see that if a clause is not relevant to the current
example (i.e. gt,i = 0) then ADAGRAD FB discounts its weight by λη

Ht,ii
. Thus,

irrelevant clauses will be zeroed out in the long run.
Regarding the loss function, we use the prediction-based loss function lPL

[11], a simpler variant of the max-margin loss:

lPL(wC, (xt,yt)) =
[
ρ(yt,yP

t ) − 〈
wC,

(
nC(xt,yt) − nC(xt,yP

t )
)〉]

+

The subgradient of lPL is:

gPL = nC(xt,yPL
t ) − nC(xt,yt) = − [nC(xt,yt) − nC(xt,yPL

t )
]

= −ΔnC

Substituting the gradient into equation 1, we obtain the following formulae for
updating the weights of old clauses:

gC,i = gC,i + (ΔnC,i)2

wC,i ← sign

(
wC,i +

η

δ +
√

gC,i
ΔnC,i

) [∣∣∣∣wC,i +
η

δ +
√

gC,i
ΔnC,i

∣∣∣∣ − λη

δ +
√

gC,i

]
+

For new clauses, the update formulae are simpler since all the previous weights
and gradients are zero:

gC,nc = (ΔnCnew,i )
2

wC,nc =
[

η

δ + √gC,nc
(ΔnCnew,i − λ)

]
+

Lines 24 − 27 in Algorithm 1 are the pseudocode for updating the weights of
existing clauses, and lines 28 − 35 are the pseudocode for selecting and setting
weights for new clauses.

4 Experimental Evaluation

In this section, we conduct experiments to answer the following questions:
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1. Starting from a given MLN, does OSL find new useful clauses that improve
the predictive accuracy?

2. How well does OSL perform when starting from an empty knowledge base?
3. How does OSL compare to LSM, the state-of-the-art batch structure learner

for MLNs [15] ?

4.1 Data

We ran experiments on two real world datasets for field segmentation: CiteSeer[17],
a bibliographic citation dataset, and Craigslist [10], an advertisements dataset.

The CiteSeer dataset3 contains 1, 563 bibliographic citations. The dataset has
four disjoint subsets consisting of citations in four different research areas. The
task is to segment each citation into three fields: Author, Title and Venue.

The Craigslist dataset4 consists of advertisements for apartment rentals posted
on Craigslist. There are 8, 767 ads in the dataset, but only 302 of them were la-
beled with 11 fields: Available, Address, Contact, Features, Neighborhood, Photos,
Rent, Restrictions, Roommates, Size, and Utilities. The labeled ads are divided
into 3 disjoint sets: training, development and test set. The number of ads in
each set are 102, 100, and 100 respectively. We preprocessed the data using reg-
ular expressions to recognize numbers, dates, times, phone numbers, URLs, and
email addresses.

4.2 Input MLNs

A standard model for sequence labeling tasks such as field segmentation is a
linear-chain CRF [16]. Thus, we employ an initial MLN, named LC 0, which
encodes a simple linear-chain CRF that uses only the current word as features:

Token(+t, p, c) ⇒ InF ield(+f, p, c)
Next(p1, p2) ∧ InF ield(+f1, p1, c) ⇒ InF ield(+f2, p2, c)

InF ield(f1, p, c) ∧ (f1! = f2) ⇒ ¬InF ield(f2, p, c).

The plus notation indicates that the MLN contains an instance of the first clause
for each (token, field) pair, and an instance of the second clause for each pair
of fields. Thus, the first set of rules captures the correlation between tokens and
fields, and the second set of rules represents the transitions between fields. The
third rule constrains that the token at a position p can be part of at most one
field.

For CiteSeer, we also use an existing MLN developed by Poon and Domingos
[26], called the isolated segmentation model (ISM).5 ISM is also a linear chain
CRF but includes more features than the simple model above. Like LC 0, ISM
also has rules that correlate the current words with field labels. For transition
3 We used the versions created by Poon and Domingos [26], which can be found at
http://alchemy.cs.washington.edu/papers/poon07

4 http://nlp.stanford.edu/~grenager/data/unsupie.tgz
5 http://alchemy.cs.washington.edu/mlns/ie/ie_base.mln

http://alchemy.cs.washington.edu/papers/poon07
http://nlp.stanford.edu/~grenager/data/unsupie.tgz
http://alchemy.cs.washington.edu/mlns/ie/ie_base.mln
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rules, ISM only captures transitions within fields and also takes into account
punctuation as field boundaries:

Next(p1,p2) ∧ ¬HasPunc(p1,c) ∧ InField(+f,p1,c) ⇒ InField(+f,p2,c)

In addition, ISM also contains rules specific to the citation domain such as “the
first two positions of a citation are usually in the author field”, “initials tend to
appear in either the author or the venue field”. Most of those rules are features
describing words that appear before or after the current word.

For Craigslist, previous work [10] found that it is only useful to capture the
transitions within fields and take into account the field boundaries, so we create a
version of ISM for Craigslist by removing clauses that are specific to the citation
domain. Thus, the ISM MLN for Craiglist is a revised version of the LC 0 MLN.
Therefore, we only ran experiments with ISM on Craigslist.

4.3 Methodology

To answer the questions above, we ran experiments with the following systems:

ADAGRAD FB-LC 0: Use ADAGRAD FB to learn weights for the LC 0
MLN.

OSL-M1-LC 0: Starting from the LC 0 MLN, this system runs a slow version
of OSL where the parameter minCountDiff is set to 1, i.e. all clauses whose
number of true groundings in true possible worlds is greater than those in
predicted possible worlds will be selected.

OSL-M2-LC 0: Starting from the LC 0 MLN, this system runs a faster version
of OSL where the parameter minCountDiff is set to 2.

ADAGRAD FB-ISM: Use ADAGRAD FB to learn weights for the ISM
MLN.

OSL-M1-ISM: Like OSL-M1-LC 0, but starting from the ISM MLN.
OSL-M2-ISM: Like OSL-M2-LC 0, but starting from the ISM MLN.
OSL-M1-Empty: Like OSL-M1-LC 0, but starting from an empty MLN.
OSL-M2-Empty: Like OSL-M2-LC 0, but starting from an empty MLN.

Regarding label loss functions, we use Hamming (HM) loss which is the standard
loss function for structured prediction [32,33].

For inference in training and testing, we used the exact MPE inference method
based on Integer Linear Programming described by Huynh and Mooney [12]. For
all systems, we ran one pass over the training set and used the average weight
vector to predict on the test set. For Craigslist, we used the original split for
training and test. For CiteSeer, we ran four-fold cross-validation (i.e. leave one
topic out). The parameters λ, η, δ of ADAGRAD FB were set to 0.001,1, and 1
respectively. For OSL, the mode declarations were set to constrain the search
space of relational pathfinding to linear chain CRFs in order to make exact
inference in training feasible; the maximum path length maxLen was set to 4;
the parameters λ, η, δ were set to the same values in ADAGRAD FB. All the
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Table 1. Experimental results for CiteSeer

Systems Avg. F1 Avg. train. time (min.) Avg. num. of non-zero clauses

ADAGRAD FB-LC 0 82.62± 2.12 10.40 2, 896
OSL-M2-LC 0 92.05± 2.63 14.16 2, 150
OSL-M1-LC 0 94.47± 2.04 163.17 9, 395
ADAGRAD FB-ISM 91.18± 3.82 11.20 1, 250
OSL-M2-ISM 95.51± 2.07 12.93 1, 548
OSL-M1-ISM 96.48± 1.72 148.98 8, 476
OSL-M2-Empty 88.94± 3.96 23.18 650
OSL-M1-Empty 94.03± 2.62 257.26 15, 212

Table 2. Experimental results for Craigslist

Systems F1 Train. time (min.) Num. of non-zero clauses

ADAGRAD FB-ISM 79.57 2.57 2, 447
OSL-M2-ISM 77.26 3.88 2, 817
OSL-M1-ISM 81.58 33.63 9, 575
OSL-M2-Empty 55.28 17.64 1, 311
OSL-M1-Empty 71.23 75.84 17, 430

parameters are set based on the performance on the Craigslist development set.
We used the same parameter values for CiteSeer.

Like previous work [26], to measure the performance of each system, we used
F1, the harmonic mean of the precision and recall, at the token level.

4.4 Results and Discussion

Table 1 shows the average F1 with their standard deviations, average training
times in minutes, and average number of non-zero clauses for CiteSeer. All results
are averaged over the four folds. First, either starting from LC 0 or ISM, OSL is
able to find new useful clauses that improve the F1 scores. For LC 0, comparing
to the system that only does weight learning, the fast version of OSL, OSL-M2,
increases the average F1 score by 9.4 points, from 82.62 to 92.05. The slow version
of OSL, OSL-M1, further improves the average F1 score to 94.47. For ISM, even
though it is a well-developed MLN, OSL is still able to enhance it. The OSL-
M1-ISM achieves the best average F1 score, 96.48, which is 2 points higher than
the current best F1 score achieved by using a complex joint segmentation model
that also uses information from matching multiple citations of the same paper
[26]. Overall, this answers question 1 affirmatively. Additionally, the results for
OSL-M2-Empty and OSL-M1-Empty shows that OSL also performs well when
learning from scratch. OSL-M1 even finds a structure that is more accurate than
ISM’s. All differences in F1 between OSL and ADAGRAD FB are statistically
significant according to a paired t-test (p < 0.05). Overall, this also answers
question 2 affirmatively.
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Regarding training time, OSL-M2 takes on average a few more minutes than
systems that only do weight learning. However, OSL-M1 takes longer to train
since including more new clauses results in longer time for constructing the
ground network, running inference, and computing the number of true ground-
ings. The last column of Table 1 shows the average number of non-zero clauses
in the final MLNs learned by different systems. These numbers reflect the size
of MLNs generated by different systems during training.

Table 2 shows the experimental results for Craigslist. The Craigslist segmenta-
tion task is much harder than CiteSeer’s due to the huge variance in the context
of different ads. As a result, most words only appear once or twice in the training
set. Thus the most important rules are those that correlate words with fields and
those capturing the regularity that consecutive words are usually in the same
field, which are already in ISM. In addition, most rules only appear once in a
document. That is why OSL-M2 is not able to find useful clauses, but OSL-M1
is able to find some useful clauses that improve the F1 score of ISM from 79.57
to 81.58. OSL also gives some promising results when starting from an empty
MLN.

To answer question 3, we ran LSM on CiteSeer and Craigslist but the MLNs
returned by LSM result in huge ground networks that made weight learning
infeasible even using online weight learning. The problem is that these natural
language problems have a huge vocabulary of words. Thus, failing to restrict
clauses to specific words results in a blow-up in the size of the ground network.
However, LSM is currently not able to learn clauses with constants. It is unclear
whether it is feasible to alter LSM to efficiently learn clauses with constants
since such constants may need to be considered individually which dramati-
cally increases the search space. This problem also holds for other existing MLN
structure learners [13,21,1,14].

Below are some sample useful clauses found by OSL-M2-ISM on CiteSeer:

– If the current token is in the Title field and it is followed by a period then it
is likely that the next token is in the Venue field.

InF ield(Ftitle, p1, c) ∧ FollowBy(p1, TPERIOD, c) ∧ Next(p1, p2) ⇒
InF ield(Fvenue, p2, c)

– If the next token is ‘in’ and it is in the Venue field, then the current token
is likely in the Title field

Next(p1, p2) ∧ Token(T in, p2, c) ∧ InF ield(Fvenue, p2, c) ⇒
InF ield(Ftitle, p1, c)

When starting from an empty knowledge base, OSL-M2 is able to discover the
regularity that consecutive words are usually in the same field:

Next(p1, p2) ∧ InF ield(Fauthor, p1, c) ⇒ InF ield(Fauthor, p2, c)
Next(p1, p2) ∧ InF ield(Ftitle, p1, c) ⇒ InF ield(Ftitle, p2, c)

Next(p1, p2) ∧ InF ield(Fvenue, p1, c) ⇒ InF ield(Fvenue, p2, c)
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5 Related Work

Our work is related to previous work on online feature selection for Markov Ran-
dom Fields (MRFs) [25,35]. However, our work differs in two aspects. First, this
previous work assumes all the training examples are available at the beginning
and only the features are arriving online, while in our work both the exam-
ples and features (clauses) are arriving online. Second, in this previous work, all
potential features are given upfront, while our approach induces new features
from each example. Thus, our work is also related to previous work on feature
induction for MRFs [3,19], but these are batch methods.

The idea of combining relational pathfinding with mode declarations has been
used in previous work [24,5]. However, how they are used is different. In [24],
mode declarations were used to transform a bottom clause into a directed hy-
pergraph where relational pathfinding was used to find paths. Similarly, in [5],
mode declarations were used to validate paths obtained from bottom clauses.
Here, mode declarations are first used to reduce the search space to paths that
contain ‘input’ and ‘output’ nodes. Then they are used to test whether an hyper-
edge can be added to an existing path. Finally, they are used to create clauses
with constants.

6 Future Work

OSL, especially OSL-M1, currently adds many new clauses at each step, which
significantly increases the computational cost. However, since OSL creates clauses
from all the paths encountered in the search, some of the short clauses are sub-
clauses of the long ones. So it may be better to only keep the long ones since
they have more information. Second, OSL currently does not use clauses in the
existing MLN to restrict the search space. So it would be useful to exploit this
information. Finally, it would be interesting to apply OSL to other learning
problems that involve data with many structured examples. For instance, other
natural-language problems such as semantic role labeling or computer-vision
problems such as scene understanding [7].

7 Conclusions

In this work, we present OSL, the first online structure learner for MLNs. At
each step, OSL uses mode-guided relational pathfinding to find new clauses that
fix the model’s wrong predictions. Experimental results on field segmentation
on two real-world datasets show that OSL is able to find useful new clauses
that improve the predictive accuracies of well-developed MLNs and also learned
effective MLNs from scratch.
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networks. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194,
pp. 59–76. Springer, Heidelberg (2008)
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ILP 2008. LNCS (LNAI), vol. 5194, pp. 91–106. Springer, Heidelberg (2008)

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Tech. rep., EECS Department, University of Califor-
nia, Berkeley (2010),
http://www.cs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html

7. Fei-Fei, L., Li, L.J.: What, Where and Who? Telling the Story of an Image by Ac-
tivity Classification, Scene Recognition and Object Categorization. In: Computer
Vision: Detection, Recognition and Reconstruction, pp. 157–171 (2010)

8. Genesereth, M.R., Nilsson, N.J.: Logical foundations of artificial intelligence.
Morgan Kaufmann, San Francisco (1987)

9. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

10. Grenager, T., Klein, D., Manning, C.D.: Unsupervised learning of field segmenta-
tion models for information extraction. In: Proc. of the 43nd Annual Meeting of
the Asso. for Computational Linguistics, ACL 2005 (2005)

11. Huynh, T.N., Mooney, R.J.: Online max-margin weight learning with Markov Logic
Networks. In: Proc. of the 2011 SIAM Int. Conf. on Data Mining (SDM 2011), pp.
642–651 (2011)

12. Huynh, T.N., Mooney, R.J.: Max-Margin Weight Learning for Markov Logic Net-
works. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
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Abstract. We compare two recently proposed approaches for representing prob-
ability distributions over the space of permutations in the context of multi-target
tracking. We show that these two representations, the Fourier approximation and
the information form approximation can both be viewed as low dimensional pro-
jections of a true distribution, but with respect to different metrics. We identify the
strengths and weaknesses of each approximation, and propose an algorithm for
converting between the two forms, allowing for a hybrid approach that draws on
the strengths of both representations. We show experimental evidence that there
are situations where hybrid algorithms are favorable.

1 Introduction

In this paper we consider the identity management problem which arises in a number
of multi-target tracking scenarios in computer vision and robotics. Typical multi-target
tracking systems maintain tracks of n people and the identity of the person correspond-
ing to each track. A successful tracking system must reason in the face of noisy evidence
events, in which an identity may be partially revealed to be at a particular track, as well
as mixing events, in which identities can be confused when tracks cross paths.

To handle this uncertainty algorithmically, identity management is formalized math-
ematically as a filtering problem for identity-to-track associations, in which one must
maintain a distribution over permutations. Since the space of permutations scales fac-
torially in the number of tracked objects, n, however, it is not tractable to explicitly
represent distributions over permutations for nontrivial n. Moreover, typical compact
representations, such as graphical models, are not effective due to the mutual exclusiv-
ity constraints associated with permutations.

To efficiently represent and reason with such distributions, researchers have turned
to a number of compact approximate representations. There are two competing method-
ologies in the identity management literature which have garnered the most attention
in the last decade: the Fourier theoretic approach [6,7,11], and the information theo-
retic approach [14,17]. Cosmetically, both methods seem similar in spirit — the Fourier
theoretic approach represents distributions over possible associations by maintaining
marginal probabilities involving small subsets of objects, while the information theo-
retic approach represents similar terms, but working with unnormalized log-probabilities.

Despite progress made on both approaches over the last several years, there has been
little work in unifying or even comparing the two approaches. In this paper we compare
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the Fourier and information approaches, drawing parallels between the two methods,
and contrasting their strengths and weaknesses. The main contributions of our work is
as follows:

1. Among the many parallels between the two representations, we identify an inter-
esting duality between the two types of events (mixing and evidence) that must
be processed during identity management. [6] showed that mixing events can be
handled within the Fourier representation without increasing representational com-
plexity, while evidence events always increase the representation complexity. We
show that the opposite is true for the information form representation — that while
evidence events can be handled without increased complexity, mixing events can-
not be handled exactly without increasing representation complexity. We also make
a connection between the two representations by viewing them as parametric rep-
resentation of projected distributions with different metrics.

2. We explore the problem of converting between the Fourier and information theo-
retic representations and show that the conversion problem is #P-hard, but that due
to recent advances in permanent approximation theory, approximate conversion is
possible in polynomial time.

3. Using our algorithm for converting between the two forms, we propose a hybrid
method that draws on the strengths of both representations and show experimental
evidence that there are situations where hybrid algorithms are favorable.

2 Probabilistic Identity Management

In identity management, we are interested in maintaining a distribution over possible
permutations which assign n identities to n tracks maintained by an internal tracker. We
denote permutations as σ , where σ(k) is the track belonging to the kth identity. Over
time, the distribution over permutations in identity management is subject to change
due to two causes: mixing events and observation events. In a mixing event, a subset
of people can walk too closely together, leading to confusion about the identity-to-
track associations for their respective tracks. This confusion is balanced by observation
events, in which, for example, the color of an individual’s clothing is captured by a
sensor, giving information about his or her identity.

Uncertainty over permutations in identity management can be modeled with a hid-
den Markov model, where the joint probability of a sequence of latent permutations
(σ (1) . . . ,σ (T )) and observed data (z(1), . . . ,z(T )) factors as:

h(σ (1), . . . ,σ (T ),z(1), . . . ,z(T )) = h(z(1)|σ (1)) ·
T

∏
t=1

h(z(t)|σ (t)) ·h(σ (t)|σ (t−1)).

We will refer to h(σ (t)|σ (t−1)) as the mixing model, which captures, for example, that
tracks i and j swapped identities with some probability. We refer to h(z(t)|σ (t)) as the
observation model, which captures, for example, the probability of observing a green
blob given that Alice was at Track 1.
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2.1 Inference Operations

There are two fundamental probabilistic inference operations that we focus on. The first
is the prediction/rollup operation, which, given the distribution at time t, h(σ (t)|z(1), . . . ,
z(t)), and a mixing event, computes the distribution at the following timestep by mul-
tiplying by the mixing model and marginalizing over the permutation at the previous
timestep:

h(σ (t+1)|z1, . . . ,z(t)) = ∑
π∈Sn

h(σ (t+1)|σ (t) = π) ·h(σ (t) = π |z(1), . . . ,z(t)).

The second is the conditioning operation, which, given a new observation z(t+1), per-
forms a Bayesian update to compute the posterior distribution:

h(σ (t+1)|z1, . . . ,z(t+1)) ∝ �(z(t+1)|σ (t+1)) ·h(σ (t+1)|z1, . . . ,z(t)).

For explicit representations of the distribution h(σ (t)), inference is intractable for all but
very small n with running time complexities of O((n!)2) and O(n!) for prediction/rollup
and conditioning respectively. In this paper, we discuss two methods which have been
proposed in recent years for compactly representing distributions over permutations and
how these two inference operations can be performed efficiently with respect to each
representation.

3 Two Dueling Representations

In this section we introduce the Fourier and information representations for distribu-
tions over permutations. In the simplest case, both representations maintain coefficients
corresponding to the event that a single track j is associated with a single identity k,
for all (track,identity) pairs j,k. Additionally, in both representations, one can also for-
mulate generalizations which maintain coefficients corresponding to joint events that
small subsets of identities map to small subsets of tracks. However, we show that with
respect to the Fourier representation, the prediction/rollup step of inference is ‘easy’ in
the sense that it can be performed efficiently and exactly, while the conditioning step of
inference is ‘difficult’ since it can only be performed approximately. With respect to the
information form representation, the roles are reversed, with prediction/rollup ‘difficult’
and conditioning ‘easy’.

3.1 Fourier Domain Representation

The identity management problem was first introduced by Shin et al. [16], who pro-
posed a representation based on collapsing the factorial sized distribution over permu-
tations to just its first-order marginals, the n2 marginal probabilities of the form:

Hjk = h(σ : σ(k) = j) = ∑
σ∈Sn :σ(k)= j

h(σ).
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The first-order marginals can be represented in a doubly stochastic matrix1 (called a
belief matrix in [16]). As an example, the matrix

H =

⎡⎢⎢⎣
Alice Bob Charlie

Track 1 1/4 1/2 1/4
Track 2 3/8 3/8 1/4
Track 3 3/8 1/8 1/2

⎤⎥⎥⎦ .

By simply representing these first-order terms, it is already possible to make useful pre-
dictions. For example, we can predict the track at which the identity Alice is currently
located, or predict the identity currently located at track 2.

The first-order marginal probabilities can be generalized to higher-order marginals
which maintain, for example, the probability that a pair of tracks is jointly associated
with a pair of identities. For example, we might be interested in the second-order prob-
ability that Alice and Bob are jointly in Tracks 1 and 2, respectively.

The reason for referring to these simple matrix-of-marginal type representations as
‘Fourier’ representations is due to the mathematical theory of generalized Fourier trans-
forms for the symmetric group (see [3,13,15]). Just like the Fourier transform of a func-
tion on the real line can be separated into low and high frequency terms, a function
over the symmetric group (the group of permutations) can be separated into low-order
effects and higher-order effects. We remark that the Fourier coefficients of [6,11] do
not literally take the form of marginal probabilities but instead can be thought of as
a set of coefficients which can be used to uniquely reconstruct the marginals. Loosely
speaking, low-order marginal probabilities of a distribution can always be reconstructed
using a subset of ‘low-frequency’ terms of its Fourier transform. Varying the maximum
represented frequency yields a principled way for trading between accuracy and speed
of inference.

Matrices of marginals can be viewed as a compact summary of a distribution over
permutations, but they can additionally be viewed as an approximation to that distribu-
tion by applying the inverse Fourier transform to a truncated Fourier expansion. Given
the first-order marginals H of a distribution, the approximate distribution is:

h(σ) =
n−1

n!
Tr(HT Mσ )− n−2

n!

where Mσ is the first-order permutation matrix associated with σ .2 The above equation
can be generalized to higher-order Fourier representations allowing for successively
better approximations to the original distribution h.

1 A doubly stochastic matrix has rows and columns which sum to 1. In the identity management
setting, it reflects the constraint that every identity must map to some track, and that there is
some identity on every track.

2 Given a σ ∈ Sn, the permutation matrix associated with σ is defined as the n×n matrix M, with
entries Mjk = 1 if j = σ(k), 0 otherwise. This (first-order) permutation matrix can easily be
generalized to higher-order permutation matrices whose nonzero entries represent assignments
of tuples of identities (k1, . . . ,km) to tuples ( j1, . . . , jm) of tracks.
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Table 1. We compare common inference operations for the Fourier and information forms as-
suming the simplest case using a first-order representation, pairwise mixing, and first-order
observations

Inference Operation Fourier (First Order) Information Form (First Order)
Accuracy Complexity Accuracy Complexity

Prediction/Rollup Exact O(n) Approximate O(n)
Conditioning Approximate O(n3) Exact O(n)

Normalization Exact O(n2) Approximate O(n4 logn)
Maximization Exact O(n3) Exact O(n3)

3.2 Information Form Representation

Instead of representing the marginal probability that an identity k will be associated
with track j, in the information form representation, one maintains a ‘score’ Ω jk for
each identity-track pair (k, j). The probability of a joint assignment of identities to
tracks is parameterized as:

h(σ) =
1

ZΩ
exp

(
n

∑
k=1

Ωσ(k),k

)
= exp

(
Tr(Ω T Mσ )

)
,

where Mσ is the first-order permutation matrix associated with σ and ZΩ is the nor-
malizing constant. We observe that if we add a constant to every entry within a single
row or single column of Ω , the distribution parameterized by Ω does not change. The
entries of Ω are referred to as the information coefficients of the distribution P. Note
that multiple settings of the information coefficient matrix Ω can correspond to the
same distribution. For example, adding a constant c to any row or column of Ω does
not change the distribution parameterized by Ω .

As with Fourier coefficients, it is possible to consider generalizations of the infor-
mation form to higher order terms. For example, we can maintain a nonzero ‘score’
Ω ′

( j1, j2),(k1,k2) where ( j1, j2) denote a pair of tracks and (k1,k2) denote a pair of identi-
ties. Thus, in the information domain, the probability over permutations is parameter-
ized as:

h(σ) =
1

ZΩ ′
exp

(
n

∑
k1=1

∑
k2 �=k1

Ω(σ(k1),σ(k2)),(k1,k2)

)
= exp

(
Tr(Ω T Mσ )

)
,

where Ω ′ is a second-order information coefficient matrix.

3.3 Comparing the Two Representations

We now compare and contrast the two representations. Of particular interest are the
probabilistic inference operations which are common in identity management. The chal-
lenge is how to perform these probabilistic operations using either the Fourier or infor-
mation forms, exactly or approximately, in polynomial time. For simplicity, we will
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restrict our focus to first order representations for both the Fourier and information do-
mains. Additionally, we assume that mixing only occurs between a pair of tracks i and
j at any given time, leading to the following simple mixing model in which one draws
a permutation π ∼ mi j(π), where:

mi j(π) =

⎧⎨⎩
p if π = id
1− p if π = (i, j)
0 otherwise

,

and sets σ (t+1) ← π ·σt (where · represents the composition of two permutations).
We also assume the simple observation model (employed in [6,11]) which assumes

that we get observations z of the form: ’track j is color r’. The probability of seeing
color r at track j given an identity-to-track association σ is

�(σ) = Prob(track j is color r|σ) = ασ−1( j),r,

where ∑r ασ−1( j),r = 1. The likelihood model parameters α can be constructed based
on prior knowledge of color profiles of the moving targets [6].

For a tabular summary of the inference operations considered in this section, we refer
the reader to Table 1.

Prediction/Rollup. In general, the pairwise mixing models considered in this paper
can be thought of as a special case of random walk transitions over a group, which
assume that σ (t+1) is generated from σ (t) by drawing a random permutation π (t) from
some distribution m(t) and setting σ (t+1) = π (t)σ (t). The permutation π (t) represents a
random identity permutation that might occur among tracks when they get close to each
other (what we call a mixing event).

The motivation behind the random walk transition model is that it allows us to write
the prediction/rollup operation as a convolution of distributions, and as a result the
familiar convolution theorem of Fourier analysis holds. Below we state the convolution
theorem for the special case of first order Fourier representations, but a more general
statement can be found in, for example, [6].

Proposition 1 (Convolution theorem). Let M(t) be the first order matrix of marginals
for the distribution m(t) and H(t) be the first order matrix for h(σ (t)|z(1), . . . ,z(t)). The
first order matrix for the distribution after the prediction step, h(σ (t+1)|z(1), . . . ,z(t)) is:

H(t+1) = M(t) ·H(t),

where the operation on the right side is matrix multiplication.

Prediction/rollup in the Fourier domain is exact in the sense that first order marginals
for timestep t + 1 can be computed exactly from first order marginals at timestep t. In
contrast the same operation cannot be performed exactly with respect to information
form coefficients and in particular, we argue that, if the distribution h(σ (t)) can be
represented with first order information form coefficients, then under pairwise mixing,
second order information form coefficients are necessary and sufficient for representing
the distribution h(σ (t+1)).
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Proposition 2. Let Ω (t) be the first order information coefficient matrix for the distri-
bution h(σ (t)|z(1), . . . ,z(t)). There exists a second order information coefficient matrix
Ω (t+1) which exactly parameterizes the distribution obtained by the prediction/rollup
step h(σ (t+1)|z(1), . . . ,z(t)) in the information domain.

Proof. Given information coefficients Ω which parametrize h(σ (t)|z(1), . . . ,z(t)), we ar-
gue that there exists an n(n− 1)-by-n(n− 1) 2nd order information coefficient matrix
Ω ′ which exactly parametrize h(σ (t+1)|z(1), . . . ,z(t)). To see this, suppose that track k1

and k2 mixed up, then the distribution after the rollup operation evaluated on σ would
be proportional to

pexp
(
Tr(Ω T Mσ )

)
+(1− p)exp

(
Tr(Ω T Mπσ )

)
.

In such a expression, any entries in Ω that does not lie in row k1 or k2 is still an additive
term in the logarithmic space for characterizing the posterior.

For entries that lie in either row k1 or k2, we need to form n(n− 1) 2nd order in-
formation coefficients Ω(σ(k1),σ(k2)),(k1,k2). With those coefficients, we can represent the
posterior distribution evaluated on σ using logarithmic likelihoods Ω(σ(k1),σ(k2)),(k1,k2)
together with Ωσ(k),k, where k �= k1,k2.

It turns out that the above logarithmic likelihoods can be combined together into a
second order information matrix. This is because the representation theory applies to
the logarithmic space of the information form representation. �

Instead of increasing the size of the representation at each timestep, a sensible approx-
imation is to compute a projection of h(σ (t+1)) to the space of distributions which can
be represented in first-order information form. Schumitsch et al. [14] proposed the fol-
lowing update:

Ω (t+1) = log
(

M(t) · exp(Ω (t))
)

which they showed worked well in practice. The exponential and logarithmic functions
in the formula refer to elementwise operations rather than matrixwise operations.
Conditioning. In contrast with the ease of prediction/rollup operations, conditioning a
distribution in the Fourier domain is more complex and increases the size of the repre-
sentation.

Proposition 3 (Kronecker conditioning [6]). Let H(t+1) be the first order matrix of
marginals for the distribution h(σ (t+1)|z(1), . . . ,z(t)), then there exists a second order
matrix of marginals which exactly parametrize the distribution obtained by the condi-
tioning step h(σ (t+1)|z(1), . . . ,z(t+1)) in the Fourier domain.

Using information coefficients, however, conditioning can be performed exactly, and
takes a particularly simple and efficient form (that of a local addition) which does not
increase the representation complexity.

Proposition 4 (Schumitsch et al. [14]). If h(σ) ∝ exp
(

Tr(Ω T Mσ )
)

, then the update

is of the form
Ω jk ← Ω jk + logαk,r.

where k = σ−1( j). The complexity of this update is O(n).
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Normalization and Maximization. Normalization is a major inference operation and
appears, for example, as a subroutine of the conditioning and marginalization opera-
tions, i.e., computing ∑σ �(·|σ)h(σ | · · ·) or ∑σ h(σ). In the Fourier domain, normaliza-
tion is ‘free’ since the zeroth-order marginal is exactly the normalization constant Z =
∑σ h(σ). Thus with respect to the irreducible Fourier coefficients of [6,11], normal-
ization can be performed by dividing all Fourier coefficients by the lowest-frequency
coefficient. Alternatively, if the matrix of marginals, H, is represented explicitly, the
normalization constant Z is simply the sum across any row or column of H. One can
then normalize by scaling every entry of H by Z.

It may be somewhat surprising to realize that the normalization problem is provably
hard in the information domain since the probability of a joint assignment may at first
glance seem to factorize as:

h(σ) ∝
n

∏
k=1

wk,σ(k) = exp(∑
k

Ωσ(k),k),

which would allow one to factor the normalization problem into tractable pieces. How-
ever, due to mutual exclusivity constraints which disallow identities from mapping to
the same track, probabilistic independence is not present. Instead, the normalization
constant, Z = ∑σ∈Sn ∏k Wk,σ(k), is exactly the matrix permanent of W = exp(Ω), whose
computation is #P-complete (even for binary matrices). We have:

Proposition 5. Computing the normalization constant of the information form param-
terization is #P-complete.

We remark that despite the dramatic differences with respect to normalization, com-
puting the permutation which is assigned the maximum probability under h (instead
of summing over h) reduces to the same problem for both the Fourier and information
forms due to the fact that the exponential is a monotonic function. In the first-order case,
for example, one must compute argmaxσ Tr

(
HT Mσ

)
(see Equation 3.1), which can be

efficiently solved using either linear programming or a number of other combinatorial
algorithms.

Both Forms are Low-Dimensional Projections. Since the Fourier transform is linear
and orthogonal [3], the Fourier approximation of a distribution h over permutations
can be thought of as an �2 projection of h onto a low-frequency Fourier basis V which
can be interpreted as affine marginal constraints. This projection is associated with the
following Pythagorean theorem, which says that if g is any function lying in the span
of V , then ‖g− h‖2

�2
= ‖g− h′‖2

�2
+ ‖h′ − h‖2

�2
, where h′ is the Fourier projection of h

onto the span of V .
The information form representation can be thought of, on the other hand, as an

information projection of h to the same low-frequency Fourier subspace V using the KL-
divergence metric. Recall that the KL-divergence, also known as the relative entropy is
defined as D(q||h) = ∑σ q(σ) log q(σ)

h(σ) . Given a doubly stochastic matrix H of first order
marginals, the information projection (IP) can be formulated as follows:
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(IP) minq ∑
σ

q(σ) log
q(σ)
h(σ)

(ME) minq ∑
σ

q(σ) logq(σ)

s.t. ∑
σ

q(σ)Mσ = H s.t. ∑
σ

q(σ)Mσ = H

q(σ) ≥ 0,∀σ q(σ) ≥ 0,∀σ
In the special case, where the distribution h to be projected is uniform, i.e., we have
no prior knowledge, then the information projection problem becomes the maximum
entropy (ME) problem. The objective in (ME) coincides with the maximum entropy
principle in Bayesian probability, where the information entropy of a distribution q over
Sn is H[q] = −∑σ q(σ) logq(σ). The maximum entropy distribution can be thought
of as the least biased distribution encoding some given information (about low-order
marginals in our case). We remark that the normalization constraint ∑σ q(σ) = 1 is
implicitly contained in the first constraint, ∑σ q(σ)Mσ = H.

The following result (see proof of Proposition 7) shows that the solution to maximum
entropy problem must be parametrizable as an information form distribution:

Proposition 6. The solution to (IP) is guaranteed to take the form h(σ)exp
(
Tr(Ω T Mσ )

)
while the solution to (ME) is guaranteed to take the form q(σ) ∝ exp

(
Tr(Ω T Mσ )

)
. The

Pythagorean theorem holds: if g is any function that satisfies the marginal constraints,
then D(g||h) = D(g||h′)+ D(h′||h), where h′ is the information projection of h.

3.4 Discussion

As we have shown, both the Fourier and information forms can be thought of as methods
for approximating distributions over permutations via a low-dimensional projection.
However, we have also argued that each method has their own respective advantages
and disadvantages with respect to the two inference operations of prediction/rollup and
conditioning. While prediction/rollup updates, which increase the information entropy
of the maintained distribution, can be performed exactly with respect to a Fourier repre-
sentation, conditioning updates, which typically decrease the entropy, can be performed
exactly with respect to an information form representation. As a result, Fourier repre-
sentations are typically much more suitable for modeling problems with high uncer-
tainty, while information form representations are more suitable for problems with low
uncertainty. In Section 7, we will validate these claims with experiments.

4 Representation Conversion

In this section we show a natural method for converting between the two represen-
tations. Since the two representations do not describe the same space of functions,
conversion can only be approximate. We show in particular that much like the nor-
malization problem which we discussed in the previous section, converting between the
two representations requires solving the matrix permanent problem.

4.1 From Information Coefficients to Fourier Coefficients

We first consider the problem of estimating low-order marginals from information coef-
ficients. Given the information coefficients Ω , we can compute the first order marginal
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probability that identity k maps to j, Hjk, by conditioning on σ(k) = j, then normaliz-
ing. Note that the posterior after conditioning can also be written in information form
and that the normalization operation corresponds to taking the permanent of the infor-
mation matrix of the posterior distribution. We have:

Hjk = ∑
σ :σ(k)= j

h(σ) =
exp(Ω jk)perm(exp(Ω̂ jk))

perm(exp(Ω))
.

Here Ω̂ jk denotes the n−1 by n−1 submatrix of Ω with the j’th row and k’th column
removed. The matrix exp(Ω̂ jk) denotes component-wise exponentials rather than matrix
exponentials. We therefore conclude that to convert from information coefficients to
Fourier coefficients, one must compute matrix permanents.

4.2 From Fourier Coefficients to Information Coefficients

We now discuss the opposite conversion from Fourier coefficients to Information co-
efficients, for which we take the maximum entropy approach described in the previ-
ous section (problem (ME)). Given, say, the first-order marginal probabilities, we are
interested in computing the maximum entropy distribution consistent with the given
marginals, which we argued can be parameterized in information form. We now turn to
the problem of algorithmically optimizing the entropy with respect to low-order con-
straints. Our approach is to solve the dual problem [1]:

Proposition 7. The dual problem of (ME) is:

max
Y

Tr
(

Y T H
)
−∑

σ
exp

(
Tr(Y T Mσ )−1

)
,

s.t. Y ≤ 0.

Proof. The Lagrangian for (ME) is given by:

∑
σ

q(σ) logq(σ)−∑
σ

sσ q(σ)−Tr
(

Y T (∑
σ

q(σ)Mσ −H)
)
,

where sσ and Y are dual variables associated with the constraint q(σ) ≥ 0, and
∑σ q(σ)Mσ = Q. The KKT conditions tell us that for (ME):

1 + logq(σ)− sσ −Tr
(

Y T Mσ

)
= 0.

Assuming all q(σ) > 0, which gives us sσ = 0 becuase of the dual complementary
condition, we have

q(σ) = exp
(

Tr(Y T Mσ )−1
)

= exp
(

Ω T Mσ

)
where Ω = Y −1/n. Thus implies that the distribution q is completely characterized by
n2 information coefficients Ω . So the dual objective of (ME) is therefore

Tr
(

Y T H
)
−∑

σ
exp

(
Tr(Y T Mσ )−1

)
. �
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Gradient Based Optimization for the Maximum Entropy Problem. We now give a sim-
ple gradient descent algorithm to find the solution of the dual problem. Note that the
gradient of the objective function is given by the matrix

G(Y ) = Hjk −∑
σ

exp
(

Tr(Y T Mσ )
)
−1)(Mσ ) jk = Hjk − exp(Yjk −1)perm(exp(Ŷjk)).

Thus we can have a simple gradient descent algorithm, where at each iteration we find
an optimal step length α such that the objective function values is improved, i.e.,

Tr
(
(Y +αG(Y )T H

)
−∑

σ
exp

(
Tr((Y +αG(Y ))T Mσ )−1

)
> Tr

(
Y T H

)
−∑

σ
exp

(
Tr(Y T Mσ )−1

)
,

while the feasibility Y + αG(Y ) ≤ 0 is still maintained. We note that the estimation of
the gradient involves estimating the matrix permanent which we now discuss.

The pseudocode for the algorithm is given below.

4.3 Computation of the Matrix Permanent

We have shown that the problems of converting between the two above representations
both require one to solve the matrix permanent problem, one of the prototypically #P-
complete problems (even when all of the entries are binary [9]). The fastest known
general exact algorithm is due to Ryser [12] based on the inclusion-exclusion formula.

Algorithm 1. Computing Information Coefficients Ω from Marginals Q
Y ⇐ 0
while ‖G(Y )‖ ≥ ε do

Find an optimal step length α
Y ⇐Y +αG(Y )

end while
Ω ⇐Y

In some special cases, polynomial time algorithms exist for estimating the matrix per-
manent (e.g., for planar graphs [10]), but we have not found any such special cases to
be applicable for general identity management problems.

When the entries of the matrix are non-negative, which is true in our setting there is
an FPRAS (fully polynomial-time randomized approximation scheme) for approximat-
ing the permanent in probabilistic polynomial time [8,9].

Finally, the fastest approximation that we are aware of is based on the Bethe free
energy approximation [5,18,19] which frames the permanent problem as an inference
problem in a graphical model, which can then be solved using loopy belief propagation.

5 A Hybrid Approach for Identity Management

Using the conversion algorithms presented in the previous section, we now present a
hybrid identity management approach in which we switch between the Fourier and
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Fig. 1. (a) A view of the simulated data. (b) Running time comparison of different approaches in
computing matrix permanent. (c) Comparing the running time of the three approaches.

information form domains depending on which domain is more convenient for certain
inference operations. There are several issues that one must consider in designing a
scheme for switching between the two domains. In this section, we present three simple
switching strategies which we compare experimentally in Section 7.

We have argued that to handle mixing events, it is better to use a Fourier represen-
tation and that to handle evidence events, it is better to use the information form rep-
resentation. A simple switching strategy (which we call the myopic switching scheme)
thus always switches to either the Fourier or information form domain depending on
whether it must perform a prediction/rollup operation or a conditioning operation.

In a similar spirit, we can also consider a smoothness based switching scheme, in
which we switch based on the diffuseness of the distribution. In our implementation, we
consider a heuristic in which we switch to a Fourier representation whenever the first-
order matrix of marginals is within ε of a uniform matrix with respect to the Frobenius
norm. Similarly, we switch to the information form representation whenever the first-
order matrix comes within ε of some delta distribution.

What both the myopic and smoothness based approaches ignore, however, is the
computational cost of switching between representations. To minimize this switching
cost, we finally propose the lagged block switching scheme in which switching is only
allowed to happen every k timeslices, where k is a parameter set by the user. In lagged
block switching, we allow the identity management algorithm to lag the incoming data
by k timesteps and therefore it can look ahead to see whether there are more mixing
events or evidence events in the next k timesteps. As with myopic switching, the al-
gorithm switches to Fourier if there are a majority of mixing events, and switches to
information form if there are a majority of evidence events. After potentially switching,
the algorithm processes the next k timesteps sequentially.

6 An Adaptive Approach for Identity Management

There are two extremal cases in the identity management problem: if we are completely
uncertain about the assignment of target identities to tracks, then we have a uniform dis-
tribution over permutations, this smooth distribution can be represented compactly with
Fourier coefficients; at the limit when we know the location of every identity, our distri-
bution becomes very peaked, and we can use information coefficients to represent such
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a distribution compactly. In a real tracking scenario, we can pull highly certain or uncer-
tain groups of targets out of a global Fourier or information representation and represent
them separately, so that the problem breaks up into independent subproblems [7]. We
now propose a method based on exploiting probabilistic independence of distributions
over permutations, which can achieve significantly improved scalability.

Due to the mutual exclusivity constraints associated with permutations, we say the
distribution h(σ) has a independence factorization if there exists a subset X of identities
and a subset Y of tracks, and also their corresponding complement subsets X̄ and Ȳ ,
such that h(σ) can be factorized into a product of two distributions over all mappings
between X and Y and all mappings between X̄ and Ȳ .

It turns out that whenever probabilistic independence holds, then both first order
Fourier coefficients and information coefficients can be rendered block diagonal under
an appropriate reordering of the rows and columns [7]. Since X and Y are unknown,
our task is to find permutations of the rows and columns of the first order Fourier or
information coefficients to obtain a block diagonal matrix. Viewing such a matrix as a
set of edge weights on a bipartite graph between identities and tracks, we can approach
the detection step as a biclustering problem with an extra balance constraint forcing
|X | = |Y |. In practice, we use a cubic time SVD-based technique presented in [20]
which finds bipartite graph partitions optimizing the normalized cut measure modified
to satisfy the balance constraint. We note that such bipartite graph partitioning problems
can be approached using either the �2 metric [20] or KL-divergence metric [2].

7 Experiments

In this section, we perform several experiments to compare the Fourier approach, infor-
mation approach and the proposed hybrid approach. We use the Delta3D game engine
to generate simulated crowds of up to 50 moving targets which walk around in an out-
door market [4]; Figure 1-(a) depicts a snapshot view of the simulated crowd. Such a
simulation approach allows us to obtain accurate ground truth for large crowds than
would be feasible in a typical physical testbed. The data contains interesting movement
patterns and we can extract mixing and observation events directly from the data. We
log a mixing event whenever two targets get within some distance of each other and an
observation event whenever one target is separated from all the other targets for some
distance. The percentages of observation events can be controlled by adjusting those
distance parameters. We measure tracking errors using the fraction of mislabeled target
identities over the tracks.

We first run an experiment for testing the running time performance of different
algorithms in estimating the matrix permanent. As shown in Figure 1-(b), we gener-
ate random matrices and compare the running time of the four approaches: the naive
method which sums up all products of matrix elements that lie in different rows and
columns, the fastest known exact algorithm by Ryser [12], the Monte Carlo sampling
algorithm by Huber et al. [8], and the loopy belief propagation algorithm by Huang et
al. [5]. The naive approach has a super-exponential complexity and the Ryser’s formula
has an exponential complexity, thus, they scale poorly as the matrix size grows; On the
other hand, the two randomized approximate algorithms have much better running time



110 X. Jiang, J. Huang, and L. Guibas

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

p = .3,� = .55 p = .3,� = .75 p = .3,� = .95

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

p = .4,� = .55 p = .4,� = .75 p = .4,� = .95

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Observation Events Percentage

T
ra

ck
in

g 
E

rr
or

s

 

 

1st Fourier
2nd Order Fourier
3rd Order Fourier
Information
Hybrid

p = .5,� = .55 p = .5,� = .75 p = .5,� = .95

Fig. 2. Comparing tracking accuracy of the three approaches with different parameters

performance than the exact algorithms. In the hybrid algorithm, we use Monte Carlo
sampling algorithms [8]. for estimating the matrix permanent.

In our experiments, we can control two sets of parameters which determine the track-
ing quality, one is the swapping probability — if we can keep track of who is who when
two targets mix with high probability during the prediction/rollup operation, we can
achieve better tracking performance; the other is the likelihood function, if the likeli-
hood for observing the identity of a target is high, then conditioning step can resolve the
ambiguities better. We set up nine cases to explore the tracking accuracy with different
swapping probability and likelihood function parameters. As depicted in Figure 2, the
probability p characterizing confusions of the mixing events grows larger from left to
right, and the likelihood � for observing target identity grows larger from top to bottom.
We can get better tracking accuracy if p is small or � is large.

From Figure 2, we can see that the information approach outperforms the Fourier
approach in most cases, while the Fourier approach can beat the information approach
only slightly in some cases, e.g., the case p = .5, � = .75 where the mixings are quite
confusing. The tracking accuracy can be improved if we incorporate high order Fourier
coefficients. We can achieve better performances in lots of cases if we use the hybrid
approach, whose tracking accuracy are comparable to the 2nd order or even 3rd order
Fourier approach. The running time for those approaches are shown in Figure 1-(c).
In general, the Fourier approach has a fundamental trade-off between tracking com-
plexity in terms of the number of coefficients used and the tracking accuracy: we can
improve tracking accuracy by using more coefficients. The hybrid approach makes a
good balance which can improve tracking accuracy when there are observation events
that confirm the target identities (large �) with moderate running time. We can see that
the running time for the hybrid approach is strictly less than the second order Fourier
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Fig. 3. Compare the errors in distribution of the three approaches. The white intervals denote the
rollup steps and the grey intervals denote the conditioning steps.
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Fig. 4. (a,b) Tracking accuracy and running time of the hybrid approach with different algorithms
for estimating matrix permanent. (c,d) Tracking accuracy and running time of the hybrid approach
with different rules for switching.

approach. This is because the complexity for the conditioning step in the Fourier do-
main is very expensive if we use high order Fourier coefficients.

We also compare the errors of approximating the distribution over permutations of
the three approaches (see Figure 3). It turns out that the Fourier approach decrease (in-
crease) the errors during the rollup (conditioning) steps, while the information approach
decrease (increase) the errors during the conditioning (rollup) steps. However, if we use
the hybrid approach, we can always keep the errors at a much lower level.

We also compare the tracking accuracy and runing time of the hybrid approach by
varing the algorithms for estimating the matrix permanent, as well as varying the strate-
gies for switching between two domains. Specifically, we compare Ryser, Huber, and
the LBP algorithms for estimating matrix permanents. The tracking accuracy of those
approaches does not differ too much. However, the two approximation algorithms (by
Huber and the loopy belief propagation method) have longer running times for the small
scale experiments because it takes longer time to converge in solving the maximum en-
tropy problem (see Figure 4-(a,b)). We also evaluate our three different switching strate-
gies for the hybrid approach. Compared with the smoothness based switching strategy
which switches 38 times, the lagged block strategy switches between two domains 91
times among the 1000 timesteps while can not improve the tracking accuracy too much
and take very long running time. The myopic strategy suffers a little on the tracking
accuracy while the running time can be improved because there are only 20 times of
switchings (see Figure 4-(c,d)).

We finally evaluate the performance of the adaptive approach. As depicted in
Figure 5, the tracking accuracy for the adaptive approach is comparable to the



112 X. Jiang, J. Huang, and L. Guibas

10 20 30 40 50
0

0.1

0.2

0.3

0.4

Number of Targets

T
ra

ck
in

g 
E

rr
or

s

 

 

Nonadaptive
Adaptive

10 20 30 40 50
0

1000

2000

3000

Number of Targets

R
un

ni
ng

 T
im

e 
(s

)

 

 

Nonadaptive

Adaptive

Fig. 5. Tracking accuracy and running time of the adaptive approach compared with the nonadap-
tive approach

nonadaptive approach, while the running time can always be controled using the adap-
tive approach. In particular, the tracking accuracy for the adaptive approach is often
worse than the nonadaptive approach when the number of targets is small because it is
usually difficult to factorize the problem in those cases. When the number of targets is
larger, however, the benefit of adaptive approach becomes more evident in both tracking
accuracy and complexity.

8 Conclusion

In this paper we compare the computational advantages and disadvantages of two pop-
ular distributional representations for the identity management problem. We show that
the two approaches are complementary - the Fourier representation is closed under pre-
diction operations and is thus better suited for handling problems with high uncertainty
while the information form representation is closed under conditioning operations and
is better suited for handling problems in which a lot of observations are available. As
our experiments show, using a combination of both approaches seems to often be the
best approach. While converting between the two representations is a #P-hard problem
in general, we show that with some of the modern permanent approximation algorithms,
conversion is tractable and yields surprisingly good performance in practice.

We have focused primarily on the first-order versions of both the Fourier and infor-
mation form approximations. It would be interesting to develop high order analysis with
the hybrid approach.

Acknowledgement. The authors would like to thank Prof. Yinyu Ye for the helpful dis-
cussion. Thanks also to Kyle Heath for providing experimental data. Leonidas Guibas
and Xiaoye Jiang wish to acknowledge the support of ARO grants W911NF-10-1-0037
and W911NF-07-2-0027, as well as NSF grant CCF 1011228 and a gift from the Google
Corporation. Leonidas Guibas and Jonathan Huang acknowledge the support of grant
ONR MURI N000140710747.

References

1. Agrawal, S., Wang, Z., Ye, Y.: Parimutuel betting on permutations. In: Papadimitriou, C.,
Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 126–137. Springer, Heidelberg (2008)

2. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 89–98 (2003)



Fourier-Information Duality in the Identity Management Problem 113

3. Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical
Statistics (1988)

4. Heath, K., Guibas, L.J.: Multi-person tracking from sparse 3d trajectories in a camera sensor
network. In: Proceedings of IEEE ICDSC (2008)

5. Huang, B., Jebara, T.: Approximating the permanent with belief propagation. Computing
Research Repository (2009)

6. Huang, J., Guestrin, C., Guibas, L.J.: Fourier theoretic probabilistic inference over permuta-
tions. Journal of Machine Learning Reserach (JMLR) 10, 997–1070 (2009)

7. Huang, J., Guestrin, C., Jiang, X., Guibas, L.J.: Exploiting probabilistic independence for
permutations. In: Proceedings of the International Conference on Artificial Intelligence and
Statistics, AISTATS (2009)

8. Huber, M., Law, J.: Fast approximation of the permanent for very dense problems. In:
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings of
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 681–689 (2008)

9. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. In: ACM Symposium on Theory of Com-
puting, pp. 712–721 (2001)

10. Kasteleyn, P.W.: The statistics of dimers on a lattice. i. the number of dimer arrangements on
a quadratic lattice. Physica, pp. 1209–1225 (1961)

11. Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of the sym-
metric group. In: Proceedings of the International Conference on Artificial Intelligence and
Statistics, AISTATS (2007)

12. Ryser, H.: Combinatorial Mathematics - The Carus Mathematical Monographs Series. The
Mathematical Association of America (1963)

13. Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmet-
ric Functions. Springer, Heidelberg (2001)

14. Schumitsch, B., Thrun, S., Bradski, G., Olukotun, K.: The Information-Form Data Associa-
tion Filter. In: Proceedings of the Neural Information Processing Systems (NIPS). MIT Press,
Cambridge (2005)

15. Serre, J.-P.: Linear Representation of Finite Groups. Springer, Heidelberg (1977)
16. Shin, J., Guibas, L.J., Zhao, F.: A distributed algorithm for managing multi-target identities

in wireless ad-hoc sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS,
vol. 2634, pp. 223–238. Springer, Heidelberg (2003)

17. Shin, J., Lee, N., Thrun, S., Guibas, L.J.: Lazy inference on object identities in wireless
sensor networks. In: Proceeings of the International Conference on Information Processing
in Sensor Networks, IPSN (2005)

18. Vontobel, P.: The bethe permanent of a non-negative matrix. In: Proceedings of the Allerton
Conference on Communications, Control, and Computing (2010)

19. Watanabe, Y., Chertkov, M.: Belief propagation and loop calculus for the permanent of a
non-negative matrix. Journal of Physics A: Mathematical and Theoretical 43(24), 242002
(2010)

20. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and data clustering.
In: Proceedings of the International Conference on Information and Knowledge Management
(CIKM), pp. 25–32 (2001)



Eigenvector Sensitive Feature Selection for

Spectral Clustering

Yi Jiang and Jiangtao Ren

Sun Yat-sen University, Guangzhou, 510006, P.R. China
jiangyi5@student.sysu.edu.cn, issrjt@mail.sysu.edu.cn

Abstract. Spectral clustering is one of the most popular methods for
data clustering, and its performance is determined by the quality of the
eigenvectors of the related graph Laplacian. Generally, graph Laplacian
is constructed using the full features, which will degrade the quality of
the related eigenvectors when there are a large number of noisy or ir-
relevant features in datasets. To solve this problem, we propose a novel
unsupervised feature selection method inspired by perturbation analysis
theory, which discusses the relationship between the perturbation of the
eigenvectors of a matrix and its elements’ perturbation. We evaluate the
importance of each feature based on the average L1 norm of the perturba-
tion of the first k eigenvectors of graph Laplacian corresponding to the k
smallest positive eigenvalues, with respect to the feature’s perturbation.
Extensive experiments on several high-dimensional multi-class datasets
demonstrate the good performance of our method compared with some
state-of-the-art unsupervised feature selection methods.

Keywords: Feature Selection, Graph Laplacian, Perturbation Analysis.

1 Introduction

Spectral clustering has wide applications ranging from text, image, web, bioinfor-
matics to social science, for exploratory data analysis. Roughly speaking, spectral
clustering is the technique to partition the rows of a matrix into multiple clusters
based on the few top eigenvectors of graph Laplacian[9]. Compared with classi-
cal methods like k-means and mixture models, it has three advantages. Firstly,
it doesn’t need any explicit or implicit assumptions about the sample distri-
bution. Secondly, it is easy to implement and has polynomial time solutions.
Lastly, it is equivalent to graph cut problems, which are well developed. Due to
these virtues, there are enormous literatures in the past on spectral clustering[6]-
[21], but the nature of spectral clustering remains unchanged: The performance
of spectral clustering is determined by the quality of the chosen eigenvectors of
graph Laplacian.

However, recently, Tao Xiang, etc[10] pointed out that the first k eigenvec-
tors of graph Laplacian may be uninformative and inappropriate for spectral
clustering given noisy, irrelevant and high-dimensional data. Note that ’the first
k eigenvectors ’ denotes the eigenvectors corresponding to the k smallest posi-
tive eigenvalues, and ’the first k eigenvector ’ denotes the eigenvector with the

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 114–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. The distribution of the soft and ideal cluster indicators for CLL-SUB-111

k smallest positive eigenvalue[9]. For the demonstration of the impact of irrele-
vant features on graph Laplacian’s eigenvectors, we provide an intuitive example
with a dataset CLL-SUB-111 1 which has 3 classes and 11340 features. In Fig.1,
each curve in (a) represents the distribution of the components of one of the first
three eigenvectors of its graph Laplacian computed with its full 11340 features,
and the curve of the same color in (b) is the ’ideal’ distribution. It is clear that
each distribution in (a) has only one peak region between 0 and 20, suggesting
that spectral clustering will group these samples into two clusters based on the
inappropriate graph Laplacian, which differs from the ’true’ cluster structure.
This example demonstrates that the graph Laplacian constructed from the full
features may degrade the performance of spectral clustering when there are a
large number of irrelevant and noisy features in the high-dimensional dataset,
hence we need to perform feature selection before constructing the graph Lapla-
cian for spectral clustering.

The core problem of feature selection is how to evaluate the importance of fea-
tures, which has numerous criterions such as Laplacian Score(LS)[36], Spec[37],
MCFS[39], FSFS[34], FCBF[35], FSSEM[30] and EVSC[41], etc. In the recent de-
velopment of spectral clustering, Ling Huang, etc[11]-[13] present some proofs of
the close relationship between the perturbation of clustering result and laplacian
graph’s eigenvectors due to the perturbation of data. These researches inspire
us that the perturbation of the feature values of data will have impact on the
perturbation of the eigenvectors of graph Laplacian and the result of spectral
clustering, hence we can evaluate the importance of features by using the per-
turbation of the eigenvectors of graph Laplacian in respect of the perturbation
of each feature.

In this paper, we propose a new feature evaluation criterion based on the
recent developments of perturbation analysis[2][11]-[15]. Specifically, to evaluate
a feature’s importance, we perturb the value of this feature by introducing a
perturbation factor to it for all the samples in the data set. This will induce a
perturbation of the similarity matrix, and in turn a perturbation of the graph
Laplacian. Finally, this leads to the perturbation of the eigenvectors of graph
Laplacian. It is natural to believe that if a small perturbation of one feature
1 http://featureselection.asu.edu/datasets.php

http://featureselection.asu.edu/datasets.php
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induces a great perturbation of the eigenvectors of graph laplacian, this fea-
ture is important for spectral clustering. Then, we use the average L1-norm of
the perturbation of the first k eigenvectors of graph Laplacian in terms of the
small perturbation of one feature to estimate the significance of this feature.
The criterion is referred to as EigenVector Sensitive Feature Selection Criterion
(EVSFSC). Based on this criterion, we can perform feature selection for spectral
clustering. Extensive experiment results over six real-world datasets demonstrate
the superiority of our method compared with four traditional unsupervised fea-
ture selection methods.

2 Feature Selection Based on Perturbation Analysis

In this section, we study the perturbation of graph Laplacian’s eigenvectors
in terms of the perturbation of each feature, with three different definitions of
graph Laplacian L, Lrw and Lsym[9]. Based on these analysis, we formulate three
feature evaluation criterions, then a feature selection algorithm is proposed for
the most common spectral clustering algorithms.

2.1 Problem Definition

For a dataset X = {xi}n
i=1, xi∈RK×1 represents the i-th data sample, where

K is the dimension of X , and xi
t denotes the t-th feature value of xi. Suppose

S, D and L are similarity matrix, diagonal degree matrix and graph Laplacian
respectively, Si,j represents the similarity between xi and xj , D = diag(S1)
( 1 = (1, ..., 1)T ) and L = D − S.

Let ξ be a perturbation factor, if we perturb X on the t-th feature with ξ,
which means x̂i

t = xi
t + ξxi

t, i = 1, ..., n, and keep other features unchanged,
then we get a perturbed dataset X̂t = {x̂i}n

i=1. Let L̂t be the perturbed graph
Laplacian based on X̂t. Suppose q̂t,r and qr are the r-th eigenvector of L̂t and L
respectively, then the perturbation of the r-th eigenvector of graph Laplacian L
caused by the perturbation of the t-th feature can be defined as �qt,r = q̂t,r−qr.
The greater the L1 norm of �qt,r is, the more important the t-th feature is.
Thus, our main problem is how to evaluate �qt,r with respect to ξ. Let’s begin
by proving the relationship between D̂t, L̂t and D, L, where D̂t is the perturbed
similarity matrix based on X̂t.

In this paper, we adopt RBF function as the similarity measure between
data samples, and our framework can also be easily extended to other popular
similarity measures such as dot product, square Euclidean, etc. Then Si,j can
be formulated as

Si,j = e−
∑K

h=1 (Xi
h−X

j
h
)2

2δ2

where δ2 is the kernel bandwidth. When we perturb the t-th feature with factor
ξ, which means x̂i

t = (1 + ξ)xi
t, i = 1, ..., n, the perturbed similarity Ŝt,i,j is

Ŝt,i,j = e−
∑K

h=1,h�=t (Xi
h−X

j
h
)2+(1+ξ)2(Xi

t−X
j
t )2

2δ2 (1)

Now we can derive the relationship between D̂t, L̂t and D, L as follows.
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Theorem 1. If ξ → 0, D̂t and L̂t can be approximated by

D̂t≈D − ξD1
t , L̂t≈L − ξL1

t

Then,
D̂t − D≈− ξD1

t , L̂t − L≈− ξL1
t (2)

where S1
t,i,j = Si,j

(xi
t−xj

t)
2

δ2 , D1
t,i,i =

∑n
h=1 S1

t,i,h, L1
t = D1

t −S1
t , D1

t is a diagonal
matrix.

Proof. based on formula (1), we can get

∂Ŝt,i,j

∂ξ
= −(ξ + 1)Ŝt,i,j

(xi
t − xj

t )2

δ2

Then, when ξ → 0, we can derive the first-order Taylor expansion for Ŝt,i,j

Ŝt,i,j = Si,j − Si,j
(xi

t − xj
t )

2

δ2
·ξ + O(ξ)

and we can get

Ŝt,i,j − Si,j≈− Si,j
(xi

t − xj
t )

2

δ2
·ξ≈− ξ · S1

t,i,j

D̂t,i,i =
n∑

h=1

Ŝt,i,h≈
n∑

h=1

Si,h − ξ ·
n∑

h=1

S1
t,i,h≈Di,i − ξ · D1

t,i,i

Thus,
D̂t − D≈− ξD1

t

L̂t − L = (D̂t − D) − (Ŝt − S) = −ξ·(D̂1
t − Ŝ1

t )≈− ξL1
t

�
In general, L = D − S is the unnormalized graph Laplacian[9]. Moreover,
there are two other normalized graph Laplacians[9] Lrw = D−1L and Lsym =
D−1/2LD−1/2. We will derive �qt,r, �qrw,t,r and �qsym,t,r with respect to L,
Lrw and Lsym respectively in the following sections.

2.2 �qt,r with Respect to L

Perturbation analysis theory [2] discusses the relationship between the pertur-
bation of the eigenvectors of a matrix and its elements’ perturbation, which will
be summarized in Theorem 2.

Theorem 2. (First-Order Eigenvector Perturbation)
Let A and B be matrices with elements which satisfy the relations: |Aij | < 1 and
|Bij | < 1, and A has the normalized eigenvector set {qr}n

r=1 and eigenvalue set
{λr}n

r=1, where the multiplicity of any eigenvalue is 1, if ξ → 0, then the r-th
eigenvector q̂r of A + ξB is approximately expressed as:

q̂r≈qr + ξ·{
n∑

h=1,h �=r

qT
h Bqr

λr − λh
qh}. (3)
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Based on Theorem 1 and Theorem 2, we can easily derive �qt,r = q̂t,r − qr,
which is summarized in Theorem 3. It is worth pointing out that the conditions
|Aij | < 1 and |Bij | < 1 can be satisfied for RBF kernel.

Theorem 3. Let {λr}n
r=1 and {qr}n

r=1 be the eigenvalue and normalized eigen-
vector sets of Lqr = λrqr, and λ1 < λ2 < . . . < λn, if ξ → 0, then the r-th
eigenvector of L̂t based on X̂t can be approximated by

q̂t,r≈qr + ξ·pt,r

Then,
�qt,r = q̂t,r − qr≈ξ·pt,r (4)

where

pt,r = −
n∑

h=1,h �=r

( qT
h L1

t qr

λr − λh

)
qh

Proof. this can be proved with Theorem 1 and Theorem 2. �

2.3 �qrw,t,r with Respect to Lrw

For computing the r-th eigenvector’s perturbation �qrw,t,r = q̂rw,t,r − qrw,r of
Lrw, where qrw,r is the r-th eigenvector of Lrw based on X , and q̂rw,t,r is the
r-th eigenvector of L̂rw,t based on X̂t, we first borrow the following definition
from [4], which provides some solutions for the algebraic eigenvalue problems.

Definition 1 Hermitian Definite Pencil[4]
A Hermitian definite pencil{A,B} (A ∈ Rn×n and A ∈ Rn×n) is a generalized
Hermitian eigenvalue problem: Aq = λBq, where A and B are Hermitian, that
is, if the conjugate transpose of matrix A or B is denoted by A∗ or
B∗, then A∗ = A and B∗ = B, and A or B or αA + βB for some scalars α and
β is positive definite, q and λ are the corresponding eigenvector and eigenvalue
respectively.

Since L = L∗ and ∀ x, xT Dx>0, then {L, D} is a Hermitian definite pencil. For
the proof of Theorem 4, we describe one property for Lrw and two properties
for {L, D} in Property 1, which can be found in [9] and [3] respectively.

Property 1
(a) The eigen-system of Lrw is equal to that of the Hermitian definite pencil
{L, D}. That is, ∀ r∈{1, ..., n}, Lrwqrw,r = λrw,rqrw,r ⇔ Lqrw,r = λrw,rDqrw,r

(b) For {L, D}, if λrw,r �= λrw,r1, qT
rw,rDqrw,r1 = 0, and if qrw,r is a normalized

eigenvector, then qT
rw,rDqrw,r = 1.

(c) If {L, D} has the eigenvalue and eigenvector sets {λrw,r}n
r=1 and {qrw,r}n

r=1,
and the multiplicity of any eigenvalue is 1, then {qrw,r}n

r=1 constitute a basis for
Rn.

Then we can propose Theorem 4 for �qrw,t,r in the following.

Theorem 4. For {L,D}, let {λrw,r}n
r=1 and {qrw,r}n

r=1 be the corresponding
eigenvalue and normalized eigenvector sets, and λrw,1 < λrw,2 < . . . < λrw,n, if
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ξ → 0, the r-th perturbed eigenvector q̂rw,t,r of the perturbed normalized graph
Laplacian L̂rw,t based on X̂t can be approximated as

q̂rw,t,r = qrw,r + ξ·prw,t,r + O(ξ·1)

Then,
�qrw,t,r = q̂rw,t,r − qrw,r = ξ·prw,t,r + O(ξ·1) (5)

where prw,t,r=
{∑n

h=1,h �=r

(
qT

rw,h{λrw,rD1
t−L1

t}qrw,r

λrw,r−λrw,h

)
qrw,h +

(
qT

rw,rD1
t qrw,r

2

)
qrw,r

}
.

Proof. Based on Theorem 1, if ξ→0, then

D̂t − D = −ξ·D1
t + O(ξ·I) and L̂t − L = −ξ·L1

t + O{ξ·(1T ·1)}.

where I is the identity matrix and 1 = (1, ..., 1)T .
It is natural that[2]

λ̂rw,t,r − λrw,r = ξ · ηrw,t,r + O(ξ·1) (6)
q̂rw,t,r − qrw,r = ξ · prw,t,r + O(ξ·1) (7)

Now our goal is to estimate the column vector prw,t,r.
Because of Property 1 (a), we get

L̂tq̂rw,t = λ̂rw,tD̂tq̂rw,t (8)

Based on formula (2) and (6)-(8), we get

{L− ξ·L1
t}{qrw,r + ξ·prw,t,r} = {λrw,r + ξ·ηrw,t,r}{D− ξ·D1

t }{qrw,r + ξ·prw,t,r}
(9)

When ξ → 0, (9) can be rewritten as

Lprw,t,r − L1
tqrw,r = −λrw,rD

1
t qrw,r + λrw,rDprw,t,r + ηrw,t,rDqrw,r (10)

With Property 1(c), prw,t,r can be expressed as a linear combination of
{qrw,r}n

r=1, that is,

prw,t,r =
n∑

h=1

εr,hqrw,h (11)

Substitute (11) into (10), and left multiply (10) by qT
rw,r1(r1 �= r), we get

n∑
h=1

λrw,hεr,hqT
rw,r1Dqrw,h − qT

rw,r1L
1
t qrw,r = −λrw,rq

T
rw,r1D

1
t qrw,r+

λrw,r

n∑
h=1

εr,hqT
rw,r1Dqrw,h + ηrw,t,rq

T
rw,r1Dqrw,r

(12)
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With Property 1 (b), we get

εr,r1 =
qT
rw,r1{λrw,rD

1
t − L1

t}qrw,r

λrw,r − λrw,r1
(13)

For {L̂t, D̂t}, which is also a Hermitian definite pencil,

{qT
rw,r + ξpT

rw,t,r}{D − ξD1
t }{qrw,r + ξprw,t,r} = 1 (14)

With ξ → 0 and (11), (14) can be rewritten as

εrr =
qT
rw,rD

1
t qrw,r

2
(15)

Finally, based on (13) and (15), prw,t,r can be computed by

prw,t,r =
{ n∑

h=1,h �=r

(qT
rw,h{λrw,rD

1
t − L1

t}qrw,r

λrw,r − λrw,h

)
qrw,h +

(qT
rw,rD

1
t qrw,r

2

)
qrw,r

}
�

2.4 �qsym,t,r with Respect to Lsym

The spectral clustering theories [9] reveal that if qrw,r is the eigenvector of
Lrw with λrw,r, then qsym,r = D1/2qrw,r is the eigenvector of Lsym with the
same eigenvalue. Based on this connection between the eigen-system of Lrw

and Lsym, and Theorem 4, the calculation of �qsym,t,r for Lsym is shown in
Theorem 5.

Theorem 5. With the conditions of Theorem 4, let qsym,r be the normalized
eigenvector of Lsym, and q̂sym,t,r be the corresponding r-th eigenvector of L̂sym,t

based on X̂t, if ξ → 0, then q̂sym,t,r can be approximated as

q̂sym,t,r = qsym,r + ξ·psym,t,r + O(ξ·1)

Then,
�qsym,t,r = q̂sym,t,r − qsym,r = ξ·psym,t,r + O(ξ·1) (16)

where psym,t,r =
{
− 1

2D−1/2D1
t qrw,r + D1/2prw,t,r

}
Proof. If ξ → 0, then

D̂
1/2
t = {D − ξ·D1

t + O(ξ·I)}1/2≈D1/2(I − ξ·D−1D1
t )1/2 (17)

where I is the identity matrix.
Then, the first order Taylor expansion of D̂

1/2
t can be rewritten as

(I− ξ·D−1D1
t )

1/2≈I − ξ

2
·D−1D1

t + O(ξ·I) (18)
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Based on formula (17) and (18), we get

D̂
1/2
t = D1/2 − ξ

2
·D−1/2D1

t + O(ξ·I)

Thus

q̂sym,t,r = D̂
1/2
t q̂rw,t,r = qsym,r + ξ·

{
− 1

2
D−1/2D1

t qrw,r + D1/2prw,t,r

}
+ O(ξ·1)

�

2.5 Eigenvector Sensitive Feature Selection

Based on the discussion of section 2.2, 2.3 and 2.4, when the value of ξ is suffi-
ciently small, the j-th component of the eigenvector perturbation �qt,r(�qrw,t,r

or �qsym,t,r) of graph Laplacian L(Lrw or Lsym) is approximately linear with
ξ, and the corresponding gradient is just the j-th component of pt,r( prw,t,r or
psym,t,r), which reflects the rate of the change of the j-th component of the r-th
eigenvector of L(Lrw or Lsym) in response to the perturbation of the t-th feature.
Hence, it is natural to use the L1 norm of pt,r, prw,t,r and psym,t,r to evaluate
the importance of the t-th feature to the r-th eigenvector of L, Lrw and Lsym

respectively.
However, since the result of spectral clustering is determined by the first k

eigenvectors of graph Laplacian, we should evaluate the importance of the r-th
feature to the spectral clustering based on its impact on the first k eigenvectors
of the corresponding graph Laplacian. Thus, we propose to employ the aver-
age L1 norm of pt,r(prw,t,r or psym,t,r) over the first k eigenvectors of L(Lrw or
Lsym) to estimate the importance of the t-th feature in the corresponding spec-
tral clustering. This criterion is called EigenVector Sensitive Feature Selection
Criterion(EVSFSC), whose formal definitions are expressed as follows.

When the graph Laplacian is L, for the t-th feature, then

EV SFSC(t) =
1
k

k+1∑
r=2

‖pt,r‖1 (19)

Similarly, when the graph Laplacian is Lrw, for the t-th feature, then

EV SFSC(t) =
1
k

k+1∑
r=2

‖prw,t,r‖1 (20)

Finally, when the graph Laplacian is Lsym, for the t-th feature, then

EV SFSC(t) =
1
k

k+1∑
r=2

∥∥∥psym,t,r‖1 (21)
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Algorithm 1. Eigenvector Sensitive Feature Selection for Spectral Clustering
Input: Data set X, Feature number m, Spectral clustering type SCT
Output: Feature subset Fm

1. Construct the similarity matrix S with RBF function
2. Build L and D based on S
3. If SCT ==′ USC′

4. Calculate the eigen-system (λr, qr) of L, 1≤r≤n.
5. Else if SCT==’NSCLrm’
6. Calculate the eigen-system (λr, qr) of Lrw = D−1L, 1≤r≤n,
7. Else
8. Calculate the eigen-system (λr, qr) of Lsym = D− 1

2 LD− 1
2 , 1≤r≤n.

9. End if
10. Normalize the eigenvectors of {qr}nr=1.
for t = 1 to K do

11. Calculate the EVSFSC of the t-th feature based on (19), (20) or (21).
end for
12. Rank the features decreasingly according to the value of EVSFSC and select the
leading m features, that is Fm = {FK1 , ..., FKm}
13. return Fm

2.6 Eigenvector Sensitive Feature Selection for Spectral Clustering

Based on the criterions of (19)-(21), we summarize the eigenvector sensitive
feature selection for spectral clustering algorithm in Algorithm 1. In this al-
gorithm, SCT represents the type of spectral clustering, USP represents the
unnormalized spectral clustering, NSCLrm and NSCLsym represent the nor-
malized spectral clustering with Lrm and Lsym respectively. The computation
complexity for main steps is listed below.

• In step 1 and 2, we need O(n2K) operations to build S, D and L;
• In step 4, 6 or 8, we need O(n3) operations to get the eigenvalues and eigen-
vectors of graph Laplacian by Lanczos algorithm[5];
• In step 10, we need O(n3K) operations to calculate the EVSFSC score for all
features;
• In step 11, the top m features can be found within O(KlogK).
Thus, the computation complexity of Algorithm 1 is MAX(n3K, KlogK).

3 Related Work

Spectral Clustering. The spectral clustering based on the graph cut theory
is to find the best cuts of a graph according to certain predefined criterion func-
tions such as RatioCut[6] and normalized cut(Ncut)[7]. The relaxing RatioCut
leads to the unnormalized spectral clustering[9] based on the eigenvectors of un-
normalized graph Laplacian L = D − S, while the relaxing Ncut leads to the
normalized spectral clustering[7][8] based on the eigenvectors of Lrw = D−1L or
Lsym = D−1/2LD−1/2. Recently, there are several works focusing on the impact
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of small errors in data or similarity matrix on spectral clustering, based on the
perturbation analysis[2]. [11]-[13] derive some approximate upper bounds on
the errors of k-way spectral clustering with respect to the small change of data
or similarity matrix(k = 2, 3, ...). Another line of this works is to update the
information of the eigen-system of graph Laplacian in the incremental spectral
clustering[14][15], given a small change of similarity matrix. Besides, there are
enormous literatures discussing other subjects like the incorporation of user su-
pervision into spectral clustering[16]-[18], and the strategy of constructing graph
Laplacian for spectral clustering[19]-[21], etc.

Unsupervised Feature Selection. Most of existing methods can be clas-
sified into the three categories. Methods in the first category are wrapper ap-
proaches. These include unsupervised feature selections for K-means[22]-[25],
Mixture Models[26]-[32] and PCA(Principal Components Analysis)[33]. The sec-
ond category measures feature similarity based some criterions, whereby redun-
dant features are removed. [34] and [35] are the two representatives of this kind.
The third category is the spectral methods. [36]-[38] perform feature selection
based on certain evaluation criterions, which are the function of the eigen-system
of graph Laplacian. More recently, in [39] and [40], the feature selection problems
are transformed into the regression problems, which aim to find those feature
vectors aligning closely to the few top eigenvectors of graph Laplacian. In our
previous work [41], a eigenvalue sensitive feature selection method is proposed.
But it is different from the method of this paper. The core idea of [41] is that
the feature importance should be evaluated by the gradient of the eigenvalue
of graph Laplacian with respect to the weight of feature. But in this paper, we
introduce the perturbation analysis theory.

4 Empirical Analysis

In this section, we perform extensive experiments to demonstrate the perfor-
mance of our proposed feature selection method comparing to several popular
unsupervised feature selection methods. They are FSFS[34], Laplacian Score(LS)
[36], Spec[37] and MCFS[39].

4.1 Dataset Decription

Six high-dimensional and multi-class datasets are selected for the experiments,
which are briefly described in Table 1. All of the datasets can be found from the
Feature Selection Repository2. For simpleness, we use CLL, ORL, PIX, TOX,
AR and PIE to represent the data sets CLL-SUB-111, orlraws10P, pixraw10P,
TOX-171, warpAR10P and warpPIE10P respectively.

4.2 Evaluation Criterion

In the experiments, Clustering Accuracy(CA)[36] is used to evaluate the per-
formance of spectral clustering. Based on the comparison between the predefined
2 http://featureselection.asu.edu/datasets.php

http://featureselection.asu.edu/datasets.php
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Table 1. Summary of six datasets

Data Set Instances Features Classes

CLL-SUB-111 111 11340 3
orlraws10P 100 10304 10
pixraw10P 100 10000 10
TOX-171 171 5748 4

warpAR10P 130 2400 10
warpPIE10P 210 2420 10

labels c(i) of all samples and the obtained labels sc(i) by spectral clustering,
Clustering Accuracy(CA) is formally defined as

CA =
∑n

i=1δ(c(i), map(sc(i)))
n

where n is the total number of data points and δ(x, y) is the delta function that
equals one if x = y and equals zero otherwise, and map(sc(i)) is the permutation
mapping function that maps each cluster label sc(i) to the equivalent label
from data corpus. Here, we use the Kuhn-Munkres algorithm[1] as the mapping
function.

4.3 Experiment Setup

Four popular unsupervised feature selection methods are chosen as baseline
methods, which are FSFS[34], Laplacian Score(LS)[36], Spec[37] and MCFS[39],
and their matlab codes can be found at their homepages3. As discussed above,
we choose RBF function as similarity measure, whose parameter is determined
by cross-validation. Then for each dataset, the four baseline criterions and EVS-
FSC are used to select the best 100, 200,...,2100 features. Based on the selected
feature subsets, the Clustering Accuracy of unnormalized spectral clustering
with L and normalized spectral clustering with Lrw and Lsym are demonstrated
in Fig.2, Fig.3 and Fig.4 respectively. And as a baseline, the Clustering Ac-
curacy with the full features (without feature selection) is also depicted in all
the figures, and it is referred to as ’Baseline’ in the figures.

4.4 Experiment Results

Unnormalized spectral clustering with L Fig. 2(a-f) show the curves of
the Clustering Accuracy of unnormalized spectral clustering with L versus
the number of selected features on six datasets respectively, based on FSFS,
Laplacian Score(LS), Spec, MCFS and EVSFSC. As we can see, our proposed
algorithm achieves consistently better performance than the other methods and
3 http://www.facweb.iitkgp.ernet.in/~pabitra/paper.html,

http://www.zjucadcg.cn/dengcai/MCFS/index.html,

http://featureselection.asu.edu/software.php

http://www.facweb.iitkgp.ernet.in/~pabitra/paper.html,
http://www.zjucadcg.cn/dengcai/MCFS/index.html,
http://featureselection.asu.edu/software.php
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Fig. 2. Unnormalized Spectral Clustering with L

the baseline method without feature selection. Although the unnormalized spec-
tral clustering with all features produces a poor result, most of the existing
feature selection methods don’t produce much better results, and sometimes
produce even worse results, for example in Figure 2(b), (c) and (e). However,
our method can use less than 1000 features to produce reasonably good results,
whose Clustering Accuracy is generally higher than 0.6 on CLL, ORL and
TOX datasets. Especially for PIX, AR and PIE datasets, only several hundred
of selected features by our method can achieve the best results, compared with
other methods.
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Fig. 3. Normalized Spectral Clustering with Lrm

Normalized spectral clustering with Lrw Fig. 3(a-f) reveal the curves
of the Clustering Accuracy of normalized spectral clustering with Lrw versus
the number of selected features on six data sets respectively, based on EVSFSC
and other four methods. For all of the six data sets, our method also can achieve
best performance than the others. Specifically, the difference between ’Baseline’
and FSFS, Laplacian Score(LS), Spec, MCFS is not obvious on CLL, TOX,
AR and PIE datasets, but EVSFSC can still achieve great improvements.
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Fig. 4. Normalized Spectral Clustering with Lsym

Normalized spectral clustering with Lsym Fig. 4(a-f) demonstrate the
curves of the Clustering Accuracy of Normalized spectral clustering algo-
rithm with Lsym versus the number of selected features on six data sets respec-
tively, based on EVSFSC and other four methods mentioned before. Except for
datasets ORL and PIX, our method significantly outperforms the other four
methods. On data sets ORL and PIX, there exist some methods such as FSFS
and MCFS performing comparably to our method with the increase of feature
number, but EVSFSC can achieve the same good results with fewer features
than them.
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5 Conclusion

In this paper, we propose a new feature selection criterion, called EVSFSC,
for spectral clustering. EVSFSC evaluates the importance of each feature by
its impact on the eigenvectors of graph Laplacian with perturbation analysis
theory. The extensive experiments demonstrate the excellent performance of our
method, compared with four state-of-the-art methods.
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Abstract. Deep belief network (DBN) is a probabilistic generative model
with multiple layers of hidden nodes and a layer of visible nodes, where
parameterizations between layers obey harmonium or restricted Boltz-
mann machines (RBMs). In this paper we present restricted deep belief
network (RDBN) for multi-view learning, where each layer of hidden
nodes is composed of view-specific and shared hidden nodes, in order to
learn individual and shared hidden spaces from multiple views of data.
View-specific hidden nodes are connected to corresponding view-specific
hidden nodes in the lower-layer or visible nodes involving a specific view,
whereas shared hidden nodes follow inter-layer connections without re-
strictions as in standard DBNs. RDBN is trained using layer-wise con-
trastive divergence learning. Numerical experiments on synthetic and
real-world datasets demonstrate the useful behavior of the RDBN, com-
pared to the multi-wing harmonium (MWH) which is a two-layer undi-
rected model.

1 Introduction

Multi-view learning refers to methods for learning from examples that have mul-
tiple (independent or dependent) representations, each of which may arise from
different views such as modalities or sensors. For instance, in web page classifi-
cation, one view describes a web page using the text appearing on the document
itself, while the other view leads to the anchor text to hyperlinks pointing to
this page from other pages [2]. In multimedia mining, images are described by
color histograms (one view) and annotated text (the other view), so it is desir-
able to exploit these two information sources together to boost the performance
of image classification [18]. In brain wave classification where EEG data are
measured from multiple subjects who undergo the same mental task, each view
corresponds to each subject, then learning shared latent spaces provides useful
semantic features for EEG classification [11].

Learning latent spaces that capture the relevant information shared by multi-
ple views of data lies at the heart of multi-view learning, especially when views
are dependent. One of the oldest but the most popular method is canonical cor-
relation analysis (CCA) [8] which identifies linear relationships between two sets
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of observations. The shared Gaussian process latent variable model (sGPLVM)
[14] is a nonlinear extension of CCA, in which Gaussian process regression is
used to learn common hidden structure shared between corresponding sets of
heterogenous observations. Manifold integration [4] combines similarity matri-
ces (each of which is determined by a specific view) into a compromise matrix
that faithfully reflects multiple sensory information.

Most of these methods assume that views are fully independent conditioned
on common latent variables, i.e., only shared latent variables are considered to
explain the dependency between views. However, in real-world problems, this as-
sumption is not satisfied. Thus it was suggested that separate latent spaces are
learned to model the shared characteristics across views and individual compo-
nents of observations [11,13]. Group nonnegative matrix factorization (GNMF)
learn jointly individual latent spaces and shared latent spaces, decomposing non-
negative data matrix into a product of two nonnegative factor matrices where the
basis matrix is composed of common and individual basis vectors [11]. Factor-
ized orthogonal latent space (FOLS) method [13] factorizes the latent space into
shared and private latent spaces, enforcing orthogonality between them. These
aforementioned methods have limitations since CCA and GNMF are linear tech-
niques and FOLS requires large memory storage and expensive time complexity
to handle operations involving a big Gram matrix, which is not scalable as the
number of samples increases.

Multi-wing harmonium (MWH) is a two-layer undirected graphical model
designed to handle multiple view data. MWH consists of two or more wings
where each wing takes the input associated with a single view, extending har-
moniums [16] and restricted Boltzmann machines (RBMs) [5]. Harmoniums were
also extended to the exponential family [17]. MWH inherits the advantages of
exponential family harmoniums (EFHs) such as easy inference and distributed
representations over latent variables (see [17] for other advantages). Deep be-
lief network (DBN) is composed of RBMs with multiple layers of hidden nodes,
which is trained efficiently in layer-wise manner based on contrastive divergence
[5,6]. See [1] for excellent tutorial on DBNs. Multilayer structure of DBNs allow
more complex representation of data than RBMs. However, unlike other Boltz-
mann machine-based models, MWHs cannot be naturally extended to form a
deep network.

In this paper we present restricted deep belief network (RDBN) for partially
correlated multiple view data. We first present a modification of EFHs where
view-specific hidden nodes are restricted to have undirected connections to only
visible nodes involving corresponding views whereas shared hidden nodes are
connected to all the visible nodes. This model inherits advantages of FOLS
and MWH simultaneously. The model can efficiently evaluate latent variables
as MWH, while still being capable of modelling shared and private information
separately.

Then we stack these modified harmoniums to construct RDBN in such a way
that view-specific hidden nodes are connected to corresponding view-specific hid-
den nodes in the lower-layer and shared hidden nodes are connected to all the
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hidden nodes in the lower-layer. We train RDBNs using layer-wise contrastive
divergence learning, to learn view-specific and shared hidden spaces from multi-
ple views. Numerical experiments on a synthetic dataset, NORB-small dataset,
and ESL photo dataset demonstrated the useful behavior of RDBN, compared
to MWHs and its direct multilayer version.

2 Related Work

2.1 Exponential Family Harmonium

Most of graphical models including with a layer of hidden nodes and other layer
of observed nodes are based on a directed graph. These directed two-layer mod-
els allows easy sampling of visible layer, and easy handling of latent variables.
However, it is often very difficult and time consuming to calculate posterior dis-
tribution of hidden nodes given visible nodes. For the tasks that requires fast
evaluation of latent variable given a test sample, directed models would not be
very effective.

EFH is a two-layer probabilistic graphical model whose probability distribu-
tions are constrained to be exponential family distribution. EFH consists of a
set of hidden nodes h, and a set of visible nodes v connected by undirected
edges. By incorporating undirected connections, the model calculates posterior
distribution of hidden nodes p(h|v) much faster than directed models, making it
more suitable for the tasks including document searching and automatic image
annotation.

To define an EFH, we start from choosing marginal distributions for visible
nodes v and hidden nodes h. As the distributions are constrained to be expo-
nential family distributions, the marginal distributions are defined as below:

p(v) =
∏

i

exp
{∑

a

λiafia(xi) − Ai({λia})
}
, (1)

p(h) =
∏
j

exp
{∑

c

ηjcgjc(hj) − Bj({ηjc})
}
, (2)

where fia and gjc are a, and cth sufficient statistics of vi and hj . λx and η are
parameters, and A and B are log partition functions. Note that each vis and hj

are assumed to be independent to each other.
With this definition, we define joint distribution of v and h by combining their

distributions multiplicatively. The joint distribution is defined by introducing
quadratic terms to inter-layer relationship:

p(v, h|θ) ∝ exp
{∑

i,a

λiafia(vi) +
∑
j,c

ηjcg(hj) +
∑

i,j,a,c

Wijacfia(vi)gjb(hj)
}
. (3)

As the model is a bipartite graph, between-layer conditional distributions can
be represented as products of distributions of individual nodes. The conditional
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distributions are derived as below:

p(v|h, θ) =
∏

i

exp
{∑

a

λ̂iafia(vi) − Ai({λ̂ia})
}
, (4)

p(h|v, θ) =
∏
j

exp
{∑

c

η̂jcgjc(hj) − Bj({η̂jc})
}

, (5)

where shifted parameters are

λ̂ia = λia +
∑
j,c

Wijacgjc(hj), (6)

η̂jc = ηjc +
∑
i,a

Wijacfia(xi). (7)

As the conditional distribution of nodes are independent to each other, sam-
pling posterior distribution of hidden nodes is done by just simply evaluating
conditional distribution p(h|v, θ). An EFH with binary distributions for v and
h becomes equivalent to a RBM.

2.2 Multi-Wing Harmonium

Multi-wing harmonium (MWH) [18] models joint distribution of multi-view data
using two-layer graphical model. Given two-view data, MWH uses two sets of
visible nodes x and y connected to hidden nodes h. By choosing different distri-
bution for different type of information, the model achieves better representation
of data.

Construction of an MWH is similar to the one of EFH. The only difference
is that we split visible nodes v to two sets x and y. First we choose marginal
distributions for x, y and h as below:

p(x) =
∏

i

exp
{∑

a

λx
iafx

ia(xi) − Ax
i ({λx

ia})
}
, (8)

p(y) =
∏
k

exp
{∑

b

λy
kbf

y
kb(yk) − Ay

k({λy
kb})

}
, (9)

p(h) =
∏
j

exp
{∑

c

ηjcgjc(hj) − Bj({ηjc})
}
, (10)

where fx
ia and fy

kb are a and bth sufficient statistics of xi and yk. λx, λy and η
are parameters, and Ax, Ay, and B are log partition functions. Given marginal
distribution, joint distribution of nodes is defined straightforwardly:

p(x, y, h|θ) ∝ exp
{∑

i,a

λx
iafx

ia(xi) +
∑
k,b

λy
kbf

y
kb(yk) +

∑
j,c

ηjcg(hj)

+
∑

i,j,a,c

W x
ijacf

x
ia(xi)gjb(hj) +

∑
k,j,b,c

W y
kjbcf

y
kb(xy)gjc(hj)

}
.(11)
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The conditional distributions are derived as below:

p(x|h, θ) =
∏

i

exp
{∑

a

λ̂x
iafx

ia(xi) − Ax
i ({λ̂x

ia})
}
, (12)

p(y|h, θ) =
∏
k

exp
{∑

b

λ̂y
kbf

y
kb(yk) − Ay

k({λ̂y
kb})

}
, (13)

p(h|x, y, θ) =
∏
j

exp
{∑

c

η̂jcgjc(hj) − Bj({η̂jc})
}
, (14)

with shifted parameters

λ̂x
ia = λx

ia +
∑
j,c

W x
ijacgjc(hj), (15)

λ̂y
kb = λy

kb +
∑
j,c

W y
kjbcgjc(hj), (16)

η̂jc = ηjc +
∑
i,a

W x
ijacfia(xi) +

∑
k,b

W y
kjbcfjb(yj). (17)

The model can be extended to the case of more than two sets of visible nodes.
With a single set of visible nodes, the model shrinks down to a EFH or RBM.
To enhance discriminative performance of MWH, labeled version [19] and large-
margin approach [3] were also proposed.

3 Restricted DBNs

3.1 Multi-view Harmonium

Many multi-view algorithms are based on a weak assumption that all views are
completely correlated. MWH also assumes that views are completely indepen-
dent when the values of hidden nodes are given. However, the views are often
incompletely correlated on real-world datasets. On these datasets, MWH will
mix view-specific information with shared information and fail to obtain opti-
mal representation of data. To overcome this problem, we need to model the
view-specific information and shared information seperately.

Recent multi-view learning algorithms including work of Salzmann et al.[13]
learns from partially independent multi-view data sets by seperating view-specific
latent variables from latent variables shared among views.

However, the limitation of existing models is evident. For example, as the
FOLS framework requires a Gram matrix, so the model consumes memory
storage proportional to N2, where N is the number of training samples. The
evaluation also requires computing time of complexity O(N), as we need to cal-
culate kernel function for every training sample and a test sample. Moreover,
existing models including FOLS and group NMF requires additional parame-
ters to control orthogonality between view-specific and shared latent spaces,
and these parameters should be selected by going through computationally
expensive procedures including cross-validation or by hand.
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Fig. 1. Graphical models of (a) EFH, (b) MWH, and (c) multi-view harmonium. Rep-
etitions of variables are not denoted for simplicity.

Taking advantage of fast learning and inference of harmonium models and
the idea of seperating shared and common latent variables, we extend MWH to
devise a new model named multi-view harmonium.

This model incorporates view-specific hidden nodes hx and hy in addition
to common hidden nodes hc, to model view-specific, uncorrelated information.
hx and hy are only connected to their corresponding set of visible nodes x
and y with connection weights Ux and Uy. Graphical representations show the
difference between other models and our model (Fig. 1). Joint probability of
visible and hidden nodes is as below:

p(x, y, hx, hy, hc|θ) ∝
exp

{∑
i,a

λx
iafx

ia(xi) +
∑
k,b

λy
kbf

y
kb(yk) +

∑
j,c

ηc
jcg

c(hc
j) +

∑
m,d

ηx
mdg

x(hx
m)

+
∑
n,e

ηy
neg

y(hy
n) +

∑
i,j,a,c

W x
ijacf

x
ia(xi)gjb(hj) +

∑
k,j,b,c

W y
kjbcf

y
kb(yk)gjc(hj)

+
∑

i,m,a,d

Ux
imadf

x
ia(xi)gx

md(h
x
m) +

∑
k,n,b,e

Uy
knbef

y
kb(yk)gy

ne(hn)
}
. (18)

Conditional distributions can easily be derived from this joint distribution.
Depending on the type of data, we can choose appropriate distributions from

exponential-family. To handle continuous-valued inputs, one can use Gaussian
distribution for visible nodes x [7], where the conditional probability is defined
as:

p(xi|hx, hc, θ) = N (xi|W x
i hc + Ux

i hx + bx
i , 1), (19)

assuming xi has zero mean and unit variance. Rectified linear units(ReLU) for
hidden nodes is also helpful in handling continuous values [12], where value of
hidden node hj given visible node x is defined as:

hj = max(0,
∑

i

Wijxi + hj + N (0, 1)). (20)

When modeling term occurence on bag-of-words representation, we can use Pois-
son distribution:

p(xi|hx, hc, θ) = Poission(xi| exp(αi + W x
i hx + Ux

i hc)). (21)
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We train multi-view harmonium by maximizing log-likelihood. Given the joint
distribution p(x, y, hx, hy, hc|θ) we can integrate out the hidden units to obtain
likelihood function:

p(x, y|θ) ∝ exp
{∑

i,a

λx
iafx

ia(xi) +
∑
k,b

λy
kbf

y
kb(yk)

−
∑

j

Bc({η̂c
jc}) −

∑
m

Bx({η̂x
md}) −

∑
n

By({η̂y
ne})

}
, (22)

where Bx, By and Bc are log-partition functions of marginal distribution of
hidden variables hc, hx and hy and the shifted parameters are

η̂c
jc = ηc

jc +
∑
i,a

W x
ijacf

x
ia(xi) +

∑
k,b

W y
kjbcf

y
kb(yj), (23)

η̂x
md = ηx

md +
∑
i,a

Ux
imadf

x
ia(xi), (24)

η̂y
ne = ηy

ne +
∑

k,n,b,e

Uy
knbef

y
kb(yk). (25)

To maximize expected log-likelihood over data distribution L = 〈log p(x, y|θ)〉p̃,
we can use gradient ascent to update parameters θ. The derivatives on parame-
ters related to x are given as follows:

∂L
∂W x

ijac

= 〈fia(xi)B′
jc(η̂

c
jc)〉p̃ − 〈fia(xi)B′

jc(η̂
c
jc)〉p, (26)

∂L
∂Ux

imad

= 〈fia(xi)Bx′
md(η̂

x
md)〉p̃ − 〈fia(xi)Bx′

md(η̂
x
md)〉p, (27)

∂L
∂λx

ia

= 〈fx
ia(xi)〉p̃ − 〈fx

ia(xi)〉p, (28)

∂L
∂ηc

jc

= 〈Bc′
jc(η̂

c
jc)〉p̃ − 〈Bc′

jc(η̂
c
jc)〉p, (29)

∂L
∂ηx

md

= 〈Bx′
md(η̂

x
md)〉p̃ − 〈Bx′

md(η̂
x
md)〉p. (30)

where 〈·〉p̃ and 〈·〉p are expectation over data distribution and model distribution,
and Bc′

jc = ∂Bc
jc/∂ηc

jc and Bx′
md = ∂Bx

md/∂ηx
md are partial derivatives of log-

partition functions. Derivatives related to y can be derived similarly. To calculate
the expectations from data and model distribution, we need samples from the
distributions. However, as we cannot directly sample from the joint distribution
of visible nodes and hidden nodes, we use Gibbs sampling and sample from
conditional distributions in each Gibbs steps. Values of each node can be sampled
from conditional distribution in a single step when other layer’s nodes are given.

However, we need infinite steps of Gibbs sampling to calculate exact model
distribution. To avoid the problem, we may approximate log-likelihood by using
contrastive divergence (CD) learning instead [5]. The key idea of CD learning is
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Algorithm 1. Training multi-view harmonium using CD learning with mini-
batch size K and M Gibbs steps
1: Input: D = {(xt, yt)}
2: Output: θ = {W x, W y , Ux, U y, ηx, ηy , ηc, λx, λy}
3: procedure CDlearning(D)
4: Randomly initialize parameters θ.
5: repeat
6: Pick K samples as a mini-batch
7: repeat
8: Sample h̃

x ∼ p(hx|xt, θ), h̃
y ∼ p(hy |yt, θ).

9: Sample h̃
c ∼ p(hc|xt, yt, θ).

10: repeat
11: Sample x ∼ p(x|hx, hc, θ).
12: Sample y ∼ p(y|hy, hc, θ).
13: Sample hx ∼ p(hx|x, θ).
14: Sample hy ∼ p(hy|y, θ).
15: Sample hc ∼ p(hc|x, y, θ).
16: until M steps
17: until for all (xt, yt) in mini-batch.
18: update θ using gradient ascent on L.
19: until θ is converged
20: end procedure

to initialize Gibbs chain to the training data, and to run just a few Gibbs steps
instead of infinite steps to approximate model distribution. Even running just a
single Gibbs step is known to work well in practice.

Training harmoniums using CD learning requires a gradient calculated over
whole training set, and this is often a time consuming task. Instead, we can
pick mini-batches from training set, and calculate gradient over mini-batches to
save time and space required for training. Summary of procedure for training
multi-view harmonium using CD learning is shown in Algorithm 1.

3.2 Restricted DBN

Introducing view-specific hidden nodes brings our model capability of modeling
partial correlation, but view-specific hidden nodes also enables us to easily extend
our model to form a deep network. Values of view specific hidden layer nodes
will be fed as data for upper layer of deep network (Fig. 2). By forming deep
network in this manner, the information considered to be ”uncorrelated” by
limited representation power of current layer will be sent to upper layer and
view-to-view correlation will be further analyzed.

Training a deep network using back-propagation is known to be often inef-
ficient. Therefore, training an RDBN is done in greedy, layer-wise manner [6].
We train each layer of multi-view harmoniums using algorithm 1, starting from
the bottom layer. After training each layer is finished, a harmonium on the next
layer uses samples of view-specific hidden nodes from the trained harmonium
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Fig. 2. The graphical model of RDBN. View-specific hidden nodes act as new visible
nodes for upper layer of the deep network model.

as its training set. Training of RDBN ends when the procedure reaches the top
layer.

3.3 Inferring One View from the Other

Inferring values of unobserved views from other observed views on RDBN is not
as easy as inferring the values from two-layer MWH. Instead of using Variational
approximation, we choose to perform Gibbs sampling in a systematic manner.
The procedure can be divided into three steps, and each step is executed layer
by layer (Fig. 3).

1. In the first step, we start from the bottom layer. Given observed values x,
the hidden nodes of observed view hx are only nodes that whose probability
can be exactly calculated. Therefore we sample the hidden nodes hx and
proceed to the upper layer to repeat this procedure (Fig. 3-b).

2. When the first step reaches the top layer, we run Gibbs sampling for top two
layers, while nodes of observed views vx, hx are fixed to values determined on
the first step. In other words, we sample from p(vy, hc, hy|vx, hx, θ). Then
we get the values for top two layers of unobserved views hc, vy. We use
average of repeatedly sampled values for the unobserved nodes (Fig. 3-c).

3. Finally, we move to lower layers. Given observed nodes x and hx, and hidden
units of unobserved views sampled in previous steps hy, we sample from
p(y, hc|x, hx, hy, θ). Repeating the process until we reach bottom layer gives
us the values of unobserved views (Fig. 3-d).

When common hidden nodes hc of bottom layer of deep network are binary
logistic nodes, we can skip Gibbs sampling and directly evaluate p(y|x, θ) up to
a normalization constant by rearranging terms:

p(y|x, θ) ∝
∏
j

[
1 + exp

{∑
i,a

(W x
ijafx

a (xi) + λx
iafx

a (xi))

+
∑
k,b

((W y
kjb + Uy

knb)f
y
b (yk) + λy

kbf
y
b (yk)) + cc

j

}]
, (31)

For other layers of RDBN, we use Gibbs sampling instead. Empirically, about
10 times of Gibbs sampling for each layer gave a fair result.
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Fig. 3. Inferring procedure of RDBN. Variables with known values at current step is
marked as a shaded circle.

4 Numerical Experiments

In this section, we compare our model to MWH. We also compare our method
with FOLS-GPLVM [13], and shared GPLVM(SGPLVM) [14], which are di-
rected, non-parametric multi-view latent variable models based on Gaussian
process latent variable model [9]. We considered CCA as a baseline too. On
a synthetic dataset, we show the effect of modelling view-specific information.
Then we run experiments on widely-used NORB-small dataset, and ESL photo
dataset in a view-to-view conversion task to numerically compare performance
of RDBN and MWH and GPLVM-based models. We used Gibbs sampling for
inference on the graphical models.

4.1 Synthetic Example

To show the effectiveness of additional hidden nodes, we performed an experi-
ment taken from recent work of Salzmann et al. [13]. We constructed a synthetic
partially correlated multi-view dataset. To illustrate common and view-specific
latent variables, we used sinusoidal functions of t with different phases and fre-
quencies:

x = sin(2πt), z1 = cos(ππt), z2 = sin(
√

5πt),
m1 = [x, z1], m2 = [x, z2].

We ramdomly projected m1 and m2 to 20 dimensional space and added inde-
pendent Gaussian noise of variance 0.01 and correlated noise 0.02 sin(3.6πt) to
obtain our final multi-view synthetic dataset.

A multi-view harmonium, which is a two-layer RDBN, with 1 common hidden
node and 1 view-specific hidden node is used, and we used a MWH and CCA
for comparison. 3 hidden nodes for MWH and projection to 3-dimensional space
for CCA was chosen for fair comparison. We used Gaussian nodes and ReLU for
visible and hidden nodes.

Training was done using 4000 training samples and we calculated hidden
node activations from 500 test samples. We checked the correspondence between
ground-truth latent variables, and obtained hidden node activations.

MWH, SGPLVM and CCA failed to infer latent variables correctly. No hidden
node activations corresponded to latent variables used to generate data. In the
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Fig. 4. Latent variables generated by muti-view harmonium , MWH, FOLS, Shared
GPLVM and CCA (starting from top-left to bottom-right). Outputs of methods are
normalized to have zero mean and maximum absolute value to be 1. Latent variables
used to generate data are depicted as lines: Blue solid line: x, green dotted line: z1,
and red dash-dotted line: z2. Each dimension of outputs are depicted as markers with
different colors and shapes.

other hand, our model, multi-view harmonium, found common and view-specific
latent variables by its hidden node activations 4. Common hidden nodes and
view-specific hidden node activations exactly corresponded to the common and
view-specific latent variables. Although FOLS-GPLVM also discovered latent
variables correctly, the result was not as accurate as the result of our model.
Moreover, our model was able to separate common and view-specific information
without any help of additional scheme, while FOLS had to minimize mutual
information explicitly.

4.2 Object Conversion on NORB-Small

Training set of NORB-small dataset [10] contains 24,300 stereo images of 5
generic categories of objects on a white background, imaged under various light-
ing conditions and camera angles. Each category contains 5 instances of objects.
For example, the category ’car’ contains pictures of 5 different cars.

To evaluate view-to-view conversion performance, we constructed a multi-
view dataset by taking pairs of images with same lighting and camera angles,
but different category of objects (airplanes - cars), that means each sample in
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Fig. 5. Graphical representation of view to view conversion task on NORB-small
dataset

hx hy

x y

hx hy

x y

Fig. 6. Graphical model of 3 and 4-layer MWHs used in experiments on NORB-small
dataset and ESL dataset

the dataset contains a image of airplane and a car, taken with same condition.
1200 image pairs were used as a training set and 3600 image pairs were used as
a test set. After training, model was asked to generate a car image with same
imaging condition from a given airplane image (Fig. 5). Images were resized to
the size 32×32, and pixels on each position of an image were normalized to have
zero mean and variance 1. The variance of pixel values was calculated across
whole training set on the same position on images. The root mean squared error
(RMSE) was computed:

RMSE =

√
1

Nsamples

∑
t

1
Npixels

||xtruth
t − xrec

t ||2, (32)

where Nsamples and Npixels are the number of samples and of pixels, respectively,
and xtruth

t and xrec
t are ground-truth and reconstructed images, respectively.

For our experiment, we constructed 2, 3, and 4-layer RDBN. For two layers
from the bottom, we used Gaussian and ReLU, to handle continuous valued
data. Logistic binary nodes were used for remaining two layers.

We also constructed a deep network model for MWH by attaching harmoni-
ums under each views of MWH for a fair comparison with RDBN. For example,
4-layer MWH was constructed by attaching additional two layers of Harmoniums
under each view of a MWH (Fig. 6). Inferring an unobserved view was done by
the procedure below.

1. Sample nodes of observed view layer by layer from the bottom.
2. Infer the unobserved view of MWH on the top layer.
3. Sample unobserved nodes, from top to bottom layer.
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Table 1. Averaged RMS reconstruction errors of RDBN, MWH models and random
reconstruction in the view-to-view conversion task on NORB-small dataset

Method RMSE Method RMSE

4-layer RDBN 0.0923 4-layer MWH 0.1379
3-layer RDBN 0.0936 3-layer MWH 0.1377
2-layer RDBN 0.0958 2-layer MWH 0.0973
FOLS-GPLVM 0.2489 SGPLVM 0.2089

Random 0.5205

We also added additional hidden nodes to MWH to ensure same number of
parameters are used. For example, if a RDBN had 200 view-specific hidden nodes
and 800 common hidden nodes, each view of corresponding layer of a MWH had
200 + 800 = 1000 hidden nodes. We also tried 2-layer and 3-layer RDBN to
see the effect of number of layers. Each network was trained 200 iterations with
learning rate of 0.001. Instead of full batch learning, we used mini-batches with
100 samples. SGPLVM and FOLS-GPLVM were trained with 200 iterations, and
their latent dimension was automatically decided by a heuristic method of Neil
Lawrence’s software. As a baseline, we used images with random pixel values as
reconstruction images and compared the reconstruction errors with the results
of RDBNs and MWH models.

The experimental result showed remarkable difference between RDBN and
MWH algorithm. 4-layer RDBN showed the smallest error than any configura-
tion of MWH, FOLS-GPLVM and SGPLVM. Moreover, adding each additional
layer to RDBN reduced reconstruction error, while adding layer to MWH dam-
aged the performance of the model (Table 1).

4.3 Image Annotation on ESL Photo Dataset

To examine the capability of our deep model to find nontrivial relation between
views, we applied our model to the task of image annotation. The experiment
was done using ESL photo dataset [15], which contains 3464 photos collected
from Flickr, annotated with 59 different tags. We calculated autocorrelogram of
images with the setting of radius 6 and 32 colors on HSV color space. By this
process we obtained a 192-dimensional feature vector for each image. We also
calculated TF-IDF from our tag data. We used 2000 images for training, and
1044 images testing.

We compared 2, 3, 4-layer RDBNs, 2-layer MWH, sGPLVM, and FOLS-
GPLVM. 30, 40, 60 hidden units were used for each hidden layer of RDBNs,
and GPLVM models were trained with 200 iterations. Image autocorrelogram
and TF-IDF of tags were assigned to each view of the models. On visible layer
of the models, we used Gaussian nodes for images and Poisson nodes for tags.
Each model was trained 500 iterations with learning rate 0.01. Again, we used
mini-batches with 100 samples in training. We also tried annotating images with
random tags as a baseline.

Precision-recall curve and mean average precision (MAP) were used as evalu-
ation measure. MAP is defined as the mean of average precision (AP) over test
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Fig. 7. Precision-recall curves for RDBNs, 2-layer MWH, SGPLVM, FOLS-GPLVM
and random annotation. Vertical axis of the plot is trimmed for better comparison
between results of RDBNs with different number of layers.

Table 2. The mean average precision of RDBNs, a MWH, SGPLVM, FOLS-GPLVM
and random annotation in image annotation task on ESL dataset.

Method MAP Method MAP

4-layer RDBN 0.0620 2-layer MWH 0.0251
3-layer RDBN 0.0598 SGPLVM 0.0180
2-layer RDBN 0.0565 FOLS-GPLVM 0.0267

Random 0.0190

samples:

MAP =
∑

t AP(xt)
Nsamples

=
1

Nsamples

∑
t

Ntags∑
j=1

Precision(xt, j), (33)

where Nsamples and Ntags are the number of samples and of tags, respectively,
and Precision(xt, j) denotes the precision when top j tags are chosen, given the
query image xt. MAP is also calculated by area under precision-recall curve. We
used this alternative definition of MAP to calculate the results reported here.

Precision-recall curve shows that RDBN algorithms clearly outperformed other
methods, showing the advantage of modelling view-specific information seper-
ately. Although the difference was not very significant, deep models showed
higher average precision than 2-layer RDBN, showing the benefit of using deep
models. In contrast, average precision of 2-layer MWH and SGPLVM were not
very distinguishable from the result of random annotation (Table 2). Precision-
recall curve also shows the difference between RDBNs and other models
(Fig. 7).

5 Conclusions

In this paper, we have proposed the harmonium-based model that uses
view-specific hidden nodes for multi-view data, to capture the view-specific
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information of the data separated from shared information among views. More-
over, our model can be naturally extended to deep network to model more com-
plex relationship between views by using view-specific hidden nodes as inputs to
next layer. We have demonstrated the effectiveness of our approach by comparing
our model to MWH, and their directed, non-parametric counterparts including
SGPLVM and FOLS-GPLVM. the existing harmonium-based multi-view model,
on various experiments on synthetic and real-world examples. And we showed
significant improvement over other methods in the tested examples. In the fu-
ture, we plan to investigate the modifications of RDBN model such as conditional
RDBN to directly model conditional distribution between views. We also plan
to extend our model to use label information for supervised and semi-supervised
learning. Another future topic is extension of our model to time-series data or
other structured data.
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Abstract. In this paper, we present a framework for visual object track-
ing based on clustering trajectories of image key points extracted from a
video. The main contribution of our method is that the trajectories are
automatically extracted from the video sequence and they are provided
directly to a model-based clustering approach. In most other methodolo-
gies, the latter constitutes a difficult part since the resulting feature tra-
jectories have a short duration, as the key points disappear and reappear
due to occlusion, illumination, viewpoint changes and noise. We present
here a sparse, translation invariant regression mixture model for cluster-
ing trajectories of variable length. The overall scheme is converted into a
Maximum A Posteriori approach, where the Expectation-Maximization
(EM) algorithm is used for estimating the model parameters. The pro-
posed method detects the different objects in the input image sequence
by assigning each trajectory to a cluster, and simultaneously provides
the motion of all objects. Numerical results demonstrate the ability of
the proposed method to offer more accurate and robust solution in com-
parison with the mean shift tracker, especially in cases of occlusions.

Keywords: Motion segmentation, visual feature tracking, trajectory
clustering, sparse regression.

1 Introduction

Visual target tracking is a preponderant research area in computer vision with
many applications such as surveillance, targeting, action recognition from mo-
tion, motion-based video compression, teleconferencing, video indexing and traf-
fic monitoring. Tracking is the procedure of generating inference about apparent
motion given a sequence of images, where it is generally assumed that the ap-
pearance model of the target (e.g. color, shape, salient feature descriptors etc.)
is known a priori. Hence, based on a set of measurements from image frames the
target’s position should be estimated.

Tracking algorithms may be classified into two main categories[1]: The first
category is based on filtering and data association. It assumes that the moving
object has an internal state, where the position of an object is estimated by
combining the measurements with the model of the state evolution. Kalman
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filter [2] belongs to such methods which successfully tracks objects if the assumed
type of motion is correctly modeled including cases of occlusion. Alternatively
particle filters [3], including the condensation algorithm [4], are more general
tracking methods without assuming specific type of densities. Finally there are
methods relying on feature extraction and tracking using optical flow techniques
[5]. A general drawback of this family of tracking algorithms is that the type of
object’s motion should be known and modeled correctly.

On the other hand, there are algorithms which are based on target repre-
sentation and localization assuming for a probabilistic model for the object’s
appearance and the aim is to estimate it. More specifically, color or texture fea-
tures of the object masked by an isotropic kernel are used to create a histogram.
Then, the object’s position is estimated by minimizing a cost function between
the model’s histogram and candidate histograms in the next image. A typical
method in this category is the mean shift algorithm [1] and its extensions [6,7],
where the object is supposed to be surrounded by an ellipse and the histogram
is constructed from its internal pixel values. Also, algorithms based on the min-
imization of the differential Earth mover’s distance [8,9] belong to this category.

Motion segmentation constitutes a significant application of tracking algo-
rithms, which aims at identifying moving objects in a video sequence. It can be
seen either as the post-processing step of a tracking algorithm, or as an assis-
tive mechanism of the tracking algorithms by incorporating knowledge on the
number of individual motions or their parameters. It has been considered in the
framework of optical flow estimation, like in [10], where violations of brightness
constancy and spatial smoothness assumptions caused by multiple motions are
addressed and in [11], where affine flow is obtained by clustering the features
into segments using the EM algorithm. Also, sparse features are clustered into
groups and the number of groups is updated automatically over time in [12].

Trajectory clustering is also proposed in [13] where 3D trajectories are grouped
using an agglomerative clustering algorithm and occlusions are handled by mul-
tiple tracking hypotheses. Finite mixtures of hidden Markov models (HMMs)
were also employed [14] with parameter estimation obtained through the EM al-
gorithm. Zappela et al. [15] project the space of the trajectories into a subspace
of smaller dimensions and the clustering is performed by analyzing the eigenval-
ues of an affinity matrix, while in [16], overlapping trajectories are clustered and
the resulting clusters are merged to cover large time spans.

Furthermore, spectral clustering approaches were also proposed, such as the
method in [17], where the motions of the tracked feature points are modeled by
linear subspaces and the approach in [18] where missing data from the trajec-
tories are filled in by a matrix factorization method. Moreover, Yan et al. [19]
estimate a linear manifold for every trajectory and then spectral clustering is em-
ployed to separate these subspaces. In [20], motion segmentation is accomplished
by computing the shape interaction matrices for different subspace dimensions
and combine them to form an affinity matrix that is used for spectral clustering.

Finally, many methods proposed independently rely on the separation of the
image into layers. For example, in [21] tracking is performed in two stages: at
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first foreground extracted blobs are tracked using graph cut optimization and
then pedestrians are associated with blobs and their motion is estimated by a
Kalman filter.

In this work, we present a framework for visual target tracking based on
clustering trajectories of key points. The proposed method creates trajectories
of image features that correspond to Harris corner features [22]. However, key
point tracking introduces an additional difficulty because the resulting feature
trajectories have a short duration, as the key points disappear and reappear
due to occlusion, illumination and viewpoint changes. Therefore, we are dealing
with time-series of variable length. Motion segmentation is converted next into
a clustering of these input trajectories, in a sense of grouping together feature
trajectories that belong to the same object. For this purpose, we use an efficient
regression mixture model, which has three significant features: a) Sparseness, b)
it is allowed to be translated in measurement space and c) its noise covariance
matrix is diagonal and not spherical as in most cases. The above properties
are incorporated through a Bayesian regression modeling framework, where the
Expectation-Maximization (EM) algorithm can be applied for estimating the
model parameters. Special care is given for initializing EM where an interpolating
scheme is proposed based on executing successively the k-means algorithm over
the duration of trajectories. Experiments show the robustness of our method
to occlusions and highlight its ability to discover better the objects motion in
comparison with the state-of-the art mean shift algorithm [1].

The rest of the paper is organized as follows: the procedure of feature extrac-
tion and tracking in order to create the trajectories is presented in section 2. The
trajectories clustering algorithm is presented in section 3, experimental results
are shown in section 4 and a conclusion is drawn in section 5.

2 Extracting Trajectories

Trajectories are constructed by tracking points in each frame of the video se-
quence. The main idea is to extract some salient points from a given image and
associate them with points from previous images. To this end, we employ the
so called Harris corners [22] and standard optical flow for the data association
step [23]. Let us notice that any other scale or affine invariant features [24,25]
would also be appropriate. In this work we use Harris corner features due to
their simplicity, as they rely on the eigenvalues of the matrix of the second order
derivatives of the image intensities.

Let T be the number of image frames and Y = {yi}i=1,...,N be a list of
trajectories with N being unknown beforehand. Each individual trajectory yi

consists of a set of 2D points, the time of appearance of its corner point into the
trajectory, (i.e. the number of the image frame) and the optical flow vector of
the last point in the list.

Initially, the list Y is empty. In every image frame, Harris corners are detected
and the optical flow vector at each corner is estimated [5]. Then, each corner
found in the current image frame is attributed to a trajectory that already exists
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Fig. 1. Example of trajectories construction. The red dots represent the image key
points and the green lines represent their trajectories. The figure is better seen in color.

or a new trajectory is created having with only one element, the corner under
consideration. According to this scheme, three cases are possible:

– If any key point of the previous frame has an optical flow vector pointing
out the key point under consideration, then the current corner is attributed
to an existing trajectory. In this case, a trajectory follows the optical flow
displacement vector, meaning that the corner is apparent in consecutive
frames.

– If there is no such key point in the previous frame, we apply a window around
the last corner which is similar to the current corner. If there are more than
one similar corners then we choose the closet one.

– Otherwise, a new trajectory is constructed containing only the corner under
consideration.

In Fig. 1, an intuitive example is presented where three corners are considered
for demonstration purposes and five time instances are depicted. In the first
frame, three corners are detected and three trajectories are created. In the second
frame, the same corners are detected and associated with existing trajectories
due to optical flow constraint. Next, one corner is detected and attributed to an
existing trajectory due to optical flow constraints while the other two key points
are occluded. During the fourth frame, the key point that was not occluded
is also detected and attributed to an existing trajectory. One of the other two
corner points that reappear is attributed to a trajectory due to local window
matching. The other corner is not associated with any existing trajectory, so
a new trajectory is created. In the last frame three corners are detected and
associated with existing trajectories due to optical flow. Thus, four trajectories
have been created, two of the same key point and another two of distinct key
points.

Once the list Y is constructed trajectories of corner points belonging to the
background are eliminated. This is achieved by removing the trajectories hav-
ing small variance along the whole video sequence, according to a predefined-
threshold value, as well as trajectories of small length (e.g. 1% of the number of
frames). The complete procedure is described in the next algorithm 1.

3 Clustering Trajectories of Variable Length

Suppose we have a set of trajectories of N tracked feature points over T frames
obtained from the previous procedure. The aim is to detect K independently
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Algorithm 1. Trajectories construction algorithm
1: function CreateTrajectories(Im)
2: Input: an image sequence Im.
3: Output: a list of trajectories Y .
4: Y = ∅.
5: for every image {im(t)}t=1,...,T do

6: Detect corners {c(t)
l }l=1,...,L(t) and estimate optical flow {f (t)

l }l=1,...,L(t) in
each one.

7: for every corner {c(t)
l }l=1,...,L(t) detected in im(t) do

8: if yi has its last corner clast
i in the image t− 1 and it’s optical flow f last

i

points to the current corner, i.e. clast
i + f last

i ≈ c
(t)
l then

9: Insert c
(t)
l into yi.

10: else if yi has its the window around it’s last corner clast
i similar to the

window around thw current corner c
(t)
l then

11: Insert c
(t)
l into yi.

12: else
13: Insert a new trajectory yi with only c

(t)
l into Y .

14: end if
15: end for
16: end for
17: Eliminate trajectory yi with small variation in it’s corners coordinates.
18: end function

moving objects in the scene by estimating labels on these points and classifying
them into groups of different motions. Also, we want to estimate the character-
istic motion of all objects.

A 2D trajectory yi = (y(1)
i , y

(2)
i ) consists of two directions: (1) horizontal

and (2) vertical and is defined by a set of Ti points {(y(1)
i1 , y

(2)
i1 ), . . . , (y(1)

iTi
, y

(2)
iTi

)},
corresponding to the successive image positions (ti1, . . . , tiTi) in the image se-
quence. That is important to note is that we deal with trajectories of variable
length Ti, since occlusions or illumination changes may block the view of the
objects in certain image frames.

Linear regression model constitutes a powerful platform for modeling sequen-
tial data that can be adopted in our case. In particular, we assume that a tra-
jectory y

(j)
i of any direction j = {1, 2} can be modeled through the following

functional form:
y

(j)
i = Φiw

(j) + d
(j)
i + e

(j)
i , (1)

where Φi is the design kernel matrix (common for both directions) of size Ti×T ,
and w = (w1, . . . , wT ) is the vector of the T unknown regression coefficients
that must be estimated. In our case we have considered a design matrix Φ of
size T × T having constructed with wavelets kernels. Thus, the matrix Φi is a
block-matrix of Φ, which has only the Ti lines that corresponds to the sucessive
Ti frames (ti1, . . . , tiTi) of the i-th trajectory.

Also in the above equation, we assume an translation scalar term d
(j)
i that

allows for the entire trajectory to be translated as a unit [26]. Incorporating
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of such term results in a regression model that allows for arbitrary transla-
tions in measurement space. Finally, the error term e

(j)
i in the above formula-

tion is a Ti-dimensional vector that is assumed to be zero-mean Gaussian and
independent over time, i.e. ei ∼ N (0, Σi) with a diagonal covariance matrix
Σ

(j)
i = diag(σ2(j)

ti1
, . . . , σ2(j)

tiTi
)1.

Under these assumptions, the conditional density of trajectory is Gaussian,
i.e. p(y(j)

i |w(j), Σ
(j)
i , d

(j)
i ) = N (Φiw

(j) + d
(j)
i , Σ

(j)
i ). In our case we consider

the scalar d
(j)
i to be a zero-mean Gaussian variable with a variance u(j), i.e.

p(d(j)
i ) = N (0, u(j)). We can further integrate out di to obtain the marginal

density for y
(j)
i which is also Gaussian,

p(y(j)
i |θ) =

∫
p(y(j)

i |w(j), Σ
(j)
i , d

(j)
i )p(d(j)

i )dd
(j)
i = N (Φiw

(j), Σ
(j)
i + u(j)

�) ,

(2)
where � is a matrix of 1’s of size Ti × Ti. The marginal density is implicitly
conditioned on the parameters θ = {w, u, Σ}.

In our study we consider a different functional regression model for every
object k, as described by the set of model parameters θk = {θ(1)

k , θ
(2)
k }, where

θ
(j)
k = {w(j)

k , u
(j)
k , Σ

(j)
k }. Therefore, the task of discovering K objects becomes

equivalent to clustering the set of N trajectories into K clusters. This can be
described by the following regression mixture models:

p(yi|Θ) =
K∑

k=1

πkp(yi|θk) =
K∑

k=1

πkp(y(1)
i |θ(1)

k )p(y(2)
i |θ(2)

k ) , (3)

where we have assumed independence between that trajectories of both direc-
tions (y(1)

i , y
(2)
i ). In addition, πk are the mixing weights satisfying the constraints

πk ≥ 0 and
∑K

k=1 πk = 1, while Θ is the set of all the unknown mixture param-
eters, Θ = {πk, θk}K

k=1.
An important issue, when dealing with regression models is how to deter-

mine their order. Models of small order can lead to under-fitting, while larger
order lead to curve over-fitting. Both cases may cause to serious deterioration
of the clustering performance. Sparse modeling [27] offers a significant solu-
tion to this problem by employing models having initially many degrees of free-
dom than could uniquely be adapted given data. Sparse Bayesian regression can
be achieved through a hierarchical prior definition over regression coefficients
w

(j)
k = (w(j)

k1 , . . . , w
(j)
kT )T . In particular, we assume first that coefficients follows

a zero-mean Gaussian distribution:

p(w(j)
k |α(j)

k ) = N (w(j)
k |0, A−1(j)

k ) =
T∏

l=1

N (w(j)
kl |0, α−1(j)

kl ) (4)

1 Again Σi is a blosck matrix of a T ×T diagonal covariance matrix that corresponds
to the noise variance of T frames.
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where A
(j)
k is a diagonal matrix containing the T elements of precisions α

(j)
k =

(α(j)
k1 , . . . , α

(j)
kT )T . We impose next a Gamma prior on these hyperparameters::

p(α(j)
k ) =

T∏
l=1

Gamma(α(j)
kl |a, b) ∝

T∏
l=1

α
(j)a−1

kl exp(−bα
(j)
kl ) , (5)

where a and b denote parameters that are a prior set to near zero values (e.g.
a = b = 10−6). The above two-stage hierarchical prior is actually a Student-t
distribution [27]. This is a heavy tailed prior distribution that enforces most
of the values α

(j)
kl to be large, thus the corresponding w

(j)
kl are set zero and

eliminated from the model. In this way the complexity of the regression models
is controlled in an automatic and elegant way and over-fitting is avoided.

Now the clustering procedure has been converted into a Maximum-A-Posterior
(MAP) estimation approach, in a sense of estimating the mixture model param-
eters that maximize the MAP log-likelihood function:

L(Θ) =
N∑

i=1

log{
K∑

k=1

πkp(yi|θk)} +
K∑

k=1

2∑
j=1

{log p(w(j)
k |α(j)

k ) + log p(α(j)
k )} .(6)

In this direction, the Expectation - Maximization (EM) algorithm [28] can be ap-
plied in order to MAP estimate the model parameters Θ. It iteratively performs
two main stages: During the E-step the expected values of the hidden variables
are calculated. In our case this includes the cluster labels of trajectories as given
by the posterior probabilities:

zik = P (k|yi) =
πkp(yi|θk)∑
k′ πk′p(yi|θk′)

, (7)

as well as the mean value of the translations d
(j)
ik at any direction. The latter

is obtained by using the fact that the posterior density of translations is also
Gaussian:

p(d(j)
ik |y(j)

i , k) ∝ p(y(j)
i |θ(j)

k )p(d(j)
ik ) = N (d̂(j)

ik , V
(j)
ik ), (8)

where

d̂
(j)
ik = V

(j)
ik

(
y

(j)
i − Φiw

(j)
k

)T

Σ−1(j)

ik 1i and V
(j)
ik =

(
1T

i Σ−1(j)

ik 1i +
1

u
(j)
k

)−1

,

(9)
where 1i is a Ti-length vector of 1’s.

In the M-step, the maximization of the expected value of the complete log-
likelihood function (Q-function) is performed. This leads to the following update
rules [26], [29]:
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π̂k =
∑N

i=1 zik

N
, (10)

ŵ
(j)
k =

[
N∑

i=1

zikΦT
i Σ−1(j)

ik Φi + A
(j)
k

]−1 N∑
i=1

zikΦT
i Σ−1(j)

ik (y(j)
i − d̂

(j)
ik ) , (11)

α
(j)
kl =

1 + 2a

ŵ2(j)

kl + 2b
∀ l = 1, . . . , T , (12)

σ̂2(j)

kl =

∑N
i=1 zik

{(
y

(j)
il − [Φiŵ

(j)
k ]l − d̂

(j)
ik

)2

+ V
(j)
ik

}
∑N

i=1 zik

, ∀ l = 1, . . . , T (13)

û
(j)
k =

∑N
i=1 zik

(
d̂2(j)

ik + V
(j)
ik

)
∑N

i=1 zik

. (14)

where [.]l indicates the l-th component of the Ti-dimensional vector that corre-
sponds to time location til.

After convergence of the EM algorithm, two kinds of information are avail-
able: At first the cluster labels of the trajectories are obtained according to the
maximum posterior probability (Eq. 7). Moreover, the motion of objects are ob-
tained from the predicted mean trajectories per cluster, i.e. μk = (μ(1)

k , μ
(2)
k ) =

(Φw
(1)
k , Φw

(2)
k ).

3.1 Initialization Strategy

A fundamental issue when applying the EM algorithm, is its strong dependence
on the initialization of the model parameters due to its local nature. Improper
initialization may lead to reaching poor local maxima of the log-likelihood, a
fact that may affect significantly the performance of the method. A natural
way for initialization is by randomly selecting K samples from the set of input
trajectories, one for each cluster. Then, we can obtain the least-squared solution
for the regression coefficients. In addition, the noise variance Σk is initialized
by a small percentage of the total variance of all trajectories equally for each
clusters, while we set the mixing weights πk equal to 1/K. Finally, one step of the
EM algorithm is executed for further refining these parameters and calculating
the MAP log-likelihood function. Several such different trials are made and the
optimum solution is selected according to the likelihood function as the initial
state of the parameters.

However, the above scheme cannot be easily applied to our approach due to the
large variability in length (Ti) of the input trajectories which brings a practical
difficulty in obtaining the least-squared solution. For this reason we have followed
an alternative initialization scheme based on interpolation among successive time
steps. More specifically, starting from the first time we perform periodically (e.g.
every 0.05T frames) the k-means clustering over the points (y(1)

it , y
(2)
it ) until the
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(a) (b) (c) (d)

Fig. 2. The overall progress of our method to a experimental sequence of 250 images
with k = 4 objects of different motion (a). First the input trajectories (b) are cre-
ated, then an initial estimation of mean trajectories (c) are produced, and finally the
predicted motion (d) is obtained

end of frame T . Then, the resulting K centers are associated with those of the
previous time according to the minimum distance criterion. Finally, a linear
interpolation (per cluster) is performed and thus the initial mean curves are
produces used for estimating the initial values of the parameters. It must be
noted that in cases where there is a large number of dense features representing
the background, the initialization may diverge from the desired solution since
the existence of a significant amount of outliers will affect the k-means solution.
Even if during our experiments we have not faced with any such problem, treating
this situation and eliminating this case still remains a future plan of study. An
example of the proposed process is given in Fig. 2 adopted from a experimental
data set, where both the initial interpolated trajectories and the final clustering
solution are shown.

4 Experimental Results

We have studied the performance of our approach using both simulated and
real examples. Some implementation details of our method are the following:
At first, we have normalized spatial and temporal coordinates into the interval
[0, 1]. Next, extracted trajectories with length less than 1% of the number of
frames T were not taken into account. The same stands for those trajectories
with variance less than 0.01. We have selected the mexican hat wavelet kernel
φ(x) ∝

(
1 − x2

σ2

)
e

−t2

2σ2 . Experiments have shown that the method was not very
sensitive to these kernel parameters. During our study we have set σ = 0.3. It
must be noted that we have taken similar results for various values from the
range [0.1, 0.5].

Comparison has been made with the mean shift algorithm [1] which is a state
of the art algorithm in visual tracking. For the mean shift algorithm, the images
were represented in the RGB color space using histograms of 16 bins for each
component. For initializing it we have manually selected the position and the
size of each object in the first frame of the image sequence. After that, mean
shift tracks the objects, using a distinct tracker for each target. The centers of
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Fig. 3. Features are not uniformly distributed over the object and the center of gravity
of the key points does not coincide with the center of gravity of the object. The small
dots represent the features and the big dot represents their barycenter. The figure is
better visualized in color.

the ellipses surrounding the targets are used to construct the mean trajectory
of each object. This comparison favors mean shift in cases where the features
are not uniformly distributed around the object, as the center estimated by the
features may vary from the geometric center of the object (Fig. 3).

4.1 Experiments with Simulated Data Sets

The first series of experiments involves seven (7) simulated image sequences
with spheres moving in predefined directions as shown in Fig. 4 and Fig. 5.
Each sequence contains 130 frames of dimensions 512× 512. About 1500− 2000
trajectories per problem were created with average length near 60 frames each. In
sequences Sim1 through Sim5 all objects are visible during the whole sequence.
In the next two experimental setups there is occlusion. In particular, in Sim6 a
sphere disappears while in Sim7 a sphere disappears and reappears.

Since in our study we are aware of the ground truth, the performance of both
tracking approaches was evaluated using two criteria:

• The mean squared error (MSE), measured in pixels, between the ground
truth r and the estimated mean trajectories μ as given by

MSE =
1

K · T
K∑

k=1

2∑
j=1

||r(j)
k − μ

(j)
k ||2 .

• The percentage of correctly classified trajectories (ACC). It must be noted
that the input trajectories created by our method have been chosen also to
evaluate mean shift algorithm. In particular, we assign every input trajectory
to an object according to the smallest distance with the predicted mean
trajectory.

Table 1 shows the results obtained by the proposed method and the mean shift
algorithm. As it may be seen, both methods have comparable accuracy. However,
our approach estimates better the true motion of the objects, as shown from the
MSE criterion. Also in problem Sim7, mean shift fails to track the sphere that
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Problem
The objects with
their true motion

Input trajectories
Estimated motion
by our approach

Estimated motion
by mean shift

Sim1

Sim2

Sim3

Sim4

Fig. 4. A part of the simulated data sets used in our experimental study. For each
problem we give the real objects motion, the created input trajectories and the pre-
dicted motion as estimated by both compared approaches.

disappears and reappears and tracks the object only as long as it is visible. In
the case of problems Sim6 and Sim7, the frames in which a sphere is not visible
are not taken into account for computing MSE. On the other hand, the proposed
method correctly associates the two separated trajectories of the sphere.

4.2 Experiments with Real Data Sets

We have also studied our motion segmentation approach on five (5) real se-
quences shown in Fig. 6. Three of them (Real1-3 ) show mobile robots moving in
various directions and two other sequences (Real4-5 ) contain two persons walk-
ing. In there, occlusions take place, as one person gets behind the other. All
images are of size 512 × 512 pixels. During the set Real1 (T = 250), the robots
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Sim5

Sim6

Sim7

Fig. 5. A part of the simulated data sets used in our experimental study. For each
problem we give the real objects motion, the created input trajectories and the pre-
dicted motion as estimated by both compared approaches.

Table 1. The performance of our approach and mean shift in terms of classification
accuracy and mean squared error criteria

Problem Our approach Mean shift

MSE ACC MSE ACC

Sim1 69 100% 121 100%

Sim2 10 99% 114 100%

Sim3 10 96% 114 99%

Sim4 15 97% 130 99%

Sim5 20 100% 118 100%

Sim6 29 100% 74 100%

Sim7 41 99% lost lost

are moving towards the borders of the image forming the vertices of a square. In
Real2 (T = 680), the robots are moving around the center of the image, forming
a circle, while in Real3 (T = 500), the robots are moving forward and backward.
Finally, in Real4 (T = 485) two persons are moving from the one side of the
scene to the other and backwards, and in Real5 (T = 635) the persons are not
only moving from one side to the other many times but also they move forward
and backward in the scene. In problems Real4 and Real5, due to occlusions,
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Problem
The objects with
their true motion

Input trajectories
Estimated motion
by our approach

Estimated motion
by mean shift

Real1

Real2

Real3

Real4

Real5

Fig. 6. The five real data set used in our experimental study. For each problem we
give the real objects motion (chosen manually), the created input trajectories and the
predicted motion as estimated by both comparative approaches.

the mean shift algorithm fails to track the objects while the proposed algorithm
successfully follows them.

As ground truth is not provided for these sequences, only visual evaluation
can be done. In problems Real1-3 both algorithms produce approximately the
same trajectories. On the contrary, in problems Real4 and Real5, where we deal
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(a) (b)

Fig. 7. Estimated trajectories for the sequence Real4. (a) Our method, (b) mean shift.
The green (printed in light gray in black and white) trajectory in (b) corresponds to
the person in black moving from the right side of the image to the left and backwards.
The ellipse highlights the part of the trajectory where the person is lost, because mean
shift fails to track the object due to occlusion. The figure is better visualized in color.

with articulated objects and occlusion, mean shift does not produce smooth
trajectories and one object is lost. This is due to the change in the appearance
of the target. When the person walks there are instances where both arms and
legs are visible and instances where only one of them is present. In these cases,
mean shift identifies the target with respect to its initial model and may produce
abrupt changes in motion estimation. On the other hand, our method smooth
out these effects through data association.

Looking in more detail the problem Real4, we can see the person in black
disappears (because he gets behind the other person) twice during this sequence:
at first, when he is moving from right to left, and then, as he is moving from
left to right. Mean shift successfully follows the object before and after the first
occlusion, but it fails to track it then the second one takes place. This is better
depicted in Fig. 7(b) where the predicted trajectory, corresponding to the person
in black, is shown in green. The part of the trajectory where the object is lost is
highlighted by an ellipse. On the other hand, the proposed method successfully
tracks the object in all frames (Fig. 7(a)).

5 Conclusion

We have presented a compact methodology for objects tracking based on model-
based clustering trajectories of Harris corners extracted from a video sequence.
Clustering is achieved through an efficient sparse regression mixture model that
embodies special characteristics in order to handle trajectories of variable length,
and to be translated in measurement space. Experiments have shown the abilities
of our approach to automatically detect the motion of objects without any human



160 V. Karavasilis, K. Blekas, and C. Nikou

interaction and also have demonstrated its robustness to occlusion and feature
misdetection. Some directions for future study include an alternative strategy
for initializing mixture model parameters during EM procedure especially in
cases of occlusion, as well as to simultaneously estimate the number of objects
K in the image sequences. Also, our willing is to study the performance of our
method in other interesting computer vision applications, such as human action
recognition [30], as well as to fully 3D motion estimation.
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Abstract. Peptide identification by tandem mass spectrometry (MS/MS)
and database searching is becoming the standard high-throughput tech-
nology in many areas of the life sciences. The analysis of post-translational
modifications (PTMs) is a major source of complications in this area,
which calls for efficient computational approaches. In this paper we de-
scribe PTMSearch, a novel algorithm in which the PTM search space
is represented by a tree structure, and a greedy traversal algorithm is
used to identify a path within the tree that corresponds to the PTMs
that best fit the input data. Tests on simulated and real (experimen-
tal) PTMs show that the algorithm performs well in terms of speed and
accuracy. Estimates are given for the error caused by the greedy heuris-
tics, for the size of the search space and a scheme is presented for the
calculation of statistical significance.

1 Introduction

Tandem mass spectrometry (MS/MS) has become the major tool for high
throughput protein analysis in the biomedical field, and the analysis of the
data entirely relies on database searching algorithms. The difficulties in anal-
ysis arise from both the quantity of data, as current instruments can produce
tens of thousands of spectra within an hour, and the quality of data, as there
are measurement errors, as well as both missing and extraneous data points.

According to the most widely used methodology, peptide sequences, taken
from a sequence database, are matched to the experimental MS/MS spectra in
order to suggest peptide candidates for further analysis. The algorithmic strategy
is seemingly straightforward: protein sequences are divided into peptide segments
that in turn are converted into theoretical spectra according to chemical rules and
stored in a database [1]. Each experimental MS/MS spectrum is then compared
with theoretical spectrum from the database, and the most similar peptide is
stored for further analysis.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 162–176, 2011.
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The difficulties come from the fact that experimental and theoretical spectra
can differ for reasons other than instrument noise. One of the most important
sources of variability are the post-translational modifications (PTMs) of proteins.
In biological systems, proteins can carry a number of PTMs on their amino acid
side-chains which leads to a combinatorial explosion in the number of theoretical
spectra to be compared. As there are thousands of already discovered PTMs [2],
accurate identification of PTMs through analysis of high-throughput MS/MS
data is considered a highly challenging problem [3], and this is the subject of
our work.

Here we present PTMSearch, a greedy-tree search algorithm designed for the
identification of PTMs in tandem mass spectrometry data. The approach is
based on a tree-representation of the search space in which nodes are amino acid
positions and branches represent potential PTMs allowed on the type of amino
acid in the given position. In this representation, a path from the root to a leaf
represents a peptide with PTMs. PTMSearch uses a greedy traversal procedure
to find the path in the tree that best fits to the input data. PTMSearch includes
tree pruning heuristics in order to keep the computation time reasonable and
polynomial.

The rest of this paper is structured as follows: Section 2 is a brief outline of the
spectrum comparison problem and the role of PTMs in the process (optional).
Section 3 is a summary of related work. In Section 4 we describe our proposed
algorithm and the speedup methodologies. Section 5 describes the calculation
of significance used with the algorithm. Section 6 contains the results obtained
on experimental datasets and comparisons with other method. Section 7 is a
discussion of the results and an outline of future work.

2 MS/MS Spectra and PTMs

This section presents a simplified description of mass spectra for readers not
familiar with the field. Of the various and continuously changing techniques of
mass spectrometry, we selected the most widely used method, collision induced
dissociation (CID), to demonstrate the principle of spectrum analysis. Tandem
mass spectra of peptides (MS/MS spectra, hereafter: spectra) are produced by
mass spectrometers by fragmenting peptides (typically up to 8-30 amino acids in
length) at given positions of the peptide chain. In theory, fragmentation results
in a series of peptide fragments of which two types, the b and y ions are used most
frequently for identifying peptides. A theoretical fragmentation pattern can be
calculated based on the sequence alone, this is called the theoretical spectrum,
the x axis is the molecular mass of the fragment peak (more exactly the mass over
charge ratio m/z of the fragment ion) the y axis is proportional to the quantity
of the ions. Since predicting the intensity in silico has been proven difficult,
the intensity in the theoretical spectra are set to unit. If a post-translational
modification (PTM) occurs at one position (amino acid) of the peptide (say at
the M residue), than the (m/z) of all fragments in which this position is included
will be shifted by a value corresponding to the modification. This will result in
an altered theoretical spectrum [4].
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Fig. 1. A simplified outline of peptide fragmentation, shown on the example peptide
HQGVMVGMVQK A) In the mass spectrometer, peptides are fragmented at certain
points of the backbone. B) In theory, the resulting b and y ions form a regular series. C)
This series is represented as a theoretical spectrum. D) If a modification is introduced,
say at the 2nd residue (Q) of the sequence, all b and y ions that contain that residue
will be shifted by a value corresponding to the molecular mass of the modification
(see arrows). In this example we show the effect of deamidation at Q in position 2,
which decreases the molecular mass by 17.03 Daltons (small negative shift indicated
by arrows). E) An experimental spectrum of the same peptide recorded by a CID mass
spectrometer. The annotated peaks correspond to the b− y fragment ions. Some b− y
ions e.g. b1, y9 are not observed in this example, all other peaks can be considered
noise.
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Eventhough experimental spectra produced by the mass spectrometer may
contain only some of the peaks predicted by the theoretical spectra, the peak
intensities (y axis) vary in a broad range and the spectrum is always laden with
noise peaks, a classical numerical similarity measure should be able to tell if the
experimental spectrum is closer to the modified or to the unmodified spectrum,
even if the overlaps of noise peaks with modified peaks can obscure the results.

One of the simplest similarity measure for two spectra (an experimental and
a theoretical spectrum) is the so called shared peak count (SPC), which is the
number of peaks that are on the same position (m/z) within a given tolerance
range, called (fragment) ion tolerance. Formally, for an experimental spectrum
q and theoretical spectrum t, the number of shared peaks can be computed as,

SPC(q, t) = |{(qi, tj) : |qi − tj | < δ}|, (1)

where ai is the location (m/z) of ith in the spectrum a and δ is the ion tolerance.
In the case of PTMs, the algorithms must take into account the mass difference
of the precursor ion and the resulting fragment ions, as the algorithms typically
compare experimental and theoretical spectra coming from precursors with sim-
ilar masses. Since we do not know which PTM to expect, we need to produce
theoretical spectra for all of them. There are many different kinds of protein
modifications (the Unimod database lists over 500 types of them www.unimod.
org) and in most cases the modifications are only partial i.e. both the modified
and the unmodified amino acid can be present. This results in a combinato-
rial explosion, which makes the accurate identification of PTMs an especially
challenging problem. For instance, if we allow 5 of the 10 most frequent modifi-
cations to occur in a peptide, the search space grows 3 orders of magnitude, but
the growth is more dramatic if instead of 10 types of modifications we wish to
consider all of roughly 500 known types [5].

3 Related Work

There is a large body of literature on the computational identification of PTMs
in MS/MS spectra (for excellent reviews see [6]). The methods fall in 3 large
categories:

– Targeted PTM identification. In this case, the user/experimenter has to de-
fine the types of PTMs and input these as parameters to the program.

– Untargeted PTM identification. This approach uses a full list of known
modifications as a vocabulary, such as UniMod (www.unimod.org) or ResId
(http://www.ebi.ac.uk/RESID/).

– Unrestricted PTM identification. (also called de novo or blind PTMs iden-
tification). Here, no assumptions are made about the PTMs, but all shifts
that obey the chemical rules (and are recurrent in a dataset) are considered
as potential PTMs. Here, novel PTMs can be identified, but unfortunately
the statistical significance of the hits are often low, especially when more
then one PTM per peptide is allowed.

www.unimod.org
www.unimod.org
www.unimod.org
http://www.ebi.ac.uk/RESID/
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In practice, search engines running on single CPU computers can handle up to 4-
5 modifications per peptide, above this limit the search space becomes too large
and analysis often becomes too time-consuming [5]. From the many programs
available we mention two:

MS-Alignment. The Pevzner group has proposed a model for unrestrictive
PTM identification that seeks to identify an optimal alignment between the
experimental and the theoretical spectrum that maximizes the overlap of the
peaks between the two spectra via peak shifting [7]. One shift represents one
PTM and the size of the shift will represent the molecular mass of the PTM. The
method is analogous to finding an optimal edit distance between two strings. The
program is freely available and an online web server can be found at: http://
proteomics.ucsd.edu/LiveSearch/.

PILOT PTM.(Prediction via Integer Linear Optimization and Tandem mass
spectrometry) uses a binary integer optimization model for finding PTMs that
best match the experimental data [8]. This is an untargeted method i.e. PI-
LOT PTM uses a vocabulary of PTMs. Given a template peptide sequence of
amino acids, the model will seek to determine the optimal set of modifications
among a ”universal” list of PTMs. Then the obtained binary linear model is
solved by relaxing the variables and cutting plane techniques.

We describe an alternative approach in which the PTM search space is mapped
to a tree structure and finding an optimal set of PTMs is reduced to a tree
traversal problem. The resulting tree is still too big for the classical, exhaustive
tree traversal algorithms (such as depth-first search, breadth-first search [9]), so
we developed a greedy traversal algorithm.

4 Method: The PTMSearch Algorithm

The PTMSearch algorithm compares an experimental spectrum to a peptide
sequence in order to identify PTMs untargeted way. Briefly, the algorithm gen-
erates all possible modifications of a peptide sequence and selects the set of
modifications for which the precursor mass of the modified peptide is within a
small tolerance of the precursor mass of the spectrum. If there is more than one
such set of PTMs, the algorithm selects the one that shares the maximum num-
ber of peaks with the experimental spectrum (eqn 1). Since the search space is
prohibitively large, PTMSearch uses a greedy approach and speedup techniques
in finding the optimum.

Let q be an experimental spectrum and p = a1a2 . . . an be a peptide sequence
and let’s denote the precursor mass of q and p by PM(q), PM(p) respectively.
Let La be a list of modification masses for the amino acid a and na = |La|
denote the number of the elements in the list. A modification mass is the mass
difference that the amino acid gains or looses due to the molecular modification.
For example Lc = {−17.0265, 47.9847, 57.0215, 71.0371, . . .} means the amino
acid cysteine can loose 17.065Da (occurs via losing of ammonia from cysteine),
can gain 47.9847Da (occurs via complete oxidation), can gain 57.0215Da (occurs
via carbamidomethylation), etc. respectively. The molecular mass of the cysteine

http://proteomics.ucsd.edu/LiveSearch/
http://proteomics.ucsd.edu/LiveSearch/
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is 121.16Da which becomes 178.1815 after carbamidomethylation. Note that one
particular amino acid molecule is not modified with more than one modification
at the same time, but an amino acid can be modified with various modification
at different occurrences in the peptide sequence (and in different peptides as
well).

The basic idea is to generate all modified variations of peptide p and store
them in a prefix tree, where a branch at the level i denotes PTM on amino acid
ai+1.

More formally, the tree node at the level i is a structure v = 〈s, b, y, m, c〉,
where s is a score of the node, c is the number and m is the sum of the mass of
the acquired modifications in the sequence a1 . . . ai. Finally the variables b and
y store the masses (m/z) of the b and y fragment ions that correspond to the
a1 . . . ai and ai+1 . . . an fragment ions respectively.

