
J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 27–41, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Mixing Bottom-Up and Top-Down XPath Query
Evaluation

Markus Benter, Stefan Böttcher, and Rita Hartel

University of Paderborn (Germany)
Computer Science

Fürstenallee 11
D-33102 Paderborn

{benter,stb,rst}@uni-paderborn.de

Abstract. Available XPath evaluators basically follow one of two strategies to
evaluate an XPath query on hierarchical XML data: either they evaluate it top-
down or they evaluate it bottom-up. In this paper, we present an approach that
allows evaluating an XPath query in arbitrary directions, including a mixture of
bottom-up and top-down direction. For each location step, it can be decided
whether to evaluate it top-down or bottom-up, such that we can start e.g. with a
location step of low selectivity and evaluate all child-axis steps top-down at the
same time. As our experiments have shown, this approach allows for a very ef-
ficient XPath evaluation which is 15 times faster than the JDK1.6 XPath query
evaluation (JAXP) and which is several times faster than MonetDB if the file
size is ≤ 30 MB or the query to be evaluated contains at least one location step
that has a low selectivity. Furthermore, our approach is applicable to most com-
pressed XML formats too, which may prevent swapping when a large XML
document does not fit into main memory but its compressed representation
does.

Keywords: XML, top-down XPath evaluation, bottom-up XPath evaluation.

1 Introduction

1.1 Motivation

XML gains more and more popularity not only as a data exchange format, but also as
a storage, archive or data management format and XPath is the main standard to ex-
press path queries on XML data.

Whenever XPath query evaluation is a bottleneck of an application, a fast XPath
query evaluator is desired. If in addition, XML documents may become larger than
the available main memory space, it may be a significant advantage when the fast
XPath query evaluator can process XPath queries on compressed XML documents
that can still fit into main memory. We present such a fast XPath query evaluator that
relies on just a minimal set of XML navigation steps, such that it is applicable not
only to plain XML data, but also to most queryable compressed XML data formats.

28 M. Benter, S. Böttcher, and R. Hartel

1.2 Contributions

“Traditional” XPath evaluators typically evaluate the hierarchical XML data either
top-down or bottom-up, as both techniques provide advantages for different classes of
queries. In this paper we present an approach that allows XPath evaluation in any
direction and that combines the following properties:

─ The approach presented in this paper supports both, bottom-up and top-down
XPath query evaluation on an XPath subset that extends core XPath as defined
in [1] by comparisons of paths to constants within predicate filters.

─ Even more, our approach allows a dynamic mixture of bottom-up and top-down
query evaluation, such that for each location step, it can be decided whether to
evaluate it top-down or bottom-up and at which time of the query evaluation
process.

─ Our approach is powerful and generic as it requires only minimal support from
the underlying XML format. That is, our approach can be applied to any un-
compressed or compressed XML representation that provides access to XML
nodes via the node’s name and provides navigation via the binary axes first-
child, first-child-1, next-sibling, and next-sibling-1, and nevertheless, our
approach supports all the other XPath axes of core XPath (e.g. ancestor, descen-
dant, following and preceding) within XPath queries.

─ We have evaluated query performance on two different XML representations –
one uncompressed and one compressed – that are integrated into our approach.
Besides a DOM-based XML representation, we have implemented a second
XML main-memory representation, that is based on Succinct compression [2]
and that – if combined with an index – not only allows for an XPath evaluation
as fast as the DOM-based representation, but also needs only 20% of the main
memory required by a DOM representation.

─ Finally, we have implemented different ‘evaluation strategies’ that decide,
which sub-queries of a given XPath query to evaluate in which direction, i.e.
top-down or bottom-up, and at which time of the evaluation process. Further-
more, we have evaluated and compared these navigation strategies within a se-
ries of experiments to determine which is the most efficient navigation strategy
to evaluate XPath queries. Our experiments have shown that for our test queries,
the mixed approach is up to 7 times faster than bottom-up evaluation and up to
56 times faster than top-down evaluation.

1.3 Query Language

The subset of XPath expressions supported by our approach extends the set of core
XPath as defined in [1], as our approach beyond [2] additionally allows comparisons
of paths to constants within predicate filters. This XPath subset supported by our
approach is defined by the following EBNF grammar:

cxp ::= `/' locationpath
locationpath ::= locationstep ('/' locationstep)*
locationstep ::= x `::' t | x `::' t `[' pred `]'
pred ::= pred `and' pred | pred `or' pred | `not' `(' pred `)'
 | locationpath | locationpath ‘=’ const |`(' pred `)'

 Mixing Bottom-Up and Top-Down XPath Query Evaluation 29

“cxp” is the start symbol, “x” represents an axis (self, child, parent, descendant-or-
self, descendant, ancestor-or-self, ancestor, following, preceding, following-sibling,
preceding-sibling), “const” represents a constant, and “t” represents a “node test"
(either an XML node name test or “*”, meaning “any node name”).

Note that our system supports – aside from the evaluation in top-down or in bot-
tom-up direction – using the sibling axes in XPath queries, whereas other approaches
like XMLTK[3], χαοζ[4], AFilter [5], YFilter[6], XScan[7], SPEX[8], and XSQ[9]
are limited to using the parent-child and the ancestor-descendant axes only.

