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Preface

The main objective of the ADBIS series of conferences is to provide a highly
visible forum for the dissemination of research accomplishments and to promote
interactions and collaborations among the database and information systems
research communities from Central and Eastern European countries and with the
rest of the world. The ADBIS conferences provide an international platform for
the presentation of research on database theory, information systems, advanced
DBMS technologies, and their advanced applications.

ADBIS 2011 was the 15th instantiation of this series. It took place in Vi-
enna, Austria, September 20–23, 2011, organized by the Institute of Software
Technology and Interactive Systems of the Vienna University of Technology.
ADBIS 2011 continued the ADBIS series held in St. Petersburg (1997), Poznan
(1998),Maribor (1999), Prague (2000), Vilnius (2001), Bratislava (2002), Dres-
den (2003), Budapest (2004), Tallinn (2005), Thessaloniki (2006), Varna (2007),
Pori (2008), Riga (2009), and Novi Sad (2010).

This volume contains 30 contributed research papers selected from 105 sub-
missions from 31 countries. The thorough reviewing process – each paper was
reviewed by three to five Program Committee members – was highly competitive
as the acceptance rate of 29% indicates. In addition to the contributed papers,
these proceedings contain two papers documenting invited keynote talks.

Furthermore, 22 papers were accepted as short papers. These are included
in the additional proceedings “ADBIS 2011 Research Communications” pub-
lished by the Austrian Computer Society and in the CEUR workshop proceed-
ings (www.ceur.org). These proceedings also contain the papers accepted for the
Doctoral Consortium.

This is the place to express our gratitude to all those who made ADBIS
2011 possible by generously and voluntarily sharing their knowledge, skills and
time: the local Organization Chair Amirreza “Nick” Tahamtan for providing
an excellent environment for the conference, the Austrian Computer Society for
their help in all organizational matters, and all other colleagues holding offices. In
particular, we thank the Program Committee members as well as the additional
reviewers for devoting their expertise and time to ensure the high quality of
the conference in an extensive review and discussion process. And last but not
least, we are grateful to all the authors who showed their appreciation of the
conference by submitting their valuable work.

September 2011 Johann Eder
Maria Bielikova

A Min Tjoa
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Data Semantics

A Clustering-Based Approach for Large-Scale Ontology Matching . . . . . . 415
Alsayed Algergawy, Sabine Massmann, and Erhard Rahm

Automatic Building of an Appropriate Global Ontology . . . . . . . . . . . . . . . 429
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Ontological Query Answering via Rewriting

Georg Gottlob1, Giorgio Orsi2, and Andreas Pieris1

1Department of Computer Science, University of Oxford, UK
2Institute for the Future of Computing, University of Oxford, UK

firstname.lastname@cs.ox.ac.uk

Abstract. Ontological databases extend traditional databases with ontological
constraints. This technology is crucial for many applications such as semantic
data publishing and integration as well as model-driven database design. For
many classes of ontological constraints, query answering can be solved via query
rewriting. In particular, given a conjunctive query and a set of ontological con-
straints, the query is compiled into a first-order query, called the perfect rewriting,
that encodes the intensional knowledge implied by the constraints. Then, for ev-
ery database D, the answer is obtained by directly evaluating the perfect rewriting
over D. Since first-order queries can be easily translated into SQL, ontological
query answering can be delegated to traditional DBMSs. This allows us to utilize
all the query optimization techniques available in the underlying DBMS. This pa-
per surveys current approaches to rewriting-based query answering of ontological
databases.

1 Introduction

The adoption of ontologies and semantic technology in companies, governmental orga-
nizations, and academia is becoming nowadays more and more prominent, especially
for knowledge representation and data management. Thanks to their expressive power
and formal semantics, ontologies have also been adopted as high-level conceptual de-
scriptions of the data in a database, often replacing traditional metadata and documen-
tation such as data dictionaries, UML class-diagrams and E/R schemata.

Recently, the relationship of ontologies and databases tightened, originating a new
type of data management systems where a relational database is enriched by an ontolog-
ical theory that enforces expressive constraints over the database. Such constraints go
far beyond traditional integrity constraints and can be used to enable complex reason-
ing tasks over the database instances. However, the main task in an ontological database
remains that of query answering. A number of commercial data management systems
provide ontological querying capabilities in their current solutions (see, e.g., [6,18]).
The main problem is how to couple these two different types of technologies smoothly
and efficiently.

In an ontological database, queries are evaluated against an instance in such a way
that the answer takes into account the semantic consequences of the ontology. Formally,
if Q : q(X) ← φ(X,Y) is a conjunctive query (CQ) with output variables X, then its
answer in the ontological database consists of all the tuples t of constants such that
D ∪ Σ |= ∃uφ(t,u), or, equivalently, t belongs to the answer of Q over I , for each
instance I that contains D and satisfies Σ.

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Identifying expressive fragments of ontological theories under which query answer-
ing is decidable is a challenging new problem for database research. Moreover, in or-
der to query very large databases, also tractability w.r.t. data complexity (i.e., when
the query and the ontology are fixed) is required. A semantic property guarantee-
ing tractability is first-order rewritability (hence FO-rewritability), introduced by Cal-
vanese et al. [16] in the context of description logics. In particular, given a conjunctive
query and an ontology, the query can be transformed into a first-order query, called the
perfect rewriting, that “embeds” the constraints of the ontology. Then, for every exten-
sional database D, the answer to the query is obtained by evaluating the rewritten query
against D. Since the data complexity of evaluating first-order queries is in the highly
tractable complexity class AC0 [32], query answering under FO-rewritable classes is
also highly tractable. In addition, since each first-order query can be translated into an
equivalent SQL expression, query answering can be delegated to a traditional relational
DBMS, thus exploiting the underlying optimizations.

Example 1. Consider the ontological theory Σ consisting of the rule

person(X)→ ∃Y father (Y, X), person(Y )

stating that every person has a father, who is himself a person. Let Q be the CQ q(B)←
father (A, B) asking for persons who have a father. Intuitively, due to the rule in Σ, not
only do we have to query father , but we also need to query person , since all the persons
necessarily have a father. The perfect rewriting QΣ will thus be the logical union of Q
and of the query q(B)← person(B).

A prominent family of languages that enjoy FO-rewritability is the DL-Lite family of
description logics (DLs) introduced by Calvanese et al. in [16]. A further contribution
to the field has been the introduction of the Datalog± family [9,11], whose languages
extend the well-known Datalog language (see, e.g., [1]) by allowing in rule heads ex-
istential quantifiers (in the same way as value invention in Datalog [7]), the equality
predicate and the truth constant false. Interestingly, various languages in the Datalog±

family are FO-rewritable.

Roadmap. The paper proceeds as follows. After a brief recall of preliminary notions
given in the next section, we present FO-rewritability in Section 3. Known formalisms
enjoying FO-rewritability are presented in Section 4, while existing algorithms to com-
pute the first-order rewriting are described in Section 5. Finally, Section 6 draws some
conclusions and outlines some future research directions.

2 Preliminaries

In this section we recall some basics on databases, tuple-generating dependencies,
queries, and the chase procedure.

General. We define the following pairwise disjoint (possibly infinite) sets of symbols:
(i) a set Γ of constants (constitute the “normal” domain of a database), (ii) a set ΓN of
labelled nulls (representing unknown values, and thus can be also seen as variables), and
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(iii) a set ΓV of variables (used in queries and constraints). Different constants represent
different values (unique name assumption), while different nulls may represent the same
value. We denote by X sequences of variables X1, . . . , Xk, where k � 0. Let [n] be the
set {1, . . . , n}, for any integer n � 1.

A relational schema R (or simply schema) is a set of relational symbols (or pred-
icates), each with its associated arity. A position r[i] (in a schema R) is identified by
a predicate r ∈ R and its i-th argument (or attribute). A term t is a constant, null, or
variable. An atomic formula (or simply atom) has the form r(t1, . . . , tn), where r is
an n-ary predicate, and t1, . . . , tn are terms. Conjunctions of atoms are often identified
with the sets of their atoms. A relational instance (or simply instance) I for a schema
R is a (possibly infinite) set of atoms of the form r(t), where r is an n-ary predicate of
R, and t ∈ (Γ ∪ΓN )n. A database forR is a finite instance forR which contains only
ground atoms, i.e., atoms whose arguments are constants of Γ .

A substitution from a set of symbols S1 to another set of symbols S2 is a function
h : S1 → S2 defined as follows: (i) ∅ is a substitution (empty substitution), (ii) if h
is a substitution, then h ∪ {X → Y } is a substitution, where X ∈ S1 and Y ∈ S2,
and h does not already contain some X → Z with Y �= Z . If X → Y ∈ h, then
we write h(X) = Y . A homomorphism from a set of atoms A1 to a set of atoms A2,
both over the same schema R, is a substitution h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV

such that: (i) if t ∈ Γ , then h(t) = t, and (ii) if r(t1, . . . , tn) is in A1, then
h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2. The notion of homomorphism nat-
urally extends to conjunctions of atoms.

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ over a
schema R is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ(X,Y)
and ψ(X,Z) are conjunctions of atoms over R, called the body and the head of σ,
denoted as body(σ) and head(σ), respectively. Notice that the well-known inclusion
dependencies (IDs), see, e.g., [1], are the simplest type of TGDs with just one body-
atom and one head-atom, without repetition of variables. For example, assuming that
dept is a binary predicate and emp is a ternary predicate, the ID dept [2] ⊆ emp[1],
which asserts that each manager is an employee, can be expressed using the TGD
∀X∀Y dept(X, Y ) → ∃Z∃W emp(Y, Z, W ). Henceforth, to avoid notational clutter,
we will omit the universal quantifiers in TGDs. A TGD σ is satisfied by an instance I
for R iff, whenever there exists a homomorphism h such that h(body(σ)) ⊆ I , there
exists an extension h′ of h (i.e., h′ ⊇ h) such that h′(head(σ)) ⊆ I .

Datalog. A Datalog rule ρ is an expression of the form a0 ← a1, . . . , an, for n � 0,
where each ai is an atom and every variable occurring in a0 appears in at least one
atom of {a1, . . . , an}. The atom a0 is called the head of ρ, denoted as head(ρ), while
a1, . . . , an is called the body of ρ, denoted as body(ρ). A Datalog program Π over a
schemaR is a set of Datalog rules such that, for each ρ ∈ Π , the predicate of head(ρ)
does not occur in R. Π is non-recursive if its predicate graph G is acyclic; G has as
vertices the predicates occurring in Π , and there exists an edge from p1 to p2 if there
exists a rule ρ ∈ Π such that p1 occurs in body(ρ) and p2 occurs in head(ρ). The
extensional database (EDB) predicates are those that do not occur in the head of any
rule of Π ; all the other predicates are called intensional database (IDB) predicates. A
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model of Π is an instance overR that satisfies the set of TGDs obtained by considering
the program Π as a set of universally quantified implications. The semantics of Π
w.r.t. an EDB D for R, denoted as Π(D), is the minimum model of Π containing D
(which is unique and always exists). Π(D) can be computed by a least fixpoint iteration
starting from the EDB D and adding at each iteration all new facts generated by a single
rule application. Note that Π(D) is always finite and all values appearing in it are from
the universe of D. If there exists a constant k such that, for every EDB D, Π(D) can be
obtained after k iterations of the fixpoint operator, then Π is said bounded. Intuitively,
if a (recursive) Datalog program is bounded it is essentially non-recursive, although it
appears to be recursive syntactically.

Queries. An n-ary Datalog query Q over a schema R is a pair 〈q, Π〉, where Π is
a Datalog program over R and q is an n-ary predicate which occurs in the head of
some rule of Π . Q is a non-recursive (resp., bounded) Datalog query if Π is non-
recursive (resp., bounded). Q is a union of conjunctive queries (UCQs) if q is the only
IDB predicate in Π , and for each rule ρ ∈ Π , q does not occur in body(ρ). Finally, Q
is a conjunctive query (CQ) if it is a UCQs, and Π contains exactly one rule.

The answer to a Datalog query Q = 〈q, Π〉 over a database D is the set of n-tuples
{t | q(t) ∈ Π(D)}, denoted as Q(D). Notice that if Q is a UCQs, then the problem
whether t ∈ Q(D) is equivalent to the problem whether there exists ρ ∈ Π such that
body(ρ) is mapped by a homomorphism h to D, and t = h(X), where X are the
variables occurring in head(ρ).

Conjunctive Query Answering under TGDs. Given a database D for a schemaR, and
a set Σ of TGDs overR, the models of D w.r.t. Σ is the set of instances mods(D, Σ) =
{I | I ⊇ D and I satisfies Σ}. Given an n-ary UCQs Q = 〈q, Π〉, by Qρ we denote
the n-ary CQ 〈q, {ρ}〉, where ρ ∈ Π . The answer to Q w.r.t. D and Σ, denoted as
ans(Q, D, Σ), is the set of n-tuples

⋃
ρ∈Π

{t | t ∈ Γ n and t ∈ Qρ(I), for each I ∈ mods(D, Σ)} .

Notice that the associated decision problem is undecidable [5], even when the schema
and the set of TGDs are fixed [8], or even if we consider singleton sets of TGDs [4].

TGD Chase Procedure. The chase procedure (or simply chase) is a fundamental algo-
rithmic tool introduced for checking implication of dependencies [27], and later for
checking query containment [24]. Informally, the chase is a process of repairing a
database w.r.t. a set of dependencies so that the resulted instance satisfies the depen-
dencies. We shall use the term chase interchangeably for both the procedure and its
result. The chase works on an instance through the so-called TGD chase rule.

TGD CHASE RULE. Consider a database D for a schema R, and a TGD σ :
ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there exists a homo-
morphism h such that h(ϕ(X,Y)) ⊆ D then: (i) define h′ ⊇ h such that h′(Zi) = zi,
for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labelled null not introduced before, and
following lexicographically all those introduced so far, and (ii) add to D the set of atoms
in h′(ψ(X,Z)).
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Given a database D and set of TGDs Σ, the chase procedure for D w.r.t. Σ consists
of an exhaustive application of the TGD chase rules, which leads to a (possibly infinite)
instance, denoted as chase(D, Σ). We assume that the chase algorithm is fair, i.e., each
TGD that must be applied during the construction of the chase is eventually applied.

Example 2. Consider the set Σ constituted by the TGDs σ1 : r(X, Y ), s(Y ) →
∃Z r(Z, X) and σ2 : r(X, Y )→ s(X), and let D be the database {r(a, b), s(b)}. Dur-
ing the construction of chase(D, Σ) we first apply σ1, and we add the atom r(z1, a),
where z1 is a “fresh” null. Moreover, σ2 is applicable and we add the atom s(a). Now,
σ1 is applicable and the atom r(z2, z1) is obtained, where z2 is a “fresh” null. Also,
σ2 is applicable and the atom s(z1) is generated. It is clear that there is no finite chase
satisfying both σ1 and σ2.

The fairness assumption implies that the (possibly infinite) chase of D w.r.t. Σ is a
universal model of D w.r.t. Σ, i.e., for each instance I ∈ mods(D, Σ), there exists a
homomorphism from chase(D, Σ) to I [20,19]. This fact allows us to show that the
chase is a formal algorithmic tool for query answering under TGDs. In other words,
given a UCQs Q, a database D, and a set Σ of TGDs, ans(Q, D, Σ) can be obtained
by evaluating Q over chase(D, Σ), and discarding tuples containing at least one null.

3 First-Order Rewritability

In the setting of query answering under TGDs, one is usually interested in the data
complexity, i.e., the complexity calculated by considering only the data as part of the
input, while the query and the set of TGDs are fixed. This is because the size of the data
is predominant with that of the other inputs. In particular, to be able to work with very
large databases, we need query answering to be highly tractable in data complexity and
possibly feasible by relational query engines.

First-order rewritability, introduced in the context of description logics (under the
name first-order logic reducibility) [16], guarantees the above desirable properties.
Roughly, given a UCQs Q and a set of TGDs, a first-order query can be constructed,
called the perfect rewriting, that takes into account the semantic consequences of the
TGDs. Then, the answer to the query w.r.t. a database D and the set of TGDs is ob-
tained by evaluating the perfect rewriting over D. An n-ary first-order query Q is an
open first-order logic formula φ(X) with free variables X, where |X| = n. The answer
to Q w.r.t. a database D is the set Q(D) of n-tuples of Γ n such that, when assigned to
the free variables, make the formula φ true (see, e.g., [1]).

Definition 1. Consider a set Σ of TGDs over a schemaR. We say that Σ is first-order
rewritable if, for every UCQs Q overR, a first-order query QΣ can be constructed such
that ans(Q, D, Σ) = QΣ(D), for every database D forR.

It is well-known that evaluation of first-order queries is in the highly tractable class AC0

in data complexity [32]. This is the complexity class of recognizing words in languages
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defined by constant-depth Boolean circuits with (unlimited fan-in) AND and OR gates
(see, e.g., [29]). Given that every first-order query can be written into an equivalent
(non-recursive) SQL query, in practical terms this means that query answering under
first-order rewritable sets of TGDs can be deferred to a standard DBMS, exploiting the
underlying optimizations.

Example 3. Let R be the relational schema constituted by the predicates
runs(Dept Id, Project Id), in area(Project Id, Area) and external(Ext Id, Area,
Project Id). Consider the set Σ constituted by the single TGD

σ : runs(W, X), in area(X, Y ) → ∃Z external(Z, Y, X),

which expresses the fact that for each project there exists an external controller, special-
ized on the area of the project, that works on it. The conjunctive query Q = 〈q, {ρ}〉,
where ρ : q(B) ← external(A, database , B), asks for all the projects in the database
area which have an external controller. Intuitively, due to the TGD σ, not only do we
have to query external , but we also need to look for projects in the database area, as
such projects will have necessarily an external controller. The perfect rewriting will thus
be the UCQs (which is a first-order query) QΣ = 〈q, Π〉, where Π contains the rules

q(B)← external(A, database , B),
q(B)← runs(A, B), in area(B, database).

It is not difficult to see that QΣ can be written in SQL as follows:

SELECT E.Project_Id FROM external E
WHERE E.Area = "database"
UNION
SELECT R.Project_Id FROM runs R, in_area I
WHERE R.Project_Id = I.Project_Id AND I.Area = "database"

Let us clarify that the problem of identifying first-order rewritable sets of TGDs is un-
decidable. This can be established easily by exploiting known results. Given a Datalog
program Π (which can be seen as a set of TGDs without existentially quantified vari-
ables) if it is bounded, then it is also first-order rewritable. The converse was established
by Ajtai and Gurevich [2]. Therefore, the class of bounded Datalog programs coincides
with the class of first-order rewritable Datalog programs. It is well-known that the prob-
lem whether a given Datalog program is bounded is undecidable [21]. From the above
discussion, we immediately get that indeed the problem whether a set of TGDs is first-
order rewritable is undecidable.

First-order rewritable sets are strictly connected to finite unification sets [4]. Roughly,
a set Σ of TGDs is a finite unification set if, for every UCQs Q, the perfect rewriting
QΣ of Q obtained by backward-chaining through unification, according to the TGDs
of Σ, is finite. It is immediate to see that a finite unification set is trivially a first-order
rewritable set. However, it is not known whether there exists a first-order rewritable set
which is not a finite unification set.
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4 Concrete First-Order Rewritable Classes

As already explained, first-order rewritability is just an abstract property which is, in
general, not possible to recognize. In this section we present the known syntactic first-
order rewritable classes of TGDs, which are actually members of the Datalog± family.

Linear TGDs. A TGD is linear if its body contains a single atom [9]. Using linear
TGDs we can assert, for example, that everyone supervising her/himself is a manager:
supervises(X, X) → mgr(X); notice that this TGD does not fall into the class of
inclusion dependencies (IDs) since the repetition of variables is not allowed. Linear
TGDs are generalized by multi-linear TGDs. A TGD σ is multi-linear if each atom
of body(σ) is a guard, i.e., contains all the universally quantified variables of σ. Ob-
viously, each linear TGD is trivially multi-linear since its single body-atom is auto-
matically a guard. With multi-linear TGDs we can assert, for instance, that each em-
ployee who is also a manager supervises some other employee: emp(X),mgr(X) →
∃Y supervises(X, Y ); clearly, the above TGD is neither an ID nor linear.

As we discuss below, (multi-)linear TGDs (combined with negative constraints and
key dependencies, that is, additional features which do not increase the complexity
of query answering) generalize several prominent and highly tractable formalisms for
ontology reasoning, in particular, the main languages of the DL-Lite family [16].

The main weakness of linear TGDs is the fact that they do not allow for joins in TGD-
bodies. Although multi-linear TGDs allow for joins (like in the above example), the
joins that can be expressed are very restrictive; recall that each body-variable must occur
in every body-atom. For example, joins like the one over the variable X in the body of
the TGD runs(W, X), in area(X, Y ) → ∃Z external(Z, Y, X) (given in Example 3)
is not expressible using multi-linear TGDs. An expressive first-order rewritable class of
TGDs that can cope with such cases is discussed in the following paragraph.

Sticky Sets of TGDs. The class of sticky sets of TGDs [11] (formally defined below)
is a sufficient syntactic condition that ensures the so-called sticky property of the chase,
which is as follows. For every database D, assume that during the chase of D w.r.t.
a set Σ of TGDs, we apply a TGD σ ∈ Σ which has a variable V appearing more
than once in its body. Assume also that V maps (via a homomorphism) on the symbol
z, and that by virtue of this application the atom a is generated. In this case, for each
atom b ∈ body(σ), we say that a is derived from b. Then, z appears in a, and in all
atoms resulting from some chase derivation sequence starting from a, “sticking” to
them (hence the name “sticky” sets of TGDs).

The definition of sticky sets of TGDs is based heavily on a variable-marking pro-
cedure called SMarking. This procedure accepts as input a set of TGDs Σ, and marks
the variables that occur in the body of the TGDs of Σ. Formally, SMarking(Σ) works
as follows. First, we apply the so-called initial marking step: for each TGD σ ∈ Σ,
and for each variable V in body(σ), if there exists an atom a in head(σ) such that V
does not appear in a, then we mark each occurrence of V in body(σ). Then, we apply
exhaustively (i.e., until a fixpoint is reached) the propagation step: for each pair of
TGDs 〈σ, σ′〉 ∈ Σ×Σ (including the case σ = σ′), if a ∀-variable V occurs in head(σ)
at positions π1, . . . , πm, for m � 1, and there exists an atom a ∈ body(σ′) such that at
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each position π1, . . . , πm a marked variable occurs, then we mark each occurrence of
V in body(σ). The formal definition of sticky sets of TGDs follows.

Definition 2. A set Σ of TGDs is sticky if there is no TGD σ ∈ SMarking(Σ) such that
a marked variable occurs in body(σ) more than once.

Example 4. Assume that after the application of SMarking on a set Σ of TGDs we
obtain the following set (we mark variables with a cap, e.g., X̂):

dept(V̂ , Ŵ ) → ∃X∃Y ∃Z emp(W, X, Y, Z),
emp(V̂ , Ŵ , X̂, Ŷ ) → ∃Z dept(W, Z), runs(W, Y ), in area(Y, X),
runs(Ŵ , X), in area(X, Y ) → ∃Z external(Z, Y, X).

Clearly, for each TGD σ ∈ SMarking(Σ), there is no marked variable that occurs in
body(σ) more than once, and thus Σ is a sticky set of TGDs.

Despite their expressiveness, sticky sets of TGDs are not powerful enough to be able to
capture simple cases such as the TGD r(X, Y, X) → ∃Z s(Y, Z); clearly, the variable
X is marked, and thus stickiness is violated. Notice that the above TGD is linear. A
first-order rewritable class which captures both sticky sets of TGDs and linear TGD,
called sticky-join sets of TGDs, is proposed in [13]. The main disadvantage of this class
is the fact that the identification problem, i.e., whether a set of TGDs is sticky-join, is
computationally hard; in particular, PSPACE-hard. Notice that the identification problem
under (multi-)linear TGDs and sticky sets of TGDs is feasible in PTIME.

Bounded Derivation-Depth Property. The key property, underlying the classes of
TGDs presented above, which implies first-order rewritability is the so-called bounded
derivation-depth property (BDDP) [9]. As already explained, given an n-ary UCQs Q,
a database D, and a set Σ of TGDs, the problem whether an n-tuple t ∈ Γ n belongs
to ans(Q, D, Σ) is equivalent to the problem whether t ∈ Q(chase(D, Σ)). However,
chase(D, Σ) is (in general) infinite, and thus not explicitly computable. The BDDP
implies that, instead of evaluating Q over chase(D, Σ), it suffices to evaluate it over a
finite part of the chase which depends only on Q andR. Roughly, chase(D, Σ) can be
decomposed in levels, where D has level 0, and an atom has level k+1 if it is obtained,
during the chase, due to atoms with maximum level k. We refer to the part of the chase
up to level k as chasek(D, Σ). For the formal definitions we refer the reader to [9,11].

Definition 3. A set Σ of TGDs enjoys the BDDP if, for every n-ary UCQs Q over
a schema R, for every database D for R, and for every n-tuple t ∈ Γ n, if t ∈
ans(Q, D, Σ), then t ∈ Q(chasek(D, Σ)), where k depends only on Q and Σ, but
not on the database D.

The proof of the fact that the BDDP is a sufficient condition for first-order rewritability,
given in [9], hinges on the fact that by exploiting the initial finite part of the chase
implied by the BDDP, it is possible to construct a first-order query which is a perfect
rewriting (see algorithm BDDP-rewrite in Section 5).

The DL-Lite Family. Description Logics (DLs), are decidable fragments of first-order
logic, based on concepts (classes of objects) and roles (relations on concepts). Several
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variants of them have been investigated, where a central issue is the trade-off between
expressiveness and complexity. Interestingly, several lite DLs exist which are first-order
rewritable; in particular, the members of the well-known DL-Lite family [16], with
which we assume the reader is familiar. In what follows, we briefly discuss how the
DL-Lite family is related to the aforementioned first-order rewritable classes of TGDs;
see also [9,11].

The main DL-Lite languages, namely, DL-LiteF , DL-LiteR and DL-LiteA, can be
reduced to linear TGDs and sticky sets of TGDs, combined with negative constraints
(NCs) of the form ∀Xϕ(X) → ⊥, where ⊥ denotes the truth constant false, and key
dependencies (KD). These additional features do not increase the complexity of query
answering. This holds since, apart from a preliminary check (which is equivalent to
query answering under the TGDs) to verify that the NCs and the KDs are satisfied
by the given database and the set of TGDs, we are allowed to ignore the NCs and
the KDs [9,11]. Moreover, the DLs DL-LiteF ,�, DL-LiteR,� and DL-LiteA,� obtained
from DL-LiteF , DL-LiteR and DL-LiteA, respectively, by additionally allowing con-
junction in the left-hand side of the axioms, can be reduced to multi-linear TGDs (with
NCs and KDs). Furthermore, the above DLs (with binary roles) have a counterpart in
the DLR-Lite family, which allows for n-ary roles, along with suitable constructs to
deal with them [17]. These extended languages can be also reduced to (multi-)linear
TGDs and sticky sets of TGDs (with NCs and KDs) [11].

We conclude this section by giving a simple example how a DL-LiteF TBox is re-
duced to a set of TGDs (with NCs and KDs).

Example 5. The DL-LiteF TBox T constituted by person � ∃father−, ∃father �
person , ∃father � ¬∃mother and (funct father−) asserts that: (i) each person has a
father, (ii) who is himself a person, (iii) fathers and mothers are disjoint sets, and (iv)
each person has only one father. T can be reduced to the following set of TGDs with
NCs and KDs:

person(X) → ∃Y father (Y, X), father (X, Y ),mother(X, Z) → ⊥,
father (X, Y ) → person(X), father (X, Y ), father (Z, Y ) → X = Z;

the last rule is known as equality-generating dependency, and is equivalent to the KD
key(father ) = {2}. Observe that the first two formulas are linear TGDs and also a
sticky set of TGDs.

The ER+
⊥ Family. Other known first-order rewritable formalisms are the members of

the ER+
⊥ family of conceptual models proposed in [10,12]. These models extend the

well-known Entity-Relationship model with is-a constraints among entities and rela-
tionships, plus functional and mandatory participation constraints. Also, disjointness
and non-participation constraints (but also more general ones) can be expressed. Query
answering under ER+

⊥ models can be reduced to query answering under non-conflicting
conceptual dependencies, that is, a restricted class of linear TGDs and sticky sets of
TGDs with KDs and NCs. The particularity of non-conflicting CDs is that, once the
given database and the set of TGDs satisfy the KDs and the NCs (and this problem is
equivalent to query answering under the TGDs alone), then we can proceed by consid-
ering only the TGDs.
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5 Rewriting Approaches

Several techniques for computing the perfect rewriting of a query w.r.t. a set of FO-
rewritable constraints can be found in the literature.

BDDP-Rewrite. Calı̀ et al. in [9] presented an algorithm that computes the per-
fect rewriting 〈q, ΠΣ〉 of an n-ary UCQs 〈q, Π〉 w.r.t a set of TGDs Σ over a
schema R enjoying the bounded-derivation-depth property. By definition of BDDP,
for every database D and every n-ary tuple t ∈ Γ n, if t ∈ ans(Q, D, Σ), then
t ∈ Q(chasek(D, Σ)), where k does not depend on D. Clearly, every atom in
chase(D, Σ) is obtained by at most b = maxσ∈Σ{|body(σ)|} atoms. Therefore, if
t ∈ ans(Q, D, Σ), and thus there exists ρ ∈ Π of the form q(X) ← φ(X,Y) such
that φ(X,Y) is mapped by a homomorphism h to chasek(D, Σ) and h(X) = t, the
number of ancestors of h(body(ρ)) at level zero (i.e., the database level) is at most n·bk,
where n = maxρ∈Π{|body(ρ)|}. The desired query 〈q, ΠΣ〉 is constructed as follows:

1. Let {S1, . . . , Sm}, for m ≥ 1, be all the possible sets of n · bk atoms over R
having nulls of ΓN and constants that appear in Π as arguments.

2. For each i ∈ [m], let Ci = chasek(Si, Σ) (considering Si as a database).
For every rule q(X) ← φ(X,Y) of Π , and for every homomorphism h such that
h(φ(X,Y)) ⊆ Ci and h(X) ∈ Γ n, let φi be the logical conjunction of the atoms ob-
tained from Si by replacing each distinct null of ΓN with a distinct variable of ΓV , and
add to ΠΣ the rule q(h(X))← φi.

Roughly, each rule of ΠΣ corresponds to some derivation of n atoms (soundness), while
every derivation of n atoms in the levels of the chase up to k (i.e., all those sufficient to
answer Q) corresponds to a rule of ΠΣ (completeness). However, BDDP-rewrite is not
very well-suited for practical implementations. For this reason, several other techniques,
which are reviewed in the rest of this section, have been proposed.

ID-Rewrite. A more viable way of constructing the perfect rewriting is by proceeding
“backward” from the input query “towards” the atoms of the database. An early algo-
rithm of this kind is ID-rewrite introduced by Calı̀ et al. in [15]. This algorithm takes
as input a UCQs 〈q, Π〉 and a set of inclusion dependencies Σ over a relational schema
R, and constructs a UCQs 〈q, ΠΣ〉 by iterating over two steps, namely, rewriting and
reduction, until a fix-point in the construction of the rewriting is reached.

The rewriting step works as follows. An ID σ ∈ Σ is applicable to a rule ρ ∈ ΠΣ if
there exists a ∈ body(ρ) such that (i) a and head(σ) unify, and (ii) if a bound term in ρ
(i.e., a constant of Γ or a variable that occurs more than once in ρ) appears at position π,
then at position π in head(σ) a universally-quantified variable occurs. Then, for each
ID σ ∈ Σ and for each rule ρ ∈ ΠΣ (notice that Π ⊆ ΠΣ), if σ is applicable to ρ
due to an atom a ∈ body(ρ), then γ(ρ′) is added to ΠΣ , where γ is the most general
unifier (MGU) of a and head(σ), and ρ′ is obtained from ρ by replacing a with body(σ).
Roughly, this step uses the IDs of Σ as rewriting rules.

Example 6. Consider the query 〈q, {ρ}〉, where ρ : q(A) ← p(A, B), t(A, C, D), and
the set Σ of IDs:

σ1 : s(X) → ∃Y ∃Z t(X, Y, Z)
σ2 : t(X, Y, Z) → r(Y, Z).
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The atom t(A, C, D) unifies with head(σ1) through the MGU γ = {X → A, Y →
C, Z → D}, where the existential variables Y and Z map to the unbound variables C
and D. ID-rewrite constructs the rule q(A)← p(A, B), s(A) and adds it to ΠΣ .

The applicability condition may prevent the generation of queries that are vital to guar-
antee completeness of the rewritten query, as shown by the following example.

Example 7. Consider the query 〈q, {ρ}〉 where ρ : q(A) ← t(A, B), s(B) and the set
Σ of IDs:

σ1 : p(X) → ∃Y t(X, Y )
σ2 : t(X, Y ) → s(Y ).

The only viable strategy in this case is to rewrite the atom s(B) using σ2, since the
atom t(A, B) is blocked by the applicability condition due to the bound variable B.
The rule that we obtain is ρ1 : q(A)← t(A, B), t(X, B), where X is a fresh variable.
Notice that in ρ1 the variable B remains bound, thus no other atoms can be rewritten
and ΠΣ = {ρ, ρ1}. Consider now the database D = {p(a)}. Clearly, chase(D, Σ) =
{p(a), t(a, z1), s(z1)} and ρ maps to chase(D, Σ); however, none of the rules in ΠΣ

maps to D and therefore the rewriting is not complete.

This problem is solved by applying the reduction step: for each rule ρ ∈ ΠΣ , if body(ρ)
contains two atoms a1 and a2 that unify, then the rule γ(ρ) is added to ΠΣ , where γ is
the MGU of a1 and a2.

Example 8. With reference to Example 7, the reduction step would generate the rule
ρ2 : q(A) ← t(A, B) from ρ1. The atom t(A, B) can be now rewritten using σ1 to
produce the rule ρ3 : q(A)← p(A) that makes the perfect rewriting complete.

ID-rewrite is at the basis of PerfectRef, the original algorithm used by the DL-Lite
reasoner QuOnto1. The main disadvantage of ID-rewrite is the large number of rules
generated by the reduction step. Since the unifications are done blindly, most of the
generated rules are redundant and do not contribute to the actual completeness of the
perfect-rewriting. In addition, the size of the constructed perfect rewriting, intended as
the number of rules in ΠΣ , is intrinsically exponential in the size of the input query and
of Σ since the constructed rewriting is in disjunctive normal form.

UCQ-Rewrite. Calı̀ et al. in [14] extended ID-rewrite to cope with more general classes
of TGDs than IDs; in particular, linear and sticky(-join) TGDs. The main difference is in
the applicability condition that must be extended to be able to deal with the repetition of
head variables in the constraints. In particular, if a bound term in the input query occurs
in an atom a at positions π1, . . . , πm, for m ≥ 2, then either, for each i ∈ [m], the
variable at position πi in head(σ) occurs also in body(σ), or at positions π1, . . . , πm

in head(σ) the same existentially quantified variable occurs. Apart from this extension,
UCQ-rewrite works as ID-rewrite and, therefore, it inherits all its drawbacks.

TGD-Rewrite. In a subsequent work [22], Gottlob et al. proposed a rewriting technique
for Datalog± that sensibly improves the UCQ-rewrite algorithm by avoiding the redun-
dant rules produced by the reduction step. TGD-rewrite substitutes the reduction step

1 http://www.dis.uniroma1.it/ quonto/
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of UCQ-rewrite with a proper atom factorization procedure defined as follows. First,
given a query 〈q, Π〉, each position π in an atom a ∈ body(ρ), where ρ ∈ Π , is called
existential w.r.t. a set Σ of TGDs if there exists a TGD σ ∈ Σ such that a unifies with
head(σ), and the term at position π in head(σ) is an existentially quantified variable.
A set of atoms S ⊆ body(ρ) is factorizable w.r.t a TGD σ iff: (i) for each pair of atoms
a, b of S, a and b unify, and (ii) if a variable V appears at an existential position in an
atom of S, then V does not occur in body(ρ) \ S, and also V occurs only at existential
positions. Intuitively, the factorization produces only useful rules, i.e., by rewriting their
atoms we obtain rules that are needed to ensure completeness.

Example 9. Consider the TGD σ : s(X), r(X, Y ) → ∃Z t(X, Z, Z) and the three
Boolean CQs, i.e., CQs of arity zero:

ρ1 : q() ← t(A, C, B), t(A, E, C)
ρ2 : q() ← s(C), t(A, C, B), t(A, E, C)
ρ3 : q() ← t(A, C, B), t(C, E, B).

Clearly, the atoms in the body of ρ1 unify through the MGU γ = {E → C, B → C},
and they are also factorizable since the variables C, B and E appear only at existential
positions in ρ1. The factorization results in the rule ρ′1 : q() ← t(A, C, C); notice that
σ is not applicable to ρ1 but it is applicable to ρ′1. On the contrary, despite the fact
that the atoms t(A, C, B) and t(A, E, C) in ρ2 unify, since the variable C appears also
at position s[1] which is not existential w.r.t {σ}, the atoms are not factorizable. The
same holds for ρ3, where the atoms t(A, C, B) and t(C, E, B) unify but the variable C
appears at t[1] which is not existential w.r.t. {σ}.

