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Abstract.  Available XPath evaluators basically follow one of two strategies to 
evaluate an XPath query on hierarchical XML data: either they evaluate it top-
down or they evaluate it bottom-up. In this paper, we present an approach that 
allows evaluating an XPath query in arbitrary directions, including a mixture of 
bottom-up and top-down direction. For each location step, it can be decided 
whether to evaluate it top-down or bottom-up, such that we can start e.g. with a 
location step of low selectivity and evaluate all child-axis steps top-down at the 
same time. As our experiments have shown, this approach allows for a very ef-
ficient XPath evaluation which is 15 times faster than the JDK1.6 XPath query 
evaluation (JAXP) and which is several times faster than MonetDB if the file 
size is ≤ 30 MB or the query to be evaluated contains at least one location step 
that has a low selectivity. Furthermore, our approach is applicable to most com-
pressed XML formats too, which may prevent swapping when a large XML 
document does not fit into main memory but its compressed representation 
does. 

Keywords: XML, top-down XPath evaluation, bottom-up XPath evaluation. 

1   Introduction 

1.1   Motivation 

XML gains more and more popularity not only as a data exchange format, but also as 
a storage, archive or data management format and XPath is the main standard to ex-
press path queries on XML data.  

Whenever XPath query evaluation is a bottleneck of an application, a fast XPath 
query evaluator is desired. If in addition, XML documents may become larger than 
the available main memory space, it may be a significant advantage when the fast 
XPath query evaluator can process XPath queries on compressed XML documents 
that can still fit into main memory. We present such a fast XPath query evaluator that 
relies on just a minimal set of XML navigation steps, such that it is applicable not 
only to plain XML data, but also to most queryable compressed XML data formats.  
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1.2   Contributions 

“Traditional” XPath evaluators typically evaluate the hierarchical XML data either 
top-down or bottom-up, as both techniques provide advantages for different classes of 
queries. In this paper we present an approach that allows XPath evaluation in any 
direction and that combines the following properties: 

─ The approach presented in this paper supports both, bottom-up and top-down 
XPath query evaluation on an XPath subset that extends core XPath as defined 
in [1] by comparisons of paths to constants within predicate filters.  

─ Even more, our approach allows a dynamic mixture of bottom-up and top-down 
query evaluation, such that for each location step, it can be decided whether to 
evaluate it top-down or bottom-up and at which time of the query evaluation 
process. 

─ Our approach is powerful and generic as it requires only minimal support from 
the underlying XML format. That is, our approach can be applied to any un-
compressed or compressed XML representation that provides access to XML 
nodes via the node’s name and provides navigation via the binary axes first-
child, first-child-1, next-sibling, and next-sibling-1, and nevertheless, our  
approach supports all the other XPath axes of core XPath (e.g. ancestor, descen-
dant, following and preceding) within XPath queries.   

─ We have evaluated query performance on two different XML representations – 
one uncompressed and one compressed – that are integrated into our approach. 
Besides a DOM-based XML representation, we have implemented a second 
XML main-memory representation, that is based on Succinct compression [2] 
and that – if combined with an index – not only allows for an XPath evaluation 
as fast as the DOM-based representation, but also needs only 20% of the main 
memory required by a DOM representation. 

─ Finally, we have implemented different ‘evaluation strategies’ that decide, 
which sub-queries of a given XPath query to evaluate in which direction, i.e. 
top-down or bottom-up, and at which time of the evaluation process. Further-
more, we have evaluated and compared these navigation strategies within a se-
ries of experiments to determine which is the most efficient navigation strategy 
to evaluate XPath queries. Our experiments have shown that for our test queries, 
the mixed approach is up to 7 times faster than bottom-up evaluation and up to 
56 times faster than top-down evaluation.  