1.4 Paper Organization

This paper is organized as follows: Section 2 summarizes the fundamental concepts
used for describing our approach to evaluate XPath queries consisting of a single path
and XPath queries with filters. Furthermore, this section describes the different evalu-
ation strategies that could be used for evaluating an XPath query. The third section
outlines some of the experiments that compare the different evaluation strategies of
our prototype with each other and with other XPath evaluators. Section 4 gives an
overview of related work and is followed by the Summary and Conclusions.

2 Our Solution

2.1 Overview of Our Solution

We follow the ideas of [1] and [10] to rewrite the given XPath queries, such that they
no longer use all the core XPath axes, but only a small set of basic binary axes con-
taining the axes first-child, first-child-1, next-sibling, next-sibling-1, and self. Table 1
shows how to rewrite each standard XPath axis into a regular expression using only
the basic binary axes.

Table 1. Axis definition in terms of the basic binary axes

Axis Binary expression
child first-child, (next-sibling)*
parent (next-sibling-1)*, first-child-1
descendant first-child, (first-child | next-sibling)*
ancestor (first-child-1 | next-sibling-1)*, first-child-1
following-sibling next-sibling, (next-sibling)*
preceding-sibling next-sibling-1, (next-sibling-1)*
following (((first-child-1 | next-sibling-1)*,first-child-1) | self), next-sibling, (next-sibling)*,

((first-child, (first-child | next-sibling)*) | self)
preceding (((first-child-1 | next-sibling-1)*,first-child-1) | self), next-sibling-1,

(next-sibling-1)*, ((first-child, (first-child | next-sibling)*) | self)

Based on the binary XPath expressions given in Table1, we provide an atomic au-
tomaton using the binary axes for each XPath axis. For example, Figure 1 (a) shows
an automaton generated for a location step child::a, and Figure 1 (b) shows an auto-
maton generated for a location step parent::a. fc represents the first-child axis, fcR the
axis first-child-1, ns the next-sibling axis, nsR the axis next-sibling-1, and self the self
axis.

30 M. Benter, S. Böttcher, and R. Hartel

Fig. 1. Atomic automata for the location steps (a) child::a and (b) parent::a

Similar to the approach provided in[10], we translate each location step LSi of a
given XPath query into a single atomic automaton BAi. The advantage of reducing all
the XML axes listed in Table 1 to the basic axes (first-child, first-child-1, next-sibling,
next-sibling-1, and self) is that we require the XML representation only to support the
navigation along the basic axes together with an efficient access to all nodes that have
a given node name. This requirement is met e.g. for uncompressed XML by the DOM
representation or e.g. for compressed XML by the succinct representation[2]. There-
fore, the presented approach can be applied to uncompressed XML as well as to com-
pressed XML, if the XML format supports at least navigation along the basic axes and
access to node names, although our approach applied to the XML format supports the
much larger superset of core XPath described in Section 1.3.

The XPath query is represented as a special kind of non-deterministic finite auto-
maton that we call a ‘token automaton’. A token automaton not only contains states
and transitions, but also allows for using each state in any number of tokens each of
which represents an answer to a sub-query within the XML document. According to
the events produced by the input XML document representation, the token-automaton
fires transitions and transfers tokens, i.e. generates new tokens, along the binary axes
first-child, first-child-1, next-sibling, next-sibling-1, and self.

The atomic token automata build a construction kit from which the final automaton
representing an XPath query is built. In contrast to traditional automata, not the input
– i.e., the XML document representation – controls, which transitions can be fired
next, but there exist an external controlling instance – called DecisionModule – that
decides, which transition will be fired next. In other words, the DecisionModule de-
cides for each location step of the query whether it is evaluated top-down or bottom-
up, and at which time of the query evaluation this location step is evaluated.

Each transition of the automaton can either be fired top-down, i.e., it consumes the
binary axis that is denoted by the transition label and the tokens are transferred in the
direction given by the transition, or it can be fired bottom-up, i.e., it consumes the
inverse of the binary axis denoted by the transition label and the tokens are transferred
opposite to the given direction. We assume, that the used XML compression provides
– similar as it is provided by DOM – access to a list of nodes that fulfill a given node
name test and supports navigation via the binary axes first-child, first-child-1, next-
sibling, next-sibling-1, and self.

2.2 XPath Automata

Each atomic automaton contains one state that is called a stable state and that carries a
node name test as label and that accepts only the tokens referring to those XML nodes
which fulfill the given node name test. Stable states are marked by a double circle.

 Mixing Bottom-Up and Top-Down XPath Query Evaluation 31

The notation of the transitions of the automaton only shows the top-down evaluation;
the bottom-up evaluation can be taken by reversing the transition direction and by
replacing each transition label by its reverse. The other atomic automata are built in a
similar way to the child::a automaton shown in Fig. 1 according to the regular expres-
sions provided in Table 1. If a location step LSi is followed by a location step LSj in a
query Q, we concatenate the atomic automaton BAi corresponding to LSi and the
atomic automaton BAj corresponding to LSj to the token automaton XPQ of query Q
by drawing a self transition from the final state of BAi to the start state of BAj.