We recursively define the tree and the values stored in the node structures as
follows: The root node is 〈0, 0, PM(q), 0, 0〉. If v = 〈s, b, y, m, c〉 is a node in the
tree at the level i (0 ≤ i < n) then the node v0 = 〈s′, b+mai+1, y−mai+1, m, c〉
is a child of the node v at level i + 1, mai+1 is the mass of the amino acid ai+1,
and s′ = s + s̃(b′) + s̃(y′), where

s̃(x) =
{

1 if ∃j : |qj − x| < δ
0 otherwise, (2)

where qj denotes the (m/z) location of the jth peak in the spectrum q and δ is
the ion match tolerance. The nodes vj = 〈s′, b+mai+1 +mj , y−mai+1 −mj, m+
mj , c+1〉 are children of the node v at level i+1, where j = 1, . . . , nai+1 , mj is the
mass of the jth modification in Lai+1 . s′ is defined the same as earlier. The node
vj at level i + 1 represents that the amino acid ai+1 in the peptide p is modified
with the jth modification from Lai+1 . If the node v is at the level n, then node v
is a leaf. Denote w(v) = s as the score of the node v. A leaf 〈s, b, y, m, c〉 is called
a goal leaf if |PM(q) − PM(p)| = m up to a small precursor mass tolerance,
that is the mass of the peptide with the acquired modification masses is equal
to the precursor mass of the query spectrum.

We denote this computation tree T and the subtree of T rooted at a node v
is denoted Tv. The number of the nodes in the tree Tv is denoted by |Tv|.

The score of the spectrum q is the maximum of the scores of the goal leaves,
denoted H(q) = max{w(v) | v is a goal leaf in tree T}. This goal can be found
with any kind of tree traversal methods like Depth-first, Breadth-first traversal
algorithms. The modifications on the peptide then can be extracted from the
path between the root and the best goal leaf.

Note that, all nodes at level i (0 ≤ i < n) correspond to the ith amino acids
in p, all have the same nai + 1 children respectively, and the tree is balanced
and all leaves have the same depth. Thus, the number of the nodes in the tree is
|T | =

∏n
i=1(nai +1), which makes the time complexity of the traversal algorithm

impractical. Note that the size of the search space does not depend on the
experimental spectrum q. In the next subchapter we define pruning techniques in
order to maintain the run time polynomial and appropriate for real applications.
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Fig. 2. Sketch of the computation tree for a peptide. PEP stands for the peptide
sequence starting from above. The nodes at the level i represent the a1 . . . ai peptide
fragments modified in all possible ways.

4.1 Speedup Techniques

In this section we present various speedup solutions that prune the search space
and make the algorithm suitable for real-life applications.

Limiting the number of PTMs. If we restrict the number of the PTMs on
a peptide to K, then a node 〈s, b, y, m, c〉 can be deleted from the tree if c > K.
Thus, the number of the nodes |T ′| in the pruned tree T ′ can be estimated by
the following formula

mK

(
n

K

)
≤ |T ′| ≤ MK

(
n

K

)
≤ MK

K!︸ ︷︷ ︸
const.

nK , (3)

where m = mina{na} and M = maxa{na}, which gives that the number of the
nodes in the tree T ′ is O(nK).

Figure 3 plots a distribution of the number of modifications per amino acid
in our PTM database. See more details about PTM dataset we used in the
Experimental results chapter. There is one amino acid that can be modified by
32 different PTMs, so M = 32 and there are 5 amino acids that cannot be tagged
by any modification, so m = 0. We can say loosely that the expected number
NL of modifications per amino acid is around 5 or 6.

Greedy Tree Traversal. In principle the tree can be traversed by any of
the known tree traversal algorithms. Here, we present a Greedy Tree Traversal
(GTT) algorithm that inserts a node to a queue Q when it is visited at the first
time, deletes when all of its children have been visited, and continues the search
from the node with the highest score in the Q. When the size of Q exceeds
a certain limit QT , the node with the lowest score is deleted along with the
corresponding subtree.

The queue Q can be implemented as a priority double ended queue, where
the ordering operator of elements is based on the relation ”<” over the score of
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Fig. 3. Distribution of the number of PTMs per amino acids in our PTM database

the nodes. In this case, a new node is inserted at the end of the nodes with equal
scores in Q. This algorithm can be described best by the following pseudocode.

Algorithm 1. Greedy Tree Traversal (GTT)
input: Tree T
output: best goal (or NULL if there is no goal leaf)
1 put(Q,root);
2 while Q is not empty
3 v = front(Q);
4 create a non-visited child vj of node v;
5 if all children of v has been visited then pop first(Q);
6 if vj is a goal leaf then update best goal;
7 else put(Q,vj);
8 if size(Q) > QT then pop last(Q);
9 return best goal (or NULL if there is no goal leaf);

It may happen that the true goal leaf is eliminated from the tree by deleting
a node in the 8th code line. Now, we give an estimate about the probability of
eliminating the true goal under the following assumptions: The probability of a
node v matches to a peak by chance (i.e. the score of a child of v is increased due
to one of the fragment ions match with a noise peak) is p = 2 ∗ m ∗ δ/PM(q),
where m is the number of the peaks in q. We assume that the peaks are evenly
and independently distributed in the experimental spectrum. Let pe be the prob-
ability of that a (non-noise) peak is missing from the spectrum independently
from other peaks (because either it was not observed or was filtered out in a
preprocessing step).

Theorem 1. Using the assumptions and parameters above the probability P (ε)
of eliminating the true goal from the search space is P (ε) = NL ·p(K +

∑H
j=1 pj

e),
where H = QT /(NL)K , QT > M is the bound of the size of the queue Q, and
K is the limit of the PTMs on a peptide to be identified.
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Proof. First case: Let’s assume the GTT is on the right path to the true goal
at node v at level i, and the bi+1 and yn−i+1 peaks are not missing. GTT can
leave the true path iff one of the children l of the node v hits a random match by
chance before the right child is extended. In this case GTT will visit all nodes
of the Tl because all nodes in Tl have greater weight than any other nodes in Q.
If |Tl| > QT , then the node v will be deleted from the Q and the right path to
the best node will be lost. Since the path from the root to the true goal has K
branches, each has NL branches, then the probability of this error pε1 = K ·NL ·p.

Second case: Let’s assume GTT is on the right path to the true goal at node
v at level i, v has a match, and the bi+1 and yn−i+1 peaks are missing. v has
the unique and greatest score w(v) in Q. (w(v) must be unique, since v had a
match and v’s parent has smaller weight. If there is another node x such that
w(x) = w(v) in the Q, then GTT first traversals Tx, deletes x from Q, then
returns back to Tv.) GTT starts visiting the nodes in Tv Breadth-first way until
a node matches to a peak by chance. Q can store QT nodes of Tv, H = QT /NK

L

levels. So, H right peaks must be missing from the spectra successively, before
GTT starts deleting nodes of Tv from Q. The probability of that H consecutive
peaks are missing is pH

e . Thus, the probability of error of the second case is
pε2 = p · NL ·∑H

j=1 pj
e.

Then, the final probability of eliminating the true goal from the search space
can be obtained by summing the cases since they can happen independently.
Thus, we have

P (ε) = pε1 + pε2 = K · NL · p + p · NL ·
H∑

j=1

pj
e = NL · p(K +

H∑
j=1

pj
e). (4)

�

Consequence 1. Deleting a node from the tree polynomially reduces the search
space. If we decrease the QT threshold, more nodes will be eliminated however
the error will grow only linearly.

Consequence 2. The probability P (ε) can lessen with more accurate resolution
of the spectra, (smaller δ).

Consequence 3. The probability P (ε) can lessen via removing more noise peaks
from the experimental data in order to decrease the chance of random matches.

Remark 1. This greedy approach can be considered as a special case of the A�

algorithm [9], where the distance-plus-cost function is defined h(n) = g(n)+f(n)
for a node n, where g(n) = w(n) is the score from the root to the node n and
f(n) is an estimation of the score from the node n to a leaf, here f(n) ≡ 0, the
constant zero function. Note that h is a monotone function.

Remark 2. Let QT = ∞. If Q is implemented as a stack, then GTT traverses
the tree in a Depth-first manner. If implemented as a First-In-First-Out queue,
GTT will function as a Breadth-first search.
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Remark 3. Note that, if the query spectrum is compared to an incorrect peptide
sequence, then it doesn’t really matter whether or not we lose the best goal.

Fast Match heuristics. In the process of database search, the experimental
spectrum q is compared to peptide p (from the peptide database), if |PM(q) −
PM(p)| < Δ, where Δ is a precursor mass tolerance (usually Δ <1 Dalton).

PTMs can add or subtract several tens or hundreds Daltons with respect
to the precursor mass of the experimental spectrum, thus the precursor mass
tolerance needs to be widened. In this way a query is compared to a very large
of number peptides that will substantially increase the execution time.

PTMSearch includes an additional filtering step we term Fast Match, wherein
a theoretical peptide t is compared to the experimental spectrum q if SPC(q, t) >
F , where F is a given threshold. If we set F = 0, this technique can miss the
correct peptide if both the first and the last amino acids of the peptide carry
PTMs because in this case all the fragment ions are shifted.
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Fig. 4. Boxplot diagram about the number of the peptides to be processed per each
spectrum

Figure 4 shows the number of the peptides to be compared with the query,
at various parameter settings. Simply put, widening of the mass range from
D=[-1,1] to D= [-50,400] increases the number of the peptide comparisons by two
orders of magnitude. However, the application of Fast Match can significantly
reduce the number of comparisons. The data in the plot were calculated on the
experimental dataset described in chapter 6.

5 Significance Calculation of a Hit

In the literature, the number of the random matches between two spectra are
modeled either by Poisson or by hypergeometrical distributions [10, 11]. The
search for PTMs can be pictured as a generating all modified theoretical spectra,
comparing them to the experimental spectrum, and picking the one with the
maximum score. It is known that the distribution of the maximum of random
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Fig. 5. Distribution of the matches on a real dataset. The solid line is a fitted extreme
value probability density function on the experimental data. The number of the allowed
PTMs is set to 3.

numbers tends to an extreme value distribution [12]. Thus, we use an extreme
value distribution to calculate the statistical significance (p-value) of the hit to
measure the probability the hit occurred by chance.

In Figure 5 we compared a real (experimental) spectrum against the decoy
dataset, where the limit of the PTMs K = 3. The figure shows that the extreme
value distribution fits the data well.

6 Experimental Results

For the experimental tests we used MatLab (version R2010b)as a frame to load
the data and evaluate the results. PTMSearch (and GTT) was implemented
in C++ and used as a module in MATLAB. Computational experiments were
carried out on a Linux cluster with 20 nodes and one frontend node, each with
2.2Ghz CPU and 1GByte memory.

IPIHuman (version 3.71) downloaded from http://www.ebi.ac.uk/IPI/
IPIhelp.html was used as the protein sequence database (86309 sequences).
These sequences were cut into peptides using the tryptic digestion rule in the
Cleavage routine of Matlab’s Bioinformatic Toolbox. This in silico digestion
resulted in 727707 unique peptides. For the calculation or theoretical fragment
ions we used the program THEOSPEC 2.0 (available at: http://sourceforge.
net/projects/protms/files/theospec/ )

The list of modifications were downloaded from the OMSSA project site
(http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/
ms/omssa/mods.xml) on Dec. of 2010. This file contains 207 records of PTMs.
We have considered only chemical modifications of amino acids. Therefore the
current iteration does not take into account N- and C-terminal modifications,
such as might be found by the removal of the initiator methionine. Thus, we used
PTM records that are tagged by ”MSModType Value = 0” in the mods.xml file.
In the end we obtained 142 PTMs. The distribution of the number of the mod-
ifications per amino acids can be found in Figure 3.

http://www.ebi.ac.uk/IPI/IPIhelp.html
http://www.ebi.ac.uk/IPI/IPIhelp.html
http://sourceforge.net/projects/protms/files/theospec/
http://sourceforge.net/projects/protms/files/theospec/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/ms/omssa/mods.xml
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/ms/omssa/mods.xml
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The precursor mass tolerance was set to Δ = 0.4, the fragment ion match
tolerance was δ = 0.4, and PTMs mass range was set to D = [−50, 400] Da. The
Fast Match parameter was F = 1. The size of the queue Q was QT = 50 ∗ log(n)
based on the author’s observations.

For statistical significance calculation we used a decoy dataset consisting
theoretical spectra calculated from reversed peptide sequences [13, 14]. Dur-
ing database search, the query was first compared with the theoretical peptide
dataset, and then with the decoy dataset [13]. For the evaluation, we plotted
the number of the positives as a function of the False Positive Rate (FPR) at
various thresholds.

6.1 Results on a Toy Datasets

We generated toy dataset by randomly selecting 200 peptides from the theoretical
database and generating the corresponding theoretical fragment ion peaks. Then,
we randomly added 2-3 PTMs from our list to each of the peptide spectra. This
dataset was then searched against the peptide database with PTMSearch. We
found that our method found all the generated modifications (Data not shown).

For an illustration we examined how the limit K of the PTMs interferes
with the expected number of the random matches. We found that, as expected,
increasing the limit of PTMs increases the number of the random matches, which
in turn lessens the statistical significance of the true hit. This is shown in Figure
6. However, this effect could be avoided by increasing the instruments accuracy,
thereby decreasing the ion match tolerance δ parameter.
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Fig. 6. The distribution of the random hits as a function of the PTMs limit K on the
toy dataset. Here the number of the matches were divided the length of the peptide as
a normalization.

6.2 Calculations on Real Data

The Aurum dataset has been designed to provide a standard, manually cu-
rated dataset of experimental spectra for comparison and evaluation of newly
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Fig. 7. The number of identified peptides at various PTM limit as a function of FPR

developed algorithmic approaches and is freely available [15]. The dataset con-
tains 1834 MS/MS spectra obtained on 246 known, individually purified and
trypsin-digested protein samples recorded on MALDI TOF/TOF instruments.
The spectra were preprocessed as described in OMSSA [11].

The Figure 7 show a plot of the number of the positively predicted spectrum
as a function of the FPR on the Aurum dataset. Table 1 shows detailed results
obtained with PTMSearch at FPR=1% and FPR=5% levels. Columns show the
number of the identified peptides at various PTM limits, while rows show the
distribution of singly-, doubly-, and triply-modified peptides, respectively. For
example, PTMSearch has identified 514 peptides at 5% FPR level, of which
243 peptides contained no modifications, 180 peptides were tagged by exactly 1
PTM, and 91 peptides were tagged by exactly 2 PTMs.

Table 1. The number of the peptides identified with PTMSearch at 1% and 5% of
FPR respectively

FPR PTMs 0 1 2 3

1% sum 352 374 362 258

0 352 240 203 138
1 134 113 62
2 46 28
3 30

5% sum 410 553 514 416

0 410 295 243 194
1 258 180 105
2 91 42
3 75

Time(min) 11 120 754 1281
1281 minutes is approx. 21 hours.
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Table 2. Results obtained with MS-Alignment. PTMs limit is 1.

FPR PTMs 0 PTMs 1 sum Time

5% 196 91 287 5.5 days

PTMSearch reported an unexpectedly large number of propionamide modi-
fications of cysteine in the Aurum dataset. Including triply modified peptides
PTMSearch found 138 cysteines that carry this Acrylamide adduct. We then
used X!Tandem [16] to perform targeted search for this modification and could
only validate 58 propionamide modifications. This data further supports the
importance of untargeted search for PTM discovery.

This filtered Aurum dataset was submitted to the online version of MS-
Alignment at http://proteomics.ucsd.edu/LiveSearch/ [7]. Here the pre-
cursor mass tolerance and the ion tolerance was the same as in the PTMSearch
case. The database was the IPI.Human (v.3.81), The modification mass range
was set to D = [−200, 200]. Results are presented in the Table 2. Note that,
the run time cannot be compared to PTMSearch run time since neither the sys-
tem architecture nor the load of the MS-Alignment server were known. Limit of
PTMs was set to 1. MS-Alignment has identified 287 peptides with at most one
PTM, while PTMSearch identified 553 peptides under same conditions.

7 Discussion, Future Plans

Protein identification based on tandem mass spectrometry and database search is
fast growing field in continuous need of new computational approaches.The untar-
geted PTM search algorithm described targets one of the most difficult problems
in this field, identification of post-translationally modified proteins.

The novel features of the approach are the tree-representation of the search
space, the greedy heuristics based on chemical rules and the speedup techniques
that allow one to bring down the computational speed to a manageable level.
We investigated the computational properties of the heuristics and showed that
the limits imposed on PTMs decrease the search space to polynomial. We gave
an estimate to the error introduced by the greedy heuristics and presented a
significance calculation scheme appropriate for this algorithm.

The current work was undertaken in order to demonstrate the feasibility of
the tree-traversal approach. There are many further improvements possible, for
instance one can use spectrum similarity measures instead of the simple SPC
employed here. The current algorithm is apparently not substantially faster as
compared to other PTM identification methods, however an exact comparison
could not be made because of code availability problems. Nevertheless, a sub-
stantial speedup can be expected upon massive parallelization or porting the
algorithm to GPU processors, since tree-traversal algorithms are known from
this perspective. We plan to include the algorithm into a free online search
engine where those computational aspects that were outside the scope of this
work (data filtering, protein inference etc.) will also be dealt with.

http://proteomics.ucsd.edu/LiveSearch/
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Abstract. Mining strong correlations from transactional databases often leads
to more meaningful results than mining association rules. In such mining, null
(transaction)-invariance is an important property of the correlation measures.
Unfortunately, some useful null-invariant measures such as Kulczynski and
Cosine, which can discover correlations even for the very unbalanced cases, lack
the (anti)-monotonicity property. Thus, they could only be applied to frequent
itemsets as the post-evaluation step. For large datasets and for low supports, this
approach is computationally prohibitive. This paper presents new properties for
all known null-invariant measures. Based on these properties, we develop efficient
pruning techniques and design the Apriori-like algorithm NICOMINER for min-
ing strongly correlated patterns directly. We develop both the threshold-bounded
and the top-k variations of the algorithm, where top-k is used when the optimal
correlation threshold is not known in advance and to give user control over the
output size. We test NICOMINER on real-life datasets from different application
domains, using Cosine as an example of the null-invariant correlation measure.
We show that NICOMINER outperforms support-based approach more than an
order of magnitude, and that it is very useful for discovering top correlations in
itemsets with low support.

1 Introduction
One of the central tasks in data mining is finding correlations in binary relations. Typi-
cally, this is formulated as a market basket problem [2], where there is a set of baskets
(transactions), each of which is a set of items purchased together. The goal is to find
correlations between items, based on their recurrent co-appearance in the same transac-
tion. The usefulness of the correlations based on the market-basket concept was demon-
strated in many different application domains such as climate studies [18], public health
[5], or bioinformatics [9,21]. With the trend of collecting more and more digitized data,
the discovery of meaningful correlations offers a new insight into relationships between
objects in these large data collections.

In this paper we study the problem of finding groups of items with the top correla-
tions for a given dataset. This implies that we need to rank the correlations. There is no
canonical way to assess the degree of the correlation. This seems to be problem-specific
and cannot be captured by a single correlation measure which is the best for all cases.
As a result, a number of correlation measures has been proposed [8,16,17,19].

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 177–192, 2011.
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Table 1. The same dataset contains coffee c, milk m, popcorn p, and soda s. The total number
of transactions is N = 100, 000. According to Lift, correlation(p, s) is significantly stronger
than correlation(m, c). Assessed by null-invariant measures, correlation(m, c) is always much
stronger than correlation(p, s), which is more meaningful, since cm occur together in much more
transactions than ps.

mc m̄c mc̄ m̄c̄ Lift(m, c) Cosine(m, c)
10, 000 1, 000 1, 000 88, 000 8.26 0.91

ps p̄s ps̄ p̄s̄ Lift(p, s) Cosine(p, s)
1, 000 1, 000 1, 000 97, 000 25.00 0.50

In this work we limit ourselves to null (transaction)-invariant [8,16,17,19] correla-
tion measures based on conditional probabilities. They quantify the degree of mutual
relationships between items in a group without taking into account the items outside the
group in question. For example, if we are computing the correlation between coffee (c)
and milk (m), a null-invariant measure does not depend on the number of transactions
which contain neither coffee nor milk - null transactions with respect to c and m. Thus,
these measures are null (transactions)-invariant.

The importance of null-invariance for uncovering meaningful relationships between
objects was analyzed in [19]. If we use correlation measures which are not null-invariant,
the relationships between objects may appear or disappear simply by changing the num-
ber of transactions which do not contain items in question.

Even for ranking correlations within the same dataset we cannot rely on expectation-
based (not null-invariant) measures, since they produce inconsistent and controversial
results, as shown in a sample dataset, presented in Table 1. Here the degree of the corre-
lation of two pairs of items is assessed by Lift (not null-invariant) and by Cosine (null-
invariant). The items in pair (c, m) are intuitively more correlated than in (p, s), since
they occur together in 83% of all transactions with c or m, while (p, s) occur together
only in 33%. This is reflected in Cosine values 0.91 and 0.50 respectively. However,
according to Lift, correlation in pair (p, s) is significantly larger than in (c, m), which
contradicts our intuition and the common sence. Hence, in order to produce mean-
ingful and consistent top correlations we require from the correlation measure to be
null-invariant.

The five known null-invariant correlation measures are All Confidence, Coherence,
Cosine, Kulczynski and Max Confidence [19]. The degree of the correlation is repre-
sented as a real number between 0 and 1.

For different datasets, the strongest correlations may have different values. It is not
always appropriate to set a correlation threshold such as 0.5 for all datasets. Hence, it is
important to be able to mine the top correlated patterns, instead of patterns with correla-
tion larger than a given threshold. This leads to a problem of mining top-k null-invariant
correlations. An example of top-10 correlations, which we extracted from the titles of
the database-related publications [15], is shown in Table 2. Note that the correlation
here is not expected to be very high, since people use different word combinations to
describe even similar ideas. Nevertheless, the top correlated patterns represent quite
meaningful concepts.
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Table 2. Top-10 highly correlated term groups from the paper titles in the DB-DM-IR subset [15]
of the DBLP dataset [1] with minimum support θ = 0.02%

Pattern Support Cosine

1 object, orient, database 748 0.19
2 sense,word, disambiguation 26 0.18
3 support, vector,machine 122 0.17
4 enforcement, law, coplink 7 0.16
5 nearest, neighbor, search 74 0.13
6 reverse,nearest, neighbor 23 0.13
7 server, sql, microsoft 25 0.12
8 retrieval, cross, language 187 0.11
9 model, relationship, entity 139 0.11

10 random, field, conditional 13 0.10

Finding the itemsets with the highest correlations is not trivial. The naı̈ve approach
would be to extract all frequent itemsets, and then to rank them based on the correlation
within each frequent itemset. Unfortunately, this approach is valid only for itemsets
with high support, and in this case the discovered correlations mostly represent the
common knowledge. If we are to discover interesting correlations in itemsets with low
support, the number of such itemsets can reach several thousands or even millions, thus
making the post-evaluation approach computationally infeasible. In addition, the degree
of the correlation between items can be higher in itemsets with lower support. This
is especially true for such problems as finding correlations between words or finding
correlations between authors in a publication database. Therefore, we want to design an
efficient framework in which we would be able to find the groups of the top correlated
items with low support, without first collecting all frequent itemsets.

The algorithms for the direct mining of interesting null-invariant patterns exist. For
example, the direct computation based on All Confidence and Coherence was proposed
in [10]. However, it is applicable only for null-invariant measures which have the anti-
monotonicity property. Out of five measures, only All Confidence and Coherence are
anti-monotonic. Unfortunately, using only All Confidence or Coherence may not be
appropriate for cases involving unbalanced supports, which was demonstrated in [19].
Strong correlations for such unbalanced cases can be captured if we evaluate the re-
lationships as an average of conditional probabilities. For such cases, two measures
Cosine and Kulczynski are the most appropriate ones.

Both Cosine and Kulczynski represent the means of conditional probabilities: the
geometric mean and the arithmetic mean, respectively. For an itemset A = {a1, · · · , an}:

Cosine(A) = n

√√√√ n∏
i=1

P (A|ai), and Kulczynski(A) =
1

n

n∑
i=1

P (A|ai)

where P (A|ai) is a conditional probability of A given ai.
Being an average, Cosine and Kulczynski do not possess neither monotonicity nor

anti-monotonicity properties, and the Apriori principle cannot be applied for efficient
pruning based on these measures. Hence, the discovery of all patterns with high Cosine
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and Kulczynski values poses a great computational challenge, especially for itemsets
with low support. To solve this challenging problem, we develop an efficient algorithmic
framework based on new pruning properties common to all null-invariant measures, but
especially valuable for Cosine and Kulczynski.

Specifically, our study makes the following contributions.
1. We discover new mathematical properties common to all null-invariant measures.
2. Based on these properties, we design a new pruning strategy which relies mainly

on correlation measures rather than on support.
3. We propose new algorithm NICOMINER for Null Invariant Correlation Mining and

demonstrate its high efficiency on a wide variety of synthetic and real-life datasets.
4. In order to make NICOMINER self-adjustable to the level of the correlations ex-

isting in different datasets, and to give user the control over an output size, we
develop the top-k version of NICOMINER, which allows us to find the top-k cor-
related itemsets without specifying the correlation threshold.

5. Finally, we show meaningful correlations discovered by NICOMINER in itemsets
with low support. It is hard or somtetimes impossible to find such correlations using
the support-based method alone.

The remainder of the paper is organized as follows. In Section 2 we formally define
correlated patterns. In Section 3 we describe the new properties of null-invariant mea-
sures, and in Section 4 we present our new algorithm. Section 5 is a detailed report on
our experiments with synthetic and real datasets. Related work is presented in Section
6, followed by conclusions and future work in Section 7.

We start by introducing a few concepts. Note that for the rest of the paper we use
Cosine as a representative of null-invariant correlation measures.

2 Preliminaries

Let I be a set of items. We define an itemset A = {a1, . . . , an} to be a subset of
n items from I. Let T be a set of transactions where each transaction is a subset of
I. The support of an itemset A, sup(A), is defined to be the number of transactions
containing all items in A. An itemset A is frequent if its support sup(A) is no less than
a user-defined minimum support threshold θ.

Cosine in terms of supports is explicitly defined as:

cos(A) =
sup(A)

n
√

sup(a1) × · · · × sup(an)
. (1)

We define the correlation between items in an itemset as follows:

Definition 1. An itemset A = {a1, . . . , an} is correlated if cos(A) ≥ γ for a given
minimum correlation threshold γ.

The problem of threshold-based correlation mining is to find all correlated itemsets for
the correlation threshold γ. But, even for the experts, it is sometimes hard to set the
proper value of γ. For such cases, it would be helpful to know several patterns with
the highest correlation values. This is the problem of top-k correlation mining, where
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Table 3. A small transactional database of 6 transactions and 6 items

TID Transaction

T1 a1, a3, a4, a5, a6

T2 a3, a5, a6

T3 a2, a4

T4 a1, a4, a5, a6

T5 a3, a6

T6 a2, a4, a5

only k patterns with the highest correlation values are presented to the user. Note that a
minimum correlation threshold γ is not required for top-k correlation mining.

The lack of the anti-monotonicity property for Cosine poses significant challenges
for mining top correlated patterns. This can be illustrated by the following example.

Example 1. Consider small database of transactions shown in Table 3.
Correlation value for 2-itemset X = {a4, a6} is cos(X) = 0.50. 3-itemset X ′ =
{a1, a4, a6} is a superset of X , and its correlation is cos(X ′) = 0.63. Thus, Cosine
is not anti-monotonic. For the correlation threshold γ = 0.60, we cannot prune all
supersets of X , even though the correlation in X is below γ.

Correlation value for 2-itemset Y = {a1, a4} is cos(Y ) = 0.71. 3-itemset Y ′ =
{a1, a4, a5} is a superset of Y , and its correlation is cos(Y ′) = 0.63. Thus, Cosine
is also not monotonic. Knowing that Y is a correlated itemset, we cannot assume that
all supersets of Y are also correlated. This shows that finding that cos(X) < γ or that
cos(Y ) ≥ γ does not tell us anything about the correlation value in their supersets, and
hence we cannot stop the extension of X or Y to larger itemsets.

3 New Properties of Null-Invariant Measures

In this section, we describe useful mathematical properties, common to all known null-
invariant measures. These properties are the basis for an efficient pruning used in the
NICOMINER algorithm. Our framework is based on the level-wise Apriori algorithm,
where each level n corresponds to itemsets of n items.

3.1 Level-Based Properties

The relationships between Cosine of n-itemset A and Cosine values of all its subsets
of size n-1 are captured by the following lemma:

Lemma 1. For any n-itemset A = {a1, · · · , an} and a set S of all A’s (n-1)-
subitemsets:

cos(A) ≤ max
B∈S

(cos(B)). (2)

Proof. Since the maximum is not smaller than the geometric mean:

max
B∈S

(cos(B)) ≥ n
√

cos(a1, · · · , an−1)× · · · × cos(a2, · · · , an). (3)
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Then by the definition of Cosine and from the anti-monotonicity of support:

max
B∈S

(cos(B)) (4)

≥ n

√
sup(a1, · · · , an−1)

n−1
√

sup(a1)× · · · × sup(an−1)
× · · · × sup(a2, · · · , an)

n−1
√

sup(a2)× · · · × sup(an)
(5)

≥ sup(a1, · · · , an)
n
√

sup(a1)× · · · × sup(an)
(6)

= cos(A). (7)

Lemma 1 presents an upper bound of Cosine in terms of Cosine values of subitemsets. A
simple corollary follows from Lemma 1: once Cosine values of all (n-1)-subitemsets of
A = {a1, · · · , an} are less than γ, cos(A) < γ. However, this does not mean that A and
its supersets can be pruned. There might be a superset of A, A′ = {a1, · · · , an, an+1}
with cos(A′) ≥ γ, because the condition of the lemma may not be satisfied due to the
newly added item an+1.

Nevertheless, Lemma 1 leads to a simple condition for the termination of correla-
tion pattern growth. Even though Cosine for individual patterns is not anti-monotonic,
there is a level-based property which we for convenience call level-anti-monotonicity.
Namely, if all patterns at level n have Cosine values less than γ, then all their supersets
have Cosine less than γ.

Let In be set of all n-itemsets at level n. We denote the maximum cosine value for
all itemsets in In by maxCos(In). We prove that:

Theorem 1. Cosine is level-anti-monotonic.

Proof. Let In+1 be set of all (n+1)-itemsets at level n+1, and let A′ be an itemset from
In+1 with maximum cosine value. Let A be an n-subitemset of A′ whose cosine value
is the maximum from all n-subitemsets of A′. Then, by Lemma 1,

maxCos(In) ≥ cos(A) ≥ cos(A′) = maxCos(In+1). (8)

From Theorem 1 follows:

Corollary 1. Termination of pattern growth (TPG)
If all itemsets at level n are not correlated, then all itemsets at level n′ are not correlated
for any n′ ≥ n.

Note that TPG holds for all five null-invariant correlation measures. The proofs are
essentially similar to that of Cosine, and we omit them due to the page limit.
To demonstrate the termination of pattern growth, consider the following example.

Example 2. For a database described in Table 3 with the minimum support threshold
θ = 2, there exist 5 frequent 3-itemsets shown in Table 4. Assuming the minimum
correlation threshold γ = 0.75, all 3-itemsets have correlation below the threshold.
Then, based on TPG, we do not need to mine n-itemsets for n ≥ 3, and therefore
pattern growth terminates.
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Table 4. Cosine values for all five frequent 3-itemsets from the database in Table 3 (θ = 2). If
γ = 0.75, we can terminate correlation pattern growth according to TPG.

Pattern a1, a4, a5 a1, a4, a6 a1, a5, a6 a3, a5, a6 a4, a5, a6

Cosine 0.63 0.63 0.63 0.55 0.5

3.2 Properties Based on a Single Item

Since Cosine is not anti-monotonic, we cannot prune n-itemset A even if A is not corre-
lated. But, in the following, we claim that for some item a from I, knowing correlation
values of all (n-1)-itemsets containing a allows to prune n-itemsets containing a.

Lemma 2. For n-itemset A = {a1, · · · , an}, and all its subsets of size n-1 which share
the same single item a, if (1) all these subsets are not correlated and (2) the support
of at least one item ai �= a in A is greater than or equal to sup(a), then A cannot be
correlated.

Proof. Assume a1 = a and sup(an) = max{sup(a1), · · · , sup(an)}, without loss of
generality. By simple algebra, we can show that

n−1
√

sup(a1)× · · · × sup(an−1) ≤ n
√

sup(a1)× · · · × sup(an). (9)

Then

cos(A) =
sup(A)

n
√

sup(a1)× · · · × sup(an−1)× sup(an)
(10)

≤ sup(A)
n−1
√

sup(a1)× · · · × sup(an−1)
(11)

≤ sup(A− {an})
n−1
√

sup(a1)× · · · × sup(an−1)
(12)

≤ cos(A− {an}) (13)

< γ, (14)

where A − {an} represents the (n-1)-subitemset of A which does not contain an item
an with the maximum support.

In other words, if we know that all sub-itemsets containing item a are not correlated,
we know that adding another item cannot make any of them correlated, given this new
item has support not less than sup(a).
Based on Lemma 2, we can claim the following theorem:

Theorem 2. Let item a be an item with the smallest support among all single items
in the database. If all itemsets at level n containing a are not correlated, then all n′-
itemsets containing a are not correlated for all n′ ≥ n.

Proof. Each (n + 1)-itemset A′ which contains a can be thought of as an extension of
some n-itemset containing a with an item an+1, which has the largest support among all
the items in A′ (since we know that support of a is not the largest). Then, by Lemma 2,
cos(A′) < γ. Since all n-itemsets containing item a have Cosine value less than γ, all
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Table 5. Frequent 2-itemsets from the database in Table 3 (θ = 2). For γ = 0.75, all supersets of
a1 and a2 are not correlated according to SIBP.

Pattern a1, a4 a1, a5 a1, a6 a2, a4 a3, a5 a3, a6 a4, a5 a4, a6 a5, a6

Cosine 0.71 0.71 0.71 0.71 0.58 0.87 0.75 0.5 0.75

(n + 1)-itemsets containing item a have Cosine value less than γ. Iteratively applying
Lemma 2, now to extension of (n + 1)-itemsets into (n + 2)-itemsets, containing a, we
conclude that none of the n′-itemsets containing a is correlated, for n′ ≥ n

Based on Theorem 2, we can derive a condition for pruning patterns which contain the
same single item a. For convenience, we call the pruning of a non-promising single
item and its supersets at level n the single-item-based pruning (SIBP).

Corollary 2. Single-Item Based Pruning (SIBP)
If the maximum Cosine value for n-itemsets containing item a is less than γ, and a has
the smallest support between single items existing in the database, then all n′-itemsets
containing a can be pruned for n′ ≥ n.

For the level-wise processing, which we use here, such an item can be removed from
the database. After removing it, we have a new, smaller database, and we can apply the
same principle to the next item, which has the smallest support in this new database.

Again, SIBP holds for all null-invariant correlation measures. We skip the proofs due
to the page limit, but the proofs are very similar or easier than that for Cosine.

The application of the SIBP principle can be illustrated on the following example.

Example 3. Consider the sample database in Table 3 (θ = 2, γ = 0.75). First, all
single frequent items a1 . . . a6 are sorted by support. Then, while counting itemsets at
level 2, the maximum Cosine value of 2-item supersets of each ai is recorded. For
this example, we have: a1 (sup:2, maxCos:0.71), a2 (sup:2, maxCos:0.71), a3 (sup:3,
maxCos:0.87), a4 (sup:4, maxCos:0.75), a5 (sup:4, maxCos:0.75), and a6 (sup:4, max-
Cos:0.86). Now, based on the SIBP principle, we can safely prune all 2-itemsets con-
taining item a1 (or item a2), and we do not need to generate the following 3-itemsets in
Table 4: {a1, a4, a5}, {a1, a4, a6}, and {a1, a5, a6}.

4 NICoMiner Algorithm

The general framework of NICOMINER is an Apriori-like level-wise (breadth-first)
computation. The candidate itemsets for level n are generated from the itemsets on level
n-1. Then the support and Cosine are computed for all candidate n-itemsets, and they
are pruned based on support and SIBP. The remaining n-itemsets are the candidates for
the next level n+1. If all patterns at level n are not correlated, the algorithm terminates
(TPG).

4.1 Threshold-Based Correlation Mining

Here we present the correlation mining algorithm (Algorithm 1) for the case when a
minimum correlation threshold γ is given. The pruning properties developed in the
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Algorithm 1. The threshold-based version of the NICOMINER Algorithm

input : a transactional database D = {T1, T2, ..., Tn}, minimum correlation threshold γ,
minimum support threshold θ

output: all patterns with correlation at least γ

scan D and find all frequent 1-itemsets I1;1

for n = 2, · · · do2

generate candidate itemsets In from In−1;3

scan D to compute support and Cosine values of itemsets in In;4

output frequent n-itemsets with Cosine ≥ γ;5

prune itemsets from In based on SIBP and support;6

if (maxCos(In) < γ) OR (no frequent n-itemsets) then break;7

end8

previous section allow to prune uncorrelated patterns in addition to the non-frequent
patterns. In practice, the pruning power of TPG and SIBP is extremely high, which
allows setting very low support thresholds.

4.2 Top-k Correlation Mining

Without knowing what is the top level of correlations in a given dataset, it is hard to
choose an appropriate correlation threshold γ. Running the top-k version of our algo-
rithm helps in this situation. After this, the information about the top correlations can
be used to set a meaningful threshold in order to collect all interesting patterns. Often,
the set of the top-k correlated patterns is interesting in its own right.

In order to find top-k correlated patterns, we can iteratively run the threshold-based
NICOMINER until it produces at least k patterns. If in the current iteration the size of
the output is less than k, we can decrease the correlation threshold γ and run Algorithm
1 with this new parameter. We implemented this iterative top-k approach, halving the
correlation threshold in each iteration.

However, guessing the correlation threshold γ which produces close to k patterns is
not efficient. Not only we need to repeat the entire computation several times, but if we
accidentally set γ too low, we have an expensive computation and a huge output, while
we are interested only in k patterns.

Much more efficient approach would be to adjust threshold γ throughout the mining
process until we get top-k correlated patterns (Algorithm 2). Here, instead of using a
fixed threshold value, we start with γ = 0.0 and keep top k correlated itemsets from
the itemsets processed so far. Once we mine more than k patterns, we set γ to the k-th
largest Cosine value, and the pattern growth continues with this new, higher correlation
threshold. Since the correlation threshold is constantly increasing, the termination of the
pattern growth is reached earlier than in the method with the constant initial correlation
threshold.

5 Experiments

In this section, we present experimental results for two versions of NICoMiner: one
computes all patterns with the correlation above the minimum correlation threshold
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Algorithm 2. The top-k version of NICOMINER

input : a transactional database D = {T1, T2, ..., Tn}, number k, minimum support
threshold θ

output: set TOP of top-k correlated patterns

γ ← 0; TOP ← ∅;1

scan D and find all frequent 1-itemsets I1;2

for n = 2, · · · do3

generate candidate itemsets In from In−1;4

scan D to compute support and Cosine values of all candidate k-itemsets;5

TOP ← TOP ∪ {correlated n-itemsets};6

if |TOP | ≥ k then7

keep only top-k in TOP ;8

γ ← minimum Cosine value in TOP ;9

end10

prune itemsets from In based on SIBP and support;11

if (maxCos(In) < γ) OR (no frequent n-itemsets) then break;12

end13
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Fig. 1. Performance results for synthetic datasets

and the other finds the top-k correlations. All experiments were performed on a Linux
(ver 2.6.18) server with quad core Xeon 5500 processors and 48 GB of main memory.

For the threshold-based version, we used the support-based pruning as the base-
line. To evaluate the pruning power of each new technique, we added to the baseline
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algorithm the pattern growth termination (TPG), and then enhanced it with the single-
item-based pruning (SIBP). The latter represents the full version of the threshold-based
NICOMINER.

For the top-k version, we compared our direct top-k NICOMINER with the naı̈ve
iterative top-k mining, which uses multiple iterations of the threshold-based version,
halving the correlation threshold in each iteration, until the output contains at least k
patterns.

5.1 Synthetic Datasets

Synthetic datasets for our experiments were generated by the generator used in [14].
The default parameters are: number of transactions N = 100K , average number of
items per transactions W = 5, number of distinct items |I| = 1K . The default set of
thresholds for all experiments is as follows: minimum support threshold θ = 0.01%,
and minimum correlation threshold γ = 0.2.

For the correlation-based version of NICOMINER we show the dependence of the
running time on the following parameters: number of transactions, minimum support
threshold, and minimum correlation threshold.

Number of transactions: The results in Figure 1(a) show the comparative performance
for 5 different synthetic datasets with number of transactions varying from 100K to 1M.
For all methods, the running time shows linear dependency on N , which means that the
size of a dataset is not the limiting parameter for the performance of NICOMINER.

Minimum support threshold: In Figure 1(b), we evaluated the performance of our
algorithm for various minimum support threshold values. As the threshold becomes
lower, frequency-based pruning deteriorates exponentially. Adding TPG makes the
baseline algorithm about two times faster, but the performance still degrades for low
support thresholds. On the other hand, the full version of NICOMINER demonstrates
consistently high performance. For the lowest minimum support threshold 0.003%,
our algorithm is more than an order of magnitude faster than two other methods. This
demonstrates the main power of our algorithm, which is meant for finding correlated
patterns with low supports.
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Table 6. Examples of top correlated patterns for each dataset

Dataset Pattern sup cos

GROCERIES

{butter milk, yogurt} 84 0.14
{salty snack, popcorn} 22 0.14
{chocolate, candy} 49 0.13
{frankfurter, brown bread} 70 0.12
{sausage, white bread} 71 0.12

DBLP AUTHORS

{Steven M. Beitzel, Eric C. Jensen} 25 1.00
{In-Su Kang, Seung-Hoon Na} 20 0.98
{Ana Simonet, Michel Simonet} 16 0.94
{Caetano Traina Jr., Agma J. M. Traina} 35 0.92
{Claudio Carpineto, Giovanni Romano} 15 0.91

COMMUNITIES

{People with social security income: > 80%,
Age ≥ 65: > 80%} 47 0.76

{Large families (≥ 6): ≤ 20%, White: > 80%} 1017 0.75
{In dense housing (≥ 1 per room): > 80%,

Hispanic: > 80%, Large families (≥ 6): > 80%} 53 0.64
{People with Bachelor or higher degree: > 80%,

Median family income: very high } 60 0.63
{People with investment income: > 80%,

Median family income: very high } 66 0.61

Minimum correlation threshold: In Figure 1(c), we show the effect of the minimum
correlation threshold. Frequency-based pruning does not depend on the minimum corre-
lation threshold, since there is no pruning based on correlation values. The termination
of pattern growth (TPG) cannot be applied before all correlations at some level has been
evaluated. For the largest correlation threshold γ = 0.3, the algorithm terminates after
level 2 (all 2-itemsets are below threshold), while for the lowest correlation threshold
γ = 0.1, it continues up to level 4. This explains the difference in the running time.
For γ = 0.1, the full NICOMINER also stops at level 4, however it generates much less
candidates due to the high pruning power of SIBP.

Top-k: In Figure 1(d), we compare the iterative and the direct top-k correlation min-
ing for various values of k. Both approaches used all pruning properties for maximum
performance. As expected, the direct approach was faster than the iterative approach.
The gap in performance becomes bigger as k grows. This is because more iterations are
performed by the iterative method before the output contains at least k patterns.

5.2 Real Datasets

We tested NICOMINER applying the market basket concept to three real-life datasets.
The performance results are presented in Figure 2. In Figure 2(a) we compare the effi-
ciency of different pruning methods with the baseline pruning by support, and in Figure
2(b) we compare the direct top-k version with the iterative top-k mining.

1. The GROCERIES dataset [6,7] (9, 800 transactions) represents 1-month of the
point-of-sale transactions in the local grocery store. This dataset is comparatively
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sparse: the number of frequent itemsets is low even for the minimum support thresh-
old as low as 0.05%. Nevertheless, for θ = 0.05% and γ = 0.10 our algorithm
is 35 times faster than the baseline support-based computation. This performance
gain for such relatively small dataset shows the potential of our method for typical
market basket applications.

2. The DBLP dataset [1] is a set of computer science bibliography. In our experiments,
we used its subset DBLP AUTHORS (72K citations) generated in [15], with publi-
cations in fields of databases, data mining and information retrieval. We regard each
paper as a transaction and each author as an item. The correlation here describes
the degree of the collaboration inside the group of authors. For θ = 0.007% and
γ = 0.3, NICOMINER is 20 times faster than the baseline method.

3. The COMMUNITIES dataset [12,13] is a publicly available dataset, which repre-
sents the demographic summarization for 1, 980 US communities. Each attribute
value is a normalized numeric value between 0 and 1, which characterizes the rel-
ative presence of this attribute in a given community. We discretized each value
into 5 equal-sized buckets: with ≤ 0.2 be very low and with > 0.8 be very high.
Each community can be considered as a transaction, and each attribute-value pair
as an item. The correlation here describes which demographic characteristics ap-
pear together in the same communities. COMMUNITIES is an example of a very
dense dataset. The results in Figure 2(a) are for θ = 10% and γ = 0.60. Even for
this very high support threshold, the total number of frequent candidates exceeded
the memory capacity of 40GB, available in our experiments, and the results show
the time before memory crashed: NICOMINER is more than 500 times faster than
the baseline method. Note that using our new algorithm, we were able to lower the
minimum support threshold for this dataset to 1% and obtain the results in just 12
seconds. This demonstrates the ability of NICOMINER to produce highly corre-
lated patterns with low support, which for some datasets is even impossible using
the frequency-based pruning alone.

In Table 6 we show some examples of patterns for each dataset, found among the top-20
correlations. These examples show that top correlations at low support can be used not
only for such classic applications as product marketing, but also for the demographics
analysis, or for the study of social networks.

For illustration, consider strong correlations extracted from the DBLP AUTHORS
dataset (Figures 3(a)1 and 3(b)2), where the edges label the degree of the pairwise
correlation between authors. The nodes represent authors with 60 - 70 papers (θ =
0.001%). The pairwise correlations in Figures 3(a) and 3(b) are typical examples of (a)
advisor-advisee relationships and (b) advanced mutual collaboration in an established
collaborative group. Hence, such correlations can be used in studying evolving collab-
orations. Note that such strong correlations as in Figure 3(b) rarely take place in groups

1 The letters in Figure 3(a) correspond to the following researchers: [A] Hsinchun Chen, [B]
Homa Atabakhsh, [C] Siddharth Kaza, [D] Jennifer Jie Xu, [E] Daniel Dajun Zeng, [F] Jialun
Qin, [G] Yilu Zhou, [H] Chunju Tseng.

2 The letters in Figure 3(b) correspond to the following researchers: [K] David A. Grossman,
[L] Ophir Frieder, [M] Eric C. Jensen, [N] Steven M. Beitzel, [O] Abdur Chowdhury.
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of authors with very high support. In general, for all datasets used in our experiments,
the most interesting non-trivial correlations are found in the itemsets with low support.

Even though the number of correlated patterns is significantly smaller than the num-
ber of frequent itemsets, some of these patterns carry redundant information. As an
extreme case, consider correlation value 1.00. The set of pairwise correlations in Figure
3(b) can be compressed without losing any information by replacing two authors M and
N which co-authored in 100% of their papers by the joined item (MN ). This removes
significant amount of redundant correlations, as shown in Figure 3(c).

In addition, if the correlation values of the itemset and all its subsets are similar,
they may be considered redundant. However in general, the correlation computed for
a superset is not a redundant information, as can be shown on example in Figure 3(c).
Based on values of pairwise correlations, we expect the correlation {K,M,N,O} to be
at least as strong as {K,L,M,N}, while after computing actual correlations we find out
that Cosine{K,L,M,N}= 0.52, while Cosine{K,M,N,O} is less than 0.1. This shows
that information about mutual relationships of 3 or more objects cannot be deduced
from pairwise correlations, and thus is not a redundant information. The distinction be-
tween redundant and non-redundant information represents the problem which requires
special attention.

6 Related Work

The extension of association rules to correlations was introduced in the pioneering work
of Brin et al. [3]. Since then, dozens of correlation measures have been proposed to as-
sess the degree of the correlation. The comprehensive comparison of 21 different corre-
lation measures can be found in [16], where the null invariance was introduced among
other properties such as scaling-invariance and inversion-invariance. The importance of
null-invariance for capturing meaningful correlations in large transactional databases
was demonstrated later in [8,17,19]. In [19], the authors provide a unified definition of
existing null-invariant correlation measures.

An efficient algorithm for correlation mining based on All Confidence and Coher-
ence was proposed in [10,11]. In both papers, authors use the downward closure (or,
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anti-monotonicity) property for pruning. In [19], authors derive an upper bound of Kul-
czynski, which was shown to be effective only for the comparatively high minimum
support thresholds. The techniques based on sampling were recently proposed in [4],
which are much faster, but at the cost of the incompleteness of results. Our approach
works well for all null-invariant measures including Kulczynski and Cosine, which
did not have efficient algorithms for low support, and it produces the complete results.

Top-k correlated pattern mining was mostly developed only for 2-itemsets [22,23].
Our algorithm produces top-k correlations among itemsets with any number of items.

7 Conclusions and Future Work

In this paper, we addressed the problem of efficient mining of the top correlated pat-
terns, based on any known null-invariant measure. We used Cosine correlation measure
as an example, because it is one of the most widely-used, and at the same time, one
of the most computationally challenging correlation measures. Even though it does not
have the (anti)-monotonicity property, we developed two pruning methods that enabled
an order of magnitude faster running time than the frequent pattern mining approach.
We have shown experimentally that new pruning methods have high efficiency for dis-
covering correlations in the itemsets with low support.

The top-k version of our new algorithm presents a valuable new tool to find top corre-
lations. It can be easily extended to the problem of finding top-k correlations containing
a particular item or pattern of interest (query pattern). This can be achived by maintain-
ing a min heap data structure that keeps the top-k supersets of the query pattern.

In the future, we plan to address the problem of redundancy. If the correlation in
the itemset is close to the correlation in its superset, it might be enough to output only
the maximal superset pattern instead of reporting all patterns. One way to do it is to
define a summary (or compressed) pattern for correlated patterns as in [20]. It would be
interesting to incorporate the redundancy removal into the mining process, instead of
performing it in a post-processing step.

Acknowledgement. The work was supported in part by the U.S. National Science
Foundation grants IIS-09-05215 and OCI-07-25070, the Network Science Collaborative
Technology Alliance Program (NS-CTA / INARC) of U.S. Army Research Lab (ARL)
under the contract number W911NF-09-2-0053, and the Postdoctoral Fellowship of
NSERC (Natural Science and Engineering Research Council) of Canada. Any opinions,
findings, and conclusions expressed here are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

1. Dataset: Dblp (2006), http://www.informatik.uni-trier.de/˜ley/db/
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Abstract. Supervised learning algorithms perform common tasks in-
cluding classification, ranking, scoring, and probability estimation. We
investigate how scoring information, often produced by these models, is
utilized by an evaluation measure. The ROC curve represents a visualiza-
tion of the ranking performance of classifiers. However, they ignore the
scores which can be quite informative. While this ignored information
is less precise than that given by probabilities, it is much more detailed
than that conveyed by ranking. This paper presents a novel method
to weight the ROC curve by these scores. We call it the Smooth ROC
(smROC) curve, and we demonstrate how it can be used to visualize
the performance of learning models. We report experimental results to
show that the smROC is appropriate for measuring performance simi-
larities and differences between learning models, and is more sensitive to
performance characteristics than the standard ROC curve.

1 Introduction

Supervised learning algorithms perform common learning tasks including clas-
sification, ranking, scoring, and probability estimation. This paper investigates
how scoring information, often produced by such algorithms, may be utilized by
the performance evaluation measure. A scoring model estimates scores on the
training data and assigns them to testing data to express class memberships, and
sometimes, these may represent probabilities where Brier Score is used to assess
their quality. However, when the scores are not probabilities, they are more than
ranks; they aren’t just ordinals but numbers expressed on some scale. The scale
may be unbounded and may not be additive, eg. the score could be a likelihood
ratio which is multiplicative. Many applications, particularly in medicine, em-
ploy scores that are highly meaningful for the users and are not probabilities,
eg. ICU scoring systems. In these cases, the task is usually reduced to a ranking
or a classification by ignoring the magnitudes of scores.

The Receiver Operating Characteristics (ROC) curves are commonly used
to visualize the ranking performancs of classifiers. However, they ignore the
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scores which, we argue, are quite informative. For instance, the scores convey
information as to how close two data points may be from one another within a
given rank. While such information is less precise than that of probabilities, it
is much more detailed than performance information conveyed by ranking.

To illustrate this concept, consider the problem of assessing similarities and
differences among user preferences. For example, Anna and Jan are asked to
make movie recommendations based on their preferences. They are both given
the same list of n movies to which they assign a positive, or a negative recom-
mendation along with a continuous score (between zero and one). The score
indicates the degree to which they like or dislike the movie, with value 1 indi-
cating the maximum “liking” and 0 the maximum “disliking”. The task is to
examine recommendations and preferences made by Anna and by Jan in search
for similarities and differences between their assessments of the movie collection.
The consideration of both criteria, recommendations and preferences, makes this
task considerably more complex. For instance, Anna positively recommends a
movie with a score of 0.52 because although she does not like the movie per se,
she finds this movie worthy of recommendation. However, Jan gives the same
movie a negative recommendation but assigns to it a score of 0.6, because while
he likes it, he does not find it worthy of recommendation. Clearly, if we only
compare their recommendations, we may draw a conclusive disagreement. Sim-
ilarly, their scores depict a disagreement in the opposite direction. The issue
becomes: do they really disagree? Her lower score suggests agreement with Jan’s
decision of a not-so-good movie, but his high score indicates his inclination to
a not-so-bad movie. Although their assessments may appear to disagree, there
is, in fact, a substantial agreement among them. This agreement, or the lack
there of, between Anna and Jan is expressed as a combination of both a binary
decision and a continuous score, which is far from being probabilistic in nature.

To compare Anna’s results to Jan’s we would plot and compare two ROC
curves (or two smROC curves for that matter). The standard ROC method only
compares positive to negative recommendations. The AUC, in this case, depicts
how they agree on separating the positive from the negative recommendations
only because the magnitude of their preference scores are excluded from the
analysis. The proposed method addresses this issue of assessing both decisions
and scores using a single evaluation measure based on ROC analysis. The area
under the proposed curve (the smAUC) will depict the separation of scores in the
context of the binary decision. This problem reaches several domains including:
search engines where the results of a query may (or may not) be relevant and are
strongly (or weakly) related to a query, recommendation systems as illustrated
in the above example, medical decision making where a physician is interested in
the presence (or absence) of a condition along with its associated severity score,
and finally, in bioinformatics where a genetic sample may be analyzed for up (or
down) regulation of a particular gene at a high (or low) levels of gene expression.

The smROC is a novel method that extends the ROC curve to include the
scores as smoothing weights added to its line segments. We, therefore, call it
the Smooth ROC (smROC) curve. This proposed smROC method measures
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similarities and differences in how Anna and Jan make recommendation decisions
and assign scores and can be used to compare scoring classifiers, but this is
hardly the only application. The smROC method can also be used to measure
similarities and differences among data points. Optimizing such an agreement,
or the lack thereof, will offer substantially more informative views of various
abilities of supervised machine learning methods.

The organization of this paper follows the presentation of Section 2 to moti-
vate the research and to discuss related work, Section 3 describes how to con-
struct smROC curves and shows calculations of smAUC, and Section 4 presents
experimental results that demonstrate the superiority of smROC over the stan-
dard ROC in measuring performance similarities and differences among scoring
classifiers. Finally, Section 5 concludes with a brief discussion of future work.

2 Motivation and Related Work

Common supervised learning tasks (Figure 1) convey diverse information of
class memberships of data points. Classification is a categorization of points into
classes with yes/no decisions. Binary classification is a special case of making
decisions on two classes. Ordinal classification extends the multi-class settings
and imposes an order on the classes. However, its outcome remains a classifi-
cation. Ranking yields an order of data points, and intuitively, a good ranker
places the positives towards the top and the negatives towards the bottom of an
ordered list. Ranking can be depicted by a simple order or by assigning ranks to
data points, the latter can also be viewed as scores. Scoring enables the learning
model to convey its confidence in class memberships [7]. However, interpreting
scores, in general, requires a considerable amount of information related to the
definition of the underlying scoring function, which is usually difficult to obtain
and is highly uncertain. Instead, some algorithms estimate class memberships
probabilities to induce this information. Thus, a probability estimation task may
be considered an informed case of a scoring task that involves modeling the pos-
terior probability distribution of class memberships given the training data.

The ability to distinguish between data points depends on the granularity
of predictions made by the model and is known as the “discriminancy” of a

Fig. 1. Information content of common machine learning tasks
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performance measure [11] where ties between predictions represent a difficult
challenge. While classification distinguishes between positives and negatives,
ranking separates instances based on how high (or low) they are placed in an or-
dered list. Yet, gaps between the ranked instances are determined by their avail-
ability rather than by the magnitudes of class memberships usually conveyed by
the scores. Obviously, a prediction conveyed by a continuous-value score is less
likely to produce ties than a binary decision. The latter is the least informative
decision whose outcomes offer the least granularity. Probability estimation is the
most informative task designed to describe the probability distribution learned
from data. Its wealth of information offers a high degree of granularity due to
exploiting powerful statistical principles. These methods, we find, are restric-
tive, inflexible, and parametric in nature. For instance, most machine learning
methods assume the class distribution invariant between training and testing
[8], and the quality of probability estimation is affected by this assumption [2].
Furthermore, the naive Bayesian learning method assumes the independence of
attributes that describe the data. In practice, such assumptions are often vio-
lated [2,9,10], and in many cases, the raw scores provide poor estimates of true
probabilities because some models are prone to estimating poor probabilities [5].
Or, it may be unnecessary to treat the scores as calibrated posterior probabili-
ties. In these cases, the scores are merely used to construct the ROC curve for
the purpose of performance analysis [5]. This use of the scores represents a reduc-
tion in information conveyed by the model (Figure 1) and we argue that it omits
information relevant to the performance analysis by eliminating the magnitudes
of the scores. The smROC curve evaluates such scores, particularly when their
estimates are poor or violate assumptions required by probabilistic methods.

The scope of performance measures is usually restricted by information made
available by the model. Scalar evaluation metrics such as accuracy, precision,
recall, AUC, and MSE (or Brier score [3]) compute a summary of performance
insensitive to characteristics of class memberships of individual points. The ROC
method addresses this issue but ignores the magnitudes of the scores. Their
exclusion can result in plotting identical ROC curves for multiple learning models
irrespective of differences in their score assignments. Wu et al. [15] propose the
sAUC method to incorporate score margins into the standard AUC and to detect
the existence of fixed-size score gaps between positive and negative data points.
Effectively, this measures how quickly the AUC, under the standard ROC curve,
deteriorates when the positive scores are decreased. The smAUC method differs
from sAUC in several ways. While smAUC weights the standard ROC curve by
the absolute values of the scores, sAUC relies on score differences being greater
than a fixed gap. In addition, the sAUC measures these score gaps only between
positive and negative data points, which limits the assessment to the positives
versus the negatives [15]. In contrast, the smROC relies on the score values
themselves which enables the visualization of score differences and gaps of any
size between any pairs of points regardless of their class, i.e., the smAUC can
distinguish between data points in one class. Going back to our example, if Anna
positively recommends two movies at scores 0.7 and 0.99, the sAUC will not
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Anna’s Assessment

i Decision Score

1. + 0.99
2. + 0.70
3. - 0.60
4. + 0.51
5. - 0.20
6. - 0.00

Fig. 2. In the ROC space, it’s difficult to distinguish between movies 1 and 2. Anna
recommends both but she likes movie 1 almost 30% more than 2. The smROC plots
the line segments with slopes proportional to the scores. Visually, movies 1 and 2 have
different slopes in the smROC space. Similarly, scores of movies 5 and 6 result in
different slopes. Anna likes movie 1 the most and 6 the least.

compare these two movies because they are both positives. The smROC curve
represents individual movies by line segments whose slope are proportional to
the corresponding score value (Figure 2). Therefore, the area under this curve
will be affected by the exact margin of these two points. If we examine the
definition of the smAUC (in the next section), it is clear that the smAUC
compares all pairs of data points, and thus, these two movies will contribute
their score magnitudes to the smAUC. This means that the smAUC reports a
different kind of performance information than the sAUC. The smAUC metric
depicts the performance of ranking weighted by the magnitude of confidence in
predictions (conveyed by the class membership scores). The sAUC relates to the
behavior of the AUC, under the ROC, when the positive scores are decreased.

A recent study [14] argues that soft variations of the AUC metric contribute
little to the AUC for the purpose of model selection, because they favor models
that generate large (rather than small) score margins. In this paper, we argue
that such soft analysis of the ROC can be used to understand the behavior
of scores. The smROC method not only produces a visualization of the scores
(as opposed to their margins), it also detects similarities among score values.
Such analyses are not limited to model selection, they can help compare scores
assigned to data points as well. This aspect of performance cannot be measured
by the standard AUC metric.

3 Constructing a Smooth ROC Curve

Let X be a data set that contains n = n+ + n− (positive and negative) points,
and let xi be the ith point whose label is Ci ∈ {+,−} and Si be the positive
class membership score assigned to xi. Finally, let m+ and m− be the average
positive and negative scores respectively. Algorithm 1 begins at the origin and
incrementally plots the ROC curve by examining points in X in a decreasing
order of their Si scores [5] (Figure 2). For a positive xi, the curve climbs one step
upwards, and for a negative xi, the curve runs one step to the right. The vertical
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Algorithm 1. Incrementally plotting of the ROC curve [5]
1: Input: n = n+ + n− positive and negative points, Si ∈ [0, 1] scores of n points in

a decreasing order, and Ci ∈ {+,−} Labels.
2: for i = 1 to n do {start at the origin (0,0)}
3: if scores are tied between y positives and x negatives then
4: simultaneously move up by y

n+ and right by x
n−

5: else if Ci = + then
6: move up by 1

n+

7: else if Ci = − then
8: move right by 1

n−
9: end if

10: end for

and horizontal step sizes are 1
n+ and 1

n− in the ROC space. To incorporate Si

scores into this curve, we modify Algorithm 1 to produce Algorithm 2. Our
approach relies on altering the step sizes in the space proportionally to the score
magnitudes. This modification preserves properties and characteristics of the
ROC curve so that ROC analysis remain valid.

A scoring classifier estimates class membership scores and assigns them to
data points. Classifications are obtained by imposing a threshold on these scores.
While negative points whose scores lie above the threshold result in false pos-
itive errors, positives with scores below that produce false negative errors. We
argue that such errors can be blamed not only on the choice of threshold value,
but also on the inappropriateness of scores (see definition 1). More specifically,
inappropriate scores result from assigning low scores to positives and/or from
assigning high scores to negatives. The identification of high and low scores relies
on a midpoint value in the range of the scores. When the scores are calibrated,
this midpoint lies naturally at 0.5. Otherwise, it can be estimated. The latter is
discussed in details later in this section.

Definition 1. For a midpoint Mid, a class membership score Si is appropriate
for data point xi if Si is greater or equal to Mid when xi is positive, or if Si is
less than Mid when xi is negative. Otherwise, (1 − Si) is appropriate for xi.

To deal with score appropriateness, two separate confusion matrices are needed
as shown in Figure 3. The separate consideration of classification accuracy for
points whose scores are appropriate or inappropriate depicts the ability of the
model to counter score inappropriateness. Algorithm 2 treats appropriate scores
differently from inappropriate ones. For appropriate scores, it climbs vertically
proportionally to the magnitude Si while running horizontally proportionally to
(1 − Si). (the normalization factors ∝h and ∝v are omitted at this point for
simplicity). The first plot from the left in Figure 3 shows a positive data point
with an appropriate score (Si > Mid assuming Mid = 0.5). This is depicted
by a higher rise than run. When Si < Mid, xi is more likely to be negative
(the second plot from the left in the same figure), and the score is deemed
appropriate when the Ci = − because Si agrees with the Ci. While Si indicates,
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(Score Appropriateness)

Scores

Label High Low

+ yes no

– no yes

(Accuracy of Appropriate Scores)

Predicted

Score Label Y N

High + correct incorrect

Low − incorrect correct

(Accuracy of Inappropriate Scores)

Predicted

Score Label Y N

High − incorrect correct

Low + correct incorrect

s i

1−si

Positive Instance

si

1−si

Negative Instance

1−si

s i

Positive Instance

si

1−si

Negative Instance

Appropriate Inappropriate

Fig. 3. The modified step size is based on score appropriateness

in the appropriate case, whether the xi is positive or negative, 1−Si contradicts
the label Ci ∈ {0, 1}. Thus, we plot a vertical climb proportional to Si to show
a gain in performance, and impose a horizontal penalty proportional to 1 − Si.
Inappropriate scores must be treated differently. For instance, a positive point
may be assigned a low score, and/or a negative point may be assigned a high
score. These two situations are considered inappropriate, which we account for
by reversing the score plotting strategy as shown in the two plots on the right of
Figure 3. A positive point that is assigned Si < Mid conveys that xi is more likely
to be negative and contradicts the positive label. Similarly, a negative xi that is
assigned (Si > Mid) suggests that xi is more likely to be positive. In both cases,
Si contradicts the label and 1−Si agrees with the label. Such contradictions merit
adjustments. Therefore, Algorithm 2 plots a performance gain in the form of a
vertical climb and proportional to 1−Si, and it impose a penalty as a horizontal
run proportional to Si. Finally, the complete curve is assembled by connecting
individual vectors resulting from the successive assessments of individual points
similar to Algorithm 1.

The main difference between the two algorithms lies in the adjustment of
the step-size. In the standard ROC curve (Algorithm 1) individual line segments
either rise by 1

n+ or run by 1
n− but not both. In the smROC, progress is made in

both directions simultaneously using the scores (as described above) and using
∝v and ∝h as the vertical and horizontal normalization factors respectively.
Algorithm 2 climbs vertically by Si

∝v
while simultaneously running horizontally

by (1−Si)
∝h

when the scores are appropriate, and when they aren’t, this algorithm

climbs up by (1−Si)
∝v

and simultaneously runs by Si

∝h
. Such a curve is illustrated

in Figure 2. The remaining issues include the calculations of Mid, ∝v, and ∝h.
The midpoint Mid is necessary for the assessment of score appropriateness

to separate high from low scores. When the scores Si ∈ [0, 1] are calibrated, it is
natural to use Mid = max(S)−min(S)

2 = (1−0)
2 = 0.5. However, when the scores

are uncalibrated, we estimate the midpoint between the average positive score
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Algorithm 2. Incrementally Plotting the smROC curve
1: Input: n = n+ + n− positive and negative points, Si ∈ [0, 1] scores of n points in

a decreasing order, Ci ∈ {+,−} Labels, Mid = Equation 1, ∝v = Equation 2, and
∝h = Equation 4.

2: for i = 1 to n do {start at the origin (0,0)}
3: if scores are tied (above Mid) between y positives and x negatives then

4: Move up ySi+x(1−Si)
∝v

and move right y(1−Si)+xSi
∝h

5: else if scores are tied (below Mid) between y positives and x negatives then

6: Move up y(1−Si)+xSi
∝v

and move right ySi+x(1−Si)
∝h

7: else if (Ci = +)AND(Si > Mid) then

8: Move up Si
∝v

and move right (1−Si)
∝h

9: else if (Ci = −)AND(Si < Mid) then

10: Move up Si
∝v

and move right (1−Si)
∝h

11: else if (Ci = +)AND(Si < Mid) then

12: Move up (1−Si)
∝v

and move right by Si
∝h

13: else if (Ci = −)AND(Si > Mid) then

14: Move up (1−Si)
∝v

and move right by Si
∝h

15: end if
16: end for

m+ and the average negative score m− for a given data set X . When the scores
Si are calibrated, and if the class distribution c = n+

n− = 1, then, it can be shown
that m+ + m−

c = 1. This becomes obvious when Si ∈ {0, 1} and c = 1 which
gives n+m+ +n−m− = n+. However, in the general case where scores Si are not
calibrated and c �= 1, m+ + m−

c , reduces to sum(S)
n+ . Therefore, we set Mid to

the midpoint as per Equation 1. This estimation of Mid is data specific and is
based on scores produced by the model. Alternate methods of estimating Mid
remain under investigation.

Mid =
1
2
(m+ +

m−

c
) =

sum(S)
2n+

(1)

To ensure that Algorithm 2 makes progress vertically and horizontally in the
unit square of the space, the step-size must be normalized. These vertical and
horizontal normalization factors are represented by ∝v and ∝h respectively. We
now show their calculations using H+, L−, L+, and H− as the sets of: positives
where Si ≥ Mid, negatives with Si < Mid, negatives of Si ≥ Mid, and positives
where Si < Mid respectively. Algorithm 2 plots the curve in steps proportional
to Si or 1 − Si scores. We divide each step by the total score contributions
in either direction to normalize them. To determine the vertical normalization
factor ∝v, we add up scores contributing to the upwards progress. Lines 7 and 9 of
Algorithm 2 show this for points in H+, and in L− respectively, they contribute
their Si scores towards a vertical climb upwards. Lines 11 and 13 show that
points in L+, and in H− respectively, contribute their 1 − Si scores also in the
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vertical direction. Therefore, this total sum of scores contributions in the vertical
direction is computed by Equation 2 as the sum of the positive contributions
Θ(xi) for i = 1 . . . n.

∝v=
|H+|∑
i=1

Si +
|L−|∑
i=1

Si +
|L+|∑
i=1

(1 − Si) +
|H−|∑
i=1

(1 − Si) =
n∑

i=1

Θ(xi) (2)

Θ(xi) =
{

si if xi ∈ {H+ ∪ L−} (Appropriate Scores)
1 − si if xi ∈ {H− ∪ L+} (Inappropriate Scores) (3)

The horizontal normalization factor ∝h is the sum of all scores contributions
towards shifts (to the right) in the horizontal direction. Instances in H+, and
in L−, respectively on Lines 7 and 9 of Algorithm 2, contribute their (1 − Si)
scores along the horizontal direction. In addition, points in L+, and in H−,
respectively on Lines 11 and 13 of Algorithm 2, contribute their Si scores also
to the horizontal progression. Therefore, the horizontal normalization factor ∝h

is computed by Equation 4 as the sum of the negative contributions 1 − Θ(xi)
for i = 1 . . . n.

∝h=
|H+|∑
i=1

(1 − Si) +
|L−|∑
i=1

(1 − Si) +
|L+|∑
i=1

Si +
|H−|∑
i=1

Si =
n∑

i=1

(1 − Θ(xi)) (4)

The area under the smROC curve (smAUC) is calculated using Equation 5. The
smAUC is based on accumulating the product of positive score contributions
(Θ(xi)) by the negative score contributions for all data points ranked lower than
xi. The latter is computed by Equation 6. A special case occurs when xi is
compared to itself, only one half of the product contributes toward the area
under the curve in the second case of Equation 6.

smAUC =
1

∝v∝h

n∑
i=1

n∑
j=1

Θ(xi)Ψ(xi, xj) (5)

where:

Ψ(xi, xj) =

⎧⎪⎨⎪⎩
1 − Θ(xi) for (Si > Sj) and (i �= j)
1
2 (1 − Θ(xi)) for i = j

0 otherwise
, (6)

The smAUC represents the separation between the total positive contribution
of scores Θ(xi) and the total negative contribution of scores 1 − Θ(xi) for all
instances i = 1 . . . n in their ranking order (Si > Sj). This suggests that smAUC
favors scores that result in higher separation of classes weighted by the magni-
tudes of the scores. Finally, it can be shown that when the scores Si are zeros and
ones, the smROC and the smAUC will reduce to the standard ROC and the
standard AUC respectively. This discussion is omitted due to space limitations.



202 W. Klement et al.

Table 1. UCI binary classification data [1]

Abbr. Data Set Name n |+ | | − | Features %+

prom promoters 106 53 53 57 50
echo echocardiogram 132 43 88 7 33
hepa hepatitis 155 32 123 19 21
prks parkinsons 195 147 48 22 75
hart statlog heart 270 120 150 13 44
hrth heart disease hungarian 294 188 106 13 64
hors horse-colic reduced 296 188 108 21 64
habr haberman 306 81 225 3 26
iono ionosphere 351 225 126 34 64
vots house-votes-84 435 168 267 16 39
jcrx japanese crx 690 307 383 15 44
aust statlog australian 690 307 383 14 44
wisc breast cancer wisc 699 241 458 9 34
blod blood transfusions 748 178 570 4 24
diab pima-indians-diabetes 768 268 500 8 35
mamo mammographic masses 945 434 511 5 46
tic tic-tac-toe 958 626 332 9 65
ger statlog german 1000 700 300 20 70
oz8h ozone eighthr 2534 160 2374 72 6
oz1h ozone onehr 2536 73 2463 72 3
chss chess kr-vs-kp 3196 1669 1527 36 52
ads internet ad 3279 459 2820 1558 14
spam spambase 4601 1813 2788 57 39
mush mushroom 8124 3916 4208 23 48
mgic magic04 19020 12332 6688 10 65
adlt census adult 32562 7841 24720 14 24

4 Experiments

The objective of this experiment is to illustrate the ability of the smROC curve
to measure performance similarities and differences of scoring classifiers, and
to demonstrate its superiority over the standard ROC curve. Therefore, we first
construct learning models that are expected to produce similar performance, and
we assess their performance in the smROC space and in the standard ROC. We
wish to show that the smROC methods captures their performance similarities
with higher performance sensitivity than the standard ROC. Then second, we
generate performance data for two learning methods, Naive Bayes (NB) and
Probability Estimating Trees (PET – unpruned decision trees with Laplace cor-
rection [12]), which are known to produce different scores when applied to the
same data. Again, we compare their performance analysis in the smROC space
and in the standard ROC space to demonstrate that the smROC method cap-
tures score differences better than the standard ROC.

To simulate score similarities, we rely on the consistency of the learning
method by fixing the learning algorithm, as well as, the training/testing data
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Fig. 4. Similar PET Models from ten runs of 10-fold cross-validation

distribution. The idea is to construct, more-or-less, similar classifiers from ran-
domized versions of the same data. For instance, a collection of ten Naive Bayes
classifiers should produce similar class membership scores in multiple runs of
10-fold cross-validation applied to the same data. In this case, performance vari-
ations occur due to the random splitting of data into 10 folds. The same argument
applies to building ten PETs in the same way. We use the ROC and the smROC
analysis to show that classifiers in the same group produce similar scores. As for
differences, we rely on the same two methods, PET and Naive Bayes, to produce
significantly different scores from each other as evidence suggests [12,13,6,16].
Therefore, to measure performance differences, we compare the pairwise perfor-
mance of PET and Naive Bayes over the multiple runs of 10-fold cross-validation,
they should produce different performance. We then compare how well the stan-
dard ROC curve and the smROC curve capture these differences. An issue we
need to consider is the construction the pairs of models which should be derived
from identical data sets in each run. This accomplished by controlling the seeds
when we randomly split the data into folds.

For the purpose of this experiment, we use benchmark data sets listed in Table
1, which are obtained from the machine learning repository [1]. For evaluation,
we construct the smROC and the standard ROC curves (two curves) for the
two learning methods resulting from each of the ten runs on every data set
(twenty-six sets). This generates over one thousand curves for us to analyze. To
make this analysis manageable, we summarize the curves by their respective area
under the curve. Thus, we calculate the smAUC and AUC respectively. And for
ease of presentation, we plot the average and standard deviation of AUC and
of smAUC for each data set. When assessing similarities. we plot these values
for each model separately, but for differences, we plot these values (average and
standard deviation) for their observed pairwise difference.

4.1 Performance Similarities

Figure 4 shows the standard deviation and the average area under the curves
(smROC and ROC) generated by the PET method over ten runs of 10-fold cross-
validation. We observe that the dashed curve is consistently below (or sometimes
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Fig. 5. Similar Naive Bayes models from ten runs of 10-fold cross-validation

the same) as the solid curve in both plots. For data sets that produce higher
standard deviation (in the top plot), the standard deviation of the area under the
smROC curve is lower than that under the standard ROC. When this standard
deviation is low, both ROC and smROC curves show the same low standard
deviation. This suggests that when variations occur among similar models, the
smROC captures more similarity than the standard ROC. The higher standard
deviation of area under the ROC curve can be attributed to the exclusion of score
magnitudes, which results in an over/under estimate of separation between ranks
(in the ROC space, the area under the curve is estimated by a discrete indicator
function, whereas, the smAUC follows the separation between score values).
This observation is supported by the bottom plot (in the same figure) which
shows the average area under the curve. The average area under the smROC
curve is generally lower than that under the standard ROC in the figure. This
makes sense in the context of the smROC being a kind of smoothing of the
ROC curve (weighted by score magnitudes). The PET learning method uses
unpruned decision trees with Laplace correction for smoothing the scores. Thus,
we expect its associated smROC curves to be smoother than the corresponding
ROC curves. In a sense, the consistently lower smAUC is saying that PET scores
are consistently smoother than what the standard ROC shows.

Similar observations can be made in Figure 5. For data sets with low stan-
dard deviation, the smROC and the standard ROC produce similar standard
deviations of the area under their respective curves for similar Naive Bayes mod-
els. As this standard deviation increases, the smAUC produces lower standard
deviation (in the top plot of the figure). The average area under the smROC
curve is the same, or less, than that under the standard ROC curve for most
data sets. One exception is the oz1h and oz8h data sets (they are both obtained
form the same Ozone domain [1]). For these sets, the average smAUC is sub-
stantially higher than the standard AUC. Furthermore, the standard deviation
of the area under the smROC curve for these two sets is also substantially lower
than that under the standard ROC curve (see the top plot of the same figure, the
corresponding open circles are much lower than the solid curve). This suggests
that the ranking order of data points fails to correctly separate the two classes.
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Fig. 6. Naive Bayes and PET models constructed from oz8h data

However, the combination of score magnitudes along with the ranking perfor-
mance produce better class separation. Perhaps, the standard ROC curve is faced
with classification errors due to the scores being just above, or just below, the
classification threshold. Consequently, the scores appear in disagreement with
class labels (this is similar to the movie recommendation example presented in
the introduction). Such errors are compensated for when the magnitudes of the
scores are used as weights by the smROC analysis.

4.2 Detecting Differences

In this section, we compare the performance of two learning methods, Naive
Bayes and PET, which are known to be different in how they produce class
membership scores. We measure their performance on our data sets in both the
smROC and the standard ROC spaces. Figure 6 presents the ROC and the
smROC curves for the two learning methods applied to the oz8h data. Com-
paring the ROC curves leads to the conclusion that both methods accomplish
comparable performance because Naive Bayes (the dark curves) and PET (the
light curves) are close to each other. In addition, if we compare the average area
under their curves respectively, we measure a small difference between them,
well, smaller difference than that observed in the smROC space. The reason the
two plots differ is due to including score magnitudes in the construction of the
smROC curves. The left plot of Figure 6 shows that the ROC curve is insensi-
tive to differences in scores. All we can see is that the PET curves are visually
smoother than those of the Naive Bayes’. However, if we use the AUC metric, this
difference becomes far less obvious. Alternatively, the smROC curves show that
scores produced by Naive Bayes are high for positive examples (the steep vertical
rise) and they are low for negative instances (the consistent horizontal run in the
top right). The strong change of direction along the smROC curves associated
with naive Bayes indicates a substantial gap in the scores. The smROC curves
associated with the PET models (the light curves) appear smoother with a com-
parable area under the curve in both spaces. This illustrates how the smROC
curve depicts ranking information but adds score magnitudes. These magni-
tudes have a little smoothing effect on the standard ROC in the case of PETs.
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Fig. 7. AUC difference for Naive Bayes and PET models

However, in the case of Naive Bayes, the score magnitudes amplify its classifica-
tion ability but expose the definite nature of its scores (definite, or appropriate,
because positive examples have high scores and negatives have low scores). This
highlights a significant difference between the two learning methods that the
standard ROC shows little to no sensitivity to. In fact, if we rely on the area
under the curve metric to understand such differences, the smAUC is more fa-
vorable due to its sensitivity to the scores. The standard AUC fails to measure
differences in scores which presents an interesting argument for studies such as
[14]. Vanderlooy and Hüllermeier [14] suggest that soft variations of the AUC
offer little to no improvement when it comes to model selection. This may well
be the case when the primary interest is classification or ranking for that mat-
ter. However, when it comes to examining a scoring method where the scores are
of interest, our results show that the smAUC, a soft variation of the standard
AUC, is able to measure scoring differences that are buried in the ROC space
due to the exclusion of their magnitudes. This paper argues and shows that these
differences are important. For instance, the scoring behavior of Naive Bayes and
decision trees have been the focus of several studies [12,13,6,16]. Our smROC
curve depicts these differences with ease, and moreover, the smAUC represents
a metric sensitive to such characteristics. If the smAUC metric enables these
studies to investigate the scoring behavior of learning methods with ease.

Lets consider the average and standard deviations of the difference in the AUC
and in the smAUC, respectively, for our two learning methods. Figure 7 shows
the average pairwise difference of the area under the curve between Naive Bayes
and PET resulting from this experiment. We now describe how we compute this
difference; in each of the ten runs of 10-fold cross-validation, we construct a
Naive Bayes model and a PET model from the same sample of data (randomly
split into folds using the same seed). Then, we construct their ROC and smROC
curves, and we compute their respective areas under the curves and record their
difference. Namely, we subtract the area covered by the curve associated with
PET from the area covered by the curve associated with Naive Bayes. At the end,
we compute the average and the standard deviation of these recorded differences
in their respective spaces. Finally, we plot these results for all data sets (see
Figure 7). It is clear that the average AUC difference in both spaces agree when
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this difference is in favor of the PET models (the two curves agree when they
are close or below the solid line of 0 difference in the right half of the bottom
plot of the Figure 7). In addition, if we examine the standard deviations for the
same data sets in the top plot, we see that both AUC and smAUC produce
similar standard deviations of this difference. This suggests that PET models
that perform better than Naive Bayes produce solid, and consistent, ranking
and scoring performance observed in both spaces. However, when the balance
tips in favor of the Naive Bayes models, the scores become more appropriate
(as we define them). The smAUC measures a substantially higher difference
than the standard AUC. This is illustrated by the average difference in the ROC
space being below that of the smROC curve, and sometimes, the former crosses
below the zero line (see the bottom plot of the same figure). Furthermore, the
observed standard deviation of this AUC difference is higher for ROC curves
than for smROC curves (see the corresponding standard deviations in the top
plot of the same figure). This suggests that the ROC curve struggles to measure
this difference between the two models. Thus, the use of the standard AUC fails
to detect these differences because they are excluded. The smAUC, however,
measures these differences clearly and with lower standard deviations. Since it
favors appropriate scores, these results suggest that Naive Bayes produces scores
useful for classification but they are far from being smooth.

5 Conclusions

This paper presents a novel evaluation measure, the smROC curve, to incorpo-
rate class membership scores into the ROC curve. Based on a categorization of
common machine learning tasks, which include classification, ranking, scoring
and probability estimation, we argue that class membership scores convey valu-
able information relevant to the performance. Ignoring them, as the standard
ROC does, results in a reduction of information expressed by the model.

Our results show that the smROC is effective in measuring performance sim-
ilarities and differences among learning models. The smROC is sensitive to
performance characteristics related to how a learning model assigns class mem-
bership scores to data points. The results demonstrate that the smROC curve
measures the performance with less variations than the standard ROC curve,
and it detects performance differences more consistently than the standard ROC.
These results are statistically significant using the paired t-test. However, signif-
icance results are omitted due to space limits. Therefore, the smROC method
enhances the ROC method, and captures specialized performance information
with a higher granularity while remaining more abstract than dealing with prob-
ability estimates. Future research directions include investigating alternate meth-
ods of computing the mid point used to assess score appropriateness, analyzing
the effect of varying this midpoint for all values between zero and one, and ex-
ploring other advantages of the smROC curve. These include its sensitivity to
changes in the domain, i.e., it can be shown that the smROC method is sensi-
tive to changes in the data distribution. It can be argued that measuring these
differences between training and testing represents a significant accomplishment.
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Abstract. In many fields, such as bioinformatics or multimedia, data
may be described using different sets of features (or views) which carry
either global or local information. Some learning tasks make use of these
several views in order to improve overall predictive power of classi-
fiers through fusion-based methods. Usually, these approaches rely on
a weighted combination of classifiers (or selected descriptions), where
classifiers are learned independently. One drawback of these methods is
that the classifier learned on one view does not communicate its failures
within the other views. This paper deals with a novel approach to inte-
grate multiview information. The proposed algorithm, named Mumbo, is
based on boosting. Within the boosting scheme, Mumbo maintains one
distribution of examples on each view, and at each round, it learns one
weak classifier on each view. Within a view, the distribution of exam-
ples evolves both with the ability of the dedicated classifier to deal with
examples of the corresponding features space, and with the ability of
classifiers in other views to process the same examples within their own
description spaces. Hence, the principle is to slightly remove the hard
examples from the learning space of one view, while their weights get
higher in the other views. This way, we expect that examples are urged
to be processed by the most appropriate views, when possible. At the
end of the iterative learning process, a final classifier is computed by a
weighted combination of selected weak classifiers.

This paper provides the Mumbo algorithm in a multiclass and mul-
tiview setting, based on recent theoretical advances in boosting. The
boosting properties of Mumbo are proved, as well as some results on
its generalization capabilities. Several experimental results are reported
which point out that complementary views may actually cooperate under
some assumptions.
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1 Introduction

In many application domains of machine learning, such as bioinformatics or
multimedia indexing, data may be described by several sources or views [1], [2].
When facing a classification or a regression task, the use of these views might be
of great interest, since each view is supposed to carry some information that the
other views would not embed. Fortunately, there exist many methods to select
the most informative sources, or set of features, that either best discriminate
data concepts or best describe one concept among others [3] [4].

Most of these selective methods are statistically founded, which means that
they tend to disregard localized – isolated – information although it could be
useful to compensate the lack of performance on some (group of) learning exam-
ples. Indeed, real-life data descriptions are often noisy. When the noise rate of a
set of feature descriptions reaches a threshold, which depends on the problem,
no learning algorithm has been proved, neither theoretically nor empirically, to
be able to overcome the noise disruption on the generalization capabilities of
classifiers. Yet, multiview learning approaches should enable some localized fail-
ures of classifiers trained on one view, to be compensated by – or subordinated
to – the abilities of classifiers on the other views.

Up to now, several approaches of multiview learning have been developed,
most of them in the semi-supervised setting. The first of them was the well-
known Co-Training algorithm [5], which was based on far too much restrictive
assumptions [6]. Other semi-supervised multiview algorithms have then been de-
veloped and theoretically founded, all of them promoting the agreement between
views [7] [8] [9], except for the semi-supervised boosting approach presented in
[10]. No compelling application on real-life problems has promoted these ap-
proaches yet, although many problems would actually need a multiview learning
process.

In addition, in the supervised setting, leveraging the performances of classi-
fiers learned on different views has mainly been performed through fusion-based
methods, either early or late fusion [11] [12]. Early fusion consists in grouping
(selected) descriptions of the different views into a large vector, and then to learn
a classifier on this resulting view. On the opposite, late fusion allows one clas-
sifier per view to be learned, while the final classifier is a combination of them.
Usually, late fusion performs better than early fusion. Yet, none of them leads
to good performances when the views are of unbalanced informative content, for
weaker views tend to reduce the final performances. An empirical comparison of
these methods applied on multimedia problems is presented in [13].

Whatever the fusion-based approach is, it relies on a weighted combination of
classifiers (or selected descriptions), where classifiers are learned independently.
One drawback of these methods is that the classifier learned on one view does not
communicate its failures to the other views. Besides, views must be independent
in order for the combined classifier to be most accurate.

Yet, we think it could be interesting that, when the classifier on a view fails
on a region of examples in the instance space, it could entrust the other views
with the classification of these examples. One of the major difficulties is then
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to delimit the concerned subareas of the instance space, without loss of gener-
alization capabilities. Instead of precisely locating these subareas, we propose
an algorithm based on boosting [14] [15] whose principle is to slightly remove
the hard examples from the learning space of one view, while their weights get
higher in the other views. This way, we expect that examples are processed by
the most appropriate views.

In order to implement this principle, we designed Mumbo as a boosting-like
algorithm which works from different views on data. Each view is associated
with a weak learner, and one distribution per view is maintained (section 2).
The distributions are updated at each iteration in such a way that views com-
municate the ones to the others their capability of processing learning examples.
Hence, not only the distribution update in one view takes into account the per-
formances of that view in classifying the learning examples, but it also embeds
the performances of the other views on these examples. The properties of Mumbo
are discussed and proved in section 3: both empirical and generalization errors
are bounded. In order to warrant the boosting properties, and the generaliza-
tion error bound, we define a global distribution of examples that reflects the
overall behaviour of the algorithm within a given hypothesis space. In section
4, we present experimental results of Mumbo on synthetic data, which confirm
that Mumbo is a boosting algorithm, better than other basic fusion approaches.
Before concluding, we discuss this approach with other methods, and give some
clues to improve Mumbo (section 5).

2 The Mumbo Algorithm

2.1 Principles and Assumptions

Mumbo is a multiview boosting algorithm: each example of the learning sample
S is represented by several independent sets of features. Each one of these rep-
resentations is called a view. Eventually, these views are used to train models,
which are then used to classify other examples. Even though these models are
learned on different representations of the same examples, they are by no means
equal performance wise. Classifiers learned on some views perform better than
those learned on other views, due to the noise in the data and/or views, or the
lack of information, etc., which may be different from one representation space
to another. In other words, we may define the strength of a view as the possibil-
ity to learn a good classifier on that view. At the same time, the weakness of a
view may reflect the impossibility of learning a good classifier from the instance
space defined by this view.

More formally, let S be a sample of n tagged examples chosen according to
some distribution D over X ×Y , where X is some instance space and Y is some
class space. Let V be a view, H be the space of all the hypothesis that we can
learn on V and h be the best classifier that we can learn on this space. Finally,
let ρ be the error of random guessing over S and σV ≤ ρ be the lower bound of
the error of h on S. We define the notion of weak and strong view as follows : V
is called a strong view if σV is near 0 and V is called a weak view if γV = ρ−σV

is near 0.
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Mumbo has been designed in order to learn a classifier in a multiview setting,
where views are supposed to be of different strengths. More specifically, we sup-
pose that among the views, there exists one strong major view V , and several
weaker minor views v1, · · · , vz.

In our setting, γV is supposed to be greater than γv1 , · · · , γvz .
For example, in speech recognition, three usual views for describing a speech

(or dialog) to be classified, are known to be of unequal strength [16]. The major
view is the lexical analysis of a speech (syntactic trees, for example); other minor
views may be the prosodic information, and syntactic information. Although
the major view allows to learn rather good classifiers, researchers in speech
recognition still use minor views for learning in order to compensate the failures
of the major view in case of noise disruptions [17].

As pointed out in the introduction, the basic principle of Mumbo is to encour-
age each view v to focus on the examples that are hard to process in other views,
and easy to process in v. Hence, it assumes that if one representation space does
not embed information on one (set of) examples, part of that information can
be provided by other representation spaces.

2.2 Framework and Notations

In this paper, we present Mumbo within the framework defined by [15], where
basically γ denotes the edge of a classifier with regards to random. We use the
following typings:

– matrices are denoted by bold capital letters like C; element of row i and
column j in matrix C is denoted C(i, j), and C(i) is the row i of C.

– M · M’ denotes the Frobenius inner product of two matrices.
– the indicator function is denoted by �[·], and the cartesian product is denoted

by X1 × X2.

Let S = {(x1, y1), ..., (xn, yn)} be the learning sample, where xi ∈ X , and yi ∈ Y
is the class of the example xi. The set of classes is Y = {1, ..., k}. The set of
features X is made up of different subsets: X = X1 × ... × Xm. Each subset
represents a view, as in [18]. Then, the representation of example xi within view
m is written xi,m

1.
In this paper we use the definition of weak classifier as defined in [15], that

is a classifier whose performance on a cost matrix is better than that of some
edge-over-random γ baseline.

Definition 1 (edge-over-random baseline and cost matrix, by Mukher-
jee et al. [15]). The edge-over-random baseline B ∈ Beor

γ ⊆ �
n×k, where Beor

γ is
the space of edge-over-random baselines, is γ more likely to predict the correct la-
bel rather than an incorrect one on every example i: ∀l �= yi, B(i, yi) ≥ B(i, l)+γ,
with equality holding for some l.

The edge-over-random cost matrix C puts the least cost on the correct label,
i.e. the rows of the cost matrix come from the set

{
c ∈ �

k : ∀l, c(yi) ≤ c(l)
}
.

1 When possible, we simplify xi,m to xi in the scope of view m.
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Definition 2 (edge-over-random baseline in the Mumbo setting). The
edge-over-random baseline used in this paper is a cost matrix Uγ defined as
follows: Uγ(i, l) = (1 − γ)/k + γ if l = yi and Uγ(i, l) = (1 − γ)/k if l �= yi.

The 1ht,m matrix is the prediction matrix defined as 1ht,m(i, l) = 1 if ht,m(i)
= l and 1ht,m(i, l) = 0 if ht,m(i) �= l.

Definition 3 (edge-condition, by Mukherjee et al. [15]). Let C ⊆ �
n×k

and matrix B ∈ Beor
γ , an eor-baseline; we say that a weak classifier h satisfies

the edge condition if C · 1h ≤ C · B
In the case of binary classification, the ith row of the baseline Uγ is (1

2 (1 −
γ), 1

2 (1 + γ)) if the label of example i is +1, and (1
2 (1 + γ), 1

2 (1 − γ)) if the
label of example i is −1. A given classifier h satisfies the edge condition if∑
i

C(i, h(i)) ≤ ∑
i

{
(1
2 − γ

2 )C(i, yi) + (1
2 + γ

2 )C(i, yi)
}

and [15] shows that this

condition is equivalent to the usual weak learning condition for binary classifi-
cation.

2.3 The Core of Mumbo

Mumbo (algorithm 1) is an attempt to promote the collaboration between major
and minor views, in order to enhance the performances of classifiers usually
learned only on the major view. It is a boosting algorithm theoretically founded
on the framework presented in [15].

Y is not limited to {−1, +1}, since we are in the multiclass setting, based on
the theoretical approach of [15], whose one of the main ideas is to replace the
weights of the examples with a cost matrix. We use the same idea here: C is a
cost matrix so that C(i, l) is the cost of assigning the label l to the example i.
Since we deal with more than one view, we use one cost matrix Cj per view j,
and a global cost matrix CG. Thus m + 1 cost matrices are maintained.

Mumbo runs for T rounds: at each round t, a weak learner is trained on each
view v, which returns m weak classifiers ht,m. These weak classifiers must satisfy
the weak learning condition given in definition 3. For each ht,j , we compute a
parameter αt,j that measures its importance depending on the edge of the ht,j

on the cost matrix Ct,j (c.f. algorithm 1).
As stated before, one of the main ideas of Mumbo is to have some sort of col-

laboration between the different views. This idea is implemented in two different
parts of this algorithm: first during the update of the m cost matrices, and second
when choosing the classifier ht selected at round t in the final combination.

The update of each cost matrix depends on all the classifiers. The ith line,
corresponding to the example xi in the matrix of the view j, is updated only
if the classifier learned on this view classifies correctly xi OR if all the m − 1
other weak classifiers misclassify it. Intuitively this means that a view gives up
on the hardest examples and lets the other views handle them. In the scenario
of one major and several minor views, this allows the minor views to focus on
the hardest examples of the major view.
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Algorithm 1. Mumbo: MUltiModal BOosting
Given

– S = {(x1, y1), ..., (xn, yn)} where xi ∈ X1 × X2 × ... × Xm, yi ∈ {1, ..., k}
– m weak learning algorithms WL

– T the number of iterations
– a baseline B (edge-over-random prior baseline)

Initialize (∀i ∈ {1, · · · , n}, ∀j ∈ {1, · · · , m}, ∀l ∈ {1, · · · , k}):
f0,j(i, l) = 0

C0,G(i, l) = C0,j(i, l) =

{
1 if yi �= l

−(k − 1) if yi = l
where C0,G is the global cost matrix

for t = 1 to T do

Train WL using Ct−1,1, ...,Ct−1,m

for j = 1 to m do

Get ht,j satisfying the edge condition on B, and compute edge δt,j on Ct−1,j ,

and αt,j = 1
2

ln
1+δt,j

1−δt,j

end for

Update cost matrices (for each view j = 1 · · ·m):

Ct,j(i, l) =

⎧⎪⎨⎪⎩
exp(ft,j(i, l) − ft,j(i, yi)) if l �= yi

−
k∑

p=1;p �=yi

exp(ft,j(i, p) − ft,j(i, yi)) if l = yi

where ft,j(i, l) =
t∑

z=1
�[hz,j(i) = l]αz,jdz,j(i)

and dz,j(i) =

{
1 if hz,j(i) = yi or � ∃q ∈ {1, ...,m}, hz,q(i) = yi

0 else

Choose ht = argmax
ht,j

(edge ht,j on Ct,G) and δt = {edge of ht on Ct,G}

Compute αt = 1
2

ln 1+δt
1−δt

Update Ct,G :

Ct,G(i, l) =

⎧⎪⎨⎪⎩
exp(ft,G(i, l) − ft,G(i, yi)) if l �= yi

−
k∑

j �=yi

exp(ft,G(i, j) − ft,G(i, yi)) if l = yi

where ft,G(i, l) =
t∑

z=1
�[hz,m(i) = l]αz,m

end for

Output final hypothesis : H(x) = argmax
l∈1,...,k

fT (x, l), where fT (i, l) =
T∑

t=1
�[ht(i) = l]αt,m

In the last part of each round t, Mumbo chooses the classifier ht among the
m that minimizes the error on the global cost matrix. The confidence αt is
computed for ht, based on its edge on the global cost matrix. Finally, the global
cost matrix is updated, in a similar way that in the adaptive case of the OS
algorithm [15].

The final hypothesis H is a weighted vote of the T selected weak classifiers
ht, and αt is the weight assigned to ht.
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3 Properties of Mumbo

In this section, we present two properties of the Mumbo algorithm that together
ensure it is a boosting algorithm. We first show that the update rules for the
cost matrix of each view, as presented in the previous section, actually reduce
the training error on this view. We then prove that the criterion for choosing the
unique ht at each step t, and eventually the update rule, allows Mumbo to be
a safe boosting algorithm: the training error decreases with rounds. The most
important property, a bound on the generalization error of Mumbo, is proved.

3.1 Bounding the Training Error on Each View

One property of Mumbo is that we can bound the empirical error made by the
final classifiers of one view, when views are considered independently. We give a
formal proof of this property, then we define a way of computing αt,m in each
round t for each view m in order to prove the decreasing of the empirical error
of the final combination of weak classifiers.

Theorem 1 is an adaptation to Mumbo of the lemma presented in the supple-
ment of [15].

Theorem 1 (bounding the empirical error in view m). For a given view
m, suppose the cost matrix Ct,m is chosen as in the algorithm 1, and the returned
classifier ht,m satisfies the edge condition for the baseline Uγm and cost matrix
Ct,m, i.e. Ct,m · 1ht,m ≤ Ct,m ·Uγm .

Then choosing a weight αt,m > 0 for ht,m makes the error εt,m =
n∑

i=1

∑
l �=yi

exp(ft,m(i, l) − ft,m(i, yi)), at most a factor

τt,m = 1 − 1
2

(exp(αt,m) − exp(−αt,m))δt,m +
1
2

(exp(αt,m) + exp(−αt,m) − 2)

of the loss before choosing (αt,m), where δt,m is the edge of ht,m, δt,m = Ct,m ·
Uγm −Ct,m · 1ht,m .

Proof
Let S+ be the set of the examples correctly classified by ht,m, S− the set of the
examples misclassified by all the m classifiers returned by WL, and S−+ the set
of the examples misclassified by ht,m and correctly classified by at least one of
the other ht,j, j �= m.

In order to simplify the reading of the proof, we introduce the quantities:
Lt,m(i) =

∑
l �=yi

exp(ft,m(i, l) − ft,m(i, yi)), and ζt,m(i, l) = ft,m(i, l)−ft,m(i, yi).

Using the edge condition we have :

Ct,m · 1ht,m ≤ Ct,m ·Uδt,m (1)
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The left and right sides of equation 1 can be rewritten as:

Ct,m · 1ht,m = −
∑

i∈S+

Lt−1,m(i) +
∑

i∈S−
exp(ζt−1,m(i, ht,m(xi))) +

∑
i∈S−+

exp(ζt−1,m(i, ht,m(xi)))

Ct,m · Uδt,m =
∑N

i=1

(
−Lt−1,m(i)(

1−δt,m
k + δt,m) + Lt−1,m(i)(

1−δt,m
k )

)
= −δt,m

∑
i

Lt−1,m(i)

So, using the edge condition 1 we obtain:

−
∑

i∈S+

Lt−1,m(i)+
∑

i∈S−
exp(ζt−1,m(i, ht,m(xi)))+

∑
i∈S−+

exp(ζt−1,m(i, ht,m(xi))) ≤ −δt,m

∑
i∈S

Lt−1,m(i)

hence: ∑
i∈S+

Lt−1,m(i)−
∑

i∈S−∪S−+

exp(ζt−1,m(i, ht,m(xi))) ≥ δt,m

∑
i∈S

Lt−1,m(i) (2)

In order to compute the drop in loss after choosing ht,m with weight αt,m, let
us consider three cases:

1. For i ∈ S+:
We have ft,m(i, l) − ft,m(i, yi) = ft−1,m(i, l) − (ft−1,m(i, yi) + αt,m), then:

Δ+ =
∑

i∈S+

− Lt,m(i)− ∑
i∈S+

− Lt−1,m(i) =
∑

i∈S+

− exp(−αt,m)Lt−1,m(i)− ∑
i∈S+

− Lt−1,m(i)

= (1− exp(−αt,m))
∑

i∈S+

Lt−1,m(i)

2. For i ∈ S−:

Δ− =
∑

i∈S−
exp(ft,m(i, ht,m(i))− ft,m(i, yi))−

∑
i∈S−

exp(ft,m(i− 1, ht,m(i))− ft−1,m(i, yi))

=
∑

i∈S−
exp(ft−1,m(i, ht,m(i)) + αt,m − ft−1,m(i, yi))−

∑
i∈S−

exp(ft−1,m(i, ht,m(i))− ft−1,m(i, yi))

= (exp(αt,m)− 1)
∑

i∈S−
exp(ft−1,m(i, ht,m(i))− ft−1,m(i, yi))

= (exp(αt,m)− 1)
∑

i∈S−
exp(ζt−1,m(i, ht,m(xi)))

3. For i ∈ S−+:

Δ−+ =
∑

i∈S−
exp(ft,m(i, ht,m(i))− ft,m(i, yi))−

∑
i∈S−

exp(ft−1,m(i, ht,m(i))− ft−1,m(i, yi))

=
∑

i∈S−
exp(ζt,m(i, ht,m(xi)))−

∑
i∈S−

exp(ζt−1,m(i, ht,m(xi)))

= 0 since the value of ft,m does not change for these examples
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So, the drop in loss Δ = Δ+ − Δ− − Δ−+ is:

= (1 − exp(−αt,m))
∑

i∈S+

Lt−1,m(i) − (exp(αt,m) − 1)
∑

i∈S−
exp(ζt−1,m(i, ht,m(i)))

=
(

exp(αt,m)−exp(−αt,m)
2

)( ∑
i∈S+

Lt−1,m(i) − ∑
i∈S−

exp(ζt−1,m(i, ht,m(i)))

)

−
(

exp(αt,m)+exp(−αt,m)−2
2

)( ∑
i∈S+

Lt−1,m(i) +
∑

i∈S−
exp(ζt−1,m(i, ht,m(i)))

)

≥
(

exp(αt,m)−exp(−αt,m)
2

)( ∑
i∈S+

Lt−1,m(i) − ∑
i∈S−∪S−+

exp(ζt−1,m(i, ht,m(i)))

)

−
(

exp(αt,m)+exp(−αt,m)−2
2

)( ∑
i∈S+

Lt−1,m(i)+
∑

i∈S−∪S−+

exp(ζt−1,m(i, ht,m(i)))

)

Using the result we obtained in equation 2 and the fact that
exp(ζt−1,m(i, ht,m(i))) ≤ Lt−1,m(i), we can give a lower bound of the loss drop:

Δ ≥
(

exp(αt,m)−exp(−αt,m)

2

)
δt,m

∑
i

Lt−1,m(i)

−
(

exp(αt,m)+exp(−αt,m)−2

2

)( ∑
i∈S+

Lt−1,m(i) +
∑

i∈S−∪S−+

Lt−1,m(i)

)
≥
(

exp(αt,m)−exp(−αt,m)

2

)
δt,m

∑
i

Lt−1,m(i)−
(

exp(αt,m)+exp(−αt,m)−2

2

)∑
i

Lt−1,m(i)

≥
(

exp(αt,m)−exp(−αt,m)

2
δt,m − exp(αt,m)+exp(−αt,m)−2

2

)∑
i

Lt−1,m(i)

Hence the loss 1−Δ at round t is at most a factor 1− 1
2 (exp(αt,m)−exp(−αt,m))δt,m

+ 1
2 (exp(αt,m) + exp(−αt,m) − 2) of the loss in round t − 1. �

We proved that, in each view, the training error (cost) decreases. Based on
theorem 1, and tuning αt,m to 1

2 ln 1+δt,m

1−δt,m
, we get the following bound on the

empirical error of the classifier Hm obtained by the weighted combination of
weak classifiers learned in view m after T iterations:

εT,m ≤ (k − 1)
T∏

t=1

√
1 − δt,m ≤ (k − 1) exp

{
−1

2

T∑
t=1

δ2
t,m

}
(3)

This result shows that Mumbo is a boosting algorithm even when the selected
weak classifier always comes from the same view m for all steps. This might occur
when the major view is far better than minor views for all training examples.

3.2 Bounding the Whole Empirical Error

At each step t of the algorithm 1, one classifier is selected among m weak classi-
fiers, if m is the number of views, that is, the space of weak hypothesis H in this
case is {ht,1, · · · , ht,m}. This space is a particular case of the space of hypothesis
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used by the OS algorithm, thus we obtain the same bound on the empirical error
as the OS algorithm, that is :

εT ≤ (k − 1)
T∏

t=1

√
1 − δt,m ≤ (k − 1) exp

{
−1

2

T∑
t=1

δ2
t,m

}
(4)

In practice, one may observe that the edges of the classifiers at step t are all
negative. In such a case, since each weak classifier of view v is trained on a
subset of the learning samples randomly drawn from the current distribution of
v, iterating the learning step until γv is positive allows the algorithm to fulfill
the conditions.

3.3 Results in Generalization

We show here that the generalization error of the final hypothesis learned by
Mumbo after T iterations can be bound, and this bound converges towards 0
with the number of iterations.

The generalization error of a classifier is defined as the probability to mis-
classify any new example. For multiclass algorithms such as AdaBoost.MR, [19]
shows that the generalization error of the final hypothesis can be bound and
that it is related to the margins of the learning examples. We thus first recall
the definitions of the bound on the generalization error, then we extend existing
results to Mumbo.

Generalization Error for Multiclass Problems. The final hypothesis of
Mumbo is a multi class classifier, thus its output space can be defined as Y =
{1, 2, ..., k}. In this section, the weak classifiers h ∈ H are defined as mappings
from X×Y to {0, 1}, where X is some description space. The label y is predicted
as a potential label for xi if h(x, y) = 1. Note that these classifiers are equivalent
to �[ht(x) = l], the weak classifiers described in the algorithm.

Let C denote the convex hull of H, that is :

C =

{
f : (x, y) →

∑
h∈H

αhh(x, y)|αh ≥ 0 and
∑

h

αh = 1

}

For a given example x and a label y, a classifier f in C predicts y as the class of
x if argmax

l∈Y
f(x, l) = y. The margin of an example is then defined as :

margin(f, x, y) = f(x, y) − max
l �=y

f(x, l)

The function f misclassifies an example x if the margin given by f on the couple
(x, y) is negative or zero.

Using the previous definitions, Schapire et al. give a proof of theorem 2 [19]:

Theorem 2 (Schapire et al., [19]). Let D be a distribution over X × Y , and
let S be a sample of n examples chosen independently at random according to
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D. Assume that the base-classifier2 space H is finite, and let δ > 0. Then with
probability at least 1 − δ over the random choice of the training set S, every
function f ∈ C satisfies the following bound for all θ > 0 :

PD[margin(f, x, y) ≤ 0] ≤ PS [margin(f, x, y) ≤ θ]+O

(
1√
n
+

(
log(nk) log(|H|)

θ2
+ log(1/δ)

)1/2
)

More generally, for finite or infinite H with VC-dimension d, the following bound
holds as well, assuming that n ≤ d ≤ 1 :

PD[margin(f, x, y) ≤ 0] ≤ PS [margin(f, x, y) ≤ θ]+O

(
1√
n
+

(
d log2(nk/d)

θ2
+ log(1/δ)

)1/2
)

In theorem 2, the term PD[margin(f, x, y) ≤ 0] is the generalization error of the
function f . The term PS [margin(f, x, y) ≤ θ] is the empirical margin error of f
on the sample S, that is, the proportion of examples of S which are misclassified,
or which are correctly classified but with a margin smaller than θ. In the following
section, we use εθ(f, S) instead of PS [margin(f, x, y) ≤ θ].

The second term in the theorem is a complexity penalization cost.

Mumbo. Theorem 2 holds for every voting method using multiclass classifiers
as weak classifiers; it thus also holds for Mumbo since his final hypothesis is
HT (x) = argmax

l∈1,2,...,k
fT (x, l), where :

fT (x, l) =

(
T∑

t=1

ht(x, l)αt

)
/

T∑
t=1

αt

The weak classifier ht chosen at each iteration is selected from a set of classifiers
{ht,1, ..., ht,m}. These classifiers are selected from potentially different spaces of
hypothesis, namely H1, ...,Hm. Thus the space of hypothesis H from which ht

is selected is the union of H1, ...,Hm. We deduce by the definition of the VC-
dimension [20] that dH = min{dH1, ..., dHm}.

We still have to prove that the generalization error decreases with the number
of iterations. To do so, it is sufficient to prove that the empirical margin error

decreases, since the term O

(
1√
n

+
(

d log2(nk/d)
θ2 + log(1/δ)

)1/2
)

is a constant.

We start with showing that we can find a bound for εθ(fT , S).

Lemma 1. The empirical margin error of Mumbo after T iterations is bounded
by:

εθ(fT , S) ≤ (k − 1)
n

(
T∏

t=1

(1 + δt)
1+θ
2 (1 − δt)

1−θ
2

)
2 Note : the base-classifiers are referred to as weak classifiers in our paper.
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Proof
Let l = argmax

y′ �=y
f(x, y′). For readability reasons, we may write

∑
t

instead

of
T∑

t=1
.

By the definition of the margin and f , we get :

margin(f, x, y) = f(x, y) − f(x, l) =

∑
t

ht(x, y)αt∑
t

αt
−
∑
t

ht(x, l)αt∑
t

αt

Hence,

margin(f, x, y) < θ ⇔
∑
t

ht(x,y)αt∑
t

αt
−

∑
t

ht(x,l)αt∑
t

αt
≤ θ

⇔ θ
∑
t

αt −
(∑

t
ht(x, y)αt −

∑
t

ht(x, l)αt

)
≥ 0

Let Ai = −
(∑

t
αtht(xi, y) −∑

t
αtht(xi, l)

)
and B = θ

∑
t

αt. We deduce that

P[margin(f, xi, y) ≤ θ] = 1 ⇔ Ai + B ≥ 0, that is, exp(Ai + B) ≥
P[margin(f, x, y) ≤ θ]. Thus, εθ(fT , S) ≤ 1

n

n∑
i=1

exp(Ai) exp(B).

εθ(fT , S) ≤ 1
n

n∑
i=1

exp(Ai) exp(B)

≤ 1
n

n∑
i=1

exp
(
−(
∑
t

αtht(xi, y) −∑
t

αtht(xi, l))
)

exp(θ
∑
t

αt)

≤ 1
n

n∑
i=1

exp (−(fT (xi, y) − fT (xi, l))) exp(θ
∑
t

αt)

≤ 1
n

n∑
i=1

∑
y′ �=y

exp (fT (xi, y
′) − fT (xi, y)) exp(θ

∑
t

αt)

Using the bound on the empirical error, we deduce :

εθ(fT , S) ≤ 1
n

exp(θ
∑
t

αt)(k−1)
∏
t

√
1−δ2

t ≤ 1
n

exp(θ
∑
t

1
2

ln( 1+δt
1−δt

))(k−1)
∏
t

√
1−δ2

t

≤ 1
n

∏
t

( 1+δt
1−δt

)
θ
2 (k − 1)

∏
t

√
1− δ2

t ≤ (k−1)
n

(∏
t

(1 + δt)
1+θ
2 (1− δt)

1−θ
2

) �

The lemma 1 gives a bound on the empirical margin error. As it was shown in
[19], if θ < δt/2, then (1 + δt)

1+θ
2 (1 − δt)

1−θ
2 < 1. We thus finally claim that the

generalization error decreases with the number of iterations:

Theorem 3. Let θ > 0 be a fixed margin, then the empirical margin error
εθ(fT , S) converges towards 0 with the number of iterations, if the edge of the
weak hypothesis selected at each iteration is > 2θ.
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Theorem 3 and the bound given in theorem 2 together prove that the gener-
alization error of the final hypothesis of Mumbo decreases with the number of
iterations. Indeed, the second term of the bound in theorem 2 is a constant, since
all the parameters, including dH, are constant in a given problem, and theorem 3
proves that the first term of the bound decreases with the number of iterations.

4 Experiments on Mumbo

In order to empirically validate and illustrate this approach of multiview learning
with boosting, we mainly used synthetic data that obey the underlying assump-
tions of Mumbo. After explaining the used protocol, this section presents and
discusses the results of experiments.

4.1 Protocols

Data Generation. Data is generated within 3 views, and clustered in two
classes {−1, +1}. In each view, the descriptions of examples are vectors of real
values. Examples of each class y in view v are generated along a gaussian dis-
tribution G[my,v, σy,v]. However, in order to generate weak views, two types of
noise disrupt the sample:

– in each view, the distributions of classes may overlap: some examples are
likely to belong to both classes3.

– In each view, some examples are generated using a uniform distribution, the
same for both classes. Let η be the rate of such a description noise (ηM is
the noise rate of the major view, while ηm is the noise rate of minor views).

One major view is generated. The two minor views are generated with ηm =
3−2ηM

4 in such a way that half of the noisy examples in view M are likely to
be sane in minor views. Figure 1 pictures an example of a learning sample with
n = |S| = 20 examples per class.

We can associate the disruption amount (distribution overlap and noise on de-
scriptions) with the edge-over-random capabilities of weak-classifiers. The more
disruption we have in a view, the more γv is low on that view. Such a sample
generation process was designed in order to fit the assumptions that lead to the
design of Mumbo: views are rather weak, and learning a classifier on the whole
sample needs a cooperation between learners on each view, because information
may be distributed among views.

Processing Experiments. Each weak classifier on view v is obtained by train-
ing a linear SVM on a subsample of examples randomly drawn from the current
distribution (cost matrix) of v. We check that each weak classifier trained on the
view v complies with the definition of weak classifiers in the theoretical scheme
of [15], using B=U. Results are the mean of 10 experiments: one experiment

3 For these examples x, P (y = +1|x) = P (y = −1|x)).
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Fig. 1. Each example of the learning sample is represented under three views: the major
view is on top, with ηM = 0.38; other views are minor (bottom), with ηm = 0.56. The
ovals picture the parameters of the examples distribution within each class. The same
example is pointed out in each view, in order to illustrate the distribution of information
among views.

is made up of (1) the generation of learning and test samples, (2) the learning
process, and (3) the evaluation process.

As said in the introduction, Mumbo was designed as an alternative way to
fuse classifiers. We thus compare it with two basic methods of fusion, and with
Adaboost: (1) late fusion SVM: one RBF SVM is trained on each view, and the
final decision is a margin-weighted combination of their results; (2) early fusion
SVM: descriptions of each example are concatenated, then a RBF SVM is trained
on the single resulting view; and (3) early fusion Adaboost: descriptions of each
example are concatenated, then Adaboost is trained on the single resulting view,
with a RBF SVM on a subsample of examples as the weak learner.
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Fig. 2. Empirical and test errors of Mumbo (top), and Mumbo vs. Adaboost early
fusion

Classifiers performances are computed using a testing sample drawn from the
same setting that generated the learning sample, but twice bigger.

4.2 Results

We present here two kinds of results: an illustration of the behaviour of Mumbo,
and a comparison of Mumbo with basic fusion approaches.

Illustration of Boosting Properties. Figure 2 reports, on the left, the
boosting-like behaviour of Mumbo. As expected, the empirical costs on each
view decrease with iterations, and the estimation of the generalization error also
decreases. On the right, the figure pictures a first comparison of Mumbo with
Adaboost (in an early fusion setting). We obtained this results with n = |S| = 60
and ηM = 0.12, but the same outlines of behaviours are observed whatever the
parameters are (|S| from 20 to 200, and ηM from 0 to 0.5).
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Table 1. Comparison of Mumbo with early fusion and late fusion (base classifiers RBF
SVM). Note that results of Adaboost are given after 200 iterations (like Mumbo): raw
results show that Adaboost obtains slightly better results after about 50 iterations,
then tends to over-fit.

|S| = 80, ηM 0.5 0.38 0.25 0.12 0

Early+SVM 0.390 0.410 0.437 0.396 0.389

SVM+Late 0.246 0.229 0.263 0.254 0.232

Early+Adaboost 0.415 0.420 0.403 0.364 0.358

Mumbo 0.148 0.152 0.168 0.174 0.164

|S| = 120, ηM 0.5 0.38 0.25 0.12 0

Early+SVM 0.367 0.382 0.396 0.389 0.343

SVM+Late 0.198 0.225 0.240 0.208 0.279

Early+Adaboost 0.425 0.415 0.466 0.411 0.389

Mumbo 0.02 0.036 0.012 0.026 0.020

The bad results of Adaboost are not surprising. Indeed, it processes examples
on only one view that concatenates the smaller views. Since data was generated
such that half of the disrupted examples on the major view are not disrupted in
the minor views, the concatenation of descriptions leads to about 75% of noisy
data. Adaboost is well-known to be sensitive to the noise, so one cannot expect
better results, despite the true convergence of its empirical error.

In addition, which is not reported here, we observed that, whatever ηM is
(always under 0.5), weak classifiers on minor views are selected in some rounds,
in addition to the weak classifiers of the major view which are the most often
selected. First rounds tend to only select the classifiers of the major view, then
the minor views are alternatively selected with the major view. Besides, this
behaviour can be observed on the first rounds on figure 2. It empirically shows
that Mumbo actually encourages views to cooperate.

Comparison with Other Approaches. Table 1 compares Mumbo with basic
early and late fusion approaches, with various values of ηM and various sizes of
S. Late SVM is the best fusion approach with this type of data, which is not
surprising since data is partially noisy (either in description or because distri-
butions overlaps). Yet Mumbo is better for it processes the cooperation among
views, leading each view to focus on the examples disrupted in other views.

However, the learning time of Mumbo is T times longer than the learning time
of Late SVM. The collaboration slightly improves the results when the major
view is disrupted. This is quite obvious with smaller learning samples (when
|S|=15 or 30).

4.3 Discussion

As expected theoretically, the boosting usual behaviour is observed throughout
the experiments, and the results of Mumbo are very good on synthetic data.
These results validate the relevance of the Mumbo algorithm when cooperation
among views is mandatory for obtaining a strong classifier. Results on empirical
and generalization bounds of section 3 are also observed.

In further works, we should test Mumbo on UCI benchmarks. However, these
benchmarks are not designed for multiview learning. We plan to select
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relevant views on these benchmarks (one major and several minor) using PCA or
Canonical Component Analysis tools.

5 Related Works and Discussion

5.1 Related Works

So far, in the supervised setting, there is no multiview machine learning al-
gorithm that considers the representation spaces as complementary. Early and
late fusion-based approaches are only empirical ways to process the whole useful
information available on samples.

The Multiple Kernel Learning (MKL) approaches [21], which may be used to
process multiview samples, is then a costing way to rank the views. But yet,
MKL does not promote the cooperation between views: it is much like a way to
select the strongest views.

The closest approaches to Mumbo are co-training [5] and 2-boost [18]. The
former is a multiview approach in the semi-supervised setting, where views itera-
tively cooperate for producing classifiers that converge to the same final hypoth-
esis. The latter is a multiview boosting algorithm. However, Mumbo is different
from co-training, first because it works in the supervised setting, and second
because it does not assume that the classifiers actually must agree on the same
examples. Indeed, Mumbo exploits the disagreements between views. Mumbo is
thus closer to 2-Boost, although the motivations are not the same. 2-Boost is
designed for dealing with one specific weak learner per view, in order to manage
homogeneous views. Then, 2-Boost maintains only one global distribution of
examples, whereas Mumbo maintains as many distributions as views in order to
process cooperation.

Mumbo is an algorithm that may be categorized as an ensemble of classifiers,
for the final classifier is a combination of other classifiers. In the literature, it was
proved that without diversity between combined classifiers, the resulting classi-
fier can not be better than the best of the combined classifiers. Many measures
of diversity have then been studied so far [22]. We think that the hypothesis
underlying Mumbo promote such a diversity. In that sense, we aim at obtain-
ing some theoretical results between some diversity measures and classification
accuracy of Mumbo.

5.2 Discussion and Improvements

In algorithm 1, the function dz(·) indicates whether the update of the cost matrix
is possible or not. It is a discrete 0 − 1 function, which allows the update of the
cost matrix only when some conditions are met (section 2.3). However, such an
update rule might be too drastic for promoting the collaboration between views.
We think that smoothing it, by changing its range to [0, 1], could improve the
efficiency of the cooperation. Hence, in addition of having one or several views,
each specialized in some parts of the description space, the minor views could
be used more efficiently to increase the accuracy of the final predictions.
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One of the main ideas of Mumbo is to enhance as much collaboration as
possible between the views. We believe that it is possible to achieve a better
cooperation also by changing the decision rule for ht. Indeed, in algorithm 1, ht

is the best classifier among the m chosen classifiers at round t, i.e. the one that
guarantees the best edge on the general cost matrix Gt,m. Many other ways to
choose ht could be studied, namely a combination of a subset of weak classifiers,
or the choice between the weak classifier of the major view and a combination of
the classifiers on minor views, etc. Hence, many alternate selections deserve to
be studied, both theoretically (for example, in the PAC-Bayes framework [23])
and empirically.

The most urging work on Mumbo is its study on benchmark and real data. In
some domains, such as image indexing, the views are quite natural: there exists
dozens of image descriptors, either global or local, that could be considered as
complementary views (texture vs. color, etc.). In many other domains, though,
we must select the views according to the hypothesis underlying Mumbo (one
major still weak view, and many minor views). We wish to adapt statistical tools
for view selection, such as Principal Component Analysis as the simplest one.

6 Conclusion and Future Works

Mumbo is a boosting-like algorithm in the setting of multiview learning, where
views are of different strenghts with regard to a classification task. The idea
underlying Mumbo is to promote the cooperation between stronger and weaker
views. To implement this idea, the originality of Mumbo is to maintain one
distribution of examples per view, and to proceed to distribution updates that
allow some views to focus on examples that are hard to classify in other views.

Mumbo is proved to be a boosting algorithm, within the new theoretical frame-
work of [15]: the empirical error decreases with iterations, globally and within each
view. Then, the generalization error of Mumbo is proved to be bounded. Finally,
the experimental results on dedicated synthetic data give credits to the relevance
of Mumbo for encouraging the cooperation among complementary views.

For now, Mumbo is a first attempt to tackle the problem of unbalanced views
on data, and we expect to improve it both theoretically and through experiments
on benchmarks and real data.
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Abstract. In several application domains, such as sign language, medi-
cine, and sensor networks, events are not necessarily instantaneous but
they can have a time duration. Sequences of interval-based events may
contain useful domain knowledge; thus, searching, indexing, and mining
such sequences is crucial. We introduce two distance measures for com-
paring sequences of interval-based events which can be used for several
data mining tasks such as classification and clustering. The first measure
maps each sequence of interval-based events to a set of vectors that hold
information about all concurrent events. These sets are then compared
using an existing dynamic programming method. The second method,
called Artemis, finds correspondence between intervals by mapping the
two sequences into a bipartite graph. Similarity is inferred by employing
the Hungarian algorithm. In addition, we present a linear-time lower-
bound for Artemis. The performance of both measures is tested on data
from three domains: sign language, medicine, and sensor networks. Ex-
periments show the superiority of Artemis in terms of robustness to high
levels of artificially introduced noise.

Keywords: Event-interval sequence, distance measure, Dynamic Time
Warping, Hungarian algorithm.

1 Introduction

Sequences of temporal intervals exist in many application domains, such as hu-
man motion databases, sign language, human activity monitoring, and medicine.
Their main advantage over traditional sequences, which model series of instan-
taneous events, is that they incorporate the notion of duration in their event
representation scheme. Due to this, they are used in a broad range of fields such
as geo-informatics [29], cognitive science [4], linguistic analysis [5], music [24],
and medicine [12]. Essentially, a sequence of event-intervals corresponds to a
collection of labelled events accompanied by their start and end time values.
We will call such sequence, event-interval sequence, and each labelled interval,
event-interval. An example of such sequence—containing five event-intervals—is
shown in Figure 1.

So far, most studies on event-interval sequences have been focusing on the
aspect of knowledge discovery, such as mining patterns and association rules
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Fig. 1. An example of a sequence of interval-based events. This repre-
sentation corresponds to the following sequence of event-intervals: S =
{(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

that might be of interest to domain experts [2,11]. Surprisingly, very limited
attention has been given on assessing the similarity of event-interval sequences
[13]. Robust similarity measures for comparing such sequences would enable
the utilization of existing clustering and classification methods, introduce new
index structures for similarity search in event-interval sequence repositories, and
would facilitate the implementation of recommendation systems and assistive
applications.

Fig. 2. Two different sequences of interval-based events where the mapping to a se-
quence of instantaneous events produces the same representation for both

Existing similarity measures on symbolic sequences or time series are not di-
rectly applicable to event-interval sequences [13]. One could, for example, convert
a sequence of event-intervals to a sequence of instantaneous events by only con-
sidering the start and end points of each event interval, and associating each of
the two points with the same event label. This would result in a simplification of
the representation of these sequences as they would be mapped to traditional se-
quences of instantaneous events. Thus, the solution to the problem would reduce
to applying an existing distance/similarity measure for sequence matching, such
as edit distance [16]. Nonetheless, this solution suffers from several shortcom-
ings. Firstly, the size of the sequences and the alphabet (i.e., set of all possible
event labels) would double since each event-interval label would be mapped to
two instantaneous event labels. Secondly, crucial information about the pair-
wise temporal relations between the event-intervals in the sequence will be lost.
Consider the example shown in Figure 2, where each sequences consists of two
event-intervals with the same label. Obviously, the mapping for both sequences
is the same, i.e., {Astart, Astart, Aend, Aend}. The relation between the two event
intervals, however, is different. Hence, we can deduce that in order to provide a
robust similarity measure for such sequences, their representation should include
additional information about the relations between the event-intervals.
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Our Contributions. In this paper, we formulate the problem of comparing
sequences of event-intervals and show that solving the problem by directly map-
ping it to string matching fails to capture temporal dependencies between the
interval-based events. In addition, we propose two distance measures to solve
this problem: the first one maps the event-interval sequence to a sequence of
vectors that can also be seen as a multi-dimensional time series. The second one
attempts to identify correspondence between intervals of the two event-interval
sequences, by taking into account the temporal relations that may occur between
the events, and then employing minimum-weight bipartite matching to infer a
similarity score for the sequences. Moreover, we propose a lower bound for the
second method that can achieve significant speed-ups during similarity search.
Finally, we present an extensive experimental evaluation on real datasets from
three different domains. The methods are benchmarked with respect to their
robustness to noise, nearest neighbor classification accuracy, and scalability. In
addition, we study the pruning power and tightness of the proposed lower bound.

2 Event-Interval Sequences

Sequences of interval-based events can be represented in many ways. In this
paper, we use the e-sequence [26,27] representation, which explicitly considers
the start and end time stamps of each event.

Definition 1. (E-Sequence) Given an alphabet σ of event labels, an event-
interval sequence or e-sequence S={S1, . . . , Sn} is an ordered set of events oc-
curring over time intervals. Each Si = (E, tstart, tend) is called event-interval,
where Si.E ∈ σ, and Si.tstart, Si.tend denote the start and end time of Si.E,
respectively. Note that, we use Si.X to denote element X of Si.

Note that an event-interval corresponds to an event that occurs over a time
interval. The temporal order of the event-intervals in an e-sequence is ascending
based on their start time and in the case of ties it is descending based on their
end time. If ties still exist, alphabetical ordering is applied based on labels. An
example of an e-sequence is shown in Figure 1, and it corresponds to:

S = {(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.
For simplicity, in this paper, we are only interested in the types of temporal
relations between event-intervals in an e-sequence, and not in the actual duration
of each event-interval. Let I = {r1, . . . , r|I|} be the set of all legal temporal
relations that can exist between any pair of event-intervals. Based on Allen’s
model for interval temporal logic [3], we define I by considering seven types of
relations between two event-intervals: meet, match, overlap, contain, left-contain,
right-contain, follow. These relations are shown in Figure 3 and are described in
detail by Papapetrou et al. [27]. Hence, I = {meet, match, overlap, contain, left-
contain, right-contain, follow}.

According to our formulation the same event label can occur many times
within an e-sequence. Effectively, this allows two event-intervals of the same
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Fig. 3. The seven temporal relations between two event-intervals that are considered
in this paper

label to overlap, which is a perfectly acceptable scenario, for example, in the
case of nested for-loops in programming languages.

Using the above definitions, the problem studied in this paper can be formu-
lated as follows:

Problem 1. (E-sequence Distance) Given two e-sequences S and T , define a
distance measure D, such that ∀S, T it holds: D(S, T ) ≥ 0, D(S,S) = 0, and
D(S, T ) = D(T ,S) .

The degree to which S and T differ should be reflected in the value of D(S, T )
and should be in accordance with the knowledge obtained from domain experts.

3 Distance Measures

In this section, we define two distance measures for comparing e-sequences and
propose a lower bound for the second measure.

3.1 The Vector-Based DTW Distance

The first method employs a vector-based representation of e-sequences. For each
e-sequence, a set of vectors is defined, where each vector indicates which and how
many event-interval labels are active at specific time points in the e-sequence.
The selected time points are all the instances in which an event-interval begins
or ends.

Definition 2. (Event Vector) Given an e-sequence S defined over an alphabet
σ, an event vector V t = (V t

1 , . . . , V t
|σ|) consists of integer values, where each V t

i

records the number of occurrences of event Ei at time stamp t in S.

Hence, an e-sequence S can be mapped to an ordered set of event vectors VS =
{V t0 , V t1 , . . . , V tm}. The set of time stamps {t1, . . . , tm} includes all time points
in S where the “status” of at least one event-interval changes, i.e., an event-
interval starts or ends. V t0 is the null vector which denotes the initial condition
at t0 where no event takes place.
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Example. Consider the e-sequence S shown in Figure 1. Given that |σ| = 4, the
size of each event vector for S is also 4. The set of event vectors of S is defined
as follows: VS = {(0, 0, 0, 0),(1, 0, 0, 0),(1, 1, 0, 0),(0, 1, 0, 0),(0, 0, 0, 0),(0, 0, 1, 0),
(1, 0, 1, 0),(1, 0, 1, 1),(0, 0, 1, 1),(0, 0, 0, 0)}.

Given two e-sequences S and T , their vectors can also be seen as |σ|-dimension
al time series; thus, their distance can be computed using Dynamic Time Warp-
ing (DTW) [14]. Vectors are compared using the L1 norm.

Despite the simplicity of this method, it only takes into account the temporal
ordering of the event-intervals but does not explicitly consider any temporal
relations. This may cause ambiguities in the representation by mapping two
different e-sequences to the same set of event vectors.
Complexity. The sets of event vectors VS and VT can be computed in linear
time. The time complexity of this DTW computation is O(|VS ||VT ||σ|). Signifi-
cant speedups in multidimensional time series similarity search under DTW can
be achieved using existing lower bounding techniques [31].

3.2 Artemis: A Bipartite-Based Matching Distance

The second method, called Artemisis based on determining correspondence be-
tween pairs of event-intervals to infer the overall similarity of e-sequences. Given
two e-sequences, correspondence is determined by the fraction of common re-
lations between event-intervals in the e-sequences. The overall similarity score
is derived from the sum of pairwise scores using the Hungarian algorithm (also
known as Kuhn-Munkres algorithm) [23]. Artemis consists of two main steps:
(a) the mapping step and (b) the matching step.

The Mapping Step. The first step of Artemis is to map each e-sequence S
to an ordered set of temporal relations between event-intervals. Given the set of
legal temporal relations between event-intervals I and two event-intervals Si and
Sj , r(Si, Sj) is the event-interval relation between Si and Sj , with r(Si, Sj) ∈ I.

More specifically, for each event-interval Si ∈ S we record the set of relations
of Si with Sj ∈ S, ∀j �= i. Three sets of relations are computed:

– rL(Si) = {r(Sj , Si)|1 ≤ j < i}: which contains the temporal relations of Si

with all event-intervals located on the left side of Si in S,
– rR(Si) = {r(Si, Sj)|i < j ≤ |S|}: which contains the temporal relations of

Si with all event-intervals located on the right side of Si in S, and
– r∅(Si) = {r(∅, Si)}: which is a singleton with a follow relation between

∅—an extra symbol such that ∅ /∈ σ—and Si.

In addition, let r∅L(Si) = r∅(Si)∪ rL(Si). Note that symbol ∅ is introduced so
that event labels are also taken into account: e-sequences that differ in event-
interval relations but share similar event labels are assigned with smaller dis-
tance values than e-sequences that differ in both event labels and event-interval
relations.

The Matching Step. Given two e-sequences S and T , the matching step of
Artemis computes a distance value for each pair of event-intervals Si ∈ S and
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Tj ∈ T . The key idea behind this computation is to count the number of common
relations between r∅L(Si) and r∅L(Tj)—the relations of Si and Tj with all
event-intervals located on their left side, including ∅—and the common relations
between rR(Si) and rR(Tj)—the corresponding relations on their right side.

More formally, the event-interval distance, denoted as dm, between two event-
intervals Si ∈ S and Tj ∈ T is defined as follows:

dm(Si, Tj)=

⎧⎨⎩
max{|S|, |T |} − |r∅L(Si) ∩ r∅L(Tj)| − |rR(Si) ∩ rR(Tj)|

max{|S|, |T |} , if Si.E =Tj.E

1 , if Si.E �=Tj.E

Let DS,T be an |S|× |T | matrix, with D(i, j) = dm(Si, Tj), Si ∈ S and Tj ∈ T .
We call DS,T the event-interval distance matrix of S and T . Problem 1 reduces
to the following optimization problem:

Problem 2. (The Assignment Problem) Given S, T , and DS,T , assign each
event-interval in S to exactly one event-interval in T so that the total assignment
cost is minimized.

Problem 2 can be solved by the Hungarian algorithm. Let the output of the
algorithm be the following set H(S, T ) = {h(S1), . . . , h(S|S|} with an assignment
cost C(S, T ). Each h(Si) ∈ H(S, T ) denotes the event-interval in T that Si ∈
S is matched to by the Hungarian algorithm. The assignment cost C(S, T )
corresponds to the distance—called Artemis Distance—between S and T .

Definition 3. (Artemis Distance) Given S, T , DS,T , and H(S, T ), the
Artemis distance of S and T is defined as follows:

Artemis(S, T ) =
max{|S|,|T |}∑

i=1

D(Si, h(Si)), Si ∈ S, h(Si) ∈ H(S, T ). (1)

To handle the case of e-sequences of different size, “dummy” event-intervals are
added with distance 1 from all other event-intervals.

Fig. 4. Two e-sequences S and T used as an example for Artemis

Example. Figure 4 shows two e-sequences S and T . At the mapping step, for
each event-interval Si ∈ S we compute r∅L(A) = {follow(∅, A)}, rR(A) =
{overlap(A, B), follow(A, C)}, r∅L(B) = {follow(∅, B), overlap(A, B)}, rR(B)
= {overlap(B, C)}, and r∅L(C) = {follow(∅, C), follow(A, C), overlap(B, C)}.
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For T , we compute r∅L(A) = {follow(∅, A)}, rR(A) = {follow(A, B), follow(A,
D)}, r∅L(B) = {follow(∅, B), follow(A, B)}, rR(B) = {overlap(B, D)}, and
r∅L(D) = {follow(∅, D), follow(A, D), overlap(B, D)}. At the matching step,
the Hungarian algorithm gives H(S, T ) = {A, B, D}. Finally, Artemis(S, T ) =
(2/3 + 2/3 + 1) = 7/3.

Complexity. Let m = max(|S|, |T |). Then, at the mapping step, O(m2) rela-
tions are enumerated, while the complexity of computing D(S, T ) using hash-
tables is O(m3). The cost of applying the cubic Hungarian algorithm to the two
event-interval relation sets results to a total time complexity of O(m3). A lower
bound for speeding up the computation of Artemis is described next.

3.3 Lower Bounding Artemis

The proposed lower bound can be computed in linear time and is based on the
comparison of event label counts. By knowing the number of labels in which two
e-sequences differ, we can determine a lower bound for their Artemis distance.

Given an e-sequences S, we define an |σ|-dimensional vector vS , that stores,
for each event label in σ, the count of event-intervals in S that share that label.

Theorem 1. Given S and T , the lower bound of Artemis(S, T ) is defined as

ArtemisLB(S, T ) =
k

2
+
(

m − k

2

)(
k

2m

)
= k − k2

4m
, (2)

where k = ||vS − vT ||1 and m = max(|S|, |T |).
Proof. Knowing that ||vP − vQ||1 = k we can be sure that the distance is at
least k/2; those k event-intervals are matched with each other giving a score of
1 for each of the k/2 pairs. If k/2 is equal to the length of the e-sequences, then
it is also their distance. However, if the differences refer to only a subset of all
event-intervals, then these differences are reflected in the matching scores of the
rest of the event-intervals. So, given that m = max(|S|, |T |) and m > k

2 , the rest
of the m − k/2 event-intervals would have at least k/2 non-common relations.
Thus, yielding an additional distance of (m − k/2) · (k/2m).

The proposed lower bound focuses on label counts and not on relations of event-
intervals. When the differences of two e-sequences are restricted to event-interval
labels, the lower bound is equal to the distance obtained by Artemis. On the
other hand, when the e-sequences share the same event labels and differ only in
the type of event-interval relations, then the lower bound yields zero score. The
tightness and pruning power of the lower bound is studied on three datasets in
Section 4.

4 Experiments

The performance of the proposed methods has been benchmarked on three
real datasets. We studied their robustness to noise, classification accuracy, and
scalability.
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4.1 Experimental Setup

The proposed methods have been benchmarked on three real datasets (Table 1):

– Hepatitis[28]. The dataset contains information about 498 patients who
have either Hepatitis B or Hepatitis C. The intervals represent the results of
25 regular tests.

– ASL[27]. The dataset contains 873 transcriptions from videos of American
Sign Language expressions provided by Boston University. Each e-sequence
in the dataset is one utterance expressed using American Sign Language.

– Pioneer [22]. This dataset was constructed from the Pioneer-1 dataset avail-
able in the UCI repository1. It contains time series sensor readings of the
Pioneer-1 mobile robot. The data is segmented into event-intervals in which
the robot takes action for some period of time.

The proposed methods were evaluated with respect to robustness against two
types of artificial noise, k-NN classification accuracy, and scalability. In addition,
the efficiency of the lower bound was tested by computing its tightness and its
pruning power against 1-NN queries.

Table 1. Dataset Statistics

Dataset # of # of e-sequence size # of # of
e-sequences intervals min. max. average labels classes

ASL 873 15675 4 41 18 216 5
Hepatitis 498 53921 15 592 108 147 2
Pioneer 160 8949 36 89 56 92 3

Robustness. The robustness of the proposed methods was tested on two types
of artificial noise: shifts and swaps. In the first case, each interval within an e-
sequence is shifted, with a certain shift probability value p, by an offset back or
forth in time. Given a distortion level d as a percentage of the length of the whole
sequence, a random value under the uniform distribution is chosen in that integer
interval to determine the offset. An event-interval has equal probability to be
shifted either back or forth in time, while interval durations remain unaffected.
This type of artificial noise attempts to simulate noisy sources or recording
devices. Real-world cases for this could include humans who learn sign language
or who rehabilitate from brain injuries. Both p and d were set between 0.2 and
1, with step 0.2.

One drawback of employing such artificial noise is that shifting intervals could
result to semantic invalidity, e.g., “robot walks forward” overlaps with “robot
walks backwards”. To avoid such cases, we further experiment with artificial
noise which is based on swaps of event-interval labels, while the durations and
relations of the event-intervals remain unaffected. Given an event-interval, the
1 http://archive.ics.uci.edu/ml/
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swap probability parameter determines if its label is swapped with the label of
another event-interval which is chosen uniformly at random from the whole e-
sequence. The swap probability parameter values ranged between 0.2 and 1 with
step 0.2. Note that, noise is added off-line and that both methods were tested
on exactly the same distorted sequences; to rule out score differences caused by
the randomness factor.

Using the above two techniques, noise is inserted into e-sequences which then
serve as the queries for 1-NN search. Given a database of e-sequences, a copy
of an e-sequence is distorted, based on the parameter values, and then its near-
est neighbor is found by scanning the database. This is performed for each e-
sequence in the database. Ideally, we would like each noisy e-sequence (query)
to be matched to the e-sequence from which it originated. We compared the
DTW vector-based measure and Artemis in terms of: retrieval accuracy (the
fraction of noisy queries for which the originating e-sequence is retrieved) and
rank of nearest neighbor (for each query, the number of database e-sequences
with distance less than or equal to that of the originating counterpart).

Classification. For the k-NN classification experiments, we studied the effi-
ciency of the proposed methods under 1-NN and 3-NN classifiers. Due to the
fact that the e-sequences in the ASL dataset can belong to up to 5 classes (wh-
question, etc) simultaneously, and some elements do not have any label (simple
affirmative phrases), we had to modify the algorithm. The ASL classifier returns
a score in [0, 1] denoting the average ratio of common class-labels with its k
nearest neighbors. For example, a phrase with labels {a} and neighbors with
label sets {a}, {a, b}, and ∅ respectively, would yield (1 + 0.5 + 0)/3. For the
ASL dataset, the result is the average sum.

We designed an additional experiment specifically for the ASL dataset. There
exist in total 288 interval sequences in the dataset which portray exactly the same
phrase in English with one or more other sequences. We studied what ratio of
the 288 equivalent sequences was retrieved by examining the k nearest neighbors
of every sample, for all possible values of k. Two values were monitored: the first
corresponds to the ratio of the 288 sequences for which an identical phrase can
be detected within their k nearest neighbors; the second is the ratio of the total
sum of identical phrases detected within the k-nearest neighbors over the total
number of pairs of identical labels. The two values would be the same if any
phrase in English were to be represented only by at most two e-sequences in
the dataset. This experiment was designed to investigate the suitability of the
methods in the field of sign language and relevant application domains.

Scalability. In the attempt to evaluate the scalability of the proposed algo-
rithms, we embedded time-monitoring functions in our implementations. For
each e-sequence, we counted the time needed to map the e-sequence to the ap-
propriate representation (set of event vectors for DTW and event-interval rela-
tion set for Artemis) and then to compare it against the whole database. The
dataset, serving as the database, had already been transformed to the appropri-
ate form. For the case of Artemis, we did not implement the use of hash-tables,
thus the complexity is O(n4) w.r.t. the size of the e-sequences. Our experiments
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were implemented in Java and were performed on a PC running Ubuntu Linux,
equipped with Intel Core 2 Duo 2GHz CPU and 4GB RAM.

Lower Bounding. To assess the quality of the lower bound, we computed its
pruning power for 1-NN queries in the database and its tightness. The prun-
ing power is defined as the ratio of the number of pruned e-sequences, using
ArtemisLB, over the total number of comparisons that would have been re-
quired if the database were to be scanned sequentially. The tightness is defined
as the average ratio of the lower bound distance over the distance given by
Artemis.

4.2 Results

Robustness. Testing the two measures for robustness against noise, Artemis
was a clear winner for both types of noise insertion. The DTW vector-based
approach displayed a significant decline in performance with the increase in the
value of the probability and distortion level parameters. Artemis was able to
maintain a very high rate of finding the noisy queries’ originating counterparts.
For almost all the datasets and experiments its retrieval accuracy was over 98%.
These observations are shown in Figure 6, for the case of shifts, and in Figure 5,
for the case of swaps. Artemis displayed a decline in performance only for Pioneer
and the case of swaps. Note that in Figure 6 we do not show the performance of
Artemis for Pioneer with respect to retrieval accuracy vs. the noise parameters
since it always gave a retrieval accuracy of 100%.

Classification. In Table 2 we see the results of the k-NN classification exper-
iment. For the Hepatitis and ASL, the DTW vector-based approach performs
marginally better, while for Pioneer Artemis is superior. Figure 7 depicts the
results of the additional classification experiment conducted on ASL, in which
the k nearest neighbors of each e-sequence are scanned to determine if they
correspond to the same phrase in English. Figure 7a shows the ratio (of the e-
sequences which do have equivalents) for which at least one identical phrase can
be found within the k nearest neighbors. Figure 7b shows the ratio of the total
sum of existing identical phrases that have been found. For both cases, Artemis
gives a better grouping of semantically related e-sequences. Furthermore, empir-
ical results showed that the groupings provided by Artemis are more meaningful
for humans. Thus, Artemis proves more suitable for applications related to sign
language.

Table 2. k-NN classification results, for k = 1, 3

Dataset Artemis 1-NN Artemis 3-NN DTW 1-NN DTW 3-NN
HepData 0.7209 0.7811 0.7403 0.8072
Pioneer 0.9750 0.9750 0.9375 0.9375

ASL 0.4307 0.4013 0.4358 0.4188
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Fig. 5. Robustness experiment when noise is added in the form of swaps

Lower Bounding. Table 3 summarizes the assessment of ArtemisLB. The
second column shows the tightness of the lower bound while the third shows
the pruning power. The higher values are observed on ASL, contrary to Pio-
neer which yields the lowest scores. The latter consists of unequally represented
classes; one of the three classes contains 102 out of 160 samples in total. Thus,
its e-sequences are highly homogeneous and thereby render the lower bound
technique unable to prune many of them.

Table 3. Tightness and pruning power of ArtemisLB for the 1-NN classification
experiment and for the three datasets

Dataset Tightness 1-NN pruning power
ASL 0.8837 0.7931

Hepatitis 0.7166 0.7012
Pioneer 0.6189 0.4855

Scalability. The results of the scalability experiment can be seen in Figure 8.
For Pioneer we observe that Artemis is slower than the DTW vector-based ap-
proach, as the complexity analysis of Section 3 would suggest. The runtime of
Artemis blows up in the case of Hepatitis. For e-sequences of large size, Artemis’
O(n4) complexity (without the use of hash-tables) significantly affects its per-
formance. On the other hand, we observe that for ASL Artemis is faster than
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Fig. 6. Robustness experiment when noise is added in the form of shifts

DTW. The reason for that is the large alphabet size, |σ|. A way to overcome
this would be to prune the alphabet during the comparisons and keep only the
union of the labels present in the compared e-sequences S, T . The alphabet
size would then be at most (|VS | + |VT |), and the new complexity of DTW
O(|VS ||VT | · (|VS | + |VT |)).

4.3 Lessons Learned

There was no clear winner, between the two proposed methods, in our k-NN
classification experiments. The insight we acquired suggests that the choice
must be application dependant. The additional experiment on ASL supports
the thesis that, if semantic information resides in the relations between inter-
vals, Artemis has an advantage over the DTW approach. This is further sup-
ported by the results of the noise-robustness experiments. In particular, the
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Fig. 8. Histograms of the time (in milliseconds) required to compare each element
against the whole dataset

DTW vector-based approach displayed a deterioration in performance in ac-
cordance with the increase of noise. Artemis proved highly robust against the
types of noise that we experimented with. The advantage of Artemis is that
a correspondence amongst event-intervals is determined based on the relations
of the event-intervals within the e-sequences; contrary to the DTW approach
which examines the e-sequences point-by-point and out of their context. The
correspondence among event-intervals allows Artemis to easily identify the orig-
inating counterpart of noisy e-sequences; e-sequences with the same count of
each event label yield in the majority of cases lower distance scores than others
with different event labels and size.

The scalability experiments showed that DTW outperforms Artemis, which
suffers from a computational blow up for large e-sequences. On the other hand,
DTW becomes slower when the alphabet size is significantly larger than the
size of the e-sequences. To speed up search using Artemis, our lower bound
technique proved significantly tight; the average tightness was measured at 61.8%
for Pioneer, and up to 88% for ASL. This translates to a pruning power of 48.5%
to 79.3% over the brute force sequential scan of the database.

5 Related Work

Existing work on interval-based sequences has so far been focusing merely on
frequent pattern and association rule mining.
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Several approaches [17,30] consider discovering frequent intervals in databases,
where intervals appear sequentially and are not labelled, while others [7] con-
sider temporally annotated sequential patterns where transitions from one event
to another have a time duration. A graph-based approach [10] represents each
temporal pattern by a graph considering only two types of relations between
events (follow and overlap). An approach for mining sequences of interval-based
events in a database is discussed in Fu et al. [11], however it is limited to certain
forms of patterns.

A generalized interval-based framework [15] improves support counting tech-
niques for mining interval-based episodes; nonetheless, no temporal relations
are considered between events. Apriori-based techniques [8,9,19,6,1] for finding
temporal patterns and association rules on interval-based event sequences have
been proposed, some [9] also applying interestingness measures to evaluate the
significance of the findings.

BFS-based and DFS-based approaches [25,26,27,32] apply efficient pruning
techniques, thus reducing the inherent exponential complexity of the mining
problem, while a non-ambiguous event-interval representation is defined [33] that
considers start and end points of e-sequences and converts them to a sequential
representation. Finally, there has been some recent work on mining semi-partial
orders of time intervals [22].

Moreover, in Ale et. al [2], the lifetime of an item is defined as the time between
the first and the last occurrence and the temporal support is calculated with
respect to this interval. Finally, Lu et. al [18] study inter-transaction association
rules by merging all itemsets within a sliding time window inside a transaction.