1.3   Query Language 

The subset of XPath expressions supported by our approach extends the set of core 
XPath as defined in [1], as our approach beyond [2] additionally allows comparisons 
of paths to constants within predicate filters. This XPath subset supported by our 
approach is defined by the following EBNF grammar: 

cxp  ::= `/' locationpath 
locationpath ::= locationstep ('/' locationstep)* 
locationstep ::= x `::' t | x `::' t `[' pred `]' 
pred  ::= pred `and' pred | pred `or' pred | `not' `(' pred `)'  
                   | locationpath | locationpath ‘=’ const |`(' pred `)' 
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“cxp” is the start symbol, “x” represents an axis (self, child, parent, descendant-or-
self, descendant, ancestor-or-self, ancestor, following, preceding, following-sibling, 
preceding-sibling), “const” represents a constant, and “t” represents a “node test" 
(either an XML node name test or “*”, meaning “any node name”). 

Note that our system supports – aside from the evaluation in top-down or in bot-
tom-up direction – using the sibling axes in XPath queries, whereas other approaches 
like XMLTK[3], χαοζ[4], AFilter [5], YFilter[6], XScan[7], SPEX[8], and XSQ[9] 
are limited to using the parent-child and the ancestor-descendant axes only. 

1.4   Paper Organization 

This paper is organized as follows: Section 2 summarizes the fundamental concepts 
used for describing our approach to evaluate XPath queries consisting of a single path 
and XPath queries with filters. Furthermore, this section describes the different evalu-
ation strategies that could be used for evaluating an XPath query. The third section 
outlines some of the experiments that compare the different evaluation strategies of 
our prototype with each other and with other XPath evaluators. Section 4 gives an 
overview of related work and is followed by the Summary and Conclusions. 

2   Our Solution 

2.1   Overview of Our Solution 

We follow the ideas of [1] and [10] to rewrite the given XPath queries, such that they 
no longer use all the core XPath axes, but only a small set of basic binary axes con-
taining the axes first-child, first-child-1, next-sibling, next-sibling-1, and self. Table 1 
shows how to rewrite each standard XPath axis into a regular expression using only 
the basic binary axes. 

Table 1. Axis definition in terms of the basic binary axes 

Axis Binary expression 
child first-child, (next-sibling)* 
parent (next-sibling-1)*, first-child-1 
descendant first-child, (first-child | next-sibling)* 
ancestor (first-child-1 | next-sibling-1)*, first-child-1 
following-sibling next-sibling, (next-sibling)* 
preceding-sibling next-sibling-1, (next-sibling-1)* 
following (((first-child-1 | next-sibling-1)*,first-child-1) | self), next-sibling, (next-sibling)*,  

((first-child, (first-child | next-sibling)*) | self) 
preceding (((first-child-1 | next-sibling-1)*,first-child-1) | self), next-sibling-1,  

(next-sibling-1)*, ((first-child, (first-child | next-sibling)*) | self) 

Based on the binary XPath expressions given in Table1, we provide an atomic au-
tomaton using the binary axes for each XPath axis. For example, Figure 1 (a) shows 
an automaton generated for a location step child::a, and Figure 1 (b) shows an auto-
maton generated for a location step parent::a. fc represents the first-child axis, fcR the 
axis first-child-1, ns the next-sibling axis, nsR the axis next-sibling-1, and self the self 
axis.  
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Fig. 1. Atomic automata for the location steps (a) child::a and (b) parent::a 

Similar to the approach provided in[10], we translate each location step LSi of a 
given XPath query into a single atomic automaton BAi. The advantage of reducing all 
the XML axes listed in Table 1 to the basic axes (first-child, first-child-1, next-sibling, 
next-sibling-1, and self) is that we require the XML representation only to support the 
navigation along the basic axes together with an efficient access to all nodes that have 
a given node name. This requirement is met e.g. for uncompressed XML by the DOM 
representation or e.g. for compressed XML by the succinct representation[2]. There-
fore, the presented approach can be applied to uncompressed XML as well as to com-
pressed XML, if the XML format supports at least navigation along the basic axes and 
access to node names, although our approach applied to the XML format supports the 
much larger superset of core XPath described in Section 1.3.  

The XPath query is represented as a special kind of non-deterministic finite auto-
maton that we call a ‘token automaton’. A token automaton not only contains states 
and transitions, but also allows for using each state in any number of tokens each of 
which represents an answer to a sub-query within the XML document. According to 
the events produced by the input XML document representation, the token-automaton 
fires transitions and transfers tokens, i.e. generates new tokens, along the binary axes 
first-child, first-child-1, next-sibling, next-sibling-1, and self.   