For example, Fig. 2(a) shows the automaton for the query Q = //a/b. All states
have as label an ID of the form s0,…,s6, and the stable states have as an additional
label the node name test that has to be fulfilled by an XML node in order to be ac-
cepted by this stable state. The root (state s0) is connected via a self-axis to the auto-
maton for //a (states s1-s3) which is connected by another self-axis to the automaton
for /b (states s4-s6).

Fig. 2. (a) XPath automaton for query //a/b , and (b) a small example document where each
node is represented by a node ID and the node’s label

2.3 Evaluation of Filter-Less Paths

Overview: In order to evaluate an XPath query Q, first, the automaton A for Q is
built as described in the previous section. Each pair (sx,sy) of stable states in A for
which a path from sx to sy exists in A represents a relative XPath expression R that is
a sub-sequence of location steps of Q.

Second, tokens each of which represents an answer to such a relative XPath ex-
pression R are created, transferred, joined, and deleted until all tokens that represent
an answer to Q are computed. Let sx, sy be stable states in A, let R be the sub-query
of Q that corresponds to the sub-automaton including all paths and states from sx to
sy of the automaton A for Q, and let nv, nw be nodes in the given XML document.
Then the token T=(nv/sx, nw/sy) represents an answer nw to the sub-query nv/R .

DecisionModule: A DecisionModule controls the order and the direction (bottom-up
or top-down), in which the sub-queries are evaluated, i.e., it decides which of the
stable states are taken as start states and for which state occurring in a token, partial
sub-query evaluation is continued, i.e., which tokens are transferred next in which
direction, and when tokens are joined.

32 M. Benter, S. Böttcher, and R. Hartel

Token Creation in Start States: Start states can be defined at any time during the
execution. At any time, each state, none of the incoming or outgoing transitions of
which had been fired, can be chosen as an additional start state. Whenever the Deci-
sionModule declares a stable state s to be a start state, for each node n in the XML
document that fulfills the node name test of s, a token (n/s, n/s) is created.

If for example the state with ID s6 of Fig. 2(a) is declared as a start state, i.e., we
look for XML elements that are answers to the sub-query //self::b, tokens (3/s6, 3/s6),
(5/s6, 5/s6), and (7/s6, 7/s6) are created for the nodes b3, b5, and b7 in Fig. 2(b),
where b is the node label followed by the node ID (3,5,or 7).

Token Deletion: For each state s in A, except for the root state and the target state,
when all transitions from s and all transitions to s have been fired and all join tokens
for s have been computed as described below, all tokens containing s as the start state
or as the final state are automatically deleted. Automatic token deletion can be partial-
ly switched off in order to implement a navigation cache as described in Section 2.4.

Partial Sub-query Evaluation: A sub-query R is top-down partially evaluated by
firing all the transitions on a path from sx to sy. This operates on all tokens T=(nu/sz,
nv/sx) that contain sx as their final state, i.e. represent an answer to a sub-query
represented by paths in A ending in state sx, and it eventually generates new tokens
that contain sy as their final state, i.e., for each answer nw to nv/R, this generates a
new token T’=(nu/sz, nw/sy).

Similarly, a sub-query is bottom-up partially evaluated by firing all the inverted
transitions of the transitions on a path from sx to sy in reversed order. This operates
on all tokens T=(nw/sy, nt/sz) that contain sy as their start state, and it eventually
generates new tokens that contain sx as their start state, i.e., for each answer nv to
nw/R-1, this generates a new token T’=(nv/sx, nt/sz).

Let si and sj be stable or non-stable states. To fire a transition with label fc (or ns
or fcR or nsR respectively) that starts in state si and ends in state sj for a token
T=(nu/sz, nv/si) with final state si in top-down direction means the following: to
check, whether there exists a node with ID nw in the XML tree such that the node
with ID nw is the first-child (or the next-sibling or fcR or previous-sibling respective-
ly) of the node with ID nv. If such a node exists, a token T’=(nu/sz, nw/sj) is generat-
ed, otherwise no token is generated.

Correspondingly, to fire a transition with label fcR (or nsR or fc or ns respectively)
that starts in state si and ends in state sj for a token T=(nw/sj, nt/su) with start state sj
in bottom-up direction means the following: to check, whether there exists a node
with ID nv in the XML tree such that the node with ID nw is the first-child (or the
next-sibling or fcR or previous-sibling respectively) of the node with ID nv. If such a
node exists, a token T’=(nv/si, nt/su) is generated, otherwise no token is generated.

A transition with a label self from the start state si to the end state sj can be fired
for each token having si as final state in case of top-down evaluation and for each
token having sj as start state in case of bottom-up evaluation. Firing the transition
during top-down evaluation generates for each token T=(nu/sz, nv/si) another token
T’=(nu/sz, nv/sj), whereas firing the transition during bottom-up evaluation generates
for each token T=(nv/sj, nu/sz) another token T’=(nv/si, nu/sz).

Whenever a token with a non-stable state s’ is generated during sub-query evalua-
tion in a direction D (bottom-up or top-down), all transitions that can be fired from s’

 Mixing Bottom-Up and Top-Down XPath Query Evaluation 33

in the same direction as D are fired. Thereafter, tokens containing s’ are deleted. This
processing of tokens containing unstable states is repeated until all existing tokens
have reached stable states again. When this happens, the DecisionModule gets the
control again and decides which tokens are transferred next.