Recent work on margin-closed patterns [21,22], focuses on significantly reduc-
ing the number of reported patterns by favouring longer patterns and suppressing
shorter patterns with similar frequencies. The extracted set of margin-closed pat-
terns may include a significantly smaller set of patterns compared to the set of
closed patterns while retaining the most important information about the data.
A unifying view of temporal concepts and data models has been formulated [20]
to enable categorization of existing approaches for unsupervised pattern min-
ing from symbolic temporal data; Time point-based methods and interval-based
methods as well as univariate and multivariate methods are considered.

6 Summary and Conclusions

We have defined the problem of comparing sequences of interval-based events
and presented two polynomial-time algorithms. The first reduces the problem
to matching vectors, while the second, Artemis, is based on determining corre-
spondence among intervals and maps the problem to the assignment problem.
The two measures were tested for their robustness against two types of artifi-
cial noise, their k-NN classification power, and, finally, their scalability. Artemis
demonstrates a remarkable robustness against noise, while there exist cases for
both measures in which they perform faster than the other. Additionally, we
developed a linear-time lower-bounding technique for Artemis, which we tested
in terms of tightness and pruning power.
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Directions for future work include studying the applicability of the proposed
methods to other application domains and real-world scenarios. Furthermore,
we plan on investigating alternative problems to assess the similarity of event-
interval sequences, such as the Maximum Common Subsequence and the Max-
imum Contiguous Subsequence. Devising algorithms for these problems would
allow the direct application of event-interval sequences to domains such as
anomaly detection, profiling of executable files, network monitoring, and many
others.
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8. Höppner, F.: Discovery of temporal patterns. In: Siebes, A., De Raedt, L. (eds.)
PKDD 2001. LNCS (LNAI), vol. 2168, pp. 192–203. Springer, Heidelberg (2001)
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Abstract. If several friends of Smith have committed petty thefts, what
would you say about Smith? Most people would not be surprised if
Smith is a hardened criminal. Guilt-by-association methods combine
weak signals to derive stronger ones, and have been extensively used for
anomaly detection and classification in numerous settings (e.g., account-
ing fraud, cyber-security, calling-card fraud).

The focus of this paper is to compare and contrast several very suc-
cessful, guilt-by-association methods: Random Walk with Restarts, Semi-
Supervised Learning, and Belief Propagation (BP).

Our main contributions are two-fold: (a) theoretically, we prove that
all the methods result in a similar matrix inversion problem; (b) for prac-
tical applications, we developed FaBP, a fast algorithm that yields 2×
speedup, equal or higher accuracy than BP, and is guaranteed to con-
verge. We demonstrate these benefits using synthetic and real datasets,
including YahooWeb, one of the largest graphs ever studied with BP.

Keywords: Belief Propagation, Random Walk with Restart, Semi-
Supervised Learning, probabilistic graphical models, inference.

1 Introduction

Network effects are very powerful, resulting even in popular proverbs like “birds
of a feather flock together”. In social networks, obese people tend to have obese
friends [5], happy people tend to make their friends happy too [7], and in gen-
eral, people usually associate with like-minded friends with respect to politics,
hobbies, religion etc. Thus, knowing the types of a few nodes in a network, (say,
“honest” vs “dishonest”), we would have good chances to guess the types of the
rest of the nodes.

Informally, the guilt-by-association problem (or label propagation in graphs)
is defined as follows:
Given: a graph with N nodes and M edges; n+ and n− nodes labeled as mem-

bers of the positive and negative class respectively.
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Find: the class memberships of the rest of the nodes, assuming that neighbors
influence each other.

The influence can be “homophily”, meaning that nearby nodes have similar la-
bels, or “heterophily”, meaning the reverse (e.g., talkative people tend to prefer
silent friends, and vice-versa). Homophily appears in numerous settings, for ex-
ample: (a) Personalized PageRank: if a user likes some pages, she would probably
like other pages that are heavily connected to her favorites. (b) Recommenda-
tion systems: if a user likes some products (i.e., members of positive class), which
other products should get positive scores? (c) Accounting and calling-card fraud :
if a user is dishonest, his/her contacts are probably dishonest too.

There are several, closely related methods that address the homophily prob-
lem, and some - among which is our proposed FaBP method, improved on Belief
Propagation - that address both homophily and heterophily. We focus on three of
them: Personalized PageRank (or “Personalized Random Walk with Restarts”,
or just RWR), Semi-Supervised Learning (SSL), and Belief Propagation (BP).
How are these methods related? Are they identical? If not, which method gives
the best accuracy? Which method has the best scalability?

These questions are exactly the focus of this work. In a nutshell, we contribute
by answering the above questions, and providing a fast algorithm inspired by our
theoretical analysis:

• Theory & Correspondences: the three methods are closely related, but not
identical.

• Algorithm & Convergence: we propose FaBP, a fast, accurate and scalable
algorithm, and provide the conditions under which it converges.

• Implementation & Experiments: finally, we propose a Hadoop-based algo-
rithm, that scales to billion-node graphs, and we report experiments on one
of the largest graphs ever studied in the open literature. Our FaBP method
achieves about 2× better runtime.

2 Related Work

RWR, SSL and BP are very popular techniques, with numerous papers using or
improving them. Here, we survey the related work for each method.

RWR is the method underlying Google’s classic PageRank algorithm [2].
RWR’s many variations include Personalized PageRank [10], lazy random walks
[20], and more[24, 21]. Related methods for node-to-node distance (but not nec-
essarily guilt-by-association) include Pegasus [15], parameterized by escape prob-
ability and round-trip probability.

According to conventional categorization, SSL approaches are classified into
four categories [28]: low-density separation methods, graph-based methods, meth-
ods for changing the representation, and co-training methods. The principle
behind SSL is that unlabeled data can help us decide the “metric” between
data points and improve the models’ performance. A very recent use of SSL for
multi-class settings has been proposed in [12]. In this work, we mainly study the
graph-based SSL methods.
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BP [23], being an efficient inference algorithm on probabilistic graphical mod-
els, has been successfully applied to numerous domains, including error-correcting
codes [16], stereo imaging in computer vision [6], fraud detection [19, 22], and
malware detection[3]. Extensions of BP include Generalized Belief Propagation
(GBP), that takes a multi-resolution view point, grouping nodes into regions [27];
however, how to construct good regions is still an open research problem. Thus,
we focus on standard BP, which is better understood. Here, we study how the
parameter choices for BP helps accelerate the algorithms, and how to implement
the method on top of Hadoop [1] (open-source MapReduce implementation).
This focus differentiates our work from existing research which speeds up BP by
exploiting the graph structure [4, 22] or the order of message propagation [9].

Summary: None of the above papers show the relationships between the three
methods, or discuss the parameter choices (e.g., homophily factor). Table 1 quali-
tatively compares the methods. BP supports heterophily, but there is no guaran-
tee on convergence. Our FaBP algorithm improves on it to provide convergence.

Table 1. Qualitative comparison of ‘guilt-by-association’ (GbA) methods

GbA Method Heterophily Scalability Convergence
RWR No Yes Yes
SSL No Yes Yes
BP Yes Yes ?
FaBP Yes Yes Yes

3 Theorems and Correspondences

In this section we present the three main formulas that show the similarity of
the following methods: binary BP and specifically our proposed approximation,
the linearized BP (FaBP), Gaussian BP (GaussianBP), Personalized RWR
(RWR), and Semi-Supervised learning (SSL).

For the homophily case, all the above methods are similar in spirit, and
closely related to diffusion processes: the n+ nodes that belong to class “+” (say,
“green”), act as if they taint their neighbors (diffusion) with green color, and
similarly do the negative nodes with, say, red color. Depending on the strength
of homophily, or equivalently the speed of diffusion of the color, eventually we
have green-ish neighborhoods, red-ish neighborhoods, and bridge-nodes (half-
red, half-green).

The solution vectors for each method obey very similar equations: they all
involve a matrix inversion, where the matrix consists of a diagonal matrix and a
weighted or normalized version of the adjacency matrix. Table 2 has the defini-
tions of the symbols that are used in the following discussion, and Table 3 shows
the resulting equations, carefully aligned to highlight the correspondences.
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Table 2. Major Symbols and Definitions. (matrices in bold capital, vectors in bold
lowercase, and scalars in plain font).

Symbols Definitions Explanations
n number of nodes in the graph
A n × n symmetric adjacency matrix
D n × n diagonal matrix of degrees Dii =

∑
j Aij and Dij = 0 for i �= j

I n × n identity matrix
“about-half” final beliefs b = n × 1 vector of the BP final beliefs

b − 0.5 b(i){> 0.5, < 0.5} means i ∈ {“+”, “-”} classbh

b(i) = 0 means i is unclassified (neutral)
φh “about-half” prior beliefs, φ − 0.5 φ = n × 1 vector of the BP prior beliefs

“about-half” homophily factor h = ψ(“+”,“+”): BP propagation matrix entry
h − 0.5 h → 0 means strong heterophilyhh

h → 1 means strong homophily

Table 3. Main results, to illustrate correspondence: n × n matrices in bold capital,
n× 1 vectors in bold lowercase, and scalars in plain font

Method matrix unknown known
RWR [I − cAD−1]× x = (1 − c) y
SSL [I + α(D − A)]× x = y
Gaussian BP = SSL [I + α(D − A)]× x = y
FaBP [I + aD − c′A]× bh = φh

Theorem 1 (FaBP). The solution to Belief Propagation can be approximated
by the linear system

[I + aD − c′A]bh = φh (1)

where a = 4h2
h/(1 − 4h2

h), and c′ = 2hh/(1 − 4h2
h). The definitions of hh, φh

and bh are given in Table 2. Specifically, φh corresponds to the prior beliefs of
the nodes, and node i, about which we have no information, has φh(i) = 0; bh

corresponds to the vector of our final beliefs for each node.

Proof. The goal behind the “about-half” is the linearization of BP using Maclau-
rin expansions. The preliminary analysis of FaBP, and the necessary lemmas
for the linearization of the original BP equations are given in Appendix A. For
the detailed proof of this theorem see Appendix B.

Lemma 1 (Personalized RWR). The linear system for RWR given an observa-
tion y, is described by the following equation:

[I − cAD−1]x = (1 − c)y (2)

where 1− c is the restart probability, c ∈ [0, 1]. Similarly to the BP case above, y
corresponds to the prior beliefs for each node, with the small difference that yi = 0
means that we know nothing about node i, while a positive score yi > 0 means
that the node belongs to the positive class (with the corresponding strength).

Proof. See [11], [24].
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Lemma 2 (SSL and Gaussian BP). Suppose we are given l labeled nodes (xi, yi),
i = 1, . . . , l, yi ∈ {0, 1}, and u unlabeled nodes (xl+1, ..., xl+u). The solution to
a Gaussian BP and SSL problem is given by the linear system:

[α(D − A) + I]x = y (3)

where α is related to the coupling strength (homophily) of neighboring nodes, y
represents the labels of the labeled nodes and, thus, it is related to the prior beliefs
in BP, and x corresponds to the labels of all the nodes or equivalently the final
beliefs in BP.

Proof. See Appendix B and [25], [28].

Lemma 3 (RWR-SSL correspondence). On a regular graph (i.e., all nodes have
the same degree d), RWR and SSL can produce identical results if

α =
c

(1 − c)d
. (4)

That is, we need to align carefully the homophily strengths α and c.

Proof. See Appendix B.

In an arbitrary graph the degrees are different, but we can still make the two
methods give the same results if each node has a different αi instead of α.
Specifically, for node i with degree di, the quantity αi should be c

(1−c)di
. The

following section illustrates the correspondence between RWR and SSL.

3.1 Arithmetic Examples

Here we illustrate that SSL and RWR result in closely related solutions. We
study both the case with variable αi for each node i, and the case with fixed
α = c/((1 − c)d̄), where d̄ is the average degree.

We generated a random graph using the Erdős-Rényi model, G(n, p) =
G(100, 0.3). Figure 1 shows the scatter-plot: each node i has a corresponding
blue circle (x1i, y1i) for variable αi, and also a red star (x2i, y2i) for fixed
α. The coordinates of the points are the RWR and SSL scores, respectively.
Figure 1(b) shows a magnification of the central part of Fig. 1(a). Notice that
the red stars (fixed α) are close to the 45-degree line, while the blue circles (vari-
able αi) are exactly on the 45-degree line. The conclusion is that (a) the SSL
and RWR scores are similar, and (b) the rankings are the same: whichever node
is labeled as “positive” by SSL, gets a high score by RWR, and conversely.

4 Analysis of Convergence

In this section we provide the sufficient, but not necessary conditions for which
our method, FaBP, converges. The implementation details of FaBP are de-
scribed in the upcoming Section 5. Lemmas 4, 5, and 8 give the convergence
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Fig. 1. Scatter plot showing the similarities between SSL and RWR. Scores of SSL

and RWR for the nodes of a random graph: blue circles (perfect equality – variable αi)
and red stars (fixed α). The right figure is a zoom-in of the left. Most red stars are on
or close to the diagonal: the two methods give similar scores, and identical assignments
to positive/negative classes.

conditions. At this point we should mention that work on the convergence of a
variant of BP, Gaussian BP, is done in [18] and [25]. The reasons that we focus
on BP are that (a) it has a solid, Bayesian foundation, and (b) it is more general
than the rest, being able to handle heterophily (as well as multiple-classes, that
we don’t elaborate here).

All our results are based on the power expansion required to compute the
inverse of a matrix of the form I−W; all the methods undergo this process, as
we show in Table 3. Specifically, we need the inverse of the matrix I+aD−c′A =
I − W, which is given by the expansion:

(I − W)−1 = I + W + W2 + W3 + ... (5)

and the solution of the linear system is given by the formula

(I− W)−1φh = φh + W · φh + W · (W · φh) + ... . (6)

This method, also referred to as the Power Method, is fast since the computation
can be done in iterations, each one of which consists of a sparse-matrix/vector
multiplication. In this section we examine its convergence conditions.

Lemma 4 (Largest eigenvalue). The series
∞∑

k=0

|c′A− aD|k converges iff

λ(W) < 1, where λ(W) is the magnitude of the largest eigenvalue of W.

Given that the computation of the largest eigenvalue is non-trivial, we suggest
using one of the following lemmas, which give a closed form for computing the
“about-half” homophily factor, hh.

Lemma 5 (1-norm). The series
∞∑

k=0

|c′A − aD|k converges if

hh <
1

2 + 2 maxj djj
(7)

where djj are the elements of the diagonal matrix D.
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Proof. The proof is based on the fact that the power series converges if the 1-
norm, or equivalently the ∞-norm, of the symmetric matrix W is smaller than
1. The detailed proof is shown in Appendix C.

Lemma 6 (Frobenius norm). The series
∞∑

k=0

|c′A − aD|k converges if

hh <

√
−c1 +

√
c2
1 + 4c2

8c2
(8)

where c1 = 2 +
∑

i

dii and c2 =
∑

i

d2
ii − 1.

Proof. This upper bound for hh is obtained when we consider the Frobenius

norm of matrix W and we solve the inequality ‖ W ‖F =

√√√√ n∑
i=1

n∑
j=1

|Wij |2 < 1

with respect to hh. We omit the detailed proof.

Equation (8) is preferable over (7) when the degrees of the graph’s nodes demon-
strate considerable standard deviation. The 1-norm yields small hh for very big
highest degree, while the Frobenius norm gives a higher upper bound for hh.
Nevertheless, we should bear in mind that hh should be a sufficiently small
number in order for the “about-half” approximations to hold, because of the
“about-half” approximations done in the analysis of FaBP.

5 Proposed Algorithm: FaBP

Based on the analysis in Sections 3 and 4, we propose the FaBP algorithm:

• Step 1: Pick hh to achieve convergence: hh = max{(7), (8)} and compute
the parameters a and c′ as described in Theorem 1.

• Step 2: Solve the linear system (1). Notice that all the quantities involved
in this equation are close to zero.

• Step 3 (optional): If the achieved accuracy is not sufficient, run a few iter-
ations of BP using the values computed in Step 2 as the prior node beliefs.

In the datasets we studied, the optional step was not required, as FaBP achieved
equal or higher accuracy than BP, while running in less time.

6 Experiments

We present experimental results to answer the following questions:

Q1: How accurate is FaBP?
Q2: Under what conditions does FaBP converge?
Q3: How sensitive is FaBP to the values of h and φ?
Q4: How does FaBP scale on very large graphs with billions of nodes and edges?
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The graphs we used in our experiments are summarized in Table 4. To an-
swer the first three questions, we used the DBLP dataset [8], which consists of
14,376 papers, 14,475 authors, 20 conferences, and 8,920 terms. Each paper is
connected to its authors, the conference in which it appeared and the terms in
its title. Only a small portion of the nodes are labeled: 4,057 authors, 100 pa-
pers, and all the conferences. We adapted the labels of the nodes to two classes:
AI (Artificial Intelligence) and not AI (= Databases, Data Mining and Infor-
mation Retrieval). In each trial, we ran FaBP on the DBLP network where
(1 − p)% of the labels of the papers and the authors had been discarded, with
p ∈ {0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 5%}. Then, we tested the classification accu-
racy on the nodes whose labels were discarded. To avoid combinatorial explosion
in the presentation of the results, we consider {hh, priors} = {0.002,±0.001} as
the anchor values, and then, we vary one parameter at a time. When the results
are the same for different values of p%, due to lack of space, we randomly pick
the plots to present.

To answer the last question, we used the YahooWeb dataset, as well as Kro-
necker graphs – synthetic graphs generated by the Kronecker generator [17]. Ya-
hooWeb is a Web graph containing 1.4 billion web pages and 6.6 billion edges;
we automatically labeled 11 million educational and 11 million adult web pages.
We used 90% of these labeled data to set the node priors, and the remaining
10% to evaluate the accuracy. For parameters, we set hh to 0.001 using Lemma
6 (Frobenius norm), and the magnitude of the prior beliefs to ±0.001.

Table 4. Order and size of graphs

Dataset YahooWeb Kronecker Kronecker Kronecker Kronecker DBLP
1 2 3 4

# nodes 1, 413, 511, 390 177,147 120,552 59,049 19,683 37, 791

# edges 6, 636, 600, 779 1,977,149,596 1,145,744,786 282,416,200 40,333,924 170, 794

6.1 Q1: Accuracy

Figure 2 shows the scatter plots of beliefs (FaBP vs BP) for each node of the
DBLP data. We observe that FaBP and BP result in practically the same beliefs
for all the nodes in the graph, when ran with the same parameters, and thus,
they yield the same accuracy. Conclusions are identical for any labeled set-size
we tried (0.1% and 0.3% shown in Fig. 2).

Observation 1. FaBP and BP agree on the classification of the nodes when
ran with the same parameters.

6.2 Q2: Convergence

We examine how the value of the “about-half” homophily factor affects the
convergence of FaBP. In Fig. 3 the red line annotated with “max |eval| = 1”
splits the plots into two regions; (a) on the left, the Power Method converges
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Fig. 2. The quality of scores of FaBP is near-identical to BP, i.e. all the points are
on the 45-degree line in the scatter plot of the DBLP sub-network node beliefs (FaBP

vs BP); red/green points correspond to nodes classified as “AI/not-AI” respectively

and FaBP is accurate, (b) on the right, the Power Method diverges resulting
in significant drop in the classification accuracy. We annotate the number of
classified nodes for the values of hh that leave some nodes unclassified due to
numerical representation issues. The low accuracy scores for the smallest values
of hh are due to the unclassified nodes, which are counted as misclassifications.
The Frobenius norm-based method yields greater upper bound for hh than the
1-norm based method, preventing any numerical representation problems.

Fig. 3. FaBP achieves maximum accuracy within the convergence bounds. The anno-
tated red numbers correspond to the classified nodes when not all nodes were classified
by FaBP.
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Observation 2. Our convergence bounds consistently coincide with high-accuracy
regions. Thus, we recommend choosing the homophily factor based on the Frobenius
norm using (8).

6.3 Q3: Sensitivity to Parameters

Figure 3 shows that FaBP is insensitive to the “about-half” homophily factor,
hh, as long as the latter is within the convergence bounds. Moreover, in Fig. 4 we
observe that the accuracy score is insensitive to the magnitude of the prior beliefs.
For brevity, we show only the cases p ∈ {0.1%, 0.3%, 0.5%}, as for all values
except for p = 5.0%, the accuracy is practically identical. Similar results were
found for different “about-half” homophily factors, but the plots are omitted
due to lack of space.

Observation 3. The accuracy results are insensitive to the magnitude of the
prior beliefs and the homophily factor - as far as the latter is within the conver-
gence bounds we gave in Section 4.

Fig. 4. Insensitivity of FaBP to the mag-
nitude of the prior beliefs

Fig. 5. FaBP runtime vs # edges of Kro-
necker graphs for 10 and 30 machines on
Hadoop

6.4 Q4: Scalability

To show the scalability of FaBP we implemented FaBP on Hadoop, an open
source MapReduce framework, which has been successfully used for large scale
graph analysis [14]. We first show the scalability of FaBP on the number of edges
of Kronecker graphs. As seen in Fig. 5, FaBP scales linearly on the number of
edges. Next, we compare Hadoop implementation of FaBP and BP [13] in
terms of running time and accuracy on YahooWeb graph. Figures 6(a-c) show
that FaBP achieves the maximum accuracy level after two iterations of the
Power Method and is ∼ 2× faster than BP. This is explained as follows: BP

needs to store the updated messages for 2 states on disks for large graphs, and
thus, it stores 2|E| records in total, where |E| is the number of edges. In contrast,
FaBP stores n records per iteration, where n is the number of nodes. Given that
n < 2|E|, FaBP is faster than BP.

Observation 4. FaBP is linear on the number of edges, with ∼ 2× faster run-
ning time than BP on Hadoop.
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(a) Runtime vs # of itera-
tions

(b) Accuracy vs # itera-
tions

(c) Accuracy vs runtime

Fig. 6. Performance on the YahooWeb graph (best viewed in color): FaBP wins on
speed and wins/ties on accuracy. In (c), each of the method has 4 points that correspond
to one step from 1 to 4. FaBP achieves the maximum accuracy after 84 minutes, while
BP achieves the same accuracy after 151 minutes.

7 Conclusions

Which of the many guilt-by-association methods one should use? We answered
this question, and we developed FaBP, a new, fast algorithm to do such com-
putations. The contributions of our work are the following:

• Theory & Correspondences: We showed that successful, major guilt-by-
association approaches (RWR, SSL, and BP variants) are closely related,
and we proved that some are even equivalent under certain conditions (The-
orem 1, Lemmas 1, 2, and 3).

• Algorithms & Convergence: Thanks to our analysis, we designed FaBP, a
fast and accurate approximation to the standard belief propagation (BP),
which has convergence guarantee (Lemmas 5 and 6).

• Implementation & Experiments: We showed that FaBP is significantly faster,
about 2×, and has the same or better accuracy (AUC) than BP. Moreover,
we showed how to parallelize it with MapReduce (Hadoop), operating on
billion-node graphs.

Thanks to our analysis, our guide to practitioners is the following: among all
3 guilt-by-association methods, we recommend belief propagation, for two rea-
sons: (1) it has solid, Bayesian underpinnings and (2) it can naturally handle
heterophily, as well as multiple class-labels. With respect to parameter setting,
we recommend to choose homophily score, hh, according to the Frobenius bound
in (8).

Future work could focus on time-evolving graphs, and label-tracking over time.
For instance, in a call-graph, we would like to spot nodes that change behavior,
e.g. from “telemarketer” type to “normal user” type.

Acknowledgments. This work is partially supported by an IBM Faculty Award,
by the National Science Foundation under Grants No. CNS-0721736 IIS0970179,
under the project No. NSC 98-2221-E-011-105, NSC 99-2218-E-011-019, under
the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract No. DE-AC52-07NA27344, and by the Army Re-
search Laboratory under Cooperative Agreement Number W911NF-09-2-0053.



256 D. Koutra et al.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory, the U.S. Government,
NSF, or any other funding parties. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes notwithstanding any
copyright notation here on.

References

[1] Hadoop information, http://hadoop.apache.org/
[2] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

Computer Networks 30(1-7) (1998)
[3] Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium:

Tera-scale graph mining and inference for malware detection. In: SDM (2011)
[4] Chechetka, A., Guestrin, C.: Focused belief propagation for query-specific in-

ference. In: International Conference on Artificial Intelligence and Statistics
(AISTATS) (May 2010)

[5] Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over
32 years. New England Journal of Medicine 357(4), 370–379 (2007)

[6] Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision.
International Journal of Computer Vision 70(1), 41–54 (2006)

[7] Fowler, J.H., Christakis, N.A.: Dynamic spread of happiness in a large social
network: longitudinal analysis over 20 years in the Framingham Heart Study. BMJ
(2008)

[8] Gao, J., Liang, F., Fan, W., Sun, Y., Han, J.: Graph-based Consensus Maximiza-
tion among Multiple Supervised and Unsupervised Models. In: NIPS (2009)

[9] Gonzalez, J., Low, Y., Guestrin, C.: Residual splash for optimally parallelizing
belief propagation. In: AISTAT (2009)

[10] Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm
for web search. IEEE Transactions on Knowledge and Data Engineering, 784–796
(2003)

[11] Haveliwala, T., Kamvar, S., Jeh, G.: An analytical comparison of approaches to
personalizing pagerank. Technical report, Stanford University (2003)

[12] Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive
classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi,
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Appendix A: Preliminaries - Analysis of FaBP

In this appendix we present the lemmas that are needed to prove Theorem 1
(FaBP), which gives the linearized version of BP. We start with the original
BP equations, and we derive the proof by:

• using the odds ratio pr = p/(1 − p), instead of probabilities. The advantage
is that we have only one value for each node, pr(i), instead of two, p+(i) and
p−(i); also, the normalization factor is not needed. Moreover, working with
the odds ratios results in the substitution of the propagation matrix entries
by a scalar homophily factor.

• assuming that all the parameters are close to 1/2, using Maclaurin expan-
sions to linearize the equations, and keeping only the first order terms. By
doing so we avoid the sigmoid/non-linear equations of BP.

Traditional BP equations: In [26], Yedidia derives the following update formulas
for the messages sent from node i to node j and the belief of each node that it
is in state xi

mij(xj) =
∑
xi

φi(xi) · ψij(xi, xj) ·
∏

n∈N(i)\j

mni(xi) (9)
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bi(xi) = η · φi(xi) ·
∏

j∈N(i)

mij(xi) (10)

where the message from node i to node j is computed based on all the messages
sent by all its neighbors in the previous step except for the previous message sent
from node j to node i. N(i) denotes the neighbors of i and η is a normalization
constant that guarantees that the beliefs sum to 1.

Table 5. Additional Symbols and Definitions

Symbols Definitions
p P (node in positive class) = P (“+”)
m message

< var >r odds ratio = <var>
1−<var> , where < var >= b, φ, m, h

B(a, b) blending function of the variables a and b = a·b+1
a+b .

Lemma 7. Expressed as ratios, the BP equations become:

mr(i, j) ← B[hr, br,adjusted(i, j)] (11)

br(i) ← φr(i) ·
∏

j∈N(i)

mr(j, i) (12)

where br,adjusted(i, j) is defined as br,adjusted(i, j) = br(i)/mr(j, i). The division
by mr(j, i) subtracts the influence of node j when preparing the message mr(i, j).

Proof. The proof is straightforward. Notice that 1 − v+(i) = v−(i) for v ∈
{b, φ, m}, eg., b−(i) = 1 − b+(i) = η · (1 − φ+(i)) ·∏j∈N(i)(1 − m+(i, j)).

Lemma 8 (Approximations). Fundamental approximations for all the variables
of interest, {m, b, φ, h}, are:

vr =
v

1 − v
=

1/2 + vh

1/2 − vh
≈ 1 + 4vh (13)

B(ar, br) ≈ 1 + 8ahbh (14)

where B(ar, br) is the blending function for any variables ar, br.

Sketch of proof. Use the definition of “about-half” approximations, apply the
appropriate Maclaurin series expansions and keep only the first order terms.

Lemmas 9-11 are useful in order to derive the linear equation of FaBP. Note
that we apply several approximations, but omit the “≈” symbol to make the
proofs more readable.

Lemma 9. The “about-half” version of the belief equation becomes, for small
deviations from the half-point:

bh(i) ≈ φh(i) +
∑

j∈N(i)

mh(j, i) . (15)
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Proof. We use (12) and (13) and apply the appropriate Maclaurin series expan-
sions:

br(i) = φr(i)
∏

j∈N(i)

mr(j, i) ⇒

log (1 + 4bh(i)) = log (1 + 4φh(i)) +
∑

jεN(i)

log (1 + 4mh(j, i)) ⇒

bh(i) = φh(i) +
∑

jεN(i)

mh(j, i) .

Lemma 10. The “about-half” version of the message equation becomes:

mh(i, j) ≈ 2hh[bh(i) − mh(j, i)] . (16)

Proof. We combine (11), (13) and (14) to deduce

mr(i, j) = B[hr, br,adjusted(i, j)] ⇒ mh(i, j) = 2hhbh,adjusted(i, j) . (17)

In order to derive bh,adjusted(i, j) we use (13) and the approximation of the
Maclaurin expansion 1

1+ε ≈ 1 − ε for a small quantity ε:

br,adjusted(i, j) = br(i)/mr(j, i) ⇒
1 + bh,adjusted(i, j) = (1 + 4bh(i))(1 − 4mh(j, i)) ⇒

bh,adjusted(i, j) = bh(i) − mh(j, i) − 4bh(i)mh(j, i) . (18)

Substituting (18) to (17) and ignoring the terms of second order, leads to the
about-half version of the message equation.

Lemma 11. At steady state, the messages can be expressed in terms of the
beliefs:

mh(i, j) ≈ 2hh

(1 − 4h2
h)

[bh(i) − 2hhbh(j)] . (19)

Proof. We apply Lemma 10 both for mh(i, j) and mh(j, i) and we solve for
mh(i, j).

Appendix B: Proofs of Section 3 (Theorems)

Here we give the proofs of the theorems and lemmas presented in Section 3.

Proof of Theorem 1. We substitute (16) to (15) and we obtain:

bh(i) −
∑

j∈N(i)

mh(j, i) = φh(i) ⇒

bh(i) +
∑

j∈N(i)

4h2
hbh(j)

1 − 4h2
h

−
∑

j∈N(i)

2hh

1 − 4h2
h

bh(i) = φh(i) ⇒

(I + aD− c′A)bh = φh .
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Proof of Lemma 2. Given l labeled points (xi, yi), i = 1, . . . , l, and u unla-
beled points xl+1, . . . , xl+u for a semi-supervised learning problem, based on
an energy minimization formulation, we find the labels xi by minimizing the
following function E

E(x) = α
∑

j∈N(i)

aij(xi − xj)2 +
∑

1≤i≤l

(yi − xi)2 , (20)

where α is related to the coupling strength (homophily) of neighboring nodes,
and N(i) denotes the neighbors of i. If all points are labeled, (20) becomes, in
matrix form,

E(x) = xT [I + α(D − A)]x − 2x · y + K(y)

= (x − x∗)T [I + α(D − A)](x − x∗) + K ′(y) ,

where x∗ = [I + α(D − A)]−1y, and K, K ′ are some constant terms which
depend only on y. Clearly, E achieves the minimum when

x = x∗ = [I + α(D − A)]−1y .

The equivalence of SSL and Gaussian BP can be found in [25].

Proof of Lemma 3. Based on (2) and (3), the two methods will give identical
results if

(1 − c)[I − cD−1A]−1 = [I + α(D − A)]−1 ⇔(
c

1 − c

)
[I− D−1A] = α(D − A) ⇔(

c

1 − c

)
D−1 = αI .

This cannot hold in general, unless the graph is “regular”: di = d (i = 1, . . . , n),
or D = d · I, in which case the condition becomes

α =
c

(1 − c)d
⇒ c =

αd

1 + αd
(21)

where d is the common degree of all the nodes.

Appendix C: Proofs of Section 4 (Convergence)

Proof of Lemma 5. In order for the power series to converge, a sub-multiplica-
tive norm of matrix W = cA − aD should be smaller than 1. In this analysis
we use the 1-norm (or equivalently the ∞-norm). The elements of matrix W are
either c = 2hh

1−4h2
h

or −adii = −4h2
hdii

1−4h2
h

. Thus, we require

max
j

(
n∑

i=1

|Wij |) < 1 ⇒ (c + a) · max
j

djj < 1 ⇒

2h

1 − 2h
max

j
djj < 1 ⇒ hh <

1
2(1 + maxj djj)

.
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Abstract. Historical transaction data are collected in many applica-
tions, e.g., patient histories recorded by physicians and customer trans-
actions collected by companies. An important question is the learning of
models upon the primary objects (patients, customers) rather than the
transactions, especially when these models are subjected to drift.

We address this problem by combining advances of online clustering
on multivariate data with the trajectory mining paradigm. We model the
measurements of each individual primary object (e.g. its transactions),
taken at irregular time intervals, as a trajectory in a high-dimensional
feature space. Then, we cluster individuals with similar trajectories to
identify sub-populations that evolve similarly, e.g. groups of customers
that evolve similarly or groups of employees that have similar careers.

We assume that the multivariate trajectories are generated by drift-
ing Gaussian Mixture Models. We study (i) an EM-based approach that
clusters these trajectories incrementally as a reference method that has
access to all the data for learning, and propose (ii) an online algorithm
based on a Kalman filter that efficiently tracks the trajectories of Gaus-
sian clusters. We show that while both methods approximate the refer-
ence well, the algorithm based on a Kalman filter is faster by one order
of magnitude compared to the EM-based approach.

Keywords: On-Line clustering, incremental clustering, high-dimensional
trajectories, clusters of trajectories, high-dimensional clustering, stream
clustering.

1 Introduction

Finding clusters on a mixture of multivariate distributions is a well-investigated
problem. A typical assumption is that the data can be represented as vectors.
Although this requirement seems fairly easy to fulfil, it is counter intuitive for
many applications. For example, consider tasks like learning the progress of some
chronicle disease or the seasonal purchase habits of customers. The data at hand
are measurements of fixed dimensionality for each individual, e.g. transactions
performed by customers or recordings of a patient’s blood pressure. However,
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we cannot assume that there is the same number of measurements for each in-
dividual, nor that the measurements have been performed at the same intervals
for them. Hence, vector representation becomes too restrictive. In this study, we
propose to model the measurements of individuals over time as ongoing trajec-
tories in a high-dimensional space, and learn patterns over the evolving data by
clustering together individuals whose trajectories deploy similarly.

Gaffney, Smyth and colleagues have proposed probabilistic methods for the
clustering of trajectories of measurements [6,2,3]. However, they assume that
the trajectories are available in their entirety, hence the algorithm can exploit
all the data to learn the model. There are two problems with this approach. First,
there are many cases where model learning is done while data are being recorded:
not an ultimate model over all data is then of interest, but rather knowledge on
how models change from one time point to the next. Second, a model over all
data may smooth away concept drifts that are valuable to the observer. Some
later works, like [7,14] address the first problem by adapting the model as time
progresses and new data arrive. However, the problem of adapting to drift is
treated in a rather rudimentary way, namely by considering only special aspects
of drift (e.g. cluster split).

In this study, we propose an adaptive learning approach over the trajectories
of individuals as the trajectories receive further measurements. We allow for
measurements that are multi-variate data, and recorded at irregular intervals. We
assume that these measurements are generated from a mixture of Gaussians, but
allow for gradual and abrupt concept changes (drifts and shifts). For example,
consider aeroplanes from Heathrow to Montreal and from Madrid to Montreal.
They fly two clusters of routes, with the former being closer to Iceland than the
other. After May 21, this clusters’ route changes due to the volcanic eruption.
While the cluster is still there, its aeroplanes move differently for a part of their
route. This is an example of ”abrupt concept change”. For ”gradual concept
change”, consider a cluster A of elderly women and B of women in their late
forties. Members of A show a more and more intensive preference for books in big
font; this cluster is drifting as a whole, indicating that its members become older.
Further, some members of cluster B show an increasing preference for sports and
gradually build a separate cluster C, i.e. there is drift inside the cluster B.

We approach model adaptation by using an incremental, but offline EM-
algorithm for clustering trajectories. We further propose a method that tracks
the trajectories of the Gaussian clusters (as whole entities) using Kalman filter.
This second method is fast and adapts well - it is appropriate for online pro-
cessing. We compare this algorithm to the offline EM-algorithm as a reference
algorithm which can exploit all data for model learning, and we show that the
model quality of our method is comparable to the reference, while the execution
time is lower by one order of magnitude.

The paper is organised as follows. In the next section, we discuss related work.
In section 3 we first discuss Gaussian mixture models and the Kalman filter
and then describe our two adaptive methods. The experiments are reported in
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section 4. The last section concludes our paper with a summary and a list of
future research issues.

2 Related Work

Our work is on learning mixture models for the multi-variate data trajectories of
evolving objects. Related work includes mixture models, object tracking meth-
ods, and methods that cluster objects which move in a conventional geometric
space (e.g. cars, persons, vessels).

Mixture models: The work of Gaffney and Smyth [6] was one of the earliest to
consider the problem of clustering trajectories without a vector-based represen-
tation. The approach implicitly assumes that the objects and their trajectories
follow some basic model, i.e. the Gaussian Mixture Model, and uses a variant
of Expectation-Maximisation algorithm to cluster sets of trajectories. Our ap-
proach is inspired by that study. However, we do not limit our data to time series,
as in [6], but allow for multivariate measurements that constitute a stream rather
than a closed time series. Further, the number of measurements per individual
may vary from one individual to the other.

The method of Han et al. [7] does trajectory clustering by using the mixture
model for automatic speech recognition. They report on the general problem of
different initial cluster assignments leading to different EM clusters. To sidestep
this problem, their variant of EM increases the number of clusters incrementally.
The algorithm starts by computing the best fitting polynomial for the complete
data set and then successively splits the cluster with the largest weight of the
mixture densities until K clusters are obtained.

The work of Xiong et al. deals with the problem of tracking objects from a
video stream [14]. They model these objects using a Gaussian mixture model.
For the first frame, the parameters are initialised using the traditional mixture
model. For each subsequent frame these parameters are predicted with the help of
Kalman filter. Unlike the method of Han et al. [7], which utilises splitting during
initialisation, Xiong et al. integrate ”split”, ”merge” and ”delete” operation into
their dynamic Gaussian mixture model.

The follow-up work of Cadez, Gaffney and Smyth [2] deals with the problem
of clustering individuals that are associated with non-vector, non-multi-variate
data measurements. The example of such data can be patients at a hospital which
are associated with multiple but varying number of time-series. The proposed
solution is based on generative mixture models and can accept the data in its
native form, i.e. with varying data sizes and types across the individuals.

Object Tracking: Kalman filtering [8] is a widely used technique in signal
analysis, computational visualistics and other domains. It is an iterative state
estimation filter that supports the estimation of current and subsequent states,
when the exact nature of the modelled system is undetermined. The power of
a Kalman filter comes from its ability to estimate the subsequent states in the
presence of noise. However, calibrating the parameters such as process and mea-
surement noise covariance is not trivial and even a simple predictions model can
outperform Kalman filter in the absences of an accurate model [5].
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Initially the filter was designed for spacecraft navigation but has been used
widely for multi-object tracking [9,12,1]. The method discussed in Pathan et
al. [12] tracks vehicles whose paths overlap or get merged. They denote it as a
confusion state and make use of a Kalman filter to identify the trajectories of
the individual objects. Mederios et al. [11] presented a comprehensive approach
on tracking objects, using a sensor network of cameras. A Kalman filter is used
for aggregating the data distributively, which is then shared among sensors to
propagate the state of the objects as they move. As stated earlier, Xiong et
al. [14] keep track of their elliptical objects represented by Gaussian clusters
through a Kalman filter. In addition, they use their filter in order to predict the
parameters of the clusters in the next timepoint.

The work of Ellis et al. [4] uses Gaussian process regression to model the
trajectories of pedestrian trajectory patterns. They couple the Gaussian process
with Monte Carlo methods and a Kalman filter to achieve a long term prediction.
They show in their empirical evaluation that their Monte Carlo method has a
much better performance than their Kalman filter over long term predictions.
The poor performance of their Kalman filter is predictable as it needs measure-
ments for calculating the error and updating the estimates. However, for very
short term prediction, Kalman filter shows competitive performance.

Clustering moving objects: Our approach is based on the trajectory clustering
paradigm introduced by Gaffney and Smyth [6] and has very similar problem def-
inition with that of Cadez et al. [2]. Our first algorithm, which is used for initial
cluster identification, is based on the EM algorithm by Gaffney and Smyth [6].
However, we extended the original univariate algorithm to handle multi-variate
data. Unlike the method of Cadez et al. [2], where individuals are associated with
time-series only, in our setting individuals are associated with multi-dimensional
objects. Individuals can also vary in the number of their associated observa-
tions (also denoted objects). The EM algorithm of [6] has the drawback of not
being online. This is due the fact that all historic observations of an individ-
ual are required in re-fitting a mixture regression model. This might cause high
computational costs and might be susceptible to sudden shift, i.e. sudden, non-
smooth changes in the position of cluster centres. Therefore, we introduce an
online cluster tracking algorithm for the trajectory clustering paradigm. This
algorithm is based on Kalman filter technique and can be easily initialised by
using the parameter estimates obtained by the EM algorithm.

Related to our work is the method of Xiong et al. [14]. However, there are some
important differences. First, their method is not online and performs adjustment
of Gaussian mixture models at each frame. The input to their methods are the
individual points and the target is to find the trajectories, whereas in our method
data points are already associated to a trajectory and the task is 1) to cluster
them and 2) to estimate the path of the true cluster centre over time. Moreover,
its not entirely clear what they use as input to their algorithm, i.e. whether they
use individual points or a batch of points.
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Table 1. List of Symbols

Symbol Description

G
e
n
e
ra

l

D Dimensionality of feature space (e.g. D = 2 in the bivariate case)
P Order of the polynomials in the underlying mixture regression problem
K Number of clusters in the mixture
N Total number of observations (over all individuals)
n Number of observations for a given individual
M Total number of individuals

E
M

-A
lg
o
ri
th

m z D-dimensional feature vector (measurement)
s, ts Discrete time step s at continuous time ts
Θ,θk Parameter set (of the complete model or of cluster k)

αk, xk, Σk Mixing proportion, mean, and covariance of cluster k
βk Regression coefficients (including cluster means xk) for cluster k

βkdp p-th regression coefficient for feature d in cluster k

K
a
lm

a
n

F
il
te
r xs, zs True state and measurement at (discrete) time step s

A State transition matrix
ws, Q Process noise at time step s, process noise covariance matrix
H Measurement (or state-to-signal) matrix

vs, R Measurement noise at time step s, measurement noise cov. matrix
K Kalman gain matrix

Ps̄, Ps Estimate covariances (a priori, and posterior)

3 Method TRACER

The main contribution of this paper is the extension of the trajectory clustering
method provided by Gaffney and Smyth [6] to multivariate data streams which
require online algorithms. We suggest the following approach: First, an extended
variant of the EM algorithm of [6] is used to perform an initial clustering. As a
result of this algorithm, parameter estimates for the underlying mixture regres-
sion are available. These estimates are then used to initialise a Kalman filter for
tracking the clusters and updating the model parameter estimates regularly.

In the subsequent sections, we first give a brief overview of the Gaussian
mixture models and the Kalman filter for completeness before outlining our
tracking algorithm. A list of parameters and symbols is given in Table 1.

3.1 Gaussian Mixture Model

The objectives of our tracking algorithm are first to track clusters of individuals
over time. Second, the parameters estimates of the assumed underlying data
generating process should be updated. The input to clustering in this context
are sets of individuals that are observed over a longer time span, e.g., patients
and customers. Each individual is associated with a multiple of measurements
(or observations). The measurements which have been recorded for an individual
result in a trajectory. The number of measurements per individual as well as the
observation time, i.e. the time at which a measurement is recorded, can differ
between the individuals. For example, customers could make a varying number of
transactions and not all customers will make the transactions at the same time.
Furthermore it is reasonable to assume that the population of individuals is not
homogeneous, but consists of sub-populations (clusters). Each sub-population
might evolve differently over time. When a sub-population is affected by drift,
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the behaviour of its individuals might also change. This results in a mixture
regression model. If the distribution of measurements of a sub-population at a
given moment in time is assumed to follow a Gaussian distribution, the following
model of a mixture of Gaussians is obtained:

Algorithm 1: Incremental Clustering Of Trajectories using EM Algorithm
Input : new batch of data Zi, old model Ci−1 old estimates Θi−1
Output: new model Ci, new estimates Θi

1 Computer the membership probabilities for the individuals in Zi using Ci−1.
2 Update the likelihood estimates
3 Repeat until re-convergence for new estimates and new clustering.

Let zi = zi1, zi2, · · · , zin be the n observations of the i-th individual. These
observations follow a Gaussians mixture model with cluster means x1, x2, · · · , xK

and probability density function:

p(zi; Θ) =
n∏

l=1

K∑
k=1

αkp(zil; θk) (1)

where αk is the mixing proportion of the kth cluster such that
∑K

k=1 αk = 1.
The density p(z; Θ) of the k-th cluster in the mixture with mean xk follows a
normal probability distribution

p(z; θk) = (2π)−
D
2 |Σ−1

k | 12 exp

{
−1

2
(z − xk)T Σ−1

k (z − xk)
}

(2)

where θk = xk, Σk is the centroid and covariance matrix for kth cluster at a
given moment in time, respectively.

For a given set of M independent individuals Z = z1, z2, . . . , zM , the log-
likelihood with respect to the Gaussian mixture is given by

logp(Z; Θ) = log
M∏
i=1

p(zi; Θ) =
M∑
i=1

ni∑
l=1

log
K∑

k=1

αkp(xil; θk) (3)

Θ is complete set of parameters needed to define the complete mixture model,
i.e., Θ = {α1, . . . , αk, x1, . . . , xk, Σ1, . . . , Σk}. However, the maximum likelihood
estimate of Θ cannot be computed analytically. The task here is to determine
the individual mixture components from the joint density, using the given set of
individuals Z.

3.2 Expectation-Maximisation Algorithm

Let us assume the cluster means in the mixture model above follow a polynomial
functions of order P . In this mixture regression problem, the objective is to
estimate the regression coefficients βk ∀ k = 1, · · · , K as well as the cluster
membership probability for each individual. EM is the widely used technique



Online Clustering of High-Dimensional Trajectories under Concept Drift 267

for computing the maximum likelihood estimates for this problem, where the
cluster membership probabilities are hidden. In this particular case, where all
measurements of an individual are dependent, the EM-variant of [6] can be used
for an initial clustering.

3.3 Kalman Filter

An elaborate overview about Kalman filter is presented in [13], we describe
it briefly for completeness. Kalman filter addresses the problem of trying to
estimate the state x ∈ RN of a discrete-time controlled process that is governed
by the following linear-time difference equation:

xs = Axs−1 (4)

with a measurement z ∈ RD that is

zs = Hxs + vs (5)

where A represents the transition matrix, xs is the state (i.e. the true cluster cen-
tre) at time step s. H is the measurement matrix, zs is the observed measurement
(of an individual belonging to this cluster). ws and vs are random variables that
represent process and measurement noise, respectively. They are mutually inde-
pendent, white and with normal probability distributions, i.e., p(w) ∼ N(0, Q)
and p(v) ∼ N(0, R).

Kalman filter basically estimate the state vector by using system sensors and
measurement data, which are corrupted by noise. This estimation is done by
using a type of feedback control: first the filter estimates the state of the process
at a given time step s and then obtains feedback in terms of measurements which
are assumed to be noisy. Eq. 4 and 5 describe a linear model at time s. Since xs

cannot be measured directly, the information provided by zs is used to update
the xs.

The a priori state estimate x̂−
s and covariance error P−

k are calculated using
the following time update equations:

x̂−
s = Ax̂s−1 + ws−1 (6)

P−
s = APs−1A

T + Q (7)

The measurement update equations provides the feedback and are responsible
for adjusting the model based on the new measurement (i.e., the priori estimates
are adjusted to obtain a better posterior estimate):

S = HP−
s HT + R (8)

Ks = P−
s HT S−1 (9)

x̂s = x̂−
s + Ks(zs − Hx̂−

s ) (10)

Ps = (I − KsH)P−
s (11)
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where I = Identity Matrix of similar dimensions as P−
s , and Ks is the Kalman

gain. Using the measurement, a posterior state estimate x̂s as well as an error
estimate Ps are computed. The time and measurement equations are executed
iteratively.

3.4 Kalman Filter Initialisation

Before the Kalman filter outlined above can be used, its parameters defining
the state transition model as well as the measurement model must be ini-
tialised. Using the clusters’ β-coefficients of the mixture regression model learnt
by the EM-algorithm of Gaffney and Smyth, the position of each cluster cen-
tre at time t can be estimated. The coordinates corresponding to this posi-
tion in the D-dimensional feature space at time t can be written as a vector
f (0)(t) = f

(0)
1 (t), · · · , f

(0)
D (t), where f

(0)
d (t) = βd0 + tβd1 + · · · + toβdo.

The true state at this time t comprises these coordinates, but also higher order
derivatives of f (0)(t) as meta-features, as for example speed and acceleration. Let
f (l)(t) denote the l-th derivative of f (0)(t) with respect to t. Assuming that all
derivatives of orders greater than o are zero, the true state f at the time t can
then be written as:

f(t) =
(
f

(0)
1 (t), f

(0)
2 (t), · · · , f

(0)
D (t), f

(1)
1 (t), f

(1)
2 (t), · · · , f

(1)
D (t),

· · · , f
(o)
1 (t), f

(o)
2 (t), · · · , f

(o)
D (t)

)T

The initialisation steps for the Kalman state model are outlined in Function
InitKalman(). The probability distribution for the initial state x0 is modelled
by a mean vector μ0 and a covariance matrix Σ0 (Line 1). The mean vector can
be estimated by evaluating f(t0) at the first point in time t0. As a covariance
matrix an identity matrix is used.

Given the (s− 1)-th state at time ts, the successive state at time ts is defined
by the state transition process above to be zs = Azs−1 + ws−1. Given an initial
state z0, the state transition matrix A as well as the process noise covariance
matrix Q are needed to estimate the successive states.

Let Δ = ts−ts−1 be the sampling interval, corresponding to the time between
two samples are drawn from successive states s−1 and s. Using the Taylor series
up to o-th order for defining δs = Δs

s! , one can write the state-transition matrix
A = [aij ], where

Function InitKalman
Input : model Ci, estimates Θi

1 Infer initial state using GMM parameters (β). /* Init of Kalman State Space */
2 Determine state transition matrix A (given sampling interval Δ).
3 Compute the covariance for the process noise Q.

4 Compute state-sensor matrix H /* Init of State-Sensor Model */
5 Compute the covariance for the sensor noise R .
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ai,j =
{

δs if ∃ q ∈ N : i − D ∗ q − j = 0
0 otherwise

For example, the state transition matrix of a 2-dimensional feature space con-
sidering up to 3rd order movement is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 a1 0 a2 0 a3 0
0 a0 0 a1 0 a2 0 a3

0 0 a0 0 a1 0 a2 0
0 0 0 a0 0 a1 0 a2

0 0 0 0 a0 0 a1 0
0 0 0 0 0 a0 0 a1

0 0 0 0 0 0 a0 0
0 0 0 0 0 0 0 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with a0 = 1, a1 = Δ, a2 = Δ2

2 , a3 = Δ3

6 .
Assuming a uniform process noise over the feature space, the covariance ma-

trix Q for the process noise can be set equal to the identity matrix, multiplied
by a process noise factor q̂ (Function InitKalman(), Line 3). This parameter q̂
has to be tuned using the training data.

As our interest is the update of the regression obtained by the EM-algorithm,
we can safely assume no distortion between the true state and the measure-
ment, allowing the measurement matrix H to be set equal to the identity matrix
(InitKalman(), Line 4). However, there is measurement noise to be considered.
In order to obtain the measurement noise covariance matrix R, the covariance in
the training data between the state estimates using EM and the observed data
points as measurement is calculated (InitKalman(), Line 5).

The (estimated) true states, including higher order derivatives, can be cal-
culated recursively using the β-coefficients obtained by the EM algorithm, as
shown above. However, for the observed measurement, only the position f̂ (0)(t)
is directly available, whereas the derivatives of f̂ (0)(t) with respect to t have to
be estimated. This is solely possible for individuals with more than one mea-
surement in the training data, as we need o + 1 measurements per individual to
estimate the derivatives of order o. Given three measurements of the (i − 1)-th
derivative f̂ (i−1) at times t−1, t0 and t1 , respectively, the i-th derivative at time
t0 can be approximated as f̂ (i)(t0) = f̂(i−1)(t2)−f̂(i−1)(t−1)

t1−t−1
. If only two measure-

ments exist, the estimated (i)-th derivative is identical for both points in time,
thus it is assumed that the the (i + 1)-th derivative is zero. The resulting esti-
mation of the (i)-th derivative for the two measurements taken at time points
t0, t1 is then f̂ (i)(t0) = f̂ (i)(t1) = f̂(i−1)(t1)−f̂(i−1)(t0)

t1−t0
.

Once the difference between the estimated true state and the observed mea-
surements of an individual is calculated, it is used to update the state esti-
mate of a cluster. Two principal approaches can be distinguished: First, the
state estimates of all clusters can be updated by using a weight proportional to
the cluster membership probability of the instance. In contrast to this weighted
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Algorithm 2: Tracking Trajectories with Kalman Filter
Input : new batch of data Zi, model Ci, estimates Θi

1 foreach z ∈ Zi do
2 if z belongs to a known individual then
3 ẑ ← from the meta-features for z
4 Update sensor noise covariance R
5 Update state transitions A based on the time elapsed b/w last cluster update δt

6 Get new estimates for the clusters using the Kalman Filter

7 Compute cluster membership probability for z
8 Update cluster membership probabilities for the individual.

update strategy, a the-winner-takes-all update strategy only updates the cluster
with the highest cluster membership probability.

While the winner-takes-all strategy is straightforward, the weighted update
strategy requires a definition on how weights are used in the Kalman equations.
In equation 8 from above the measurement noise is considered by adding its
covariance matrix R as an addend. The extent of R is inversely related to the
confidence in measurements. By multiplying a factor c with R, the confidence in
a measurement can be incorporated into this equation.

S = HP−
s HT + R ∗ c (12)

This factor c could be set to the inverse of the cluster membership probability p,
i.e. c = 1

p . However, the inverse of the squared cluster membership probability,
i.e. c = 1

p2 , can also be used. The motivation is as follows: Assume an observa-
tion z does not belong to the cluster which is currently under consideration for
update. As the distance of z to the cluster centre increases, the cluster member-
ship probability decreases. Using the inverse of the squared cluster membership
probability decreases the weight of very distant points in an over-proportional
way, possibly reducing the influence of outliers. However, the effect of the choice
of an update strategy is studied further in the experimental evaluation below.

3.5 Update and Clustering

Given an estimated probability distribution of the previous state, the current
state on obtaining a new measurement for a cluster can be calculated using
equation 10, where for the calculation of the Kalman gain K equation 9 and for
the calculation of S equation 12 from above are used.

The individual-to-cluster assignment and the calculation of the higher order
derivatives as meta-features can be done as in the calculation of the measurement
noise covariance matrix above. This leads to the Algorithm 2. As new data is
presented to the algorithm it adapts the model accordingly.

Given a new measurement z of individual i at time ts and state estimates for
time ts−1, the algorithm first determines whether (a) the individual i is known,
i.e. a prior measurement exists for i or (b) individual i is previously unknown.
Only measurements from known individuals are used as sensor input for model
update, in order to increase robustness against outliers.
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A model update is done by first calculating the difference between sensor
input and estimated state position. The sensor input ẑ is the combination of
the observed position of z with the calculated meta features (Line 3), which can
be calculated as described in subsection 3.4 above. The estimated state position
is calculated as defined in (Lines 4-5). The new state estimates are then used
to re-compute the cluster membership probabilities for the new measurement
z (Line 7), by using eq. 1. Lastly, for each cluster the product of the cluster
membership probabilities of all measurements of the individual is calculated to
obtain the cluster membership probability of the individual (Line 8). For numeric
stability reasons, the log of the cluster membership probability can be used. The
cluster membership probability of an individual can be updated by a single
multiplication (or addition, if its log is used) with the probability of the new
measurement. In contrast to EM, each measurement is processed once, which
results in an online-behaviour of this Kalman trajectory tracking algorithm.

If the individual i is new, i.e., no prior measurements exist, its cluster mem-
bership probability is equal to the membership probability of the measurement.
This probability can be calculated as explained above (Lines 7-8). An individual
is not used for a model update unless further measurements are acquired.

4 Experiments

For the experimental evaluation, the Kalman filter was compared in different
settings to the EM algorithm by [6]. To be able to study our algorithms in a
controlled environment first, synthetic datasets had to be used. Cluster purity
was used as performance measure. In analogy to [10] [page 357, equation 16.1],
we define this measure as purity = 1

N

∑K
j=1 maxK

i=1 Cij Here C is the confusion
matrix, and Cij is the number of elements that are in the i-th true cluster which
are assigned to the j-th cluster by the algorithm. N is the number of elements
in total. This measure is normalised to values in the interval [0; 1], where one is
a perfect separation. This normalisation allows averaging over several data sets
without scaling issues, which could result when a measure based on the distance
between true and predicted cluster states would have been used. However, as
purity increases with the number of clusters, the number of clusters between
methods should be similar. As the EM algorithm is used in the initialisation of
the Kalman filter, the same number of clusters in all solutions is guaranteed.

A Wilcoxon signed rank test was performed to test the statistical significance
of differences in clustering quality.

4.1 Data Sets

The data generator1 used in the creation of the data sets uses a mixture model
with K components. For each component a multivariate Gaussian density func-
tion is used to generate observations. The component centres are themselves
1 The data generator and algorithms (implemented in Octave) are available at:
https://bitbucket.org/geos/tracer-trajectory-tracking/overview

https://bitbucket.org/geos/tracer-trajectory-tracking/overview
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functions of time. For the initial state, the position, speed and acceleration as
well as possible higher derivatives are generated at random. Subsequent states
are calculates using a state-transition-matrix as described above, and adding
random state-transition noise. Furthermore, sudden shift occurs at a given point
in time, offsetting the cluster centres by a random vector.

Observations are sampled along this drift path by first calculating the cluster
mean at the point in time, and subsequent sampling of observations using the
multivariate Gaussian. Each observation is then assigned to an individual of its
generating cluster.

The parameters of this data generator are the dimensionality of feature space
D, the order of the polynomials used P , the number of clusters K, the number of
individuals M , the number of observations N , the extend of the state-transition
noise ew, the strength of the state-to-signal noise er and the strength of the
sudden shift es.

For the experimental evaluation, fifty data sets with five different parameter
settings were generated:

1. Datasets A1, · · · , A10: D = 1, K = 3, ew = 25
2. Datasets B1, · · · , B10: D = 1, K = 3, ew = 5
3. Datasets C1, · · · , C10: D = 1, K = 3, ew = 1
4. Datasets D1, · · · , D10: D = 2, K = 3, ew = 5
5. Datasets E1, · · · , E10: D = 2, K = 3, ew = 1

N = 3000 observations were generated for M = 1500 individuals. This results in
a very modest expected number of 2 observations per individual.While the first
1000 observations were used for initial training, the subsequent second third of
observations was used to evaluate the performance prior to sudden shift. After
the twothousandth observation, sudden shift occurred. Thus the last third of
observations was used to evaluate the performance in presence of sudden shift.

4.2 Methods

The Expectation Maximisation algorithm was implemented as described in [6].
As all observations of an individual should be taken into account, there is no
straightforward extension to an online version of this algorithm, and a batch
version was used instead. Therefore, the initial model was fitted on the first one
thousand observations. This model was later used for initialising the Kalman
filter. For validation, the EM algorithm itself was refitted on all twothousand
observations, prior to determining the cluster of any observation in the second
batch. Similarly, the model was refitted on all observations before the cluster
assignments in the last batch were evaluated.

It should be noted that this behaviour gives some advantage over a Kalman
filter, as from the information used in training this would correspond to a Kalman
smoother. However, such a comparison is not in the scope of this paper, which
aims at a fast online cluster tracking algorithm. Therefore, the Kalman filter
described above was initialised on the initial EM model trained solely on the first
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Table 2. Cluster purity prior to shift

Data EM Kalman Tracking
Set K-1 K-2 K-3 K-4 K-5 K-6

A 0.92∗ 0.83 0.78∗∗ 0.83 0.82 0.79 0.81∗∗

± 0.10 ± 0.11 ± 0.15 ± 0.11 ± 0.13 ± 0.13 ± 0.11
B 0.92∗∗ 0.73 0.68∗∗ 0.72 0.72 0.69∗ 0.69∗

± 0.04 ± 0.10 ± 0.10 ± 0.10 ± 0.12 ± 0.12 ± 0.08
C 0.87∗∗ 0.82 0.79 0.81∗ 0.80 0.78∗ 0.81∗∗

± 0.13 ± 0.12 ± 0.15 ± 0.12 ± 0.11 ± 0.10 ± 0.12
D 0.98∗∗ 0.90 0.81∗ 0.89 0.89 0.86 0.82∗∗

± 0.03 ± 0.13 ± 0.18 ± 0.13 ± 0.13 ± 0.14 ± 0.17
E 0.96∗∗ 0.84 0.79∗∗ 0.84 0.84 0.81 0.81∗

± 0.11 ± 0.16 ± 0.17 ± 0.17 ± 0.16 ± 0.16 ± 0.15

batch of observations. The subsequent twothousand observations were clustered
one-by-one by the Kalman filter.

The performance of both algorithms on the two validation sets is shown in
the tables below.

4.3 Results

The results of the experimental evaluation on the 50 datasets is shown in tables
2,3,4, and 5 below. Single stars ∗ indicate significant (p < 0.05) differences com-
pared to K-1, and double stars ∗∗ denote highly significant (p < 0.01) differences.

Table 3. Cluster purity after shift

Data EM Kalman Tracking
Set K-1 K-2 K-3 K-4 K-5 K-6

A 0.88 0.87 0.73∗∗ 0.86 0.84 0.78∗∗ 0.81∗∗

± 0.13 ± 0.09 ± 0.11 ± 0.10 ± 0.13 ± 0.13 ± 0.10
B 0.87 0.80 0.75∗∗ 0.80 0.76∗ 0.70∗∗ 0.78
± 0.14 ± 0.13 ± 0.12 ± 0.12 ± 0.13 ± 0.12 ± 0.11

C 0.92 0.89 0.84∗ 0.88 0.86∗ 0.78∗∗ 0.84∗

± 0.12 ± 0.15 ± 0.17 ± 0.14 ± 0.13 ± 0.11 ± 0.15
D 0.96 0.96 0.87 0.96 0.94∗ 0.88∗∗ 0.92∗∗

± 0.10 ± 0.08 ± 0.14 ± 0.08 ± 0.09 ± 0.12 ± 0.09
E 0.96∗∗ 0.89 0.82∗ 0.89 0.88 0.83∗ 0.86∗

± 0.10 ± 0.14 ± 0.15 ± 0.14 ± 0.14 ± 0.15 ± 0.13

The experimental evaluation shows that both algorithms are capable of iden-
tifying and tracking the cluster structure correctly. Overall, the performance
of the Expectation-Maximisation algorithm is better in terms of purity, with a
purity of 0.984 compared to the Kalman filter (0.896) before shift, and 0.964
compared to 0.957 after the shift (overall p-value of p = 0.035).



274 G. Krempl, Z.F. Siddiqui, and M. Spiliopoulou

Table 4. Algorithm speed prior to shift

Data EM Kalman Tracking
Set K-1 K-2 K-3 K-4 K-5 K-6

A 75.9∗∗ 6.8 6.4∗∗ 6.8 6.8 6.8 6.8∗

± 20.6 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.1
B 81.8∗∗ 6.8 6.5∗∗ 6.8 6.9∗ 6.8 6.9∗∗

± 34.2 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
C 87.1∗∗ 7.3 7.0 7.1 6.8 6.8 7.2
± 61.8 ± 1.1 ± 0.9 ± 0.8 ± 0.0 ± 0.0 ± 0.7

D 64.5∗∗ 4.1 3.9∗∗ 4.2 4.2 4.1 4.1
± 26.4 ± 0.0 ± 0.0 ± 0.1 ± 0.2 ± 0.0 ± 0.0

E 54.4∗∗ 4.2 3.9∗∗ 4.2 4.1 4.1 4.2
± 13.4 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0

Table 5. Algorithm speed after shift

Data EM Kalman Tracking
Set K-1 K-2 K-3 K-4 K-5 K-6

A 88.2∗∗ 7.0 6.5∗∗ 7.0∗∗ 6.9∗ 6.9∗ 7.0
± 32.7 ± 0.1 ± 0.0 ± 0.0 ± 0.1 ± 0.1 ± 0.1

B 107.3∗∗ 7.0 6.5∗∗ 7.0 7.0 7.0 7.1∗

± 73.9 ± 0.1 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
C 126.2∗∗ 7.1 7.4 7.9 7.2 8.2 7.0∗∗

± 124.7 ± 0.2 ± 1.8 ± 1.9 ± 0.6 ± 2.5 ± 0.1
D 73.5∗∗ 4.2 4.0∗∗ 4.3∗∗ 4.2∗ 4.2∗ 4.2∗

± 23.6 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
E 81.9∗∗ 4.3 4.0∗∗ 4.3∗ 4.3∗∗ 4.3∗∗ 4.3
± 44.8 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0

However, the performance is significantly (p < 0.001) worse in terms of com-
putational time, with 65.5 compared to 4.1 seconds for the first validation set
and 73.5 compared to 4.3 seconds for the second validations set on a quad core
system. One reason might be the offline-behaviour of the EM, which makes use
of all 2000 (or 3000) observations for model fitting prior to assigning clusters to
the new observations. While this increases the clustering quality, it also leads to
ten to twenty times higher computational time compared to the Kalman filter.

The experiments have clearly shown that the weighted cluster update strategy
performs best for the Kalman filter. The best strategy is to use squared clus-
ter membership probabilities as weights (K-1). Otherwise observations with low
cluster membership probabilities can still have a strong influence on the cluster
centre, if they are sufficiently far away. Therefore, using the cluster membership
probabilities directly as weights (K-3) leads to a small, but significant (p = 0.04)
reduction in cluster purity (0.893 compared to 0.896 before and 0.9571 compared
to 0.9572 after the shift, in average over all data sets). The hard update strat-
egy using a the-winner-takes-it-all approach (K-2) has shown a highly significant
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Fig. 1. (a) The development of purity over 30 data sets over time and (b) the distance
between true and estimated states for the Kalman filter on one exemplary data set

(p < 0.001) lower performance (0.808 and 0.869). Further comparisons included
a multiplier different from one for the estimated state transition noise ew (K-4
and K-5), which resulted in worse performance (all results are at least signifi-
cant with p < 0.05). This indicates that the different extend of state transition
noise ew was estimated correctly by the algorithm, making further parameter
tuning unnecessary. Finally the meta-features speed and acceleration, which are
computed for the movement estimation, were included in the cluster member-
ship probability estimation (K-6). However, this resulted in a highly significant
(p < 0.001) performance decrease to 0.92 before and 0.82 after shift. In summary,
one single parameter setting (K-1) was best on all data sets.

The effect of the sudden shift on the two algorithms is different: The Kalman
filter corrects for this shift, and gains from the additional observations over time.
This results in a highly significant increase in clustering quality (average purity
increases from 0.82 to 0.88, p < 0.0001). The EM algorithm is effected differently:
A shift constitutes a jump discontinuity in the path of the cluster centre over
time, violating the assumed smoothness of this path. The EM algorithm tries to
fit a polynomial regression function to the data, which will result in large errors
around points of shift. In our experiments, this resulted in a (not significant)
decrease in purity from 0.93 to 0.92. This is illustrated in figure 1, where the
average purity over a moving window of 1000 observations is plotted over time
for both EM and Kalman filter. The horizontal lines indicate cluster purity prior
to shift, the vertical line corresponds to the moment shift occurs.

Finally it should be noted that in the experiments only a very modest number
of observations per individual was chosen. The results show that both algorithms
perform better as more observations per individual become available. Thus the
performance in practise can be expected to improve further as the number of
available observations increases over time.

5 Conclusions

We studied the problem of clustering trajectories over time when drifts and shifts
occur. We proposed TRACER for trajectory cluster tracking in two variants:
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an incremental EM algorithm for trajectory clustering and an online tracking
algorithm that uses Kalman filter. Our experiments show that both variants of
TRACER track clusters over time properly, while the online variant requires
significantly less computational time.

Our first experiments have been performed on synthetic data, since we needed
insights on the behavior of the algorithms in a controlled environment. We will
now experiment with real data on the behavior of individuals (e.g. customers)
over time. We further want to improve the robustness of the online TRACER
against outliers and to study its behavior in the presence of multiple shifts.
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Abstract. We describe a statistical relational learning framework called
Gaussian Logic capable to work efficiently with combinations of rela-
tional and numerical data. The framework assumes that, for a fixed re-
lational structure, the numerical data can be modelled by a multivariate
normal distribution. We demonstrate how the Gaussian Logic framework
can be applied to predictive classification problems. In experiments, we
first show an application of the framework for the prediction of DNA-
binding propensity of proteins. Next, we show how the Gaussian Logic
framework can be used to find motifs describing highly correlated gene
groups in gene-expression data which are then used in a set-level-based
classification method.

Keywords: Statistical Relational Learning, Proteomics, Gene Expres-
sion.

1 Introduction

Modelling of relational domains which contain substantial part of information
in the form of real valued variables is an important problem with applications
in areas as different as bioinformatics or finance. So far there have not been
many relational learning systems introduced in the literature that would be able
to model multi-relational domains with numerical data efficiently. One of the
frameworks able to work in such domains are hybrid Markov logic networks [21].
However, there is currently no known approach to learning structure of hybrid
Markov logic networks which is mainly due to their excessive complexity. In this
paper we describe a relatively simple framework for learning in rich relational
domains containing numerical data. The framework relies on multivariate normal
distribution for which many problems have tractable or even analytical solutions.
Our novel system exploits regularities in covariance matrices (i.e. regularities
regarding correlations) for construction of models capable to deal with variable
number of numerical random variables. We mainly show how this novel system
can be applied in predictive classification. We show that it can be applied to
classification directly (Bayesian learning) or indirectly (feature construction for
gene-expression data).
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2 A Probabilistic Framework

In this section, we describe a probabilistic model which will constitute theoretical
foundations for our framework. Let n ∈ N . If v ∈ Rn then vi (1 ≤ i ≤ n) denotes
the i-th component of v. If I ⊆ [1; n] then vI = (vi1 , vi2 , . . . vi|I|) where ij ∈ I
(1 ≤ j ≤ |I|). To describe training examples as well as learned models, we use a
conventional first-order logic language L whose alphabet contains a distinguished
set of constants {r1, r2, . . . rn} and variables {R1, R2, . . . Rm} (n, m ∈ N). An r-
substitution ϑ is any substitution as long as it maps variables (other than) Ri

only to terms (other than) rj . For the largest k such that {R1/ri1 , R2/ri2 , . . . ,
Rk/rik

} ⊆ ϑ we denote I(ϑ) = (i1, i2, . . . ik). A (Herbrand) interpretation is a set
of ground atoms of L. I(H) (I(ϕ)) denotes the naturally ordered set of indexes
of all constants ri found in an interpretation H (L-formula ϕ).

Our training examples have both structure and real parameters. An exam-
ple may e.g. describe a measurement of the expression of several genes; here
the structure would describe functional relations between the genes and the
parameters would describe their measured expressions. The structure will be de-
scribed by an interpretation, in which the constants ri represent uninstantiated
real parameters. The parameter values will be determined by a real vector. For-
mally, an example is a pair (H, θ) where H is an interpretation, θ ∈ ΩH , and
ΩH ⊆ R|I(H)|. The pair (H, θ) may also be viewed as a non-Herbrand interpre-
tation of L, which is the same as H except for including R in its domain and
assigning θi to ri.

Examples are assumed to be sampled from the distribution

P (H, ΩH) =
∫

ΩH

fH (θ|H)P (H)dθ

which we want to learn. Here, P (H) is a discrete probability distribution on the
countable set of finite Herbrand interpretations of L. If L has functions other
than constants, we assume that P (H) is non-zero only for finite H . fH (θ|H)
are the conditional densities of the parameter values. The advantage of this
definition is that it cleanly splits the possible-world probability into the discrete
part P (H) which can be modeled by state-of-the-art approaches such as Markov
Logic Networks (MLN’s) [6], and the continuous conditional densities fH (θ|H)
which we elaborate here. In particular, we assume that f (θ|H) = N (μH ,ΣH),
i.e., θ is normally distributed with mean vector μH and covariance matrix ΣH .
The indexes H emphasize the dependence of the two parameters on the particular
Herbrand interpretation that is parameterized by θ.

To learn P (H, ΩH) from a sample E, we first discuss a strategy that sug-
gests itself readily. We could rely on existing methods (such as MLN’s) to learn
P (H) from the multi-set H of interpretations H occurring in E. Then, to obtain
f (θ|H) for each H ∈ H, we would estimate μH ,ΣH from the multi-set Ω̂H of pa-
rameter value vectors θ associated with H in the training sample E. The problem
of this approach is that, given a fixed size of the training sample, when H is large,
the multi-sets Ω̂H , H ∈ H will be small, and thus the estimates of μH ,ΣH will
be poor. For example, H may describe hundreds of metabolic pathway structures
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and each Ω̂H may contain a few vectors of expressions related to proteins acting
in H , and measured through costly experiments. For this kind of problem we
develop a solution here. We explore a method, in which parameters determining
P (H, ΩH) can be estimated using the entire training set. The type of P (H, ΩH)
is obviously not known; note that it is generally not a Gaussian mixture since
the θ in the normal densities fH (θ|H) have, in general, different dimensions for
different H . However, our strategy is to learn Gaussian features of the training
set. A Gaussian feature (feature, for short) is a L-formula ϕ, which for each
example (H, θ) extracts some components of θ into a vector u(ϕ), such that
u(ϕ) is approximately normally distributed across the training sample. For each
feature ϕ, μu(ϕ) and Σu(ϕ) are then estimated from the entire training sample.
A set of such learned features ϕ can be thought of as a constraint-based model
determining an approximation to P (H, ΩH). We define Gaussian features more
precisely in a moment after we introduce sample sets.

Given an example e = (H, θ) and a feature ϕ, the sample set of ϕ and e is
the multi-set S(ϕ, e) = {θI(ϑ)|H |= ϕϑ} where ϑ are r-substitutions grounding
all free variables1 in ϕ, and H |= ϕϑ denotes that ϕϑ is true under H .

Now we can formally define Gaussian features. Let ϕ be a L-formula, {ei} be
a set of examples drawn independently from a given distribution and let θi be
vectors, each drawn randomly from S(ϕ, ei). We say that ϕ is a Gaussian feature
if θi is multivariate-normally distributed2.

Given a non-empty sample set S(ϕ, e), we define the mean vector as

μ(ϕ, e) =
1

|S(ϕ, e)|
∑

θ∈S(ϕ,e)

θ (1)

and the Σ-matrix as

Σ(ϕ, e) =
1

|S(ϕ, e)|
∑

θ∈S(ϕ,e)

(θ − μ(ϕ, e)) (θ − μ(ϕ, e))T (2)

Finally, using the above, we define estimates over the entire training set {e1, e2,
. . . em}

μ̂ϕ =
1
m

m∑
i=1

μ(ϕ, ei) (3)

Σ̂ϕ =
1
m

m∑
i=1

(
Σ(ϕ, ei) + μ(ϕ, ei)μ(ϕ, ei)T

)− μ̂ϕμ̂T
ϕ (4)

Let us exemplify the concepts introduced so far using an example concerning
modelling of gene regulatory networks. Let the only Herbrand interpretations
1 Note that an interpretation H does not assign domain elements to variables in L.

The truth value of a closed formula (i.e., one where all variables are quantified) under
H does not depend on variable assignment. For a general formula though, it does
depend on the assignment to its free (unquantified) variables.

2 Note that whether a L-formula ϕ is a Gaussian feature depends also on the particular
distribution of the examples.



280 O. Kuželka et al.

H with non-zero P (H) be those composed of literals of the form g(Gi, Ri) and
expr(Gi, Gj) where g(Gi, Ri) is a predicate intended to capture expression level
Ri of a gene Gi and expr(Gi, Gj) is used to indicate that two genes are in re-
lation of expression (i.e. that the first gene Gi is a transcription factor of gene
Gj). For example, the next example e1 = (H1, θ1) corresponds to a measure-
ment on a sample set of genes containing three genes H1 = g(g1, r1), g(g2, r2),
g(g3, r3), expr(g1, g3), expr(g2, g3), θ1 = (0, 1, 0). Let us further suppose that
we have another example e2 = (H2, θ2) which corresponds to another set of
genes: H2 = g(g1, r1), g(g2, r2), g(g3, r3), g(g4, r4), expr(g1, g2), expr(g2, g3),
expr(g3, g4), θ2 = (1, 1, 0, 1).

Assume that the following two formulas have been identified as Gaussian
features ϕ1 = g(G1, R1) ∧ g(G2, R2) ∧ expr(G1, G2), ϕ2 = g(G1, R1) ∧ g(G2, R2)
∧ ¬expr(G1, G2) ∧ G1 
= G2. Their sample sets for both examples are S(ϕ1, e1)
= {(0, 0), (1, 0)}, S(ϕ2, e1) = {(0, 1), (1, 0)}, S(ϕ1, e2) = {(1, 1), (1, 0), (0, 1)}
S(ϕ2, e2) = {(1, 0), (0, 1), (1, 1), (1, 0), (1, 1), (1, 1), (0, 1), (1, 1), (1, 1)}. The
first element of S(ϕ1, e1) is obtained with ϑ = {G1/g1, G2/g3, R1/r1, R2/r3}.
Clearly, e1 |= ϕ1ϑ, and we have θI(ϑ) = (0, 1, 0)I(ϑ) = (0, 0) since I(ϑ) = (1, 3).
For each sample set, we may then calculate the corresponding mean vector and
Σ-matrix according to Eq’s 1 and 2 (e.g., μ(ϕ1, e1) = (0.5, 0)T , and μ(ϕ1, e2) =
(2/3, 2/3)T ). After that we can calculate the training-set-wide estimates for both
features by Eq’s 3 and 4. Then we can estimate multivariate normal distribution
e.g. of a set of genes described by H3 = g(g1, r1), g(g2, r2), g(g3, r3), expr(g1, g2),
expr(g2, g3), expr(g3, g1) on the basis of features ϕ1 and ϕ2 which gives us the
covariance matrix

ΣH3 =

⎡⎣ 1 ce ce

ce 1 ce

ce ce 1

⎤⎦
where the parameter ce corresponds to the correlation coefficient estimated in
feature ϕ1.

Importantly, using the training-set-wide estimates, we can derive estimates of
parameters μHn and ΣHn of the densities fHn (θ|Hn) for any relational structure
Hn consisting of the two types of literals3, even if Hn does not occur in the
training set. Of course, validity of such estimates highly depends on the question
whether the constructed features are truly Gaussian. Otherwise, a problem might
occur that the estimated matrix would not be positive definite, however, first it
almost did not happen in our experiments and second, if such a situation really
occurs, one can replace the defective estimated covariance by a nearest positive
definite matrix [10].

3 Parameter Estimation

In this section, we will be concerned with estimation of parameters μϕ and Σϕ.
Although the estimators are straightforward modifications of ordinary estimators
3 Note that one can use any number of different predicate symbols in this framework,

not just two.
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of means and covariances, their correctness does not follow immediately from the
correctness of these conventional estimators because the samples contained in
sample sets S(ϕ, ei) may be dependent. Namely, we will show that, for a Gaussian
feature ϕ,

μ̂ϕ =
1
m

m∑
i=1

μ(ϕ, ei)

is a consistent and unbiased estimator of the true mean μϕ and that

Σ̂ϕ =
1
m

m∑
i=1

(
Σ(ϕ, ei) + μ(ϕ, ei)μ(ϕ, ei)T

)− μ̂ϕμ̂T
ϕ

is a consistent asymptotically unbiased estimator of the true covariance matrix
Σϕ. In order to show this, we will need the next lemma.

Lemma 1. Let E be a countable set of estimators converging in mean to the
true value such that for each Êi ∈ E, Êj ∈ E it holds EÊi

m = EÊj
m (where Êj

m

denotes the estimate of the estimator Êj using m-samples). Let Ei ⊆ E be finite
sets. Then

lim
m→∞Pr

⎛⎝|E∗ − 1
|Em|

∑
Êi∈Em

Êi
m| > ε

⎞⎠ = 0

where ε > 0 and E∗ is the true value (i.e. the combination of the estimators is
consistent).

First, we will rewrite the formula for μ̂ϕ as an average of a (large) number of
consistent estimators converging in mean and after that we will apply Lemma
1. Let us impose a random total ordering on the elements of the sample sets
S(ϕ, ei) = {s1, . . . , smi} so that we could index the elements of these sets. Next,
let us have

X = {1, 2, . . . , |S(F, e1)|} × {1, 2, . . . , |S(ϕ, e2)|} × · · · × {1, 2, . . . , |S(ϕ, em)|}
Then the formula for μ̂ϕ can be rewritten as follows:

μ̂ϕ =
1

|X |
∑

(i1,i2,...,im)∈X

1
m

(s1,i1 + s2,i2 + · · · + sm,im)

where sj,k is a k-th element of the sample set S(ϕ, ej). Now, each 1
m (s1,i1+ s2,i2+

· · ·+ sm,im) is an unbiased consistent estimator converging in mean according
to the definition of Gaussian features (it is the ordinary estimator of mean).
Now, we may apply Lemma 1 and infer that μ̂ϕ also converges in probability
to μϕ. The unbiasedness of the estimator then follows from basic properties of
expectation.

The argument demonstrating consistency and asymptotic unbiasedness of the
covariance estimator goes along similar lines as the argument for the mean esti-
mator. First, we rewrite the sum
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Σ̂ϕ =
1
m

m∑
i=1

(
Σ(ϕ, ei) + μ(ϕ, ei)μ(ϕ, ei)T

)− μ̂ϕμ̂T
ϕ =

=
1
m

m∑
i=1

1
|S(ϕ, ei)|

∑
θj∈S(ϕ,ei)

(
θj − μ̂ϕ

) (
θj − μ̂ϕ

)T

as a sum of asymptotically unbiased consistent estimators as follows:

Σ̂ϕ =
1

|X |
∑

(i1,...,im)∈X

1
m

(
(s1,i1 − μ̂) (s1,i1 − μ̂)T + . . .

. . . +
(
sn,im − μ̂ϕ

) (
sm,im − μ̂ϕ

)T
)

where sj,k is a k-th element of the sample set S(ϕ, ej). Now, each sum

1
m

(
(s1,i1 − μ̂) (s1,i1 − μ̂)T + · · · + (sm,im − μ̂)

(
sm,im − μ̂ϕ

)T
)

is an asymptotically unbiased and consistent estimator converging in mean and
the average of these estimators is thus asymptotically unbiased and consistent
(again by basic properties of expectation and by Lemma 1).

In general, the problem of estimating μ(ϕ, ei) and Σ(ϕ, ei) are NP-hard prob-
lems (they subsume the well-known NP-complete problem of θ-subsumption).
However, they are tractable for a class of features, conjunctive tree-like features
for which we have devised efficient algorithms (see Appendix for details).

4 Structure Search

In this section we briefly describe methods for constructing a set of features
that give rise to models capable to appropriately model a given set of examples.
The methods that we describe are specialized for working with tree-like features
because estimation of the parameters is tractable for them as we have men-
tioned in the previous section. The feature construction algorithm for tree-like
features is based on the feature-construction algorithm from [16]. It shares most
of the favourable properties of the original algorithm like detection of redundant
features. The output of the feature construction algorithm is a (possibly quite
large) set of features and their parameters so we need to select a subset of these
features which would provide us with good models.

First, let us describe how a mean vector and a covariance matrix for a re-
lational structure (i.e. a Herbrand interpretation) R is computed using a given
set of features. We assume that we have a set of features ϕi ∈ F which have
been identified as Gaussian, their respective parameters μϕi and Σϕi and a rela-
tional structure H (Herbrand interpretation) for which we want to construct the
model. Furthermore, we assume that each distinguished constant ri contained
in H is covered by some feature ϕ ∈ F , i.e. that for each ri there is a feature
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ϕ ∈ F and a r-substitution ϑ such that ri is contained in ϕϑ. Then the covari-
ance matrix ΣH can be constructed as follows. For each ϕ ∈ F we compute the
set Θϕ of all substitutions ϑ such that H |= ϕϑ. After that, for each feature ϕ
(with parameters μϕ and Σϕ) and each r-substitution ϑ ∈ Θϕ, we set the entries
(μH)i = (μϕ)I (ΣH)i,j = (Σϕ)I,J where {RI/ri, RJ/rj} ⊆ ϑ. If the features are
perfectly Gaussian and if the parameters μϕ and Σϕ are known accurately, there
is no problem. However, in practice, we may encounter situations where two fea-
tures will suggest different values for some entries (be it for the reason that the
features are not perfectly Gaussian or that the parameters were estimated from
small samples). In such situations we will use an average of the values suggested
by different features.

Having explained how μH and ΣH are constructed using a set of Gaussian
features, we can explain a simple procedure for construction of the Gaussian
feature set. On the input, we get a set of examples ei = (Hi, θi). The procedure
starts by constructing a large set of non-redundant features exhaustively on a
subset of the training data. Then, in the second step, a subset of features is
selected. This is done by a greedy search algorithm optimizing a score function
of the models on a different subset of training data not used previously for feature
construction and parameter estimation.

5 A Straightforward Predictive Classification Method

A straightforward application of the Gaussian-logic framework is Bayesian classi-
fication. We use the algorithms described in the previous sections of this paper to
learn a Gaussian-logic model for positive examples and a Gaussian-logic model for
negative examples and then we use these models to classify examples by compar-
ing likelihood ratios of the two models with a threshold. In this section we describe
a case study involving an important problem from biology - prediction of DNA-
binding propensity of proteins. Proteins which possess the ability to bind to DNA
play a vital role in the biological processing of genetic information like DNA tran-
scription, replication, maintenance and the regulation of gene expression. Several
computational approaches have been proposed for the prediction of DNA-binding
function from protein structure. It has been shown that electrostatic properties
of proteins such as total charge, dipole moment and quadrupole moment or prop-
erties of charged patches located on proteins’ surfaces are good features for pre-
dictive classification (e.g. [1], [3], [18], [20]). Szilágyi and Skolnick [19] created a
logistic regression classifier based on 10 features including electrostatic dipole mo-
ment, proportions of charged amino acids Arg, Lys and Asp, spatial asymmetries
of Arg and five more features not related to charged amino-acids: proportion of
Ala and Gly and spatial asymmetry of Gly, Asn and Ser.

Here, we use Gaussian logic to create a model for capturing distributions of
positively charged amino acids in protein sequences. Clearly, the distinguish-
ing electrostatic properties of DNA-binding proteins, which have been observed
in 3D structures of proteins in the previous works, should exhibit themselves
also in the amino-acid protein sequences (possibly, not in a straightforward
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manner because the 3D structure is a result of complicated folding of a pro-
tein’s sequence). We split each protein into consecutive non-overlapping win-
dows, each containing lw amino acids (possibly except for the last window which
may contain less amino acids). For each window of a protein P we compute the
value a+

i /lw where a+
i is the number of positively charged amino-acids in the

window i. Then for each protein P we construct an example eP = (HP , θP )
where θP =

(
a+
1 /lw, a+

2 /lw, . . . , a+
nP

/lw
)

and HP = w(1, r1), next(1, 2), . . . ,
next(nP − 1, nP ), w(nP , rP ). We constructed only one feature Fnon = w(A, R1)
for non-DNA-binding proteins since we do not expect this class of proteins to be
very homogeneous. For DNA-binding proteins, we constructed a more complex
model by selecting a set of features using a greedy search algorithm. The greedy
search algorithm optimized classification error on training data. Classification
was performed by comparing, for a tested protein, the likelihood-ratio of the
two models (DNA-binding and non-DNA-binding) with a threshold selected on
the training data. We estimated the accuracy of this method using 10-fold cross-
validation (always learning parameters and structure of the models and selecting
the threshold and window length lw using only the data from training folds) on a
dataset containing 138 DNA-binding proteins (PD138 [19]) and 110 non-DNA-
binding proteins (NB110 [1]). The estimated accuracies (Gaussian Logic) are
shown in Table 1. The method performs similarly well as the method of Szilagyi
et al. [19] (in fact, it outperforms it slightly but the difference is rather negligible)
but uses much less information. Next, we were interested in the question whether
the machinery of Gaussian logic actually helped improve the predictive accuracy
in our experiments or whether we could obtain the same or better results using
only the very simple feature F = w(A, R1) also to model the DNA-binding pro-
teins, thus ignoring any correlation between charges of different parts of a protein
(Baseline Gaussian Logic in Table 1). Indeed, the machinery of Gaussian Logic
appears to be helpful from these results.

Table 1. Accuracies estimated by 10-fold cross-validation on PD138/NB110

Method Accuracy [%]

Szilágyi et al. 81.4
Baseline Gaussian logic 78.7
Gaussian logic 81.9

It is interesting how well the Gaussian-logic model performed considering the
fact that it used so little information (it completely ignored types of positively
charged amino acids and it also ignored negative amino acids). The model that
we presented here can be easily extended, e.g. by adding secondary-structure
information. The splitting into consecutive windows used here is rather artificial
and it would be more natural to split the sequence into windows correspond-
ing to secondary-structure units (helices, sheets, coils). The features could then
distinguish between consecutive windows corresponding to different secondary-
structure units.
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6 Feature Construction for Predictive Classification

In this section we present another application of the Gaussian-logic framework
for predictive classification. We show how to use it to search for novel definitions
of gene sets with high discriminative ability. This is useful in set-level classifi-
cation methods for prediction from gene-expression data [11]. Set-level methods
are based on aggregating values of gene expressions contained in pre-defined gene
sets and then using these aggregated values as features for classification. Here,
we, first, describe the problem and available data and then we explain how we
can construct meaningful novel gene sets using Gaussian Logic.

The datasets contain class-labeled gene-samples corresponding to measure-
ments of activities of thousands of genes. Typically, the datasets contain only
tens of measured samples. In addition to this raw measured data, we also have re-
lational description of some biological pathways from publicly available database
KEGG [14]. Each KEGG pathway is a description of some biological process (a
metabolic reaction, a signalling process etc.). It contains a set of genes anno-
tated by relational description which contains relations among genes such as
compound, phosphorylation, activation, expression, repression etc. The relations
do not necessarily refer to the processes involving the genes per se but they may
refer to relations among the products of these genes. For example, the relation
phosphorylation between two genes A, B is used to indicate that a protein coded
by the gene A adds phosphate group(s) to a protein coded by the gene B.

We constructed examples (HS , θS) from the gene-expression samples and
KEGG pathways as follows. For each gene gi, we introduced a logical atom
g(gi, ri) to capture its expression level. Then we added all relations extracted
from KEGG as logical atoms relation(gi, gj , relationType). We also added a
numerical indicator of class-label to each example as a logical atom label(±1)
where +1 indicates a positive example and −1 a negative example. Finally, for
each gene-expression sample S we constructed the vector of the gene-expression
levels θS . Using the feature construction algorithm outlined in Section 4 we con-
structed a large set of tree-like features4 involving exactly one atom label(L), at
least one atom g(Gi, Ri) and relations expression, repression, activation, inhi-
bition, phosphorylation, dephosphorylation, state and binding/association. After
that we had to select a subset of these features. Clearly, the aggregated values
of meaningful gene sets should correlate with the class-label. A very often used
aggregation method in set-level classification methods is the average. Therefore
what we need to do is to select features based on the correlation of the average
expression of the genes assumed by the feature and the class-label but this is
easy since we have the estimate of the features’ covariance matrices Σϕ and com-
puting the average expression of the assumed genes is just an affine transform.
It suffices to extract correlation from the covariance matrix given as BΣϕBT

where B is a matrix representing the averaging. The absolute values of correla-
tions give us means to heuristically order the features. Based on this ordering

4 We have used a subset of 50 pathways from KEGG to keep the memory consumption
of the feature-construction algorithm under 1GB.
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Table 2. Accuracies of set-level-based classifiers with Gaussian-logic features and FCF-
based features, estimated by leave-one-out cross-validation

Dataset Gaussian logic FCF

Collitis [4] 80.0 89.4
Pleural Mesothieloma [9] 94.4 92.6
Parkinson 1 [17] 52.7 54.5
Parkinson 2 [17] 66.7 63.9
Parkinson 3 [17] 62.7 77.1
Pheochromocytoma [5] 64.0 56.0
Prostate cancer [2] 85.0 80.0
Squamus cell carcinoma [15] 95.5 88.6
Testicular seminoma [8] 58.3 61.1

Wins 5 4

we found a collection of gene sets given by the features (ignoring gene sets which
contained only genes contained in a union of already constructed gene sets).

We have constructed the features using a gene-expression dataset from [7]
which we did not use in the subsequent predictive classification experiments. A
feature defining gene sets which exhibited one of the strongest correlations with
the class-label was the following:

F = label(R1) ∧ g(A, R2) ∧ relation(A, B, phosphorylation)∧
g(B, R3) ∧ relation(A, C, phosphorylation) ∧ g(C, R4)

We have compared gene sets constructed by the outlined procedure with gene sets
based on so called fully-coupled fluxes (FCFs) which are biologically-motivated
gene sets used previously in the context of set-level classification [11]. We con-
structed the same number of gene sets for our features as was the number of FCFs.
The accuracies of an SVM classifier (estimated by leave-one-out cross-validation)
are shown in Table 2. We can notice that the gene sets constructed using our novel
method performed equally well as the gene sets based on fully-coupled fluxes. In-
terestingly, our gene sets contained about half the number of genes as compared
to FCFs and despite that they were able to perform equally well.

7 Conclusions and Future Work

In this paper we have introduced a novel relational learning system capable to
work efficiently with combinations of relational and numerical data. The exper-
iments with real-world gene-expression and proteomics data gave us some very
promising results. Furthermore, there are other possible applications of Gaussian
logic in predictive classification settings which were not discussed in this paper.
For example, finding patterns that generally correspond to highly correlated sets
(not necessarily correlated with the class) of genes may have applications with
group-lasso based classification approaches [12].
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Appendix

In this appendix, we describe technical details concerning estimation of μ-vectors
and Σ-matrices.

Proof of Lemma 1

Let us suppose, for contradiction, that the assumptions of the lemma are satis-
fied, δ > 0 and that

δ = lim
n→∞Pr

⎛⎝|E∗ − 1
|En|

∑
Êi∈En

Êi
n| > ε

⎞⎠ ≤ lim
n→∞Pr

⎛⎝ 1
|En|

∑
Êi∈En

|E∗ − Êi
n| > ε

⎞⎠
From this we have

lim
n→∞E

⎛⎝ 1
|En|

∑
Êi∈En

|E∗ − Êi
n|
⎞⎠ ≥ δ · ε > 0

but

lim
n→∞E

⎛⎝ 1
|En|

∑
Êi∈En

|E∗ − Êi
n|
⎞⎠ = lim

n→∞

⎛⎝ 1
|En|

∑
Êi∈En

E|E∗ − Êi
n|
⎞⎠ =

= lim
n→∞

(
1

|En| · |En| · E|E∗ − Êi
n|
)

= lim
n→∞

(
E|E∗ − Êi

n|
)

= 0

(where the last equality results from the convergence in mean of the individual
estimators) which is a contradiction. The only remaining possibility would be
that the limit does not exist but then we can select a subsequence of Ei which
has a non-zero limit and again derive the contradiction as before. �


Parameter Estimation

In this section we describe an efficient algorithm for estimation of μ-vectors and
Σ-matrices (polynomial in the combined size of a feature and an example) for
the class of tree-like conjunctive features. Algorithms for computing quantities
related to μ(ϕ, ei) for tree-like features have already been described in literature
on relational aggregation [13]. However, there has been no prior work concerned
with tractable computation of Σ(ϕ, ei) or any similar quantity.
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Definition 1 (Tree-like conjunction). A first-order conjunction without
quantifications C is tree-like if the iteration of the following rules on C pro-
duces the empty conjunction: (i) Remove an atom which contains fewer than 2
variables. (ii) Remove a variable which is contained in at most one atom.

Intuitively, a tree-like conjunction can be imagined as a tree with the exception
that whereas trees are graphs, conjunctions correspond in general to hyper-
graphs.

We start by some auxiliary definitions. Let ϕ be a tree-like feature. Let us
suppose that s1, s2, . . . , sk is a sequence of steps of the reduction procedure from
Definition 1 which produces an empty feature from ϕ. Let � be an order on the
atoms of ϕ such that if an atom a1 disappeared before an atom a2 during the
reduction process then a1 � a2. Then we say that � is a topological ordering of
ϕ’s atoms. Let A ⊆ ϕ be a maximal set of atoms having a variable v in common.
We say that a ∈ A is a parent of atoms from A \ {a} if for each x ∈ A \ {a} it
holds x � a (we also say that the atoms in A \ {a} are a’s children). An atom a
is called root if it has no parents w.r.t. �, it is called a leaf if it has no children
w.r.t. �.

We will use (C, v) ∈ Children(ϕ, �) for the set of all features ϕC with roots
equal to children of ϕ (w.r.t. �) together with the respective shared variables v.
Similarly, we will use C ∈ Children(ϕ, v, �) for the set of all features ϕC with
roots equal to children of ϕ (w.r.t. �) sharing the variable v with ϕ’s root. We will
also use argi(a) to identify the term appearing in the i-th argument of a. Next,
to denote the set of all arguments of a = atom(a1, a2, . . . , ak) and their positions
in the atom we will use (ai, i) ∈ args(a). Finally, we define the input variable of
a feature ϕ contained in some bigger feature ψ (denoted by inp(ϕ, ψ, �)) as the
variable which is shared by root(ϕ, �) with its parent in ψ. When a is a ground
atom such that root(ϕ, �)θ = a then we define input operator inp(a, ϕ, ψ, �)
which will give us inp(ϕ, ψ, �)θ (i.e. the term from the argument corresponding
to the input variable in ϕ). If ϕ = ψ then inp(a, ϕ, ψ, �) = inp(ϕ, ψ, �) = ∅5.
We say that ψ is a sub-feature (of ϕ) if ψ ⊆ ϕ and ψ and ϕ\ψ are both connected
features. The parameter estimation algorithm will use two auxiliary algorithms
for computing so-called domains and term-domains of features which are defined
as follows.

Definition 2 (Domain, term-domain). Let e be an example. Let ϕ be a tree-
like feature, � be a topological ordering of ϕ’s atoms. Then we say that a set of
atoms A ⊆ e is domain of ϕ w.r.t. e (denoted by A = D(ϕ, e, �)) if A contains
all ground atoms a = root(ϕ, �)θ such that e |= ϕθ. If ϕ is contained in a
bigger feature ψ then we can also define its term-domain as DT (ϕ, ψ, e, �) =
{inp(ϕ, ψ, �)θ|e |= ϕθ}.
Let e = a(a, b), a(a, c), b(b) be an example and let ϕ = a(X, Y ), b(Y ) and
ψ = a(X, Y ), a(X, Z), b(Y ) be features. Let b(Y ) � a(X, Y ). Then D(ϕ, e, �) =
{a(a, b)} and DT (ϕ, ψ, e, �) = {a}.
5 Here, the empty set is used as a dummy input. It does not mean that the returned

value of the input functions would be a set in general.
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Algorithms for computing domains and term-domains have been described in
[16] and they also correspond to well-known algorithms for answering acyclic
conjunctive queries [22]. These algorithms run in time polynomial in |ϕ| and
|e|. We note that these algorithms for computing domains of tree-like features
compute not only domains corresponding to the roots of the given features but
also domains corresponding to all the sub-features during one pass over a given
feature. In the pseudocode of the parameter-estimation algorithms we will call
the procedure for computing domains using D(ϕ, e, �, T ) where ϕ is the fea-
ture and e is the example for which we want to compute the domain, � is a
topological ordering of ϕ’s atoms and T is a table in which domains of all ϕ’s
sub-features should be stored. Similarly, we will call the procedure for comput-
ing term-domains using DT (ϕ, ψ, e, �, T ) where again ϕ and e are the feature
and the example for which we want to compute the term-domain, ψ is a feature
containing ϕ (recall the definition of term-domain), � is a topological order-
ing of ψ’s atoms and T is a table in which the computed term-domains of ϕ’s
sub-features should be stored.

Now, we can proceed further to computation of the parameters μ(ϕ, e) and
Σ(ϕ, e). By sample parameters we will mean a 5-tuple (x, μ̂, Σ̂, n, γ). Here x can
be either an empty set, an atom or a term, μ is a vector, Σ is a matrix and
n is a natural number. The parameter γ is an ordered list of the distinguished
variables Ri ∈ vars(ϕ). Next, we define a concatenation operation for combining
sample parameters.

Definition 3 (Concatenation operator). Let A = (x, μA,ΣA, nA, γA) and
B = (y, μB,ΣB, nB, γB) be sample parameters. Then we define A ⊗ B as

A ⊗ B =
(
x,
[
μT

A μT
B

]T
,ΣAB, nA · nB, γA ∪ γB

)
where γA ∪γB denotes concatenation of the lists γA and γB and ΣAB is a block-
diagonal matrix

ΣAB =
[
ΣA 0
0 ΣB

]
Definition 4 (Combination operator). Let ϕ ⊆ ψ be features and � a topo-
logical ordering of ψ’s atoms. Let γ be a list of distinguished variables Ri ∈
vars(ϕ). Let A = (x, μA,ΣA, nA, γ) and B = (y, μB,ΣB, nB, γ) be sample pa-
rameters where x and y are logic atoms such that inp(x, ϕ, ψ, �) = inp(y, ϕ, ψ, �).
Then we define A⊕ϕ,ψ

� B as A⊕ϕ,ψ
� B = (inp(x, ϕ, ψ, �), μAB,ΣAB, nA +nB, γ)

where μAB = 1
nA+nB

(nA · μA + nB · μB) and

ΣA,B =
1

nA + nB

(
nA · (ΣA + μA · μT

A) + nB · (ΣB + μB · μT
B)
)− μAB · μT

AB

Let us note that ⊕ϕ,ψ
� is a commutative and associative operation which is also

implicitly used in the following definition.

Definition 5 (Combination operator). Let ϕ ⊆ ψ be features and � a topo-
logical ordering of ϕ’s atoms. Next, let γ be a list of distinguished variables Ri ∈
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Algorithm 1. An algorithm for computing μ(ϕ, e) and Σ(ϕ, e) for connected ϕ
Procedure: μσ(ϕ, e = (H, θ), �)

1: T ← []
2: D(ϕ, e, �, T ) /* This fills values into the table T */
3: return

⊕ϕ,ϕ
� μσ′(ϕ, ϕ, e, �, T )

Procedure: μσ′(ϕ, ψ, e = (H, θ), �, T )

1: SP ← [] /* SP is an associative array of sample parameters */
2: Dϕ ← T [ϕ] /* Dϕ is domain of ϕ */
3: for ∀a ∈ Dϕ do
4: SP [a] ← {a, θI(a), |I(a)|×|I(a)| zero matrix, 1,Ra} /* where Ra is a list of the distinguished

variables contained in root(ϕ) */
5: end for
6: for (ϕC , v) ∈ Children(ϕ, �) do

7: SPϕC
← ⊕ϕC,ϕ

� μσ′(ϕC , ϕ, e, �)

8: for ∀a ∈ Dϕ do
9: SP [a] ← SP [a]

⊗
SPϕC

[vϑ] where root(ϕ,�)ϑ = a

10: end for
11: end for
12: return SP

vars(ϕ). Let X = {(x1, μ1,Σ1, n1, γ), . . . , (xk, μk,Σk, nk, γ)}. Next, let X [t] de-
note the set of all sample parameters (x, . . . ) ∈ X for which inp(x, ϕ, ψ, �) = t.
Then

⊕ϕ,ψ
� X is defined as follows:

ϕ,ψ⊕
�

X = {(y1, μy1 ,Σy1 , ny1, γ), . . . , (ym, μym ,Σym , nym , γ)}

where (yi, μyi ,Σyi , nyi , γ) = x1⊕ϕ,ψ
� x2⊕ϕ,ψ

� · · ·⊕ϕ,ψ
� xo for {x1, . . . , xo} = X [yi].

The basic ideas underlying Algorithm 1 are summarized by the next two obser-
vations.

Observation 1. Let ϕ = ψ ∪C1 ∪ · · · ∪Cn be a feature where each Ci is a sub-
feature of ϕ and ψ ∩ Ci = ∅ and Ci ∩ Cj = ∅ for i 
= j. Let ϑ be a substitution
affecting only variables v ∈ vars(ψ) and guaranteeing that ψϑ will be ground and
it will hold e |= ϕϑ where e = (H, θ) is an example. Then μ(ϕϑ, e) and Σ(ϕϑ, e)
and the number of samples m = |S(ϕϑ, e)| are given by the sample parameters
A (up to reordering of random variables) computed as

A = (ψϑ, θI(ϑ), n × n zero matrix, 1,Rψ) ⊗ . . .
⊗μσ(C1ϑ, e, �ϑ) ⊗ μσ(C2ϑ, e, �ϑ) ⊗ · · · ⊗ μσ(Ckϑ, e, �ϑ)

(where n = |I(ψ)| and Rψ is a list of the distinguished variables Ri ∈ vars(ψ))
provided that μσ(Ciϑ, e, �ϑ) are correct sample parameters.

Let us look more closely at what μσ(Ciϑ, e, �ϑ) is. First, we can notice that
Ciϑ is a sub-feature of ϕ which differs from Ci only by the fact that it has
its input variable (inp(Ci, ϕ, �)) grounded by ϑ. Therefore μσ(Ciϑ, e, �ϑ) can
be also obtained from the set

⊕Ci,ϕ
� μσ′(Ci, ϕ, e, �, T ) (where the argument T

is a table containing pre-computed domains). The next observation, in turn,
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shows that what
⊕Ci,ϕ

� μσ′(Ci, ϕ, e, �, T ) contains are the sample parameters
corresponding to μ(Ciϑ, e), Σ(Ciϑ, e) and the number of samples |S(Ciϑ, e)| for
all substitutions ϑ grounding only the input argument of Ci such that e |= Ciϑ.

Observation 2. Let ϕ ⊆ ψ be features and let e = (H, θ) be an example. Let
ϑ : inp(ϕ, ψ, �) → DT (ϕ, ψ, e, �) be a substitution. Then μ(ϕϑ, e), Σ(ϕϑ, e),
nϕϑ = |S(ϕϑ, e)| are contained in

(inp(ϕ, ψ, �)ϑ, μ(ϕϑ, e),Σ(ϕϑ, e), n, γ) ∈
ϕ,ψ⊕
�

μσ′(ϕ, ψ, e, �, T )

(where T is a table with pre-computed domains of sub-features of ϕ) provided
that μσ′(ϕ, ψ, e, �, T ) are correct sample parameters.
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Abstract. Item reviews are a valuable source of information for poten-
tial buyers, who are looking for information on a product’s attributes
before making a purchase decision. This search of information is of-
ten hindered by overwhelming numbers of available reviews, as well as
low-quality and noisy content. While a significant amount of research
has been devoted to filtering and organizing review corpora toward the
benefit of the buyers, a crucial part of the reviewing process has been
overlooked: reviewer satisfaction. As in every content-based system, the
content-generators, in this case the reviewers, serve as the driving force.
Therefore, keeping the reviewers satisfied and motivated to continue sub-
mitting high-quality content is essential. In this paper, we propose a
system that helps potential buyers by focusing on high-quality and in-
formative reviews, while keeping reviewers content and motivated.

1 Introduction

Item reviews are among the most prominent instances of opinionated text found
on the Web. By authoring a review, a reviewer can share his experience and
express opinions on the advantages and disadvantages of an item’s features. The
accumulated corpus of reviews can then serve as a valuable source of information
for interested users and potential buyers. Due to their immense popularity and
important role in the modern e-commerce model, reviews have been the focus
of numerous interesting research problems. The challenges that emerge in a real
review-hosting system can be grouped in the following two categories:

Volume and Redundancy: Users are often faced with an overwhelming vol-
ume of reviews. As of April 2011, Amazon.com hosts almost 21,000 reviews on
the popular Kindle reading device. Clearly, it is impractical for a user to go
through hundreds, or even thousands, of reviews in order to obtain the infor-
mation she is looking for. Moreover, a large portion of the reviews are often
redundant, expressing the same opinions on the same attributes. A number of
approaches have been proposed to address these challenges, mainly focusing on
summarization [6,21,12] and search-based methods [11].

Review Quality: As is the case in every system that hosts user-generated
content, the quality of the submitted information is a primary issue. Several
� This work was done while the author was visiting Boston University.
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notions of review quality have been proposed and evaluated in the relevant lit-
erature [12,11,14]. The quality of a review is based on the volume and validity
of the information it conveys, as well as its readability and structural features.

While significant contributions have been made toward addressing these chal-
lenges, we identify two major parts of the review-management process that are
still lacking: (a) review presentation and visibility and (b) reviewer motivation
and utilization. Next, we discuss these two in more detail.

Review Presentation: In the context of a review-hosting website, the review
presentation component determines the visibility of each review in terms of both
time and placement on the site’s interface. Since the attention span of the users
is limited, decisions about which reviews to show can have a major impact on
their browsing experience and overall satisfaction.

In major contemporary review portals, reviews are usually sorted based on
the date of submission. This approach clearly does not address any of the chal-
lenges discussed above. Alternative sorting methods are based on user feedback.
On sites like Amazon.com and Yelp.com users can rate the helpfulness of a re-
view. These ratings can be then used for ranking purposes. Further, reviewers
inherit the ratings of their authored reviews, providing a measure of expertise.
This information can then be considered for future reviews. Recently, Yelp.com
has introduced a method called YelpSort. The website claims that this measure
evaluates reviews based on “recency, ratings and other review quality factors”.
Even though this is a step toward the right direction, no details on the actual
computation are provided. While user ratings can be a useful source of infor-
mation, they also suffer from significant drawbacks [12]. For example, reviews
that already have many votes are more likely to attract even more, since they are
granted increased visibility (e.g. ranked higher) by the system. In addition, older
reviews have more time to accumulate helpfulness votes and tend to overwhelm
new (and potentially superior) reviews.

Reviewer Motivation and Utilization: In existing review-hosting portals,
reviewers have no interaction with the system. This leads to two significant
shortcomings:

1. Underutilization of expertise: Writing a review is an expression of the re-
viewer’s motivation to comment on a particular subset of the item’s at-
tributes. However, even though the same person may be perfectly capable to
comment on more attributes, he may refrain from doing so due to negligence
or lack of motivation. In other words, existing systems fail to get the most
out of the reviewer and thus deprive potential customers from informative
content.

2. Lack of motivation: Fully understanding the process that motivates certain
users to review certain items is a non-trivial task. Possible causes include a
genuine desire to help others, frustration or excitement due to the reviewed
item, the desire to influence others and gain acknowledgment via positive
ratings, or simply the need to express one’s self. In any case, it is safe to

Amazon.com
Yelp.com
Yelp.com
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say that, when a user submits a review on a public website, he does so in
anticipation that his opinions will be read by others. Hence, visibility is the
primary means that the system can utilize in order to motivate reviewers.
For this to work in practice, there needs to be a clear connection between the
usefulness of the submitted review and the visibility it is granted. However,
current systems either completely disregard the satisfaction of the reviewers,
or try to indirectly motivate them with the promise of user-submitted help-
fulness votes. We have already discussed the biases that ail such mechanisms
earlier in the paper.

1.1 Contribution

In this paper, we present practical and theoretically grounded solutions for ad-
dressing the above shortcomings. More specifically, we present a framework that
keeps the users informed and the reviewers motivated to contribute high-quality
content. Our system guarantees that users are presented with a compact set of
high-quality reviews that cover all the attributes of the item of their interest.
We also guarantee reviewer satisfaction by proposing a mechanism which peri-
odically shuffles the existing set of reviews, instead of statically ranking them
with respect to certain criteria. The design of the shuffling mechanism is such
that the chances of the review to be brought into the spotlight are proportional
to its usefulness to the user. Finally, we present a mechanism for suggesting to
reviewers how to extend their reviews in order to gain more visibility.

1.2 Roadmap

The rest of the paper is organized as follows: we review the related work in
Section 2. After a brief introduction of our notation in Section 3, we present our
methods for review shuffling and user motivation and utilization in Sections 4
and 5. In Section 6 we provide a set of experiments that demonstrate the practical
utility of our approach. We conclude the paper in Section 7.

2 Related Work

Our work is the first to propose a complete review management system that
balances the satisfaction of customers, as well as reviewers. Nonetheless, our
methodology has ties to areas relevant to the domain of item reviews.

Review Quality: The problem of formalizing and evaluating the quality of a
review has attracted considerable attention. A large volume of work has been
devoted to evaluating the helpfulness of reviews [14,20], typically formulating
the problem as one of classification or regression. Jindal and Liu [8] focus on
the detection of spam (e.g. duplicate reviews). Liu and Cao [12], formulate the
problem as a binary classification task, assigning a quality rating of “high” or
“low” to reviews. In recent work, Lu et al. [13] discuss how mining information
from social networks can be used toward the evaluation of review quality. A
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different notion of quality deals with the readability of a review, as defined by as
its structural characteristics. The Flesch Reading EASE [9] is indicative of this
line of work. Although our framework includes a component for the evaluation
of review quality, our ultimate goal is to build a system that balances user and
reviewer satisfaction.

Attribute Extraction and Opinion Mining: Given a review corpus on an
item, opinion mining [4,7,16,17], looks for the attributes of the item that are
evaluated in each review, as well as the respective opinions expressed on each
attribute. For our experiments, we implemented the technique proposed by Hu
and Liu [7] for attribute extraction.

Review Management: The accumulation of overwhelming volumes of online
reviews has created the need for methods to manage and present such data. A
relevant field is that of opinion summarization [10,12,21], in which the review
corpus is processed to produce a statistical summary with information on the
distribution of positive and negative opinions on the attributes of the item. Other
relevant approaches [11,22] propose methods for finding a compact and infor-
mative set of reviews. Finally, the Information Systems community has explored
the problem of review placement and its effect on customers [18]. Contrary to
our own approach, none of these methods take into consideration the motivation
and satisfaction of the reviewers. We present a framework that helps customers
deal with the large number of reviews, while keeping reviewers motivated to
submit high-quality and informative content.

3 Notation

We use A to denote the set of attributes associated with the given item. We also
use R to denote the set of all reviews that have been written for the item. We
assume that |A| = m and |R| = n. Every review r ∈ R is represented as a subset
of the item’s attributes; that is, r ⊆ A. We assume that every reviewer writes a
single review for each item, and therefore every review r uniquely identifies its
author.

4 Spotlight Shuffling

In this section, we present our method for selecting the set of reviews to be
shown to the users. We call the set of reviews shown at any point in time to the
visitors of the host site, the spotlight set. If R is the set of all the reviews of an
item, then the spotlight set S is a subset of the reviews from R (i.e., S ⊆ R).
Our mechanism for review selection is based on creating different spotlight sets
at different points in time. Therefore, the output of our method is a sequence
of N spotlight sets, S = {S1, S2, . . . , SN}. Ideally, we would like the following
properties for the spotlight sequence.
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– Attribute coverage: each spotlight set needs to cover all the attributes of
the item, in order to provide a thorough presentation to the interested user.

– Review Quality: each spotlight set has to include only high-quality reviews,
that are both informative and easy to read.

– Fair spotlight share: each eligible review needs to have a fair chance of
inclusion in the spotlight sequence, according to the information it conveys.

– Compactness: every spotlight set of S needs to be compact, so that users
can read through it in a reasonable amount of time.

In the remaining of this section, we identify concepts and methods that will
allow us to produce spotlight sequences that satisfy the above requirements.

4.1 Attribute Coverage

We first define the notion of the cover, which is central to our analysis:

Definition 1. Given the corpus of reviews R on an item with attributes A, a
a subset of the reviews R′ ⊆ R is a cover of the item if every attribute of A is
evaluated in at least one of the reviews in R′. That is, ∪r∈R′r = A.

In order to satisfy the attribute-coverage requirement we require every set in the
spotlight sequence to be a cover. In fact, for the rest of the discussion, we will
use the terms spotlight set and cover interchangeably.

4.2 Review Quality

The second requirement demands that all the spotlight sets in the sequence
consist only of high-quality reviews. That is, if q(r) is a numeric measure of
the quality of the review r, then we say that a spotlight set S is high-quality
if for every r ∈ S q(r) > τ . Here, τ is a minimum threshold imposed on the
quality of the reviews in S. The next step is to find an intuitive definition that
accurately captures the quality of a review. Our methodology is compatible
with any approach for review-quality evaluation. We refer the reader Section 2
for a thorough overview on related work. In our implementation, we adopt the
Flesch Readability Ease (FRE) formula [9] . Formally, the FRE score of a given
(English) review r is defined as:

FRE(r) = 206.835 − 1.015 × words(r)

sents(r)
− 84.6 × syllables(r)

words(r)
,

where words(r), sents(r) and syllables(r) denote the number of words, sentences
and syllables in d, respectively. This is very popular formula, the weights of
which have been derived by means of regression on training data. The formula
yields numbers from 0 to 100, expressing the range from “very difficult” to “very
easy”, and is meant to be used for measuring the readability of texts addressed
to adult language users. In our experiments, we discard reviews that score less
than τ = 60, a typically used threshold for FRE [9]. We choose FRE for its
popularity and its use as a standard for readability by many organizations (e.g.,
by the U.S. Department of Defense).
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4.3 Fair Spotlight Share

For a given item, one can pick a high-quality spotlight set S by simply appending
to S high-quality reviews until all the attributes in A are covered. Of course, one
can see that there are exponentially many distinct high-quality spotlight sets.
For the rest of the discussion, we denote the complete collection of spotlight
sets by C. The question that we consider here is: “how can we fairly construct a
spotlight sequence by picking spotlight sets from C?”.

In order to address this problem, we propose a shuffling scheme that con-
structs a spotlight sequence S in a fair way that ensures the satisfaction of both
customers and reviewers: customers see a compact and informative set of re-
views, while each reviewer receives a fair share of participation in the spotlight
sequence. Clearly, the design of the shuffling method largely depends on the def-
inition of “fair participation”. In a fair shuffling scheme, valuable reviews should
be rewarded. Intuitively, a review is valuable if it evaluates a large number of
attributes or if it comments on significant attributes that are overlooked by the
majority of the reviewers. As an example, consider an expert review that pro-
vides insightful opinions on attributes that are too hard for the average reviewer
to evaluate (e.g. the advanced technical features of a laptop computer). Tak-
ing the above into consideration, we formalize the spotlight privilege of a given
review r as follows:

Definition 2. Let C be the collection of all covers of a particular item. Then,
the spotlight privilege p(r) of a given review r is equal to the number of spotlight
sets in C that include r:

p(r) = |{S ∈ C | r ∈ S}|.

Conceptually, the more spotlight sets a review participates in, the higher its
spotlight privilege. Thus, in the shuffling scheme, every time we need to extend
the spotlight sequence, it is sufficient to choose a new spotlight set from C,
uniformly at random. If we repeat this sampling process for an appropriate
number of times, the expected number of times a review r is included in the
spotlight sequence will converge to p(r).

The Spotlight Shuffling Algorithm: Given the above discussion, the next
issue is how to sample uniformly at random from the collection of covers C.
An intuitive algorithm is the following: pick random subsets R′ ⊆ R and check
whether R′ is a spotlight set. If it is, then it is presented to the users and the
algorithm proceeds in the same fashion to pick the spotlight set to show in
the next timestamp. Although this algorithm is both natural and simple, its
time complexity is exponential. The reason for this is that C can be very small
compared to the 2n possible subsets of R. Therefore, the algorithm needs to pick
many subsets before actually finding a valid spotlight set.

An alternative is to explicitly construct spotlight sets from C. Such an algo-
rithm could initialize the spotlight sequence S with the spotlight set S1 = R (i.e.
the full set of reviews). Spotset Si is then created from spotset Si−1 by removing
from Si one review at a time, as long as the remaining set is still a spotlight
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Algorithm 1. The ImportanceSampling algorithm.
Input: Set of minimal covers M, number of desired samples N .
Output: Spotlight sequence S of length N .

1: S ← ∅
2: while |S| < N do

3: pick Mi from M with probability 2n−|Mi|∑
M∈M 2n−|M|

4: Generate a superset S ∈ Ci of Mi by appending each review r ∈ R \Mi with
probability 1/2.

5: Let i∗ be the Canonical Representative of S.
6: if i∗ = i then S = S ∪ {S}
7: return S

set. Although this algorithm guarantees the construction of many spotsets in
polynomial time, it still does not solve our problem. This is because it does not
guarantee uniform sampling from C. In fact, by using this algorithm, several
elements from C might never be discovered.

In order to address the problems discussed above, we employ importance sam-
pling [15] in order to uniformly sample solutions from C. Next, we discuss how
the technique can be applied to our setting.

The ImportanceSampling Algorithm: The importance sampling technique

requires as input the set of all minimal spotlight sets. Recall that a spotlight
set S is minimal if it is not a proper super-set of any other possible spotlight
set. In other words, every review in a minimal spotlight set S is the only review
in S that covers at least one of the item’s attributes. As before, we use C to
denote the collection of all possible covers of the attribute-set A. We also use M
to denote the set of all minimal spotlight sets. It is easy to see that every cover
in C is a superset of at least one of the covers in M. Even though |M| << |C|,
computing M can still be a non-trivial task. For the sake of our analysis, we
assume that M is available. Towards the end of this section, we show how to
effectively sample from M.

Let Mi ∈ M be a minimal cover and Ci be the collection of all supersets of
Mi. In order for the technique to be applicable, the following three conditions
need to be met [15]
1. We can can compute |Ci| in polynomial time.
2. We can sample uniformly at random from Ci.
3. Given any subset of reviews R′ ⊆ R, we can verify in polynomial time if

R′ ∈ Ci.
In our case, all 3 conditions are satisfied: for (1) we have |Ci| = 2n−|Mi|. For (2),
we can sample uniformly from the sets in Ci by appending each review in R\Mi

with probability 1/2. For (3), given any R′ ⊆ R, we can verify if R′ is included
in Ci by simply checking if R′ is a superset of Mi.

The importance sampling technique is based on considering the multi-set U =
C1�. . .�C|M|, where the elements of U are pairs of the form (C, i), corresponding
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to a cover C ∈ Ci. In other words, for every cover C ∈ C, U contains as many
copies of C as there are Ci’s for which C ∈ Ci. The multi-set U is then divided
into equivalence classes, where each class contains all pairs (C, i) that correspond
to the same cover C ∈ C. A single pair (C, i) is defined to be the canonical
representation of each class. The intuition is that, instead of sampling from the
space of size 2n that contains all possible subsets of reviews, we sample only
from U . This guarantees that the sampled subsets are indeed review covers. The
algorithm is polynomial to the number of minimal reviews in M [15].

Selecting a Seed of Minimal Covers: So far, we have assumed that the set of
minimal covers M is available. However, enumerating all the minimal covers1 is
computationally expensive. In fact, using any of the existing algorithms [2,3,5]
we were unable to generate all minimal covers, even for very small datasets.
Therefore, we propose to execute ImportanceSampling with a smaller seed set.
We abuse notation and denote this set by M. We generate elements of M by
starting with set R and randomly removing elements until we reach a minimal
solution. We repeat this process until we generate a seed of the desired size. Our
intuition is that even a small seed is adequate to capture a subset for most of
the solutions in U . As we show in our experiments, |M| = O(n) is sufficient.

Covering Opinions: The standard definition of the spotlight set requires the

covering of all the attributes of an item. An interesting alternative is to cover
opinions. Given a review r, we first apply a method to extract the expressed
opinions, where an opinion is defined as a mapping of an attribute to a positive
or negative polarity. Then, a review with a positive opinion on attribute a1 and
a negative opinion on attribute a2 would be represented by {a+

1 , a−
2 }, instead

of {a1, a2}. It is important to note that our methodology is entirely compatible
with this formulation (see also the example in Section 6.2).

4.4 Compactness

Compact spotlight sets that cover all the attributes of the item in a small number
of reviews are preferred by the users, since they require much less effort to
process. In order to give precedence to covers with a small number of reviews,
we modify ImportanceSampling to give higher preference to small covers. For
this, we associate with every cover S a weight w(S) that only depends on the
number of reviews in S. In our implementation, we use w(S) = e−λxs , where
λ > 0 and xs is the size of S. In order to sample correctly from this weighted
sample space, we need to modify the ImportanceSampling algorithm as follows:
first, the minimal elements from M are sampled with probability proportional
to the sum of the weights of their supersets. Second, the selected minimal set
M ∈ M is extended as follows: Using an exponential prior, we select xs with
probability proportional to e−λxs . Then, we form S by expanding M using xs

random reviews from R \M . The rest of the algorithm proceeds as shown in the

1 This is also known as the transversal hypergraph problem.
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pseudocode in Algorithm 1. We explore the effect of the exponential prior in the
experimental evaluation (Section 6).

5 Reviewer Motivation and Utilization

In this section, we discuss our methodology for improving the utilization of
reviewer expertise. Our goal is to motivate reviewers to submit more high-quality
content. Given a review r, we want to recommend to the author of the review
a set of attributes Q ⊆ {A \ r}, such that the new extended review r′ = r ∪ Q
has better spotlight privileges. That is, r′ appears in more spotlight sets in the
spotlight sequence than the original review r.

Our attribute-recommendation system is based on the observation that the
spotlight privileges of a review r increase with the number of reviews in R that
it dominates. We say that a review ri dominates a review rj if rj ⊆ ri. That is,
every attribute from A that is covered by rj is also covered by ri. We use D(r)
to denote the number of reviews from R that r dominates. Then, given a review
r, our goal is to recommend its extension with attributes Q ⊆ {A \ r} such that
D(r ∪Q) is maximized. Our attribute-recommendation system can be activated
after the review is submitted (and parsed to extract attributes) or before (by
asking the user to state the attributes he intends to review).

Clearly, if any reviewer was able to provide high-quality comments for all the
attributes of a product, then the above problem would have a trivial solution:
simply set Q = A \ r and make the extended review r′ dominate all the reviews
in R. However, not all reviewers have the potential to comment on all attributes.
Instead, the typical reviewer has the background and experience to comment on
a subset of the item’s attributes. For example, some reviewers might be in a
better position to comment on the hardware parts of a laptop, while others may
be able to provide a more comprehensive review on the accompanying software.
To a certain extent, the ability of a reviewer to comment on a set of attributes
is also encoded on his original review r. That is, the attributes that r covers are
indicative of the attributes that this reviewer can comment on. Formally, we use
Pr(a | r) to denote the probability that the author of review r is able to provide
high-quality comments on a certain attribute a ∈ A. For now, we assume that
these probabilities are given. Toward the end of the section, we discuss how we
can compute them from the available data. Given a set of attributes Q ⊆ A,
and the individual probabilities Pr(a | r), ∀a ∈ Q, we compute the probability
that a reviewer that wrote r can effectively evaluate the attributes in Q using
the following independence assumption:

Pr(Q | r) =
∏
a∈Q

Pr(a | r).

Given the above, the attribute-recommendation problem can now be formalized
as follows.

Problem 1 (Attribute Recommendation - AR). Given an item with at-
tributes A and a review r ⊆ A, find the set of attributes Q ⊆ {A \ r} to
recommend to the author of r such that
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Ed(r ∪Q) = Pr(Q | r)D(r ∪Q) =

(∏
a∈Q

Pr(a | r)
)

D(r ∪Q). (1)

is maximized.

We call the quantity Ed(r ∪ Q) the expected dominance of the extended review
r′ = r ∪ Q and we refer to Problem 1 as the Attribute Recommendation

problem (or AR for short). Note that the trivial solution r′ = A \ r is no longer
optimal for the AR problem. In fact, as Q becomes larger, the Pr(Q | r) decreases.
Also, as Q becomes larger, the second part of the objective (i.e., D(r ∪ Q))
increases. This is because more reviews are getting dominated by r ∪ Q.

Solving the AR Problem: Although we do not know the particular complexity
of the AR problem, we know that the version of the problem where Pr(a | r) = 1
for every a ∈ A and the goal is to pick k attributes to form set Q such that
D(r ∪ Q) is maximized is an NP-Complete problem.2

In our experiments, we deploy the following Greedy heuristic for the AR prob-
lem. At first, the algorithm sets Q = ∅. At iteration t, the algorithm forms set Qt,
by extending set Qt−1 with the single attribute that maximizes
Ed(r ∪ Qt) − Ed(r ∪ Qt−1). The process repeats until none of the remaining at-
tributes benefits the objective function. A single iteration of this algorithm has
running time O(nm). In the worst case scenario, the Greedy algorithm can have
at most n iterations. In practice, however, the number is much smaller than n.

Computing the Probabilities Pr(a | r) for a ∈ A: Next, we discuss how
we can compute Pr(a | r), i.e., the probability that the author of review r is
able to provide high-quality comments on attribute a of an item. This is a chal-
lenging problem on its own. While we propose and experimentally evaluate a
way to address this, we do not claim that we have exhaustively explored this
particular problem. Instead, our purpose is to advocate the concept of attribute-
recommendation for improved expertise utilization. In fact, our overall method-
ology is compatible with any method that can effectively compute Pr(a | r).

Consider the following motivating example. In the domain of digital cameras,
the attributes camera lens, digital zoom and optical zoom are very often dis-
cussed in the same review, due to their close connection and interdependence.
Intuitively, a person with particular interest for the zoom capabilities of a cam-
era, is much more likely to also focus (and comment) on the camera’s lens. We
capture this intuition by computing the probability Pr(a | r) as follows:

Pr(a | r) = max
s∈P(r)

freq(s ∪ a)
freq(s)

, (2)

where P(r) is the power set of the attributes in r and freq(s) the number of
reviews in the corpus that cover all the attributes in a given set s. Observe
that Equation (2) is the confidence measure, as defined in the context of mining

2 The reduction is from the well-known Set Cover problem.
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association rules [1]. Hence, we can apply well-known rule-mining techniques to
pre-compute the probabilities and reduce the processing time.

One can also take into account the reviewer’s inherent ability and expertise on
the item’s domain. Then, if the reviewer has authored a number of well-received
reviews on a topic, the probability that he is able to expand his initial review
is elevated accordingly. This can be easily incorporated into Equation (2), by
multiplying the left-hand side by a prior that captures the relevant expertise
of the given review’s author. The computation of such a factor falls within the
area of expertise mining, and is orthogonal to our work. In our experiments, we
assume a uniform prior distribution for all reviewers.

6 Experiments

In this section, we experimentally evaluate the methods presented in this paper.
All the components of our system assume that we know the attributes that
are discussed in every available review. To extract these attributes, we use the
method proposed by Hu and Liu [7], which also mines opinions. An additional
pass was made over the produced attribute-lists to verify their validity and also
to address synonymy issues (e.g. bathroom=restroom=toilet).

6.1 Datasets

We use four item-review datasets provided by Lappas and Gunopulos [11]. The
GPS and TVS datasets include the complete review corpora from Amazon.com
for 20 GPS systems and 20 TV sets, respectively. The VEG and SFR datasets
include the complete review corpora from Yelp.com for 20 Las Vegas Hotels and
20 San Francisco restaurants, respectively. The average number of reviews per
item for GPS, TVS, VEG and SFR was 203.5, 145, 266 and 968, respectively.

6.2 Qualitative Evidence

First, we present qualitative evidence that demonstrate the validity of the spot-
light sets produced by ImportanceSampling. Figure 1 shows examples for two
different items. For each item, we present the set of considered attributes, which
are underlined in the reviews of the respective spotlight set. For lack of space, we
consider a subset of the complete set of each item’s attributes. We also anonymize
the reviews for the sake of discretion. The first spotlight set corresponds to an
item from the TVS dataset, and contain at least one evaluation for each con-
sidered attribute. The second spotlight set follows the variation we discussed at
the end of Section 4. In this case, we want to include at least one positive and
one negative opinion for each of the item’s attributes. In both examples, the
spotlight sets produced by our method successfully covers the attributes.

Amazon.com
Yelp.com
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Item 1 (TVS), Attributes: { picture, price, warranty, sound, design, menu}:

“...Of all the LCD Tvs the ∗ ∗ ∗ overall seemed to have a brighter picture, has 120Hz,
2 year warranty, reasonably priced and...”

“...The ∗ ∗ ∗ delivers outstanding picture quality and sound...”

“...Intuitive menu, easy to plug and play with most any hook up and source... The
design of the TV is stunning, beautiful work all around...”

Item 2 (SFR), Attributes: {food, price, staff (service), restrooms (bathrooms) }

“...The food is delicious, prices are fair, venue is nice, staff is friendly, restrooms are
clean...”

“...BAD SERVICE, WORSE ATTITUDES, AND EXTREMELY HIGH PRICES ...”

“...The food was substandard, unfortunately...”

“...the only drawback were the bathrooms...”

Fig. 1. Examples of spotlight sets

6.3 Evaluation of ImportanceSampling on the Spotlight-Shuffling
Task

Next, we compare our ImportanceSampling algorithm against three alterna-
tive baselines for spotlight set selection. The considered approaches are evalu-
ated in terms of how well they can balance the compactness of the produced
spotlight sets and the visibility they offer to the reviews in the corpus. (1)
GreedySampling begins by selecting a review from the corpus uniformly at ran-
dom. It then greedily appends reviews, picking the review that covers the most
new attributes at every step, until all the attributes at covered. The random
choice in the first step is required to introduce variety in the spotlight sequence.
The greedy choice at every step is also diversified by randomly picking among all
the reviews that maximize the number of new attributes. (2) RandomSampling
populates the spotlight set by picking reviews from the corpus uniformly at ran-
dom, until all the attributes are covered. (3) HelpSampling works in a similar
manner, except that the probability of choosing a review is proportional to the
number of (user-submitted) helpfulness votes it has accumulated.

First, we pick the item with the most reviews from each of the four datasets
(the results for the remaining items were similar and are omitted for lack of
space). We then use each approach to sample 1000 spotlight sets for each item. To
account for compactness, we allow for a maximum of 10 reviews per spotlight set.
This is also the number of reviews that can fit in a typical webpage Amazon.com
and is thus in tune with the limited attention span of the average user. If an
approach reaches the bound without covering all the attributes, it stops and
returns the incomplete set of reviews. To account for this, we report for each
approach the percentage of reported sets that were incomplete.
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Table 1. Evaluation on the spotlight-set shuffling task

0 [1-20) [20-40) [40-60) [60-80) 80 ≤ Inc. %

TVS

ImportanceSampling 0.0 0.67 0.17 0.06 0.05 0.05 8%
GreedySampling 0.78 0.14 0.03 0.03 0.0 0.02 0%
RandomSampling 0.0 0.0 0.32 0.68 0.0 0.0 90%
HelpSampling 0.41 0.19 0.18 0.09 0.02 0.1 48%

GPS

ImportanceSampling 0.0 0.81 0.08 0.02 0.05 0.04 11%
GreedySampling 0.88 0.03 0.03 0.02 0.01 0.04 0%
RandomSampling 0.0 0.02 0.92 0.06 0.0 0.0 98%
HelpSampling 0.47 0.31 0.09 0.04 0.02 0.07 79%

SFR

ImportanceSampling 0.15 0.82 0.01 0.02 0.0 0.0 16%
GreedySampling 0.93 0.04 0.01 0.0 0.0 0.02 0%
RandomSampling 0.0 1.0 0.0 0.0 0.0 0.0 100%
HelpSampling 0.5 0.37 0.08 0.02 0.01 0.01 100%

VEG

ImportanceSampling 0.01 0.81 0.1 0.04 0.02 0.02 14%
GreedySampling 0.67 0.27 0.02 0.02 0.0 0.02 0%
RandomSampling 0.0 0.09 0.91 0.0 0.0 0.0 99%
HelpSampling 0.43 0.15 0.22 0.1 0.05 0.05 97%

The results are shown in Table 1. The second column shows the percentage
of reviews that were not included in any spotlight set. Columns 2-6 show the
number of reviews that were included a number of times that falls within the
corresponding intervals (i.e. between 20 and 40 times for column 2). The intervals
in Table 1 are chosen based on a step of 20. The prevalence of our method is not
affected by this choice. The last column shows the percentage of the reported
sets that were incomplete (i.e., they did not cover all the attributes).

The first observation is that RandomSampling and HelpSampling consistently
report high percentages of incomplete spotlight sets, reaching up to 100%. This is
due to the fact that they do no consider the complementarity among reviews. As
a result, they can require an arbitrarily large number of reviews to be included in
order for all the atttributes to be covered. On the other hand, GreedySampling
reports no incomplete spotlight sets, since it ensures complete coverage with a
minimal set of reviews. However, this approach fails to fairly distribute visibility
privileges to the reviews. In fact, a consistently high percentage of the reviews
were not included in any spotsets. The greedy nature of the algorithm forces it
to focus on a small subset of the review population, while completely overlooking
the majority. Finally, our ImportanceSampling method successfully balances a
consistently low percentage of incomplete spotlight sets and a fair distribution
of visibility; the percentages of completely neglected reviews (column 1) was
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Fig. 2. Figure 2(a): Stability of ImportanceSampling with respect to seed size.
Figure 2(b): y-axis: Size of spotlight set, x-axis: value of the parameter λ.

consistently low, going down to zero for two of the items. In general, even though
some reviews were rightly sampled more often than others by our approach,
almost all the reviews were given a fair chance to be in the spotlight.

6.4 The Effect of the Seed of Minimal Covers on ImportanceSampling

As discussed in Section 4, we compute only a subset of the complete set of
minimal covers required by ImportanceSampling. We call such subset a seed
and denote it by M. Next, we evaluate the effect of |M| on the algorithm’s
results. We used the version of the algorithm given in Section 4.4, with λ = 0.5.
The results for different values of λ were similar and are omitted for lack of
space.

Given the review corpus R on an item, we use the method discussed in Sec-
tion 4 to obtain a seed M of size d. We then use ImportanceSampling to
sample spotlight sets from R, until convergence. The standard principles of
ImportanceSampling are applied to determine convergence [15]. Let count(r)
be the number of times a review r was included in a sampled spotlight set. We
then rank the reviews by their respective counts. The process is repeated to
obtain a new ranking for different values of d = |M|. Figure 2(a) shows the
AP correlation coefficient [19], computed by comparing the rankings obtained
for d ∈ {n, 5n, 10n, 20n, 40n}, with the ranking given for d = 80n. AP takes
values in [−1, 1] and is a variant of Kendall τ used to compare two rankings by
giving more importance to the top of the ranks. Figure 2(a) shows the AP values
(y-axis) obtained for different values of d (x-axis). The results clearly show that
a seed of size linear to the number of reviews is sufficient to approximate the
counts. The AP values steadily increase with d, until, for d = 40n, they reach a
near-perfect value of 0.9.

6.5 Compactness Evaluation

Here, we evaluate the spotlight sets produced by the ImportanceSampling with
respect to their compactness. We sample spotlight sets using the pseudocode
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given in Algorithm 1, using a seed M of size 40|R| = 40n. We repeat the process
for different values of λ ∈ [0.05, 0.2, 0.4, 0.8, 1.6], the parameter of the exponential
prior. Figure 2(b) shows the average cardinality of the sampled spotlight sets,
taken over all items in each dataset (y-axis) as a function of the λ values (x-
axis). As expected, increasing the value of λ leads to smaller spotlight sets. We
observe that setting λ ∈ [0.1, 0.2] consistently produces spotlight sets of size
around 10. This is also the number of reviews that can fit in a typical webpage
of Amazon.com and is thus in tune with the limited attention span of the average
user. In any case, the λ parameter is an intuitive way to tune the size of the
presented spotlight sets according to one’s own specifications.

6.6 Evaluating the Attribute-Recommendation System

Next, we evaluate our attribute-recommendation system, presented in Section 5.
We first pick the item with the most reviews from each of the four datasets. For
each item, we randomly pick 100 reviews from its corpus and extend each review
r with the set of attributes Q suggested by our method. We then record the
ratio of the review’s expected dominance after the extension, over the number of
reviews that r initially dominates (i.e. Ed(r∪Q)

D(r)+1 ).
The results are shown in Table 2. The first column shows the average ratio

over all 100 reviews picked per item. The second column shows the respective
standard deviation. The third and fourth columns show the same quantities,
calculated only over the subset of the reviews that benefited by the extension.
The fifth column shows the maximum ratio observed for each item, and the sixth
column shows the percentage of reviews that benefited from the extension. For
smoothing purposes, all the average and standard-deviation computations were
done after removing the top and bottom 5% of reviews, with respect to the ratio.

Table 2. Results of the Attribute-Recommendation System

Avg StDev Avg* StDev* Max Improved (%)

TVS 1.5 1 2.1 1.2 21 50%
GPS 1.7 1.5 2.5 1.9 8.8 58%
VEG 1.3 0.7 2.2 0.9 12.2 34%
SFR 1.8 1.2 2.6 1.1 20.1 56%

The results show that a significant portion of the reviews consistently bene-
fited from the extension. The average improvement ratio was between 1.3 and
1.8 for all reviews, rising to 2.1 and 2.6 respectively when considering only the
benefited reviews. Further, the observed maximum ratios show that an appro-
priate extension can have a tremendous effect on the dominance of a review. The
effects of the recommendation system depend largely on the computation of the
Pr(a|r) probabilities (see Section 5); higher probabilities increase the expected
dominance (see Equation (1)) and thus make extensions more beneficial.

Amazon.com
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7 Conclusion

In this paper, we presented a novel review-management system that considers
the satisfaction of the customers, as well as the reviewers. We showed how infor-
mative and compact sets of reviews can be sampled from a corpus in way that
takes into consideration the contribution and quality of each review. Further,
we proposed an attribute-recommendation system that can help reviewers im-
prove their reviews in order to gain visibility in the system. We concluded the
paper with a thorough experimental evaluation on real review data. Overall, our
framework considers both users and reviewers and try to optimize both the user
satisfaction and utilization of reviewer expertise while motivating reviewers to
submit high-quality content.
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Abstract. Given a learning task for a data set, learning it together with
related tasks (data sets) can improve performance. Gaussian process mod-
els have been applied to such multi-task learning scenarios, based on joint
priors for functions underlying the tasks. In previous Gaussian process ap-
proaches, all tasks have been assumed to be of equal importance, whereas
in transfer learning the goal is asymmetric: to enhance performance on a
target task given all other tasks. In both settings, transfer learning and
joint modelling, negative transfer is a key problem: performance may ac-
tually decrease if the tasks are not related closely enough. In this paper, we
propose a Gaussian process model for the asymmetric setting, which learns
to “explain away” non-related variation in the additional tasks, in order
to focus on improving performance on the target task. In experiments, our
model improves performance compared to single-task learning, symmet-
ric multi-task learning using hierarchical Dirichlet processes, and transfer
learning based on predictive structure learning.

Keywords: Gaussian processes, multi-task learning, asymmetric
setting, negative transfer.

1 Introduction

Analysis of brain signals is a prime example of data analysis tasks which could
benefit from successful transfer learning. Functional neuroimaging studies typi-
cally suffer from the “small n, large p” problem: the number of subjects n is small
but the dimensionality of the data p for each subject, obtained by methods such
as functional Magnetic Resonance Imaging (fMRI) is huge. In patient studies of
a brain disorder, there are practical limitations on how many patients can be ac-
cessed and measured, and in experimental neuroscience the problem is that the
larger the number of replications and variants needed, the less new neuroscience
can be done. Moreover, when generalizing across subjects, the brain physiology
and function are sufficiently similar that different brains can be matched, but the
matching is only approximate. We study a classification task in which the goal
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is to predict the stimulus given brain measurements of a certain user, utilizing
the measurements of other users on the same and different stimuli.

The task is more general, however. It has been shown that transferring knowl-
edge between several potentially related learning tasks has improved perfor-
mance. This scenario, termed multi-task learning [6] or transfer learning [14],
has gained considerable attention in the machine learning community in recent
years (see [11] for a recent review). Sharing statistical strength between tasks
can potentially compensate for having very few samples in the desired learning
task, and can make the inference more robust to noise.

1.1 Symmetric and Asymmetric Multi-task Learning

Transfer of knowledge between different tasks is useful only when the tasks
are related; if tasks are unrelated, negative transfer can occur, meaning that
the transfer distorts the model learned for a target task rather than providing
additional statistical strength. Therefore, a crucial part of multi-task learning
algorithms lies in the modelling of task relatedness, through the specification
and the learning of the dependency structure between tasks.

In general, existing multi-task learning approaches use a symmetric depen-
dency structure between tasks. This type of set-up, which we term symmetric
multi-task learning, assumes that all tasks are of equal importance. The set of
related tasks is learned jointly, with the aim of improving over learning the tasks
separately (the no transfer case), averaged over all tasks.

However, a common learning scenario is to learn a specific task (primary task),
while incorporating knowledge learned through other similar tasks (secondary
tasks). For instance, in the neuroscience scenario mentioned earlier, we are in-
terested in learning about a specific patient’s response to a stimulus, but we can
transfer information from other patients’ responses to related stimuli to improve
learning. This asymmetric case, or transfer learning, requires the assumption of
an asymmetric dependency structure between tasks. Existing approaches include
reweighting-based methods [16,3,4] or learning of shared feature spaces. An al-
ternative has been to, in effect, use a symmetric multi-task learning method in
an asymmetric mode, by using the model learned from auxiliary tasks as a prior
for the target task [9,12,17].

Inspired by the Gaussian process (GP) models used earlier for symmetric
multi-task learning, we propose a novel and simple dependency structure for
asymmetric multi-task learning using GPs. This focuses on learning a target task
and learns to avoid negative transfer; this can be done conveniently in the GP
formulation, by adding task-specific processes which “explain away” irrelevant
properties. At the same time, flexibility of the GP framework is preserved.

2 Dependency Structure in Multi-task Learning with
Gaussian Processes

Supervised learning tasks such as classification and regression can be viewed as
function approximation problems given the task inputs and targets; accordingly,
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multi-task learning can be viewed as learning multiple, related functions. The
Gaussian process (GP) framework provides a principled and flexible approach
for constructing priors over functions. The GP framework has subsequently been
applied successfully to multi-task learning problems [20,5,1]. A crucial element
of these models is the way in which the dependency structure between the mul-
tiple functions is encoded through the construction of the covariance function.
However, current GP approaches do not address the problem of asymmetric
multi-task learning, and only consider symmetric dependency structures, which
we review in the following subsection.

2.1 Symmetric Dependency Structure

Suppose that there are N distinct inputs, X = [x1, ...,xN ]
, and M tasks, such
that yt,i is the target for input i in task t. We denote the vector of outputs for
task t as yt = [yt

1, ..., y
t
N ]
, and the N ×M vector of outputs for all M tasks, as

y = [y

1 , ...,y


M ]
. In the GP approach to the problem, it is assumed that there
is a latent function underlying each task, f1, ..., fM . Denoting the latent function
evaluated at input i for task t as ft(xi), a (zero mean) GP prior is defined over
the latent functions, with a covariance function of the form

〈ft(x)ft′ (x′)〉 = kT (t, t′)kx(x,x′) (1)

where kT is a covariance function over tasks, specifying the intertask similarities,
and kx is a covariance function over inputs. For regression tasks, the observation
model is yi,t ∼ N (ft(xi), σ2

t ), where σ2
t is the noise variance in task t.

In [5], kT is defined as a ‘free-form’ covariance function, where kT (i, j) = KT
i,j

indexes a positive semidefinite intertask similarity matrix KT . Other methods
such as [19] have included a parameterised similarity matrix over task descriptor
features, but this could be restrictive in modelling similarities between tasks.
These types of priors essentially assume that each of the task latent functions
is a linear combination of a further set of latent functions, known as intrinsic
correlation models in the geostatistics field (see e.g. [15]). This idea was further
generalised in [1] to generating the task latent functions by convolving a further
set of latent functions with smoothing kernel functions.

2.2 Predictive Mean for Symmetric Multi-task GP

The predictive mean on a new data point x∗ in task j, for the multi-task GP
formulation of [5], is given by

f j(x∗) = (kT
j ⊗ kx

∗)
Σ−1y where Σ = KT ⊗ kx(X,X) + D ⊗ I (2)

where kT
j is the jth column of task similarity matrix KT , ⊗ is the Kronecker

product, kx∗ = [k(x∗,x1), ..., k(x∗,xN )]
 is the vector of covariances between the
test input x∗ and the training inputs. The kx(X,X) is the matrix of covariance
function values between all training input points, and D is an M × M diagonal
matrix where the (j, j)th element is σ2

i .
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To gain intuition into the form of the predictive mean, let us define the
M × N vector w = Σ−1y, and divide it into M blocks of N elements: w =
[w


1 , ...,w

M ]
. We can then rewrite (2) as

f j(x∗) =
M∑

m=1

KT
m,j(k

x
∗)
wm =

M∑
m=1

KT
m,jμ

m
∗ (3)

where μm
∗ = (kx

∗)
wm can be interpreted as the posterior mean of the latent
function at x∗ for task m, thus (2) is a weighted sum of posterior means for all
tasks, and the weights {KT

m,i}M
m=1 are covariances between task j and all tasks.

Since KT is positive semidefinite, the sharing of information between tasks is
naturally symmetric, and all tasks are treated equally. However, we are interested
in an asymmetric setup, where we learn a primary task together with several
secondary tasks. Rather than modelling the relationships between secondary
tasks, we want to focus on the aspects relevant to learning the primary task.

2.3 Asymmetric Dependency Structure

In the previous symmetric learning problem, the tasks were modelled as condi-
tionally independent on a set of M (i.i.d.) underlying functions, which capture
the shared structure between all tasks. In this section, we derive an asymmetric
version of a GP framework for multi-task learning, by constraining the sec-
ondary tasks to be conditionally independent given the primary task, such that
the shared structure between all secondary tasks is due to the primary task.

Similarly to the previous notation, let us denote the inputs to each task as
X. Suppose that there is one primary task, with targets yp = [yp

1 , ..., yp
N ]
,

with underlying latent function values fp = [fp(x1), ..., fp(xN )]
. Suppose there
are M − 1 secondary tasks, where the targets for the ith secondary task are
denoted by ysi = [ysi

1 , ..., ysi

N ]
. The corresponding latent function values are
fsi = [fsi(x1), ..., fsi(xN )]
.