The atomic token automata build a construction kit from which the final automaton 
representing an XPath query is built. In contrast to traditional automata, not the input 
– i.e., the XML document representation – controls, which transitions can be fired 
next, but there exist an external controlling instance – called DecisionModule – that 
decides, which transition will be fired next. In other words, the DecisionModule de-
cides for each location step of the query whether it is evaluated top-down or bottom-
up, and at which time of the query evaluation this location step is evaluated. 

Each transition of the automaton can either be fired top-down, i.e., it consumes the 
binary axis that is denoted by the transition label and the tokens are transferred in the 
direction given by the transition, or it can be fired bottom-up, i.e., it consumes the 
inverse of the binary axis denoted by the transition label and the tokens are transferred 
opposite to the given direction. We assume, that the used XML compression provides 
– similar as it is provided by DOM – access to a list of nodes that fulfill a given node 
name test and supports navigation via the binary axes first-child, first-child-1, next-
sibling, next-sibling-1, and self. 

2.2   XPath Automata 

Each atomic automaton contains one state that is called a stable state and that carries a 
node name test as label and that accepts only the tokens referring to those XML nodes 
which fulfill the given node name test. Stable states are marked by a double circle. 
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The notation of the transitions of the automaton only shows the top-down evaluation; 
the bottom-up evaluation can be taken by reversing the transition direction and by 
replacing each transition label by its reverse. The other atomic automata are built in a 
similar way to the child::a automaton shown in Fig. 1 according to the regular expres-
sions provided in Table 1. If a location step LSi is followed by a location step LSj in a 
query Q, we concatenate the atomic automaton BAi corresponding to LSi and the 
atomic automaton BAj corresponding to LSj to the token automaton XPQ of query Q 
by drawing a self transition from the final state of BAi to the start state of BAj. 

For example, Fig. 2(a) shows the automaton for the query Q = //a/b.  All states 
have as label an ID of the form s0,…,s6, and the stable states have as an additional 
label the node name test that has to be fulfilled by an XML node in order to be ac-
cepted by this stable state. The root (state s0) is connected via a self-axis to the auto-
maton for //a (states s1-s3) which is connected by another self-axis to the automaton 
for /b (states s4-s6). 

 

Fig. 2. (a) XPath automaton for query //a/b , and (b) a small example document where each 
node is represented by a node ID and the node’s  label 

2.3   Evaluation of Filter-Less Paths 

Overview: In order to evaluate an XPath query Q, first, the automaton A for Q is 
built as described in the previous section. Each pair (sx,sy) of stable states in A for 
which a path from sx to sy exists in A represents a relative XPath expression R that is 
a sub-sequence of location steps of Q.  

Second, tokens each of which represents an answer to such a relative XPath ex-
pression R are created, transferred, joined, and deleted until all tokens that represent 
an answer to Q are computed. Let sx, sy be stable states in A, let R be the sub-query 
of Q that corresponds to the sub-automaton including all paths and states from sx to 
sy of the automaton A for Q, and let nv, nw be nodes in the given XML document. 
Then the token T=(nv/sx, nw/sy) represents an answer nw to the sub-query nv/R .  

DecisionModule: A DecisionModule controls the order and the direction (bottom-up 
or top-down), in which the sub-queries are evaluated, i.e., it decides which of the 
stable states are taken as start states and for which state occurring in a token, partial 
sub-query evaluation is continued, i.e., which tokens are transferred next in which 
direction, and when tokens are joined.  
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Token Creation in Start States: Start states can be defined at any time during the 
execution. At any time, each state, none of the incoming or outgoing transitions of 
which had been fired, can be chosen as an additional start state. Whenever the Deci-
sionModule declares a stable state s to be a start state, for each node n in the XML 
document that fulfills the node name test of s, a token (n/s, n/s) is created.  