Consider for example the tokens (3/s6, 3/s6), (5/s6, 5/s6), and (7/s6, 7/s6)
representing answers to the sub-query //self::b. If we fire the transitions from state s6
to state s3 in bottom-up direction, this removes and transfers the tokens having state
s6 as their start state, and it will stop, when all tokens are either deleted or transferred
to tokens having state s3 as their start state. In this case, the generated tokens (2/s3,
3/s6), (1/s3, 5/s6) say that the sub-query self::a/b represented by the sub-automaton
between the states s3 and s6 applied to the XML nodes with IDs 2 (and 1 respective-
ly) yields as answers the XML nodes that have the IDs 3 (and 5 respectively).

If we additionally create a token (0/s0, 0/s0) in the state s0 for the XML root node
and transfer this token from s0 top-down, when token generation stops, we get the
tokens (0/s0, 1/s3), (0/s0, 2/s3),(0/s0, 4/s3), and (0/s0, 6/s3) saying that the sub-query
//a represented by the states of the sub-automaton between state s0 and state s3 returns
the XML nodes with IDs 1, 2, 4, and 6 as answers.

Token Joining: Whenever at the end of a token transfer phase, the same stable state
sy occurs as final state in tokens T1 and as start state in other tokens T2, we perform a
so called ‘token joining’ and join those pairs (T1,T2) of tokens that relate sy to the
same XML node nv with each other. A token joining of two tokens T1=(sx/nu, sy/nv)
and T2=(sy/nv, sz/nw) yields a new join token T3=(sx/nu, sz/nw).

In our example, the tokens T1 ∈ { (2/s3, 3/s6) , (1/s3, 5/s6) } have the start state 3,
and the tokens T2 ∈ { (0/s0, 1/s3), (0/s0, 2/s3),(0/s0, 4/s3), (0/s0, 6/s3) } have the
final state 3. If we perform token joining on all pairs (T1,T2) of tokens, we get the
join tokens j1=(0/s0, 3/s6) and j2=(0/s0, 5/s6). These join tokens express that the
answers to the concatenated sub-query //a/self::a/b represented by the automaton
between state s0 and state s6 applied to the XML node with ID 0 (the root node) re-
turns the XML nodes with IDs 3 and 5 as answers. As all incoming and outgoing
transitions of s3 have been fired, and all join tokens involving s3 have been com-
puted, thereafter all tokens containing s3 as start state or as final state are deleted.

Token joining can also be used for finally joining the answers when query evalua-
tion starts at an inner state and proceeds in different directions. If we declare for ex-
ample state s3 as the single start state and transfer the tokens (1/s3, 1/s3), (2/s3, 2/s3),
(4/s3, 4/s3), and (6/s3, 6/s3) top-down and bottom-up, 6 additional tokens are gener-
ated and the state s0 occurs as start state in the 4 tokens (0/s0, 1/s3), (0/s0, 2/s3),
(0/s0, 4/s3), and (0/s0, 6/s3) and the state s6 occurs as final state in the 2 tokens (1/s3,
5/s6) and (2/s3, 3/s6). Finally, token joining calculates the final results (0/s0, 3/s6)
and (0/s0, 5/s6) that express that by applying the query //a/b represented by the (sub-)
automaton from the start state s0 to the final state s6 to the XML node with ID 0 (the
root node) yields the XML nodes with IDs 3 and 5 as query results.

2.4 Optimization Using a Navigation Cache

If we consider the XML tree of Fig. 2(b) and the query //a//b and the nodes with ID 5
and with ID 7 and transfer the tokens bottom-up in a naïve way, similar new tokens
are generated for the nodes a2, a1, and #root0, i.e., we pass this path in the tree more

34 M. Benter, S. Böttcher, and R. Hartel

than once. In order to overcome this weakness, we have introduced the concept of a
so called navigation cache that caches tokens representing sub-query evaluations of
multiple paths in the XML document tree.

For example, if the token for b5 is transferred first, the token for b7 can read the cache
information of node b5 and can be transferred directly to the root node without having to
pass the path via b5, a2, a1, and #root0 a second time. This information is being used for
bottom-up evaluation only and is not considered for top-down evaluation.

2.5 Evaluation of Queries with Filters

Whenever a location step L that is represented by a pair (sx,sy) on the main path of an
XPath query Q contains one or more predicate filters, each predicate filter Fi is
represented by a filter automaton Ai having a state si as its root and a final state sfi
representing the final state of the main path of the filter. A filter automaton Ai has the
same design and functionality as the automaton for the main path of Q as described in
the previous section. As with all location steps, each location step within a filter au-
tomaton can be evaluated top-down or bottom-up.

Token transfer between the root state si of a filter automaton Ai and the final state
sy representing the location step L having filter Fi, can be done either top-down, i.e.
from sy to si, if tokens containing sy are generated first, or bottom-up, i.e. from si to
sy, if Fi is evaluated first.