We are interested in learning the underlying function fp for the primary task.
Here, potentially related secondary tasks can help to learn fp; conversely if
we know fp, this could help to learn the functions underlying the secondary
tasks {fsi}. We can formalise this intuition by examining the GP predictive
likelihood on the secondary task function values, after training on the primary
task. However, first we need to define a joint prior over the primary and secondary
task function values. We start by making the assumption that {fsi} can be
decomposed into a ‘shared’ component (which is shared with the primary task)
and a ‘specific’ component. That is, for the nth input,

fsi(xn) = fsi,shared(xn) + fsi,specific(xn) . (4)

Further we assume that fsi,shared = ρsif
p, that is, the shared component is

correlated with the primary task function. This may seem like a restrictive as-
sumption but assuming linear relationships between task functions has been
proved to be successful in e.g. [15,5]. Now we can place a shared prior over each
fsi,shared and fp. The corresponding graphical model is presented in Figure 1.
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Fig. 1. Graphical model of the focused GP multi-task model, showing the relationship
between the function values of the primary and secondary tasks. Parameters of the
covariance functions omitted for clarity.

Sharing between Primary and Secondary Task Functions. We place a
zero mean Gaussian process prior on fp, with covariance function kp, such that
the prior on the shared function is also a GP, with covariance function〈

f t(x)f t′(x′)
〉

= kt(t, t′)kp(x,x′) where kt(t, t′) = ρtρt′ (5)

where ρt is the correlation of task t with the primary task, and ρp = 1, and f t

can denote either the primary task or any of the secondary tasks. Denoting the
task functions for the M −1 secondary tasks as fs =

[
(fs1 )
, ..., (fsM−1)


]
, the
joint distribution over the shared function values is given by

p(fp, fs,shared) = GP
(

0,

[
Kpp K


sp

Ksp Kss

])
(6)

where Kpp is the matrix of covariance function values from (5) between the
primary task points, Ksp evaluated between secondary and primary, and Kss

between secondary task inputs. Given the primary task function values, we can
then derive the predictive distribution on the shared components of the sec-
ondary tasks using the standard GP equations:

p(fs,shared | fp) = GP (
KspK−1

pp fp, Λ
)

(7)

where Λ is a diagonal matrix whose elements are given by the diagonal of
Kss − KspK−1

pp K

sp. This approximation allows us to make a reduced rank ap-

proximation, and offers a computationally efficient solution to jointly learning
the covariance matrix across a large number of input points.

An interpretation of equation (7) is the posterior distribution of fp (the pri-
mary task function) after observing the primary task function values fp, eval-
uated at all the secondary task inputs. This differs slightly from the standard
GP predictive equations in that the posterior mean for each secondary task s is
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weighted by ρs, which models the correlation with the primary task. To illustrate
this, for secondary task l, the posterior mean f̄1,shared given fp:

f̄1,shared = ρlk
p(Xl,Xp)kp(Xp,Xp)−1fp = ρlμ

p
l

where we have used the notation: Xi is the set of input points for task i, and μp
l is

the posterior mean given covariance function kp and observations fp, evaluated
at Xl. Learning ρs during training can help to avoid negative transfer from
secondary to primary task.

Explaining Away Secondary Task-Specific Variation. We define the co-
variance function over fs,specific to be block diagonal in [Kspec

1 , ...,Kspec
M−1] with

respect to the tasks. These covariance functions have parameters specific to each
task: fs,specific ∼ GP(0,Kspec). This creates flexible models for the secondary
tasks, which can ‘explain away’ variation that is specific to a secondary task,
and unshared with the primary task. Since the primary task function values are
unknown, rather than estimating them directly we integrate over them:

p(fs) = GP (0,KspK−1
pp K


sp + Λ + Kspec
)

. (8)

Putting everything together, the resulting prior on all the task functions is

p(fp, fs) = GP
(

0,

[
Kpp K


sp

Ksp KspK−1
pp K


sp + Λ + Kspec

])
(9)

2.4 Hyperparameter Learning

We can learn the hyperparameters of our model in (9) by optimising the marginal
log likelihood with respect to the hyperparameters of the covariance functions,
the task similarity vector [ρs1 , ..., ρsM−1 ], and the parameters of the observation
model, given the inputs x and targets y. For regression, the observation model is
yi,t ∼ N (ft(xi), σ2

t ), where σ2
t is the noise variance in task t, and for classification

we use a probit noise model p(yi,t | fi,t = Φ(yi,t(fi,t + b)), where Φ is the
cumulative distribution function for a standard Gaussian N (0, 1), and b is a bias
parameter. For the binary classification experiments in Section 5.2, we make an
approximation to the model likelihood using Expectation Propagation [10].

3 Related Work and Discussion

In our focused multi-task GP, the pseudo-input locations are fixed as the inputs
to the primary task, such that they can explain the shared variation between
the primary and secondary tasks, and also between the secondary tasks. The
sparse GP method in [13] bears similarities to our model. This parameterises the
covariance function of a GP by learning a set of pseudo-input locations. In that
model, the pseudo-inputs summarise the variation of the data through assuming
that the function values are conditionally independent given the pseudo-inputs.
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Recently there has been interest in asymmetrical GP multi-task learning [7],
where generalisation errors for the multi-task GP of [5] were derived for an
asymmetrical multi-task case, with one primary and one secondary task. How-
ever, this work did not derive a new model for asymmetric multi-task learning,
and focused on analysing the symmetric model.

The asymmetric dependency structure that we have presented uses a simple
idea to bias the model to learning the underlying function for the primary task,
by decomposing the underlying task functions for the secondary tasks as ‘shared’
and ‘specific’ components. The shared components are from a joint GP prior with
the primary task function. These are conditioned on the primary task function
values (7) such that this biases the shared variation between tasks to be due to
the primary task function, and a task specific weight, which is learned during
training. We additionally assume that the each of the secondary task functions
can also be explained by a process specific to it, by defining a block diagonal
covariance structure over the secondary tasks. This allows the model to ‘explain
away’ secondary task specific variation and focus the model on learning the
primary task.

In this first paper we make the simplifying assumption that the task of interest
is entirely composed of the shared function, and that there are no other strong
shared functions between other tasks. This model already proves useful in a
challenging fMRI task, demonstrating that the idea of asymmetric modelling
with explaining-away yields useful results, and it can be extended to more general
asymmetric modelling in later stages.

In brief, if there is reason to suspect detrimental shared variation between
other tasks, one can add additional GP functions which is shared between other
tasks but not with the primary task. The overall model can then learn which
shared function is a better explanation. As the number of tasks increases, the
number of possible sharing configurations increases (shared functions between
2,3,...,M tasks) and the complexity of the model quickly increases. This will be
studied in further work.

4 Examining the Generalisation Error for Asymmetric
and Symmetric Models

To examine the effect of the processes that are specific to a secondary task, we
look at the generalisation error on the primary task for the asymmetric two tasks
case in a similar manner to [7]. We investigate the influence of ρ, the degree of
“relatedness” between the two tasks. Suppose that we have training inputs XP

for the primary task, and XS for the secondary task. The covariance matrices
Csym and Casym, for the symmetric and asymmetric cases respectively, of the
noisy training data are given by:
Symmetric case

Csym(ρ) = Ksym(ρ) + σ2
nI where Ksym(ρ) =

(
Kp

PP ρKp
PS

ρKp
SP Kp

SS

)
(10)
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Fig. 2. The posterior variances for the test locations x∗ ∈ [0, 1] given training points
from the primary task (XP = [1/3 2/3], plotted as �) and secondary task (XS =
[1/5 1/2 4/5], plotted as ◦) for the symmetric case (top) and the asymmetric case
(bottom). Each plot uses corresponding values of ρ2 (see legend).

Asymmetric case

Casym(ρ) = Kasym(ρ) + σ2
nI

where Kasym(ρ) =
(

Kp
PP ρKp

PS

ρKp
SP ρ2Kp

SS + (1 − ρ2)Ks
SS

)
(11)

where we have used the notation Kp
AB to denote the matrix of covariance values,

due to kp, evaluated between XA and XB. For the asymmetric case, the covari-
ance matrix for the secondary task comes from the ‘shared’ covariance function
kp with the primary task, and a ‘specific’ covariance function ks. The relation-
ship between the primary and secondary tasks due to the ρ’s comes directly from
(1) and (5) for the symmetric and asymmetric cases respectively.

4.1 Generalisation Error for a Test Point x∗

If the GP prior is correctly specified, then the posterior variance for a new test
point x∗ for the primary task (due to the noise free fp) is also the generalisation
error for x∗. The posterior variance at x∗ for the primary task is:

Symmetric case: σ2
sym(x∗, ρ) = k∗∗ − k


∗ Csym(ρ)−1k∗ (12)

Asymmetric case: σ2
asym(x∗, ρ) = k∗∗ − k


∗ Casym(ρ)−1k∗ (13)

where k∗∗ is the prior variance at x∗, kp(x∗,x∗), and k

∗ = (kp(x∗,Xp)

ρkp(x∗,Xs)) We note that the target values y do not affect the posterior vari-
ance at the test locations, and have omitted the dependence on XP , XS and σ2

n

in the notation for σ2
sym(x∗, ρ), σ2

asym(x∗, ρ) for clarity.
To illustrate the difference between the symmetric and asymmetric cases, we

plot the posterior variances as a function of x∗ in Figure 2, given two observations
for the primary task, and three observations of the secondary task (see figure for
more details). Following the setup in [7], we use a squared exponential covariance
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function with lengthscale 0.11 for kp, noise variance σ2
n = 0.05, and, for the

asymmetric setup, a squared exponential covariance function with lengthscale 1
for ks.

Each plot contains 6 curves corresponding to ρ2 = [0, 1/8, 1/4, 1/2, 3/4, 1],
and the dashed line shows the prior noise variance. The training points from
the primary task (�) create a depression that reaches the prior noise variance
for all the curves. However, the depression created by the training points for
the secondary task (◦) depends on ρ. For the single task learning case (ρ =
0), there is no knowledge transferred from the secondary task. As ρ increases,
the generalisation error at the secondary task test points decreases. For the
intermediate ρ2 values (i.e. not 0 or 1 (full correlation)), our asymmetric model
gives a smaller posterior variance than the symmetric model at secondary task
locations, and therefore suggests better generalisation error.

4.2 Intuition about the Generalisation Errors

Given the illustrative example in the previous section, we sketch the relationship
between the generalisation errors for the primary and secondary tasks:

σ2
asym(x∗, ρ) ≤ σ2

sym(x∗, ρ) (14)

We show this by considering the covariance matrix at the secondary task points,
conditioned on the primary task points. This represents the residual uncertainty
about the secondary task points, given that we know the primary task points.
Denoting this quantity as A(ρ):

A(ρ)sym = Kp
SS + σ2

nI − ρ2Kp
SP (Kp

PP + σ2
nI)−1Kp

PS (15)
A(ρ)asym = ρ2Kp

SS + (1 − ρ2)Ks
SS + σ2

nI − ρ2Kp
SP (Kp

PP + σ2
nI)−1Kp

PS (16)

If A(ρ)asym � A(ρ)sym then:

A(ρ)−1
asym � A(ρ)−1

sym

v(ρ)
A(ρ)−1
asymv(ρ) ≥ v(ρ)
A(ρ)−1

symv(ρ)

k∗∗ − kp(x∗,XP )(Kp
PP + σ2

nI)−1kp(x∗,XP ) − v(ρ)
A(ρ)−1
asymv(ρ)

≤ k∗∗ − kp(x∗,XP )(Kp
PP + σ2

nI)−1kp(x∗,XP ) − v(ρ)
A(ρ)−1
symv(ρ)

σ2
asym(x∗, ρ) ≤ σ2

sym(x∗, ρ) (17)

where we have used the Banachiewicz inversion formula to evaluate the ma-
trix inversions in (12) and (13), and we have defined v(ρ) = ρ(kp(XS ,x∗) −
Kp

SP (Kp
PP + σ2

nI)−1kp(XP ,x∗))
The asymmetric model has more flexibility than the symmetric model in the

modelling of the secondary task, since it uses both fp and fs, rather than just fp.
We expect that A(ρ) for the asymmetric version would be smaller than for the
symmetric since the additional flexibility should allow more accurate modelling
of the covariances between the secondary task points, and hence the asymmetric
generalisation error should be smaller than the symmetric.
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5 Experiments

In this section, we demonstrate the performance of the focused multi-task GP
model on a synthetic regression problem, and compare it with alternative models
on an asymmetric multi-task classification problem on fMRI data. In all experi-
ments, we use squared exponential covariance functions with automatic relevance
determination (ARD) prior: k(x,x′) = σ2

s exp(− 1
2

∑
d(xd −x′

d)
2/l2d), where σ2

s is
the overall scale and ld is the lengthscale for the dth input dimension, initialized
to 1. This prior is used for both primary and secondary task functions.

5.1 Synthetic Data

Synthetic data are generated as follows (see Fig. 3. All the functions are func-
tions of the same input x, 100 samples evenly spaced on the interval [-5, 5].
The primary task function is generated from fp ∼ GP(0,Kp), where the kernel
function is squared exponential with length scale 1. The secondary task func-
tions are generated according to fm

s ∼ GP(αmfp, βmKm
s ). Each specific kernel

function is squared exponential with lengthscale 1, and αm is drawn at random
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Fig. 3. Synthetic data experiment: experiment setup. We show the functions underly-
ing the generated data: the primary task function (top left, red) and 15 examples of
secondary task functions (black). The weights of the shared and specific functions for
the secondary tasks are given above each plot.
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Fig. 4. Synthetic data experiment: results of learning with the proposed asymmetric
multi-task Gaussian process model. (a) Mean squared error on the primary task test
set, over 10 runs, for different numbers of secondary tasks, error bars represent ±1
s.d. (b) Posterior distribution over the primary task function for different numbers of
secondary tasks (given above each plot).

from N (0, 1), βm at random from [0, 1]. We assume a Gaussian observation noise
model, since this is a regression problem.
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We remove 50 samples from the primary task (see Fig. 4b), and use them as
test data. We train the model with different numbers of secondary tasks, ranging
from 0 (single task learning) to 24. We repeat the procedure 10 times, randomly
drawing the secondary task functions for each run. Figure 4 (b) shows the mean
of the posterior distribution (black) over the primary task function for one of the
runs, for different numbers of secondary tasks. We also plot the true underlying
primary function (blue line), showing that the model can predict the missing
part of the primary task function by transferring information from secondary
tasks. Figure 4 (a) shows that the mean squared error on the test set decreases
as the number of secondary tasks increases.

5.2 fMRI Data

We evaluate the performance of our model on fMRI data, taken from [8]. Six
healthy young adults participated in two identical sessions, in which they re-
ceived a continuous 8-min sequence comprising of auditory, visual and tactile
stimuli in blocks of 6 × 33s. The stimuli of different senses never overlapped.
Whole-head volumes were acquired with a Signa VH/i 3.0 T MRI scanner (Gen-
eral Electric, Milwaukee, WI) using a gradient EPI sequence (TR = 3 s, TE = 32
ms, FOV = 20 cm, flip = 90o, 64×64×44 voxels with resolution 3×3×3mm3).
In each session, 165 volumes were recorded with the 4 first time points excluded
from further analysis. Preprocessing of the fMRI data included realignment,
normalization with skull stripping, and smoothing. For additional details on
the measurements and applied preprocessing, see [18]. After preprocessing, the
dimensionality was reduced to 40 by spatial independent component analysis
(ICA) that identified spatial brain activation patterns related to various aspects
of the stimuli. For each adult, the resulting data is 161 sets of ICA features
(40 dimensional), which can be classified according to one of 6 stimuli (‘touch’,
‘auditory’ (tones, history, instruction), ‘visual’ (faces, hands, buildings)).

We consider the task of predicting whether a subject is reacting to a particular
stimulus, ‘touch’, given the fMRI data. We aim to improve the learning of this
primary task by learning it in conjunction with other, related tasks from the
other subjects. This can be formulated as 6 one-against-all classification tasks
in an asymmetric multi-task setup (see Table 1). For each subject the fMRI
measurements were done in two separate sessions; in the experiments we use the
first session as training data and the second session as test data.

We compare the focused multi-task learning approach (‘focused MT-GP’) with
four reference models. The first baseline model is single task learning using GP
classification (‘single task GP’), trained only on the samples of the primary task.
The second (‘pooled GP’) learns a GP classification model from the training ex-
amples from all tasks (i.e. treating all data as a single task) For ‘pooled GP’
we use a sparse approximation when the number of training examples > 300,
using 30 pseudo-inputs. We also compare to two state-of-the-art methods, one
developed for transfer learning and the other multi-task learning: the predictive
structure learning method of [2] (‘AZ’), and the symmetric multi-task learn-
ing with Dirichlet process priors method (‘DP-MT’) from [17]. For the ‘AZ’



322 G. Leen, J. Peltonen, and S. Kaski

Table 1. Asymmetrical multi-task set up for fMRI data study

Subject Classification Task

1 (primary) ‘touch’ against all
2 (secondary) ‘touch’ against all
3 (secondary) ‘touch’ against all
4 (secondary) ‘touch’ against all
5 (secondary) ‘auditory’ (instruction) against all
6 (secondary) ‘visual’ (buildings) against all

method, the we fix the dimension of the shared predictive structure heuristically
to h = 26, after performing PCA across all the training samples (primary and
secondary) and find the dimension of the subspace that explains 80% of the
variance.

We evaluate the methods using a fixed number of training examples in the
primary task (64 and 161), while varying the number of training examples in
each secondary task (ranging from 4 to 160)), over 5 repetitions. Due to the class
imbalance in the data, when randomly picking a subset of secondary training
task examples, we ensure that there is at least one positive and one negative
example. For the GP-based methods, we also fix the bias parameter b = Φ−1(r),
where r is the ratio of positive samples to negative samples in the training data.

Figure 5 displays the classification error on the test set for the primary task,
over different numbers of training examples for the secondary tasks, for 64 train-
ing examples in the primary task (a) and 161 (i.e., all available training examples
for the primary task) in (b).

Pooling of samples seems to always be a bad choice on this data and, some-
what surprisingly, DP-MT does not work well either. Both work only roughly
equally to single-task learning for small numbers of secondary task data and
the performance worsens as amount of secondary data increases. Hence it seems
that the secondary data here differs from primary data to the extent of causing
negative transfer. AZ seems to work better but at most on the same level as
single task learning. More work would be needed for model selection, however,
which might improve performance.

Focused MT-GP seems able to leverage on the secondary tasks, clearly out-
perfoming others including single task learning when the amount of data in the
primary task is small. Multitask learning is most relevant when the primary task
has little data; Focused MT-GP performs well in this scenario. When primary
data has more data single task learning improves rapidly, although in Figure 5
Focused MT-GP still outperforms it. Focused MT-GP seems to need more than
a few samples in the secondary tasks in order to perform well; the explanation
is probably that for this data it is hard to distinguish between useful and nega-
tive transfer, and more data is needed to make the choice. Bad performance of
pooling and symmetric multi task approaches supports this interpretation.
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(a) Number of primary task training examples = 64

(b) Number of primary task training examples = 161

Fig. 5. Classification error on test set for primary task, against number of training
examples in each secondary task for different primary task training set size (a: small,
b: larger)
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6 Conclusion

We derived a multi-task Gaussian process learning method, the ‘focused multi-
task GP’, designed for asymmetrical multi-task learning scenarios, to facilitate
improved learning on a primary task through the transfer of relevant informa-
tion from a set of potentially related secondary tasks. The novel dependency
structure was formulated based on the GP predictive distribution over the sec-
ondary tasks given the primary task, and constraining the secondary tasks to be
conditionally independent. After observing the primary task, the primary task
function can be used to predict a part of each secondary task, depending on the
degree of task relatedness, which is learned during the optimisation. The model
also permits each secondary task to have its own task-specific variation which is
unshared with the primary task, and this flexibility should cause the model to
focus on modelling the primary task function well. We demonstrated the model
on synthetic data and an asymmetrical multi-task learning problem with fMRI
data, and showed improved performance over baseline approaches, and a state
of the art transfer learning and multi-task learning method.
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Abstract. Reinforcement Learning (RL) in either fully or partially ob-
servable domains usually poses a requirement on the knowledge repre-
sentation in order to be sound: the underlying stochastic process must be
Markovian. In many applications, including those involving interactions
between multiple agents (e.g., humans and robots), sources of uncertainty
affect rewards and transition dynamics in such a way that a Markovian
representation would be computationally very expensive. An alternative
formulation of the decision problem involves partially specified behaviors
with choice points. While this reduces the complexity of the policy space
that must be explored - something that is crucial for realistic autonomous
agents that must bound search time - it does render the domain Non-
Markovian. In this paper, we present a novel algorithm for reinforcement
learning in Non-Markovian domains. Our algorithm, Stochastic Search
Monte Carlo, performs a global stochastic search in policy space, shaping
the distribution from which the next policy is selected by estimating an
upper bound on the value of each action. We experimentally show how, in
challenging domains for RL, high-level decisions in Non-Markovian pro-
cesses can lead to a behavior that is at least as good as the one learned
by traditional algorithms, and can be achieved with significantly fewer
samples.

Keywords: Reinforcement Learning.

1 Introduction

Reinforcement Learning (RL) in its traditional formulation has been successfully
applied to a number of domains specifically devised as test beds, while scaling to
large, and more realistic applications is still an issue. RL algorithms, either flat
or hierarchical, are usually grounded on the model of Markov Decision Processes
(MDPs), that represent controllable, fully observable, stochastic domains. When
the environment is not observable and not so well understood, however, tradi-
tional RL methods are less effective and might not converge. For this reason, the
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vast majority of work on RL has focused on Markovian domains, and the algo-
rithms for abstracting over the state space, creating a more compact knowledge
representation, are designed to ensure the Markov property is maintained.

If the application does not allow the designer to create a reliable description of
the state space, such that the representation is Markovian, MDPs are no longer
suitable. Partially Observable MDPs overcome part of this limitation: they allow
the actual state space to be accessed only through observations, but still require
the specification of such a space so that an underlying Markovian process exists.
Where applicable, POMDPs scale to increasingly larger domains, but there are
tasks in which observability is not the only concern. For instance, if other agents
(including humans) influence the task in ways that cannot be characterized up-
front, then the typical MDP formulation or even versions (e.g., interactive or
decentralized) of POMDPs do not capture this issue [19]. In such scenarios, it
may be more useful to synthesize the overall behavior as a composition of par-
tially specified local behaviors - tuned to a localized interaction context - with
choices between them in order to adapt to the changing environment and task
[7]. The composition of local behaviors may depend on high level observations,
and an approach that acknowledges the Non-Markovian nature of the problem
is required.

In the literature, three methods have been used in Non-Markovian domains.
The first one consists in applying direct RL to observations, relying on eligibility
traces [13]. The second one is a local optimization algorithm, MCESP [11], made
sound by a specific definition of the equation used for value prediction. The
third one is pure search in policy space, dominated by policy gradient [2], a
category of methods that search in the continuous space of stochastic policies.
The first two methods make use of value functions, while the last one avoids
them altogether. In this paper, we introduce a novel Reinforcement Learning
algorithm to learn in Non-Markovian domains, that performs a global stochastic
search in policy space. As such, it belongs to the third category, but it is also
based on an action-value function, and uses it to store an estimated upper bound
of each action’s value to bias the search. Our control method makes decisions
locally, and separately at each choice point, while the prediction method takes
into account the long-term consequences of actions. In general N-MDPs (as well
as in stochastic processes on top of POMDPs’ observations) the reward, and
therefore the decisions, may depend on the whole chain of observations and
actions. In problems of practical interests, however, the choices can be efficiently
made separately in many cases. The prediction method, nonetheless, must take
the effect of subsequent choices into account.

We show experimentally how the space of deterministic policies can be search-
ed effectively by exploiting action values’ upper bounds locally and evaluating
policies globally. We first introduce two simple domains, taken from the litera-
ture of partially observable processes, that allow for the comparison with other
methods. Then, we apply our methodology to Keepaway [15], a challenging and
more realistic domain for RL. Here, instead of relying on function approxima-
tion, we consider a partially specified behavior with coarse-grained choices. While
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function approximation attempts to learn the best decision for each state, gen-
eralizing from similar ones (whose definition depends on the specific approxi-
mator), our method aims at learning, at specific choice points among high-level
actions, which option performs best across all the situations that actually hap-
pen, biased by their frequency. Even if RL (in MDPs) provably converges to the
optimal behavior, on Keepaway it does not do so in any reasonable time. We
show how a behavior better than the ones reported in the literature can be ob-
tained in a number of samples an order of magnitude smaller. The results suggest
that, when the domain does not allow a compact Markovian description, giv-
ing up the Markov property in order to reduce the representation might, with
the appropriate algorithms, provide a good behavior (possibly optimal in the
given representation) much faster than methods that achieve optimality in the
underlying MDP.

2 Background and Related Work

In the following, we first define the notation, and then describe the methods
most closely related to our own.

2.1 Notation

A Markov Decision Process is a tuple MDP = 〈S, A, T, ρ〉 where:

– S is a set of states
– A is a set of actions
– T : S × A × S → [0, 1] is the transition function. T (s, a, s′) = Pr(st+1 =

s′|st = s, at = a) is the probability that the current state changes from s to
s′ by executing action a. Since T (s, a, ·) is a probability distribution, then∑

s′∈S T (s, a, s′) = 1 ∀ s ∈ S and a ∈ A. If T (s, a, s′) = {0, 1} the system is
said to be deterministic, otherwise it is stochastic.

– ρ : S × A × R → [0, 1] is the reward function. ρ(s, a, r) = Pr(rt+1 = r|st =
s, at = a) is the probability to get a reward r from being in state s and execut-
ing action a. Analogously to the transition function, ρ(s, a, ·) is a probability
density function and

∫
R

ρ(s, a, r)dr = 1. If the reward function is defined
over a discrete subset P ⊂ N, ρ is a probability distribution and the reward
is said to be deterministic if ρ(s, a, r) = {0, 1} ∀s ∈ S, a ∈ A, and r ∈ P .

The behavior of the agent is represented as a function π : S × A → [0, 1] called
a stationary policy, where π(s, a) is the probability of selecting action a in state
s. If π(s, a) = {0, 1} ∀ s ∈ S and a ∈ A the policy is deterministic.

A policy π and an initial state s0 determine a probability distribution μ(ω)
over the possible sequences ω = (〈st, at, rt+1〉, t ≥ 0). Given such a sequence, we
define the cumulative discounted reward as

R(ω) =
∑
t≥0

γtrt+1 (1)
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where 0 < γ ≤ 1 is the discount factor. If γ = 1 the reward is undiscounted,
which is allowed only if the MDP is episodic (it has at least an absorbing state,
which is never left once entered) otherwise the total reward could diverge.

Analogously to Markov Decision Processes, a Partially Observable MDP, is a
a tuple 〈S, A, T, ρ, Z, O〉, where 〈S, A, T, ρ〉 is an underlying MDP whose current
state is not directly accessible. Instead of perceiving an element from S, the agent
is given an element of O, the set of observations, which relates to the underlying
state through the function Z : O×A×S → [0, 1] such that Z(o, a, s) = Pr(o|s, a)
is the probability of observing o when executing a in s. We consider the case of
POMDPs in which S, T , and Z are unknown. Ignoring the actual state space and
considering the controllable stochastic process 〈O, A, To, ρo〉 over observations,
the unknown distribution

To(o, a, o′) =
∑
s∈S

Pr(s|o) ∗
∑
s′∈S

T (s, a, s′)Z(o′, a, s)

depends not only on the current observation, but also on the underlying actual
state and on the system’s dynamics. The actual state in turn depends on the
initial state and on the policy followed. Analogously, the reward obtained after
each observation does not only statistically depend on the observation alone,
and is therefore Non-Markovian.

Given an N-MDP = 〈O, A, To, ρo〉, we aim at computing the deterministic
stationary reactive policy π(o) = a that maximizes the expected value of the
cumulative discounted reward:

R =
∑
s0

∑
ω

μ(ω|π, s0)Pr(s0)R(ω)

In the following we summarize what has been proved for direct RL methods in
these circumstances.

2.2 Previous Results for N-MDPs

In Markov Decision Processes sub-optimal policies are never fix-points of policy
iteration, so that each step produces not only a different policy, but a better
one. MDPs are, therefore, well suited to hill-climbing, since optimal policies,
and only those, are equilibrium points in MDPs, while this is not true in general
for N-MDPs. hPOMDPs constitute a class of POMDPs in which the history of
observations and actions is enough to determine the current state. Pendrith and
McGarity [10] analyze the stability of TD(λ) and first-visit Monte Carlo [16].
They prove the following results:

– if a first-visit MC is used for an hPOMDP where γ = 1, then the optimal
observation-based policies will be learning equilibria.

– the previous result does not apply to γ = [0, 1)
– if a TD(λ) method of credit assignment is used for direct RL on a N-MDP,

then for γ < 1 it is not guaranteed that there exists an optimal observation-
based policy representing a learning equilibrium.
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Perkins and Pendrith [12] carry this analysis further, and include the explo-
ration policy explicitly. They prove that there exists a learning equilibrium for
1-step TD methods if the exploration policy is continuous in the action values,
while most of the former analysis had been conducted with ε-greedy which is
discontinuous. So, for instance, following SoftMax, that assigns to every action
a probability according to a Boltzmann distribution:

Pr(a|s) =
eQ(s,a)/τ∑

a′∈A eQ(s,a′)/τ
(2)

both Sarsa and Q-learning have at least one action-value function that is a learn-
ing equilibrium. The parameter τ in Eq. 2 balances exploration and exploitation:
the higher τ the more the agent is likely to select a sub-optimal action (according
to the current value function). The results prove that there exists a fixed point
with respect to the update rule and a continuous exploration policy, but do not
prove that such a fixed point can actually be reached. Moreover, the presented
results do not consider that the exploration may change, for instance letting τ
tend to zero.

2.3 A Sound Local Algorithm

Perkins [11] redefined the value function to overcome the above difficulties with
discounted problems.

Let μπ(ω) be the probability distribution over the possible trajectories deter-
mined by a policy π. The author splits the reward with respect to an observation
o from one of these trajectories ω in:

V π = E
π
ω∼μ [R(ω)]

= E
π
ω∼μ [Rpre−o(ω)] + E

π
ω∼μ [Rpost−o(ω)] (3)

where Rpre−o(ω) is the cumulative discounted reward before o is encountered
in ω for the first time, while Rpost−o(ω) is the reward after the first occurrence
of o. In the following, we shall omit the subscript ω ∼ μπ(ω), but all traces
are extracted from μ if not otherwise noted. The value of an observation-action
pair 〈o, a〉, with respect to a policy π, is the value of the policy when π is
followed everywhere except for o, in which a is executed instead. Such a policy
is represented as π ← 〈o, a〉, and clearly π = π ← 〈o, π(o)〉. Its value is:

Qπ(o, a) = E
π←〈o,a〉 [Rpost−o(ω)] (4)

This definition differs from the usual definition for MDPs in two important
respects: (1) every time (and not just the first one) the observation o is encoun-
tered, the agent executes the action a; (2) the value of an observation-action pair
is not the discounted return following o, but the expected discounted reward fol-
lowing o at that point of the trace.

While in MDPs the optimal policy is greedy with respect to the action-value
function, this is not necessarily true for POMDPs. With the definition of the
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value function just given, this property is retained to some extent. In particular,
for all π and π′ = π ← 〈o, a〉

V π + ε ≥ V π′ ⇐⇒ Qπ
o,π(o) + ε ≥ Qπ

o,a

Monte Carlo Exploring Starts for POMDPs (MCESP) is a family of algorithms,
that make use of the value function of Equation 3 to compute a locally optimal
policy. The gained capability to hill-climb brings about the theoretical guarantee
of local optimality, at the cost of updating one state-action pair at a time. For
this reason MCESP proved to be slower than Sarsa(λ) in the domain presented
in the original paper.

We define a new algorithm for stochastic search that retains some of the ideas
behind MCESP, while attempting a biased global search. Our algorithm relies
on the ability of Monte Carlo policy evaluation to estimate the current policy,
and performs a form of branch and bound related to confidence bounds [1] for
N-MDPs. Although stochastic policies could, in general, perform better on N-
MDPs, we only search in the space of deterministic policies as we are interested
in getting good policies in the shortest number of episodes possible. It has been
shown how deterministic policies can often provide such behaviors in practice
[8], and we provide more examples in the experimental section.

3 The Algorithm: SoSMC

The main idea behind the algorithm, Stochastic Search Monte Carlo (SoSMC),
is based on the intuition that often a few bad choices disrupt the value of all
the policies that include them. Taking those policies as if they were as valuable
as any other just wastes samples. We would rather like to realize that those
actions are not promising and not consider them unless we have tried all the
other options. The strategy would consider all the policies with a probability
proportional to how promising they are, which we believe is beneficial in at least
two ways: (1) the algorithm reaches the optimal policy earlier; (2) during the
phase of evaluation of those promising but suboptimal policies, the behavior is
as good as the current information allows.

The algorithm (cf. Algorithm 1) is constituted by two parts: the exploratory
phase and the assessing phase, as described in the next section.

3.1 Exploration: Gathering Information

The exploration initializes the Q-function to drive the execution in the subse-
quent phase. The aim of the initial exploration is to determine an upper bound
for each state-action pair. For a number of episodes exp length the agent chooses
a policy according to some strategy Σ (e.g., uniformly at random), and in each
pair 〈o, a〉 stores the highest value that any policy, going through 〈o, a〉, has ever
obtained.

Consider the simple example of the N-MDP in Figure 1(a). This N-MDP has
three states and four actions with a total of four policies. Let the reward returned
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(a) (b)

(c) (d)

Fig. 1. A simple example of an N-MDP (a). The four policies return a reward normally
distributed whose means and standard deviations are shown in (b). The evolution of
the Q-function for the first state (actions A1 and B1) is represented in Figure (c), while
for the second state (actions A2 and B2) is represented in Figure (d).

by each of those policies be normally distributed, with means and standard
deviations represented in Figure 1(b). Figure 1(c) and 1(d) show the value of
the Q-function for each action during a particular run. The first 100 episodes
belong to the exploratory phase, in which the actions A1 and A2 obtain the
highest reward, making the policy A1-A2 look particularly promising. An action
is considered as promising as the highest value of the reward that choosing that
action has ever given. In the case of A1-A2, its good result is due to the high
variance, rather than the highest mean. This aspect will be addressed by the
second phase of the algorithm.

The number of episodes in the exploratory phase should ideally allow for the
sampling of each policy above its mean at least once. Depending on the particu-
lar strategy Σ and the shape of the distributions of the policies, such a number
for exp length might be computable. In practice, unless the problem is effec-
tively hierarchically broken into much smaller problems, the number of episodes
required is hardly feasible. In those cases, the exploration has to be shorter than
what would be required to complete, and the algorithm will start with an upper
bound for the limited number of policies visited, and keep exploring during the
second phase.
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Algorithm 1. SoSMC
exp length← number of episodes in the exploratory phase
n← current episode
t← last exploratory episode
α(n, o, a)← learning step parameter
initialize Q(s, a) pessimistically
{Exploratory phase}
for i = 1 to exp length do

generate a trajectory ω according to a policy π extracted from a strategy Σ
for all o ∈ O, a ∈ A s.t.〈o, a〉 is in ω do

Q(o, a) = max(Q(o, a), Rpost−o(ω))
end for

end for
{Assessing phase}
for all other episodes : n do

if n is such that the current estimate is considered accurate then
t = n
π ← a policy chosen from Σ

else
π ← the last policy chosen

end if
{Possible policy change after an exploratory episode}
if n = t + 1 then

π ← the policy that greedily maximizes Q
end if
generate a trajectory ω from π
if n = t then

for all o ∈ O, a ∈ A s.t.〈o, a〉 is in ω do
Q(o, a) = max(Q(o, a), Rpost−o(ω))

end for
else

for all o ∈ O, a ∈ A s.t.〈o, a〉 is in ω do
Q(o, a) = (1− α(n, o, a))Q(o, a) + α(n, o, a)Rpost−o(ω)

end for
end if

end for

If the domain does not allow for the estimation of a helpful upper bound, for
instance because every action can potentially give high rewards, the first phase
can be skipped initializing all actions optimistically. We conjecture that this may
happen on synthetic domains in which the stochasticity is artificially injected,
but it is rarer in real-world applications.

3.2 Assessment

We want to maximize the expected cumulative discounted reward, rather than
the maximum obtainable one, therefore an evaluation of the promising policies
is needed.
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We rely on the main result behind stochastic search, reported (for minimiza-
tion, but valid for maximization problems as well) in the following theorem [14]:

Theorem 1. Suppose that θ∗ is the unique minimizer of the loss function L on
the domain Θ where L(θ∗) > −∞, θnew(k) is the sample probability at iteration
k, θ̂k is the best point found up to iteration k, and

inf
θ∈Θ,‖θ−θ∗‖≥η

L(θ) > L(θ∗)

for all η > 0. Suppose further that for any η > 0 and for all k there exists a
function δ(η) > 0 such that

Pr(θnew(k) : L(θnew(k)) < L(θ∗) + η) > δ(η)

Then, executing a random search with noise-free loss measurements, θ̂k → θ∗

almost surely as k → ∞.

In order to guarantee that the conditions expressed by the theorem are met we:
(1) limit the search space to the finite set of deterministic stationary policies;
(2) require immediate rewards to be bound; (3) require that the strategy Σ
according to which the policies are picked assigns a non-zero probability to each
of them. In particular, the second condition holds as the search space is finite,
and the probability to land arbitrarily close to the optimal policy is non-zero,
as such is the probability to land directly on it. If the optimal solutions are
more than one, the algorithm might not converge on any single of them, but
rather oscillate among optimal solutions. Since the value of optimal solutions
is, in general, not known in advance, there is no obvious stopping criterion. In
practice, and as it is common in stochastic search, we may define a threshold
above which we accept any solution.

In the second phase the algorithm picks a policy according to Σ, evaluates it
with first-visit Monte Carlo, and stops if the policy’s reward is above a threshold.
Monte Carlo methods wait until the end of the episode to update the action-value
function, therefore the task needs to be episodic. The novel aspect of SoSMC
is the way in which the search is biased. Reinforcement learning algorithms can
traditionally be considered as composed by prediction and control. While the
prediction part is borrowed from the literature (first-visit MC) the control part is
based on the estimate of upper bounds, their storage in the action-value function,
and their use to generate the next policy to try. Moreover, differently from
MCESP, it performs a global search. It also employs a consistent exploration [3],
that is, during the same episode, every time the agent perceives an observation
it performs the same action.

If the reward is deterministic a single evaluation per policy is sufficient. Such
a case may, for instance, occur on POMDPs in which the underlying MDP is
deterministic and there is a single initial state. If the reward is stochastic, on the
other hand, the capability to have an accurate estimate of the reward depends
on the distribution. For some distributions it may be possible to compute con-
fidence bounds and ensure that the reward returned by a policy is higher than
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the threshold with some probability. In general, the estimated mean cannot be
guaranteed to be correct after any finite number of samples. In such cases, we use
a fixed number of samples k which empirically proves to be reliable. Although
losing some of the theoretical guarantees, we experimentally show how SoSMC
can outperform the best results in the literature for different domains. While
an inaccurate estimation of a policy may deceive the stopping criterion, if the
threshold is not too tight on the optimal value a good policy is in practice always
found in the domains we have used.

The example of Figure 1 shows an assessment phase with k = 50. Beginning
with episode 101, in each state the action with the highest value is locally se-
lected. The policy A1-A2 is initially executed for k episodes and the values of
the actions converge to their means. Every k episodes a new policy is generated
at random, with its probability depending on action values, and executed to be
evaluated. Notice how in the second phase only half of the policies are actually
sampled, as the action B1 is never executed after the initial phase.

3.3 Exploration Strategies

Different choices are possible for the exploration strategy Σ, making SoSMC a
family of algorithms. We have used both ε-greedy and SoftMax (cf. Equation
2). In the case of ε-greedy (where we refer to the algorithm as ε-SoSMC), the
choice has been made for each state the first time it is encountered, and then
remembered throughout the episode. Notice that this has not been applied to
Sarsa, in which a separate decision is made if the same state is encountered
multiple times in the same episode. The policies closest to the current optimal one
are more likely to be selected, and become less and less probable as the distance
from the optimal policy increases. As for SoftMax, again the current optimal
policy is the most likely to be selected, but the neighbourhood is considered
not just in the distance from such a policy, but also in the value of its actions,
evaluated locally. SoSMC with SoftMax, referred to as Soft-SoSMC, performs
particularly well in those domains in which the combinatorial aspect is minimal,
and the choices can often be made separately.

4 Experimental Evaluation

In this section, we show the results of the application of our algorithm to three
different domains. The first domain is the same one used for MCESP. In all
of the domains, we have compared our algorithm with Sarsa as it is still the
most effective method based on value functions on N-MDPs [9,11]. As they are
not based on value functions and search for a stochastic policy, rather than a
deterministic one, we also leave policy gradient methods out of the evaluation.

4.1 Parr and Russell’s Grid World

This small grid world has been used as a test domain by several authors [9,11]. It
has 11 states (Figure 2 (a)) in a 4 by 3 grid with one obstacle. The agent starts
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(a) (b) (c)

Fig. 2. The three domains used. (a) Parr and Russell’s grid world, (b) Sutton’s grid
world, (c) Keepaway

at the bottom left corner. There is a target state and a penalty state whose
rewards are +1 and -1 respectively. Both are absorbing states, that is when
the agent enters them the episode terminates. For each action that does not
enter a target state, the agent receives a reward of -0.04. The actions available
in every state are move north, move south, move east, and move west which
succeed with probability 0.8. With probability 0.1 the agent moves in one of
the directions orthogonal to the desired one. In all of the previous cases if the
movement is prevented by an obstacle the agent stays put. In any state the
agent can only observe the squares east and west of it, having a total of four
possible observations. In order to make the task episodic, the maximum number
of actions allowed is 100, after which the environment is reset.

Fig. 3. Results for Parr and Russell’s domain

Figure 3 shows the results of ε-SoSMC with an initial phase of 100 episodes
and no exploration afterward (employing a constant α = 0.05 and selecting the
greedy policy at any time), with an initial phase of 50 episodes and exploration in
the second phase (ε = 0.1), and finally Sarsa(λ) with ε-greedy, in which ε starts
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at 0.2 and decreases to zero in 80000 actions as described by Loch and Singh
[9]. The threshold has been posed close to the optimum at 0.2. Each point is the
average of the reward collected by the agent in the previous 100 episodes, and
over 100 runs, including the exploration. It can be noted how SoSMC converges
much faster than Sarsa and reaches the optimal solution reliably.

4.2 Sutton’s Grid World

Sutton’s grid world is a 9 by 6 grid with several obstacles and a goal state in the
top right corner. It is accessible to the agent only through its 8 neighboring states,
making it a POMDP. Only 30 possibly observations are actually possible in the
grid world, and the initial state is chosen at every episode uniformly at random.
The actions are the same as the previous domain, but they are deterministic. For
this reason, only those that do not run directly into an obstacle are available. In
order to make the task episodic we set the maximum number of actions in any
given episode to 20. After each action the agent receives a reward of -1, except
for when it enters the goal state, in which case it is 0. Every 200 episodes we
pause the learning and take a sample, from each initial state, of the current best
policy, whose average reward per episode is plotted in Figure 4.

Fig. 4. Results for Sutton’s domain

In this domain ε-SoSMC and Soft-SoSMC obtained similar results, therefore
we only show Soft-SoSMC. We used SoftMax with no initial phase. The value
function has been optimistically initialised and SoSMC launched from its second
phase. In this experiment τ = 4 and the algorithm explores every 20 episodes.
The threshold is at −8.3. The results show how Soft-SoSMC finds, on average,
a policy better than Sarsa. Sarsa obtains a value slightly, but statistically sig-
nificantly smaller, as shown by the 95% confidence intervals which have been
plotted on the graph every three points in order to not clutter the image.
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4.3 Keepaway

Keepaway is a subtask of RoboCup Soccer in which one team, the keepers, must
keep possession of the ball in a limited region as long as possible while another
team, the takers, tries to gain possession. The task is episodic, and one episode
ends whenever the takers manage to catch the ball or the ball leaves the region.
We conducted our experiments on the 3 vs 2 task, i.e., with three keepers and
two takers. Two different procedures are defined: hold and pass(k). Hold keeps
possession of the ball until the next decision can be made, while pass(k) passes
the ball to the k-th team mate, where the team mates are sorted by their distance
to the agent. A reward of 1/10 is collected every 1/10 of second, so that the agent
maximizes the duration of the episode. We devise a representation with three
variables: the two distances between the takers and the lines of pass towards the
team mates, and the distance between the agent and the closest taker. Moreover,
for each variable we consider only one threshold, having 8 observations in total.
The simulator is provided with a policy, written by hand, meant as a benchmark.
On our system, such a policy holds the ball for almost 16 seconds on average.
We set the threshold for the stochastic search at 18 seconds. We also fix the
behavior of two agents at a policy that waits for the takers to be withing a
certain distance, and passes the ball to the team mate whose line of pass is
farther from the opponents. The third agent is the one that is going to learn.
Figure 5 shows the mean hold time per episode of Soft-SoSMC and Sarsa(λ).
Each point is the average of the previous 200 episodes over 20 runs and includes
the exploration (it is not just the best policy at any given time). Since this
simulation is quite time consuming, we could not perform the same number of
runs as the previous domains, in which we made sure that the confidence interval

Fig. 5. Results for Keepaway. The average hold time per episode (y axis) is expressed
in seconds.
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for each point was negligible. This plot is therefore less smooth, and as with the
previous domain, we show the 95% confidence interval explicitly. The initial
phase of Soft-SoSMC has a length of 100 episodes. While Sarsa(λ) only learns a
behavior that on average holds the ball for 9 seconds, despite the small number
of states, our algorithm reaches 16 seconds in less than 1000 episodes and goes
up to 20s in the next 4000 episodes. This behavior outperforms several other
methods on this domain, including policy search algorithms [18,17,4,5,6]. This
is not just due to the small size of the representation, as Sarsa(λ) is not able
to improve the agent’s behavior of more than about 3 seconds. Note that the
representation is certainly non-Markovian, as we have run Q-learning choosing
actions at random, and instead of off-policy learning the optimal action-value
function - as it is proved it would on an MDP - the value of all actions collapsed
and where almost the same. In this N-MDP then, a direct RL method does not
succeed in learning, and a specific algorithm like SoSMC can instead leverage
the representation nonetheless.

5 Conclusions

In this paper, we have analyzed the advantages of using Non-Markovian processes
in order to reduce the representation space and to achieve fast learning. Our
work leads us to conclude that, in the domains analyzed in this paper, the
attempt to enrich the domain description to make it Markovian can introduce
high complexity for the learning process, such that algorithms that are proved to
converge to optimal solutions in the long term do not provide any good results
when the number of available samples is limited. On the other hand, smaller
representations can indeed be more effective, since good solutions can be found
within the limit of the available samples, with an adequate learning method.
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Abstract. Comparing frequency counts over texts or corpora is an im-
portant task in many applications and scientific disciplines. Given a text
corpus, we want to test a hypothesis, such as “word X is frequent”, “word
X has become more frequent over time”, or “word X is more frequent in
male than in female speech”. For this purpose we need a null model of
word frequencies. The commonly used bag-of-words model, which corre-
sponds to a Bernoulli process with fixed parameter, does not account for
any structure present in natural languages. Using this model for word
frequencies results in large numbers of words being reported as unex-
pectedly frequent. We address how to take into account the inherent
occurrence patterns of words in significance testing of word frequencies.
Based on studies of words in two large corpora, we propose two methods
for modeling word frequencies that both take into account the occur-
rence patterns of words and go beyond the bag-of-words assumption.
The first method models word frequencies based on the spatial distribu-
tion of individual words in the language. The second method is based on
bootstrapping and takes into account only word frequency at the text
level. The proposed methods are compared to the current gold stan-
dard in a series of experiments on both corpora. We find that words
obey different spatial patterns in the language, ranging from bursty to
non-bursty/uniform, independent of their frequency, showing that the
traditional approach leads to many false positives.

Keywords: burstiness, sequence analysis, natural language modeling.

1 Introduction

Analyzing word frequencies is important in many application domains, such as
data mining and corpus linguistics. Suppose we have a set of texts and we want
to test a hypothesis, such as “word X is frequent”, “word X has become more
frequent over time”, or “word X is more frequent in male than in female speech”.
For such tasks, we need to have a null model of word frequencies. The standard
for statistical testing of such hypothesis is based on the bag-of-words assump-
tion, i.e., every word can occur at any position in a text with equal probability.
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This assumption has been pervasively used by both data mining [15] and lin-
guistics communities [5] for finding words with significantly elevated occurrences
in a text. We show in this paper that for almost no word, its frequency distri-
bution observed in text corpora corresponds to a binomial distribution. Thus,
the binomial distribution is almost always an inappropriate null model for word
frequency distribution.

In linguistics, frequencies of words and other phenomena such as proverbs,
semantic tags, n-grams, etc., are widely used to study how people communicate.
It is well known that the bag-of-words model is a poor descriptor of word occur-
rences. Linguists have gone as far as claiming that hypothesis testing of word
frequencies is rarely useful to finding associations, and often leads to misleading
results [14]. Others have noted that a measure of dispersion is necessary to im-
prove significance testing [21], or that each significant result should be checked
using an effect size measure [9] or manual investigation [20].

In information retrieval, the fraction of documents where a word occurs is
used to detect content-related words. The inverse document frequency, used in
the classic tf-idf, or more recent approaches such as Okapi BM25 [2,22], is useful
because content-related words are less dispersed than words with a grammatical
function. Such models implicitly assume the bag-of-words setting. Usually the
statistical significance of word frequencies is of no interest, because the task
is not to find or study individual words that describe the documents but to
rank documents according to their relevance to a given set of query words. Our
problem setting, however, is very different and thus not directly comparable.

Our Approach. Comparing frequency counts over texts or corpora is an im-
portant task in many applications and scientific disciplines. The commonly used
bag-of-words model, which can be described as a Bernoulli process with fixed
rate, does not account for any structure present in natural languages. It can
be easily shown that words have very different behavior in language, even at
the word frequency level. In Figure 1, we illustrate the frequency histograms of
the words for and i (lowercase I ) in the British National Corpus [24]. These
words are both very frequent, and approximately equally frequent. Yet, their
frequency distribution is very different, thus employing the bag-of-words model
in this example would be misleading.

Contextual behavior of words varies in language and is affected by several
factors, such as genre, topic, author (gender, age, social class) etc. For example,
in written language, especially in newspaper texts, there is avoidance of repeating
a word, due to stylistic ideals, whereas in conversation, priming of words and
syntactic structures plays an important role [10,23]. Hence, it is evident that
natural language is non-homogeneous. There is great variance in word frequencies
which depends on the specific word.

To model the natural behavior of words, we study their distribution through-
out texts. The essential unit here is the interval between two occurrences of a
word. We refer to this interval as the inter-arrival time between two instances.
A recent study suggests that inter-arrival times in natural language can be
modeled to a good accuracy using a Weibull distribution [1]. This parametric
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Fig. 1. Histogram of normalized frequencies vs. number of texts for the words for and
i in the British National Corpus

distribution gives rise to a parameter β that can be interpreted as the burstiness
of a word; we show this has a direct effect on the word frequency distribution.
Bursty words tend to exhibit long inter-arrival times followed by short inter-
arrival times, while the inter-arrival times for non-bursty words have smaller
variance. The lower the burstiness parameter, the burstier the word: for exam-
ple, βfor = 0.93 and βi = 0.57.

Our Contributions. We propose two methods for modeling word frequencies
that both take into account the behavior patterns of words. The first method
is based on the inter-arrival time distribution of individual words. The second
model is based on bootstrapping and takes into account only word frequency
at the text level. We compare these methods to the current gold standard in a
series of experiments on two large corpora: the British National Corpus (BNC)
[24] and the San Francisco Call Newspaper Corpus (SFCNC) [17]. These corpora
contain about 100 million and 63 million words, respectively. The experiments
are based on comparing word frequencies over writing styles in the BNC and
over time in SFCNC.

We show that taking the behavior of individual terms into account matters:
in many cases it increases the frequency thresholds for the word to be reported
as significantly frequent and therefore reduces the number of reported words.
In addition, we find that the inter-arrival distribution can be used to give good
predictions for the word-frequency distribution and that the inter-arrival and
bootstrap methods give similar results.

2 Related Work

Word frequencies have been studied and analyzed in several domains. Research
on graphs and networks has shown that many natural phenomena and patterns
in human activity exhibit power-law behavior [3,7,16,18]. The discovery of power-
law statistics occurred in the study of natural language; Zipf’s law [26], relating
the rank of words and their frequencies, describes the oldest known example of a
power-law. It is surprising that for word frequencies in text documents, no such
heavy-tailed modeling has been attempted.
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The Bernoulli model has been widely used in modeling text in both data
mining and linguistics. Dunning et al. [5] adopts the bag-of-words model to assess
the statistical significance of word frequencies in text, assuming a Multinomial
distribution, while Kleinberg [15] assumes multiple levels of frequency rates in
text, where bursts of low frequencies may contain bursts of higher frequencies.

A significant amount of work has focused on detection of bursty structure
in text, where bursty words are clustered to represent topics [8,12], or they are
classified based on their frequency trajectories [11]. Additional work includes
burstiness detection methods for query logs [25] or streams [13]. A burstiness-
aware search framework has been introduced by Lappas et al. [17] which is fully
non-parametric. All these methods, however, do not perform any significance
assessment of word frequencies, thus they are orthogonal to the work presented
in this paper.

Several effects of contextual behavior of words have been addressed in lin-
guistics, such as text genre differences [4], word priming in conversation [10,23],
differences in language use between males and females, age groups, and social
classes [21]. Recent work by Altmann et al. [1] has shown that the distribution
of successive occurrences of words can be modeled by the Weibull distribution,
which is used in this paper.

3 Problem Setting

Let S = {S1, . . . , S|S|} be a corpus, i.e., a set of n texts, defined over a lexicon
Σ = {q1, . . . , q|Σ|}. Each text Si = w1 . . . w|Si| is a sequence of words, with
wj ∈ Σ for j = 1, . . . , |Si|.

The frequency freq(q, Si) of a word q in a document Si is the number of
occurrences of q in Si; the frequency of a word q in a corpus S is the total
number of occurrences of q in S, i.e., freq(q,S) =

∑n
i=1 freq(q, Si). The size

size(S) of a corpus S, is the total number of words in it, which is the sum of the
lengths of all texts, i.e., size(S) =

∑n
i=1 |Si|.

We focus on assessing the statistical significance of word frequencies in texts.
Given a word q and a corpus S, we would like to decide whether the frequency of q
is significantly higher in S than in some given corpus T that conveys background
knowledge on the word frequency distribution. For this purpose, we define an
appropriate model for probability and use the one-tailed p-value:

p(q,S, T ) = Pr

(
freq(q,S)
size(S)

≤ freq(q, T )
size(T )

)
. (1)

We are interested in words for which this p-value is less than a user-defined
significance threshold α ∈ [0, 1]:

Definition 1 (Dominant word). Given a word q, a corpus S, a background cor-
pus T , a p-value function p, and a significance threshold α, q is a dominant
word in S if and only if

p(q,S, T ) ≤ α. (2)
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We consider the following two problems:

Problem 1. Given a word q and two corpora S, T , decide whether q is a dom-
inant word in S, given T .

For example, S can include articles written by male authors and T articles
written by female authors. Given a word q, we would like to assess the significance
of the frequency of q in S compared to the frequency in T . In other words, we
would like to determine whether q is used by males at a significantly higher rate
than by females.

Problem 2. Given two corpora S and T , find the set of words Q ⊆ Σ, such
that each qj ∈ Q is a dominant word in S, given T .

For example, S may include newspaper articles written, e.g., in one year, while
T may include newspapers written over some previous years. Our task then is to
detect all dominant words for that year (set S) compared to the previous years
(set T ). Using this set of words we may infer the most important topics during
that year and also observe gradual change of the language.

Note that we allow the case where both S and T contain only a single text.
In the experiments in Section 5 we show that even when S consist of only one
text, taking into account the structure of the language is meaningful and our
approach gives results that differ substantially from the bag-of-words model.

4 Methods

In Section 4.1 we briefly discuss the baseline method, whereas in Section 4.2 we
introduce the method based on inter-arrival times. This method comes in two
flavors: fully non-parametric or using the Weibull distribution to model inter-
arrivals. In Section 4.3 we introduce the bootstrapping method.

4.1 Method 1: Bernoulli Trials

A popular method for significance testing in frequency comparison is based on
the assumption that a word occurs at any position in a text with equal probabil-
ity. This setting is modeled by a repetition of Bernoulli trials, and the frequencies
then follow a binomial distribution. The binomial distribution can be accurately
approximated with the Poisson distribution for faster computation. Computa-
tional methods for these distributions are available in any modern statistical
software package. This method serves as the baseline for comparison.

Let pq,S denote the probability of observing q at any position in S. The
probability of observing q exactly k times after n trials is given by the probability
mass function of the binomial distribution:

f(k; n, pq,S) =
(

n

k

)
pq,Sk(1 − pq,S)n−k. (3)

Let p̂q,T denote the empirical probability of observing q at any position in T :
p̂q,T = freq(q, T )/ size(T ). Since the null hypothesis is that pq,S = pq,T , we can
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use p̂q,T as an estimate for pq,S . The p-value for the Bernoulli model is then
given by setting n = size(S), p = p̂q,T and summing over k ∈ [freq(q,S), n]:

p1(q,S, T ) =
size(S)∑

k=freq(q,S)

(
size(S)

k

)
p̂k

q,T (1 − p̂q,T )size(S)−k. (4)

Function p1(q,S, T ) gives the one-tailed p-value of observing a frequency at
least as high as freq(q,S), given the size of S and the estimate p̂q,T . Its value
can be computed using the cumulative distribution function of Equation (4).
The computational complexity of this approach is O(size(S) + size(T )). For the
remainder of this paper, this method will be denoted as Bin.

4.2 Method 2: Inter-arrival Times

This approach takes into account the natural behavior of words as expressed by
inter-arrival times between words. The method is again based on computing a
one-tailed p-value for observing a certain frequency or higher in S, similar to
the Bernoulli method. However, we do not assume that a word can occur at
any position with fixed and equal probability. Instead, the probability of a word
occurrence depends on the distance to the previous occurrence. Two null models
are considered: the first is non-parametric and is based directly on the observed
inter-arrival times, whereas the second is based on the Weibull distribution.
First, we define inter-arrival times.

Inter-arrival Times. Let S be an ordered set of texts, which we concatenate
to produce one long text S = w1 . . . wsize(S). For each word qi ∈ Σ with n =
freq(qi,S), let q1

i , . . . , qn
i denote the positions where qi occurs in S, i.e., ql

i = j
if and only if wj is the lth occurrence of qi in S. The j-th inter-arrival time of
word qi, denoted as ai,j , is given by

ai,j = qj+1
i − qj

i , for j = 1, . . . , n − 1. (5)

We take the inter-arrival time before the first occurrence of the word and after
the last occurrence by considering S to be a ring. For simplicity, we define:

ai,n = q1
i + |S| − qn

i . (6)

This ensures that the probability of observing the word is computed properly.
Note there are as many inter-arrival times as words.

Empirical p-value. To obtain a null model and associated p-values, we use
Monte Carlo simulation to create randomized texts, and compare the frequencies
in the randomized texts against the observed frequency freq(q,S).

Consider N random texts R1, . . . ,RN , which have a size equal to S: size(Ri)
= size(S) for i = 1, . . . , N . We produce the random texts using a probability
distribution for inter-arrival times learned from the background corpus T . That
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is, we construct a sequence of occurrences of word q by repeatedly sampling
randomly from the set of inter-arrival times of q. We approximate the one-tailed
p-value using the empirical p-value [19]:

p̂2(q,S, T ) =
1 +

∑N
i=1 I(freq(q,S) ≤ freq(q,Ri))

1 + N
, (7)

where I(·) is the indicator function. We do not have to normalize the frequencies,
since S and Ri are by definition of the same size.

Empirical Inter-arrival Time Distribution. The main step of the algorithm
is to sample an inter-arrival time from the inter-arrival distribution, which we
denote as f(x). In the non-parametric case, we sample an inter-arrival time
uniformly at random from the observed inter-arrival times, i.e., each observed
inter-arrival time has equal chance of being chosen. This can be implemented by
keeping a vector of inter-arrival times.

The first occurrence is treated separately. We can be at any point in any
possible inter-arrival time at the beginning of the text. However, it is more likely
we are at some point in a long inter-arrival than in a short one. To be precise,
this is proportional to the length of the inter-arrival and thus we should sample
uniformly from g(x) = C · x · f(x), where C is a normalization constant such
that

∑
x C · x · f(x) = 1. This gives us the current inter-arrival time, and within

this inter-arrival time, any position is equally likely. Fast sampling from this
distribution can be implemented by associating a normalized probability with
each unique element in f(x).

Random corpora produced using this Monte Carlo sampling procedure can be
used to compute estimates for the one-tailed p-value. For the remainder of this
paper, this method will be denoted as IAE .

Weibull Inter-arrival Time Distribution. Recent work suggests that inter-
arrival times between words can be modeled well using the Weibull (or stretched
exponential) distribution [1]. It is shown that for almost any word the Weibull
model fits the data much better than a Poisson distribution, as measured by
the explained variance (R2). Nonetheless, this recent study is mostly based on
one data source: discussions on Google groups [1]. As far as we know, this re-
sult has not been validated by any other study. The comparison of the Monte
Carlo simulation between the Weibull distribution and the empirical inter-arrival
distribution will be the first evaluation of this result.

The probability density function for the Weibull distribution is given by

f(x) =
β

α

(x

α

)β−1

e−(x/α)β

, (8)

where α, β > 0 are the scale and the shape parameters, respectively. If β = 1,
the Weibull distribution equals the Poisson distribution, and if β → 0 it ap-
proaches a power-law and becomes heavy-tailed. We fit the parameters using
the maximum-likelihood estimation. Implementations for fitting and sampling
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for Weibull distributions are available in software packages for statistical analy-
sis, such as R and Matlab.

The Monte Carlo simulation using the Weibull distribution is implemented
as follows: sampling from f(x) can be accomplished using standard statistical
software, while the distribution g(x) = C · x · f(x),

g(x) = C · x · f(x) =
k

αΓ (1 + 1
β )

(x

α

)β

e−(x/α)β

(9)

can be sampled by using the cumulative distribution function for g(x),

G(x) =
∫ a

0

dx · g(x) = 1 −
Γ
(
1 + 1

β ,
(

a
α

)β
)

Γ
(
1 + 1

β

) . (10)

Now, if we substitute y =
(

a
α

)β , then G(x) becomes the Gamma distribution
with shape k = 1 + 1/β and scale θ = 1. We can sample a random number y
from the Gamma distribution and obtain an inter-arrival time by r =  α · y1/β!.
The rounding is necessary because the Weibull distribution is continuous and
> 0, while inter-arrival times are discrete and ≥ 1.

Again, using Equation (7) and the random samples obtained from this Monte
Carlo simulation, we can compute an estimate for the one-tailed p-value. The
computational complexity of this method is O(N size(S) + size(T )) and the
memory requirement is O(size(T )). Since computations are done word-per-word,
the memory cost can be reduced by storing only one vector of inter-arrival times
at a time. For the remainder of this paper, this method will be denoted as IAW .

4.3 Method 3: Bootstrapping

Instead of using inter-arrival times we can use a non-parametric approach to
model the word frequency distribution directly.

Let S contain only one text, i.e., S = {S}, and let T be a corpus with
many texts. A straightforward approach to compute a p-value for the observed
word frequency in S is to count the fraction of texts in T where the normalized
frequency is larger. However, if S contains multiple texts, we would like to take
into account heterogeneity between texts in both S and T . We use bootstrapping
[6] to approximate the p-value, although for this purpose also analytical estimates
might be used.

The procedure is as follows: we take N random sets of texts R1, . . . ,RN , from
the background corpus T , each set having the same number of texts as S: |Ri| =
|S|. This leads to the problem that size(Ri) is not necessarily equal to size(S),
thus we should use normalized frequencies. We use the pooled frequency, divided
by the pooled text size. Alternatively, one could use averages of frequencies that
are normalized per text. Now, the empirical p-value (similar to Equation (7)) is

p̂3(q,S, T ) =
1 +

∑N
i=1 I

(
freq(q,S)
size(S) ≤ freq(q,Ri)

size(Ri)

)
1 + N

. (11)
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The computational complexity of this method is O(N |S| + size(S) + size(T ))
and the memory requirement is O(|T |). For the remainder of this paper, this
method will be denoted as Boot.

5 Experiments

The performance of our methods has been benchmarked on two large corpora:
The British National Corpus (BNC) [24] is the largest linguistically annotated

corpus that is available in full-text format. It contains almost 100 million words
of British English, spread over 4,049 texts, which are classified in text genres,
such as fiction, academic prose, newspaper articles, transcribed conversation
and more. The corpus is a result of careful digitization and has been annotated
with meta information such as author gender, age, etc. and has been part-of-
speech-tagged automatically with manual validation. We preprocess the data by
removing all capitalization.

The San Francisco Call Newspaper Corpus (SFCNC) contains tokenized and
stemmed newspaper articles published in the San Francisco Call, a daily news-
paper, between 1900 and 1909, with stopwords removed. The SFCNC has been
constructed and used by Lappas et al. [17]. The corpus consists of three periods:

– Period I: 110,387 articles published from 01/01/1900 to 31/12/1901.
– Period II: 133,684 articles published from 01/01/1903 to 31/12/1904.
– Period III: 129,732 articles published from 01/01/1908 to 31/12/1909.

The experiments are based on comparing word frequencies over writing styles
in the BNC and over time in SFCNC. In Section 5.1, we present a simple proof
of concept benchmark to show that taking into account individual behavior of
words matters. We discuss the differences between male/female authors and four
text-genres in the BNC in Sections 5.2 and 5.3. Significant language changes over
time in the SFCNC are illustrated in Section 5.4 and the proposed methods also
managed to detect dates of significant events.

5.1 BNC: A Simple Benchmark

We performed a simple benchmark on the BNC to show that burstiness matters
when assessing the statistical significance of word frequencies. For simplicity,
we used in this experiment a fixed text length of 2,000 words both for S and
T , which leaves us with 3,676 texts. We compared the significance thresholds
for the most frequent words in the BNC and words with frequency just below
100,000. In detail, for each of the 30 words, we computed the word frequency
that is required to make that word significant at the level α ≤ 0.01. Because the
texts in the BNC are not ordered, we order them randomly.

In Table 1 we show the results of the proposed methods, IAE, IAW, and Boot,
compared to Bin. Also, βq,T indicates the value of the shape parameter β of the
Weibull distribution for each word q in T . β = 1 corresponds to an exponential
distribution, which we consider to be non-bursty. The lower the β the burstier
the word. If β > 1, then the distribution is more regular than exponential, which
we shall also consider to be non-bursty.
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Table 1. Actual frequencies, parameters βq,T , and significance thresholds for the most
frequent words in the BNC and words with frequency just below 100, 000. Thresholds
are computed for a text of length 2, 000 words and α ≤ 0.01. freq(q, T is the frequency
of the Word in the BNC. βq,T is the burstiness of the word, given by the Weibull
distribution. Bin, is the binomial model. IAE and IAW are the inter-arrival methods
using empirical and Weibull distribution. Boot is the bootstrapping method. Largest
differences occur when βq,T is lowest.

Word freq(q, T ) βq,T Bin IAE IAW Boot Word freq(q, T ) βq,T Bin IAE IAW Boot

the 6043900 1.10 149 152 143 197 how 99022 0.65 7 9 9 10
of 3043549 1.02 82 85 80 116 most 98051 0.77 7 8 8 7
and 2617864 1.08 72 72 70 95 back 96978 0.66 7 9 9 11
to 2594656 1.05 71 72 70 82 get 96000 0.60 7 10 10 20
a 2165365 1.01 61 63 61 72 way 95763 0.78 7 8 8 7
in 1938440 1.01 56 57 55 73 our 93272 0.53 7 11 10 17
that 1119422 0.87 35 40 38 69 down 92084 0.67 7 9 9 10
it 1054755 0.79 34 39 37 79 made 91383 0.80 7 8 7 8
is 990747 0.77 32 40 37 54 right 90533 0.57 7 10 9 38
was 881620 0.72 29 39 35 53 between 90519 0.70 7 8 8 8
for 879020 0.93 29 31 30 37 got 90165 0.51 7 12 12 20
i 868907 0.57 29 57 48 110 er 89845 0.43 7 28 26 54
’s 784709 0.75 27 33 31 70 much 89842 0.79 7 7 8 7
on 729923 0.91 25 27 27 37 work 89344 0.61 7 9 9 11
you 667623 0.56 24 49 42 100 think 88665 0.56 7 11 10 17

The first observation we make concerns the six most frequent words (the – in),
which have β ≥ 1.00 and are thus non-bursty. The inter-arrival methods give
similar frequency thresholds as the binomial model, although the bootstrapping
method suggests that even for these words we should be more conservative in
estimating p-values.

On the left side of the table are the words for and i, used previously in
the example of Figure 1. The binomial model does not distinguish between the
two words, while the three proposed methods do, by requiring a much higher
frequency for i to be considered significant. The words on the right side of the
table suggest there is difference between various words, regardless of frequency.
Words such as right and er, but also get, got, and think are bursty and all three
methods suggest we should assess the significance much more conservatively.
Regarding the rest of the words in the table, we can conclude that both inter-
arrival based methods perform similarly, with IAW consistently requiring slightly
lower frequencies than IAE . Boot often gives the highest threshold, but for few
words (most, way, much) the results are similar to the binomial model.

5.2 BNC: Differences between Male and Female Authors

Next, we studied text variation between male and female authors in the BNC.
For this experiment, we selected all fiction texts from BNC and split them into
two groups: those written by males BNCmale and those written by females
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Table 2. Number of dominant words for written fiction by male or female authors at
various significance thresholds α. Bin, is the binomial model. IAE and IAW are the inter-
arrival methods using empirical and Weibull distribution. Boot is the bootstrapping
method. Any is the number of words reported as dominant by any of the methods. The
inter-arrival and bootstrap methods show many of the words reported as significantly
frequent by the binomial method are not significant. The inter-arrival method using
Weibull distribution is most conservative.

Gender α Bin IAE IAW Boot Any Gender α Bin IAE IAW Boot Any

Male 0.1% 183 133 110 119 185 Female 0.1% 202 147 123 131 202
Male 1.0% 264 210 182 186 266 Female 1.0% 290 222 195 210 290
Male 10.0% 417 375 359 366 417 Female 10.0% 470 420 400 405 471

BNCfemale. We conducted two experiments: in the first we searched for domi-
nant words in BNCmale, thus we set S = BNCmale and T = BNCfemale, and
secondly we performed the reverse experiment. The performance of the proposed
methods was compared to that of Bin for different significance thresholds α.

In Table 2, we can see the number of dominant words produced by each
method for α = 0.1%, 1.0%, 10%. We also recorded the number of words de-
tected as dominant by at least one of the methods, which is denoted as Any
in the table. We can conclude that the number of dominant words detected by
the three proposed methods are always less than those detected by Bin for both
genders. For example, a significance threshold of 0.1%, the number of dominant
words detected by Bin are approximately 1.7 times as many as those detected by
IAW , 1.4 times as many as those detected by IAE and 1.5 times as many as those
detected by Boot. Also, IAW consistently detects the smallest number of dom-
inant words. We also observed that dominant words detected by the proposed
methods were nearly always flagged as dominant by Bin. Further investigation
showed these words were reported by one of the inter-arrival methods and have
p-values just above α for all other methods.

An overview of all p-values resulting from this experiment is given in Figure
2. The six displays compare all methods pairwise to each other. The in-sets
enlarge the view at small p-values. We found that the inter-arrival time methods
and Boot report smoothed p-values in many cases, i.e., p-values below 0.5 are
higher and p-values above 0.5 become lower, in comparison to the binomial
model. We find also that there is much agreement between IAE and Boot. The
Weibull distribution appeared to give more variable results and larger differences
compared to the binomial model than the other two methods. In general, the
inter-arrival time method and Boot have greater agreement with each other than
with the binomial model, as is clearly shown in the in-sets in all six figures.

5.3 BNC: Differences between the Main Genres

We studied text variation between the four main genres in BNC, i.e., conver-
sation, fiction prose, newspaper articles, academic prose. Texts were split into
four groups, one group per genre. Then for each genre, we set S to contain all
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Fig. 2. Comparison of p-values between the four methods for male and female authors
in the BNC. Each figure gives p-values from one method, against p-values in another
method. Each point corresponds to a word. For explanation of labels see Table 2. The
p-values from both experiments (male vs. female and vice versa) have been aggregated.
The in-sets show more detail for the lower p-values < 0.1. We found that the binomial
model gives very different results from all three other methods (top figures). The inter-
arrival methods using empirical distribution and the bootstrap method show great
agreement (bottom-centre figure). The inter-arrival method using Weibull distribution
shows greater variance (bottom-right, bottom-left, and top-centre figure).

texts of that genre and T to contain the rest of the corpus. The performance of
the proposed methods was compared to that of the binomial model for different
significance thresholds α.

In Table 3, we can see the number of dominant words produced by each
method and for each genre, for α = 0.1%, 1.0%, 10%. The behavior is the same
as that observed for the male vs. female experiment. Again, we observed that
nearly all dominant words detected by the proposed methods were also flagged
as dominant by Bin. A figure illustrating the comparison of p-values is omitted
due to space limitations. The results support the observations made in Figure 2.

5.4 SFCNC: Language Change over Time

We studied language variation between the three periods in SFCNC. For each
period, we set S to contain all texts of that period and T to contain all texts from
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Table 3. Number of words marked as dominant for each genre at various significance
thresholds α. For explanation of labels see Table 2. The inter-arrival and bootstrap
methods show many of the words reported as significantly frequent by the binomial
method are not significant. The inter-arrival method using Weibull distribution and
bootstrapping are most conservative. For conversation the differences between binomial
and the other methods are smallest and for news they are greatest.

Genre α Bin IAE IAW Boot Any Genre α Bin IAE IAW Boot Any

Conv 0.1% 381 328 308 314 381 News 0.1% 532 363 315 316 532
Conv 1.0% 412 384 363 367 412 News 1.0% 634 488 420 434 634
Conv 10.0% 473 453 447 446 474 News 10.0% 796 717 670 668 796
Fict 0.1% 505 388 339 352 507 Acad 0.1% 680 600 552 562 681
Fict 1.0% 573 496 446 464 573 Acad 1.0% 746 677 644 653 746
Fict 10.0% 682 629 619 610 682 Acad 10.0% 842 811 787 787 844

Table 4. Number of words marked as dominant for each news period at various sig-
nificance thresholds α. For explanation of labels see Table 2. The inter-arrival and
bootstrap methods show many of the words reported as significantly frequent by the
binomial method are not significant. The inter-arrival method using Weibull distribu-
tion is most conservative. The differences between IAE and Boot are small.

Period α Bin IAE IAW Boot Any Period α Bin IAE IAW Boot Any

I 0.1% 141 73 50 73 141 II 10.0% 334 269 268 279 337
I 1.0% 229 144 113 134 231 III 0.1% 119 65 46 66 119
I 10.0% 423 339 346 340 428 III 1.0% 172 112 96 117 173
II 0.1% 113 41 19 46 113 III 10.0% 305 250 254 266 305
II 1.0% 182 99 74 98 182

the other two periods. The performance of the proposed methods was compared
to that of the binomial model for different significance thresholds α.

In Table 4, we can see the number of dominant words produced by each
method and for each period, for α = 0.1%, 1.0%, 10%. The results at large are
the same is in the experiment on the BNC. The differences between the proposed
methods and the binomial model are even larger than before, especially at α =
0.1%. About half of the words marked as dominant by the binomial model, are
false-positives according to the inter-arrival method using empirical distribution
or bootstrap method. Using the Weibull distribution suggests even fewer truly
significant words.

A full comparison of the p-values computed by all methods, aggregated over
the three news periods, is shown in Figure 3. The in-sets show more detail for the
lower p-values. Again, as in the BNC, the three proposed methods give higher
p-values than Bin when α ≤ 0.1. In addition, for the same significance level,
IAW is clearly more conservative than the other methods. Also, the agreement
between IAE and Boot has decreased slightly, where IAE gives slightly more
conservative estimates.
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Fig. 3. Comparison of p-values between the four methods for the three periods in
the SFCNC. Each figure gives p-values from one method, against p-values in another
method. Each point corresponds to a word. For explanation of labels see Table 2.
The p-values from all experiments have been aggregated. The in-sets show more detail
for the lower p-values < 0.1. The figures confirm the findings of Figure 2. All three
methods give more conservative p-values than binomial, and the pairwise differences
between the inter-arrival time methods and the bootstrap method are similar to the
genre experiment.

5.5 SFCNC: Locating Dates of Important Events

As a final test, we studied the intervals of word bursts reported in Lappas et al.
[17]. These intervals correspond to bursts of some word after or around a signif-
icant historical event. We computed for each of the query words the days where
this word is dominant, using α = 1%, and compare these to the corresponding
intervals given by the search framework presented in their paper.

In Table 5 we find the results for one such query: Jacksonville. This interval (27
Apr–20 May) corresponds to the great fire at Jacksonville, Florida that occurred
at May 3rd, 1901. We find that using any of the methods discussed in this paper
find a shorter interval (5 May–8 May), and significant discussion one week later.
The inter-arrival and bootstrap methods restrict the set of days even further.
Due to lack of space the other results are omitted. In most cases the results were
similar to the finding above, and for certain words, the intervals corresponded
to those found in Lappas et al.
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Table 5. Dates where the word Jacksonville occurs significantly frequent. Lappas is
the method used in Lappas et al. [17]. Bin, is the binomial model. IAE and IAW

are the inter-arrival methods using empirical and Weibull distribution. Boot is the
bootstrapping method. An “x” corresponds to the word being dominant in the SFCNC
at that day. All methods suggests stricter intervals than Lappas and the inter-arrival
and boostrap methods flag the smallest sets of days.
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Boot . . . . . . . . x x . x . . . . . x . . x . . .
IAW . . . . . . . . x x x x . . . . . . . . . . . .
IAE . . . . . . . . x x . x . . . . . x . . . . . .
Bin . . . . . . . . x x x x . . . . x x . . x . . .
Lappas x . x . . . . x x x x x x x x x x x . . x x x x

6 Conclusion

Models based on the bag-of-words assumption have been prevalent in text anal-
ysis and have been proven to perform well in a wide variety of contexts. The
bag-of-words assumption provides a good estimate of the expected number of
word occurrences in text. However, the variance—or more generally, the shape
of the word frequency distribution—is seriously misestimated. We have intro-
duced a method for assessing the significance of word frequencies that is based
on the inter-arrival times. The method can use either the empirical distribution
or a parametric distribution such as Weibull. By comparing the sets of domi-
nant words given by the binomial model, the inter-arrival based method and the
bootstrap-based method, we have shown that any statistical significance test on
word occurrences that is based on the bag-of-words assumption tends to over-
estimate the significance of the observed word frequencies and hence result to
false positives. Thus, bag-of-words based methods should not be used to asses
the significance of word frequencies. One should either use an empirical method
such as the bootstrap model presented in the paper, or the inter-arrival time
based method.

An interesting direction for future work is to use the idea of inter-arrival
times instead of bag-of-words in other scenarios, such as information retrieval,
and to study test statistics other than word frequencies, which could be based
on inter-arrival times directly. Also, further research on parametric distributions
for inter-arrival times of words is warranted by the significant differences in the
experimental results between the empirical and Weibull distribution.
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Abstract. Bisociations represent interesting relationships between
seemingly unconnected concepts from two or more contexts. Most of
the existing approaches that permit the discovery of bisociations from
data rely on the assumption that contexts are static or considered as
unchangeable domains. Actually, several real-world domains are intrin-
sically dynamic and can change over time. The same domain can change
and can become completely different from what/how it was before: a
dynamic domain observed at different time-points can present different
representations and can be reasonably assimilated to a series of distinct
static domains. In this work, we investigate the task of linking concepts
from a dynamic domain through the discovery of bisociations which link
concepts over time. This provides us with a means to unearth linkages
which have not been discovered when observing the domain as static,
but which may have developed over time, when considering the dynamic
nature. We propose a computational solution which, assuming a time
interval-based discretization of the domain, explores the spaces of asso-
ciation rules mined in the intervals and chains the rules on the basis of the
concept generalization and information theory criteria. The application
to the literature-based discovery shows how the method can re-discover
known connections in biomedical terminology. Experiments and compar-
isons using alternative techniques highlight the additional peculiarities
of this work.

1 Introduction

Data produced in real-world applications have become so complex, heterogeneous
and time-varying that humans are overwhelmed when they attempt to conduct
any analysis without technological help. Sophisticated software systems and, in
particular, advanced Data Mining techniques are being continuously developed
in order to support the analysis of such data and help the comprehension of
the underlying phenomena. One of the Data Mining tasks well established but
continuously studied is that of association discovery. Typically, associations are
based on the notions of co-occurrence, inference of co-occurrence, correlation or
similarity which often permit the extraction of useful and interesting connections,
but which sometimes represent information already known to the user.
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Especially in the field of science, scientists need to create hypotheses worthy
of being investigated and discover connections seemingly remote but supported
by an intricate reasoning. Indeed, they have to handle large quantities of data of
different natures, intrinsically complex and very often observed in dynamic pro-
cesses whose structure, components and representation change over time. A part
of this problem is elegantly addressed by the approaches which investigate the
task of bisociation discovery [1],[13],[9]. By refining the original notion provided
in [7], a bisociation is widely recognized as a link that connects concepts from two
or more contexts, which are unconnected according to the specific view (very of-
ten corresponding to a subjective perspective) by which the contexts are defined.
Contexts can be considered as distinct domains which collect a set of concepts,
while the discovery of bisociations corresponds to an explorative process which
crosses various domains and links concepts present in such domains.

To perform this discovery process two issues have to be addressed[1]: the repre-
sentation or modeling of the domains and the strategy used to explore the modeled
domains and to identify adequate concepts for the linkage. First, the existing ap-
proaches exploit a network-based representation which permits the aggregation
of various domains (each of which associated to a sub-network) and relates con-
cepts in the same domain and in different domains. The nodes are assigned to the
concepts, while the edges express the relationships among the concepts directly
observed in the domain or computationally derived, such as the relations of sim-
ilarity, co-occurrence or probabilistic dependence. Second, interactive navigation
techniques and graph analysis algorithms are used to explore the overall network
and identify paths which, crossing several sub-networks (distinct domains), link
nodes (or other sub-networks)which are far apart in the network and express valu-
able implicit relations.

Most of the approaches which implement this process rely on the assumption
that domains are static, that is, disregard the dynamic nature of several real-
world domains and solve only a part of the initial problem of the scientific
discovery. Indeed, the network-based representation introduced above models a
set of heterogeneous but unchangeable domains, while even a single domain can
show changes over time. Indeed, a dynamic domain observed at different time-
points can present different representations and can be reasonably assimilated in
a series of distinct static domains. Hence, the necessity to investigate the problem
of bisociation discovery arises when taking into account the temporal component
and the intrinsic time-varying nature of some domains. This is also justified
by the fact that temporal dynamics is attracting interest in the recent data
mining literature, since it can play an important role in the comprehension of
the evolution of domains under investigation. Among the most significant works,
Bottcher et al[2] propose a paradigm based on the temporal dynamics to detect
and quantify changes in time-varying models and patterns, while Kleinberg[6]
investigates possible approaches to analyze stream-based data from a perspective
which considers the temporal evolution of the information.

In this paper, we investigate the task of linking concepts from a dynamic
domain through the discovery of bisociations which link concepts over time.
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Bisociations permit the representation of linkages which may be unearthed only
when considering the dynamic nature and which can not be discovered when
considering the domain as static. The two issues (previously described) to per-
form the process of bisociation discovery are addressed in this work as follows.
First, a time interval-based discretization is produced on the domain, so that two
time intervals have two different representations of the same domain and there-
fore, they present somehow two different static domains. Searching for linkages
in different domains, even if the data are modeled with the usual network-based
representation, can raise computational problems, since the discovery process
should evaluate possible links at the level of the original data. To overcome
this issue we propose representing each static domain (corresponding to a time-
interval) with an abstract description which permits us to focus on the main
characteristics of the domain in that time-interval, hence the solution for the
other issue. Second, an explorative process across the time-intervals performs
the discovery of bisociations among concepts by chaining the abstract descrip-
tions, which involve those concepts, on the basis of the concept generalization
and information theory criteria. This allows us to avoid meaningless bisociations
and to limit computational problems due to the exploration in the space of the
abstract descriptions.

The paper is structured as follows. In the next section we report works related
to ours and highlight some peculiarities of the current approach. In Section 3
we formalize the scientific problem studied in this work and in Section 4 we
describe the computational solution we propose. The approach is tested with
the application to literature-based discovery. Finally, conclusions are drawn.

2 Related Works and Contribution

Current research on bisociations focuses mainly on the discovery of unexpected
links from heterogeneous domains by merging conceptual categories. In [9] the
authors explore this problem in the analysis of microarray data by proposing a
composite framework: the creation of a network-based representation with the in-
tegration of different biological repositories and ontologies, grouping of differen-
tially expressed genes (concepts) with a subgroup discovery approach, and
discovery of links among the genes contained in the groups. Links are discovered
according to a probabilistic approach. A network derived from heterogeneous data
sources is also realized in [1] where the authors implement a different discovery
approach. In this approach nodes of the networks are assigned to annotated units
of information (keywords, gene names), while the edges are weighted to express
the degree of certainty and specificity of the relations in the domain between two
nodes. Bisociations are discovered with a spreading activation algorithm which
is able to extract subnetworks consisting of the most relevant nodes related to a
specified set of initially activated nodes. In [13] the problem is explored in docu-
ment collections, where the application of text-processing techniques permits to
obtain a network: the nodes correspond to named entities annotated with a term-
frequency vector while the edges are constructed on the basis of the co-occurrence
of the entities in the documents. Bisociations are finally discovered by evaluating
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the similarity among nodes with vector-based similarity measures. A similar rep-
resentation is used in [5], where a method combining frequent itemset mining and
link analysis is proposed to identify chains of named entities and verbal forms (con-
cepts) extracted from texts. A graph-structure is created by assigning frequent 2-
itemsets (pairs of concepts) to a pair of nodes connected by an edge. Final chains
of concepts are obtained by following walking paths with an interactive technique
which uses statistical measures.

Finding links between seemingly unrelated concepts from a text is a research
line started by the pioneering work of Swanson [14] and continued by several ap-
proaches of biomedical literature-based discovery. The blueprint of these methods
is the A-B-C model [14] where two concepts A and C are given and the discovery
process aims to identify the intermediate concept B. Typically, two disjointed lit-
erature sets are separately analyzed to mine connections like A ⇒ B, B ⇒ C,
based on similarity, co-occurrence or correlation. The application of the transitive
law would allow us to derive novel connections A ⇒ C. To obtain the connections
A ⇒ B, B ⇒ C two possible strategies can be identified in the literature: closed
discovery, where the concepts A and C are provided by the user, and open discov-
ery in which only A is given. Approaches working on the first strategy have focused
mainly on the automatic tools to select the intermediate B concept, for instance in
[4] connections are extracted in the form of association rules and the possible in-
termediate concepts are identified with the integration of domain ontologies. For
the second strategy, particular attention is paid to the pruning techniques which
eliminate meaningless connections B ⇒ C. For instance, in [10] the idea is that
of considering terms B with respect to a term-frequency based measure, named
rarity, while in [11] the authors propose knowledge-based heuristics to provide a
ranking of the connections B ⇒ C.

Therefore, linking concepts over time seems to be a not yet investigated issue
that would facilitate the discovery of connections between concepts only through
a linking process over time. It is noteworthy that the problem here investigated is
not different from the bisociation discovery seen in [1],[13],[9] where bisociations
connect concepts from unconnected domains identified according to some view of
data. In this work, we use the view inherently introduced by time. This means
that each domain corresponds to a sort of snapshot of the dynamic domain.
The representation of the data is another distinguishing aspect of the current
approach from the others. Indeed, the domain is modeled with abstract repre-
sentations in the form of lattice-based structures of multiple level association
rules. Since rules denote statistical evidence, the usage of abstract descriptions
justifies the robustness of the method by reducing the risk of false positive links.

3 Formal Definition of the Problem

Before formally defining the scientific problem of interest in this work, here
we introduce some preliminary concepts. Let OD : 〈O1, O2 . . .Oi . . . On〉 be a
sequence of time-ordered observations on the concepts C of the domain D. For
instance, in the domain of biomedical literature the set C would correspond to
a set of biomedical named entities, while each observation Oi is assigned to a
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single paper with a specific publication date. Therefore, a subset of the named
entities C is observed in a paper Oi.

Given a language L defined on the concepts C, let A be a set of statements in
L produced by applying an operator M to a subsequence Oi . . . Oj of OD (i <
j). M provides abstract descriptions of subsequences Oi . . . Oj (i, j = 1 . . . n).
Each abstract description can be denoted with statistical parameters or certainty
measures. By following the example above, M would generate frequent patterns
A from the named entities in the set of papers Oi . . . Oj .

Let T be an operator which maps the set of time-stamps {t1 . . . tn} of 〈O1, O2

. . . Oi . . . On〉 into τ , where τ : {τ1, . . . τn} is a finite totally ordered set of
time-points under the order relation denoted by ” ≤ ”. T permits to dis-
cretize time-stamps such that, given two time-stamps ti, tj for which ti <
tj , also T (ti) ≤ T (tj). For instance, given three publication dates ”April 20
2010”, ”May 10 2010”, ”May 10 2011”: T (April 20 2010)= T (May 10 2010)=
2010, T (May 10 2011)= 2011. Therefore, we can associate the sequence OD :
〈O1, O2 . . . Oi, Oi+1, . . .On−1, On〉 of time-stamped observations with a sequence
{τ1, τ2, . . . , τi, τi+1, . . . τm}, (τ1 < τ2 < . . . < τm). For instance, given OD : 〈April
1 2008, April 2 2008 . . .May 1 2008, May 2 2008, . . . April 1 2009, April 2
2009, . . .April 1 2010, April 2 2010, . . .April 1 2011, April 2 2011, 〉, we can
associate it with the sequence {2008, 2009, 2010, 2011}.
Definition 1. Given X, Y concepts in C, a temporal bisociation B is a sequence
of abstract descriptions A1, A2, . . . Am−1, A1 ∈ A1, A2 ∈ A2, . . . Am−1 ∈ Am−1,
where Ai is obtained from the observations included in [τi; τi+1]. A1, Am−1 in-
volve the target concepts X, Y respectively.

Informally, Definition 1 states that, given a sequence of time-intervals [τ1; τ2],
[τ2; τ3],. . . [τm−1; τm], the abstract descriptions A1,A2 . . .Am−1 can be derived
from them. The sequence A1, A2, . . . Am−1 reports the bisociation from X to Y .
Without loss of generality, in this work abstract descriptions are computed in
the form of association rules so, for instance, the chain of rules X ⇒ W, W ⇒ J,
J ⇒ Z, Z ⇒ Y (W,J,Z sets of intermediate concepts) stands for a bisociation
linking X to Y (X ⇒ W, W ⇒ J, J ⇒ Z, Z ⇒ Y mined from the observations
associated to four distinct consecutive time-intervals).

Considering the notions introduced so far, the problem of discovering temporal
bisociations can be divided into two sub-problems:

1. Given: OD : 〈O1, O2 . . . Oi . . .On〉, T such that the width of each time-
interval [τr; τr+1] is greater than or equal to a user-defined threshold ΔT ,
a certainty measure C, Find : a set RA : {A1,A2, . . .Am−1} of abstract
representations satisfying the certainty measure C.

2. Given: two concepts X, Y ∈ C, the set RA, a minimum number ηT of time-
intervals to be crossed, a certainty measure M , Find : a collection B of tem-
poral bisociations A1, A2, . . . Am−1 meeting the certainty measure M with
(m − 1) ≥ ηT .

A computational solution to these sub-problems is described in the following.
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4 Discovering Temporal Bisociations

We should remember that solving the two sub-problems previously formalized
means addressing respectively the two issues introduced in the Section 1 when
discovering bisociations. So, the approach which finds the set RA actually per-
mits us to define a representation of the domains. While, the approach which
uses the set RA to find the collection B integrates a domain exploration strategy
in order to identify bisociations. The computational solution comprises a prelim-
inary step aiming to exclude the trivial connections between X and Y , namely
it checks that the two concepts are not already directly connected or that there
is no obvious evidence which connects them.

4.1 Check for Direct Connections

Direct connections among the concepts X and Y can be expressed by either sim-
ilarities or co-occurrences. In this work, we follow the second way, since the first
one would require the usage of (dis)similarity measures, semantics and ontologies
which can be cumbersome and computationally expensive in many applications.
The check is performed by controlling the absence of statistical evidence of the
connections both at the level of the static domains (each time-interval) and at the
level of the dynamic domain (cross time-intervals). The technique to determine
statistical evidence used in this work is that of association rule mining: rules
which present the concepts on either the antecedent side or on the consequent
side denote reasonably direct connections between the concepts, since X and Y
co-occur in the set of supporting observations Oi. To perform this preliminary
step we exploit the algorithm proposed in [8] which enables the discovery of non-
redundant association rules. More precisely (Algorithm 1), the algorithm is first
applied to the complete set of observations OD (lines 4-8) and then separately to
each partition P ∈ P produced by applying the operator T to OD (lines 9-16).
The width of each partition (time-interval) is forced to be bigger than ΔT . A
description of the algorithm is reported in the next section.

4.2 Generation of Abstract Descriptions

Once possible statistical evidences have been excluded, each of the partitions
P of the observations OD, produced by the application of T , is represented as
abstract representations in the form of association rules (ARs). These reflect the
statistical regularities in the data of that partition P ∈ P and move the discovery
of bisociations at upward to higher abstraction level resulting in a reduction of
the risk of false positive links. In these terms, the certainty measure C in the for-
mulated problem (Section 3) consists of the usual statistical parameters support
and confidence which denote the rules, so the resulting abstract descriptions
are ARs, which meet the minimum thresholds of support and confidence. By
following this idea, we integrate into the process of AR mining ontologies of the
dynamic domain, which permit us to annotate or abstract the intermediate con-
cepts of the links. Exploiting domain ontologies (or more generally, background
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Algorithm 1. Check of direct connections.
1: input: OD , X, Y, ARM, minSup, minConf, T , ΔT output: CHECK

// ARM algorithm of association rules mining
2: CHECK := false
3: AR ← ARM(OD) // AR association rules mined from the data OD

4: for all R ∈ AR do
5: if X ∈ R and Y ∈ R then
6: CHECK := true
7: end if
8: end for
9: P := partitioning(OD , T , ΔT )

10: for all P ∈ P do
11: AR ← ARM(P ) // AR association rules mined from the data P
12: for all R ∈ AR do
13: if X ∈ R and Y ∈ R then
14: CHECK := true
15: end if
16: end for

17: end for

knowledge) on the concepts is not actually a novelty in bisociation discovery: in
[9] the authors use biological ontologies to annotate gene sets, while, in this work,
we resort to background is − a hierarchies, which generalize the concepts and
which exploit the is-a relationships among the occurring concepts to strengthen
the reliability of links. The process of AR mining is performed by means of the
algorithm proposed in [8] which enables the discovery of non-redundant ARs
at several hierarchical levels from data represented in the quite simple form of
attribute-value pairs. The possibility of pruning redundancies of that algorithm
here turns out to be an important peculiarity which makes the resulting ab-
stract descriptions compact and without superfluous information. We report a
brief description of the algorithm of ARs mining in the following.

The algorithm is composed of two steps which permit respectively to i) gen-
erate the set of closed frequent itemsets (in this work, sets of concepts) at the
different hierarchical levels whose support exceeds the minimum threshold and
ii) discover from these itemsets ARs at the different hierarchical levels (multi-
ple level ARs) whose confidence exceeds the minimum threshold. The first step
implements the notion of closed itemsets when the items are hierarchically or-
ganized. Mining the closed itemsets from a set D of observations means mining
the maximal elements of the equivalence classes of the all itemsets derived from
D1. Hence, an itemset Y=〈 y1 , y2 ,. . . , yj ,. . . ,yh〉 is closed iff no supersets of
Y is supported by the same set of observations of Y , and therefore, by the same
support of Y . When itemsets can be organized according to an is-a hierarchy
H , the concept of closed itemset has to be extended to that of multiple level
closed itemset to remove redundant (according to H) multiple level itemsets.

The algorithm proceeds by scanning the hierarchy in top-down mode while,
at each level, it generates a set of multiple-level closed itemsets with increasing
length. The length is the number of items present in an itemset. The second step

1 Two itemsets belong to the same equivalence class when they cover the same obser-
vations.
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extends the notion of minimality to the ARs derived by the itemsets produced
in the first step. Formally speaking:

Definition 2. An association rule R1 : A1 ⇒ C1 is minimal iff 
 ∃R2 : A2 ⇒
C2 with identical support and confidence of R1, for which A2 ⊆ A1, C1 ⊆ C2.

A interpretation of this definition for this work is that the minimal rules convey
additional inferential information by means of the inclusion relationships of the
antecedents and consequents of the rules. Indeed, if we consider R1 : A ⇒
B, C, R2 : A, B ⇒ C, with identical support and confidence, the antecedent
of R1 is included in the antecedent of R2 while the consequent of R1 includes
the consequent of R2. Hence R1 is minimal with respect to R2 and gives more
information on the consequent side than R2. R2 is considered redundant.

4.3 Linking Concepts over Time

Once the ARs are discovered in each partition P on OD, they are organized
in a lattice-based structure (RA : {A1,A2, . . .Am−1}): the nodes of the lattice
represent ARs, while the edges represent relationships between the ARs. A finite
sequence of edges which relate two ARs is called a path. Three types of path
originate from the root of a lattice: a) paths for the generalization of the concepts
contained in the root, b) paths for the extension of the rule at the root with larger
rules, c) paths for the generalization of the concepts contained in the root with
larger rules. In Figure 1b, A11, B12 ⇒ B11 is a node of the paths of type a
(arrow), A1 ⇒ B11 is a node of the paths of type b (thick arrow), according to
the hierarchy in Figure 1a, while A1, B12 ⇒ B11 is a node of the paths of type
c (double arrow) according with the same hierarchy. In these three cases the
rules are positioned in the lattice by child-father relationships of the hierarchy
H and increasing length: that is, the rules at level k + 1 contain father concepts
of the concepts contained in the rules at level k and present one more concept
than the rules at the level k. This permits an early evaluation of the rules which
contain a low number of concepts among those occurring in the observations.
Moreover, integrating heuristics on the paths and the organization of the nodes
permits us to conduct an informed search in the lattices thus reducing the overall
computational cost.

The value of a certainty measure M is associated to each rule: in this work
mutual information plays the role of M introduced in the problem formulation
(Section 3). Mutual information (mi) is one of the quantitative measures which
can denote a rule and it has the peculiarity to express the mutual dependence
between the antecedent and the consequent of a rule. What is more interesting is
that it represents the ratio of the actual probability of two concepts to be related
to the probability of two concepts to be unrelated. In this work, we prefer mi to
other typical parameters, such as confidence. Actually, the confidence is not an
appropriate measure of correlation strength between concepts since it leads to
select common concepts in the consequents and rare concepts in the antecedents.
The consequents in these cases rarely add much meaning to the final link. Dif-
ferently, mutual information emphasizes relatively rare concepts that generally
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(a)

(b)

Fig. 1. Is-a hierarchy over the concepts and a portion of the lattice of multiple-level
association rules produced from a partition with their mi values

occur together and mitigates the importance of common concepts, thus leading
to the discovery of more interesting bisociations. Mutual information is com-
puted as log support(Antecedent,Consequent)

support(Antecedent)∗support(Consequent) . ARs with mutual information
less than a user-defined minimum threshold σmi are not considered.

The discovery of temporal bisociations is performed through an explorative
process which crosses the lattices of the time-intervals and chains the included
ARs by considering two different, complementary directions. The semantics as-
sociated to the concepts, expressed in the form of concept generalization and the
information theory measure, in form of the mutual information are associated to
each AR. Chaining is the basic operation which produces the link between two
ARs: R1, R2 discovered in two consecutive time-intervals. Links are produced
when the antecedent of R2 contains either concepts present in the consequent
of R1 or more general concepts than those present in the consequent of R1. A
sequence of chained ARs constitutes a temporal bisociation: final bisociations
have to include a number of ARs greater than or equal to a user-defined thresh-
old ηT . In other words, we are interested in temporal bisociations which have
been developed over at least ηT consecutive time-intervals and which therefore
involve at least ηT concepts. In particular, the root of the first lattice involved
in a bisociation (A1) contains a rule (A1), whose antecedent presents only the
target concepts X , while the last lattice involved in the same bisociation (Am−1)
contains a rule (A1), whose consequent presents only the target concept Y . The
total number of lattices to be explored has to be greater than or equal to ηT :
bisociations discovered from non-consecutive lattices or which do not cover this
time span will be not considered.
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The explorative process integrates a depth-first search by visiting the paths
in this order: type a, b, c. In each lattice, the exploration visits the nodes by
starting from the root: if the value of mi of the current node exceeds σmi, then
the exploration in that lattice is completed and the antecedent of the rule in the
current node is used as a ”bridge” to explore the lattice of the next time-interval
to link one of the contained rules. Otherwise, the search continues downward
level-by-level by considering nodes of the same type of path until it reaches the
leaf nodes. Then, it proceeds by backtracking and continues to explore paths of
the same type or, when the paths of the same type have been completed, it goes
back to the root and continues on paths of another type.

The linking process associated to the lattice of the next time-interval searches
for a rule suitable for the linkage according to the following modalities: 1) rules of
length two (one concept in the antecedent-one concept in the consequent), whose
antecedents contain only the consequent of the final rule of the previous lattice; 2)
rules of length greater than two, whose antecedents contain also the consequent
of the final rule of the previous lattice; 3)rules of length two, whose antecedents
contain only one concept which generalizes (according to the hierarchy H) the
consequent of the final rule of the previous lattice; 4) rules of length greater than
two, whose antecedents contain also a concept which generalizes the consequent
of the final rule of the previous lattice. When several rules are identified as
possible roots of the lattice to be explored, then the rule with higher mi value is
selected. The discovery process continues by combining the exploration in each
lattice (previously described) and the linking technique between lattices of the
consecutive time-intervals up to the last lattice which completes the bisociation
with a rule, whose consequent will be the target concept Y .

A trace of the discovery process is reported in Figure 3. Consider the time-
intervals [1990;1992],[1992;1994], [1994;1996], σmi=0.5 and let A11 be the target
object X . The process starts by searching in the lattice of [1990;1992] for the
”entry” rule for the exploration, namely a rule whose antecedent is A11 (Figure
3a). Once identified, the exploration proceeds by evaluating mi of the rules
with paths of type a: first the branch annotated with square 1, where no rule
exceeding σmi is found, then the branch with square 2, where we have the same
result. Subsequently, the path of type b (square 3) is explored, where the rule
A11 ⇒ B11 exceeds σmi (bold square 3): therefore the concept B11 becomes the
bridge between the time-intervals [1990;1992],[1992;1994].

The exploration in [1992;1994] starts by searching for rules (with higher mi)
whose antecedents contain B11 (Figure 3a). Once the ”entry” rule has been
identified (modality 3 above), the nodes of the branches with square 3, 4, 5
(types a, c) are evaluated, but none of them with success. Once the lattice has
been completely explored, a new root is identified as the rule containing B11

on the antecedent (modality 3) and a new exploration in a new lattice of the
same time-interval starts (Figure 3b). By following the same exploration strat-
egy, the rule which continues the linkage is A12, C13, B1 ⇒ C, D11 (bold square
4). Hence, the list of concepts C, D11 becomes the bridge between the time-
intervals [1992;1994],[1994;1996], as a further contribution to the bisociation. The
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(a) (b)

(c)

Fig. 2. Running times as a function of the number of papers published in [2000;2009]
(ΔT = 1) (a). Number of bisociations as a function of σmi (b) and ΔT (c).

exploration in [1994;1996] starts by searching for the rule (with higher mi), whose
antecedents contain one of the possible permutations of C, D11 (Figure 3c). The
identified root is the rule C, D11 ⇒ E1 (modality 2), which provides also the
bridge E1 for the next interval.

Note that strategies to improve the exploration of the lattices may turn out
to be ineffective in the case of informed searches. Moreover, pruning techniques
would be inapplicable considering that, for the measure of mutual information,
the anti-monotonic property does not hold for either rules with generalized con-
cepts or rules with different length or with identical length.

5 Experiments on Biomedical Literature

One of the widely recognized dynamic domains is the scientific literature. It
represents the typical source of information which researchers exploit for their
studies and the typical means to disseminate their investigations. Publications
may report studies on the same topic conducted one after another over time
and this motivates our vision of the scientific literature as a dynamic domain.
Literature is therefore a natural field to prove the viability of automatic tools for
scientific discovery. For the current work, biomedical literature also represents
the board on which to compare existing techniques with the one we are propos-
ing. In this sense, these experiments aim at re-discovering known connections in
biomedical terminology and highlighting potentialities offered by this work.
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(a)

(b)

(c)

Fig. 3. Linking concepts over three time-intervals



370 C. Loglisci and M. Ceci

Experimental Setup. Dealing with publications requires a necessary pre-
processing step which permits the generation of the set of observations OD.
The original data set was composed of publications retrieved by the Pubmed
search engine. In particular, since we tested our approach on the biomedical
literature-based Swanson discoveries [14], the collection of original publications
was generated from the result sets returned by Pubmed when, in December
2009, we submitted two distinct queries, namely ”migraine”, ”magnesium defi-
ciency”. The two publication sets were obtained amounting to 5311 and 22223,
respectively. The title, publication date and abstract sections were considered
and pre-processed. Basic natural language processing techniques available in the
GATE framework2 were applied in order to identify biomedical named entities.
This result was also obtained integrating controlled domain thesauri, such as
MEsh Terms vocabulary3, whose taxonomic organization allowed the produc-
tion of the hierarchy H used for the generation of abstract descriptions (Section
4.2). The terminology available in the thesauri produces the set C of concepts.

The problem of the presence of synonyms was also addressed by integrating
linguistic resources which permit the replacement of variant names of biomedical
entities with their canonical names. The application of the operator T enables
the discretization over time of the complete dynamics of the biomedical literature
into partitions of publications published in time-intervals, based on the temporal
dimension of the years. Each pre-processed paper corresponds to an observation
Oi included in a time-interval and it can be interpreted as the investigation of
the scientists at a specific time-stamp. The generation of the multiple-level ARs
(abstract descriptions) was performed on sets of data, each of which is composed
of the subset of pre-processed papers included in a time-interval. A further pre-
processing was conducted by selecting the subset of concepts occurring in each
paper whose TF-IDF measure[12] exceeded a user-defined minimum threshold.

Experiments were performed considering four different criteria, namely scal-
ability, influence of the input parameters on the temporal bisociations patterns,
information conveyed in the bisociations and comparison with existing solutions.

Scalability. Experiments on the performances in time were performed when in-
creasing the threshold ηT and hence the number of papers, while the value of ΔT
is 1 year (width of the time-intervals), minSup=0.3, minConf=0.7, σmi=1, min-
imum TF-IDF = 0.3. Collected running times consider the step of pre-processing,
the AR mining algorithm and the discovery of temporal bisociations. In Figure 2a
the results obtained considering the whole set of papers published in [2000;2009]
are reported. They show that the computational cost is mainly due to the step
of abstract description generation, which, however, returns a number of rules
multiplied by a factor 3, while the number of papers increases of the same factor
(from 4027 to 12035). This is also justified by the fact that the mining algo-
rithm generates rules at different hierarchical levels, given that it integrates the
hierarchy organizing the concepts. Indeed, when # papers is 12035 we have
the highest number of ARs and the highest average of papers per time-interval
2 http://gate.ac.uk/family/
3 http://www.nlm.nih.gov/mesh/

http://gate.ac.uk/family/
http://www.nlm.nih.gov/mesh/
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(Table 1). The running times of the linking process are encouraging since it
increases linearly with respect to the number of considered time-intervals (and
therefore number lattices to be visited). This performance is due to the used
heuristics which avoid a greedy exploration of the lattices.

Influence of Parameters. We tested the proposed computational solution
when tuning the minimum threshold σmi and ηT (minSup=0.3, minConf=0.7).
A initial consideration can be drawn from the results in Figure 2b (performed for
the papers published in [1990;2008], ηT =9, ΔT =3 years), which empirically con-
firm the influence of the mutual information on the bisociations. It emerges that
the most discriminative values of mi are basically included in the range (1;1.4],
therefore, tuning σmi to values lower than 1 does not require additional compu-
tational cost and leads to the discovery of approximately the same set of bisoci-
ations. In fact, this is due to the replacement of variant names of concepts with
canonical names, whose co-occurrences tend to strengthen their dependence. An
interesting aspect is the generation of a maintainable set of bisociations which
the user can easily investigate. This is due to fact that the setting requires the
discovery of bisociations linking concepts over a relatively wide period of 27
years, namely 9 time-intervals, each of which covers 3 years. The experiments in
Figure 2c (σmi=1, ηT =9), on the influence of ΔT , confirm the maintainability
of the discovered bisociations, especially when compared to the number of rules
(at the worst, 49 against 14774). Indeed, when ΔT =1 the maximum number of
lattices to be explored is generated, which generally leads to the strong increase
of bisociations and to the reduction of the average number of ARs per lattice.

Comparison with Existing Techniques. The approach was compared with
the existing systems BITOLA[3] and ARROWSMITH [15] focusing on the
problem of literature-based discovery and on the same original data. These sys-
tems work in an interactive way, so comparing running times does not give any
indications. By submitting the concepts X as “magnesium deficiency” and Z
“migraine”, BITOLA discovers 2620 possible linking concepts Y able to form
links with three concepts. For each pair (X, Y ), (Y, Z), statistical parameters
(e.g., frequency) are provided, although the huge set of intermediate concepts
could be cumbersome for the user. On the other hand, our approach, by set-
ting the target concepts X as “magnesium deficiency” and Y as “migraine”,
discovers only one temporal bisociation (even tuning σmi in [0,5;1]). By setting
minSup=0.3, minConf=0.4, ΔT = 1 year, ηT =2 the following bisociation be-
tween “magnesium deficiency” and “migraine” is discovered in [1990; 1997] (the
contribution of each intermediate concept is temporally collocated):

Table 1. Total and average abstract descriptions by increasing the number of papers

[ηT ] [τ1; τm] # papers # ARs avg ARs
3 [2000;2003] 1342 15302 4027
5 [2000;2005] 2177 16143 6532
7 [2000;2007] 3066 22880 9200
9 [2000;2009] 4011 27908 12035
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[1990;1991] Magnesium deficiency AND Anatomy ⇒ Metals, alkaline earth AND Metals [sup-
port=0.30, confidence=1.0, mi=1.19]

[1991;1992] Metals, alkaline earth AND Metals AND Diseases ⇒ Metals, light [support=0.33,
confidence=0.97, mi=1.075]

[1992;1993] Chemicals and drugs AND Neurologic manifestations ⇒ Signs and symptoms [sup-
port=0.31, confidence=1.0, mi= 1.17]

[1993;1994] Central Nervous System Diseases AND Signs and Symptoms ⇒ Neurologic Manifes-
tations [support=0.3, confidence=0.97, mi=1.178]

[1994;1995] Biological Sciences AND Neurologic Manifestations ⇒ Pathological Conditions, Signs
and Symptoms [support=0.318, confidence=1.0, mi=1.144]

[1995;1997] Headache Disorders AND Pathological Conditions, Signs and Symptoms ⇒ Migraine

[support=0.30, confidence=1.0, mi=1.185]

An identical comparison was performed with ARROWSMITH , which, how-
ever, requires more human intervention to carry out the process. The search for
intermediate concepts from “magnesium deficiency” to “migraine” produces 598
possible links which can be further investigated with the support of the user,
while the proposed solution requires less interaction.

We also evaluated the final bisociations by considering Swanson’s linking
terms [14] as gold standard. In his work, eleven hidden connections between
“magnesium deficiency” to “migraine” were identified with the A-B-C model,
whose intermediate concepts were: Type A personality, vascular reactivity, cal-
cium blockers, platelet activity, spreading depression, epilepsy, serotonin, in-
flammation, prostaglandins, substance P, brain hypoxia. A subset of four terms,
namely: epilepsy, serotonin, inflammation, prostaglandins, were contained in the
controlled vocabulary and is-a hierarchy that we used, while the others were not
recognized. Temporal bisociations discovered in [1989;1997] (period of investiga-
tion in [14]) involved effectively those four concepts and more general concepts
(father concepts) than the former according to the hierarchy H .

Another consideration can be made from a basic aspect of the approach: the
process of linking X to Y can produce different bisociations from linking Y to X
over time, therefore, the temporal order is relevant in this work and permits us to
determine the collocation over time of each contributing intermediate concept.
For instance, the set of bisociations obtained from [1980;2009] (minSup=0.3,
minConf =0.4, σmi=0.8, ΔT = 2 years, ηT =2, X= “magnesium deficiency”,
Y =“migraine”) amounts to only one (not reported here due to lack of space)
which involves thirteen concepts. If X=“migraine”, Y = “magnesium deficiency”
one bisociation which involves seven intermediate concepts is discovered.

6 Conclusions

We have presented a novel approach to discover bisociations when considering
the time-varying nature of the domains. Contrary to previous approaches, the
discovery is performed on abstract descriptions of the domains which provide
several advantages: focus on the main characteristics of the domains, prevention
of computational cost due to the search in the original data and the reduction of
the risk of false positive links. The linking process exploits two criteria, one based
on semantics, the other one based on information theory. The application to the
problem of literature-based discovery proves the reproducibility of the known
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results and the scalability of the approach. For future work, we plan to further
improve the search in the lattices and extend experiments to other scenarios.
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Abstract. Most of the machine learning techniques suffer the “curse of
dimensionality” effect when applied to high dimensional data. To face
this limitation, a common preprocessing step consists in employing a di-
mensionality reduction technique. In literature, a great deal of research
work has been devoted to the development of algorithms performing this
task. Often, these techniques require as parameter the number of dimen-
sions to be retained; to this aim, they need to estimate the “intrinsic
dimensionality” of the given dataset, which refers to the minimum num-
ber of degrees of freedom needed to capture all the information carried
by the data. Although many estimation techniques have been proposed,
most of them fail in case of noisy data or when the intrinsic dimensional-
ity is too high. In this paper we present a family of estimators based on
the probability density function of the normalized nearest neighbor dis-
tance. We evaluate the proposed techniques on both synthetic and real
datasets comparing their performances with those obtained by state of
the art algorithms; the achieved results prove that the proposed methods
are promising.

Keywords: Intrinsic dimensionality estimation, dimensionality reduc-
tion, manifold learning.

1 Introduction

Most of the machine learning techniques suffer the “curse of dimensionality”
(Hughes effect) when applied to high dimensional data; for these reasons, many
real life signals characterized by high dimensionality, such as images, genome
sequences, or EEG data, cannot be successfully processed. To face this limita-
tion, a first step of dimensionality reduction is needed to project the data onto
lower dimensional spaces where they are tractable. This step could be profitable
when the reduced data are projected along the most characterizing dimensions.
Indeed, most real data can be fully characterized by few degrees of freedom, rep-
resented by low dimensional feature vectors; in this case the feature vectors can
be viewed as points constrained to lie on a low dimensional manifold embedded
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in a higher dimensional space. The dimensionality of these manifolds is gener-
ally referred as intrinsic dimensionality (id). In other words, the id of a given
dataset XN ≡ {xi}N

i=1 ⊂ #D is the minimum number of parameters needed to
capture, and describe, all the information carried by the data. In more general
terms, according to [11], XN is said to have id equal to d ∈ {1..D} if its elements
lie entirely within a d-dimensional subspace of #D.

Given a high dimensional dataset, the estimation of its id would be a fun-
damental step of any dimensionality reduction technique. Unfortunately, to our
knowledge, existing techniques fail dealing with high id non-linear datasets, and
the problem is still open.

In this work we present the following intrinsic dimension estimation methods:
the “Minimum Neighbor Distance - Maximum Likelihood” estimator and its
variants (MiNDML*), and the “Minimum Neighbor Distance - Kullback Leibler”
estimator (MiNDKL); moreover, we compare them with state of the art algorithms.

In Section 2 the related works are summarized; in Section 3 our theoretical
results and our estimators are proposed; in Section 4 experimental settings and
results are reported; in Section 5 conclusions and future works are presented.

2 Related Works

The most cited example of id estimator is the Principal Component Analysis
(PCA) [14], which is a well known technique that is often used as the first step
of many machine learning methods to reduce the data dimensionality. To this
aim, PCA projects points on the directions of their maximum variance, which
are estimated by computing the data covariance matrix and performing eigen-
decomposition. Exploiting PCA, the intrinsic dimension d can be estimated by
counting the number of normalized eigenvalues that are higher than a threshold
parameter λ. In [10] the author achieves more accurate results by applying PCA
in small subregions of the dataset to estimate their local id. The id of the whole
dataset is then determined by combining all the local ids. The problem of using
PCA relies in the difficulty of choosing a proper value for λ, which strongly affects
the accuracy of the estimated id. Moreover, PCA is a linear technique and cannot
successfully deal with non linear datasets.

Another well-known id estimator is the Packing Number technique [15]. This
method exploits the r-packing number M(r) of the dataset XN ⊂ S, where S
is a metric space with distance metric δ(·, ·). More precisely, XN is said to be
r-separated if ∀ x, y ∈ XN , x 
= y ⇒ δ(x, y) ≥ r, and M(r) is the maximum
cardinality of an r-separated subset of XN . Given this definition, the authors
demonstrate that the id of XN can be found by approximating the limit:

d = − lim
r→0

log M(r)
log r

with d̂ = − log(M(r2) − M(r1))
log(r2 − r1)

where r2 > r1 are two radiuses to be set as parameters.
The previously described approaches often fail when managing non-linearly

embedded manifolds or noisy data, and they become computationally too ex-
pensive when dealing with high dimensional datasets.
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To overcome these limitations, in [5] the authors propose an algorithm that
exploits entropic graphs to estimate both the id of a manifold, and the intrinsic
entropy of the manifold random samples. This technique is based on the obser-
vation that the length function of such graphs, that is the sum of arc weights on
the minimal graph that spans all the points in the dataset, is strongly dependent
on d. The authors test their method by adopting either the geodesic minimal
spanning tree (GMST [4]), where the arc weights are the geodetic distances com-
puted through the ISOMAP [23] algorithm, or the kNN-graph (kNNG [5]), where
the arc weights are based on the Euclidean distances, thus requiring a lower
computational cost.

The previously described algorithm, exploiting kNNG, can be inserted into the
group of approaches, such as LLE [22], NN estimator [20], and TVF [19], that esti-
mate the id by analyzing the relationships among nearest-neighbors within the
data. Most of these methods consider hyperspheres with sufficiently small radius
r and centered on the points in the dataset, and they estimate some statistics by
considering the neighboring points, included into the hypersphere; these statis-
tics are expressed as functions of the intrinsic dimensionality of the manifold
from which the points have been randomly drawn. One of these techniques is
the Correlation Dimension (CD) estimator [12]; it is based on the assumption
that the volume of a d-dimensional set scales with its size r as rd, which implies
that also the number of samples covered by a hypersphere with radius r grows
proportionally to rd. Since the performance of the CD estimator is affected by
the choice of the scale r, in [13] the authors suggest an estimator (which we will
call Hein) based on the asymptotics of a smoothed version of the CD estimate.
Another interesting approach is proposed in [8], where the author presented an
algorithm to estimate the id of a manifold in a small neighborhood of a selected
point, and they analyzed its finite-sample convergence properties. Another well
known technique, based on the analysis of point neighborhoods, is the Maximum
Likelihood Estimator (MLE) [17] that applies the principle of maximum likelihood
to the distances between close neighbors, and derives the estimator by a Poisson
process approximation. More precisely, calling k the number of neighbors, xi the
i-th point, and Tk(xi) the radius of the smallest sphere centered in xi containing
exactly k neighbors, the local intrinsic dimension is estimated as:

d̂(xi) =

⎛⎝1
k

k∑
j=1

log
Tk+1(xi)
Tj(xi)

⎞⎠−1

To our knowledge, most of the neighborhood based estimators generally un-
derestimate d when its value is sufficiently high. To address this problem few
techniques have been proposed, among which we recall the method described
in [1]. In this work, Camastra et al. propose a correction of the estimated id
based on the estimation of the error obtained on synthetically produced datasets
of known dimensionality (hypercubes).
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3 The Proposed Algorithms

In this section we firstly present our theoretical results (see Section 3.1); accord-
ing to them, we propose a maximum likelihood id estimator and its variants
(see Section 3.2); moreover, we present an id estimation algorithm based on pdf
comparison (see Section 3.3) which is more robust than state of the art methods
with respect to high dimensional data. For the sake of clarity, in Appendix A
the pseudocode of these algorithms is reported.

3.1 Base Theoretical Results

Consider a manifold M ≡ #d embedded in a higher dimensional space #D

through a locally isometric non-linear smooth map ψ : #d → #D; to estimate
the id of M we need to identify a “mathematical object”, depending only on d,
that can be estimated by means of points drawn from the embedded manifold.

To face this problem, we firstly consider the unit hypersphere Bd(0d, 1) ⊂ #d

centered in the origin and uniformly sampled; furthermore, we assume ψ to be
the identity map. Considering k points {zi}k

i=1 uniformly drawn from Bd(0d, 1),
our aim is to find the pdf related to the minimum distance between the k points
and the hypersphere center 0d.

Call p(r) the pdf for the event ‖zi‖ = r (r ∈ [0, 1]) where ‖ · ‖ is the L2

norm operator, and denote with P (r̆ < r) the probability for the event ‖zi‖ < r;
being zi uniformly drawn it is possible to evaluate these probabilities by means
of hypersphere volume ratios. The volume of a d dimensional hypersphere of
radius r is:

Vr = rd πd/2

Γ
(

d
2 + 1

) = rdV1

where Γ (·) is the Gamma function and V1 is the volume of the unit d-dimensional
hypersphere. The quantity P (r̆ < r) is given by the volume ratio Vr

V1
= rd;

moreover, being P (r̆ < r) the cumulative density function (cdf) related to the
pdf p(r), it is p(r) = ∂ Vr

V1
/∂r = drd−1.

The pdf g(r; d, k) related to the event mini∈{1,··· ,k} ‖zi‖ = r (i.e. the minimum
distance between the points {zi}k

i=1 and the hypersphere center equals to r) is
proportional to the probability of drawing one point with distance r multiplied
by that of drawing k − 1 points with distance r̆ > r, that is:

g(r; d, k) ∝ ğ(r; d, k) = p(r) (1 − P (r̆ < r))k−1 =

=
∂ Vr

V1

∂r

(
1 − Vr

V1

)k−1

=
1
V1

drd−1(1 − rd)k−1

Normalizing by
∫ 1

0
ğ(r; d, k)dr = (V1k)−1 we finally get:

g(r; k, d) =
ğ(r; d, k)∫ 1

0 ğ(r; d, k)dr
= kdrd−1(1 − rd)k−1 (1)
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Notice that Equation (1) holds only if we assume that the manifold is the unit
radius hypersphere. Nevertheless, choosing a d-dimensional open ball Bd(c, ε)
with center c ∈ M and radius ε > 0, as long as ψ is a non-linear smooth map
that preserves distances in Bd and z is uniformly drawn from Bd, the quantities
1
ε‖ψ(c) − ψ(z)‖ = 1

ε‖c − z‖ are distributed as the norms of points uniformly
drawn from Bd(0, 1). This fact ensures that Equation (1) holds in Bd(c, ε) for
r = 1

ε‖c − z‖.
To further generalize our theoretical results, we consider a locally isometric

smooth map ψ : M → #D, and samples drawn from M ≡ #d by means of
a non-uniform smooth pdf f : M → #+. Notice that, being ψ a local isom-
etry, it induces a distance function δψ (·, ·) representing the metric on ψ(M).
Under these assumptions Equation (1) does not represent the correct pdf of
the distances. However, without loss of generality, we consider c = 0d ∈ #d

and ψ(c) = 0D ∈ #D, and we show that any smooth pdf f is locally uniform
where the probability is not zero. To this aim, assuming f(0d) > 0 and z ∈ #d,
we denote with fε the pdf obtained by setting fε(z) = 0 when ‖z‖ > 1, and
fε(z) ∝ f(εz) when ‖z‖ ≤ 1. More precisely, denoting with χBd(0,1) the indicator
function on the ball Bd(0, 1), we obtain:

fε(z) =
f(εz)χBd(0,1)(z)∫
t∈Bd(0,1)

f(εt)dt
(2)

Theorem 1. Given {εi} → 0+, Equation (2) describes a sequence of pdf having
the unit d-dimensional ball as support; such sequence converges uniformly to the
uniform distribution Bd in the ball Bd(0, 1).

Proof. Evaluating the limit for ε → 0+ of the distance between fε and Bd in the
supremum norm we get:

lim
ε→0+

‖fε(z)−Bd(z)‖sup = lim
ε→0+

∥∥∥∥∥ f(εz)χBd(0,1)∫
Bd(0,1)

f(εt)dt
− χBd(0,1)∫

Bd(0,1)
dt

∥∥∥∥∥
sup

{just notation} = lim
ε→0+

∥∥∥∥∥ f(εz)∫
Bd(0,1)

f(εt)dt
− 1∫

Bd(0,1)
dt

∥∥∥∥∥
supBd(0,1){

setting V =

∫
Bd(0,1)

dt

}
= lim

ε→0+

∥∥∥∥∥V f(εz)− ∫Bd(0,1)
f(εt)dt

V
∫

Bd(0,1)
f(εt)dt

∥∥∥∥∥
supBd(0,1){

0 < lim
ε→0+

V

∫
Bd(0,1)

f(εt)dt <∞
}

= lim
ε→0+

∥∥∥∥∥V f(εz)−
∫

Bd(0,1)

f(εt)dt

∥∥∥∥∥
supBd(0,1)

Defining:
min(ε) = min

Bd(0,1)
f(εz) max(ε) = max

Bd(0,1)
f(εz)

and noting that min(ε) > 0 definitely since f(0d) > 0, we have:

V · min(ε) ≤ V f(εz) ≤ V · max(ε)
V · min(ε) ≤ ∫

Bd(0,1) f(εt)dt ≤ V · max(ε)

thus their difference is bounded by V (max(ε) − min(ε)) −−−−→
ε→0+

0+. �
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Theorem 1 proves that the convergence of fε to Bd is uniform, and when ε → 0+

the pdf related to the geodetic distances 1
ε δψ (ψ(c), ψ(z)) = 1

ε‖c− z‖ converges
to the pdf g reported in Equation (1).

3.2 Maximum Likelihood Approaches

Consider a manifold M ≡ #d embedded in a higher dimensional space #D

through a locally isometric non-linear smooth map ψ : M → #D. Given a sample
set XN = {xi}N

i=1 = {ψ(zi)}N
i=1 ⊂ #D, where zi are independent identically

distributed points drawn from M according to a non-uniform smooth pdf f :
M → #+, for each point xi ∈ XN we find the set of k+1 (1 ≤ k ≤ N−1) nearest
neighbors X̄k+1 = X̄k+1(xi) = {xj}k+1

j=1 ⊂ XN . Calling x̂ = x̂k+1(xi) ∈ X̄k+1

the most distant point from xi, we calculate the distance between xi and the
nearest neighbor in X̄k+1 and we normalize it by means of the distance between
xi and x̂. More precisely, we have:

ρ(xi) = min
xj∈X̄k+1

‖xi − xj‖
‖xi − x̂‖ (3)

Theorem 4 in [3] ensures that geodetic distances in the infinitesimal ball converge
to Euclidean distances with probability 1; moreover, recalling the result reported
in Theorem 1, it is possible to notice that, for xi 
= x̂, the quantities ρ(xi) are
samples drawn from the pdf reported in Equation (1), where the parameter k
is known and the parameter d must be estimated. A simple approach for the
estimation of d is the maximization of the log-likelihood function:

ll(d) =
∑

xi∈XN

log g(xi; k, d) = N log k + N log d +

(d − 1)
∑

xi∈XN

log ρ(xi) + (k − 1)
∑

xi∈XN

log
(
1 − ρd(xi)

)
(4)

To select an integer value in d̂ ∈ {1..D} as the estimated id, it suffices to evaluate
d̂ = argmaxd∈{1..D} ll(d); we call this estimator MINDMLi. On the other side, if a
real value is required as a fractal id estimation, the maximal value in [1, D] must
be found. To this aim we compute the first derivative of ll(d) and we determine
the solutions of ∂ll

∂d = 0, thus obtaining:

N

d
+

∑
xi∈XN

(
log ρ(xi) − (k − 1)

ρd(xi) log ρ(xi)
1 − ρd(xi)

)
= 0 (5)

We recall that the well-known MLE technique adopts a similar derivation since
it extracts distance information from all the first k nearest neighbors. We note
that, in the particular case k = 1, the solution of Equation (5) is:

d̂ = −
(

1
N

∑
xi∈XN

log ρ(xi)

)−1

(6)
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that is exactly the MLE estimator proposed in [18] when k = 1; we call this
estimator MINDML1 and its time complexity is O(DN log N).

For k > 1 we numerically solve the following optimization problem:

d̂ = arg max
1≤d≤D

ll(d) (7)

To solve this maximization problem we employed the constrained optimization
method proposed in [2] with the initial (integer) value d0 = arg maxd∈{1..D} ll(d).
We call this estimator MINDMLk; its time complexity is O(D2N log N).

3.3 A pdf Comparison Approach

In Section 3.2 we presented maximum likelihood estimators for the parame-
ter d (id) in the pdf reported in Equation (1). Notice that, once k is fixed,
Equation (1) represents a finite family of D pdfs for all the parameter values
1 ≤ d ≤ D. Exploiting this fact, another approach for the estimation of the
missing parameter d is the comparison between the D possible theoretical pdfs
and a density function estimated by means of the given data.

Consider M to be a d-dimensional hypersphere embedded in the Euclidean
space #D; moreover, denote with ĝ(r; k) an estimation of g(r; k, d) computed
by solely using the sample data points and therefore independent from d. The
estimation d̂ is computed by choosing the dimensionality which minimizes the
Kullback-Leibler divergence between g and ĝ:

d̂ = argmin
1≤d≤D

∫ 1

0

ĝ(r; k) log
(

ĝ(r; k)
g(r; k, d)

)
dr (8)

The function ĝ can be obtained by means of a set of sample data points as a
parametric model; nevertheless, as shown in [6], the number of sample points re-
quired to perform dimensionality estimation grows exponentially with the value
of the id (“curse of dimensionality”). For this reason, when the dimensionality
is too high, the number of sample points practically available is insufficient to
compute an acceptable estimation. Moreover, the fraction between the points on
(or close to) the edge of the manifold, and the other points (inside the mani-
fold) increases in probability when the dimensionality increases (“edge effect”,
see [24]), thus affecting the results achieved by estimators based on statistics
related to the behavior of point neighborhoods, such as the algorithms proposed
in Section 3.2 and MLE.

To address these problems in literature few approaches have been proposed,
among which we recall [1]. In this work, Camastra et al. propose a correction of
the estimated id based on the estimation of the error obtained on synthetically
produced datasets of known dimensionality (hypercubes).

In our work, to reduce the bias between the analytical pdf g and the estimated
one ĝ, for each value 1 ≤ d ≤ D we learn a test pdf ǧd(r; k) by means of points
uniformly drawn from the d-dimensional unit hypersphere; moreover, to best
resemble the point density of the given dataset, we draw exactly N points per
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dimensionality. Finally, we numerically estimate the Kullback-Leibler divergence
by means of the estimates ĝ and ǧd.

More precisely, consider a manifold M ≡ #d embedded in a higher dimen-
sional space #D through a locally isometric non-linear smooth map ψ : M →
#D. Given a sample set XN = {xi}N

i=1 = {ψ(zi)}N
i=1 ⊂ #D where zi are in-

dependent identically distributed points drawn from M according to a non-
uniform smooth pdf f : M → #+, we compute a vector of normalized distances
r̂ = {r̂i}N

i=1 = {ρ(xi)}N
i=1 by means of Equation (3). Moreover, for each di-

mensionality d ∈ {1..D} we uniformly draw a set of N points YNd = {yi}N
i=1

from the unit d-dimensional hypersphere, and we similarly compute a vector of
normalized distances řd = {řid}N

i=1 = {ρ(yi)}N
i=1. Notice that, a d-dimensional

vector randomly sampled from a d dimensional hypersphere according to the
uniform pdf, can be generated by drawing a point ȳ from a standard normal
distribution N (·|0d, 1) and by scaling its norm (see Section 3.29 of [9]):

y =
u

1
d

‖ȳ‖ ȳ, ȳ ∼ N (·|0d, 1) (9)

where u is a random sample drawn from the uniform distribution U(0, 1).
Given a set of values rN

i=1 ⊂ [0, 1] distributed according to the pdf p, in [25]
the following pdf estimator is proposed:

p̂(r) =
N−1

2ρ(r)
(10)

where ρ(r) is the distance between r and its nearest neighbor. In our problem,
considering a distance r̂i ∈ r̂, the pdf estimates ĝ and ǧd can be computed as
follows:

ĝ(r̂i; k) =
1/(N − 1)

2ρ̂(r̂i)
ǧd(r̂i; k) =

1/N

2ρ̌d(r̂i)
(11)

where ρ̂(r̂i) and ρ̌d(r̂i) are the distances between r̂i and its first neighbor in r̂
and in řd respectively.

In [25] a Kullback-Leibler divergence estimator based on the nearest neighbor
search is proposed; moreover, the authors show that their method is more effec-
tive than partitioning-based techniques, especially when the number of samples
is limited. Employing this estimator between ĝ and ǧd we obtain:

K̂L(ĝ, ǧd) =
1
N

N∑
i=1

log
ĝ(r̂i; k)
ǧd(r̂i; k)

=
1
N

N∑
i=1

log
1/(N−1)
2ρ̂(r̂i)

1/N
2ρ̌d(r̂i)

= log
N

N − 1
+

1
N

N∑
i=1

log
ρ̂(r̂i)
ρ̌d(r̂i)

(12)

Employing Equation (12), the estimated id value (d̂) is computed as follows:

d̂ = arg min
d∈{1..D}

(
log

N

N − 1
+

1
N

N∑
i=1

log
ρ̂(r̂i)
ρ̌d(r̂i)

)
(13)
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Table 1. Brief description of the 15 synthetic and 3 real datasets, where d is the id

and D is the embedding space dimension. In the synthetic datasets’ name, the number
in the subscript refers to the dataset name used by the generator proposed in [13].

Dataset Name d D Description

Syntethic

M1 10 11 Uniformly sampled sphere linearly embedded.
M2 3 5 Affine space.
M3 4 6 Concentrated figure, confusable with a 3d one.
M4 4 8 Non-linear manifold.
M5 2 3 2-d Helix
M6 6 36 Non-linear manifold.
M7 2 3 Swiss-Roll.
M8 12 72 Non-linear manifold.
M9 20 20 Affine space.

M10a 10 11 Uniformly sampled hypercube.
M10b 17 18 Uniformly sampled hypercube.
M10c 24 25 Uniformly sampled hypercube.
M11 2 3 Möebius band 10-times twisted.
M12 20 20 Isotropic multivariate Gaussian.
M13 1 13 Curve.

Real
MFaces 3 4096 ISOMAP face dataset.
MMNIST1 8− 11 784 MNIST database (digit 1).
MSantaFe 9 50 Santa Fe dataset (version D2).

We call this estimator MINDKL; its time complexity is O(D2N log N). To obtain a
stable id estimation we execute MiNDKL 20 times for each dataset and we average
the obtained results.

Due to Theorem 1, Theorem 4 in [3], and considering that the Kullback-Leibler
divergence estimator employed is consistent as shown in [25], Equation (13) rep-
resents a consistent estimator for the intrinsic dimensionality of the manifold M.

4 Algorithm Evaluation

In this section we describe the datasets employed in our experiments (see Sec-
tion 4.1), we summarize the adopted experimental settings (see Section 4.2), and
we report the achieved results (see Section 4.3).

4.1 Dataset Description

To evaluate our algorithms, we have performed experiments on both 15 synthetic
and 3 real datasets (see Table 1). To generate the synthetic datasets we have
employed the tool proposed in [13]. Instead, the real datasets are the ISOMAP
face database [23], the MNIST database [16] and the Santa Fe [21] dataset.

The ISOMAP face database consists in 698 gray-level images of size 64 × 64
depicting the face of a sculpture. This dataset has three degrees of freedom: two
for the pose and one for the lighting direction.
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The MNIST database consists in 70000 gray-level images of size 28 × 28 of
hand-written digits; in our tests we used the 6742 training points representing
the digit 1. The id of this database is not actually known, but some works have
proposed similar estimations [13,3] for the different digits; considering digit 1,
the proposed id values are in the range {8..11}.

The version D2 of the Santa Fe dataset is a synthetic time series of 50000
one-dimensional points; it was generated by a simulation of particle motion, and
it has nine degrees of freedom. In order to estimate the attractor dimension of
this time series, we used the method of delays described in [7], which generates D-
dimensional vectors by collecting D values from the original dataset; by choosing
D = 50 we obtained a dataset containing 1000 points in #50.

4.2 Experimental Setting

We compared our method with well-known id estimators: PCA, kNNG, CD, MLE,
and Hein. For kNNG, MLE, and Hein1 we used the authors’ Matlab implementa-
tion, whilst for the other algorithms we employed the version provided by the
dimensionality reduction toolbox2.

To generate the synthetic datasets we adopted the generator described in [13]
creating 20 instances of each dataset reported in Table 1, each of which is com-
posed by 2000 randomly sampled points. For each technique, to obtain a stable
estimation, we averaged the results achieved on the different subsets. To exe-
cute multiple tests on MMNIST1, we extracted from the digit 1 dataset 5 random
subsets containing 2000 points each.

Table 2. Parameter settings for the different estimators: k represents the number of
neighbors, γ the edge weighting factor for kNN, M the number of Least Square (LS)
runs, and N the number of resampling trials per LS iterations

Method Synthetic Real

PCA Threshold = 0.025 Threshold = 0.0025
CD None None
MLE k1 = 6 k2 = 20 k1 = 3 k2 = 8
kNNG1 k1 = 6, k2 = 20, γ = 1, M = 1, N = 10 k1 = 3, k2 = 8, γ = 1, M = 1, N = 10
kNNG2 k1 = 6, k2 = 20, γ = 1, M = 10, N = 1 k1 = 3, k2 = 8, γ = 1, M = 10, N = 1
MiNDML1 k = 1 k = 1
MiNDMLk k = 10 k = 5
MiNDMLi k = 10 k = 5
MiNDKL k = 10 k = 5

In Table 2 the employed configuration parameters are summarized. To relax
the dependency of kNNG from the selection of its parameter k, we performed
1 http://www.eecs.umich.edu/∼hero/IntrinsicDim/,

http://www.stat.lsa.umich.edu/∼elevina/mledim.m,
http://www.ml.uni-saarland.de/code.shtml

2 http://cseweb.ucsd.edu/∼lvdmaaten/dr/download.php
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multiple runs with k1 ≤ k ≤ k2 (see Table 2) and we averaged the achieved
results.

4.3 Experimental Results

In this section the results achieved on both real and synthetic datasets are
reported.

In Table 3 the results achieved on the synthetic datasets are summarized. As
can be noticed, all the algorithms but PCA achieve good results for datasets with
low dimensionality (d < 10), whilst the PCA method obtains bad estimations
when dealing with non-linear manifolds, producing overestimates. With high
dimensional datasets, all the techniques but PCA and MiNDKL achieve bad re-
sults generally underestimating the id due to the edge-effect and the insufficient
cardinality of the datasets. Notice that, MiNDKL achieves good approximations
both on low and high intrinsic dimensional datasets, dealing with both linear
and non-linear embeddings, thus obtaining results always comparable with those
that better approximate the id. In the last row of Table 3 the Mean Percentage
Error (MPE) indicator is reported; for each algorithm this value is computed as
the mean of the percentage errors obtained on each dataset:

MPE =
100

#M
∑
M

|d̂M − dM|
dM

(14)

where #M = 15 is the number of tested manifolds (see Table 1). Notice that
MiNDKL obtains the minimum MPE.
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Fig. 1. Comparison between the results achieved by the id estimators with respect to
the increase of the manifolds’ id
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Table 3. Results achieved on the synthetic datasets. The last row contains the MPE

indicator that allows to perform a direct comparison among methods. The best ap-
proximations are highlighted in bold case.

Dataset d PCA kNNG1 kNNG2 CD MLE Hein MiNDML1 MiNDMLk MiNDMLi MiNDKL

M13 1 4.00 1.00 1.01 1.07 1.00 1.00 1.00 1.00 1.00 1.00
M5 2 3.00 1.96 2.00 1.98 1.96 2.00 1.97 1.97 2.00 2.00
M7 2 3.00 1.93 1.98 1.94 1.97 2.00 1.98 1.96 2.00 2.00
M11 2 3.00 1.96 2.01 2.23 2.30 2.00 1.97 1.97 2.00 2.00
M2 3 3.00 2.85 2.93 2.88 2.87 3.00 2.93 2.88 3.00 3.00
M3 4 4.00 3.80 4.22 3.16 3.82 4.00 3.89 3.84 4.00 4.25
M4 4 8.00 4.08 4.06 3.85 3.98 4.00 3.95 3.93 4.00 4.10
M6 6 12.00 6.53 13.99 5.91 6.45 5.95 5.91 6.17 6.00 6.65
M1 10 11.00 9.07 9.39 9.09 9.06 9.50 9.41 9.23 9.00 10.30

M10a 10 10.00 8.35 9.00 8.04 8.22 8.75 8.68 8.38 8.25 9.40
M8 12 24.00 14.19 8.29 10.91 13.69 12.00 13.35 13.53 13.50 16.60

M10b 17 17.00 12.85 15.58 12.09 12.77 13.45 13.59 13.02 13.00 15.90
M9 20 20.00 14.87 17.07 13.60 14.54 15.15 15.49 14.90 15.00 18.10
M12 20 20.00 16.50 14.58 11.24 15.67 15.00 16.91 16.19 16.00 19.05
M10c 24 24.00 17.26 23.68 15.48 16.80 17.70 18.10 17.24 17.15 22.50

MPE 50.67 11.20 16.23 15.38 12.03 7.65 8.32 10.02 9.14 6.26

In Table 4 the results achieved by the tested algorithms is reported3 with
respect to the increase of the manifolds’ id. This figure confirms that the PCA
estimator cannot correctly deal with non-linear manifolds producing strong es-
timation errors (overestimates). Moreover, this figure underlines that most of
the other techniques are able to produce precise estimations when the id is low,
whilst they strongly underestimate when the id is sufficiently high. The only
exception is given by the results of MiNDKL; indeed, this method allows to obtain
stable estimations both on low and high id datasets.

Table 4. Results achieved on the real datasets by the employed approaches. The best
approximations are highlighted in bold case.

Dataset d PCA kNNG1 kNNG2 CD MLE Hein MiNDML1 MiNDMLk MiNDMLi MiNDKL

MFaces 3 21.00 3.60 4.32 3.37 4.05 3.00 3.52 3.59 4.00 3.90
MMNIST1 8-11 11.80 10.37 9.58 6.96 10.29 8.00 11.33 10.02 9.45 11.00

MSanta Fe 9 18.00 7.28 7.43 4.39 7.16 6.00 6.31 6.78 7.00 7.60

In Table 4 the results achieved on real datasets have been summarized. Notice
that also in the case of noisy real datasets, our methods have obtained either the
best approximation of the id, or results always comparable with those achieved
by the best performing technique.
3 The results of kNNG2 are omitted for clarity; notice that, this technique has obtained

worst results with respect to kNNG1.
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Fig. 2. Behavior of MiNDKL (left) and MiNDMLk (right) applied to points drawn from a
5-dimensional standard normal distribution, in this test N ∈ {200, 500, 1000, 2000} and
k ∈ {5..100}

Finally, to test the robustness of our algorithms with respect to the choice of
the parameter k, we reproduced the experiments proposed for the MLE algorithm
in Figure 1 (a) of [17] employing MiNDKL and MiNDMLk, and we averaged the curves
obtained by 10 runs. In these tests the adopted datasets are composed by points
drawn from the standard Gaussian pdf in #5. We repeated the test for datasets
with cardinalities N ∈ {200, 500, 1000, 2000}, and varying the parameter k in the
range {5..100}. As shown in 2, MiNDKL (left) demonstrates to be robust to the
choice of its parameter k, whilst MiNDMLk (right) shows a behavior comparable to
that of MLE (see Figure 1 (a) in [17]).

Concluding, the results achieved on both real and synthetic datasets have
confirmed the quality of the proposed methods; more specifically, MiNDKL has
proved to be the best estimator since it is robust to the choice of its parameter,
it obtains the smallest MPE (see Table 3), and it achieves good approximations
both on high and low id datasets.

5 Conclusions and Future Works

In this work we proposed Minimum Neighbor Distance estimators of intrinsic
dimension. These methods, for each point in the dataset, exploit the pdf related
to the normalized distance of its nearest neighbor. More precisely, the algorithms
MiNDML* are based on the maximization of the log-likelihood function associated
to the normalized pdf of the distances, whilst the estimator MiNDKL compares
the estimated pdf with those of random points uniformly drawn from unitary
hyperspheres with dimensionality in {1..D}.

We tested our algorithms on synthetic and real datasets comparing them
with state of the art id estimators. The achieved results demonstrate that our
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techniques are promising, and the Mean Percentage Error indicator underlines
the stability of the proposed methods. We note that, among the techniques we
described, our experiments demonstrate that MiNDKL is the most robust estima-
tor, since it deals with both low and high id, and it manages both linear and
non-linear manifolds, achieving results always comparable to the best estima-
tions. Furthermore, its performances are not strongly affected by the choice of
its only parameter k, and it shows to be resistant to the curse of dimensionality.

In Equation (3) the kNN Euclidean distances are normalized by means of the
maximum one. In the limit this normalization factor converges to the geodetic
one, but for a finite set of sample points an approximation is introduced. In future
works we want to investigate the behavior of this approximation to reduce its
negative effect on the id estimation.
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Appendix A Algorithms Implementation

In this appendix the pseudocode of our algorithms is reported. In Algorithm
1 MiNDMLi is shown, where kNN(XN , x, k) is the procedure that employs a k-
nearest neighbor search returning the set of the k nearest neighbors of x in
XN . Since MiNDML1 consists only in Equation (6), whilst MiNDMLk consists in re-
fining the MiNDMLi result by means of a constrained optimization algorithm (see
Equation (7)), and due to the lack of space, these two algorithms are not re-
ported. Algorithm 2 reports the pseudocode of MiNDKL, where NN(XN , x) is the
procedure that returns the nearest neighbor of x in XN .

http://www.inference.phy.cam.ac.uk/mackay/dimension/
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Algorithm 1. Pseudocode for the MiNDMLi algorithm.

1 Input:
2 XN : The dataset points {xi}

N
i=1.

3 k: The kNN parameter.
4 Output:

5 d̂: The estimated intrinsic dimensionality.
6 {Compute f o r each po int the normal ized r a d i i }
7 for i :=1 to N do begin

8 X̄k+1 = kNN(XN ,xi, k) ; {Finding the k ne ighbors o f xi . }
9 ρ(xi) = minxj∈X̄k+1

‖xi − xj‖/maxx̂∈X̄k+1
‖xi − x̂‖ ;

10 end

11 {Choosing d̂ ∈ {1..D} that maximizes the l og l i k e l i h o o d }

12 d̂ = argmaxd∈{1..D}

(
(d− 1)

∑
xi∈XN

log ρ(xi) + (k − 1)
∑

xi∈XN
log

(
1− ρd(xi)

))
;

Algorithm 2. Pseudocode for the MiNDKL algorithm.

1 Input:
2 XN : The dataset points {xi}

N
i=1.

3 k: The kNN parameter.
4 Output:

5 d̂: The estimated intrinsic dimensionality.
6 {Compute f o r each po int the normal ized r a d i i }
7 for i :=1 to N do begin

8 X̄k+1 = kNN(XN ,xi, k) ; {Finding the k ne ighbors o f xi in XN . }
9 r̂i = ρ(xi) = minxj∈X̄k+1

‖xi − xj‖/maxx̂∈X̄k+1
‖xi − x̂‖ ;

10 {Computing the d i s t anc e between r̂i and the NN}
11 ρ̂(r̂i) = |r̂i −NN({r̂j}j �=i, r̂i)| ;
12 end

13 {Estimate the Kullback Le i b l e r d iv e rgence s }
14 for d :=1 to D do begin

15 {Uniformly sampling from the un i t b a l l }

16 YNd = {yi = ȳu1/d/‖ȳ‖; ȳ ∼ N (·|0d, 1) , u ∼ U(0, 1)}Ni=1 ;
17 {Compute f o r each po int the normal ized r a d i i }
18 for i :=1 to N do begin

19 Ȳk+1 = kNN(YNd,yi, k) ;
20 ři = ρ(yi) = minyj∈Ȳk+1

‖yi − yj‖/maxŷ∈Ȳk+1
‖yi − ŷ‖ ;

21 end

22 {Computing the d i s t an c e s ρ̌d(r̂i)}
23 for i :=1 to N do begin

24 {Computing the d i s t anc e between ři and the NN}
25 ρ̌d(r̂i) = |ři −NN({řj}

N
j=1, r̂i)| ;

26 end

27 end

28 {Estimating the i n t r i n s i c d imens i ona l i t y }

29 d̂ = argmind∈{1..D}

(
log N

N−1
+ 1

N

∑N
i=1 log

ρ̂(r̂i)
ρ̌d(r̂i)

)
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Abstract. We present a new stochastic process, called as Social Dif-
fusion Process (SDP), to address the graph modeling. Based on this
model, we derive a graph evolution algorithm and a series of graph-
based approaches to solve machine learning problems, including cluster-
ing and semi-supervised learning. SDP can be viewed as a special case of
Matthew effect, which is a general phenomenon in nature and societies.
We use social event as a metaphor of the intrinsic stochastic process
for broad range of data. We evaluate our approaches in a large number
of frequently used datasets and compare our approaches to other state-
of-the-art techniques. Results show that our algorithm outperforms the
existing methods in most cases. We also applying our algorithm into the
functionality analysis of microRNA and discover biologically interesting
cliques. Due to the broad availability of graph-based data, our new model
and algorithm potentially have applications in wide range.