If for example the state with ID s6 of Fig. 2(a) is declared as a start state, i.e., we 
look for XML elements that are answers to the sub-query //self::b, tokens (3/s6, 3/s6), 
(5/s6, 5/s6), and (7/s6, 7/s6) are created for the nodes b3, b5, and b7 in Fig. 2(b), 
where b is the node label followed by the node ID (3,5,or 7).  

Token Deletion: For each state s in A, except for the root state and the target state, 
when all transitions from s and all transitions to s have been fired and all join tokens 
for s have been computed as described below, all tokens containing s as the start state 
or as the final state are automatically deleted. Automatic token deletion can be partial-
ly switched off in order to implement a navigation cache as described in Section 2.4. 

Partial Sub-query Evaluation: A sub-query R is top-down partially evaluated by 
firing all the transitions on a path from sx to sy. This operates on all tokens T=(nu/sz, 
nv/sx) that contain sx as their final state, i.e. represent an answer to a sub-query 
represented by paths in A ending in state sx, and it eventually generates new tokens 
that contain sy as their final state, i.e., for each answer nw to nv/R, this generates a 
new token T’=(nu/sz, nw/sy).  

Similarly, a sub-query is bottom-up partially evaluated by firing all the inverted 
transitions of the transitions on a path from sx to sy in reversed order. This operates 
on all tokens T=(nw/sy, nt/sz) that contain sy as their start state, and it eventually 
generates new tokens that contain sx as their start state, i.e., for each answer nv to 
nw/R-1, this generates a new token T’=(nv/sx, nt/sz). 

Let si and sj be stable or non-stable states. To fire a transition with label fc (or ns 
or fcR or nsR respectively) that starts in state si and ends in state sj for a token 
T=(nu/sz, nv/si) with final state si in top-down direction means the following: to 
check, whether there exists a node with ID nw in the XML tree such that the node 
with ID nw is the first-child (or the next-sibling or fcR or previous-sibling respective-
ly) of the node with ID nv. If such a node exists, a token T’=(nu/sz, nw/sj) is generat-
ed, otherwise no token is generated. 

Correspondingly, to fire a transition with label fcR (or nsR or fc or ns respectively) 
that starts in state si and ends in state sj for a token T=(nw/sj, nt/su) with start state sj 
in bottom-up direction means the following: to check, whether there exists a node 
with ID nv in the XML tree such that the node with ID nw is the first-child (or the 
next-sibling or fcR or previous-sibling respectively) of the node with ID nv. If such a 
node exists, a token T’=(nv/si, nt/su) is generated, otherwise no token is generated.  

A transition with a label self from the start state si  to the end state sj can be fired 
for each token having si as final state in case of top-down evaluation and for each 
token having sj as start state in case of bottom-up evaluation. Firing the transition 
during top-down evaluation generates for each token T=(nu/sz, nv/si) another token 
T’=(nu/sz, nv/sj), whereas firing the transition during bottom-up evaluation generates 
for each token T=(nv/sj, nu/sz) another token T’=(nv/si, nu/sz). 

Whenever a token with a non-stable state s’ is generated during sub-query evalua-
tion in a direction D (bottom-up or top-down), all transitions that can be fired from s’ 
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in the same direction as D are fired. Thereafter, tokens containing s’ are deleted. This 
processing of tokens containing unstable states is repeated until all existing tokens 
have reached stable states again. When this happens, the DecisionModule gets the 
control again and decides which tokens are transferred next.  

Consider for example the tokens (3/s6, 3/s6), (5/s6, 5/s6), and (7/s6, 7/s6) 
representing answers to the sub-query //self::b. If we fire the transitions from state s6 
to state s3 in bottom-up direction, this removes and transfers the tokens having state 
s6 as their start state, and it will stop, when all tokens are either deleted or transferred 
to tokens having state s3 as their start state. In this case, the generated tokens (2/s3, 
3/s6), (1/s3, 5/s6) say that the sub-query self::a/b represented by the sub-automaton 
between the states s3 and s6 applied to the XML nodes with IDs 2 (and 1 respective-
ly) yields as answers the XML nodes that have the IDs 3 (and 5 respectively).  