Bottom-Up Token Transfer: If the tokens are transferred bottom-up, i.e. the filter
path for Fi is evaluated before tokens containing the node sy are generated, let ST={
(n1/si, nf1/sf1), …, (nk/si, nfk/sfk) } be the set of all the tokens computed for path
from si to sfi. Then the set N={n1,…nk} contains exactly those XML nodes for which
Fi evaluates to true.

Then, the automaton state sy to which the filter path is connected reacts similar to a
state without an attached filter with the difference, that not for each XML node that
fulfills the given node name test a token is created, but only for those XML nodes
contained in the set N which fulfill the given node name test.

Top-Down Token Transfer: Otherwise, i.e., if tokens are transferred top-down from
sy to si, we follow an idea of [10]: Whenever a token T1=(…,nv/sy) or a token T1=
(nv/sy,…) that contains the state sy is generated, this token gets a reservation that
depends on whether or not the filter automaton for Fi evaluates to true for the XML
node nv. At the same time, the filter automaton for Fi is switched active, i.e., a token
(nv/si, nv/si) is generated which turns si into a start state of the filter automaton.

If the filter automaton Fi finally evaluates to true for the XML node nv, the res-
ervation for Fi is deleted. We say that the execution of the filter automaton for Fi
having a start state si and a final state sfi on its main path evaluates to true for the
XML node nv, if and only if eventually a token (nv/si, nw/sfi) is generated for a XML
node nw. Otherwise, we say that the evaluation of the filter automaton for Fi eva-
luates to false for the XML node nv, and the token T1 itself is deleted and consi-
dered invalid. However, if, finally, all the reservations for a filter attached to sy are
deleted, the T1 token is considered valid.

 Mixing Bottom-Up and Top-Down XPath Query Evaluation 35

The states of the filter automaton can be connected to other filter automata, such
that nested filter automata for implementing nested XPath filter expressions can be
evaluated by this concept as well.

2.6 Evaluation Strategies

We have implemented different types of DecisionModules that follow different eval-
uation strategies in order to evaluate an XPath query. The first two Decision Modules
follow the ‘traditional’ ways to evaluate queries.

─ The Top-Down-Module declares the root state as the only start state. Tokens are
added to the first state of each filter automaton FA as soon as a token is added to
the state to which FA is attached to. All paths, i.e. the main path of the XPath
expression and all filter paths, are evaluated top-down.

─ The Bottom-Up-Module declares the target state of the automaton for the main
path and each target state of a filter automaton as the start states. All paths are
evaluated bottom-up.

─ The Minimum-Module considers the locations steps in the main path and in all
filter paths and declares the stable state of that location step having the lowest
selectivity of the whole query as the only start state. If the start state is part of a
filter, the corresponding filter path is evaluated top-down and bottom-up starting
at the start state and the result is added to the state of the main path to which the
filter is attached. Then, the state of the main path behaves like a start state: From
that given start state, the remaining main path of the XPath query is evaluated
bottom-up to the root and top-down to the target state of the main path. Fur-
thermore, all other filter paths are evaluated top-down.

Determining the location step having the lowest selectivity is not trivial. Currently,
we are using a simple heuristics that regards that location step LS=/axis::nnt as the
location step having the lowest selectivity, for which the least number of nodes exist
in the document that fulfill the node name test nnt.

3 Evaluation of Our Prototype Implementation

3.1 Experimental Setup

Our test system has an Intel Core 2 Duo with 2,53 GHz (T9400) processor and
4 GB 1066 DDR 3 RAM. The prototype is implemented in Java and runs on JDK 1.6
Update 21 with an extended RAM and function stack (parameters -Xmx1300M
-Xss4096k). For MonetDB [11], we have used the Oct2010-SP1 build and the meas-
ured execution time is Trans+Shred+Query. For eXist-DB (http://exist-db.org/) we
have used version 1.4.0.

Our evaluation was performed on the documents generated by the XMark bench-
mark [12] with original XML document sizes varying from around 2 MB to 50 MB.
We have evaluated our prototype on the queries A1-A7 and B2-B4 of the XPathMark
[13] benchmark suite as well as on some additional, practice-oriented queries (Q1-
Q6) for showing the advantages of our system (especially on queries with location
steps of outstanding low selectivity). The queries that we used are shown in Table 2.

36 M. Benter, S. Böttche

Table 2

A1 /site/closed_auctions/clos
A2 //closed_auction//keywor
A3 /site/closed_auctions/clos
A4 /site/closed_auctions/clos
A5 /site/closed_auctions/clos
A6 /site/people/person[profil
A7 //keyword
B2 //keyword/ancestor::listit
B3 /site/open_auctions/open
B4 /site/open_auctions/open
Q1 //people//age
Q2 /site/people/person[profil
Q3 //person[.//gender='femal
Q4 //person[.//country='Unit
Q5 //person[.//country='Unit
Q6 //item[payment='Creditca

3.2 Comparison of Decisi

In our first series of meas
each other. We performed a
compression as compressed
representation. As the expe
Java DOM representation y
main memory than the exe
on presenting the results rec

Fig. 3 compares the thre
and “Minimum(Min)”. Na
have shown that this techni
shown in Fig. 3 was perfor
factor 0.2), but other docu
scales linear with increasin
BU outperforms the execut
the best evaluation strategy