Another optimization introduced by TGD-rewrite, consists of the removal of the atoms
in the body of a rule that are logically implied (w.r.t. Σ) by other atoms in the same rule.
This procedure avoids the construction of redundant rules during the rewriting process.
Notice that the elimination procedure works only for linear TGDs and that the worst-
case size of the perfect rewriting constructed by TGD-rewrite remains exponential in
the size of the query and the set of constraints.

Requiem. An alternative resolution-based rewriting technique has been proposed by
Peréz-Urbina et al. in [30]. Requiem2 is designed to work with non-FO-rewritable
description logics, but can also be applied to DL-Lite TBoxes to produce a perfect
rewriting in form of UCQs. The algorithm proceeds in three steps.

Skolemization. First, the existential quantifiers in the constraints of Σ are eliminated by
reducing each TGD into Skolem normal form. During this step, Σ is transformed into
an equisatisfiable set Σf of rules.

Saturation. In order to compute the perfect rewriting, Requiem systematically con-
structs all the clauses that can be derived through resolution from the set Σf and the
query 〈q, Π〉. The saturation technique adopted by Requiem is inspired by the tech-
nique introduced by Joiner [25] to decide a first-order fragment by resolution. Joiner

2 http://www.comlab.ox.ac.uk/projects/requiem/home.html
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established that, in order to obtain a refutation decision procedure for a first-order frag-
ment L it is sufficient to: (i) select a sound and complete clausal calculus C, (ii) identify
a set of clauses N such that N is finite for a finite signature and the translation of a
formula in N into clauses produces only clauses in N and, (iii) prove that N is closed
under C. Given the above setting, it is possible to construct a finite set of clauses by sat-
urating the set Π ∪Σf that can be used to retrieve all and only the answers to the input
query. Depending on the language of constraints, Requiem adopts a language-specific
RFS (Resolution with free selection) clausal calculus for this task. Once the saturated
set has been computed, Requiem eliminates all the rules containing function symbols
since they are not necessary for query-answering purposes. The output is a Datalog
program representing the perfect rewriting 〈q, ΠΣ〉 of the input query w.r.t. Σ.

Unfolding. Since the Datalog program is possibly recursive, Requiem proceeds to
the unfolding of the rules to construct the corresponding UCQs. This is done by iter-
atively expanding the rules in ΠΣ that have q as head predicate, using the other rules
in ΠΣ until a UCQs is obtained. The termination condition for the expansion process
depends on the language of Σ; in particular, for DL-Lite it terminates when no new
rules are generated.

Example 10. Consider the set of TGDs and the query of Example 7. The Skolem normal
form of the set of TGDs is

p(X) → t(X, f(X))
t(X, Y ) → s(Y ).

The saturation step produces the following set of rules:

p(X) → s(f(X))
p(X), s(f(X)) → q(X)
p(X), t(X, f(X)) → q(X)
p(X) → q(X).

The Datalog perfect rewriting 〈q, ΠΣ〉 consists therefore of the function-free rules (in-
put query included):

t(X, Y ), s(Y ) → q(X)
t(X, Y ) → s(Y )
p(X) → q(X).

The unfolding step then rewrites the atom s(Y ) with t(X, Y ) producing the following
UCQs that is the final rewriting produced by Requiem.

q(X) ← t(X, Y ), s(Y )
q(X) ← t(X, Y ), t(X, Z)
q(X) ← p(X).

Comb-Rewrite. Kontchakov et al. in [26] proposed a technique to compute the per-
fect rewriting of a UCQs Q = 〈q, Π〉 w.r.t. a set Σ of DL-LiteNhorn constraints, i.e.,
DL-Litehorn extended with number restrictions [3]. The constructed rewriting has the
property of being of polynomial size w.r.t. the size of Q and Σ at the price of requiring
a completion procedure of the input database D (combined rewriting).
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During the completion step, the database D is extended with tuples that satisfy (i.e.,
witness) the constraints in Σ, in a similar way as in the chase procedure, obtaining
the so-called canonical instance Dcomp. Differently from the chase, the completion
procedure introduces fresh nulls only when it is not possible to satisfy a constraint
using the nulls already in D. This procedure ensures that Dcomp can be constructed in
polynomial time w.r.t. the size of D. On the other hand, Dcomp is not in general a model
for Σ but it can be used to “simulate” a universal model.

Since answering Q over Dcomp might lead to unsound answers, in the rewriting step,
Comb-rewrite reformulates Q in order to embed constraints that exclude unsound tu-
ples from the answer. The reformulated query is a formula QΣ = 〈q, ΠΣ〉 where
each ρΣ ∈ ΠΣ is constructed as follows: head(ρΣ) = head(ρ) and body(ρΣ) =
body(ρ) ∧ φcert ∧ φtree. The formula φcert is a conjunction of inequalities ensuring
that no variable in head(ρΣ) is mapped to a null value, i.e., only tuples of constants are
returned, while the formula φtree ensures that whenever body(ρΣ), for some ρΣ ∈ ΠΣ ,
maps to atoms in Dcomp containing some null value, then body(ρΣ) must be homomor-
phically embeddable into a tree-shaped subsets of Dcomp.

It can be proven that ans(Q, D, Σ) = QΣ(Dcomp), however, a disadvantage of this
technique is that requires updates to the input database D, while all the other presented
approaches are purely intensional.

Presto. To address the problem of the exponential blowup of the size of the rewriting,
Rosati and Almatelli proposed Presto [31], an algorithm that computes the perfect-
rewriting of a conjunctive query w.r.t. a DL-Lite TBox as a non-recursive Datalog pro-
gram instead of a UCQs. Rosati et al. noticed that one of the reasons for the exponential
size of UCQs rewritings is in the joins between existential variables. Some of these joins
can be systematically eliminated by leveraging on the structure of the set of constraints.
Presto is based on three main ideas.
Split existential joins. Given a query 〈q, Π〉, each rule ρ ∈ Π is split into its existential-
join connected components, i.e., subsets of atoms in body(ρ) connected by existential
variables. Each connected component is then associated to a fresh auxiliary predicate.

Example 11. Consider the rule ρ : q(X, Y ) ← p(X, W ), r(W, T ), p(Y, Z), s(Z) and
the following set Σ of TGDs:

t(X, Y ) → p(X, Y )
u(X, Y ) → t(X, Y )
p(X, Y ) → ∃Zr(Y, Z)
p(X, Y ) → s(Y ).

Algorithms such as ID-rewrite and UCQ-rewrite generate about 70 rules, where the
atoms unifying with p(X, Y ) are substituted with atoms of the form t(X, Y ) and
u(X, Y ) in all the possible combinations as in the following:

q(X, Y )← p(X, W ), r(W, T ), p(Y, Z), s(Z)
q(X, Y )← t(X, W ), r(W, T ), p(Y, Z), s(Z)
q(X, Y )← u(X, W ), r(W, T ), p(Y, Z), s(Z)
q(X, Y )← t(X, W ), r(W, T ), t(Y, Z), s(Z)
...
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Instead, Presto splits ρ into two rules ρ1 : q1(X) ← p(X, W ), r(W, T ) and
ρ2 : q2(Y ) ← p(Y, Z), s(Z) that are then combined by the rule ρ3 : q(X, Y ) ←
q1(X), q2(Y ). Notice that ρ is equivalent to the set {ρ1, ρ2, ρ3}, but now it is possible
to process the two components independently.

Compress hierarchical expansions. A backward-chaining algorithm iteratively expands
the atoms in the query using the TGDs in Σ. Presto is able to compress such expan-
sions into Datalog rules by introducing, for each predicate r in the schema, an auxiliary
predicate that “collects” all the “specializations” of r.

Example 12. Consider the set of TGDs of Example 11. The predicates t and u are
specializations of the predicate p, therefore Presto introduces an auxiliary predicate
auxp and the set of rules:

auxp(X, Y ) ← p(X, Y )
auxp(X, Y ) ← t(X, Y )
auxp(X, Y ) ← u(X, Y ),

and substitutes the predicate auxp, whenever p, t and u occur in the rules, as follows:

q(X, Y ) ← q1(X), q2(Y )
q1(X) ← auxp(X, W ), r(W, T )
q2(Y ) ← auxp(Y, Z), s(Z).

Elimination of existential joins. Presto uses the concept of most-general subsumee to
eliminate the unnecessary existential joins from the rules. Roughly, Presto eliminates
those atoms in a rule whose existence is already implied by other atoms in the query.
Consider again the set Σ of Example 11. The atom s(Z) of ρ is implied by the atom
p(Y, Z) under Σ. In the same way, the atom r(W, T ) is implied by p(X, W ). The final
rewriting is therefore the following set of six rules, where the unnecessary atoms have
been eliminated:

q(X, Y ) ← q1(X), q2(Y )
q1(X) ← auxp(X, W )
q2(Y ) ← auxp(Y, Z)
auxp(X, Y ) ← p(X, Y )
auxp(X, Y ) ← t(X, Y )
auxp(X, Y ) ← u(X, Y ).

The size of the perfect rewriting produced by Presto is exponential only in the number
of non-eliminable existential-join variables of the given query; such variables are a
subset of the join variables of the query, and are typically less than the number of
atoms in the query. However, if we restrict the language to DL-Litecore it is possible
to construct a rewriting of polynomial size also w.r.t. the size of the query [26].

DTG-Rewrite. Orsi and Pieris presented in [28] an algorithm to compute the perfect-
rewriting of a UCQs 〈q, Π〉 w.r.t. a set of linear TGDs Σ as a bounded Datalog program
〈q, ΠΣ〉. DTG-rewrite proceeds in four steps.



16 G. Gottlob, G. Orsi, and A. Pieris

Skolemization. First, the existential quantifiers in the TGDs of Σ are eliminated as in
Requiem producing an equisatisfiable set of rules Σf .

Rule Saturation. This step computes the so-called saturated set of Σf , written Πr-sat,
by applying the well-known resolution inference rule. A rule of Πr-sat, obtained by
applying k times the resolution rule, “mimics” a derivation of the chase under Σf which
involves k + 1 applications of the TGD chase rule. Notice that Πr-sat is, in general,
infinite. However, since linear TGDs enjoy the BDDP (see Section 2), it suffices to
“mimic” the chase up to a finite level and, therefore, only a finite part of Πr-sat is
constructed.

Query saturation. During this step the so-called saturated query denoted as Πq-sat of
〈q, Π〉 is computed. This is done by resolving the rules in Π with the non-function-free
rules of Πr-sat. Roughly, given a database D, if one of the atoms due to which the
input query maps to chase(D, Σf ) was obtained by a chase derivation that involves
TGDs with functional terms, then DTG-rewrite constructs a rule that “bypasses” this
derivation. Notice that the saturated query is, in general, infinite. Nevertheless, since
linear TGDs have the BDDP, as in the case of Πr-sat, only a finite part is constructed.

Finalization. In this step the rewritten query is obtained by adding the function-free
rules of Πr-sat ∪Πq-sat to ΠΣ .

Differently from Presto, no auxiliary predicates are introduced to compress the hi-
erarchical expansions. This is done in DTG-rewrite by reusing the predicates of Σ.
In addition, by targeting a bounded Datalog program instead of a non-recursive Dat-
alog program, DTG-rewrite is able to compress more the size of the rewriting while
preserving the good computational properties of first-order queries. DTG-rewrite also
improves Requiem by avoiding the expansion of the Datalog rewriting into UCQs and
by avoiding the unnecessary intermediate rules during the rule saturation step.

Example 13. Consider the set of TGDs and the query of Example 10. The skolemiza-
tion step of DTG-rewrite proceeds exactly as in Requiem whereas the saturation step
is split in two phases. The rule-saturation step is independent on the query and produces
only the rule p(X)→ s(f(X)). The query saturation step then expands the query using
only the rules with function symbols in the saturated set where at each step the redun-
dant atoms in the query are eliminated. The final set of rules produced by DTG-rewrite
in this case is the following

q(X) ← t(X, Y )
q(X) ← p(X).

Notice that the rule t(X, Y ) → s(Y ) is not part of the rewriting since it does not con-
tribute to obtain any tuple in the output predicate q. Redundant rules can be identified
a-priori using the notion of predicate graph of a set of rules.

Poly-Rewrite. Recently, Gottlob and Schwentick [23] proved that for every query Q,
for every database D, and for every set Σ of TGDs that falls in any of the aforemen-
tioned syntactic classes of TGDs, we can obtain the answers of Q w.r.t. D and Σ by
evaluating Q over a finite part of chase(D, Σ), obtained after polynomially (w.r.t. Q
and Σ) many chase steps. This implies that for all the above classes, it is possible to
construct a polynomial-size (w.r.t. Q and Σ) non-recursive Datalog rewriting.
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Table 1. Summary of rewriting techniques

Algorithm language input output size
ID-rewrite IDs UCQs UCQs exponential in Q and Σ

UCQ-rewrite SJTGDs UCQs UCQs exponential in Q and Σ
TGD-rewrite SJTGDs UCQs UCQs exponential in Q and Σ

Requiem DL-Lite UCQs UCQs exponential in Q and Σ
Comb-rewrite DL-LiteNhorn UCQs UCQs + views polynomial in Q and Σ

Presto DL-Lite UCQs non-recursive Datalog exponential in Q - polynomial in Σ
DTG-rewrite LTGDs UCQs bounded Datalog exponential in Q - polynomial in Σ
Poly-rewrite SJTGDs UCQs non-recursive Datalog polynomial in Q and Σ

Table 1 summarizes the techniques discussed above where Q represents the size of
atoms in each rule of the input query and Σ is the size of the set of constraints. By SJT-
GDs and LTGDs we refer to sticky(-join) sets of TGDs and linear TGDs, respectively.
Recall that sticky-join sets of TGDs capture linear TGDs and sticky sets of TGDs.

6 Conclusion

This work discussed FO-rewritability and related properties with particular focus to
their application to ontological query answering. We also presented existing FO-
rewritable classes of languages and overviewed recent algorithms to compute the per-
fect rewriting of a query w.r.t. a set of ontological constraints. Future research directions
aim at identifying more expressive classes of FO-rewritable languages and devising
more effective rewriting optimization techniques.
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Abstract. It is common practice in contemporary information systems engineer-
ing to combine data engineering methods with process engineering methods.
However, these methods are applied rather independently and at different lay-
ers of an information system. This situation engenders an impedance mismatch
between the process layer and the business logic and data layers in contemporary
information systems. We expose some of the issues that this impedance mismatch
raises by means of a concrete example. We then discuss emerging paradigms for
seamlessly integrating data and process engineering.

1 Introduction

Data engineering is a well-trodden field endowed with a mature body of methods and
tools. Proven data analysis and design methods allow data engineers to capture com-
plex data requirements and to refine these requirements down to the level of database
schemas in a seamless and largely standardized manner. Concomitantly, database sys-
tems and associated middleware enable the development of robust and scalable data-
driven applications to support a wide spectrum of business functions. Furthermore, con-
temporary packaged enterprise systems support hundreds of business activities on top of
shared databases, while Master Data Management (MDM) methods provide guidance
for managing and governing data across application and organizational boundaries.

Eventually though, individual business functions supported by database applications
need to be integrated in order to automate end-to-end business processes such as order-
to-cash processes. This facet of information systems engineering falls under the realm
of business process engineering.

Business process engineering is also an established discipline with its own body of
methods and tools. Process analysis and design methods typically rely on process mod-
els that capture how tasks, events and decision points are inter-connected, and what data
objects are consumed and produced throughout a process. These models are first cap-
tured at a high level of abstraction and then refined down to executable process models
that are deployed in Business Process Management Systems (BPMS). These systems
orchestrate the execution of business processes by delegating work to human actors and
moving data across multiple applications, possibly across organizational boundaries.

But while data engineering and process engineering are each endowed with their
own body of mature methods and tools, these methods and tools are at best loosely
integrated. When it comes to accessing data, BPMS typically rely on request-response
interactions with database applications or packaged enterprise systems. Typically, data
fetched from these systems are copied into the “working memory” of a business process.
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The collected data are then used to evaluate business rules and are distributed to other
systems as required by the logic encoded in the business process.

More generally, in contemporary information systems engineering, data entities and
business processes are analyzed, designed, implemented and tested separately, using
fundamentally different methods. This divide between data and process engineering
is driven by various factors, including the fact that data are shared across multiple
processes, that data and processes evolve at different rates and according to different
requirements. Notwithstanding these reasons, the “data vs. processes” divide leads to
redundancy that, in the long run, hinders on the coherence and maintainability of infor-
mation systems. In particular, the data vs. processes divide has the following effects:

– Process-related and function-related data redundancy. The BPMS maintains data
about the state of the process, since these data are needed in order to enable the
system to schedule tasks, react to events and to evaluate predicates attached to
decision points in the process. On the other hand, data entities manipulated by the
process are stored in the database(s). The result is that data are managed sometimes
redundantly at the database layer and at the process execution layer, thereby adding
development and maintenance complexity.

– Business rules redundancy. Some business rules are encoded at the level of the busi-
ness process and also at the level of the database application (or even the database
system itself in the form of triggers or integrity constraints). This rule redundancy
hampers maintainability and potentially leads to inconsistencies.

Service-oriented architectures (SOAs) facilitate the inter-connection of applications and
application components. Their emergence has greatly facilitated the integration of data-
driven and process-driven applications. SOAs have also enabled packaged enterprise
software vendors to “open the box” by providing standardized programmatic access
to the vast functionality of their systems. But per se, SOAs do not address the prob-
lem of data and process integration, since data-centric services and process-centric ser-
vices are still developed separately using different methods. A case in point is Thomas
Erl’s service-oriented design method [5], which advocates that process-centric services
should be strictly layered on top of data-centric (a.k.a. entity-centric) services. Erl’s
approach consists of two distinct methods for designing process-centric services and
entity-centric services. This same principle permeates in many other service-oriented
design methods [6].

This talk will give an overview of emerging approaches that aim at addressing
the shortcomings of the data and process engineering divide. In particular, the talk
will discuss the emerging artifact-centric process management paradigm, and how this
paradigm, in conjunction with SOA platforms, allow organizations to achieve higher
levels of integration and higher responsiveness to process change.

2 Illustrative Scenario

In order to concretely illustrate the drawbacks that the “process vs. data divide” create
in contemporary information systems, we consider a Build-to-order (BTO) process at a
company herewith called MetalWorks. A BTO process is an order-to-delivery process
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where the products to be sold are manufactured on the basis of a confirmed purchase or-
der. In other words, the manufacturer does not maintain ready-to-ship products in stock.
Instead, products are manufactured on demand when the customer orders them. This ap-
proach is used in the context of customized products, such as metallurgical products,
where customers often submit orders for products with very specific requirements.

The process is depicted using the BPMN notation in Figure 1. The process starts
when MetalWorks receives a Purchase Order (PO) from one of its customers. This PO
is called the customer PO. The customer PO may contain one or multiple line items.
Each line item refers to a different product.
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Fig. 1. BPMN model of Build-to-order (BTO) process

Upon receiving a customer PO, a Sales Officer checks the PO to determine if all the
line items in the order can be produced within the timeframes indicated in the PO. As
a result of this check, the Sales Officer may either confirm the customer PO or ask the
customer to revise the terms of the PO. Assuming that the PO is confirmed, one work
order is created for each line item in the customer PO. In other words, one customer
PO spawns multiple work orders (one per line item).

In order to manufacture a product, raw materials are typically required. Accordingly,
a Production Engineer inspects each work order in order to determine which raw ma-
terials are required in order to fulfill it. The Production Engineer annotates the work
order with the list of required required raw materials. Each raw material listed in the
work order is then checked by a Warehouse Manager. The Warehouse Manager deter-
mines whether the required raw material is available in stock or has to be ordered. If
the material has to be ordered, the Warehouse Manager selects a suitable supplier for
the raw material and sends a PO to the selected supplier. This PO for a raw material is
called a material PO, and it is different from the customer PO. A material PO is a PO
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sent by MetalWorks to one of its suppliers, whereas a customer PO is a PO received by
MetalWorks from one of its customers.

Once all materials required to fulfil a work order are available, the product is assem-
bled and packed. Eventually all work orders spawned by a customer PO are ready. At
that point in time, the products are shipped to the customer.

At any point during this process, the customer may send a Cancel Order message
for a given PO. When this happens, the Sales Officer determines if the order can still
be cancelled, and if so, whether or not the customer should pay a penalty. If the order
can be cancelled without penalty, all the work related to that order is stopped and the
customer is notified that the cancellation has been successful. If the customer needs to
pay a penalty, the penalty is calculated and the customer is informed of the amount.
The customer then needs to confirm the cancellation. It may also happen that some line
items of a customer PO cannot be cancelled because the corresponding products have
already been assembled and packed.

The key data entities involved in this business process are depicted in Figure 2. Im-
portantly, the data entities in this model are distributed across multiple organizational
units (indicated between brackets below the name of each entity). The customer PO
is managed by the Sales department, the work orders are managed by the Manufac-
turing department, and the material POs are managed by the Procurement Department
(not shown in the BPMN model) but also by the corresponding supplier. Each supplier
offers a system that allows MetalWorks to track the material POs it submits.

Customer PO
(Sales)

Line Item
(Sales)

Work Order
(Manuf.)

Material PO
(Procurement/
Supplier)

*

*

0..1

spawns

Fig. 2. High-level data model for the BTO process

The “Cancel Order” operation in this scenario raises a number of issues that illus-
trate the shortcomings raised by the “data vs. process divide”. Specifically, in order to
calculate the cancellation penalty, we need to have data about the status of the busi-
ness process, like for example which instances of the “Fulfill work order” subprocess
have already generated a material PO, which instances of the “Order Material” subpro-
cess have been shipped, which instances of “Fulfill work order” are in the “assemble/-
pack” phase, and which instances of “Fulfill work order” have already completed. This
“process execution status” is recorded by the BPMS, typically in its own underlying
database. On the other hand, we also need to have data about the supplier to which each
material order is sent, the return policies of these suppliers, and the costs for returning
materials back to the suppliers. These data are kept in different modules of MetalWork’s
enterprise system (e.g. sales, manufacturing and supplier management modules).
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When it comes to implementing such a “Cancel Order” operation, information sys-
tem engineers have two options:

1. Insert additional tasks in the executable process model in order to pull the data
required to calculate the penalty from MetalWork’s enterprise system. The aggre-
gated data, together with the process execution status data, are then passed to a
“penalty calculation service” that returns the amount of the penalty.

2. Push the process execution status data from the BPMS to MetalWork’s enterprise
system, so that the enterprise system has all the data required to compute the
penalty. Having done this, the BPMS can then invoke a “penalty calculation ser-
vice” that fetches all the required data from the enterprise system, computes the
penalty and returns it back to the BPMS. The penalty calculation service can be
implemented directly on top of the enterprise system.

The first approach has the drawback that the (executable) process model is polluted
with low-level data collection tasks. The second approach has the drawback that the
process execution status data is kept redundantly in the BPMS and in the enterprise
system’s underlying database. Furthermore, this also means that additional tasks need
to be added in the executable process model in order to update the enterprise system
every time that a step of the process is completed. In other words, the status of customer
POs, work orders and material POs have to be updated after every step in the process.

In both cases, the end-result is that the business process model is “polluted” with
tasks whose sole purpose is to move data between the process execution layer and the
system(s) that manage the key entities of the BTO process, namely the customer PO,
work order and material PO. In this setting, what SOAs achieve is that they facilitate
data access. They make it easier for developers to implement the necessary interactions
between the process layer and the data and business logic layer, but they do not obviate
nor reduce the need for coding such interactions and weaving them into the process
model. Fundamentally, the business process and the data entities that evolve as part
of this process (i.e. the POs and work orders) are conceived separately and “stitched
together” by means of low-level and sometimes brittle request-response interactions.

3 The Artifact-Centric Process Management Paradigm

Mainstream process modeling notations such as BPMN can be thought as being
activity-centric in the sense that process models are structured in terms of flows
of events and activities. Modularity is achieved by decomposing activities into sub-
processes. Data manipulation is captured either by means of global variables defined
within the scope of a process or subprocess, or by means of conceptually passive data
objects that are created, read and/or updated by the events and activities in the process.
In contrast, the database applications and/or enterprise systems on top of which these
processes execute are usually structured in terms of objects that encapsulate data and/or
behavior. There is thus an “impedance mismatch” between the process layer and the
business logic and data layers.

In contrast, artifact-centric process modeling paradigms [3,4] aim at conceptually
integrating the process layer and the business logic and data layers. Their main tenet is
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that business processes should be conceived in terms of collections of artifacts that en-
capsulate data and have an associated lifecycle. In an artifact-centric process modeling
paradigm, the BTO process would be conceived not in terms of activities or subpro-
cesses as in Figure 1, but in terms of artifacts such as customer PO, work order and
material PO. Each of these artifacts has a lifecycle. For example, the customer PO goes
through states such as submitted, checked, in procurement, in production, ready to ship
and shipped. Transitions between these states are triggered by events coming from hu-
man actors, modules of an enterprise system (possibly exposed as services) and possibly
other artifacts. The latter means that artifacts are inter-linked. For example, completion
of all work orders spawned by a customer PO leads to the customer PO moving to the
state ready to ship. Activities such as Ship Products are enabled by artifacts being in
certain states and completion of these activities may cause artifacts to move from one
state to another.

In an artifact-centric world, the status of customer POs and other artifacts in the BTO
process are conceptually encapsulated together with the rest of the data that is relevant
to that artifact. Moreover, artifacts are linked together and one artifact can query data
from its associated artifacts. In the context of the BTO process, the customer PO is
linked to the work orders it spawns, which themselves are linked to the material POs.
Data access can seamlessly occur across these links. In particular, it is possible to write
a single query to calculate the cancelation penalty for a customer PO, without having to
insert additional tasks in the process in order to move data across the process and data
layers for the purpose of such penalty calculation. Conceptually, all data associated to
a customer PO are clustered together and can be seamlessly accessed.

The artifact-centric paradigm has its roots in object-orientation. In fact, artifacts are
sometimes called business objects in the literature [7,8]. It is debatable to what ex-
tent artifacts are distinguishable from “coarse-grained objects”. Generally, what distin-
guishes artifacts is that they can be directly related to business processes, which entails
that artifacts have non-trivial lifecycles. With respect to the working example, a line
item would most likely be modeled as an object, since it encapsulates data and possibly
also behavior, but it is unlikely to be considered an artifact insofar as it does not have a
lifecycle on its own.

4 Outlook: Artifact-Centric Interoperation Hubs

While artifacts conceptually reduce the impedance mismatch between the process layer
and the business logic and data layers, it is still the case that these layers are usually
separated and kept in distinct tiers in contemporary multi-tier system architectures. This
imperative sometimes comes from the existence of organizational boundaries (e.g. be-
tween Sales and Manufacturing), and is even stronger when these organizational units
are completely independent. For example, data about the status of a material PO is
maintained both by MetalWorks and by its suppliers. Thus, at the lower-level of ab-
straction data still needs to be moved around. Service-oriented architectures provide a
proven approach to construct the interfaces that facilitate such data movement, but still,
someone has to design and implement the operations to enact this data movement.
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The Artifact-Centric Service Interoperation (ACSI) project1 aims at combining the
artifact-centric process management paradigm with SOAs in order to achieve higher
levels of abstraction during business process integration across organizational bound-
aries. The key principles of the ACSI project is that processes should be conceived as
systems of artifacts, and these systems of artifacts are bound to services. The bind-
ing between artifacts and services specifies where should the data of the artifact be
pushed to, or where it should be pulled from, and when. For example, when a supplier
ships a material PO to MetalWorks, it sends an Advance Shipment Notification via the
service-oriented system interfaces provided by MetalWorks. When MetalWorks’s sys-
tem receives this notification, the status of the copy of the corresponding material PO
maintained at MetalWorks is updated. If a “Cancel Order” message was received by
MetalWorks at that point in time, the penalty calculation would be performed using
the updated status for this material PO. Importantly, process analysts do not reason in
terms of request-response interactions. Instead, they reason in terms of artifacts, their
lifecycles, operations and associated data. Interactions across system boundaries are
conceived at a lower level of abstraction and specified in artifact-to-service bindings.

Several challenges lie ahead on the road to artifact-centric interoperation hubs, in-
cluding:

– Artifact-centric process modeling: While in the realm of activity-centric process
modeling, a consensus has been formed around BPMN as a standard modeling
notation, such consensus is far from being achieved in the field of artifact-centric
process modeling. Some researchers have studied the possibility of using communi-
cating state machines as the foundation for an artifact-centric modeling [7,8], while
others advocate more declarative approaches [4]. In any case, one key requirement
of such a language is that process state and other artifact-related data should be
viewed in a uniform manner, as opposed to activity-centric process modeling no-
tations (including BPMN) where data access and manipulation is specified at the
level of tasks and decision points, using a different language than the one used to
specify the flow of control of the process.

– Verification and consistency checking: When verifying the semantic correctness of
activity-centric process models, tool developers generally adopt a control-flow ab-
straction, meaning that they focus on the flow of control between activities. This
abstraction allows process models to be statically checked using graph analysis
techniques, Petri net-based techniques or more generally, finite-state model check-
ing techniques. In the context of artifact-centric systems however, static verification
ought to consider both the data and the control-flow viewpoints in an integrated
manner. As soon as the data is put into the equation, verification problems become
considerably harder to tackle due to potentially infinite state spaces [1,2]. In the
context of artifact-centric interoperation hub, a specific verification problem is that
of checking the consistency between the data and behavior specified in the artifact
models and the protocols of the services to which these artifacts are bound.

– Reverse-engineering: Most of today’s systems are arguably not constructed in terms
of artifacts. Therefore, the emergence of artifact-centric paradigm will necessitate

1 http://www.acsi-project.eu/

http://www.acsi-project.eu/
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methods and tools to reverse-engineer artifact-centric models from existing sys-
tems. One direction to tackle this challenge is by means of process mining tech-
niques, which aim at synthesizing process models from system execution logs. Ex-
isting process mining techniques however are geared towards activity-centric pro-
cesses and it remains an open question how to extend or adapt these techniques to
artifact-centric processes [9].

Initial results of the ACSI project along these and other streams can be found in the
project’s Web site: http://www.acsi-project.eu/.
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Abstract.  Available XPath evaluators basically follow one of two strategies to 
evaluate an XPath query on hierarchical XML data: either they evaluate it top-
down or they evaluate it bottom-up. In this paper, we present an approach that 
allows evaluating an XPath query in arbitrary directions, including a mixture of 
bottom-up and top-down direction. For each location step, it can be decided 
whether to evaluate it top-down or bottom-up, such that we can start e.g. with a 
location step of low selectivity and evaluate all child-axis steps top-down at the 
same time. As our experiments have shown, this approach allows for a very ef-
ficient XPath evaluation which is 15 times faster than the JDK1.6 XPath query 
evaluation (JAXP) and which is several times faster than MonetDB if the file 
size is ≤ 30 MB or the query to be evaluated contains at least one location step 
that has a low selectivity. Furthermore, our approach is applicable to most com-
pressed XML formats too, which may prevent swapping when a large XML 
document does not fit into main memory but its compressed representation 
does. 

Keywords: XML, top-down XPath evaluation, bottom-up XPath evaluation. 

1   Introduction 

1.1   Motivation 

XML gains more and more popularity not only as a data exchange format, but also as 
a storage, archive or data management format and XPath is the main standard to ex-
press path queries on XML data.  

Whenever XPath query evaluation is a bottleneck of an application, a fast XPath 
query evaluator is desired. If in addition, XML documents may become larger than 
the available main memory space, it may be a significant advantage when the fast 
XPath query evaluator can process XPath queries on compressed XML documents 
that can still fit into main memory. We present such a fast XPath query evaluator that 
relies on just a minimal set of XML navigation steps, such that it is applicable not 
only to plain XML data, but also to most queryable compressed XML data formats.  



28 M. Benter, S. Böttcher, and R. Hartel 

1.2   Contributions 

“Traditional” XPath evaluators typically evaluate the hierarchical XML data either 
top-down or bottom-up, as both techniques provide advantages for different classes of 
queries. In this paper we present an approach that allows XPath evaluation in any 
direction and that combines the following properties: 

─ The approach presented in this paper supports both, bottom-up and top-down 
XPath query evaluation on an XPath subset that extends core XPath as defined 
in [1] by comparisons of paths to constants within predicate filters.  

─ Even more, our approach allows a dynamic mixture of bottom-up and top-down 
query evaluation, such that for each location step, it can be decided whether to 
evaluate it top-down or bottom-up and at which time of the query evaluation 
process. 

─ Our approach is powerful and generic as it requires only minimal support from 
the underlying XML format. That is, our approach can be applied to any un-
compressed or compressed XML representation that provides access to XML 
nodes via the node’s name and provides navigation via the binary axes first-
child, first-child-1, next-sibling, and next-sibling-1, and nevertheless, our  
approach supports all the other XPath axes of core XPath (e.g. ancestor, descen-
dant, following and preceding) within XPath queries.   

─ We have evaluated query performance on two different XML representations – 
one uncompressed and one compressed – that are integrated into our approach. 
Besides a DOM-based XML representation, we have implemented a second 
XML main-memory representation, that is based on Succinct compression [2] 
and that – if combined with an index – not only allows for an XPath evaluation 
as fast as the DOM-based representation, but also needs only 20% of the main 
memory required by a DOM representation. 

─ Finally, we have implemented different ‘evaluation strategies’ that decide, 
which sub-queries of a given XPath query to evaluate in which direction, i.e. 
top-down or bottom-up, and at which time of the evaluation process. Further-
more, we have evaluated and compared these navigation strategies within a se-
ries of experiments to determine which is the most efficient navigation strategy 
to evaluate XPath queries. Our experiments have shown that for our test queries, 
the mixed approach is up to 7 times faster than bottom-up evaluation and up to 
56 times faster than top-down evaluation.  

1.3   Query Language 

The subset of XPath expressions supported by our approach extends the set of core 
XPath as defined in [1], as our approach beyond [2] additionally allows comparisons 
of paths to constants within predicate filters. This XPath subset supported by our 
approach is defined by the following EBNF grammar: 

cxp  ::= `/' locationpath 
locationpath ::= locationstep ('/' locationstep)* 
locationstep ::= x `::' t | x `::' t `[' pred `]' 
pred  ::= pred `and' pred | pred `or' pred | `not' `(' pred `)'  
                   | locationpath | locationpath ‘=’ const |`(' pred `)' 
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“cxp” is the start symbol, “x” represents an axis (self, child, parent, descendant-or-
self, descendant, ancestor-or-self, ancestor, following, preceding, following-sibling, 
preceding-sibling), “const” represents a constant, and “t” represents a “node test" 
(either an XML node name test or “*”, meaning “any node name”). 

Note that our system supports – aside from the evaluation in top-down or in bot-
tom-up direction – using the sibling axes in XPath queries, whereas other approaches 
like XMLTK[3], χαοζ[4], AFilter [5], YFilter[6], XScan[7], SPEX[8], and XSQ[9] 
are limited to using the parent-child and the ancestor-descendant axes only. 

1.4   Paper Organization 

This paper is organized as follows: Section 2 summarizes the fundamental concepts 
used for describing our approach to evaluate XPath queries consisting of a single path 
and XPath queries with filters. Furthermore, this section describes the different evalu-
ation strategies that could be used for evaluating an XPath query. The third section 
outlines some of the experiments that compare the different evaluation strategies of 
our prototype with each other and with other XPath evaluators. Section 4 gives an 
overview of related work and is followed by the Summary and Conclusions. 

2   Our Solution 

2.1   Overview of Our Solution 

We follow the ideas of [1] and [10] to rewrite the given XPath queries, such that they 
no longer use all the core XPath axes, but only a small set of basic binary axes con-
taining the axes first-child, first-child-1, next-sibling, next-sibling-1, and self. Table 1 
shows how to rewrite each standard XPath axis into a regular expression using only 
the basic binary axes. 

Table 1. Axis definition in terms of the basic binary axes 

Axis Binary expression 
child first-child, (next-sibling)* 
parent (next-sibling-1)*, first-child-1 
descendant first-child, (first-child | next-sibling)* 
ancestor (first-child-1 | next-sibling-1)*, first-child-1 
following-sibling next-sibling, (next-sibling)* 
preceding-sibling next-sibling-1, (next-sibling-1)* 
following (((first-child-1 | next-sibling-1)*,first-child-1) | self), next-sibling, (next-sibling)*,  

((first-child, (first-child | next-sibling)*) | self) 
preceding (((first-child-1 | next-sibling-1)*,first-child-1) | self), next-sibling-1,  

(next-sibling-1)*, ((first-child, (first-child | next-sibling)*) | self) 

Based on the binary XPath expressions given in Table1, we provide an atomic au-
tomaton using the binary axes for each XPath axis. For example, Figure 1 (a) shows 
an automaton generated for a location step child::a, and Figure 1 (b) shows an auto-
maton generated for a location step parent::a. fc represents the first-child axis, fcR the 
axis first-child-1, ns the next-sibling axis, nsR the axis next-sibling-1, and self the self 
axis.  
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Fig. 1. Atomic automata for the location steps (a) child::a and (b) parent::a 

Similar to the approach provided in[10], we translate each location step LSi of a 
given XPath query into a single atomic automaton BAi. The advantage of reducing all 
the XML axes listed in Table 1 to the basic axes (first-child, first-child-1, next-sibling, 
next-sibling-1, and self) is that we require the XML representation only to support the 
navigation along the basic axes together with an efficient access to all nodes that have 
a given node name. This requirement is met e.g. for uncompressed XML by the DOM 
representation or e.g. for compressed XML by the succinct representation[2]. There-
fore, the presented approach can be applied to uncompressed XML as well as to com-
pressed XML, if the XML format supports at least navigation along the basic axes and 
access to node names, although our approach applied to the XML format supports the 
much larger superset of core XPath described in Section 1.3.  