If we additionally create a token (0/s0, 0/s0) in the state s0 for the XML root node 
and transfer this token from s0 top-down, when token generation stops, we get the 
tokens (0/s0, 1/s3), (0/s0, 2/s3),(0/s0, 4/s3), and (0/s0, 6/s3) saying that the sub-query 
//a represented by the states of the sub-automaton between state s0 and state s3 returns 
the XML nodes with IDs 1, 2, 4, and 6 as answers. 

Token Joining: Whenever at the end of a token transfer phase, the same stable state 
sy occurs as final state in tokens T1 and as start state in other tokens T2, we perform a 
so called ‘token joining’ and join those pairs (T1,T2) of tokens that relate sy to the 
same XML node nv with each other. A token joining of two tokens T1=(sx/nu, sy/nv) 
and T2=(sy/nv, sz/nw) yields a new join token T3=(sx/nu, sz/nw). 

In our example, the tokens T1 ∈ { (2/s3, 3/s6) , (1/s3, 5/s6) } have the start state 3, 
and the tokens T2 ∈ { (0/s0, 1/s3), (0/s0, 2/s3),(0/s0, 4/s3), (0/s0, 6/s3) } have the 
final state 3. If we perform token joining on all pairs (T1,T2) of tokens, we get the 
join tokens j1=(0/s0, 3/s6) and j2=(0/s0, 5/s6). These join tokens express that the 
answers to the concatenated sub-query //a/self::a/b represented by the automaton 
between state s0 and state s6 applied to the XML node with ID 0 (the root node) re-
turns the XML nodes with IDs 3 and 5 as answers. As all incoming and outgoing 
transitions of s3 have been fired, and all join tokens involving s3 have been com-
puted, thereafter all tokens containing s3 as start state or as final state are deleted.  

Token joining can also be used for finally joining the answers when query evalua-
tion starts at an inner state and proceeds in different directions. If we declare for ex-
ample state s3 as the single start state and transfer the tokens (1/s3, 1/s3), (2/s3, 2/s3), 
(4/s3, 4/s3), and (6/s3, 6/s3) top-down and bottom-up, 6 additional tokens are gener-
ated and the state s0 occurs as start state in the 4 tokens (0/s0, 1/s3), (0/s0, 2/s3), 
(0/s0, 4/s3), and (0/s0, 6/s3) and the state s6 occurs as final state in the 2 tokens (1/s3, 
5/s6) and (2/s3, 3/s6). Finally, token joining calculates the final results (0/s0, 3/s6) 
and (0/s0, 5/s6) that express that by applying the query //a/b represented by the (sub-) 
automaton from the start state s0 to the final state s6 to the XML node with ID 0 (the 
root node) yields the XML nodes with IDs 3 and 5 as query results. 

2.4   Optimization Using a Navigation Cache 

If we consider the XML tree of Fig. 2(b) and the query //a//b and the nodes with ID 5 
and with ID 7 and transfer the tokens bottom-up in a naïve way, similar new tokens 
are generated for the nodes a2, a1, and #root0, i.e., we pass this path in the tree more 
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than once. In order to overcome this weakness, we have introduced the concept of a 
so called navigation cache that caches tokens representing sub-query evaluations of 
multiple paths in the XML document tree.  

For example, if the token for b5 is transferred first, the token for b7 can read the cache 
information of node b5 and can be transferred directly to the root node without having to 
pass the path via b5, a2, a1, and #root0 a second time. This information is being used for 
bottom-up evaluation only and is not considered for top-down evaluation. 

2.5   Evaluation of Queries with Filters 

Whenever a location step L that is represented by a pair (sx,sy) on the main path of an 
XPath query Q contains one or more predicate filters, each predicate filter Fi is 
represented by a filter automaton Ai having  a state si as its root and a final state sfi 
representing the final state of the main path of the filter. A filter automaton Ai has the 
same design and functionality as the automaton for the main path of Q as described in 
the previous section. As with all location steps, each location step within a filter au-
tomaton can be evaluated top-down or bottom-up.  

Token transfer between the root state si of a filter automaton Ai and the final state 
sy representing the location step L having filter Fi, can be done either top-down, i.e. 
from sy to si, if tokens containing sy are generated first, or bottom-up, i.e. from si to 
sy, if Fi is evaluated first.  