Fig. 3. Comp

er, and R. Hartel

2. Queries used in our prototype evaluation

sed_auction/annotation/description/text/keyword
rd
sed_auction//keyword
sed_auction[annotation/description/text/keyword]/date
sed_auction[descendant::keyword]/date
le/gender and profile/age]/name

tem/text/keyword
n_auction/bidder[following-sibling::bidder]
n_auction/bidder[preceding-sibling::bidder]

le/age=42]
le']/name
ted States']/name
ted States' and .//gender='female']/name
ard']

ionModules

surements, we compared the three DecisionModules w
all measurements on two XML representations: on succi
d XML representation and on DOM as uncompressed XM
eriments have shown that using our prototype based on
yields similar execution times, but requires 5 times m

ecution based on the succinct compression, we concentr
ceived for the succinct compression in this section.
ee DecisionModules “Top-Down(TD)”, “Bottom-Up(BU
avigation Caching is always enabled, as our evaluati
ique in general improves the performance. The evaluat
rmed on a ~22MB document with 340,000 nodes (XM

ument sizes show the same results as the execution tim
ng document size. The overall observation is that strat
tion time of the strategy TD in most cases, but that Min
in nearly all cases (except for query Q1 and Q2).

parison of the DecisionModules TD, BU, and Min

with
inct
ML
the

more
rate

U)”
ions
tion

Mark
mes
tegy
n is

 Mix

An example for this obs
entire document due to th
better because it starts at t
steps bottom-up. But the M
i.e., it selects the 2,000 clos
as start nodes and therefore
BU-Module, but only has t
trees) compared with the e
behavior can be observed o

In some of the XPathM
haves similar to the TD-Mo
tion steps or the descendant
nearly optimal because only

We have added Q1-Q6 t
Min-Module can profit fro
United States (around 38%
text-nodes, evaluates the p
name location step top-do
significantly: the Min-Mod
faster than the BU-Module.

Note that the Min-Modu
if selectivity becomes lowe
additional filter condition
person nodes (only 5% of t
case, the Min-Module is 20
the BU-Module.

3.3 Comparison with Oth

In Fig. 4, we measured the a
As we can observe, the Mod
document size. Furthermore
times faster than JAXP. The

Fig. 4. Compar

ing Bottom-Up and Top-Down XPath Query Evaluation

ervation is query A2: A top-down evaluation traverses
e initial descendant axis. The bottom-up module can
the keyword nodes and evaluates the descendant locat

Min-Module performs best on A2: It has a low selectiv
sed_auction nodes (compared with 14,000 keyword nod
e can avoid a lot of the navigation caching overhead of
to traverse relative small sub-trees (the closed_aution s
entire document the TD-Module has to traverse. A sim
n query A7.

Mark-queries (A1, A3, A4, A5, A6), the Min-Module
odule. As these queries do not have descendant-axis lo
t-axis steps are at the end of query, top-down evaluatio
y relative small sub-trees are traversed.
to show results of more complex queries. On query Q4,
m the filter, as only a fraction of the people are from

%). Therefore, the Min-Module starts at all United Sta
person descendant-axis location step bottom-up and

own. This evaluation strategy improves the performa
dule is 10 times faster than the TD-Module and 1.5 tim

ule can sometimes perform better on more complex que
er: Query Q5 is evaluated faster than query Q4, because

gender=’female’ further reduces the number of selec
the persons are female and from the United States). In
0 times faster than the TD-Module and 3 times faster t

her Evaluators

average execution time of all queries (A1-A7,B2-B4, Q1-Q
dule “Min” of our prototype is scaling linear with increas
e, it is significantly outperforming JAXP, as it is around
e Module “Min” outperforms eXist-DB as well. For files

rison of our prototype with other XPath evaluators

37

the
n do
tion
vity,
des)
f the
sub-

milar

be-
oca-
n is

the
the

ates
the

ance
mes

eries
the

cted
this

than

Q6).
sing
d 15
s up

38 M. Benter, S. Böttcher, and R. Hartel

to ~30 MB, the Module “Min” is outperforming MonetDB as well. This is due to the fact
that MonetDB needs a high overhead for query optimization but scales nearly constantly
for for the document sizes tested in our evaluation. For queries with low selectivity (e.g.
Q3 and Q6) our approach can outperform MonetDB also for files having a size of more
than 30 MB. Furthermore, when comparing run-time, note that our prototype is a Java
application, whereas MonetDB is a strongly optimized C application.

4 Related Works

There exist several different approaches to the evaluation of XPath queries on XML
data. They can be divided into categories by the subset of XPath that they support.
Nearly all of them are based on automata (X-scan[7], XMLTK[3], YFilter[6],
[10],[13], [14], AFilter [5], XSQ [9], SPEX [8]) or parse trees ([15], [4], [16], [17]).
All of them support the axes child and descendant-or-self and most of them support
predicate filters and wildcards, but besides [10] and [18] none of them support the
sibling-axes as our solution does.