The XPath query is represented as a special kind of non-deterministic finite auto-
maton that we call a ‘token automaton’. A token automaton not only contains states 
and transitions, but also allows for using each state in any number of tokens each of 
which represents an answer to a sub-query within the XML document. According to 
the events produced by the input XML document representation, the token-automaton 
fires transitions and transfers tokens, i.e. generates new tokens, along the binary axes 
first-child, first-child-1, next-sibling, next-sibling-1, and self.   

The atomic token automata build a construction kit from which the final automaton 
representing an XPath query is built. In contrast to traditional automata, not the input 
– i.e., the XML document representation – controls, which transitions can be fired 
next, but there exist an external controlling instance – called DecisionModule – that 
decides, which transition will be fired next. In other words, the DecisionModule de-
cides for each location step of the query whether it is evaluated top-down or bottom-
up, and at which time of the query evaluation this location step is evaluated. 

Each transition of the automaton can either be fired top-down, i.e., it consumes the 
binary axis that is denoted by the transition label and the tokens are transferred in the 
direction given by the transition, or it can be fired bottom-up, i.e., it consumes the 
inverse of the binary axis denoted by the transition label and the tokens are transferred 
opposite to the given direction. We assume, that the used XML compression provides 
– similar as it is provided by DOM – access to a list of nodes that fulfill a given node 
name test and supports navigation via the binary axes first-child, first-child-1, next-
sibling, next-sibling-1, and self. 

2.2   XPath Automata 

Each atomic automaton contains one state that is called a stable state and that carries a 
node name test as label and that accepts only the tokens referring to those XML nodes 
which fulfill the given node name test. Stable states are marked by a double circle. 
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The notation of the transitions of the automaton only shows the top-down evaluation; 
the bottom-up evaluation can be taken by reversing the transition direction and by 
replacing each transition label by its reverse. The other atomic automata are built in a 
similar way to the child::a automaton shown in Fig. 1 according to the regular expres-
sions provided in Table 1. If a location step LSi is followed by a location step LSj in a 
query Q, we concatenate the atomic automaton BAi corresponding to LSi and the 
atomic automaton BAj corresponding to LSj to the token automaton XPQ of query Q 
by drawing a self transition from the final state of BAi to the start state of BAj. 

For example, Fig. 2(a) shows the automaton for the query Q = //a/b.  All states 
have as label an ID of the form s0,…,s6, and the stable states have as an additional 
label the node name test that has to be fulfilled by an XML node in order to be ac-
cepted by this stable state. The root (state s0) is connected via a self-axis to the auto-
maton for //a (states s1-s3) which is connected by another self-axis to the automaton 
for /b (states s4-s6). 

 

Fig. 2. (a) XPath automaton for query //a/b , and (b) a small example document where each 
node is represented by a node ID and the node’s  label 

2.3   Evaluation of Filter-Less Paths 

Overview: In order to evaluate an XPath query Q, first, the automaton A for Q is 
built as described in the previous section. Each pair (sx,sy) of stable states in A for 
which a path from sx to sy exists in A represents a relative XPath expression R that is 
a sub-sequence of location steps of Q.  

Second, tokens each of which represents an answer to such a relative XPath ex-
pression R are created, transferred, joined, and deleted until all tokens that represent 
an answer to Q are computed. Let sx, sy be stable states in A, let R be the sub-query 
of Q that corresponds to the sub-automaton including all paths and states from sx to 
sy of the automaton A for Q, and let nv, nw be nodes in the given XML document. 
Then the token T=(nv/sx, nw/sy) represents an answer nw to the sub-query nv/R .  

DecisionModule: A DecisionModule controls the order and the direction (bottom-up 
or top-down), in which the sub-queries are evaluated, i.e., it decides which of the 
stable states are taken as start states and for which state occurring in a token, partial 
sub-query evaluation is continued, i.e., which tokens are transferred next in which 
direction, and when tokens are joined.  
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Token Creation in Start States: Start states can be defined at any time during the 
execution. At any time, each state, none of the incoming or outgoing transitions of 
which had been fired, can be chosen as an additional start state. Whenever the Deci-
sionModule declares a stable state s to be a start state, for each node n in the XML 
document that fulfills the node name test of s, a token (n/s, n/s) is created.  

If for example the state with ID s6 of Fig. 2(a) is declared as a start state, i.e., we 
look for XML elements that are answers to the sub-query //self::b, tokens (3/s6, 3/s6), 
(5/s6, 5/s6), and (7/s6, 7/s6) are created for the nodes b3, b5, and b7 in Fig. 2(b), 
where b is the node label followed by the node ID (3,5,or 7).  

Token Deletion: For each state s in A, except for the root state and the target state, 
when all transitions from s and all transitions to s have been fired and all join tokens 
for s have been computed as described below, all tokens containing s as the start state 
or as the final state are automatically deleted. Automatic token deletion can be partial-
ly switched off in order to implement a navigation cache as described in Section 2.4. 

Partial Sub-query Evaluation: A sub-query R is top-down partially evaluated by 
firing all the transitions on a path from sx to sy. This operates on all tokens T=(nu/sz, 
nv/sx) that contain sx as their final state, i.e. represent an answer to a sub-query 
represented by paths in A ending in state sx, and it eventually generates new tokens 
that contain sy as their final state, i.e., for each answer nw to nv/R, this generates a 
new token T’=(nu/sz, nw/sy).  

Similarly, a sub-query is bottom-up partially evaluated by firing all the inverted 
transitions of the transitions on a path from sx to sy in reversed order. This operates 
on all tokens T=(nw/sy, nt/sz) that contain sy as their start state, and it eventually 
generates new tokens that contain sx as their start state, i.e., for each answer nv to 
nw/R-1, this generates a new token T’=(nv/sx, nt/sz). 

Let si and sj be stable or non-stable states. To fire a transition with label fc (or ns 
or fcR or nsR respectively) that starts in state si and ends in state sj for a token 
T=(nu/sz, nv/si) with final state si in top-down direction means the following: to 
check, whether there exists a node with ID nw in the XML tree such that the node 
with ID nw is the first-child (or the next-sibling or fcR or previous-sibling respective-
ly) of the node with ID nv. If such a node exists, a token T’=(nu/sz, nw/sj) is generat-
ed, otherwise no token is generated. 

Correspondingly, to fire a transition with label fcR (or nsR or fc or ns respectively) 
that starts in state si and ends in state sj for a token T=(nw/sj, nt/su) with start state sj 
in bottom-up direction means the following: to check, whether there exists a node 
with ID nv in the XML tree such that the node with ID nw is the first-child (or the 
next-sibling or fcR or previous-sibling respectively) of the node with ID nv. If such a 
node exists, a token T’=(nv/si, nt/su) is generated, otherwise no token is generated.  

A transition with a label self from the start state si  to the end state sj can be fired 
for each token having si as final state in case of top-down evaluation and for each 
token having sj as start state in case of bottom-up evaluation. Firing the transition 
during top-down evaluation generates for each token T=(nu/sz, nv/si) another token 
T’=(nu/sz, nv/sj), whereas firing the transition during bottom-up evaluation generates 
for each token T=(nv/sj, nu/sz) another token T’=(nv/si, nu/sz). 

Whenever a token with a non-stable state s’ is generated during sub-query evalua-
tion in a direction D (bottom-up or top-down), all transitions that can be fired from s’ 
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in the same direction as D are fired. Thereafter, tokens containing s’ are deleted. This 
processing of tokens containing unstable states is repeated until all existing tokens 
have reached stable states again. When this happens, the DecisionModule gets the 
control again and decides which tokens are transferred next.  

Consider for example the tokens (3/s6, 3/s6), (5/s6, 5/s6), and (7/s6, 7/s6) 
representing answers to the sub-query //self::b. If we fire the transitions from state s6 
to state s3 in bottom-up direction, this removes and transfers the tokens having state 
s6 as their start state, and it will stop, when all tokens are either deleted or transferred 
to tokens having state s3 as their start state. In this case, the generated tokens (2/s3, 
3/s6), (1/s3, 5/s6) say that the sub-query self::a/b represented by the sub-automaton 
between the states s3 and s6 applied to the XML nodes with IDs 2 (and 1 respective-
ly) yields as answers the XML nodes that have the IDs 3 (and 5 respectively).  

If we additionally create a token (0/s0, 0/s0) in the state s0 for the XML root node 
and transfer this token from s0 top-down, when token generation stops, we get the 
tokens (0/s0, 1/s3), (0/s0, 2/s3),(0/s0, 4/s3), and (0/s0, 6/s3) saying that the sub-query 
//a represented by the states of the sub-automaton between state s0 and state s3 returns 
the XML nodes with IDs 1, 2, 4, and 6 as answers. 

Token Joining: Whenever at the end of a token transfer phase, the same stable state 
sy occurs as final state in tokens T1 and as start state in other tokens T2, we perform a 
so called ‘token joining’ and join those pairs (T1,T2) of tokens that relate sy to the 
same XML node nv with each other. A token joining of two tokens T1=(sx/nu, sy/nv) 
and T2=(sy/nv, sz/nw) yields a new join token T3=(sx/nu, sz/nw). 

In our example, the tokens T1 ∈ { (2/s3, 3/s6) , (1/s3, 5/s6) } have the start state 3, 
and the tokens T2 ∈ { (0/s0, 1/s3), (0/s0, 2/s3),(0/s0, 4/s3), (0/s0, 6/s3) } have the 
final state 3. If we perform token joining on all pairs (T1,T2) of tokens, we get the 
join tokens j1=(0/s0, 3/s6) and j2=(0/s0, 5/s6). These join tokens express that the 
answers to the concatenated sub-query //a/self::a/b represented by the automaton 
between state s0 and state s6 applied to the XML node with ID 0 (the root node) re-
turns the XML nodes with IDs 3 and 5 as answers. As all incoming and outgoing 
transitions of s3 have been fired, and all join tokens involving s3 have been com-
puted, thereafter all tokens containing s3 as start state or as final state are deleted.  

Token joining can also be used for finally joining the answers when query evalua-
tion starts at an inner state and proceeds in different directions. If we declare for ex-
ample state s3 as the single start state and transfer the tokens (1/s3, 1/s3), (2/s3, 2/s3), 
(4/s3, 4/s3), and (6/s3, 6/s3) top-down and bottom-up, 6 additional tokens are gener-
ated and the state s0 occurs as start state in the 4 tokens (0/s0, 1/s3), (0/s0, 2/s3), 
(0/s0, 4/s3), and (0/s0, 6/s3) and the state s6 occurs as final state in the 2 tokens (1/s3, 
5/s6) and (2/s3, 3/s6). Finally, token joining calculates the final results (0/s0, 3/s6) 
and (0/s0, 5/s6) that express that by applying the query //a/b represented by the (sub-) 
automaton from the start state s0 to the final state s6 to the XML node with ID 0 (the 
root node) yields the XML nodes with IDs 3 and 5 as query results. 

2.4   Optimization Using a Navigation Cache 

If we consider the XML tree of Fig. 2(b) and the query //a//b and the nodes with ID 5 
and with ID 7 and transfer the tokens bottom-up in a naïve way, similar new tokens 
are generated for the nodes a2, a1, and #root0, i.e., we pass this path in the tree more 
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than once. In order to overcome this weakness, we have introduced the concept of a 
so called navigation cache that caches tokens representing sub-query evaluations of 
multiple paths in the XML document tree.  

For example, if the token for b5 is transferred first, the token for b7 can read the cache 
information of node b5 and can be transferred directly to the root node without having to 
pass the path via b5, a2, a1, and #root0 a second time. This information is being used for 
bottom-up evaluation only and is not considered for top-down evaluation. 

2.5   Evaluation of Queries with Filters 

Whenever a location step L that is represented by a pair (sx,sy) on the main path of an 
XPath query Q contains one or more predicate filters, each predicate filter Fi is 
represented by a filter automaton Ai having  a state si as its root and a final state sfi 
representing the final state of the main path of the filter. A filter automaton Ai has the 
same design and functionality as the automaton for the main path of Q as described in 
the previous section. As with all location steps, each location step within a filter au-
tomaton can be evaluated top-down or bottom-up.  

Token transfer between the root state si of a filter automaton Ai and the final state 
sy representing the location step L having filter Fi, can be done either top-down, i.e. 
from sy to si, if tokens containing sy are generated first, or bottom-up, i.e. from si to 
sy, if Fi is evaluated first.  

Bottom-Up Token Transfer: If the tokens are transferred bottom-up, i.e. the filter 
path for Fi is evaluated before tokens containing the node sy are generated, let ST={ 
(n1/si, nf1/sf1), …, (nk/si, nfk/sfk) } be the set of all the tokens computed for path 
from si to sfi. Then the set N={n1,…nk} contains exactly those XML nodes for which 
Fi evaluates to true.  

Then, the automaton state sy to which the filter path is connected reacts similar to a 
state without an attached filter with the difference, that not for each XML node that 
fulfills the given node name test a token is created, but only for those XML nodes 
contained in the set N which fulfill the given node name test.  

Top-Down Token Transfer: Otherwise, i.e., if tokens are transferred top-down from 
sy to si, we follow an idea of [10]: Whenever a token T1=(…,nv/sy) or a token T1= 
(nv/sy,…) that contains the state sy is generated, this token gets a reservation that 
depends on whether or not the filter automaton for Fi evaluates to true for the XML 
node nv. At the same time, the filter automaton for Fi is switched active, i.e., a token 
(nv/si, nv/si) is generated which turns si into a start state of the filter automaton.  

If the filter automaton Fi finally evaluates to true for the XML node nv, the res-
ervation for Fi is deleted. We say that the execution of the filter automaton for Fi 
having a start state si and a final state sfi on its main path evaluates to true for the 
XML node nv, if and only if eventually a token (nv/si, nw/sfi) is generated for a XML 
node nw. Otherwise, we say that the evaluation of the filter automaton for Fi eva-
luates to false for the XML node nv, and the token T1 itself is deleted and consi-
dered invalid. However, if, finally, all the reservations for a filter attached to sy are 
deleted, the T1 token is considered valid.  
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The states of the filter automaton can be connected to other filter automata, such 
that nested filter automata for implementing nested XPath filter expressions can be 
evaluated by this concept as well. 

2.6   Evaluation Strategies 

We have implemented different types of DecisionModules that follow different eval-
uation strategies in order to evaluate an XPath query. The first two Decision Modules 
follow the ‘traditional’ ways to evaluate queries.  

─ The Top-Down-Module declares the root state as the only start state. Tokens are 
added to the first state of each filter automaton FA as soon as a token is added to 
the state to which FA is attached to. All paths, i.e. the main path of the XPath 
expression and all filter paths, are evaluated top-down. 

─ The Bottom-Up-Module declares the target state of the automaton for the main 
path and each target state of a filter automaton as the start states. All paths are 
evaluated bottom-up. 

─ The Minimum-Module considers the locations steps in the main path and in all 
filter paths and declares the stable state of that location step having the lowest 
selectivity of the whole query as the only start state. If the start state is part of a 
filter, the corresponding filter path is evaluated top-down and bottom-up starting 
at the start state and the result is added to the state of the main path to which the 
filter is attached. Then, the state of the main path behaves like a start state: From 
that given start state, the remaining main path of the XPath query is evaluated 
bottom-up to the root and top-down to the target state of the main path. Fur-
thermore, all other filter paths are evaluated top-down. 

Determining the location step having the lowest selectivity is not trivial. Currently, 
we are using a simple heuristics that regards that location step LS=/axis::nnt as the 
location step having the lowest selectivity, for which the least number of nodes exist 
in the document that fulfill the node name test nnt. 

3   Evaluation of Our Prototype Implementation 

3.1   Experimental Setup 

Our test system has an Intel Core 2 Duo with 2,53 GHz (T9400) processor and  
4 GB 1066 DDR 3 RAM. The prototype is implemented in Java and runs on JDK 1.6 
Update 21 with an extended RAM and function stack (parameters -Xmx1300M  
-Xss4096k). For MonetDB [11], we have used the Oct2010-SP1 build and the meas-
ured execution time is Trans+Shred+Query. For eXist-DB (http://exist-db.org/) we 
have used version 1.4.0. 

Our evaluation was performed on the documents generated by the XMark bench-
mark [12] with original XML document sizes varying from around 2 MB to 50 MB. 
We have evaluated our prototype on the queries A1-A7 and B2-B4 of the XPathMark 
[13] benchmark suite as well as on some additional, practice-oriented queries (Q1-
Q6) for showing the advantages of our system (especially on queries with location 
steps of outstanding low selectivity). The queries that we used are shown in Table 2. 
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Table 2

A1 /site/closed_auctions/clos
A2 //closed_auction//keywor
A3 /site/closed_auctions/clos
A4 /site/closed_auctions/clos
A5 /site/closed_auctions/clos
A6 /site/people/person[profil
A7 //keyword
B2 //keyword/ancestor::listit
B3 /site/open_auctions/open
B4 /site/open_auctions/open
Q1 //people//age
Q2 /site/people/person[profil
Q3 //person[.//gender='femal
Q4 //person[.//country='Unit
Q5 //person[.//country='Unit
Q6 //item[payment='Creditca
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to ~30 MB, the Module “Min” is outperforming MonetDB as well. This is due to the fact 
that MonetDB needs a high overhead for query optimization but scales nearly constantly 
for for the document sizes tested in our evaluation. For queries with low selectivity (e.g. 
Q3 and Q6) our approach can outperform MonetDB also for files having a size of more 
than 30 MB. Furthermore, when comparing run-time, note that our prototype is a Java 
application, whereas MonetDB is a strongly optimized C application. 

4   Related Works 

There exist several different approaches to the evaluation of XPath queries on XML 
data. They can be divided into categories by the subset of XPath that they support. 
Nearly all of them are based on automata (X-scan[7], XMLTK[3], YFilter[6], 
[10],[13], [14], AFilter [5], XSQ [9], SPEX [8]) or parse trees ([15], [4], [16], [17]). 
All of them support the axes child and descendant-or-self and most of them support 
predicate filters and wildcards, but besides [10] and [18] none of them support the 
sibling-axes as our solution does. 

The approach presented in [1] defines bottom-up as well as top-down semantics 
and presents an bottom-up and a top-down processing algorithm that both run in low-
degree polynomial time for full XPath and an enhanced algorithm that runs in linear 
time for Core XPath that evaluates the main path top-down and the filter paths bot-
tom-up. In contrast to this approach, we try to combine the advantages of bottom-up 
and top-down processing by choosing bottom-up or top-down evaluation for each 
location-step, such that an algorithm is developed that runs very efficient in practice. 
As our evaluation has shown, the mixed strategy MinimumModule performs and 
scales better that the pure strategies top-down or bottom-up. 

For the automata-based approaches, the XML input stream is the controlling in-
stance that is used as input for the automata representing the Query.[19] and [20] 
present a compressed representation for XML together with an XPath evaluator that is 
based on tree automata and that allows to skip irrelevant parts of the compressed 
XML document during the evaluation process. They allow selecting a single start 
point and follow the path to the root bottom-up and the path to the “leafs” of the query 
top-down. In contrast to[19] and [20], we allow the selection of any number of start 
points and the evaluation of the sub-queries in any direction. 

The approach presented in[18] supports the axes self, child, descendant, following 
and following-sibling but does not support backward axes. It translates the queries 
into expressions over the binary axes first-child and next-sibling and then constructs a 
two-layered NFA that consumes the SAX events start-element, end-element and cha-
racter. The first layer evaluates the main path of the query, whereas the second layer 
is responsible for the evaluation of the predicate filters. Our previous approach [10] 
supports all forward axes but supports backward axes only if they are rewritten to 
forward axes before query evaluation starts. It translates queries into an automaton 
that consumes the binary events first-child and next-sibling. It can evaluate streams in  
top-down direction only. XMLTK[3], and YFilter[6], [13], [14] and X-scan[7] are 
based on the lazy construction of  deterministic finite automata (DFA), i.e., the DFA 
is not generated completely at the beginning, but additional states are added only 
when needed. AFilter [5] is adaptable in terms of the memory requirement, i.e., it 
needs a base memory that is linear in query and data size. If more memory is provided 
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to AFilter, AFilter uses the remaining main memory for a caching approach to eva-
luate queries faster than with only the base memory. XSQ [9] and SPEX [8] use a 
hierarchical arrangement or network of transducers, i.e., automata extended by actions 
attached to the states, extended by a buffer to evaluate XPath queries.  

Parse trees – in contrast to automata – take the control of the evaluation process 
themselves, i.e., they decide which node of the parse tree will be processed next and 
check with the XML input document, whether this node can be processed. The ap-
proach presented in [21] translates the input query into a set of parse trees. Whenever 
a matching of a leaf node of a parse tree is found within the data stream, the relevant 
data is stored in form of a tuple that is afterwards evaluated to check whether predi-
cate- and join conditions are fulfilled. χαοζ[4] and [15] build a parse tree as well 
(plus a parse-dag in [4], as they support the parent and the ancestor axis in addition). 
This parse tree is used for ‘predicting’ the next matching nodes and the level in which 
they have to occur. The approach discussed in [16] collapses the parse tree into a 
prefix trie by combining common prefix sequences of child-axis location steps of 
different queries into a leaner single path of the prefix trie. The approach presented in 
[17] uses a parse tree that stores XML nodes that are solutions to the parse tree node’s 
sub-query within a stack that is attached to each node. 

The authors of [22] show that queries containing joins on attribute values can be 
computed in time linear of the XML document but exponentially of the query size. 
They evaluate one path to the join attribute top-down and the path to the second join 
attribute bottom-up. They require a special index on the attribute values and a pointer 
structure representation of the XML document, such that the idea is not applicable to 
arbitrary XML representations as e.g. compressed XML. 

ROX [23] is a run-time optimizer for XQuery that is used as a MonetDB extension. 
It is based on an indexed representation of the XML document that is stored in form 
of relational data. It consists of a relational query optimizer for the ‘relational parts’ of 
an XQuery and an XML query optimizer that is intertwined with the query execution, 
i.e., that adapts the query execution plan during the query execution. In contrast to our 
approach, ROX can be applied to the indexed XML document in form of a relational 
representation only and cannot be applied to compressed XML. 

In comparison to all these approaches, we additionally support the ‘sibling’-axes 
following and following-sibling. Furthermore, beyond [21] and [9], our approach is 
capable to parse streams of recursive XML, i.e., data in which the same element 
names do occur repeatedly along a root-to-leaf path. In comparison to [10] and [18], 
we have used an extended automata model which supports also bottom-up evaluation 
and mixed evaluation strategies. 

5   Summary and Conclusions 

Whenever XPath query evaluation is the bottleneck of an application, and main mem-
ory is small in comparison to memory requirements for fast query evaluation, a fast 
in-memory XPath evaluator that works also on compressed XML structures may be a 
significant improvement towards a better run-time. 

In this paper, we have presented an XPath query processor that can evaluate XPath 
queries on each XML representation that supports a small number of basic binary 
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axes (first-child, first-child-1, next-sibling, next-sibling-1, and self), like e.g. DOM or 
the compressed XML representation ‘Succinct’ [2]. Our query processor decomposes 
and normalizes each XPath query, such that the resulting path queries contain only the 
basic binary axes, and then converts them into lean token automata. A DecisionMo-
dule decides for each location step which evaluation strategy to follow, i.e., which 
location step to evaluate when and in which direction. 

Our tests have shown, that our query processor is very efficient and outperforms 
other approaches like JAXP provided by JDK 1.6 and yields results faster than Mo-
netDB – a database that allows the native storage of XML files and that uses an index 
on this data to speed up the query evaluation – for files up to ~30 MB in general or for 
queries with at least one location step that has a low selectivity. 

As XPath is being used as data access standard in XSLT and XQuery, we are opti-
mistic that the technology proposed in this paper can be used within XSLT processors 
or XQuery processors too.  
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Abstract. Large parts of today’s data is stored in text documents that
undergo a series of changes during their lifetime. For instance during the
development of a software product the source code changes frequently.
Currently, managing such data relies on version control systems (VCSs).
Extracting information from large documents and their different versions
is a manual and tedious process. We present Qvestor, a system that
allows to declaratively query documents. It leverages information about
the structure of a document that is available as a context-free grammar
and allows to declaratively query document versions through a grammar
annotated with relational algebra expressions. We define and illustrate
the annotation of grammars with relational algebra expressions and show
how to translate the annotations to easy to use SQL views.

1 Introduction

Modern software engineering tools process large repositories of source code to
assist software developers and analysts with the code retrieval as well as with the
computation of various metrics over the source code. Frequently, such tools use
handcrafted custom code to extract information and compute metrics. This is
tedious, error-prone and brittle. Some approaches offer efficient but very special-
ized and limited querying capabilities (retrieve a given version of a file), other
approaches offer general but hard to formulate and inefficient querying capa-
bilities (extract lines of code from all files satisfying a regular expressions), or
yet other easy to formulate, efficient, but only predefined querying capabilities
(extract all names of functions from the versions of the source).

In this paper we propose Qvestor (querying versioned software repositories),
a prototype implementation of a software query and analysis tool that (i) of-
fers a general querying interface, (ii) allows a natural and easy way to formu-
late queries, and (iii) answers queries efficiently. Qvestor (i) parses the source
of the documents using context-free grammars, (ii) allows to formulate queries
declaratively using the components of the grammar (i.e., both the semantics and
specifics of the code), and (iii) uses database query optimization techniques. This
yields a general (applies for any data that adheres to a predefined grammar),
elegant, concise (expresses in relational algebra operators), yet efficient (allows
easy optimizations) approach to extract structured data from repositories. This
enables a higher degree of reuse, and leverages database query processing tech-
niques to the analysis of source code.
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The development of Qvestor is subtle and requires to integrate technologies
and concepts from both compiler theory (to extract and store the data in rela-
tions) and database theory (to define a query language, capabilities, and show
how to answer queries over extracted data). We use annotations from compiler
theory as a means to formulate and execute queries. Similar to compiler the-
ory, our annotations are program codes that are assigned to the alternatives of
the rules of the grammar that are executed once the alternative is selected. In
contrast to compiler theory, we associate relations with the alternatives and ex-
press annotations declaratively. Query execution then iteratively executes these
queries starting with the bottom annotations (i.e., annotations over terminal
relations) and finishing with the top annotations in the grammar.

The paper is organized as follows: In Section 2 we discuss the related ap-
proaches. In Section 3 we introduce our running example and discuss compiler
and database essentials in the context of our approach. In Section 4 we set the
foundation and present the building blocks for our system. Then declarative
querying (Section 4) with the help of annotations of the leaves and propagation
and combination of results in inner nodes is given. In Section 5 we outline the
architecture of Qvestor and sketch the algorithm to transform a list of gram-
mar annotations into SQL view definitions. Finally, we conclude and offer future
work in Section 6.

2 Related Work

Krishnamurthy et al. developed SystemT [7]. This system uses a declarative
query language AQL to extract information from blog-entries in natural lan-
guage. With AQL it is possible to express grammar rules in an SQL-like style
that describe what the user wants to retrieve (from the blogs). The authors found
out that parsing a document is costly and therefore applied rewrite methods to
reduce execution costs. In our system we also try to avoid the parsing of data if
not needed. In contrast to SystemT we want to focus in Qvestor on querying
versioned data.

Fischer et al. [4] retrieve information from version control data and Bugzilla
Bug reports to analyze software evolution. By making this information available
in an SQL database simple code evolution queries are possible. However, these
queries merely use regular expressions rather than being able to query the code
itself. In [6] Kemerer et al. use information from change logs to compute sta-
tistical information about software changes. The approach does not query over
changes but merely computes the basic statistics. In our system such queries
can be formulated declaratively much easier. In addition, our system is not lim-
ited to the basic statistics but also allows any sophisticated queries expressible
through annotations and the grammar of the source code. Solutions for flexible
querying of the source code are proposed by Paul et al. [9]. Our system differs
from their SCA algebra and ESCAPE system in the way that for each queryable
source code component there must be an object definition for the (OO) data
store. Thus the possible queries are to some extend limited by the specification
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of the objects of the data store. Furthermore, our system aims to reuse as much
existing query facilities as possible. Therefore, we chose to use relational algebra
expressions that are attached to the grammar specification of the data to be
queried. While in ESCAPE new object definitions would have to be specified if
the granularity of the queries changes we would just have to change grammar
annotations.

Chen et al. [3] describe a system for C code analysis using relational databases.
Unlike our proposed system the CIA system does not facilitate a tight coupling
between the database, declarative querying, and versions of the source code. For
CIA several tools must preprocess the files and store the processed information
in a database for declarative querying. Query capabilities are limited by the
preprocessing part. In our system tight coupling enables us to query syntax
and semantic of source code files directly in the database and does not limit
results. Other systems like Rigi [8] or SHriMP [10] mainly focus on visualization
of program source dependencies.

Abiteboul et al. [1] describe how semi-structured documents can be queried
in an OO-DBMS using a grammar for the document’s structure. While queries
that involve structural elements are mostly rewritten and parts of the query are
pushed into the grammar automatically as annotations we aim for an approach
where the user can manage the annotations of the parse tree. In [2] querying
of XML documents is described on the native XML-DBMS Natix[5]. While we
want to support a wide range of semi-structured versioned data describable by
grammars we also want to translate our grammar annotations to generate views
that can easily be used in queries.

3 Running Example, Grammar, Parse Trees, and DB
Schema

3.1 Example

Our running example consists of three versions of the C-like source code. We
start (version one) with a very basic function, which evolves (version two) into
another function, which, in turn, evolves into an even more complicated version
(version three) of nested loops.

The example (see Figure 1) represents key aspects of evolving code. It consists
of evolving signature of functions (version one), change in function calls (version
two), additions and deletions of new functions (version three). In this paper we
show how to declaratively query the evolving code for all such constructs.

3.2 Grammar

The grammar establishes a structure for the (otherwise unstructured) versioned
documents. In addition to general substring queries over unstructured versioned
documents, this allows to formulate queries related to concepts of the code. For
C code, for example, one can formulate queries involving variables, functions,
and specific statements of the language. Every rule (ri ::= ui,0 | ui,1 | . . . | ui,m)
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int a ( int v ) {
p r i n t f ( ”3” ) ;
return 0 ;

}

int a ( f loat v) {
return x ( 5 0 ) ;

}

int x ( int q ) {
return q∗2 ;

}

f loat a ( int v ) {
loop

int j ;
loop

loop
. . .
end

end
end
return v/3 ;

}

Version 1 Version 2 Version 3

Fig. 1. Three versions of C-style like source code

consists of the left hand side (abbreviated LHS; e.g. ri), the right hand side
(abbreviated RHS; e.g. ui,0 | ui,1 | . . . | ui,m) and the assignment symbol (::=)
that divides the rule into the LHS and RHS. The LHS introduces a new identifier
ri; The RHS defines the rule for the new identifier. In the most general form, the
RHS consists of alternatives (ui,j) separated by delimiter |. Every alternative
ui,j , in turn, consists of components ui,j = $1i,j . . . $ni,j . We use the simplified
notation for the components u = ui,j = $1 . . . $n whenever it is clear from the
context which components we are referring to.

The components of the alternatives may be either terminal symbols, identifiers
defined by other rules or the current rule (in this case the rule is called recursive),
or be the empty symbol ε.

To use a specific attribute of grammar component k we use the dot (.) to
access the attribute of the component. For example, $k.C refers to the content
of the component and $k.P refers to the parent of the component.

Consider, for example, rule

expr :: = expr ’*’ expr | expr ’/’ expr | IDENT | fnCall | const
= ui,0 | ui,1 | ui,2 | ui,3 | ui,4.

The rule has five alternatives; the components of the 0th alternative are ui,0 =
$1 $2 $3, where $1 = expr, $3 = expr and $2 = ’*’.

Table 1 summarizes the grammar used in the running examples of the simpli-
fied C code .

3.3 Parse Trees

The parse tree of the software code represents the syntactic structure and ele-
ments of the source code. The parser builds the parse tree by recursively applying
the grammar over the source code. The parser recursively tries to match rules
by starting to match sequences of terminals. If such a sequence matches a rule
it creates a node representing the LHS of the rule and attaches as leaves the
nodes representing the terminals. The same is done if a rule matches a sequence
of RHS nodes that are used in another rule. Step by step the parser builds a
so-called parse tree bottom-up.
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Table 1. The grammar of the simplified C code used throughout the paper

Rule No Rule

0 start :: = fnDefLst
1 fnDefLst :: = fnDef fnDefLst | fnDef
2 fnDef :: = type IDENT ’(’ varDecl ’)’ ’{’ stmtLst ’return’ expr ’;’ ’}’
3 type :: = INT | FLOAT
4 varDecl :: = type IDENT’;’ | type IDENT ’=’ const’;’
5 stmtLst :: = stmt ’;’ stmtLst | stmt ’;’ | ε
6 stmt :: = fnCall | varDecl | loopStmt
7 fnCall :: = IDENT ’(’ const ’)’
8 const :: = INTCONST | STRCONST
9 expr :: = expr ’*’ expr | expr ’/’ expr | IDENT | fnCall | const
10 loopStmt :: = ’loop’ stmtLst ’end’

Consider, for example, the source code of Version 1 in Figure 1 and grammar
in Table 1. The parser starts with matching ’int’ to the terminal INT in rule
3, creates a ’type’ node and proceeds with ’a’ as ’IDENT’. Now the parser has
two choices. It can create a node ’varDecl’ if the next symbol is ’;’ and attach
’type’ and ’IDENT’ as children. On the other hand, if the next symbol is ’(’ it
can proceed with matching rule 2 – eventually creating a node ’fnDef’. This is
the case here. The process is continued in bottom-up manner until all the source
code is processed. The resulting parse tree is shown in Figure 2(a) (the complete
parse trees for all versions are shown in Figure 2).

3.4 Terminal Relations

With every grammar component (like IDENT, INT, FLOAT or expr) in the
grammar we associate a relation and store the tuples related to the component
in the associated relation. The schema of the relations consists of the following
attributes : ID (uniquely identifies the node), V (code version), L (line number in
the document; each word is in a separate line), C (content of terminal symbols),
N (name of rule), S (next right sibling, and next right component in grammar
rule) and P (parent ID of the node). This allows to describe and fully reconstruct
the version trees from the table. We reference the relations in the following way.
Let $ki,j refer to the kth component of the jth alternative of the ith rule. If the
component is a terminal symbol then the associated relation is referred by τk,i,j .

For example consider relation τ1,7,0 (i.e. relation for $17,0 component). For
our running example the result is given in Table 2.

If the component is a non-terminal then the associated relation is referred by
ti,j .

Table 2. Relation of the components of the alternatives of the grammar rules

ID V L C N S P

7 1 8 printf IDENT - 10
8 2 9 x IDENT - 11
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(c) Version 3

Fig. 2. Parse trees
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4 Declarative Querying

4.1 Data at Leaves and Data at Inner Nodes

In this paper we query data that is associated with nodes in the parse tree.
Conceptually we distinguish between two types:

Definition 1 (Node Data). While the parser builds up the parse tree certain
information is collected for every node – leaf node or inner node:

– ID (uniquely identifies the node)
– V (code version)
– L (line number in document; one word per line)
– C (content of terminal symbols)
– N (name of rule)
– S (next right sibling, next right component in grammar rule)
– P (parent ID of the node)

The set of all node data of a given parse tree is denoted by ND.

To formulate declarative queries in our system we use the node data of different
nodes, combine it with relational algebra operators to get composed data.

Definition 2 (Composed Data). Let k be a node in the parse tree that has
n ∈ N0 children c0, . . . , cn. Let node k further be a node that is the RHS of rule
k option j. Let dk ∈ ND be the node data of node k and dc0 , . . . , dcn , dci ∈
ND, 0 ≤ i ≤ n be the node data of the children of n. Let expri, 0 ≤ i ≤ n and
exprk be relational algebra expressions.

Without loss of generality let c0, . . . , cn be leaves. The Composed Data is
calculated for one version like the following for:

– ci: expri(dci) = τi,k,j

– k: exprk(expr0(dc0), expr1(dc1), . . . , exprn(dcn), dk) = tk,j

If there exist m, m ∈ N versions then:

– τi,k,j =
⋃
m

expri(dci)

Fig. 3. Data attached to Nodes in Parse Tree
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– tk,j =
⋃
m

exprk(expr0(dc0), expr1(dc1), . . . , exprn(dcn), dk)

τi,k,j and tk,j are the union of the τi,k,j and tk,j of the individual versions.

In Figure 3 the situation is shown for node k with two children c0 and c1.

4.2 Annotations

In compiler theory, annotations are program codes that are assigned to the al-
ternatives (ui,j) of the rules. Once the alternative is selected during build up of
the parse tree, the corresponding annotation is executed, a result is calculated
and/or output. Therefore, annotations can be viewed as ways to both formulate
and answer queries over the source code. In this paper we focus on the declara-
tive capabilities of the query formulations of annotations. Since we use database
operations including selection, projection, and join, existing database techniques
are applied to optimize and answer such complicated queries.

All our annotations are expressed in terms of the node data (see Definition 1)
and composed data (see Definition 2). For example to access all IDENT nodes in
expressions (expr) and print their content (C attribute) we need to formulate
and execute this query:

Πτ1,9,2.C(τ1,9,2)

This example accesses the properties of only one node and does not require any
joins. Consider an example now, when we want to select all variable names which
get assigned a constant 5. These are the names of all IDENT nodes (cf. alternative
1, rule 4 in Table 1) and all CONST nodes (cf. alternative 1, rule 4 in Table 1)
such IDENT and CONST have the same LHS varDecl.