Bottom-Up Token Transfer: If the tokens are transferred bottom-up, i.e. the filter 
path for Fi is evaluated before tokens containing the node sy are generated, let ST={ 
(n1/si, nf1/sf1), …, (nk/si, nfk/sfk) } be the set of all the tokens computed for path 
from si to sfi. Then the set N={n1,…nk} contains exactly those XML nodes for which 
Fi evaluates to true.  

Then, the automaton state sy to which the filter path is connected reacts similar to a 
state without an attached filter with the difference, that not for each XML node that 
fulfills the given node name test a token is created, but only for those XML nodes 
contained in the set N which fulfill the given node name test.  

Top-Down Token Transfer: Otherwise, i.e., if tokens are transferred top-down from 
sy to si, we follow an idea of [10]: Whenever a token T1=(…,nv/sy) or a token T1= 
(nv/sy,…) that contains the state sy is generated, this token gets a reservation that 
depends on whether or not the filter automaton for Fi evaluates to true for the XML 
node nv. At the same time, the filter automaton for Fi is switched active, i.e., a token 
(nv/si, nv/si) is generated which turns si into a start state of the filter automaton.  

If the filter automaton Fi finally evaluates to true for the XML node nv, the res-
ervation for Fi is deleted. We say that the execution of the filter automaton for Fi 
having a start state si and a final state sfi on its main path evaluates to true for the 
XML node nv, if and only if eventually a token (nv/si, nw/sfi) is generated for a XML 
node nw. Otherwise, we say that the evaluation of the filter automaton for Fi eva-
luates to false for the XML node nv, and the token T1 itself is deleted and consi-
dered invalid. However, if, finally, all the reservations for a filter attached to sy are 
deleted, the T1 token is considered valid.  
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The states of the filter automaton can be connected to other filter automata, such 
that nested filter automata for implementing nested XPath filter expressions can be 
evaluated by this concept as well. 

2.6   Evaluation Strategies 

We have implemented different types of DecisionModules that follow different eval-
uation strategies in order to evaluate an XPath query. The first two Decision Modules 
follow the ‘traditional’ ways to evaluate queries.  

─ The Top-Down-Module declares the root state as the only start state. Tokens are 
added to the first state of each filter automaton FA as soon as a token is added to 
the state to which FA is attached to. All paths, i.e. the main path of the XPath 
expression and all filter paths, are evaluated top-down. 

─ The Bottom-Up-Module declares the target state of the automaton for the main 
path and each target state of a filter automaton as the start states. All paths are 
evaluated bottom-up. 

─ The Minimum-Module considers the locations steps in the main path and in all 
filter paths and declares the stable state of that location step having the lowest 
selectivity of the whole query as the only start state. If the start state is part of a 
filter, the corresponding filter path is evaluated top-down and bottom-up starting 
at the start state and the result is added to the state of the main path to which the 
filter is attached. Then, the state of the main path behaves like a start state: From 
that given start state, the remaining main path of the XPath query is evaluated 
bottom-up to the root and top-down to the target state of the main path. Fur-
thermore, all other filter paths are evaluated top-down. 

Determining the location step having the lowest selectivity is not trivial. Currently, 
we are using a simple heuristics that regards that location step LS=/axis::nnt as the 
location step having the lowest selectivity, for which the least number of nodes exist 
in the document that fulfill the node name test nnt. 

3   Evaluation of Our Prototype Implementation 

3.1   Experimental Setup 

Our test system has an Intel Core 2 Duo with 2,53 GHz (T9400) processor and  
4 GB 1066 DDR 3 RAM. The prototype is implemented in Java and runs on JDK 1.6 
Update 21 with an extended RAM and function stack (parameters -Xmx1300M  
-Xss4096k). For MonetDB [11], we have used the Oct2010-SP1 build and the meas-
ured execution time is Trans+Shred+Query. For eXist-DB (http://exist-db.org/) we 
have used version 1.4.0. 