The approach presented in [1] defines bottom-up as well as top-down semantics
and presents an bottom-up and a top-down processing algorithm that both run in low-
degree polynomial time for full XPath and an enhanced algorithm that runs in linear
time for Core XPath that evaluates the main path top-down and the filter paths bot-
tom-up. In contrast to this approach, we try to combine the advantages of bottom-up
and top-down processing by choosing bottom-up or top-down evaluation for each
location-step, such that an algorithm is developed that runs very efficient in practice.
As our evaluation has shown, the mixed strategy MinimumModule performs and
scales better that the pure strategies top-down or bottom-up.

For the automata-based approaches, the XML input stream is the controlling in-
stance that is used as input for the automata representing the Query.[19] and [20]
present a compressed representation for XML together with an XPath evaluator that is
based on tree automata and that allows to skip irrelevant parts of the compressed
XML document during the evaluation process. They allow selecting a single start
point and follow the path to the root bottom-up and the path to the “leafs” of the query
top-down. In contrast to[19] and [20], we allow the selection of any number of start
points and the evaluation of the sub-queries in any direction.

The approach presented in[18] supports the axes self, child, descendant, following
and following-sibling but does not support backward axes. It translates the queries
into expressions over the binary axes first-child and next-sibling and then constructs a
two-layered NFA that consumes the SAX events start-element, end-element and cha-
racter. The first layer evaluates the main path of the query, whereas the second layer
is responsible for the evaluation of the predicate filters. Our previous approach [10]
supports all forward axes but supports backward axes only if they are rewritten to
forward axes before query evaluation starts. It translates queries into an automaton
that consumes the binary events first-child and next-sibling. It can evaluate streams in
top-down direction only. XMLTK[3], and YFilter[6], [13], [14] and X-scan[7] are
based on the lazy construction of deterministic finite automata (DFA), i.e., the DFA
is not generated completely at the beginning, but additional states are added only
when needed. AFilter [5] is adaptable in terms of the memory requirement, i.e., it
needs a base memory that is linear in query and data size. If more memory is provided

 Mixing Bottom-Up and Top-Down XPath Query Evaluation 39

to AFilter, AFilter uses the remaining main memory for a caching approach to eva-
luate queries faster than with only the base memory. XSQ [9] and SPEX [8] use a
hierarchical arrangement or network of transducers, i.e., automata extended by actions
attached to the states, extended by a buffer to evaluate XPath queries.

Parse trees – in contrast to automata – take the control of the evaluation process
themselves, i.e., they decide which node of the parse tree will be processed next and
check with the XML input document, whether this node can be processed. The ap-
proach presented in [21] translates the input query into a set of parse trees. Whenever
a matching of a leaf node of a parse tree is found within the data stream, the relevant
data is stored in form of a tuple that is afterwards evaluated to check whether predi-
cate- and join conditions are fulfilled. χαοζ[4] and [15] build a parse tree as well
(plus a parse-dag in [4], as they support the parent and the ancestor axis in addition).
This parse tree is used for ‘predicting’ the next matching nodes and the level in which
they have to occur. The approach discussed in [16] collapses the parse tree into a
prefix trie by combining common prefix sequences of child-axis location steps of
different queries into a leaner single path of the prefix trie. The approach presented in
[17] uses a parse tree that stores XML nodes that are solutions to the parse tree node’s
sub-query within a stack that is attached to each node.

The authors of [22] show that queries containing joins on attribute values can be
computed in time linear of the XML document but exponentially of the query size.
They evaluate one path to the join attribute top-down and the path to the second join
attribute bottom-up. They require a special index on the attribute values and a pointer
structure representation of the XML document, such that the idea is not applicable to
arbitrary XML representations as e.g. compressed XML.

ROX [23] is a run-time optimizer for XQuery that is used as a MonetDB extension.
It is based on an indexed representation of the XML document that is stored in form
of relational data. It consists of a relational query optimizer for the ‘relational parts’ of
an XQuery and an XML query optimizer that is intertwined with the query execution,
i.e., that adapts the query execution plan during the query execution. In contrast to our
approach, ROX can be applied to the indexed XML document in form of a relational
representation only and cannot be applied to compressed XML.

In comparison to all these approaches, we additionally support the ‘sibling’-axes
following and following-sibling. Furthermore, beyond [21] and [9], our approach is
capable to parse streams of recursive XML, i.e., data in which the same element
names do occur repeatedly along a root-to-leaf path. In comparison to [10] and [18],
we have used an extended automata model which supports also bottom-up evaluation
and mixed evaluation strategies.

5 Summary and Conclusions

Whenever XPath query evaluation is the bottleneck of an application, and main mem-
ory is small in comparison to memory requirements for fast query evaluation, a fast
in-memory XPath evaluator that works also on compressed XML structures may be a
significant improvement towards a better run-time.

In this paper, we have presented an XPath query processor that can evaluate XPath
queries on each XML representation that supports a small number of basic binary

40 M. Benter, S. Böttcher, and R. Hartel

axes (first-child, first-child-1, next-sibling, next-sibling-1, and self), like e.g. DOM or
the compressed XML representation ‘Succinct’ [2]. Our query processor decomposes
and normalizes each XPath query, such that the resulting path queries contain only the
basic binary axes, and then converts them into lean token automata. A DecisionMo-
dule decides for each location step which evaluation strategy to follow, i.e., which
location step to evaluate when and in which direction.