Πτ2,4,1.C(τ2,4,1 ��τ2,4,1.P=τ4,4,1.P (στ4,4,1.C=5(τ4,4,1)))

In general, our annotations allow the following operators and predicates:

– Selection σP , projection πP , join ��P , cartesian product ×, renaming ρV , set
operators (∪,∩,−), and aggregation ϑ.

– Schema identifier S(A): denotes the schema of a relation A
– Schema modification: addition of an attribute ◦ e.g. S(A) ◦ C; and removal

of the attribute − e.g. S(A)− C
– Predicates: <, >, =,≤,≥, �=

We describe the declarative querying and formulation annotations in turn. First
we show how to formulate annotations over the leaf nodes, then we generalize it
for all nodes, and eventually we explain how to use relational algebra operators
in the annotations.

4.3 Annotating the Leaves

An annotation over a leaf node applies the given relational algebra operators
over the associated relation and returns the relation. The schema of the returned
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relation solely depends on the operators applied over the source relation. Since
the source relation is always (ID, V, L, C, N, S, P) (see Section 3.4 and
Definition 1) the selection over the relation returns the relation of the same
schema. Similarly set union, difference, and intersection based on the relation
does not change the schema. In contrast, other relational algebra operations
change the schema (return larger, smaller, or renamed schemata). For exam-
ple, the projection operator (usually) reduces the number of attributes in the
schema, while (self-) join and Cartesian product doubles the number of attributes
in the schema. The general form of the annotation over the leaf node is of the
form:

ti,j = op1(. . . opn(τk,i,j) . . . ), (1)

where op1, . . . , opn are relational algebra operators, and τk,i,j is the terminal
relation of the alternative of the rule; relational operators may use only the
attributes of the current terminal relation. The resulting relation is called ti,j
and associated with the alternative u(i, j).

Consider, for example, the following annotation:

t7,0 = ΠV (σC=′printf ′(τ1,7,0))).

Then the annotation selects all versions of the source code that calls function
printf. The following table is returned as the answer to this query:

t7,0

V

1

4.4 Annotating the Non-leaves

Very similar reasoning applies for the annotations of the non-leaves including
the relational algebra operators and the schema of the returned result. The key
difference is that now the relational algebra operators include the relations and
information from one level (in terms of parse tree/components of the grammar
rules) below the relation it is formulated at. For example, consider the query
that selects all the versions of the functions that have return parameter of type
integer (INT). This results in the following query:

– t2,0 = Πτ2,2,0.C(t3,0 ��t3,0.P=τ2,2,0.P τ2,2,0)
– t3,0 = τ1,3,0

The answer of the query is the following relation:

t2,0

V

1
3
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4.5 General Queries of Software Repositories

A general query over software repository consists of a set of annotations such
that (i) every annotation is a proper annotation either of leaves or non-leaves
(see Sections 4.3 and 4.4) and (ii) if a node is annotated then there must exist
a path to a leaf such that every node on a path is annotated.

4.6 Use Case: Find All Versions of the Software That Have Loops
of Depth Three or Higher

Identifying the software versions that have feature nested loops of depth of at
least 3 is interesting both conceptually and technically. Conceptually, this can
indicate versions that have performance issues: nested loops of depth of at least
3 mean at least cubic complexity and may call for attention. Technically, this
is a challenge, because in principal, annotations employ context free grammars
and expressing such constructs show the power of the language.

Table 3. Annotation query (along with the grammar rules)

Rule No Rule Annotation

0 start :: = fnDefLst
1 fnDefLst :: = fnDef fnDefLst | fnDef
2 fnDef :: = type IDENT ’(’ varDecl ’)’

’{’ stmtLst ’return’ expr ’;’ ’}’ πt5,0.V (σt5,0 .D�3(t5,0))

3 type :: = INT | FLOAT
4 varDecl :: = type IDENT’;’ ρS(τ2,4,0)◦D(πS(τ2,4,0)◦0(τ2,4,0))

| type IDENT ’=’ CONST’;’ ρS(τ2,4,1)◦D(πS(τ2,4,1)◦0(τ2,4,1))

5 stmtLst :: = stmt ’;’ stmtLst
(
t6,0 ∪ t6,1 ∪ t6,2

) ∪ t5,0
| stmt’;’ t6,0 ∪ t6,1 ∪ t6,2
|ε

6 stmt :: = fnCall t7,0
| varDecl t4,0 ∪ t4,1
| loopStmt t10,0

7 fnCall :: = IDENT ’(’ const ’)’ ρS(τ1,7,0)◦DπS(τ1,7,0)◦0(τ1,7,0))

8 const :: = INTCONST | STRCONST
9 expr :: = expr ’*’ expr | expr ’/’ expr

| IDENT | fnCall| const
10 loopStmt :: = ’loop’ stmtLst ’end’ ρS(t5,0)◦D

(πS(t5,0)−D◦FMAX(t5,0 .D)+1(t5,0))

Conceptually, we formulate this query in the following way. We access all
the statements in the code. The non-loop statements get the depth attribute
assigned to zero. The loop statements compute their depth in the following way.
Let sl be a loop statement, and Se be the set of statements sl encloses. Let m
be the maximum depth of sl statements. Then sl gets m + 1 depth.

The annotations of the query are shown in Table 3. Rules 4 and 7 define the
depth of non-loop statements. Rule 10 defines the depth of the loop statements.
Rules 2, 5, 6, and 7 combine the result. The following is the answer to the query
for our running example:
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t2,0

V

3

5 Implementation of Qvestor

5.1 Architecture

We propose and implemented a modular system to answer such declarative
queries. Our system consists of the following key modules: declarative query,
query rewriter, SQL database, and versions of some programming language
source code. The declarative query module inputs the query from the user. This
is expressed in terms of the rules and attributes of the grammar. Then the query
rewriter inputs the declarative query and transforms it into an SQL query over
the database of versions with the help of annotated grammar. The detailed ar-
chitecture of the system is depicted in Figure 4.

Versions of the source code

Grammar

Parse trees

Declarative querying

Annotations

SQL DB

Query rewriter &
optimizer

Grammar

Parse trees

Annotations

SQL DB

Fig. 4. Architecture of the system

We were reusing expertise and components from the state-of-the-art and stan-
dard systems as much as possible. For example, the parse trees were stored in
the PostgreSQL database; user defined grammar annotations were translated
into database views. This allowed to both achieve efficient storage of the data
and obtain efficient query execution plans from query optimizers.

5.2 DB Schema

We store all our data in an SQL database. This allows us to reuse most of the
database functionality including ease of expression of queries, query optimiza-
tion, and effective and efficient storage of the data.

On the database level we keep all the data in the PARSETABLE table. The
schema of the table is the same as the schema of the relations of the alternatives
of the rules (see Section 3.4), while the table integrates all the node data (see
Definition 1).

The tuples for Version 1 (Figure 2(a)) of our running example are given in
Table 4.
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Table 4. PARSETABLE

ID V L C N S P

19 1 start
18 1 fnDefLst 19
17 1 fnDef 18
2 1 type 3 17
1 1 1 ’int’ INT 2
3 1 2 ’a’ IDENT 7 17
7 1 varDecl 13 17
5 1 type 6 7
4 1 4 ’int’ INT 5
6 1 5 ’v’ IDENT 7
13 1 stmtLst 16 17
12 1 stmt 13
11 1 fnCall 12
8 1 8 ’printf’ IDENT 10 11
10 1 const 11
9 1 10 ’3’ STRCONST 10
16 1 expr 17
15 1 const 16
14 1 15 ’0’ INTCONST 15

5.3 Query Formulation, Translation, and Execution

The implemented system allows for the user to formulate the queries in the
SQL-like language. This allows all declarative constructs of the SQL including
the SELECT, FROM, WHERE, GROUP BY clauses and all supported predicates of Post-
greSQL. In addition we allow the use of symbols τk,i,j and ti,j as relation names
in the queries (see Section 4). Due to the space constraints we do not define the
extended language and hope that the reader gets the spirit of the language.

Given a formulated query in our SQL-like language, we transform it into
SQL and send it to PostgreSQL for optimization and execution. The translation
of the formulated query is basically achieved in two steps. First, we scan all
queries and replace annotations using τk,i,j and ti,j with select queries over the
PARSETABLE(s) with WHERE clauses. Second, we scan all queries for the second
time and create views in the query statements.

As an example consider the query that retrieves the names of the functions
that return an integer type. The following is the query expressed with the help
of annotations:

– t3,0 = τ1,3,0

– t2,0 = Πτ2,2,0.C(t3,0 ��t3,0.P=τ2,2,0.P τ2,2,0)

This query should be formulated in the following SQL-like way:

– t3,0 = SELECT * FROM τ1,3,0;
– t2,0 = SELECT τ2,2,0.C FROM t3,0, τ2,2,0 WHERE t3,0.P = τ2,2,0.P;

After the 1st stage the queries become:
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SELECT p.ID AS ID,

k.V AS V, k.L AS L, k.C AS C,

K.N AS N, K.S AS S, p.P AS P

FROM PARSETABLE k, PARSETABLE p

WHERE k.P = p.ID AND

k.N = ’INT’ AND

p.N = ’type’;

SELECT k.C AS C

FROM t3,0 t, PARSETABLE k,

PARSETABLE p

WHERE t3,0.P = k.P AND

t3,0.P = p.ID AND

k.P = p.ID AND

p.N = ’fnDef’ AND

k.N = ’IDENT’;

After the 2nd stage the queries become:

WITH t3,0 AS (

SELECT p.ID AS ID,

k.V AS V, k.L AS L, k.C AS C,

K.N AS N, K.S AS S, p.P AS P

FROM PARSETABLE k, PARSETABLE p

WHERE k.P = p.ID AND

k.N = ’INT’ AND

p.N = ’type’),

t2,0 AS (

SELECT k.C AS C

FROM t3,0 t, PARSETABLE k,

PARSETABLE p

WHERE t3,0.P = k.P AND

t3,0.P = p.ID AND

k.P = p.ID AND

p.N = ’fnDef’ AND

k.N = ’IDENT’);

6 Conclusions and Future Work

In this paper we presented a system to formulate and answer declarative queries
over the versioned source code. Annotations of the grammar rules are the key
that allows the declarative querying and connection of the components in the sys-
tem: first, the annotations allow to naturally formulate queries over the source
code (compared, for example, to regexp), and second, allow to translate the
queries into SQL and answer them efficiently. Our system consists of declarative
query, query rewriter, SQL database, and versions of source code. Tight cou-
pling with the components from state-of-the-art database systems allowed for
effectively and efficiently both store and query the data.

Future work will concentrate on the introduction of a sequence model for
source code versions. This model will account for the fact that versions are not
necessarily available in fully materialized but compressed form. We will introduce
a model that describes code evolution with the help of differences between the
pairs of versions. It is not necessary to generate a parse table for every version of
the code depending on the user’s query formulated through the annotations. By
defining rules to rewrite the user’s query and annotations we see potential for
query optimization (e.g. save parsing of code versions that can not participate
in the result).

As we have already implemented a (sub-) operator for the generation of the
PARSETABLE we will further proceed with integrating the automatic view gen-
eration from grammar annotations by implementing an operator tightly into
the DBMS. Currently this rather done with an external program than being an
extension to SQL.
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Abstract. Shared evaluation of multiple user requests is an utmost pri-
ority for stream processing engines in order to achieve high throughput
and provide timely results. Given that most continuous queries specify
windowing constraints, we suggest a multi-level scheme for concurrent
evaluation of time-based sliding windows seeking for potential subsump-
tions among them. As requests may be registered or suspended dynam-
ically, we develop a technique for choosing the most suitable embedding
of a given window into a group composed of multi-grained time frames
already employed for other queries. Intuitively, the proposed methodol-
ogy ”clusters” windowed operators into common hierarchical constructs,
thus drastically reducing the need for their separate evaluation. Our em-
pirical study confirms that such a scheme achieves dramatic memory
savings with almost negligible maintenance cost.

1 Introduction

Continuous query execution has emerged over the last decade as a novel paradigm
for processing transient, fluctuating and possibly unbounded data streams [3].
Such information is surging in many modern applications, like telecom fraud
detection, financial tickers or traffic monitoring; what’s more, data must be used
to offer real-time response to numerous user requests that remain active for
long. To cope with such pressing requirements and avoid dealing with the entire
stream history, most processing engines opt for evaluation policies that only ex-
amine finite windows of memory-resident data. Windows are declared along with
the submitted queries and get repeatedly refreshed with the most recent stream
items, so as to provide timely, incremental results [13]. Typically, users specify
sliding windows, expressing interest in recent periods (e.g., items received dur-
ing past hour) or a fixed tuple count each time (e.g., 1000 fresh items). Through
properties inherent in the data, like ordering by arrival time or sequential num-
bers, windows can actually restrict the amount of inspected information.

But in presence of multiple requests, it is most likely that similarities exist
among various windowing constraints. Several window expressions may involve
overlapping –if not identical– stream portions: one user may be interested in data
over the past hour, whereas another may focus on those of the last quarter only.
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Given that most requests are long-running, this key remark opens up a new
prospect for multi-query optimization [12]. Discovering commonalities among
windows offers a sound basis for their collective handling with significant benefits
to sharing system resources [2], particularly memory space for retaining stream
tuples and processing overhead for aggregates or joins over similar windows.

In this work, we set out to detect opportunities for shared evaluation among
time-based sliding windows. We introduce a subsumption criterion determining
whether a pair of such windows have similar properties that enable their common
maintenance. To put it simply, a window should not be subsumed under another
even if their time horizons overlap, unless their refresh frequencies match as well.
We develop a method that embeds windows into jointly evaluated groups, heuris-
tically choosing the ”best-fitting” candidate. In order to inspect each stream tu-
ple only once per group, we exploit multi-granular window semantics and adjust
a hierarchical structure we proposed in [10], distantly reminiscent of the well-
known ”matryoshkas”, the Russian nesting dolls. Not only can this scheme cope
with a fixed window collection, but also with arbitrarily registered or suspended
windowed queries, as it actually occurs in a streaming context. Embedded win-
dows can be also used to efficiently evaluate costly operations, like computation
of scalar aggregates (SUM, MAX, etc.) or discovery of distinct stream items.

To the best of our knowledge, this is the first approach to subsumption of
multiple sliding windows over data streams with the following contributions:

– We identify potential embeddings from a mixture of sliding windows with
diverse specifications and dynamically allocate them into similar groups.

– We propose a framework for efficient maintenance and smooth updating of
embedded windows, substantially reducing memory consumption.

– We further investigate its advantages on continuous execution of typical
operators like aggregation, duplicate elimination and join.

– We empirically demonstrate that this scheme is robust against varying query
workloads and scalable with massive volumes of streaming data.

The remainder of this paper is organized as follows. In Section 2, we survey
fundamental concepts and related work on window specification and evaluation.
In Section 3, we develop a framework for dynamically subsuming windows into
groups. Section 4 discusses shared evaluation against multiple nested windows.
Experimental results are reported in Section 5. Section 6 concludes the paper.

2 Background and Related Work

2.1 Window-Based Stream Processing

A crucial difference between stream items and relational tuples is that ordering
must be established among such interminably flowing data. A timestamp value
is usually assigned to each streaming item, either at its source (e.g., when sen-
sors issue their readings) or upon admission to the processing engine. Typically,
timestamps are drawn from a common Time Domain T, i.e., an infinite set of
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Fig. 1. A time-based sliding window Fig. 2. Composing sliced windows

discrete instants τ with a total order ≤. In effect, a data stream S is an ordered
sequence of items 〈s, τ〉, where s is a relational tuple with a fixed schema and τ
its associated timestamp value [11]. Yet, a problem persists: processing must be
carried out in online and incremental fashion, preferably in main memory. Since
system resources could hardly sustain the rising volume of accumulating items,
it turns out that the amount of data probed each time should be restricted.

Among other suggestions like punctuations [14] or synopses [3], it is windowing
that prevails as the most suitable means of bounding data streams in query
execution. Acting as a Stream-to-Relation operator [1], a window W repetitively
provides a temporary relation by filtering stream S with specific constraints on a
designated windowing attribute [9]. At any time τi ∈ T, this transient relation is
the current window state W (S(τi)) consisting of a finite portion of stream items
that qualify to constraints, most usually based on timestamps (refer to [11] for
a complete taxonomy). Indeed, time-based sliding windows are indispensable to
stream computing [7], since the primary concern is on recently received data.
The scope of such a window W is ruled by the following parameters [11] :

– A temporal range spanning ω units backwards from current time τc. Only
data items with timestamps t ∈ (τc − ω, τc] qualify for actual state of W .

– A sliding step of β time units controls transition to the next state, i.e., how
frequently to check for qualifying stream items. Upon sliding, fresh tuples
are being accepted into the new state of W at the expense of expiring items
discarded from the rear (i.e., remotest) bound of the window.

– Initiation time τ0 ∈ T denotes when W was firstly applied against the stream.

Typically, a time-based sliding window W 〈ω, β〉 can be declared in CQL [1] with
a clause like [RANGE ω SLIDE β]. Figure 1 illustrates two successive states of
a window W that ranges over ω = 8 time units and slides every β = 2 units,
assuming that at most ρ = 2 items of stream S arrive per minute. Since ω > β,
overlaps (i.e., common tuples) may occur between successive states.

2.2 Sharing Window State and Computation

Windows are inherent in continuous queries, but they are mostly useful for un-
blocking operators in query execution plans. Problematic operators [14] that
must be coupled with windows include joins (since each fresh item cannot be
probed against the entire stream history) and aggregates (otherwise not a single
result could be emitted unless the stream were exhausted).
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Strategies for effective scheduling of multiple windowed joins [6] start execu-
tion either from the smallest window range or the largest one and accordingly
exploit their results for the rest. Still, the focus was on prioritizing tuples that
would serve the maximum number of pending queries, ignoring the effect of
sliding steps on restructuring window states. Schedule synchronization among
multiple aggregation queries with different sliding windows was explored in [5].
To amortize computation cost, they allowed reevaluation of some queries more
often (i.e., before their slide occurs) so as to take advantage of aggregates just
computed for other windows. However, this approach alters the usual semantics
of slide β as a fixed progression step [11], essentially redefining it as an upper
bound of the interval between two successive query reevaluations.

Resource sharing among sliding windows has been examined mostly for ag-
gregates. As first shown in [2], indexing of partial aggregates over intervals at
multiple resolutions enables the result to be suitably composed from a union of
varying-size intervals. In [9], subdivision of a window state into equal-sized slices
and performing aggregation on such fundamental ”panes” was proposed. Given
a window W 〈ω, β〉, the size of each pane is the greatest common divisor (gcd)
of ω and β, so W is sliced uniformly into ω/gcd(ω, β) disjoint panes. Partial
aggregates are calculated only once per pane, and then ”rolled up” to provide
the final result. Nonetheless, each window is handled in isolation, determining
the size and number of its panes irrespectively of other similar specifications.

Towards sharing state among multiple windows, the ”paired” approach for
streamed aggregation [8] suggests that a window can be split into unequal parts
and perform faster than a uniformly sliced one. Aggregates over a time-based
W 〈ω, β〉 comprise partial results obtained from a series of disjoint extents of
alternating sizes s2 = ω mod β and s1 = β−s2. Intuitively, tuples in any extent
s2 qualify for two consecutive window states, so there is no need to recalculate
algebraic or distributive aggregates for interval s2. Further, such paired windows
from multiple queries can be composed into a single window, sliced appropriately
as a vector with many edges at a common period. In order to fit all participating
scopes, this period is set to the least common multiple (lcm) of their sliding steps
β. As shown in Fig. 2, to allow for windows with diverse sliding steps, their slice
vectors are stretched, simply repeating themselves (twice for W1, thrice for W2)
until they all obtain the same period (lcm = 12). Results are emitted on-the-
fly, but this state-of-the-art algorithm is specifically tailored for aggregates only,
hence ineffective for generic windowed operations (e.g., joins or distinct items).

2.3 Multi-granular Windowing

In [10] we introduced a multi-level sliding window W that specifies a set of time
frames at diverse user-defined granularities and then concurrently evaluates a
single continuous query over several stream slices of varying size. Subwindow
Wk at level k has its own time horizon ωk and refresh frequency βk; it ranges
in (tk, τc], yet nested under the widest Wn−1, as exemplified in Fig. 3 for n = 3
levels. A hierarchy of n subsumed frames is created when βk−1 ≤ βk and ωk−1 <
ωk, for each level k = 1, . . . , n − 1. For smooth transition between successive
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Fig. 3. State of a 3-level sliding window Fig. 4. Stairwise processing scheme

states at any Wk, it holds that ωk = μk · βk for μk ∈ N
∗, so a frame at level k

consists of a fixed number of primary blocks (granules) of size βk units each.
Beyond semantics, such a hierarchical scheme can be maintained consistently

and incrementally. Normally, each subwindow Wk subsumes others in lower lev-
els, so it could suffice to retain in a queue gk only those delta tuples in interval
(tk, tk−1] not covered by subordinating window frames. But since each level pre-
scribes its own slide βk, nested subwindows may not be always aligned with
current time τc, hence not concurrently refreshed. Thus, each queue gk must
be combined with an auxiliary one δk to buffer items expiring from the preced-
ing subwindow at level k − 1. This ”stairwise” scheme (Fig. 4) of alternating
”buffer” δk and ”core” queues gk can seamlessly maintain the overall window
state without loss of tuples in transit between successive levels. Moreover, it can
also answer advanced continuous requests (like multi-grained aggregates, online
regression, and recurring stream items) across multiple time horizons [10].

Next, we attempt to generalize this framework and achieve nesting of indi-
vidual single-level sliding windows into judiciously chosen multi-level constructs
with considerable resource savings in memory space and processing overhead.

3 A Multi-subsumption Framework for Sliding Windows

3.1 Problem Specification

Let a pool of n sliding windows W = {〈ωk, βk〉, k = 1..n} currently specified
against a data stream S. Given that various continuous queries are active at any
time, their window states may actually overlap; thus, a stream tuple s can qualify
for multiple windows, depending on their exact scope. Users may register new
requests or revoke existing ones, so pool W gets dynamically modified. Without
loss of generality, we assume that window initiation τ0 occurs at fixed clock ticks
(e.g., minutes), as a means of synchronization among diverse scopes.

We further assume that every window from W is associated to the same
operator. In other words, all windows are used for computing the same aggregate
(like SUM or MAX) or duplicate elimination or join, but not a mixture of operations.
This may look like a too tight constraint in terms of window state maintenance;
diverse operators may specify identical windows, so why not handle a single state
for all of them? Similarly to [2,5,8], we aim to use windows’ contents to perform
calculations on them and not just retain their qualifying tuples, so the adjoined
operator definitely matters as it dictates completely different computation.
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Fig. 5. Windows with different progression Fig. 6. Subsumable sliding windows

Our objective is to find a grouping G = {g1, g2, . . . } where each window from
W is assigned into a single group gi. Each group gi gathers together specifications
with similar parametrization (ω, β), enabling their insertion one after the other
into a common structure that could jointly retain their states and also provide
incremental output to the associated operator. Inevitably, queries with distinct
windowing parameters must be evaluated separately. Our key idea is subsumption
of smaller scopes into broader ones, provided that such a nesting remains intact
with time and always fits all participating windows. Formally:

Definition 1. A sliding window Wi〈ωi, βi〉 is subsumable under another one
Wj〈ωj , βj〉 if and only if mod(βj , βi) = 0 and ωj ≥ ωi. We denote that Wi �Wj.

Likewise, windows are subsumable into a group if a pairwise symmetric shift of
their frames holds; then, no qualifying tuples can ever be missed for any window
state and consistent results are issued by the respective operator. Subsuming
multiple windows with arbitrary specifications is an intricate issue, primarily
because each window is allowed to slide forward at its own pace. As exemplified
in Fig. 5, even if windows W1, W2 share state at time τ , it is difficult to coordinate
their common tuples in the future as frames get refreshed at varying frequencies.
Next, we introduce a heuristic, advocating that windows with similar sliding
steps should be grouped together as a sequence ordered by range values ω.

3.2 Identifying Suitable Embeddings among Sliding Windows

A simple approach to subsumption would attempt to classify windows by their
sliding steps. Windows with identical slide βk and overlapping ranges ω could be
combined into a single queue qk with a common head (i.e., most recent stream
item) but multiple tails, one for each participating frame. Due to their common
step βk, all queue demarcators (head and tails) slide always in tandem. This
scheme creates as many queues as the distinct sliding steps found in the current
window pool. Yet, each window still maintains a detached state of qualifying
items, which are not reused by other frames in the same group. As an amend-
ment, the unified queue could keep account of delta substates only [10], so that
narrower ranges readily provide their tuples to successively wider scopes.

Even so, such a policy misses certain nesting opportunities that can lead
to much less and more compact groups. As implied from Definition 1, not
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Fig. 7. Graph partitioning for sequences of subsumable windows

necessarily all frames in a group gi obey the same slide βi. Therefore, we may
even allow a window with βk = λk ·βi, λk ∈ N

∗, i.e., progressing at a multiple of
the base slide βi, provided that its range ωk can be embedded among existing
ones without breaking the sequence. Referring to the example in Fig. 6, suppose
that we want to compute the SUM over each window. Apparently, we can first
respond to the smallest W1 and then readily exploit this partial result for W3,
since both windows slide together every two time units. As for W2, there is no
need for recalculation, as its aggregate is exactly the one given for W3; the only
difference is that it is emitted less frequently (every fourth timestamp).

To identify subsumable windows and then coordinate their evaluation, we
introduce a Window Manager that accepts submitted windows and allocates
them into suitable groups. We presently examine a fixed pool W of windows,
deferring discussion about dynamic changes at window specifications to Section
3.3. Intuitively, if we plot window scopes in a (ω, β) axis system (Fig. 7), we
can simulate recognition of commonalities with a vertical sweepline that moves
rightwards and stops at each ω position. Each scope 〈ωk, βk〉 is compared to
those already assigned into groups with equal or aliquot slides. By virtue of the
sweep, only the last window in each candidate group g needs checking; if its range
exceeds ωk, then subsumption to group g is ruled out. Otherwise, 〈ωk, βk〉 can
be inserted as the last window in that group. If all candidate groups have been
probed without success, then window 〈ωk, βk〉 starts out a new group. This task
resembles to topological sorting, as it creates a partitioned graph with distinct
sequences of nodes that represent subsumable scopes. Each resulting subgraph
enumerates windows that can be evaluated together in the same multi-level
construct. Nodes in each group g can be either characterized as:

(i) Seeds represent rudimentary window scopes at every β-level that cannot fit
in any other existing group. Apparently, windows Wi with a prime slide βi

can become seeds of a group, such as nodes d, r and b illustrated in Fig. 7.
(ii) Enclosing is a window that fully subsumes an already visited scope in group

g, because it has a greater range and the same or a multiple sliding step.
Hence, a series of enclosing windows can share partial states with no miss-
ing tuples when sliding takes place. As shown in Fig. 7, window e can be
partially served by the state of f , as it moves forward by a double step; upon
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sliding, e owes its most fresh items to all subordinating frames, whereas also
accepting expired tuples in transit from f (as explained in Section 2.3).

(iii) Piggybacked windows have identical temporal range with their preceding
node, but slide forward less frequently. As depicted in Fig. 7, window u has
the same range as d, but moves at a double pace. Since they share states
every other step, we may entirely collapse u and instruct d to periodically
provide its state to u. This kind of piggybacking comes at no extra cost; we
simply annotate the edge connecting such equal-range windows with the
quotient q ∈ N

∗ of their respective sliding steps. So, the edge from d to u is
marked with q = βu/βd = 2, to indicate how frequently (at q−1) the result
computed for d should be propagated to its piggybacked u as well.

The core functionality of the proposed Window Manager is outlined in Algorithm
1. More concretely, process SubsumeWindows partitions the given pool W into
groups following a policy of progressive ”expansion”: it first attempts to allocate
smaller scopes before continuing with wider ones. So, it starts by collecting non-
assigned windows in a priority queue H ordered by ascending range ω and, in
case of ties, by slide β as well (Line 4). Then, it iterates through each remaining
scope from H, first attempting to append it into an existing group (Lines 9-
13). The visiting order of candidate groups is guided by descending β of their
seed nodes (Line 7), while only the lastly inserted window should be probed for
each group (Lines 10-11) thanks to the implicit ordering of window inspection.
If subsumption fails, then a new sequence is created, having the examined scope
as a seed (Line 14). When called, function canEmbed checks whether window
〈ωi, βi〉 can either be piggybacked on another 〈ωj , βj〉 already assigned into group
g (Lines 19-22) or fully subsume the latter (Lines 23-26). In both cases, the
examined sliding step βi should be equal or integer multiple of the compared
one βj (Line 18), otherwise no embedding is possible.

Concerning query evaluation, as soon as each group gets finalized, a corre-
sponding stairwise scheme (Fig. 4) is dedicated to keep account of states for
all its members. Seed scopes form the bottommost stairs of the multi-granular
scheme built for each new group, while only delta substates are maintained for
upper levels that represent enclosing windows. Piggybacked windows are not ma-
terialized, but are represented only implicitly according to annotations specified
for other embedded scopes. Note that we relax construction features from [10],
allowing many successive stairs with the same slide step. For the setting in Fig.
7, windows b, h and f will be placed in consecutive stairs. But since all three
proceed in tandem, there is no need for intermediate ’buffer’ queues, so items
expiring from b are immediately transferred to the substate of h and so on.

Overall, a given window is actually assigned to a suitable group depending
on already identified seeds and the current arrangement of inspected windows.
Multiple seeds could appear with the same β, though. Indeed, if the seed node
of a sequence got nested within scopes of a wider slide step, then a new group
should be created for the examined window, which becomes a seed itself. As
exemplified in Fig. 7, when window z〈32, 4〉 is submitted, it is turned into a
seed, since it cannot get along jointly with a preceding scope like v〈24, 8〉.
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Algorithm 1. Window Manager
1: Procedure SubsumeWindows

2: Input: A collection of sliding windows W = {〈ωk , βk〉, k = 1..n}.
3: Output: A grouping G = {g1, g2, ...}; each window assigned into a single group gi.
4: H ← a priority queue of windows from W, arranged by increasing scope 〈ω, β〉.
5: while H is not empty do

6: 〈ωk , βk〉 ← H.pop(); //Currently examined window

7: C ← {g ∈ G: mod(βk , g.β) = 0}; //Candidate groups ordered by descending β

8: nested ← false;
9: repeat

10: g ← group of C with the next greater base slide β;
11: 〈ωm, βm〉 ← last window Wm (i.e., currently the broader) inserted into g;
12: nested ← canEmbed(g, 〈ωk, βk〉, 〈ωm, βm〉); //Subsumable into group g?

13: until nested or C is exhausted;
14: if not nested then Append into G a new g ← {〈ωk , βk〉}; //Seed of new group

15: end while

16: End Procedure

17: Function canEmbed (group g, window 〈ωi, βi〉, window 〈ωj , βj〉)
18: if mod(βi, βj) = 0 then

19: if ωi = ωj then

20: Collapse 〈ωi, βi〉 ; //Piggyback window Wi on existing one Wj

21: Annotate 〈ωj , βj〉 with q = βi/βj ;
22: return true;
23: else if ωi > ωj then

24: g ← g ∪ {〈ωi, βi〉}; //Subsume window Wj under newly inserted Wi

25: return true;
26: end if

27: end if

28: return false;
29: End Function

30: Function embedWindow (window 〈ωk, βk〉)
31: nested ← false;
32: for each group g ∈ G ∧ (mod(βk , g.β) = 0 ∨ mod(g.β, βk) = 0) by descending β do

33: 〈ωm, βm〉 ← first window Wm having ωm > ωk when traversing members of g;
34: if 〈ωm, βm〉 = nil then

35: 〈ωm, βm〉 ← broader window Wm inserted into g;
36: nested ← canEmbed(g, 〈ωk, βk〉, 〈ωm, βm〉); //Insert Wk as last in group g

37: else if mod(βm, βk) = 0 then

38: nested ← canEmbed(g, 〈ωm, βm〉, 〈ωk, βk〉); //Subsume Wk under existing Wm

39: else if mod(βk , βm) = 0 then

40: nested ← canEmbed(g, 〈ωk, βk〉, 〈ωm, βm〉); //Subsume existing Wm under Wk

41: end if

42: if nested then break;
43: end for

44: if not nested then Append into G a new g ← {〈ωk , βk〉}; //Seed of new group

45: return g;
46: End Function
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3.3 Embedding Windows at Runtime

In practice, as user requests dynamically join in or leave the system, so do their
window specifications with respect to pool W . So, the initially derived graph
partitioning G is subject to changes and existing groups could be rearranged.
We employ a runtime policy that allows ”on-the-fly” embedding and suspension
of window specifications, thus avoiding recalculation of G from scratch.

Function embedWindow (Algorithm 1) outlines treatment of a newly submit-
ted window Wk. Not all existing groups should be checked for possible subsump-
tion, but only those with seeds of either multiple or aliquot sliding step (Line
32). Candidate groups are deliberately visited in a descending order of their
base slides as dictated by the ”expansion” nature of the heuristic, such that the
substate of Wk would get the most out of already retained ones. When examin-
ing a candidate group, its member window Wm with the least, but still greater
range than ωk is identified. This Wm denotes the ideal place where Wk could
potentially fit with the minimal distortion at the existing sequence. If such win-
dow Wm is not found, then it is worth trying to append Wk as the last in that
candidate group and check if it can successfully subsume all its current mem-
bers (Lines 34-36). In case that window Wm is found, the question whether to
attempt embedding Wk before (Lines 37-38) or after Wm (Lines 39-40) depends
on a simple comparison between their respective sliding steps. Of course, if all
candidate groups have been inspected without success, then Wk becomes the
seed of a new group (Line 44). For example, if a new window k〈21, 3〉 appears
in the setting depicted in Fig. 7, it can be easily placed between existing nodes
p and y in full conformance with the subsumption criteria.

Revoking an active window is much simpler, as it stipulates its withdrawal
from the group where it was initially allocated. Suspending piggybacked nodes
incurs nothing but erasing annotations. Removal of an enclosing node is also easy
to handle, since its delta substate is delegated to the next node in the sequence.
In case its removal leaves orphan piggybacked nodes, the one with the smallest
slide becomes its replacement in the sequence. Finally, new seed nodes may be
appointed. In Fig. 7, if d gets suspended, node u takes over as the new seed at
a base slide of β = 4 units with no further repercussions on that group.

4 Shared Evaluation over Subsumed Windows

Admittedly, this subsumption framework is limited to requests specifying ex-
actly the same operation over windows, as pointed out in Section 3.1. But with
hundreds or thousands of continuous queries, chances are mounting that both
operators and windows actually match. So, we can first distinguish windowed
queries into collections according to their prescribed operation, and then initi-
ate a separate window manager for each collection. Next, we outline how the
proposed stairwise scheme facilitates shared execution of costly operations in-
extricably liaised to sliding windows. In all cases, the underlying principle is to
avoid duplication in computations and reduce update cost for greater scopes,
benefiting from intermediate results available from subsumed ones.
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Fig. 8. Shifting partial SUM aggregates Fig. 9. ”Phantom” duplicate items

Aggregation. As we suggested in [10], the multi-level stairwise structure sup-
ports efficient calculation of typical scalar aggregates (MIN, MAX, SUM, COUNT and
AVG) by taking advantage of incrementally computed, fine-grained partial results.
In brief, each level k retains a fixed number of sub-aggregates, each one derived
over βk time units (i.e., the granularity of the respective level). No wonder that
such a scheme seems ideal to handle shared aggregates among subsumed win-
dows, practically without any modification. When subwindow Wk slides forward
(Fig. 8), it accepts a new sub-aggregate over items spanning βk units from its
lower level k− 1 or the raw stream. Then, a similar sub-aggregate expires and is
temporarily buffered waiting for Wk+1 to slide; when this occurs, a corresponding
sub-aggregate shifts to level k + 1 discarding buffered values. Favorably to total
execution cost, the number of partial aggregates is expected to shrink toward
higher levels, as greater sliding steps translate to less and coarser granules.

Duplicate Elimination. This operator [11] reports distinct items within the
current state of a sliding window W . When it comes for multiple windows nested
in each other, it suits better to keep the most recent appearance of a distinct item,
replacing the previous one with the same attribute value(s). As illustrated in Fig.
9, such an ”eager” policy possibly causes frequent short-term replacements and
thus incurs additional overhead for the bottommost window W0. Had a distinct
item been parsimoniously retained until its expiration from W0, this extra cost
could have been avoided. Yet, we prefer retaining the most recent distinct items
for W0, as it pays off in upper levels of the hierarchy. Indeed, only distinct
items expiring from W0 with no substitute (as such an item has not appeared
ever since) should be propagated to the upper level representing W1. So, partial
results for W1 include older distinct items that sometime ceased to qualify for
W0; likewise, the same pattern repeats in all stairs.