1 Introduction

Data clustering, assignment, and dimensional reduction have been the focuses for
exploring unknown data [1,2]. Among them, graph-based data analysis techniques
have recently been investigated extensively in traditional machine learning prob-
lems. One reason for the popularity of graph-based approaches is the broad avail-
ability of graph data. For example, social objects (users, blog items, photos) are
generated with relational links, and for objects represented in Euclidean space,
one can easily obtain a graph by using similarity measurements (e.g. Gaussian
kernels). Graph-based approaches fall into two categories. The first one is spec-
tral graph partitioning methods which address the group detection problem by
identifying an approximately minimal set of edges to remove from the graph to
achieve a given number of groups [3,4,5,6]. Impressive results have been shown
in these methods which have been applied in many practical applications. These
approaches relax NP-hard combinatorial problems into continuous optimization
problems which can be solved by eigenvector decompositions.

Another approach category is stochastic modeling. In stochastic models, the
observed data are assumed to be drawn from some distribution and generative
assumptions [7,8,9,10,11]. These approaches often lead to a maximum likelihood
problems that can be solved by Expectation Maximization (EM) or approxi-
mately Variational EM algorithms [12].
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Among these models, the Chinese Restaurant Processes (CRPs) consider a
sequence of customers coming to a restaurant according to the convention of
Chinese people: one tends to stay in a place where there are more people. Each
customer seeks some previously occupied table and the probability is propor-
tional to the number of customers already sitting there. The new customer also
sits in a new table with probability proportional to some parameter. CRP and
its variations have been theoretically and empirically studied in many previous
researches [10,11,13,14]

In a CRP mixture, customers are data points, and customers sitting at the same
table belong to the same cluster. Since the number of occupied tables is random,
the resulting posterior distribution of seating assignments provides a distribution
of clusterings where the number of clusters is determined by the data.

In this paper, we propose a novel stochastic process which further considers the
social events among social members as a metaphor of the intrinsic stochastic pro-
cess for broad range of data. We call this process as Social Diffusion Process. The
basic assumption in this model is that two social members tend to communicate
if they are familiar with each other or have many common friends, and that the
more times they communicate, the more they are familiar with each other.

Based on our model, we derive an iterative evolution algorithm to model
the social structures of the members. The major characteristic of our algorithm
which differs from most of previous research is that we do not need to impose
latent variables which leads to maximum likelihood estimation. Instead, our
evolutionary algorithm iteratively generates a new relational graph among social
members in which the social structures become more and more clear, please see
Figure 1 for a toy example. In this example, our algorithm starts from a random
binary network and ends with clearly separated subgraphs. Details can be found
in Section 3.2.

The similar algorithm which is closest to our intuition is Markov Clustering
(MCL) [15] from the point of view of graph evolution. However, MCL is not
suitable for the purpose in this paper. We perform the MCL evolution on the
same graph in Figure 1 (a) and the results for MCL are demonstrated in Figure
2. One can observe that the result in Figure 1 is much more reasonable than
that in Figure 2.

The results of the evolution algorithm can be viewed as a special case of the
Matthew effect, in which “The rich get richer”. This is a general phenomenon in
nature and societies [16,17,18]. One interesting observation in our algorithm is
that the evolution of a graph by the SDP enhance the qualities of the graph in a
wide range of applications. This phenomenon suggests that the SDP assumptions
are natural in general. Due to the broad availability of graph-based data, our
new model and algorithm have potential applications in various areas.

In the rest of the paper, we first introduce the Social Diffusion Process in Section
2 and the derived algorithm in Section 3. In section 4, we show the evidence of
improvement of the quality by our algorithm using extensive experiments.
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(a) Initialization (b) 1st iteration

(c) 3rd iteration (d) 10th iteration

(e) 15th iteration (f) 20th iteration

Fig. 1. Graph evolution results on the grid toy data based on Social Diffusion Process.
Each point (blue dot) represents a social member and the edge between two social
members represents the familiarness between them. (a): the original graph. (b)– (f):
the condensation results of the 1st, 3rd, 10th, 15th, and 20th iterations of our evolution
algorithm. The darkness of the edge represents the familiarness between the social
members (the darker the higher).
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(a) Initialization (b) 1st iteration

(c) 3rd iteration (d) 10th iteration

(e) 15th iteration (f) 20th iteration

Fig. 2. Graph evolution results on the grid toy data based on Markov Clustering
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2 Social Diffusion Process for Friendship Broadening

In this section we introduce the Social Diffusion Process based on the notations
of graph.

2.1 Preliminaries

Let G = {V, W} denote an undirected weighted graph, whereV = {v1, v2, · · · , vn}
is the set of nodes, W ∈ R

n×n is a n × n matrix, and Wij denotes the weight of
the edge between nodes vi and vj . Wij = 0, if there is no edge between vi and vj .

2.2 Social Events and Broadening of Friendship

We consider the following scenario: A and B are friends. Suppose A brings a
friend Af and meets with B. Now Af and B become known to each other. If
B also brings a friend Bf to the meeting, i.e., the four (A, Af , B, Bf ) meet.
Then Af become known to both B also Bf , i.e., the friendship circle for Af is
broadened. This happens to A, B, Bf as well.

In graph terminology, the initial friendship between A and B is represented
by an edge connecting A and B. The broadened friendship between Af and B
(assuming they are not connected at initial stage) has a connection strength
somewhere between 0 and 1. In other words, if two persons C and D don’t
know each other, the existence of a mutual friend connects C and D. Further
more, even if A and B are friends (i.e., an edge exists between A and B), their
friendship is further enhanced due to the existence of mutual friends. Our main
goal is to formally define this friendship broadening process and compute the
friendship enhancement probability. We expect this enhanced friendship
provide a more clear social community structure as shown in Figure 1.

Formally, we define the following events among social members: (1) Date
(vi, vj): vi and vj initial a dating. (2) Bring(vi, vk): vi brings vk after the event
Date(vi, vj) for some j. (3) Meet(vp, vq): vp and vq meet in the same table.

We further impose the following rules: (1) If Date(vi, vj) happens, Meet(vi, vj)
happens, or (2) If Date(vi, vj) and Bring(vi, vk) happen, Meet(vk, vj) hap-
pens. (3)If Date(vi, vj), Bring(vi, vk), and Bring(vj , vl) happen, Meet(vj , vl)
happens.

Here we assume Date(vi, vj) is equivalent to Date(vj , vi) and Meet(vk, vl)
is equivalent to Meet(vl, vk).

We use the following to denote the rules above

Rule 1: Date(vi, vj) ⇒ Meet(vi, vj) (1)

Rule 2:
Date(vi, vj)
Bring(vi, vk)

}
⇒ Meet(vj , vk) (2)

Rule 3:
Date(vi, vj)
Bring(vi, vk)
Bring(vj , vl)

⎫⎬⎭⇒ Meet(vk, vl) (3)
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2.3 Social Diffusion Process

Now we are ready to introduce the Social Diffusion Process. The process starts
with a graph G = {V, W} where V = {v1, v2, · · · , vn} denotes a set of social
members and W denotes the familiarness between social members, i.e. Wij rep-
resents the familiarness between vi and vj , i, j = 1, 2, · · · , n. We assume that
Wij = Wji. The SDP happens as following,

(1) Choose a threshold t ∼ U(0, μ) where μ = maxij Wij and U denotes the
uniform distribution.
(2) Date(vi, vj) happens with a constant probability δ if Wij ≥ t.
(3) Bring(vi, vk) and Bring(vj , vl) happen with probability p(i, k, t), p(j, l, t),
respectively, where

p(i, k, t) =
{ 1

|Ni,t| if vk ∈ Ni,t

0 otherwise
,

p(j, l, t) =
{ 1

|Nj,t| if vk ∈ Nj,t

0 otherwise
,

Ni,t = {q : Wiq ≥ t},Nj,t = {q : Wjq ≥ t}, and | · | denotes the cardinality of the
set.
(4) Apply rules (1)–(3). For any p, q, if Meet(vp, vq), Wpq ← Wpq + αμ.
The threshold t can be interpreted as the importance of the dating event. Two
friends do not date if they are not familiar with each other enough (thresholded
by t)1. When a social member brings some friend, he/she only considers those
friends who are familiar enough with (thresholded by t). The set Ni,t is the
friends the social member vi can bring with this threshold t. Eq. (4) indicates
that social member vi chooses friends in Ni,t with uniform distribution. Notice
that there are two parameters in this model δ and α. In section 3, we will
introduce an algorithm based on the SDP, in which the two parameters can be
eliminated by natural normalization.

3 Graph Evolution Based on Social Diffusion Process

3.1 The Evolution Algorithm

We first denote At as the following

(At)ij =
{

1 if Wij ≥ t
0 otherwise (4)

1 The reason why we use a thresholding of Wij instead of directly using Wij for event
Date(vi, vj) is following. Assume we want to date with some one on the wedding
of Royal wedding for William and Kate, who are we going to date? Probably one of
our most important friends. In the same event, if we want to bring guest to meet
our friend in the date, who are we going to bring? Probably another one of our most
important friends. In reality, social events happen according to their importance,
denoted as threshold t in the paper. We believe this model is much accurate than
directly using Wij as the probability of Date(vi, vj).
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where t is a positive threshold. Consider two social members vi and vj . The
events in which they meet each other can be divided into three cases:

Case (1). Date(vi, vj). In this case the probability that they meet is

P (Meet(vi, vj)) = δ(At)ij .

Case (2). Date(vi, vk) and Bring(vk, vj). By definition |Nk,t| =
∑

j At
jk = dt

k,
where dt

k is the degree k in At. In this case,

P (Meet(vi, vj))

=
∑

k

P (Meet(vi, vj)|Date(vi, vk),Bring(vk, vj))

=
∑

k

δ(At)ik

At
jk

dk
= δ(AtD−1At)ij ,

where D = diag(d1, d2, · · · , dn).
Case(3). Date(vk, vl), Bring(vk, vi), and Bring(vl, vj). Similar with case (2),

we have

P (Meet(vi, vj)) =
∑
kl

δ(At)kl
At

ik

dk

At
jl

dl

= δ(AtD−1AtD−1At)ij .

By summing up the three cases, we have

P (Meet(vi, vj))
= δAt

ij + δ(AtD−1At)ij + δ(AtD−1AtD−1At)ij .

From the definition of updating of W , we have

E(ΔWij)

=αμδ
(
At

ij + (AtD−1At)ij + (AtD−1AtD−1At)ij

)
�αμδM t

ij .

(5)

Here At
ij + (AtD−1At)ij + (AtD−1AtD−1At)ij is denoted by M t

ij . This sug-
gests that the expectation E(ΔWij) is proportional to M t

ij . In our implementa-
tion we normalize M t

ij by M t
ij ← M t

ij/
∑

i′j′ M t
i′j′ , which leads to the following

algorithm,
In this algorithm, we use an evenly distributed threshold t to approximate

the uniform distribution from which t should be drawn from. In our experi-
ments, we set T = 50. One should notice that no matter what the choice of the
normalization is, the algorithm has the following properties.



Graph Evolution via Social Diffusion Processes 397

Algorithm 1. W̃ = GraphEvolution(W )
Input: Graph W
Output: Graph W̃
μ = maxij Wij , W̃ = 0
for i = 1 : T do

t = iμ/T
Calculate M t using Eq. (5)
Normalize M t : M t

ij ←M t
ij/

∑
i′j′ M t

i′j′

W̃ ← W̃ + M t

end for
Output: W̃

Property 1. The result of GraphEvolution is scale invariant, i.e. ∀β > 0,

GraphEvolution(W ) = GraphEvolution(βW ).

This is because the threshold t is always evenly distributed in the interval
[0, maxij Wij ] and M t remains the same. In other words, the choice of the nor-
malization does not change any terms in M t.

Property 2. If W is a set of disconnected full cliques with same size and same
weight, i.e. there is a partition Π = {π1, π2, · · · , πK}, πk ∩ πl = Φ, 1 ≤ k, l ≤
K,∪kπk = {v1, v2, · · · , vn} such that ∀i, j ∈ πk, Wij = c where c is a constant,
and ∀i ∈ πk, j ∈ πl, k �= l, Wij = 0, then

W ∝ GraphEvolution(W ).

This is easy to show since if W is a set of disconnected full cliques with the same
weight, At is the same for every t : At

ij = 1 if Aij �= 0, At
ij = 0 otherwise. Thus

M t ∝ W , which leads to W ∝ GraphEvolution(W ). This property shows
a hint of conditions in which the algorithm of W ← GraphEvolution(W )
converges, which will be discussed later.

3.2 Application of Graph Evolution

The algorithm GraphEvolution can be used in different purposes. The basic
idea is that it improves the quality in terms of the natural structure underlying
the graph data. In this paper, we investigate two applications: clustering and
semi-supervised learning.

For the purpose of clustering, one can simply iteratively perform the following

W ← GraphEvolution(W ). (6)

As iterations continue, the structures of the graph is clearer and clearer. We
show results of the evolution algorithm on a toy grid data, see Figure 1.
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In this example, we randomly generate 198 points in a 20×20 grid. We obtain
an unweighted graph as follows. If node i is one of K-nearest neighbors of node
j, or node j is one of the K-nearest neighbors of node i, we set Wij = 1, and
Wij = 0 otherwise. K = 7 in this example and the neighborhood is computed
using the Euclidean distance of the nodes on the 2-dimensional grid coordinate.
The original graph is shown in Figure 2(a).

Starting from this graph, we run the GraphEvolution algorithm for 20 it-
erations and the results of the first, third, 10th, 15th, and 20th iterations are
shown in Figure 1 (b)–(d). In the third iteration (Figure 2(c)), the structure
of the data is observable. In the 10th iteration (Figure 2(d)), the structure is
even more clear. Finally, in the 20th iteration, (Figure 2(f)), the clusters are
completely separated.

After the graph evolution iterations, the cluster structure encoded in the edge
weight matrix is usually obvious to human. In practice, the number of clusters
discovered by the algorithm is different from expected number of clusters. We
use the following partition scheme to reach a desired number of cluster. We run
algorithm in Eq. (6) until there are two disconnected subgraphs. Then pick up
the subgraph which has a large number nodes to run algorithm in Eq. (6), and
do the same strategy until we reach a specified number of clusters.

For the purpose of semi-supervised learning, we just use W̃ = Graph
Evolution(W ) as preprocessing, where W is the input of and W̃ is the out-
put. Instead of performing semi-supervised learning on W , we do it on W̃ . We
show that the qualities of the W̃ are much higher than W .

4 Experimental Results

In this section, we first demonstrate the convergence of algorithm and then show
experimental evidence of the quality improvement by apply our graph evolution
algorithm. In the clustering comparison, we specify the number of clusters. How-
ever, in a microRNA pattern discovery application, we run our algorithm until
convergence and let the algorithm determine the number of clusters.

4.1 Convergence Analysis

We first demonstrate the convergence of our algorithm on a toy data, which is
a 9 × 9 binary graph, shown in the left most panel of the bottom row of Figure
3. There are two cliques in this graph: nodes 1–4 and nodes 5–9. We add some
noise by setting W13 = W58 = W79 = 0 and W45 = 1. We run algorithm in
Eq. (6) for 30 iterations. One can observe that our algorithm converges fast and
at the convergent graph, all edges within the same clique have the same value.
Also as highlighted in Figure 3, the noise values of W13, W58, W79, and W45 are
corrected by our algorithm.
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Fig. 3. Convergence curves and adjacency matrix of our algorithm on a 9×9 toy data.
The left most panel of the bottom row is the initial binary graph (black represents
1 and white represents 0) and the rest of the bottom row is the evolution result of
2nd, 4th, · · · , 18th iterations. Initially, nodes 1–4 is a pseudo-clique, as well as nodes
5–9. W13 = W58 = W79 = 0 and W45 = 1. After around 18 iterations, the two cliques
become separated and the nodes within the two cliques become full connected. The
top panel show the convergence of all the elements in W . Highlighted are the values of
W13, W58, W79, and W45, which are corrected by our algorithm.

4.2 Clustering

In this experiment, we extensively compare our algorithm with standard clus-
tering algorithms (K-means, Spectral Clustering, Normalized Cut2) in 20 data
sets. These data sets come from a wide range of domains, including gene expres-
sions including gene expressions (PR1,SRB, LEU, LUN, DER, AML, GLI, MAL,
MLL), images (ORL, UMI, COI, JAF, MNI) and other standard UCI data sets
(ION, PR2, SOY, ECO, GLA, YEA, ZOO, CAR, WIN, IRI)3. We use accuracy,
normalized mutual information (NMI) and purity as the measurement of the
clustering qualities and the results are shown in Table 1. Our method achieves
the best results in 22 out of 24 data sets. Here notice that for Spectral Clus-
tering and Normalized Cut, we tune the graph construction parameters. More
2 We also compared with MCL. However the accuracies are much (more than 10%)

lower than all the method we compare here. We believe MCL is not suitable for the
purpose in this paper. One can find visual evidence in Figure 2.

3 All the mentioned data can be downloaded at parchive.ics.uci.edu/ml/ or
csie.ntu.edu.tw/ cjlin/.
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Table 1. Accuracy, normalized mutual information (NMI), and purity comparison of
K-mean (Km), Spectral Clustering (SC), Normalized Cut (Ncut), and Graph Evolution
(GE). Both Spectral Clustering and Normalized Cut are achieved by tuning the graph
construction parameters and the best results are reported.

Accuracy NMI Purity

Km SC Ncut GE Km SC Ncut GE Km SC Ncut GE

UMI 0.458 0.471 0.498 0.644 0.641 0.646 0.649 0.763 0.494 0.505 0.505 0.667
COI 0.570 0.614 0.792 0.839 0.734 0.750 0.860 0.879 0.623 0.658 0.817 0.840
ION 0.707 0.702 0.684 0.880 0.123 0.193 0.107 0.446 0.707 0.730 0.684 0.880
JAF 0.744 0.799 0.965 0.967 0.809 0.849 0.959 0.962 0.774 0.819 0.965 0.967
MNI 0.687 0.713 0.820 0.833 0.690 0.698 0.748 0.769 0.705 0.733 0.820 0.833
ORL 0.582 0.683 0.756 0.775 0.786 0.834 0.866 0.891 0.624 0.713 0.773 0.802
PR1 0.716 0.675 0.562 0.899 0.129 0.176 0.102 0.458 0.726 0.757 0.708 0.899
PR2 0.580 0.566 0.569 0.706 0.019 0.017 0.013 0.136 0.580 0.566 0.569 0.706
SOY 0.908 0.871 1.000 1.000 0.903 0.859 1.000 1.000 0.924 0.893 1.000 1.000
SRB 0.480 0.622 0.699 0.639 0.232 0.411 0.454 0.421 0.512 0.645 0.699 0.639
YEA 0.132 0.327 0.302 0.395 0.013 0.129 0.126 0.231 0.328 0.430 0.436 0.540
ZOO 0.264 0.674 0.629 0.723 0.116 0.615 0.570 0.751 0.423 0.750 0.737 0.871
AML 0.688 0.678 0.659 0.847 0.100 0.100 0.073 0.394 0.696 0.692 0.666 0.847
CAR 0.623 0.729 0.719 0.799 0.655 0.743 0.738 0.779 0.691 0.789 0.788 0.822
WIN 0.961 0.936 0.978 0.983 0.863 0.845 0.907 0.926 0.961 0.943 0.978 0.983
LEU 0.879 0.840 0.958 0.972 0.559 0.513 0.735 0.806 0.879 0.860 0.958 0.972
LUN 0.663 0.672 0.748 0.704 0.495 0.485 0.547 0.473 0.864 0.860 0.911 0.828
DER 0.766 0.848 0.955 0.964 0.838 0.818 0.905 0.931 0.853 0.876 0.955 0.964
ECO 0.552 0.496 0.505 0.631 0.467 0.458 0.487 0.549 0.739 0.770 0.808 0.851
GLA 0.452 0.446 0.453 0.565 0.320 0.298 0.333 0.399 0.549 0.572 0.652 0.650
GLI 0.585 0.548 0.559 0.700 0.465 0.410 0.398 0.505 0.619 0.569 0.601 0.700
IRI 0.802 0.746 0.843 0.953 0.640 0.514 0.655 0.849 0.815 0.758 0.843 0.953
MAL 0.911 0.731 0.902 0.929 0.569 0.299 0.544 0.624 0.911 0.743 0.902 0.929
MLL 0.669 0.637 0.687 0.861 0.435 0.376 0.426 0.681 0.692 0.651 0.687 0.861

explicitly the graph is constructed as Wij = exp
(−‖xi − xj‖2/(γr̄2)

)
where r̄

denotes the average pairwise Euclidean distances among the data points and γ
is chosen from [2−2, 2−1, · · · , 25] and the best results are reported.

4.3 Semi-supervised Learning

We first run graph evolution algorithm (Eq. (6)) for one iteration. After that we
use the result weights as input to run Zhu et al.’s [19] (marked as HF in the Figure
5) and Zhou et al.’s [20] (marked as GC) approaches. We compare four methods,
HF, GC, HF on resulting graph (HF GE), GC on resulting graph (GC GE),
on four face image datasets. We tested the methods on AT&T4, BinAlpha5,

4 http://people.cs.uchicago.edu/˜dinoj/vis/ORL.zip
5 http://www.cs.toronto.edu/˜roweis/data.html
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Fig. 4. 6 miRNA cliques found by Graph Evolution. Top panel is the miRNA graph in
which the values denotes the number of common targeting genes of two miRNAs. The
bottom panel is the top 10 targeting genes for each clique. The cliques are separated
by different colors. The left top part of the top panel is the let-7 miRNA family and
the right bottom part of the top panel is the hsa-mir-200 family.
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Fig. 5. Semi-supervised learning on 4 datasets(from left to right): AT&T, BinAlpha,
JAFFE, and Sheffield datasets. Classification accuracies are shown for four meth-
ods: HF, GC, HF using condensated graph (HF GE), GC using condensated graph
(GC GE). For each dataset, number of labeled data per class are set to 1, 2, 3, 4, 5.
Using the graph evolution consistently improves over original methods.

JAFFE6, and Sheffield7 data sets. For all the methods and datasets, we randomly
select N labeled images for each class, N = 1, 2, 3, 4, 5, and use the rest as
unlabled images. We try 50 random selections for each dataset, and computer
the average of the semi-supervised classification accuracy.

The results are shown in Figure 5. In all these case, we always obtain higher
classification accuracy by applying graph condensation. For datasets BinAlpha,
JAFFE, and Sheffield, our methods are consistently 5%–10% better than the
standard semi-supervised learning methods.

4.4 Graph Evolution for microRNA Functionality Analysis

In this experiment, we are interested in the interaction network between mi-
croRNAs (miRNAs) and genes. MiRNAs play important regulatory roles by tar-
geting messenger RNAs (mRNAs) for degradation or translational repression,
and have become one of the focuses of post-transcriptional gene regulation in
animals and plants[21,22,23] and have been an active research topic in various
domains [24,25,26,27]. A database of verified miRNA/target gene relationship
can be found in [28]. Here we apply our algorithm to investigate the relation-
ships between the miRNAs and the genes. The main purpose is to discover new
interaction patterns in the miRNA regulatory network.

We use the data with version of Nov. 6, 2010. We use the number of targeting
genes as the weights of two miRNAs, i.e. Wij =

∑
k BikBjk where Bik = 1

6 http://www.cs.toronto.edu/˜roweis/data.html
7 http://www.shef.ac.uk/eee/vie/face.tar.gz
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indicates miRNA i targets gene k, Bik = 0 otherwise. We select the largest
disconnected component which has 103 miRNAs and run the GraphEvolution
algorithm until converges. Finally, we discover 6 separated subgroups of miRNAs,
which are shown in Figure 4. The following is the outline of our discovery in this
experiment. (1) the let-7 [29,30] miRNA family is correctly clustered into the
same group. (2) The hsa-mir-200 family are highly connected with each other,
which is not reported in literature so far.

5 Conclusions

In this paper we present the Social Diffusion Process, which is motivated from the
Matthew effect in social phenomenons. We develop the stochastic model by the
assumption that social members tend to be together with someone who is familiar
with. We also derive an graph evolution algorithm based on the presented mode.
Empirical studies show significant improvement of the qualities of the graph data
by the Social Diffusion Process, indicating that the assumptions in our model
are natural in general. We also discover a new miRNA family in the experiment
on miRNA functionality analysis.

Acknowledgment. This research is partially supported by NSF-CCF-0830780,
NSF-DMS-0915228, NSF-CCF-0917274.
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Abstract. This paper presents the multi-subspace discovery problem
and provides a theoretical solution which is guaranteed to recover the
number of subspaces, the dimensions of each subspace, and the mem-
bers of data points of each subspace simultaneously. We further propose
a data representation model to handle noisy real world data. We de-
velop a novel optimization approach to learn the presented model which
is guaranteed to converge to global optimizers. As applications of our
models, we first apply our solutions as preprocessing in a series of ma-
chine learning problems, including clustering, classification, and semi-
supervised learning. We found that our method automatically obtains
robust data presentation which preserves the affine subspace structures
of high dimensional data and generate more accurate results in the learn-
ing tasks. We also establish a robust standalone classifier which directly
utilizes our sparse and low rank representation model. Experimental re-
sults indicate our methods improve the quality of data by preprocessing
and the standalone classifier outperforms some state-of-the-art learning
approaches.

1 Introduction

The linear sparse representation approaches recently attract attentions from the
researchers in statistics and machine learning. By providing robustness, simple-
ness, and sound theoretical foundations, sparse representation models have been
widely considered in various applications [1,2,3,4].

In most previous models, we impose on the data an assumption that the data
points can be linearly represented by other data points in the same class or data
points nearby. This assumption will further lead to another assumption that
subspace of each class has to include the original point. Our major argument
in this paper is that this assumption is too loose in real world applications. For
this reason, we further impose the affine properties of the subspaces and present
a challenging affine subspace discovery problem. To be more specific, given a
set of data points, which lie on multiple unknown spaces, we want to recover
the membership of data points to subspaces, i.e. which data point belongs to
which subspace. The major challenge here is that not only the subspaces and
membership are unknown, but also the number of subspaces and the dimensions
of the subspaces are unknown.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 405–420, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper we will (1) present a sparse representation learning model to
obtain the solutions automatically, which is theoretically guaranteed to recover
all the unknown information listed above, (2) extended our model to handle
noisy data and apply the sparse representation as a preprocessing in various
machine learning tasks, such as unsupervised learning, classification and semi-
supervised learning, and (3) develop a standalone classifier directly based on the
sparse representation model. To handle the noisy data with robust performance,
we introduce a mixed-norm optimization problem which involves trace, �2/�1,
and �1 norms. We further develop an efficient algorithm to optimize the induced
problem which is guaranteed to converge to a global optimizer.

Our model explicitly imposes both sparse and low rank requirements on the
data presentation. We apply our model as preprocessing in various machine learn-
ing applications. The extensive and sound empirical results suggest that one might
benefit from taking sparsity and low rank into consideration simultaneously.

2 Problem Description and Our Solution

Consider K groups data points X = [X1,X2, · · · ,XK ] and assume that there
are n1, n2, · · · , nK data points in each group, respectively (

∑K
k=1 nk = n). We

assume that for each group, the data points belong to independent affine sub-
spaces. And the dimensions of the affine subspaces are d1, d2, · · · , dK . To be
more specific, for each affine subspace Xk, there exist dk + 1 bases Uk =
[uk

1 ,uk
2 , · · · ,uk

dk
,uk

dk+1] and for each data point x ∈ Xk , there exists β such
that x = Ukβk and that βT1 = 1. In this paper, by the dimension of the affine
subspace, we mean the characteristic dimension, i.e. from the manifold point of
view. Even though there are dk +1 bases in Uk, we still consider that Uk defines
a dk-dimensional affine subspace.

2.1 Multi-Subspace Discovery Problem

The problem of Multi-Subspace Discovery is given X = [X1,X2, · · · ,XK ] to
recover (1) the number of affine space K, (2) the dimension of each subspace dk,
and (3) the membership of the data points to the affine subspaces. The challenge
in this problem is that the only known information is the input X, where the
data points are typically disordered, and all other information is unknown.

Will illustrate the Multi-Subspace Discovery problem in Figure 1. In this
paper, we first derive a solution of this problem and provide several theoretical
analysis of our solution on non-noisy data, then extend our model to handle
noisy real-world case by adding �2/�1 norms which are convex but non-smooth
regularizations. We develop an efficient algorithm to solve the problem.

2.2 A Constructive Solution

We cast the multi-subspace discovery problem into a trace norm optimization,
in which the optimizer directly gives the number of affine subspace and the
membership of the clustering. The results are theoretically guaranteed.
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(c)

x2

(d)

(a)

x1

(b)

(e)

Fig. 1. A demonstration of the Multi-Subspace Discovery problem. (a) and (c): Two
groups of data points lying on two 1-dimension subspaces. (b): All data points shifted
by x1 from (a). (d): All data points shifted by x2 from (c). (e): A mixture of data
points from (b) and (d). The affine subspace clustering problem is to recover the
number of subspaces (2 in this case), the membership of the data points to the subspaces
(indicated by the color of the data points in (e), the dimensions of the subspaces (1
for both of the subspace in this cases).

Representation of One Subspace
In order to introduce our solution in a more interpretable way, we first solve a
simple problem in which there is only one affine subspace. Let X1 = (x1, · · · ,xn1)
be in a d1-dimensional affine subspace spanned by the basis U1, d1 + 1 < n1,
i.e. for each data points xi, there exists αi,

xi = U1αi, αi ∈ R
d1+1, αT

i 1 = 1, 1 ≤ i ≤ n1 (1)

or more compactly, X1 = U1A, AT 1 = 1, where 1 is a column vector with all
elements one in proper size and A = (α1, · · · , αn1). We define

X̃1 =
(

U1A
1T

)
(2)

Then we have,

Lemma 1. If X1 satisfies Eq. (1) and let

Z1 = X̃+
1 X̃1 (3)

where X̃1 is defined in Eq. (2) and X̃+
1 is the Moore-Penrose pseudo inverse of

X̃1, then
X1 = X1Z1, 1TZ1 = 1T , (4)

and rank(Z1) = d1 + 1.
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Proof. By making use of the property of Moore-Penrose pseudo inverse, we im-
mediately have

X̃1 = X̃1X̃+
1 X̃1,

Thus, (
U1A
1T

)
=
(

U1A
1T

)
Z,

which is equivalent to two equations of

X1 = X1Z1,

1TZ1 = 1T .

It is obvious that rank(Z1) = rank(X̃1). On the other hand, by the definition of
A in Eq. (2), we have 1TA = 1T , thus

X̃1 =
(

U1A
1T

)
=
(

U1A
1TA

)
=
(

U1

1T

)
A (5)

From Eq. (2) we have

rank(X̃1) ≥ rank(U1A) = rank(X1) = d1 + 1

But from Eq. (5) we have

rank(X̃1) ≤ rank(A) = d1 + 1.

Thus rank(Z1) = rank(X̃1) = d1 + 1.

Since d1 + 1 < n1, Z1 is low rank. Interestingly, this low-rank affine subspace
presentation of Eqs. (1, 4) can be reformulated as a trace norm optimization
problem:

min
Z1

‖Z1‖∗,
s.t. X1 = X1Z1, 1TZ1 = 1T

(6)

where ‖Z1‖∗ is the trace norm of Z1, i.e. the sum of singular values, or explicitly,

Lemma 2. Z1 defined in Eq. (3) is an optimizer of the problem in Eq. (6).

Due to the limited space, we omit the proof here1.
In this paper, we hope to recover multiple Z which has diagonal block structure

from X by which we solve the multi-subspace discovery problem.
Constructive Representation of K Subspaces

1 One can also easily show that Z1 defined in Eq. (3) is one element in the subgradient
of the Lagrangian L(Z, Λ) = ‖Z‖∗ − tr(X̃1 − X̃1Z)T Λ,
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Now consider the full case where the data points X belong exactly to K
independent subspaces. Assume data points within a subspace are indexed se-
quentially, X = [X1,X2, · · · ,XK ]. Repeat the above analysis for each subspace,
we have

X = [X1, · · · ,XK ] = [X1Z1, · · · ,XKZK ] = XZ, (7)

where

Z =

⎛⎜⎜⎜⎝
Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . . 0

0 0 0 ZK

⎞⎟⎟⎟⎠ (8)

Thus by construction, we have the following,

Theorem 1. If X = [x1,x2, · · · ,xn] belong exactly to K subspaces of rank dk

respectively, there exists Z, such that

X = XZ, 1TZ = 1T . (9)

where Z has the structure of Eq.(8) and rank(Zk) = dk + 1, 1 ≤ k ≤ K.

Recovery of The Multiple Subspaces
Intuited by Lemma 2, and Theorem 1, one might hypothetically consider

recovering the block structure by using the following optimization,

min
Z

‖Z‖∗,
s.t. X = XZ, 1TZ = 1T ,

(10)

which is a convex problem since the objective function ‖Z‖∗ is a convex function
w.r.t Z and the domain constraints X = XZ, 1TZ1 = 1T is an affine space,
which is a convex domain. This is desirable property: if a solution Z∗ is a local
solution, Z∗ must be a global solution. However, a convex optimization could
have multiple global solutions, i.e., the global solution is not unique.

This optimization indeed has one optimal solution:

Theorem 2. The optimization problem of Eq. (10) has the optimal solution

Z∗ = X̃+X̃ (11)

where

X̃ =
(

X
1T

)
. (12)

In general, Z∗ is not sparse and does not have the sparse block structure of
Z in Eq. (8). Similar data representation model was represented in [5], which
suffers from the same problem. Here we extend the model to solve the general
multi-subspace problem and provide a proof of the uniqueness of the solution.
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To recover a solution which has the sparse structure of Eq. (8), we add a �1

term to optimization Eq. (10) to promote sparsity of the solution, and optimize
the following

min
Z

J1(Z) = ‖Z‖∗ + δ‖Z‖1

s.t. X = XZ, 1TZ1 = 1T ,
(13)

where ‖Z‖1 is the element-wise �1 norm: ‖Z‖1 =
∑

ij |Zij | and δ is model param-
eter which control the balance between low rank and sparsity. In our theoretical
studies, we only require δ > 0. Because the �1 norm is convex and the optimiza-
tion problem (13) is strictly convex at the minimizer, it has unique solution.

And fortunately, for problem Eq.(13), we have the following theorem,

Proposition 1. Assume X1,X2, · · · ,XK are independent affine subspaces. Let
X = [X1,X2, · · · ,XK ], then all the minimizers of problem Eq.(13) have the
form of Eq.(8). Further more, each block Zk has only one connected component.

The proof of Proposition 1 can be found in the supplementary materials of this
paper.

Since each block Zk has only one connected component and all the whole Z
is block diagonal, the number of affine subspaces is trivial to recovered, which is
the number of connected components of Z. The membership of each data points
to the affine spaces is also guaranteed to be recovered.

3 Multi-Subspace Representation with Noise

Typically data are drawn from multiple subspaces but with noise. Thus X = XZ
does not hold anymore for any low rank Z. On the other hand, we can combine
the two constraints in Eq. (13) as,(

X
1T

)
=
(

X
1T

)
Z. (14)

With the notation of X̃ in Eq. (12), we have X̃ = X̃Z. We may express the
relationship as X̃ = X̃Z + E, where E represents noise. To handle such noise
case, in the optimization objective of Eq.(13), we add the term

‖E‖�2/�1 =
∑

j

√∑
i

E2
ij =

n∑
j=1

∥∥∥∥(xj

1

)
−
(

X
1T

)
zj

∥∥∥∥ .

This is the �2/�1-norm of matrix of E. This norm is more robust against outliers
than the usual Frobenius norm. With this noise correction term, we solve,

min
Z

‖X̃− X̃Z‖�2/�1 + λ‖Z‖∗ + δ‖Z‖1, (15)

where λ and δ are parameters which control the importance of ‖Z‖∗ and Z1,
respectively.
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3.1 Multi-Subspace Representation

Notice that if the data contain noise and the constraints in Proposition 1 do
not hold, we lose the guarantee of the block diagonal structure of Z. However,
since the low rank and sparsity regularizer of Eq. (15), the final solution Z can
be interpreted as representation coefficient of X. We call such representation as
Multi-Subspace Representation (MSR).

In summary, MSR representation of data X is given by the following:
(1) From input data X, solve the optimization Eq.(15) to obtain Z;
(2) The MSR representation of X is XZ, i.e., the representation of xi is Xzi.

In §4, we develop an algorithm to solve Eq. (15) and in §5, some applications
of our model in machine learning are given.

3.2 Relation to Previous Work

The MSR representation here is motivated by the affine subspace clustering
problem. However, some properties of the representation have been investigated
in previous work by other researchers. First notice that Z is sparse, the repre-
sentation of xi ≈ Zzi is similar to the one in sparse coding [6,7]. Interestingly,
research in other communities suggests that in the natural process and even in
human cognition, information is often organized in a sparse way, e.g. Vinge et
al. discover that primary visual cortex (area V1) uses a sparse code to efficiently
represent natural scenes [8].

In the sparse representation model, for each testing object, we seek a sparse
representation of the testing object by all objects in training data set. Such
learning mechanisms implicitly learn the structure, under the assumption that
the sparse representation coefficients are imbalanced among groups. To be more
specific, given a set of training data X = [x1,x2, · · · ,xn] (p×n matrix, where p
is the dimension of the data) and a testing data point xt, they solve the following
optimization problem

min
αt

‖xt − Xαt‖2 + λ‖αt‖1, (16)

where αt (n × 1 vector) has the reconstruction coefficients of xt using all the
training data objects X, λ is the model parameter, and ‖ · ‖1 is the �1 norm:
‖a‖1 =

∑
i=1 |ai|.

Wright et al introduce the Sparse Represented-Based Classification method [9],
which uses the following strategy for class prediction,

arg min
k

rk = ‖xt − Xαk
t ‖, (17)

where rk is the representation error using the training samples in group k and αk
t

is obtained by setting the coefficients in αt, corresponding to training samples
not in class k, to zero, i.e.

αk
t (i) =

{
αt(i) if i ∈ Ck,
0 otherwise,
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where Ck is a set of all data points in class k, k = 1, 2, · · · , K, and K is the
number of classes.

On the other hand, Z in our model is also low rank, which is a natural re-
quirement of most of data representation techniques, such as the low rank kernel
methods [10] and robust Principle Component Analysis [11]. One can easily find
literacy of the low rank representation in real world applications in various do-
mains which indicates that low rank is one of the intrinsic properties of the data
we observe, e.g. the missing value recover of DNA microarrays [12].

By combining the two basic properties (sparsity and low rank), our model
naturally captures a proper representation of the data. We will demonstrate the
quality of such representation using comprehensive empirical evidences in the
experimental section.

4 An Efficient Algorithm and Analysis

4.1 Outline of the Algorithm

Assume we are solving a general problem of

J(x) = f(x) + φ(x), (18)

where f(x) is smooth and φ(x) is non-smooth and convex. If one of the elements
in subgradient of φ(x) can be written as product of g(x) and h(x), i.e.,

g(x)h(x) ∈ ∂φ(x),

where h(x) is smooth and ∂φ(x) is the subgradient of φ(x), then instead of
solving Eq. (18), we iteratively solve the following,

xt+1 = arg min
x

J̃(x) = f(x) + g(xt)
∫

h(x)dx. (19)

Notice that ∂J̃(x)/∂x ∈ ∂J(x) when x = xt. Hopefully, at convergence, xt+1 =
xt, then 0 ∈ ∂J(x) at xt, which means xt is an optimizer of J(x).

In general, the iterative steps in Eq. (19) cannot guarantee the convergence
of x (i.e. xt+1 = xt), and even the convergence of J(x) (i.e. J(xt+1) = J(xt)).
Fortunately, in our case of Eq. (15), our optimization technique guarantees both,
and thus our algorithm guarantees to be an optimizer. Further more, in our
algorithm, optimization problem in Eq. (19) has a close form solution, thus our
algorithm is efficient.

4.2 Optimization Algorithm

Here we first present the optimization algorithm of Eq.(15), and then present
theoretical analysis of the algorithm.

The algorithm is summarized in Algorithm 1. In the algorithm, zi denotes the
i-th column of Z. The converged optimal solution is only weakly dependent on
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Algorithm 1. (X, λ, δ)
Input: Data X, model parameters λ, δ
Output: Z which optimizes Eq.(15).
Initialization: Compute X̃ using Eq. (12), Z = 0.
while not converged do

B =
(
ZZT + εI

)−1/2

for i = 1 : n do
di = ‖x̃i − X̃zi‖,
Di = diag

(
Z−1

1i , Z−1
2i , · · · , Z−1

ni

)
,

zi =
[
X̃T X̃ + λdi (B + δD)

]−1

X̃T x̃i,

end for
end while
Output: Z

parameter. We set δ to δ = 1. ε is an auxiliary constant for improving numerical
stability in computing trace norm. We set ε = 10−8 in all experiments.

In the third line of the for loop, we are actually solving the problem in Eq.
(19). In practice, we do not explicitly compute the inverse. Instead, we solve the
following linear equation to obtain zi,[

X̃T X̃ + λdi (B + δD)
]
zi = X̃T x̃i. (20)

The algorithm is simple which involves no other optimization procedures. The
algorithm generally converges in about 10 iterations in our experiments.

We have developed theoretical analysis for this algorithm, convering three
properties for this algorithm: convergence, objective function value decreasing
monotonically, and converging to global solution.

4.3 Theoretical Analysis of Algorithm 1

Before presenting the main theories for Algorithm 1, we first introduce two useful
lemmas here.

Lemma 3
‖Z‖∗ = lim

ε→0
tr
(
ZZT + εI

)1/2
, (21)

and
lim
ε→0

(
ZZT + εI

)−1/2
Z ∈ ∂‖Z‖∗, (22)

where ∂‖Z‖∗ is the subgradient of trace norm.

Here εI is introduced for numerical stability.

Lemma 4. AssumematricesZ and Y have the same size. Let A =
(
YYT + εI

)1/2

and B =
(
ZZT + εI

)1/2. Then the following holds

trA− trB +
1
2
trZT B−1Z − 1

2
trYTB−1Y ≤ 0. (23)
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Proof

trA − trB +
1
2
trZTB−1Z − 1

2
trYT B−1Y

=trA − trB +
1
2
trB−1

(
ZZT − YYT

)
=

1
2
trB−1

(
2BA− 2B2 + ZZT − YYT

)
=

1
2
trB−1

(
2BA− 2B2 + ZZT + εI − YYT − εI

)
=

1
2
trB−1

(
2BA− B2 − A2

)
= − 1

2
trB−1/2 (A− B)2 B−1/2 ≤ 0.

One should notice that here A and B are symmetric full rank matrices.

Lemma 4 serves as a crucial part of our main theorem, which is stated as follows,

Theorem 3. Algorithm 1 monotonically decreases the following objective,

min
Z

J(Z) = ‖X̃− X̃Z‖�2/�1 + λtr
(
ZZT + εI

) 1
2 + δ‖Z‖1, (24)

i.e. J(Zt+1) ≤ J(Zt), where Zt is the solution of Z in the t-th iteration.

Since the objective in Eq.(24) is lower bounded by 0, Theorem 3 guarantees the
convergence of the objective value. Further more, we have

And according to Lemma 3, we know that the above solution is also the
optimal solution of Eq.(15) when ε → 0.

We provide the proofs of all the theoretical analysis above in the supplemen-
tary materials.

5 Applications

5.1 Using Multi-Subspace Representation as Preprocessing

Since Z is low rank, XZ is also low rank. And since Z is sparse, XZ can be
interpreted as a sparse coding representation of X. According to the analysis in
§3.2, we hopefully improve the qualities of the data representation by using XZ.
In our study, we replace X by XZ as a preprocessing step for various machine
learning problems, where Z is the optimal solution of Eq. (15).

Notice that the learning of Z in Eq. (15) is unsupervised, which requires no
further label information. Thus we can apply it as preprocessing for any machine
learning tasks, as long as the data are represented in Euclidean space. In this pa-
per, we employ MSR for clustering, semi-supervised learning, and classification.
We will demonstrate the performance of the preprocessing in the experimental
section.
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5.2 Using Multi-Subspace Representation as Classifier

Here we try to directly make use of our MSR model as a standalone classifier.
Assume we have n data points in the data set, X = [x1,x2, · · · ,xn] and the
first m data points have discrete class labels y1, y2, · · · , ym in K classes, yi ∈
{1, 2, · · · , K}. The classification problem is to determine the class label of xi, i =
m + 1, · · · , n. Let Z be the optimal solution of Eq.(15) for n data points. The
MSR representation of each image is Xzi, i = 1, · · · , n. The class prediction of
our model for unlabeled data xt, t = m + 1, · · · , n, is

argmin
k

rk = ‖Xzt − x̂k
t ‖, x̂k

t =
∑
i∈Ck

xiZit. (25)

Here x̂k
t is the representation of testing object xt using objects in class Ck,

k = 1, 2, · · · , K.
The classification strategy is similar with Wright et al’s approach [9]. We will

compare the two models in the experimental section.

6 Experiment

6.1 A Toy Example

We demonstrate with toy example of the affine space recovering by our method
in Figure 2. (a) shows 100 images from 10 groups used in this example, which
are selected from the AT&T data set, details can be found in the experimental
section. In order to obtain 10 affine subspaces which satisfy the constraints in
Proposition 1, we remove the last principle component in each group of face im-
ages. To be more specific, for each group Xk, we first subtract the data points by
the group mean mk : X̄k = Xk−mk1T , then perform a PCA (Principle Compo-
nent Analysis) on the zero-mean data and keep the first 8 principle components
and get rid of the 9-th principle component. Then the data is projected back on
to the original space and the mean mk is added back. Assume the resulting PCA
projection is Uk then the processed data Y = UkUT

k X̄k +mk are used in our ex-
ample, k = 1, 2, · · · , 10. The images in which the last principle component have
been removed are shown in Figure 2 (a). Notice that they are visually almost
identical to the original image since the energy of the last component is close
to zero. Then we solve Eq. (13) and the optimal solution is shown in Figure 2
(b), in which white color represents zeros, blue colors represent negative values,
and red positive values. One can see that within each group, the values of the
subgraph represented by Zk (defined in Eq. (8)) is a single connected component
and among the ten Zk, k = 1, 2, · · · , 10 they are disconnected components.

As suggested in the previous section, our multi-subspace representation model
has various potential real world applications. In the section, we will verify the
quality of our model as a preprocessing method in three types of machine learn-
ing tasks, i.e. clustering, semi-supervised learning, and classification. We also
evaluate our model as a standalone classifier.
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(a) (b)

Fig. 2. A toy example of multi-subspace discovery problem and our solution. (a): 100
images in which the last component has been removed within each group. Each row is
one group which has 10 images. Within each group, the data are rank deficient, which
satisfy the conditions in Proposition 1. (b): the optimal solution of Z in Eq. (13).
White color represents zeros, blue colors represent negative values, and red positive
values. Within each group, the values of the subgraph represented by Zk (defined in
Eq. (8)) is a single connected component and the among the 10 Zk, k = 1, 2, · · · , 10
they are disconnected components.

6.2 Experimental Settings

Datasets
We evaluate the performance of our model on 5 real world datasets, including
two face image data bases, LFW (Labeled Faces in the Wild)2, AT&T3, two
UCI datasets Austrian and Dermatology [13], and one handwritten character
data BinAlpha4. All the data sets are used with the original data, without any
further preprocessing.

Compared Methods
For the usage of preprocessing of our model, we compare 3 clustering algo-
rithms (Normalized Cut [14], Spectral Embedding Clustering [15] and K-means),
two standard semi-supervised learning algorithms (Local and Global Constancy
by [16] and Gaussian Fields and Harmonic Functions by [17]), and two stan-
dard classification algorithms (linear Support Vector Machines and k-Nearest
Neighbor).

For the usage of standalone classifier, we compare our method with Wright
et. al’s sparse representation based approach [9].

2 http://www.itee.uq.edu.au/∼conrad/lfwcrop/
3 http://people.cs.uchicago.edu/˜dinoj/vis/ORL.zip
4 http://www.cs.toronto.edu/˜roweis/data.html
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Validation Settings
All the clustering algorithms compared in our experiments require random ini-
tializations. Thus we run the algorithms for 50 random trials and report the
averages. For semi-supervised learning, we randomly split the data into 30%
and 70% where the 30% of the data points are used as labeled data and 70% are
used as unlabeled data. We repeat the random splitting for 50 times, where the
average result is reported. For classification, when comparing our method as a
preprocessing algorithm, we use the same splitting strategy as in semi-supervised
learning, but splitting in to 50% for training and the other half for testing. For
classification, when comparing our method as a standalone classifier, we use
30% for training and the rest 70% for testing. The reason is that for some of
the datasets, the data points are well separated and the classification accuracy
is very high, then the difference between approaches is not obvious. Thus here
we use fewer data samples as the training set to enlarge the differences.

Parameter settings
K-means has no parameters. For kNN we use k = 1, i.e. just use the nearest
neighbor classifier. For the Normalized Cut (NCut), Spectral Embedding Clus-
tering (SEC) in clustering, Local and Global Constancy (LGC), and Gaussian
Fields and Harmonic Functions (GFHF) in semi-supervised learning, we estab-
lish the graph using Gaussian kernel: Wij = exp

(−γ‖xi − xj‖2/σ2
)
, where γ is

the parameter which is set to be γ = [0.1, 0.5, 1, 2, · · · , 30] and σ is the average
of pairwise Euclidian distances among all data points.

For Wright et. al’s sparse representation (SR), we use LARS [18] to obtain
the full LASSO path solution and use m top ranked coefficients according to the
shrinking order in LARS solution path. We choose m from m = 1, 2, · · ·min(n, p)
where n is the number of data points and p is the number of data dimension. The
reason we use LARS is that it is more efficient than any other �1 solver in the
sense that LARS computes all the possible solution with different parameters at
once and for other solver, we need to retrain the model every time we change the
parameter, which is time consuming for the purpose of highly parameter tuning.
For our method, we choose λ from [0.5, 0.6, · · · , 2.5].

6.3 Experimental Results

For the usage of preprocessing our model, the results are shown in Figure 3. Here
we show the average accuracies for both original data without processing (marked
as Orig in the figure) and the corresponding method on the preprocessed data
by our method (marked as MSR). We further plot the original accuracy values
of all the 50 random trials for each methods to visualize the overall differences
of the performance.

One-way ANOVA (Analysis of Variance) is performed to test how significantly
our method is better than the original method, and corresponding p value is also
shown in the figure. p ≤ ε means p is less than any positive values in machine
precision, i.e. the p value is very close to 0.

Out of the 5× 7 = 35 comparisons, our method significantly outperforms the
original methods in 33 comparisons, with p ≤ 0.03. There is one case (SVM on
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Fig. 3. Experimental results of our method as a preprocessing method on 7 learning
methods and 5 data sets. The scattering dots represent the accuracy values of the
methods and bars represent the averages. Orig and MSR denote the corresponding
method on the original data and on the preprocessed by our method, respectively.
The p stands for the significance of the one-way ANOVA test (for the hypothesis of
“our method is better than the original method”). Out of 35 comparison, our method
significantly outperforms the original methods in 33 cases, with p ≤ 0.03. ε is the
smallest positive values by machine precision.
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Fig. 4. A comparison of our model (MSR) and the Sparse Representation based
method (SR) on 5 data sets. The p values represents the significance of one-way
ANOVA test of the hypothesis “our method is better than SR”.

AT&T data set) where our method is better but with no significant evidence.
There is also another case in which our method is worse than the original method
(kNN on AT&T), but the difference is not significant (p = 0.263).

For our model as a standalone classifier, the comparison results with Sparse
Representation based method are shown in Figure 4. Out of 5 data sets, our
method is significantly better than the Sparse Representation based method in
four with p ≤ 0.01.

7 Conclusions

In this paper, we present the multi-subspace representation and discovery model,
which is motivated by the multi-subspace discovery problem. We solve the multi-
subspace discovery problem by providing block diagonal representation matrix
where the data points are connected in the same subspace and disconnected
for different subspace. We then extend our approach to handle noisy real world
data which leads to the Multi-Subspace Representation. We develop an efficient
algorithm for the presented model and a global optimizer is guaranteed. Empir-
ical studies suggest that our method improves the quality of the data by sparse
and low rank representation and the induced standalong classifier outperforms
standard sparse representation approach.
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A Novel Stability Based Feature Selection Framework
for k-means Clustering�
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Abstract. Stability of a learning algorithm with respect to small input pertur-
bations is an important property, as it implies the derived models to be robust
with respect to the presence of noisy features and/or data sample fluctuations. In
this paper we explore the effect of stability optimization in the standard feature
selection process for the continuous (PCA-based) k-means clustering problem.
Interestingly, we derive that stability maximization naturally introduces a trade-
off between cluster separation and variance, leading to the selection of features
that have a high cluster separation index that is not artificially inflated by the
feature’s variance. The proposed algorithmic setup is based on a Sparse PCA ap-
proach, that selects the features that maximize stability in a greedy fashion. In
our study, we also analyze several properties of Sparse PCA relevant to stabil-
ity that promote Sparse PCA as a viable feature selection mechanism for clus-
tering. The practical relevance of the proposed method is demonstrated in the
context of cancer research, where we consider the problem of detecting poten-
tial tumor biomarkers using microarray gene expression data. The application of
our method to a leukemia dataset shows that the tradeoff between cluster sepa-
ration and variance leads to the selection of features corresponding to important
biomarker genes. Some of them have relative low variance and are not detected
without the direct optimization of stability in Sparse PCA based k-means.

1 Introduction

The stability of a learning algorithm with respect to small input perturbations is gener-
ally considered a desired property of learning algorithms, as it ensures that the derived
models are robust and are not significantly affected by noisy features or data sample
fluctuations. Based on these motivations, the notion of stability has been employed by
several popular machine learning paradigms (such as Bagging) and it has been the cen-
tral theme in several studies that focus both on the theoretical study of stability and
the development of practical stability optimizing algorithms. Albeit the considerable
amount of research that has been devoted to the study of stability, the interplay between
clustering stability and feature selection has not been substantially investigated. This is
because most feature selection frameworks do not take into account the contribution of
the features to the variance of the derived models and solely evaluate the “relevance”
of each feature to the target class structure. This may result in suboptimal models since
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prediction error is, as illustrated by the bias-variance decomposition, affected by both
the relevance of each feature (bias) and its contribution to the stability (variance) of the
resulting data model. These considerations, that are also discussed in [13] motivate the
study for practical feature selection algorithms that achieve the right balance between
the bias-variance tradeoff and optimize the predictive ability of the resulting models.

In the context of this work we undertake this challenge and explore the potentials
of performing feature selection with the general purpose of maximizing the stability
of the continuous (PCA-based) k-means clustering output1. The proposed analysis is
performed at a theoretical, algorithmic and empirical level, which are summarized in the
sequel. From the theoretical point of view, we demonstrate that stability maximization,
naturally leads to a cluster separation vs. feature variance trade off that results in the
selection of features that have a high cluster separation index that is not artificially
inflated by the feature’s variance. This conceptual contribution brings new insights to
the theoretical properties of stability, provides practitioners with a clear understanding
as to when the stability maximizing objective is appropriate in a specific application
context and also allows for the effective interpretation of the success (or possible failure)
of the stability based feature selection process.

From the algorithmic point of view, we propose a Sparse PCA formulation for se-
lecting the relevant features that maximize the stability of the continuous clustering
solution. Sparse PCA presents a natural choice, since the continuous k-means solution
is derived by the principal components, i.e. the dominant eigenvectors of the feature
covariance matrix [5]. In our study of Stable Sparse PCA we derive several interesting
results that are related to the suitability of Sparse PCA for feature selection in cluster-
ing and also, to the stability of the Sparse PCA output. Specifically, we demonstrate
that Sparse PCA can be derived as a continuous relaxation to a feature selection prob-
lem that optimizes for a cluster separation index. Moreover, we show that double cen-
tering the data before the application of Sparse PCA, leads to a “two-way” stability
property. I.e. the stability of the instance-clusters becomes equal to the stability of the
feature-clusters. This is an important observation that complements our work with data
mining algorithms that utilize the feature clusters in the data mining process. Finally,
we propose a novel “two-way” stable Sparse PCA algorithm that relies on a greedy
lower bound optimization. These results can be considered as side-contributions to our
understanding of Sparse PCA as a feature selection mechanism for clustering.

Empirically, we verify the proposed Stable Sparse PCA framework in the context
of Cancer Research. In our experiments we have employed four publicly available mi-
croarray datasets that are related to the identification of certain cancer types. The ex-
periments demonstrate that the proposed Stable Sparse PCA method is competitive and
often superior to state-of-the-art feature selection methods. In particular, we consider
the problem of detecting potential tumor biomarkers using microarray gene expres-
sion data. Application of our method to leukemia gene expression data shows that the
tradeoff between cluster separation and variance leads to the selection of features cor-
responding to important biomarker genes. Some of them have relative low variance and
are not detected without the direct optimization of stability.

1 With the term continuous k-means clustering problem we refer to the continuous relaxation
approach for approximating k-means [5].
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2 Spectral k-means

K-means clustering is arguably the most popular clustering algorithm among data min-
ing practitioners, and albeit its introduction more than 50 years ago, it still constitutes an
active area of research. The goal of K-means is to find the clustering that minimizes the
sum of squared distances of the elements of each cluster to the cluster centers. Formally
this objective can be stated as: JK = ∑K

k=1 ∑ı∈Ck
||xi− µk||2 where we consider xi to be

the instance vectors, µk the respective cluster centers and Ck, to denote the clusters.
The most popular heuristic for approximating JK is the standard Lloyd’s algorithm,

that starts with a random initial guess of the cluster center and iteratively converges
using an EM-style iterative process to a local optima of the k-means objective. In the
context of this work, we focus on a different approximation scheme for the k-means
objective that is based on the continuous (spectral) relaxation of the discrete cluster
assignment vector[5]. The Spectral relaxation allows us to study the stability of the
clustering output using the advanced results of matrix perturbation theory [18].

In order to illustrate spectral k-means, we recall from [5] that the k-means problem
can be written in equivalent form as: JK = Trace(XT

f cXf c)− 1
2 JD where Xf c is the input

m× n feature-instance matrix, with centered features (rows), and JD in the 2-cluster
case (clusters c1 and c2 with sizes n1 and n2) is defined as:

JD =
n1n2

n

[
2

d(c1,c2)
n1n2

− d(c1,c1)
n2

1

− d(c2,c2)
n2

2

]
(1)

with d(ck,cl) = ∑i∈Ck , j∈Cl
||xi− x j||2. Moreover, in [5] it is demonstrated that JD =

2Trace(QT
K−1XT

f cXf cQK−1), where QK−1 is a n×(K−1) matrix (n =#inst., K =#clust.)
that contains the discrete cluster labels (for the discrete cluster values of matrix QK−1

we refer to [5]).
Based on the afore equations, the minimization of JK is equivalent to the maximiza-

tion of JD. By applying the continuous relaxation to JD, the continuous solution is de-
rived by projecting the data to the k−1 principal eigenvectors, i.e. the k−1 dominant
eigenvectors of the Covariance matrix that correspond to the largest eigenvalues. Nat-
urally, the spectral solution will contain the continuous values and an extra step needs
to be applied to discretize the continuous cluster assignments with a popular heuristic
being the application of standard Lloyd’s k-means to the reduced principal eigenspace.

It can be noticed that the minimization of JK is equivalent to the maximization of JD

because Trace(XT
f cXf c) is a constant that is equal to the (scaled) sum of variances of

the available features2. In a feature selection setup this term will not remain constant
since different features may have different variances, unless the data are appropriately
preprocessed such that they have equal variances.

The stability of Spectral k-means can be evaluated using Matrix Perturbation Theory
[18]. The relevant theorems designate that the stability of the continuous Spectral k-
means solution depends on the size of the eigengap λk−1−λk between the k−1 and the
k largest eigenvalues of the relevant matrix with a larger eigengap implying improved
stability. Thus, a stability optimizing algorithm should aim to maximize this eigengap.

2 This is because Trace(XT
f cXf c) = Trace(Xf cXT

f c).
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3 Stable Sparse PCA

3.1 Stability Maximizing Objective and the Cluster Separation/Variance
Tradeoff

We will now move on to define the appropriate optimization objective for feature se-
lection that maximizes the stability of the Spectral k-means clustering output. The pro-
posed formulation is based on the Sparse PCA approach in [3], with the appropriate
modifications that account for stability maximization.

In order to optimize for stability, we incorporate a term that accounts for the dif-
ference between the two largest eigenvalues. Since the aim is to distinguish between
the two largest eigenvalues and not between λk−1 and λk, our framework initially con-
siders the two-way clustering problem, and extends for k > 2-way clustering using a
deflation method analytically described in Section 4.3. In this manner, the proposed
framework can select a different subset of features at each sequential step (for each
eigenvector) thus possibly identifying different feature subsets for separating between
different
clusters.

For facilitating the optimization problem we consider the average difference between
the largest eigenvalue with the rest. I.e. 1

n ∑n
i=1(λ1− λi) instead of λ1− λ2. Although

this formulation will not directly optimize for the difference between the largest eigen-
values, the objective will have a stronger incentive for minimizing the eigenvalues that
are closer to λ1 since they will contribute more to the maximization of the average
difference. As we will illustrate in this section, the difference between the largest and
the consecutive eigenvalues gives rise to a tradeoff between maximizing the distance
between clusters and the feature variances. This balancing essentially imposes a vari-
ance based threshold on a cluster separation index and utterly selects the features that
optimize the harder separation objective.

Before we move on to define our objective function we will clarify the notation we
will use. We will denote X as our input m× n (feature-instance) matrix, Cn = (I −
eneT

n /n), denotes the standard row (feature) centering matrix, u is a vector of length m,
with u(i) = 1 if feature i is retained in the final solution. diag(u) is an m×m diagonal
matrix with vector u in its diagonal (i.e. u(i, i) = 0 if feature i is removed, otherwise it
is equal to 1), and card(u) is equal to the number of non-zero elements of u (i.e. the
number of features that are selected. It can be observed that the multiplication diag(u)X
essentially removes the features that correspond to u(i) = 0. Finally we will denote the
column (feature)-centered matrix as Xf c = XCn and also x f c(i) as a n× 1 vector that
contains the centered vector-representation of feature i (notice we represent x f c(i) as a
column vector although it corresponds to row i of matrix Xf c).

Based on the afore notation, the covariance matrix after feature selection (omitting
term 1/n that does not affect our optimization problem) is defined as:

Cov = diag(u)Xf cXT
f cdiag(u)

We now define the stability maximizing objective as:
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Ob j = max
u∈{0,1}m

(
1
n ∑n

i=1(λ1(Cov)−λi(Cov))
)

= max
u∈{0,1}m

(
n−1

n λ1(Cov)− 1
n ∑n

i=2 λi(Cov))
)

= max
u∈{0,1}m

(
λ1(Cov)− 1

n Trace(Cov)
) (2)

Based on the ability to express the k-means objective using the clustering separation
index JD (as analyzed in Section 2), we can derive the afore objective as a continuous
relaxation to the following feature selection clustering objective:

max
u∈{0,1}m

n1n2

n

[
2

d(u)(c1,c2)
n1n2

− d(u)(c1,c1)
n2

1

− d(u)(c2,c2)
n2

2

]
−

m

∑
i=1

ui ·var( fi) (3)

where d(u)(ci,c j) = ∑
k∈ci

∑
l∈c j

(x(u)
k − x(u)

l )2 and x(u) denotes the representation of an in-

stance after feature selection (i.e. only the selected features are taken into account when
computing the respective distances). Moreover, var( fi) denotes the variance of feature
i. Notice that the cluster separation index is essentially the JD of formula 1 after feature
selection. The proof of the relationship between the Objectives 2,3 is mostly based on
the derivations made within [5] and is omitted due to space limitations.

Based on the afore analysis, we have demonstrated that stability optimization leads
to the introduction of a cluster separation vs. variance tradeoff in the feature selection
process. In this manner the features that are selected will have high cluster separation
value and among features with equal cluster separation value the ones with the smaller
variance will be selected. The novelty of the proposed objective resides in the fact that
it explicitly penalizes high feature variance and it leads to the selection of the feature
subset that has high cluster separation index and low variance. Although this seems to
contradict a basic rule of thumb in feature selection that considers features with high
variance to be more helpful in separating between clusters (notably, the selection of
features with high variance is commonly used as a baseline in the empirical evaluation
of feature selection algorithms), our framework can be justified by the view of feature
selection as a variance reduction process (as done in [13]). In this conceptual approach,
feature selection improves the quality of a learning algorithm when it achieves the re-
duction of variance without significantly increasing the algorithm’s bias. Interestingly,
under this paradigm the contribution of each feature to the bias-variance of the output
model is more important that the exact identification of the relevant/non-relevant fea-
tures (i.e. a relevant feature that contributes highly to the model’s variance may not be
desirable).

The Stable Sparse PCA objective formulation currently accounts only for the max-
imization of the stability of the instance-clustering output. We use the term“solely” as
we will demonstrate in the next section that this objective can be extended such that it
simultaneously optimizes the stability of both instance and feature clusters.

3.2 Two-Way Stability

Several data mining frameworks employ the clustering of the features as an important
component within the general data mining process. One such example is bi-clustering,
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or co-clustering [4] where one tries to cluster simultaneously the features and the
instances for identifying the clusters of features that can be used for describing the
instance clusters. In these application contexts the stability of the clustering of the fea-
tures is of central importance, since an unstable cluster structure could result in spurious
feature clusters that are sensitive to noise or data sample variations.

Based on these motivations, we will present here the necessary extensions that are
needed such that the proposed Stable Sparse PCA objective, optimizes concurrently
both for the stability of the instance and feature clusters. We will furtheron refer to this
type of concurrent stability optimization as “two-way” stability. As we illustrate in the
following lemma, two-way stability can be achieved by employing double-centering,
a popular data processing technique. Double centering essentially centers both rows
and the columns of the data matrix such that they have zero mean. Based on double-
centering the stability between the instance-clusters and feature clusters becomes equiv-
alent. This effect is demonstrated in the following lemma whose proof can be found in
the appendix.

Lemma 1. Let X be our input m× n feature-instance data matrix. If X is double-
centered, then the stability of spectral k-means applied on the instances is equivalent to
the stability of spectral k-means applied on the features.

Based on this observation we can extend the Stable Sparse PCA objective such that it
optimizes for two-way stability. In order to achieve this goal we will define the double
centered covariance matrix (omitting again the 1/n factor) as:

Cov = Cu
mXf cXT

f cC
u
m (4)

The notation is the same as in the previous section, with the addition of Cu
m that is

a matrix that performs instance-centering after feature selection, i.e. it is defined as
Cu

m = diag(u)(I− 1
card(u)emeT

m)diag(u). It can be observed that if we consider the mul-
tiplication Cu

mX , the instances (columns) of matrix X are centered after the removal of
features that correspond to u(i) = 0. The two-way stability optimizing objective is now
defined simply by replacing the new Cov matrix in the optimization problem 2. Having
defined the two-way stable Sparse PCA objective, we will move on in the next section
for defining the appropriate efficient optimization framework for performing feature
selection.

4 Optimization Framework

4.1 Useful Bounds for Optimizing Stability

Sparse PCA problems are known to be computationally hard and several approximation
schemes have been developed for tackling them. In the context of this work we adopt the
general approach of performing a greedy forward search that optimizes a lower bound
of the stability maximizing objective. This general approach has been also adopted
by other Sparse PCA algorithms (such as [3]). The derived bound is summarized in
Theorem 1. In the theorem statement we use the same notation as in Section 3.1: card
denotes the cardinality of a set, x f c(i) denotes the centered representation of a feature



A Novel Stability Based Feature Selection Framework for k-means Clustering 427

and Cu
m is a matrix that performs instance-centering after feature selection, i.e. it is

defined as Cu
m = diag(u)(I− 1

card(u)emeT
m)diag(u). The bound is derived for the more

complex two-way stable objective. Based on the proof, a simpler bound for the one-way
stability case can also be obtained.

Theorem 1. Let I be a set of features and m a feature such that m does not belong to
set I. Moreover, let v denote the dominant eigenvector of matrix XT

f cC
u
mXf c as computed

using features in set I. Then, the following lower bound can be derived:

Ob j(I∪{m})≥ Ob j(I)+ B

where

B = (1− 1
card(I)+1 )[(vT x f c(m)2 − 1

n x f c(m)T x f c(m)]
− 2

card(I)+1 [(∑i∈I vT x f c(i))vT x f c(m) − 1
n(∑i∈I x f c(i))T x f c(m)]

+ 1
card(I)(card(I)+1) [(v

T ∑i∈I x f c(i))2 − 1
n(∑i∈I x f c(i))T (∑i∈I x f c(i))]

It can be observed that the computational cost of this bound is dominated by the cost of
computing the dominant eigenvector v of matrix XT

f cC
u
mXf c. The suitability of this bound

for selecting the feature subset that maximizes for two-way stability is illustrated in the
experiments section.

4.2 Greedy Solutions

In order to design efficient approximation schemes for the Stable Sparse PCA objective,
we turn to greedy approaches. The proposed greedy algorithm is essentially an adapta-
tion of the greedy strategies proposed in [3] that takes into account for the two distinct
elements of our framework (double-centering and two-way stability). Our greedy al-
gorithm also takes advantage of the lower bound derived in Theorem 1 and performs
the greedy search without explicitly computing the objective function for each candidate
feature.

The complexity of Algorithm 1 is O(np3 + n2p2 + nm2) where p is the number of
selected features and n the number of instances. This is because, at each step l (when
selecting the lth feature) in order to compute the bound we must double center the
data matrix O(nl2 + n2l) (complexity of double centering an n× l matrix) and then
compute the maximum eigenvalue of a matrix of size n× n which is O(n2) only once
per greedy step. The candidate feature is selected based on the maximum angle between
certain vector-pairs of sizes n× 1 that induce a computational cost of O(n(m− l)).
Since, double centering and the maximum eigenvalue is computed only once per greedy
step of the algorithm, the total complexity will be O(np3 + n2 p2 + nm2).

It should be noted that because of double centering, the proposed algorithm is not
able to select the initial feature (all features would appear to have quality equal to zero),
thus the greedy algorithm is initialized with the feature that maximizes O1 component of
the objective (as defined within the proof of Theorem 1). It can be easily observed that
this will essentially be the feature that has maximum variance. The algorithm terminates
when the desired number of features p is selected.
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Algorithm 1. (X ,p)
1: Initialize with index Ik0 where i0 = argmax j∈I O1{ j}.
2: repeat
3: Compute ik = argmaxi∈Ic

k
B(i, Ik).(B(i, Ik) is the lower bound of theorem 1)

4: Set Ik+1 = Ik ∪{ik}.
5: until card(Ik+1) = p.

4.3 Efficient Deflation for Multiple Clusters

In order to extend our framework for multiple clusters (k > 2), we consider the use of
deflation. Although deflation is a rather straight forward approach for extracting mul-
tiple eigenvectors in the full feature case, it presents certain challenges in the context
of sparse methods. These challenges are analytically illustrated in [11] where several
deflation methods and their properties were thoroughly analyzed. Based on [11], one
could simply employ one of the proposed methods, such as the Schur complement de-
flation, for computing the sequential sparse eigenvectors of the Covariance matrix. One
issue with employing an “of-the-shelve” approach is that we would need to compute
the Cholesky decomposition of the covariance matrix, in order to derive the new cen-
tered feature representations that are consequently employed in the bound computations
(i.e. the x f c(i) in Theorem 1). This would affect the computational cost of the proposed
method as it would include a O(m3) term for the Cholesky decomposition. In order to
avoid this computational cost we propose a deflation process that is directly applied on
the centered feature matrix Xf c using the dominant eigenvector of matrix XT

f cC
u
mXf c. As

we will demonstrate, the proposed deflation is essentially equivalent to Schur comple-
ment deflation.

X (t)
f c = X (t−1)

f c (I− vtv
T
t ) (5)

Starting from t = 0, the original input matrix of centered features, X (0)
c f is used for com-

puting Cov(0) and for deriving the subset of features (as encoded in u(t = 0) ∈ {0,1}m)
that optimizes the Stable Sparse PCA objective. Based on the selected features, the dom-

inant eigenvector v1 of (X (0)
f c )TCu(0)

m X (0)
f c is derived. Consecutively, we can employ the

deflation formula for computing all the necessary eigenvectors. An interesting property
of the deflation process is that at each sequential step, a different feature subset may be
derived, thus giving the flexibility to the feature selection algorithm to select different
feature subsets for separating between different clusters.

In order to illustrate the appropriateness of the afore proposed deflation method, we
demonstrate that it is equivalent to a Schur complement deflation. The proof of this
theorem can be found in the appendix.

Theorem 2. The deflation procedure defined in equation 5 is equivalent to a Schur
complement deflation on the feature covariance matrix.

5 Related Work

The proposed framework is conceptually related to the work [13] that attributes the suc-
cess of feature selection methods to the reduction of the data model variance. Under this
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approach, features should not be selected simply by assessing their relevance to the tar-
get class but by considering the contribution that the features have to the bias-variance
tradeoff of the learned model. That is, weakly relevant features that contribute much to
the variance of the model should be excluded, while borderline-relevant features with
low variance contribution can present good candidates for inclusion. In our study we
adopt this principle and derive a criterion that selects features based on their contri-
bution to cluster separation, weighted against their variance. Interestingly the cluster-
separation variance tradeoff is derived through a stability maximizing objective.

In the relevant data mining literature, the term “stability of feature selection” is em-
ployed in a different manner and commonly refers to the robustness of the feature pro-
cess itself, i.e. the ability of a feature selection algorithm to select the same feature
with respect to noise, or data sample variations. The intuitiveness of this requirement
has resulted in several works that study the stability of feature selection algorithms
[9,7,15,10,21]. Our work is substantially different from these approaches, since it fo-
cuses on the effect of feature selection to the stability of the clustering output and not the
feature selection process itself. Albeit this important differentiation, the “two-way” sta-
bility optimization framework can be employed in conjunction with the works [21,10].
This is because these methods employ the clustering structure of the features and per-
form feature selection at the clustering level (i.e. they select the relevant/stable feature
clusters). In this context our approach can be employed as a preprocessing step that
stabilizes the feature clusters thus enhancing the robustness of these methods.

The idea of selecting the features that optimize for an eigengap of a certain input
matrix was also put forward in [20]. In this work the authors propose a continuous
feature weighting scheme that achieves sparsity in an indirect manner. As opposed to
[20] we conduct a detailed analysis on the properties of a stability maximizing objective
in the context of k-means clustering. Moreover, we explicitly formulate our algorithm
as a discrete feature selection and propose a novel Sparse PCA approach for selecting
the appropriate features.

In [12] the authors optimize for stability by removing the features that contribute
maximally to the variance of the derived model. This approach does not take into ac-
count the relevance of each feature and thus high quality features may be removed.
In contrast, our approach explicitly takes into account the cluster separation quality of
each feature that is weighted against the feature-variance.

In order to empirically validate our approach we compare our approach to the popular
Laplacian score [8] and the recently proposed MCFS algorithm [1]. Although these
algorithms are not conceptually relevant to the proposed framework, they provide a
good basis for demonstrating that the proposed feature selection framework can achieve
comparable performance with state-of-the-art algorithms.

6 Experiments

In the context of the Cancer research application, we have experimented with four pub-
licly available microarray datasets that were obtained fromhttp://algorithmics.
molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm.
The employed datasets are summarized in the following table:

http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
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Name Description #Instances #Features #Classes
Chen-2002 Liver Cancer 179 85 2

Golub-1999-v2 Leukemia 72 1877 3
Pomeroy-2002-v2 Central Nervous System Tumors 42 1379 5
Ramaswamy-2001 Multiple Cancer Types 190 1363 14

We compare our feature selection framework against Laplacian Score [8], the recently
proposed MCFS algorithm [1] and the simple heuristic of selecting the features that have
maximal variance. In order to conduct the comparison, we employ the selected feature
subsets in the context of a k-means clustering algorithm and compute the achieved clus-
ter quality using Normalized Mutual Information (NMI).

It should be noted that our method differs substantially from the Laplacian Score
and MCFS. The main difference is that our method is “faithful” to the k-means objec-
tive, while the methods we compare against construct a Laplacian matrix for measuring
the relevance of the features. It is evident that the construction of the Laplacian ma-
trix can substantially influence the results (i.e. by considering different similarity func-
tions, Gaussian vs. simple inner-product or different types of graphs, k-nn Graphs vs.
Full Graphs). Thus, a major factor that determines which method is more suitable for
different application contexts depends on the ability to construct/tune an appropriate
Laplacian matrix and also on the properties of the underlying clustering structure of the
data.

For constructing the Laplacian matrix for the MCFS and Laplacian Score we employ
the cosine similarity for computing the instance-similarity matrix W and then construct
a k-nearest neighbor graph with k = 5. These settings are similar to the ones recom-
mended in [1]. Moreover, the number of Laplacian eigenvectors that were employed
within MCFS was set to be equal to the number of clusters.

Our method constructs the continuous cluster indicators using 2 sparse eigenvectors
in all datasets (instead of #Cluster-1). In three out of four dataset this is different than
the (#Cluster-1) that is recommended by the “pure” Spectral k-means approach. In two
cases (Pomeroy and Ramaswamy datasets) we have employed only two sparse eigen-
vectors in order to obtain comparable results for a small number of features. This is
because the proposed framework can select different features for each eigenvector, thus
even when selecting a small number of features for each sparse eigenvector, the total
number of features can be much larger. In the Chen-2002 dataset we employed 2 sparse
eigenvectors for performance reasons, since we observed that using only 1 eigenvector
did not suffice to obtain a good clustering performance. We should finally note that the
standard Lloyd’s k-means algorithms was used for discretizing the continuous results
and also that we have employed the “two-way” stable version of our objective.

In the experiments we have also explored the possibilities of introducing different
tradeoffs between cluster-separation and feature variance. More precisely we have ex-
perimented with three objectives: The standard cluster-separation vs. variance trade-
off that is derived by maximizing the average eigengap between the largest and the
consecutive eigenvalues. λ1(Cov)− 1

n Trace(Cov) (denoted in the Figures as SSPCA),
a “pure” Sparse PCA approach that maximizes solely λ1(Cov) (denoted in the Fig-
ures as SPCA), and a “low variance” approach that penalizes heavily variance us-

ing λ1(Cov)− γTrace(Cov), where γ = λ1(Covf ull)
Trace(Covf ull)

i.e. it is equal to the ratio of the
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(d) Ramaswamy-2001

Fig. 1. Comparative Study of Clustering Quality

maximum eigenvalue to the Trace of the original full-feature Covariance matrix, before
feature selection (denoted in the Figures as LV-SPCA).

In Figure 1 we can observe that the clustering quality is competitive and often su-
perior against the relevant feature selection methods. More precisely, in all Figures at
least one of the three Sparse PCA methods is superior with the exception of Figure 1(c),
where the Laplacian Score is better for small feature sizes. Moreover, we can observe
a mixed behavior with respect to the appropriate level of variance penalization, with
LV-SPCA demonstrating a very good performance in two out of four experiments.

Apart from the indirect evaluation of the accuracy of feature selection (through clus-
tering quality) we also investigate whether the selected features can provide insights
into the underlying problem under study. For this purpose we focus on the Golub-1999-
v2 dataset [6] that is related to Acute lymphoblastic leukemia (ALL), which is the most
common pediatric cancer, accounting for 30% of all pediatric malignancies.

Golub’s dataset [6] consists of bone marrow sample from acute leukemia patients,
involving myeloid leukemia (AML) and two sub-types of acute lymphoblastic leukemia
(ALL), B-cell and T-cell ALL. The analyzed Golub-1999-v2 dataset consists of 38
ALL-B, 9 ALL-T and 25 AML samples and 1877 genes.

We compared the top 5 features selected in the first and second eigenvector generated
using two different versions of the proposed algorithm SPCA (where solely λ1(Cov) is
optimized with no variance correction) and LV-SPCA that employs a strong variance
correction threshold. Table 1 shows the list of genes. As perhaps one could expect, the
variance of the genes only selected using LV-SPCA is in general smaller than the one of
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those selected using SPCA. In order to investigate the relevance of the selected genes for
the disease under study, we performed a literature research on the three genes uniquely
identified by the proposed method with direct optimization of stability.

Genes Uniquely Selected by LV-SPCA. Gene number 458 has ID M21005 at and
corresponds to the S100 calcium binding protein A8 (calgranulin A). A very recent ex-
perimental investigation has been performed in [14] which suggests that the expression
of S100A8 in leukemic cells is a predictor of low survival. This gene was not found
among top 100 of MCFS, and was ranked by Laplacian Score as 66th. Furthermore,
this gene was also not predicted as relevant by other gene ranking methods (see http://
genomics10.bu.edu/yangsu/rankgene/compare-ALL-AML-all-top100.html#ranks table).

Gene number 1614 has ID Y00787 s at and corresponds to the Interleukin-8 precur-
sor. In [16] it has been suggested that Interleukin-8 upregulation may play a role in the
pathogenesis of T-cell acute lymphoblastic leukemia.

Gene number 1613 has ID M28130 rna1 s at and corresponds to the Interleukin 8
(IL8) gene. It has been suggested that IL-8 may function as a significant regulatory fac-
tor within the tumor microenvironment. Recently, IL-8 signaling has been implicated in
regulating the transcriptional activity of the androgen receptor, underpinning the transi-
tion to an androgen-independentproliferation of prostate cancer cells. In addition, stress
and drug-induced IL-8 signaling has been shown to confer chemotherapeutic resistance
in cancer cells. Therefore, inhibiting the effects of IL-8 signaling may be a significant
therapeutic intervention in targeting the tumor microenvironment [19]. Indeed, Inter-
leukin 8 (IL-8) is currently being applied in various subspecialties of medicine either
for the purpose of rapid diagnosis or as a predictor of prognosis: in [17] an overview of
current evidence is provided suggesting that Interleukin 8 (IL-8) may serve as a useful
biomarker.

Genes Uniquely Selected by SPCA. Gene number 607 has ID M91036 rna1 at and
corresponds to the G-gamma globin gene. Gene number 1798 has ID U01317 cds4 at
and corresponds to the Delta-globin gene. We did not find strong evidence of a relation
of these two genes with the leukemia pathogenesis and pharmacology.

Gene number 493 has ID U10685 at and corresponds to the MAGE A10 gene. The
mammalian members of the MAGE (melanoma-associated antigen) gene family were
originally described as completely silent in normal adult tissues, with the exception
of male germ cells and, for some of them, placenta. By contrast, these genes were ex-
pressed in various kinds of tumors. However, other members of the family were recently

Table 1. Index of top 5 genes selected by the method in the first and second eigenvector for SPCA
and LV-SPCA. The number between brackets indicates the position of the gene in the list of gene
sorted in decreasing with respect to the variance.

Method Eigenvector Feat1 Feat2 Feat3 Feat4 Feat5
SPCA i=1 1623 (1) 1194 (5) 493 (2) 1106 (17) 672 (33)
SPCA i=2 607 (8) 1734 (9) 435 (15) 1798 (16) 1756 (27)

LV-SPCA i=1 1623 (1) 1194 (5) 458 (18) 672 (33) 1106 (17)
LV-SPCA i=2 1614 (4) 1734 (9) 1613 (23) 435 (15) 1756 (27)
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found to be expressed in normal cells, indicating that the family is larger and more dis-
parate than initially expected [2].

The above observations indicate the effectiveness of optimizing stability for unsu-
pervised feature selection with respect to the detection of features strongly related to
the pathogenesis and pharmacology of the disease under study.

7 Conclusions and Further Work

In conclusion, we have proposed a novel feature selection framework that maximizes
the stability of Spectral k-means. The semantics of the proposed framework are ana-
lyzed in detail and it is demonstrated that stability maximization naturally leads to a
cluster-separation vs. variance tradeoff. As a matter of further work, we aim in extend-
ing our framework to Kernel k-means and also to Spectral Clustering algorithms that
employ the Laplacian matrix.

Appendix

Proof (Proof of Lemma 1). Based on [5], the continuous solution for the instance clus-
ters is derived by the k− 1 dominant eigenvectors of matrix XT

f cXf c, where Xf c is a
feature-instance matrix with the rows (features) being centered. Since X is double-
centered the sum of rows and columns of X will be equal to 0, i.e. ∑i Xi j = ∑ j Xi j = 0.
Thus, the continuous solution of Spectral k-means (for instance clustering) will be de-
rived by the k−1 dominant eigenvectors of matrix XT X .

Analogously, the continuous solution for the feature clusters is derived by the k−1
dominant eigenvectors of matrix XicXT

ic , where Xic is a feature-instance matrix with the
columns (instances) being centered. Since X is double-centered, we will have that the
instance-centered matrix Xic will be equal to X , i.e. Xic = X . Thus, the continuous cluster
solution will be derived by the dominant eigenvectors of matrix XXT .

Using basic linear algebra one can easily derive that the matrices XXT and XT X have
exactly the same eigenvalues.

Thus λk−1(XXT )−λk(XXT ) = λk−1(XT X)−λk(XT X), and the stability of the rele-
vant eigenspaces will be equivalent.

Proof (Proof of Theorem 1). We will start by decomposing the components λ1(Cov)
and Trace(Cov).

For λ1(Cov) we have:

λ1(Cov) = λ1(Cu
mXf cXT

f cC
u
m)

= λ1(XT
f cC

u
mXf c)

= λ1(XT
f cdiag(u)(I− 1

card(u)emeT
m)diag(u)Xf c)

= max
||v||=1

vT (XT
f cdiag(u)(I− 1

card(u)emeT
m)diag(u)Xf c)v

= max
||v||=1

vT (XT
f cdiag(u)Xf c)v

− 1
card(u)vT (XT

f cdiag(u)emeT
mdiag(u)Xf c)v)

= max
||v||=1

m
∑

i=1
ui(vT x f c(i))2− 1

card(u) (v
T

m
∑

i=1
uix f c(i))2
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In the above derivations we have used the following, easily verifiable facts: λ1(AAT ) =
λ1(AT A), Cu

m = (Cu
m)T , Cu

m = (Cu
m)2 and diag(u) = (diag(u))2.

For Tr(Cov) we have:

Tr(Cov) = Tr(Cu
mXf cXT

f cC
u
m)

= Tr(XT
f cC

u
mXf c)

= Tr(Xf cdiag(u)(I− 1
card(u)emeT

m)diag(u)Xf c)
= Tr(XT

f cdiag(u)Xf c)
− 1

card(u)Tr(XT
f cdiag(u)emeT

mdiag(u)Xf c)

In these derivations we have used the following properties of the matrix Trace:
Tr(AAT ) = Tr(AT A), Tr(A + B) = Tr(A)+ Tr(B) and Tr(βA) = βTr(A).

Now for Tr(XT
f cdiag(u)Xf c) we have:

Tr(XT
f cdiag(u)Xf c) = Tr(diag(u)Xf cXT

f cdiag(u))

=
m
∑

i=1
uix f c(i)T x f c(i)

Finally, for 1
card(u)Tr(XT

f cdiag(u)emeT
mdiag(u)Xf c) we have:

1
card(u)Tr(XT

f cdiag(u)emeT
mdiag(u)Xf c) =

1
card(u)Tr(eT

mdiag(u)Xf cXT
f cdiag(u)em) =

1
card(u) (

n
∑

i=1
uix f c(i))T (

m
∑

i=1
uix f c(i))

Based on the afore derivations we can write the objective function as:

max
||v||=1

max
u∈{0,1}n

[O1− 1
card(u)

O2] (6)

Where

O1 =
m

∑
i=1

ui[(vT x f c(i))2− 1
n

x f c(i)T x f c(i)]

O2 = (vT
m

∑
i=1

uix f c(i))2− 1
n
(

m

∑
i=1

uix f c(i))T (
m

∑
i=1

uix f c(i))

Based on the derivation of the objective function using O1 and O2 and also the fact that
for all v such that ||v||= 1 it holds that λ1(A)≥ xT Ax, the lower bound can be derived.

Proof (Proof of Theorem 2). Recall that in Schur complement deflation, the deflation
step is performed as follows:

At = At−1− At−1xtxT
t At−1

xT
t At−1xt

Now if we consider that At = X (t)
f c (X (t)

f c )T and also that xt is the dominant eigenvector

of matrix Cov(t−1), we can write:
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At = At−1− At−1xt xT
t At−1

xT
t At−1xt

⇒

X (t)
f c (X (t)

f c )T = X (t−1)
f c (X (t−1)

f c )T − X (t−1)
f c (X (t−1)

f c )T xtxT
t X (t−1)

f c (X (t−1)
f c )T

xT
t X (t−1)

f c (X (t−1)
f c )T xt

(7)

Recall that xt is the dominant eigenvector of Cov(t−1) that can be written as Cov(t−1) =
Cu(t−1)

m X (t−1)
f c (X (t−1)

f c )TCu(t−1)
m (i.e. it is based on the selected feature subset u(t−1)).

Since Cov(t−1) is a double-centered matrix (its rows and columns are centered through

the multiplication with Cu(t−1)
m ), its dominant eigenvector will also be centered, i.e.

(Cu(t−1)
m )xt = xt . Based on this property, we can write:

xT
t X (t−1)

f c (X (t−1)
f c )T xt = xT

t Cu(t−1)
m X (t−1)

f c (X (t−1)
f c )TCu(t−1)

m xt

= xT
t Cov(t−1)xt = λ(t−1)

max

(8)

Now, (X (t−1)
f c )T xt can be written as:

(X (t−1)
f c )T xt = (X (t−1)

f c )TCu(t−1)
m xt =

√
λ(t−1)

max vt , (9)

where vt is the dominant eigenvector of (X (t−1)
f c )TCu(t−1)

m X (t−1)
f c and λ(t−1)

max is the domi-

nant eigenvector of Cov(t−1).
Based on equations 7,8,9 we can write

At = At−1− At−1xt xT
t At−1

xT
t At−1xt

⇒
X (t)

f c (X (t)
f c )T = X (t−1)

f c (X (t−1)
f c )T −X (t−1)

f c vtvT
t (X (t−1)

f c )T ⇒
X (t)

f c = X (t−1)
f c (I− vtvT

t )

References

1. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: ACM
SIGKDD (2010)

2. Chomez, P., Backer, O.D., Bertrand, M., Plaen, E.D., Boon, T., Lucas, S.: An overview of
the mage gene family with the identification of all human members of the family. Cancer
Research 15, 6 (2001)

3. d’Aspremont, A., Bach, F.R., Ghaoui, L.E.: Full regularization path for sparse principal com-
ponent analysis. In: ICML (2007)

4. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning.
In: ACM SIGKDD (2001)

5. Ding, C.H.Q., He, X.: K-means clustering via principal component analysis. In: ICML
(2004)

6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,
H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular
classification of cancer: class discovery and class prediction by gene expression monitoring.
Science 286(5439), 531–537 (1999)

7. Han, Y., Yu, L.: A variance reduction framework for stable feature selection. In: IEEE ICDM
(2010)



436 D. Mavroeidis and E. Marchiori

8. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS (2005)
9. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a study on

high-dimensional spaces. Knowl. Inf. Syst. 12(1), 95–116 (2007)
10. Loscalzo, S., Yu, L., Ding, C.H.Q.: Consensus group stable feature selection. In:

ACM SIGKDD (2009)
11. Mackey, L.: Deflation methods for sparse pca. In: NIPS (2008)
12. Mavroeidis, D., Vazirgiannis, M.: Stability based sparse LSI/PCA: Incorporating feature se-

lection in LSI and PCA. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
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Abstract. We propose to solve the link prediction problem in graphs us-
ing a supervised matrix factorization approach. The model learns latent
features from the topological structure of a (possibly directed) graph, and
is shown to make better predictions than popular unsupervised scores.
We show how these latent features may be combined with optional ex-
plicit features for nodes or edges, which yields better performance than
using either type of feature exclusively. Finally, we propose a novel ap-
proach to address the class imbalance problem which is common in link
prediction by directly optimizing for a ranking loss. Our model is opti-
mized with stochastic gradient descent and scales to large graphs. Results
on several datasets show the efficacy of our approach.

Keywords: Link prediction, matrix factorization, side information,
ranking loss.

1 The Link Prediction Problem

Link prediction is the problem of predicting the presence or absence of edges
between nodes of a graph. There are two types of link prediction: (i) structural,
where the input is a partially observed graph, and we wish to predict the sta-
tus of edges for unobserved pairs of nodes, and (ii) temporal, where we have a
sequence of fully observed graphs at various time steps as input, and our goal is
to predict the graph state at the next time step. Both problems have important
practical applications, such as predicting interactions between pairs of proteins
and recommending friends in social networks respectively. This document will
focus on the structural link prediction problem, and henceforth, we will use the
term “link prediction” to refer to the structural version of the problem.

Link prediction is closely related to the problem of collaborative filtering,
where the input is a partially observed matrix of (user, item) preference scores,
and the goal is to recommend new items to a user. Collaborative filtering can
be seen as a bipartite weighted link prediction problem, where users and items
are represented by nodes, and edges between nodes are weighted according to
the preference score. More generally, both problems are instances of dyadic pre-
diction, which is the problem of predicting a label for the interaction between
pairs of entities (or dyads) [17]. Despite this connection, there has been limited
interaction between the link prediction and collaborative filtering literatures,
aside from a few papers that propose to solve one problem using models from
the other [7,23].

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 437–452, 2011.
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1.1 Challenges in Link Prediction

We point out three challenges in link prediction that a model should ideally
address. First, in addition to the topological information of the graph, we some-
times have extra side information or covariates for the nodes. For example, in a
graph of interaction between pairs of proteins, we might have features describing
the biological properties of each protein. This information can be useful in pre-
dicting links, especially when a node is only sparsely connected. Since the graph
topology and the side information potentially encode different types of informa-
tion, combining them is expected to give the best performance. However, it is
not obvious how best to do this in general. Further, to be flexible, we would like
to make the side information only an optional component of a model.

Second, link prediction datasets are characterized by extreme imbalance: the
number of edges known to be present is often significantly less than the number
of edges known to be absent. This issue has motivated the use of area under the
ROC curve (AUC) as the de facto performance measure for link prediction tasks,
as, unlike standard 0-1 accuracy, AUC is not influenced by the distribution of
the classes. However, the class imbalance still hampers the effectiveness of many
models that would otherwise be suitable on balanced data.

Third, it is imperative that models be computationally efficient if they are
to scale to graphs with a large number of nodes and/or edges. Such large-scale
graphs are characteristic of many real-world applications of link prediction, such
as the aforementioned friend-recommendation in social networks.

1.2 Our Contributions

This paper studies the effectiveness of matrix factorization techniques for the
structural link prediction problem, inspired by their success in collaborative fil-
tering [20]. We first make a case for matrix factorization to serve as a foundation
for a general purpose link prediction model. We explain how it may be thought
of as learning latent features from the data, and why it can be expected to be
more predictive than popular unsupervised scores. We show how latent features
may be combined with explicit features for nodes and edges, and in particular
how the factorization can be combined with the outputs of other models. Fur-
ther, we propose a novel mechanism to allow factorization models to overcome
the imbalance problem, based on the idea of optimizing for a ranking loss. Ex-
perimentally, we first show that factorization significantly outperforms several
popular unsupervised scores. Next, we demonstrate that while explicit features
are usually able to provide better estimates of linking behaviour than implicit
features, combining the two can further improve performance. Finally, we show
that optimizing for a ranking loss can improve AUC by up to 10%.

Before proceeding, we define the link prediction problem more formally and
fix the notation used in this paper.

1.3 Problem Definition and Notation

Formally, structural link prediction has as input a partially observed graph G ∈
{0, 1, ?}n×n, where 0 denotes a known absent link, 1 denotes a known present
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link, and ? denotes an unknown status link. Our goal is to make predictions for
the ? entries. The set of observed dyads is denoted by O = {(i, j) : Gij �=?}, and
we use Oi to mean the observed dyads involving the ith node. In some cases, we
may have additional features (or covariates) for dyads and/or individual nodes.
We call such features side information.

We will use capital variables (e.g. X) to denote matrices and lower-case vari-
ables (e.g. x) to denote vectors. We will use xi to mean the ith row of the matrix
X . The Frobenius norm of the matrix X is denoted by ||X ||2F =

∑
i ||xi||22.

2 Existing Link Prediction Models

At a high level, existing link prediction models fall into two classes: unsupervised
and supervised. Unsupervised models compute scores for pairs of nodes based
on topological properties of the graph. For example, one such score is the num-
ber of common neighbours that two nodes share. Other popular scores are the
Adamic-Adar [1] and Katz score [22]. These models use predefined scores that
are invariant to the specific structure of the input graph, and thus do not in-
volve any learning. Supervised models, on the other hand, attempt to be directly
predictive of link behaviour by learning a parameter vector θ via

min
θ

1
|O|

∑
(i,j)∈O

�(Gij , Ĝij(θ)) + Ω(θ), (1)

where Ĝij(θ) is the model’s predicted score for the dyad (i, j), �(·, ·) is a loss
function, and Ω(·) is a regularization term that prevents overfitting. The choice
of these terms depends on the type of model. We list some popular approaches:

1. Feature-based models. Suppose each node i in the graph has an associated
feature vector xi ∈ R

d. Suppose further that each dyad (i, j) has a feature
vector zij ∈ R

D. Then, we may instantiate Equation 1 via

Ĝij(w, v) = L(fD(zij ; w) + fM (xi, xj ; v)) (2)

for appropriate fD(·), fM (·, ·) acting on dyadic and monadic features respec-
tively, and a link function L(·). Both linear [33] and nonlinear [14,5] choices
of fD(·), fM (·, ·) have been considered. In the linear case, it is standard to
let fD(zij ; w) = wT zij and fM (xi, xj ; v) = (v(1))T xi + (v(2))T xj , where
v(1) = v(2) iff the graph is undirected. The loss is typically either square- or
log-loss, and the regularizer typically λw

2 ||w||22 + λv

2 ||v||22. Note also that we
can compute multiple unsupervised scores between pairs of nodes (i, j), and
treat these as comprising a feature vector zij .

2. Graph regularization models. Here, we assume the existence of node
features xi ∈ R

d, based on which we construct a kernel Kii′jj′ that compares
the node pairs (i, j) and (i′, j′). We compute the predicted adjacency matrix
Ĝ by constraining that values in this matrix should vary smoothly according
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to K. Thus K acts as a graph regularizer, a popular approach in semi-
supervised learning [39]. In the framework of Equation 1, we have

Ω(Ĝ) =
λ

2

∑
i,i′,j,j′

Kii′jj′ (Ĝij − Ĝi′j′ )2 +
μ

2

∑
(i,j)/∈O

Ĝ2
ij

The above is called link propagation [19,26]. The performance of such meth-
ods depends on the choice of kernel K, which is pre-specified and not learned
from the data.

3. Latent class models. These models assign each node of the graph to a
class, and use the classes to predict the link structure. [4] assumes that nodes
interact solely through their class memberships. It is possible to extend this
to allow nodes to have membership in multiple classes [3]. These models
are largely Bayesian, and so are not directly expressible in the empirical loss
framework of Equation 1. Nonetheless, they do learn a matrix of probabilities
P ∈ {0, 1}C×C, where C is the number of classes, and this is done by placing
appropriate priors on P , which may be viewed as a form of regularization.

4. Latent feature models. Here, we treat link prediction as a matrix comple-
tion problem, and factorize G ≈ L(UΛUT ) for some U ∈ R

n×k, Λ ∈ R
k×k

and link function L(·). Each node i thus has a corresponding latent vector
ui ∈ R

k, where k is the number of latent features. In the setup of Equation
1, we have

Ĝij(U, Λ) = L(uT
i Λuj).

The regularizer Ω(U, Λ) = λU

2 ||U ||2F + λL

2 ||Λ||2F usually. Such models have
been successful in other dyadic prediction tasks such as collaborative filtering
[20]. This approach has not been studied as extensively in the link prediction
literature as it has in the collaborative filtering literature. Bayesian versions
of these methods using a sigmoidal link function have been studied in statis-
tics [16] and political science [34], where they are sometimes referred to as bi-
linear random effects models. These fields have focussed more on qualitative
analysis of link behaviour than predictive performance and scalability. In the
machine learning literature, computationally efficient frequentist versions of
these latent feature models have been studied in [23,37], and Bayesian mod-
els have also been extended to allow for an infinite number of latent features
[24,25].

2.1 Do Existing Methods Meet the Challenges in Link Prediction?

We recall the three challenges in link prediction from Section 1.1, and study how
they are handled by current models.

– Incorporating topological and side information. Existing models typ-
ically use a nonlinear classifier such as a kernel SVM [14] or decision tree
[21] to combine topological and explicit features. However, the topological
structure is exploited by just learning weights on unsupervised scores. We
will show that this is potentially limiting, since unsupervised scores have
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limited expressivity. Latent feature methods like [16] do incorporate side
information, but we will subsequently describe a limitation of this approach.

– Overcoming imbalance. Relatively little attention has been paid to mod-
ifying models so as to account for the class imbalance. One solution is un-
dersampling the set of training dyads [14,21], but this has the disadvantage
of necessarily throwing away information. [9] addresses imbalance by casting
the problem as being cost-sensitive with unknown costs, and tunes the costs
via cross-validation.

– Scaling to large graphs. Methods based on topological scores generally
scale to large graphs, by virtue of mostly requiring only simple operations
on the adjacency matrix. Some scores that look at long-range relationships
between node pairs, such as the Katz measure, can be approximated in
order to run on large graphs [10]. For methods based on explicit features,
undersampling to overcome imbalance also reduces the number of training
examples [21]. Latent class and latent feature methods based on Bayesian
models do not scale to large graphs due to the cost of MCMC sampling.

We summarize representative link prediction methods in Table 1, and note
whether they meet the three challenges. We would like a model that has the
same expressiveness as existing methods, while directly addressing the above
challenges. Our proposal is to extend matrix factorization to this end. The next
section proposes the model, and argues why it is an suitable foundation for a
link prediction model.

Table 1. A comparison of various link prediction methods. The ∗’s for “Large graphs?”
indicate methods that perform some pre-processing on the data.

Class Method side information? Imbalance? Large graphs?

Unsupervised Adamic-Adar [22] No No Yes
Katz [22] No No Yes

Toplogical feats [14] Optional No Yes
Feature-based CCP [9] Optional Yes Yes∗

HPLP [21] Optional Yes Yes∗

Graph regularizer LP [19] Required No No
ELP [26] Required No Yes

MMSB [3] No No No
Latent class IBP [24] Optional No No

IMRM [25] Optional No No

Random effects [16] Optional No No
Latent feature LFL [23] Optional No Yes

Our model Optional Yes Yes

3 Extending Matrix Factorization for Link Prediction

A basic matrix factorization model for link prediction involves optimizing

min
U,Λ,b

1
|O|

∑
(i,j)∈O

�(Gij , L(uT
i Λuj + bi + bj)) + Ω(U, Λ) (3)
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for some appropriate link function L(·), loss function �(·) and regularizer Ω(·, ·).
As explained in the previous section, we interpret each ui ∈ R

k as being a latent
vector for each node, and so this is also called a latent feature approach. The
bi and bj terms are node-specific biases, which are analogous to the intercept
term in standard supervised learning. If the graph is undirected, then we can
absorb Λ into the U matrix. For directed graphs, we can let Λ be an arbitrary
asymmetric matrix, following [38,23].

3.1 Why is the Factorization Approach Appealing?

One nice property of the above model is that it can be trained using stochastic
gradient descent, where we repeatedly draw a random (i, j) ∈ O and update ui

and uj based on the corresponding gradients. A sweep over all observed (i, j)
is known as an epoch, and often only a small constant number of epochs is
needed for convergence. Training is thus linear in the number of observed dyads.
As noted earlier, latent feature models for link prediction have been considered
previously [16,34], but are typically trained with MCMC sampling, thus limiting
analysis to small graphs. By contrast, with stochastic gradient descent we can
handle graphs with several thousands of nodes and millions of edges.

Of course, scalability would be useless if the model were insufficiently rich. In
fact, latent feature models can be seen as a generalization of latent class models,
which may be thought of as learning a binary matrix U ∈ {0, 1}n×C, where C
is the number of classes, and predicting UWUT for a matrix W of inter-class
link scores. Latent features can also be viewed as a much richer way of ex-
ploiting topological information than popular unsupervised measures described
in the previous section. By construction, the latent feature approach exploits
the graph topology so as to be maximally predictive of link behaviour. Thus in
general, one would expect its scores to be more accurate than any single un-
supervised method. A further conceptual advantage over unsupervised scores is
that the learned ui’s let us make qualitative analyses of the nodes in the graph;
for example, they may be used to visualize the structure of the graph.

Note that basic latent feature models are not the same as just computing the
singular value decomposition (SVD) of the adjacency matrix with unknown sta-
tus and known absent edges collapsed into a single class. Latent feature methods
only attempt to model the known present and known absent edges in the graph,
with regularization to prevent overfitting; no effort is spent in modelling the
unknown status edges. The solutions of the two models are thus very different.

The other appealing property about matrix factorization is that there are
intuitive ways to extend the model to incorporate side information and overcome
the imbalance problem. We now describe these extensions in turn.

3.2 How Do We Combine Explicit and Latent Features?

Suppose we have explicit features xi ∈ R
d for the ith row (or column) of the

data, and features zij ∈ R
D for each dyad. A standard way to incorporate these

features with the latent features is via a linear combination:
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min
U,Λ,w,v,b

1

|O|
∑

(i,j)∈O
�(Gij , L(uT

i Λuj +bi+bj +fD(zij ; w)+fM (xi, xj ; v)))+Ω(U, Λ, w, v),

(4)

where fD(zij ; w) = wT zij and fM (xi, xj ; v) = vT xi + vT xj . This underpins the
approaches of [24,16,15,23]. There is a subtle point regarding the choice of fM .
For the monadic features xi, choosing fM (xi, xj ; v) = vT xi + vT xj corresponds
to forming a vector xij =

[
xi xj

]
for the pair (i, j), and using a standard linear

model. However, a drawback of this approach is that it only learns the propensity
of i and j for the outcome Gij [32]. Specifically, if we did not have the latent and
dyadic features, for a fixed user i, the model would produce an identical ranking
of link scores to every other user. This is obviously very restrictive.

An alternative is to use the prediction function fM (xi, xj ; V ) = xT
i V xj , where

V ∈ R
d×d. This does not suffer from the propensity issue, and is known as a

bilinear regression model [11]. (To contrast, we will refer to the previous model as
unilinear regression.) We let V be symmetric iff the graph G is. In a collaborative
filtering context, such bilinear models have been used in [8,37]. Note that we need
to learn d2 parameters, which may be prohibitive. In such cases, we can either
perform dimensionality reduction on the xi’s, or constrain V to be a diagonal
plus low-rank matrix, V = D + AT B, and learn the factors A, B, D.

The ability to augment latent with explicit features has a pleasant conse-
quence, namely that we can combine latent features with the results of any
other link prediction model. Suppose another model returns scores Ĝij for the
dyad (i, j). Then, we can treat this as being a dyadic feature zij in the above
framework, and learn latent features that fit the residual of these scores. In gen-
eral then, the latent feature approach has a natural mechanism by which any
predictive signal can be incorporated, whether it is an explicit feature vector or
model predictions. However, a caveat is in order: it is not necessary that combin-
ing latent features with another model will improve performance on test data.
If the latent features learn similar structure to the other model, then combining
the two cannot be expected to yield better results.

As a final remark, we note that the linear combination of latent and explicit
features is not the only way to incorporate side information. This issue has been
studied in the context of the cold-start problem [29] in collaborative filtering.
Recent advances in this literature are based on inferring reasonable values of
latent features by falling back to the side information as a prior [2,12]. However,
unlike most collaborative filtering applications, in link prediction we are mostly
interested in using side information to improve predictions, rather than dealing
with cold-start nodes. Therefore, we expect it to be most useful to directly
augment the latent feature prediction with one based on side information.

3.3 How Do We Overcome Imbalance?

Imbalanced classes pose a problem for at least two reasons: (i) with fewer exam-
ples of one class, it is more difficult to infer reliable patterns (ii) it is standard
to train models to optimize for 0-1 accuracy, which can be made very high
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by trivially predicting everything to belong to the dominant class; hence, most
models are prone to yield biased results. Our matrix factorization model is not
immune to these problems when trained with square- or log-loss, which may
be seen as convex approximations to the 0-1 loss. Therefore, we must consider
how to modify the model to account for imbalance. A standard strategy to over-
come imbalance in supervised learning is undersampling [6], where we randomly
throw out examples from the dominant class till the classes are more reason-
ably balanced. A disadvantage of undersampling is that it necessarily throws
out information in the training set. Further, it is not clear to what ratio we can
undersample without compromising the variance of our learned model.

An alternative is based on the following observation: in imbalanced classifi-
cation problems, we often measure performance using AUC, which is agnostic
to the distribution of classes. Intuitively, to get good test set AUC, it makes
sense to directly optimize for AUC on the training set. This implicitly overcomes
the imbalance problem, while simultaneously attempting to get the best AUC
score on test data. This idea appears under-explored in the supervised learn-
ing literature, possibly due to the perceived complexity of optimizing for AUC.
However, it is possible to optimize for AUC even on very large datasets [30]. To
do this, we begin with the pairwise SVMRank framework [18]. Consider a binary
classification scenario with training set {(xi, yi)}, and let P = {i : yi = 1} and
N = {i : yi = 0}. The empirical AUC of a linear classifier with weight w is

Â =
1

|N ||P |
∑
i∈P

∑
j∈N

1[wT xi > wT xj ].

The problem of maximizing AUC can be cast as

min
w

1
|N ||P |

∑
i∈P

∑
j∈N

1[wT (xi − xj) < 0].

The above is a binary classification task on {(xi − xj , 1)}(i,j)∈Q, where Q =
{(i, j) : yi = 1, yj = 0}. Thus, to maximize the AUC, we can replace the indicator
function above with a regularized loss function:

min
w

1
|N ||P |

∑
(i,j)∈Q

�(wT (xi − xj), 1) + Ω(w).

The above can be optimized efficiently using stochastic gradient descent, where
at each iteration we randomly pick a pair of examples and compute the gradient
with respect to them [30]. We can directly translate this idea to matrix factor-
ization for link prediction. However, there is a subtlety in how we decide what
pairs of examples to consider. Suppose O+,O− are the sets of known present
and known absent dyads respectively. Then, there are two ways in which we can
construct pairs of nodes.
Per-node pairs. Here, we consider (known present, known absent) pairs that
share one node in common. This can be thought as applying the AUC loss for
every row of the G matrix. The optimization is
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min
U,Λ

1
|D|

n∑
i=1

1
|O+

i ||O−
i |

∑
j∈O+

i ,k∈O−
i

�(uT
i Λ(uj − uk), 1) + Ω(U),

where D is set of all (i, j, k) triplets where j ∈ O+
i , k ∈ O−

j . In the case of logistic
loss, the above model is similar to BPR [27], although the motivations of the
two models are different: BPR was proposed to deal with implicit feedback (or
positive only) collaborative filtering datasets. In the above, we are treating the
known present links as the “positive feedback”, and only links in O−

i as being
“unspecified feedback”. Further, we combine the learned latent features with
side information via bilinear regression.

All pairs. Here, we consider (known present, known absent) pairs that need not
share a node in common. This can be thought as applying the AUC loss globally
on every dyad in G. The optimization is

min
U,Λ

1
|O+||O−|

∑
(i,j)∈O+,(i′,j′)∈O−

�(uT
i Λuj − uT

i′Λuj′ , 1) + Ω(U).

The choice between the two schemes depends on whether we ultimately evaluate
AUC on a per-node or global basis. This choice in turn is largely problem spe-
cific; for example, in a social network we would like each individual user to have
a good ranking, whereas in a protein-protein interaction network, our interest is
in which unobserved dyads are worth performing further analysis on. Regardless
of the choice of scheme, we are faced with the problem of having to learn from
a large number of examples, one that is superlinear in the number of observed
dyads. However, in practice, only a fraction of a single epoch of stochastic gra-
dient descent is needed to achieve good results; we will discuss this more in our
experiments.

3.4 The Final Model

Our final model optimizes for AUC directly, with regularization to prevent over-
fitting. We linearly combine side information via a bilinear regression model.
Assuming we follow the per-node ranking scheme, and assuming per-node and
per-dyad side information xi and zij respectively, the objective is:

min
U,Λ,V,w,b

1
|O|

n∑
i=1

∑
j∈O+

i ,k∈O−
i

�(L(uT
i Λ(uj − uk) + bi + bj + xT

i V xj + wT zij), 1)+

λU

2
||U ||2F +

λΛ

2
||Λ||2F +

λV

2
||V ||2F +

λw

2
||w||22, (5)

where the link function L(·) and loss �(·, ·) are user-specified, and Λ = I if
the graph is symmetric. Further, if required, we factorize the bilinear weights
V = D + AT B for diagonal D and arbitrary A, B, and learn A, B, D.
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4 Experimental Design

We present an experimental comparison of our model to other link prediction
methods. We used datasets from a range of applications of link prediction:

– Computational biology
• Protein-protein interaction data from [31], denoted “Prot-Prot”. Each

protein has a 76 dimensional feature vector.
• Metabolic pathway interaction data for S. cerevisiae provided in the

KEGG/PATHWAY database [36], denoted “Metabolic”. Each node has
three sets of features: a 157 dimensional vector of phylogenetic informa-
tion, a 145 dimensional vector of gene expression information, and a 23
dimensional vector of gene location information.

– Bibliographic networks
• The co-author network of authors at the NIPS conference [28], denoted

“NIPS”. Each node has a 14035 dimensional bag-of-words feature vector,
being the words used by the author in her publications. We performed
latent semantic indexing (LSI) to reduce the number of features to 100.

• The co-author network of condensed-matter physicists [21], denoted
“Condmat”. Following [21], we consider node-pairs that are 2 hops away
in the first five years of the data. There is no side information in this
problem.

– Other networks
• A network of military disputes between countries [13], denoted “Con-

flict”. Following [34], we considered all disputes in the period 1990–2000.
The graph is directed, with an edge originating from the conflict initia-
tor. Due to time constraints, we only report results on the symmetrized
version of the data, whether two countries have a link if either initi-
ated conflict with the other. Each node has 3 features, comprising the
country’s population, GDP and polity, and additionally each dyad has 6
features, including e.g. the countries’ geographic distance.

• The US electric powergrid network [35], denoted “PowerGrid”. There is
no side information in this problem. This dataset is challenging because
of the extreme imbalance (1 link for every 1850 non-links), and the nature
of its linking behaviour: we expect two nodes to be linked if they are
nearby geographically, which is a latent feature that may be difficult to
infer.

To evaluate the models, we kept aside a fixed fraction of the observed dyads
O for training various models, and evaluated AUC on a test set comprising
the remaining dyads. This process was repeated 10 times, and we report the
average test set AUC. We used two training split ratios: for the datasets with
side information (Prot-Prot, Metabolic, NIPS and Conflict), we used 10% of
dyads for training, and for the others (Condmat, PowerGrid), we used 90% of
dyads for training. On the latter two datasets a 10% split would cause most
nodes to have no known present links in the training set, making it difficult to
make predictions based solely on the topological structure.
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Table 2. Properties of datasets used in experimental comparison

Dataset Nodes |O+| |O−| +ve:−ve ratio Average degree

Prot-Prot 2617 23710 6,824,979 1 : 300 9.1

Metabolic 668 5564 440,660 1 : 80 8.3

NIPS 2865 9466 8,198,759 1 : 866 3.3

Condmat 14230 2392 429,232 1 : 179 0.17

Conflict 130 320 16580 1 : 52 2.5

PowerGrid 4941 13188 24,400,293 1 : 1850 2.7

We swept over a grid of regularization parameters and learning rates for
stochastic gradient descent, and evaluated the average AUC across the 10 splits.
We report results for the parameters selected by the grid search. The number
of latent features, k, was informally picked to be 30 for all datasets except Con-
flict, where only k = 5 were needed to achieve good performance. Our MATLAB
scripts are available for download at http://cseweb.ucsd.edu/~akmenon/code.

Table 2 summarizes the dataset sizes in terms of number of nodes and known
present/known absent dyads. Condmat is the only dataset where some edges
have genuinely missing status even at test time (corresponding to node pairs
more than 2 hops away). Note that we do not undersample any of the datasets.
We see that PowerGrid is the most imbalanced dataset, while also having a small
average degree.

5 Experimental Results

We divide the experimental results into three parts, each considering a different
type of method. Methods with scores in bold have the highest score amongst
methods being compared in that table. Methods that additionally have a star
∗ are the best performing across all tables. In both cases, we only consider
differences in AUC that are greater than the standard deviation across the splits.

Do latent features improve on unsupervised scores? We first report re-
sults on the following methods, which only exploit topological information:

– Unsupervised scores. We used Adamic-Adar (AA), Preferential Attachment
(PA), Shortest-Path (SHP) and Katz, which are popular scores that perform
well on a range of graphs [22]. We also ran linear regression on all unsuper-
vised scores (Sup-Top), which attempts to find a weighted combination of
the scores with better performance.

– Raw SVD. We computed the raw SVD on the adjacency matrix, treating
known absent and unknown status edges as being one and the same.

– Factorization. We used the factorization model of Equation 3 using square-
loss and identity link (Fact-Sq), and log-loss with sigmoid link (Fact-Log).

– Unsupervised scores as input to factorization. Here, we used all the unsu-
pervised scores as features for each dyad, and fed them into a factorization
model trained with square-loss (Fact+Scores).

http://cseweb.ucsd.edu/~akmenon/code
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Table 3. Test AUC scores for methods based on topological features alone

Dataset AA PA SHP Katz Sup-Top

Prot-Prot 0.564 ± 0.005 0.750 ± 0.003 0.726 ± 0.005 0.727 ± 0.005 0.754 ± 0.003

Metabolic 0.524 ± 0.005 0.524 ± 0.005 0.626 ± 0.004 0.608 ± 0.007 0.628 ± 0.001

NIPS 0.512 ± 0.002 0.543 ± 0.005 0.517 ± 0.003 0.517 ± 0.003 0.542 ± 0.007

Condmat 0.567 ± 0.014 0.716 ± 0.026 0.673 ± 0.018 0.673 ± 0.017 0.720 ± 0.020

Conflict 0.507 ± 0.008 0.546 ± 0.024 0.512 ± 0.014 0.512 ± 0.014 0.695 ± 0.076

PowerGrid 0.589 ± 0.003 0.442 ± 0.010 0.659 ± 0.015 0.655 ± 0.016 0.708 ± 0.062∗

Dataset SVD Fact-Sq Fact-Log Fact+Scores

Prot-Prot 0.635 ± 0.003 0.795 ± 0.005 0.793 ± 0.002 0.793 ± 0.005

Metabolic 0.538 ± 0.017 0.696 ± 0.001 0.695 ± 0.001 0.696 ± 0.002

NIPS 0.512 ± 0.031 0.612 ± 0.007 0.610 ± 0.008 0.613 ± 0.019

Condmat 0.629 ± 0.051 0.810 ± 0.020∗ 0.822 ± 0.025∗ 0.812± 0.020∗

Conflict 0.541 ± 0.094 0.692 ± 0.040 0.692 ± 0.039 0.689 ± 0.042

PowerGrid 0.691 ± 0.026 0.637 ± 0.012 0.675 ± 0.017 0.751± 0.020∗

Our results are given in Table 3. (The table is split into two halves for visual
clarity.) We make the following observations:

– Individual unsupervised scores are always outperformed by factorization
methods by around 5%–25%. In most cases, factorization also outperforms a
supervised combination of such scores. This suggests that in general, latent
features better exploit topological information by virtue of directly optimiz-
ing to be predictive of link behaviour.

– In some cases, combining multiple topological features worsens test set AUC.
The reason is likely twofold: first, a linear combination of weights may be too
simplistic to leverage their combined power. Second, linear regression may
underperform due to the imbalance of the data, as noted in Section 3.3.

– In most cases, combining latent features and unsupervised scores does not
improve performance. This indicates that the unsupervised scores do not
capture sufficiently complementary information to the latent features.

– As conjectured in Section 3.1, raw SVD performs much worse than the fac-
torization methods on the datasets using 10% of dyads for training, as it
treats all missing edges as being known absent.

– Amongst the two factorization approaches, the choice of loss function gener-
ally does not influence results significantly. For both losses, we required no
more than 10 epochs to converge on any dataset.

How predictive is side information? Next, we tried several methods that
use side information xi ∈ R

d for each node i:

– Raw similarity. As a baseline, we use the cosine similarity xT
i xj

||xi||||xj|| as the
predicted score for the node-pair (i, j).

– Link propagation. We use Link Propagation (LP) with the “sum kernel” as
defined in [19], using cosine similarity as our base measure. We specifically
use a special case of LP described in [19] that can be efficiently implemented
in MATLAB using Lyapunov functions. We also tried an approximation to
this method, Exact Link Propagation (ELP) [26].
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Table 4. Test AUC scores for methods based on explicit features. Condmat and Pow-
erGrid are not included because they do not have side information.

Dataset Similarity LP ELP ULR BLR Fact+LP Fact+BLR

Prot-Prot 0.680 ± 0.002 0.771 ± 0.002 0.740 ± 0.003 0.670 ± 0.002 0.776 ± 0.006 0.789 ± 0.003 0.813 ± 0.002∗

Metabolic 0.605 ± 0.002 0.719 ± 0.001 0.659 ± 0.010 0.694 ± 0.007 0.725 ± 0.012 0.701 ± 0.002 0.763 ± 0.006∗

NIPS 0.953 ± 0.000 0.767 ± 0.004 0.929 ± 0.010 0.611 ± 0.007 0.951 ± 0.002 0.885 ± 0.032 0.945 ± 0.003

Conflict 0.577 ± 0.008 0.614 ± 0.016 0.648 ± 0.029 0.869 ± 0.029∗ 0.891 ± 0.017∗ 0.693 ± 0.046 0.890 ± 0.017∗

– Regression. We apply unilinear (ULR) and bilinear (BLR) regression on the
feature vectors, corresponding to Equation 4 with the two choices of predic-
tion function fM (·, ·) discussed in Section 3.2, and where the latent features
are omitted. Both methods did not use unsupervised scores as input, and
were trained with square-loss.

– Combinations. We combined the factorization model with Link Propagation
(Fact+LP) and bilinear regression (Fact+BLR), the latter being the model
given in Equation 4 for bilinear fM (·, ·).

We present the results in Table 4. (Condmat and PowerGrid are not included
because they do not possess side information.) We observe the following:

– Bilinear regression is better than plain factorization on all datasets but Prot-
Prot, which indicates that it is difficult to infer latent structure from the
observed data that is more predictive than the given side information. This
is not surprising given the sparsity of known present edges in the datasets.

– On Prot-Prot and Metabolic, jointly learning latent features and a bilinear
regression model gives better performance than doing either individually.
This suggests that despite the general superiority of explicit over latent fea-
tures, the two can have complementary characteristics.

– The factorization model does not benefit from incorporating the output of
LP. In fact, we find the test set AUC decreases on the NIPS dataset. On
most datasets, LP had training AUC close to 1, suggesting that it is difficult
to learn latent features on top of these scores without overfitting.

– Unilinear regression is always outperformed by bilinear regression, usually by
a significant margin. This shows that the propensity problem with unilinear
regression, discussed in §3.2, has important practical implications.

– Bilinear regression always outperforms both variants of Link Propagation.

Does optimizing for a ranking loss overcome imbalance? Finally, we
check whether directly optimizing for AUC helps overcome imbalance. We apply
the model of Equation 5 using square-loss (Fact-Rank), and consider an alterna-
tive where the ranking is defined over all dyads (Fact-Rank-Global) (see Section
3.3 regarding the per-node versus global ranking). We also optimize the BLR
and Fact+BLR models of the previous section with the per-node form of rank-
ing loss (BLR-Rank and Fact+BLR-Rank). On datasets with many dyads, the
ranking losses only required a small fraction of a single epoch to converge (e.g.
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Table 5. Test AUC scores for methods optimized with ranking loss

Dataset Fact-Rank Fact-Rank-Global BLR-Rank Fact+BLR-Rank

Prot-Prot 0.798 ± 0.001 0.794 ± 0.001 0.785 ± 0.003 0.806± 0.003

Metabolic 0.705 ± 0.007 0.706 ± 0.006 0.764± 0.007∗ 0.765± 0.007∗

NIPS 0.609 ± 0.008 0.605 ± 0.007 0.949 ± 0.002 0.956± 0.002∗

Condmat 0.814± 0.019∗ 0.826± 0.019∗ N/A N/A

Conflict 0.690 ± 0.042 0.686 ± 0.042 0.885± 0.018∗ 0.886± 0.021∗

PowerGrid 0.723 ± 0.015 0.754± 0.014∗ N/A N/A

on PowerGrid, 1%–5% of an epoch for per-node ranking, and 0.01%–0.05% for
global ranking). From the results in Table 5, we note that:

– For factorization methods, the ranking loss is dramatically superior to the
regression losses on the PowerGrid dataset, which is the most imbalanced
and has a small average degree. On other datasets, the differences are more
modest, but the ranking loss is always competitive with the regression losses,
while requiring significantly fewer dyads for convergence.

– For bilinear regression, optimizing with a ranking loss gives better perfor-
mance than square loss on Prot-Prot and Metabolic.

– Jointly learning latent features and a bilinear regression model with a ranking
loss performs at least as well as optimizing with square loss.

6 Conclusion

In the paper, we proposed a model that extends matrix factorization to solve
structural link prediction problems in (possibly directed) graphs. Our model
combines latent features with optional explicit features for nodes and edges in
the graph. The model is trained with a ranking loss to overcome the imbalance
problem that is common in link prediction datasets. Training is performed using
stochastic gradient descent, and so the model scales to large graphs. Empirically,
we find that the latent feature approach significantly outperforms popular un-
supervised scores, such as Adamic-Adar and Katz. We find that it is possible
to learn useful latent features on top of explicit features, which can give better
performance than either model individually. Finally, we observe that optimiz-
ing with a ranking loss can improve AUC performance by around 10% over a
standard regression loss. Overall, on six datasets from widely different domains,
some possessing side information and others not, our proposed method (Fact-
BLR-Rank from Table 5 on datasets with side information, Fact-Rank on the
others) has equal or better AUC performance (within statistical error) than
previously proposed methods.



Link Prediction via Matrix Factorization 451

References

1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3),
211–230 (2003)

2. Agarwal, D., Chen, B.-C.: Regression-based latent factor models. In: KDD 2009,
pp. 19–28. ACM, New York (2009)

3. Airoldi, E., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic
blockmodels. In: NIPS, pp. 33–40 (2008)

4. Batagelj, V., Ferligoj, A., Doreian, P.: Generalized blockmodeling. Informatica
(Slovenia) 23(4) (1999)

5. Beck, N., King, G., Zeng, L.: Improving quantitative studies of international con-
flict: A conjecture. American Political Science Review 94(1), 21–36 (2000)

6. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. SIGKDD Explor. Newsl. 6, 1–6 (2004)

7. Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In:
Joint Conference on Digital Libraries, vol. 7, pp. 141–142 (2005)

8. Chu, W., Park, S.-T.: Personalized recommendation on dynamic content using
predictive bilinear models. In: WWW 2009, pp. 691–700. ACM, New York (2009)

9. Doppa, J.R., Yu, J., Tadepalli, P., Getoor, L.: Learning algorithms for link predic-
tion based on chance constraints. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag,
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Abstract. In his original paper on random forests, Breiman proposed
two different decision tree ensembles: one generated from “orthogonal”
trees with thresholds on individual features in every split, and one from
“oblique” trees separating the feature space by randomly oriented hy-
perplanes. In spite of a rising interest in the random forest framework,
however, ensembles built from orthogonal trees (RF) have gained most,
if not all, attention so far.

In the present work we propose to employ “oblique” random forests
(oRF) built from multivariate trees which explicitly learn optimal split
directions at internal nodes using linear discriminative models, rather
than using random coefficients as the original oRF. This oRF outper-
forms RF, as well as other classifiers, on nearly all data sets but those
with discrete factorial features. Learned node models perform distinc-
tively better than random splits. An oRF feature importance score shows
to be preferable over standard RF feature importance scores such as Gini
or permutation importance. The topology of the oRF decision space ap-
pears to be smoother and better adapted to the data, resulting in im-
proved generalization performance. Overall, the oRF propose here may
be preferred over standard RF on most learning tasks involving numeri-
cal and spectral data.

1 Introduction

Random forests have gained popularity in high-dimensional and ill-posed classi-
fication and regression tasks, for example on micro-arrays [19], time series [37],
or spectral data [39,29], but also for inference in application such as image seg-
mentation or object recognition in computer vision [9,45]. Random forests are
comparable in performance to many other non-linear learning algorithms. They
often do well with little parameter tuning [16], and are able to identify rele-
vant feature subsets even in the presence of a large amount of irrelevant predic-
tors [6,21,25,2]. More recently, additional properties of the random forest have
gained interest, for example in feature selection [25,34,23,44] or the explorative
analysis of sample proximities [38].

The main idea of the random forest framework, proposed by Breiman in [5],
is to learn many variable but unbiased base learners, and to reduce variance
by pooling over a whole committee of predictors. This concept is familiar from

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 453–469, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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bagging [3], when a large number of decision trees is learned from random subsets
of the training samples and their decisions are averaged in prediction. In random
forests the correlation between individual base learners is further reduced by
seeking at every node for the best prediction in a random subspace of the training
data, similar to ideas from “random subspaces” [17] and ”random splits” [10].

A random forest can be generated from two different kinds of trees. Univari-
ate decision trees – such as CART or C4.5 – serve as base learners of the most
popular random forest implementations. They separate feature space by hyper-
planes that are orthogonal to single feature axes, resulting in the typical stair-
or box-like decision surfaces of these classifiers. While this characteristic shape
of the decision boundary might be advantageous for some data, one may argue
that it is suboptimal for other – potentially leading to a substantial bias of the
base learner. Collinear data with correlated features [23], for example, arising
from spectra, time series, but also micro-arrays or image patches, may reside in
subspaces that lie between the coordinate axes. In that case, class distributions
may appear inseparable when marginal distributions are evaluated in the search
for the best univariate split, and separating classes may require complex and
deeply nested trees (Fig. 1). Multivariate decision trees – trees using decision
surfaces at arbitrary, oblique orientations to the axes – may be better adapted
to decisions in such subspaces [27], leading to decision boundaries that are less
biased by geometrical constraints of the base learner. In his original paper [5],
Breiman proposed the use of decision trees with oblique splits at random ori-
entations, observing that this approach yielded “results never reached so far”
on the data sets tested. Unlike their counterparts with univariate node models,
however, these random forests have not met a wider interest, yet.

In the present work we propose to use random forests with regularized oblique
model trees as base learners. Recent results on ensemble pruning showed an ad-
vantage of choosing base learners which are optimally adapted to the data [22].
So, rather than choosing random recursive splits, as Breiman suggests in [5],
we focus on trees with task optimal recursive partitioning. In this we follow
the idea also used, for example, in probabilistic boosting trees [43], which use
“strong” discriminative model at each node to obtain overall better decision
rules. Our approach is also related to “rotation forests” [33] where oblique split
directions are sought from the principal components of feature subsets of the
training data, reportedly improving results significantly in selected classification
tasks. We differ from this approach by using supervised approaches to define
optimal split directions. While we follow some of the ideas of [40,41], we refrain
from using global optimization techniques to train the oblique tree. Furthermore,
we also perform experiments to understand the benefit of learned oblique node
models. For splitting feature space at a node, a wide range of linear discrimi-
native node models can be used, all employing somewhat different optimization
objectives. We emphasize on regularized node models which may complement
the good properties of the original random forest by Breiman [5] for classifying
high-dimensional data with few samples – a domain where the random forest
with orthogonal trees performs exceptionally well. Finally, we propose feature
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Fig. 1. Separation of correlated data using uni-
variate decision trees. The left column shows
a synthetic binary data set, the right column
shows the same data after the samples have
been artificially correlated. The top row shows
the bivariate samples, and a segmentation using
an orthogonal decision tree (black lines, and seg-
ments indicated by 0 and 1). The classification
tree is visualized in the middle row. Marginal
distributions of the horizontal axis (top row) are
shown as histograms in the bottom row – these
are the distributions evaluated at every node
in a univariate decision tree. While the initial
segmentation problem (left column) is simple,
the strong overlap in the marginal distributions
(right column) leads to highly nested decision
rules and complex decision boundaries if fea-
tures are correlated.

importance and visualization measures for the oblique random forest, similar to
the ones proposed [5].

In the following we will shortly outline model-based oblique random forests
(oRF) (Section 2). In subsequent experiments we will compare the oRF quanti-
tatively against standard random forests with univariate trees (RF) and other
related non-linear classifiers (Section 3), and try to understand properties of
oblique random forests with learned node model (Section 4). We will finally
propose feature importance and sample proximity measures derived from the
oblique random forest (Section 5).

2 Oblique Random Forests

The oRF shares the ensemble generation processes with the “standard” RF [5]:
For each tree a new set of samples is drawn randomly from the training data
with replacement. At every recursive binary split, a new set of mtry features is
sampled without replacement, and the optimal split is sought in the subspace
spanned by these features. Differences to the standard procedure apply in the
way optimal splits direction are sought at each node.

Oblique Model Trees. For oRF, we rely on multivariate models for binary
splits in each node. For a sample x = [x1, . . . , xmtry ]T in a mtry-dimensional
space, the decision f at the node m can be formulated as:

fm(x) : βT
mx > cm (1)

with coefficients βm defining the projection for the split and threshold cm. Infer-
ring the optimal βm is more difficult than the identification of a single optimal
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Fig. 2. Effect of regularization on split di-
rections of the oblique node models. Lines
represent normals of the discriminating hy-
perplanes. PCA seeks for oblique splits
with maximal data support (first compo-
nent shown here) and LDA for correlation
with the class label. By using regularized
regression a multitude of alternative sub-
spaces with intermediate properties can be
defined and evaluated. Regularization bi-
ases the optimal LDA-like projection to-
wards one which has higher data-support,
more directing towards the PCA-like
solution.

feature and an appropriate threshold for a split in the univariate case. Different
criteria can be used to find the linear subspace (Fig. 2). Projections for linear
splits may consider class label information only (as in logistic regression or linear
discriminant analysis), they may align with the data variation (as with principal
component analysis), or they may seek for an optimum in between, trading class
label correlation and data support (as in ridge or partial least squares regres-
sion, or linear support vector machines). Constrained regression methods also
enjoying popularity in the classification of high dimensional data. They perform
well in tasks with less observations than predictors, and they may help to find
splits when less than mtry samples reside in a node which often occurs in deep
split nodes far from the root. We therefore choose ridge regression for our split
model:

βridge(λ) ∼ argmin
β

N∑
i=1

⎛⎝yi −
2∑

j=1

xijβj

⎞⎠2

+ λ

P∑
j=1

|βj |2. (2)

using regularization parameter λ. With this choice the node model is optimizing
for [11]

βridge(λ′) ∼ argmax
||β=1||

corr2(βX, Y ) ∗ var(βX)
var(βX) + λ′ . (3)

The regularization parameter λ allows the classifier to adapt to an optimal split
direction βridge in between two extremes (Fig. 2): With λ = 0, βridge may point
towards maximal correlation with class labels, similar to linear discriminant
analysis (LDA). With λ � 1, it may point towards highest data variation and
data support, similar to principal component analysis (PCA).

At each node m, the model parameter λ can be adapted to the out-of-bag
samples available at that node. Then all samples Xm are projected into βm and
the optimal split-point cm on the scores sm = Xmβm is identified using the Gini
impurity I(sm) = 1

2 ∗ (1 −∑
k=0,1 P 2

k (sm)). The threshold cm maximizing the
decrease in Gini impurity (i.e., the minimum in I(sm < cm) + I(sm > cm)) is
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chosen and samples are separated accordingly. For both subsets the process of
finding the best split is recursively iterated until both classes are separated.

Implementation of the Oblique Random Forest. In the random forest
framework a large number of trees are combined. Two hyper-parameters control
the generation of the decision trees in this ensemble: subspace dimensionality
mtry and ensemble size ntree. Parameter mtry determines the number of features
sampled randomly at each individual node and the degree of randomness in
the model generation. Parameter mtry has to be chosen to obtain a “sufficient”
variability of the trees in the forest, ensuring that correlation between individual
trees is as low as possible. In prediction new samples are pushed down each of
the ntree trees and are assigned the label in the terminal note and decisions can
be pooled according to different schemes [32,30]. Here we use the normalized
number of votes, or probability p ∈ [0, 1], which is relatively robust against
over-fitting [5,35,32].

We implement two versions of the oRF in our experiment: a) oRF-ridge opti-
mizing regularization parameter λ at every split, b) oRF-lda performing an un-
regularized LDA-like split at every node, and c) oRF-rnd with random oblique
splits as proposed in [5]. Trees are generated as follows1: 1) For each tree a new
set of samples is drawn randomly from the training data with replacement. 2)
Random subspaces of dimension mtry are sampled without replacement for ev-
ery node. 3) At every split, we scale variables to zero mean and unit variance
to enhance the stability of the linear model. 4a) For oRF-ridge, ridge regression
is tested using λ = 10i with i = {−5,−4, . . . , 5}, and λ is optimized using the
out-of-bag samples residing at the same node. 4b) For oRF-lda we set λ = 0 and
use the resulting node model. 4c) For oRF-rnd we draw random values from a
normal distribution (with zero mean and standard deviation of one) to obtain
coefficients β of the node model beta under a similar prior distribution as in a
L2 constrained ridge regression. For all three oRF, samples are projected into
subspace determined by the node model. 5) Optimal thresholds for splitting the
data are sought using the Gini impurity on the fitted scores of the training data,
and the samples are split accordingly. For each of the ntree trees, steps 2)-5)
are repeated until all classes are separated (oRF-lda, oRF-rnd), or no out-of-bag
test samples are available for adapting λ any more (oRF-ridge).

3 Comparison of Classification Performances

In a first experiment we compare the performance of oRF, RF and other learning
methods on different types of data to identify and compare specific properties
of these classifiers.

Experimental data. A number of binary benchmark problems are used for the
evaluation: binary classification problems of the UCI data repository (data sets
1-15, Table 1), synthetic data sets (16-20) [4], binary groupings of handwritten
1 Classifier publically available at cran.r-project.org in package obliqueRF.
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Fig. 3. Parametriza-
tion of the random
forest. On most data
sets default ensem-
ble parameters for
ensemble size ntree

(top) and subspace
dimensionality mtry

(indicated by the
dotted vertical line,
bottom) perform
reasonably well.

digits (21-23) from the MNIST data base, binary data from detection problems
in archaeological remote sensing (24-25) [26], from the analysis of magnetic reso-
nance spectra for the detection of brain tumors or yeast infections (26-28, 32-36)
[24,23], from the analysis of infrared spectra for BSE detection from blood serum
and food analysis (29-31, 37-40) [25,23].

Alternative Classifiers. We choose seven alternative nonlinear classifiers for
our comparison – most of them with some conceptual relation to oblique ran-
dom forests. We test two other decision tree ensembles (Table 1): adaboost [12],
the standard random forest (RF) [20] and a version of the extremely random
forests [13] with mtry = 1 (RF-rnd), all relying on univariate decision trees.
We also test the performance of single pruned classification trees (CART), sup-
port vector machines with radial basis function (svm) and a k-nearest-neighbors
classifier (knn). For RF, the optimal number of trees is found in an internal
cross-validation of the classification error testing 10 ∗ 2i trees with i = 1 . . . 6.
Trees are grown to full depth. For CART, model complexity is optimized in a
ten-fold cross-validation. For the support vector machine (svm) the kernel width
is obtained in a three-fold cross-validation testing the quartiles of |x − x′|2 [7]
and regularization (“cost”) is found in another 3-fold cross-validation evaluat-
ing the range of λ = 10−5...5. A binomial model is modeled on top of the binary
decisions [31]. Boosting is “discrete” adaboost, with exponential loss, and in con-
junction with a bagging of the samples. We test the performance for 10 ∗ 1 . . . 5
iterations in a 3-fold internal cross-validation. The knn classifier is tested in a
threefold cross-validation testing 2i neighbors with i = 0 . . . log2(P ).

Processing Time. Processing time is critical for the generation of large ensem-
bles of classifiers. Using an implementation in native GNU R it took longer to
train an oRF than training an RF (using a Fortran implementation), or the SVM
(C); it was still faster than adaboost (C). Growing 100 oblique trees took about
10-100s for most of the learning tasks (on a standard personal computer) with
lda at the lower end of this time range and ridge – requiring parameter tuning –
at the upper. Training the node models on a subsampled set of observations, as
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done in computer vision applications [9,45], may reduce the overall computation
time significantly for large data sets.

Choice of oRF Default Parameters. Random forests are relatively insen-
sitive to the choice of model parameters, and we want to apply all oRF with
the same default parameters. We test the effect of forest size, ntree, on the
overall classification performance of the classifiers (as determined in a ten-fold
cross-validation; Fig. 3, left). Overtraining by increasing ntree could hardly be
provoked for any random forest on any data set. Little improvement in classi-
fication accuracy is observed for ntree > 100. We chose to set ntree = 300 for
all further experiments. The second tuning parameter is mtry – the number of
features which are randomly sampled at each node. A popular default choice
for RF is mdef

try =
√

P , with P being the number of features [20]. We find this
default to perform reasonably well (Fig. 3, right), although larger differences can
be observed for spectral data sets. In all further experiments we use mtry =

√
P .

Evaluation. We apply all classifiers to the data set in ten repeats of a ten-fold
cross-validation (Table 1) and evaluate both the mean accuracy and the receiver-
operator-characteristics with its area-under-the-curve (ROC AUC). ROCs are
calculated on the complete test data, and individually on each of the ten re-
sampled data sets, to have a distribution of ten different ROCs which is used to
measure significance of differences. To this end we use nonparametric statistical
tests. We first identify the best method for a particular data set (defined by
the highest mean classification accuracy, underlined in Table 1), and then test
whether other classification results differed significantly from this one “best”
result. We use paired Cox-Wilcoxon tests at 5% level (on the 100 test sets for
classification accuracy and 10 repeats for AUC ROC) to compare the perfor-
mance between the “best” classifier, and any other classifier applied to the same
data set [18]. Classification results which do not differ significantly from the
approach with the highest accuracy, are indicated by bold font in Table 1.

We analyze the general behavior of the algorithms over data which share
certain properties. Trees with oblique and orthogonal perform differently on
data with factorial and numerical features [8]. Random forest perform well in
applications with many irrelevant predictors and few observations [23]. So, we
group the data into three classes (Table 1): data with factorial or discrete features
(“factorial data”, data sets 1-10 in Table 1), data with continuous numerical
features (“numerical data”,11-20), and data with many correlated numerical
features and few samples (“spectral data”, 21-40).

Results are shown in Table 1, the frequency how often a particular method
performed best or comparable to the best within the three data classes is re-
ported in Table 2. The optimal choice for factorial data are methods evaluating
univariate splits – adaboost, RF and in some classification tasks even CART
performed best. They rank – in terms of classification performance – in front of
all other methods, with adaboost being first. The advantage on factorial features
may be expected as univariate trees consider the relative ordering of observa-
tions only. They are insensitive to the arbitrary assignment of numerical values
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Table 1. Classification accuracy (left block) and 1−ROC AUC (right block) of the
classifiers on the 40 data sets. Data sets are grouped in factorial, nominal and spectral
data. Underlined is the best results, bold results do not differ significantly from the
best.
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1 chess 2.8 5.4 2.4 0.6 1.4 52.2 23.5 4.1 2.7 0.3 1.2 0.9 0 0.1 33.3 0.9 0.4 0.3
2 credit 15.3 32 14.8 12.9 12.7 17.9 15.4 13 44.5 10.3 27.3 15.4 6.7 6.8 7.5 8.3 7 53.3
3 heart 23 35.5 21.3 18.3 17.8 40.6 20 18 17.9 15.7 30.9 20.5 11.4 10.4 13.5 12.7 9.9 9.9
4 hepatitis 20.9 21.6 20.3 24.4 17.8 18.7 19.1 19.3 20.6 47 42.2 28.7 18.9 14.6 19.5 16.2 15.7 50
5 monks3 3.6 1.6 1.1 1.2 2.4 43.3 5.7 3.5 1.3 1.4 0.9 1.7 0.8 1.1 5.8 0.8 1.1 1
6 promotergene 17.1 20.3 30.4 9.6 11 50.1 20.8 16.9 18.5 8.8 12 31.3 3.9 4 32 12.8 7.3 7.4
7 tic-tac-toe 12 16.1 26.5 0 4.7 65.3 12.7 15.2 14.8 4 32 31.1 0 0.3 73.3 4.9 3.5 2.8
8 titanic 21.6 23.3 23 21.3 22.7 30.2 26.8 22 24.7 20.1 20.1 25.5 16.1 16.8 22.1 20.3 17.6 18.6
9 votes 9.3 12.5 4.4 4.5 4.2 7.7 5.7 5.6 5.1 4.2 8.7 6.1 1.4 0.9 1.8 1.4 1.4 1.3
10 cancer 4.3 3.4 6.2 3.7 3.3 3 2.8 3 3 2.3 1.3 4.8 1 0.9 0.9 0.7 0.9 0.9

11 ionosphere 5.1 14 10.5 6.4 6.5 7.5 5.6 5.4 5.6 2 16.9 12.3 3.3 2.1 2.1 1.7 1.7 1.6
12 sonar 17.5 18.2 27.2 13.1 16.1 16.3 14.4 18 18.2 7.6 17.3 25.7 6.1 6.8 6.4 5.8 6.5 6.2
13 musk 10.4 14.6 19.6 8.8 10.6 17.9 10.2 10.6 10.4 3.8 12.9 15.9 2.9 4.4 5.3 3.7 5 4.5
14 liver 30.9 32 34.1 26.8 26.8 27.8 27.8 25.8 26.2 26.6 31.3 38.2 22.3 23.3 23.5 23.4 21.4 21.3
15 diabetes 30.7 31.7 34.2 26.6 26.7 27 27.7 26.1 26.2 26.8 30 37.7 22.3 23.3 23.3 23.1 21.2 21.5
16 ringnorm 12.4 17 19.8 13.2 17.5 17.9 18 18 18 2.1 25.5 40.9 7.2 24.7 14.2 17.9 36.3 35.4
17 spirals 5.2 5.1 10.3 6.1 6 6.1 5.5 5.3 5.2 1.1 1.5 6.9 2.2 2.1 2.1 1.3 1.4 1.3
18 threenorm 13.3 14.9 33.8 15.3 16.4 15.1 14 14.6 14.7 6 6.6 30.6 7.7 7.8 7.4 6.7 7.2 7
19 twonorm 2.2 1.9 21.6 3.4 3.5 2.8 2.2 1.8 1.7 0.2 0.2 18.5 0.4 0.5 0.3 0.2 0.2 0.2
20 circles 2.1 2.5 5.1 2.4 2.8 3.3 1.7 1.9 1.8 0.1 1.8 3.1 0.3 0.4 0.4 0 0 0

21 digits 2-4 1.3 0.4 5 2.4 1.7 50 1.5 2.9 2.7 0.1 0.3 3.4 0.3 0.1 5.9 0.1 0.5 0.6
22 digits 3-8 2.3 3.6 6 3.1 3.2 50 4.3 4.9 5.2 0.3 2.3 4.4 0.6 0.5 30.7 0.8 1.2 1.3
23 digits even-odd 7.4 7.2 15.8 9.1 7.8 50 9.8 16.2 16.6 2.4 6.2 14.6 3.2 2.3 47.2 3.3 9 9.4
24 RS SRTM 2.5 3.2 3 0.8 0.7 1.7 1.7 0.7 1 0.3 2.7 2.7 0.1 0 0.1 0.1 0 0
25 RS ASTER 25.5 29.8 32.7 22.9 24.9 27.5 25.1 19.3 19.9 18.7 25.4 30.1 17.4 19.6 20.8 18.6 13.2 14
26 MRS quality 6.2 6.7 18.1 6.7 7.7 9.3 8.4 6.2 6.2 2.1 2.5 15.5 2.4 2.1 2.7 2.4 1.9 1.9
27 MRS tumor 1 11.2 12 17.5 10.6 10.4 12.2 10.7 10.6 11 4.9 8.4 16.8 6.2 4.6 5.9 4.9 4.6 4.7
28 MRS tumor 1 19.1 19.7 22.3 18.9 19 19.1 19.1 19.7 20.1 28 29.5 35.4 26.8 24.7 26 25.9 26.9 25.5
29 IR BSE 1 22.5 23.1 25.2 22.1 20.5 23 23 13.1 13.4 22 33.6 39.3 27.4 21.3 26.8 24.5 9.2 9.9
30 IR BSE 2 27.9 42.9 24.1 25.9 25.7 29.6 34.5 15 15.5 20.5 41.5 30 20.7 18.5 25.1 27.3 6.9 7.1
31 IR BSE 3 27.1 40.5 25.2 33.5 24.6 30.8 35.4 14.9 12.6 20.3 39 31.5 18.2 18.5 26.1 29 5 5.2
32 MRS yeast 1 4.3 9 14.5 7.8 7.3 8.9 7.9 4.1 4.3 1.2 6.4 15.5 3.4 2.9 3.6 2.9 1.2 1.2
33 MRS yeast 2 2.4 3.2 9 8.3 3.9 4.4 3.5 3 2.8 2.2 4.3 11.1 4.5 3.6 2.8 2.9 2.7 2.8
34 MRS yeast 3 3 4.9 8.7 7.2 5 5.2 4.4 3.2 3.2 3.9 4.8 13.6 9.5 4.8 5 4.8 3.2 3.2
35 MRS yeast 4 9.7 11 15.7 15.8 12 14.1 13.3 6.5 5.9 4.2 14.2 26.9 6.1 8.6 8 7.1 4.5 4.2
36 MRS yeast 5 5 7.1 8 7.4 6.4 6.4 6.4 3.5 3.9 3.2 8.6 16.2 9.9 4.3 5.6 5.5 3.4 3.1
37 IR wine origin 1 27.2 40.7 26 22.1 21.7 26.4 29.6 21.4 21.6 23.5 40.6 28 16.9 14.5 19.6 23.8 13.6 13.2
38 IR wine origin 2 25.5 40.6 30.3 21.8 21.1 25.4 32.1 25.5 22.6 23.2 41.7 31.9 27.2 15 19.2 27.5 15.6 13.9
39 IR wine grape 1 17.1 40.3 14.7 18 11.1 21.9 25.1 8.4 4.6 6 38.4 18.8 7.6 3 10.2 16.7 0 0
40 IR wine grape 2 18 38.2 15.3 12.5 10.3 22.1 29.5 11.6 11.1 6.2 35.2 18.3 5.5 2.7 10.1 21.2 0 0

Table 2. Ranking of the classifiers summarizing performance for the three different
data classes. The figure shows how often a classifier performed best or similar to the best
in Table 1. With the exception of of factorial data oblique random forests outperform
the alternative classifiers. Overall oRF-ridge performs best.