Our tests have shown, that our query processor is very efficient and outperforms
other approaches like JAXP provided by JDK 1.6 and yields results faster than Mo-
netDB – a database that allows the native storage of XML files and that uses an index
on this data to speed up the query evaluation – for files up to ~30 MB in general or for
queries with at least one location step that has a low selectivity.

As XPath is being used as data access standard in XSLT and XQuery, we are opti-
mistic that the technology proposed in this paper can be used within XSLT processors
or XQuery processors too.

References

1. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries.
ACM Trans. Database Syst. 30, 444–491 (2005)

2. Böttcher, S., Hartel, R., Heinzemann, C.: BSBC: Towards a Succinct Data Format for
XML Streams. In: WEBIST 2008, Funchal, Madeira, Portugal, pp.13–21 (2008)

3. Avila-Campillo, I., Green, T., Gupta, A., Onizuka, M., Raven, D., Suciu, D.: XMLTK: An
XML toolkit for scalable XML stream processing. In: Proceedings of PLANX (2002)

4. Barton, C., Charles, P., Goyal, D., Raghavachari, M., Fontoura, M., Josifovski, V.:
Streaming XPath Processing with Forward and Backward Axes. In: ICDE, Bangalore, In-
dia, pp. 455–466 (2003)

5. Candan, K., Hsiung, W.-P., Chen, S., Tatemura, J., Agrawal, D.: AFilter: Adaptable XML
Filtering with Prefix-Caching and Suffix-Clustering. In: VLDB, Seoul, Korea (2006)

6. Diao, Y., Rizvi, S., Franklin, M.: Towards an Internet-Scale XML Dissemination Service.
In: VLDB, Toronto, Canada, pp. 612–623 (2004)

7. Ives, Z., Halevy, A., Weld, D.: An XML query engine for network-bound data. The
VLDB Journal 11(1), 380–402 (2002)

8. Olteanu, D., Kiesling, T., Bry, F.: An Evaluation of Regular Path Expressions with Qua-
lifiers against XML Streams. In: ICDE, Bangalore, India, pp. 702–704 (2003)

9. Peng, F., Chawathe, S.: XPath Queries on Streaming Data. In: ACM SIGMOD, San Di-
ego, California, USA, pp.431–442 (2003)

10. Böttcher, S., Steinmetz, R.: Evaluating XPath Queries on XML Data Streams. In: Cooper,
R., Kennedy, J. (eds.) BNCOD 2007. LNCS, vol. 4587, pp. 101–113. Springer, Heidel-
berg (2007)

11. Boncz, P., Grust, T., Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: Mo-
netDB/XQuery: a fast XQuery processor powered by a relational engine (2006)

12. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In: VLDB, Hong Kong, pp.974–985 (2002)

13. Green, T., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML streams with
deterministic automata and stream indexes. ACM Trans. Database Syst. 29 (2004)

14. Gupta, A., Suciu, D.: Stream Processing of XPath Queries with Predicates. In: ACM
SIGMOD, San Diego, California, USA, pp.419–430 (2003)

 Mixing Bottom-Up and Top-Down XPath Query Evaluation 41

15. Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the memory requirements of XPath eval-
uation over XML streams. J. Comput. Syst. Sci. 73(3), 391–441 (2007)

16. Chan, C., Felber, P., Garofalakis, M., Rastogi, R.: Efficient Filtering of XML Documents
with XPath Expressions. In: ICDE, San Jose, CA, USA, pp.235–244 (2002)

17. Chen, Y., Davidson, S., Zheng, Y.: An Efficient XPath Query Processor for XML
Streams. In: ICDE 2006, Atlanta, GA, USA, p.79 (2006)

18. Onizuka, M.: Processing XPath queries with forward and downward axes over XML
streams. In: EDBT 2010, Lausanne, Switzerland, pp.27–38 (2010)

19. Arroyuelo, D., Claude, F., Maneth, S., Mäkinen, V., Navarro, G., Nguyen, K., Siren, J.,
Välimäki, N.: Fast in-memory XPath search using compressed indexes. In: ICDE 2010,
Long Beach, California, USA, pp. 417–428 (2010)

20. Maneth, S., Nguyen, K.: XPath Whole Query Optimization. PVLDB 3(1), 882–893 (2010)
21. Josifovski, V., Fontoura, M., Barta, A.: Querying XML streams. VLDB Journal 14,

197–210 (2005)
22. Bojanczyk, M., Parys, P.: XPath evaluation in linear time, pp. 241–250 (2008)
23. Kader, R., Boncz, P., Manegold, S., Keulen, M.: ROX: run-time optimization of XQue-

ries, pp. 615–626 (2009)

	Mixing Bottom-Up and Top-Down XPath Query Evaluation
	Introduction
	Motivation
	Contributions
	Query Language
	Paper Organization

	Our Solution
	Overview of Our Solution
	XPath Automata
	Evaluation of Filter-Less Paths
	Optimization Using a Navigation Cache
	Evaluation of Queries with Filters
	Evaluation Strategies

	Evaluation of Our Prototype Implementation
	Experimental Setup
	Comparison of DecisionModules
	Comparison with Other Evaluators

	Related Works
	Summary and Conclusions
	References