Overall, a great deal of computation can be spared at every but the first level.
This seems affordable enough, because W0 is definitely the smallest in range and
slides forward more frequently. Besides, each subsequent level is only responsible
for distinct elements in the time interval not covered by its subordinate windows.
However, sets of distinct items in any two successive levels may not be always
disjoint, as depicted in Fig. 9. Value 3 was distinct in level k = 0 but expired
at time τ with no substitute; so, this 3 migrated to the subset of distinct items
kept for k = 1 and replaced its elder appearance there. At time τ ′, a fresh value
3 arrives and qualifies as distinct for W0. Item 3 has then a duplicate for W1 and
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all its enclosing windows W2, W3, . . . We opt for lazy elimination of such ”phan-
tom” items later on, as it is worth tolerating them and avoid reinspection of
enclosing frames upon every tuple arrival. When reporting, enumeration of dis-
tinct items starts always from the bottommost level, so any remaining duplicates
encountered upwards can be removed with negligible cost.

Join. A join operation between two sliding windows emits a result as soon as a
newly arrived item in either stream matches a tuple contained in the opposite
window state. Join is a stateful operator in streams [14], so each window must
retain all its qualifying tuples. But joined results must be canceled as soon as
one of their constituent tuples gets evicted from the window it belongs to. Since
sliding window joins are weak non-monotonic [4,11], it suffices to attach suitable
expiration timestamps to all emitted results, hence delimiting their validity.

This policy can be also adapted for subsumable windows, provided that we
deal with joins of common signatures, i.e., involving the same pair of input
streams and specifying the same join predicates [6]. This condition guarantees
that joined items produced from common execution are meaningful and were
actually requested from users. In terms of actual evaluation, each incoming tu-
ple s must be probed only once against the group of n windows specified over
the opposite stream. Search for potential matches starts from the bottommost
window (i.e. the seed of the group) and continues upwards to wider scopes in-
specting state items in descending chronological order. As soon as a matching
tuple s′ is found, say at level k, then a total of n − k joined results 〈s, s′〉 are
issued; remember that a tuple s′ retained at the substate of Wk also belongs
to Wk+1, . . . , Wn−1 (Fig. 3). Therefore, each result is emitted with a suitable
expiration timestamp that depends on the range of the corresponding windows
and the actual timestamps of its constituent tuples.

5 Experimental Evaluation

In this section, we report indicative results from an empirical validation of the
proposed multi-subsumption framework for a mixture of query workloads applied
against varying stream arrival rates.

Experimental Setup. We distinguish three classes of window specifications
on the basis of their maximum sliding step. In detail, smooth windows stipulate
small slides of β ≤ 10 timestamps, medium windows have β ≤ 20 units, whereas
abrupt windows may move forward by β ≤ 30 time units. For all scopes, range ω
fluctuates up to a limit of 60 timestamps, but always β < ω to imitate genuine
sliding behavior. According to these rules, we artificially generate four query
workloads for each class; these workloads respectively contain 1000, 2000, 5000,
and 10 000 window specifications. Simulations at stream rates up to ρ = 100 000
tuples/sec were performed against a real dataset1 tracing wide-area TCP con-
nections with the Lawrence Berkeley Laboratory. Algorithms were implemented
1 Available at http://ita.ee.lbl.gov/html/contrib/LBL-CONN-7.html
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Class Groups
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in C++ and simulated on an Intel Xeon 2.13GHz CPU running GNU/Linux
with 12GB of main memory. Results are averages of actual measurements per
timestamp over complete (i.e., not ”half-filled”) windows.

Experimental Results. The first set of experiments demonstrates the strong
subsumption capabilities of the proposed framework. As shown in Fig. 10, the
number of resulting groups depends on the actual window specifications, and on
the variance of their sliding steps β in particular. Just a handful of groups are
maintained in any setting, whereas the total overhead for their effective alloca-
tion is practically negligible, even for increasing number of windowed queries.

But the real benefit of window subsumption lies with the tremendous resource
savings it offers. Figure 11 illustrates the accumulated memory footprint of all
window states for the medium class. Subsumption reduces memory utilization
by orders of magnitude (mind the log scale!); space cost remains practically sta-
ble no matter the number of windows, because only delta substates are retained
within the multi-level structure. In practice, the space consumption of a stairwise
scheme is equivalent to that of its widest scope at the top level (if considered in
isolation), plus the cost for buffer queues that hold transitional tuples expiring
from each level. In contrast, a conventional approach is much more costly, since
each window state is maintained in isolation. As Fig. 11 verifies, memory con-
sumption grows linearly with increasing query workloads, clearly demonstrating
the inefficiency of non-shared maintenance for sliding windows.

In the interest of space, we discuss results concerning evaluation cost only
for the case of stream aggregation, varying the actual stream arrival rate (in
tuples/sec). Specifically, we calculate SUM values for all three classes of sliding
windows, each with 10 000 varying specifications. As plotted in Fig. 12, com-
putation time per timestamp is small for aggregates over numerous subsumed
windows and escalates almost linearly with the stream rate. Not surprisingly,
the cost reflects the variance of slides; the larger the progression steps, the more
expensive the aggregation, as more sub-aggregates must be retained and prop-
agated amongst levels. It appears that β is perhaps the most influential factor
in smooth reevaluation. Anyway, significant time savings must be attributed to
sharing computation across hierarchically organized substates. In most cases, it
takes less than 2 sec to provide all responses, a fact that clearly fulfills expecta-
tions for real-time answering to multiple long-running queries.
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6 Conclusions and Future Work

In this paper, we introduce a framework that identifies opportunities for shared
processing among overlapping window states in data streaming applications. Our
proposed heuristic subsumes similar sliding window specifications and appropri-
ately coordinates their joint reevaluation through multi-level groups, achieving
substantial memory savings and minimal maintenance overhead. We also delin-
eate how to orchestrate fast execution of costly operations over windows, by
examining stream tuples only once per group.

In the future, we plan a thorough investigation of operations against nested
windows to get more insight on their properties and discover further optimiza-
tions. It would be interesting to analyze feasibility of near-optimal partitioning
of windows that could lead to a minimal number of groups. Resolving system
degradation when many queries get arbitrarily registered or suspended is also a
challenging task. To avert potential miscasts to groups, perhaps a scoring ap-
proach could be employed to gauge suitability among alternative subsumptions.
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Abstract. The problem of selecting views and/or indexes to material-
ize has been extensively studied in the context of query optimization.
Traditionally, the problem is formalized as follows: given a set of queries
and a budget e.g., an available memory space, find the objects to mate-
rialize (views and/or indexes) that (1) satisfy the given budget and (2)
minimize the query cost. In this paper, we depart from this setting by
adopting a user-centric point of view: given a constraint on query evalua-
tion, namely a maximal query cost the user does accept, find the objects
(1) whose materialization needs the minimal storage space and (2) that
guarantee the query evaluation constraint. We study this problem in the
data cube setting and provide exact and approximate solutions.

1 Introduction

Materialized views have been recognized as an effective query optimization tech-
nique for a long time [3]. Since data cubes [7] are sets of special views, their
full and partial materialization have been studied as soon as this concept was
proposed. As it is described in [15], the selection of the data cube part to be
materialized is a multi-criteria task. We recall some of the most studied ones:
the materialization granularity (full vs fragments of views), the constraints taken
into account (available storage space and/or time window allowed to incremen-
tal update), presence or not of target queries (workload), complexity of the view
selection algorithm, dynamic workload and the possibility or not to use indexes.
Most of the preceding proposals formalize the view selection problem so that
the returned solution should minimize the average query cost while satisfying
the imposed budget space and/or update time constraints. Minimizing average
query cost, or equivalently total query cost, may lead to solutions where some
queries are well optimized while others are not.

In this paper, we propose a new formalization of the view selection problem.
Given a fixed required query evaluation time, find the minimal solution that
satisfies it. As advocated by the position paper [6], data base optimization should
be revisited: users are ready to pay if the system is able to satisfy their required
performance. Of course, they want to pay the minimum. In this new trend, the
goal turns out to minimize the amount of memory achieving the wanted quality
of service.
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Contributions. In this paper, we make the following contributions:

1. We introduce a new formalization of the materialized view selection in the
context of data cubes.

2. we provide exact and approximate solutions when data are static.
3. We investigate the robustness of our solutions against data updates and give

some sufficient conditions under which the solutions are not perturbed by
these data updates.

4. We conduct some experiments on a real data set to confirm our proposal.

Paper organization and contribution. In the next section we introduce some
definitions and recall some of the related work. Then, we provide algorithms for
solving the view selection problem. We use integer linear programming (ILP) to
formalize the exact solution and a polynomial time approximate algorithm. Due
to the size of the problem, even the approximate algorithm may be inefficient.
So we propose a technique to reduce the search space while we still guarantee an
approximation factor of the solution memory size. Then, we show how indexes
can be added to the solutions and we provide an exact resolution procedure
with the help of ILP. Furthermore, we introduce the stability property of the
solutions: given a solution S with the desired properties obtained at time t,
how much the underlying data should change due to updates before S stops
being competitive. The paper ends with some experiments showing that the
approximation factor upper bounds are far from being reached in practice giving
evidence that approximate algorithms are competitive. We also show that the
solutions turn to be quite stable w.r.t. updates (assuming target queries are
fixed).

2 Preliminaries

2.1 Notations

We assume the reader is aware of the definition of data cubes (please see [7] for a
detailed description). We recall here some definitions and notations useful for the
rest of the paper. We consider a table T (D1, . . . , Dn, M1, . . . , Mp) where D′

is are
the dimensions attributes and M ′

is are the measures attributes. Table 1 shows
an instance of such table and will constitute our running example throughout
the paper.

Example 1. Table Sales contains 3 dimensions P, D and S and it contains one
measure U . Each row represents the number of units sold per product, date and
store.

Dim(T ) denotes the dimensions of T , e.g., Dim(Sales) = {P, D, S}. The data
cube associated to T , denoted C(T ), is the set of queries of the form SELECT
Dimensions, measures FROM T GROUP BY Dimensionswhere Dimensions is a
subset of Dim(T ), e.g., the view defined by SELECT P, D, SUM(U) FROM Sales
GROUP BY P, D is a view of C(Sales). Clearly, if |Dim(T )| = n then |C(T )| = 2n
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Table 1. The fact table Sales

Sales P(roduct) D(ate) S(tore) U(nits sold)

P1 D1 S1 10
P1 D2 S1 15
P2 D2 S2 10
P1 D1 S2 11
P1 D3 S1 10
P1 D3 S2 15

e.g., C(Sales) contains 8 views. The views of a data cube are called cuboids. In
this paper we consider the queries of the form SELECT Dimensions, measures
FROM T WHERE Conditions GROUP BY Dimensionswhere the conditions are con-
junctions of equalities of the form Dimi = Constant. Hence, cuboids are special
a case of queries (just remove the WHERE clause). If q is a query then Att(q) is the
set of dimensions attributes appearing either in the SELECT or the WHERE clause,
e.g., let q be the query SELECT P, SUM(U) FROM Sales WHERE D=D1 GROUP BY
P, then Att(q) = {P, D}. The size of a cuboid c corresponds to its number of rows
and is denoted size(c). If S is a set of cuboids then size(S) =

∑
ci∈S size(ci). If

c is a cuboid then Dim(c) denotes the dimensions of c. The data cube lattice is
induced by a partial order � defined as follows: c1 � c2 iff Dim(c1) ⊆ Dim(c2).
In this case, c2 is an ancestor of c1. Furthermore if |Dim(c2)| = |Dim(c1)| + 1
then c2 is a parent of c1. In this paper we consider just algebraic measures [7]
such as if c1 � c2 then c1 can be computed from c2 (SUM, COUNT, AVG are
algebraic functions). Let q be a query and c be a cuboid. By notation abuse we
extend the relation � to queries as follows: q � c iff Att(q) ⊆ Att(c).

2.2 Cost Model and Performance Measures

Let S ⊆ C be the set of materialized cuboids and let q be a query. Then, Sq =
{c′ ∈ S|q � c′}. The cost of evaluating q wrt. S is defined as follows: if Sq = ∅
then cost(q,S) = ∞ otherwise cost(q,S) = minc′∈Sq size(c′), i.e q is computed
from its smallest materialized ancestor. This is the usual cost model (e.g [11,16,
17]). Since we do not consider for the moment indexes1, the minimal cost of a
query q is proportional to the size of the smallest cuboid c from which it can
be computed i.e., Att(c) = Att(q). In this paper the materialized views are only
those corresponding to cuboids.

Definition 1 (Performance factor). Let Q be a set of queries, S a set of
materialized cuboids and q ∈ Q. The performance factor of S wrt. q is pf(q,S) =
cost(q,S)
size(cq) .

Intuitively, the performance factor measures the ratio between the response time
for evaluating a query q using S over its minimal evaluation time. Beside the
1 These are discussed in Section 4.
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performance factor, we take into account other parameters to assess our proposal.
More precisely, we consider the minimization of the storage memory space needed
by our solutions, the robustness of our solutions against updates i.e., should
we compute a new solution each time materialized cuboids are refreshed due
to source data updates and finally the time complexity of the view selection
algorithm itself. Hence, we aim at getting a trade off between the quality of the
solutions and the efficiency by which they are computed.

2.3 Related Work

To the best of our knowledge, no previous work has tackled the materialized view
selection under the same perspective as us. Most of previous works consider a
budget constraint, typically the storage memory space available and try to find
the best views that fit in the available memory space while minimizing the
total query evaluation cost of the queries belonging to the workload. In [10] we
showed via some experiments that reducing the total query cost may leave some
individual queries poorly optimized. More precisely, we showed the deviation
from the minimal cost of queries can be quite large. [11] is a seminal paper on
partial materialization of data cubes. It considers the following formalization:
Given a set of queries Q and an available storage space M for materializing
the data cube, find a subset S of cuboids such that (i) size(S) ≤ M and (2)∑

q∈Q cost(q,S) is minimal. The authors show that the problem is NP-Hard
and turned it to a gain maximization. The gain of a cuboids set S is simply the
difference between the worst cost and the cost provided by S. They proposed a
greedy algorithm which guarantees at least 63% the gain of the optimal solution.
As noted by [12], a guarantee on the cost gain does not imply a guarantee about
the cost. Nevertheless, the approach has influenced many subsequent papers by
extending it to different contexts for example index selection [8], materialized
cuboids maintenance [9] or exact solution by using integer linear programming
(ILP) techniques [14,17]. Besides the fact that some queries are poorly optimized,
another problem with this formalization is that minimizing the total cost tends
to come up with solutions that use the maximal available storage space (the
more we use memory, the less is the total cost). Hence, as soon as new data is to
be inserted and propagated to the materialized views, the former solution may
become too large and a new one must be calculated. On another hand, using
as much memory space as possible has a negative impact on materialized views
maintenance since this last task has a cost proportional to the materialized views
sizes. Dynamat [13] dealt with both data and workload dynamic. Its principle can
be described as follows: each time a query is submitted, first find the best plan
to evaluate it then decide whether its result could be kept among the already
materialized views. In a sense, the system computes a new workload each time a
new query is evaluated. In another side, when batch updates arrive, the system
may have a time constraint in order to perform the propagation to the views.
Hence, it choses the most beneficial that it can update within the allowed window
time interval. This is constrained by the available memory and may trigger the
removal of old views.
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3 View Selection Problem

The problem we want to solve is formalized as follows: given (i) a real number
f ≥ 1 and (ii) a set of queries Q, find a set of cuboids S such that(1) for each
q ∈ Q, pf(q,S) ≤ f and (2) size(S) is minimal. We denote this problem VSPF
(View Selection under Performance Factor constraint). Intuitively, we want to
find the smallest (in terms of storage space) set S that guarantees a performance
factor for each target query q ∈ Q.

3.1 View Selection as Minimal Weighted Vertex Cover

Theorem 1. The VSPF problem is NP-Hard.

Proof (Sketch). Otherwise, there exists a polynomial time algorithm solving the
view selection problem under space constraint, a problem which has been shown
NP-Hard [11]. Indeed, it suffices to use a binary search with a f ranging from 1
to size of the base cuboid. The algorithm stops when the smallest f providing a
solution not exceeding the space budget is found.

Hence, an approximate solution is more viable. For this purpose, we show that
our solution is actually the solution of a Minimal Weighted Vertex Cover (MWVC)
instance. We first give some definitions. For each q ∈ Q we denote by Af (q) the
set of cuboids c such that (1) q � c and (2) size(c) ≤ f ∗size(cq). We call this set
the f ancestors of q. Af (Q) =

⋃
q∈QAf (q). Clearly, the solution of our problem

belongs to Af (Q).

Definition 2 (Search Graph). Let G(f,Q) = (V, E,w) be the graph defined
as follows: V = Af (Q), (v1, v2) ∈ E iff (i) v2 ∈ Q and (ii) v1 ∈ Af (v2). w is
a weight function defined as w(v) = size(v). We denote by VQ the nodes of G
that correspond to an element of Q.

The set of out-neighbors of a vertex v in G is noted Γ (v) = {v′ ∈ Q|(v, v′) ∈ G}
and the weight of a set of nodes S ⊆ V , denoted w(S), is equal to

∑
v∈S w(v).

A set S covers VQ iff
⋃

v∈S Γ (v) ⊇ VQ. So the solution to our problem consists
in finding a subset S ⊆ V such that S covers VQ and S is of minimal weight.
This is an instance of the MWVC which is known to be NP-Hard.

3.2 Exact Solution

In this section, we propose an ILP program to solve our problem. Let us first
give some notations: For each ci ∈ Af (Q), the constant si designates the size
of ci, for each ci ∈ Af (Q), the variable xi ∈ {1, 0} means respectively that ci

belongs to the solution or not, yij ∈ {1, 0} means that the query qi ∈ Q uses
cuboid cj ∈ Af (qi) or not. The linear program is:

min
∑

j:cj∈Af (Q)

xj ∗ sj (1)
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∀i : qi ∈ Q
∑

j:cj∈Af (qi)

yij = 1 (2)

∀i : qi ∈ Q, ∀j : cj ∈ Af (qi) yij ≤ xj (3)
∀j : cj ∈ Af (Q) xj ∈ {0, 1} (4)

∀i : ci ∈ Q, ∀j : cj ∈ Af (qi) yij ∈ {0, 1} (5)

The program above is denoted ILP (G(f,Q)). The objective function is the min-
imization of the solution’s size. Constraint (2) imposes that qi uses exactly one
materialized cuboid and constraint (3) means that the query qi cannot use cj

whenever cj is not materialized. Constraints (4) and (5) say that the variables
are binary. The following is a straightforward result characterizing the exact
solution of our problem.

Proposition 1. Let G = G(f,Q) be a search graph. Let Sol be a solution of
ILP (G), i.e. Sol is assignment function of x′

is and y′
ijs variables of ILP (G).

Let S∗ = {ci ∈ Af (Q)|Sol(xi) = 1}. Then S∗ is an optimal solution.

For notation convenience, we consider S∗ = ILP (G(f,Q)). It is an optimal
solution. The solution to our problem is the set of cj ∈ Af (Q) such that xj =
1. Current solvers cannot handle these linear programs when the number of
variables is too large (this number grows exponentially w.r.t. f and |Q|) rapidly
reach thousands). This motivates a different approach that is more efficient in
terms of execution time but returns an approximate solution.

3.3 Approximate Solution

In this section, we borrow the greedy algorithm of [4] to solve our problem. We
first define the load of a vertex v ∈ V , noted 	(v), as w(v)

|Γ (v)| .

Function PickFromfAncestors(G(f,Q))
V = nodes of G(f,Q)
S = ∅
While VQ �= ∅

c∗ = arg minc∈V 	(c)
S = S ∪ {c∗}
V = V \

(
Γ (c∗) ∪ {c∗}

)
End While
Return S
End.

The algorithm choses at each iteration the vertex with minimal load and adds
it to the solution. The following theorem is a direct consequence of [4] result.

Theorem 2. Let f ≥ 1, S =PickFromfAncestors(G(f,Q) and S∗ = ILP (G).
Then:
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– For each q ∈ Q, pf(q,S) ≤ f ;
– size(S) ≤ (1 + lnΔ) ∗ size(S∗) where Δ is the maximal out-degree of G;

Even if the complexity of this algorithm is polynomial in the size of G(f,Q), the
size itself may be exponential depending on f and the cardinality of Q. Thus, re-
ducing the search space is important in both cases (ILP and PickFromfAncestors).
The first obvious simplification consists in removing all candidates cj such that
size(cj) > size(Γ (cj)). This simplification, which has also been suggested in [17],
does not change the solutions of both techniques. Still, there may be too many
remaining candidates. In the next section, we propose an additional reduction
of the search space.

3.4 Reducing the Search Graph

Intuitively, the simplification we consider here consists in keeping for each query
q among its f ancestors, only those that are maximal. More precisely, Bf (q) ⊆
Af (q) denotes the maximal elements of Af (q), i.e if c′ ∈ Bf(q) then for each
c ∈ Af (q), either size(c) > size(c′) or c′ �� c. Bf (q) is the f border of q and
Bf(Q) is the union of the f borders. The intuition behind this heuristic is that
keeping maximal f ancestors tends to keep the ancestors that cover the maximal
number of queries (this of course is not always true). The partial search graph
is now defined as follows.

Definition 3 (Partial Search Graph). Let Gp(f,Q) be the graph (Vp, Ep,w)
where Vp = Bf(Q)∪Q,(v1, v2) ∈ Ep iff v2 ∈ Q and v1 ∈ Bf(v2) and w : Vp → N

defined as w(c) = size(c).

Example 2. Figure 1 shows the search graph G(f,Q) where f = 10 and Q =
{select ∗ from B, select ∗ from C, select∗ from D}. The dimensions of the un-
derlying datacube are A, B, C and D. All the nodes do not belong to G(f,Q).
They are present just for a sake of clarity. Dashed arrows are not present in the
partial graph.

ABCD

ABC ABD ACD BCD

CDBDBCADACAB

APEX

A B C D

600

300 300 100 60

250 15 30 40 40 40

10
30 2

20

Fig. 1. Global and partial search graphs
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If we consider Gp as the search space then both solutions of ILP (Gp) and of
PickFromfAncestors(Gp) guarantee (1) a performance factor less than f and (2)
an approximation factor of the solution’s size. Indeed,

Theorem 3. Let S∗ = ILP (G) be the optimal solution. Let S1 = ILP (Gp)
and S2 = PickFromfAncestors(Gp). Then (1) size(S1) ≤ f ∗ size(S∗) and (2)
size(S2) ≤ f ∗ (1 + ln Δ) ∗ size(S∗) where Δ is the maximal out degree of G.
Recall that |Δ| ≤ |Q|.

4 Introducing Indexes

Whenever indexes are allowed, the search space includes not only cuboids but
also indexed ones. Virtually, to each cuboid with d dimensions we can associate∑d

i=1
d!

(d−i)! i.e., each permutation of each subset of its attributes may define an
index. Moreover, the cost model should be changed. Indeed, now the minimal cost
for a query q does not correspond to the size of its associated cuboid cq. There-
fore, we should modify the cost factor accordingly. We borrow the cost model
of [8]. The queries are of the form γDim1σDim2 where Dim1 are the attributes
in the SELECT clause and Dim2 are those appearing in the WHERE clause.
Conditions are conjunctions of equalities Atti = value. Let q = γDim1σDim2 and
I be an index over c on the sequence of attributes −−→Dim. Let E be the largest
subset of Dim2 such that −−→Dim form a prefix (not necessarily proper) of Dim2.
Assume that (Dim1∪Dim2) ⊆ Att(c) that’s q can be answered from c. Then the
cost of answering q from c using the index I is Cost(q, c, I) = size(c)

size(E) . The min-
imal cost for a query is obtained when q is evaluated from a cuboid c such that
Dim1 ∪Dim2 = Att(c) and there exists an index I over c on Dim2. Therefore,
MinCost(q) = size(Dim1∪Dim2)

size(Dim2) . Note that if Dim2 = ∅ then size(Dim2) = 1
since it corresponds to the Apex cuboid. Now we are ready to define the cost fac-
tor of evaluating q from cuboid c using index I. pf(q, c, I) = Cost(q,c,I)

MinCost(q) . Finally,
we assume the memory size of each index is equal to the cuboid upon which it
is defined. Now that we have formalized the performance factor of evaluating a
query from a materialized view using an index, we can extend the search space
accordingly: The pair (c, I) is an f ancestor of q iff pf(q, c, I) ≤ f . The results
presented so far can now easily be generalized in this new setting.

4.1 Exact Solution

In this section, we propose an ILP program to solve exactly the problem of
selecting views and indexes to materialize. We use the following notations: yij ∈
{0, 1} represents the fact that index j on cuboid i is selected to be materialized
or not. A special case is when j = 0 which represents actually just the cuboid
i. The variables sij represent the size of index j of table i. Again, si0 represents
the size of cuboid i. Finally, ukij ∈ {0, 1} means that target query k uses index
j of cuboid i. The ILP program is as follows:
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min
∑
i∈V

∑
j∈Index(i)

yij ∗ sij (6)

∀i, j : yij ≤ yi0 (7)

∀k ∈ Q,
∑

i∈V (k)

∑
j∈Index(i)

ukij = 1 (8)

yij ∈ {0, 1} (9)
ukij ∈ {0, 1} (10)

The objective function (6) tends to minimize the total storage space. Constraint
(7) means that an index may be selected only if its underlying cuboid is se-
lected too. Constraint (8) guarantees that each target query may be computed
efficiently i.e., with a performance factor less than f .

Proposition 2. Let P be the above ILP program. Let S = {indexes j and views
i such that yij = 1 in the solution of P . Then S occupies the minimal storage
memory space such that for each q ∈ Q, pf(S, q) ≤ f .

We leave approximation for solving this problem to future work.

5 Dynamic Maintenance

In our solutions, we assume that the running time of the view selection algo-
rithms is not a problem. However, whenever some updates on the fact table or
the dimensions are performed, not only we should propagate them but may be
we have to compute a new set of views in order to guarantee a performance
factor below f for target request. We first analyze the stability of our solution.
Intuitively, this property tells that the query performance factor of a solution
computed at time t remains almost unchanged at time t+1 after some updates.
Thus, the set of materialized views S can remain unchanged (one only have to
maintain it). At the end of this section, we show how to handle this property
in order to refresh and to maintain dynamically the views selection with a light
cost of computation and materialization.

5.1 Stability

Let us consider a query q belonging to Q and its smallest ancestor c ∈ S in term
of size. We know that pf(q, {c}) ≤ f . We aim at computing the number of tuples
to insert into (or to delete from) c so that pf(q, {c}) becomes greater than f +1.
We first start with easy lemmas in order to prove in Theorem 4 some sufficient
conditions ensuring the stability of our solutions.

Definition 4 (Stability). Let T and T ′ be two successive instances of a fact
table. T ′ is obtained from T by performing some insertions and/or deletions. Let
Q and S such that ∀q ∈ Q, pf(q,S) ≤ f . S is stable between T and T ′ if and
only if ∀q ∈ Q, pf(q,S) ≤ f + 1 wrt T ′.
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The insertion of n tuples in c implies the insertion of m tuples in cq with 0 ≤
m ≤ n. The worst case, from query performance perspective, is when m = 0.
Indeed, in this case, the size of c increases and that of cq remains unchanged.
The following lemma gives the minimal number of tuples to insert into c to break
the stability of c.

Lemma 1. Let c be a cuboid and q be a query such that pf(q, {s}) ≤ f . The
insertion of at least size(cq) tuples into c is required in order to get pf(q, {c}) ≥
f + 1.

Using the same argument as before, we can easily see that the deletion of n
tuples from c may trigger the deletion of m tuples from cq with 0 ≤ m ≤ n.
From the performance factor point of view, the worst situation corresponds to
the case m = n.

Lemma 2. Let c be a cuboid and q be a query such that pf(q, {c}) ≤ f . The
deletion of at least size(cq)

f tuples from c is required in order to get pf(q, {c}) ≥
f + 1.

In our experiments, it turns out that, for the majority of the target queries, the
solution is stable after a very large number of updates. This phenomenon can
also be explained theoretically by the following result. Let us first give some
definitions. Let Dom(c) denotes the domain of a cuboid c and m(c) = |Dom(c)|
denotes its cardinality. Clearly, size(c) ≤ m(c). c is saturated iff size(c) = m(c). c

is a small cuboid wrt a parameter f iff size(c) < |T |
2f ln 4f . Under some assumption

of data distribution and given T :

– There exists a threshold β1 such that for any small cuboid q ∈ Q of size
larger than β1, any insertion of tuples does not break the stability property
of the solution S;

– There exists a threshold β2 such that if |T | ≥ β2, then for any q ∈ Q if cq is
a small cuboid then the solution S is stable whatever the number of tuples
we insert.

More precisely, without any attempt of optimization of the constant factor β,
we have:

Theorem 4. Let {Domi}i∈[1,D] be a multi-set. Set β = 64f2. Let T be a fact
table in which tuples are chosen uniformly at random within the Cartesian prod-
uct ΠD

i=1omi. Let Q be a set of queries and S a set of cuboids such that ∀q ∈ Q,
pf(q,S) ≤ f and cq is a small cuboid. After any sequence of insertions into T
and with probability 1− 2/|Q|:

– If ∀q ∈ Q, size(cq) > β ln |Q|, then S is stable.
– If |T | > βf ln |Q|(ln β + ln ln |Q|), then S is stable.
– If we have less than |T |

2f ln 4f insertions of tuples in T , then S is stable.
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6 Experiments

We used the US Census 1990 data. Here after, the time parameter represents the
cumulated time for constructing the search graph and the resolution time for ob-
taining a solution S. The different performance measures of a solution S depend
heavily on the target queries Q. We studied three random generation methods
of Q. Each of which corresponds to special properties: (i) Uniform generation
(UNIF): All possible queries q ∈ C have the same probability to belong to Q;
(ii) Queries generated between level 1 and level dmax (DMAX): We fix
the maximal number of dimensions then we iterate over the levels 1 and dmax
each time we pick uniformly a query from level i and (iii) DESC: We use the
same principle as DMAX but here, each time we pick a query q from level i,
we add to Q the 2i queries {qj}j∈[1,2i] where q is an ancestor of qj . In order to
check the effectiveness of the approximate algorithms, we compared their results
to the exact solutions in terms of computation time and storage space. We gen-
erated Q using UNIF and compared the space memory required for storing Q
with the memory needed by the exact and that of PickFromfAncestors(G(f,Q))
with f = 10. Figure 2 shows that PickFromfAncestors (solution S) behaves very
well w.r.t the optimal solution (S∗) in terms of memory gain while being much
faster: it took 2 seconds to find S and more than an hour for S∗ using the CPlex
software. We should mention that this experiment was performed with only 10 di-
mensions. With more than 10, the computation time of S∗ prohibitive. The base
cuboid has 500K rows and 20 dimensions. For each query generation method,
we varied |Q| and f . For each combination of the three preceding parameters,
we computed a solution with both G and Gp.

The execution times (expressed in seconds) are illustrated in Figure 3(a) to
3(c). The partial search graph offers an interesting compromise in terms of com-
putation time and the memory gain. Indeed, the execution time is about 4 times
less than that of G while keeping the memory gains comparable. We encountered
however one exception (cf. Figures 3(f) and 3(c)). In that case, the partial search
graph does not summarize well the set Q because it finds a solution with too

Fig. 2. Storage space of the query targets (Q), the approximate (S) and the exact (S∗)
solutions



Revisiting the Partial Data Cube Materialization 81

(a) UNIF (b) DMAX(10) (c) DESC(8)

(d) UNIF (e) DMAX(10) (f) DESC(8)

Fig. 3. Execution time and memory gain

much cuboids. Since the computation time is in O(Δ|V (G)| · |S|), it depends on
the number of returned cuboids. This explains why, in this case, the computation
time of Gp is larger than that of G. It also gives a hint about the importance
of the way the workload is built. The results depicted in Figures 3(d) to 3(f)
concern the same experiments as previously. First, it is clear that with G, the
storage space is always more reduced. We also note that in most cases (the first
three), the reduction ratios obtained with G or Gp are comparable. The last
experience exhibits a different behavior (Figure 3(f)) since we have a drastic
difference. Recall that this case is also the one where the execution time with G
is better than that with Gp (see 3(c)).

6.1 Stability Analysis

In order to analyze the stability of our solutions, we conducted some experiments
whose principle can be described as follows: We fix the factor f , the number
of target queries and the generation method. We execute the approximation
algorithm PickFromfAncestors(G(f,Q)) on different data sets file1, . . . , f ilen

such that file1 ⊂ . . . ⊂ filen. For each 1 < i ≤ n, we obtain a solution Si and for
each q ∈ Q, we compute pf(q,Si−1). This allows us to verify in what extent the
performance of our solutions worsen from filei to filei+1. The retained criteria
of comparison are (1) the number of target queries of Q whose performance
factor become beyond f (2) and for these queries, we measure the difference
between the new pf and the fixed f . This represents the amount of overtaking.
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(a) Queries whose performance factor is
beyond the threshold

(b) Deviations from the fixed performance
factor threshold

(c) Percentage of common views

Fig. 4. Stability analysis

We present the obtained results when |Q| = 512. The queries are generated using
UNIF and the performance threshold takes two values f = 4 and f = 8. Figure
4(a) shows the number of queries whose performance factor becomes larger than
the threshold f . We note that this number is decreasing while the size of the base
cuboid increases. Figure 4(b) illustrates the deviations from the fixed threshold,
it shows the maximal and the average deviations, i.e., average and maximal
values of pf(q,S) for those target queries q whose pf is greater than the fixed
f . Again, we note that these parameters (max and average) decrease while the
size of filei increases. Figure 4(c) shows the proportion of views that are kept
in the next solution. We measured |Si ∩ Si+1|/|Si+1|. Around 80% of the views
selected in the previous solution belong to the next one. This shows that even
when we have to recompute a new solution, only few views will be calculated
from scratch; the majority will need at worst to be refreshed.

7 Conclusion and Future Work

We presented a new formalization of the materialized view selection problem in
the context of data cubes. Some extensions of the present work are straightfor-
ward, e.g. integrating dimensions hierarchies is made easy because hierarchies
are themselves lattices. Furthermore, it is not required to have a unique f for all
queries. It suffices to consider Afi(qi) so that, without changing the algorithms,
the obtained solutions guarantee pf(qi,S) ≤ fi where fi reflects the importance
of the query (lower is fi more important is qi). As future research, we plan to
analyze the stability property more in depth depending on data distributions.
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A prior knowledge of data distribution and/or dimension dependencies could be
helpful in this case [5]. [1, 2] provided a solution to the selection of binary join
indexes to optimize star join queries under storage space constraint. We believe
our solution can easily be adapted in order to select instead of cuboids, the join
indexes to materialize.
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Abstract. The goal of personalization is to deliver information that is
relevant to an individual or a group of individuals in the most appropriate
format and layout. In the OLAP context personalization is quite bene-
ficial, because queries can be very complex and they may return huge
amounts of data. Aimed at making the user’s experience with OLAP as
plain as possible, in this paper we propose a proactive approach that
couples an MDX-based language for expressing OLAP preferences to a
mining technique for automatically deriving preferences. First, the log of
past MDX queries issued by that user is mined to extract a set of asso-
ciation rules that relate sets of frequent query fragments; then, given a
specific query, a subset of pertinent and effective rules is selected; finally,
the selected rules are translated into a preference that is used to annotate
the user’s query. A set of experimental results proves the effectiveness
and efficiency of our approach.

1 Introduction and Motivation

Personalization has attracted a lot of attention in the database community dur-
ing the last few years, and also raised plenty of interest in the OLAP area. The
goal of personalization is to deliver information that is relevant to an individual
or a group of individuals in the most appropriate format and layout, and in the
OLAP area it has been pursued using different approaches:

– Query recommendation: Based on the current query and on the past sessions,
the system suggests further queries to help users navigating the cube [1].

– Personalized visualization: Users specify a set of constraints that are used to
determine a preferred visualization [2].

– Result ranking: Query results are organized in a total or partial order so that
the user visualizes the most relevant data first [3].

– Query contextualization: The query is enhanced by adding preference predi-
cates that depend on the query context [4].

These approaches differ from different points of view, in particular:
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– Formulation effort: personalization criteria for queries may be either manu-
ally specified by users, or transparently inferred from the context and from
the user profile.

– Prescriptiveness: personalization criteria may either be used as “hard” con-
straints that are added to queries, or be meant as “soft” constraints, i.e.,
preferences.

– Proactiveness: some approaches propose new queries to the user based on
the query log and on the context, while others change the current query or
post-process its results before returning them to the user.

With reference to the above, the user’s experience with OLAP can be made as
plain as possible by decreasing the formulation effort (i.e., having query per-
sonalization criteria inferred), providing low prescriptiveness (i.e., annotating
queries with preferences rather than constraints), and enhancing proactiveness
(i.e., transparently changing the current query). The result ranking approach we
propose in this paper goes in this direction by coupling an MDX-based language
for expressing OLAP preferences to a mining technique for automatically de-
riving a set of preferences for a user’s query from the log of past MDX queries
issued by that user. This is done in four steps:

1. The user’s query log is mined off-line to extract a set of association rules
that relate sets of frequent query fragments (such as group-by attributes,
returned measures, selection predicates).

2. When the user formulates a query q, among the rules whose antecedent
matches with q, a subset of rules is selected whose cardinality depends on a
parameter set by the user to express the desired personalization degree, i.e.,
the complexity of the preference that will be formulated.

3. The selected rules are translated into an OLAP preference p concerning the
group-by set for aggregating data, the measures to be returned, and the
values of levels or measures.

4. Query q is annotated with p and executed. The results returned are ranked
according to p, so that the user can more effectively explore them by focusing
on the most relevant data first.

Remarkably, like in the other result ranking approaches, the overall set of tuples
returned by q annotated with p is the same set of tuples that would be returned
by q without annotation, because p expresses a soft constraint. This guarantees
that the user’s intentions are preserved, and makes our approach non-invasive.