Ranking 1 2 3 4 5
Factorial Data AUC ROC adaboost (6) RF (4) oRF-lda (2) oRF-rnd (2) knn (1)

Accuracy adaboost (9) RF (6) oRF-lda (4) oRF-ridge (3) CART (3)
Nominal Data AUC ROC oRF-ridge (6) oRF-lda (5) svm (3) oRF-rnd (3) adaboost (2)

Accuracy oRF-rnd (7) oRF-ridge (6) oRF-lda (6) adaboost (6) svm (6)
Spectral Data AUC ROC oRF-ridge (14) oRF-lda (12) svm (7) RF (6) adaboost (1)

Accuracy oRF-ridge (17) oRF-lda (17) svm (10) RF (9) adaboost (7)
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to different factors. On numerical data oblique random forests perform slightly
better than alternative classifiers (e.g., ada, SVM). Those oRF with regularized
node model perform slightly better than the other two in terms of class separa-
tion (i.e, ROC). On spectral data, oRF is a clear first, both in terms of accuracy
and ROC. SVM, RF or adaboost perform well on few data sets (MRS tumor, IR
yeast 2) and here most oRF perform equally well. An advantage of oRF-ridge
over oRF-lda becomes apparent when comparing class separation. The somewhat
weaker general performance of the unregularized oRF suggest that the overall
performance may benefit to a large extend from the optimal choice of λ and a
sufficiently strong regularization.

Overall, we find that random forests with orthogonal trees (RF) perform well
on factorial data, but they are outperformed by oblique random forests (oRF)
on numerical and spectral data. Oblique random forests with regularized node
models (oRF-ridge) rank overall first, followed by oRF with unregularized model
(oRF-lda), both outperforming Breiman’s oRF with random split model (oRF-
rnd). So, in any learning task which do not comprise discrete factorial features,
the oRF may be advantageous over the regular RF and a better choice when an
“out-of-the-box” learning algorithm is required.

4 Advantages of Oblique Model Trees

In another set of experiments we want to shed light on specific advantages of
the oRF classifier and properties of those types of data it performs well with.

Topology of the Decision Boundary. To understand why RF and oRF
behave differently, we visualize the actual class separation for the “mixture”
data set [16] (Fig. 4). When testing a single pruned orthogonal tree (CART)
we obtain a clear, binary separation of the feature space. However, even when
pooling many trees the boundary imposed by the RF keep their blocked, or
’stair-like’ topology. They extrapolate the decision boundary in space with few
samples through axis-parallel, orthogonal splits. In addition to the blocked de-
cision boundary, this somewhat arbitrary extrapolation may not be a natural
choice in high dimensional tasks with few samples and correlated feature, e.g.,
on spectral data. The oRF adapts here closely to the training data (dots) and
to the true boundary of the underlying distribution (dashed lines). In this the
separation of the feature space imposed by the oRF is more similar to the SVM
(not shown here) than to the RF, both favoring smooth decision boundaries.
While for the RBF-kernel SVM the smoothness of this boundary is a parameter
to be optimized during training, the random forest framework does not require
to adjust any such parameter.

Advantage over Univariate and Random Multivariate Splits. One may
argue that RF suffers from significant bias imposed through the topological
constraints of the decision boundaries of its base learners. We calculate bias and
variance for results from Table 1 using ensemble votes as for regression tasks [16].
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Fig. 4. Visualization of decision boundaries using the mixtures of Gaussians example
from [16]. Colors indicate class assignments of the bivariate grid points when training
the classifier using the indicated samples (circles). The solid black line represents the
decision boundary learned. The dashed black line is Bayes optimal border between the
distributions generating the training samples. Shown are single univariate classification
tree (CART) and RF, and a single oblique tree and oRF. Differences can be observed
in the topology of the decision boundary, and the way decision boundaries are extrap-
olated in regions with few observations. Note that CART has been optimized using
cross-validation, while the others are applied out of the box.

Fig. 5 (left) reports differences in bias and variance for RF and oRF, pooled over
the different data types. The advantage of RF on factorial data is due to a lower
bias. The higher accuracy of oRF on spectral and numerical data correlates with
a lower bias, too. Variance is slightly lower for oRF. A similar analysis can be
done to compare the oRF with learned node model – proposed in this study –
with the original oRF with random split (Fig. 5, right). Results show that the
latter (oRF-rnd) suffers from high bias when compared to the first (oRF-ridge).
This suggest that the higher variability of the oRF-rnd, and the resulting lower
variability of the ensemble, does not trade off the disadvantage (or bias) of using
random split directions.

Advantage on Spectral Data. Oblique random forests perform well on spec-
tral data which shows a strong correlation among the features (Fig. 1). To study
this in a controlled fashion, we systematically increase correlation between fea-
tures for selected data sets (Fig. 6) by adding a random scalar to the features
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Fig. 5. Comparison of bias and
variance between RF and oRF-
ridge (left) and oRF-rnd and
oRF-ridge (right) pooled over
the data types. Boxplots in-
dicate quartiles and outliers.
Advantages in classification ac-
curacy are dominated by bias.
This benefits oRF-ridge for nu-
merical and spectral data. The
bias may arise from the topol-
ogy of the base learner.
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Fig. 6. Correlation between features (left) and performance on artificially correlated
data (right). Shown is the ’natural’ correlation between features in the yeast 2 data
set and samples of the threenorm data set with artificially induced correlation (left,
corresponding to ’step 3’ in the right figures). While the performance of the oRF
remains nearly unchanged even on highly correlated data (right), RF fails beyond a
certain point.

of every single observation, drawn from a normal distribution. We then increase
the size of this random offset stepwise by a multiplicative factor (10{0,1,...,15}).
As visualized in Fig. 6, this stretches the samples successively along the inter-
secting line of the feature space. Both oRF and RF are tested on any of the 3*16
resulting data sets. Similar to our general evaluation, we calculate the AUC
ROC.

We observe that the performance of the orthogonal random forest decrease
at a certain point (Fig. 6, right), finally resulting in complete misclassification.
On the threenorm data (Figure 6, left), the RF drops from more than 85%
classification accuracy rapidly to a close to random prediction. At the same
time the performance of the oRF remains practically unchanged. These results
suggest, somewhat similar to our reasoning at the beginning, that in classification
tasks with collinear samples the marginal distributions of the input variables xi

– i.e., the projections of the data into the subspaces evaluated by the orthogonal
random forest in search for an optimal split – may lose their power to separate
classes (compare the two marginal distributions in Fig. 1, for example).

5 Feature Importance and Sample Proximity

The random forest framework provides additional tools which help to illustrate
decision processes within the random forest ensemble, but which also have a
value for exploratory data analysis on their own. This are importance scores
reporting the relevance of individual features [44] and sample proximity measures
for visualizing similarities between individual samples and for mapping natural
groupings within the data [38]. We propose similar tools for the oRF.

Feature Importance. Different feature importance measures exist for the ran-
dom forest framework. One score is the “Gini importance” [5]. This measure is
obtained during training by recording the decrease in Gini impurity for every
variable, whenever a variable is selected in a split. Averaging this quantity, indi-
vidually for each variable, and over all splits in a tree and all trees in the ensemble
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Fig. 7. Random forest feature importance – exemplified for a spectral data sets (BSE
1). The left plot shows different feature important measures, along with a representative
spectrum of the data set. For all three tests high values indicate important features.
The right plot compares RF and oRF feature importance scores for different data
sets. The oRF also assigned importance to a number of additional features which are
virtually ignored by the orthogonal RF (green boxes, for BSE 1 data also indicated by
green lines).

leads to the Gini importance score. An alternative measure is the “permutation
importance”. It is obtained by comparing, for each variable, the regular predic-
tions of the classifier with those predictions obtained after randomly permuting
the observations for this specific variable. Empirical studies suggest that both
the feature rankings – the algorithmically motivated Gini importance, and the
statistically defined permutation importance – correlate well in most classifica-
tion tasks [1]. It has been observed that correlation between features may affect
both Gini [23] and permutation importance [28]. For the oRF we obtain a fea-
ture relevance measure similar to the Gini importance by calculating analysis of
variance (ANOVA) tables at every split in the oblique model tree, and by record-
ing those variables which contribute significantly to the split (as expressed by a
sufficiently small p-value, here p ≤ .01). For every individual variable we record
how often it was deemed significant in a split. This frequency, calculated from
all splits over a sufficiently large number of trees, is the statistic we propose to
use for visualizing feature importance in oblique random forests (Figure 7). We
refer to it as “oRF importance” in the following.

We can compare “oRF importance” and “Gini importance”. Feature selection
is highly relevant in chemometric calibration and classification tasks. So, we show
an example for the BSE 1 data set in Figure 7, a data set where large differences
in the performance of RF and oRF can be observed (Table 1). The Gini feature
importance is obtained from an ensemble of 1500 trees, and the oRF feature
importance using an ensemble with 9000 trees. (For computational convenience
we use an oRF with logistic node model.) We chose such high numbers of trees
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to guarantee a sufficient sampling of all features with a larger ensemble for the
oRF, as oblique model trees need fewer splits than orthogonal decision trees. We
also compare both random forest scores with a t-test measuring class separation
individually at every feature – similar to, for example, fMRI experiments, micro-
array, or tests on spectra [15]. We observe that both random forest measures show
additional peaks when compared with the t-test that may be attributed to the
presence of patterns which are of multivariate importance [23]. While both Gini
and oRF importance show a broad correspondence for most spectral regions, a
number of features appear to be relevant to the oRF only (Fig. 7, green boxes and
spectra regions). We find such additional “peaks” for most spectral data sets,
and some of the numerical data sets (ionosphere). It suggests that oblique splits
allow the classifier to consider additional spectral regions during classification
which are “invisible” to the traditional RF and, consequently, not used during
classification.

Sample Proximity. The random forest framework allows one to measure a dis-
tance or “proximity” between observations, or samples, in a classification task [5].
During training of the classifier the out-of-bag samples are pushed down the tree.
The frequency of how often each pair of samples ends up in the same terminal
node – i.e., in the same partition of the feature space – is recorded. After a large
number of trees has been learned, and every pair has been tested sufficiently
often, these co-occurrence frequencies can be normalized and an affinity matrix
is obtained [5,38]. Similar to [5] the affinity matrix can be transformed to a
distance matrix counting how often a pair of sample has not been in the same
node, and the scores from projecting samples to the principal components of
this distance matrix can be visualized. It may help to uncover natural groupings
in the data and to identify consistently misclassified sample in a very intuitive
fashion [38].

Figure 8 shows a projection of the samples to the principal eigen-spaces of their
distance matrix for both a RF (lower triangle of the pairs plot matrix) and an
oRF (upper triangle). Stark differences are visible: Inter-sample differences in the
oRF proximity correlate well with the first eigen-direction of the distance matrix,
representing the learned inter-class difference (Fig. 8, right). Higher components
show random noise only and no further grouping can be observed. This is very
different from the RF proximity, which reveals complex structures even for higher
components. This may indicate that orthogonal trees separate feature space
by splits which are not required by the learning task, but are imposed by the
topology of the base learner.

The observation from the yeast 2 data set – that oRF show complex inter-
sample differences unrelated to the imposed inter-class separation task – holds
true, to a lesser extent, for most data sets in our study. It is even visible from
the variance explained along the eigen-directions of the affinity matrices. We find
for all data sets the variance explained by the first eigen-space of the oRF to
be much larger than the variance explained by the first eigen-space of the RF.
For higher components the opposite is true indicating that some of the inter-
sample differences in the RF are not due to plain inter-class differences imposed
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Fig. 8. Visualization of the random forest sample proximity. Shown are sample pro-
jected to the principal eigen-spaces of the proximity matrix of RF (left, lower triangle)
and oRF (left, upper triangle) and the variation explained by RF (right, black) and
oRF (right, red) for further data sets. The oRF is void of structures resulting from the
topology of the base learner (yeast 1). For oRF, inter-sample differences of the dom-
inating first eigen-direction correlate well with learned inter-class difference. Higher
components show random noise and their contribution to inter-sample differences can
be neglected here. The RF affinity matrix reveals complex structures even for higher
components suggesting that rules by the oRF are much simpler than those induced by
the RF. The oRF proximity may be highly preferable for visualizing natural groupings.

by the learning task, but due to a consistently over-complex segmentation of the
features space by the splits of the orthogonal trees. Again, this implies that rules
by the oRF are much simpler than those induced by the RF and, supposedly,
void of complex structures imposed superficially by the topology of the base
learner.

6 Conclusion

Random forest with oblique node models have been somewhat neglected since
proposed by Breiman in 2001. When replacing the random node model with
learned model splits we obtain a classifier that can be implemented straightfor-
wardly, and that performs well on a large range of data sets even with default
parameterizations.

– We find random forests with orthogonal splits (RF) to perform well on fac-
torial data. On all other data random forests with oblique node model (oRF)
perform better. Here, a learned node model performs better than a random
split, and a learned node model with adaptive regularization better than
one without. On numerical and spectral data, oRFs outperform a range
of alternative classifiers even with default parametrization. The oRF does
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exceptionally well in separating high dimensional distributions even when
large correlations between features are present.

– The oRF can be used to define feature importance and sample proximity
measures. They may be preferable in the analysis of learning tasks where oRF
performs exceptionally well and shows less topological bias than RF. These
are learning tasks with few samples, many irrelevant features and correlated
predictors arising, for example, in biomedical diagnostics [19,39,29,14,25,23]

– The inspection of the feature importance measure suggests that the oRF
is able to consider information from variables which are “invisible” to uni-
variate split models (Fig. 1) and void of structures reflecting constraints
resulting from the geometry of the base learner. The ability to use these
additional variables and considering their contribution to the classification
problem illustrates why the oRF perform better than the “traditional” RF
on numerical and spectral data.

These results may lead to further work. Oblique decision trees show similarities
with deep learning architectures [36], and “reusing” scores from earlier splits for
decisions in later nodes would even enhance this similarity. Reusing classification
results and probabilities from earlier trees would be very similar to the “auto-
context” idea from [42]. One may assume that mixing orthogonal and oblique
splits within a tree would help to combine desired properties of both approaches.
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32. Robnik-Šikonja, M.: Improving random forests. In: Boulicaut, J.-F., Esposito, F.,
Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 359–
370. Springer, Heidelberg (2004)

33. Rodriguez, J., Kuncheva, L., Alonso, C.: Rotation forest: A new classifier ensemble
method. IEEE T. Patt. Anal. Mach. Intell. 28, 1619–1630 (2006)

34. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble
feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 313–325. Springer,
Heidelberg (2008)

35. Segal, M.R.: Machine learning benchmarks and random forest regression. Tech.
rep., UC San Francisco (2004)

36. Sethi, I.K.: Entropy nets: from decision trees to neural networks. Proc. IEEE 78,
1605–1613 (1990)

37. Shen, K.Q., Ong, C.J., Li, X.P., Zheng, H., Wilder-Smith, E.P.V.: A feature selec-
tion method for multi-level mental fatigue EEG classification. IEEE-T. Biomed.
Engin. 54, 1231–1237 (2007) (in press, epub ahead)

38. Su, X., Tsai, C.L., Wang, H., Nickerson, D.M., Li, B.: Subgroup analysis via re-
cursive partitioning. J. Mach. Learn. Res. 10, 141–158 (2009)

39. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.:
Random Forest: A Classification and Regression Tool for Compound Classification
and QSAR Modeling. J. Chem. Inf. Model 43, 1947–1958 (2003)

40. Tan, P.J., Dowe, D.L., Webb, G.I., Yu, X.: MML inference of oblique decision trees.
In: Proc. AJCAI, pp. 1082–1088 (2004)

41. Tan, P.J., Dowe, D.L.: Decision forests with oblique decision trees. In: Gelbukh,
A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 593–603.
Springer, Heidelberg (2006)

42. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d
brain image segmentation. IEEE-T. Patt. Anal. Mach. Intell. 99(preprint) (2009)

43. Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classifica-
tion, recognition, and clustering. In: Proc. ICCV, pp. 1589–1596 (2005)

44. Tuv, E., Borisov, A., Runger, G., Torkkola, K.: Feature selection with ensembles,
artificial variables, and redundancy elimination. J. Mach. Learn. Res. 10, 1341–1366
(2009)

45. Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for
fine-grained image categorization. In: Proc. CVPR (2011)



An Alternating Direction Method for

Dual MAP LP Relaxation

Ofer Meshi and Amir Globerson

The School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

{meshi,gamir}@cs.huji.ac.il

Abstract. Maximum a-posteriori (MAP) estimation is an important
task in many applications of probabilistic graphical models. Although
finding an exact solution is generally intractable, approximations based
on linear programming (LP) relaxation often provide good approximate
solutions. In this paper we present an algorithm for solving the LP re-
laxation optimization problem. In order to overcome the lack of strict
convexity, we apply an augmented Lagrangian method to the dual LP.
The algorithm, based on the alternating direction method of multipliers
(ADMM), is guaranteed to converge to the global optimum of the LP re-
laxation objective. Our experimental results show that this algorithm is
competitive with other state-of-the-art algorithms for approximate MAP
estimation.

Keywords: Graphical Models, Maximum a-posteriori, Approximate
Inference, LP Relaxation, Augmented Lagrangian Methods.

1 Introduction

Graphical models are widely used to describe multivariate statistics for discrete
variables, and have found widespread applications in numerous domains. One
of the basic inference tasks in such models is to find the maximum a-posteriori
(MAP) assignment. Unfortunately, this is typically a hard computational prob-
lem which cannot be solved exactly for many problems of interest. It has turned
out that linear programming (LP) relaxations provide effective approximations
to the MAP problem in many cases (e.g., see [15, 21, 24]).

Despite the theoretical computational tractability of MAP-LP relaxations,
solving them in practice is a challenge for real world problems. Using off-the-
shelf LP solvers is typically inadequate for large models since the resulting LPs
have too many constraints and variables [29]. This has led researchers to seek
optimization algorithms that are tailored to the specific structure of the MAP-
LP [7, 13, 14, 16, 20, 28]. The advantage of such methods is that they work with
very simple local updates and are therefore easy to implement in the large scale
setting.

The suggested algorithms fall into several classes, depending on their approach
to the problem. The TRW-S [14], MSD [28] and MPLP [7] algorithms employ

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 470–483, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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coordinate descent in the dual of the LP. While these methods typically show
good empirical behavior, they are not guaranteed to reach the global optimum of
the LP relaxation. This is a result of non strict-convexity of the dual LP and the
fact that block coordinate descent might get stuck in suboptimal points under
these conditions. One way to avoid this problem is to use a soft-max function
which is smooth and strictly convex, hence this results in globally convergent
algorithms [6, 10, 12]. Another class of algorithms [13, 16] uses the same dual
objective, but employs variants of subgradient descent to it. While these methods
are guaranteed to converge globally, they are typically slower in practice than the
coordinate descent ones (e.g., see [13] for a comparison). Finally, there are also
algorithms that optimize the primal LP directly. One example is the proximal
point method of Ravikumar et al. [20]. While also globally convergent, it has
the disadvantage of using a double loop scheme where every update involves an
iterative algorithm for projecting onto the local polytope.

More recently, Martins et al. [17] proposed a globally convergent algorithm
for MAP-LP based on the alternating direction method of multipliers (ADMM)
[8, 5, 4, 2]. This method proceeds by iteratively updating primal and dual vari-
ables in order to find a saddle point of an augmented Lagrangian for the problem.
They suggest to use an augmented Lagrangian of the primal MAP-LP problem.
However, their formulation is restricted to binary pairwise factors and several
specific global factors. In this work, we propose an algorithm that is based on
the same key idea of ADMM, however it stems from augmenting the Lagrangian
of the dual MAP-LP problem instead. An important advantage of our approach
is that the resulting algorithm can be applied to models with general local fac-
tors (non-pairwise, non-binary). We also show that in practice our algorithm
converges much faster than the primal ADMM algorithm and that it compares
favorably with other state-of-the-art methods for MAP-LP optimization.

2 MAP and LP Relaxation

Markov Random Fields (MRFs) are probabilistic graphical models that encode
the joint distribution of a set of discrete random variables X = {X1, ..., Xn}. The
joint probability is defined by combining a set C of local functions θc(xc), termed
factors. The factors depend only on (small) subsets of the variables (Xc ⊆ X )
and model the direct interactions between them (to simplify notation we drop
the variable name in Xc = xc; see [27]). The joint distribution is then given by:
P (x) ∝ exp

(∑
i θi(xi) +

∑
c∈C θc(xc)

)
, where we have included also singleton

factors over individual variables [27]. In many applications of MRFs we are
interested in finding the maximum probability assignment (MAP assignment).
This yields the optimization problem:

arg max
x

∑
i

θi(xi) +
∑
c∈C

θc(xc)

Due to its combinatorial nature, this problem is NP-hard for general graphical
models, and tractable only in isolated cases such as tree structured graphs. This
has motivated research on approximation algorithms.
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One of the most successful approximation schemes has been to use LP relax-
ations of the MAP problem. In this approach the original combinatorial prob-
lem is posed as a LP and then some of the constraints are relaxed to obtain
a tractable LP problem that approximates the original one. In our case, the
resulting MAP-LP relaxation problem is:

max
μ∈L(G)

∑
i

∑
xi

μi(xi)θi(xi) +
∑

c

∑
xc

μc(xc)θc(xc) (1)

where μ are auxiliary variables that correspond to (pseudo) marginal distribu-
tions, and L(G) is the reduced set of constraints called the local polytope [27],
defined by:

L(G) =
{

μ ≥ 0
∣∣∣∣∑xc\i

μc(xc\i, xi) = μi(xi) ∀c, i : i ∈ c, xi∑
xi

μi(xi) = 1 ∀i
}

In this paper we use the dual problem of Eq. (1), which takes the form:

min
δ

∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑

c

max
xc

(
θc(xc)−

∑
i:i∈c

δci(xi)

)
(2)

where δ are dual variables corresponding to the marginalization constraints in
L(G) (see [22, 28, 23]).1 This formulation offers several advantages. First, it
minimizes an upper bound on the true MAP value. Second, it provides an opti-
mality certificate through the duality gap w.r.t. a decoded primal solution [23].
Third, the resulting problem is unconstrained, which facilitates its optimization.
Indeed, several algorithms have been proposed for optimizing this dual problem.
The two main approaches are block coordinate descent [14, 28, 7] and subgra-
dient descent [16], each with its advantages and disadvantages. In particular,
coordinate descent algorithms are typically much faster at minimizing the dual,
while the subgradient method is guaranteed to converge to the global optimum
(see [23] for in-depth discussion).

Recently, Jojic et al. [13] presented an accelerated dual decomposition algo-
rithm which stems from adding strongly convex smoothing terms to the subprob-
lems in the dual function Eq. (2). Their method achieves a better convergence
rate over the standard subgradient method (O

(
1
ε

)
vs. O

(
1
ε2

)
). An alternative

approach, that is also globally convergent, has been recently suggested by Mar-
tins et al. [17]. Their approach is based on an augmented Lagrangian method,
which we next discuss.

3 The Alternating Direction Method of Multipliers

We now briefly review ADMM for convex optimization [8, 5, 4, 2].

1 An equivalent optimization problem can be derived via a dual decomposition ap-
proach [23].
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Consider the following optimization problem:

minimize f(x) + g(z) s.t. Ax = z (3)

where f and g are convex functions. The ADMM approach begins by adding the
function ρ

2 ‖Ax− z‖2 to the above objective, where ρ > 0 is a penalty parameter.
This results in the optimization problem:

minimize f(x) + g(z) +
ρ

2
‖Ax− z‖2 s.t. Ax = z (4)

Clearly the above has the same optimum as Eq. (3) since when the constraints
Ax = z are satisfied, the added quadratic term equals zero. The Lagrangian of
the augmented problem Eq. (4) is given by:

Lρ(x, z, ν) = f(x) + g(z) + ν�(Ax − z) +
ρ

2
‖Ax− z‖2 (5)

where ν is a vector of Lagrange multipliers. The solution to the problem of
Eq. (4) is given by maxν minx,z Lρ(x, z, ν). The ADMM method provides an ele-
gant algorithm for finding this saddle point. The idea is to combine subgradient
descent over ν with coordinate descent over the x and z variables. The method
applies the following iterations:

xt+1 =arg min
x

Lρ(x, zt, νt)

zt+1 =arg min
z

Lρ(xt+1, z, νt)

νt+1 =νt + ρ
(
Axt+1 − zt+1

)
(6)

The algorithm consists of primal and dual updates, where the primal update is
executed sequentially, minimizing first over x and then over z. This split retains
the decomposition of the objective that has been lost due to the addition of the
quadratic term.

The algorithm is run either until the number of iterations exceeds a predefined
limit, or until some termination criterion is met. A commonly used such stopping
criterion is: ‖Ax− z‖2 ≤ ε and

∥∥zt+1 − zt
∥∥2 ≤ ε. These two conditions can serve

to bound the suboptimality of the solution.
The ADMM algorithm is guaranteed to converge to the global optimum of

Eq. (3) under rather mild conditions [2]. However, in terms of convergence rate,
the worst case complexity of ADMM is O( 1

ε2 ). Despite this potential caveat,
ADMM has been shown to work well in practice (e.g., [1, 26]). Recently, accel-
erated variants on the basic alternating direction method have been proposed
[9]. These faster algorithms are based on linearization and come with improved
convergence rate of O(1

ε ), achieving the theoretical lower bound for first-order
methods [19]. In this paper we focus on the basic ADMM formulation and leave
derivation of accelerated variants to future work.
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4 The Augmented Dual LP Algorithm

In this section we derive our algorithm by applying ADMM to the dual MAP-
LP problem of Eq. (2). The challenge is to design the constraints in a way that
facilitates efficient closed-form solutions for all updates.

To this end, we duplicate the dual variables δ and denote the second copy by
δ̄. We then introduce additional variables λc corresponding to the summation
of δ’s pertaining to factor c. These agreement constraints are enforced through
δ̄, and thus we have a constraint δci(xi) = δ̄ci(xi) for all c, i : i ∈ c, xi, and
λc(xc) =

∑
i:i∈c δ̄ci(xi) for all c, xc.

Following the ADMM framework, we add quadratic terms and obtain the
augmented Lagrangian for the dual MAP-LP problem of Eq. (2):

Lρ(δ, λ, δ̄, γ, μ) =∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑

c

max
xc

(θc(xc)− λc(xc))

+
∑

c

∑
i:i∈c

∑
xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+

ρ

2

∑
c

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
+
∑

c

∑
xc

μc(xc)

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)
+

ρ

2

∑
c

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

To see the relation of this formulation to Eq. (5), notice that (δ, λ) subsume the
role of x, δ̄ subsumes the role of z (with g(z) = 0), and the multipliers (γ, μ)
correspond to ν.

The updates of our algorithm, which stem from Eq. (6), are summarized
in Alg. 1 (a detailed derivation appears in Appendix A). In Alg. 1 we define
N(i) = {c : i ∈ c}, and the subroutine w = TRIM(v, d) that serves to clip the
values in the vector v at some threshold t (i.e., wi = min{vi, t}) such that the
sum of removed parts equals d > 0 (i.e.,

∑
i vi − wi = d). This can be carried

out efficiently in linear time (in expectation) by partitioning [3].
Notice that all updates can be computed efficiently so the cost of each iteration

is similar to that of message passing algorithms like MPLP [7] or MSD [28],
and to that of dual decomposition [13, 16]. Furthermore, significant speedup is
attained by caching some results for future iterations. In particular, the threshold
in the TRIM subroutine (the new maximum) can serve as a good initial guess
at the next iteration, especially at later iterations where the change in variable
values is quite small. Finally, many of the updates can be executed in parallel. In
particular, the δ update can be carried out simultaneously for all variables i, and
likewise all factors c can be updated simultaneously in the λ and δ̄ updates. In
addition, δ and λ can be optimized independently, since they appear in different
parts of the objective. This may result in considerable reduction in runtime when
executed on parallel architecture.2

2 In our experiments we used sequential updates.
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Algorithm 1. The Augmented Dual LP Algorithm (ADLP)
for t = 1 to T do

Update δ: for all i = 1, ..., n

Set θ̄i = θi +
∑

c:i∈c(δ̄ci − 1
ρ
γci)

θ̄′
i = TRIM(θ̄i,

|N(i)|
ρ

)

q = (θ̄i − θ̄′
i)/|N(i)|

Update δci = δ̄ci − 1
ρ
γci − q ∀c : i ∈ c

Update λ: for all c ∈ C

Set θ̄c = θc −∑i:i∈c δ̄ci + 1
ρ
μc

θ̄′
c = TRIM(θ̄c,

1
ρ
)

Update λc = θc − θ̄′
c

Update δ̄: for all c ∈ C, i : i ∈ c, xi

Set vci(xi) = δci(xi) + 1
ρ
γci(xi) +

∑
xc\i

λc(xc\i, xi) + 1
ρ

∑
xc\i

μc(xc\i, xi)

v̄c = 1
1+

∑
k:k∈c |Xc\k|

∑
k:k∈c |Xc\k|

∑
xk

vck(xk)

Update δ̄ci(xi) = 1
1+|Xc\i|

[
vci(xi)−∑j:j∈c,j �=i |Xc\{i,j}|

(∑
xj

vcj(xj)− v̄c

)]
Update the multipliers:

γci(xi)← γci(xi) + ρ
(
δci(xi)− δ̄ci(xi)

)
for all c ∈ C, i : i ∈ c, xi

μc(xc)← μc(xc) + ρ
(
λc(xc)−∑i:i∈c δ̄ci(xi)

)
for all c ∈ C, xc

end for

5 Experimental Results

To evaluate our augmented dual LP (ADLP) algorithm (Alg. 1) we compare it
to two other algorithms for finding an approximate MAP solution. The first is
MPLP of Globerson and Jaakkola [7], which minimizes the dual LP of Eq. (2)
via block coordinate descent steps (cast as message passing). The second is
the accelerated dual decomposition (ADD) algorithm of Jojic et al. [13].3 We
conduct experiments on protein design problems from the dataset of Yanover
et al. [29]. In these problems we are given a 3D structure and the goal is to
find a sequence of amino-acids that is the most stable for that structure. The
problems are modeled by singleton and pairwise factors and can be posed as
finding a MAP assignment for the given model. This is a demanding setting in
which each problem may have hundreds of variables with 100 possible states on
average [29, 24].

Figure 1 shows two typical examples of protein design problems. It plots
the objective of Eq. (2) (computed using δ variables only) as a function of the
execution time for all algorithms. First, in Figure 1 (left) we observe that the co-
ordinate descent algorithm (MPLP) converges faster than the other algorithms,

3 For both algorithms we used the same C++ implementation used by Jojic et al.
[13], available at http://ai.stanford.edu/~sgould/svl. Our own algorithm was
implemented as an extension of their package.

http://ai.stanford.edu/~sgould/svl
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Fig. 1. Comparison of three algorithms for approximate MAP estimation: our aug-
mented dual LP algorithm (ADLP), accelerated dual decomposition algorithm (ADD)
by Jojic et al. [13], and the dual coordinate descent MPLP algorithm [7]. The figure
shows two examples of protein design problems, for each the dual objective of Eq. (2)
is plotted as a function of execution time. Dashed lines denote the value of the best
decoded primal solution.

however it tends to stop prematurely and yield suboptimal solutions. In contrast,
ADD and ADLP take longer to converge but achieve the globally optimal solu-
tion to the approximate objective. Second, it can be seen that the convergence
times of ADD and ADLP are very close, with a slight advantage to ADD. The
dashed lines in Figure 1 show the value of the decoded primal solution (assign-
ment) [23]. We see that there is generally a correlation between the quality of
the dual objective and the decoded primal solution, namely the decoded primal
solution improves as the dual solution approaches optimality. Nevertheless, we
note that there is no dominant algorithm in terms of decoding (here we show
examples where our decoding is superior). In many cases MPLP yields better
decoded solutions despite being suboptimal in terms of the dual objective (not
shown; this is also noted in [13]).

We also conduct experiments to study the effect of the penalty parameter ρ.
Our algorithm is guaranteed to globally converge for all ρ > 0, but its choice
affects the actual rate of convergence. In Figure 1 (right) we compare two values
of the penalty parameter ρ = 0.01 and ρ = 0.05. It shows that setting ρ = 0.01
results in somewhat slower convergence to the optimum, however in this case the
final primal solution (dashed line) is better than that of the other algorithms.
In practice, in order to choose an appropriate ρ, one can run a few iterations
of ADLP with several values and see which one achieves the best objective
[17]. We mention in passing that ADD employs an accuracy parameter ε which
determines the desired suboptimality of the final solution [13]. Setting ε to a
large value results in faster convergence to a lower accuracy solution. On the one
hand, this trade-off can be viewed as a merit of ADD, which allows to obtain
coarser approximations at reduced cost. On the other hand, an advantage of our
method is that the choice of penalty ρ affects only the rate of convergence and
does not impose additional reduction in solution accuracy over that of the LP
relaxation. In Figure 1 (left) we use ε = 1, as in Jojic et al., while in Figure 1
(right) we compare two values ε = 1 and ε = 10 to demonstrate the effect of this
accuracy parameter.
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Fig. 2. (Left) Comparison for a side chain prediction problem similar to Figure 1 (left).
(Right) Comparison of our augmented dual LP algorithm (ADLP) and a generalized
variant (APLP) of the ADMM algorithm by Martins et al. [17] on a protein design
problem. The dual objective of Eq. (2) is plotted as a function of execution time.
Dashed lines denote the value of the best decoded primal solution.

We next compare performance of the algorithms on a side chain prediction
problem [29]. This problem is the inverse of the protein design problem, and
involves finding the 3D configuration of rotamers given the backbone structure
of a protein. Figure 2 (left) shows a comparison of MPLP, ADD and ADLP on one
of the largest proteins in the dataset (812 variables with 12 states on average). As
in the protein design problems, MPLP converges fast to a suboptimal solution.
We observe that here ADLP converges somewhat faster than ADD, possibly
because the smaller state space results in faster ADLP updates.

As noted earlier, Martins et al. [17] recently presented an approach that ap-
plies ADMM to the primal LP (i.e., Eq. (1)). Although their method is limited
to binary pairwise factors (and several global factors), it can be modified to
handle non-binary higher-order factors, as the derivation in Appendix B shows.
We denote this variant by APLP. As in ADLP, in the APLP algorithm all up-
dates are computed analytically and executed efficiently. Figure 2 (right) shows
a comparison of ADLP and APLP on a protein design problem. It illustrates
that ADLP converges significantly faster than APLP (similar results, not shown
here, are obtained for the other proteins).

6 Discussion

Approximate MAP inference methods based on LP relaxation have drawn much
attention lately due to their practical success and attractive properties. In this
paper we presented a novel globally convergent algorithm for approximate MAP
estimation via LP relaxation. Our algorithm is based on the augmented La-
grangian method for convex optimization, which overcomes the lack of strict
convexity by adding a quadratic term to smooth the objective. Importantly, our
algorithm proceeds by applying simple to implement closed-form updates, and
it is highly scalable and parallelizable. We have shown empirically that our algo-
rithm compares favorably with other state-of-the-art algorithms for approximate
MAP estimation in terms of accuracy and convergence time.
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Several existing globally convergent algorithms for MAP-LP relaxation rely
on adding local entropy terms in order to smooth the objective [6, 10, 12, 13].
Those methods must specify a temperature control parameter which affects the
quality of the solution. Specifically, solving the optimization subproblems at high
temperature reduces solution accuracy, while solving them at low temperature
might raise numerical issues. In contrast, our algorithm is quite insensitive to
the choice of such control parameters. In fact, the penalty parameter ρ affects
the rate of convergence but not the accuracy or numerical stability of the al-
gorithm. Moreover, despite lack of fast convergence rate guarantees, in practice
the algorithm has similar or better convergence times compared to other globally
convergent methods in various settings. Note that [17] also show an advantage
of their primal based ADMM method over several baselines.

Several improvements over our basic algorithm can be considered. One such
improvement is to use smart initialization of the variables. For example, since
MPLP achieves larger decrease in objective at early iterations, it is possible to
run it for a limited number of steps and then take the resulting variables δ for
the initialization of ADLP. Notice, however, that for this scheme to work well,
the Lagrange multipliers γ and μ should be also initialized accordingly. Another
potential improvement is to use an adaptive penalty parameter ρt (e.g., [11]).
This may improve convergence in practice, as well as reduce sensitivity to the
initial choice of ρ. On the downside, the theoretical convergence guarantees of
ADMM no longer hold in this case. Martins et al. [17] show that the ADMM
framework is also suitable for handling certain types of global factors, which
include a large number of variables in their scope (e.g., XOR factor). Using an
appropriate formulation, it is possible to incorporate such factors in our dual
LP framework as well.4 Finally, it is likely that our method can be further
improved by using recently introduced accelerated variants of ADMM [9]. Since
these variants achieve asymptotically better convergence rate, the application of
such methods to MAP-LP similar to the one we presented here will likely result
in faster algorithms for approximate MAP estimation.

In this paper, we assumed that the model parameters were given. However,
in many cases one wishes to learn these from data, for example by minimizing a
prediction loss (e.g., hinge loss [25]). We have recently shown how to incorporate
dual relaxation algorithms into such learning problems [18]. It will be interest-
ing to apply our ADMM approach in this setting to yield an efficient learning
algorithm for structured prediction problems.

Acknowledgments. We thank Ami Wiesel and Elad Eban for useful discus-
sions and comments on this manuscript. We thank Stephen Gould for his SVL
code. Ofer Meshi is a recipient of the Google European Fellowship in Machine
Learning, and this research is supported in part by this Google Fellowship.

4 The auxiliary variables λc are not used in this case.
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A Derivation of Augmented Dual LP Algorithm

In this section we derive the ADMM updates for the augmented Lagrangian of
the dual MAP-LP which we restate here for convenience:

Lρ(δ, λ, δ̄, γ, μ) =∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑

c

max
xc

(θc(xc)− λc(xc))

+
∑

c

∑
i:i∈c

∑
xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+

ρ

2

∑
c

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
+
∑

c

∑
xc

μc(xc)

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)
+

ρ

2

∑
c

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

Updates

– The δ update:
For each variable i = 1, ..., n consider a block δi which consists of δci for all
c : i ∈ c. For this block we need to minimize the following function:

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑
c:i∈c

∑
xi

γci(xi)δci(xi)+
ρ

2

∑
c:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
Equivalently, this can be written more compactly in vector notation as:

min
δi

1
2
‖δi‖2 − (δ̄i − 1

ρ
γi)�δi +

1
ρ

max
xi

(θi(xi) +
∑
c:i∈c

δci(xi))

where δ̄i and γi are defined analogous to δi. The closed-form solution to
this QP is given by the update in Alg. 1. It is obtained by inspecting KKT
conditions and exploiting the structure of the summation inside the max (for
a similar derivation see [3]).

– The λ update:
For each factor c ∈ C we seek to minimize the function:

max
xc

(θc(xc)− λc(xc)) +
∑
xc

μc(xc)λc(xc) +
ρ

2

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

In equivalent vector notation we have the problem:

min
λc

1
2
‖λc‖2 −

(∑
i:i∈c

δ̄ci − 1
ρ
μc

)�
λc +

1
ρ

max
xc

(θc(xc)− λc(xc))

This QP is very similar to that of the δ update and can be solved using the
same technique. The resulting closed-form update is given in Alg. 1.
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– The δ̄ update:
For each c ∈ C we consider a block which consists of δ̄ci for all i : i ∈ c. We
seek a minimizer of the function:

−
∑
i:i∈c

∑
xi

γci(xi)δ̄ci(xi) +
ρ

2

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
−
∑
xc

μc(xc)
∑
i:i∈c

δ̄ci(xi) +
ρ

2

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

Taking partial derivative w.r.t. δ̄ci(xi) and setting to 0 yields:

δ̄ci(xi) =
1

1 + |Xc\i|

⎛⎝vci(xi)−
∑

j:j∈c,j �=i

|Xc\{i,j}|
∑
xj

δ̄cj(xj)

⎞⎠
where: vci(xi) = δci(xi)+ 1

ργci(xi)+
∑

xc\i
λc(xc\i, xi)+ 1

ρ

∑
xc\i

μc(xc\i, xi).
Summing this over xi and i : i ∈ c and plugging back in, we get the update
in Alg. 1.

– Finally, the multipliers update is straightforward.

B Derivation of Augmented Primal LP Algorithm

We next derive the algorithm for optimizing Eq. (1) with general local factors.
Consider the following formulation which is equivalent to the primal MAP-LP

problem of Eq. (1). Define:

fi(μi) =

{∑
xi

μi(xi)θi(xi) μi(xi) ≥ 0 and
∑

xi
μi(xi) = 1

−∞ otherwise

fc(μc) =

{∑
xc

μc(xc)θc(xc) μc(xc) ≥ 0 and
∑

xc
μc(xc) = 1

−∞ otherwise

f accounts for the non-negativity and normalization constraints in L(G). We
add the marginalization constraints via copies of μc for each i ∈ c, denoted by
μ̄ci. Thus we get the augmented Lagrangian:

Lρ(μ, μ̄, δ, β) =∑
i

fi(μi) +
∑

c

fc(μc)

−
∑

c

∑
i:i∈c

∑
xi

δci(xi) (μ̄ci(xi)− μi(xi))− ρ

2

∑
c

∑
i:i∈c

∑
xi

(μ̄ci(xi)− μi(xi))
2

−
∑

c

∑
i:i∈c

∑
xc

βci(xc) (μ̄ci(xc)− μc(xc))− ρ

2

∑
c

∑
i:i∈c

∑
xc

(μ̄ci(xc)− μc(xc))
2
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where μ̄ci(xi) =
∑

xc\i
μ̄ci(xc\i, xi).

To draw the connection with Eq. (5), in this formulation μ subsumes the
role of x, μ̄ subsumes the role of z (with g(z) = 0), and the multipliers (δ, β)
correspond to ν. We next show the updates which result from applying Eq. (6)
to this formulation.

– Update μi for all i = 1, ..., n:

μi ← arg max
μi∈Δi

μ�
i

(
θi +

∑
c:i∈c

(δci + ρMiμ̄ci)

)
− 1

2
μ�

i (ρ|N(i)|I)μi

where Miμ̄ci =
∑

xc\i
μ̄ci(xc\i, ·).

We have to maximize this QP under simplex constraints on μi. Notice that
the objective matrix is diagonal, so this can be solved in closed form by
shifting the target vector and then truncating at 0 such that the sum of
positive elements equals 1 (see [3]). The solution can be computed in linear
time (in expectation) by partitioning [3].

– Update μc for all c ∈ C:

μc ← arg max
μc∈Δc

μ�
c

(
θc +

∑
i:i∈c

(βci + ρμ̄ci)

)
− 1

2
μ�

c (ρ|N(c)|I)μc

where N(c) = {i : i ∈ c}.
Again we have a projection onto the simplex with diagonal objective matrix,
which can be done efficiently.

– Update μ̄ci for all c ∈ C, i : i ∈ c:

μ̄ci ← argmax
μ̄ci

μ̄�
ci

(
M�

i (ρμi − δci)− βci + ρμc

)− ρ

2
μ̄�

ci

(
M�

i Mi + I
)
μ̄ci

Here we have an unconstrained QP, so the solution is obtained by H−1v.
Further notice that the inverse H−1 can be computed in closed form. To see
how, M�

i Mi is a block-diagonal matrix with blocks of ones with size |Xi|.
Therefore, H = ρ

(
M�

i Mi + I
)

is also block-diagonal. It follows that the
inverse H−1 is a block-diagonal matrix where each block is the inverse of the
corresponding block in H . Finally, it is easy to verify that the inverse of a
block ρ

(
1|Xi| + I|Xi|

)
is given by 1

ρ

(
I|Xi| − 1

|Xi|+11|Xi|
)
.

– Update the multipliers:

δci(xi)←δci(xi) + ρ (μ̄ci(xi)− μi(xi)) for all c ∈ C, i : i ∈ c, xi

βci(xc)←βci(xc) + ρ (μ̄ci(xc)− μc(xc)) for all c ∈ C, i : i ∈ c, xc
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let non lineares. Revue Française d’Automatique, Informatique, et Recherche
Opérationelle 9, 41–76 (1975)

[9] Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for
minimizing the sum of two convex functions. Technical report, UCLA CAM (2010)

[10] Hazan, T., Shashua, A.: Norm-product belief propagation: Primal-dual message-
passing for approximate inference. IEEE Transactions on Information The-
ory 56(12), 6294–6316 (2010)

[11] He, B.S., Yang, H., Wang, S.L.: Alternating direction method with self-adaptive
penalty parameters for monotone variational inequalities. Journal of Optimization
Theory and Applications 106, 337–356 (2000)

[12] Johnson, J.: Convex Relaxation Methods for Graphical Models: Lagrangian and
Maximum Entropy Approaches. PhD thesis, EECS, MIT (2008)

[13] Jojic, V., Gould, S., Koller, D.: Fast and smooth: Accelerated dual decomposi-
tion for MAP inference. In: Proceedings of International Conference on Machine
Learning (2010)

[14] Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10),
1568–1583 (2006)

[15] Komodakis, N., Paragios, N.: Beyond loose LP-relaxations: Optimizing mRFs by
repairing cycles. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part
III. LNCS, vol. 5304, pp. 806–820. Springer, Heidelberg (2008)

[16] Komodakis, N., Paragios, N., Tziritas, G.: Mrf energy minimization and beyond
via dual decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 531–552 (2011)



An Alternating Direction Method for Dual MAP LP Relaxation 483

[17] Martins, A.F.T., Figueiredo, M.A.T., Aguiar, P.M.Q., Smith, N.A., Xing, E.P.: An
augmented lagrangian approach to constrained map inference. In: International
Conference on Machine Learning (June 2011)

[18] Meshi, O., Sontag, D., Jaakkola, T., Globerson, A.: Learning efficiently with ap-
proximate inference via dual losses. In: Proceedings of the 27th International Con-
ference on Machine Learning, pp. 783–790 (2010)

[19] Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Pro-
gramming 103, 127–152 (2005)

[20] Ravikumar, P., Agarwal, A., Wainwright, M.: Message-passing for graph-
structured linear programs: proximal projections, convergence and rounding
schemes. In: Proc. of the 25th International Conference on Machine Learning,
pp. 800–807 (2008)

[21] Rush, A.M., Sontag, D., Collins, M., Jaakkola, T.: On dual decomposition and
linear programming relaxations for natural language processing. In: Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing,
EMNLP (2010)

[22] Schlesinger, M.I.: Syntactic analysis of two-dimensional visual signals in noisy
conditions. Kibernetika 4, 113–130 (1976)

[23] Sontag, D., Globerson, A., Jaakkola, T.: Introduction to dual decomposition for
inference. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine
Learning. MIT Press, Cambridge (2011)

[24] Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., Weiss, Y.: Tightening LP re-
laxations for MAP using message passing. In: Proc. of the 24th Annual Conference
on Uncertainty in Artificial Intelligence, pp. 503–510 (2008)

[25] Taskar, B., Guestrin, C., Koller, D.: Max margin Markov networks. In: Thrun, S.,
Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems,
vol. 16, pp. 25–32. MIT Press, Cambridge (2004)

[26] Tosserams, S., Etman, L., Papalambros, P., Rooda, J.: An augmented lagrangian
relaxation for analytical target cascading using the alternating direction method
of multipliers. Structural and Multidisciplinary Optimization 31, 176–189 (2006)

[27] Wainwright, M.J., Jordan, M.: Graphical models, exponential families, and varia-
tional inference. Foundations and Trends in Machine Learning 1(1-2), 1–305 (2008)

[28] Werner, T.: A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence 29, 1165–1179 (2007)

[29] Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief
propagation – an empirical study. Journal of Machine Learning Research 7, 1887–
1907 (2006)



Aggregating Independent and Dependent

Models to Learn Multi-label Classifiers�
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Artificial Intelligence Center, University of Oviedo at Gijón (Spain)
{elena,quevedo,juanjo}@aic.uniovi.es

Abstract. The aim of multi-label classification is to automatically ob-
tain models able to tag objects with the labels that better describe them.
Despite it could seem like any other classification task, it is widely known
that exploiting the presence of certain correlations between labels helps
to improve the classification performance. In other words, object de-
scriptions are usually not enough to induce good models, also label in-
formation must be taken into account. This paper presents an aggregated
approach that combines two groups of classifiers, one assuming indepen-
dence between labels, and the other considering fully conditional depen-
dence among them. The framework proposed here can be applied not
only for multi-label classification, but also in multi-label ranking tasks.
Experiments carried out over several datasets endorse the superiority of
our approach with regard to other methods in terms of some evaluation
measures, keeping competitiveness in terms of others.

1 Introduction

In multi-label classification the goal is to induce a hypothesis to assign a set
of labels for each instance rather than a single class, as happens in multi-class
classification. This kind of tasks arises in many practical domains; nowadays
almost all media contents (text documents, songs, movies or videos) are tagged
with several labels to briefly inform users about their actual content. Another
well-known example in the research community is the keywords attached to a
paper; useful to indicate the relevant topics of the paper.

At first sight, one could think that multi-label classification can be easily
solved applying or adapting state-of-the-art (binary or multi-class) classification
algorithms. In fact, many of the first approaches proposed were aimed to extend
these methods to handle multi-label data, including decision trees [2], instance-
based algorithms [22], Neural Networks [21], Support Vector Machines [6], Naive
Bayes [12], Conditional Random Fields [9] and boosting [16]. However, in order
to obtain good performance results, it is not enough to adapt a good learning
approach, otherwise it is also necessary to design specific methods that exploit
somehow the particularities of multi-label data, as most of the cited works do.
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Mainly, multi-label learning presents two challenging problems. The first one
bears on the computational complexity of the algorithms. If the number of labels
is high, then a very complex approach is not practical for business use, so the
scalability is a key issue in this field. The second dare is related with the own
nature of this task and the multi-label data. Not only the number of classes
is higher than in multi-class classification, but also each example belongs to
an indeterminate number of labels, and more important, labels present some
relationships between them. In other words, object descriptions are usually not
enough to induce correct models, also the information among labels must be
taken into account. The dimensionality of the label space, together with the
possibility of incomplete labeling data obtained from different sources, make
this goal even more difficult to achieve.

Despite the first issue is important to make algorithms applicable in large
domains, from a learning perspective probably the hottest topic in multi-label
community is to design new methods able to detect and exploit dependences
among labels. In fact, several methods are being proposed in that direction.
Roughly speaking, we can categorize them according to two major properties:
i) the size of the subset of labels whose dependences are searched for; and ii)
depending on the type of correlations they try to find. Looking at the first
property, we have those methods that only consider pairwise relations between
labels [6,7,13,16,21], and, secondly, approaches that take into account correla-
tions among the labels in bigger subsets [14,15,19], including those that consider
the influence of all other labels in the prediction of one particular label [1,10].
On the other hand, concerning the type on dependences they seek to capture [3],
there are some methods designed to detect conditional label dependence (refered
to the dependence of the labels given a specific instance), for example [3,9,15,18];
and unconditional dependence (a global type of dependence independent of any
concrete observation), see [1,10,21].

The main proposal of this paper is grounded on the following idea. Thinking
again about the keywords example, all of us know that, for a particular paper,
there are some clearly relevant and irrelevant keywords. But there are also a
few keywords than can be considered relevant or irrelevant, depending on the
authors’ opinion. Different authors with different criteria could select some differ-
ent keywords for the same paper. Our assumption is that labels that are clearly
relevant or clearly irrelevant can be predicted using only the description of the
object. However, considering the relationships with other labels is also neces-
sary to correctly assign the somehow-relevant labels. This is the reason why this
paper presents a decomposition approach based on aggregating two groups of
classifiers: the first one is learned assuming label independence, and the second
one is built considering a complete label dependence. These dependent classifiers
are designed to capture conditional dependence, taking into account the influ-
ence of all other labels. Another interesting property of the approach presented
here is that it can be easily adapted to cope with different multi-label learning
tasks, not only classification, but also ranking.
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The rest of the paper is organized as follows. Next section describes a formal
framework for multi-label classification and reviews previous approaches related
with this work. Section 3 exposes the proposals of this paper, based on the
idea of combining two groups of binary models. Finally, experimental results are
reported in Section 4 and some conclusions are drawn in Section 5.

2 Notation and Related Work

2.1 Formal Framework for Multi-label Classification

Let L = {
1, 
2, . . . , 
m} be a finite and non-empty set of labels, and let X be an
input space. We consider a multi-label classification task given by a training set
S = {(x1, y1), . . . , (xn, yn)}, whose instances were independently and randomly
obtained from an unknown probability distribution P(X,Y) on X ×Y, in which
the output space Y is the power set of L, in symbols P(L). In order to make the
notation easier to read, we define yi as a binary vector, yi = {y1, y2, . . . , ym},
in which each component yj = 1 indicates the presence of label 
j in the set of
relevant labels of xi. Using this convention, the output space can be also defined
as Y = {0, 1}m.

The goal of a multi-label classification is to induce a hypothesis h : X −→ Y
from S, that correctly predicts the subset of labels from L for a new unlabeled
instance x. Without any loss of generality, this hypothesis can be seen as a
combination of a collection of sub-hypotheses, h(x) = (h1(x), h2(x), . . . hm(x)),
one per label, in which each hj takes the form of

hj : X −→ {0, 1}, (1)

and it is able to predict if the label 
j must be attached to the instance x or
not. Sometimes, the goal is not to return the relevant labels, but to obtain the
posterior probability of each label given x. In that case, hj : X −→ [0, 1]. Notice
that these probabilistic classifiers can also be useful to rank the labels according
to their posteriors. This paper only discusses some multi-label classifiers of the
form of Equation 1, despite many of them can have a probabilistic/ranking
version, including ours.

In order to measure the performance of multi-label classifiers, several metrics
have been proposed. A unified presentation of existing evaluation measures for
multi-label classification can be found in [18], including their categorization into
example-based, label-based and ranking-based measures. Here we will consider
only example-based evaluation metrics for three reasons: i) this paper focuses
on multi-label classification rather than multi-label ranking, moreover, some of
the state-of-the-art methods employed to compare do not produce a ranking of
labels, ii) we are interested in studying whether the different approaches capture
or not the dependencies among labels at example-level, and iii) some of the
example-based metrics used were originally proposed in [10], that also introduces
a stacking-based method for multi-label learning, which is probably the most
similar approach to ours. The following evaluation measures have been taken
from the Information Retrieval field:
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– Jaccard index computes the percentage of relevant labels predicted in the
subset formed by the union of returned and relevant labels1,

Jaccard(y, h(x)) =
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1[[yi = 1 or hi(x) = 1]]

. (2)

– Precision determines the fraction of relevant labels in the predicted labels,

Precision(y, h(x)) =
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1[[hi(x) = 1]]

. (3)

– Recall is the proportion of relevant labels of the example correctly predicted,

Recall(y, h(x)) =
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1[[yi = 1]]

. (4)

– F1 is the evenly weighted harmonic mean of Precision and Recall,

F1(y, h(x)) =
2
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1([[yi = 1]] + [[hi(x) = 1]])

. (5)

The evaluation metrics presented above are biased towards those methods that
correctly predict the relevant labels. That is one of the reasons to select them,
because they allow us to study if relevant labels are detected or not, specially in
those situations where some kind of correlation occurs. Finally, the performance
in multi-label classification can be reported in terms of other two measures:

– Hamming loss, which is defined as the proportion of labels whose relevance
is incorrectly predicted:

Hamming(y, h(x)) =
1
m

m∑
i=1

[[yi �= hi(x)]]. (6)

– 0/1 loss, looks if predicted and relevant label subsets are equal or not.

Zero−One(y, h(x)) = [[y �= h(x)]]. (7)

2.2 Some Approaches for Multi-label Classification

The most employed baseline method for multi-label classification is the Binary
Relevance (BR) algorithm. BR decomposes the learning of h into a set of binary
classification tasks, one per label, where each single model hj is learned inde-
pendently of the rest, using only the information of that particular label and
ignoring all other labels. Despite its simplicity, BR algorithm presents several
advantages: i) any binary learning method can be taken as base learner, ii) it has
linear complexity with respect to the number of labels and iii) it can be easily
parallelized. The main drawback of BR is that it does not take into account
1 The expression [[p]] evaluates to 1 if the predicate p is true, and to 0 otherwise.



488 E. Montañés, J.R. Quevedo, and J. José del Coz

any label dependences and may fail to predict some label combinations if such
correlations are present. However, using a state-of-the-art base learner, for in-
stance SVM, with a proper tuning parameters process, BR usually obtains quite
good results in benchmark datasets of the literature. Moreover, for some partic-
ular evaluation metrics, as Hamming loss (Eq. 6), BR offers a very competitive
performance. This behavior can be explained studying BR from a probabilistic
point of view. As in most classification learning process, each binary model hj is
able to estimate P(yj |x). This is the reason why BR is well-suited for every loss
function whose risk minimizer can be expressed in terms of marginal distribu-
tions of labels, for instance Hamming loss. On the other hand, the fact that BR
does not take label dependence into account obviously affects its performance
for evaluation measures like 0/1 loss. Hence, it is necessary to estimate the joint
label probability distributions to obtain predictions that minimize this sort of
metrics. A formal probabilistic analysis of multi-label classification, studying the
connection between risk minimization and loss functions can be found in [3,4].

Godbole and Sharawagi present one approach [10] to overcome the label-
independence problem of BR. They apply the stacked generalization learning
paradigm [20], also known simply as stacking, in the context of multi-label clas-
sification. In the learning phase, their method builds a stack of two groups of
classifiers. The first one is formed by the same binary classifiers yielded by BR
method, in symbols, h1(x) = (h1

1(x), . . . , h1
m(x)). In a second level, also called

meta-level, another group of binary models (one for each label again) is learned,
but these classifiers consider an augmented feature space that includes the binary
outputs of all models of the first level, h2(x, y′) = (h2

1(x, y′), . . . , h2
m(x, y′)),

where y′ = h1(x). The idea is to learn the relationships between labels in the
meta-level step. In the testing phase, the final predictions are the outputs of the
meta-level classifiers, h2(x), using the outputs of h1(x) exclusively to obtain the
values of the augmented feature space.

Some variants of the stacking approach have been proposed, mainly focused
on reducing the augmented feature space removing some label dimensions. The
idea is to ignore the information of those labels that are no related with the
label j of the model h2

j being learned. For instance, in [17] the authors propose
to calculate the chi-coefficient between each pair of labels, (j, k), based on an
initial single pass over the training set. The method prunes the information of
each label k with a correlation below a threshold to induce the meta-model h2

j .
This approach improves the computational efficiency, without any significant
loss in predictive performance, even some gains are obtained for some data sets.

In any case, the meta-level classifiers of the stacking approach estimates
P(yj |x, y′), where y′ is in turn an estimation that depends only on x. This
chain of estimations can explain why perhaps y′ does not contain enough infor-
mation to infer the dependence of label yj with respect to other labels.

Read et al. describe [15] a learning algorithm called Classifier Chain (CC), that
can model label correlations while maintaining a computational complexity of the
same order as that of BR. As its name denotes, CC involves m binary classifiers
linked along a chain, where each classifier deals with the binary relevance problem
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associated with one label. In the training phase, the feature space of each classifier
in the chain is extended with the actual label information of all previous links. For
instance, if the chain follows the order of the set of labels, then the functional form
of each classifier hj will be:

hj : X × {0, 1}j−1 −→ {0, 1}, (8)

in which the actual label data of the previous labels in the chain, y1, . . . , yj−1, are
used to build hj. Notice that all binary models can be learned in parallel. How-
ever, in the testing phase, the classifiers are applied following the chain order,
using the binary outputs of the previous models as additional input information.
In symbols, h(x) = (h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), . . .). Obvi-
ously, the label order in the chain affects the performance obtained. Although
heuristics can be used to select a promising chain order, the authors solve the
issue by an Ensemble of Classifier Chains (ECC). This approach ensembles dif-
ferent random chain orderings and a different sample of the training data for
learning each CC model.

Dembczyński et al. present in [3] a probabilistic framework for multi-label clas-
sification and propose the Probabilistic Classifier Chains (PCC) and its ensemble
version (EPCC). They generalize and outperform their counterpart methods, CC
and ECC, but increasing their testing complexity. One of the interesting contri-
butions of the paper is that it offers a probabilistic interpretation of CC. Given
an instance x it is possible to compute the conditional probability of each label
combination y ∈ Y, applying the product rule of probability:

P(y|x) = P(y1|x)
m∏

j=2

P(yj |x, y1, . . . , yj−1), (9)

whose probabilities can be obtained from the classifiers of the chain (Eq. 8) when
a probabilistic learner is used. The difference between PCC and CC is that the
former estimates the entire joint distribution of labels, whereas the later takes
sequential decisions and, in that sense, it offers a deterministic approximation of
PCC. PCC produces much better estimates but at the cost of higher complexity,
limiting its applicability to data sets with a small number of labels.

There are other methods, less related with our approach, that try to find
interdependences between labels. RAkEL(RAndom k-labELsets), presented by
Tsoumakas and Vlahavas [19], iteratively constructs an ensemble of Label Power-
set (LP) classifiers. LP algorithm considers each unique subset of labels that
exists in a multi-label training set as one of the classes of a new multi-class clas-
sification task. At each iteration, RAkEL randomly selects a k-labelset Y i from
L without replacement. Then, it learns a LP classifier of the form X → P(Y i).
A simple voting process determines the final classification set. Also, Cheng and
Hüllermeier propose IBLR (Instance-Based Learning by Logistic Regression) [1].
IBLR unifies instance-based learning and logistic regression, comprising both
methods as special cases. Considering only the label dependence problem, the
main idea is to extend the description of each example x by additional features
that express the presence or absent of each label in the neighborhood of x.
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3 Aggregating Independent and Dependent Classifiers

The main proposal of this paper is to build a multi-label classifier that combines
the two main options to tackle multi-label learning. On one hand, there are meth-
ods based on the assumption of label independence, that is, they only use object
descriptions in order to predict the labels attached to the object, as BR. On the
other hand, there are plenty of algorithms that induce models considering some
kind of label dependence, that is, they also employ the information about other
labels, like those described in the previous section. Formally, the latter approach
can encapsulate the former, in the sense that a label-dependent model can also
capture the cases that an independent model predicts well. However, when the
interdependences among labels are complex, learning reliable dependent models
becomes more difficult: richest hypothesis spaces must be used, increasing the
risk of overfitting, and more labeled data is needed, which will not be available
in some cases.

In our opinion, the two approaches are not exclusive, but complementary.
Hence, aggregating them may produce a more robust multi-label classifier. This
is the reason to propose Aggregating Independent and Dependent classifiers
(AID), a decomposition method that combines two groups of models. The first
one is learned assuming label independence and it will be formed by the same
classifiers yielded by BR method or by the first-level models of the stacking-
based approach [10], h1(x) = (h1

1(x), . . . , h1
m(x)). The second group of binary

classifiers, h2(x, y) = (h2
1(x, y2, . . . , ym), . . . , h2

m(x, y1, . . . , ym−1)), is built con-
sidering the information of all other labels. Thus, each h2

j is defined as:

h2
j : X × {0, 1}m−1 −→ {0, 1}. (10)

These classifiers try to detect fully conditional label dependence. Notice that all
models can be learned in parallel, because they are induced using only training
data. However, in the testing phase, the classifiers of the first group, h1, are
applied first and their binary outputs form the label features of models h2. The
final prediction is calculated aggregating both groups of responses:

h(x) = ⊕( (h1
1(x), . . . , h1

m(x)), (11)

(h2
1(x, h1

2(x), . . . , h1
m(x)), . . . , h2

m(x, h1
1(x), . . . , h1

m−1(x))) ),

in which ⊕ can be selected by practitioners, depending on the target loss function
and on the specific learning task. A natural choice for multi-label classification
is the or() function, being max() for ranking whenever h1 and h2 provide prob-
abilities. From a probabilistic point of view, AID method merges two different
estimations P(yj |x) and P(yj |x, y1, . . . , yj−1, yj+1, . . . , ym) for label yj. In this
sense AID takes into account the conditional dependence between labels.

Let us highlight that our method is quite general and can be adapted and im-
proved in several directions. We will cite three of them: i) the aggregate function
⊕ can be selected (or even learned) to optimize a specific target loss function, ii)
for a given query, the dependent models h2 can be iteratively applied until not
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new labels are assigned, as it is pointed out in [10], and iii) some dimensions of
the label data can be removed in order to make the learning of models h2 easier,
for instance, applying methods like [17]. Due to the lack of space, the study of
all these issues are beyond the scope of this work.

3.1 Comparison with Related Approaches

In order to better understand the properties of our method, it is interesting
to analyze the differences with respect to the most related approaches [3,10,15]
described above. We support the idea that AID solves two drawbacks of the
stacking-based approach [10]. Firstly, the independent models learned in the
first level are only employed to obtain the label-related features for training
and testing the meta-level classifiers. In other words, they are not used as pre-
dictors, when it is well-known that BR classifiers by themselves can obtain a
relatively good performance. The outputs of independent classifiers, once they
are calculated, can be additionally employed to decide the predicted labels. Sec-
ondly, and even more important, maybe some information about the dependence
among labels is missing when learning the meta-level classifiers. Instead of using
the actual labels of each example to augment the feature space, as AID classifier
does, the stacking method employs first-level classifiers predictions. Although it
is absolutely formal from a learning perspective–the data source is the same in
both training and the testing phases for meta-level classifiers–, if we think about
the trueness of the training data, the actual labels are less noisy and contain
the true correlation information among the labels. For this reason the estima-
tion of P(yj |x, y1, . . . , yj−1, yj+1, . . . , ym) is expected to be more accurate than
P(yj |x, y′). Next section experimentally analyzes these two issues.

Comparing our method with Classifier Chain [15], including its probabilistic
variant (PCC) [3], we can found pros and cons for both. One of the best proper-
ties of CC approaches, specially PCC, is that they are supported by probability
theory. PCC is able to estimate the entire joint distribution of the labels and
can select the most appropriate label combination for a particular loss function,
whereas CC and our approach offer only greedy approximations. But, on the
other hand, CC variants assume an in-chain dependence between labels when
sometimes their interdependences are much more complex. Moreover, some prob-
ability estimations of the chain can be poor when the correlated labels of a label
are not placed before in the chain, which most likely happens at the first links of
the chain. This is the reason for ensembling several CC or PCC classifiers. Our
approach considers for every label all others, so the correlated labels are always
taken into account, although detecting their dependences can be more difficult.

Analyzing the training computational complexity, all the approaches incur in
the same linear complexity with respect to the number of labels, but they differ
in the number of models, CC/PCC (m), stacking method and AID (2m), and
ECC/EPCC (Nm, where N is the number of ensembles). The testing complexity
of AID, the stacking method and CC/ECC is linear again, differing in the number
of evaluations requiered. PCC/EPCC evaluate an exponential order times the
models limiting their applicability to domains with few labels.
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Table 1. Properties of the data sets used in the experiments

Data set Attributes Examples Labels Cardinality

bibtex 1836 7395 159 2.40
emotions 72 593 6 1.87
enron 1001 1702 53 3.38
genbase 1185 662 27 1.25
image 135 2000 5 1.24
mediamill 120 5000 101 4.27
medical 1449 978 45 1.25
reuters 243 7119 7 1.24
scene 294 2407 6 1.07
slashdot 1079 3782 22 1.18
yeast 103 2417 14 4.24

4 Experiments

This section reports the results of the experiments performed to evaluate the pro-
posed multi-label classification method. The aim of the experiments was twofold.
Firstly, a deep comparative study between aggregating-based and stacking-based
methods was performed. The idea was to experimentally analyze the different
properties of both kind of strategies. Secondly, our aggregating approach was
compared with some other state-of-the-art methods for multi-label classification,
most of them aimed to detect correlations among labels. The experiments were
performed over several multi-label data sets whose main properties are shown in
Table 1. As it can be seen, they are quite different among them in the number
of attributes, examples, labels and cardinality (number of labels per example).

We tested two groups of multi-label classification algorithms. In the first place,
AID classifier (using or() as the aggregate function) and stacking-based ap-
proach, denoted as STA, were compared. We also included a couple of variants
of both to study some of their properties. Then, our aggregating approach was
compared with BR, MLkNN [22], RAkEL [19], IBLR [1] and ECC [15], in the
version described in [3], named as ECC∗. Among chain-based methods, we se-
lected ECC∗ because it offers the best trade-off between performance and com-
plexity [3]. CC performs worse and PCC/EPCC have a higher computational
complexity.

The binary base learner employed to obtain single classifiers for each label was
the logistic regression of [11]. The regularization parameter C was established
for each binary model performing a grid search over the values C ∈ {10p | p ∈
[−3, . . . , 3]} optimizing the accuracy estimated by means of a balanced 2-fold
cross validation repeated 5 times. Such parameter settings have only sense for
BR, ECC∗ and AID, and kept equal for all of these methods. That is, their
models are exactly the same when their respective input spaces are equal. The
parameters taken for the rest of the state-of-the-art methods were the default
ones suggested by their authors.
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The evaluation measures applied were those discussed in Section 2.1. As they
are defined on a per instance basis, the value for a test set is the average over all
instances. The scores reported, displayed as percentages for all measures, were
estimated by means of a 10-fold cross-validation. The ranks of each data sets
are indicated in brackets. In case of ties, average ranks are shown. The average
ranks over all data sets are computed and shown at the last row of each table.
Following the recommendations of [5] and [8], a two-step comparison for each
of the considered measures was performed. The first step is a Friedman test
that rejects the null hypothesis that states that not all learners perform equally.
The second step is a post-hoc pairwise comparison. We performed a Bergmann-
Hommel’s test using the software provided in [8]. This comparison is preferred
to that of Nemenyi [5], because it is a less conservative procedure able to detect
certain obvious differences that Nemenyi’s test may not obtain. In any case, the
significant differences found with both tests are almost equal.

4.1 AID Classifier vs. Stacking Approach

The goal of this experiment was to compare AID classifier and STA method
and also to gain some insights about their principles. This was the motivation
to include two variants of both. Table 2 and Table 3 show the scores of all
them; BR was added as the baseline reference. Our main intention was to obtain
answers to the following questions: i) Which method performs better, AID or
STA? ii) Which information is more appropriate to detect the correlations among
labels, the actual label data or the predictions of independent models? iii) In
the testing phase, which data is preferable to augment the feature space of
dependent models, binary or probabilistic outputs? And, finally, iv) is preferable
to aggregate or to stack the predictions of independent and dependent models?

The first question is the easiest to answer because it only involves two of the
algorithms. AID classifier performs better than STA in all the measures except
in Hamming loss. The differences are significant in the cases of Recall, F1 and
Jaccard index (see Table 6). In fact, our proposed method ranks first in five out
the six performance measures, while STA is not in the top-three for any of them.
Comparing both with the baseline method (BR), AID obtains better scores in
all metrics (significant differences in Recall, F1 and Jaccard index) except in
Hamming loss, in which BR performs significantly better. In the comparison
between STA and BR, STA wins in four out of the six (except Hamming loss and
Precision), but the differences are quite small and none of them are significant.

In order to answer the second question we included two new methods. The
idea was to feed AID classifier and STA with the training information that uses
the other one to learn the dependent models, h2. Following this idea, AIDy′

classifier uses the predicted labels given by independent models h1, and STAy

employs the true label data. Comparing now each algorithm with its counterpart
(AID vs. AIDy′

, STA vs. STAy), we find that in both cases the algorithm that
uses the actual label information (AID or STAy) improves the performance of its
counterpart in all measures, but Hamming loss. The differences are significant
in the case of F1 and Jaccard index for AID vs. AIDy′

. Interestingly, now AIDy′
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Table 2. Aggregated vs. stacking-based approaches: Precision, Recall, F1 and Jaccard
index

Precision BR AID STAy AIDy′
STA AIDp STAp

Bibtex 48.19(3) 48.70(2) 47.17(7) 48.01(4.5) 48.01(4.5) 49.08(1) 47.39 (6)
Emotions 56.36(6) 62.30(1) 62.09(2) 57.99(4) 56.58(5) 59.03(3) 54.31 (7)
Enron 69.99(1) 66.10(3) 65.51(4) 65.05(6) 65.18(5) 66.37(2) 61.69 (7)
Genbase 99.52(4) 99.52(4) 99.60(1.5) 99.40(6.5) 99.40(6.5) 99.52(4) 99.60 (1.5)
Image 44.23(7) 53.97(1) 53.88(2) 44.49(6) 44.54(5) 48.18(3) 46.17 (4)
Mediamill 78.81(1) 70.91(3) 70.11(5) 44.06(6) 43.49(7) 70.16(4) 71.67 (2)
Medical 78.94(6) 82.50(1) 81.33(2) 79.47(4.5) 79.47(4.5) 80.88(3) 78.31 (7)
Reuters 85.79(7) 87.53(1) 87.50(2) 85.88(6) 85.89(5) 87.48(3) 86.39 (4)
Scene 61.46(7) 67.81(3) 66.14(6) 66.88(5) 67.13(4) 71.89(1) 69.05 (2)
Slashdot 46.06(6) 53.32(1) 53.20(2) 47.91(3.5) 47.91(3.5) 46.98(5) 23.92 (7)
Yeast 71.13(1) 66.50(7) 66.80(6) 70.82(2) 70.81(3) 67.83(5) 68.51 (4)
Avg. rank (4.45) (2.45) (3.59) (4.91) (4.82) (3.09) (4.68)

Recall BR AID STAy AIDy′
STA AIDp STAp

Bibtex 33.80(7) 36.86(1) 34.82(5) 35.50(3) 35.49(4) 36.47(2) 34.06 (6)
Emotions 48.16(6) 68.03(1) 65.84(2) 51.02(4) 49.81(5) 53.44(3) 47.00 (7)
Enron 50.50(6) 59.89(1) 57.48(2) 56.78(3) 56.68(4) 54.86(5) 41.78 (7)
Genbase 99.07(4) 99.07(4) 99.07(4) 99.07(4) 99.07(4) 99.07(4) 99.07 (4)
Image 43.32(6) 55.96(1) 53.68(2) 43.69(4) 43.54(5) 47.74(3) 43.07 (7)
Mediamill 52.33(7) 59.25(3) 54.34(5) 62.03(1) 60.02(2) 58.02(4) 52.41 (6)
Medical 78.34(6) 83.86(1) 81.02(4) 83.09(2.5) 83.09(2.5) 80.57(5) 75.09 (7)
Reuters 84.90(7) 91.90(1) 90.29(2) 85.01(5) 84.93(6) 87.90(3) 85.10 (4)
Scene 62.87(7) 87.55(1) 82.38(2) 68.50(5) 68.17(6) 77.10(3) 70.81 (4)
Slashdot 44.21(6) 71.42(1) 70.37(2) 45.96(3.5) 45.96(3.5) 45.05(5) 21.68 (7)
Yeast 58.86(6) 66.42(1) 60.93(3) 59.43(4) 59.38(5) 62.50(2) 55.83 (7)
Avg. rank (6.18) (1.45) (3.00) (3.55) (4.27) (3.55) (6.00)

F1 BR AID STAy AIDy′
STA AIDp STAp

Bibtex 37.02(7) 39.22(1) 37.54(5) 37.93(3) 37.92(4) 39.03(2) 37.04 (6)
Emotions 49.20(6) 62.05(1) 60.87(2) 51.54(4) 50.33(5) 53.31(3) 48.03 (7)
Enron 55.66(6) 59.97(1) 58.20(2) 57.78(3.5) 57.78(3.5) 56.73(5) 47.32 (7)
Genbase 99.18(4) 99.18(4) 99.21(1.5) 99.10(6.5) 99.10(6.5) 99.18(4) 99.21 (1.5)
Image 42.12(7) 52.69(1) 51.68(2) 42.42(5) 42.38(6) 46.18(3) 43.10 (4)
Mediamill 59.17(3) 60.39(1) 57.23(4) 48.00(6) 47.06(7) 59.67(2) 56.67 (5)
Medical 77.33(6) 81.66(1) 79.82(2) 79.45(3.5) 79.45(3.5) 79.35(5) 75.54 (7)
Reuters 84.13(7) 87.74(1) 87.05(2) 84.23(5) 84.21(6) 86.43(3) 84.65 (4)
Scene 61.25(7) 71.38(2) 68.46(4) 66.68(6) 66.75(5) 72.85(1) 68.78 (3)
Slashdot 44.33(6) 55.97(1) 55.47(2) 46.05(3.5) 46.05(3.5) 45.18(5) 22.36 (7)
Yeast 61.68(5) 63.28(1) 60.98(6) 61.89(3) 61.86(4) 62.42(2) 58.44 (7)
Avg. rank (5.82) (1.36) (2.95) (4.45) (4.91) (3.18) (5.32)

Jaccard BR AID STAy AIDy′
STA AIDp STAp

Bibtex 31.50(7) 33.59(1) 32.32(3) 32.16(4) 32.15(5) 33.28(2) 31.70 (6)
Emotions 42.27(6) 52.89(1) 51.76(2) 44.52(4) 43.46(5) 46.12(3) 41.68 (7)
Enron 44.69(5) 48.50(1) 47.09(2) 45.95(3.5) 45.95(3.5) 44.23(6) 35.81 (7)
Genbase 98.94(4) 98.94(4) 98.97(1.5) 98.82(6.5) 98.82(6.5) 98.94(4) 98.97 (1.5)
Image 38.60(7) 47.88(1) 47.32(2) 38.85(6) 38.87(5) 42.43(3) 39.95 (4)
Mediamill 46.70(2) 48.13(1) 45.42(4) 34.70(6) 34.09(7) 46.00(3) 42.47 (5)
Medical 74.51(6) 78.40(1) 76.95(2) 75.43(4.5) 75.43(4.5) 76.37(3) 73.13 (7)
Reuters 81.67(7) 84.37(1) 84.00(2) 81.77(5) 81.76(6) 83.80(3) 82.36 (4)
Scene 59.41(7) 65.90(3) 64.00(6) 64.64(5) 64.88(4) 69.74(1) 66.67 (2)
Slashdot 42.71(6) 49.98(1) 49.70(2) 44.29(3.5) 44.29(3.5) 43.50(5) 21.55 (7)
Yeast 50.71(5) 52.40(1) 49.68(6) 50.97(3) 50.93(4) 51.22(2) 46.77 (7)
Avg. rank (5.64) (1.45) (2.95) (4.64) (4.91) (3.18) (5.23)



Aggregating Independent and Dependent Models 495

Table 3. Aggregated vs. stacking-based approaches: Hamming loss and 0/1 loss

Hamming BR AID STAy AIDy′
STA AIDp STAp

Bibtex 1.21(1.5) 1.22(4) 1.21(1.5) 1.26(6.5) 1.26(6.5) 1.22(4) 1.22 (4)
Emotions 22.03(4) 23.04(6) 23.15(7) 21.75(2) 21.83(3) 21.47(1) 22.14 (5)
Enron 4.46(1) 4.82(3) 4.88(6) 4.84(5) 4.83(4) 4.69(2) 4.95 (7)
Genbase 0.08(4) 0.08(4) 0.07(1.5) 0.09(6.5) 0.09(6.5) 0.08(4) 0.07 (1.5)
Image 20.25(3.5) 21.90(7) 21.61(6) 20.33(5) 20.23(2) 20.25(3.5) 20.04 (1)
Mediamill 2.76(1) 3.03(3) 3.10(5) 5.48(6) 5.50(7) 2.99(2) 3.09 (4)
Medical 0.99(4) 0.95(1) 0.98(3) 1.12(6.5) 1.12(6.5) 0.97(2) 1.02 (5)
Reuters 4.58(3) 5.81(7) 5.77(6) 4.59(4) 4.60(5) 4.44(1) 4.51 (2)
Scene 9.83(1) 18.66(7) 18.31(6) 9.99(3) 9.85(2) 10.28(5) 10.07 (4)
Slashdot 3.73(1) 8.81(7) 8.80(6) 3.86(3.5) 3.86(3.5) 3.75(2) 4.49 (5)
Yeast 19.81(1) 21.29(5) 21.56(7) 19.85(2.5) 19.85(2.5) 20.66(4) 21.41 (6)
Avg. rank (2.27) (4.91) (5.00) (4.59) (4.41) (2.77) (4.05)

0/1 loss BR AID STAy AIDy′
STA AIDp STAp

Bibtex 82.83(5) 81.49(1) 81.54(2) 82.99(6.5) 82.99(6.5) 81.96(3) 82.30 (4)
Emotions 79.42(7) 74.19(1) 74.70(2) 77.40(4) 77.91(6) 76.05(3) 77.73 (5)
Enron 86.90(3) 85.37(2) 85.25(1) 88.13(5) 88.07(4) 92.54(6) 95.95 (7)
Genbase 1.81(3) 1.81(3) 1.81(3) 2.11(6.5) 2.11(6.5) 1.81(3) 1.81 (3)
Image 71.50(7) 65.75(2) 65.20(1) 71.40(6) 71.25(5) 68.35(3) 69.20 (4)
Mediamill 90.36(3) 88.10(1) 88.14(2) 97.96(7) 97.90(6) 94.48(4) 96.54 (5)
Medical 33.94(4) 31.18(1) 31.49(2) 36.61(6.5) 36.61(6.5) 32.62(3) 34.05 (5)
Reuters 25.69(7) 25.16(4) 24.60(3) 25.59(6) 25.54(5) 24.10(1) 24.50 (2)
Scene 46.03(6) 46.07(7) 44.99(5) 41.38(4) 40.63(3) 39.26(1) 39.38 (2)
Slashdot 61.95(4) 63.20(6) 62.85(5) 60.82(1.5) 60.82(1.5) 61.34(3) 80.83 (7)
Yeast 84.53(5) 83.08(1) 84.07(4) 83.95(2.5) 83.95(2.5) 85.85(6) 90.03 (7)
Avg. rank (4.91) (2.64) (2.73) (5.05) (4.77) (3.27) (4.64)

is only better than BR in Recall, but STAy is significantly better than BR in
Recall, F1 and Jaccard index, and worse in Hamming loss. The results concern-
ing Hamming loss are quite intriguing, because both approaches seem able to
improve when true labels are used, but the results in terms of Hamming loss
are worse. Despite this fact, we do think that these results confirm the idea that
using the actual label data is better to capture the correlations among labels.

Given that the base learner employed is a logistic regressor that provides pos-
terior probabilities, we included two other methods (AIDp, STAp) that consist
of taking the probabilities yielded by the independent models rather than their
binary outputs in the testing phase, remaining unchanged the original training
phase for each approach. Comparing their results with the original versions, we
have that AID performs better than AIDp in all measures, except in Hamming
loss in which the performance of AIDp ranks second behind BR. AIDp is signifi-
cantly better than BR in Recall, F1 and Jaccard index, and it is very competitive
in Hamming loss. In the case of STAp we do not observe any improvement, oth-
erwise the results are pretty the same of STA. It seems that using the posteriors
helps to reduce the Hamming loss, but it is worse for the other measures.

Finally, we want to compare the aggregating and stacking strategies. Despite
the stacking method improves when true labels are used (STAy), the results
are still worse than those of AID classifier. This different performance must
come from the aggregating idea, given that the only difference between both
algorithms is the way they decide the final predictions. The fact that AID prevails



496 E. Montañés, J.R. Quevedo, and J. José del Coz

Table 4. AID vs. state-of-the-art methods: Precision, Recall, F1 and Jaccard index

Precision BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 48.19(3) 26.60(7) 28.92(6) 47.08(5) 47.69(4) 48.70(2) 49.08 (1)
Emotions 56.36(4) 52.42(7) 67.54(1) 52.79(6) 56.26(5) 62.30(2) 59.03 (3)
Enron 69.99(1) 54.90(6) 52.75(7) 56.05(5) 65.19(4) 66.10(3) 66.37 (2)
Genbase 99.52(3.5) 97.70(7) 98.90(6) 99.57(1) 99.52(3.5) 99.52(3.5) 99.52 (3.5)
Image 44.23(7) 44.33(6) 48.52(2) 46.66(4) 45.99(5) 53.97(1) 48.18 (3)
Mediamill 78.81(2) 76.93(4) 73.52(5) 80.40(1) 77.87(3) 70.91(6) 70.16 (7)
Medical 78.94(5) 62.43(7) 63.40(6) 80.79(4) 81.04(2) 82.50(1) 80.88 (3)
Reuters 85.79(5) 82.23(6) 70.71(7) 89.62(1) 86.41(4) 87.53(2) 87.48 (3)
Scene 61.46(7) 69.71(3) 71.40(2) 69.69(4) 67.45(6) 67.81(5) 71.89 (1)
Slashdot 46.06(4) 6.15(7) 8.09(6) 50.91(2) 42.79(5) 53.32(1) 46.98 (3)
Yeast 71.13(3) 72.92(1) 71.75(2) 68.62(5) 70.58(4) 66.50(7) 67.83 (6)
Avg. rank (4.05) (5.55) (4.55) (3.45) (4.14) (3.05) (3.23)

Recall BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 33.80(4) 14.06(7) 21.50(6) 41.97(1) 33.78(5) 36.86(2) 36.47 (3)
Emotions 48.16(6) 37.73(7) 64.54(2) 57.19(3) 48.92(5) 68.03(1) 53.44 (4)
Enron 50.50(4) 37.04(7) 38.04(6) 54.07(3) 45.79(5) 59.89(1) 54.86 (2)
Genbase 99.07(4.5) 94.96(7) 99.14(2) 99.57(1) 99.07(4.5) 99.07(4.5) 99.07 (4.5)
Image 43.32(6) 39.11(7) 43.68(5) 49.73(2) 44.10(4) 55.96(1) 47.74 (3)
Mediamill 52.33(5) 53.78(4) 56.69(3) 49.57(7) 51.25(6) 59.25(1) 58.02 (2)
Medical 78.34(5) 59.01(7) 65.05(6) 81.00(2) 79.01(4) 83.86(1) 80.57 (3)
Reuters 84.90(5) 81.09(6) 69.45(7) 89.63(2) 85.19(4) 91.90(1) 87.90 (3)
Scene 62.87(7) 68.73(5) 69.75(3) 69.52(4) 66.43(6) 87.55(1) 77.10 (2)
Slashdot 44.21(4) 5.69(7) 7.67(6) 53.18(2) 39.93(5) 71.42(1) 45.05 (3)
Yeast 58.86(6) 56.89(7) 60.41(4) 61.84(3) 59.40(5) 66.42(1) 62.50 (2)
Avg. rank (5.14) (6.45) (4.55) (2.73) (4.86) (1.41) (2.86)

F1 BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 37.02(4) 16.98(7) 22.38(6) 41.28(1) 36.86(5) 39.22(2) 39.03 (3)
Emotions 49.20(6) 41.60(7) 62.97(1) 51.95(4) 49.81(5) 62.05(2) 53.31 (3)
Enron 55.66(3) 41.82(6) 41.52(7) 52.43(4) 51.14(5) 59.97(1) 56.73 (2)
Genbase 99.18(3.5) 95.81(7) 98.78(6) 99.50(1) 99.18(3.5) 99.18(3.5) 99.18 (3.5)
Image 42.12(6) 40.63(7) 44.91(4) 46.32(2) 43.46(5) 52.69(1) 46.18 (3)
Mediamill 59.17(5) 59.55(4) 60.17(2) 57.72(7) 58.15(6) 60.39(1) 59.67 (3)
Medical 77.33(5) 59.41(7) 62.19(6) 79.65(2) 78.83(4) 81.66(1) 79.35 (3)
Reuters 84.13(5) 80.50(6) 69.10(7) 88.58(1) 84.69(4) 87.74(2) 86.43 (3)
Scene 61.25(7) 68.49(5) 69.97(3) 68.84(4) 66.31(6) 71.38(2) 72.85 (1)
Slashdot 44.33(4) 5.84(7) 7.73(6) 50.49(2) 40.66(5) 55.97(1) 45.18 (3)
Yeast 61.68(6) 60.97(7) 62.85(2) 62.48(3) 61.80(5) 63.28(1) 62.42 (4)
Avg. rank (4.95) (6.36) (4.55) (2.82) (4.86) (1.59) (2.86)

Jaccard BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 31.50(4) 13.61(7) 18.09(6) 34.28(1) 31.46(5) 33.59(2) 33.28 (3)
Emotions 42.27(6) 34.09(7) 55.08(1) 42.98(5) 43.24(4) 52.89(2) 46.12 (3)
Enron 44.69(2) 31.83(7) 31.99(6) 41.30(4) 39.68(5) 48.50(1) 44.23 (3)
Genbase 98.94(3.5) 94.86(7) 98.25(6) 99.29(1) 98.94(3.5) 98.94(3.5) 98.94 (3.5)
Image 38.60(6) 38.45(7) 42.46(2) 42.15(4) 40.15(5) 47.88(1) 42.43 (3)
Mediamill 46.70(4) 48.11(3) 48.82(1) 45.10(6) 44.69(7) 48.13(2) 46.00 (5)
Medical 74.51(5) 56.76(7) 58.19(6) 76.88(2) 76.33(4) 78.40(1) 76.37 (3)
Reuters 81.67(5) 78.11(6) 67.10(7) 86.38(1) 82.41(4) 84.37(2) 83.80 (3)
Scene 59.41(7) 67.03(4) 68.77(2) 67.28(3) 65.05(6) 65.90(5) 69.74 (1)
Slashdot 42.71(4) 5.68(7) 7.42(6) 47.18(2) 39.32(5) 49.98(1) 43.50 (3)
Yeast 50.71(6) 50.50(7) 52.65(1) 51.75(3) 50.96(5) 52.40(2) 51.22 (4)
Avg. rank (4.77) (6.27) (4.00) (2.91) (4.86) (2.05) (3.14)
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Table 5. AID vs. state-of-the-art methods: Hamming loss and 0/1 loss

Hamming BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 1.21(1.5) 1.36(5) 1.60(7) 1.49(6) 1.21(1.5) 1.22(3.5) 1.22 (3.5)
Emotions 22.03(4) 26.21(6) 18.72(1) 28.01(7) 21.72(3) 23.04(5) 21.47 (2)
Enron 4.46(1) 5.22(5) 5.60(6) 5.85(7) 4.72(3) 4.82(4) 4.69 (2)
Genbase 0.08(3.5) 0.45(7) 0.19(6) 0.06(1) 0.08(3.5) 0.08(3.5) 0.08 (3.5)
Image 20.25(4.5) 19.28(2) 18.75(1) 24.40(7) 19.80(3) 21.90(6) 20.25 (4.5)
Mediamill 2.76(2) 2.70(1) 2.82(4) 2.81(3) 2.86(5) 3.03(7) 2.99 (6)
Medical 0.99(5) 1.56(6) 1.90(7) 0.95(2) 0.95(2) 0.95(2) 0.97 (4)
Reuters 4.58(4) 6.03(6) 8.32(7) 3.85(1) 4.42(2) 5.81(5) 4.44 (3)
Scene 9.83(4) 8.66(2) 8.38(1) 9.90(5) 9.06(3) 18.66(7) 10.28 (6)
Slashdot 3.73(1) 5.18(6) 5.17(5) 4.65(4) 3.78(3) 8.81(7) 3.75 (2)
Yeast 19.81(3) 19.43(2) 19.18(1) 20.30(5) 19.98(4) 21.29(7) 20.66 (6)
Avg. rank (3.05) (4.36) (4.18) (4.36) (3.00) (5.18) (3.86)

0/1 loss BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 82.83(4) 94.06(7) 91.64(6) 83.56(5) 82.61(3) 81.49(1) 81.96 (2)
Emotions 79.42(5) 87.00(7) 68.97(1) 83.45(6) 77.05(4) 74.19(2) 76.05 (3)
Enron 86.90(2) 94.89(7) 92.30(4) 88.49(3) 93.07(6) 85.37(1) 92.54 (5)
Genbase 1.81(3.5) 8.16(7) 4.08(6) 1.51(1) 1.81(3.5) 1.81(3.5) 1.81 (3.5)
Image 71.50(7) 67.95(3) 64.70(1) 69.70(6) 69.40(5) 65.75(2) 68.35 (4)
Mediamill 90.36(4) 86.24(2) 85.86(1) 91.14(5) 93.80(6) 88.10(3) 94.48 (7)
Medical 33.94(5) 51.12(6) 52.98(7) 31.39(3) 31.19(2) 31.18(1) 32.62 (4)
Reuters 25.69(5) 29.04(6) 38.88(7) 20.24(1) 24.43(3) 25.16(4) 24.10 (2)
Scene 46.03(6) 37.35(2.5) 34.82(1) 37.35(2.5) 38.72(4) 46.07(7) 39.26 (5)
Slashdot 61.95(2) 94.76(7) 93.47(6) 62.11(3) 64.57(5) 63.20(4) 61.34 (1)
Yeast 84.53(6) 82.29(2) 79.19(1) 83.08(3.5) 83.58(5) 83.08(3.5) 85.85 (7)
Avg. rank (4.50) (5.14) (3.73) (3.55) (4.23) (2.91) (3.95)

in all measures, although the differences are sometimes small (Hamming and 0/1
loss), suggests that the aggregation idea helps to increase the performance. We
observe even bigger differences when comparing the scores of BR and AID. These
facts corroborate our original assumption of the existence of two kind of labels:
some labels are explained by the mere description of the examples, whereas
others have been assigned as a consequence of other labels. The differences in
the performance may provide an estimation about the proportion of existing
labels of each kind and the degree of overlapping.

4.2 AID Classifier vs. State-of-the-Art Methods

The second group of experiments was designed to compare our approach AID
with other well-known multi-label classifiers: BR, MLkNN, RAkEL, IBLR and
ECC∗. We also included AIDp because of its good performance in all measures,
specially in terms of Hamming loss. Table 4 and Table 5 show all the scores.

As it can be seen, the three top positions in the ranking are occupied by AID
RAkEL and AIDp for all measures, except for Hamming loss, for which ECC∗,
BR and also AIDp win the others. It is remarkable than MLkNN is always
placed in the last position for all measures. The Bergmann-Hommel’s test (see
Table 6) shows that AID is significantly better than BR, MLkNN, IBLR and
ECC∗ in Recall, F1 and Jaccard index, and there are not significant differences
in Precision, Hamming and 0/1 losses. Also, AIDp presents significant differences
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Table 6. Pairs of methods with significant differences according to Bergmann-
Hommel’s test. The number 90% or 95% indicates the significant level.

Recall F1 Jaccard Hamming Recall F1 Jaccard

AID � BR 95% 95% 95% -90% AID � BR 95% 95% 95%
AID � STA 95% 95% 95% AID � MLkNN 95% 95% 95%
AID � STAp 95% 95% 95% AID � IBLR 95% 95%

AID � AIDy′
95% 95% AID � ECC∗ 95% 95% 95%

AIDp � BR 95% 95% 90% AIDp � MLkNN 95% 95% 95%
AIDp � STAp 90% AIDp � BR 90%

AIDy′ � BR 95% RAkEL � MLkNN 95% 95% 95%

AIDy′ � STAp 90% RAkEL � BR 90%
STAy � BR 95% 95% 90% -90%
STAy � STAp 95%

in those measures but only with regard to BR and MLkNN. RAkEL is also quite
competitive, since it is significantly better than BR in Recall and than MLkNN
in Recall, F1 and Jaccard index.

From the results obtained, one can extract that AIDp keeps a steady behavior
over all performance measures, whereas AID improves in Precision, Recall, F1,
Jaccard index and 0/1 loss and ECC∗ does it in Hamming loss. Both seem to be
opposing methods with regard to the behavior of the measures, whereas RAkEL
seems to be placed in between. Hence, if there is not a clear target measure to
optimize, then AIDp may be a good choice, followed by RAkEL. Conversely, if
the goal is to maximize Hamming loss, then ECC∗, or even BR must be chosen.
Finally, for maximizing the rest of measures AID is more promising.

5 Conclusions

This paper proposes a multi-label learning approach, called AID, whose main
property is to aggregate independent and dependent models. Under the assump-
tion that, for a given instance, certain labels can be predicted using only the
description of the object, but others require to consider their dependences with
respect to other labels, the idea is to combine classifiers aimed to learn each of
these kind of relationships. In this work, we study the properties of our approach
in the context of multi-label classification, but our framework is flexible enough
to be adapted to other learning tasks, specially to multi-label ranking, and it
can also be extended in some directions.

Several experiments over a benchmark multi-label data sets were carried out
using different learning approaches. None of the methods outperforms the oth-
ers for all measures considered, but AID classifier exhibits a very competitive
performance, specially in terms of Recall, F1 and Jaccard index, with regard to
other state-of-the-art algorithms previously proposed in the literature. Besides,
the computational complexity of AID is linear with respect to the number of
labels.
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Abstract. Most of the existing analysis methods for tensors (or multi-
way arrays) only assume that tensors to be completed are of low rank.
However, for example, when they are applied to tensor completion prob-
lems, their prediction accuracy tends to be significantly worse when only
limited entries are observed. In this paper, we propose to use relation-
ships among data as auxiliary information in addition to the low-rank
assumption to improve the quality of tensor decomposition. We introduce
two regularization approaches using graph Laplacians induced from the
relationships, and design iterative algorithms for approximate solutions.
Numerical experiments on tensor completion using synthetic and bench-
mark datasets show that the use of auxiliary information improves com-
pletion accuracy over the existing methods based only on the low-rank
assumption, especially when observations are sparse.

1 Introduction

In real data analysis applications, we often have to face handling multi-object re-
lationships. For example, in on-line marketing scenarios, we analyze relationships
among customers, items, and time to capture temporal dynamics of customers’
interests and utilize them for recommendation. In social network analysis, inter-
actions among people and their interaction types are the focus of interest. Simi-
lar situations arise in bio- and chemo-informatics as protein-protein interactions
and drug-target interactions under various conditions. Tensors (or multi-way ar-
rays) [10] are highly suitable representation for such multi-object relationships
(Fig. 1). Tensor analysis methods, especially, models and efficient algorithms for
low-rank tensor decompositions have been extensively studied and applied to
many real-world problems. CANDECOMP/PARAFAC(CP)-decomposition and
Tucker decomposition are two widely-used low rank decompositions of tensors
(Fig. 2).
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Fig. 1. A third-order tensor (or, a three-way array) X of size I × J × K repesents
relationships among three sets of objects, S1, S2 and S3, each of which size is I , J , and
K, respectively

(a) CP decomposition. (b) Tucker decomposition.

Fig. 2. Two widely used low-rank tensor decompositions: CP-decomposition and
Tucker decomposition

Tensor completion is one of important applications of tensor analysis methods.
Given a tensor with some of its elements being missing, the task is to impute the
missing values. In the context of the previous on-line marketing scenario, given
the observations for some (customer, item, time)-tuples, we can make recom-
mendations by imputing unobserved combinations of them. Tensor completion
is also used for link prediction [6,9] and tag recommendation [15]. Similar to
the other tensor analysis methods, low-rank assumption of tensors is often used
for imputing missing values. However, when observations are sparse, in other
words, the fraction of unobserved elements is high, predictive accuracy of ten-
sor completion methods only with the low-rank assumption tends to be worse.
For example, Figure 3 shows the prediction errors by CP-decomposition against
the fraction of unobserved elements for a particular dataset. (The experimental
setting is the same as that for Fig. 4(c), which will be described in detail in the
experimental section.) We can see the accuracy of tensor completion severely
degrades when observations are sparse. This fact implies that the low-rank as-
sumption by itself is not sufficient and we need other assumptions to introduce
more prior knowledge of subjects.

In many cases, we have not only relational information among objects, but
also information on the objects themselves. For example, in the on-line mar-
keting scenarios, each customer has his/her demographic information, and each
item has its product information. We consider exploiting these auxiliary infor-
mation for improving the prediction accuracy of tensor decomposition, especially
for sparse cases. Inspired by the work by Li et al. [12] which incorporates object
similarity into matrix factorization, we exploit the auxiliary information given
as similarity matrices in a regularization framework for tensor factorization. We
propose two specific regularization methods, one of which we call “within-mode
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Fig. 3. The tensor completion performance by CP-decomposition for the ‘Flow injec-
tion’ dataset. Prediction accuracy severely degenerates when observations are sparse.

regularization” is a natural extension of the method proposed by Li et al. for
matrix factorization. It uses the graph Laplacians induced by the similarity ma-
trices to force two similar objects in each mode to behave similarly, in other
words, to have similar factors. The second method we call “cross-mode regu-
larization” exploits the similarity information more aggressively to address ex-
tremely sparse cases. We apply the two proposed regularization methods to
each of CP-decomposition and Tucker decomposition, and give iterative decom-
position algorithms for obtaining approximate solutions. In each iteration, we
solve a particular Sylvester equation for CP-decomposition, or obtain eigen-
decomposition for Tucker decomposition. To best of our knowledge, our work is
the first to incorporates auxiliary information into tensor decomposition.

Finally, we show experimental results on missing value imputation using both
synthetic and real benchmark datasets. We test two kinds of assumptions on
missing elements. The first one is element-wise missing where each element is
missing independently. The second one is slice-wise missing (in other words,
object-wise missing), where missing values occur in a more bursty manner, and
all of the elements related to some objects are completely missing. The experi-
mental results demonstrate that the use of auxiliary information improves impu-
tation accuracy when observations are sparse, and the cross-mode regularization
method especially works well in extremely sparse slice-wise missing cases.

The rest of the paper is organized as follows. Section 2 reviews the existing
low-rank tensor decomposition methods, and introduces the tensor completion
problem with auxiliary information that we focus on in this paper. In Section 3,
we propose two regularization strategies, within-mode regularization and cross-
mode regularization, for incorporating auxiliary information in tensor decompo-
sition, and give their approximate solutions. Section 4 shows the experimental
results using several datasets to demonstrate the proposed methods work well
especially when observations are sparse. Section 5 reviews related work, and
Section 6 concludes this paper with some ideas for future directions.
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2 Tensor Completion Problem with Auxiliary
Information

We first review the existing low-rank tensor decomposition methods, and then
formulate the tensor completion problem with auxiliary information.

2.1 Tensor Analysis Using Low-Rank Decomposition

Let X be third-order tensor (i.e. a three-way array) with I × J ×K real-valued
elements1. The third-order tensor X models relationships among objects from
three sets S1, S2, and S3. For example, in the context of on-line marketing, S1, S2,
and S3 represent sets of customers, items, and time stamps, respectively. The
(i, j, k)-th element [X ]i,j,k indicates the i-th user’s rating of the j-th item at
time k.

We often assume the tensor is of “low-rank” when we analyze tensor-
represented data. In contrast to matrices (that are special cases of tensors),
definitions of the “low-rank” tensor are not unique. CANDECOMP/PARAFAC
(CP)-decomposition and Tucker decomposition are often used as definitions of
low-rank tensors.

The CP-decomposition is a natural extension of the matrix rank, and it ap-
proximates a tensor by the sum of R rank-1 tensors. The CP-decomposition X̂
of X is defined as

X̂ ≡
R∑

i=1

ui ◦ vi ◦wi,

where ◦ indicates the outer product operation. Or, it can also be represented by
using mode-i multiplications as

X̂ = J ×1 U×2 V×3 W, (1)

where J ∈ R
R×R×R is a unit tensor with all of its super-diagonal elements being

1 and the other elements being 0, U ∈ R
I×R, V ∈ R

J×R, W ∈ R
K×R are factor

matrices, and ×i is the mode-i multiplication [10]. When the left-hand side is
equal to the right-hand side in the above relation, we say X is of rank R.

The Tucker decomposition approximates a tensor with a small “core tensor”
and factor matrices, which is defined as

X̂ ≡ G ×1 U×2 V×3 W, (2)

where G is a (P, Q, R)-tensor and U ∈ R
I×P , V ∈ R

J×Q, W ∈ R
K×R are factor

matrices. In this case, we say X is of rank (P, Q, R).
For most of realistic case, observations are perturbed by noise, and the strict

low-rank decompositions do not hold even when the “true” X is actually of
low-rank. Therefore, we try to find a decomposition X̂ that best approximates

1 For simplicity, we focus on third-order tensors in this paper. However, the discussion
can be directly applied to higher-order tensors.
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the original tensor X in terms of the squared loss by the following optimization
problem,

minimizeX̂ ‖X − X̂‖2F , (3)

where ‖ · ‖F indicates the Frobenius norm, and X̂ is defined by Eq. (1) for CP-
decomposition, or by Eq. (2) for Tucker decomposition. It is generally hard to
obtain the optimal solution, so we use approximation methods which optimize
U, V, and W alternately.

2.2 Tensor Completion with Auxiliary Information

Among various tensor-related problems, tensor completion problem is one of
the important problems, where the task is to impute the missing values of a
given tensor with missing values. The low-rank assumption is usually used as a
heuristic for inferring the missing parts. Since not all of the elements are observed
in the optimization problem (3) in this case, the EM algorithm is often applied
to this purpose [18,20]. First, we fill the missing parts with some initial estimates
(such as the average of the observed elements), and apply tensor decomposition
to the filled tensor. We then obtain new estimates by assembling the decomposed
tensor. We continue the decomposition step and the reconstruction step until
convergence to obtain final estimates.

Since the EM algorithm uses unobserved elements for its computation, it is
not efficient enough for large-scale data. Therefore, another approach modifies
the objective function (3) to focus only on observed parts [1]. In this paper, we
construct our methods based on the EM-based approach, however, the basic idea
can also be applied to the other approaches.

The low-rank assumption of tensors makes it possible to impute missing val-
ues. However, when observations are sparse, in other words, the fraction of un-
observed elements is high, predictive accuracy of tensor completion methods
only with the low-rank assumption severely degrades. (See Figure 3 showing
the predictive errors against the fraction of unobserved elements for a dataset.)
Therefore, the low-rank assumption by itself is not sufficient, and we need other
assumptions for obtaining satisfactory prediction accuracy.

In many realistic cases, we have not only relational information represented
as tensors, but also information on the objects forming the relationships. For
example, in the (customer, item, time)-relationships, each customer has his/her
demographic information, and each item has its product information. We also
know that time is continuous and can assume temporal smoothness. Therefore,
we assume that we have similarity measures for S1, S2, and S3, each of which
corresponds to the sets of objects for each of the three modes. We define a non-
negative symmetric matrix A1 for representing the similarity between arbitrary
two objects in S1. A2 and A3 are defined similarly.

We consider exploiting these auxiliary information for improving the prediction
accuracy by tensor decomposition, especially for sparse observations. The tensor
completion problem that we focus on in this paper is summarized as follows.
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Problem: (Third-order) tensor completion with auxiliary information

– INPUT
- A third-order tensor X ∈ R

I×J×K , some of whose elements are observed
and the others are unobserved.
- Three non-negative symmetric similarity matrices A1 ∈ R

+I×I , A2 ∈
R

+J×J , and A3 ∈ R
+K×K , each of which corresponds to one of the three

modes of X .
– OUTPUT: A decomposition X̂ defined by either Eq. (1) for CP-

decomposition or Eq. (2) for Tucker decomposition.

3 Proposed Methods: Within-Mode and Cross-Mode
Regularization

In this section, we propose two regularization methods for incorporating auxil-
iary information into tensor factorization. Both CP-decomposition and Tucker
decomposition are generalized with the regularization framework.

3.1 Regularization Using Auxiliary Similarity Matrices

Given three object similarity matrices A1, A2 and A3 besides X , how can we use
them for improving tensor decompositions? Probably, one of natural assumptions
we can make is that “two similar objects behave similarly”. We implement this
idea as regularization terms for the optimization problem (3). Namely, instead of
the objective function in Eq. (3), we minimize the following regularized objective
function with a regularization term R(X̂ ;A1,A2,A3).

f(X̂ ) ≡ 1
2
‖X − X̂‖2F +

α

2
R(X̂ ;A1,A2,A3). (4)

In Eq. (4), α is a positive regularization constant.
We propose two specific choices of the regularization term R(X̂ ;A1,A2,A3).

The first method we call “within-mode regularization” is a natural extension of
the method proposed by Li et al. [12] for matrix factorization. It uses the graph
Laplacians induced by the three similarity matrices to force two similar objects
in each mode to behave similarly, in other words, to have similar factors. The
second method we call “cross-mode regularization” exploits the similarity infor-
mation more aggressively to address extremely sparse cases. It uses the graph
Laplacian induced by the Kronecker product of the three similarity matrices to
regularize factors for all of the modes at the same time by taking interactions
across different modes into account.

3.2 Method 1: Within-Mode Regularization

The first regularization term we propose regularizes factor matrices for each
mode using the similarity matrices. The “within-mode” regularization term is
defined as

R(X̂ ;A1,A2,A3) ≡ tr
(
U�L1U + V�L2V + W�L3W

)
, (5)
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where L1 is the Laplacian matrix induced from the similarity matrix A1 for the
object set S1. The Laplacian matrix is defined as

L1 ≡ D1 −A1,

where D1 is the diagonal matrix whose i-th diagonal element is the sum of all
of the elements in the i-th row of A1. The Laplacian matrices for the other two
sets, L2 ≡ D2 −A2 and L3 ≡ D3 −A3, are defined similarly.

To interpret the regularization term, we note tr(U�L1U) can be rewritten as

tr(U�L1U) =
I∑

i,j=1

[A1]i,j
R∑

r=1

([U]i,r − [U]j,r)
2
, (6)

where [·]i,j denotes the (i, j)-th element of a matrix. This term implies that, if
two objects (say, si, sj ∈ S1) are similar to each other (that is, [A1]i,j is large),
the corresponding factor vectors ([U]i∗ and [U]j∗) should be similar to each
other.

CP-decomposition. The objective function for CP-decomposition with the
within-mode regularization is written as

f(G,U,V,W) ≡1
2
‖X −J ×1 U×2 V×3 W‖2F

+
α

2
tr
(
U�L1U + V�L2V + W�L3W

)
. (7)

Eq. (7) is not a convex function for (U,V,W), but is convex for each of U,V,
and W. Therefore, we optimize one of U, V, and W with fixing the others to
the current values, and alternately update them by changing the factor matrix
to optimize.

Suppose we want to optimize U with fixing V and W. Unfolding Eq. (7) by
the first mode (i.e. making the mode-1 matricization), we obtain

f(G,U,V,W) =
1
2
‖X(1) −U (W�V)� ‖2F

+
α

2
tr
(
U�L1U + V�L2V + W�L3W

)
=

1
2
tr
((

X(1) −U(W�V)�
)� (

X(1) −U(W�V)�
))

+
α

2
tr
(
U�L1U + V�L2V + W�L3W

)
,

where X(n) denotes the mode-n matricization of X , and � denotes the Khatri-
Rao product [10]. Differentiating this with respect to U, and setting it to be
zero gives the Sylvester equation,

U(W�V)�(W�V) + αL1U = U
(
V�V ∗W�W

)
+ αL1U = X(1)(W�V),

where ∗ denotes the Hadamard product (i.e. element-wise product). The Sylvester
equation can be solved by several numerical approaches such as the one imple-
mented as the dlyap function in MATLAB R©.
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Tucker Decomposition. In the case of Tucker decomposition, the objective
function becomes

f(U,V,W) ≡‖X − G ×1 U×2 V×3 W‖2F
+ α tr

(
U�L1U + V�L2V + W�L3W

)
. (8)

We minimize the objective function (8) under the orthogonality constraints,
U�U = I,V�V = I, and W�W = I. Noting the core tensor G is obtained as
the closed form solution,

G = X ×1 U� ×2 V� ×3 W�,

the first term of Eq. (8) can be rewritten as

‖X − G ×1 U×2 V×3 W‖2F =‖X‖2F − ‖G‖2F
=‖X‖2F − ‖X ×1 U� ×2 V� ×3 W�‖2F .

When we optimize Eq. (8) with respect to U, by ignoring the terms unrelated
to U, we obtain an equivalent maximization problem of

f̃(U) ≡ ‖X ×1 U� ×2 V� ×3 W�‖2F − α tr
(
U�L1U

)
. (9)

Unfolding Eq. (9) by the first mode, we have

f̃(U) = ‖U�X(1) (W⊗V) ‖2F − α tr
(
U�L1U

)
.

Setting S ≡ X(1) (W⊗V) = (X ×2 V×3 W)(1), f̃(U) is further rewritten as

f̃(U) = ‖U�S‖2F − α tr
(
U�L1U

)
= tr

(
U�

(
SS� − αL1

)
U
)

. (10)

The maximizer of Eq. (10) satisfying the orthogonality constraint U�U = I is
obtained as the I leading eigenvectors of SS� − αL1.

3.3 Proposed Method 2: Cross-Mode Regularization

The within-mode regularization scheme regularizes the elements only inside each
factor matrix, because each element of U interacts only with at most I − 1
elements within U. This fact sometimes limits the effect of the regularization
when we have bursty missing values, For example, slice-level missing situations
where no observations are given for some objects often occurs in the context
of recommender systems as the “cold-start” problem. In such cases, the within-
mode regularization can be sometimes too conservative.

The second regularization function we propose exploits the given auxiliary
information more aggressively. It combines the given similarity matrices to co-
regularize combinations of elements across different modes as

R(X̂ ;A1,A2,A3) ≡ tr
(
(W⊗V⊗U)� L (W⊗V⊗U)

)
, (11)

where the IJK × IJK-Laplacian matrix L is defined as

L ≡ D3 ⊗D2 ⊗D1 −A3 ⊗A2 ⊗A1.
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The regularization term Eq. (11) is rewritten with the matrix elements as

R(X̂ ;A1,A2,A3)

=

I,J,K∑
i,j,k=1

I,J,K∑
�,m,n=1

[A1]i,�[A2]j,m[A3]k,n

P,Q,R∑
p,q,r=1

([U]i,p[V]j,q[W]k,r − [U]�,p[V]m,q [W]n,r)
2 ,

which regularizes the combinations of elements from three different factors in
contrast with the within-mode regularization (6) considering each mode inde-
pendently.

The cross-mode regularization (11) can be seen as a natural variant of the
within-mode regularization (5). Because, if we use the Kronecker sum ⊕ instead
of the Kronecker product ⊗ in Eq. (11), it is reduced to Eq. (5) under the
orthogonality constraints.

CP-decomposition. The objective function for the cross-mode regularized CP-
decomposition is defined as

f(U,V,W) ≡1
2
‖X −J ×1 U×2 V×3 W‖2F

+
α

2
tr
(
(W⊗V⊗U)� L (W⊗V⊗U)

)
.

Noting that Eq. (11) is simplified as

R(X̂ ;A1,A2,A3) =tr
(
W�D3W

)
tr
(
V�D2V

)
tr
(
U�D1U

)
− tr

(
W�A3W

)
tr
(
V�A2V

)
tr
(
U�A1U

)
,

similar to the within-mode regularization, we obtain the Sylvester equation for
U as

U(W�V)�(W�V) + (DV WD1 −AV WA1)U = X(1)(W�V),

where DV W and AV W are defined as follows.

DV W ≡ tr
(
W�D3W

)
tr
(
V�D2V

)
AV W ≡ tr

(
W�A3W

)
tr
(
V�A2V

)
Tucker Decomposition. The objective function for the cross-mode regularized
Tucker decomposition is defined as

f(G,U,V,W) ≡‖X − G ×1 U×2 V×3 W‖2F
+ α tr

(
(W⊗V⊗U)� L (W⊗V⊗U)

)
.

Again, we alternately minimize the objective function with respect to one of U,
V, and W. By a similar derivation to that for the within-mode regularization,
the optimal U with V and W fixed is obtained as the I leading eigenvectors of

SS�A− α (DV WD1 −AV W A1) .
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4 Experiments

We show some results of numerical experiments of third-order tensor completion
problems using synthetic and real benchmark datasets, and demonstrate that
introducing auxiliary information improves predictive accuracy especially when
observations are sparse.

4.1 Datasets

Synthetic Dataset. The first dataset is synthetic tensors with correlated ob-
jects. We generate CP-decomposed tensors with U ∈ R

I×R,V ∈ R
J×R and

W ∈ R
K×R with the rank R ≡ 2 and I ≡ J ≡ K ≡ 30 by using the linear

formulae,

[U]ir ≡ iεr + ε′r (1 ≤ i ≤ I, 1 ≤ r ≤ R)
[V]jr ≡ jζr + ζ′r (1 ≤ j ≤ J, 1 ≤ r ≤ R)

[W]kr ≡ kηr + η′
r (1 ≤ k ≤ K, 1 ≤ r ≤ R),

where {εr, ε
′
r, ζr, ζ

′
r, ηr, η

′
r}R

r=1 are constants generated by using the standard
Gaussian distribution. A synthetic tensor X ∈ R

I×J×K is defined as

X ≡ J ×1 U×2 V×3 W.

Since the columns of each factor matrix are generated by linear functions, the
consecutive rows are similar to each other. Therefore, the similarity matrix for
the i-th mode is naturally defined as the following tri-diagonal matrix.

Ai ≡

⎡⎢⎢⎢⎣
0 1 0 · · ·
1 0 1 · · ·
0 1 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦
Benchmark Dataset 1: Flow Injection. As a real benchmark dataset with
auxiliary information, we used the ‘Rank-deficient spectral FIA dataset’2, which
consists of results of flow injection analysis on 12 different chemical substances.
They are represented as a tensor of size 12 (substances)×100 (wavelengths)×89
(reaction times).

We constructed three similarity matrices for the three modes as follows. Since
12 chemical substances differ in contents of three structural isomers of a certain
chemical compound, each substance can be represented as a three-dimensional
feature vector. We defined the similarity between two substances as the inverse
of Euclidean distance between their feature vectors. Also, since wavelength and
reaction time have continuous real values, we simply set the similarity of two
consecutive wavelength values (or reaction time values) to one.

2 The datasets are available from http://www.models.life.ku.dk/datasets

http://www.models.life.ku.dk/datasets
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Benchmark Dataset 2: Licorice. Another benchmark dataset we use is the
‘Three-way electronic nose dataset’2, which consists of measurements of an odor
sensing system applied to licorices for checking their quality, and is represented
as a third-order tensor of size 18 (samples)×241 (reaction times)×12 (sensors).

Since each of 18 samples is labeled with one of the three quality labels,
{‘BAD’,‘FBAD’,‘GOOD’}, we set the similarity between two samples sharing
an identical label to one. The similarity for reaction time is defined in the same
way as for the flow injection dataset. Eventually, we obtained two similarity
matrices for this dataset.

4.2 Experimental Settings

Comparison Methods. We compared the following 3 (regularization methods)
×2 (decomposition models) = 6 methods.

1. Ordinary {CP, Tucker}-decomposition,
2. Within-mode regularized {CP, Tucker}-decomposition,
3. Cross-mode regularized {CP, Tucker}-decomposition.

We used EM-based algorithms to impute missing values, especially, we used the
one which updates missing value estimates each time a factor is updated [20],
since it converged faster. We set the initial estimates for the unobserved elements
of X to the average of the observed elements, and those for U, V, and W to
the leading eigenvectors of X(1), X(2), and X(3), respectively.

We set the model ranks as P ≡ Q ≡ R ≡ 2 for the synthetic dataset, P ≡
Q ≡ R ≡ 4 for the flow injection dataset, and P ≡ Q ≡ R ≡ 3 for the licorice
dataset, based on the results of preliminary experiments. The hyper-parameter
α was selected from

{
10−4, 10−3, 10−2, 10−1

}
by using cross-validation.

Element-Wise Missing vs. Slice-Wise Missing. We test two kinds of as-
sumptions on missing elements, that are, element-wise missing and slice-wise
missing. In the element-wise missing setting, each element [X ]i,j,k is missing in-
dependently. On the other hand, in the slice-wise missing setting, missing values
occur at object level, and therefore all of the elements related to some objects are
totally missing. In other words, slices such as {[X ]i,j,k}j,k for some i, {[X ]i,j,k}i,k

for some j, and {[X i,j,k]}i,j for some k are missing, which means that missing
values occurring in a more bursty manner.

We varied the fraction of unobserved elements among {0.75, 0.9, 0.95, 0.99} for
the element-wise missing setting, and among {0.5, 0.75, 0.9, 0.95} for the slice-
wise missing setting. We randomly selected elements or objects to be used as the
unobserved parts, and evaluated the mean squared errors between true values
and predicted values. We continued the evaluation ten times, and recorded the
averaged errors and their standard errors.

4.3 Results

Figure 4 shows the accuracy of tensor completion by the six methods ({‘Ordinary’,
‘Within-mode’, ‘Cross-mode’}×{CP-decomposition, Tucker-decomposition}) for
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Fig. 4. Accuracy of tensor completion for three datasets in the element-wise missing
setting. The proposed methods perform well when observations are sparse.
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are sparse.
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three datasets (the synthetic dataset, the flow injection dataset, and the licorice
dataset) in the element-wise missing setting. Overall, we can see that incor-
porating auxiliary information improves the predictive accuracy, although the
ordinary tensor decomposition methods still work fairly well when the fraction
of unobserved elements is less than 95%. The proposed methods perform well
especially when observations are sparse.

On the other hand, Figure 5 shows the results for the slice-wise missing setting.
In this case, since missing values occur at object level, reasonable inference is not
possible only with the low-rank assumption, and the performance severely gets
worse in sparse cases. When with auxiliary information, especially, the cross-
mode regularization keeps its performance compared with the other methods
even in the bursty sparse cases. This is because the cross-mode regularization
uses the auxiliary information more aggressively than the within-mode regular-
ization, that is, each element of U interacts with at most I − 1 other elements
in U in the within-mode regularization, while it interacts with all of the other
elements in all of U, V, and W in the cross-mode regularization.

Finally, we briefly mention the computation time. Although introducing aux-
iliary information slightly increases the time and space complexity of the decom-
position algorithms, the actual computation time was almost as same as that for
ordinary decomposition methods (without auxiliary information). This is par-
tially because we used relatively small datasets in the experiments, and further
investigation with larger datasets should be made in future work.

5 Related Work

Tensor factorization methods have recently been studied extensively, and widely
applied in the data mining communities. CANDECOMP/PARAFAC(CP)-
decomposition [7] is a tensor factorization method that can be seen as a special
case of Tucker decomposition [19] by making its core tensor super-diagonal. The
CP-decomposition is applied to various problems including chemo-informatics
[10]. Its variant called pair-wise interaction tensor factorization [15] accelerates
its computation by using the stochastic gradient descent, and is applied to a
large-scale tag recommendation problem.

There also exist probabilistic extensions of tensor factorization methods.
Shashua and Hazan [17] studied the PARAFAC model under the non-negativity
constraint with latent variables. Chu and Ghahramani [4] proposed a probabilis-
tic extension of the Tucker method, known as pTucker.

Although we focus on the squared loss function (3) in this paper, changing
the loss function corresponds to non-Gaussian probabilistic models of tensor
factorization. In several matrix and tensor factorization studies, non-Gaussian
observations have been dealt with. Collins et al. [5] generalized the likelihood of
the probabilistic PCA to the exponential family, which was further extended to
tensors by Hayashi et al. [8].

There are several studies to incorporate auxiliary information into matrix
factorization. Li et al. [12] introduced a regularizer for one of factor matrices by
a graph Laplacian based on geometry of data distribution. A similar approach
is proposed by Cai et al. [3]. Lu et al. [13] proposed incorporated both spatial
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and temporal information by using graph Laplacian and Kalman filter. Adams
et al. [2] extended the probabilistic matrix factorization [16] to incorporate side
information. In their work, Gaussian process priors are introduced to enforce
smoothness to factors. Some work use auxiliary information not in regularization
terms but as bias variables added to model parameters [21,14]. To best of our
knowledge, our work is the first attempt to incorporate auxiliary information
into tensor factorization.

6 Conclusion and Future Work

In this paper, we proposed to use relationships among data as auxiliary infor-
mation in addition to the low-rank assumption to improve accuracy of tensor
factorization. We introduced two regularization approaches using graph Lapla-
cians induced from the relationships, and designed approximate solutions for the
optimization problems. Numerical experiments using synthetic and real datasets
showed that the use of auxiliary information improved completion accuracy over
the existing methods based only on the low-rank assumption, especially when
observations were sparse.

Although the focus of this paper is to show the usefulness of auxiliary in-
formation for tensor factorization, we will address its computational aspects
extensively in future. Indeed, scalability is an important issue. In real data such
as EEG data, tensors can be huge and of high dimensionality, and we need fast
and memory efficient algorithms. For example, Acar et al. [1] eliminate some of
the observed elements of large data tensors. They report entire information of
the data tensor is not necessary when the tensor is of low-rank, and only a small
fraction of elements (∼ 0.5% for a 1, 000×1, 000×1, 000 tensor) are sufficient for
reconstruction. The idea might also work well in our approach, and the regular-
ization using auxiliary information might further reduce the sufficient number of
elements. Memory efficiency is also an important factor, since the number of pa-
rameters are linearly dependent on the dimensionality of each mode. Kolda and
Sun [11] use the sparsity of tensor, and dramatically reduce the memory space as
1,000 times smaller than the original algorithm for Tucker decomposition. The
stochastic gradient optimization approach [15] would be also promising.
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Abstract. Predicting new links in a network is a problem of interest
in many application domains. Most of the prediction methods utilize in-
formation on the network’s entities such as nodes to build a model of
links. Network structures are usually not used except for the networks
with similarity or relatedness semantics. In this work, we use network
structures for link prediction with a more general network type with
latent feature models. The problem is the difficulty to train these mod-
els directly for large data. We propose a method to solve this problem
using kernels and cast the link prediction problem into a binary classifi-
cation problem. The key idea is not to infer latent features explicitly, but
to represent these features implicitly in the kernels, making the method
scalable to large networks. In contrast to the other methods for latent fea-
ture models, our method inherits all the advantages of kernel framework:
optimality, efficiency and nonlinearity. We apply our method to real data
of protein-protein interactions to show the merits of our method.

1 Introduction

Link prediction is a major problem in relational data learning [6]. In Social
Networks and Collaborative Filtering, one needs to suggest links for entities
for recommendation. In Bioinformatics and Chemoinformatics, potentially valid
links such as interactions are required to speed up experimental processes. In
order to predict links in relational data, one needs to provide a common model
for both entities and relationships (such as links) in the data. As these two
types of information are of different natures, models are difficult to design and
learn. While modeling entities are of common practice, modeling relationships
is usually of more difficulty. For link prediction, these relations are interpreted
differently and reflect different semantics. While in social networks, links are
usually of similarity or relatedness nature, it is not the case elsewhere. It is the
target of this work to deal with a more general type of network structures, to
build link models and to train them on large-sized real data.

In principle, there are two different kinds of information used to learn a link
model for link prediction. One is the information of network entities such as
nodes of the networks. The methods falling in this category usually use the in-
formation of a pair of nodes to induce the label of having or not having a link

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 517–532, 2011.
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[2,8,3]. Typical examples are sequences or profile information of genes, which
are used to predict links (edges) in their networks. By using only the informa-
tion on networks’ entities, the models of the networks assume an independent
and identical distribution of links. In other words, the structures of the links
themselves are completely ignored. This is an unrealistic assumption in many
domains where networks’ structures themselves have patterns, such as social
networks [12,13] and biological networks [18,1]. It is an objective of this work to
show that network structures themselves contain information for the task.

The second kind of information used to predict links is structures (topologies)
of the networks themselves. Similarity networks, due to its analogy to kernels
[10,7,17,16,11], can be modeled with kernels and therefore, there exist scalable
methods. Bipartite networks can also rely on kernels for each of their parts
together with aligning the parts [19]. However, it is more difficult to deal with
networks without similarity or relatedness semantics. A common network type is
modeled with latent feature models [14,1]. This network model includes similarity
networks and bipartite networks as special cases. For this type of networks, the
available models are usually the plain latent feature models or matrix based
models [5,1,13]. Training these models usually requires to generate latent features
explicitly. This is a very time-consuming process, usually does not applicable to
medium-sized networks. Another problem is that approximation in the training
process leads to suboptimal solutions. Without approximation, these models
do not scale to the sizes of real data, even for medium-sized networks. It is our
motivation to be able to learn a model of this general type of networks efficiently
and to avoid suboptimal solutions.

Fig. 1. Given an adjacency matrix as input, the method embeds cells (links or nonlinks)
into a feature space and using classification to infer new links

We provide a kernel method to link prediction problem using network struc-
tures for the network structures modeled with latent features. The overall de-
scription of the method is depicted in Figure 1. We design kernels to encode the
structures implicitly, without the need of generating the latent features them-
selves. The idea is to give high kernel values to the pairs of links that potentially
share latent features. We show how suitable the kernel is to sparse networks. By
not inducing the latent feature directly, our method is much faster compared
to the long execution times faced by the methods that explicitly induce latent
features. Our method also gives a globally optimal solution as opposed to the
other methods. Nonlinearity can be incorporated into the model seamlessly. For
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these advantages, our method gives a very high predictive performance for link
prediction problems and applicable to real datasets of large sizes.

The paper is organized as follows. We describe the generative model of net-
works’ links with latent features in Section 2. We then develop our kernels for
this model in Section 3. We visualize the idea of the kernels for this model in
Section 4. We show our application in protein-protein interaction networks in
Section 5 and conclude the paper.

2 Latent Feature Models of Graphs

2.1 Biological Motivation

An example is that a protein (node) is a collection of domains (features). A
protein-protein interaction (PPI) is caused by an interaction between two do-
mains from the two proteins [4]. However, the knowledge of domain may be
incomplete, and domain-domain interaction is far less understood. Therefore,
we wish to incorporate the domain-domain interaction knowledge in an implicit
way. Given enough links, we want to infer from many pairs of interacting pro-
teins’ common features that play the role of domains and some pairs of features
are likely to interact for PPI task.

2.2 Latent Feature Models of Graphs

We describe a latent feature model of graphs as also appeared in [13]. In this
model, a link (edge) in the graph is generated by the relation between the latent
features of the adjacent nodes. Denote A ∈ R

n×n as the adjacency matrix of
the graph. In general, A can be any real matrix. For our special purpose of
modeling undirected networks, we assume that A is a binary symmetric matrix.
Denote F ∈ R

n×d as a binary matrix where each row is a d-dimensional vector of
latent features. Denote W ∈ R

d×d as a real matrix encoding strength of feature
interactions. That is, Wij encodes the strength of interaction between the ith

feature and the jth feature. We define that (F ,W ) is a latent feature model for
A when

A = FWFT . (1)

It is possible that there are several causes for a link but we only record one link
(existence of a link rather than multiplicity of the link). Therefore, the equality
in the equation (1) is replaced by the element-wise operator min(x, 1) where x
is the entry of the right hand side of the equation (1). It can be rewritten as
follows

A = min(FWFT , 1). (2)

Simulation Example: The idea of latent feature model is depicted in Figure
2. In this example, the set of nodes have three latent features, with the first two
nodes has two features. As for the feature interaction matrix, it indicates that
the first and the second features interact, also the third feature interact with
itself.
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Fig. 2. FWF T → A: the adjacency of the graph (rightmost) is generated by the three
matrices: the latent feature matrix (F - leftmost), the feature interacting matrix (W )
and the transpose of the latent feature matrix (F T ). A black cell indicates a positive
entry and a white cell indicates a 0 entry. In our latent feature model, product of the
first three matrices generates the last one.

For the benefits of using latent feature models instead of latent class models,
we refer to [13] for details. The following properties are observed.

– Each entry of W generates a subgraph given F . The overall generated graph
is a superimposition of these subgraphs. This makes the model an additive
one.

– If W is diagonal, then the generated graph can be decomposed as a set of
cliques. This is a model of similarity graph.

– If W is symmetric, then the generated graph is symmetric. It is usually used
to encode undirected graphs.

– If F has exactly one nonzero entry in each row (such as the ones generated
by Chinese Restaurant Processes (CRP)), then generating F is equivalent
to clustering of nodes.

– If the nodes can be divided into two groups, each with a separate set of
features, and W has only interactions of features from the two different sets,
then the generated graph is bipartite.

These properties make latent feature models general generative models for graphs.

2.3 Ideal Kernels

Given a latent feature model as a generative model of graphs, one wish to define
a kernel that encodes the similarity of the nodes using this model. The semantic
similarity of two nodes under this model is the amount of latent features they
share, weighted by the importance of each feature. Therefore, we define the ideal
kernels as follows.

Definition (Ideal kernels). Define the set of ideal kernels for a latent feature
model of nodes F to be K = {K∗(D)}D, with D ∈ R

d×d is any diagonal matrix
with positive entries, and

K∗(D) = FDFT . (3)

A kernel value K∗(D)ij = FiD(Fj)T is the weighted sum of the number of
common feature between the i-th and j-th nodes. However, since latent feature
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models are hardly obtained, the ideal kernels are not available. Any kernel de-
fined from data with latent feature models should be close to some ideal kernels
in some senses.

3 Link Kernels with Latent Features

We describe our kernel method to link prediction given the latent feature model
assumption of the graph structures. The idea is to use the model to derive a
kernel between all pairs of the nodes (called link kernel). We define the following
terms: a link is considered as a positive pair of nodes while a negative pair of
nodes encodes the non-existence of a link (nonlink).

Input: Adjacency matrix A.

1. Construct a node kernel Kn following latent feature models.
2. Construct a link kernel K based on Kn.
3. Learn a SVM on K.

Output: New adjacency matrix based on the SVM.

Fig. 3. Network Structure based Link Prediction

The link prediction problem is then formulated as a binary classification prob-
lem. In the end, we classify the two classes, link class and nonlink class using
Support Vector Machines. The overall strategy is in Figure 3.

The kernel between pairs is based on the kernel between nodes themselves
(called node kernel). We first describe the node kernel (Kn) that encodes the
latent feature model, its relations to ideal kernels in sparse graphs, and then the
link kernel.

3.1 Node Kernels with Latent Features

As latent feature models are the generative models of graphs, we wish to define
the similarity of two nodes as the likelihood of having common latent features.
This is inherently different from similarity models where similarity means the
likelihood of reaching the other node through random walks [12]. However, latent
features are implicit, we must estimate the similarity, in form of kernels, between
nodes empirically. Knowing that nodes with common features tend to link to
common neighbors in latent feature models, we define the basic node kernels as
the amount of common neighbors of the nodes, as follows.

Kn = norm(AAT ), (4)
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where norm indicates the normalization operator to make the diagonal elements
all 1. Specifically,

(Kn)ij =
(AAT )ij√

(AAT )ii(AAT )jj

. (5)

A special case of this kernel is when all the nodes have exactly one feature (such
as generated by CRP), then Kn(a, b), for any node a and b, is either 1 or 0,
indicating if they have the feature in common or not. An implication is that in
networks where latent features are expected to be sparse, Kn behaves similarly
to this extreme case, showing a good indication of common latent features.

Given the basic node kernel, additional tricks can be applied on top of this
kernel to make new families of kernels. Diffusion kernels and exponential kernels
on top of Kn still conserve the idea of latent features. Of course, the higher the
exponential we take on Kn the looser the idea can be kept. However, please note
that the most general version of spectral transform [11] is not guaranteed to
conserve the latent feature assumption.

Note that this node kernel can be one of many terms in other kernels for
similarity graphs such as path-based [15,10,7,12]. However, we find that our
proposed kernel in particular encodes the latent feature model that is suitable
for our problem.

3.2 Relation to Ideal Kernels on Sparse Graphs

When the graphs are sparse (in our applications), sparse models are required to
model them. The following propositions show the relationship between the node
kernel Kn and the ideal kernels when the models are sparse. Denote Si as the
set of latent features of node i.

Proposition 1 (Positivity). If Si∩Sj �= ∅ (two nodes i and j share at least one
latent feature) and that feature interacts with another feature, then (AAT )ij > 0,
therefore (Kn)ij > 0.

Proof. The proof can be easily seen because when they share a feature, they
have a common nonempty neighborhood and therefore, (Kn)ij > 0. ��
This shows that if the values of ideal kernels on two nodes are positive, the value
of Kn is positive as well. This means that whenever the two nodes are similar
(positive kernel value) in the model, the kernel Kn can recognize that. This is
useful for sparse graphs (causing sparse kernels), Kn is not sparser than any
ideal kernel.

Proposition 2 (Monotonicity). Suppose that the edges have the same amount
of neighbors in the sense that (AAT )ii(AAT )jj = (AAT )kk(AAT )ll. If (Si∩Sj) ⊇
(Sk ∩ Sl) then (Kn)ij ≥ (Kn)kl.

The first assumption is about the equal amounts of neighbors for the two pairs
of nodes. The amount of neighbors of a pair of nodes is defined to be the product
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of numbers of its adjacent nodes. The conclusion is that, the more latent features
they share, the higher the kernel value is. This is a property of the ideal kernels
by the way they are defined, showing an analogy of Kn to ideal kernels.

Proof. As (Si ∩Sj) ⊇ (Sk ∩ Sl), the common neighborhood of the nodes i and j
is a superset of the the common neighborhood of the nodes k and l. Therefore,
(AAT )ij ≥ (AAT )kl.

(Kn)ij =
(AAT )ij√

(AAT )ii(AAT )jj

≥ (AAT )kl√
(AAT )ii(AAT )jj

= (Kn)kl (6)

from the definition of the node kernel in (4). ��

Lemma 1 (One feature interaction). For any latent feature model (F ,W ),
there exists another latent feature model (F

′
,W

′
) that gives (i) the same adja-

cency matrix, (ii) the same set of ideal kernels and (iii) the feature interaction
matrix is nonzero on at most one of its entries in any row and column.

In other words, there exists another mathematically equivalent model giving the
same ideal kernel sets and adjacency matrix in which each feature interacts with
only one another feature.

Proof. The idea of the proof is to place a nonzero wij in one new row and column
of W

′
and duplicate the columns of F when necessary to make F

′
, keeping

the adjacency matrix unchanged. Supposed that the (unnormalized) adjacency
matrix A is computed by

A = FWFT =
∑
ij

wijF·i(F·j)T , (7)

where F·i is the i-th column of F.
Denote I = {(i, j)} that wij �= 0 then

A =
∑

(i,j)∈I

wijF·i(F·j)T . (8)

We then construct the F
′

and W
′

by sequentially appending feature columns
and feature interaction matrix values in the formula 8 as follows.

1. Mark all the indices in I as available.
2. Initialize F

′
and W

′
to empty matrices.

3. Go the the next available index in I, pick the pair wij , then
– If i = j, meaning that wii indicates a self interacting feature, then append

the feature vector F·i at the end of the already constructed F
′
. Append

a new row and column of W
′
with the only nonzero element wij on the

diagon of W
′
. Mark the index of wij in I unavailable. Repeat the process

from step 3.
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– If W is symmetric (A is symmetric) then wij = wji. Append the feature
vectors F·i and F·j to the end of F

′
. Suppose the size of W

′
is k, then

append two new rows and columns of W
′
with the only nonzero elements

are wij at W
′
k+1,k and W

′
k,k+1. Mark the indices of wij and wji in I

unavailable. Repeat the process from step 3.
– If W is not symmetric then append the features as the symmetric case

to F
′
. For W

′
, only one nonzero element is added to W

′
k,k+1. Mark the

index of wij in I unavailable. Repeat the process from step 3.

By doing this, then

F
′
W

′
(F

′
)T =

∑
(i,j)∈I

wijF·i(F·j)T = FWFT = A. (9)

Also, each row or column of W
′
has at most one nonzero entry by the way W

′

is constructed. Since the set of columns of F
′
is the same as F ’s, the set of ideal

kernels are the same (only different by feature weighting). ��
Hence, we have constructed a new model with a feature either interacts or is
interacted with at most one another feature. This is to say that there is a math-
ematically equivalent model that each feature only interacts with one another
feature. We use this fact to facilitate our sparsity reasoning as follows.

Proposition 3 (Ideal condition). Kn is an ideal kernel (Kn ∈ K) if WFT

has all row vectors uncorrelated.

Proof. When WFT has row vectors uncorrelated, then: WFT × (WFT )T is
diagonal. Denote D = WFT × FWT , then:

Kn(A) = FWFT × FWT FT = FDFT . (10)

Since D is diagonal with nonnegative entries, Kn ∈ K. ��
Corollary 1. If W is an unmixing matrix of an Independent Component Anal-
ysis model for FT , then Kn ∈ K.

Corollary 2. If each node has only one latent feature, such as F is generated
by a Chinese Restaurant Process or any class-based model in a model that W
has only one nonzero entry in each row or column (guaranteed by Lemma 1),
then Kn ∈ K.

This is from the fact that WFT has only one nonzero entry in each column,
therefore any pair of row vectors would have no nonzero entries in common.
This makes row vectors of WFT uncorrelated.

When the model is sparse, Kn is close to an ideal kernel as follows. Denote
E = FT F , therefore Elk = (F·l)T F·k is number of nodes having both features
l and k. When l �= k, we expect Elk to be small for sparse models. Given the
Lemma 1, we assume that Wil and Wjk are the only nonzero entries in rows i
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and j. Recall that Kn = FDFT = FWEWT FT . Since the entries of W are
scalars, Dij = WilWjkElk means that D2

ij/(DiiDjj) = E2
lk/(EllEkk). When F is

sparse, off-diagonal elements of E is much smaller than diagonal ones (diagonally
dominant), the same thing can be said for D. This means that D is as diagonally
dominant as E. We show quantitatively how close D is to an ideal kernel.

Proposition 4 (Approximation). When the model is sparse in the sense that
(
∑

i�=j |WilWjkElk|p) 1
p ≤ δ for some small δ ∈ R, p ≥ 0, there exists an ideal

kernel FD̂FT that is close to Kn in the sense that ‖ D − D̂ ‖p≤ δ.

In the condition (
∑

i�=j |WilWjkElk|p) 1
p , an entry WilWjkElk is the weighted the

number of nodes having the two features l and k (should also be small for sparse
models, l �= k inplies i �= j). ‖ · ‖p is the p-norm of a matrix.

Proof. We construct D̂ as a diagonal matrix with D̂ii = Dii = W 2
ilEll. Given

that Dij = WilWjkElk, then

‖ D − D̂ ‖p= (
∑
i�=j

|Dij |p) 1
p = (

∑
i�=j

|WilWjkElk|p) 1
p ≤ δ. (11)

This shows that the more sparse the model, the closer D is to ideal kernels. ��
When a model is sparse in the sense that each node has very few latent features,
each latent feature interacts with one another features (by the Lemma 1), Kn

should be close to the ideal kernel FD̂FT since FD̂FT is linear in D̂.
All these properties make the kernel Kn a good approximation of ideal ker-

nels in sparse models. Sparse models are suitable for our applications in sparse
networks (nodes with small degrees). We elaborate more in the application part.

3.3 Link Kernels with Latent Features

Given the node kernel Kn, a kernel between two links is usually defined to be
the combined similarity between the pairs of nodes of the links. We choose the
widely used and experimentally justified tensor product pairwise kernel [2] to be
the kernel for pairs as follows.

K((a, b), (c, d)) = Kn(a, c) ·Kn(b, d) + Kn(a, d) ·Kn(b, c). (12)

Here is the kernel for the two pairs of nodes (a, b) and (c, d). Denote ai, bj as
the features of a and b respectively in the feature space of Kn, then the feature
space of K consists of the following features for a pair (a, b):

aibj + ajbi, (13)

as in [2]. Given that the node kernel Kn is supposed to be the likelihood of
having common latent features, link kernel indicates the chance of having two
pairs of nodes with common features. For example, when the pair {a, c} share
common features and so do the pair {b, d}, K((a, b), (c, d)) is high.

Nonlinearity can be incorporated into this kernel, such as Gaussian kernels
on top of it.
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4 Demonstration

We show the idea of our kernel using the simulation example in the previous
section. Suppose that we observe an incomplete graph of the example as in the
adjacency matrix in Figure 4 (80% of the links are observed). We show step by
step the idea of node kernels and latent features.

2 4 6 8 10 12 14 16
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16

Fig. 4. Adjacency ma-
trix of an incomplete
graph from the simula-
tion example
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Fig. 5. Visualing the graph with the node kernel. The cyan
edges are the observed links of the graph while the red edges
are the missing ones according to the model. We observed
that the red ones follow the same patterns as the cyan ones.

Node Kernel: We visualize the nodes using the node kernel defined in (4). We
use kernel PCA and plot the nodes using the first three components in Figure
5. The nodes in the figure are the nodes of the graphs. The cyan edges are
the observed links. The red edges are the missing links according to the model.
First, we can observe that the cyan edges follow certain patterns of direction and
endpoints. Another point can be observed is that the red edges follows the same
patterns (endpoints lie in clusters, edges connect the same cluster pairs). This
is exactly what we want in learning, testing data having the same distribution
as training data. What left to be done is to keep these patterns in some spatial
representations of the edges.

Latent Features: We look into the model to show the distribution of nodes with
features. We label the nodes with the same feature in shaded ellipses in Figure 6.
The labels of the eclipses, F1, F2 and F3 correspond to the three latent features
in the example. We can observe that the node kernel makes these nodes close to
each other. The nodes with two features (F1 and F3) lie somewhere in between
the nodes with only one of the two features (F1 or F3).

Negative Links: As shown in Figure 5 that the observed edges and missing
edges have similar patterns. However, we use SVM to classify, we also wish the
negative class (nonlink) not to follow the patterns. Therefore, we show all the
edges that belong to the nonlink class in Figure 7. We can observe that they do
not follow that patterns of the positive class (the same endpoints but connecting
different cluster pairs from positive links’).
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Fig. 6. The positive class of links. The
nodes are grouped by their common latent
features. It shows that nodes sharing more
common features tend to group together.

Fig. 7. The set of nonlink class. Com-
pared to the link class, the nonlink class
has totally different positions and ori-
entations.

The demonstration shows that our designed node kernel successfully discovers
the patterns of the link class as opposed to the nonlink class. It tends to group
the nodes with common features close to each other as we designed. We wish to
clarify the difference of our method from the other methods such as using Chinese
Restaurant Processes or Indian Buffet Processes [14,9,13]. These methods group
these nodes together explicitly while our method use a soft version of putting
them close in a space. We believe that this is the key to be robust, allowing the
inference step to be globally optimal and computationally efficient.

5 Application on Non-similarity Networks with Latent
Features

Our targeted application is to model network structures with the latent feature
models. Even though the model includes similarity networks as special cases, our
target is to model more difficult ones, which are not similarity ones. Social net-
works are usually similarity ones, therefore not the prime target of our method.
The PPI networks are the typical examples as it is non-similarity (we also show
the experiments for this in the following subsection). There are other networks
studied in Bioinformatics but they are too sparse and not large enough to study
structures statistically.

We used the PPI networks of yeast and fruit-fly from DIP database for their
largest hand-curated networks available. For statistical study, we attracted only
the largest connected component of the network in which the degree of each node
is not less than m (minimum degree of nodes). In our experiments, we show all
the values of m from 1 to 10 (8 for fruit-fly). For yeast, the subnetwork with
m = 1 has 4762 nodes and 21836 links, and the subnetwork with m = 10 has 756
nodes and 8924 links. For fruit-fly, the subnetwork with m = 1 has 6644 nodes
and 21501 links, and the subnetwork with m = 8 has 713 nodes and 5243 links.
This is the size of data that we expect and we will show latter on that the other
methods based on latent feature inference do not scale to this size.
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Real PPI networks are sparse: less than 20% of the nodes in yeast and none
in fruit-fly have degrees of 10 or more. This is the reason for sparsity analysis in
Section 3.2. The sparse networks require the models to be sparse as well.

For each subnetwork, we used SVM (C = 0.001, but the results are the same
for a range of C from 0.0001 to 0.1) as the classifier for our link kernels. We
showed the average AUC score of different train/test splits with the ratio 90/10.
We first showed the appropriateness of the assumption of latent features as
opposed to the usual assumption of similarity. We then showed the time required
to build one model to reflect the difference in execution times or our method
compared to Indian Buffet Process (IBP) as described in [13] (with parameter
α = 3, which we found to be a good trade-off to be able to train on our smallest
datasets and induce a model with enough number of latent features). We then
showed the performance of link kernels in link prediction. We also compared to
sequence based link prediction to show the advantage using network structures.

Fig. 8. Latent feature versus similarity assumption: AUC of the direct method for link
prediction (vertical) at different minimum degree of the network (horizontal axis)

5.1 Latent Feature versus Similarity

We show the fitness of the latent feature model on yeast PPI networks as opposed
to the similarity model in Figure 8. We used the direct method [18] to predict
links based on the two models. The idea of the direct method is simply nearest
neighbor classifiers. For similarity assumption, probability of having link between
two nodes is proportional to how similar they are in their connectivity patterns
(called SimNN). On the other hand, with latent feature model, probability of a
link between two nodes is determined by the class of its nearest neighbor in the
link kernel (called LK-NN), not the kernel between nodes.

The figure showed a significantly different AUC scores of the two methods
on yeast’s networks. LK-NN was usually much higher (around 0.1 and more).
It showed that latent feature model was more suitable to PPI networks than
the conventional similarity one. The exception was at the subnetwork with the
minimum degree of nodes of one. Since we were using only network structures,
the nodes with degree one may not contribute to the network structure in these
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models. Therefore, results for the subnetworks with larger nodes’ degrees demon-
strated the reasonability of the assumptions used. For this reason, the latent
feature assumption was more reasonable than similarity assumption here, and
the methods for similarity networks were not recommended to use.

5.2 Execution Time

We show execution time required to build one model using our link kernels in
Figure 9. To compare to IBP, we also show the execution time in the process of
building one model before it burns in in Figure 10. For the long times required
by IBP, we only show the execution time for the smallest subnetwork (minimum
degree of 10 with only 756 nodes), which is supposed to require the least time
among all the subnetworks.

Fig. 9. The time required to build one
model using link kernels (in seconds) at
subnetworks with different minimum de-
grees. Note that for the smallest subnet-
work, the execution time is less than 90
seconds.

Fig. 10. The time to train an IBP model
of the smallest subnetwork with m = 10.
The vertical axis is the log-likelihood ob-
tained from the model during the training
process as a function of time in the hori-
zontal axis.

We can see that the link kernels required less than 90 seconds for the smallest
subnetwork, and increased to less than 500 seconds for the largest subnetwork
of 4762 nodes. On the other hand, IBP required many hours for the smallest
subnetwork of 756 nodes and did not burn-in on larger ones within one day. We
conclude that our method using kernel saved many orders of magnitude the time
to train one model, making training on medium-sized networks possible. This is
a key advantage of our kernel method.

5.3 Link Prediction Results

We compared the prediction ability of our method using link kernel to the base-
line of using IBP as in [13] in Figure 11. The results are for different subnetworks
with different minimum degrees. For small minimum degrees, the subnetworks
have higher coverage on the whole network while the large minimum degrees
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Fig. 11. Link prediction results on yeast PPI network: AUC of link prediction with
different methods (vertical) at different minimum degrees of the network (horizontal
axis). Note that IBP does not scale with larger datasets, its results are not available.

will extract denser parts of the network, making statistical inference on this
part more reliable. We show two versions of our link kernels: linear kernels and
Gaussian kernels (γ = 2). The incomplete results of IBP was due to the fact
that experiments took too much time (more than one day) to train one model.