Our evaluation was performed on the documents generated by the XMark bench-
mark [12] with original XML document sizes varying from around 2 MB to 50 MB. 
We have evaluated our prototype on the queries A1-A7 and B2-B4 of the XPathMark 
[13] benchmark suite as well as on some additional, practice-oriented queries (Q1-
Q6) for showing the advantages of our system (especially on queries with location 
steps of outstanding low selectivity). The queries that we used are shown in Table 2. 
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Table 2

A1 /site/closed_auctions/clos
A2 //closed_auction//keywor
A3 /site/closed_auctions/clos
A4 /site/closed_auctions/clos
A5 /site/closed_auctions/clos
A6 /site/people/person[profil
A7 //keyword
B2 //keyword/ancestor::listit
B3 /site/open_auctions/open
B4 /site/open_auctions/open
Q1 //people//age
Q2 /site/people/person[profil
Q3 //person[.//gender='femal
Q4 //person[.//country='Unit
Q5 //person[.//country='Unit
Q6 //item[payment='Creditca

3.2   Comparison of Decisi

In our first series of meas
each other. We performed a
compression as compressed
representation. As the expe
Java DOM representation y
main memory than the exe
on presenting the results rec

Fig. 3 compares the thre
and “Minimum(Min)”. Na
have shown that this techni
shown in Fig. 3 was perfor
factor 0.2), but other docu
scales linear with increasin
BU outperforms the execut
the best evaluation strategy 
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to ~30 MB, the Module “Min” is outperforming MonetDB as well. This is due to the fact 
that MonetDB needs a high overhead for query optimization but scales nearly constantly 
for for the document sizes tested in our evaluation. For queries with low selectivity (e.g. 
Q3 and Q6) our approach can outperform MonetDB also for files having a size of more 
than 30 MB. Furthermore, when comparing run-time, note that our prototype is a Java 
application, whereas MonetDB is a strongly optimized C application. 

4   Related Works 

There exist several different approaches to the evaluation of XPath queries on XML 
data. They can be divided into categories by the subset of XPath that they support. 
Nearly all of them are based on automata (X-scan[7], XMLTK[3], YFilter[6], 
[10],[13], [14], AFilter [5], XSQ [9], SPEX [8]) or parse trees ([15], [4], [16], [17]). 
All of them support the axes child and descendant-or-self and most of them support 
predicate filters and wildcards, but besides [10] and [18] none of them support the 
sibling-axes as our solution does. 

The approach presented in [1] defines bottom-up as well as top-down semantics 
and presents an bottom-up and a top-down processing algorithm that both run in low-
degree polynomial time for full XPath and an enhanced algorithm that runs in linear 
time for Core XPath that evaluates the main path top-down and the filter paths bot-
tom-up. In contrast to this approach, we try to combine the advantages of bottom-up 
and top-down processing by choosing bottom-up or top-down evaluation for each 
location-step, such that an algorithm is developed that runs very efficient in practice. 
As our evaluation has shown, the mixed strategy MinimumModule performs and 
scales better that the pure strategies top-down or bottom-up. 

For the automata-based approaches, the XML input stream is the controlling in-
stance that is used as input for the automata representing the Query.[19] and [20] 
present a compressed representation for XML together with an XPath evaluator that is 
based on tree automata and that allows to skip irrelevant parts of the compressed 
XML document during the evaluation process. They allow selecting a single start 
point and follow the path to the root bottom-up and the path to the “leafs” of the query 
top-down. In contrast to[19] and [20], we allow the selection of any number of start 
points and the evaluation of the sub-queries in any direction. 

The approach presented in[18] supports the axes self, child, descendant, following 
and following-sibling but does not support backward axes. It translates the queries 
into expressions over the binary axes first-child and next-sibling and then constructs a 
two-layered NFA that consumes the SAX events start-element, end-element and cha-
racter. The first layer evaluates the main path of the query, whereas the second layer 
is responsible for the evaluation of the predicate filters. Our previous approach [10] 
supports all forward axes but supports backward axes only if they are rewritten to 
forward axes before query evaluation starts. It translates queries into an automaton 
that consumes the binary events first-child and next-sibling. It can evaluate streams in  
top-down direction only. XMLTK[3], and YFilter[6], [13], [14] and X-scan[7] are 
based on the lazy construction of  deterministic finite automata (DFA), i.e., the DFA 
is not generated completely at the beginning, but additional states are added only 
when needed. AFilter [5] is adaptable in terms of the memory requirement, i.e., it 
needs a base memory that is linear in query and data size. If more memory is provided 
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to AFilter, AFilter uses the remaining main memory for a caching approach to eva-
luate queries faster than with only the base memory. XSQ [9] and SPEX [8] use a 
hierarchical arrangement or network of transducers, i.e., automata extended by actions 
attached to the states, extended by a buffer to evaluate XPath queries.  