The paper outline is as follows. After summarizing the related work in Section
2, we introduce a formal setting to manipulate multidimensional data in Section
3. In Section 4 we describe the main features of the myMDX language we adopt
to express OLAP preferences, while Section 5 describes in detail our approach.
Section 6 shows an implementation and reports the results of some experimental
tests we performed to test our approach for effectiveness and efficiency.

2 Related Work

Several approaches to personalization were devised in the OLAP context.
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In the field of profile-based personalization, we mention [2], that presents a
framework for providing personalized visualization of OLAP results based on
user profiles in form of constraints, and [4], that achieves OLAP personalization
by dynamically enhancing queries with context-aware user preferences. Both ap-
proaches are proactive and demand low formulation effort, but in both cases the
user profile is given, nothing being said on its construction. A recommendation
framework for OLAP systems is presented in [5]; new queries are suggested to
users based on the current analysis context and on the user’s profile. Though the
authors mention that the profile could be mined from the user’s previous behav-
ior, no specific suggestion is given to this end. A non-prescriptive approach is
presented in [3,6], where the myOLAP algebra for formulating and evaluating
OLAP preferences is introduced; the proposed algebra is very expressive, but at
the cost of a substantial formulation effort.

The term history-based personalization is borrowed from [7], and refers to
approaches that suggest a new database query based on the past actions recorded
in a log file. The following approaches fall into this category and do not rely
on a user profile; they are proactive and demand no formulation effort —like
our approach—, but they are prescriptive. The approaches in [1,8] are aimed at
suggesting OLAP queries based on a comparison between the current session and
former sessions stored in a query log. Also [9] has a similar goal in the context
of SPJ queries; here, recommendations are computed based on the presence of
tuples in sessions. This approach is further improved in [10] by relying on query
fragments instead of tuples. A query log is exploited in [11] to support users in
writing new SQL queries; the log is transformed into a graph of query fragments,
where edges are labelled with the conditional probability of having one fragment
given another fragment. Noticeably, all these work generally assume that history
is taken from a query log shared by all users.

To the best of our knowledge, our work is the first that proposes to extract
preferences from database query logs. However, the same idea has been used in
other contexts. In the context of information retrieval, [12] presents algorithms
to extract association rules at query time from a set of documents. These rules
are used to associate the documents retrieved by a query to a relevance class and
eventually to rank them. In the context of the web, [13] introduces algorithms
for preference extraction from web logs, with a targeted preference language.
Extraction is based on the frequency of the terms appearing in the log, and clus-
tering is used for identifying preference constructs. A comprehensive overview of
the techniques using data mining for personalization can be found in [14].

3 Preliminaries

3.1 Schemata and Instances

Our datacube formalization involves hierarchies; however, to keep the formalism
simpler, and without actually restricting the validity of our approach, we will
consider hierarchies without branches, i.e., consisting of chains of levels.
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State
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RaceGroup

Mrn

AllRaces

Year

AllYears

RESIDENCE RACE TIME
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OCCUPATION

Sex

AllSexes

SEX

Fig. 1. Roll-up orders for the five hierarchies in the CENSUS schema (Mrn stands for
MajorRacesNumber)

Definition 1 (Multidimensional Schema). A multidimensional schema (or,
briefly, a schema) is a triple M = 〈A, H, M〉 where:

– A is a finite set of levels, each defined on a categorical domain Dom(a);
– H = {h1, . . . , hn} is a finite set of hierarchies, each characterized by (1) a

subset Lev(hi) ⊆ A of levels (such that the Lev(hi)’s for i = 1, . . . , n define
a partition of A); (2) a roll-up total order �hi of Lev(hi);

– a finite set of measures M , each defined on a numerical domain Dom(m).

For each hierarchy hi, the top level of the order determines the finest aggregation
level for the hierarchy. Conversely, the bottom level has a single possible value
and determines the coarsest aggregation level.

A group-by set includes one level for each hierarchy, and defines a possible way
to aggregate data. A coordinate of a group-by set is a point in the n-dimensional
space defined by the levels in that group-by set.

Definition 2 (Group-by Set). Given schemaM = 〈A, H, M〉, let Dom(H) =
Lev(h1) × . . . × Lev(hn); each G ∈ Dom(H) is called a group-by set of M.
Let G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1) × . . . × Dom(akn); each
g ∈ Dom(G) is called a coordinate of G.

Example 1. The CENSUS schema includes the five hierarchies whose roll-up or-
ders are shown in Figure 1, and measures AvgIncome, AvgCostGas, and AvgCost-
Elect. It is City �RESIDENCE State; examples of group-by sets are:

G0 = 〈City, Race, Year, Occ, Sex〉
G1 = 〈Region, Mrn, Year, Occ, Sex〉
G2 = 〈AllCities, AllRaces, AllYears, AllOccs, AllSexes〉

A schema is populated with facts, each recording a useful information for the
decision-making process. A fact is characterized by a group-by set G that defines
its aggregation level, by a coordinate of G, and by a value for one measure.
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Definition 3 (Fact). Given schema M = 〈A, H, M〉, a group-by set G ∈
Dom(H), and a measure m ∈ M , a fact is a couple fG,m = 〈g, v〉, where
g ∈ Dom(G) and v ∈ Dom(m). The space of all facts for M is

FM =
⋃

G∈Dom(H),m∈M

(Dom(G) ×Dom(m))

Example 2. An example of fact is fG1,AvgIncome = 〈〈’Pacific’, ’White’, ’2008’,
’Dentist’, ’Male’〉, 600〉.

Finally, an instance of a schema (datacube) is a set of facts D ⊆ FM such that
no two facts characterized by the same coordinate and measure exist in D.

3.2 Queries

The MDX (MultiDimensional eXpressions) language is a de-facto standard for
querying multidimensional databases [15]. Some of its distinguishing features are
the possibility of returning query results that contain data with different aggre-
gation levels and the possibility of specifying how the results should be visually
arranged into a multidimensional representation. In this paper we consider MDX
queries that aggregate data at one or more group-by sets, optionally select them
using a predicate in CNF, and return one or more measures. The semantics of
such an MDX query is that of a union of GPSJ queries1 whose group-by sets
are the cross product of n sets of levels, one for each hierarchy. This semantics
corresponds to the following subset of MDX:

– Clauses SELECT, FROM, WHERE are supported.
– All functions for navigating hierarchies are supported: AllMembers, Ancestor,

Ascendants, Children, etc.
– All functions for manipulating sets of members or tuples are supported

(Crossjoin, Except, Exists, Extract, Filter, Intersect, etc.) except the union.
– All functions for manipulating members/tuples are supported.

To effectively use association rules for modeling frequent portions of queries, we
formally split MDX queries into fragments as explained below.

Definition 4 (Query Fragment, Query, Log). Given schema M = 〈A, H,
M〉, a query fragment is either a level in A, a measure in M , or a simple Boolean
predicate involving a level and/or a measure. A qf-set is a set of query fragments.
A multidimensional query (briefly, query) is represented by a qf-set that includes
at least one level for each hierarchy in H and at least one measure in M . A log
is a set of multidimensional queries.

1 A GPSJ query takes form πak1 ,...,akn ,Aggrσp(χ) where, in our context: χ is the star
join between the fact table and the n dimension tables; p is a selection formula in
CNF; {ak1 , . . . , akn} is a group-by set; and Aggr is a list of aggregations of the form
αj(mj), where mj is a measure and αj is an aggregation operator.



Mining Preferences from OLAP Query Logs for Proactive Personalization 89

Representing an MDX query as a qf-set q means:

1. Including a fragment m in q for each measure m returned by the MDX query.
2. Including a fragment a in q for each level a used in the MDX query to

aggregate data.
3. Including a fragment (a ∈ V ) in q for each simple predicate on a level/measure

a used in the MDX query to filter data.

Example 3. The MDX query on the CENSUS schema

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

is the union of four GPSJ queries:

πAllCities,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)
πAllCities,Mrn,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πRegion,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)
πRegion,Mrn,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

and is represented by the qf-set q = {Region, AllCities, Mrn, AllRaces, Occ, Year,
AllSexes, AvgIncome, (Year ∈ 2009)}.

4 The myMDX Preference Language

The language we adopt in this paper to express OLAP preferences is myMDX
[6], an extension of the MDX language based on the myOLAP algebra [3]. In
this section we summarize its features of interest for this work.

A (qualitative) preference on a datacube is a strict partial order (i.e., an
irreflexive and transitive binary relation) on the space FM of all facts. In the
myOLAP algebra, preferences are inductively engineered by writing a preference
expression that can be either a base constructor or a composition operator applied
to two preference expressions. The constructors used in this paper are2:

– POS(a, V ), where V ⊂ Dom(a), that operates on level values; facts for which
a takes a value in V are preferred to the others.

– BETWEEN(m, vlow, vhigh), where m is a measure and vlow , vhigh ∈ Dom(m),
that operates on measure values. Facts whose value of m is between vlow and
vhigh are preferred; the other facts are ranked according to their distance
from the [vlow, vhigh] interval.

2 The constructors we adopt are actually a generalization of those presented in [3] from
two points of view. Firstly, the CONTAIN constructor is extended to work also on a
fake hierarchy including all measures. Secondly, all constructors except BETWEEN
are extended to operate on sets of values rather than on single values.
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– CONTAIN(h, L), where h is a hierarchy and L ⊂ Lev(h), that operates on
levels. Facts whose group-by set includes a level in L are preferred to the
others.

– CONTAIN(measures, Meas), where Meas ⊂ M , that operates on measures.
Facts whose measure is in Meas are preferred to the others.

Preference composition relies on the Pareto operator (⊗), that gives the same
importance to both the composed preferences. Remarkably, the Pareto operator
is closed on the set of preferences.

The myMDX language allows an MDX query to be annotated with a prefer-
ence expression through a PREFERRING clause.

Example 4. The MDX query in Example 3 can be annotated with preference ex-
pression BETWEEN(AvgIncome,500,1000) ⊗ POS(Occ,’Engineer’) ⊗ CONTAIN
(RESIDENCE, Region) to state that facts aggregated by region and related to
engineers with average income between 500 and 1000 kiloeuros are equally pre-
ferred. The corresponding myMDX query is:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000

AND Occ POS ’Engineer’ AND RESIDENCE CONTAIN Region

5 A Proactive Approach to OLAP

As sketched in the Introduction, our approach relies on four steps:

1. Log mining. For efficiency reasons this step is executed off-line, before the
current query session starts. It consists in running a data mining algorithm
on the user’s query log to extract the set R of association rules whose support
and confidence are above a given threshold.

2. Rule selection. When that user formulates an MDX query q, a subset Rq ⊆ R
of rules is selected. Each rule in Rq is pertinent, meaning that its antecedent
matches with q, and effective, meaning that the preference it would be trans-
lated into can actually induce an ordering on the facts returned by q. Then,
let a positive integer personalization degree α be chosen by the user to ex-
press the desired preference complexity. A qf-set Fα is generated from Rq in
such a way that α base constructors are included in the overall preference
expression the fragments of Fα will be translated into.

3. Fragment translation. Each fragment in Fα is translated into a base con-
structor; the resulting base constructors are then coalesced and composed
using the Pareto operator into a preference expression p.
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Algorithm 1. Extract rules with support and confidence adjustment
Input: Log: A set of queries; minSup, minConf : Floats
Output: R: A set of association rules
Uses: mine(set, float, float): An association rule extractor
Variables: stop: A Boolean; confidence, support: Floats; Covered: A set of qf-sets
1: stop =false
2: confidence = 1
3: support = 1
4: while !stop do
5: R = mine(Log, support, confidence) � Mine rules above support and confidence
6: R = R \ {r ∈ R s.t. |r.cons| > 1} � Only keep rules with singleton consequent
7: Covered = ∅
8: for each rule r ∈ R do
9: Covered = Covered ∪ {q ∈ Log|r.ant ∪ r.cons ⊆ q}

10: if Covered = Log then � If all queries in the log are covered in R stop...
11: stop =true
12: else � ...else mine again with lower thresholds
13: confidence = confidence − 0.1
14: if confidence < minConf then
15: support = support − 0.1
16: confidence = 1
17: if support < minSupp then
18: stop = true

19: return R

4. Querying. Query q is annotated with p, translated into myMDX, and ex-
ecuted. As shown in [6], the user can effectively explore query results by
visually interacting with a graph-like structure that emphasizes the better-
than relationships induced by p between different sets of facts. Preferred
facts are then displayed in a multidimensional table.

The following subsections explain in detail how steps 1, 2, and 3 are carried out.
For details about step 4, see [3,6].

5.1 Log Mining

We now briefly describe the mining step. The input of this step is a set of qf-sets
that represents the user’s query log, while the output is a set R of association
rules.

Interestingly, the problem of associating a query with a set of fragments repre-
senting user preferences bears resemblance to the problem of associating objects
with a set of most relevant labels. This problem, named label ranking, is a form
of classification. Both label ranking and classification have been proved to be
effectively handled by association rules (see for instance [16,17]). In this context,
rules have a set of features that should match the object to be classified as an-
tecedent, and one label as consequent. We adopt a similar approach here, and we
search for rules having exactly one item as consequent, so each rule r ∈ R takes
the form ant→ cons, where ant is a qf-set and cons is a single query fragment.
In the following, r.cons (resp., r.ant) denotes the consequent (resp., antecedent)
of rule r, and conf(r) its confidence.
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The mining step is done off-line, and uses any classical association rule ex-
tractor that is parametrized by support and confidence thresholds (e.g., Apriori
[18]). The only issue in this step is to extract rules that faithfully represent
the user’s query log. Since the user is not involved at this step, support and
confidence have to be adjusted automatically [16]. Algorithm 1 is used for this
purpose, and it extracts rules until the whole log is covered by the set of rules
extracted. More precisely, the algorithm starts extracting rules with confidence
and support equal to 1 (lines 2,3). If the set of rules covers the entire log, then
the algorithm stops (line 11,12). Otherwise, extraction starts again with a lower
confidence (line 13), and confidence is decreased until the log is entirely covered
or the confidence is considered too low (line 14). In this case, confidence goes
back to 1 and support is decreased (line 16,17), and extraction is launched again.
If both support and confidence are considered too low, then the algorithm stops.

Algorithm 1 needs two thresholds, minConf and minSupp. Realistic values
for these thresholds can be learned by training the algorithm on query logs, or
be derived from log properties like size and sparseness.

5.2 Rule Selection

The output of the mining step, R can be a large set. In this section we present
the algorithm that first selects, among the rules in R, the subset Rq of pertinent
and effective rules for query q, and then returns a qf-set Fα including a subset
of the query fragments that appear as consequents of the rules in Rq. These
fragments will be used for annotating q with a preference.

Following the approach presented in [12], the selection of query fragments
is made by associating a score to each group of rules in Rq having the same
fragment ϕ as consequent. This score is the average confidence of the rules in
the group, i.e., score(ϕ) = avgr∈Rϕconf(r) where Rϕ ⊆ Rq is the subset of rules
having ϕ as a consequent. The selected query fragments are those with highest
scores, and are limited by the number α of base preference constructors that the
user wants to annotate her queries with.

Given schemaM = 〈A, H, M〉 and a qf-set F , we adopt the following notation:

– F.hier(h) = F ∩ Lev(h) is the set of levels of hierarchy h ∈ H in F ;
– F.meas = F ∩M is the set of measures in F ;
– F.val(a) =

⋃
(a∈Vk)∈F Vk denotes the set of selected values for level/measure

a ∈ A ∪M in F .

Algorithm 2 selects, among the set R of association rules mined from the log,
the consequents of rules that will be used to annotate the current query with
preferences. It starts by removing from R all non-pertinent rules (i.e., those
whose antecedent does not match q — line 1), and some non-effective rules (those
whose consequent, if it is an attribute or a measure, does not appear in the list
of group-by attributes or returned measures of q — line 2). The remaining rules
are grouped by their consequent and the score of each group is computed (line
3). Then the top consequents corresponding to α base constructors are returned
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Algorithm 2. Select Consequents
Input: R: A set of rules; q: A query represented as a qf-set; α: A user-defined personalization degree
Output: Fα: A qf-set that will be used to annotate q with a preference
Variables: numBC: The current number of base constructs; Rq : The set of pertinent and effective

rules; F , Fsim: Two qf-sets
1: R = R \ {r ∈ R|r.ant �⊆ q} � Drop non-pertinent rules
2: Rq = R \ {r ∈ R|r.cons ∈ A ∪ M, r.cons �∈ q} � Drop non-effective rules
3: F = {r.cons|r ∈ Rq} � Consequents of the rules in Rq

4: Fα = ∅
5: numBC = 0
6: while numBC ≤ α and F �= ∅ do � Iteratively construct Fα...
7: let ϕ = ArgMaxF score(ϕ) � ...starting with the fragment having highest score
8: F = F \ {ϕ}
9: if makesIneffective(ϕ, Fα, q) then � If ϕ drives the preference ineffective...

10: Fsim = {ϕ′ ∈ Fα|similar(ϕ, ϕ′)} � ...find the similar fragments, if any...
11: Fα = Fα \ Fsim � ...and drop them
12: if Fsim �= ∅ then
13: numBC − −
14: else
15: if ∃ϕ′ ∈ Fα|similar(ϕ, ϕ′) then � Other similar fragments were already added to Fα...
16: Fα = Fα ∪ {ϕ} � ...so numBC must not be increased
17: else
18: if numBC < α then � Add ϕ only if this does not violate the α constraint
19: Fα = Fα ∪ {ϕ}
20: numBC + +

21: return Fα

Function 3. makesIneffective
Input: ϕ: A fragment; Fα: A qf-set; q: a query represented as a qf-set
Output: A Boolean
1: if ∃h ∈ H|ϕ ∈ Lev(h) then � ϕ is a level
2: if (Fα.hier(h) ∪ {ϕ}) = q.hier(h) then � All query hierarchies are preferred
3: return true
4: if ϕ ∈ M then � ϕ is a measure
5: if (Fα.meas ∪ {ϕ}) = q.meas then � All query measures are preferred
6: return true
7: if ϕ = (a ∈ V ) then � ϕ is a predicate
8: if q.val(a) �= ∅ and !((Fα.val(a) ∪ V ) ⊂ q.val(a)) then � All values for a are preferred
9: return true

10: return false

Function 4. similar
Input: ϕ1: A fragment; ϕ2: A fragment
Output: A Boolean
1: if ∃h ∈ H|ϕ1 ∈ Lev(h) and ϕ2 ∈ Lev(h) then � Two levels of the same hierarchy
2: return true
3: if ϕ1 ∈ M and ϕ2 ∈ M then � Two measures
4: return true
5: if ϕ1 = (a ∈ V1) and ϕ2 = (a ∈ V2) then � Two predicates on the same attribute
6: return true
7: return false

(lines 4-21). If a fragment ϕ that is about to be selected drives the preferences
ineffective because it states that all the query results are preferred (Function 3),
it is removed together with the other similar fragments (lines 10-13).

Example 5. Consider the qf-set of Example 3, q = {Region, AllCities, Mrn, AllRaces,
Occ, Year, AllSexes, AvgIncome, (Year ∈ 2009)}. Let the set R of rules extracted
from the log be as follows:
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r1: (Region ∈ {’Pacific’,’Atlantic’}) → Year (0.8)
r2: Year → Region (0.80)
r3: Year → AllCities (0.60)
r4: AvgIncome → Region (0.60)
r5: Year → Sex (0.90)
r6: (Year ∈ 2009)→ Region (0.70)
r7: Year → (Year ∈ 2009) (0.50)
r8: Year → (AvgIncome ∈ [500, 1000]) (0.55)
r9: AvgIncome → Mrn (0.45)
r10: Occ → Region (0.70)
r11: Occ → Year (0.10)
r12: AvgIncome → Year (0.70)

and let Algorithm 2 be called with α = 2. First, the algorithm removes r1 (non
pertinent) and r5 (non effective). Then the remaining rules are grouped by their
consequents, resulting in the set of fragments F = {Region, AllCities, (AvgIncome
∈ [500, 1000]), (Year ∈ 2009), Mrn, Year} (listed by decreasing order of score).
The fragments in F are now orderly explored. The first two fragments are not
selected since, together, they drive the preference ineffective (they are exactly
the fragments of hierarchy RESIDENCE included in q). Fragment (AvgIncome ∈
[500, 1000]) is selected. Fragment (Year ∈ 2009) is not selected since it corre-
sponds precisely to the selection on Year of q. Then fragment Mrn is selected
and, finally, Algorithm 2 outputs Fα = {(AvgIncome ∈ [500, 1000]), Mrn}.

5.3 Fragment Translation

The output Fα of Algorithm 2 is a qf-set used to annotate the current query
q with a preference. To this end, each query fragment ϕ ∈ Fα is translated
into a base constructor (see Section 4); the resulting base constructors are then
coalesced and composed using the Pareto operator.

The rules for translating fragment ϕ are explained below:

– if ϕ is a level a ∈ A, it is translated into a constructor CONTAIN(h, a), where
h is the hierarchy a belongs to.

– If ϕ is a measure m ∈ M , it is translated into a constructor CONTAIN
(measures,m).

– If ϕ is a Boolean predicate on a level, (a ∈ V ), it is translated into a con-
structor POS(a, V ).

– If ϕ is a Boolean predicate on a measure, (m ∈ [vlow, vhigh]), it is translated
into a constructor BETWEEN(m, vlow, vhigh).

The resulting base constructors are coalesced by merging all CONTAIN’s on the
same hierarchy, all POS’s on the same level, and all BETWEEN’s on the same
measure.

Example 6. The preference expression that translates the qf-set Fα in Example 5
is p = BETWEEN(AvgIncome,500,1000)⊗CONTAIN(RACE, Mrn). The myMDX
formulation for q annotated with p is:
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SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000 AND RACE CONTAIN Mrn

6 Experimental Results and Conclusions

In this paper we proposed a proactive approach to personalization, where mining
techniques are applied to transparently annotate OLAP queries with preferences.
This section briefly describes the implementation of our approach and reports
the results of tests assessing its efficiency and effectiveness.

The approach was implemented in Java, using the Mondrian API for handling
MDX queries, the Weka implementation of Apriori for rule extraction, and the
myOLAP tool for evaluating preferences [6]. The tests were conducted starting
from synthetic MDX logs generated through Algorithm 5, that uses the Diff
operator proposed in [19]. This operator explores the reasons why an aggregate
is significantly lower in one fact compared to another. It takes as parameters two
facts f and f ′ and an integer N , and looks into the two isomorphic sub-cubes C
and C′ that detail the two facts (i.e., that are aggregated to form f and f ′). As
a result, it summarizes the differences in these two sub-cubes by providing the
top-N informative pairs of cells. Our generator simulates OLAP sessions on a
datacube by starting from a random query q and then deriving the subsequent
queries in the session using the result of the Diff operator applied to q. The Java
implementation of Diff was obtained from [20]; N is set to 20 to simulate OLAP
sessions including no more than 20 queries.

Algorithm 5. Generate a log
Input: minSize: Minimum log size
Output: Log: A set of queries
Uses: Diff(cell, cell): The Diff operator defined in [19]
Variables: q: A query ; nbGenerated: Integer
1: nbGenerated = 0
2: while nbGenerated < minSize do
3: randomly generate a query q on a sub-cube
4: Log = Log ∪ {q}
5: nbGenerated + +
6: let f1, f2 be facts that show the maximum difference in the result of q
7: for each pair 〈f ′

1, f ′
2〉 ∈ Diff(f1, f2) do

8: let q′ be the drill-down of q to the group-by set of f ′
1 and f ′

2
9: Log = Log ∪ {q′}

10: nbGenerated + +

11: return Log

The architecture used for testing is an Intel Core 2 Duo 3 GHz, with 4GB
RAM. All tests were made on the CENSUS schema, using real data extracted
from the IPUMS database [21], corresponding to about 107 facts stored on Oracle
11g. For our tests, we generated a log of about 1000 queries; the initial query of
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Fig. 2. Effectiveness and efficiency of our approach

each session was generated randomly by selecting group-by sets, measures and
selections from a small pool. A small selection pool (3 selections on different
dimensions) is used to simulate the log of a single user querying a sub-cube.
Then, 8 queries to be personalized were extracted randomly from the log and
removed from it. Minimum support and confidence were adjusted with Algorithm
1 to 0.6 and 0.7, respectively, resulting in 20 rules that cover the log and have
an average support and confidence of 0.63 and 0.85, respectively. The confidence
ranges from 0.76 to 1, with a standard deviation of 0.063.

As to effectiveness, Figure 2.a reports, for each query in the benchmark, the
ratio between the number of preferred facts returned by the annotated query
(i.e., those included in the best-match only result of the query [3]) and the one
returned by the original query, when the personalization degree ranges between 1
and 3. Our approach is always effective in reducing the number of facts returned
to the user. Though in general the reduction gets stronger as the personalization
degree is increased, two different trends are apparent. In some cases (queries 2,
3, and 4) the reduction is independent on the personalization degree since only
one pertinent and effective fragment was found. In other cases (queries 1 and 7),
as the complexity of the preference increases, there are no facts that fully satisfy
it so a larger set of facts that partially satisfy the preference are returned.

As to efficiency, we point out that the log mining step was executed in less than
4 secs, while the time for rule selection and fragment translation never exceeded
5 msecs. Figure 2.b reports the ratio between the time taken to execute each an-
notated query and the time to execute the original query. The reduction is always
above 40%, and it is not relevantly affected by the personalization degree. Overall,
we can conclude that our approach to personalization not only puts no overhead
on the querying process, but it significantly reduces query response times.

While in this paper we used preference mining for result ranking, in our fu-
ture work we will attempt to generalize it to address query recommendation as
well. Besides, we will investigate the feasibility of extending our approach to
incrementally manage OLAP sessions, i.e., to take delta queries into account at
runtime without having to mine the log from scratch.
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Abstract. Within databases employed in various commercial sectors, anomalies
continue to persist and hinder the overall integrity of data. Typically, Duplicate,
Wrong and Missed observations of spatial-temporal data causes the user to be not
able to accurately utilise recorded information. In literature, different methods
have been mentioned to clean data which fall into the category of either deter-
ministic and probabilistic approaches. However, we believe that to ensure the
maximum integrity, a data cleaning methodology must have properties of both of
these categories to effectively eliminate the anomalies. To realise this, we have
proposed a method which relies both on integrated deterministic and probabilistic
classifiers using fusion techniques. We have empirically evaluated the proposed
concept with state-of-the-art techniques and found that our approach improves
the integrity of the resulting data set.

1 Introduction

Duplicate, Wrong and Missing data anomalies have continually hindered commercial
sectors in the past resulting in error-prone data collection which seriously influence
business processes. When the information is entered manually, based on additional in-
formation already recorded, the erroneous data can quite easily be discarded or ap-
proximated within a data set. Unfortunately, this is not the case within automatically
recorded Spatial-Temporal data sets as the anomalies that persist are harder to rectify.
These anomalies may include False-Positive readings such as Duplicate and Wrong ob-
servations or False-Negative readings such as Missed observations. This is especially
found within automated data collection technology, such as Radio Frequency Identi-
fication (RFID), in which the anomalies can represent faults in sensors, intrusions, or
missing objects.

Previous approaches have attempted to correct these anomalies at a deferred stage us-
ing deterministic or probabilistic approaches to identify and remove anomalies. How-
ever, in cases in which the persistent anomalies are particularly ambiguous, there is
a need for a more intelligent methodology to clean the data. Noticing that there was
a need for a fusion of both deterministic and probabilistic approaches to handle the
most ambiguous anomalies, we have presented an integrated classifier that combines
Non-Monotonic Reasoning, Bayesian Networks and Neural Networks to intelligently
clean the error-prone observations. Through experimental evaluation, we have found
that the Non-Monotonic Reasoning and Bayesian Network fusion methods resulted in
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the highest achieving integrated classifier for both the False-Positive and False-Negative
anomalies respectively, and provided a higher cleaning rate when compared to other
state-of-the-art techniques.

The remainder of this paper is organised as follows: Section 2 will contain back-
ground information including RFID, Non-Monotonic Reasoning, Bayesian Networks
and Neural Networks. We will introduce our methodology within Section 3 and high-
light the motivation, architecture, intended scenario and assumptions. The Experimental
Evaluation we performed are presented in Section 4, followed by our Conclusions found
in Section 5.

2 Background

To conduct our experimentation and to determine if our approach of integrating classi-
fiers together would significantly improve spatial-temporal databases, we have
decided to test it on RFID data. We have chosen to integrate the Non-Monotonic Rea-
soning, Bayesian Network and Neural Network classifiers to create a novel and intel-
ligent means of cleaning the anomalies. In the following section, we will provide a
brief introduction to RFID, Non-Monotonic Reasoning, Bayesian Networks and Neural
Networks.

Fig. 1. An example of how in an enclosed environment, there is the possibility of Duplicate (T2),
Wrong (T3) or Missing (T4) readings

2.1 RFID

Radio Frequency Identification (RFID) is a convenient technology employed in a wide
array of commercial sectors which uses radio waves to allow communication between
tagged items and readers [1]. RFID technology has already been employed to be used
in various commercial sectors such as air package tracking, airport luggage monitoring
and automatic pet identification. There are three different types of tags that may be
utilised, the active, semi-active and passive. However, of the three, the passive tag is the
easiest and most cost effective to implement due to its reasonable price and no battery
being required [2].
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Table 1. The recordings that took place from the example in Figure 1 and the observations that
should have been recorded

What is Recorded
Tag EPC Timestamp Reader ID

T1 22/12/2010 10:32:43 R1
T2 22/12/2010 10:32:43 R1
T2 22/12/2010 10:32:43 R2
T3 22/12/2010 10:32:43 R4
T5 22/12/2010 10:32:43 R4

What is supposed to be Recorded
Tag EPC Timestamp Reader ID

T1 22/12/2010 10:32:43 R1
T2 22/12/2010 10:32:43 R1
T3 22/12/2010 10:32:43 R2
T4 22/12/2010 10:32:43 R2
T5 22/12/2010 10:32:43 R4

Unfortunately, due to various anomalies found predominantly within the passive ar-
chitecture, the cost effective passive RFID systems are only applied to a fraction of its
potential utilisation. These anomalies include: Duplicate Readings, which occur when
a tag is scanned twice where it should have only been recorded once; Wrong Readings,
where data is found where it should not have been; and Missed Readings in which data
is not recorded where it should be [3], [4]. If the problems were able to be eliminated,
applications such as automatic scanning of items in a trolley in a supermarket may be
implemented allowing saving in both cost and effort. Within Figure 1, R1-R4 repre-
sents the four readers of a small enclosed area such as a livestock area with mounted
scanners and T1-T5 represent tagged objects within the area such as cattle. Both T1
and T5 are read correctly as they are intended, however T2’s reading is duplicated, T3
has a wrong reading and T4 is missed completely. The observational data found from
this example, along with the readings that were supposed to be read may be found in
Table 1.

In this example, the various anomalies which occur can produce hazardous conclu-
sions for the users of the RFID system. The duplicate anomaly in which T2 is discovered
in both R1 and R2 would cause the owner to not know the area which the cattle would
be present in as it could be in either. This would be most problematic if the livestock
area has designated zones for various animals. If the exact location is not known, the
user would have to manually check the locations of the cattle. Similarly, if T3 appears
in the quadrant where R2 is situated but is accidently read by R2, the owner will assume
the animal is in R4’s zone and not R2 which could result in unnecessary work needed to
check if the animal with the T3 tag attached is actually in the area where R4 is located.
Finally, the most problematic anomaly would be T4 in which the observation is missed
completely in the database, resulting in the owner believing that the animal may have
escaped.
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2.2 Non-Monotonic Reasoning

Non-Monotonic Reasoning (NMR) is a type of logic specifically designed to commence
with many conclusions, and, as new information is presented, derive the correct solu-
tion. Clausal Defeasible Logic (CDL) is a type of NMR which was designed to be
specifically run on a computer. It allows the option to use one of five proof algorithms,
each with various amounts of ambiguity permitted. The different formulae allowed in-
clude the μ formula which will only allow factual information; the π formula which
allows ambiguity to propagate; the β which blocks ambiguity; the α which allows al-
low the conjunction of π and β; and the δ which only allows the disjunction of π and β
[5], [6].

2.3 Bayesian Networks

A Bayesian Network is a means of probabilistically finding the most correct solution
when given several pieces of information. Each of the probabilities of certain conclusion
will be the product of all the information given up until that point. After each of the
probabilities have been found, the conclusion achieving the highest probability is found
to be the most accurate solution [7].

2.4 Neural Networks

An Artificial Neural Network refers to an intelligent classification technique which has
been designed to emulate the processes of the human brain. Information is processed
into a feature set which is then fed into the input nodes, passed through various amounts
of hidden nodes and hidden layers which each have different weight calculations and
is then passed into the output layer. It uses various training techniques such Genetic
Algorithms to train the weights of the neurons to accurately classifier the information
as the correct output [8].

3 Proposed Methodology

To correct the missed, wrong and duplicate readings found in various spatial-temporal
databases including automatic capture technology such as RFID, we have chosen to
employ the use of an integrated classifier architecture. Within this system, we take con-
clusions drawn from the three classifiers and use fusion techniques, such as a Non-
Monotonic Reasoning algorithm, a Bayesian Network or taking the Majority answer,
to derive a highly intelligent output. In this section, we identify the motivation behind
developing our methodology, the architecture we created, the intended scenario of our
approach and the assumptions needed for our concept run as intended.

3.1 Motivation

Radio Frequency Identification has been found to have limited functionality due to
problems in the system such as data anomalies [9]. If these anomalies were eliminated,
the applications that may benefit from RFID would be increased to various other com-
mercial sectors thereby saving cost and effort. Previous approaches have been utilised
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to eliminate easily found anomalies, such as middleware algorithm used to determine a
duplicate observation recorded in the same location in under a second, however these
methodologies lack the intelligence needed to properly correct the stored observations
to its maximum integrity. Additional past literature has individually stated that there is
a need to use both deterministic and probabilistic methodologies to adequately clean
the data [10], [11], [12]. With this in mind, we propose an approach that took advan-
tage of both probabilistic and deterministic approaches to bring RFID data cleaning to
a higher level of integrity. We did this because we fundamentally believed that missing
data require a level of probability to find the absent information. In contrast, we believe
that both wrong and duplicated data will need to have a deterministic approach due
to having the information already present and there is less need to rely on probability.
We specifically chose two probabilistic approaches (the Bayesian Network and Neural
Network) and one deterministic approach (Non-Monotonic Reasoning) to give a proba-
bilistic advantage to the former methods. This is also the reason as to why we chose the
global fusion of the classifiers as opposed to pairwise combinations. To counter this, we
chose a the novel deterministic Non-Monotonic Reasoning as a fusion technique which
permits additional bias to the the Non-Monotonic Reasoning conclusion in its logical
rules.

3.2 Architecture

We have divided our methodology into four core components, the Feature Set Def-
inition, Classification, Classifier Integration and Loader. Due to the vast differences
between the false-positive and false-negative anomalies, we have different classifier in-
tegrations for both the duplicate/wrong data, and the missing data. As seen in Figure 2,
the Original Data containing the RFID observations, along with the Geographical Data,
is passed into the Feature Set Definition where crucial analytical features of the data
are identified. This analytical information is then passed into the Classification com-
ponent where the Non-Monotonic Reasoning, Bayesian Network and Neural Networks
are used to determine if a reading is valid or not. The results of the Classifiers are then

Fig. 2. A high level diagram describing the information flow in our methodology and the steps
that takes place from when the data extracted to when it is loaded back into the database
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Fig. 3. The visual representation of how the tag’s data is broken up into streams and analysed for
both the false-positive and false-negative anomalies with the crucial readings (A-D) around the
suspicious data found

passed into the Classifier Integration which uses three fusion methods to intelligently
determine the validity of each suspicious reading. Finally, after all the information is
gathered, the methodology will finally either delete, keep or insert the correct values
into the data set within the loader component.

Feature Set Definition. The first action that the Feature Set Definition takes is to di-
vide up the data into streams that follow the geographical path of each tag using the ge-
ographical data passed into the system. Once this is done, suspicious readings are found
based on the geographical data supplied at the beginning. Only suspicious readings will
be flagged by the system and all other observations will be ignored by our system. For
example, if a reading occurs in two locations not within proximity concurrently, it will
be flagged as suspicious as it may be a duplicate anomaly. Figure 3 describes the data
found for both the false-positive and false-negative anomalies, and the data recorded
for each. A major difference between both is that, due to the possibility of a duplicate
observation, the spatial and temporal locations of A-D are needed for false-positive
anomalies whereas only the spatial locations are needed for the false-negative analysis.
After these values have been calculated, various binary (true or false) analyses are per-
formed on the values obtained from the Tag Streams. These mathematical operations
may be found in Table 2.

Table 2. Each of the operations performed on the Tag Stream data to pass to the classifiers

False-Positive Tag Stream False-Negative Tag Stream
b.loc ↔ x.loc a == b
c.loc ↔ x.loc b↔ c

b.time == x.time b == c
c.time == x.time d == c

b.loc == x.loc n == (s− 2)
c.loc == x.loc n > (s− 2)
a.loc ↔ x.loc n > (s− 2)
d.loc ↔ x.loc

b.time ↔ x.time
c.time ↔ x.time
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Within Table 2, there are three main comparisons. The first is the equivalence com-
parison == which will check if the left value is equal to the right. The second com-
parison is if the left value is within proximity↔ to the right value in both spatial and
temporal natures. The third comparison we make is to determine if the left value is
greater than > the right value. When determining if a value is within proximity, spa-
tially this will mean if the geographical location of the two readers are physically close
to each other whereas in the temporal sense, it will check if the time values are within
a user-defined threshold. As a default, we have set it to 30 seconds. With regards to
the False-Negative Tag Stream operations, n is the number of missing anomalies and
s is the shortest path between both b and c. The reason we compare n to s − 2 is
that the shortest path also contains b and c which may not be needed within the flagged
values.