We can read from yeast’s results in Figure 11 that linear kernels had similar
AUC scores with IBP. However, when using the nonlinear version of Gaussian
kernels, AUC scores were significantly higher. We conclude that our kernel based
method provided a significantly higher AUC scores than that of IBP. One sur-
prise was that even using only network topology, we archived high AUC scores
close to 0.9. These scores were much higher than random prediction. Given that
the PPI networks are known to be noisy and incomplete, this experiment showed
that there are patterns of the topology of the PPI networks. It also showed that
our method was effective to encode these patterns.

Fig. 12. Link prediction results on fruit-fly PPI network: AUC of link prediction with
different methods (vertical) at different minimum degrees of the network (horizontal
axis). IBP results are missing due to their time consumption.
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Similarly, we can see in the fruit-fly’s results in Figure 12 that our method
based on kernels outperformed IBP. The results on fruit-fly’s networks were much
lower than on yeast due to the fact that fruit-fly’s ones are sparser, involving
more proteins and there are no proteins with degrees of 10 or more.

5.4 Comparison to Sequence-Based Prediction

As opposed to using network structures, traditional methods use nodes’ informa-
tion such as protein sequences. Therefore, we also compared to spectrum kernels
on sequences to predict links in the same manner. The results were not shown in
the Figure 11 and 12 because they ranged differently. The highest AUC score on
any subset for yeast was 0.71± 0.008 and 0.65± 0.016 for fruit-fly. We observe
that network structures gave statistically significantly higher AUC scores (with
t -tests at 0.01 level). This might be due to the fact that kernels based on se-
quences contain too much redundant information, since sequence-based kernels
use all k-mers across the protein sequences. Sequence based kernels are redun-
dant as only small parts determine its interaction ability to others.

6 Conclusion

We studied the problem of predicting new links using network structures in a
more general type of networks. Specifically, we studied the networks that can
be modeled by generative processes with latent features. This is a more general
model of networks than the usually assumed similarity networks in most of the
applications. In order to model real networks of medium or large size, we used
kernels and casted the problem as a supervised learning one, inheriting optimal-
ity, efficiency and nonlinearity of the kernel framework. We showed the suitability
of the kernels on sparse networks. We applied to the non-similarity networks of
protein-protein interactions. The results showed that our kernel-based method
gave a much higher performance than direct latent feature inference by IBP. Our
method was also many orders of magnitude faster, and scaled to the sizes of real
networks, unlike IBP. It was also shown that network structures gave higher re-
sults than information of the nodes. We conclude that for sparse networks with
latent feature models, our method is able to utilize the relevant information
in network structures to give faster, more scalable solutions, and significantly
higher performances.
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Abstract. Online supervised learning with L1-regularization has gained
attention recently because it generally requires less computational time
and a smaller space of complexity than batch-type learning methods.
However, a simple L1-regularization method used in an online setting
has the side effect that rare features tend to be truncated more than
necessary. In fact, feature frequency is highly skewed in many applica-
tions. We developed a new family of L1-regularization methods based
on the previous updates for loss minimization in linear online learning
settings. Our methods can identify and retain low-frequency occurrence
but informative features at the same computational cost and convergence
rate as previous works. Moreover, we combined our methods with a cu-
mulative penalty model to derive more robust models over noisy data.
We applied our methods to several datasets and empirically evaluated
the performance of our algorithms. Experimental results showed that our
frequency-aware truncated models improved the prediction accuracy.

Keywords: Online Learning, L1-regularization, Sparse Learning, Con-
vex Programming, Low-frequency Occurrence Features, Natural Lan-
guage Processing.

1 Introduction

Online learning is a training method using a sequence of instances, and it exe-
cutes a learning process on one piece of data at each round. When learning from
a large quantity of data, many well-known batch-type algorithms cannot solve
an optimization problem within a reasonable time because the computational
cost is very high. In addition, all instances may not be loaded into the main
memory simultaneously. An online learning framework calculates what compo-
nents of the weight vector are to be updated and by how much, based on only
one instance, resulting in use of much less memory space. In this aspect, on-
line learning is competitive for training from large-scale datasets in which the
instances are high dimensional or the number of instances is very large. Online
learning has recently attracted much attention owing to these properties, and
many algorithms have been transformed into online ones.
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L1-regularization, Lasso, is regarded as a useful technique for large-scale data
analysis. Normal L1-regularization introduces the L1 norm into optimization
problems to penalize the weight vector. By applying L1-regularization in algo-
rithms, we can generate compact models to eliminate the features that do not
contribute to the prediction. Compact models are also able to reduce the com-
putational time and memory space used.

Carpenter[3] proposed an approach that combines online learning with L1-
regularization while maintaining the advantages of both techniques. Duchi et
al.[7] and Langford et al.[9] generalized online learning with regularization and
proved the regret bound. These methods consist of two steps. In the first step,
the weight vector is updated to improve precision by reducing the value of the
loss function using the received instance. Then, in the second step, regularization
is applied to the weight vector. This learning scheme is the most famous in the
field of sparse online learning. Therefore, many algorithms associated with the
two-step scheme have been developed and analyzed, e.g., the lazy-update and
cumulative-update forms. Thus, we focus on two-step scheme in this paper.

The widely known form of two-step algorithms is a subgradient method with
L1-regularization. This framework updates the weight vector in a loss minimiza-
tion step according to the subgradient method, and then it truncates parameters
using a normal L1-regularized term. In this paper, we call this method SubGra-
dient method with L1-regularization (SG-L1). Although SG-L1 is an effective
learning framework, this algorithm does not take into account feature frequency
information. As a result, a set of rarely occurring features tends to be truncated
to zero even if they are important or critical features. In many applications, such
as natural language processing and pattern recognition tasks, the frequency of
feature occurrence is not usually uniform. If there are value range differences
among features, the truncated problem also occurs. However, these properties
were not studied in detail in previous works.

Parts of infrequently occurring features are often informative for prediction.
To capture these parts, pre-emphasizing methods have been developed, such as
TF-IDF[14]. Another pre-processing method is to normalize the value range of
each feature to standardize each feature. However, in an online learning setting,
it is difficult to use these pre-processing methods while preserving the essence of
online learning, i.e., to process samples sequentially.

In this paper, we propose simple truncated methods for retaining rarely oc-
curring but informative features in an online setting. The key idea is to integrate
the updating values in the loss minimization step into the L1-regularization step.
We call these methods frequency-aware truncated methods. In this way, we can
decrease the truncation effects of rare features in an online setting. We also ana-
lyzed theoretical guarantees of our methods and derived the same computational
cost and regret bound as for the SG-L1 method. Furthermore, we investigated
frequency-aware truncated methods with a cumulative penalty[15] to achieve ro-
bust solutions for noisy instances. We evaluated the effectiveness of our methods
in experiments comparing our approach to other sparse online algorithms.
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Table 1. Notation

a scalar |λ| absolute value

a vector a(i) i-th entry of vector a

A matrix A(i,j) (i,j)-th entry of matrix A
‖a‖p Lp norm 〈a,b〉 inner product

The outline of this paper is as follows. First, we introduce the problem set-
ting and related works of sparse online learning in section 2. Next, we point out
the disadvantages of previous works, namely, that low-frequency features are
readily truncated, and propose frequency-aware truncated methods for solving
rare-frequency feature truncated problems in section 3. Moreover, we analyze
some properties of our methods and give theoretical guarantees. In section 4, we
derive additional algorithms for combining our proposed methods with cumula-
tive penalty models. In section 5, we evaluate the performance of our methods
using classification tasks. From the experimental results, we discuss the proper-
ties of frequency-aware truncation and our contribution. We conclude the paper
in section 6.

2 Linear Sparse Online Supervised Learning

2.1 Problem Setting

First, we introduce our notation to formally describe the problem setting. In
this paper, scalars are lower-case italic letters, e.g., λ, and an absolute value of
each scalar is |λ|. Vectors are lower-case bold letters, such as x. Matrices are
upper-case bold letters, e.g., X. ‖x‖p represents Lp norm of vector x, and 〈x,y〉
denotes an inner product of two vectors x,y. Table 1 summarizes the notation
in this paper.

In this work, we develop a new family of truncated strategies for linear online
learning. In the setting of standard linear sparse online learning, algorithms
perform a sequential prediction and updating scheme. The objective is to derive
the optimal weight vector w ∈ W ⊂ Rd, where W is a closed convex set. The
updating process is conducted as follows.

1. Receive input data xt ∈ X ⊂ Rd. Input data xt is a feature vector taken
from a d-dimensional closed convex set X .

2. Make a prediction based on an inner product of feature vector xt and a
weight vector wt. The predicted value is ŷt = 〈wt,xt〉.

3. Observe a true output yt.
4. Update weight vector wt to wt+1/2 using a loss function 
t(·).
5. Update wt+1/2 to wt+1 using an L1-regularized term rt(·).
6. Iterate steps 1 through 5 until no input data remains.
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We update a weight vector according to loss function 
t at step 4 and regular-
ization term rt at step 5. 
t is a loss function of the form1


t(wt) : W → R+ ,

where 
t is convex with respect to weight vector wt. In this paper, we deal with
linear online learning framework. Thus, we consider a loss function that exists a
function 
̂t, where


t(w) = 
̂t(〈w,xt〉) = 
̂t(ŷt) , (1)

and loss function 
̂t is generally non-decreasing for the difference between ŷt

and yt. We call a loss function that satisfies the restriction above a linear online
learning problem.

In the setting of a standard linear online learning problem, a subgradient
method(SG)[1][17] is often used for learning. In subgradient methods, the weight
vector is updated as stated in formula (2):

wt+1/2 = wt − ηtg
f
t s.t. gf

t ∈ ∂ft(wt) , (2)

where gf
t is a subgradient2 of ft with respect to wt and ηt is a learning rate.

∂f(wt) is a set of all subgradients of ft at wt. A subgradient method updates
parameters sequentially to minimize ft. It has been proved that the regret bound
of the subgradient method is O(

√
T ) when ηt = 1/

√
t, and consequently the

regret bound per data vanishes as T →∞.
rt is a regularized term of the form

rt(wt+1/2) : W → R+ ,

where rt is convex in wt+1/2. Many algorithms use L1 norm to penalize the
weight vector in a sparsity-induced regularization.

rt(w) = r(w) = λ‖w‖1 , (3)

where λ is a regularization parameter.
In SG-L1, we penalize the weight vector according to formula (4) at step 5.

wt+1 = arg min
w

{‖w −wt+1/2‖22/2 + ληt+1/2‖w‖1
}

, (4)

where ηt+1/2 is the second learning rate. In this step, we find a weight vector
that is in between the previous weight wt+1/2 and a truncated one.

In this paper, we focus on step 5, the regularization step, and propose a new
family of L1-regularization methods.
1 Squared loss function �t(wt) = (yt − 〈wt,xt〉)2 and Hinge loss function �t(wt) =

[1− yt〈wt,xt〉]+ are usually used for �t.
2 A subgradient of f at x is the vector g ∈ Rn that satisfies

∀y f(y) ≥ f(x) + 〈g,y − x〉 .

Even if f is non-differentiable, at least one subgradient exists when f is convex.
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2.2 Related Works

As previously mentioned, SG-L1 is the most common method in sparse online
learning frameworks. Carpenter[3] split the update procedure into two steps
and proposed a method to obtain a sparse solution in an online setting. In
addition, FOBOS[7] and truncated gradient methods[9] generalized a splitting
form method and analyzed the optimal step size and the regret bound of sparse
online learning. These algorithms are guaranteed to asymptotically offer regret
O(
√

T ) in the restriction of the loss function and regularized term in section 2.1.
Furthermore, Nesterov[12] proposed the dual averaging method for online

learning. This method updates the weight vector to solve the simple optimization
problem that includes the average of all previous subgradients of the loss func-
tions at each iteration. Xiao[16] developed the extension of the dual averaging
method to include a regularization term, such as L1 norm. The regularized dual
averaging form (RDA) solves the minimization problem that takes into account
both a regularized term and the average of all previous subgradients. A family
of dual averaging methods ensures the O(

√
T ) regret bound, but, this scheme

also has the low-occurrence feature truncation problem because it applies the
same penalty to all features. Duchi et al.[6] proposed a new family of subgradi-
ent methods as an alternative to previously used subgradient methods, named
AdaGrad. AdaGrad incorporates the knowledge of the data observed in earlier
iterations to emphasize the infrequently occurring instance in an online setting.
However, when a feature occurs for the first time, AdaGrad cannot standardize
it. This is because AdaGrad adjusts the update in a loss minimization step. In
addition, AdaGrad also has the value range problem explained in section 3.

Useful methods have been proposed in the field of online learning for clas-
sification. For example, Perceptron[13], Passive-Aggressive[4], and Confidence-
Weighted[5] algorithms are often used as alternatives to subgradient methods. In
particular, Confidence-Weighted algorithms introduce a Gaussian distribution
into a weight vector and update parameters using the covariance parameters
of the weight vector in order to emphasize informative low-frequency features.
However, Confidence-Weighted algorithms do not generate a sparse solution.

3 Frequency-Aware Truncated Methods

As noted in section 1, SG-L1 and other sparse online algorithms apply the same
penalty to all features independent of the previous update of each feature. In the
linear online learning framework, algorithms update the weight of the feature
that occurs in a piece of input data. As a result, the set of rarely occurring
features tends to be sparse because the value range of these parameters must be
larger than that of other features that are not truncated.

For example, we apply SG-L1 to the dataset in which feature A’s occurrence
rate is 1/2 and feature B’s rate is 1/100. In this case, feature B inevitably
becomes 0 unless feature B’s update satisfies

ηt|g	,(B)
t | ≥ λ

t+100∑
s=t

ηs+1/2 .
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In this paper, g(i) represents the i-th entry of the vector g. On another front,
the weight of feature A does not always drop to 0, where

ηt|g	,(A)
t | ≥ λ

t+1∑
s=t

ηs+1/2 .

Therefore, in a normal sparse online learning framework, if the feature occurrence
rate is non-uniform, we may fail to retain rarely occurring but important features.
In many tasks, such as NLP and pattern recognition, a feature’s occurrence rate
is usually non-uniform.

In addition, each feature’s value range affects the truncation of parameters.
Assume that there are two features: one is an arbitrary feature and the other is
one whose value is 1000 times larger than the first feature. If we learn from this
dataset using normal sparse online learning, which applies the same penalty to
all features, the weight of the first feature is truncated faster than that of the
second feature, despite them both having almost the same effect for prediction.

We designed a family of frequency-aware truncated methods to capture low-
frequency features and solve the value range problem in an online setting. A
frequency-aware truncated method redefines step 5 in a sparse online learning
alternative to normal L1 norm by using each feature’s previous update.

Let ut be the t-th update at step 43. In this case, we can write step 4 as

wt+1/2 = wt + ut .

Then, the frequency-aware truncated method defines step 5 as follows:

wt+1 = arg min
w

{‖w −wt+1/2‖22/2 + ληt+1/2‖Ht,pw‖1
}

, (5)

where

Ht,p =

⎛⎜⎜⎜⎜⎝
h

(1)
t,p 0 . . . 0
0 h

(2)
t,p . . . 0

...
...

. . .
...

0 0 . . . h
(d)
t,p

⎞⎟⎟⎟⎟⎠ s.t. h
(j)
t,p = p

√√√√ t∑
s=1

∣∣∣u(j)
s

∣∣∣p .

h
(j)
t,p , which represents frequency-awareness, is the Lp norm of a vector that con-

sists of feature j’s update at step 4 in each iteration. Ht,p is a matrix consisting
of h

(j)
t,p of all features in a diagonal component. In this definition, we can derive

the vector in which each component is h
(j)
t,pw

(j)
t , or Ht,pwt. Thus, from equation

(5), vector component w
(j)
t tends to be truncated when the value of h

(j)
t,p is large.

If a feature is rarely occurring, the number of updates is also small; thus, h
(j)
t,p

also tends to have a small value. In addition, if the value of a feature C is 1000

3 The update value of this form can be obtained in the setting of linear online learning
(e.g., −ηtg

�
t in a subgradient method).
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Fig. 1. Comparison of awareness parameter h
(j)
t,p against parameter p

times larger than that of a feature D, then, h
(C)
t,p is also 1000 times larger than

h
(D)
t,p . Thus, we can keep the truncation of these two features the same in effect.
We can set a wide variety of numbers into parameter p to adjust the impor-

tance of rare features. To show how an awareness paramter h
(j)
t,p is influenced by

parameter p, we assume a simple example, in which gradient’s value is limited
to either 0 or 1, and represent the relationship between the value of h

(j)
t,p and the

count of feature j’s occurrence. The example is illustrated in Fig. 1. A horizontal
plot describes the count of occurrence in descending order and a vertical plot
shows the value of h

(j)
t,p . It indicates that the smaller the value of p, the more

slowly a rare feature is truncated. We note that a normal L1 can be regarded as
the algorithm of h

(j)
t,p = 1 for all t, j.

3.1 Subgradient Method with Frequency-Aware Truncation

In the following sections, we focus on the SubGradient method with Frequency-
aware Truncation, which we call SGFT.

In SGFT, we can derive the update function as follows:

w
(j)
t+1 = sign

(
w

(j)
t+1/2

) [∣∣∣w(j)
t+1/2

∣∣∣− ηt+1/2h
(j)
t,pλ

]
+

= sign
(
w

(j)
t − ηtg

	,(j)
t

) [∣∣∣w(j)
t − ηtg

	,(j)
t

∣∣∣− ηt+1/2h
(j)
t,pλ

]
+

. (6)

The process of deriving this updating function is the same as that by Duchi
et al.[7]. Equation (6) shows that SGFT can process one piece of data at O(d)
computational cost as large as SG-L1. Fig. 2 illustrates how h

(j)
t,p affects the

updating of wt+1/2 in the regularization step. These figures indicate that the
parameter h

(j)
t,p adjusts the intensity of truncation to retain rarely occurring but

informative features.
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Fig. 2. These figures show how h
(j)
t,p affects the regularization. Left : Normal SG-L1

case, Center : Small h
(j)
t,p case in SGFT, Right : Large h

(j)
t,p case in SGFT.

3.2 Regret Analysis of SGFT

In SGFT, regularization term rt is replaced with rt(wt) = λ‖Ht,pwt‖1 from
a normal L1 norm r(wt) = λ‖wt‖1. When differentiating rt with respect to a
weight vector w and applying L2 norm, we obtain

‖∂rt‖2 = λ

√√√√ d∑
k=1

(
h

(k)
t,p

)2

. (7)

From equation (7), Lemma 1 is proved.

Lemma 1. We define ‖∂f‖ as supg∈∂f(w)‖g‖2. If ‖∂
t‖ ≤ G, ηt = ηt+1/2 =

c/
√

t using a scalar c > 0, and h
(k)
t,p is Lp norm where p > 2, a scalar U exists

that satisfies inequality (8).

lim
t→∞ ‖∂rt‖ < U . (8)

In the Appendix, we prove formula (8).
In the case of p ≤ 2, we redefine the diagonalmatrixHt as H

(k,k)
t = min(h(k)

t,p , V )
using a scalar V . In this paper, H(i,j) represents the (i, j)-th entry of the matrix
H. In the case of p ≤ 2, we can prove that the upper bound of ‖∂rt‖ is

√
dλV .

Thus, there is a scalar U where limt→∞ ‖∂rt‖ ≤ U . In this case, we can prove that
the regret bound of the SGFT is O(

√
T ). The proof is in the Appendix.

Theorem 1. We define the matrix Ht,p as

H
(k,k)
t,p =

{
min(h(k)

t,p , V ) p ≤ 2
h

(k)
t,p p > 2

(9)

In addition, assume both the loss function and regularization term are convex
functions, and that they satisfy ∀wt ‖wt −w∗‖2 ≤ D, ‖∂
t‖ ≤ U, ‖∂rt‖ ≤ U
where setting ηt = ηt+1/2 = c/

√
t using scalars D, U , and c > 0.

In this case, the regret bound of SGFT satisfies formula (10).

R	+r(T ) ≤ 2UD +
(
D2/2c + 8U2c

)√
T = O(

√
T ) , (10)



Frequency-Aware Truncated Methods for Sparse Online Learning 541

where

R	+r(T ) =
T∑

t=1

{
t(wt) + rt(wt)− 
t(w∗)− rt(w∗)} ,

w∗ = arg min
w

T∑
t=1

{
t(w) + rt(w)} .

3.3 Lazy Update

SGFT allows us to truncate parameters in a lazy fashion. We do not need to
penalize the weights of features that do not occur in the current sample, thus,
we can postpone applying the penalty at each iteration. This updating scheme
enables faster calculation when the dimension of instances is large and we have
sparse samples.

We define the absolute value of the total L1 penalty from t = 1 to n as un.

un = λ

n∑
t=1

ηt+1/2 . (11)

At each instance, before we update the parameter in step 4, we apply the L1

penalty to features that are used in the input.

w
(j)
t+1/2 =

⎧⎨⎩max
(
0, w

(j)
t − (ut−1 − us−1)h

(j)
s,p

)
w

(j)
t ≥ 0

min
(
0, w

(j)
t + (ut−1 − us−1)h

(j)
s,p

)
w

(j)
t < 0

, (12)

where s is the sample number that feature j is used at the end. If the value
of us−1 is calculated at s-th update, which is the last update of the weight of
feature j, only ut, ut−1 must be derived at iteration t and the value from u1 to
ut−2 does not have to be preserved.

Second, we perform a subgradient method using wt+1/2 in step 4 and derive
wt+1. Finally, we skip step 5 to finish. In the lazy update version of SGFT, we
can compute the update at the speed of O(number of features that occur).

4 SGFT with Cumulative Penalty

Tsuruoka et al.[15] proposed a cumulative penalty model for SG-L1. The normal
SG-L1 has a problem where a solution is often obtained that is significantly
affected by the last few instances. This is because the weight easily moves away
from zero when a feature is used in the last few instances. The main idea of the
cumulative penalty model is to keep track of the total penalty. Then, we apply
a cumulative L1 penalty to smooth the effect of the update fluctuation and
move away from zero unless the updating sum exceeds the cumulative penalty.
In addition, this model can smooth the effect of the update and also suppress
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noisy data. In this section, we propose a method combining our models with the
cumulative penalty model.

We begin by introducing q
(j)
t as an already applied cumulative L1 penalty of

feature j at the t-th instance. We initialize q
(j)
0 = 0 for all j. In this setting, at

step 5, we update the weight vector whose feature is used in the current instance
as follows:

w
(j)
t+1 =

⎧⎨⎩max
(
0, w

(j)
t+1/2 − (h(j)

t,put + q
(j)
t )

)
w

(j)
t+1/2 ≥ 0

min
(
0, w

(j)
t+1/2 + (h(j)

t,put − q
(j)
t )

)
w

(j)
t+1/2 < 0

. (13)

Then, we update the parameter q
(j)
t if the feature j is used in the current instance

as follows:
q
(j)
t = q

(j)
t−1 + (w(j)

t+1 − w
(j)
t+1/2) . (14)

In a cumulative penalty setting, we rewrite the optimization problem as if re-
turning to the previous iteration and applying the new frequency-aware adapta-
tion parameter h

(j)
t,p. This reformalization makes the update function simple and

reduce space complexity. The same as Tsuruoka et al. did, the whole frequency-
aware L1 penalty is applied at once if the following two types of weight vectors
reside within the same orthant: 1) the weight vector that had been updated by
the true gradient with the latest penalty and 2) the weight vector calculated
with the cumulative form of L1 normalization.

SGFT with cumulative penalty takes O(number of features that occur) com-
putational time at each iteration.

5 Evaluation

We evaluated our proposed frequency-aware truncated methods using classifica-
tion tasks. In the experiment, we used three datasets.

First, we used sentiment classification tasks[2] for Amazon.com goods reviews.
Classification tasks classify whether a positive or negative opinion is noted in
each review. In this dataset, we used the books and dvd categories.

Second, we used the 20 Newsgroups dataset (news20)[8]. The news20 is a news
categorization task in which a learning algorithm predicts to what category each
news article is assigned. This dataset consists of about 20,000 news articles. Each
article is assigned to one of 20 predetermined categories. We used four subsets
of news20: ob-2-1, sb-2-1, ob-8-1, and sb-8-1[11]. In each subset, the number
of categories and the closeness among categories differed. For the first letter of
each subset name, ’o’ indicates ’overlap’ and ’s’ denotes ’separated’. Classifying
categories correctly is more difficult with an ’overlap’ dataset. The second letter
of the subset names means the heterogeneity among the categories and there is
no difference in the instance number among the categories. The middle number
is the number of categories.

Last, we used the Reuters-21578 [10] dataset. The Reuters-21578 also con-
sists of news articles and we used a dataset for a 20-category classification task
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Table 2. Dataset specifications

# of instances # of features # of categories

books 4,465 332,441 2
dvd 3,586 282,901 2
ob-2-1 1,000 5,942 2
sb-2-1 1,000 6,276 2
ob-8-1 4,000 13,890 8
sb-8-1 4,000 16,282 8
reut20 7,800 34,488 20

(reut20) from the Reuters-21578. In Table 2, we provide the specifications of
each dataset, including the number of features, instances, and categories.

In this experiment, we used the hinge-loss function as a loss function. When
there are more than two categories, it is not possible to use hinge-loss directly
because the hinge-loss function was developed for binary categorization. In our
experiment, we defined a weight vector as w ∈ Ŵ ⊂ Rd×K , where K was the
number of classes, and a feature vector as Φ(x, y), mapped from the Cartesian
product X × Y , where Y was the set of labels in the 1-of-K scheme. Moreover,
we set the loss function as formula (15).


t(wt) = [1− 〈wt, Φ(xt, yt)〉+ max
zt∈Y \yt

〈wt, Φ(xt, zt)〉]+ , (15)

where yt is a correct label at t. We can process the multi-class classification tasks
as define above. In the experiment, we examined SGFT, SG-L1, and RDA[16]
to compare the precision and sparseness rates. From a family of frequency-aware
truncated methods, we selected the algorithms of p = 1, 2, 3,∞.

The step size ηt was set at ηt = ηt+1/2 = 1/
√

t to satisfy the restriction of
the regret bound in SGFT and SG-L1. Moreover, in SGFT where p = 1, 2, we
set V = 500 to satisfy the regret bound restriction4. In contrast, in RDA, we set
h(w) = 1/2‖w‖22 and βt =

√
t. In our experiment, we evaluated the performance

of our methods using a ten-fold cross-validation to achieve the highest precision
rate by adjusting the parameter λ. We set the number of iterations to 20.

The experimental results of SGFT against the change of parameter p are
shown in Table 3. The figure in [·] means the standard deviation, and the figure
in (·) denotes the sparseness rate. Moreover, the highest precision rates among
all the algorithms are written in bold font.

Table 3 indicates that SGFT with p = 2 achieves the best performance in
the four datasets. Moreover, in the other three datasets, SGFT p = 2 has the
second highest precision, indicating SGFT p = 2 is an efficient learning method
in the SGFT family. Table 3 also shows that SGFT has a tendency of increasing
sparsity responding to increase of parameter p.

4 In this experiment, the value of h
(j)
t,p did not exceed 500, thus the value of V did not

influence the result.
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Table 3. SGFT’s precision (sparseness) rate against parameter p (Iterations : 20)

SGFT (p = 1) SGFT (p = 2) SGFT (p = 3) SGFT (p = ∞)

books 85.23[1.52] (34.52) 85.52[1.24] (48.26) 85.14[1.33] (49.58) 85.05[1.41] (69.39)
dvd 82.49[1.68] (37.46) 84.75[1.75] (59.72) 85.03[2.28] (63.74) 84.02[1.66] (67.19)
ob-2-1 97.00[1.73] (42.78) 97.10[1.14] (56.73) 96.90[1.87] (59.03) 96.80[1.94] (59.78)
sb-2-1 98.90[0.83] (60.13) 98.40[0.80] (70.32) 98.40[1.11] (71.99) 98.10[1.14] (72.69)
ob-8-1 92.25[1.14] (62.83) 93.10[1.41] (62.84) 93.00[1.29] (64.64) 91.45[1.33] (77.78)
sb-8-1 90.90[1.72] (68.26) 92.55[1.85] (68.49) 93.78[2.44] (70.23) 91.25[1.44] (83.53)
reut20 95.23[0.65] (89.11) 96.04[0.56] (90.38) 95.91[0.55] (90.21) 94.80[0.67] (91.05)

Table 4. Precision (sparseness) rate (Iterations : 20)

SGFT (p = 2) SG-L1 RDA

books 85.52[1.24] (48.26) 84.98[1.61] (48.28) 86.57[1.16] (34.65)
dvd 84.75[1.75] (59.72) 83.91[1.55] (79.57) 86.36[2.08] (37.08)
ob-2-1 97.10[1.14] (56.73) 96.40[1.96] (49.23) 97.60[1.80] (39.83)
sb-2-1 98.40[0.80] (70.32) 97.20[1.78] (84.25) 98.20[0.75] (56.67)
ob-8-1 93.10[1.41] (62.84) 90.63[1.64] (87.90) 93.78[1.21] (50.52)
sb-8-1 92.55[1.85] (68.49) 90.53[1.61] (67.46) 95.45[0.95] (60.46)
reut20 96.04[0.56] (90.38) 95.53[0.63] (89.29) 96.27[0.63] (86.67)

Table 4 illustrates the results of SG-L1 and RDA as compared with SGFT
p = 2, which showed the most efficient performance in Table 3.

From Table 4, SGFT is confirmed to outperform SG-L1 in all the datasets. At
the same time, SGFT does not necessarily have a smaller sparsity rate than SG-
L1. This result shows that frequency-aware truncation improves the accuracy of
precision, without degrading sparsity. From the experimental results, note that
frequency-aware truncation could improve the accuracy by retaining rarely oc-
curring but important features and dropping unimportant features. Thus, in the
setting of sparse online learning, frequency-aware truncation is a useful method
compared with the normal L1-regularization for these datasets.

We also evaluated the experimental results of RDA. The results showed that
RDA obtained the highest precision rate in these tasks except for sb-2-1, but,
the rate of sparsity was smaller than SGFT. This indicates that RDA is a so-
phisticated algorithm for precise learning; however, to obtain a sparse solution,
frequency-aware truncation methods are also efficient for learning. We consider
that the margin between these two methods occur partly because RDA[16] has
the smaller regret bound than FOBOS[7] and SGFT in terms of the coefficient.

6 Conclusion

We analyzed a new family of truncated methods for retaining rarely occurring
features in an online setting. These methods integrate the sum of updates in
the loss minimization steps into the regularization step to adjust the intensity
of truncation. In this way, we can solve the problem where rarely used features
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are truncated on a priority basis. Specifically, we proved the computational cost
and theoretical guarantees of SGFT, which is also known as a frequency-aware
truncated method. In addition, we provided possible extensions of our work, such
as lazy-update and cumulative-penalty schemes. Finally, we evaluated the per-
formance of our methods in experiments. The experimental results showed that
frequency-aware truncated methods could retain rarely occurring but important
features without loss of sparsity.

A few discussions for further research remain in connection with our proposed
methods. The first is the integration of frequency-aware methods into a primal-
dual averaging framework. We assume that a frequency-aware scheme could be
connected with dual-averaging methods with a minor change of frequency-aware
term’s definition. This extension would also enable us to give the same regret
bound and computational time as those for dual-averaging methods and expect
the higher performance than RDA. The second issue is whether we can optimize
parameter p in an online setting. We aim to investigate these questions and
further extensions of our proposed methods.
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Appendix

Proof of Lemma 1

Let ηt be a vector of (η1, η2, . . . , ηt). If ‖∂
t‖ ≤ G for all t, we can derive

h
(k)
t,p ≤ ‖Gηt‖p = G‖ηt‖p . (16)

The first inequality follows from the inequality below.

∀t, k |g	,(k)
t | ≤ ‖g	

t‖2 ≤ ‖∂
t‖ ≤ G .

From the definition of Lp norm, we can rewrite equation (16) as

‖ηt‖p = p

√√√√ t∑
k=1

|ηk|p . (17)

Thus, if we substitute ηk with c/
√

k, we obtain equation (18).

‖ηt‖p = c p

√√√√ t∑
k=1

k−p
2 . (18)

∑T
t=1 t−

p
2 is a zeta function. From the characteristics of zeta functions, if − p

2 <

−1, that is, p > 2,
∑t

k=1 k− p
2 has a upper bound and thus converges as t→∞.

We set the upper limit value to S, obtaining ‖ηt‖p = cS
1
p . Then, there is a scalar

U which satisfies equation (19).

‖∂rt(w)‖ ≤ λG

√√√√ d∑
l=1

(cS
1
p )2 = cλGS

1
p

√
d ≤ U . (19)

Therefore, we can prove Lemma 1. However, in the case of p ≤ 2, we cannot
bound h

(k)
t,p because the zeta function does not converge.



Frequency-Aware Truncated Methods for Sparse Online Learning 547

Proof of Theorem 1

The procedure of the proof is similar to that by Duchi et al.[7], but, there is a
small difference because, in our methods, the regularization term depends on t
which is the number of iterations. First, we prove Lemma 2.

Lemma 2. Assume both loss function 
t and regularization term rt have con-
vexity and satisfy equation (20).

‖∂
t(w)‖2 ≤ G2, ‖∂rt(w)‖2 ≤ G2 . (20)

Let step size ηt satisfy ηt+1 ≤ ηt+1/2 ≤ ηt and ηt ≤ 2ηt+1. In this case, we can
prove equation (21).

∀w∗ ∃c ≤ 5 2ηt
t(wt)− 2ηt
t(w∗) + 2ηt+1/2rt(wt+1)− 2ηt+1/2rt(w∗)

≤ ‖wt −w∗‖22 − ‖wt+1 −w∗‖22 + 8η2
t G2 . (21)

From the condition that the loss function is convex, we can derive equation (22)
in terms of any subgradient g	

t ∈ ∂
t(wt).


t(w∗) ≥ 
t(wt)+ 〈g	
t ,w

∗−wt〉 =⇒ −〈g	
t ,wt−w∗〉 ≤ 
t(w∗)− 
t(wt) . (22)

This is the case with regard to regularization term rt(·). In this paper, we denote
any subgradient of regularization term rt(wt+1) as gr

t+1.
From the Cauchy-Shwartz inequality and equation (2), we obtain

〈gr
t+1,wt+1 −wt〉 = 〈gr

t+1,−ηtg	
t − ηt+1/2gr

t+1〉
≤ ‖gr

t+1‖2‖ηtg	
t + ηt+1/2gr

t+1‖2
≤ ηt+1/2‖gr

t+1‖22 + ηt‖gr
t+1‖2‖g	

t‖2
≤ (ηt+1/2 + ηt)G2 . (23)

In the first equation above, we use wt+1 = wt − ηtg	
t − ηt+1/2gr

t+1 derived from
the derivation of equations (2) and (5).

Then, we proceed to derive the upper bound of the difference between w∗ and
wt+1 for obtaining the upper bound of 
t(wt) + rt(wt) − 
t(w∗) − rt(w∗). We
can expand the L2 norm of the difference between w∗ and wt+1 as follows:

‖wt+1 −w∗‖22 = ‖wt − (ηtg	
t + ηt+1/2gr

t+1)−w∗‖22
= ‖wt −w∗‖22 − 2

(
ηt〈g	

t ,wt −w∗〉+ ηt+1/2〈gr
t+1,wt −w∗〉)

+‖ηtg	
t + ηt+1/2gr

t+1‖22
= ‖wt −w∗‖22 − 2ηt〈g	

t ,wt −w∗〉+ ‖ηtg	
t + ηt+1/2g

r
t+1‖22

−2ηt+1/2

(〈gr
t+1,wt+1 −w∗〉 − 〈gr

t+1,wt+1 −wt〉
)

. (24)

The bound of the third term is derived as

‖ηtg	
t + ηt+1/2gr

t+1‖22 = η2
t ‖g	

t‖22 + 2ηtηt+1/2〈g	
t ,g

r
t+1〉+ η2

t+1/2‖gr
t+1‖22

≤ 4η2
t G2 . (25)
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The upper bound of equation (24) is obtained by equations (22), (23), and (25).

‖wt+1 −w∗‖22 ≤ ‖wt −w∗‖22 − 2ηt〈g	
t ,wt −w∗〉 − 2ηt+1/2〈gr

t+1,wt+1 −w∗〉
+‖ηtg	

t + ηt+1/2gr
t+1‖22 + 4ηt+1/2ηtG

2

≤ ‖wt −w∗‖22 + 2ηt(
t(w∗)− 
t(wt))
+2ηt+1/2(rt(w∗)− rt(wt+1)) + 8η2

t G2 . (26)

From equation (26), we finish the proof of Lemma 2.
Next, we prove the upper bound of SGFT using Lemma 2. Zinkevich’s regret

analysis[17] for online convex programming is effective, thus, we use this method.
From Lemma 2, when we set ηt = ηt+1/2, we obtain


t(wt)− 
t(w∗) + rt(wt+1)− rt(w∗)

≤ 1
2ηt

(‖wt −w∗‖22 − ‖wt+1 −w∗‖22
)

+ 4G2ηt . (27)

Then, we calculate the sum of equation (27) from t = 1 to T and derive

R	+r(T ) ≤ 2GD +
T∑

t=1

1
2ηt

(‖wt −w∗‖22 − ‖wt+1 −w∗‖22
)

+ 4G2
T∑

t=1

ηt

≤ 2GD +
D2

2η1
+

D2

2

T∑
t=2

(
1
ηt
− 1

ηt−1

)
+ 4G2

T∑
t=1

ηt

≤ 2GD +
D2

2ηT
+ 4G2

T∑
t=1

ηt , (28)

from the following restriction

T∑
t=1

(rt(wt)− rt−1(wt))− rT (wT+1) ≤ ‖∂rT (w)‖‖w‖2 ≤ 2GD . (29)

The second inequality holds using ‖wt −w∗‖2 ≤ D. Assuming that ηt = c/
√

t,
we can prove the upper bound of regret is O(

√
T ) from the fact that

∑T
t=1 ηt ≤

2c
√

T . Thus, we have proved Theorem 1.
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Abstract. Finding who and what is “important” is an ever-occurring
question. Many methods that aim at characterizing important items or
influential individuals have been developed in areas such as, bibliomet-
rics, social-network analysis, link analysis, and web search. In this paper
we study the problem of attributing influence scores to individuals who
accomplish tasks in a collaborative manner. We assume that individuals
build small teams, in different and diverse ways, in order to accomplish
atomic tasks. For each task we are given an assessment of success or im-
portance score, and the goal is to attribute those team-wise scores to the
individuals. The challenge we face is that individuals in strong coalitions
are favored against individuals in weaker coalitions, so the objective is
to find fair attributions that account for such biasing. We propose an
iterative algorithm for solving this problem that is based on the con-
cept of Shapley value. The proposed method is applicable to a variety
of scenarios, for example, attributing influence scores to scientists who
collaborate in published articles, or employees of a company who partic-
ipate in projects. Our method is evaluated on two real datasets: ISI Web
of Science publication data and the Internet Movie Database.

Keywords: Shapley value, influence attribution, impact factors.

1 Introduction

People have always been intrigued by characterizing “influential” ideas, books,
inventions, scientists, politicians, art movements, etc. The question of finding
important or influential items has attracted a lot of attention in social sciences,
computer science, as well as other fields. For instance, the analysis of social
networks has developed many methods to identify “important” individuals. Re-
search in bibliometrics has provided many methods, typically based on citations,
in order to assess the “impact factor” of publications, conferences, or journals. In
information retrieval and web search, link-analysis methods, such as PageRank
[18] and HITS [14], aim at identifying “authoritativeness” of web documents;
furthermore, those link-analysis ideas have been applied to a wide variety of
other scenarios. Recently, with the explosion of user-generated content a lot of
emphasis has been placed on identifying influential users in blogs, micro-blogs,
question-answering portals, and other social-media sites.
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In this paper we address a novel problem in the context of characterizing who
is influential. In particular, we focus on the case of attributing influence scores to
a set of individuals who accomplish tasks in a collaborative manner. The setting
we consider is as follows: we start with a large set of individuals; based on their
interests, expertise, skills, and social dynamics, individuals form small teams in
order to accomplish various tasks; we assume that for each of the accomplished
tasks a value of importance (or influence) can be obtained. The problem we
address is how to attribute to the individuals of each team the influence scores
that we obtain for the whole team. We call this problem the influence-attribution
problem.

Influence attribution has applications in many scenarios in which we want
to estimate importance of individuals when importance evaluation scores are
available at a team level. An obvious application of our setting is estimating
importance scores for scientists through analysis of co-authorship information
in scientific publications. For the latter problem, assigning importance scores to
specific publications has received a lot of attention, and it is typically accom-
plished via analysis of citation graphs; however, how to distribute those scores
to the individual authors of the publications is a much less studied problem.
Other application scenarios include finding importance of company employees
who participate in various projects, editors of wikipedia articles, bloggers in sites
of collective blogging, artists in collaborative art spaces, and in general in any
online collaboration community.

A simple approach for attributing influence scores to individuals is to divide
the score of a task equally to all team members. However, in many cases, an
equal division of importance scores may introduce inaccuracies. For instance,
imagine a very talented individual who is capable of creating influential work in
a number of different teams with a wide range of collaborators. In such a case,
if there is evidence in the data that a large part of the influential work is due
to this talented individual, it should be appropriate that she will receive more
credit than her collaborators. The following example, in the context of scientific
publications, demonstrates in more detail that equal division of importance score
may be misleading.

Example. Consider the example shown in Figure 1. Let B be a researcher who,
during a postdoctoral period, collaborated with a very distinguished researcher
Y, and together they produced a total of 8 publications. Each of these publica-
tions has so far acquired 8 citations. Since the end of the postdoctoral period, B
produced 12 additional publications, collaborating with 3 other researchers, but
not with Y. None of these additional publications, however, received a signifi-
cant amount of citations. Based on Figure 1, the total number of publications
produced by A is 20, the total citation count is 70, while the H-index is 8. In
the meantime, researcher A also spent a postdoctoral period collaborating with
Y and produced 5 publications. Each of these publications received 4 citations.
After the postdoctoral period, A collaborated with 3 other researchers produc-
ing 15 additional publications. In particular, each publication produced by the
collaboration with X1 received 4 citations and each publication produced by the
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Fig. 1. An example showing that taking into account author coalitions is important. P
denotes the number of papers per author and C the number of citations per paper. Thus,
author X1 received 20 citations, authors X2 and X3 received 15 citations, authors X4
and X5 0 citations, and author X6 6 citations. Also, author Y received 84 citations.
For simplicity, we have kept the citation numbers unrealistically small.

collaboration with X2 and X3 received 3 citations. Thus, the total number of
publications of A is 20, the total citation count is 70, while the H-index is 4.

The key question now is the following: which of the two researchers is more
“influential”? Taking into account the bibliometric measures, B should be fa-
vored for having a higher H-index than B. But looking a bit deeper, one may
notice that B managed to obtain all the “fame” only because of collaborating
with Y. So, isn’t it just that Y is a very strong researcher or has a very strong
team that makes B influential? In other words, if Y is dropped from the picture,
then the remaining publications of B are insignificant. On the other hand, A has
also collaborated with the same number of people as B, though all collaborations
were fruitful. Thus, it is more likely that A is a much stronger researcher than
B, and should be definitely favored.

One of course could make the following alternative conclusion: A has better
selected collaborators but, in general, he/she is weak. However, in this case it is
not just that A made a wise selection of collaborators, but these collaborators
chose A as well. Thus, A should be strong since he/she has been chosen by strong
collaborators.

Our approach. Our solution to the problem of influence attribution is inspired
by the concept of Shapley value, which was introduced by Lloyd Shapley in
1953 [22]. The Shapley value is a game-theoretic concept devised for fair division
of gains obtained by co-operation of n players, namely in a setting very similar
to the one we consider in this paper. It can be shown that the division made
by the Shapley value satisfies very natural fairness properties, such as efficiency,
individual fairness, symmetry, and additivity [23]. However, applying the concept
of Shapley value in real scenarios is highly impractical, since the theory assumes
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that it is possible to assess the expected gain for every possible co-operation,
that is, for all 2N possible teams, where N is the total number of individuals.

To address the inefficiency that stems from the definition of Shapleyvalue,
we propose an iterative algorithm that aims to approximate the Shapley value
using only co-operations for which an estimate of the expected importance score
exists. For example, in the case of co-authorships and scientific publications, the
only co-operations used by the algorithm are teams of authors who have written
a paper together. Even though the total number of co-operations that occur in
real data is very small compared to the number of all possible co-operations,
and there is no theoretical guarantee that the scores obtained by our method
satisfy any fairness conditions, our approach takes into account the marginal
contribution of the individuals to the teams into which they participate. Thus,
we argue and experimentally demonstrate that our method produces more fair
attributions than the simple baseline of equal division.

Contributions. The main contributions of this paper include:

– the formulation of the problem of finding influential individuals in a collab-
orative environment,

– an iterative method to solve the influence-attribution problem that is based
on the Shapley value,

– an experimental evaluation on two large and commonly used datasets: ISI
Web of Science and the Internet Movie Database.

The remainder of this paper is organized as follows: in Section 2 we present the
related work, in Section 3 we provide the necessary background along with the
problem formulation, Section 4 presents the proposed methodology, in Section
5 we present the experimental results, and finally, in Section 6 we conclude the
paper and discuss directions for future work.

2 Related Work

Social-network analysis. Researchers in social-network analysis have devel-
oped many methods to measure “importance” of individuals in an implicitly- or
explicitly-defined social network. In the basic model, the network is represented
by a directed graph G = (V, E), where the nodes represent individuals, and the
edges model “endorsement” from one individual to another. For such a directed
graph, the concept of in-degree is the simplest measure of importance of an in-
dividual. Refinements of the in-degree measure include the Katz-index [12] and
the Hubbell index [11]. Notions of importance in social networks have been pro-
posed also for the case of undirected graphs, most of those measures rely on vari-
ous notions of centrality, e.g., degree centrality, closeness centrality, betweenness
centrality, eigenvector centrality, etc. For an overview of those notions see the
manuscript of Newman [17]. A more interesting centrality concept, more closely
related with this paper, is the concept of game-theoretic centrality [1,9].

Bibliometrics. Research in bibliometrics studies the use of citations in order
to measure the “impact” of scientific articles (e.g., journal articles, conference
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proceedings) or publication venues (e.g., peer-reviewed conference proceedings,
scientific journals). A large number of measures has been introduced, again
starting from the simplistic citation count. The well-known Garfield’s impact
factor [7] is the average number of citations by articles published the previous
two years, while the Crown indicator [21] is a normalized version of such a cita-
tion count. Pinski and Narin [19] and subsequently Geller [8] observe that not
all citations are equally important, and using a recursive definition similar to
PageRank [18,20] and HITS [14], they propose that a journal is “influential” if
it is cited by other “influential” journals. The above measures are used to assign
impact scores on publication “units” (e.g., articles, journals) and not to individ-
ual authors. Thus, the use of such measures is orthogonal and complementary
to our work, where we aim attribute those impact scores for articles to indi-
vidual authors. On the other hand, measures such as the H-index [10], and the
G-index [6] (defined in Section 5) have been proposed for assigning impact scores
to individual authors, and thus, are directly comparable to our proposed mea-
sure. However, both H-index and G-index do not attempt to address the issue of
coalition bias as our method does. Overall, any bibliometrics impact index needs
to be used with extreme care. As such our method is intended to complement
and enrich existing analytics toolboxes, rather than substitute well-established
methods.

Web search rankings. A prominent application domain of importance mea-
sures is in the area of web search and hypertext ranking. The goal is to assign
importance scores to web documents in order to assist users locate the most rele-
vant results for their searches. Not surprisingly many of the importance measures
discussed above can also by used in the case of web search ranking, however, the
two most well-known techniques are PageRank [18] and HITS [14]. Many vari-
ants of those methods have been proposed, as well as adaptations of those basic
methods for different objectives; a thorough survey is beyond the scope of this
paper.

Information diffusion and viral marketing. A different setting for studying
influential individuals in social networks is through the concepts of information
diffusion and viral marketing. This setting is described by a dynamic process. It
assumes a model of information spread in the social network, and influential indi-
viduals are those who can act as good initiators of the information spread. Build-
ing on the seminal work of Domingos and Richardson [5] and Kempe et al. [13], a
large number of papers has studied variants of the problem and proposed differ-
ent solutions, including game-theoretic and Shapley value-based solutions such
as the work of Narayanam and Narahari [16]. However, the overall setting of
information-diffusion processes is very different from the problem studied in this
paper.

Coalitional games and Shapley value. Studying coalitional games is a major
area of research in game theory. In contrast to competitive games, to which
the standard solution concept is the Nash equilibrium, in coalitional games the
players cooperate and receive collective payoff. The Shapley value [22] is the
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classic solution concept for distributing the payoff “fairly” among the members of
the coalition. The model of coalitional game theory provides a rich framework for
studying a variety of solution concepts and their properties [2,3,4]. Finding the
allocations described by these concepts is in general computationally intractable,
hence, much of the research in this area focuses on a variety of restricted domains
in which one can hope to find approximate solutions. An overview of the theory
of coalitional games is beyond the scope of the paper. However, a key difference
from our work is that in this line of research approximate solutions are searched
by allowing to sample random coalitions. Instead, we follow a more pragmatic
approach where only a small number of coalitions is given as input, and we seek
solutions by probing only those coalitions.

3 Problem Setting

We consider a set V = {V1, . . . , Vn} of n individuals and a set T = {T1, . . . , Tm}
of m tasks. Each individual Vi ∈ V has participated in a subset of tasks of
T , which we denote by TVi . Moreover, each task Tj is given an impact score
Ij = f(Tj); the higher the impact score the more “valuable” the task. Examples
for function f(·) will be provided in Section 3.1.

Based on the participation of individuals to tasks, and the impact score of each
task, our goal is to estimate the influence score φi of each individual Vi ∈ V . Here,
we assume that influence scores are non-negative numbers such that φi ≥ φj

implies that Vi is at least as influential as Vj .
Hence, the influence-attribution problem can be formalized as follows:

Problem 1 (Influence-attribution) . Given a set of individuals V = {V1, . . . ,
Vn}, a set of tasks T = {T1, . . . , Tm}, and a set of impact scores I = {I1, . . . , Im},
with Ij = f(Tj), compute the set of influence scores φ = {φ1, . . . , φn}, where φi

is the influence score of individual Vi ∈ V.

3.1 Example: Author-Publication Instantiation

Let us now instantiate the above problem setting by considering a task to be
a scientific publication and an individual to be a scientist. We call this the
author-publication instantiation. In such setting, there may exist citations among
different publications, so we define one additional concept.

Definition 1 (Incoming Citations). Given a set of publications T , for each
publication Tj ∈ T we define the set of incoming citations to Tj as follows:

Cin
Tj

= {Tk | Tk ∈ T and Tk cites Tj}. (1)

As mentioned above, Ij = f(Tj) is the impact score of publication Tj ∈ T . For
the author-publication instantiation, we consider two options for f(·):
– CC: the citation count of each publication corresponds to the total number

of citations received by the publication.

f(Tj) = |Cin
Tj
|, for each Tj ∈ T . (2)
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– PR: the PageRank score of each publication, which is computed by applying
the PageRank algorithm on the citation network.

The definition of CC is simple enough and rates each incoming citation equally.
The PR score is computed by the well-known algorithm for ranking web docu-
ments [18], which is based on estimating the stationary distribution of a random
walk in the citation graph.

4 Methods

We present two methods for solving Problem 1. The first one is a straightforward
uniform assignment of impact scores to the corresponding individuals, whereas
the second one exploits the Shapley value in order to take into account coalitions
of individuals and the impact score in these coalitions.

4.1 Näıve Approach

The first approach to solve Problem 1 is to assign individuals with the mean
impact score of their tasks.

Definition 2 (Mean Impact). Given an individual Vi, the set of tasks TVi

assigned to Vi, and their corresponding impact scores I = {I1, . . . , I|TVi
|}, the

mean impact of Vi is defined by

φi =
1

|TVi |
∑

Tj∈TVi

Ij . (3)

For the remainder of the paper, this method will be denoted as Naı̈ve.

4.2 The Shapley Value Approach

The second method is based on the concept of Shapley value [15], which is a way
to divide goods gained by cooperation among many individuals. Specifically,
consider an underlying set V and assume that for all possible subsets S ⊆ V , we
know the value of v(S), called gain function, which expresses the gain achieved
by the cooperation of the individuals in S.

Definition 3 (Share Allocation). Given a gain function v(·), the share allo-
cation φi(v) to individual Vi is defined as:

φi(v) =
∑
S⊆V

|S|!(|V| − |S| − 1)!
|V|! (v(S ∪ {Vi}) − v(S)). (4)

The intuition is to consider the marginal utility that Vi brings in set S, averaged
over all possible sets. Notice that the average is weighted. In fact, the process can
be seen not as averaging over sets, but averaging over all possible permutations
– assume that coalitions are generated by adding one individual at a time – so
the weight of a set is the number of permutations that produce each coalition.
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The definition of Shapley value is very attractive, as it can be shown theo-
retically that the resulting attribution satisfies natural fairness properties [23].
However, a direct application of Definition (4) in our setting is not possible.
Not only it assumes an averaging over exponentially many sets, but also it is
not possible to probe arbitrary sets S and obtain v(S); for example, we do not
have available the impact score of papers for every possible subset of authors!
To address this difficulty we introduce the following ideas:

– First, we do not compute marginal gains by averaging over all possible coali-
tions, but only over coalitions for which we have available impact scores. The
details are given in the next sections where we describe our iterative algorithm.

– Second, in order to average in a marginal contribution v(S ∪{Vi})−v(S) we
need to have available both values v(S ∪ {Vi}) and v(S). However, in many
cases we have available only one of the two. Simply ignoring those cases
would lead to very sparse data. Therefore, we choose to take into account
all cases for which v(S ∪ {Vi}) is available. If for those cases v(S) is not
available, we propose to approximate it by composing it from its subsets.

Now, we discuss how to define the values v(S) and reasonable approximations
of v(S) when those values are not directly available. The first issue is that in some
cases the same coalition has accomplished many different tasks, and each task
has different impact factors; for example, a given set of authors may have many
different publications. We then define the value of the coalition as the average
of the impact scores of all the tasks into which the coalition has participated.

Definition 4 (Shared Impact Factor). Consider a set of individuals S and
let TS be the set of their common tasks. Let Ij be the impact factor of each
common task Tj ∈ TS . Then, the shared impact factor of S can be defined as:

v(S) =
1

|TS |
|TS |∑
j=1

Ij . (5)

The next issue that we need to address is that, during the execution of our
iterative algorithm, we need to use the value of v(S), for cases that we do not
have any information about coalition S (e.g., there is no paper with that exact
set of authors). Thus, we propose to approximate the value of v(S) by taking
into account subsets S′ ⊆ S for which we have information about the impact
of their coalition. We suggest to average over all subsets of S for which we
have information, and also include a term to capture the contribution of the
individuals who do not form any coalition in subsets of S.

Definition 5 (Approximated Shared Impact Factor). Consider a set of
individuals S and let Sc =

⋃
i Sc

i be the set of all subsets Sc
i of S where all indi-

viduals have at least one common task. Then, the approximated shared impact
factor of the individuals in S is:

v′(S) =
1

|Sc| + 1

⎛⎝|Sc|∑
i=1

v(Sc
i ) + v̄(S \ Sc

i )

⎞⎠ , (6)
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where v(Sc
i ) can be computed using Equation (5) and v̄(S \ Sc

i ) is an estimation
of the impact of individuals who do not form any coalition in subsets of S.

To complete the definition of function v′(·) we need to define function v̄(·),
which we use when individuals do not participate in any common coalition.
We do this by using a recursive definition. We choose to compute v̄(S) using
the influence factors φi of the individuals who form coalition S. Assuming a
monotonic behavior, that is, assuming that teams are at least as good as the best
individual who composes the team, we define v̄(·) using the maximum operator.

Definition 6 (Approximated Gain Function). The approximated gain func-
tion v̄(S) is defined as follows:

v̄(S) = max
Vi∈S

φi(v). (7)

We note that Definition (6) is recursive since our goal is to compute the scores
φi. Therefore, our definition suggests an iterative algorithm, described in more
detail in the next section: the algorithm starts with initial estimates of the scores
φi, and then it iteratively adjusts the estimate of those scores until convergence.

4.3 The Iterative Algorithm

We propose an iterative algorithm to compute the influence score φi of each
individual Vi ∈ V . At each iteration t, the value of the influence score is denoted
as φt

i. At first, the influence scores of each individual are initialized to the av-
erage impact factor his/her tasks. Then, at each iteration, the Shapley value is
computed using Definition (4). The key idea behind our algorithm is to compute
the Shapley value averaging over a small set of coalitions, for which the impact
factor is available. Whenever the algorithm needs to probe a coalition whose
impact factor is not available, then the approximated shared impact factor is
used (Definition 5).

During the main loop of the algorithm, for each available task Tj ∈ T and
each individual Vi of Tj , we update the influence score φt+1

i (v′) by adding the
difference of the gain function of sets VTj and VTj \Vi. The same weighting factor
is used, as in Equation (4), that is,

φt+1
i (v′) =

∑
VTj

|Vi∈Tj

|VTj |!(|V| − |VTj | − 1)!
|V|! (v′(VTj ) − v′(VTj \ Vi)). (8)

This procedure continues until convergence, which is defined by the following
criterion. ∑|V|

i=1 |φt
i − φt−1

i |∑|V|
i=1 φt−1

i

≤ ε ∈ (0, 1). (9)

The pseudocode of this method is given in Algorithm 1. For the remainder of
this paper, this method will be denoted as Shapley.
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Algorithm 1. The Shapley Algorithm
1: Input: a set of individuals V, a set of tasks T , and the corresponding set of impact

scores I.
2: Output: the influence score φi of each individual Vi ∈ V
3: // Initialization: ∀Ti, i = 1, . . . , m assigned to individual Vi:
4: for j = 1 : |V| do
5: φ0

i =
∑m

i=j Ij

6: end for
7: while convergence do
8: Initialize φt+1

i (v′) = 0
9: for Tj ∈ T do

10: for Vi ∈ VTj such that Vi is assigned with task Tj do

11: φt+1
i (v′) = φt+1

i (v′) +
|VTj

|!(|V|−|VTj
|−1)!

|V|! (v′(VTj )− v′(VTj \ Vi))
12: end for
13: end for
14: end while

4.4 Enforcing Monotonicity of the Gain Function

In the theory of coalition games, the gain function is assumed to be monotone
and non-negative. Here monotonicity means that if S1 ⊆ S2 then v(S1) ≤ v(S2).
Those assumptions are also desirable in our setting. Thus, we enforce those con-
ditions by first computing all payoffs—v(S)—that are available for each coali-
tion S. Then, we identify all pairs of sets S1 and S2, such that S1 ⊆ S2 and
v(S1) > v(S2). For each such pair we increase v(S2) by setting v(S1) = v(S2).
This is repeated until all violations in these pairs are eliminated. In other words,
we define the partial order of all coalition sets, and then we guarantee that
while paths of set inclusion are followed, the payoffs defined by the gain function
do not increase. Once the monotonicity property is satisfied, the computations
performed by our algorithm ensure that the gain function is also non-negative.

5 Experiments

5.1 Setup

We evaluated the performance of the proposed method on two real datasets: one
bibliographic dataset and one movie dataset.

ISI Web of Science. The first dataset is part of the Thomson Reuters ISI Web
of Science data. ISI covers mainly journal publications. We sampled data related
to our institutions published within years 2003 and 2009. Our dataset contained
data about 1212 authors.

We used two very common bibliometric indicators as the baseline:

– H-Index: a scientist’s H-index is h, if h of his/her publications have at least
h citations and the rest of his/her publications have at most h citations each.
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– G-Index: a scientist’s G-index is g, if g of his/her highly cited publications
received, together, at least g2 citations.

We investigated both types of impact scores discussed earlier (Section 3.1) for
the author-publication scenario.

Internet Movie DataBase. The second dataset is part of the Internet Movie
Database (IMDB) data.1 We sampled a total of 2 000 male actors and 4 560
movies. We restricted the movie genre type to “comedy” or “action”, and did
not include “TV series”. For each actor we considered only the movies where
his credit position was among the top 3. Each movie Tj was assigned with an
impact score Ij defined to be Ij = RjAj , where Rj is the average rating received
by movie Tj and Aj is the number of people who evaluated this movie.

To evaluate the performance of our methods we used the following measure:

Definition 7 (rank of individual). Given a set of individuals V = {V1, . . . , Vn}
and their influence scores φ = {φ1, . . . , φn}, the rank of individual Vi is r, if

|Vj |φj ≥ φi, j ∈ 1, . . . , n| = r. (10)

In other words, the rank of an individual Vi measures the number of individuals
who are at least as influential as Vi.

5.2 Experimental Results

ISI Web of Science. We compared the performance of Naı̈ve and Shapley on
the ISI Web of Science data sample described in Section 5.1. Each of the two
methods computed an impact score per author. We then compared the author
ranks of the proposed methods with the ranks obtained when computing the
H-index and G-index. In Figure 2, we can see the performance of the proposed
methods with respect to author ranks, compared to H-index. It is evident that
there is a high correlation between H-index and Naı̈ve-CC (the latter denotes
the version of Naı̈ve that uses the average citation score for defining function
f(·)). This correlation becomes much weaker in the case of Naı̈ve-PR, where
PageRank is used, implying that considering higher-order citations (as done by
PageRank) can cause a significant change in the ranking of publications and,
consequently, in the ranking of authors. In the case of Shapley, we see that as
the H-index rank increases, the variance in the rank obtained by Shapley also
increases. The results with respect to G-index are very similar but omitted due
to space limitations.

Next, we compared the performance of Naı̈ve and Shapley with respect to
author ranks. Again, we investigated both cases of impact scores for the publi-
cations: citation count and PageRank. In Figure 3 we see a comparison of the
ranks produced by the four methods. When comparing Naı̈ve and Shapley using
citation count the two methods deviate as ranks increase. The same behavior
1 http://www.imdb.com/

http://www.imdb.com/
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Fig. 2. Performance of Naı̈ve and Shapley compared to H-index, with respect to author
ranks, for the ISI Web of Science data. Note that the values in the x and y-axis of the
figures correspond to ranks.

is noticed when comparing Shapley using citation count vs. using PageRank.
This effect is more intense for Naı̈ve. In the latter case we note that Naı̈ve-CC
generally increases the ranking of the publications, compared to Naı̈ve-PR. The
results with respect to G-index are very similar.

We compared the ranks of the top-10 authors retrieved by Shapley-CC, Table
1(left) and Shapley-PR, Table 1(right), to the ranks produced by the other
methods. To preserve the anonymity of the scientists we do not show their names
in the table. An interesting observation is that the deviation in the ranks between
the methods is much higher for Shapley-PR than for Shapley-CC.

Internet Movie Database. The performance of Naı̈ve and Shapley was also
evaluated on the IMDB data sample described in Section 5.1. In this case there
are no baseline indicators, such as H-index, hence we only compared Naı̈ve
and Shapley. In Table 2(left) we see the names of the top-10 actors given by
Shapley and the corresponding ranks given by Naı̈ve. It appears that actors who
participated in the casting of very highly rated movies are favored against those
who also participated in low rated movies. It is interesting to see that Shapley
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Fig. 3. Comparison of the Naı̈ve and Shapley methods with respect to author ranks,
for the ISI Web of Science data. Note that the values in the x and y-axis of the figures
correspond to ranks.

managed to detect “big” names in comedy and action. In Table 2(right) we show
the top-10 actors discovered by Naı̈ve and their corresponding ranks by Shapley.
Deviations between the two methods suggest that actors may manage to achieve
a high mean movie rating (Naı̈ve) but still there are several poorly rated movies
with highly rated co-actors that cause a drop in their Shapley score.

Four more examples of deviating ranks are shown in Table 3. We can see
that several famous actors show a high deviation in their ranking. For example,
“Adam Sandler” is ranked 59th by Shapley while Naı̈ve ranks him 4th. Based on
the definition of the Shapley value, this implies that he may have highly ranked
movies, but he also has movies where he is co-acting with other “strong” actors;
these movies have a higher ranking than the ones where he is co-acting with
“weaker” actors. Similar conclusions can be made for “Jim Carrey”. On the one
hand, he has a significant amount of highly rated movies, but also some low
rated movies (which drops the score attributed to him by Naı̈ve); on the other
hand, in almost all of his movies he has been the main and “strongest” actor
(which results in Shapley attributing him a high score).
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Table 1. List of top-10 authors given by Shapley-CC (left) and by Shapley-PR (right).
For Shapley-CC we used the citation count to assign impact scores to the publications,
while for Shapley-PR we used the PageRank score. All values in the table correspond
to ranks.

Shapley-CC Naı̈ve-CC H-index G-index Shapley-PR Naı̈ve-PR H-index G-index

1 1 1 2 1 183 2 1
2 3 3 4 2 225 1 2
3 6 8 11 3 35 8 9
4 5 4 4 4 215 8 11
5 4 6 5 5 192 5 7
6 12 25 22 6 272 4 4
7 10 9 11 7 94 46 25
8 2 2 1 8 141 23 14
9 8 8 9 9 208 11 13
10 15 15 14 10 114 11 7

Table 2. List of actors ranked as top-10 by Shapley (left) and by Naı̈ve (right),
and their corresponding ranks obtained by the other methods. All values in the table
correspond to ranks.

Actor Name Shapley Naı̈ve Actor Name Naı̈ve Shapley

Robert De Niro 1 3 Peter Sellers 1 14
Al Pacino 2 8 Jack Nicholson 2 11
Brad Pitt 3 15 Robert De Niro 3 1
Bruce Willis 4 7 Adam Sandler 4 59
Arnold Schwarzenegger 5 24 Daniel Day-Lewis 5 36
Will Smith 6 13 Chris Farley 6 20
Eddie Murphy 7 10 Bruce Willis 7 4
Robin Williams 8 9 Al Pacino 8 2
Morgan Freeman 9 17 Robin Williams 9 8
Ben Stiller 10 29 Eddie Murphy 10 7

Table 3. A list of 4 examples of actors with high deviation between Shapley and
Naı̈ve. All values in the table correspond to ranks.

Actor Name Shapley Naı̈ve # of Movies Average
in IMDB Movie Rating

Jim Carrey 11 79 34 5.2
Sylvester Stallone 12 41 46 6.4
Daniel Day-Lewis 36 5 27 7.1
Adam Sandler 59 4 39 5.4

6 Conclusions

We addressed the problem of attributing influence to a set of individuals who
participate in a set of tasks. The method we proposed employs the game-theoretic
concept of Shapley value. We showed that the proposed methodology can be
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applied in many real scenarios, for example, in the author-publication scenario
for assigning influence scores to scientists who collaborate in published articles,
or in the movie-actor scenario for evaluating actors who collaborate in different
movies. We evaluated our method on two real datasets, and showed that it
highly differs with respect to ranking when compared to a näıve approach of
equal division of influence.

In the author-publication scenario, we illustrated by an example (Figure 1),
and also experimentally, that existing bibliometrics indicators, such as H-index
and G-index, do not take into account the average strength of author coalitions
and thus may favor authors with a few highly cited publications that resulted
from a single (or very few) strong collaborators. Similar conclusions were drawn
from the movie data, where very famous actors were given a lower ranking by
Shapley than by Naı̈ve. These actors were disfavored since their “fame” was
caused only by a few specific movies and co-actors.

Directions for future work include the investigation of other domains such as
user-blogs and social-media sites. Moreover, one could study how to use addi-
tional information regarding the involved tasks or individuals. For example, in
the actor-movie scenario, several movie features are available as well as infor-
mation about the actors. This additional information may or should affect the
share allocation function. Finally, a challenging task is to further evaluate the
quality of the rankings obtained, possibly by performing user studies.

Acknowledgements. This work was supported in part by the Academy of
Finland ALGODAN Centre of Excellence. Additionally, this work was partially
supported by the Spanish Centre for the Development of Industrial Technology
under the CENIT program, project CEN20101037, “Social Media”2.

References

1. Aadithya, K.V., Ravindran, B., Michalak, T.P., Jennings, N.R.: Efficient com-
putation of the shapley value for centrality in networks. In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 1–13. Springer, Heidelberg (2010)

2. Aziz, H.: Algorithmic and complexity aspects of simple coalitional games. PhD
thesis, University of Warwick (2009)

3. Deegan, J., Packel, E.W.: A new index of power for simple n-person games. Inter-
national Journal of Game Theory 7(2) (1978)

4. Deng, X., Fang, Q.: Algorithmic cooperative game theory. Pareto Optimality, Game
Theory and Equilibria 17(1), 159–185 (2008)

5. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,
pp. 57–66 (2001)

6. Egghe, L.: Theory and practise of the G-index. Scientometrics 69 (2006)
7. Garfield, E.: Citation analysis as a tool in journal evaluation. Science 178(4060),

471–479 (1972)
8. Geller, N.: COn the citation influence methodology of Pinski and Narin. Informa-

tion Processing & Management 14, 93–95 (1978)

2 www.cenitsocialmedia.es

www.cenitsocialmedia.es


564 P. Papapetrou, A. Gionis, and H. Mannila

9. Gomez, D., Gonzalez-Aranguena, E., Manuel, C., Owen, G., del Pozo, M.,
Tejada, J.: Centrality and power in social networks: a game theoretic approach.
Mathematical Social Sciences 46(1), 27–54 (2003)

10. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica 102(46), 16569–16572 (2005)

11. Hubbell, C.H.: An input-output approach to clique identification. Sociome-
try 28(4), 377–399 (1965)

12. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18,
39–43 (1953)

13. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

14. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

15. MasColell, A., Whinston, M., Green, J.R.: Microeconomic Theory. Oxford Univer-
sity Press, Oxford (1995)

16. Narayanam, R., Narahari, Y.: A shapley value-based approach to discover influ-
ential nodes in social networks. IEEE Transactions on Automation Science and
Engineering 8(1) (2011)

17. Newman, M.E.J.: The mathematics of networks. The New Palgrave Encyclopedia
of Economics (2007)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web (1999)

19. Pinski, G., Narin, F.: Citation influence for journal aggregates of scientific publica-
tions: Theory, with application to the literature of physics. Information Processing
& Management 12, 297–312 (1976)

20. Radicchi, F., Fortunato, S., Markines, B., Vespignani, A.: Diffusion of scientific
credits and the ranking of scientists. Phys. Rev. E 80(5), 056103 (2009)

21. Rehn, C., Kronman, U., Wadskog, D.: Bibliometric indicators – definitions and
usage at Karolinska Institutet. Technical report (2007)

22. Shapley, L.S.: A value for n-person games. Annals of Mathematical Studies 28,
307–317 (1953)

23. Winter, E.: The Shapley value. In: Handbook of Game Theory with Economic
Applications, vol. 3 (2002)



Fast Approximate Text Document Clustering

Using Compressive Sampling

Laurence A.F. Park

School of Computing and Mathematics,
University of Western Sydney, Australia

lapark@scm.uws.edu.au

http://www.scm.uws.edu.au/~lapark

Abstract. Document clustering involves repetitive scanning of a doc-
ument set, therefore as the size of the set increases, the time required
for the clustering task increases and may even become impossible due to
computational constraints. Compressive sampling is a feature sampling
technique that allows us to perfectly reconstruct a vector from a small
number of samples, provided that the vector is sparse in some known do-
main. In this article, we apply the theory behind compressive sampling
to the document clustering problem using k-means clustering. We pro-
vide a method of computing high accuracy clusters in a fraction of the
time it would have taken by directly clustering the documents. This is
performed by using the Discrete Fourier Transform and the Discrete Co-
sine Transform. We provide empirical results showing that compressive
sampling provides a 14 times increase in speed with little reduction in
accuracy on 7,095 documents, and we also provide a very accurate clus-
tering of a 231,219 document set, providing 20 times increase in speed
when compared to performing k-means clustering on the document set.
This shows that compressive clustering is a very useful tool that can be
used to quickly compute approximate clusters.

1 Introduction

Clustering computational complexity is dependent on the number of objects in
the set and the number of features of each object. Therefore, as the number
of features grows, the feasibility of applying a clustering algorithm reduces. To
perform clustering, the data must be repeatedly scanned while the clusters are
refined therefore it is also important that we have enough memory for the com-
putation to avoid lengthy disk accesses.

As technology advances, the size of data to be processed also increases. Text
document databases are growing at a rapid rate, therefore, it is crucial that we
derive document clustering algorithms that are able to process and cluster these
large data sets.

Compressive sampling [4,5,3,7,1] is a new concept in Information theory that
states that we are able to perfectly reconstruct a vector from only a few samples,
when using an appropriate incoherent sampling scheme.
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In this article, we introduce compressive clustering; a method of clustering
using incoherent samples of the features, that provides a close approximation to
the clusters that would have been found on the unsampled data. We show that
we are able to apply compressive clustering to very high dimensional spaces and
obtain very accurate cluster estimates in a fraction of the time.

We make the following contributions:

– We provide a generalised algorithm for compressive clustering (Section 3),
– A radial k-means algorithm for complex vector spaces (Section 3.2), and
– Use of compressive clustering for document clustering using radial k-means

clustering with discrete Fourier and discrete Cosine sampling (Section 3.3).

The article will proceed as follows: Section 2 provides a brief introduction to
compressive sampling, section 3 introduces our compressive clustering algorithm
and how it can be applied to document clustering using radial k-means. Section 4
provides experimental results showing the performance of compressive clustering
for document clustering, and finally section 5 presents the use of compressive
clustering on a large document set.

2 Coherence and Random Projections

Compressive sampling is a new sampling technique that has gained popularity
in the image processing domain. It is an generalisation of the Nyquist sampling
theorem that is not restricted to band-limited signals. In this section we will
examine Nyquist’s theorem and Compressive sampling.

2.1 Sampling Cyclic Signals

The Nyquist-Shannon sampling theory is at the base of Information Theory. The
theory states that a signal containing no frequencies greater than b hertz, can
be perfectly reconstructed by sampling at a rate of at least 2b hertz.

Figure 1 shows a simple example of a 2 hertz signal in the form of a sinusoidal
wave. The Fourier transform of this signal would contain one non-zero frequency
component, therefore when sampling the signal, we must ensure that we capture
this single non-zero frequency value. If we can do this, and assume that the
remaining frequency values are zero, then we are able to perfectly reconstruct
the sinusoidal wave. The Nyquist-Shannon theorem tells us that we are able to
capture this nonzero frequency component by sampling at at least two times the
frequency, which in this case is a rate of 4 hertz.

2.2 Sampling Sparse Signals

The Nyquist-Shannon sampling theorem allows us to capture all frequency com-
ponents up to half of our sampling rate. This allows us to efficiently encode low
frequency signals, but what if there were only a few non-zero frequency compo-
nents that were scattered across the frequency domain. By using the Nyquist-
Shannon sampling theorem, we would have to sample at a high rate in order to
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Fig. 1. A 2 hertz signal, being sampled at a rate of four hertz. According to the Nyquist-
Shannon sampling theorem, we can perfectly reconstruct the signal using these four
samples.

capture only a few non-zero frequency components. Or what if the frequency do-
main of the signal was dense (many non-zero components), but there was some
other domain in which the signal has a sparse representation?

A recent advancement in Information Theory is that of Compressive Sampling
[4,5,3,7,1]. Compressive sampling theory states that given a signal that is shown
to be sparse in a known domain, we are able to take a small number of random
samples of the signal and successfully reconstruct the signal to its original state.
Stated more formally, we have:

x = min ‖z‖1, s.t. ξ = ΦΨz (1)

where y = Ψx is the original signal and x is sparse, Φ is the sampling function, ξ
is the set of samples, and ‖ · ‖1 is the l1 norm. To obtain perfect reconstruction,
we must ensure that x is S-sparse (implying that x has at most S non-zero
values), and that the transforms Φ and Ψ are incoherent.

Before we proceed lets examine the case where the Fourier transform of a
signal is sparse, but the non-zero components are spread evenly across the whole
spectrum. We have said that the Nyquist-Shannon sampling theorem would re-
quire us to sample at a high rate, due to some of the frequency components being
of high frequency. By using Compressive Sampling, we know that the Fourier
Transform of the signal is sparse, therefore we let Ψ be the Fourier transform
and x be the transformed signal. We can construct a sampling function Φ by
randomly sampling rows of the identity matrix. This implies that if we take K
random samples of our signal Φx, we are able perfectly reconstruct it given that
K is large enough.

It has been shown that when using the Fourier transform as Ψ and a sampled
identity matrix as Φ, we obtain the relationship for perfect reconstruction:

K ≥ CS log N



568 L.A.F. Park

where K is the number of samples, N is the length of the original signal and C
is a constant.

Therefore, given that S = 10, N = 1000, then the number of samples K
required for perfect reconstruction is proportional to 70. Note that if not enough
samples are taken, the resulting reconstructed sparse vector will be similar to a
thresholded version of x due to the use of the l1 norm in the minimisation.

For the example above, we chose a transform and sampling matrix that were
maximally incoherent. Coherence is a measure of basis similarity that computes
the smallest angle between the basis vectors from the two basis sets. The coher-
ence of Φ and Ψ is given as:

μ(Φ, Ψ) =
√

N max
1≤i,j≤N

|〈φi, ψj〉|

where φi and ψj are basis vectors in the transformation Φ and Ψ , and μ(Φ, Ψ) ∈
[1,

√
N ]. Therefore given the Fourier transform and identity matrix as Ψ and Φ,

we obtain μ(Φ, Ψ) = 1, being maximally incoherent. For other choices of Ψ and
Φ, where the coherence is greater than one, we have the generalised relationship:

K ≥ Cμ2(Φ, Ψ)S log N

Therefore, we can see that the choice of the transformation and sampling ma-
trices are crucial in reducing the number of samples required for perfect recon-
struction. The more incoherent the two basis sets are, the more they spread over
each other. For example, the Fourier and identity basis are maximally incoherent
since each Fourier coefficient is a combination of all identity basis vectors.

3 Compressive Clustering

Now that we have an understanding of compressive sampling, we will introduce
the use of compressive sampling for clustering.

We have stated that clustering algorithms require repetitive access to the data
while clustering, therefore as the size of the data grows, so to does the time and
storage required to compute the clusters. This implies that there is a limit as to
the size of data we can cluster, that is dependent on the current computation
and storage available.

Compressive sampling has provided us with the concept of incoherent sam-
pling. By using incoherent samples, we are able to capture enough information
to perfectly reconstruct the vector from the samples, given knowledge of the
sampling scheme. We can apply this theory to obtain a low dimensional feature
space in which we can perform clustering. Using the small dimensional represen-
tation of the clusters, we are able to reconstruct the vectors in the original high
dimensional space.

Our compressive clustering algorithm is as follows: Given a data set {y1, . . . ,
yM}, a transform Ψ , such that yi = Ψxi where each xi are sparse, and a sampling
function Φ that is incoherent to Ψ :
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1. Sample the features of the vector space using the sampling function to obtain
ξi , where ξi = Φyi.

2. Cluster the sampled space {ξ1 . . . ξM}.
3. For each vector ξi in cluster Cm, reconstruct the original vector xi using

equation 1.
4. Compute each cluster definition in the unsampled space based on the cluster

vectors {x1, . . . , xM}.
5. Re-assign each unsampled vector based on the unsampled cluster definitions.

The cluster definition is what defines the cluster (e.g. a hyperplane, a point in
the space, a direction in the space). We also make use of the cluster definition
when assigning new vectors to a cluster. Note that step 2 can be performed
using compressive sampling reconstruction, or by accessing the original data if
possible.

Using this algorithm, we are able to perform the clustering in the reduced
space, requiring less computation and less memory. The algorithm requires:

– one pass over the data to sample each vector which is passed to the clustering
method.

– a second pass over the data to compute each cluster definition.
– a third pass over the data to assign each vector to a cluster based on the

cluster definitions.

Therefore, rather than requiring many scans of high dimensional data set, we
are able to cluster the data in a reduced space requiring only three scans of the
high dimensional data.

3.1 Document Clustering

The common representation of documents as vectors uses a vector space where
each dimension represents a unique term in the document collection. For ex-
ample, a document existing in a document collection containing 200,000 unique
terms, is represented using a 200,000 dimensional vector. We can see that when
using this vector space, the dimension of the vector space is related to the num-
ber of documents in the collection, and can only grow as new documents are
added.

Using this vector representation also leads to very sparse document vectors
(containing many zero elements). If a document contains 100 unique terms, then
its associated document vector in the 200,000 dimensional space would contain
199,900 zero elements. It is this feature that leads to high compression ratios
when constructing a document index for information retrieval.

It is common for less that 1% of document vector elements to contain nonzero
values. Therefore it is safe to assume that document vectors are a sparse repre-
sentation of the documents.

Document vector elements contain the frequency (or weighted frequency) of
the associated term in the associated document. Based on this, it does not make
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sense to use Euclidean k-means to cluster the document set, as Euclidean dis-
tance is a geometric distance between two points. The value of zero in a vector
is simply a position of a point to the Euclidean distance metric. In our case, zero
is not a position, but an absence of a term. Therefore, we provide a modification
of the k-means algorithm using the angle between two vectors as a measure of
similarity.

3.2 Complex Radial K-means

In this section, we present a form of k-means that uses the angle between vectors
as a measure of similarity, and is able to cluster vectors existing in a complex
vector space.

K-means is an iterative process that records a cluster centre vector cm for
each cluster and adjusts it until stability is reached.

The first part of any k-means process is the initialisation of the centre vectors.
In this article, we take the approach of Hartigan and Wong [8], and adapt it for
use with the vector angle similarity metric. Given the mean vector x̄ =

∑
i xi

and the angle between each vector and the mean vector θi = x̄∠xi, the cluster
centres are initialised using:

cm = xround(1+(m−1)N/C)

where the vectors xi are sorted by θi (the angle θ1 associated to x1 is the smallest
and the angle θN associated to the vector xN is the largest angle), and round(x)
rounds fractional values to their nearest integer.

Using this initialisation, we can compute the radial k-means clusters using the
iterative process:

cm ←
∑
i∈Cm

xi for m ∈ {1, . . . , C}

Cm ← {xi|m = argmin
m

(cm∠xi)} for m ∈ {1, . . . , C}

where Cm is the set of vectors associated to cluster m.
We define the angle between any two complex vectors xi and xj as:

cos (xi∠xj) =
Re(〈xi, xj〉)
‖xi‖2‖xj‖2

where ‖xi‖2 =
(∑

j |xi,j |2
)1/2

and Re(a + ib) = a for real values a and b.

3.3 Approximate k-means Document Clustering

By using radial k-means as our clustering algorithm, in conjunction with our
compressive clustering algorithm, we obtain a compressive clustering algorithm
suitable for documents:
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1. Sample the features of the vector space using the sampling function Φ.
2. Perform k-means on the sampled space.
3. For each vector ξi in cluster Cm, reconstruct the original vector xi.
4. Compute the cluster centre cm =

∑
i∈Cm

xi.
5. Compute the unsampled space clusters using the unsampled space cluster

centres.

To complete the compressive clustering algorithm we must choose an appro-
priate transform and sampling matrices. The transform matrix Ψ provides the
relationship between the sparse domain and the data domain. We have stated in
section 3.1 that the document vectors are sparse, therefore a suitable transform
matrix is the identity matrix (Ψ = I).

The sampling matrix must be incoherent to the transform matrix, therefore
the perfect choice is a random sample of the discrete Fourier basis:

ξj,k =
N∑

n=1

yj,ne−i2π(k−1)(n−1)/N

where yj,n is the nth element of vector yj , and ξj,k is the kth Discrete Fourier
Transform (DFT) sample of vector yj . Noting that the discrete Fourier basis is
complex, we will also examine the discrete Cosine basis:

ξj,k =
N∑

n=1

yj,n cos (π(k − 1)(2n − 1)/2N)

where in this case ξj,k is the kth Discrete Cosine Transform (DCT) sample of
the vector yj .

Given a transformation matrix Φ and vectors yi and yj , we can compute the
transformed vectors: ξi = Φyi and ξj = Φyj . If we define ξi∠ξj as the angle
between vectors ξi and ξj , then:

cos (ξi∠ξj) =
〈ξi, ξj〉

‖ξi‖2‖ξj‖2

=
〈Φyi, Φyj〉

‖Φyi‖2‖Φyj‖2

=
yT

i ΦT Φyj√
yT

i ΦT Φyi

√
yT

j ΦT Φyj

From this expansion, we can clearly see that if Φ is a unitary transformation,
then cos (ξi∠ξj) = cos (yi∠yj).

The Discrete Fourier transform and Discrete cosine transform are unitary
transformations, implying that vector norms are preserved when the transfor-
mation is performed. By sampling the rows of the transformation, we obtain
a matrix that is no longer unitary, but has been shown to be approximately
orthogonal [5]:

(1 − δ)‖y‖2
2 ≤ ‖Φy‖2

2 ≤ (1 + δ)‖y‖2
2

for small values of δ.



572 L.A.F. Park

Therefore, if Φ is approximately orthogonal, we can show that cos (ξi∠ξj) ≈
cos (yi∠yj). It is due to this property that our clustering in the reduced space
provides a good approximation to the clustering that would be obtained in the
unsampled high dimensional space.

This compressive clustering algorithm using complex k-means clustering can
be considered a type of sketching algorithm as investigated in [9], where, in our
case, we are producing compact vectors that attempt to preserve the original
angle between each vector.

4 Performance

We have seen that the iterative process of k-means constantly requires access
to the vector data. Therefore, an efficient process would store the vector set in
memory to avoid disk accesses. Given this constraint, the size of the data set
that we can process depends on the size of the accessible memory.

In this section, we will examine the performance of radial k-means on a small
document set from the SMART collection1. The document set contains the doc-
ument set CRAN, CACM, CISI and MED containing 1398, 3204, 1460, and 1033
documents respectively, totalling 7, 095 documents with 14, 523 unique terms.

To reduce the size of the vector space, we ignored all terms that appeared in
only one document. By ignoring these terms, we will not affect the results since
they do not affect to the similarity between any two documents. This reduced
the number of terms from 14, 523 to 7, 866.

4.1 Cluster Accuracy

We computed the accuracy of each cluster using the Jaccard coefficient:

J(Cm, Cn) =
|Cm ∩ Cn|
|Cm ∪ Cn|

where Cm and Cn are the sets of vectors associated to clusters m and n respec-
tively, and | · | is the cardinality operator.

For each experiment performed, we obtained a data set with a recommended
clustering. To compute the accuracy, we compared the computed clustering to
the recommended clustering and chose the permutation of clusters that optimised
the following function:

ρ = argmax
p

(
C∑

i=1

J(Cpi , Ci)

)

where Ci is the recommended cluster set i, Cpi is the computed cluster set pi, pi

is the ith value in permutation p, and ρ is the best matching cluster permutation
when compared to the recommended cluster set.
1 ftp://ftp.cs.cornell.edu/pub/smart

ftp://ftp.cs.cornell.edu/pub/smart
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4.2 Radial K-means without Sampling

As a baseline measure, we will apply the k-means algorithm to the document
vector space without sampling. Doing so produced the results shown in table 1.

Table 1. Cluster accuracy of radial k-means on the whole feature space (no sampling
performed). The small size of the document collection allows us to load its contents
into memory and perform k-means. We can see that it produces high accuracy, and
takes nearly seven minutes to complete.

Accuracy
Time (sec)

CRAN CACM CISI MED

0.9709 0.9408 0.8798 0.9778 409.82

We can see from the results that radial k-means has successfully partitioned
the document collection into the individual document sets, with only the CISI
document set accuracy being below 0.9. We can also see that the algorithm took
409.82 seconds to complete (nearly 7 minutes).

4.3 Radial K-means with DFT Sampling

We will now apply the compressive clustering algorithm from section 3.3 to our
document collection and compare its accuracy to the clustering found without
sampling.

Our first set of results used a sample of the DFT basis as the sampling matrix
Φ. We computed results using sample sizes of 16, 32, 64, 128, 256, 512 and 1024.
Since the samples are randomly selected we ran 10 trials using each sample size
and have reported the mean accuracy in Table 2 and the standard deviation of
the accuracy in Table 3.

We can see from the mean accuracy results that there is a clear increase in
accuracy as the number of random DFT features used increases, and that the
increase saturates at 256 features. We can see that the accuracy for samples of
256 or more are very close to the unsampled clusters obtained in Table 1, being
only 0.1 or 0.2 in difference.

Table 2 also contains timing information, showing the mean time taken to
run the compressive clustering algorithm. We can see that the times are much
shorter than the 409.82 seconds taken without sampling, with 256 DFT features
being 14 times faster.

The table of standard deviations (Table 3) provide us with an understanding
of the effect of the random sampling. It is interesting to see that the standard
deviation is much greater for sampled DFT features of 128 and less when com-
pared to those of 256 and greater. This implies that a low standard deviation in
a set of clustering results gives an indication that we have taken enough sam-
ples to provide a close approximation to the unsampled clusters. Therefore the
cluster standard deviation could easily be used as a measure of the compressive
cluster accuracy.
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Table 2. Cluster accuracy when using compressive clustering with the Discrete Fourier
Transform (DFT). The number of randomly sampled DFT features are provided in the
first column, with the accuracy of each cluster (measured using the Jaccard coefficient)
in the following four columns, followed by the computation time in seconds.

DFT Feat
Mean Accuracy

Time (sec)
CRAN CACM CICI MED

1024 0.9599 0.9196 0.8528 0.9620 74.11
512 0.9258 0.9403 0.8531 0.8944 36.30
256 0.9688 0.9328 0.8607 0.9638 28.49
128 0.8882 0.7117 0.6093 0.5981 24.66
64 0.8219 0.8498 0.7652 0.7184 25.70
32 0.6430 0.7304 0.5976 0.4092 34.93
16 0.7091 0.5815 0.4403 0.3331 24.95

Table 3. Cluster accuracy standard deviation when using compressive clustering with
the Discrete Fourier Transform (DFT). The number of randomly sampled DFT features
are provided in the first column, with the standard deviation of the accuracy of each
cluster (measured using the Jaccard coefficient) in the following four columns.

DFT Feat
Accuracy Standard Deviation

CRAN CACM CICI MED

1024 0.0367 0.0670 0.0822 0.0408
512 0.1229 0.0037 0.0660 0.2071
256 0.0028 0.0148 0.0248 0.0132
128 0.1345 0.2112 0.2425 0.3925
64 0.1573 0.1079 0.0912 0.2704
32 0.1844 0.1683 0.1337 0.2357
16 0.1492 0.1412 0.1018 0.1982

4.4 Radial K-means with DCT Sampling

The use of the DFT feature samples requires us to work with complex num-
bers, meaning that the chosen clustering algorithm also has to cluster complex
numbers. Since many clustering clustering algorithms are designed for real num-
bers only, we will examine a method of sampling real values. Therefore we will
examine the effect of DCT feature samples on the accuracy of our compressive
clustering algorithm.

Our next set of results used a sample of the DCT basis as the sampling matrix
Φ. We computed results using sample sizes of 16, 32, 64, 128, 256, 512 and 1024.
Since the samples are randomly selected, we ran 10 trials using each sample size
and have reported the mean accuracy in Table 4 and the standard deviation of
the accuracy in Table 5.
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Table 4. Cluster accuracy when using compressive clustering with the Discrete Cosine
Transform (DCT). The number of randomly sampled DCT features are provided in the
first column, with the accuracy of each cluster (measured using the Jaccard coefficient)
in the following four columns, followed by the computation time in seconds. The su-
perscript dagger (†) denotes a significant difference when compared to the same result
using the DFT. The subscript star (∗) denotes a significant difference when compared
to the associated result when using the DFT with half the number of features.

DCT Feat
Mean Accuracy

Time (sec)
CRAN CACM CICI MED

1024 0.9494 0.8895 0.8022 0.9280 65.10∗
512 0.9139†

∗ 0.9207 0.8450 0.8977 48.93∗
256 0.8752† 0.8989∗ 0.7804† 0.8006† 31.54∗
128 0.7423† 0.7662 0.5652 0.4937 35.33†

∗
64 0.7163 0.7442 0.5867† 0.5109 29.78

32 0.5669 0.5437† 0.4197† 0.3207 27.14
16 0.4694† 0.5413 0.4074 0.3019 25.95

From first glance, the accuracy values in Table 4 are lower than those of the
DFT in Table 2, but we must remember that shown accuracies are mean values of
the ten sample runs for each feature set size. The random sampling of features
implies that the results from each experiment will lead to different clustering
accuracies. Therefore we employ the use of statistical significance testing to
assist us in understanding if there actually is a difference in the clustering, or if
the difference is purely by chance.

In each of our experiments, we compute the clustering accuracy obtained
using ten different sets of randomly sampled features. Therefore, we have ten
different clustering accuracy measurements for each experiment. The statistic
that we want to test is if the true mean accuracy of the clustering using the
DCT features is different to the true mean accuracy of the clustering using the
DFT features.

Since we have only ten samples (ten clustering results) for each method, we
cannot have confidence in the t-test, therefore we will employ the use of Wilcoxon
rank sum test.

Table 4 contains the results from the significance tests in the form of a super-
script dagger (†). A dagger on the accuracy denotes that there is a significant
difference at the 0.05 level. We can see that there are four cases that the CRAN
cluster is significantly different, three cases where the CISI cluster is significantly
different and one case where CACM and MED clusters were significantly differ-
ent. From examination, we can see that the DCT sampling is worse in all of
these cases.

If we consider that the DFT features are complex (containing real and imag-
inary portions) and that the DCT features are only real, it would be a fairer
comparison if we compared the DCT feature results to those of the DFT with
half the number of features. For example, if 256 DCT features were selected from
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a vector, they would occupy the same memory as 128 DFT features, since each
DFT feature contains two values (a real and imaginary value).

Table 4 contains the results from the significance tests comparing each DCT
feature sample accuracy to each DFT feature sample of half size, in the form of
a subscript star (∗). A star on the accuracy denotes that there is a significant
difference at the 0.05 level. We can see that there are now only two cases in
total where there is a significant difference, implying that DCT features produce
similar results to DFT features when half of the DFT feature samples are used.

Table 4 also contains timing information, showing the mean time taken to
run the compressive clustering algorithm. We can see that similar to the DFT
sampling, the times are much shorter than the 409.82 seconds taken without
sampling, with 512 DCT features being 8 times faster.

Significance tests were also performed on the times to find if the time taken
to perform compressive clustering using DCT features was significantly different
to the times taken to perform compressive clustering using DFT features. The
times with a superscript dagger show a significant difference at the 0.05 level
when comparing experiments with the same number of features, while times
with subscript star show a significant difference in times at the 0.05 level when
comparing experiments using DCT features with those using half the number of
DFT features. We can see that there is only one case where a significant difference
in time is shown when comparing DCT and DFT with the same number of feature
samples. This implies that the use of complex numbers has not increased the time
of the clustering. If we examine the subscript stars, we can see that there are
four times when there is a significant difference between the time for DCT based
compressive clustering and DFT based compressive clustering, where the DCT
based method produces longer times.

Table 5. Cluster accuracy standard deviation when using compressive clustering with
the Discrete Cosine Transform (DCT). The number of randomly sampled DCT features
are provided in the first column, with the standard deviation of the accuracy of each
cluster (measured using the Jaccard coefficient) in the following four columns.

DCT Feat
Accuracy Standard Deviation

CRAN CACM CICI MED

1024 0.0454 0.1102 0.1640 0.0961
512 0.0699 0.0500 0.0669 0.0972
256 0.1586 0.0952 0.1198 0.2903
128 0.1986 0.1730 0.2540 0.3653
64 0.1975 0.1190 0.2045 0.3012
32 0.1508 0.1626 0.1518 0.2227
16 0.0930 0.1615 0.2737 0.1638
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The table of standard deviations (Table 5) provide us with an understanding of
the effect of the random sampling. We can see that the table is similar to Table 3
except that the drop in standard deviation does not occur until 512 DCT features
are sampled. This re-enforces our belief that the standard deviation can be used
to measure the accuracy of our approximation to the unsampled clustering.

5 Clustering Large Scale Document Sets

Our final set of experiments examine the use of compressive clustering on a much
larger document set. Just as in the previous section, we have again taken a set of
document collections and combined them. The document collections are a set of
newspaper articles from the Associated Press (AP), articles from the Financial
Review (FR), articles from the Wall Street Journal (WSJ) and articles from Ziff
Publishing (ZIFF). These document collections are available on disk two of the
TIPSTER collection2 and were used at TREC-1 to 5. Individually, they contain
79,919, 19,860, 74,520, and 56,920 documents respectively, totalling to 231,219
documents. This document collection contains 208,932 terms. Again, we removed
all terms that appeared in only one document, which reduced the term count to
108,734 terms.

Table 6. Cluster accuracy for radial k-means on the whole feature space (no sampling
performed) for the large document set (231,219 documents). These results are used as
a baseline for the compressive clustering results in Table 7.

Accuracy
Time (sec)

AP FR WSJ ZIFF

0.6780 0.9962 0.5969 0.8603 181734

We have computed the radial k-means clusters for the large document set
(without sampling) as a baseline for the compressive clustering results. The
clustering results are shown in Table 6. We can see that the radial k-means
process clustered most of the FR and ZIFF documents into correct clusters, but
there was confusion amongst the AP and WSJ documents. We can also see that
the process took over 50 hours to complete.

To continue the experiment, we ran our compressive clustering algorithm with
both the DFT sampling and DCT sampling, and the compressive clustering
algorithm. The number of sampled features was chosen as the largest that we
could store in memory. For the DFT sampling this was 128 features, while for
the DCT features this was 256 features (due to the DFT features being complex
and DCT features being real). The recommended clustering for this document

2 http://trec.nist.gov/data/docs_eng.html

http://trec.nist.gov/data/docs_eng.html
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Table 7. A comparison of compressive sampling using DFT sampling and DCT sam-
pling. The first two columns provide the sampling transform and the number of features
sampled, the following four columns provide the cluster accuracy in terms of the Jac-
card coefficient, and the last three columns provide the computation time of the stages
involved. Note that the DFT sampling uses half the number of samples since each
sample is complex, containing a real and imaginary component.

Transform Features
Accuracy Computation Time (sec)

AP FR WSJ ZIFF Pass 1 k-means Pass 2 Pass 3

DFT 128 0.6704 0.9959 0.5821 0.8617 3626 458 2398 2334
DCT 256 0.6839 0.9964 0.6134 0.8627 3785 1130 2412 2342

collection is each cluster containing only documents from one document set (e.g.
cluster 1 contains only documents from the AP document set). The accuracy
and timing results are provided in Table 7.

We can see in Table 7 that we obtained high accuracy clusters of the Financial
Review and Ziff Publishing articles, implying that the clusters found by k-means
was very similar to those in the corresponding collections. The reduction in ac-
curacy for the Associated Press and Wall Street Journal collections shows that
there was confusion for a set of the articles as to which cluster they belonged to.
The Associated Press and Wall Street Journal collections both contain newspa-
per articles, therefore there also may be similarity in the content that they each
publish. From the results it is obvious that the k-means algorithm has computed
similarity between articles from each of the AP and WSJ sources and hence
caused a reduction in accuracy.

When comparing the accuracy of DFT and DCT features, Table 7 shows that
there is little difference, with the DCT sampled compressive clustering providing
slightly greater accuracy, but there is no evidence that one method is better than
the other.

The computation time section of Table 7 provides us with a break down of
the computation time of each stage in the algorithm. Pass 1 involves scanning
through the data set and performing either DFT or DCT feature sampling. The
only difference between the two is the time of performing the transform sampling.
We can see that the times are similar for both DFT and DCT sampling, implying
that the transform sampling times are also the same. The k-means time shows
the number of seconds spent computing the radial k-means clusters. It clear that
the DFT feature sampled data was much faster to process for k-means than the
DCT based data. This is interesting, since as we have said, the DFT features
are complex, making the number of integers processed the same as processed in
the DCT based features. But the time taken to perform k-means is on the DFT
features is less than half of the time to perform k-means on the DCT feature
samples.

Pass 2 and 3 involve computing the cluster centres in the unsampled space
and recomputing the document assignments to each cluster. We can see that
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these are both similar and that they are independent of the feature sampling
method used.

If we compare the compressive clustering results in Table 7 to the clustering
results in Table 6, we find that the accuracy results are very similar. This implies
that the compressive clustering algorithm is providing an excellent estimate of
the clusters. If we compare the times, we find that the compressive clustering
algorithm took approximately 2.5 hours to compute the clusters (for the DFT
and DCT methods), while clustering the original data took over 50 hours. This
demonstrates the benefit of compressive clustering.

From this we can see that compressive clustering is an exciting new method
of computing clusters in high dimensional data. In this article we have explored
its application to document clustering, but we can see that with correctly chosen
transform and sampling matrices, we can apply compressive clustering to any
large scale clustering problem to produce clusters that would have otherwise
been not computable.

6 Related Work

The work we have presented is related to Locality-Sensitive Hashing (LSH) [6],
and Random projection [2], where in our case the hashing/projection is defined
by sampling from the most incoherent linear transformation to the sparse feature
space, which in the case of text document vectors, is the Fourier transform or
Cosine transform.

Note that when using compressive sampling for dimension reduction and clus-
tering, we are able to reconstruct any vector in the reduced space to its sparse
equivalent in the original feature space under certain conditions. This is not
possible when performing LSH or Random projection.

7 Conclusion

Clustering large scale data sets requires intense computation and large storage
space (such as memory and disk space). The clustering process itself requires
continuous access to the data and therefore we benefit from storing the data in
memory to avoid lengthy disk accesses.

Compressive sampling is a new concept of Information theory that allows us
to sample a small number features from a data set such that we are able to
perfectly reconstruct the data, with knowledge of the sampling scheme.

In this article, we presented compressive clustering, an algorithm which utilises
the sampling of compressive sampling to obtain a reduced feature space. Using
this reduced space, we are able to obtain a close approximation to the clustering
that would be obtained on the unsampled data. Using the algorithm presented
in this article, compressive clustering can be applied to any domain to obtain
approximate clusters in high dimensional data, given appropriate sampling and
transform matrices.
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We applied compressive clustering using radial k-means to two document col-
lections. We showed that compressive clustering using discrete Fourier and dis-
crete Cosine sampling provided a close approximation to the clusters computed
on the unsampled data in 1/14th of the time on the first document set. On the
second larger document set containing 231,219 documents, we showed that com-
pressive clustering can provide a very accurate clustering in 1/20th of the time.
This shows that compressive clustering is a very useful tool that can be used to
quickly compute approximate clusters.
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Abstract. Bayesian networks (BNs) are an appealing model for causal and non-
causal dependencies among a set of variables. Learning BNs from observational
data is challenging due to the nonidentifiability of the network structure and model
misspecification in the presence of unobserved (latent) variables. Here, we inves-
tigate the prospects of Bayesian learning of ancestor relations, including arcs, in
the presence and absence of unobserved variables. An exact dynamic program-
ming algorithm to compute the respective posterior probabilities is developed,
under the complete data assumption. Our experimental results show that ances-
tor relations between observed variables, arcs in particular, can be learned with
good power even when a majority of the involved variables are unobserved. For
comparison, deduction of ancestor relations from single maximum a posteriori
network structures or their Markov equivalence class appears somewhat inferior
to Bayesian averaging. We also discuss some shortcomings of applying existing
conditional independence test based methods for learning ancestor relations.

1 Introduction

Directed acyclic graphs (DAGs) provide a convenient formalism for representing rela-
tionships among a set of variables in terms of conditional independencies (CIs) [17,18].
To enable quantitative reasoning, a DAG is often attached to a probability measure that
obeys exactly the CIs represented by the DAG. While the probability measure alone
would of course suffice for probabilistic inference on the variables, the DAG contains
additional structure that supports particularly causal interpretations: an arc between two
variables represents a direct cause–effect relationship. The pair of the DAG and the
measure is sometimes called a Bayesian network; the modifier “Bayesian” suggests
a degree-of-belief interpretation of probability, which is applicable also when, for in-
stance, the causal mechanisms are believed to be deterministic but just unknown to the
modeller. Often a single Bayesian network is used for simultaneous modelling of several
“similarly behaving” vectors of variables; then a node of the DAG corresponds to sev-
eral random variables that are often treated as observations. If the nodes are observed,
that is, the values of the respective random variables are known, standard principles of
statistical inference can be implemented to derive more or less uncertain conclusions
about the Bayesian network model, especially the DAG.

While automatic construction, or learning, of such DAGs from observational data
is desirable, the task is notoriously challenging. First, a set of CIs can be represented
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by a number of different DAGs that form a so-called Markov equivalence class. Thus,
the assumed “data generating DAG” cannot be identified by the represented CIs only.
Second, if there are unobserved nodes at work, it may be that no DAG on the observed
nodes can represent exactly the CIs among them. Then, the DAG model is misspecified
in a way that directly affects the end result of statistical inference: the DAG. Third,
the combinatorial and constrained nature of the DAG model brings major challenges
concerning modeling complexity and, in particular, computational complexity.

To address these challenges, the art of learning DAGs from data has been devel-
oped in two rather distinct directions. Constraint-based methods [17,18] rely on testing
CIs. While the approach is not particularly suitable for importing prior knowledge, nor
for efficient use of data, nor for managing nonidentifiability issues, it has given arise
to a profound theory for dealing with unobserved variables. On the other hand, score-
based methods [1,11], particularly Bayesian ones [9,15], excel in flexibility and statis-
tical efficiency in the translation of what was known prior the observations to what is
known a posteriori, including a proper treatment of nonidentifiability. For example, in
the Bayesian approach there is no need to infer a single maximum a posteriori (MAP)
DAG or its Markov equivalence class when there are many other almost equally good
DAGs—instead, one may report structural features, e.g., arcs, that have a high poste-
rior probability. As a drawback, it seems difficult to extend the Bayesian approach to
handle the issue of unobserved nodes in a computationally efficient manner. Indeed, the
score-based methods are often applied ignoring unobserved nodes altogether: either one
refuses to make any conclusions, especially causal, about the DAG; or, one makes such
conclusions at an unquantified risk of erroneous claims. While there are some notable
exceptions that employ various score-driven heuristics to discover unobserved nodes
[3,4,5,8], principled methods are yet to be developed.

Motivated by these concerns, this paper investigates the potential of Bayesian learn-
ing of structural features of DAGs on the observed nodes only. Are there structural
features that can be reliably learned from observational data, even if there may be some
unobserved nodes at work? We find this question highly relevant and interesting, since
the popular score-based methods for structure learning ignore unobserved nodes, which,
however, are expected to be present in typical practical scenarios.

As a natural candidate for such a structural feature we consider ancestor relations.
A node s is an ancestor of another node t if there is at least one directed path from s to
t. An arc from s to t can be viewed as a special case of ancestor relations. The idea of
learning ancestor relations from data is, of course, not new. Spirtes et al. [19] investi-
gate constraint-based learning of ancestor relations using the FCI algorithm in a small-
case empirical study. Their results suggest that reliable learning of ancestor relations is
possible in the presence of unobserved nodes; however, direct comparison to our meth-
ods is not reasonable, as the predictions by FCI are unquantified and predictions are not
necessarily made for all pairs of nodes. A Bayesian treatment is given by Friedman and
Koller [9]: under the supposition that there are no unobserved nodes, DAGs are sam-
pled (via node orderings) from their posterior distribution using a Markov chain Monte
Carlo simulation and the posterior probabilities of ancestor relations, also called path
features, are estimated based on the sampled DAGs; based on the posterior
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probabilities, the ancestor relation is either claimed to hold or not to hold, potentially
depending on the relative costs of making incorrect positive or negative claims.

Our present work contributes to this line of research by (a) giving a dynamic pro-
gramming algorithm that computes the exact posterior probabilities of ancestor rela-
tions and by (b) studying the statistical power of learning such relations in the presence
of unobserved nodes. From a computational point of view, ancestor relations present a
new algorithmic challenge, as they do not fall in the class of modular features [9,15];
see also a recent discussion by Tian et al. [21]. As can be expected, the computational
complexity of the exact algorithm is exponential; the algorithm runs in O(3nn2) time
and O(3n) space on n-node instances. While such exponential complexity, of course,
renders the algorithm computationally feasible only for relatively small instances, one
should note that such moderately exponential time algorithms, that is, algorithms whose
base constant is quite small, have attracted substantial interest in the context of Bayesian
networks; see, e.g., Tian and He [20] and Kang et al. [12]. Both our algorithm and the
power study assume that the prior over DAGs is of a restricted form, namely order-
modular in the sense of Koivisto and Sood [15]; see also Friedman and Koller [9]. An
order-modular prior generally assigns different prior probabilities to different DAGs
within a Markov equivalence class. Compared to the uniform prior, this is, however,
neither a disadvantage nor an advantage in general (besides the computational advan-
tage), since the modeller’s subjective prior may well be better represented with an order-
modular prior than with the uniform prior. We also stress that, while our approach is
fully Bayesian, the model is misspecified (does not fully represent the modeller’s be-
liefs regarding unobserved nodes). Thus, the present work should be viewed as a study
of the robustness of Bayesian averaging to model misspecification.

The remainder of the paper is structured as follows. We begin in Section 2 by review-
ing a modular Bayesian network model [9,15]. Then we give a dynamic programming
algorithm for exact computation of the target posterior probabilities. Section 3 reports
on empirical results concerning the statistical efficiency of learning ancestor relations
and directed or undirected arcs with a varying number of observed nodes and data points
per node. As an obvious (heuristic) alternative to Bayesian averaging, we also consider
the deduction of ancestor relations from single MAP DAGs or their Markov equiva-
lence classes. We also report on and discuss results obtained by the constraint-based
algorithm, FCI [19] Finally, we summarize in Section 4.

2 Bayesian Discovery of Ancestor Relations

Our Bayesian network model relates a DAG on n nodes with m random variables
per node (often treated as the observations or data; see below) by defining a joint
probability measure on them.1 Without any loss in generality we let the node set be
N = {1, 2, . . . , n} and identify a DAG with its arc set A ⊆ N × N ; the set of parents
of node v is Av = {u : uv ∈ A}. If a DAG contains a directed path from u to v, then
u is called an ancestor of v, and v a descendant of u. With each node v we associate a

1 Note that while the m variables will be independent and identically distributed given a fully
specified model, a Bayesian model also includes priors over the parameters and operates on
exchangeability, not on independence.
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sequence of random variables Dv = Dv1Dv2 · · ·Dvm; we write D for D1D2 · · ·Dn.
A joint probability measure p(A, D) is composed as p(A, D) = p(A)p(D|A) with the
following structure. By standard interpretation of conditional independencies on a DAG
we have

p(D|A) =
∏
v∈N

p(Dv|DAv , Av) ;

for our purposes it is irrelevant how the local conditional measures p(Dv|DAv , Av) are
further specified. For computational convenience, we define an order-modular prior for
the DAG A. To this end, the joint prior of the DAG A and a linear order L ⊆ N × N
on N is specified by

p(A, L) =
∏
v∈N

ρv(Lv)qv(Av) ,

where Lv = {u : uv ∈ L} consists of the predecessors of v in L and ρv and qv are non-
negative functions. The prior for the DAG is obtained by marginalizing the joint prior,
that is, p(A) =

∑
L⊇A p(A, L). Note that the sum is over all topological orderings of

the DAG and that the set inclusion notation is valid (L is a superset of A). Note also that
in practice the functions need to be specified only up to some normalization constant,
e.g., ρv(Lv) ∝ 1 and qv(Av) ∝ 1/

(
n−1
|Av|

)
, as the normalization constant will cancel in

the quantities of our interest.
We consider a setting where the values of D, called the data, are observed, and

we are interested in the posterior probability that the DAG A contains some specified
structural feature. We will focus on two kinds of events that relate two nodes: uv is an
arc in A, denoted u→v; s is an ancestor of t in A, denoted s�t.

2.1 Computation

From an algorithmic point of view, it is convenient to compute the posterior probability
of a structural feature f(A) given the data D as the ratio p(f(A), D)/p(D). Letting f be
a 0–1-valued indicator function, we have p(f(A), D) =

∑
A f(A)p(D|A)p(A), where

the sum is over all DAGs on N . Koivisto and Sood [15] show that if f(A) factorizes into
a product of family-wise indicators fv(Av), then the probabilities can be computed by
dynamic programming (DP) across the node subsets of N in time O(n22n) and space
O(n2n); furthermore, the arc events u→v can be handled simultaneously for all the
n(n − 1) node pairs uv within the same bounds [14].

The computation of the posterior probabilities of ancestor–descendant relationships
seems more challenging, as the existence of directed path between two fixed nodes is a
global property that does not factorize into independent local properties. We next give
a DP algorithm that for every node subset S computes its contribution to the target
probability, p(s � t, D), assuming the nodes in S are the first |S| nodes in the linear
order L; the contribution is a sum over all possible DAGs, AS , on the node set S. The
key difference to the existing DP algorithms for arc probabilities or for the maximum
posterior probability is that, aside from the set S, we need to keep a handle on the nodes
in S that are descendants of the source node s. To this end, we define a set T ⊆ S such
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that t ∈ T if and only if s is an ancestor of t or t = s. Thus, every DAG on S determines
exactly one such set T ⊆ S.

Furthermore, for sets S and T ⊆ S and a linear order LS ⊆ S × S on the respective
node set S ⊆ N , we use the shorthand

A(LS , S, T ) = {AS ⊆ LS : ∀v ∈ S (s�v in AS iff v ∈ T ) } ;

in words, A(LS , S, T ) contains a particular DAG AS on S if and only if AS is compat-
ible with LS and AS contains a path from s to every node v ∈ T , and not to any other
node in S.

Our dynamic programming algorithm will compute a function gs(S, T ), defined for
all S ⊆ N and T ⊆ S by

gs(S, T ) =
∑
LS

∑
AS∈A(LS,S,T )

∏
v∈S

ρv(Lv)βv(Av) ,

βv(Av) = qv(Av)p(Dv|DAv , Av) ,

where the outer summation is over all linear orders LS on S. Intuitively, gs(S, T ) is
the sum of p(A, D, L) over all DAGs AS and linear orders L, with AS ⊆ L, such that
S are the first nodes in the order L and there is a path from s to v ∈ S in AS if and
only if v ∈ T . That the values gs(S, T ) are sufficient for computing the target quantity
p(s�t, D) is shown by the following result.

Lemma 1

p(s�t, D) =
∑

T :s,t∈T

gs(N, T ) .

Proof. The definitions directly yield

p(s�t, D) =
∑
L

∑
A⊆L

s� t in A

∏
v∈N

ρv(Lv)βv(Av) ,

the outer summation being over all linear orders L on N .
We next break the inner summation into two nested summations by observing that the

sets A(L, N, T ), for s, t ∈ T , form a partition of the set A(L) = {A ⊆ L : s�t in A}:
indeed, each DAG A ∈ A(L) determines precisely one node set T such that A contains
a path from s to v for exactly the nodes in v ∈ T . Thus we have

p(s�t, D) =
∑
L

∑
T :s,t∈T

∑
A∈A(L,S,T )

∏
v∈N

ρv(Lv)βv(Av)

=
∑

T :s,t∈T

∑
L

∑
A∈A(L,S,T )

∏
v∈N

ρv(Lv)βv(Av)

=
∑

T :s,t∈T

gs(N, T ) .

This completes the proof. �
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From the algorithmic point of view, the pair (S, T ) is sufficient for enabling a fac-
torization of the sum over the AS into independent sums over the parent sets Av , for
v ∈ S. Indeed, we have the following recurrence.

Lemma 2

gs(S, T ) = 1 for S = ∅ and T = ∅ ,

gs(S, T ) = 0 for s /∈ T and (s ∈ S or T �= ∅) ,

gs(S, T ) =
∑
v∈S

gs(S \ {v}, T \ {v})ρv(S \ {v})β̄v(S, T ) otherwise,

where

β̄v(S, T ) =

⎧⎪⎪⎨⎪⎪⎩
∑

Av⊆S\{v}
Av∩T �=∅

βv(Av) if v ∈ T , v �= s,

∑
Av⊆(S\{v})\T

βv(Av) if v ∈ S \ T or v = s.

Proof. Proof is by straightforward induction on the size of S. First, observe that the
sum over LS in the definition of gs(S, T ) breaks into a double-summation, in which the
outer summation is over the last node v ∈ S in the order LS and the inner summation
is over all linear orders, LS\{v}, on the remaining nodes S \ {v}. Second, observe that
the summation over AS ∈ A(LS , S, T ) breaks into a double-summation, in which the
outer summation is over the DAGs AS\{v} ∈ A(LS\{v}, S \ {v}, T \ {v}) and the
inner summation is over the parent sets Av ⊆ S \ {v} satisfying the requirement that
(a) if there is no path from s to v (i.e., v /∈ T ), then there must be no path from s to u
for any parent u ∈ Av of v, and (b) if there exists a path from s to v (i.e., v ∈ T ), then
there must exist a path from s to u for at least one parent u of v. �

Figure 1 illustrates the requirements on choosing parent sets for the node v in the last
equation in Lemma 2. In Figure 1(a) v ∈ T , that is, it is required that there is a path
from s to v. Now, we can choose any parent set for v as long as at least one of the
parents is in T . On the other hand, in Figure 1(b) v /∈ T , that is, it is required that there
is no path from s to v. Now, we have to choose the parents of v from S \ T .

The evaluation of the values gs(S, T ) using the recurrence is complicated by the fact
that the inner summation, β̄v(S, T ), is over exponentially many sets Av and, further-
more, there is a condition that depends not only on the set S but the set T . Fortunately,
the inner summation can be precomputed for each v ∈ N and S ∈ N \ {v}. Indeed, if
v /∈ T , then the sum is over all subsets Av of (S \ {v}) \ T ; if v ∈ T , then the sum is
over all the remaining subsets of S \ {v}. Thus, it suffices to precompute

β̂v(U) =
∑

Av⊆U

βv(Av)

for all U ⊆ N \ {v}; the sums for the cases v /∈ T and v ∈ T are then obtained as
β̂v((S \ {v}) \ T ) and β̂v(S \ {v})− β̂v((S \ {v}) \ T ), respectively. The function β̂v

is known as the zeta transform of βv (over the subset lattice of N \ {v}), which can be
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(a) (b)

Fig. 1. Choosing parent sets for a node v ∈ S when (a) v ∈ T and (b) v /∈ T

computed, given βv, by the so-called fast zeta transform algorithm (see, e.g., [13,15])
in time O(n2n) and space O(2n).

In summary, the values gs(S, T ) for all S ⊆ N and T ⊆ S can be computed in time
O(n3n) and space O(3n). The precomputation of the inner sum takes time O(n22n)
and space O(n2n) as noted above. Thus, the posterior probability that there exist a path
from s to t, where s and t are two fixed nodes, can be computed in time O(n3n) and
space O(3n). To compute the posterior probabilities for all node pairs st, it suffices
to repeat the computations for each possible s ∈ N , for the values gs(S, T ) actually
contain the sufficient information regarding all possible descendant nodes t. Thus, in
total, the time requirement is O(n23n).

3 Experiments

Next we study how learning ancestor relations performs in practice. Our approach is
to generate data from a known Bayesian network, called the ground truth, and com-
pare the learned arcs and ancestor relations to the ground truth. Obviously, the learning
performance is not expected to be perfect: when there are unobserved nodes at work,
we easily learn arcs that are not present in the ground truth; this happens especially
when an unobserved node is a common parent of two nodes that are not connected by
an arc; namely, the two nodes are marginally dependent, and thus, in absence of the
common parent, it is likely that we learn an arc between them, a false positive. On the
other hand, we may expect that much of the structure can be learned even in presence
of unobserved nodes. For example, if an unobserved node has exactly one child and one
parent in the ground truth, both observed, then it is likely that the two arcs through the
unobserved node in the middle will be just contracted to a single arc, which encodes
a correct ancestor relation. We call the graph obtained from the ground truth by such
contractions—that is, by connecting each parent of an unobserved node to every child
of the node—the shrunken ground truth.

We have implemented the algorithm of Section 2.1 for Bayesian learning of ancestor
relations in Matlab. In the experiments discussed next, we have used the BDeu score
with the equivalent sample size of 1, a uniform prior over linear orders on the nodes,
and a uniform prior over parent sets of size at most a user-defined bound, which we set
to 6.



588 P. Parviainen and M. Koivisto

3.1 Challenges of Learning Ancestor Relations

It is instructive to examine some representative challenges we face when learning an-
cestor relations and arcs. We consider a Bayesian network whose DAG is shown in
Figure 2(a). All 14 variables are binary. The parameters of the network, that is, the prob-
ability of a node taking the value 1 given a particular value combination of its parents
was drawn uniformly at random from the range [0, 1] for each node and value combina-
tion of its parents. We generated 10 000 samples from the Bayesian network and learned
ancestor relations from the data. Note that there are 16 arcs and 39 ancestor–descendant
pairs in the ground truth. The DAG has quite a large Markov equivalence class, 140
graphs in total, and so one cannot expect reliable deduction of ancestor relations from
a single MAP DAG.

For clarity of presentation, we discuss our findings mainly in terms of arcs instead
of ancestor relations. Figure 2(b) shows arcs that are assigned a posterior probability of
0.5 or larger. Suppose we claim every arc or ancestor relation with probability 0.5 or
larger to be present. Then, in total there are 12 true positive arcs, 4 false positive arcs,
20 true positive ancestor relations, and 4 false positive ancestor relations. Inspection
reveals that the ancestor relation errors are due to a few flipped arcs. For example, in
the ground truth there is a path from node 1 to eight different nodes. Thus, flipping the
arc from 1 to 2 causes one false positive and eight false negative ancestor relations.
While arc errors are rather independent, one flipped arc can lead to numerous ancestor
relation errors, as seen earlier. It should also be noted that arc flips that are prone to
cause a larger number of ancestor relation errors are also more probable. Namely, an
arc is easily flipped when it does not break or create any v-structure, which is typically
the case when one of the nodes is a source node in the ground truth.

The presence of unobserved nodes leads to claiming arcs between nodes that are
only marginally dependent. In Figure 2(c) we see a DAG constructed from the arcs
with probability 0.5 or larger when nodes 1, 4, 7, and 11 are discarded. Node 1 does
not have children, so its disappearance should not affect the structure among the rest of
the nodes. However, the removal of nodes 4, 7, and 11 affects the rest of the nodes: For
instance, node 11 is a common cause of nodes 13 and 14, and so an arc appears between
nodes 13 and 14. Also, nodes 5 and 6, which are parents of node 7 in the ground truth,
have become parents of node 10, a child of node 7 in the ground truth. Similarly, the
removal of node 4 leads also to appearance of some direct arcs from its parents to its
children. After discarding the unobserved nodes, the shrunken ground truth contains 14
arcs and 18 ancestor relations. The algorithm finds 8 true positive arcs, 6 false positive
arcs, 11 true positive ancestor relations, and 7 false positive ancestor relations. This
suggests that ancestor relations can sometimes be learned as well as individual arcs.

For comparison, we also learned a partial ancestral graph (PAG) from the data with
unobserved nodes using the fast causal inference (FCI) algorithm [18], which is de-
signed for causal discovery with unobserved variables. The output graph is shown in
Figure 2(d). An arc marked with two arrowheads indicates that the algorithm claims the
two nodes have a common (unobserved) cause; the symbol ◦ is a wildcard, indicating
that there can be an arrowhead or there is no arrowhead. The results are generally in
good agreement with the ground truth. The FCI algorithm is able to detect the unob-
served parent of nodes 12 and 13. However, it is not sure whether there is an unobserved
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(a) (b) (c) (d)

Fig. 2. Graphs. (a) The ground truth, from which 10 000 samples were generated. (b) Arcs with
posterior probability at least 0.5. The arrowheads >, �, and � indicate that the probability is in
the interval (0.5, 0.8], (0.8, 0.99], or (0.99, 1], respectively. (c) Arcs with posterior probability at
least 0.5 when nodes 1, 4, 7, and 11 are not observed. (d) A partially directed graph learned using
the FCI algorithm when nodes 1, 4, 7, and 11 are not observed.

parent between nodes 13 and 14, and it is unable to detect the unobserved parent be-
tween nodes 12 and 14. It also finds an unobserved parent between nodes 8 and 9,
which is not in agreement with the ground truth. As the wildcards assigned by the FCI
algorithm do not quantify the uncertainty about the associated arcs, but the algorithm
is ignorant regarding some ancestor relations, the algorithm may loose statistical power
in detecting such relations; we will examine and discuss this issue further in the next
section.

3.2 A Simulation Study

We generated synthetic data by a procedure adopted from Koivisto [14]. One hundred
BNs on 14 binary nodes and maximum indegree 4, each with 10000 data points were
obtained as follows.

1. Draw a linear order L on the node set {1, 2, . . . , 14} uniformly at random (u.a.r.).
2. For each node v independently:

(a) let dv be the number of predecessors of v in L;
(b) draw the number of parents of v, denoted as nv , from {0, 1, . . . , min{4, dv}}

u.a.r.;
(c) draw the nv parents of v from the predecessors of v in L u.a.r.;
(d) for each value configuration of the parents: draw the probability of a sample

getting the value 1 from the uniform distribution on range [0, 1].
3. Draw 10000 samples independently from the BN.

From each data set 24 subsets were generated by discarding � = 0, 2, 4, 6, 8, 10
randomly picked nodes and the associated data, and by including the first m =
100, 500, 2000, 10000 data points.
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Our Bayesian method was applied to each data set and the performance of learning
arcs and ancestor relations was summarized by ROC curves; see Figure 2. The ROC
curve is obtained by setting a threshold for the posterior probability (of arcs or ancestor
relations), and every time the posterior probability exceeds the threshold, we claim
the respective arc or ancestor relation is present. Comparing these claims to the arc
and ancestor relations that actually hold in the (shrunken) ground truth, we obtain true
positives (TP) and false positives (FP) rates. By varying the threshold the pairs of these
rates form a ROC curve, which shows the learning power (TP rate) as a function of FP
rate.

As expected, the more data we have, the easier it is to learn both ancestor relations
and arcs. Likewise, the task becomes harder as the number of unobserved nodes grows.
(We note that the results for undirected arcs in the case of no unobserved nodes are in
good agreement with Koivisto’s [14] results for this particular setting.) The results (Fig-
ure 2) also suggest that the power of learning directed and undirected arcs is about the
same, however, the power of learning ancestor relations being slightly smaller. The run-
ning times of the algorithm for 10, 12, and 14 observed nodes were roughly 3 minutes,
40 minutes, and 8 hours, respectively.

We then compared our Bayesian averaging approach to the deduction of structural
features from a single MAP DAG. Two ways to pick a MAP DAG were considered:
an optimistic and a random approach. In the optimistic approach we chose a member
of the Markov equivalence class of a MAP DAG that yields the largest true positives
rate, and used its true and false positives rates. This approach is arguably unrealistic in
practice but serves as an upper bound for any approach based on a single MAP DAG.
In the random approach we averaged the true and false positives rates over all DAGs
in the Markov equivalence class of a MAP DAG; the averaged rates correspond to the
respective expectations if one picks such a DAG at random. The true and false positives
rates for these two approached are shown in Tables 1 and 2; column “diff.” shows the
difference between the true positives rates of the MAP DAG approach and the Bayesian
averaging approach (the averages of the false positives rate being matched, of course);
a negative value indicates that the Bayesian averaging approach is more powerful.

The results suggest that the random MAP DAG approach performs significantly
worse than Bayesian averaging. On the other hand, the optimistic MAP DAG approach
performs sometimes better than Bayesian averaging, especially when the data are abun-
dant and there are many unobserved nodes.

Furthermore, we compared our method to the deduction of ancestor relations from
the arc probabilities. To this end, we constructed a graph that consisted of the arcs whose
posterior probability was larger than 0.5, that is, the arc is more likely to be present than
absent, and deducted the ancestor relations from this graph. The results (Tables 1 and
2) show that the performance of the deduction of ancestor relations from arcs does
not differ significantly from learning ancestor relations directly. We further compared
the aforementioned approach to direct learning of ancestor relations. To this end, we
assumed that exactly the ancestor relations whose probability is more than 0.5 exist and
cross-tabulated the ancestor relations predictions for deducting the ancestor relations
from arcs and the direct computation of ancestor relations; see Table 3. Table 3 shows
the average number of the node pairs for which either both methods, only the deduction
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(a)

(b)

(c)

(d)

Fig. 3. ROC curves. The data contain (a) 100, (b) 500, (c) 2000 or (d) 10000 samples over 14
nodes. The straight red line is the curve obtained by random guess. The data-generating graphs
contained on average 23.7 arcs and the shrunken ground truths on average 19.7, 15.9, 11.1, 7.0,
and 3.3 arcs for 12, 10, 8, 6, and 4 observed nodes, respectively.
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Table 1. Comparison of TP and FP rates for ancestor relations

Opt. MAP DAG Rand. MAP DAG Arcs > 0.5 FCI
m � TP FP diff. TP FP diff. TP FP diff. TP FP diff.

100 0 0.41 0.19 -0.09 0.37 0.21 -0.14 0.20 0.04 -0.01 0.002 0.000 0.002
100 2 0.35 0.16 -0.07 0.30 0.18 -0.14 0.17 0.03 -0.01 0.001 0.000 -0.001
100 4 0.34 0.11 0.01 0.27 0.14 -0.11 0.16 0.03 -0.01 0.002 0.000 0.002
100 6 0.34 0.08 0.07 0.24 0.12 -0.08 0.15 0.03 -0.00 0.002 0.000 0.002
100 8 0.36 0.05 0.19 0.23 0.09 -0.01 0.12 0.03 0.00 0.003 0.000 0.003
100 10 0.31 0.04 0.16 0.17 0.09 -0.06 0.12 0.02 0.01 0.000 0.000 0.000
500 0 0.65 0.10 -0.04 0.61 0.13 -0.12 0.58 0.04 0.01 0.014 0.002 -0.218
500 2 0.61 0.11 -0.02 0.54 0.14 -0.13 0.50 0.05 0.01 0.014 0.002 -0.143
500 4 0.53 0.11 0.01 0.45 0.14 -0.12 0.42 0.06 0.02 0.010 0.001 -0.073
500 6 0.50 0.10 0.06 0.40 0.14 -0.11 0.35 0.06 -0.01 0.011 0.000 -0.028
500 8 0.48 0.07 0.19 0.33 0.12 -0.10 0.27 0.06 0.00 0.014 0.000 0.014
500 10 0.51 0.05 0.26 0.32 0.12 -0.10 0.27 0.06 -0.02 0.005 0.000 0.005

2000 0 0.84 0.06 0.02 0.78 0.08 -0.08 0.78 0.05 0.01 0.048 0.004 -0.482
2000 2 0.76 0.10 0.02 0.70 0.12 -0.09 0.69 0.07 0.02 0.047 0.005 -0.329
2000 4 0.67 0.12 0.01 0.60 0.15 -0.11 0.60 0.09 0.02 0.041 0.007 -0.217
2000 6 0.64 0.12 0.06 0.54 0.16 -0.10 0.51 0.09 0.01 0.037 0.004 -0.090
2000 8 0.59 0.12 0.14 0.45 0.17 -0.09 0.40 0.10 -0.00 0.020 0.002 -0.033
2000 10 0.69 0.07 0.36 0.44 0.18 -0.18 0.41 0.09 0.07 0.005 0.000 0.005
10000 0 0.93 0.02 0.07 0.86 0.06 -0.06 0.87 0.02 0.00 0.129 0.011 -0.660
10000 2 0.86 0.08 0.06 0.79 0.11 -0.08 0.79 0.07 -0.00 0.121 0.010 -0.410
10000 4 0.80 0.11 0.07 0.70 0.15 -0.11 0.70 0.09 0.01 0.100 0.015 -0.326
10000 6 0.73 0.13 0.11 0.62 0.18 -0.10 0.60 0.13 0.00 0.086 0.010 -0.199
10000 8 0.72 0.14 0.19 0.57 0.20 -0.09 0.54 0.14 0.02 0.037 0.006 -0.125
10000 10 0.84 0.09 0.38 0.57 0.21 -0.11 0.54 0.14 -0.03 0.014 0.002 -0.025

from arc probabilities, only the direct computation of ancestor relation probabilities
or neither method claims an ancestor relation to be present. Table 3 also shows the
probability that the claim made by the direct computation is correct; NaN denotes that
no claims falling into the particular category were made. Most of the time, both methods
make the same predictions. Whenever the predictions differ, the prediction by direct
computation is usually slightly more probable to be correct. We also notice that the two
methods follow each other closely with larger datasets.

We also compared our method to the fast causal inference (FCI) method [18]; see
Tables 1 and 2. We found it quite challenging to make a fair comparison because FCI
outputs a partial ancestral graph (PAG) that cannot be directly compared to a DAG. We
decided to ignore the wildcard arcs and claim only arcs and ancestor relations that FCI
is sure about; this follows the approach of Spirtes et al. [19]. The results (Tables 1 and 2)
show that FCI is very conservative: it does not make many mistakes but it often answers
“don’t know“. This results in a relatively low statistical power of discovering arcs and
ancestor relations, sometimes significantly lower than that of the Bayesian averaging
approach (at matched FP rates).

One should notice, though, that FCI can discover unobserved nodes with some suc-
cess. However, usually the unobserved nodes that FCI “finds,” do not seem to match the
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Table 2. Comparison of TP and FP rates for arcs

Opt. MAP DAG Rand. MAP DAG Arcs > 0.5 FCI
m � TP FP diff. TP FP diff. TP FP diff. TP FP diff.

100 0 0.34 0.05 -0.05 0.31 0.06 -0.10 0.26 0.03 0.00 0.003 0.000 0.003
100 2 0.30 0.06 -0.04 0.26 0.06 -0.11 0.22 0.02 0.00 0.002 0.000 -0.001
100 4 0.28 0.05 0.01 0.23 0.06 -0.08 0.18 0.02 0.00 0.003 0.000 0.003
100 6 0.28 0.04 0.05 0.21 0.06 -0.06 0.16 0.03 0.00 0.002 0.000 0.002
100 8 0.30 0.03 0.15 0.20 0.06 -0.02 0.13 0.03 0.00 0.003 0.000 0.003
100 10 0.31 0.03 0.15 0.18 0.07 -0.05 0.14 0.03 0.00 0.000 0.000 0.000
500 0 0.64 0.03 -0.03 0.60 0.03 -0.09 0.62 0.02 0.00 0.023 0.001 -0.273
500 2 0.55 0.03 0.00 0.50 0.04 -0.09 0.52 0.03 0.00 0.020 0.002 -0.153
500 4 0.46 0.04 0.02 0.41 0.05 -0.09 0.42 0.03 0.00 0.014 0.001 -0.076
500 6 0.42 0.04 0.06 0.34 0.06 -0.08 0.35 0.04 0.00 0.012 0.000 -0.026
500 8 0.42 0.04 0.18 0.30 0.07 -0.04 0.28 0.05 0.00 0.016 0.000 0.016
500 10 0.49 0.04 0.28 0.32 0.08 -0.08 0.30 0.07 0.00 0.005 0.000 0.005
2000 0 0.83 0.02 0.03 0.78 0.02 -0.06 0.81 0.02 0.00 0.075 0.003 -0.511
2000 2 0.71 0.03 0.02 0.66 0.04 -0.06 0.69 0.03 0.00 0.067 0.003 -0.319
2000 4 0.60 0.05 0.00 0.55 0.06 -0.08 0.59 0.04 0.00 0.054 0.005 -0.206
2000 6 0.55 0.05 0.05 0.47 0.07 -0.07 0.50 0.06 0.00 0.042 0.004 -0.088
2000 8 0.51 0.07 0.16 0.40 0.10 -0.05 0.41 0.08 0.00 0.023 0.002 -0.029
2000 10 0.65 0.06 0.33 0.43 0.12 -0.09 0.44 0.10 0.00 0.005 0.000 0.005

10000 0 0.93 0.01 0.08 0.87 0.02 -0.04 0.89 0.01 0.00 0.173 0.006 -0.672
10000 2 0.83 0.03 0.07 0.77 0.04 -0.05 0.80 0.03 0.00 0.146 0.006 -0.395
10000 4 0.75 0.05 0.08 0.67 0.06 -0.06 0.70 0.05 0.00 0.111 0.011 -0.304
10000 6 0.67 0.07 0.09 0.58 0.09 -0.06 0.61 0.08 0.00 0.090 0.009 -0.190
10000 8 0.64 0.09 0.15 0.52 0.12 -0.04 0.54 0.11 0.00 0.040 0.006 -0.118
10000 10 0.79 0.08 0.34 0.56 0.15 -0.09 0.58 0.14 0.00 0.015 0.002 -0.027

ones in the ground truth. For example, when the sample size is 2000 and there are no
unobserved nodes, FCI finds on average 6.0 unobserved nodes. And when there are two
unobserved nodes, only 11% of the “found” 4.8 unobserved nodes match the ground
truth. In general, as the number of unobserved nodes increases, the number of found
unobserved nodes decreases, but the percentage of correctly detected unobserved nodes
increases; for example, when there are 8 unobserved nodes 54% of the claimed 0.7
unobserved nodes are correct.

3.3 Real Life Data

We tested our algorithm on two real life datasets found in UCI machine learning
repository [7]: ADULT (15 variables, 32561 samples) and HOUSING (14 variables, 506
samples). We discretized all continuous variables to binary variables using the median
as the cutpoint. Furthermore, we transformed the variable “native-country”, which had
40 distinct values, of the ADULT dataset to a binary variable where 0 corresponded to
value “USA” and 1 to all other values. For both datasets we set the maximum indegree
to be 4.

Here, we do not know the ground truth and thus we have to resort to other compar-
isons. We investigate whether learning ancestor relations uncovers some information
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Table 3. Ancestor Relations predicted by arcs and direct computation

Predicted Ancestor Relations Correct Predictions by dir. comp.
m � both arcs direct none both arcs direct none

100 0 13.6 1.1 1.8 165.5 0.61 0.64 0.50 0.79
100 2 8.3 0.4 0.9 122.4 0.63 0.59 0.61 0.79
100 4 5.3 0.3 0.5 84.0 0.63 0.52 0.59 0.78
100 6 3.1 0.2 0.2 52.5 0.62 0.56 0.57 0.78
100 8 1.4 0.1 0.0 28.4 0.59 0.25 1.00 0.77
100 10 0.6 0.0 0.0 11.4 0.68 NaN 1.00 0.77
500 0 30.5 0.5 1.3 149.7 0.82 0.48 0.53 0.88
500 2 20.7 0.4 0.6 110.2 0.76 0.77 0.48 0.86
500 4 12.7 0.5 0.6 76.3 0.70 0.65 0.35 0.84
500 6 7.0 0.2 0.3 48.5 0.66 0.81 0.63 0.82
500 8 3.3 0.1 0.1 26.5 0.61 0.56 0.45 0.79
500 10 1.3 0.0 0.0 10.6 0.60 0.33 NaN 0.79

2000 0 39.7 0.2 0.4 141.8 0.85 0.82 0.39 0.93
2000 2 28.4 0.2 0.4 103.0 0.76 0.55 0.61 0.91
2000 4 18.6 0.2 0.4 70.8 0.69 0.47 0.30 0.88
2000 6 10.6 0.2 0.3 44.9 0.64 0.70 0.47 0.86
2000 8 5.2 0.1 0.1 24.6 0.58 0.89 0.54 0.82
2000 10 2.0 0.1 0.1 9.9 0.61 0.25 0.60 0.82
10000 0 40.9 0.1 0.4 140.7 0.92 0.60 0.61 0.96
10000 2 31.2 0.2 0.3 100.3 0.79 0.78 0.32 0.94
10000 4 21.6 0.1 0.2 68.0 0.71 0.60 0.36 0.91
10000 6 13.3 0.2 0.2 42.3 0.60 0.68 0.53 0.88
10000 8 7.2 0.0 0.1 22.7 0.57 0.75 0.44 0.85
10000 10 2.8 0.0 0.0 9.1 0.58 0.67 0.00 0.84

that cannot be obtained simply analyzing the arc probabilities. To this end, we deduct
ancestor relations both from the ancestor relations probabilities and the arc probabil-
ities. For ADULT, we have 210 potential ancestor relations. Both methods imply the
presence of the same 79 ancestor relations. For HOUSING the methods are in almost as
good agreement as for the ADULT. For 71 ordered pairs, both methods claim that an an-
cestor relation is present and for 110 pairs that an ancestor relation is not present. There
is, however, one node pair for which the deduction from arcs suggests that there is no
ancestor relation while the deduction from ancestor probabilities claims the opposite.
This discrepancy is, though, due to the arbitrariness of the threshold. We notice that the
posterior probability of an arc between the two nodes in question was 0.49 while the
probability of an ancestor relation was 0.53.

4 Discussion

A key assumption in Bayesian network models is that all nodes relevant for capturing
the dependencies of the associated variables are included in the model. One can argue
that this assumption rarely holds in practice, and so the model is misspecified. Note,
however, that in practice, every complex enough model is misspecified in one way or
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another. The issue, in general, calls for robustness studies, disregarding whether the
adopted statistical paradigm is a frequentist or a Bayesian one. In this paper we have
studied the power of Bayesian structure discovery in Bayesian networks that do not
explicitly model latent variables.

We contributed with two positive findings. First, we showed that Bayesian learn-
ing of ancestor relationships is computationally feasible when the number of observed
nodes is moderate, say, fewer than 20. The algorithm resembles the dynamic program-
ming algorithm of Koivisto and Sood [15] for computing the posterior probabilities of
modular features, the main difference being in handling the nonmodularity of ancestor
relations, which explains the somewhat larger computational complexity; this suggests
that recent discussions of the limitation of the “exact Bayesian approach” to modular
features [2,21] may be overly pessimistic. For larger networks on, say, more than 20
nodes, the dynamic programming algorithm becomes computational infeasible and one
has to resort to heuristic methods, in particular, Markov chain Monte Carlo [6,9,10,16].

Second, our simulation study shows that ancestor relations can be discovered with
reasonable power even when a large fraction of the nodes in the underlying data gen-
erating model are unobserved. For instance, with a sample of 10000 data points on 10
nodes, around 75 % of the ancestor relations that hold on the data generating network
on 14 nodes are correctly detected at a false positive fraction of 12 %.

We also found that the presented Bayesian averaging approach outperforms some
of its obvious rivals: the deduction of ancestor relations from a single MAP DAG and
the popular constraint-based algorithm, FCI [19]. On the other hand, we found that full
Bayesian averaging performs only marginally better than partial Bayesian averaging,
that is, first inferring arcs based on their marginal posterior probabilities, with some
fixed threshold, and then deducing ancestor relations from the so constructed DAG; this
suggests that partial Bayesian averaging should be the method of choice when the num-
ber of nodes is about 20–30. Although someone may perceive the competitiveness of
partial Bayesian averaging as a drawback for full Bayesian averaging, it should be noted
that the insight about the competitiveness of partial Bayesian averaging was gained by
being able to perform full Bayesian averaging. An intriguing open question we did not
address this work is, how well some existing score-based heuristics [4] to discover un-
observed nodes perform in terms of learning arcs and ancestor relations.

Acknowledgements. Authors like to thank anonymous reviewers for insightful com-
ments and suggestions. This research was supported in part by the Academy of Finland,
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Abstract. Algorithms combining multi-view information are known to
exponentially quicken classification, and have been applied to many fields.
However, they lack the ability to mine most discriminant information
sources (or data types) for making predictions. In this paper, we pro-
pose an algorithm based on boosting to address these problems. The
proposed algorithm builds base classifiers independently from each data
type (view) that provides a partial view about an object of interest. Dif-
ferent from AdaBoost, where each view has its own re-sampling weight,
our algorithm uses a single re-sampling distribution for all views at each
boosting round. This distribution is determined by the view whose train-
ing error is minimal. This shared sampling mechanism restricts noise to
individual views, thereby reducing sensitivity to noise. Furthermore, in
order to establish performance guarantees, we introduce a randomized
version of the algorithm, where a winning view is chosen probabilisti-
cally. As a result, it can be cast within a multi-armed bandit framework,
which allows us to show that with high probability the algorithm seeks
out most discriminant views of data for making predictions. We pro-
vide experimental results that show its performance against noise and
competing techniques.

Keywords: Data fusion, boosting, convergence, multi-view learning.

1 Introduction

Classifiers employed in real world scenarios must deal with various adversities
such as noise in sensors, intra-class variations, and restricted degrees of freedom
[18]. It is often helpful to develop classifiers that rely on data from various sources
(views) for classification. Such classifiers require an effective way of fusing the
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various sources of information. Resulting fused classifiers can offer a number
of advantages, such as increased confidence in decision-making, resulting from
fused complementary data, and robust performance against noise. Multi-view
learning finds its applications in many domains such as defense, medicine, and
sciences [13].

While algorithms that combine multi-view information are known to expo-
nentially quicken object identification and classification, they lack the ability to
seek out relevant information to augment a decision process. In this paper, we
present a novel shared sampling approach to boosting for learning from multi-
ple representations of data that addresses these problems. Here a representation
(view) corresponds to a specific type of feature or attribute. For example, an
image can be represented by (1) texture features, (2) edge features, and/or (3)
shape features. Thus, each of these views provides a partial view about an ob-
ject of interest, i.e., revealing a particular aspect of data. Our method provides
a mechanism to exploit all of the data available, and as such, the method can be
very useful for making inferences about potential objects of interest characterized
with multiple views.

The proposed technique is a novel application of AdaBoost [10]. Similar to
AdaBoost, our technique builds base classifiers independently from each view.
Unlike AdaBoost, however, all views share the same sampling distribution as
the view whose weighted training error is the minimum among all the views.
This allows the most consistent data type to dominate over time, thereby signif-
icantly reducing sensitivity to noise. In addition, since the final strong classifier
contains classifiers that are trained to focus on different views of the data, better
generalization performance can be expected.

We note that each base classifier in the proposed algorithm is selected from
one of the representations or views. We thus show that if we model base classi-
fier selection as a sequential decision process, we can cast this scenario within
a multi-armed bandit framework [3], where each view of data is modeled as the
arm of a slot machine. The resulting algorithm can be viewed as a randomized
version of the shared sampling algorithm in that a winning view is chosen prob-
abilistically instead of in a greedy fashion. Furthermore, this casting allows us to
show that with high probability the algorithm seeks out decision relevant views
for making predictions. We also provide experimental results that corroborate
our theoretical analysis.

2 Related Work

In multi-view learning, a co-training procedure for classification problems was
developed [4]. The idea is that better classifiers can be learned at the indi-
vidual view level, rather than constructed directly on all the available views.
Co-training has been extensively investigated in the context of semi-supervised
learning [22,23,8]. In this work, we are mainly interested in creating classifiers
that fuse information from multiple views for better generalization.

In many ways, multi-view learning and data fusion address the same set of
problems. From the viewpoint of data fusion, comprehensive surveys of various
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classifier fusion studies and approaches can be found in [11,12]. More recently,
Lanckriet et al. [13] introduce a kernel-based data fusion (multi-view learning)
approach to protein function prediction in yeast. The method combines multiple
kernel representations in an optimal fashion by formulating the problem as a
convex optimization problem that can be solved using semi-definite program-
ming.

In [24] stacked generalization from multiple views was proposed. It is a gen-
eral technique for construction of multi-level learning systems. In the context of
multi-view learning, it yields unbiased, full-size training sets for the trainable
combiner. In some cases stacked generalization is equivalent to cross-validation,
in other cases it is equivalent to forming a linear combination of the classifica-
tion results of the constituent classifiers. In [25], a local learning technique was
proposed that combines multi-view information for better classification.

Boosting has been investigated in multi-view learning recently [21]. In partic-
ular, there is a close relationship between our technique and that proposed in
[21]. If we have a single view and base classifiers are allowed to include features
as well, then both techniques reduce to AdaBoost. When noise exists, however,
the two techniques diverge. The technique in [21] behaves exactly like AdaBoost.
Noise forces the boosting algorithm to focus on noisy examples, thereby distort-
ing the optimal decision boundary. On the other hand, our approach restricts
noise to individual views, which has a similar effect to that of placing less mass of
sampling probability on these noisy examples. This is the key difference between
the two techniques.

Multi-armed bandits have been studied in a number of applications [2,3]. We
state that multi-armed bandits described in [5] is stochastic by nature. There are
many applications where the stochastic setting can be applied to nonstationary
environments, such as performance tuning problems [15] and the SAT problem
[14]. Algorithms such as UCB [2] and UCBV [1] work well for making AdaBoost
more efficient. Given that AdaBoost is adversarial by nature, it is difficult to use
stochastic bandits to derive strong performance guarantees on AdaBoost. Many
arguments made in [5] remain heuristic to an extent. However, this has been
addressed in [6].

3 Shared Sampling Algorithm

In this section, we first describe the shared sampling (ShareBoost) algorithm. We
then present a randomized version of it. We are given a set of training examples:
X = {(xi, yi)}n

i=1, and M disjoint features for each example xi = {x1
i , · · · , xM

i },
where xj

i ∈ �qj , and yi ∈ Y = {−1, +1}. Each member xj
i is known as a

view of example xi. We assume that examples (xi, yi) are drawn randomly and
independently according to a fixed but unknown probability distribution D over
X × Y. Here the input space X is �q, where q =

∑M
j=1 qj .

The algorithm builds weak classifiers independently from each view (feature
source). However, all data types share the same sampling distribution computed
from the view having the smallest error rate. The key steps of the algorithm are
shown in Algorithm 3, where I(·) is the indicator function.
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ShareBoost ({(xj
i , yi)}ni=1)

1. Initialization: w1(i) = 1
n
, i = 1, · · · , n.

2. For t = 1 to T
(a) Compute base classifier hj

t using distribution wt

(b) Calculate:εj
t =

∑
i wt(i)I(hj

t(x
j
i ) �= yi) and α∗

t = 1
2

ln(
1−ε∗t

ε∗t
), where ε∗t =

minj{εj
t} with corresponding h∗

t

(c) Update wt+1(i) = wt(i)
Z∗

t
× exp(−yih

∗
t (x

∗
i )α

∗
t ), where Z∗

t is a normalization

factor.
3. Output: H(x) = sign(

∑T
t=1 α∗

t h∗
t (x))

Input to the algorithm is the jth view of n training examples. The algorithm
produces as output a classifier that combines data from all the views. In the
initialization step, all the views for a given training example are initialized with
the same weight. The final decision function H(x) is computed as a weighted sum
of base classifiers h∗

t (x
∗), selected at each iteration from the views that had the

smallest training error or largest α value. In this sense, ShareBoost possesses the
ability to decide at each iteration which view to influence its final decision. This
ability goes beyond simple subspace selection. It empowers ShareBoost not only
to exploit the interplay between subspaces, but also to be more robust against
noise.