Parse trees – in contrast to automata – take the control of the evaluation process 
themselves, i.e., they decide which node of the parse tree will be processed next and 
check with the XML input document, whether this node can be processed. The ap-
proach presented in [21] translates the input query into a set of parse trees. Whenever 
a matching of a leaf node of a parse tree is found within the data stream, the relevant 
data is stored in form of a tuple that is afterwards evaluated to check whether predi-
cate- and join conditions are fulfilled. χαοζ[4] and [15] build a parse tree as well 
(plus a parse-dag in [4], as they support the parent and the ancestor axis in addition). 
This parse tree is used for ‘predicting’ the next matching nodes and the level in which 
they have to occur. The approach discussed in [16] collapses the parse tree into a 
prefix trie by combining common prefix sequences of child-axis location steps of 
different queries into a leaner single path of the prefix trie. The approach presented in 
[17] uses a parse tree that stores XML nodes that are solutions to the parse tree node’s 
sub-query within a stack that is attached to each node. 

The authors of [22] show that queries containing joins on attribute values can be 
computed in time linear of the XML document but exponentially of the query size. 
They evaluate one path to the join attribute top-down and the path to the second join 
attribute bottom-up. They require a special index on the attribute values and a pointer 
structure representation of the XML document, such that the idea is not applicable to 
arbitrary XML representations as e.g. compressed XML. 

ROX [23] is a run-time optimizer for XQuery that is used as a MonetDB extension. 
It is based on an indexed representation of the XML document that is stored in form 
of relational data. It consists of a relational query optimizer for the ‘relational parts’ of 
an XQuery and an XML query optimizer that is intertwined with the query execution, 
i.e., that adapts the query execution plan during the query execution. In contrast to our 
approach, ROX can be applied to the indexed XML document in form of a relational 
representation only and cannot be applied to compressed XML. 

In comparison to all these approaches, we additionally support the ‘sibling’-axes 
following and following-sibling. Furthermore, beyond [21] and [9], our approach is 
capable to parse streams of recursive XML, i.e., data in which the same element 
names do occur repeatedly along a root-to-leaf path. In comparison to [10] and [18], 
we have used an extended automata model which supports also bottom-up evaluation 
and mixed evaluation strategies. 

5   Summary and Conclusions 

Whenever XPath query evaluation is the bottleneck of an application, and main mem-
ory is small in comparison to memory requirements for fast query evaluation, a fast 
in-memory XPath evaluator that works also on compressed XML structures may be a 
significant improvement towards a better run-time. 

In this paper, we have presented an XPath query processor that can evaluate XPath 
queries on each XML representation that supports a small number of basic binary 
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axes (first-child, first-child-1, next-sibling, next-sibling-1, and self), like e.g. DOM or 
the compressed XML representation ‘Succinct’ [2]. Our query processor decomposes 
and normalizes each XPath query, such that the resulting path queries contain only the 
basic binary axes, and then converts them into lean token automata. A DecisionMo-
dule decides for each location step which evaluation strategy to follow, i.e., which 
location step to evaluate when and in which direction. 

Our tests have shown, that our query processor is very efficient and outperforms 
other approaches like JAXP provided by JDK 1.6 and yields results faster than Mo-
netDB – a database that allows the native storage of XML files and that uses an index 
on this data to speed up the query evaluation – for files up to ~30 MB in general or for 
queries with at least one location step that has a low selectivity. 

As XPath is being used as data access standard in XSLT and XQuery, we are opti-
mistic that the technology proposed in this paper can be used within XSLT processors 
or XQuery processors too.  
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