Classification. After the crucial analytical data has been found, it will be passed on
as a feature set to the classification component of the methodology to be determined if
the suspicious observations should be deleted, kept, or inserted into the database. For
the false-positive anomalies which contain either a suspected duplicate or wrong read-
ing, there are two conclusions that may be drawn from the classifiers: either delete or
keep the values. With regards to the false-negative anomalies, there are five possible
conclusions that may be made each with different reader values combinations. When
handling missing data in various data sets, there is a need to impute the data back into
the database (i.e. generate possible answers to be used when lacking factual informa-
tion). We have named permutations to be imputed back into the database as seen in
Figure 4. The first two permutations consist of substituting the values of readers b and c
for all missing data. The third includes finding the shortest path between readers b and
c which will be s, and inserting it into the middle of the missing values with b and c
values added around it if the shortest path does not cover all missing recorders. Finally,
the fourth and fifth permutation places the shortest path s to either the earliest or latest
missing observations and substituting values c or b respectively.

Fig. 4. The five possible Permutations that may be chosen to be imputed for the missing RFID
reader values. Please note that s in this figure refers to the shortest path between reader values b
and c, and may occupy more than one observational record.
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With regard to the classifiers used throughout our experimentation, we have followed
the configurations mentioned in literature for correcting anomalies in databases [12]:

– As it has been shown to provide the highest cleaning rate, we have utilised only the
α Non-Monotonic Reasoning formula rules for both the false-positive and false-
negative data anomalies.

– We trained the Neural Network used for false-positive anomalies with a genetic
algorithm that had a large amount of both chromosomes and generations.

– For the Bayesian Network with the false-positive anomalies, as well as both the
Bayesian and Neural Networks used for the false-negative anomalies, we imple-
mented a Genetic Algorithm which had a low amount of chromosomes which
trained for a large amount of generations [12].

– All training consisted of the information described in the feature set definition with
its respective correct output being processed by the various classifiers and modify-
ing the networks to enhance the conclusions being drawn.

Classifier Integration. In this work, we have proposed various methods of combining
the classifiers together to develop a new intelligent means increasing the integrity of
the conclusions being made. To this end, we have introduced three main fusion tech-
niques to integrate the classifiers, the Non-Monotonic Reasoning Fusion (NMR Fu-
sion), Bayesian Network Fusion (BN Fusion) and Majority Rules Fusion (MR Fusion).
For the False-Positive anomalies, since the returned determination is either to keep or
delete a value, we only need to integrate the classifiers once. However, due to the False-
Negative anomalies finding five varied conclusions, we need to run the fusion algo-
rithms five different times for each permutation.

Fig. 5. A visual representation of the rules we implemented when we created the logic engine to
deterministically integrate the classifiers in the Non-Monotonic Reasoning Fusion

With regard to the Non-Monotonic Reasoning Fusion, we took all the conclusions
made in the classification component and put them into the logic engine depicted in
Figure 5. Each of the values represent either the Bayesian Network (BN), Neural Net-
work (NN) or Non-Monotonic Reasoning (NMR), and the arc between the antecedents
gives higher weighting to the value anti-clockwise (i.e. ∼ NMR will be have its con-
clusion overwritten if BN ∧ NN is also proven). We also have made sure that the
Non-Monotonic Reasoning will have a slightly higher bias than the probabilistic tech-
niques as this fusion method is deterministic in nature. Table 3 contains the values and
weighting we have given to each of the classifiers to be used in the Bayesian Network
Fusion. Similarly to the NMR Fusion, we wish to give a slightly higher bias to the
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Table 3. A Table depicting the configuration of the values found within the Bayesian Network
Fusion technique

Conclusion BN NN NMR
T F T F T F

Positive 60% 40% 60% 40% 40% 60%
Negative 40% 60% 40% 60% 60% 40%

Bayesian and Neural Networks as the Bayesian Network Fusion is itself a probabilis-
tic technique. The final technique we have employed, the Majority Rules Fusion, is an
unbiased approach which will use the conclusion voted most by the three classifiers as
its determination. We hope that by having deterministic, probaiblistic, and non biased
fusion methods, we will observe varying results among the different anomalies. In the
unlikely event that none of the permutations have been found to be chosen more than
once for the false-negative anomalies, a weighting system is employed based on the
scale of most unbiased to biassed (3>1>2>4>5).

Loader. After the decision has been made by the integrated classifier, our methodology
will then proceed to either delete, keep, or insert the correct values in the data set. We
have made the option to either modify the Original Data set if the user is comfortable
with the enhanced data sets or to create a new data set keeping the original data set
separate for added integrity. Being that this entire process is at a deferred stage of the
capture cycle where all the data has been stored, in this work we did not consider the
cost of cleaning. However, in the future, we would like to implement a version of this
concept that will run in real-time at the stage of data capture.

3.3 Intended Scenario

We have intended to create our methodology for a scenario in which many readers
are mounted around a known environment and tags are passing through the area to be
scanned. Applications in which this is already conducted include a hospital in which
surgical patients are monitored, airports which track luggage and the transportation of
various items in a supply chain. It is crucial that a known environment is used in the
scenario as the geographical locations of each of the readers and their proximity to one
another must be recorded in the system.

3.4 Assumptions

There are two assumptions we have identified for this scenario relating both to the
identification of the false positive and false negative anomalies. The first is that, as
stated in the intended scenario, the geographical locations of the readers must be known
to the readers so that a tag which is recorded at abnormal locations may be flagged as
a suspicious reading. The second assumption we make is that the time used to flag a
missed reading is less than the time it takes for the tagged object to move from one
readers scan range to another. Both of these assumptions are crucial as they provide the
rules that our system follows to identify a suspicious set of observations to be corrected.
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4 Experimental Evaluation

To properly test our integrated classifier, we have devised four experiments to determine
the overall effectiveness and advantages it has over existing techniques. The first two
experiments will be carried out to test the effectiveness of each of the fusion techniques
for solving both false positive anomalies (duplicate and wrong data), and false negative
anomalies (missing data). The second two experiments will take the best performing in-
tegrated classifier to compare it to state-of-the-art techniques currently used to enhance
the integrity of RFID data. These experiments will be performed on multiple test beds
to determine its effectiveness on varying amounts of anomalies.

4.1 Environment

To properly evaluate the effectiveness of our methodology, we have used simulated test
cases of the information obtained from readers. We have created five test beds with
500, 1,000, 1,500, 2,000 and 2,500 test cases each to observe the performance of the
approaches where there are various amounts of anomalies. Each of the test cases present
within the test bed represent a found anomaly within the data sets. All code used in our
methodology was written in the C++ language and executed in Microsoft Visual C++
6.0. The computer used for this experimentation was a Microsoft Windows XP machine
with Service Pack 3 Intel (R) Core 2 Duo CPU E8400 @ 3 GHz 2.99 GHz with 4 GB
of RAM.

4.2 Results

The first experiment we ran included testing the percentage of clean data for the Bayesian
Network, Neural Network, Non-Montonic Reasoning, Fused Non-Monotonic Reason-
ing, Fused Bayesian Network and Fused Majority Rules classifiers when attempting
to clean 500, 1,000, 1,500, 2,000 and 2,500 False-Positive test cases. From the False-
Positive results found in Figure 6, the highest performing classifier average has been
found to be the Fused Non-Monotonic Reasoning classifier. The absolute highest per-
forming classifier was also the Fused Non-Monotonic Reasoning classifier when at-
tempting to clean 500 test cases. The least performing classifier for the False-Positive
experiment was the Bayesian Network when attempting to clean 500 test cases. We be-
lieve that the advantage the Fused Non-Monotonic Reasoning classifier had was due to
its deterministic architecture and the nature of False-Positive anomalies.

In the second experimentation we conducted, we took the same classifiers and test
case amounts, however we used False-Negative anomalies rather than False-Positive.
The results, which may be viewed in Figure 7, has shown that the highest performing
classifier average has been found to be the Fused Majority Rules classifier. The highest
performing clean on the data sets has been found to be the Fused Majority Rules clas-
sifier as well when attempting to clean 1,500 test cases. The least achieving classifier
for the False-Negative anomalies has been found to be the Bayesian Network classi-
fier when attempting to clean 500 test cases. The results have shown that the unbiased
nature of the Fused Majority Rules classifier has given it a clear advantage when clean-
ing False-Negative anomalies. It is also important to observe that as highlighted in the
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Fig. 6. The False-Positive results of Bayesian Network (BN), Neural Network (NN), Non-
Monotonic Reasoning (NMR), Fused Non-Monotonic Reasoning (FNMR), Fused Bayesian Net-
work (FBN) and Fused Majority Rules (FMR) when tested against, 500, 1,000, 1,500, 2,000,
2,500 test cases and the average

Fig. 7. The False-Negative results of Bayesian Network (BN), Neural Network (NN), Non-
Monotonic Reasoning (NMR), Fused Non-Monotonic Reasoning (FNMR), Fused Bayesian Net-
work (FBN) and Fused Majority Rules (FMR) when tested against, 500, 1,000, 1,500, 2,000,
2,500 test cases and the average
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above results, of the two types of anomalies, it is harder to correct the False-Negative
anomalies.

The Non-Monotonic Reasoning fused classifier was able to achieve the highest false-
positive clean as its deterministic nature makes it ideal to clean wrong and duplicate
data whereas probabilistic techniques would introduce an additional level of ambiguity.
With regards to the false-negative anomalies, the Majority Rules fused classifier gained
the highest cleaning rate due to it being able to accept all three classifiers without any
bias. Additionally, we believe we may have obtained a higher result if we introduced a
dynamically trained fused Bayesian Network or created a Fused Neural Network clas-
sifier. As this methodology is designed to be applied at a deferred stage of the RFID
capture cycle, our experimentation was not concerned with the runtime performance.
However, we would like to extend and modify our approach in the future to allow real-
time processing in which case we will be taking the processing time into consideration
for each classifier and focusing on the amount of time needed to generate rules or train
the networks.

5 Conclusion

In this paper, we presented a methodology to clean anomalous Spatial-Temporal data
using an integrated classifier. For this study, we investigated RFID technology as our
case study as it continues to generated anomalies within the recorded data sets and has
a need to be rectified before it can be employed in various other commercial sectors.
Through experimental evaluation, we have found that the highest performing fusion
type for wrong and duplicate data was the Fused Non-Monotonic Reasoning classifier,
while the Fused Majority Rules approach was the most effective for cleaning missing
readings. We then compared each of the highest achieving integrated classifiers against
state-of-the-art and currently utilised approaches and found that our technique provides
superior integrity. With regard to future work, we would like to investigate other fu-
sion approaches of additional classifiers such as the Support Vector Machine and other
classifier training techniques. We would also like to apply our technique to various
databases as we believe that our methodology is not limited to merely cleaning RFID
data and may be applied to other spatial-temporal data collections as well. Also, as
mentioned earlier, we would like to employ a real time implementation of this concept.
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Abstract. Efficiently accessing multidimensional data is a challenge for building
modern database applications that involve many folds of data such as temporal,
spatial, data warehousing, bio-informatics, etc. This problem stems from the fact
that multidimensional data have no given order that preserves proximity. The ma-
jority of the existing solutions to this problem cannot be easily integrated into the
current relational database systems since they require modifications to the kernel.
A prominent class of methods that can use existing access structures are ‘space
filling curves’. In this study, we describe a method that is also based on the space
filling curve approach, but in contrast to earlier methods, it connects regions of
various sizes rather than points in multidimensional space. Our approach allows
an efficient transformation of interval queries into regions of data that results in
significant improvements when accessing the data. A detailed empirical study
demonstrates that the proposed method outperforms the best available off-the-
shelf methods for accessing multidimensional data.

1 Introduction

In current database applications there is an increasing need to efficiently handle multi-
dimensional data such as temporal, spatial, spatio-temporal, multimedia, scientific, and
medical data [1]. Multidimensional relational data can be represented as points/vectors
in a multidimensional space, where each attribute corresponds to a dimension.

Multidimensional databases are usually very large in size. Such a large and increas-
ing volume of data needs efficient access methods to support it, otherwise the improve-
ments of more complex data representation and reasoning may be lost due to inefficient
access. It is well known that with traditional multidimensional access methods [2] per-
formance deteriorates rapidly as the dimensions increase [3], thus they typically do not
scale well to higher dimensions.

The difficulties associated with multidimensional data grow with the number of di-
mensions. Once data have more than three or four dimensions, additional problems
begin to arise, loosely termed the ’curse of dimensionality’, which can severely dete-
riorate an access method’s performance. At higher dimensionality (10 dimensions or
higher) the existing methods do not work well, in the sense that a sequential scan of
the table becomes faster (less time and/or less block accesses) than using the index to
answer most queries [4]. At higher dimensionality space and data become very sparse
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and distance metrics lose their meaning. For above 10-15 dimensions the number of di-
mensions that are not partitioned can become large as there are simply not enough data
to require all dimensions to be split. This causes nodes to waste space on redundant in-
formation on these unpartitioned dimensions. Selectivity in unpartitioned dimensions is
then not supported and the interior nodes can contribute little to the selectivity of the in-
dex tree. To cope with high number of dimensions dimensionality reduction techniques
have been applied, which reduce the original space to a much lower dimensional sub-
space [5]. However, the transformation of data or queries requires additional resources
and typically only approximate the original data. Therefore dimensions reductions is
not a solution in many application domains, and a need for an efficient access method
to manage medium to high dimensional vector data remains.

Several types of approaches have been developed in order to cope efficiently with
multidimensional data. In particular, Space Filling Curve (SFC henceforth) methods
play a prominent role in the area. SFC methods, e.g. Z-order curve [6], Hilbert Curve
[7], and Gray Codes [8] partition data into multidimensional pixels according to the
bottom granularity, and employ a curve that passes through all pixels in the multidimen-
sional space. This curve produces a total order of pixels in space. This ordering enables
the use of existing efficient one dimensional access structures, such as B+-trees. Leaf
pages of the access structures then represent data on a segment of the curve, producing
a primary index where nearby data are clustered with a high probability. The main dis-
advantages of SFC’s methods are that they are CPU intensive and that they suffer from
high overlap between pages (curve segments) and the query interval. The UB-Tree [9]
integrates a space filling curve and a B+-Tree creating a primary index for multidi-
mensional data. It is a paginated index where each leaf node represents a block of data
on a segment of the curve. It divides the space into linear segments of a Z-curve (or
any SFC). Disadvantages of the UB-Tree are that it requires modification to the DBMS
kernel for integration and like other SFC’s the segments are typically not hyper-cubic
and may even represent disjoint space. One of the most prominent d dimensional point
data structures is the K-D-Tree and its variants: the hB-Tree [10], the BD-Tree [11], the
hybrid tree [12] and the quad-Tree. The K-D-Tree is a binary search tree that uses a
recursive subdivision of the data space into partitions by means of (d - l)-dimensional
hyperplanes. A disadvantage common to all K-D-Tree methods is that for certain dis-
tributions, no hyperplane can be found that divides the data objects evenly. Like the
K-D-Tree, the quad-tree [13] decomposes the universe by means of iso-oriented hyper-
planes. An important difference however, is the fact that quad-trees are not binary trees
anymore. The subspaces are decomposed until the number of objects in each partition
is below a given threshold. Quad-trees are therefore not balanced, and the subtrees of
densely populated regions need to be deeper than sparsely populated regions, giving a
bad worst case behavior.

In this paper, we are interested in multidimensional access structures that efficiently
support basic vector data operations, in particular interval (window) queries as such
queries play a prominent role in many contexts. It has been shown that space partition-
ing and employing the virtual structure is beneficial for efficient management of tem-
poral data [14], [15]. In this work our focus is on methods that scales well at medium
dimensionality (from 4 to 18 dimensions). Also, a fundamental requirement is that our
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approach should be easily intergraded into current Relational Database Management
Systems (RDBMS) to take advantage of the in built industrial strength concurrency
and recovery. Specifically, we aim at developing an approach that can be implemented
without any modification of the kernel.

In this work, we propose an SFC based method, termed ”VG-Curve” method, where
”VG” stands for ”Variable Granularity”, overcoming some of the limitations of exist-
ing methods. In our approach, the multidimensional space is partitioned into regions
of different dimensions, depending on the distribution of the population in the multidi-
mensional space. Thus, while standard SFC methods chose one granularity to partition
space, the VG-Curve method works with variable-granularity regions, so that many
pixels can be grouped in the same region. In particular, scarcely populated parts of
the space can be enclosed into larger regions, and empty regions do not even need to be
stored. Then, the curve (VG-Curve) connects such regions thus achieving an ordering of
multidimensional data similar to a SFC so that nearby objects are physically clustered
together with a high probability. As a consequence, the advantages of SFC methods
are preserved by our approach, which, on the other hand, is more efficient, since less
entities (regions) are connected by the Curve.

2 The Variable Granularity Space Filling Curve (VG-Curve)

We assume that the universe of discourse (the data space) is a d-dimensional hyper
rectangle with a side length of hi and volume v = ∏d

i = 1 hi. The data space is assumed
to have a non uniform (real world) distribution of data with some empty and some
heavily populated areas. Entities in the data space are called objects.

Definition 1. An object is a d-dimensional tuple with d indexed attributes, a unique
object key, and any number of other non indexed attributes.

In our approach, the multi-dimensional space is partitioned into hyper-rectangular parts
called regions. We cope with regions of different sizes. Specifically, a given order is
assumed for the dimensions two child regions can be obtained by orthogonally splitting
the parent region in two along the current dimension, considering the order of dimen-
sions and this is done in a cyclical way. As a consequence, a region is defined as follows
in our approach.

Definition 2. A region is an area representing a d-dimensional interval with the first
j dimensions (in order) having a side length of x and the next k dimensions, where
k = d − j, having a side length of 2x. The length of the ith dimension of a region will
be hi

2n with 1≤ n≤ maxsplit
d , where maxsplit is the maximum number of splits allowed.

A minimum granularity is fixed for regions.

Definition 3. A pixel is the finest granularity of regions, dictated by the choice of
maxsplit .

In our approach, each region can be uniquely identified by an address, which is, roughly
speaking, a compact binary representation of the sequence of splits that have generated
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it. Region addresses are obtained by bit interleaving of a N-order curve decomposition
e.g. for d = 2 the order for quadrants is SW, NW, SE, NE, though any other SFC par-
titioning strategies may be used. Regions are open on the high side and closed on the
low side, i.e., [min, max). A region address is the key for all objects in that region. The
volume rv of a region decreases exponentially (rv = v ∗ (21−L)) with its address length
L and volume v. We therefore obtain a fine partitioning of the multidimensional space
with relatively short addresses.

Definition 4. Region addresses form a complete order called VG-Curve.

In the following, we discuss how such abstract notions can be implemented in our ap-
proach, in order to enhance efficiency in the treatment of multidimensional data. Being
a complete order, the VG-curve is suitable for indexing with one dimensional index. In
short, the VG-curve is implemented by a base relation that is managed by a directory
relation combined with control processes. The base relation contains the unique object
key, the region address where object belongs, and one column for each dimension. It
may also contain other (not indexed) columns. Additionally, for the sake of efficiency,
we also adopt a directory, which is a compressed representation of the base relation
containing the addresses of non-empty regions and their population.

2.1 Partitioning Method

The starting point of our approach is a multidimensional space, populated by a set of
objects. The task of the partitioning algorithm is to partition such a space into variable-
dimension regions, depending on the distribution of the objects in the space, in order to
achieve efficient data management.

Partitioning needs to take into account different parameters. First of all, the dimen-
sion of pixels need to be fixed. Such a parameter is usually chosen by considering
the value which cannot be any more further subdivided, since they represent a bot-
tom granularity. The maximum number of splits maxsplit is thus defined accordingly by
maxsplit = log2 (v/pv) where pv is the volume of a pixel.

In our approach, an important point is to decide when a region is populated enough
in order to be split. Let b f = bd

od be the blocking factor, i.e., the maximum number of
objects that can be contained into a physical block (where bd and od denote the di-
mensions of blocks and objects respectively). We choose to split regions whenever their
population exceeds the blocking factor. In such a way, we partially enforce the corre-
spondence between physical blocks and regions, to enhance efficiency. However it is
worth stressing that in our approach we do not strictly enforce a one-to-one correspon-
dence between regions and blocks, not to suffer the low block utilization due to possible
sparse data.

In Partition algorithm, DV is a vector in which dimensions are ordered, DV [cur] indi-
cates the current splitting dimension, and the next function is used in order to move from
one dimension to the following one, looking at the vector in a circular way. Partitioning
operates in a recursive way, by splitting each region in two along the current dimension,
until either pixel regions or regions with population smaller than the blocking factor are
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obtained. At each stage, the region is split in two along the current dimension, consid-
ering the following split position:

SplitPosition =
rhigh(s)− rlow(s)

2
(1)

where s is the current dimension, rhigh(s) - the region’s s dimension high boundary,
rlow(s) - the region’s s dimension low boundary. The first child region gets all the parents
objects that lay below or on the new partition and the high child gets the data that lies
above it. At each partition, the address of the first (second) child region is obtained by
concatenating ’0’ (’1’) to the address of the current region. Additionally, the directory
is updated in order to consider the new regions (while the parent region is removed). In
such a way, a tree of addresses and split conditions is virtually generated by the partition
process, as shown in Figure 1 and 2.

Algorithm 1. Algorithm 1 Partition
Input: region R, address of region A, directory D, blocking factor BF, current depth CD, max
number of splits maxsplit , dimension vector DV, current dimension i
begin
if population of R > BF then

if CD < maxsplit then
partition R along the dimension DV[i]
Let LeftRec and RightRec the first and second regions obtained;
remove from D the entry for R;
if population of LeftRec > 0 then

add into D the entry for LeftRec (address: A.’0’);
end if
if population of RightRec > 0 then

add into D the entry for RightRec (address: A.’1’);
end if
Partition(LeftRec, A.’0’, D, BF, CD+1, maxsplit , DV, next(i,DV));
Partition(RightRec, A.’1’, D, BF, CD+1, maxsplit , DV, next(i,DV));

else
Allow population to grow beyond the blocking factor

end if
end if
end

Notice that when a CD is equal to maxsplit the partition has reached its maximum
allowed depth, i.e., we have reached the pixel level. When a pixel becomes overfull it
will not split and it’s population is allowed to grow beyond the blocking factor similar to
the concept of super-nodes for X-tree high-dimensional indexing [16]. This is possible
since the physical storage of a region is not limited to a block but is clustered in order
of its address.

As a simple running example, we use a two dimensional domain (with dimensions x
and y) where the blocking factor is 3, each dimension has a range from 0 to 100, and the
dimensions are ordered x first then y. There are seventeen data objects labelled ’a’ to
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Fig. 1. The data space is recursively divided based on data population density. Example after 17
objects are inserted causing 6 splits (BF = 3).

Fig. 2. Running example, virtual tree nodes are in single border boxes, directory regions are in
double border boxes. The objects reference the regions of the directory and are stored in order of
the region they reference.

’q’ distributed unevenly over the space to show how different distributions are handled.
Figure 1 shows the results of partitioning on such data, assuming maxsplit equal to 4.

The upper part of Figure 2 shows the virtual tree produced by partitioning. For the
two dimension example the whole space region (represented by ’1’) is first split with a
vertical partition, splitting the space along the x-dimension. The first split which is at
x = 100 − 0

2 = 50 replaces region ’1’ with two regions. The first child has address
’10’, representing all objects with an x value ≥ 0 and < 50 and a y value ≥ 0 and
< 100. The second child (address equal to ’11’) represents all objects with an x value
≥ 50 and < 100 and a y value ≥ 0 and < 100. If the region ’11’ still contains
more than three objects, then it will be split on the next dimension i.e., the y-dimension
at the partition value of 50. Dividing into two regions ’111’ and ’110’ that replace
region ’11’, and so on. As shown by the upper part of Figure 2, the partitioned space
can be represented as an unbalanced binary tree where data are totally ordered. The
leaf nodes of the tree contain the addresses of the regions, whose objects are stored
by the DBMS in contiguous blocks of the base relation. These blocks are denoted by
alternative shading in the lower part of Figure 2.
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It is worth stressing that the binary partitioning tree is only virtual. As a matter of
fact, the partitioning algorithm we propose has predictable split positions and split di-
mensions. Therefore, the partitioning tree needs not to be stored, since region bounds
can be easily evaluated when needed. Actually, in our approach, only the leaf nodes of
the partitioning tree need to be stored. They are stored in the directory which, besides
the addresses of regions, also contains their population.

The directory resulting from the example is shown in Table 1. The directory performs
the functions of an index i.e., it is a compressed representation of the data used to
efficiently access the data itself, but it does not store pointers to the block(s)where data
are stored. It is worth noticing that the directory does not contain the entries concerning
empty regions (which are only implicitly represented).

Table 1. Directory containing the binary regions with the population for the running example

address 1000 1001 10110 10111 11100 11101 1111
population 2 3 3 2 2 3 2

2.2 Insertion Method

The identification of the region where a new spatial object has to be inserted (called in-
sert region henceforth) is conceptually easy when standard SFC methods are used, since
they partition space into regions having a fixed known dimension (i.e., pixels). In our
approach, on the other hand, regions have different dimensions. Nonetheless, through
the addresses stored in the directory, and exploiting the virtual partitioning three, the
insert region, where the data will be clustered in, can be efficiently determined.

Given the coordinates of an object in the multidimensional space, the region contain-
ing it can be determined as described by the Insertion algorithm.

In the first part of the algorithm, the address of the region where the object should
belong (called target region) is computed. The address of the target region is computed
by first evaluating, for each dimension, a normalized binary value. We obtain such a
value following three steps. First, we apply the equation 2, to get a natural number bi.

The ith dimension’s normalized natural value bi is defined as:

if (vi−mini) = 0 then bi = 0

else bi = � vi−mini

maxi−mini
∗ 2(�(currdepth−1)/d�)−1�

(2)

where vi is the object coordinate in the ith dimension, maxi is the maximum value in the
ith dimension, mini is the minimum value in the ith dimension, currdepth is the current
depth of the virtual partition tree, and d is the number of dimensions.

Second, the normalized natural value is converted into the corresponding binary
number binaryi. Since at most �(currdepth− 1)/d� splits have been done along each
dimension, in the third step only the leftmost �(currdepth− 1)/d� bits of binaryi are
retained (in case binaryi = 0 the result is a string with �(currdepth−1)/d� of ’0’).
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Once these normalized binary strings are obtained for each dimension, the address of
the target region is obtained by bit interleaving them (e.g., the bit interleaving of ’100’
and ’011’ is ’100101’) and by prefixing the result with ’1’ (to represent the root of the
tree). The bit interleaving is similar to the Z-curve bit interleaving (see also [6]), except
the value in each dimension is normalized via vi−mini

maxi−mini
to a fraction of that dimensions

domain range.
The final result is the address of the target region. Since no region exists below the

current depth of the tree, the target region represents the lowest possible region of the
tree where the object should be inserted. Given a target region of address b, two cases
are possible: (1) the directory already contains a region whose address a is equal to
b. Such a region is thus the insert region, (2) the directory already contains a region
whose address a is a longest prefix of b. This means that such a region properly con-
tains the target region, and the new object must be inserted into it (i.e., region a is the
insert region). Once the insert region has been determined, the new object is inserted
into it. In case the resulting population of the insert region exceeds the blocking factor,
the insert region is split.

3 Query Answering: Interval Queries

In this work we focused on the efficient processing of interval queries IQ on medium
to high dimensional point data (d = 2-18) as well as the exact match query, as it is
a specific type of interval query. Multidimensional range searching, such as interval
queries, plays an important role in the way modern applications query their data.

In our approach, interval queries are processed following the primary index two stage
query process . In the approximate filter the curve is preprocessed to remove some
regions that cannot contain answers, then the remaining regions from the directory are
hierarchically searched. The result of such a search are two sets of regions: O, consisting
of all the overlapping regions (i.e., regions in the directory that intersect the interval
query, but are not completely contained into it), and C, consisting of the regions entirely
contained into the interval query. Contained regions only have objects that must be part
of the result, whereas overlapping regions will need to have their objects checked for
false hits by the exact filter.

Preprocessing trims the curve of regions that the search will examine. It removes
from consideration all regions before the first and after the last pixel that can contribute
to the answer. We calculate the first and last pixel of interest by bit interleaving (see
Equation 2) the minimum and maximum corners of the query interval. The minimum
corner will be the point representing the minimum of the interval restriction in all di-
mensions and similarly for the maximum corner. We prune the directory by retrieving
only the regions that cover the curve between and including these pixels, and search
this reduced set of regions. This is a fast and simple technique to reduce the load on the
approximate filter . Preprocessing removes regions without consulting the directory.

The algorithm to search the directory is shown below. For each region in the direc-
tory, the algorithm visits the virtual partition tree level by level, starting from the root.
This visit is implemented in the algorithm using the variable L (representing the length
of addresses, and, thus, the depth in the virtual tree). Given a region F in the directory,



Variable Granularity Space Filling Curve for Indexing Multidimensional Data 119

Algorithm 2. Search Directory Algorithm
begin
Input: Preprocessed directory D , Interval Query IQ
Output: Containing Regions C, Overlapping Regions O
Add all regions in D to LIST , ordered by address;
Initialize C and O to the empty set
Let length L be 1
while LIST is not empty do

Let F be the first region in LIST
Let R be the region in the virtual partition tree such that R = pre f ix(F,L)
if R is contained within IQ then

Move from LIST to C all regions a such that R = pre f ix(a,L)
Set L to 1

else if R is disjoint from IQ then
Remove from LIST all regions a such that R = pre f ix(a,L)
Set L to 1

else if R equals F then
Add R to O
Remove R from LIST

else
Increment L

end if
end while
end

and given a level L, the algorithm searches for the L-level ancestor of F . Let R be such
a region of the partition tree. R is compared with the binary addresses of the extreme
points of the interval query, to check whether it is disjoint, contained or overlapping the
interval query IQ. If R is disjoint from IQ, the search discards all the directory regions
beginning with the address of R (i.e., such that R = pre f ix(a,L)). If R is contained, F
and all the other regions in the directory starting with the address of R are put into the set
C of contained regions. Otherwise, R overlaps the interval query. If R is equal to F , then
F is an overlapping region, and is inserted into O. Otherwise the search must be further
refined, by going deeper in the virtual tree (i.e., by incrementing L). The process is re-
peated until a subtree of disjoint regions is excluded or a subtree of contained regions is
included or the full region is tested and classified as disjoint, contained or overlapped.
The treatment of exact match queries is a special and easy case of the above. The result
of preprocessing of exact match query gives as result a pixel. The region that contains
such a pixel, if it exists, is then read to find the objects it contains. If such a region does
not exist, the pixel does not contain any object, and the result of the query is empty.

4 Experiment

In order to evaluate the performance of the VG-Curve method, in this section we ex-
perimentally compare it (as suggested in the UB-Tree experiment [17]) with two of the
best available methods in off-the-shelf commercial RDBMS for medium to high dimen-
sional data, i.e. compound indexes and table scans. We could not directly compare our
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results with UB-Tree because it requires modification to the kernel. While R-tree meth-
ods are commonly available in commercial RDBMS their performance is well known
to deteriorate above 5 dimensions so we could not use them as we are interested in
medium to high dimensional data (up to 18 dimensions). On the other hand, the per-
formance of basic SFC methods (e.g. Z-curve) deteriorate rapidly when the number
of dimensions increases or the query interval grows, due to a blow out in CPU oper-
ations, as we confirmed in initial testing, so we found the Z-curve unsuitable for this
experiment.

All experimental results presented in this Section are computed on a Sun Fire V880
server with 8 x UltraSPARC-III 900MHZ CPU using 8GB RAM, running Oracle 10g
RDBMS. Database block size was 8K and SGA size was 500MB. At the time of testing
database server had no other significant load. We used built-in methods for statistics
collection, analytic SQL functions, and the PL/SQL procedural runtime environment.
All queries had the buffers flushed before running.

We derived a data set of 5.8 million records from the the UCI KDD Archive US forest
cover type for 30 x 30 meter cells obtained from US Forest Service (USFS) Region 2
Resource Information System (RIS) data. All relations had a unique identifier and a
column for the derived key added.

Queries were randomly generated hypercubes with edge lengths from 20% to 80% of
the respective dimensions range. We generated 100 random queries per 10% increment
for each (2-18d) data set. The two parameters used in the VG-Curve are the blocking
factor and maxsplit which was 100 for all experiments. The blocking factor was varied
widely to test the sensitivity of the VG-Curve to this parameters setting.

Fig. 3. Total blocks used for the standard table is shown as a reference, a compound index on
indexed dimensions and the VG-Curve directory (BF=1000) for 2 to 18 Dimensions on real data

4.1 Results and Analysis

Experiments consider our VG-Curve method, table scan and the compound index
method. The measured behavior of queries became less stable as the dimensions grew,
as can be seen in Figures 6 and 7. This was due to the reduction in non empty result sets
for queries at higher dimensions.
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Fig. 4. VG-curve average I/O’s for all methods on 10 dimensions of real data

Fig. 5. VG-curve average CPU’s for all methods on 10 dimensions of real data

As expected, the the VG-curve approach, has clear advantages over both table scan
and compound index methods as regards space complexity. The size of the VG-curve
directory is a small fraction of the space required by the compound index. This can be
seen in Figure 3 where the size of the VG-Curve directory managing 5.8 million objects
is up to 733 times smaller than its corresponding compound index and was always less
than 100 blocks.

Due to the space limitations in this paper we only show results for I/O and CPU time
of the VG-Curve, table scan, and compound index methods considering real data of 10
dimensions (Figures 4 and 5).

The I/O costs of Figure 4 clearly show that the VG-curve, for blocking factors of
1000 and 1500, outperforms both the compound and the table scan methods by up to
a factor of 12. The CPU costs in Figure 5 indicate the VG-curve outperforms both
compound and table scan methods for queries with result sets of less than 1% of total
number of rows, and is still competitive for queries with result sets of up to 10% of total
number of rows.

To avoid the effects of the distribution of data, as mentioned before, we have run
multiple tests; results are presented grouped together based on their average result set
size so that query performance can be compared as the dimensions of the data increase.
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Fig. 6. Comparison of average disk I/O’s, as a % of table blocks, for VG-curve BF=1000 from 2
to 18 dimensions on real data

Fig. 7. Comparison of average CPU’s for VG-curve BF=1000 from 2 to 18 dimensions on real
data

Typically, as for other high-dimensional indexes, index structure performs better for
result sets of up to 20% of No. However, small result set queries are more important
and more common in the management of high-dimensional data. In case of answer sets
larger than 20% of all objects, due to the overheads of using an index, the full table scan
will usually perform better. Similarly, the VG-Curve becomes worse than full table scan
for larger result set, due to the overhead costs of VGC directory I/Os repeated fetching
of same blocks (due to page aging).

Also, CPU time for the VG-Curve, with a large result set, is worse than for the
full table scan approach. However, it is worth stressing that I/O is a better measure of
efficiency than CPU, since I/O is typically the bottleneck for query performance [18].

We have compared our approach with the compound index approach also considering
scalability, when the number of dimensions grows from 2 to 18. The performance of
VG-curve was not heavily affected by increasing dimensions as can be seen for I/Os in
Figure 6 and CPU’s in Figure 7. This is particularly the case for queries returning less
than 0.1% of No. This is the case because the efficient representation of regions in the
directory is barely affected by the increase in dimensions.
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5 Conclusion and Future Work

In current database applications there is an increasing need to efficiently handle mul-
tidimensional data. The difficulties associated with multidimensional data grow with
the number of dimensions. In this paper, we have proposed the VG-Curve, a new ap-
proach to the treatment of multidimensional data that can be easily integrated into the
RDBMS since it does not require modifications to the kernel. The VG-Curve approach
is a SFC method since it partitions the multidimensional space into regions and exploits
the linear order induced on the regions to take advantage of index structures such as the
B+-tree. However, while SFC methods ‘blindly’ partition the space into regions of the
minimum granularity (pixels), the VG-curve approach adopts a partitioning algorithm
which is sensitive to the density of population. It accomplishes this by splitting the mul-
tidimensional space in a limited number of hyper-rectangular regions of different sizes.
Only non-empty regions are explicitly maintained and considered in the VG-Curve,
which has positive effects on the space, CPU and I/O complexity.

More specifically this study makes the following contributions to the field:

– We have presented a method to efficiently index multidimensional point data;
– We have shown that multidimensional data can be organised in way suitable for

employing a primary index structure, which guarantees better performance;
– We have drawn a set of experiments, empirically demonstrating that our VG-curve

is superior to the best available off the shelf RDBMS index for handling points in
high dimensional space;

– We demonstrated that the VG-curve is resilient to increasing dimensions;
– Our approach is immediately suitable for full integration as it can be constructed

from off-the-shelf RDBMS without modification to the kernel.
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Abstract. This paper describes a new approach to multidimensional
OLAP cubes implementation by employing a massively parallel scan op-
eration. This task requires dedicated data structures, setting up and
querying algorithms. A prototype implementation is evaluated in aspects
of robustness and scalability for both time and storage.