We note that since we are mainly interested in asymtotatic margins, we are less
concerned with distorted class probabilities associated with boosting predictions
[9], especially in the two class case.

4 Randomized Shared Sampling Algorithm

The ShareBoost algorithm introduced above is greedy in that resampling weights
for all views are determined solely by the winning view. That is, it employs a
winner take-all strategy. One of the benefits associated with this algorithm is
that noise will be restricted to individual views. In other words, noise will be
compartmentalized, which has a similar effect to that of placing less mass of
sampling probability on noisy examples. This, however, needs not to be the case
in approaches such as those described in [21].

In order to provide a convergence analysis, we describe a randomized version of
the shared sampling algorithm, where a winning view is chosen probabilistically.
Consequently, it can be cast within a multi-armed bandit framework [3]. This in
turn allows us to show that with high probability the algorithm chooses a set of
best (large edges to be detailed later) views for making predictions.

4.1 Adversarial Multi-armed Bandit Approach

In the multi-armed bandit problem [17], a gambler chooses one of M slot ma-
chines to play. Formally, a player algorithm pulls one out of M arms at each time



ShareBoost: Boosting for Multi-view Learning with Performance Guarantees 601

t. Pulling an arm jt at time t results in a reward r(jt) ∈ [0, 1], from a stationary
distribution. The goal of the player algorithm is to maximize the expected sum
of the rewards over the pulls. More precisely, let GA(T ) =

∑T
t=1 r(jt) be the

total reward that algorithm A receives over T pulls. Then the performance of al-
gorithm A can be evaluated in terms of regret with respect to the average return
of the optimal strategy (pulling consistently the best arm) Reg = GO −GA(T ),
where GO =

∑T
t=1 maxi∈{1,··· ,M} R(it). Here R(i) represents the expected return

of the ith arm.
In this work, we cast the proposed fusion algorithm within the adversarial

bandit framework [2,3]. In this setup, no statistical assumptions are made about
the generation of rewards. This can be viewed as having a second, non-random
player that generates a reward sequence r1, r2 · · · of vectors

rt = (rt(1), · · · , rt(M)),

where rt(j) ∈ [0, 1]. There is no restriction on reward vectors r(t) generated,
which can be influenced by the player algorithm’s previous actions. Only the
reward r(jt) of the chosen arm jt is revealed to the player algorithm. Since the
rewards are not drawn from a stationary distribution, any kind of regret can only
be defined with respect to a particular sequence of actions. One such regret is
the worst case regret G(j1,··· ,jT )−GA(T ), where G(j1,··· ,jT ) =

∑T
j=1 rt(jt). Thus,

the worst case regret measures how much the player algorithm lost (or gained)
by following algorithm A instead of choosing actions (ii, · · · , iT ).

A special case of this is the regret of strategy A for the best single action

RegA(T ) = Gmax(T ) − GA(T ) (1)

where Gmax(T ) = maxi

∑T
t=1 rt(i). That is, strategy A is compared to the best

fixed arm, retrospectively. Notice that when player algorithm A that achieves
limT→∞

RegA(T )
T ≤ 0 is called a no-regret algorithm.

4.2 Exp3.P: Exponential-Weight Algorithm for Exploration and
Exploitation

The adversarial multi-armed bandit problem can be treated within the class
of Exponentially Weighted Average Forecaster algorithms [7]. Typically these
algorithms maintain a probability distribution over the arms and draws a random
arm from this distribution at each step. The probability for pulling an arm
increases exponentially with the average of past rewards the arm receives. In
particular, we chose the Exp3.P (Exponential-weight algorithm for Exploration
and Exploitation) algorithm [3], because the particular form of the probability
bound on the weak regret (1) allows us to derive a strong result for the proposed
fusion algorithm.

In the Exp3.P algorithm, the probability distribution (line 2(a)) for choosing
arms is a mixture (weighted by γ) of the uniform distribution and a distribution
that allocates a probability mass exponential in the estimated cumulative reward
to each arm. This mixture ensures that the algorithm tries out all M arms. When
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Exp3.P (α > 0,γ ∈ (0, 1])

1. Initialization: i = 1, · · · , M .

(a) d1(i) = exp(αγ
3

√
T
M

)

2. For t = 1, 2, · · · , T
(a) pt(i) = (1− γ) dt(i)∑

M
j=1 dt(j)

+ γ
M

, i = 1, · · · , M
(b) Choose it randomly according to pt(i)
(c) Receive reward rt(it) ∈ [0, 1]
(d) For j = 1, · · · , M set

(1) r̂t(j) =

{
rt(j)/pt(j) if j = it;
0 otherwise.

(2) dt+1(j) = dt(j) exp(
γ

3M
(r̂t(j) +

α

pt(j)
√

MT
))

arm it is selected (line 2(d)(1)), the estimated reward r̂(it) for the arm is set to
rt(i)/pt(i). This choice compensates the reward of arms that are unlikely to be
chosen. For the purpose of our analysis, we state the following theorem (Theorem
6.3 in [3]).

Theorem 1. For any fixed T > 0, for all M ≥ 2 and for all δ > 0, if γ =
min{3/5, 2

√
(3M log M)/(5T )} and α = 2

√
log(MT/δ), then

Gmax −GExp3.P ≤ 4

√
MT log

MT

δ
+

4

√
5

3
MT log M + 8 log

MT

δ
(2)

holds for any assignment of rewards with probability at least 1 − δ.

It can be seen that α and γ are “smoothing” parameters: the larger they are,
the more uniform the probability distribution for choosing arms pt. In addition,
Exp3.P is a no-regret algorithm with probability 1 [3].

4.3 Randomized ShareBoost: Combining ShareBoost and Exp3.P

We are now in a position to combine ShareBoost and Exp3.P to establish a
performance guarantee for the proposed algorithm. To do so, we must first specify
a reward function for each information source. First, we define the training error

Err =
1
n
|{i : H(xi) �= yi}|. (3)

If we write

EH(H, W1) =
n∑

i=1

w1(i)exp(−H(xi)yi), (4)
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then EH(H, W1) upper bounds Err [20]. Furthermore, let

Eh(h, Wt) =
n∑

i=1

wt(i)exp(−h(xi)yi).

It can be shown that

EH(H, W1) =
T∏

t=1

Eh(ht, Wt). (5)

It is shown that at each boosting round, the base learner tries to find a weak
classifier ht that minimizes Eh(h, Wt) =

∑n
i=1 wt(i)exp(−h(xi)yi) (Algorithm

1). Thus, minimizing Eh(h, Wt) at each boosting round minimizes the training
error Eq. (3) in an iterative greedy fashion.

Now let
βt =

∑
i

wi(t)yiht(xi) = Ei∼W (t)[yiht(xi)], (6)

be the edge [19] of the base hypothesis ht chosen by the base learner at time step
t. Here the edge helps define reward functions in the proposed algorithm.

One can show that [20]

Eh(h, W ) =
√

1 − β2
t . (7)

This implies that the training error of the final classifier is at most
∏T

t=1

√
1 − β2

t .
This upper bound suggests several possible reward functions. For example, we
can define the reward function as

rt(j) = 1 −
√

1 − β2
t (Vj), (8)

where βt(Vj) is the edge (6) of the classifier chosen by the base learner from
source Vj at the tth boosting round. Since β2

t (Vj) ∈ [0, 1], this reward is between
0 and 1.

It is important to notice that a reward function in logarithm is proposed in
[6] that restricts values the edge (6) can take. In contrast, our reward function
does not have such a restriction. Also, (8) allows us to establish a sharper bound
than the one in [6], as we will see later.

The combined algorithm, called Randomized ShareBoost or rShareBoost, is
shown in Algorithm 4. Here, wt denotes the distribution for sampling examples
that is shared by all sensors, while dt represents the weight for determining the
distribution for sampling views.

rShareBoost seems to have departed significantly from the ShareBoost sam-
pling algorithm. In ShareBoost, boosting is executed in parallel by all the in-
formation sources. In contrast, rShareBoost performs boosting along the view
chosen by the bandit algorithm only. From the viewpoint of computation, rShare-
Boost is much more efficient, i.e., it is a fraction (1/M) of the time required for
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rShareBoost (α > 0, γ ∈ (0, 1], {(xi, yi)}ni=1)

1. w1(i) = 1
n
, i = 1, · · · , n. d1(j) = exp(αγ

3

√
T/M), j = 1, · · · , M .

2. For t = 1 to T
(a) pt(j) = (1− γ) dt(j)∑M

k=1 dt(k)
+ γ

M

(b) Let j be the view chosen using pt

(c) Obtain base classifier hj
t using distribution wt.

(d) Calculate: εj
t =

∑
i wt(i)I(hj

t(x
j
i ) �= yi). and rt(j) ∈ [0, 1] (8).

(e) For k = 1, · · · , M set
i. r̂t(k) = rt(k)/pt(k) (k = j), and 0 (k �= j)

ii. dt+1(k) = dt(k)e
γ

3M
(r̂t(k)+ α

pt(k)
√

MT
)

(f) Let α∗
t = 1

2
ln(

1−ε∗t
ε∗t

), where ε∗t = εj
t , h∗

t = hj
t

(g) Update wt+1(i) = wt(i)
Zt
× exp(−yih

∗
t (x

∗
i )α

∗
t ), where Zt is a normalization fac-

tor.
3. Output: H(x) = sign(

∑T
t=1 α∗

t h∗
t (x))

ShareBoost. In addition, ShareBoost is greedy, while rShareBoost is not. That
is, the probability distribution for sampling training examples for all views is
determined solely by the winning source. In rShareBoost, however, the infor-
mation source selected by Exp3.P may not be the winning view. This provides
rShareBoost with an opportunity to examine potential information sources that
may prove to be useful.

5 Convergence Analysis of Randomized ShareBoost

We prove a convergence result for the rShareBoost algorithm described in 4.3 in
the following theorem. Since rShareBoost is a randomized version of ShareBoost,
the result also provides insight into the behavior of the ShareBoost algorithm.

Theorem 2. Let V = {V1, · · · , VM} be a set of M information sources. Suppose
that there exists an information source Vi ∈ V and a constant 0 < ρ <= 1 such
that for any distribution over the training data set S, the base learner returns a
base classifier from Vi+ with an edge βVi+

≥ ρ. Then, with probability at least
1 − δ, the training error (3) of rShareBoost will become 0 after at most in time
polynomial in (besides other parameters).

(log(M/δ), 1/ρ, logn),

where input parameters to rShareBoost are set to

γ = min{3/5, 2
√

(3M log M)/(5T )}

and
α = 2

√
log(MT/δ),
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as required by Theorem 3. More precisely,

T = max

(
log2 M

δ
,

(
2C

ρ − 2

)4

,
2 log n

ρ

)
. (9)

where C =
√

32M +
√

27M log M + 16.

Proof. The arguments are along the line of the proof of Theorem 1 in [6]. Once
the number of sensor sources is given, M becomes constant. Let

r∗ = max
i

T∑
t=1

rt(i) (10)

be the reward of the optimal arm, retrospectively. We can denote this arm by
i∗ = argmaxi

∑T
t=1 rt(i). Thus r∗ can be written as r∗ =

∑T
t=1 rt(i∗). Notice

that i∗ may not be the same as arm i+ returned by the weak learner. Since i∗ is
the best arm, it follows that

r∗ ≥
T∑

t=1

rt(i+). (11)

We first upper bound the logarithm of the exponential margin loss (4). From (4)
and (5), we have

log(EH(H, W1)) = log

(
T∏

t=1

Eh(ht, Wt)

)
=

T∑
t=1

log(Eh(ht, Wt)).

¿From (7), (8) and log x ≤ x − 1, we can show that

T∑
t=1

log(Eh(ht, Wt)) ≤
T∑

t=1

−rt(jt). (12)

Let Z = 4
√

MT log MT
δ +4

√
5
3MT log M +8 log MT

δ . From Theorem 1 and (10),

we can bound (12) as follows
∑T

t=1 −rt(jt) ≤ −Tr∗ + Z ≤ −∑T
t=1 rt(i+) + Z =∑T

t=1(
√

1 − β2
t (Vjt)−1)+Z, where the second inequality follows from (11), and

the equality follows from (8). We therefore have

T∑
t=1

−rt(jt) ≤
T∑

t=1

(
√

1 − ρ2 − 1) + Z (13)

where (13) follows from the assumption that βt(j+) ≥ ρ. If we write√
1 − ρ2 =

√
(1 − ρ)(1 + ρ) =

√
(1 − ρ) + (1 − ρ)ρ,

we can show that √
1 − ρ2 ≤ 2 − ρ, (14)
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where we use the following facts:
√

x + y ≤ √
x+

√
y for any x, y ≥ 0,

√
(1 − x)x ≤√

1 − x for 0 ≤ x ≤ 1, and 2xy ≤ x2 + y2 for any x, y. Combining (13) and (14),
we have

T∑
t=1

log(Eh(ht, Wt)) ≤
T∑

t=1

(1 − ρ) + Z. (15)

Furthermore,

Z ≤ 4

√
MT (log

M

δ
+
√

T ) + 4

√
5
3
MT log M + 8 log

M

δ
+ 8

√
T (16)

≤ 4
√

MT (
√

T +
√

T ) + 4

√
5
3
MT log M + 8

√
T + 8

√
T (17)

= T 3/4
√

32M + T 1/2

(√
80
3

M log M + 16

)
(18)

≤ T 3/4
(√

32M +
√

27M log M + 16
)

, (19)

where the first inequality follows from
√

T > log T ; the second inequality follows
from

√
T > log T and T > log2 M

δ ; and the last inequality follows from the
fact that T > 1 and 80

3 < 27. Now let C =
√

32M +
√

27M log M + 16. Thus,∑T
t=1 log(Eh(ht, Wt)) ≤ T (1 − ρ + T−1/4C) ≤ − 1

2Tρ, where the last inequality
follows from T > ( 2C

ρ−2 )4 (9).
In [20], it is shown that EH(H, W1) (4) upper bounds Err (3). That is Err ≤

EH(H, W1). Thus, we have Err ≤ exp(− 1
2Tρ). If we set Err to be less than 1

n ,
it must be zero. Therefore, if we let

exp(−1
2
Tρ) ≤ 1

n
,

and combine with (9), we obtain the time bound stated in the theorem.

Notice that because of (8), our bound is O( 1
ρ4 ) in terms of ρ in the worst case,

which is sharper than the time complexity of O( 1
ρ6 ) established in [6].

There are a number of reasons why the above bound makes sense. As noted
in [6], the most significant is that the regret bound for Exp3.P does not depend
on n. Another observation is that rShareBoost is a boosting algorithm. Thus, it
should output a strong classifier H with zero training error after T = O(log n)
iterations, when its base learner is capable of returning a base classifier having
edge (6) βt ≥ ρ for given ρ > 0. Several boosting algorithms meet this condition
[20]. Notice that rShareBoost is PAC learnable because its time complexity is
polynomial in log 1

δ .
Both the number of information sources M and the quality that each source

can provide in terms of ρ are involved in the analysis. When M is large, a large
number of trials must be taken to gather information so that the best information
source can be properly identified. On the other hand, when sensor sources are
unable to provide reliable information, we must lower ρ, hence a reduced edge
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Fig. 1. FERET Sample images

(recall large edge values imply large asymptotic margins [19]). Thus, a large
number of iterations are required to build enough base classifiers to create a
strong final classifier. In practice, a trade-off between the competing goals has
to be made.

It is important to note that the theorem states that when views can provide
useful information (a large edge, thus a large ρ), rShareBoost can quickly iden-
tify those views. That is, the probability of choosing those views to build base
classifiers increases exponentially, which can be particularly useful in environ-
ments with noise, thereby avoiding unproductive computations. It addresses one
of the important issues facing fusion: Can an algorithm automatically switch be-
tween subsets of information sources that are most decision-relevant? The above
analysis shows that rShareBoost can.

6 Experiments

We have carried out empirical study evaluating the performance of the proposed
algorithm. As comparison, the following methods are evaluated. (1) ShareBoost
(Algorithm 1), and (2) rShareBoost. (Algorithm 4), (3) iBoost (The boosting
with independent sampling distribution). In iBoost, re-sampling weights of train-
ing examples are independent for each view. Similar to ShareBoost, a base clas-
sifier from the view having the largest α value is selected at each boosting round.
All these three algorithms employ a Naive Bayes learner to build base classifiers,
and the Gaussian distribution is used for marginal’s. The number of base classi-
fiers is 150. (4) The semi-definite programming (SDP) algorithm [13], where ker-
nel functions are Gaussian. (5) The AdaBoost-MV algorithm, where AdaBoost
is applied to each view independently and final classification is determined by
majority vote. (6) The AdaBoost-Ca algorithm, where AdaBoost is applied to a
concatenation of all views. (7) The majority vote (SVM-MV) algorithm, where
SVMs are used as component classifier. (8) The stacked generalization (Stack-
ing) algorithm [24]. Stacking is very similar to SVM-MV. The only difference is
that, instead of majority vote, the final combiner is another SVM.
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Table 1. Average accuracy: Noise free

Data Face Gender Glass Gene

ShareBoost 0.76 0.87 0.74 0.67
rShareBoost 0.76 0.87 0.73 0.66

iBoost 0.75 0.85 0.72 0.60
SDP 0.70 0.45 0.48 0.60

AdaBoost-MV 0.74 0.77 0.71 0.62
AdaBoost-Ca 0.74 0.84 0.70 0.61

SVM-MV 0.70 0.58 0.58 0.64
Stacking 0.70 0.58 0.58 0.63

Table 2. Average accuracy: 30% noise

Data Face Gender Glass Gene

ShareBoost 0.72 0.63 0.63 0.56
rShareBoost 0.73 0.63 0.64 0.56

iBoost 0.65 0.53 0.56 0.54
SDP 0.70 0.46 0.52 0.54

AdaBoost-MV 0.68 0.51 0.58 0.53
AdaBoost-Ca 0.65 0.51 0.58 0.52

SVM-MV 0.69 0.57 0.59 0.53
Stacking 0.70 0.58 0.58 0.57

Three FERET image data sets and one gene data set are used here. The
problems are (1) Face detection, (2) Gender classification, and (3) detection of
Glasses on faces. Sample images are shown in Fig. 1.

For the face and gender data, each image is represented by three poses in
terms of eigenfaces extracted from three head orientations: 1) frontal, 2) half
left, and 3) half right profiles. The non-face images are blacked out faces. In the
glass detection experiment, each image is represented by three types of features
extracted from only one pose of an individual, namely (1) eigenfaces, (2) Canny
edges, and (3) wavelet coefficients. Each dataset has 101 samples and each view
has 101 dimensions after applying PCA.

The gene data set is from the Yeast Database (CYGD) [16]. The task is
to combine different sources to determine membrane vs non-membrane proteins.
Three sources are derived from BLAST and Smith-Waterman genomic methods,
and from gene expression measurement. The dataset has 100 examples and the
number of dimensions after applying PCA is 76, 74 and 64, respectively. These
dimensions explain 90% variance in the data.

Ten-fold cross-validation was used for model selection. For rShareBoost, we set
α to 0.15 and γ to 0.3, respectively, as suggested in [6]. The results are averaged
over 30 runs (60% training and 40% testing). Table 1 shows the average accuracy
(noise free). In terms of paired t–test with a 95% confidence level, for the Face
data, ShareBoost and rShareBoost are significantly better than SDP, SVM-MV
and Stacking. For the Gender data, ShareBoost and rShareBoost are better than
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SDP, AdaBoost-MV, SVM-MV and Stacking. For the Glass data, ShareBoost
and rShareBoost significantly outperform SDP, AdaBoost-Ca, SVM-MV and
Stacking. For the Gene data, ShareBoost and rShareBoost outperform the rest,
except SVM-MV and Stacking.

To examine sensitivity to noise, we randomly added 30% noise to the class
label of the training data for all three views by flipping a label from one class
to another. Flipping labels to generate noise produces similar effect to that
produced by poor views in terms of overlapping classes. Table 2 shows the average
classification accuracy over 30 runs in the noisy case. For Face, ShareBoost and
rShareBoost ourperform iBoost, AdaBoost-MV, and AdaBoost-Ca. For Gender
and Glass, ShareBoost and rShareBoost are significantly better than the rest.
The results show that ShareBoost and rShareBoost are more than robust against
noise than the competing methods. Overall, rShareBoost is similar to ShareBoost
in performance. However, rShareBoost is much more efficient computationally
than ShareBoost.

Note that we also carried out experiments using feature noise (white noise).
Every method performed better. However, their relative performances remained
the same as in the label noise case. Label noise seems to create harder problems.
It most likely creates problems with overlapping classes, while feature noise
(white noise) may not.

Notice that the number of base classifiers for both ShareBoost and rShare-
Boost is 150. However, for each base classifier ShareBoost requires the amount
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Fig. 2. Average accuracy as a function of the number of base classifiers achieved by
ShareBoost and rShareBoost over 30 runs on the Face and Gender data. Left column:
the noise-free case. Right column: the 30% noisy case.
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Fig. 3. Average accuracy as a function of the number of base classifiers achieved by
ShareBoost and rShareBoost over 30 runs on the Glass and Gene data. Left column:
the noise-free case. Right column: the 30% noisy case

of computation that is three times that required for rShareBoost. The fact that
ShareBoost and rShareBoost registered similar performance on the problems
examined shows that rShareBoost is more efficient computationally than Share-
Boost. Figure 2 shows the average accuracy as a function of the number of base
classifiers registered by ShareBoost and rShareBoost over 30 on the Face and
Gender data, while Figure 3 shows the average accuracy by the two methods on
the Glass and Gene data. In the figures, the left column shows the noise-free case,
and the right column shows the 30% noisy case. The results show clearly that
choosing a winning view probabilistically as in rShareBoost can be as effective
as the winner-take-all strategy employed ShareBoost.

7 Summary

We have developed the ShareBoost algorithm for boosting for multi-view learn-
ing. The ShareBoost algorithm has been shown to be robust against noise by
limiting noise to individual views. We have also developed a randomized version
of the algorithm, rShareBoost, that can be cast within a multi-armed bandit
framework. This formulation allows us to state its convergence and show that
with high probability the rShareBoost algorithm judiciously seeks out decision
relevant views for making predictions. rShareBoost has achieved a performance
similar to ShareBoost at a fraction (1/M) of time required for ShareBoost. We
have provided the experimental results that validate our theoretical analysis.
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We plan on exploring other base classifiers such as decision stumps in Share-
Boost to examine its performance, and investigating its mechanism for exploiting
interplays between multiple views for learning.
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Abstract. Planning as inference recently emerged as a versatile ap-
proach to decision-theoretic planning and reinforcement learning for sin-
gle and multi-agent systems in fully and partially observable domains
with discrete and continuous variables. Since planning as inference es-
sentially tackles a non-convex optimization problem when the states are
partially observable, there is a need to develop techniques that can ro-
bustly escape local optima. We investigate the local optima of finite state
controllers in single agent partially observable Markov decision processes
(POMDPs) that are optimized by expectation maximization (EM). We
show that EM converges to controllers that are optimal with respect
to a one-step lookahead. To escape local optima, we propose two algo-
rithms: the first one adds nodes to the controller to ensure optimality
with respect to a multi-step lookahead, while the second one splits nodes
in a greedy fashion to improve reward likelihood. The approaches are
demonstrated empirically on benchmark problems.

1 Introduction

Toussaint et al. [20] recently showed that policy optimization in probabilistic
domains is equivalent to maximizing the likelihood of normalized rewards. This
connection between planning and inference has opened the door to the applica-
tion of a wide range of machine learning and probabilistic inference techniques.
However, policy optimization in partially observable domains is generally non-
convex, including when reformulated as a likelihood maximization problem. As
a result, policies often get stuck in local optima, which may be far from optimal.

In this paper, we analyze the local optima of finite state controllers in partially
observable Markov decision processes (POMDPs) that are optimized by Expecta-
tion Maximization (EM). More precisely, we show that EM optimizes controllers
by essentially performing a one-step lookahead where each parameter is adjusted
in isolation (i.e., while keeping the other parameters fixed). We propose two tech-
niques to help EM escape local optima. The first technique extends EM’s one-step
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c© Springer-Verlag Berlin Heidelberg 2011



614 P. Poupart, T. Lang, and M. Toussaint

forward search to multiple steps. New nodes are added to the controller when the
forward search detects a suboptimal action choice. The second approach splits
controller nodes in two new nodes that are optimized by EM.

The paper is organized as follows. Sec. 2 reviews POMDPs, finite state con-
trollers and planning as inference. Sec. 3 analyzes the properties of EM’s local
optima. Sec. 4 describes the two techniques to escape local optima. Sec. 5 eval-
uates the escape techniques on benchmark problems. Finally, Sec. 6 concludes
the paper.

2 Background

2.1 Partially Observable Markov Decision Processes

Consider a partially observable Markov decision process (POMDP) described by
a set S of states s, a set A of actions a, a set O of observations o, a stochas-
tic transition function Pr(s′|s, a) = ps′|sa, a stochastic observation function
Pr(o′|s, a) = po′|sa and a reward function R(s, a) = rsa ∈ �. An important class
of policies (denoted by π) are those representable by a stochastic finite state con-
troller (FSC), which is a directed acyclic graph such that each node n chooses
an action a stochastically according to an action distribution π(a|n) = πa|n,
each edge is labeled with an observation o′ that chooses a successor node n′

stochastically according to a successor node distribution Pr(n′|n, o′) = πn′|no′

and the initial node is chosen stochastically according to Pr(n) = πn. The value
V (n, s) = Vns of a FSC is the discounted sum of the rewards earned while ex-
ecuting the policy it encodes. We can compute this value by solving a linear
system:

Vns =
∑

a

πa|nrsa + γ
∑

s′o′n′
ps′|sapo′|saπn′|no′Vn′s′ ∀ns

Hence, for a given initial state distribution (a.k.a. belief) Pr(s) = ps, the value
of the policy is

∑
sn psπnVns. Initial algorithms to optimize FSCs were based on

policy iteration [6], however the size of the controller tends to grow exponentially
with the number of iterations. Alternatively, since there are often good policies
that can be represented by small controllers, one can search for the best controller
with a fixed number of nodes. This search can be formulated as a non-convex
optimization problem [1]1:

max
πn,πa|n,πn′|no′ ,Vns

∑
sn

psπnVns

s.t. Vns =
∑

as′o′n′
πa|n[rsa + γps′|sapo′|saπn′|no′Vn′s′ ] ∀ns

1 The optimization problem described in [1] assumes a fixed initial node and merges
πa|n and πn′|no′ into a single distribution πan′|no′ , but these differences are irrelevant
for this paper.
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∑
a

πa|n = 1 ∀n, πa|n ≥ 0 ∀an∑
n′

πn′|no′ = 1 ∀no′, πn′|no′ ≥ 0 ∀n′no′

Algorithms to find an optimal policy include gradient ascent [11], sequential
quadratic programming [1], bounded policy iteration [14] and stochastic local
search [3]. However, the non-convex nature of the problem generally prevents
any of these algorithms from finding an optimal controller with certainty.

2.2 Planning as Inference

In another line of research, Toussaint et al. [19] proposed to reformulate policy
optimization as a likelihood maximization problem. The idea is to treat rewards
as random variables by normalizing them. Let R̄ be a binary variable such that

Pr(R̄=true|s, a) = pr̄true|sa = (rsa − min
sa

rsa)/(max
sa

rsa − min
sa

rsa))

Similarly, we treat the decision variables A and N as random variables with
conditional distributions corresponding to πa|n, πn and πn′|no′ . This gives rise to
a graphical model where the value of a policy can be recovered by estimating the
probability that each reward variable is true. However, rewards are discounted
and added together, so Toussaint et al. propose to use a mixture of dynamic
Bayesian networks (DBNs) where each DBN is t time steps long with a single
reward variable at the end and is weighted by a term proportional to γt. Hence,
the value of a policy is proportional to Pr(R̄=true) in this mixture of DBNs.
To optimize the policy, it suffices to search for the distributions πn, πn′|no′ and
πa|n that maximize Pr(R̄=true). This is essentially a maximum a posteriori
estimation problem that can be tackled with algorithms such as Expectation
Maximization (EM) [5]. More specifically, EM alternates between computing
the expectations

E(n|R̄=true, πi) = En|r̄trueπi

E(a, n|R̄=true, πi) = Ean|r̄trueπi

E(n′, o′, n|R̄=true, πi) = En′o′n|r̄trueπi

and updating the distributions

πi+1
n = En|r̄trueπi/

∑
n

En|r̄trueπi

πi+1
a|n = Ean|r̄trueπi/

∑
a

Ean|r̄trueπi

πi+1
n′|o′n = En′o′n|r̄trueπi/

∑
n′

En′o′n|r̄trueπi
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The expectations are obtained as follows

En|r̄trueπi =
∑

s

psπ
i
nβns (1)

Ean|r̄trueπi =
∑

ss′o′n′
αsnπi

a|n[pr̄true|sa + γps′|sapo′|s′aπi
n′|o′nβn′s′ ] (2)

En′o′n|r̄trueπi =
∑
ss′a

αsnπi
a|nps′|sapo′|s′aπi

n′|o′nβn′s′ (3)

where α = limt→∞ αt and β = limt→∞ βt are the forward and backward terms
obtained in the limit according to the following recursions2:

α0
sn = psπn

αt
s′n′ = bs′πn′ + γ

∑
asno′

αt−1
sn πa|nps′|sapo′|as′πn′|no′ ∀t > 0 (4)

β0
sn =

∑
a

πa|npr̄true|sa

βt
sn =

∑
as′n′o′

πa|n[pr̄true|sa + γps′|sapo′|as′πn′|no′βt−1
s′n′ ] ∀t > 0 (5)

An implication of the reformulation of policy optimization as an inference prob-
lem is that it opens the door to a variety of inference techniques and allows
continuous [7], hierarchical [18], reinforcement learning [21] and multi-agent [8]
variants to be tackled with the same machinery. Nevertheless, an important
problem remains: policy optimization is inherently non-convex and therefore the
DBN mixture reformulation does not get rid of local optima issues.

2.3 State Splitting

Siddiqi et al. [15] recently proposed an approach to discover the number of hidden
states in HMMs by state splitting. Since there is no restriction on the number
of hidden states, this approach can be viewed as a technique to escape local
optima. In Section 4.2, we adapt this approach to POMDP controllers where
internal nodes are split to escape local optima.

State splitting in HMMs works as follows. Run EM to learn the parameters of
an HMM and Viterbi to find the most likely state paths. Then, for each state s,
investigate the possibility of splitting s in two new states s1 and s2. Let Ts be the
set of time steps where s is the most likely state. Replace the parameters that
involve s by new parameters that involve s1 or s2. Optimize the new parameters
with respect to the time steps in Ts. In other words, clamp the states outside of
Ts to their most likely value and re-run EM to learn the parameters that involve
s1 and s2 while keeping all other parameters fixed. At each iteration, greedily
select the split that improves the model the most, then run full EM to converge
to a new local optimum.
2 In practice, α ≈ αt and β ≈ βt for large enough t depending on the discount γ.
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3 Local Optima Analysis

When EM gets trapped in a local optimum, a simple strategy to escape consists
of adding new nodes to the controller. However, unless the new nodes are care-
fully initialized, they will not help EM escape. For instance, as discussed in the
experiments, adding random nodes is ineffective. Hence, there is a need to un-
derstand the conditions under which EM gets trapped so that the new nodes can
be initialized to break those conditions. In this section, we show that EM stops
making progress when the parameters of the nodes are optimal with respect to
a one-step look ahead from a special set of beliefs. Based on this insight, in the
next section, we propose an escape technique that adds nodes to the controller
according to a multi-step lookahead.

Let’s have a closer look at the policy updates performed by EM. In Eq. 1, 2
and 3 the policy terms πi

n, πi
a|n and πi

n′|o′n can be factored out of the sum. This
means that EM performs a multiplicative update:

πi+1
n ∝ πi

nfn where fn =
∑

s

psβsn (6)

πi+1
a|n ∝ πi

a|ngan where gan =
∑

ss′o′n

αsn[pr̄true|sa + γps′|sapo′|s′aπi
n′|o′nβn′s′ ] (7)

πi+1
n′|o′n ∝ πi

n′|o′nhn′o′n where hn′o′n =
∑
ss′a

αsnπi
a|nps′|s,apo′|s′aβn′s′ (8)

The multiplicative nature of the updates tells us that EM converges to a policy
that chooses an initial node with maximal fn, actions with maximal gan, and
successor nodes n′ with maximal hn′o′n. This is formalized by the following
theorem.

Theorem 1. If a policy π is a stable fixed point of EM (i.e., the fixed point is
an attractor within an ε-hyperball), then

∀n if πn �= 0 then fn = max
n

fn (9)

∀an if πa|n �= 0 then gan = max
a

gan (10)

∀n′o′n if πn′|o′n �= 0 then gn′o′n = max
n′

gn′o′n (11)

Proof. Suppose that π is a stable fixed point of EM. From (7) it follows that
πa|n = cnπa|ngan with a normalization constant cn. For all non-zero πa|n �= 0,
all actions in n have the same g-value gan = 1/cn. It remains to show that 1/cn

is also the maximum gan, which we prove by contradiction. Let a∗ be an action
with πa∗|n = 0 at the fixed point, but ga∗n > 1/cn. Consider an infinitesimal
perturbation of the policy such that πa∗|n = ε. Independent of how small ε is,
the probability of a∗ will increase in the next iteration and πa∗|n will diverge
from 0. Therefore, this fixed point is instable. The same reasoning holds for πn

with fn and πn′|o′n with hn′o′n.
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Note that in practice, ensuring that parameters never become identically zero
(e.g., by adding the smallest amount of noise in this case) ensures that EM
always converges to such a stable fixed point.

The above theorem also gives a theoretical justification for the “smoothed
greedy” update heuristics often used in practice [18]. Since EM will converge to
a policy where πa|n = 0 for all a, n where gan < maxa gan, then it is reason-
able to update πa|n by moving it towards a greedy policy that assigns non-zero
probability only to the a, n pairs that are maximal in g (and similarly for πn

and πn′|no′). Note however that there is no guarantee that such greedy updates
will converge (they may lead to cycling), but they often speed up convergence
in practice.

Let’s interpret the conditions under which EM converges (i.e., conditions for-
malized in Theorem 1) since this will help us derive an escape technique in the
next section. First, we point out that the backward terms βsn in Eq. 5 can be
interpreted as the total expected discounted rewards that will be earned when
executing π from s, n. In other words, it is the value function Vsn of π at s, n.
Similarly, the forward terms αsn in Eq. 4 can be interpreted as the discounted
occupancy frequency of π. In other words, αsn indicates the expected number of
times (discounted by γt for t time steps) that state s is reached in node n when
executing π. We also define bs|n = αns/

∑
s αns to be the belief (e.g., state distri-

bution) with respect to node n proportional to αns. Since αn· is the discounted
sum of all reachable beliefs in node n, bs|n can be interpreted as a weighted
average of the reachable beliefs in node n. Based on this, we can show that fn

is the expected value of π when starting its execution in node n. Similarly, gan

is proportional to the Q-function for belief bs|n and hn′o′n is proportional to the
expected value of each successor node for the belief reachable from bs|n when
executing π and receiving observation o′. This becomes evident when we replace
αsn by bs|n and βsn by Vsn in Eq. 6, 7 and 8.

fn ∝
∑

s

psVns (12)

gan ∝
∑

s

bs|n[pr̄true|sn +
∑

s′o′n′
ps′|sapo′|s′aπn′|o′nVn′s′ ] (13)

hn′o′n ∝
∑
sao′

bs|nπa|nps′|sapo′|s′aVn′s′ (14)

In the limit, since EM chooses an initial node with maximal f value (as well as
actions with maximal g value and successor nodes with maximal h value), EM
implicitly maximizes the initial node value for a fixed policy (as well as the Q-
function for fixed successor node distributions and the successor nodes value for
fixed action distributions). In the following, let us discuss how EM’s convergence
conditions are related to Bellman’s global optimality conditions for controllers.
More specifically, a controller is (globally) optimal when it satisfies the following
condition for all beliefs b reachable in each node n:

Vnb = max
a

rba + γ
∑
o′

po′|bamaxn′Vn′bao′ (15)
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where Vnb =
∑

s bsVns, po′|ba =
∑

ss′ bsps′|sapo′|s′a,
rba =

∑
s bsrsa and bao′

s′ ∝∑
s bsps′|sapo′|s′a. The above equation can be rewrit-

ten in three optimality conditions for the choice of successor nodes, actions and
initial node:

nbao′
= argmax

n′

∑
ss′

bsps′|sapo′|s′aVn′s′ ∀bao′ (16)

an = argmax
a

∑
s

bs[rsa + γ
∑
s′o′

ps′|sapo′|s′aVnbao′ s′ ] ∀n (17)

n0 = argmax
n

∑
s

psVns (18)

Note the similarity between these equations and the definitions of f , g and h in
Eq. 12, 13 and 14. One important difference is that n0, an and nbao′

must be op-
timal for all beliefs b reachable in each node n to ensure global optimality, where
as EM only ensures that the initial node, action and successor node choices are
optimal for the single belief bs|n associated with each node n. Another important
difference is that n0, an and nbao′

must be optimized simultaneously to ensure
global optimality, where as EM adjusts the initial node, action and successor
node distributions separately while keeping the other distributions fixed.

Below, in Theorem 2, we show that the convergence conditions described by
Eq. 9, 10 and 11) are necessary, but not sufficient to ensure global optimality.
Note that EM is already known to converge to local optima and therefore there
must exist conditions that are necessary, but not sufficient. So the point of the
theorem is to show that the particular conditions described by Eq. 9, 10 and 11)
are indeed the ones for controller optimization. We encourage the reader to pay
special attention to the proof since it shows that optimizing the parameters of
the controller by a one-step lookahead from the beliefs bs|n associated with each
node is a sensible thing to do even when these beliefs are not reachable. In the
next section, we use this idea to develop a multi-step forward search from each
bs|n instead of the initial belief to reduce the complexity of the search.

Theorem 2. The conditions described by Eq. 9, 10 and 11 are necessary, but
not sufficient, to ensure global optimality of FSCs.

Proof. If bs|n is a reachable belief for each node n, then it is clear that the
conditions described by Eq. 9, 10 and 11 are a subset of the global optimality
conditions and therefore they are necessary, but not sufficient. However, the
beliefs bs|n associated with each node n are not always reachable (even though
they are weighted averages of the reachable beliefs). Nevertheless, we can still
show that the conditions are necessary for optimality by observing that the
beliefs bs|n are convex combinations of the reachable beliefs and therefore have
the same optimal action and successor nodes as the reachable beliefs. Suppose
that a controller is globally optimal, then πa|n and πn′|o′n must be optimal for all
reachable beliefs of node n. We also know that πa|n and πn′|o′n are optimal for
the convex hull of the reachable beliefs in node n since the optimal value function
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Algorithm 1. Forward Search

Function: forwardSearch
Inputs: α, β, π and timeLimit
Output: newN (set of new nodes)
Let bs|n ∝ αns for each n
d← 0
while time < timeLimit do

d← d + 1
for n ∈ N do

[newN , gain]←
recursiveSearch(bs|n, β, π, d)

if gain > 0 then
return;

end if
end for

end while

Function: recursiveSearch
Inputs: b, β, π and d (depth)
Output: newN (new nodes) and bestGain
bestGain← 0
newN ← ∅
if d = 1 then

Current value: v ← maxn

∑
s bsβsn

Compute v∗, nao′
, a∗ (Eq. 15-17)

if v∗ − v > 0 then
bestGain← v∗ − v
newN ← {n}

where πa∗|n = 1, πna∗o′ |o′n = 1
end if

else
for a ∈ A, o′ ∈ O do

[N , gain]←
recursiveSearch(bao′

, β, π, d− 1)
if gain > bestGain then

bestGain← gain
newN ← N ∪ {n}

where πa|n = 1, πlast(N )|no′ = 1
end if

end for
end if

is piece-wise linear and convex [17], which implies that the value function of node
n is optimal for a polytope of the belief space that includes all reachable beliefs
of node n. We can verify that bs|n is a convex combination of the reachable
beliefs at node n since it is the normalized version of αsn, which is a discounted
sum of reachable beliefs. Hence, whether the beliefs bs|n are reachable or not for
each n, Eq. 9, 10 and 11 hold for (globally) optimal controllers.

4 Escaping Local Optima

We describe two algorithms to escape local optima. The first approach does a
multi-step forward search to find nodes that can be added to the controller in
such a way that EM can resume its progress. The second approach searches for
a node to be split in two such that optimizing the parameters of the two new
nodes by EM yields the largest improvement.

4.1 Forward Search

Since global optimality is ensured when optimal action and successor node dis-
tributions are used for all reachable beliefs, we could perform a forward search
from the initial belief to add new nodes each time suboptimal actions or successor
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nodes are chosen for some reachable beliefs. However, such a search grows expo-
nentially with the planning horizon. In contrast, EM finds a controller where each
action and successor node distribution is optimal according to a forward search
of just one step starting from the belief bs|n associated with each n. We propose
a technique that gradually extends EM’s myopic search by searching increas-
ingly deeper from each bs|n. The optimality conditions become stronger with the
depth of the search and sufficient in the limit. An infinitely deep search verifies
that the controller is optimal for all reachable beliefs while cutting off the search
at a finite depth d ensures that the controller is at most (rmax − rmin)γd/(1−γ)
away from optimal.

Algorithm 1 describes an incremental forward search technique to escape local
optima. The approach verifies whether the action and successor node distribu-
tions are optimal with respect to the value function of the controller for all
beliefs reachable from some bs|n at increasing depth. When a non-optimal action
or successor node choice is detected, a new node is created with optimal action
and successor node distributions. We also create nodes for each belief traversed
on the path since their action and successor node distributions may change too.
These new nodes are added to the controller and the successor node distribu-
tions of the existing nodes are perturbed slightly to include an ε probability of
reaching the new nodes. This is necessary to allow the existing nodes to link to
the new nodes since zero probabilities are fixed points in EM.

Note that starting the multi-step search from each bs|n is fine even when bs|n
is not a reachable belief as described in the proof of Theorem 2. The benefit of
starting the search from each bs|n instead of the initial belief is that a shallower
search is often sufficient to find a suboptimal action choice or successor node.
Recall that each bs|n is a weighted combination of reachable beliefs that may
be arbitrarily deep, hence starting the search from those weighted combinations
may significantly reduce the time of the search.

4.2 Node Splitting

Alternatively, we can escape local optima by adapting the HMM state split-
ting approach to POMDP controllers as described in Algorithm 2. For each
node of the controller, consider the possibility of splitting that node in two
new nodes n1 and n2. To initialize the split, we replace the parameters that
involve the node nsplit being split by parameters that involve n1 or n2 in a way
that does not change likelihood. More precisely, the parameters πa|n1 , πn′|o′n1 ,
πa|n2 and πn′|o′n2 are set equal to πa|nsplit

and πn′|o′nsplit
respectively. As for

πn1 , πn2 , πn′
1|o′n and πn′

2|o′n, they are initialized randomly while ensuring that
πn1 + πn2 = πnsplit

and πn′
1|o′n + πn′

2|o′n = πn′
split|o′n. After this neutral ini-

tialization of the split, we optimize the parameters by running EM again. To
speed up computation, we initialize α and β with those of the unsplit controller.
This is similar to keeping the most likely states clamped outside of Ts since α
and β are the forward and backward terms that summarize the computation be-
fore and after a node split. The M-step adapts the new parameters based on the
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Algorithm 2. Node Splitting
Inputs: α, β, π, iters
Output: α, β, π (for split controller)
for nsplit ∈ N do

split nsplit into n1 and n2

initialize the splitted controller such that πa|n1 = πa|n2 = πa|nsplit
, πn′|o′n1 =

πn′|o′n2 = πn′|o′nsplit
, πn1 + πn2 = πnsplit and πn′

1|o′n + πn′
2|o′n = πn′

split
|o′n.

also split α and β such that αn1 + αn2 = αnsplit , βn1 = βn2 = βnsplit .
for i = 1 to iters do

propagate α and β following Eq. 4 and 5
perform M-step based on α and β

end for
gain(n) = value after M-step

end for
n∗ = argmaxn gain(n)
assign π, α, β to results of splitting n∗

expectations as usual. After retraining each potential split like this, we select
the split which brought the largest increase in likelihood.

4.3 Computational Complexity

We report the computational complexity of EM, node splitting and forward
search in Table 1. The complexity of EM is equal to the number of iterations I
times the complexity of computing the forward and backward terms in Eq. 4-5,
and the expectations in Eq. 1-3. The forward and backward terms are computed
recursively by executing tmax steps (equal to the planning horizon), where each
step can be performed efficiently by variable elimination with a complexity cor-
responding to the size of the largest factors. Similarly the complexity of the
expectations correspond to the largest factors obtained by variable elimination.

The node splitting technique (Alg. 2) evaluates each split by executing EM.
Since there are |N | possible nodes that can be split and the algorithm incre-
mentally grows the controller by splitting one node at a time until there are |N |
nodes, the complexity is |N |2 times that of EM. As a result, there is a quartic
dependency on the size of the controller and this is the dominating factor for
large controllers.

The forward search technique (Alg. 1) alternates between EM and adding new
nodes based on a recursive search up to some depth d. This search is exponential
in d with base |A||O|, however one can often reduce this complexity by branch-
and-bound or sub-sampling. Also, the search is performed by increasing the
depth gradually until a non-optimal setting of the parameters is found, at which
point the search is terminated. Since we perform a search from each of the
N nodes and the controller is grown incrementally up to N nodes, the overall
complexity of forward search is |N |2 times that of the recursive search plus |N |
times that of EM. In comparison to node splitting, forward search has a cubic
dependency on the size of the controller and therefore tends to scale better for
large controllers, but it also has an exponential dependency on the search depth.
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Table 1. Computational Complexity. Here I is the number of iterations in EM, tmax

is the length of the planning horizon, d is the depth of the forward search and Ō is the
computational complexity with respect to |N | and d only.

Forward-Backward step (FB) (Eq. 4 and 5):
O(tmax(|N ||S|2 + |N |2|S|)) = Ō(|N |2)
Expectation step (Exp) (Eq. 1-3):
O(|N ||A||S|2 + |N ||A||S||O| + |N |2|S||O|) = Ō(|N |2)
Expectation-Maximization (EM):
O(I(FB + Exp)) = Ō(|N |2)
Node splitting (Alg. 2):
O(|N |2EM) = Ō(|N |4)
Recursive search (RS) (Alg. 1):

O(|N |(|A||O|)d|S|2) = Ō(|N |(|A||O|)d)
Forward search (Alg. 1):

O(|N |2RS + |N |EM) = Ō(|N |3(|A||O|)d)

5 Experiments

We tested four different methods for escaping local optima. The first two are
alternatives that add nodes based on a forward search. The third one is the node
splitting heuristic. The fourth one is a baseline that uses random restarts for all
controller sizes instead of incrementally adding nodes. The detailed settings for
these methods are as follows:

– Forward Search: Starting from a randomly initialized FSC of |N | = |A|
nodes, EM is performed till convergence. Then a forward search of increasing
depth (up to a time limit) is performed from the belief bs|n associated with
each node according to Algorithm 1. As soon as a non-optimal action or
successor node distribution is discovered, the search is halted and new nodes
for each reachable belief on the current path are added to the controller.

– Forward Search From Init: This technique is the same as the previous one
except that the forward search is performed only from the initial belief ps

(instead of each bs|n. It serves as a baseline to show that forward search from
each bs|n is advantageous.

– Node Splitting: Starting from a randomly initialized FSC of |N | = |A| nodes,
we iterate the node splitting procedure of Algorithm 2 until the controller
reaches a desired size.

– Random Restarts: For each FSC size |N | ∈ {|A|, .., n} we randomly initialize
a FSC and train it with 500 EM iterations. Note that we also implemented a
technique that adds random nodes to escape local optima, but it performed
worse than random restarts, so we only report the performance of random
restarts as the baseline.

The left column of Figure 1 shows the performance of each method as the number
of nodes increases for 6 POMDP benchmarks. Each curve is the median of 21
runs from different initial random controllers with error bars corresponding to
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the 25% and 75% quantiles. For the incremental methods, the curves show how
the value increases as the number of nodes increases; for the random restarts the
results for different |N | are mutually independent.

The Cheese-Taxi (variant from [12]) and Heaven-and-Hell (variant from [3])
problems are known to have difficult local optima in the sense that the optimal
policies include a long sequence of actions such that any small deviation from
that sequence is bad. Hence, policy search techniques have trouble finding this
sequence by gradually refining a policy since that would involve trying nearby
sequences with low values. Only the forward search techniques found good poli-
cies because of their ability to modify sequences of actions in one step by adding
several nodes at once. Forward search from each bs|n finds good policies with
fewer nodes than a forward search from the initial belief because it doesn’t have
to search as deeply. The random restart and node splitting techniques did not
escape the trivial local optima. Since the node splitting technique only changes
one node per step, it cannot change multiple actions at once.

The optimal policy of the Chain-of-Chains problem [18] also includes a long
sequence of actions, however small deviations are not penalized (i.e., no negative
reward), but it will simply take longer for the agent to reach a high rewarding
state. As a result, all techniques eventually find the optimal policy, but the for-
ward search techniques find optimal controllers with much fewer nodes, followed
by node splitting and random restarts.

The Hallway [10], Hallway2 [10] and Machine [4] problems do not have optimal
policies with long sequences of actions that must not be deviated from, but they
can still be challenging for policy search techniques that do not explicitly try
to escape local optima such as random restarts. For these problems, splitting a
node or adding a node based on a short forward search tends to be sufficient to
escape local optima. The node splitting technique is generally better because of
its ability to evaluate more accurately alternative controllers. Alternative splits
are evaluated by re-running EM, which gives a more accurate value than forward
search, which adds a node to correct the policy at some reachable belief without
re-running EM.

The right column of Figure 1 shows the performance as time increases. De-
pending on the problem, different techniques among node splitting, forward
search and forward search from init may be best. As explained in Section 4.3,
forward search tends to scale better than node splitting as the size of the con-
troller increases due to a cubic dependency on the number of nodes (instead of
a quartic dependency for node splitting). This is evident for the hallway and
chain-of-chains problems. However, forward search may spend a lot of time in a
search due to the exponential complexity and it does not necessarily add the best
node since it corrects the first non-optimal parameter that it finds. We believe
this explains the better performance of node splitting for the machine problem.
In general, performing a forward search from each node is advantageous in com-
parison to a single search from the initial belief since a non-optimal parameter is
often found with a shallower search. This explains why forward search performed
better for heaven-hell, hallway, hallway2 and machine. However, when a single
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Fig. 1. Performance versus number of nodes (left column) and time (right column).
NB: The graphs are best viewed in color.
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Table 2. Comparison of the value (average/median over at least 10 runs) for con-
trollers/value functions of different sizes (e.g., # of nodes/α-vectors) indicated in paren-
theses. Here n.a. indicates that the results are not available and ? indicates that the
number of nodes is unknown.

Techniques cheeseT heavenH chainOC hallway2 hallway machine

upper bound 2.48 8.64 157.1 0.88 1.18 66.1
SARSOP (105 sec) 2.48(168) 8.64(1720) 157.1(10) 0.44(3295) 1.01(4056) 63.2(1262)

SARSOP -6.38(40) 0.45(55) 157.1(10) 0.11(50) 0.15(49) 35.7(42)
biased-BPI+escape 2.13(30) 3.50(30) 40.0(30) 0.41(40) 0.94(40) 63.0(30)
QCLP n.a. n.a. n.a. n.a. 0.72(8) 61.0(6)
BBSLS n.a. 7.65(?) n.a. n.a. 0.80(10) n.a.
Forward Search 2.47(19) 8.64(16) 157.1(11) 0.41(40) 0.92(40) 62.6(19)
Node Splitting -20.0(30) 0.00(30) 157.1(23) 0.43(40) 0.95(40) 63.0(16)

search from the initial belief does not go deeper than multiple searches from
each node, then a single search from the initial belief is faster, which explains
the better performance for chain-of-chains.

In Table 2, we compare the forward search and node splitting techniques to
a leading point-based value iteration technique (SARSOP [9]) and three policy
search techniques for finite state controllers (biased BPI with escape [13], non-
linear optimization (QCLP) [1] and stochastic local search (BBSLS) [3]). The
number of nodes was limited to 30 for cheese-taxi, heaven-hell and chain-of-
chains, and 40 for hallway2, hallway and machine. Since each node leads to one
α-vector in the value function representation, we report the number of alpha-
vectors that is closest to 30 and 40 for SARSOP.

Since the optimal policy is not known for several problems, we also report an
upper bound on the optimal value (computed by SARSOP) as well as the best
value found by SARSOP within 105 seconds when the number of α-vectors is not
bounded. The results for SARSOP and BPI were obtained by running the APPL
package and Poupart’s BPI code. The results for QCLP and BBSLS are taken
from [1] and [3]. When the number of nodes/α-vectors is limited, forward search
achieves the best results for cheese-taxi and heaven-hell, node-splitting achieves
the best results for hallway, hallway2 and machine, and SARSOP achieves the
best results for chain-of-chains. Overall, forward search obtains the most reli-
able results by producing controllers that are close to the bests for all prob-
lems. SARSOP does not perform well when the number of α-vectors is limited,
but can obtain slightly better results when the number of α-vectors is not lim-
ited. Note that SARSOP was specifically designed to use fewer α-vectors than
other point-based techniques including HSVI2 [16]. Compact controllers/value
functions become advantageous for embedded systems with limited memory and
processing power. Furthermore, action selection with controllers is instantaneous
since there is no computation, whereas a non-trivial search among all α-vectors
must be performed to execute policies derived from a set of α-vectors.
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6 Conclusion

The main contributions of this paper are a characterization of EM’s local optima
and the design of two techniques to help EM escape local optima. We showed
that EM essentially performs a one-step forward search that optimizes the policy
parameters in isolation. Based on this insight, we designed an escape technique
that adds new nodes to the controller when a suboptimal action or successor
node is detected according to a multi-step forward search that extends EM’s
implicit one-step search. We also designed a technique to split nodes in two
and optimize the new parameters by EM. The forward search technique is the
most reliable approach to effectively escape local optima for all 6 benchmark
problems, while the node splitting technique finds slightly better controllers for
the 3 benchmark problems that do not include a stringent sequence of actions
in their optimal policies.

Although there already exist escape techniques for finite state controllers,
none of them can be combined with EM (or planning as inference) since they
rely on specific information computed by the optimization approaches they were
designed for. Hence, assuming that planning as inference will become a leading
POMDP solution technique in the near future, this work resolves an important
issue by mitigating the effect of local optima and improving the reliability of EM.
Our next step is to extend our implementation to factored domains since this is
where planning as inference becomes really attractive. In particular, approximate
inference techniques such as loopy belief propagation and variational techniques
could be integrated within EM and our escape techniques to yield highly scalable
algorithms for factored POMDPs.

This work could be extended in several directions, including hierarchical con-
trollers [18], Mealy finite state machines [2] and multi-agent settings [8], which
all face local optima, but of different nature than those investigated in this paper.
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Abstract. Plan recognition is the task of predicting an agent’s top-level plans
based on its observed actions. It is an abductive reasoning task that involves in-
ferring cause from effect. Most existing approaches to plan recognition use ei-
ther first-order logic or probabilistic graphical models. While the former cannot
handle uncertainty, the latter cannot handle structured representations. In order
to overcome these limitations, we develop an approach to plan recognition using
Bayesian Logic Programs (BLPs), which combine first-order logic and Bayesian
networks. Since BLPs employ logical deduction to construct the networks, they
cannot be used effectively for plan recognition. Therefore, we extend BLPs to
use logical abduction to construct Bayesian networks and call the resulting model
Bayesian Abductive Logic Programs (BALPs). We learn the parameters in BALPs
using the Expectation Maximization algorithm adapted for BLPs. Finally, we
present an experimental evaluation of BALPs on three benchmark data sets and
compare its performance with the state-of-the-art for plan recognition.

1 Introduction

Plan recognition is the task of predicting an agent’s top-level plans based on its ob-
served actions. It is an abductive reasoning task that involves inferring cause from ef-
fect [8]. Traditionally, plan-recognition approaches have been based on first-order logic
in which a knowledge-base of plans and actions is developed for the domain and then
default reasoning [15] or logical abduction [24] is used to predict the best plan based on
the observed actions. However, these approaches are unable to handle uncertainty in the
observations or background knowledge and are incapable of estimating the likelihood
of different plans. An alternative approach to plan recognition is to use probabilistic
methods such as Abstract Hidden Markov Models [5] or statistical n-gram models [2].
While these approaches handle uncertainty, they cannot handle structured representa-
tions as they are essentially propositional in nature. As a result, it is also difficult to
incorporate planning domain knowledge in these approaches.

The main focus of this paper is to develop an approach to plan recognition that over-
comes the limitations described above. Recently, a number of formalisms that inte-
grate both first-order logic and probabilistic graphical models have been developed in
the area of statistical relational learning (SRL) [11]. Since these formalisms combine
the strengths of both approaches, they are well suited for solving problems like plan
recognition. We explore the application of one such formalism to plan recognition.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 629–644, 2011.
© Springer-Verlag Berlin Heidelberg 2011



630 S. Raghavan and R.J. Mooney

Of the various SRL formalisms that have been developed, Markov Logic Networks
(MLNs), [29], which combine first-order logic and undirected graphical models (Markov
nets) have been used for abductive plan recognition by Kate and Mooney [14]. Since
MLNs employ deduction for logical inference, they adapt MLNs for abduction by
adding reverse implications for every rule in the knowledge base. However, the addition
of these rules increases the size and complexity of the MLN, resulting in a computa-
tionally expensive model.

In this paper, we explore the application of Bayesian Logic Programs (BLPs) [16],
which combine first-order Horn logic and Bayesian networks to plan recognition. BLPs
use SLD resolution to generate proof trees, which are then used to construct a ground
Bayes net for a given query. However, deduction is unable to construct proofs for ab-
ductive problems such as plan recognition. Therefore, we extend BLPs to use logical
abduction to construct proofs. In logical abduction, missing facts are assumed when
necessary to complete proof trees, and we use the resulting abductive proof trees to
construct Bayes nets. We call the resulting model Bayesian Abductive Logic Programs
(BALPs). Like all SRL formalisms, BALPs combine the strengths of both first-order
logic and probabilistic graphical models, thereby overcoming the limitations of tradi-
tional plan recognition approaches mentioned above.

First, we present the necessary enhancements to BLPs to support abduction. Next,
we discuss how to learn the parameters in BALPs using the Expectation Maximization
algorithm adapted for BLPs [18]. Finally, we present an experimental evaluation of
BALPs on three benchmark data sets for plan-recognition and compare its performance
with the state-of-the-art.

2 Background

2.1 Logical Abduction

In a logical framework, abduction, is usually defined as follows [28]:

– Given: Background knowledge B and observations O, both represented as sets of
formulae in first-order logic, where B is typically restricted to a set of Horn clauses
and O to a conjunction of ground literals.

– Find: A hypothesis H , also a set of logical formulae, such that B ∪ H �|= ⊥ and
B ∪ H |= O.

Here |= stands for logical entailment and ⊥ for false, i.e. find a set of assumptions
that is consistent with the background theory and explains the observations. There are
generally many hypotheses H that explain a particular set of observations O. Following
Occam’s Razor, the best hypothesis is typically selected based on minimizing |H |.

2.2 Bayesian Logic Programs

Bayesian logic programs (BLPs) [16] can be viewed as templates for constructing di-
rected graphical models (Bayes nets). Given a knowledge base as a special kind of logic
program, standard logical deduction (SLD resolution) is used to automatically construct
a Bayes net for a given problem. More specifically, given a set of facts and a query, all
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possible Horn-clause proofs of the query are constructed and used to build a Bayes net
for answering the query. Standard probabilistic inference techniques are then used to
compute the most probable answer.

More formally, a BLP consists of a set of Bayesian clauses, definite clauses of the
form A|A1, A2, A3, .....An, where n ≥ 0 and A, A1, A2, A3,......,An are Bayesian
predicates (defined below). A is called the head of the clause (head(c)) and (A1, A2,
A3,....,An) is the body (body(c)). When n = 0, a Bayesian clause is a fact. Each
Bayesian clause c is assumed to be universally quantified and range restricted, i.e
variables{head} ⊆ variables{body}, and has an associated conditional probability
distribution: cpd(c) = P (head(c)|body(c)).

A Bayesian predicate is a predicate with a finite domain, and each ground atom for a
Bayesian predicate represents a random variable. Associated with each Bayesian pred-
icate is a combining rule such as noisy-or or noisy-and that maps a finite set of cpds
into a single cpd [26]. Let A be a Bayesian predicate defined by two Bayesian clauses,
A|A1, A2, A3, .....An and A|B1, B2, B3, .....Bn, where cpd1 and cpd2 are their cpd’s.
Let θ be a substitution that satisfies both clauses. Then, in the constructed Bayes net,
directed edges are added from the nodes for each Aiθ and Biθ to the node for Aθ.
The combining rule for A is used to construct a single cpd for Aθ from cpd1 and cpd2.
The probability of a joint assignment of truth values to the final set of ground proposi-
tions is then defined in the standard way for a Bayes net: P(X) =

∏
i P (Xi|Pa(Xi)),

where X = X1, X2, ..., Xn represents the set of random variables in the network and
Pa(Xi) represents the parents of Xi. The cpds for Bayesian clauses can be learned
using the methods described by Kersting and De Raedt [18]. Once a ground network
is constructed, standard probabilistic inference methods can be used to answer various
types of queries [20].

3 Bayesian Abductive Logic Programs

Bayesian Abductive Logic Programs (BALPs) are an extension of BLPs. In plan recog-
nition, the known facts are insufficient to support the derivation of deductive proof trees
for the requisite queries. By using abduction, missing literals can be assumed in order
to complete the proof trees needed to determine the structure of the ground network. We
first describe the abductive inference procedure used in BALPs. Next we describe how
probabilistic parameters are specified and how probabilistic inference is performed. Fi-
nally, we discuss how parameters can be automatically learned from data.

3.1 Logical Abduction

Let O1, O2, ...., On be the set of observations. We derive a set of most-specific abductive
proof trees for these observations using the method originally proposed by Stickel [32].
The abductive proofs for each observation literal are computed by backchaining on each
Oi until every literal in the proof is proven or assumed. A literal is said to be proven if
it unifies with some fact or the head of some rule in the knowledge base, otherwise it is
said to be assumed. Since multiple plans/actions could generate the same observation,
an observation literal could unify with the head of multiple rules in the knowledge base.
For such a literal, we compute alternative abductive proofs. The resulting abductive
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Algorithm 1. AbductionBALP
Inputs: Background knowledge KB and observations O1, O2, O3, ...., On both repre-

sented as sets of formulae in first-order logic, where KB is typically restricted to a
set of Horn clauses and each Oi is a ground literal.

Output: Abductive proofs for all Oi.
1: Let Q be a queue of unproven atoms, initialized with Oi

2: while Q not empty do
3: Ai ← Remove atom from Q
4: for each rule Ri in KB do
5: consequent ← Head literal of Ri

6: if Ai unifies with consequent then
7: Si ← unify Ai and consequent and return substitution
8: Replace variables in the body of Ri with bindings in Si. Each literal in the

body of Ri is a new subgoal.
9: for each literali in body of Ri do

10: if literali unifies with head of some rule Rj in KB then
11: add literali to Q
12: else if literali unifies with an existing fact then
13: Unify and consider the literal to be proved
14: else
15: if literali unifies with an existing assumption then
16: Unify and use the assumption
17: else
18: Assume literali by replacing any unbound variables that are exis-

tentially quantified in literali with new Skolem constants.
19: end if
20: end if
21: end for
22: end if
23: end for
24: end while

proof trees are then used to build the structure of the Bayes net using the standard
approach for BLPs.

The basic algorithm to construct abductive proofs is given in Algorithm 1. The al-
gorithm takes as input a knowledge base (KB) in the form of Horn clauses and a set
of observations as ground facts. It outputs a set of abductive proof trees by performing
logical abduction on the observations. These proof trees are then used to construct the
Bayesian network. For each observation Oi, AbductionBALP searches for rules whose
consequents unify with Oi. For each such rule, it computes the substitution from the
unification process and substitutes variables in the body of the rule with bindings from
the substitution. The literals in the body now become new subgoals in the inference
process. If these new subgoals cannot be proved, i.e if they cannot unify with existing
facts or with the consequent of any rule in the KB, then they are assumed. In order
to minimize the number of assumptions, the assumed literals are first matched with
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(a) Partial Knowledge Base:
# Shopping
1. inst(?g,going) | inst(?b,shopping), go-step(?b,?g).
2. inst(?sp,shopping-place) | inst(?s,shopping), store(?s,?sp).
# Robbing
3. inst(?p,going) | inst(?r,robbing), go-step(?r,?p).

(b) Observations:
inst(go1,going)
inst(store1,shopping-place)

(c) Ground Abductive Clauses:
inst(go1,going) | inst(a1,shopping), go-step(a1,go1).
inst(go1,going) | inst(a1,robbing), go-step(a1,go1).
inst(store1,shopping-place) | inst(a1,shopping), store(a1,store1).

Fig. 1. (a) A partial knowledge base from the Story Understanding data set. All variables start
with “?”. (b) The logical representation of the observations. (c) The set of ground rules obtained
from logical abduction.

existing assumptions. If no such assumption exists, then any unbound variables in the
literal that are existentially quantified are replaced by Skolem constants.

In SLD resolution, which is used in BLPs, if any subgoal literal cannot be proven, the
proof fails. However, in BALPs, we assume such literals and allow proofs to proceed
till completion. Note that there could be multiple existing assumptions that could unify
with subgoals in Step 15. However, if we used all ground assumptions that could unify
with a literal, then the size of the ground network would grow exponentially, making
probabilistic inference intractable. In order to limit the size of the ground network, we
unify subgoals with assumptions in a greedy manner, i.e when multiple assumptions
match with a subgoal, we just randomly pick one of them and do not pursue the others.
We found that this approach worked well for plan-recognition. For other tasks, domain-
specific heuristics could potentially be used to reduce the size of the network.

We now illustrate the abductive inference process with a simple example from the
Story-Understanding benchmark data set described in Section 4.1. Consider the partial
knowledge base and set of observations given in Figure 1a and Figure 1b respectively.
There are two top-level plans, shopping and robbing, in the knowledge base. Note that
the action literal “inst(?g, going)” could be observed as part of both shopping and rob-
bing. For each observation literal in Figure 1b, we recursively backchain to generate
abductive proof trees. When we backchain on the literal inst(go1,going) using Rule 1,
we obtain the subgoals inst(?b,shopping) and go-step(?b,go1). These subgoals become
assumptions since no observations or heads of clauses unify with them. Since ?b is an
existentially quantified variable, we replace it with a Skolem constant a1 to obtain the
ground assumptions inst(a1,shopping) and go-step(a1,go1). We then backchain on lit-
eral inst(go1,going) using Rule 3 to get subgoals inst(?r,robbing) and go-step(?r,go1).
We cannot unify inst(?r, robbing) with any observation or existing assumptions; how-
ever, we can unify go-step(?r,go1) with an existing assumption go-step(a1,go1), thereby
binding ?r to a1. In order to minimize the number of assumptions, we first try to match
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Fig. 2. Bayesian network constructed for example in Figure 1. The nodes with thick borders
represent observed actions, the nodes with dotted borders represent intermediate nodes used to
combine the conjuncts in the body of a clause, and the nodes with thin borders represent plan
literals.

literals with unbound variables to existing assumptions, rather than instantiating them
with new Skolem constants. Finally, we backchain on the literal inst(store1,shopping-
place) using Rule 2 to get subgoals inst(?s,shopping), store(?s,store1). Here again, we
match inst(?s, shopping) to an existing assumption inst(a1,shopping), thereby binding
?s to a1.

Figure 1c gives the final set of ground rules generated by abductive inference. Af-
ter generating all abductive proofs for all observation literals, we construct a Bayesian
network. Figure 2 shows the Bayesian network constructed for the example in Fig-
ure 1. Note that since there are no observations/facts that unify with the subgoals
(inst(?b,shopping), go-step(?b,?g), inst(?r,robbing), go-step(?r,?p), and store(?s,?sp)
) generated during backchaining on observations, SLD resolution will fail to generate
proofs. This is typical in plan recognition, and as a result, we cannot use BLPs for such
tasks.

The only difference between BALPs and BLPs lies in the logical inference procedure
used to construct proofs. Once the abductive proofs are generated, BALPs use the same
procedure as BLPs to construct the Bayesian network. We further show in Section 3.3
and Section 4.3 that techniques developed for BLPs for learning parameters can also be
used for BALPs.

3.2 Probabilistic Parameters and Inference

We now discuss how parameters are specified in BALPs. We use noisy/logical-and and
noisy-or models to specify the cpds in the ground Bayesian network as these models



Abductive Plan Recognition by Extending Bayesian Logic Programs 635

compactly encode the cpd with fewer parameters, i.e. just one parameter for each parent
node. Depending on the domain, we use either a strict logical-and or a softer noisy-and
model to specify the cpd for combining evidence from the conjuncts in the body of
a clause. We use a noisy-or model to specify the cpd for combining the disjunctive
contributions from different ground clauses with the same head. Figure 2 shows the
noisy-and and noisy-or nodes in the Bayesian network constructed for the example in
Figure 1.

Given the constructed Bayesian network and a set of observations, we determine the
best explanation using standard methods for computing the Most Probable Explanation
(MPE) [26], which determines the joint assignment of values to the unobserved nodes
in the network which has the maximum posterior probability given the observations.
To compute multiple alternative explanations, we use the k-MPE algorithm [25] as im-
plemented in Elvira [10]. For other types of exact probabilistic inference (marginal and
joint) we use Netica,1 a commercial Bayes-net software package.

When the complexity of the ground network makes exact inference intractable (as
in the Monroe dataset described in Sect. 4), we have to resort to approximate infer-
ence. Due to the (noisy/logical) and and or nodes in the network, there are a number
of deterministic constraints, i.e. 0 values in the cpds. As a result, generic importance
sampling algorithms like likelihood weighting used in Elvira failed to generate suffi-
cient samples. Hence, we used SampleSearch [12], an approximate sampling algorithm
specifically designed for graphical models with multiple deterministic constraints.

3.3 Parameter Learning

Learning can be used to automatically set the noisy-or and noisy-and parameters in
the model. We learn these parameters using the EM algorithm adapted for BLPs by
Kersting and De Raedt [18]. In supervised training data for plan recognition, one typ-
ically has evidence for the observed actions and the top-level plans. However, we usu-
ally do not have evidence for network nodes corresponding to subgoals, noisy-ors, and
noisy/logical-ands. As a result, there are a number of variables in the ground networks
which are always hidden, and hence EM is appropriate for learning the requisite pa-
rameters from the partially observed training data. We simplify the problem by learning
only the noisy-or parameters and using a deterministic logical-and model to combine
evidence from the conjuncts in the body of a clause. We use uniform priors for top-level
plans unless otherwise mentioned.

4 Experimental Evaluation

Unfortunately, there are very few benchmark datasets or rigorous experimental evalua-
tions of plan recognition. In this section, we evaluate BALPs on three plan-recognition
datasets that are available. First, we describe experiments to determine if BALPs are
more effective for plan recognition than previous approaches. Then, we describe
additional experiments evaluating the automatic learning of BALP parameters.

1 http://www.norsys.com/

http://www.norsys.com/
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4.1 Datasets

Monroe / Reformulated Monroe. The Monroe dataset is an artificially-generated
plan-recognition dataset in the emergency response domain by Blaylock and Allen [1].
This domain includes top level plans such as setting up a temporary shelter, clearing
a road wreck, and providing medical attention to victims. The task is to infer a single
top level plan from a set of observed actions automatically generated by a planner. The
planner used is SHOP2 [22] and the domain knowledge is represented as a hierarchical
transition network (HTN). We constructed a logical knowledge base representing the
domain knowledge encoded in the HTN. We used 1,000 artificially generated examples
in our experiments. Each example instantiates one of the 10 top-level plans and contains
an average of 10.19 literals describing a sample execution of this plan.

Due to computational complexity, we were unable to compare the performance of
BALPs with Kate and Mooney’s [14] MLN approach on this domain. Their approach
resulted in an MLN with rules containing multiple existentially quantified variables
which produced an exponential number of possible groundings, eventually leading to
memory overflow. In order to compare BALPs with this MLN approach, we slightly
modified the Monroe domain to eliminate this problem without significantly changing
the underlying task. The resulting dataset also had 1,000 examples, with an average of
9.7 observations per example. We refer to this dataset as “Reformulated-Monroe.”

Linux. The Linux dataset is another plan-recognition dataset created by Blaylock and
Allen [3]. Human users were asked to perform various tasks in Linux and their com-
mands were recorded. The task is to predict the correct top level plan from the sequence
of executed commands. For example, one of the tasks involves finding all files with a
given extension. The dataset consists of 19 top level plans and 457 examples, with an
average of 6.1 command literals per example. We constructed the background knowl-
edge base for the Linux dataset based on our knowledge of the commands.

Story Understanding. We also used a dataset2 that was previously used to evaluate ab-
ductive story understanding systems [24,6]. In this task, characters’ higher-level plans
must be inferred from their actions described in a narrative text. A logical representa-
tion of the literal meaning of the text is given for each example. A sample story is: “Bill
went to the liquor-store. He pointed a gun at the owner.” The plans in this dataset include
shopping, robbing, restaurant dining, traveling in a vehicle (bus, taxi or plane), party-
ing and jogging. Most narratives involve more than a single plan. This small dataset
consists of 25 development examples and 25 test examples each containing an average
of 12.6 literals. We used the background knowledge that was initially constructed for
the ACCEL system [24]. Figure 1a and Figure 1b give a partial knowledge base and a
partial set of observations from this data set.

Each of these data sets evaluates a distinct aspect of plan recognition systems. Since
the Monroe domain is quite large with numerous subgoals and entities, it tests the ability
of a plan-recognition system to scale to large domains. On the other hand, the Linux
data set is not that large, but since the data comes from real human users, it is quite
noisy. There are several sources of noise including cases in which users claim they have

2 http://www.cs.utexas.edu/˜ml/accel.html

http://www.cs.utexas.edu/~ml/accel.html
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successfully executed a top-level plan when actually they have not [2]. Therefore, this
data set tests the robustness of a plan-recognition system to noisy input. Monroe and
Linux involve predicting a single top-level plan; however, in the Story Understanding
domain, most examples have multiple top-level plans. Therefore, this data set tests the
ability of a plan-recognition system to identify multiple top-level plans.

4.2 Comparison with Other Approaches

We now present comparisons to three previous approaches to plan-recognition across
the different benchmark datasets.

Monroe and Linux. We first compared BALPs with Blaylock and Allen’s [2] plan-
recognition system on both the Monroe and Linux datasets. Their approach learns sta-
tistical n-gram models to separately predict plan schemas (i.e. predicates) and their
arguments.

We learned the noisy-or parameters for BALPs using the EM algorithm described
in Sect. 3.3. We initially set all noisy-or parameters to 0.9, which gave reasonable per-
formance in both domains. We picked a default value of 0.9 for noisy-or parameters
based on the intuition that if a parent node is true, then the child node is true with a
probability 0.9. We then ran EM with two starting points – random weights and manual
weights (0.9). We found that EM initialized with manual weights generally performed
the best for both domains, and hence we used this approach for our comparisons. Even
though EM is sensitive to starting point, it outperformed other approaches even when
initialized with random weights (see Sect. 4.3). Initial experiments found no advantage
to using noisy-and instead of logical-and in these domains, so we did not experiment
with learning noisy-and parameters.

For Linux, we performed 10-fold cross validation for evaluation and we ran EM until
convergence on the training set for each fold. For Monroe, where more data is available,
we used 300 examples for training, 200 examples for validation, and the remaining 500
examples for testing. Note that for Monroe, Blaylock and Allen used 4,500 examples
for learning parameters. Using 4500 examples for learning BALP parameters results in
large training times, and hence we limited to using 300 examples. We ran EM iterations
on the training set until the accuracy on the validation set stopped improving. We then
used the final learned set of weights to perform plan-recognition on the test set.

For both Monroe and Linux, the plan-recognition task involves inferring a single top
level plan that best explains the observations. Hence, we computed the marginal proba-
bilities for all ground instantiations of the plan predicates in the network and picked the
single plan instantiation with the highest marginal probability.

Due to differences in Blaylock and Allen’s experimental methodology and ours, we
are only able to directly compare performance using their convergence score [2], the
fraction of examples for which the correct plan predicate is inferred (ignoring the argu-
ments) when given all of the observations.

Table 1 shows the results. BALPs outperform Blaylock and Allen’s system on the
convergence score in both domains and the difference in the performances was
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Table 1. Convergence scores for BALPs and Blaylock and Allen’s system for Monroe and Linux.
‘*’ indicates that the difference is statistically significant.

BALPs Blaylock and Allen
Monroe 98.4 94.2*
Linux 46.6 36.1*

statistically significant (p < .05) as determined by unpaired t-test 3. We treated the
convergence score as the mean of a Bernoulli variable (schema prediction event) and
computed variance accordingly, and then used the mean, variance, and sample size to
perform an unpaired t-test. The convergence score for Blaylock and Allen’s system on
Monroe is already quite high, leaving little room for improvement. However, BALPs
was still able to improve over this score by 4.5%. On the other hand, the baseline con-
vergence score for Linux was fairly low, and BALPs were able to improve the results by
a remarkable 29.1%. Despite this improvement, the overall convergence score for Linux
is not that high. Noise in the data is one reason for the modest score. Another issue with
this data set is the presence of very similar plans, like find-file-by-ext and find-file-by-
name. The commands executed by users in these two plans are nearly identical, making
it difficult for a plan recognition system to distinguish them [3].

Reformulated-Monroe. We also compared the performance of BALPs with Kate and
Mooney’s [14] MLN approach on the Reformulated-Monroe dataset. For MLNs, we
were unable to effectively learn clause weights on this dataset since it was intractable to
run Alchemy’s existing weight-learners due to the sizes of the MLN and data. Hence,
we manually set the weights using the heuristics described by Kate and Mooney [14].
To ensure a fair comparison, we also used manual instead of learned weights for BALPs.
We uniformly set all noisy-or parameters to 0.9 and used logical-and to combine evi-
dence from conjuncts in the body of a clause, since this gave good performance on the
original Monroe data.

We used two different metrics to compare the performance of the two approaches –
convergence score and accuracy. We compared the inferred plan with the correct plan
to compute the accuracy score. When computing accuracy, partial credit was given for
predicting the correct plan predicate with only a subset of its correct arguments. A point
was rewarded for inferring the correct plan predicate, then, given the correct predicate,
an additional point was rewarded for each correct argument. For example, if the cor-
rect plan was plan1(a1, a2) and the inferred plan was plan1(a1, a3), the accuracy was
66.67%.

The observation set for this domain includes all actions executed to implement the
top level plan. In order to evaluate performance for partially observed plans, we per-
formed plan recognition given only subsets of the complete action sequence. Specif-
ically, we report results after observing the first 25%, 50%, 75%, and 100% of the
executed actions. Table 2 shows the results. “Accuracy-n” is the accuracy when given
the first n% of the observations. BALPs consistently outperform the MLN approach on

3 We did not have access to scores for individual examples for Blaylock and Allen’s system,
hence we performed an unpaired t-test.
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Table 2. Comparative results for Reformulated-Monroe, “*” indicates that the difference is
statistically significant

Convergence Score Accuracy-100 Accuracy-75 Accuracy-50 Accuracy-25
BALP 99.90 97.40 66.80 32.67 9.83
MLN 79.66* 79.20* 40.51* 19.26* 4.10*

this data set and all differences are statistically significant (p < .05) as determined by
the Wilcoxon Sign Rank (WSR) test [30]. The convergence score for BALPs demon-
strates a large (25.41%) improvement over MLNs. Finally, we would like to note that
the computational complexity of the MLN approach prevented us from running it on
the Linux dataset.

Story Understanding. On Story Understanding, we compared the performance of
BALPs with the MLN approach of Kate and Mooney [14] and ACCEL [24], a logical-
abduction system that uses a metric to guide its search for selecting the best explanation.
ACCEL can use two different metrics: simplicity, which selects the explanation with
the fewest assumptions and coherence, which selects the explanation that maximally
connects the input observations. This second metric is specifically geared towards text
interpretation by measuring explanatory coherence [23]. Currently, this bias has not
been incorporated in either the BALP or MLN approach.

For BALPs, we were unable to learn useful parameters from just 25 development ex-
amples. As a result, we set parameters manually in an attempt to maximize performance
on the development set. As before, a uniform value of 0.9 for all noisy-or parameters
seemed to work well for this domain. Unlike other domains, using logical-and to com-
bine evidence from conjuncts in the body of a clause did not yield high-quality results.
Using noisy-and significantly improved the results; so we used noisy-ands with uniform
parameters of 0.9. Here again, the intuition was that if parent node was false or turned
off, then the child node would also be false or turned off with a probability 0.9. To
disambiguate between conflicting plans, we set different priors for high level plans to
maximize performance on the development data. For the MLN approach, we used Kate
and Mooney’s [14] system with their manually-tuned weights for this dataset.

Since multiple plans are possible in this domain, we computed the most probable
explanation (MPE) to infer the best set of plans. We compared the inferred plans with
the ground truth to compute precision, recall, and F-measure (the harmonic mean of
precision and recall). As before, partial credit was given for predicting the correct plan
predicate with some incorrect arguments. The observed literals in this data are already
incomplete and do not include all of the actions needed to execute a plan, so they were
used as is.

Table 3 shows the results. BALPs performed better than both ACCEL-Simplicity and
MLNs. With respect to F-measure, BALPs improved over MLNs by 15.57% and over
ACCEL-Simplicity by 33.65%. However, ACCEL-Coherence still performed the best.
Since the coherence metric incorporates extra criteria specific to story understanding,
this bias would need to be included in the probabilistic models to make them more
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Table 3. Comparative results for Story Understanding, “*” indicates that the difference wrt
BALPs is statistically significant

BALP MLN ACCEL-Simplicity ACCEL-Coherence
Precision 72.07 67.31 66.45 89.39*

Recall 85.57 68.10* 52.32* 89.39
F-measure 78.24 67.70* 58.54* 89.39*

competitive. However, the coherence metric is specific to narrative interpretation and
not applicable to plan recognition in general.

Overall, BALPs outperformed most existing approaches on the existing benchmark
data sets, thus demonstrating that BALPs are a very effective approach to plan recogni-
tion.

4.3 Parameter Learning Experiments

We now describe additional experiments that were designed to determine if EM can
effectively learn BALP parameters in different plan-recognition domains.

Learning Methodology. We used EM as described in Sect. 3.3 to learn noisy-or pa-
rameters for the Linux and Monroe domains.4 We initially set all noisy-or parameters to
0.9. This gives reasonable performance in both domains, so we compare BALPs with
learned noisy-or parameters to this default model which we call “Manual-Weights”
(MW). For training, we ran EM with two sets of starting parameters – manual weights
(0.9) and random values. We call the former “MW-Start” and the latter “Rand-Start”.
We used the same training and test splits as described in Section 4.2 for both Linux and
Monroe. To measure performance, we computed the convergence score and accuracy
scores for various levels of observability as described above.

Learning Results. Table 4 shows the results for different models on Linux. MW-
Start consistently outperforms MW, demonstrating that parameter learning improves
the performance of default BALP parameters on the Linux domain. Rand-Start does
marginally better than MW for all but the 50% and 25% levels of partial observability.
However, it does not perform as well as MW-Start, showing that learning from scratch
is somewhat better than using default parameters but not as effective as starting learning
from reasonable default values.

Table 5 shows the results for different models on Monroe. The performance of MW
is already so high that there is little room for improvement, at least for the conver-
gence score. As a result, the MW-Start model could not improve substantially over the
MW model. The manual parameters seem to be at a (local) optimum, preventing EM
from making further improvements on this data. Rand-Start is performing about as well,
sometimes a bit better and sometimes a bit worse than MW, demonstrating that starting

4 We were unable to learn useful parameters for Story Understanding since the mere 25 devel-
opment examples were insufficient for training.
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Table 4. Results for parameter learning on Linux, “*” indicates that the difference wrt the MW
model is statistically significant

Convergence Score Accuracy-100 Accuracy-75 Accuracy-50 Accuracy-25
MW 39.82 30.41 28.22 21.84 18.34

MW-Start 46.6* 36.32* 34.06* 25.45* 19.83*
Rand-Start 41.57 31.4 29.1 20.53 14.55*

Table 5. Results for parameter learning on Monroe, “*” indicates that the difference wrt the MW
model is statistically significant

Convergence Score Accuracy-100 Accuracy-75 Accuracy-50 Accuracy-25
MW 98.4 79.16 46.06 20.67 7.2

MW-Start 98.4 79.16 44.63* 20.26 7.33
Rand-Start 98.4 79.86* 44.73* 19.7* 10.46*

from random values the system can learn weights that are about as effective as manual
weights for this domain. One reason for the high performance of the MW model on
Monroe is the lack of ambiguity in the observations, i.e. there are few observed actions
that are part of more than one possible plan. Overall, EM was able to automatically
learn effective parameters for BALPs.

5 Discussion

We now discuss various aspects of BALPs that may explain their superior performance.
As mentioned earlier, Kate and Mooney’s MLN approach [14] cannot be applied to
large domains like Monroe since the addition of reverse implications results in a com-
putationally expensive model. As opposed to the explosive grounding of rules in MLNs,
BALPs use logical abduction in which only those rules that are relevant to the query
are included in the ground network. This results in much smaller networks, enabling
BALPs to scale well to large domains. Furthermore, the use of logical abduction allows
BALPs to use an existing knowledge base that was created for planning without any
modification.

When Blaylock and Allen [2] perform instantiated plan recognition, it is done in a
pipeline of two separate steps. The first step predicts the plan schema and the second
step predicts the arguments given the schema. Unlike their approach, BALPs are able to
jointly predict both the plan and its arguments simultaneously. We believe that BALP’s
ability to perform joint prediction is at least partly responsible for its superior perfor-
mance. Both BALP and MLN systems use planning knowledge specified in the form
of logical clauses, while Blaylock and Allen’s system has no access to domain knowl-
edge. We believe that the ability of BALPs to incorporate domain knowledge is also
partly responsible for its superior performance.

Blaylock and Allen’s system [2] uses 4500 examples to learn reasonable parame-
ters for the Monroe domain. The MLN system by Kate and Mooney is unable to scale
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effectively to this domain. On the other hand, BALPs learn effective parameters for this
domain from only 300 examples, demonstrating that EM can effectively learn parame-
ters given a reasonable number of examples. Except for the Story Understanding data
set, the EM algorithm used in BALPs could learn parameters automatically from data.
The inability of EM to learn effective parameters for this data set can be attributed to the
lack of a sufficient number of examples. Note that Kate and Mooney’s MLN approach
was also unable to learn reasonable weights for Story Understanding. Also note that it is
possible to learn parameters for Reformulated-Monroe using EM, but we deliberately
avoided using learning to ensure a fair comparison with MLNs. Overall, the success
of EM in the original Monroe and Linux domains demonstrates that our approach can
automatically learn accurate parameters from data.

Overall the results demonstrates that our approach to plan recognition using BALPs
is very effective, generally outperforming existing approaches on the three extant bench-
mark data sets. As mentioned earlier, each data set tests a specific aspect of the system,
and BALP’s superior performance on these data sets demonstrate that it is a robust
approach to plan recognition.

6 Related Work

Charniak and Goldman [7,6] developed an approach to automatically construct Bayesian
networks for plan recognition. Their work is similar to BALPs, but special purpose
procedures were used to construct the necessary ground networks rather than using a
general-purpose probabilistic predicate logic like MLNs, BLPs, or BALPs. Bui [5] has
developed an approach for plan recognition based on Abstract Hidden Markov Models,
but this approach cannot handle relational data. Several other systems for plan recogni-
tion [24,14,2] were already discussed in Section 4.2.

Poole [27] has developed a framework for Horn clause abduction and shows it re-
lations to Bayesian networks, Chen et. al [9] extend Stochastic Logic Programs [21]
to incorporate abduction, and Sato [31] has also developed a probabilistic logic called
PRISM that performs abduction. Kimmig et. al [19] have developed a method to con-
struct probabilistic explanations using ProbLog. However, none of these approaches
have been evaluated on the task of plan recognition. Kersting and De Raedt [17] discuss
the differences between BLPs and many of these formalisms; and BALPs inherit these
same differences.

7 Future Work

The current comparison to MLNs uses the method of Kate and Mooney [14] with-
out automatic learning of weights. In the future, we would like to explore more efficient
online-weight learning [13] with MLNs and compare their performance to BALPs. Fur-
thermore, Kate and Mooney’s approach to incorporating logical abduction in MLNs can
be improved (c.f. [4]), so comparing to enhanced MLN approaches is another area of
future work. We would also like to explore approaches based on lifted inference, which
allow to perform probabilistic inference without having to construct ground networks in
the future. As mentioned in Section 6, there are several probabilistic logics like Poole’s
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Horn Abduction, PRISM, and abductive SLPs that can perform abductive reasoning. It
would be interesting to apply these frameworks to plan recognition and compare their
performance with that of BALPs. In this paper, the background knowledge base was
hand-coded; however, we would like to explore techniques that learn abductive knowl-
edge bases automatically from training data.

8 Conclusions

This paper has introduced an approach to plan recognition based on Bayesian Logic
Programs (BLPs). We extended BLPs for plan recognition by employing logical ab-
duction to construct Bayesian networks as opposed to the deductive approach currently
used in BLPs. We also demonstrated that the model’s parameters can be effectively
learned using EM. Empirical evaluations on three benchmark data sets demonstrated
that the approach generally outperforms the state-of-the-art in plan recognition. We be-
lieve that its superior performance is due to its combination of logical abduction, joint
probabilistic inference, and incorporation of domain knowledge.
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Abstract. We propose a novel regularizer when training an auto-encoder
for unsupervised feature extraction. We explicitly encourage the latent
representation to contract the input space by regularizing the norm of
the Jacobian (analytically) and the Hessian (stochastically) of the en-
coder’s output with respect to its input, at the training points. While
the penalty on the Jacobian’s norm ensures robustness to tiny corrup-
tion of samples in the input space, constraining the norm of the Hes-
sian extends this robustness when moving further away from the sample.
From a manifold learning perspective, balancing this regularization with
the auto-encoder’s reconstruction objective yields a representation that
varies most when moving along the data manifold in input space, and
is most insensitive in directions orthogonal to the manifold. The second
order regularization, using the Hessian, penalizes curvature, and thus
favors smooth manifold. We show that our proposed technique, while
remaining computationally efficient, yields representations that are sig-
nificantly better suited for initializing deep architectures than previously
proposed approaches, beating state-of-the-art performance on a number
of datasets.

Keywords: Unsupervised feature learning, deep learning, manifold.

1 Introduction

Good techniques for learning a single layer of useful nonlinear feature extractors
appear to be a fundamental ingredient behind most recent successes in training
deeper architectures [1]. Many algorithms have already been investigated in this
role, starting with the Restricted Boltzmann Machines (RBM) used to initialize
(“pre-train”) individual layers of Deep Belief Networks [10] and Deep Boltzmann
Machines [18]. Alternatives that have been used successfully as learned non-
linear feature extractors include kernel PCA [6], semi-supervised embedding [25],
sparse coding1 [13], classical auto-encoders [2] and novel, better-suited variations
of auto-encoders, such as sparse auto-encoders [14, 11, 8], and the Denoising
Auto-Encoders (DAE) of [22, 23, 20].

1 Note that in sparse coding, the forward feature mapping is not computed by a
“simple” function, but is the result of an optimization procedure. It is nevertheless
a deterministic mapping, albeit a computationally intensive one.
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When used as deterministic feature extractors, both the Restricted Boltzmann
Machines and the various flavors of auto-encoders, traditionally yield a mapping
of the same basic form: extracted features are a linear projection of the input,
passed through a sigmoid nonlinearity. Now all these approaches can easily be
extended to other forms of nonlinear mappings, and the question of the relative
merits of different types of nonlinear mappings is indeed an important one.
But another equally important question that motivated the present study is
what algorithm and associated learning principle will extract the “best” possible
mapping of that traditional form. “Best” is to be understood here in the sense
of producing a representation better suited to subsequent processing stages, i.e.
extracting relevant, useful, features. This is typically measured objectively by
the classification performance of a subsequently built classifier, starting from the
representation obtained by unsupervised learning. It can also often be analyzed
qualitatively by looking at the linear filters learned by the algorithm.

Modern successes of this kind of unsupervised feature learning approaches
appear to depart from the past focus on dimensionality reduction. Quite the op-
posite, they embrace rich over-complete representations of higher dimensionality
than the input. In the context of auto-encoders, no longer having a dimensional-
ity bottleneck means one has to use some other form of regularization to preclude
trivial useless solutions (where reconstruction error would be small not only for
training examples but for any input configuration). Simple traditional weight de-
cay regularization, which embodies a prior preference toward smaller magnitude
weights2 does not appear to offer an appropriate cure [23]. Some successful vari-
ants encourage sparse representations [15, 8], or in the case of the DAE [22, 23],
stochastically corrupt the auto-encoder’s input, thus changing the objective to
that of denoising.

Recently a novel approach for regularizing auto-encoders was proposed, termed
Contractive Auto-Encoders (CAE), [17, 16], showing significant improvements
in state-of-the-art performance on a number of benchmark datasets. It shares a
similar motivation to the DAE of [23]: aiming for robustness to small variations
of the input. But the CAE achieves this in a rather different manner: instead
of stochastically corrupting the input, it balances the reconstruction error with
an analytical penalty term that penalizes the Frobenius norm of the encoder’s
Jacobian at training points. Another important difference is that the CAE aims
directly at obtaining a robust representation, whereas the DAE’s criterion is to
have a robust reconstruction of the uncorrupted example. [17] further provide
empirical evidence that the trade-off between reconstruction error and the CAE’s
regularization term yields a representation that captures the local directions of
variation dictated by the data, which often correspond to a lower-dimensional
non-linear manifold, while being more invariant to the vast majority of directions
orthogonal to the manifold.

The present work extends the CAE approach by proposing a simple and
computationally efficient technique to not only penalize the first order derivative
(Jacobian) of the mapping but also the second order (Hessian) thus furthering

2 Thus encourages staying closer to a linear mapping.
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the stability of the learned representation around training points, which we find
to improve the representation both in terms of filters learned (more of the vi-
sually interesting ones) and in terms of classification error. While the analytical
computation of the Jacobian’s norm is no more costly than computing the re-
construction error, an exact analytical computation of the Hessian would be
prohibitive. We will retain computational efficiency by using a stochastic ap-
proximation of the Hessian’s norm.

2 Considered Framework

2.1 Setup and Notation

We are interested in learning a mapping function f that maps an input x ∈ IRdx

to a representation h = f(x) ∈ IRdh . We will be using the following notation
conventions:

– Wx denotes the matrix vector product between a matrix W and vector x
(vectors are considered column vectors by default).

– 〈A, B〉 denotes the inner product defined as the sum over all elements of
the element-wise product. This corresponds to the ordinary dot product for
vectors and to the Frobenius product for matrices.

– ‖A‖ =
√〈A, A〉, corresponds to the Euclidean norm for vectors and the

Frobenius norm for matrices or tensors.
– Jf (x) = ∂f

∂x (x) denotes the dh × dx Jacobian matrix of f evaluated at x.
– Hf (x) = ∂J

∂x (x) = ∂2f
∂x2 (x) denotes the dh × dx × dx Hessian tensor of f

evaluated at x.
– ε ∼ N (0, σ2I) indicates ε is a random vector variable following an isotropic

Gaussian distribution of variance σ2.
– Eε∼N (0,σ2I)[g(ε)] denotes the expectation of the enclosed expression with

respect to the specified variable and distribution. When unambiguous, we
may simply write E[g(ε)].

– Dn = {x(1), . . . , x(n)} is a training set of n points x(i) ∈ IRdx from which we
want to learn mapping f .

– Function f is parameterized by a set of parameters θ. These will be learned by
approximately optimizing an objective function J , i.e. θ∗ = arg minθ J (θ; Dn).
This approximate optimization will be carried out with a stochastic gradient
descent technique.

2.2 Basic Auto-Encoder

The basic Auto-Encoder (AE) framework considered here starts from an encod-
ing function f that maps an input x ∈ IRdx to hidden representation h(x) ∈ IRdh .
It has the form

h = f(x) = s(Wx + bh), (1)

where s is the logistic sigmoid activation function s(z) = 1
1+e−z . The encoder is

parametrized by a dh × dx weight matrix W , and a bias vector bh ∈ IRdh .
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A decoder function g then maps hidden representation h back to a reconstruc-
tion y:

y = g(h) = s(W ′h + by), (2)

The decoder’s parameters are a bias vector by ∈ IRdx , and a matrix W ′. In this
paper we only explore the tied weights case, in which W ′ = WT .

Basic auto-encoder training consists in finding parameters θ = {W, bh, by}
that minimize the reconstruction error on a training set of examples Dn, i.e.
minimizing the following objective function:

JAE(θ) =
∑

x∈Dn

L(x, g(f(x))), (3)

where L(t, r) is the reconstruction error between target t and reconstruction r
(typically squared error or cross-entropy loss).

2.3 The First-Order Contractive Auto-Encoder

To encourage robustness of f(x) to small variations of a training input x, [17]
penalize its sensitivity to that input, measured as the Frobenius norm of the
Jacobian Jf (x) [16]. Thus a Contractive Auto-Encoder (CAE) is trained to op-
timize the following objective:

JCAE(θ) =
∑

x∈Dn

L(x, g(f(x))) + λ‖Jf (x)‖2, (4)

where λ is a positive hyperparameter that controls the strength of the regular-
ization.

Let h = f(x). The linear+sigmoid mapping yields a simple expression for
the penalty term: ‖Jf (x)‖2 =

∑dh

j=1 ‖hj(1 − hj)Wj‖2. This has a similar com-
putational cost as computing the reconstruction error (e.g. squared error is
‖ − x + by +

∑dh

j=1 hjWj‖2). Thus computing the objective and the gradient
update in a CAE is only about twice as expensive as in an ordinary AE; both
have the same overall computational complexity of O(dhdx).

2.4 Proposed Higher Order Regularization

The penalty over the Jacobian yields a preference for mappings f that are invari-
ant locally at the training points. We propose to extend the flat region further
away from the training points by also penalizing higher order terms, in particular
the curvature, characterized by the Hessian.

While computing the Jacobian regularization is essentially no more expensive
than computing the reconstruction error, computational requirements for penal-
izing analytically computed higher orders grows exponentially with the order.
Specifically, computing the norms of kth order derivative of f has a compu-
tational complexity of O(dhdk

x). Computing the gradient of such higher order
regularization terms with respect to model parameters thus becomes quickly
prohibitive.
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We propose instead to use a stochastic approximation of the Hessian Frobenius
norm. Consider a noise random variable ε ∼ N (0, σ2I), we have

‖Hf(x)‖2 = lim
σ→0

1
σ2

E

[
||Jf (x) − Jf (x + ε)||2

]
(5)

This is obtained starting with a Taylor series expansion of Jf around x; the
proof is given in the appendix. For non-infinitesimal noise, the right hand side
would also contain contributions from higher order derivatives, but these vanish
in the limit σ → 0.

Our novel proposed algorithm, that we shall call Contractive Auto-Encoder
with Hessian regularization (CAE+H) thus tries to optimize the following ob-
jective:

JCAE+H(θ) =
∑

x∈Dn

L(x, g(f(x))) + λ ||Jf (x)||2 + γE

[
||Jf (x) − Jf (x + ε)||2

]
,

(6)
where λ and γ are non-negative hyperparameters that control how strongly we
penalize the Jacobian and the Hessian. Informally, we see that the last term limits
the Hessian norm by encouraging the Jacobian norm at x and at neighboring
points to be close to zero.

In practice, we will use a stochastic approximation of the expectation by
generating a small mini-batch of a few corrupted samples x̃ = x + ε (all from
the same x, but different ε) thus incurring some variance for the computational
benefit of not having to explicitly compute the analytical Hessian.

3 Geometric Interpretation

According to the manifold assumption [5], structured data in a high dimensional
space, such as natural images, are thought to concentrate near a lower dimen-
sional non-linear manifold. With this perspective in mind, [17] give the following
geometric interpretation of the workings of the CAE. The penalty on the Jaco-
bian norm encourages, at training points, an equally strong contractive mapping
in all input space directions. This pressure is however exactly counteracted (at
a local minimum) by the gradient of the reconstruction error term, that ensures
that distinct training points can be accurately reconstructed from their represen-
tation3. In particular, neighboring training points on the manifold must receive
a distinguishable mapping. This means that in the area surrounding the exam-
ples, the learnt mapping has to be far less contractive in directions parallel to
the manifold, while it can be maximally contractive in the directions orthogonal
to the manifold. This view means that the representation will change little when
moving orthogonal to the manifold and most when moving along the manifold,
3 Note that having tied weights means that encoder and decoder weights have the

same magnitude. Consequently the CAE cannot merely play the game of having the
encoder scale down the input and the decoder blow it up again.
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so that the learnt representation constitutes a kind of coordinate system on the
manifold.

[17] provide empirical evidence that this is indeed happening by examining,
for the learnt mapping, the singular value spectrum of the Jacobian at train-
ing points. It characteristically showed but a few singular values much larger
than the others, which confirms that the mapping is maximally contractive in
the overwhelming majority of directions (presumed to be those orthogonal to the
low dimensional manifold), while being significantly less contractive in only a few
directions (those parallel to the low dimensional manifold). From this geometric
interpretation, the leading singular vectors of the Jacobian matrix (those asso-
ciated with large singular values) are the directions in input space to which the
representation is most sensitive, and can be understood as spanning the tangent
space of the manifold.

The addition of the Hessian penalty, introduced here, will encourage the Ja-
cobian to change slowly (or not at all) as we move away from a training point.
When the move is orthogonal to the the manifold, this should ensure that the
directions to which the representation is most sensitive remain those parallel to
the manifold. When the move is along the manifold, forcing the Jacobians at two
nearby points to be close means, from the above geometrical interpretation, that
the tangent spaces at these points must be close. It thus prefers flatter manifolds
by penalizing curvature.

4 Related Previous Work

Traditional regularization [21] for learning a mapping f imposes a prior pref-
erence over the considered space of functions (or their parameters), through
the addition of a penalty term λΩ(f) to the regression objective. Thus the
usual weight decay regularization penalizes the squared norm of the weights:
Ωwd(f) = ‖W‖2. In the case of a linear mapping this corresponds precisely to
the norm of its Jacobian matrix. But this is no longer the same with a nonlinear
mapping. Penalization of second order derivatives (roughness penalty) is also a
commonly employed in fitting statistical models. It is used extensively in non-
parametric methods such as smoothing splines [24, 9]. These regularizers can all
be expressed in the following general form, which penalizes the norm of the kth

order derivatives:

Ωk(f) =
∫ ∣∣∣∣∣∣∣∣∂kf(x)

∂x(k)

∣∣∣∣∣∣∣∣2 dx,

where the integral is over the whole domain of f . This yields a simple tractable
expression when applied to a linear mapping or to non-parametric spline models.
But when learning a parameterized non-linear mapping such as linear+sigmoid,
the integral becomes intractable.

Thus [4] investigated penalizing, on training data points only, the norm of
the Hessian diagonal only, which he computes analytically. This is similar to our
approach, except we chose to penalize a stochastic approximation of the whole
Hessian norm, rather than an analytically exact diagonal only. Our stochastic
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approximation scheme is a simple, practical, and computationally efficient alter-
native to penalizing the full Hessian norm. Also in [4] the goal was to regularize
a supervised objective, which is quite different from our focus on unsupervised
feature learning.

Note that applying a regularizer in this way is a departure from the classical
view as a prior on function space. Since the regularization term is evaluated only
on or around training points, the regularizer becomes data-dependent, and can
no longer be considered a true “prior” in the Bayesian sense. Note that this is true
also of the various attempts to yield sparse representations with auto-encoder
variants [8, 14, 11] that were inspired by the influential work on sparse coding
by [13]. Since the sparsity of representation is sought only at training points,
it also constitutes a data-dependent regularizer. Whereas in previous work this
restriction to the training points (instead of the whole input domain) might have
been seen as an approximation, here this is a very important feature. We only
want the contraction and flatness effects where the data density is
large.

The geometrical interpretation of the Jacobian as representing the tangent
space of a manifold is also related to the work on tangent propagation [19],
semi-supervised embedding [25] and non-local manifold Parzen windows [3], but
with marked differences. Tangent propagation [19] uses prior knowledge, based
on known transformations, to define the contractive directions, and is used in a
supervised setting. The CAE does not use any prior information to choose the
directions of contraction. They are implicitly extracted from the dataset during
the training. Semi-supervised embedding [25], in conjunction with a supervised
criterion, uses pairs of neighboring points and tries to pull them together, thus
explicitly contractive in directions along the manifold. This is to be contrasted
with the CAE that contracts mostly in directions orthogonal to the manifold,
without the computational requirement of a neighborhood graph. Non-local man-
ifold Parzen windows [3] learns a function to explicitly output tangent directions
at a point, whereas the CAE’s tangent directions are to be found in the Jacobian
matrix of the mapping function it learns. Contrary to the CAE+H that we pro-
pose here, none of these methods seem to address the curvature of the modeled
manifold.

5 Experiments

5.1 Analysis of CAE+H

Efficiency of the approximation. Following Eq. (5), we approximate stochas-
tically the Frobenius norm of the true Hessian of the hidden layer h(x) with
respect to the input. As we have seen earlier, the approximation depends on two
hyperparameters, the number of corrupted inputs nc, and the standard devia-
tion of the Gaussian noise σ. To illustrate how the approximation is affected
by different values of these hyperparameters, we estimate the absolute value of
the difference Δ between the true Hessian norm and the approximated norm
as we vary both hyperparameters. As one can expect, the optimal number of
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(a) mini-batch size nc (b) noise standard deviation σ

Fig. 1. Using the hidden representation h(x) of an auto-encoder, we compute the
meanand variance of the norm of the Hessian on 1000 samples with an optimal fixed
set of hyperparameters. Evolution of Δ with respect to (a) nc and (b) σ.

corrupted inputs tends to infinity Figure 1(a), and the optimal variance tends to
zero Figure 1(b). It should be noted that while evaluating the exact true Hessian
norm is feasible in O(d2

xdh), in practice computing the gradient of the penalty
w.r.t model parameters is prohibitive. With our approximation, estimating the
norm costs only O(ncdxdh). In our experiments, due to numerical instability we
avoid using tiny values for the standard deviation. This also has the beneficial
effect of penalizing higher order derivatives.

Penalization of Higher Order Terms. In high dimensional input space, we
will use a small number of corrupted samples, as it would be computationally
expensive otherwise. Although the approximation is less accurate in this case,
Figure 2 shows that using Eq. (5) in the objective cost is still penalizing the
norm of the true Hessian in contrast with the simple CAE objective cost on the
MNIST dataset. The variance of the noise is also chosen large enough so that
higher order terms are also penalized. The values used in our experiments are in
range σ ∈ [0.1, 0.5] and nc ∈ {4, 6, 8}.

5.2 Experimental Results

Considered models. In our experiments, we compare the proposed Higher
Order Contractive Auto-Encoder (CAE+H) against the following models for
unsupervised feature extraction:

– RBM-binary : Restricted Boltzmann Machine trained with Contrastive Di-
vergence,

– AE: Basic auto-encoder,
– DAE: Denoising auto-encoder with Gaussian noise,
– CAE: Contractive auto-encoder.
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Fig. 2. On MNIST, during the optimization of CAE+H we measure the true Hessian
norm and the approximated norm with nc = 4 and σ = 0.3. We see that our computa-
tionnally efficient approximation is very effective at constraining the norm of the true
Hessian.

MNIST. We tried our model on the well known digit classification problem
(28×28 gray-scale pixel values scaled to [0,1 ]). We used the usual split of 50000
examples for training, 10000 for validation, and 10000 for test.

To empirically verify the advantage of the representation learnt using the
CAE+H with respect to its discriminative power, we pretrained different auto-
encoders using the regularization described above and used their hidden
representation h(x) as an input for a logistic regression. We also used these
representations to initialize a one hidden layer MLP. The auto-encoders were
also compared to an RBM.

As discussed in section 3, we illustrate how the CAE+H captures the direc-
tions of allowed variations within the data manifold. For any encoding function
f , we can measure the average contraction ratio for pairs of points, one of which,
x0 is picked from the validation set, and the other x1 randomly generated on a
sphere of radius r centered on x0 in input space. How this average ratio evolves
as a function of r yields a contraction curve. We have computed these curves
for the models for which we reported classification performance (the contraction
curves are however computed with their initial parameters prior to fine tuning).
Results are shown in Figure 6 for single-layer mappings.

5.3 MNIST Variants

In addition to MNIST, we used some of its variants, namely MNIST-rot(digits
with added random rotation) and MNIST-bg-img(digits with random image
background) consisting of 10000 training, 2000 validation, 50000 test exam-
ples [12]4. Finally, we considered an artificially generated dataset rect for shape
classification where the task is to discriminate between tall and wide rectangles
(white on black).
4 Datasets available at http://www.iro.umontreal.ca/~lisa/icml2007.

http://www.iro.umontreal.ca/~lisa/icml2007
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Fig. 3. On MNIST, Left: Mutual information between class labels and indi-
vidual hidden units Hidden units were binarized with a threshold of 0.5. CAE+H
extracts more discriminant features than others methods. Right: Mutual Informa-
tion between each class and random chosen hidden units. E.g The first hidden
unit is only responsive for the “6” digits.

Table 1. Comparison of the quality of extracted features from different models when
using them as the fixed inputs to a logistic regression (top row) or to initialize a MLP
that is fine-tuned (bottom row). Classification error rate is reported together with a
95% confidence interval. CAE+H is clearly less dependent on the fine-tuning step and
outperforms all other considered models by the quality of its representation.

���������Model
pretrain

AE RBM DAE CAE CAE+H

LogReg 2.17±0.29 2.04±0.28 2.05±0.28 1.82±0.26 1.2±0.21

MLP 1.78±0.26 1.3±0.22 1.18±0.21 1.14±0.21 1.04±0.20

5.4 CIFAR-10

In this section, we used the same preprocessing pipeline as [7] for feature ex-
traction. First, we randomly extract 160000 patches from the first 10000 images
of CIFAR-10. Each patch is locally contrast-normalized (subtract the mean and
divide by its standard deviation) and ZCA whitened.

In order to qualitatively compare filters obtained with different approaches,
we trained a CAE+H and other models in an unsupervised fashion with a high
number nh of hidden units on this set of preprocessed patches (see Figure 5).
This figure will be discussed in the next section.

Once a non-linear feature-mapping has been learnt by unsupervised training,
we can evaluate different feature extraction techniques on a set of labeled images
using classification accuracy.

The same convolutional feature extraction as [7] has been used to compare
CAE+H and CAE with different models namely Sparse Restricted Boltzmann
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Fig. 4. Test accuracy of CAE and CAE+H versus different learning algorithms [7]

Table 2. Comparison of stacked second order contractive auto-encoders with 1 and
2 layers (CAE+H-1 and CAE+H-2) with other 3-layer stacked models and baseline
SVM. Test error rate on all considered classification problems is reported together
with a 95% confidence interval. Best performer is in bold, as well as those for which
confidence intervals overlap. Clearly CAE+Hs can be successfully used to build top-
performing deep networks. 2 layers of CAE+H often outperformed 3 layers of other
stacked models.

Data Set SVMrbf SAE-3 RBM-3 DAE-b-3 CAE-2 CAE+H-1 CAE+H-2

rot 11.11±0.28 10.30±0.27 10.30±0.27 9.53±0.26 9.66±0.26 10.9±0.27 9.2±0.25

bg-img 22.61±0.379 23.00±0.37 16.31±0.32 16.68±0.33 15.50±0.32 15.9±0.32 14.8±0.31

rect 2.15±0.13 2.41±0.13 2.60±0.14 1.99±0.12 1.21±0.10 0.7±0.07 0.45±0.06

Machine, Sparse Auto-encoder, Gaussian Mixtures Model and K-means cluster-
ing. On every image, each patch is preprocessed and passed through the encoder
to obtain nh feature maps. Then, to roughly reduce the dimension, features are
sum-pooled together over quadrants of the feature maps. So the input dimension
of the linear classifier is equal to 4nh. We trained a L2-regularized linear SVM
on these features and reported the test classification accuracy in Figure 4.

As another experiment, we used the sum pooled-features learned above as the
input to a shallow MLP to see if we could improve upon the SVM performance.
We used a CAE to initialize the parameters of the MLP. With this method, we
were able to achieve a classification accuracy of 78.5% on CIFAR-10.
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Fig. 5. Random filters from various model types with high dimensional hid-
den representation learnt on CIFAR10(4000units) and MNIST(2000units).
CAE+H extracts smoother features and obtains a smaller proportion of noisy filters
despite the exaggerated overcompleteness of the representation.

Fig. 6. On MNIST, Left: Contraction ratio with respect to distance from test
samples. The contractive models have a non-monotonic contraction, CAE+H con-
tracts further away from the samples. Right: Averaged Jacobian spectrum across
test samples.

6 Discussion

Upon qualitative examination of Figure 5, we can venture that the simple auto-
encoder learns poor feature detectors while DAE, CAE and CAE+H appear to
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capture more relevant information. CAE-H and DAE present a higher proportion
of structured, local and sharp filters than the CAE.

From this observation, we can hypothesize that the sharper-looking filters
are likely to be more class-specific. In order to verify this objectively, we mea-
sured the mutual information between class labels and individual hidden units
binarized with a threshold of 0.5). These results are reported in Figure 3.The
CAE+H indeed has more specialized hidden units, that correlate better with
specific class labels.

This can explain the much better classification performance obtained with a
simple logistic regression stacked on the thus learnt representation, even without
any supervised fine tuning of the filters, as we can see in Table 1.

We have proposed an original and computationally efficient way to regularize
an auto-encoder by penalizing higher order derivatives of its learnt mapping,
without having to explicitly compute them. This novel unsupervised method for
learning feature detectors was shown to learn more appropriate features for su-
pervised tasks than several recently proposed competing methods. In particular,
it allowed us to beat the state-of-the-art on MNIST and variants, and to reach
it on CIFAR-10.

Compared to the other considered approaches, the CAE+H doesn’t seem to
depend as much on a supervised fine-tuning step to yield good performance. This
is especially interesting if one wants to apply the technique to build deep models
by stacking. Indeed the fine-tuning step is subject to the vanishing gradient
problem during back-propagation. So it is likely to be of great benefit to not
depend so much on the fine-tuning step.

Appendix

Proof that limσ→0 Eε∼N (0,σ2I)

[
1

σ2 ‖J(x + ε) − J(x)‖2
]

= ‖H(x)‖2

Let ε ∈ R
dx . Taylor series expansion of the Jacobian around x yields

J(x + ε) = J(x) +

(
dx∑
i=1

εi
∂J

∂xi
(x)

)
+ R(x, ε), (7)

where the remainder R(x, ε) contains all higher order expansion terms:

R(x, ε) =
∞∑

K=2

1
K!

∑
i1,...,iK

εi1 . . . εiK

∂KJ

∂xi1 . . . ∂xiK

(x).

We can thus write for a given σ ∈ R:
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1
σ2

‖J(x + ε) − J(x)‖2 =
1
σ2

∥∥∥∥∥
(

dx∑
i=1

εi
∂J

∂xi
(x)

)
+ R(x, ε)

∥∥∥∥∥
2

=
1
σ2

∥∥∥∥∥
dx∑
i=1

εi
∂J

∂xi
(x)

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

+
2
σ2

〈
dx∑
i=1

εi
∂J

∂xi
(x) , R(x, ε)

〉
︸ ︷︷ ︸

T2

+
1
σ2

〈R(x, ε) , R(x, ε)〉︸ ︷︷ ︸
T3

(8)

Let ε ∼ N (0, σ2I) and let us consider the expectation of subexpressions T1, T2,
T3 in the limit σ → 0. Remainder R is a sum of terms of the form c εi1 . . . εiK

where c is constant with respect to ε, and K ≥ 2. Thus inner product T2 and
T3 will be sums of products of the same form but where K ≥ 3. Each such
product is a polynomial in components of ε, with the smallest exponent being
either 1 or ≥ 2. Such polynomials that have at least one odd exponent will have
an expectation of 0 (odd moments of a 0-mean Gaussian are zero). Those that
contain only even exponents will at least have one component with an exponent
of 4 or more or two components with an exponent of at least 2 each, so their
expectation will be a polynomial in σ whose smallest exponent is no less than 4.
In all cases, for K ≥ 3, we will have limσ→0

1
σ2 E [cεi1 . . . εiK ] = 0. Since T2 and

T3 are sums of terms of this form, we can write

lim
σ→0

E [T2] = lim
σ→0

E [T3] = 0. (9)

The expectation of the first term T1 yields

E [T1] = E

[
1
σ2

〈
dx∑
i=1

εi
∂J

∂xi
(x) ,

dx∑
i=1

εi
∂J

∂xi
(x)

〉]

=
1
σ2

dx∑
i=1

dx∑
j=1

E [εiεj]
〈

∂J

∂xi
(x) ,

∂J

∂xj
(x)

〉
.

For i �= j, E [εiεj] = E [εi] E [εj ] = 0 and all the corresponding terms in the above
sum vanish. For i = j however we have E [εiεj ] = E

[
ε2i
]

= σ2. Consequently the
above sum reduces to

E [T1] =
1
σ2

dx∑
i=1

σ2

〈
∂J

∂xi
(x) ,

∂J

∂xi
(x)

〉
= ‖H(x)‖2

. (10)

Putting together Equations 8, 9 and 10, we can conclude:

lim
σ→0

Eε∼N (0,σ2I)

[
1
σ2

‖J(x + ε) − J(x)‖2

]
= lim

σ→0
E [T1] + lim

σ→0
E [T2] + lim

σ→0
E [T3]

= ‖H(x)‖2
.
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Abstract. We develop a novel method, based on the statistical concept
of VC-dimension, for evaluating the selectivity (output cardinality) of
SQL queries – a crucial step in optimizing the execution of large scale
database and data-mining operations. The major theoretical contribu-
tion of this work, which is of independent interest, is an explicit bound
on the VC-dimension of a range space defined by all possible outcomes
of a collection (class) of queries. We prove that the VC-dimension is a
function of the maximum number of Boolean operations in the selection
predicate, and of the maximum number of select and join operations
in any individual query in the collection, but it is neither a function of
the number of queries in the collection nor of the size of the database.
We develop a method based on this result: given a class of queries, it
constructs a concise random sample of a database, such that with high
probability the execution of any query in the class on the sample pro-
vides an accurate estimate for the selectivity of the query on the original
large database. The error probability holds simultaneously for the selec-
tivity estimates of all queries in the collection, thus the same sample can
be used to evaluate the selectivity of multiple queries, and the sample
needs to be refreshed only following major changes in the database. The
sample representation computed by our method is typically sufficiently
small to be stored in main memory. We present extensive experimental
results, validating our theoretical analysis and demonstrating the advan-
tage of our technique when compared to complex selectivity estimation
techniques used in PostgreSQL and the Microsoft SQL Server.

1 Introduction

As advances in technology allow for the collection and storage of vast databases,
there is a growing need for advanced machine learning techniques for speeding up
the execution of queries on such large datasets. In this work we focus on the fun-
damental task of estimating the selectivity, or output size, of a database query,
which is a crucial step in a number of query processing tasks such as execution
plan optimization and resource allocation in parallel and distributed databases.
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The task of efficiently obtaining such accurate estimates has been extensively
studied with solutions ranging from storage of pre-computed statistics on the
tables’ distribution, to on-line sampling of the databases, and to combinations
of the two approaches [39, 40, 24, 30, 25, 15, 16, 20, 31, 37, 49]. Histograms, simple
yet powerful statistics of the tables’ data, are the most commonly used solution
in practice, due to their computational and space efficiency. However, there is an
inherent limitation to the accuracy of this approach when estimating the selec-
tivity of queries that involve either multiple tables/columns or correlated data.
Running the query on freshly sampled data gives more accurate estimates at the
cost of delaying the execution of the query while collecting random samples from
a disk or other large storage medium and performing the analysis itself, which
is usually more expensive than a histogram lookup. Our goal in this work is to
leverage the computational efficiency of using pre-collected data with the prov-
able accuracy of estimates obtained by running a query on a properly selected
sample database.

We apply the statistical concept of VC-dimension [53] to develop and analyze
a novel technique for generating accurate estimates of query selectivity. Roughly
speaking, the VC-dimension of a collection of indicator functions (hypotheses) is
a measure of its complexity or expressiveness (see Sect. 3 for formal definitions).
A major theoretical contribution of this work, which is of independent interest, is
an explicit bound to the VC-dimension of a class of queries, viewed as indicator
functions on the Cartesian product of the database tables. In particular, we show
that the VC-dimension of a class of queries is a function of the maximum number
of Boolean, select and join operations in any query in the class, but it is not a
function of the number of different queries in the class. By adapting a funda-
mental result from the VC-dimension theory to the database setting, we develop
a method that for any class of queries, defined by its VC-dimension, constructs
a concise sample of a database, such that with high probability, the execution of
any query in the class on the sample provides an accurate estimate for the se-
lectivity of the query on the original large database. The error probability holds
simultaneously for the selectivity estimate of all queries in the collection, thus
the same sample can be used to evaluate the selectivity of multiple queries, and
the sample needs to be refreshed only following major changes in the database.
The size of the sample does not depend on the size (number of tuples) in the
database, just on the complexity of the class of queries we plan to run, measured
by its VC-dimension. Both the analysis and the experimental results show that
accurate selectivity estimates are obtained using a surprising small sample size
(see Table 1 for concrete values), which allows the entire sample to reside in main
memory, significantly speeding up the execution of the query on the sample.

A technical difficulty in applying the VC-dimension approach to the database
setting is that the VC-dimension analysis assumes a uniform sample of the
Cartesian products of all the tables, while in practice, it is more efficient to
run the queries on the Cartesian product of random samples of the individual
tables (which has a different distribution). We develop an efficient procedure for
constructing a sample that circumvents this problem (see Sect. 5).
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We present extensive experimental results, validating our theoretical analysis
and demonstrating the advantage of our technique when compared to complex
selectivity estimation techniques used in PostgreSQL and the Microsoft SQL
Server. The main advantage of our methods is that it gives provably accurate
prediction for all queries with up to a given complexity (VC-dimension), while
techniques like multidimensional histograms or join synopses are accurate only
for the queries for which they are built.

Note that we are only concerned with estimating the selectivity of a query,
not with approximating the query answer using a sample of the database (see
the work by Das [12] for a survey of that area).

Due to space limitation we focus here on the main novel concepts of our
method. Full proofs and additional experimental results are included in the full
paper [51].

2 Related Work

Methods for estimating the selectivity (or cardinality) of queries have been ex-
tensively studied in the database literature. A variety of approaches have been
explored, ranging from the use of sampling, both online and offline, to pre-
computation of different statistics such as histograms, to building on methods
from machine learning [11, 28], data mining [21], optimization [7, 42], and prob-
abilistic modeling [19, 50].

The use of sampling for selectivity estimation has been studied mainly in the
context of online sampling [40, 39], where the sample is obtained after a query
has arrived and only used for the evaluation of the selectivity of that one query.
Sampling at random from a large database residing on disk is an expensive oper-
ation [47,4,18], and in some cases sampling for an accurate cardinality estimate
is not significantly faster than full execution of the query [22, 23]. A variety of
sampling and statistical analysis techniques has been tested for improving the
efficiency of the sampling procedures and in particular identifying early stopping
conditions [30,24,25,15,56,3,14,7,35] but online sampling is still considered too
expensive for most applications. An offline sampling approach was explored by
Ngu et al. [46] who used systematic sampling (requiring the tuples in a table to
be sorted according to one of the attributes) with a sample size dependent on the
number of tuples in the table. The paper does not give any explicit guarantee on
the accuracy of their predictions. Chaudhuri et al. [7] present an approach which
uses optimization techniques to identify suitable strata before sampling. The ob-
tained sample is such that the mean square error in estimating the selectivity
of queries belonging to a given workload is minimized, but there is no quality
guarantee on the error for each of the queries. Haas [27] developed Hoeffding in-
equalities to bound the probability that the selectivity of a query estimated from
a sample deviates more than a given amount from its expectation. However, to
estimate the selectivity for multiple queries and obtain a given level accuracy for
all of them, simultaneous statistical inference techniques like the union bound
should be used, which are known to be overly conservative when the number of
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queries is large [45]. On the contrary, our result will hold simultaneously for all
queries within a given complexity (VC dimension).

A technical problem arises when combining join operations and sampling, as
pointed out by Chaudhuri et al. [9]: the Cartesian product of the samples of two
tables is not a uniform sample of the Cartesianproduct of the tables. What is more,
given a size s, it is impossible a priori to determine two sample sizes s1 and s2 such
that samples of these sizes from the two tables will give, when joined together along
a common column, a sample of the join table of size s. In Sect. 5 we explain why
only the first issue is of concern for us and how we circumvent it.

In practice most database systems use pre-computed statistics to predict
query selectivity [31, 20, 16, 34, 37], with histograms being the most commonly
used representation. The construction, maintenance, and use of histograms were
thoroughly examined in the literature [33, 32, 43, 48], with both theoretical and
experimental results. In particular Chaudhuri et al. [8] rigorously evaluated the
size of the sample needed for building a histogram providing good estimates for
the selectivities of a large group of (select only, in their case) queries. Kaushik
et al. [36] extensively compared histograms and sampling from a space com-
plexity point of view, although their sample-based estimator did not offer a
uniform probabilistic guarantee over a set of queries and they only consider the
case of foreign-key equijoins. We address both these points in our work. Al-
though very efficient in terms of storage needs and query time, the quality of
estimates through histograms is inherently limited for complex queries by two
major drawbacks: intra-bucket uniformity assumption (i.e., assuming a uniform
distribution for the frequencies of values in the same bucket) and inter-column
independence assumption (i.e., assuming no correlation between the values in
different columns of the same or of different tables). Different authors suggested
solutions to improve the estimation of selectivity without making the above as-
sumptions [5, 13, 49, 55, 54]. Among these solutions, the use of multidimensional
histograms [6,49,52,54] seems the most practical. Nevertheless, these techniques
are not widespread due to the extra memory and computational costs in their
implementation.

To the best of our knowledge, our work is the first to provide explicit bounds
on the VC-dimension of queries and to apply the results to query selectivity
estimation.

3 Preliminaries

We consider a database D of k tables T1, . . . , Tk. We denote a column C of a
table T as T .C and, for a tuple t ∈ T , the value of t in the column C as t.C. The
values in T .C belong to the numerical or categorical domain D(T .C). Our focus
is on queries that combine select and join operations, defined as follows. We do
not take projection operations into consideration because their selectivities have
no impact on query optimization.

Definition 1. Given a table T with columns T .C1, . . . , T .C	, a selection query
q on T is an operation which returns a subset S of the tuples of T such that a
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tuple t of T belongs to S if and only if the values in t satisfy a condition C (the
selection predicate) expressed by q.

Definition 2. Given two tables T1 and T2, a join query q on a common column
C (i.e. a column present both in T1 and T2) is an operation which returns a
subset of the Cartesian product of the tuples in T1 and T2. The returned subset
is defined as the set {(t1, t2) : t1 ∈ T1, t2 ∈ T2, s.t. t1.C op t2.C} where “op” is
one of {<, >,≥,≤, =, �=}.
Definition 3. Given a set of 
 tables T1, . . . , T	, a combination of select and
join operations is a query returning a subset of the Cartesian product of the
tuples in the sets S1, . . . , S	, where Si is the output of a selection query on Ti.
The returned set is defined by the selection queries and by a set of join queries
on S1, . . . , S	.

Definition 4. Given a query q, a query execution plan for q is a directed binary
tree Tq whose nodes are the elementary operations (i.e. select or join queries)
into which q can be decomposed. There is an edge from node A to node B if the
output of A is used as an input to B.

It follows from the definition of a combination of select and join operations that
a query may have multiple execution plans. Nevertheless, for all the queries we
defined there is (at least) one execution plan such that all select operations are
in the leaves and internal nodes are join nodes [17]. To derive our results, we use
these specific plans.

Two crucial definitions that we use throughout the work are the cardinality
of the output of a query and the equivalent concept of selectivity of a query.

Definition 5. Given a query q and a database D, the cardinality of its output
is the number of elements (tuples if q is a selection queries, pairs of tuples if
q is a join query, and 
-uples of tuples for combinations of join and select) in
its output, when run on D. The selectivity σ(q) of q is the ratio between its
cardinality and the product of the sizes of its input tables.

VC-Dimension. The Vapnik-Chernovenkis (VC) Dimension of a space is a
measure of complexity or expressiveness of a set of functions on that space [53].
A finite bound on the VC-dimension of a structure implies a bound on the size of
random samples required for approximately learning that structure. We outline
some basic definitions and results and their adaptation to the specific setting of
queries. We refer the reader to the works of Alon and Spencer [2, Sect.14.4], and
Chazelle [10, Chap. 4] for an in-depth discussion of the VC-dimension theory.
VC-dimension is defined on range spaces:

Definition 6. A range space is a pair (X, R) where X is a (finite or infinite)
set and R is a (finite or infinite) family of subsets of X. The members of X are
called points and those of R are called ranges.

In our setting, for a class of select queries Q on a table T , X is the set of all tuples
in the input table, and R the family of the outputs of the queries in Q when run
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on X , i.e. on T . For a class Q of queries combining select and join operations, X
is the Cartesian product of the associated tables and R is the family of outcomes
of queries in Q, seen as 
-uples of tuples, if 
 tables are involved in the queries
of Q. When the context is clear we identify the family R with a class of queries.

Definition 7. Let (X, R) be a range space and A ⊂ X. The projection of R on
A is defined as PR(A) = {r ∩ A : r ∈ R}.
Definition 8. Let (X, R) be a range space and A ⊂ X. If |PR(A)| = 2A, then
A is said to be shattered by R.

Definition 9. Let S = (X, R) be a range space. The Vapnik-Chervonenkis di-
mension (or VC-dimension) of S, denoted as V C(S) is the maximum cardinality
of a shattered subset of X. If there are arbitrary large shattered subsets, then
V C(S) = ∞.

When the range space represents all the possible outputs of queries in Q applied
to database tables D, the VC-dimension of the range space is the maximum
number of tuples such that any subset of them is defined by a query in Q.

The main application of VC-dimension in statistics and learning theory is
its relation to the minimum sample size needed for approximate learning of a
function on the point space using a range.

Definition 10. Let (X, R) be a range space and let A be a finite subset of X.

1. For 0 < ε < 1, a subset B ⊂ A is an ε-approximation for A if for any range
r ∈ R, we have

∣∣∣ |A∩r|
|A| − |B∩r|

|B|
∣∣∣ ≤ ε.

2. For 0 < p, ε < 1, a subset B ⊂ A is a relative (p, ε)-approximation for A if
for any range r ∈ R such that |A∩r|

|A| ≥ p we have
∣∣∣ |A∩r|

|A| − |B∩r|
|B|

∣∣∣ ≤ ε |A∩r|
|A|

and for any range r ∈ R such that |A∩r|
|A| < p we have |B∩r|

|B| ≤ (1 + ε)p.

It is possible to probabilistically build an ε-approximation (resp. a relative (p, ε)-
approximation) by sampling the point space [53, 38, 29].

Theorem 1. There is a positive constant c (resp. c′) such that if (X, R) is a
range-space of VC-dimension at most d, A ⊂ X is a finite subset and 0 < ε, δ < 1
(resp. and 0 < p < 1), then a random subset B ⊂ A of cardinality m, where

m ≥ min
{
|A|, c

ε2

(
d + log

1
δ

)}
, (1)

(resp. m ≥ min
{
|A|, c′

ε2p

(
d log 1

p + log 1
δ

)}
) is an ε-approximation (resp. a rel-

ative (p, ε)-approximation) for A with probability at least 1 − δ.

Löffler and Phillips [41] showed experimentally that the constant c is approxi-
mately 0.5. It is also interesting to note that an ε-approximation of size O( d

ε2 log d
ε )

can be built deterministically in time O(d3d( 1
ε2 log d

ε )d|X |) [10].



The VC-Dimension of SQL Queries 667

4 The VC-Dimension of Classes of Queries

In this section we develop a general bound on the VC-dimension of classes of
queries. We start by computing the VC-dimension of simple select queries and
move to queries with complex selection predicates and to join queries. We then
extend our bounds to general queries that are combinations of multiple select
and join operations. The proofs for our results can be found in the full version
of this paper [51].

Select Queries. Let T be a table with m columns T .C1, . . . , T .Cm. For a fixed
column T .Ci, consider the family Σ∗

Ci
of all possible outputs of queries in the

form
SELECT ∗ FROM T WHERE T .Ci opa (2)

where op is an inequality operator (i.e., either “≥” or “≤”)1 and a ∈ D(T .Ci).

Lemma 1. Let T be a table with m columns Ci, 1 ≤ i ≤ m, and consider the set
of queries Σ∗

T =
⋃m

i=1 Σ∗
Ci

, where Σ∗
Ci

is defined as in the previous paragraph.
Then, the range space S = (T , Σ∗

T ) has VC-dimension at most m + 1.

This lemma follows easily from a well known result on the VC-dimension of
half-spaces in R

m [44, Lemma 10.3.1].
We now extend the bound to general selection queries with complex predicates.

Given a table T with m columns, consider the set Σb∗
T of queries whose selection

predicate can be expressed as the set of selection queries whose predicate is a
Boolean combination of at most b clauses, i.e. the query is in the form

SELECT ∗ FROM T WHERE T .Ci1 op1 a1 bool1 · · · boolb−1 T .Cib
opb ab

where opi is one of “≥”, “≤”, “bool	” is either AND or OR, ij ∈ [1, m], and aj ∈
D(T .Cij ), 1 ≤ j ≤ b. It should be noted that the clauses in the selection predicate
may be parenthesized in many different ways, each resulting (potentially) in
a different query. All the possible parenthesizations are members of the range
space Σb∗

T . It is also important to realize that we can and we do see a selection
clause involving the “=”operator or the “ �=”operator as the “AND”of two clauses
involving the > and < operators.

Lemma 2. Let T be a table with m columns, let b > 0 and let Σb∗
T be the set

of selection queries on T whose selection predicate is a Boolean combination of
up to b clauses. Then, the VC-dimension of the range space Sb = (T , Σb∗

T ) is at
most 3((m + 1)b) log((m + 1)b).

Note that not all queries in Σb∗
T are equivalent to axis-aligned boxes, thus we can

not apply the bound used in the proof of Lemma 1. Instead, we use the following
extension of [2, Corol. 14.4.3] to arbitrary combinations of set operations.

1 The operators “>” and “<” can be reduced to “≥” and “≤” respectively.
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Lemma 3. Let (X, R) be a range space of VC-dimension d ≥ 2 and let (X, Rh)
be the range space on X in which Rh include all possible combinations of union
and intersections of h members of R. Then V C(X, Rh) ≤ 3dh log(dh).

To prove Lemma 2 using Lemma 3, we observe that the outcome of an AND
(resp. OR) operator connecting two selection clauses is equal to the intersection
(resp. union) of the two selection clauses outputs.

Join Queries. Let T1 and T2 be two distinct tables, and let R1 and R2 be
families of (outputs of) queries on the tuples of T1 and T2 respectively. Let
S1 = (T1, R1), S2 = (T2, R2) and let V C(S1), V C(S2) ≥ 2. Let C be a column
along which T1 and T2 are joined, and let TJ = T1×T2 be the Cartesian product
of the two tables. For a pair of queries r1 ∈ R1, r2 ∈ R2, let

Jop
r1,r2

= {(t1, t2) : t1 ∈ r1, t2 ∈ r2, t1.C op t2.C},
where op ∈ {>, <,≥,≤, =, �=}. We have Jop

r1,r2
⊆ r1 × r2 and Jop

r1,r2
⊆ TJ . Let

JC = {Jop
r1,r2

| r1 ∈ R1, r2, R2, op ∈ {>, <,≥,≤, =, �=}}. We have V C((TJ , JC)) ≤
3(V C(S1) + V C(S2)) log((V C(S1) + V C(S2))). This result can be extended to
queries with multiple joins operations:

Lemma 4. Consider the class Q of queries that can be seen as combinations
of select and join operations on u > 2 tables T1, . . . , Tu. Let Si = (Ti, Ri), i =
1, . . . , u be the range space associated with the select queries on the u tables.
Let vi = V C(Si). Let m be the maximum number of columns in a table Ti. We
assume m ≤∑

i vi.2 Let SQ = (T1 × · · · × Tu, RQ) be the range space associated
with the class Q. The range set RQ is defined as follows. Let ρ = (r1, . . . , ru),
ri ∈ Ri, and let ω be a sequence of u − 1 join conditions representing a possible
way to join the u tables Ti, using the operators {>, <,≥,≤, =, �=}. We define the
range

Jω
ρ = {(t1, . . . , tu) : ti ∈ ri, s.t. (t1, . . . , tu) satisfies ω}.

RQ is the set of all possible Jω
ρ . Then,

V C(SQ) ≤ 4u(
∑

i

V C(Si)) log(u
∑

i

V C(Si)).

We could not reduce the claim of this lemma to any know result in the VC-
dimension theory. Our proof constructs a bound on the maximum size of a
shattered set, by considering the effect of the different operators on the output.
See the full version of the paper [51] for more details.

General Queries. Combining the above results we prove:

Theorem 2. Consider the class Qu,m,b of all queries with up to u − 1 join
and u select operations, where each select operation involves no more than m
columns and b Boolean operations, then V C(Qu,m,b) ≤ 12u2(m + 1)b log((m +
1)b) log(3u2(m + 1)b log((m + 1)b)).
2 The assumption m ≤∑i vi is reasonable for any practical case.
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5 Implementation

Consider a database D and a class of queries Qu,m,b. Theorem 2 gives a bound
to the VC-dimension of the range space (D, Qu,m,b), where D is the Cartesian
product of all the tables in D. Theorem 1 gives the required size of a uniform
random sample S of D, such that the execution of any query q ∈ Qu,m,b on S
gives an ε-approximation (or a relative (p, ε)-approximation) of the selectivity
of q when executed on D (see Table 1 for concrete values). Note that for any
execution plan of a query q ∈ Qu,m,b, all the queries that correspond to subtrees
rooted at internal nodes of the plan are queries in Qu,m,b. Thus, by running
query q on the sample we obtain accurate estimates for the selectivity of all the
subqueries defined by its execution plan.

In practice, it is more efficient to maintain the table structure of the original
database in the sample. It is easier to sample each table independently, and to
run the query on a sample that consists of subsets of the original tables rather
than re-writing the query to run on a Cartesian product of tuples. However, the
Cartesian product of independent uniform samples of tables is not a uniform
sample of the Cartesian product of the tables [9]. We developed a procedure to
circumvent this problem. Due to space constraints, we present here an informal
description of the procedure and refer the interested reader to the full version
of the paper [51]. Assume that we need a uniform sample of size t from D,
which is the Cartesian product of 
 tables T1, . . . , T	. We then sample t tuples
uniformly at random from each table Ti, to form a sample table Si. We add an
attribute sampleindex to each Si and we set the value in the added attribute
for each tuple in Si to a unique value in [1, t]. Now, each sample table will
contain t tuples, each tuple with a different index value in [1, t]. Given an index
value i ∈ [1, t], consider the set of tuples Xi = {x1, . . . , x	}, xj ∈ Si such that
x1.sampleindex = x2.sampleindex = · · · = x	.sampleindex = i. Xi can be seen
as a tuple sampled from D, and the set of all Xi, i ∈ [1, t] is a uniform random
sample of size t from D. We run queries on the sample tables, but in order to
estimate the selectivity of a join operation we count a tuple Y in the result only
if the set of tuples composing Y is a subset of Xi for some i ∈ [1, t]. This is
easily done by scanning the results and checking the values in the sampleindex
columns.

Note that our method circumvent the major difficulty pointed out in [9].
They proved that, in general, it is impossible to predict sample sizes for given
two tables such that the join of the samples of two tables will result in a sample
of a required size out of the join of the two tables. Our method does not require
a sample of a given size from the result of a join. The VC-dimension sampling
technique requires only a sample of a given size from the Cartesian product of
the tables, which is guaranteed by the above procedure.

6 Experiments

The first goal of the experiments is to evaluate the practical usefulness of our
theoretical results. To assess this, we run queries on a large database and on
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Table 1. Sample Sizes (tuples)

Select Join

m b VC-dim Sample size VC-dim Sample size

1

1 2 1000 4 1400
2 4 1400 16 3800
3 6 2800 36 7800
5 10 2600 100 20600
8 16 3800 256 51800

2

2 31 6800
3 57 12000
5 117 24000
8 220 44600

5 5 294 59400

sample representations generated by our method.3 We used the selectivity of the
each query in the random samples as an estimator for the selectivity in the large
database (with the appropriate adjustments for join operations, as described in
the previous section). We computed the error between the estimate and the ac-
tual selectivity to validate the analysis in Thm. 1 in practical settings. The use
of a large number of queries and a variety of parameters allowed us to evalu-
ate the error a function of the sample size. Our second goal is comparing our
results, which give probabilistic guarantees on the error of the predicted selectiv-
ity, with the standard selectivity estimation done using precomputed statistics as
implemented in PostgreSQL and Microsoft SQL Server. Additional experimental
results can be found in the full version of the paper [51].

Setup. The tables in our large database were randomly generated and contain
20 million tuples. The distributions of values in the columns fell in two different
categories: 1. uniform and independent : the values in the columns were chosen
uniformly and independently at random from a fixed domain. Each column was
treated independently from the others. Tables involved in join queries belonged
to this category only. 2. correlated : two columns of the tables contained values
from a multivariate normal distribution with mean M = μI2,2 and a non-identity
covariance matrix Σ. We sampled tuples from the large tables uniformly, inde-
pendently, and with replacement, to build the sample tables. For the samples
of the tables used to run join queries, we added a column sampleindex to each
tuple as described in Sect. 5. For each table in the original database we created
many sample tables of different sizes, either fixed arbitrarily to 1000, 2000, or
5000 tuples or computed using (1). To compute the VC-dimension-dependent
sample size, we fixed ε = 0.05, δ = 0.05, and c = 0.5, as suggested by Löffler and
Phillips [41]. The parameter d was set to the best bound to the VC-dimension of
the range space of the queries we were running, as obtained from our theoretical
results. We used m = 1, 2 (only m = 1 for joins) and b = 1, 2, 3, 5, 8, with the
3 We focused on building ε-approximations, but relative (p, e)-approximations would

give similar results.
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addition of the combination m = 5, b = 5. Table 1 shows the sample sizes as
number of tuples. We stress again the fact that the sample sizes are independent
from the sizes of the original tables, so the larger the original table, the smaller
will be the ratio between the sample size and the original size and the higher
the gains in terms of space. We built PostgreSQL histograms with a different
number of buckets, ranging from 100 to 10000. For SQL Server, we built the stan-
dard single-column histograms and computed the multi-column statistics which
should help obtaining better estimations when the values along the columns are
correlated. For each combination of the parameters m and b and each large table
(or pair of large tables, in the case of join) we created 100 queries, with selection
predicates chosen independently and uniformly at random, involving m columns
and b Boolean clauses.

Results. A major result of our experiments is that for all the queries we run and
all the sample tables the estimate of the selectivity computed using the selectivity
in the sample was within ε (0.05) from the real selectivity. The same was not
true for the selectivity computed by the histograms. As an example, in the case
of m = 2, b = 5 and uniform independent columns, the default PostgreSQL
histograms predicted a selectivity more than ε off from the real selectivity for 30
out of 100 queries. Nevertheless, from time to time the histograms predicted a
selectivity closer to the actual one than the prediction from the sample. This is
especially true when the histogram assumption are verified (e.g., for m = 1, b = 1
the default PostgreSQL histograms gave a better prediction than the sample in
28 out of 100 cases). This “inversion of precision” becomes less and less frequent
as the sample size grows and as the complexity of the queries grows. Since the
selectivity estimated by the sample was always within ε from the actual, we
focused on the percent error, i.e. on the quantity e% = 100|p(σq)−σD(q)|

σD(q) where
p(σq) is the predicted selectivity. We can see from Fig. 1 and 2 that both
the average and the standard deviation of the percentage error of the sample
prediction decrease as the sample size grows. Much more interesting than this is
the comparison between the performance of the histograms and the performance
of the sample in predicting selectivities. When the assumptions of the histograms
hold, as is the case for the data plotted in Fig. 1, the predictions obtained from
the histograms can be of good quality. As said though, for a majority of queries,
the prediction from the sample is better than the one from the histograms.

But as soon as the data are correlated (Fig. 2), the sample gives better predic-
tions than the histograms even at the smallest sample sizes and keeps improving
as the sample grows larger. In Fig. 2 we do not show multiple curves for the
different PostgreSQL histograms because increasing the number of buckets had
very marginal impact on the quality of the estimates, sometime even in the neg-
ative sense (i.e., an histogram with more buckets gave worse predictions than
an histogram with less buckets), a fact that can be explained with the vari-
ance introduced by the sampling process used to create the histograms. For the
same reason we do not plot multiple lines for the prediction obtained from the
multi-columns and single-column statistics of SQL Server. The strengths of our
method compared to histograms become more evident when we run join queries.
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Fig. 1. Select – Uniform Independent Columns – m = 2, b = 5
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Fig. 2. Select – Correlated Columns – m = 2, b = 8

In our experiments, the predictions obtained from the sample were always within
ε from the real values, even at the smallest sample sizes, but the same was not
true for histograms. Figure 3 shows the comparison between the average and the
standard deviation of the percentage error for the histograms and the sample.
The numbers include predictions for the selection operations at the leaves of the
query tree. The extremely bad performances of PostgreSQL is due to the fact
that for some join queries, the histograms may predict an output size on the
order of the hundreds of thousands tuples but the actual output size was zero or
a very small number of tuples. Such errors drive the average and the standard
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Fig. 3. Join – Uniform Independent Columns – m = 1, b = 1

deviation to very high values, but the comparison with the sample is fair and the
prediction from the histograms are just not of good quality in such cases. The
performance of SQL Server can be explained by the fact that this DBMS does
not only use histograms to predict the selectivity of the query but also analyzes
the query predicates and its query optimizer is very good in understanding when
a query would return an empty output, therefore avoiding major errors in the
estimation. This is something that vanilla histograms could not do, so the com-
parison with the sample is actually a bit unfair against the sample. Figure 3 also
shows a comparison between the percentage error of predictions obtained from
the sample in two different ways: the “theoretically correct”way that makes use
of the number of pairs of tuples with the same value in the sampleindex column
to predict the selectivity and the “practitioner” way which uses the size of the
output of the join operation in the sample, ignoring the sampleindex column,
i.e., without filtering out the tuples not belonging to the sample of the Cartesian
product of the original tables.

From the experiments we ran we can conclude that our method for estimating
the selectivity is a viable option in practice. The theoretical guarantees were
always satisfied, with a consistency and an accuracy even higher than guaranteed.
This fact can be explained by the potential looseness of the bounds to the VC-
dimension of queries, and therefore to the sample size. From a practical point
of view, it is also interesting that a sample of the Cartesian product is not
necessary, and a certain level of non-uniformity in the sampling process may
be accommodated. It may even well be that it is not necessary to use uniform
independent sampling in order to obtain a ε-approximation.
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7 Conclusions

We develop a novel method for estimating the selectivity of queries by executing
it on a concise, properly selected, sample of the database. We present a rigorous
analysis of our method and extensive experimental results demonstrating its
efficiency and the accuracy of its predictions.

Most commercial databases use histograms built on a single column, for se-
lectivity estimation. There has also been significant research on improving the
estimate using multidimensional histograms [6, 49, 52, 54] and join synopses [1].
The main advantage of our method is that it gives uniformly accurate estimate
for the selectivity of any query within a predefined VC-dimension range. Method
that collect and store pre-computed statistics gives accurate estimates only for
the queries captured by the collected statistics, while estimates of any other
query relies on an independence assumption.

To match the accuracy of our new method with histograms and join synopses
one would need to create, for each table, a multidimensional histogram where
the number of dimensions is equal to the number of columns in the tables. The
space needed for a multidimensional histogram is exponential in the number of
dimensions, while the size of our sample representation is almost linear in that
parameter. Furthermore, to estimate the selectivity for join operations one would
need to create join synopses for all pairs of columns in the database, again in
space that grows exponential in the number of columns.

It is interesting to note that the highly theoretical concept of VC-dimension
leads in this work to an efficient and practical tool for an important data analysis
problem.
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44. Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)
45. Miller, R.J.: Simultaneous Statistical Inference, 2nd edn. Springer, Heidelberg

(1981)
46. Ngu, A.H., Harangsri, B., Shepherd, J.: Query Size Estimation for Joins Using

Systematic Sampling. Distributed and Parallel Databases 15, 237–275 (2004)
47. Olken, F.: Random Sampling from Databases. Ph.D. dissertation, LBL Tech. Re-

port LBL-32883 (1993)
48. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved Histograms for

Selectivity Estimation of Range Predicates. In: SIGMOD 1996 (1996)
49. Poosala, V., Ioannidis, Y.E.: Selectivity Estimation without the Attribute Value

Independence Assumption. In: VLDB 1997 (1997)
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Ali, Omar III-613
Allab, Kais I-28
Almeida, Hélio I-44
Al-Stouhi, Samir I-60
Amini, Massih-Reza III-443
Ammar, Sourour III-113
Anagnostopoulos, Aris I-76
Anand, Rajul I-92
Andrienko, Gennady III-654
Andrienko, Natalia III-654
Antonini, Gianluca I-613
Antzoulatos, Gerasimos S. I-108
Appice, Annalisa III-333
Arai, Hiromi I-124
Asur, Sitaram III-18
Atzmueller, Martin III-129
Awais, Muhammad I-140

Balle, Borja I-156
Barabási, Albert-László I-3
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Gáspár-Papanek, Csaba II-48
Gaudel, Romaric I-343
Geurts, Pierre III-113
Giannotti, Fosca III-650
Gionis, Aristides II-549
Globerson, Amir II-470
Glorot, Xavier II-645
Goethals, Bart III-634
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Puolamäki, Kai II-341

Quattoni, Ariadna I-156
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