1 Introduction

Sequential scan algorithm originally proposed for APL in 1962 by Iverson [1] and
then reborn in nineties with modern parallel machines is currently one of the
most important operations among parallel primitives. Its applications vary from
data transformation, sorting, string comparison to tree operations and solving
recurrence equations [2]. Especially segmented scan opened a lot of new possi-
bilities in computational programs. The algorithm is known for its very good
scalability and SIMD (Single Instruction Multiple Data) processors utilization.

GPU processors as massively parallel machines also benefit from this scalable
and robust general algorithms building block. There were already several variants
of its parallel implementation leading to a time and space efficient solution O(n)
[3]. One of the challenges was to achieve effectiveness - measured in number
of primitive operations done by all processors - to be asymptotically not higher
then number of operations in a sequential implementation. Another problem was
poor organization of segmented scan up-sweep and down-sweep operations when
divided between threads in GPU. This has also been significantly improved in
works by Sengupta et al. [4].

Currently the most efficient implementation of scan algorithms for GPU is
published in CUDPP library [5]. It is known for being able to run scan operation
on millions of values in just a few milliseconds. In this paper we investigate its
application in MOLAP cube creation and querying, and analyse its effectiveness.

1.1 Real-Time OLAP Cube

On-line Analytical Processing (OLAP) cubes, since their initial definition given
by Codd [6] in year 1993, have become an important element of Business Intelli-
gence (BI) systems. These multidimensional data structures contain aggregated
data at different levels of aggregation. For example, if sales data are analyzed
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by years, months or days then an OLAP cube would store them as calculated
aggregations for all levels in the hierarchy from days, through months to years.
Thanks to preprocessing, reports can be created almost immediately and ad-hoc
analyses can be very quick (”on-line”). All the calculations are performed upon
the creation of the OLAP cube. This process usually is quite time-consuming
and therefore OLAP cubes have to be restricted or limited in their size. Also
cubes are usually build when the system is less loaded or even offline at nights.
This may lead to situations when business reports can in fact only be created on
the ’next day’. If the cube creation process takes longer, the time gap between
real database and BI reports may be unacceptably long.

Therefore, companies seeking for improvement in making strategic decisions
tend towards Real-Time OLAP (RTOLAP) systems. However, different products
offer different understanding of a real time OLAP. It may be:

– Storing only the lowest level (’leaves’) of aggregations and calculating an
answer to a query in real time upon this cashed data in RAM.

– Ability to perform near real-time updates to the cube data from changing
fact tables.

– Ability to perform near real-time changes in cube dimensions upon changes
in dimensions tables.

Near real-time in this case means that a server tries to perform the update but
it may take unpredicted time. If updates happen too often a server may respond
in errors, significant slowdown or “cache thrash”. Also changing dimensions may
be very costly in time and space and should be done “sparingly” [7].

Solutions of this kind use two basic improvements to standard OLAP prod-
ucts. First, they are RAM-based. All the cube data, highly compressed is kept
only in a computer’s memory. Second, they calculate only basic data which is
used to calculate the final answer to the query given by users. One of the exam-
ples of such efficient systems is IBM Cognos TM1 [8] .

In the RAM based system there are obvious storage limitations. The question
is, how big cubes can be then created. One of the vendors suggests that the
RAM memory should be two times larger than imported CSV file, which is a
significant limitation concerning that current GPU devices have up to 6GB of
memory [9].

This device’s memory capacity problem is a huge issue for developers. We
propose a solution which offers the biggest data volume, without any additional
helper structures and indexes, containing almost only pure measures, but possi-
bly with more expensive querying. However, the timing results even for compli-
cated queries are still satisfactory.

1.2 OLAP Cubes and Graphical Devices

The data in the OLAP cubes is organized into dimensions and measures. Di-
mensions are categorical variables like year, month, product, region etc. The
measures are numerical values e.g. sales amount, transactions count, customers
count etc. Within dimensions there are hierarchies that serve the purpose of
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navigating through the data. For example the user may want to first have a look
at the yearly sums, then to drill-down to monthly values, then to drill-down
to daily ones, thus navigating along the YEAR-MONTH-DAY hierarchy. The
measures which the aggregates are calculated for may be any additive functions.
Typically these are sum, average, maximum, minimum, median, count. It hap-
pens that, apart from the other more database-like possibilities, input data for
an OLAP cube is given by a single flat, denormalized data table, a CSV file or
even RAW values send via a network connection. It is often also the simplest,
yet most efficient way to create a cube.

The time of OLAP cube creation can be an issue on a heavily used configu-
ration or when the cube has to be frequently updated (Multidimensional OLAP
requires rebuilding to update). Even if this is not the case, the possibility of fast
OLAP cubes generation can be useful for ad-hoc analyses and reports performed
on local machines (even on laptops). On the other hand, modern GPU devices
offer tremendous computational power which is already widely used in many
applications. Also their very fast development promises even better performance
in near future. Our experience proved that a modern GPU device could be well
suited to handle OLAP cubes under several circumstances:

1. The cube is stored on the GPU device side or occasionally copied to CPU
RAM memory. This kind of copying over PCI-Express bus consumes too
much time and could kill effectiveness of the solution.

2. Queries to the cube are send to the GPU and processed on the GPU side.
This is sensible for two reasons. First is similar to the previous one, we need
to avoid costly transfer of large volumes of data. Second, GPU can process
queries much faster than CPU because a cube is well shaped and contain
uniform array of values ready for massively parallel computations.

3. A plain or compressed cube may fit in the GPU memory. Currently the most
powerful devices offer up to 6GB of memory, which may give us for example
a cube of more than 14 millions intersections containing 100 measures of 4
bytes each with each intersection uniquely described by an 8 byte hash code.

4. The cube must be often updated due to constantly changing situation and
the system must immediately be able to process queries across all the cube.

5. Graphical results could be directly drawn in the screen by GPU without any
CPU processing time.

6. Knowledge on the input data is very limited and the system has to analyse
data first. Here we can also benefit from enormous instruction and memory
throughput. A device may load a portion of data and within milliseconds
calculate all statistics necessary to create a cube later on.

In our previous studies [10] we created a solution based on low level CUDA pro-
gramming which was a first approach to OLAP cubes build on GPUs. Although
it was very fast it suffered from being not general and limited in available data
types. This paper improves this by propose a new more general algorithm for
MOLAP (Multidimensional On Line Analytical Processing) cube creation and
querying which is based on high level computational primitives. The main ad-
vantage is the parallel scan operation as a fundamental building block of most
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of the algorithms assures that parallelism is pushed to the limits working on
all available processors achieving excellent scalability. The very same program
when run on a device with more streaming processors will automatically use
all available cores. This ability places our solution in the centre of interest of
industrial business intelligence.

The rest of the article is organized as follows. Section 2 describes our MOLAP
cube structure, set up and query algorithms. In section 3 we present important
implementation details and run-time experiments including various queries exe-
cuted against cubes in memory. Finally, section 4 concludes.

2 Multidemensional OLAP Cube Structure and
Algorithms

An efficient OLAP cube implementation for a graphical device requires adjust-
ing memory structures and algorithms in order to maximize benefit from GPU
architecture and type of parallelism which can be employed. Already mentioned
memory space limitation is an obvious problem. It is therefore needed to save
the memory even for the price of longer computation times. In many cases it
may be better to perform more instructions than to read from memory a value
which may be computed.

2.1 Compressed In-Memory OLAP Cube

Typically, a multidimensional cube is stored as a n-dimensional array with k
measure values in each element. Storing a cube requires normalization of dimen-
sional attributes by mapping them to integer values. A tuple of n integers may
be then used to select a single intersection of a cube. Accessing content of an
intersection requires then O(k) time (devoted to measure values memory reads)
if only address in the array may be calculated in constant time. In most cases
due to limitations of memory addressing calculating an intersection placement
may require additionally O(n) operations. Since both n and k are rather small
values we can say that accessing a cube represented in multidimensional array
can be done in approximately constant time. In industrial databases number of
dimensions and possible ranges of dimension values may lead very sparse cubes
in which most of places in the cube are containing no measure values. There
are many techniques to construct an efficient sparse cube representation [11] by
changing normalization of data, using various heuristics or sorting indices.

One of the simplest techniques is to store only measure values together with
dimensional attributes omitting empty intersections. An advantage here is being
independent of data density characteristics but for giving up direct access to
any intersection measures as described above. Because of memory limitation we
decide to go one step further and to compress cube memory representation to
one dimensional array containing hash keys and measure values. All dimensional
attributes for a given intersection are exchanged with a single hash value.
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If a single intersection was described by: d j
0 , . . . d j

n−1, m
j
0, . . . m

j
k−1, where d j

i

denotes i-th dimension and mj
i denotes i-th measure values the compressed cube

contains structures {hj, mj
0, . . . , m

j
k−1} (see fig. 1). For the details on the hash

function see section 2.3.
Since we do not know which intersections are filled with data and which are

empty, we cannot predict the place in the compressed cube for given dimensional
values. Therefore, accessing a cube intersection requires at least a binary search
over the sorted set of hash codes. This process has logarithmic complexity and
may be performed by only one thread at a time. For a SIMD processor we
propose an alternative solution (see section 2.4).

Fig. 1. From the left: 1. Sample data with two dimensions and one measure. 2. Frag-
ment of a direct cube representation in n dimensional array (in this case n = 2).
3. Compressed cube with hashing in one dimensional array.

Our compressed representation of a multidimensional cube makes it very well
suited for graphical devices and their coalesced memory access technique. It
works if a set of threads (typically 16 - a so called half-warp of threads) access a
limited area in memory called a segment, usually of 32, 64 or 128 bytes. Coalesc-
ing means that all threads will get their data in the very same memory access in-
struction. On the contrary, if threads within a half-warp access memory randomly
exceeding the same memory segment, their reading (or writing) instructions are
serialized and lead to degradation of memory bandwidth. Obviously, our flat ar-
ray of structures [{h0, m

0
0, . . . , m

k−1
0 }, . . . , {hp, m

0
p, . . . , m

k−1
p }] may be converted

to a structure of arrays {[h0, . . . , hp], [m0
0, . . . , m

0
p], . . . , [m

k−1
0 , . . . , mk−1

p ]} for full
coalescing. No other structure could stand coalescing requirements.

2.2 Scan-Based Parallel Primitives

For the purpose of cube creation and querying we shall use the following scan-
based primitive operations.
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Reduce operation takes a binary associative operator ⊕, and an array of n
elements [x0, x1, . . . , xn−1], and returns a single element x0 ⊕ x1 · · · ⊕ xn−1.

Scan operation takes a binary associative operator ⊕, and an array of n ele-
ments [x0, x1, . . . , xn−1], and returns the array [x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕
xn−1)], while prescan operation taking the same array would return array
[I, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−2)].

Segmented scan operation takes an array of input values [a0, . . . , an−1] and
array of boolean flags [f0, . . . , fn−1] and returns an array [x0, . . . , xn−1] satisfying
the equation:

xi =

⎧⎪⎨
⎪⎩

a0 i = 0{
ai fi = 1
(xi−1 ⊕ ai) fi = 0

0 < i < n

Segmented scan works like scan but it is limited to segments denoted by true
fi flags placed at beginnings of segments. Inverted segmented scan works like
segmented scan but ⊕ operation is calculated in opposite direction, from the
end of the segment to the beginning.

Pack or compact operation (pack) having an input array [x0, x1, . . . , xn−1]
and boolean flags array [f0, f1, . . . , fn−1] returns an output array containing all
elements xi for which fi is true.

All the above primitive operations if implemented efficiently [2,3] have time
complexity O(n). Memory requirements will be discussed later since they are
connected to details of implementation.

2.3 Massively Parallel Creation Algorithm

We assume that the input data set is organized in p rows r0, . . . rp−1 containing
plain n+k integer values each: rj = d j

0 , . . . d j
n−1, m

j
0, . . .m

j
k−1, where d j

i denotes
i-th dimension and mj

i denotes i-th measure values.
Considering only integer values in the input data set is not a limitation, since

most of dimension data usually falls to a small range of possible values and
therefore is stored and encoded in dictionary tables. E.g. 16 districts of Poland
can be easily enumerated, so there is no obstacle in having their indices in a
dictionary table rather then full names (string data type).

In many cases this input set is already sorted by dimensions or may be easily
sorted on the GPU side before processing. Cube creation of unsorted data sets
without sorting cannot be done with scan operation, needs different approach,
and will be addressed by another paper.

First, we analyse data to find number of values in each dimension which are
necessary to describe the cube. This is based on a simple min and max value
search for each dimension di. As a result we get a collection of n minimums
(d min

i ) and n maximums (d max
i ). We assume that each dimension di may have

up to d max
i −d min

i = si different values. si is a size of i-th dimension. This step
can be done with 2n reduce operations over p values each:

d min
i = reducemin(d 0

i , . . . d p−1
i ), d max

i = reducemax(d 0
i , . . . d p−1

i )
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The second step of the algorithm finds data ranges, a set of tuples which should
be aggregated for each cube intersection. A number of v rows rj ,. . . ,r(j+v−1) be-
long to the same data range (to the same scan segment) if no dimension attribute
changes in all given rows. To find segments we run a parallel computation com-
paring a set of dimensions values within subsequent rows. Beginning of new
segments are defined by flags f j ∈ {0, 1} where

f0 = 1

f j>0 =

{
0 if ∀i=0...n−1d

j
i = d j−1

i

1 otherwise

The segments flags are used to calculate the number of existing intersections,
and in the same time a place of each intersection in the compressed cube, by
calling prescan operation on the flags vector. An example result of this operation
is illustrated in fig 2, see column f for flags and ps f for prescan effects.

All the process of calculating k measures in cube intersections can be done
by k executions of inverted segmented scan operation on subsequent measures
m0, . . . mk−1 using flags f . This step ends calculations of the final content of
a cube. Now, to finalize cube creation, we must calculate hash codes for all
intersections and reorganize the data to create the final cube storage.

Having all necessary information about the input we calculate a hash code for
each row using a perfect hash given by formula:

hj =
n−1∑
i=0

((d j
i − d min

i )
n−1∏

r=i+1

sr)

This hash function is actually an index of an intersection in a multidimensional
array cube (see fig. 1) and has two very important properties. Firstly, it is
conflict-free and secondly, it is fully reversible. Having a hash code hj for given
intersection in a cube and characteristics of data in d min

i and d max
i , we will be

able to reverse the hash in time O(n) and calculate values of all d j
0 , . . . , d j

n−1

dimension attributes later.
Finally, we are ready to pack results into a compressed cube array by calling

pack operation for all k columns produced by scans on measures and adding
hash codes for all intersections. Again this process is shown in fig. 2.

It is obvious that all the above steps have time complexity O(n) since in
each step we perform only two kinds of operations: we concurrently access all
input data rows (one or at most two times each) or call scan operation for all
the elements. In the same way regarding number of dimensions or number of
measures the creation algorithm is always only linear.

2.4 Querying Multidimensional OLAP by Linear Searching

Efficient implementation of OLAP cube querying is a hard task for disk-based
systems. It is important to optimize number of disk accesses and page swapping.
Many structures like statistics tree [12] were proposed to solve this problem
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Fig. 2. A sample cube creation process. r0, . . . , r7–rows of input data. d0, . . . , d4–
dimensions. m0–single measure column. f–flags indicating segments(ranges) in input
data. ps f–result of prescan operation on f . iss fm0–result of inverted segmented scan
done on m0 using flags f . This column is calculated for each measure mi. h–hash codes
in compressed cube. c–measure values in the resulting cube.

by minimizing a search path along dimensions. Also a large number of dimen-
sions may lead to disk storage explosion and serious degradation of performance.
Condensed [13,14] or minimal cubing [15] addresses this problem. Especially the
later one introduces many additional structures which are not acceptable due
to limited device’s memory space. Surprisingly, just a flat array used as a cube
container may be sufficient if only the search algorithm is efficiently implemented
allowing to use all available SIMD processors.

Although compressed cube hashes in the memory array are sorted, binary
search cannot be used due to parallelism degradation. A classical binary search
of an array assumes that there is only one thread performing nested divisions
of searched array. In each step the remaining array is divided into two equal
parts and the process continues for one of them. Since we have only one thread
working in one query it is not well suited for SIMD processor like a GPU device.
Even running a number of queries in the same time would not improve efficiency
because each thread would focus on different part of the cube array and coalesced
memory reads could not be achieved.

Slicing and dicing is easy for a n dimensional cube array. In the first case we
just set given number of dimension indices iterating over the rest of dimensions.
In the second, again it is enough to set boundaries for dimension values and read
intersections inside. Compressed cube representation make this process more
complicated. Except for very special situations it is impossible to predict where
intersections for given dimension values are located. This leads us to a conclusion
that a compressed cube query probably has to access all elements of the cube in
order to create a slice or dice.

Hopefully, graphical device memory bandwidth is much higher (achieving
around 192GB/s) than in case of a classical PC CPU memory. Therefore, we
can just try to access all the available intersections at once in parallel threads
and select the ones which satisfy a query sent to all the threads. This leads us
to the following brute force linear search algorithm:
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1. Convert a query to a form ready for processing by single SIMD thread.
2. Run as many threads as distinct entries in the compressed cube array.
3. In each thread: read single cube intersection, reverse hash code and decide

whether it satisfies the condition, mark selection flag true or false.
4. If all threads finished then calculate result by calling pack operation on the

cube array using the recently created selection flags.
5. If necessary perform a reduction operation on the result.

All the procedure is illustrated in fig. 3. The most important part of this algo-
rithm is to decide if a given intersection should be marked for the final result
set. A single thread calculates all dimensions values by reversing hash code in
its intersection in time O(n). Unfortunately brute force query has bad memory
accessing complexity since all the cube must be read. However, memory repre-
sentation of the cube allows for coalesced reads and for the newest devices we
can achieve 32 threads reading subsequent memory locations in the same time.

There are evidences that brute force algorithms can be successful in other
applications like for example password recovery, MD5 cracking or nearest neigh-
bour search [16].

Fig. 3. A sample cube querying process. c0, . . . , c5–intersections of the cube. h–hash
codes for intersections. These codes are used to select intersections satisfying a query.
c–single measure in cube. f–flags indicating query results. p–result of pack operation
called on c using f . r–eventually created aggregated result if a query defines this kind
of output. This is done by executing a reduce operation on p. In this case, reduction
was done using max operator.

3 Implementation and Run-Time Experiments

The algorithm’s implementation is based on CUDPP library in version 1.1 [5]
currently shipped with NVIDIA CUDA SDK 3.2. Among other functions, this
library contains efficient procedures for scan and segmented scans with variants
allowing them to work as all elements scans or prescans. Additionally a mul-
tiple row scan may perform parallel scans of multiple row arrays allowing for
better instruction and memory throughput. However, we found this method not
significantly faster then a set of single column scans run one after another.

3.1 Cube Creation with Scan Primitives

In this section we analyse how parallel scan primitives were used to implement
cube creation algorithm. Below we enumerate all the steps of the algorithms with
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additional remarks on memory complexity and notes on CUDPP utilization (n
– number of dimensions, k – number of measures, p – number of records in
the input database, typically much larger than n + k, l – number of existing
intersections in the cube).

1. Find minimum and maximum for each dimension in the input data. This task
could be done by 2n reduction operations. However, currently reduction is
not implemented in CUDPP. A normal scan operation must be used instead.
Both operations have linear time complexity but scan perform two times
more steps. Time complexity: O(np). Memory complexity: O(p), since we
perform single scan at a time which requires memory storage for partial
scan sums. It is reused in all scans in this step and may be freed afterwards.

2. Marking segments in the input data by flags. This task has to be coded man-
ually, since there is no appropriate operation in CUDPP library. It requires
2pn memory reads (each of p threads – one thread for each input record
– must read n dimension attributes of two subsequent input records) and p
memory writes. Time complexity: O(p). Memory complexity: O(p) for p flags
marking segments. Flags could be stored as single bits, however this is not
supported by CUDPP and could not be used in next steps of the algorithm.
Unfortunately, flags have to be kept in memory up to the very end of the
procedure (see fig. 2 array f).

3. Enumerate ranges in the input data. Done with CUDPP prescan operation
over flags of segments. Time complexity O(p). Memory complexity: O(p)
because we need additional storage for scan results (see fig. 2 array ps f). It
is possible to reuse flags storage in this step but for the price of more memory
reads in the next steps. Time complexity: O(p). Memory complexity: O(p).
After this step we know how many intersection constitute resulting cube and
the storage for the compressed cube array may be allocated.

4. Reduce measure values inside segments in the input data to get content of
the output cube intersections This step requires a segmented reduction re-
peated for each measure. Again, this kind of operation is not implemented in
CUDPP. A segmented scan must be used instead. To simplify the next step
we perform k times a variant called inverted segmented scan. The advantage
is that for each segment a result of aggregation in placed in the position of
the flag indicating the segment beginning (see fig. 2 array iss fm0). Time
complexity: O(kp). Memory complexity: O(p) for scan results in each step.
Memory may be freed after results are copied to the output cube array.

5. Copy output of step 4 into the resulting cube. This step requires 2p mem-
ory reads for flags and segment enumerations plus kl memory reads and kl
memory writes. Time complexity: O(p + kl). Memory complexity: O(1) No
additional storage is required except for the final compressed cube array of
size l(k + 1) (k measures and 1 for hash code in each intersection).

6. Calculate hashes column for the resulting cube and write it into the output
cube. In the final step we calculate hash code for each segment (n reads
for each segment marked by flag) and write it into the cube array. Time
complexity: O(p + nl). Memory complexity: O(1)
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Fig. 4. Cube creation times. X axis presents number of records in input database. Y axis
presents creation time in milliseconds. Experiment performed for various dimensions
and measures. Left: Number of dimensions: 5, 10 and 15. Right: Number of measures:
5, 10 and 15.

Fig. 5. Cube creation times in a commercial CPU-based system. X axis presents num-
ber of dimensions, while Y axis presents creation time in seconds. Experiment per-
formed for various dimensions and measures. Left: Number of measures: 5, number of
intersections (aggregations): 130k, 400k, 4M. Right: Number of measures: 50, number
of intersections (aggregations): 130k, 400k, 4M.

The overall time complexity of this algorithm is linear regarding the number
of input records, dimensions and measures but with excellent factors which may
be easily observed in figure 4. Increasing size of the database input by two times
increases time by 1.5. Similarly increasing dimensions or measures number by
three changes the time by only 1.75. As far as we know there is no commercial
system having similar performance. E.g. we have measured the cube creation
times for a highly-esteemed commercial system SAS OLAP Server 9.1.3 and
obtained the results presented on figure 5. Although the test environment was
limited (IBM PC 2 GHz, 1 GB RAM) which leaves some room for improving
the performance of the commercial system, yet we may observe an increasing
influence of number of dimensions and measures on the cube creation time.

Another important observation is that this approach is not slower then our
previous low-level and much less flexible OLAP cube creation implemented with-
out the scan primitive [10]. Time measurements indicated very similar results
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but now we can add more dimensions and measures (limited only by memory
capacity) witch is an important improvement.

3.2 Massively Parallel Cube and Database Queries

As it was explained earlier, abilities of graphical devices allows for brute force
querying. This experiment was performed on three different cubes created from
different databases. Therefore size of a queried cube varied from about 21k to
about 174k of intersections (see fig. 6 left).

Here we present implementation for each step of the querying algorithm ex-
plaining usage of CUDPP library. (n – dimensions, k – measures, l – intersections
in the cube, v – query results)

1. Marking intersections in the cube as partial query results. The first step of
brute force querying requires opening each cube intersection, reversing its
hash code and deciding if it satisfies the query. For each thread: reading the
hash code is single operation, reversing the hash is done in n steps, writing
the decision in one step. Time complexity: O(nl). Memory complexity: O(l),
we need to store a boolean flag for each intersection indicating whether it
satisfies query or not (see. fig. 3 array f).

2. Enumerate results. This task uses prescan operation run on flags array (see.
fig. 3 array ps f). Time complexity: O(l). Memory complexity: O(l) for the
results. Prescan can be also run on flags array directly without any additional
memory consumption but with more time needed to copy results of the query.

Fig. 6. Brute force querying times. Left: Cube queries. Right: Database queries. Al-
though, cube size is much smaller than a database size query has to additionally perform
hash function inversion for each intersection. X axis: query selection ratio – almost 0
means that a single record satisfied query criteria while 1 means that all records were
selected as a result. Y axis: query time in milliseconds. Each query was selecting records
and then reducing (summing) to a single value.
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3. Copying measure values from cube to query results. This step requires 2l
reads of flags and results enumeration and kv writes. Time complexity: O(l+
kv). Memory complexity O(1).

The overall complexity is obviously linear in the size of the cube and the number
of measures and dimensions. Very good results of cube querying encouraged us
to test the same method for querying the whole database stored in a graphical
device. We managed to run experiment with five different databases of sizes from
1.6M to 8.0M of records (see fig. 6 right).

4 Conclusions and Future Works

We have presented how OLAP cubes can be created and queried efficiently using
the massively parallel scan-algorithm. The results prove that GPU-based data
structures perform way better than classical CPU implementations. Moreover,
we have achieved great scalability of the presented algorithms. A compressed
cube may be easily divided between several devices in the same machine or even
between a number of computers in a cluster.

Our novel algorithm based on parallel scans not only allows any number of
input dimensions and measures but also behaves very well resulting in linear de-
pendency between time and number of dimensions or measures in cube creation.
Surprisingly compressed cube querying with a brute force algorithm responses
in a few milliseconds.

The only drawback of the parallel scan is its memory consumption. Due to its
internal construction it has to store temporary computations data aside scanned
table. This requires O(n) additional storage. However, when well organized the
processed data may fill half of the available memory allowing processing storage
in the rest of the space.

Another problem is CUDPP library which is still under development and
does not implement several important operations like for example a simple
reduction or its segmented version. This is expected to be improved in the
future.

Among future open topics we could count: measure values compression for
even higher memory savings; compressing the whole cube in memory for ex-
tremely demanding systems; improvement in cube storage by exchanging a flat
array with other structures and the most important ability of accepting unsorted
input when creating a cube. The last requirement may be easily achieved by cre-
ating a dynamic cube which is reorganized for each new database row appearing
in the input. In a typical system reorganization of a MOLAP cube by changing
number of dimensions or number of different values in a dimension is very expen-
sive. In case of GPU this process could be much faster an possibly done in the
real time. This means that the cube could be recreated between the subsequent
records are read from a hard drive or network connection. This needs further
investigations and probably changes in memory structures.
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Abstract. In Online Analytical Processing (OLAP) users view data through a 
multidimensional model known as the data cube, allowing the aggregation of 
information along different attributes and operations such as slicing and dicing. 
In-memory OLAP systems keep all relevant data in main memory and also 
support efficient updates of cube data, enabling interactive planning, 
forecasting, and what-if analysis. Since usually only the base data is stored and 
all aggregations and other calculations are computed on the fly, complex 
computations may seriously downgrade performance. We present an approach 
that uses graphics processing units (GPUs) as parallel coprocessors for high 
performance in-memory OLAP operations. In particular, our method 
accelerates the calculation of compute-intensive rules, which represent business 
dependencies that are more complex than mere aggregates. In addition to the 
data structures and algorithms, we describe how to extend the approach to 
multi-GPU systems in order to scale it to larger data sets. 

1   Introduction 

In Online Analytical Processing (OLAP) users can view data from a data warehouse 
through a multidimensional model known as the data cube [8], allowing them to 
aggregate information along different attributes and to perform operations such as 
slicing and dicing as well as roll-up and drill-down to different levels of detail along 
dimensional hierarchies. One key requirement for OLAP systems is performance – 
users ideally want responses to even complex queries within seconds. 

In addition to standard aggregations, more advanced business dependencies may be 
part of the user’s data model. Common examples from the business context include 
computation of sales figures from prices and quantities, currency conversions, and 
many more. We refer to these dependencies as rules. Rules may be computed on 
demand or pre-calculated and stored in the database before loading the data into the 
OLAP system. The major disadvantage of the latter approach is that any update to the 
database requires re-computing all dependencies, which is problematic when it comes 
to users’ real-time changes to the OLAP data in planning, forecasting, or what-if 
scenarios. In order to facilitate data consistency after updates, it makes sense to only 



140 S. Wittmer, T. Lauer, and A. Datta 

keep base data in the database and compute all aggregates and other dependencies on 
the fly, i.e. when requested by the user. Another advantage of online aggregation is a 
drastically reduced memory consumption, since aggregates do not have to be stored 
(except for caching). Usually, OLAP cubes are very sparse and the number of 
possible aggregates usually exceeds the number of existing (i.e. non-zero) base cells 
by many times. 

Online aggregation is the preferred domain of in-memory OLAP databases such as 
[12-14], which keep all relevant data in main memory, hence allowing more efficient 
updates compared to secondary storage-based systems. On the other hand, very 
efficient algorithms are required to compute the requested aggregates and rule results. 

In this paper, we describe the utilization of graphics processing units (GPUs) in 
order to accelerate OLAP rule computations. The following section provides related 
work and important preliminaries on OLAP rules. Section 3 briefly recapitulates our 
approach to parallel OLAP aggregation using GPUs, before we turn to the main part, 
GPU-based calculations of advanced cube rules, in section 4. In the fifth section, we 
extend our approach to multiple GPUs and outline how the involved algorithmic steps 
have to be augmented. Section 6 provides results of first performance tests, before we 
conclude this work and give some directions for future research. 

2   Background and Related Work 

A solid introduction of OLAP and the data cube would be beyond the scope of this 
paper, and we refer interested readers to literature such as [3]. However, for the 
purposes of this work, it is useful to situate our approach within the diverse landscape 
of OLAP systems. A rough division can be made between relational (ROLAP) and 
multidimensional (MOLAP) approaches with our focus clearly being on the MOLAP 
side.  

2.1   Parallel Database and OLAP Computation  

Parallelization of data cube computation in the ROLAP world has been studied 
extensively by Dehne et al. [5]. In their work, the focus is on optimization of cube 
construction methods (i.e. pre-computation of aggregates) using load-balancing on 
computer clusters. Although our approach could also be applied to clusters in order to 
scale for larger amounts of data, the parallel method as well as its application scenario 
is different. We apply the massive data-parallelism of GPUs on the level of individual 
computation steps in order to better support real-time ad-hoc OLAP analysis and 
planning. 

Uses of GPUs in databases include the works by Govindaraju and colleagues 
[7][10]. These authors have worked on a number of database primitives such as 
relational joins, sorting, predicates, range queries and achieved some remarkable 
speedups compared to efficient CPU counterparts of their algorithms.  

As a practical example, Bakkum and Skadrum [2] have designed a GPU extension 
for SQLite in-memory tables. Their approach for aggregation is quite similar to our 
own previous work published in [16] and briefly described below in section 3.2.  
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However, the data types usable in their method are very limited. In addition, storage 
restrictions of GPUs pose a severe limitation to the use of their method as they do not 
support multiple GPUs. 

Recently, Kaczmarski [15] compared the use of GPUs and CPUs for parallel 
OLAP cube pre-aggregation, i.e. offline computation of all possible aggregates. His 
method works on fully denormalized fact tables and uses data parallelism on three 
levels of the cube computation: finding dimension intersections, calculation of 
different aggregates, and within each individual aggregation. The latter two are 
similar to the pure aggregation part of our approach [16]. However our data structure 
does not require full denormalization of tables and is hence more memory-efficient, 
so cubes can reside in GPU memory, avoiding costly data transfer through the PCIe 
bottleneck. 

Other uses of GPUs in fields related to OLAP and data analysis include the 
approach by Andrzejewski and Wrembel [1] who apply GPUs to the WAH 
compression technique for bitmap indexes used in data warehousing. 

2.2   Rules in OLAP Cubes 

A rule can be understood as an advanced function beyond simple aggregations. It 
basically gives users the option to apply formula on cells of a data cube (which 
resembles the common spreadsheet functionality of applying formulas on cells in a 
spreadsheet). Rules are commonly supported by in-memory OLAP servers and can be 
found in many major systems of this class, such as [12-14]. 

We explain the concept by the following example: Consider a data cube containing 
the dimensions “Products” and “Zipcode” with cardinalities 500 and 10,000, 
respectively, and the rule-dimension “Measures”, with elements turnover, quantity, 
and price. However, since turnover is a function of quantity and price, data cells for 
turnover are not stored but computed by the following rule: 

Measures[turnover] = Measures[price] x Measures [quantity]. 

The computation of such a rule can be imagined as illustrated in Figure 1. For each 
“Measures [turnover]” cell in the data cube the values of the corresponding price and 
quantity cells are multiplied. In the example, all cells in the lowest horizontal slice of 
the data cube are [turnover] cells, such that 500 x 10,000 = 5,000,000 multiplications 
will be done in this rule computation on a fully filled data cube. Theoretically, this 
number is determined by the product of the cardinalities of all dimensions but the rule 
dimension (in our case, “Measures”). For real-world data cubes, the computation of a 
single rule can therefore involve millions of cells.  

In terms of performance, this implies high workloads for the MOLAP Server. 
Rules are typically computed in the context of aggregate queries, for example when 
the overall turnover for all products or all zip codes is requested. In general, the rule 
operation and the aggregation operator (SUM, AVERAGE, COUNT, etc.) cannot be 
applied in arbitrary order. In our example, the aggregate turnover of all products is not 
the same as the aggregated price multiplied by the aggregated quantities. Hence, the 
rule has to be applied on the base level before aggregation. 
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Fig. 1. Application of a multiplication rule on the data cube 

3   OLAP Computation on GPUs 

In the context of Online Analytical Processing (OLAP) the utilization of GPUs for 
enhancing performance is quite promising. The main focus of our work is the 
implementation of hardware efficient GPU algorithms to provide an accelerated 
computation of OLAP aggregations and rules. 

3.1   GPU Cube Data Structure 

The data structure we employ to handle OLAP cube data on the GPU device(s) is 
based on the one described in [16]. While information about the dimensions (such as 
hierarchies etc.) reside in main memory, the cube base cells (facts) are stored on the 
GPU in a fact table fashion using a combination of arrays. The cell coordinates (the 
path of a fact) are transcoded and compressed and then inserted column-first in one 
array. Measure values are stored in a separate array. Corresponding paths and values 
are implicitly connected via their absolute positions in the respective array. Figure 2 
shows a simplified schematic of the basic structure. On the left-hand side, input facts 
are given as tuples containing the coordinates and the value of a cell. 
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Fig. 2. Data structure for storing a fact table on a GPU 

3.2   OLAP Aggregations on GPUs 

Since only base facts are stored in our cube model, all aggregate values are computed 
on demand (unless they are found in a query cache). We have previously designed a 
GPU aggregation method utilizing the massively parallel architecture of graphics 
processors, which is very efficient compared to sequential algorithms [16].  
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The basic procedure is a data-parallel version of a full table scan identifying all 
relevant facts (i.e. the ones contributing to the requested aggregate) and a parallel 
reduction of the respective values.  

In performance tests, we measured speedup factors of up to 40x compared to an 
optimized sequential algorithm (involving a sophisticated hybrid data structure) 
running on the same system. One nice property of the described approach is that it 
scales seamlessly to multiple GPUs in one system, which is achieved by splitting the 
fact table evenly and distributing it over the available GPUs (cf. [16]). The 
aggregation results of all GPUs are collected and again aggregated to the final result. 
This method comes with a double advantage: First, by distributing the data over 
several GPUs, the approach can accommodate larger data sets. Second, if the amount 
of data remains the same, the performance scales up with the number of GPUs, as 
each graphics processor’s work is reduced to only its part of the fact table.  

We will see that multi-GPU support is more challenging when calculating rules 
rather than just simple aggregations. 

4   GPU Rule Computation 

As mentioned in section 2.2, the calculation of rule results can be extremely compute-
intensive. As an example, we use a prototypical rule of the form DR[c] = DR[a] ○ 
DR[b] which semantically defines that each cell value of a cell that is defined by the 
element ID c in the rule-dimension DR (or, shorter, a DR[c] cell), is assigned with the 
result of a given binary arithmetic operation applied on corresponding DR[a] and 
DR[b] cell values (the approach can be easily transferred to operators with only one 
operand or more than two operands). Corresponding cells, or matching facts, are those 
cells that share with the given cell the same element IDs in all dimensions but DR. We 
say a cell is affected by a rule if it is a DR[c] cell.  

Although our above sample rule is simple in its appearance, its sequential 
computation can be cumbersome, especially when many cells are affected. When an 
aggregated cell is requested by the client, the OLAP server determines all base facts 
that contribute to the aggregation and checks sequentially for each fact whether it is 
affected by a rule. If so, the server applies the rule for that fact and returns the result 
as an input for the aggregation. The computation of rules on base facts is costly, as for 
each affected cell (the left-hand side of a rule) the corresponding operand facts (on the 
right-hand side) need to be looked up in the fact table as well. As data cubes are 
typically very sparse, a large amount of operand facts will not even be existent, such 
that only a small fraction of the required lookup operations are relevant in that they 
return non-zero values, which actually contribute to a rule result. Note that the 
hierarchical structure of dimensions allows for nested aggregations, i.e. an aggregated 
cell can be part of another aggregated cell at a higher level in a hierarchy. The 
algorithm for finding base facts is therefore recursive.  

If such a query is processed in a top-down fashion, i.e. driven by the aggregate, in a 
sparse cube millions of non-existent values will be individually looked up, making 
online rule computation practically infeasible. An alternative (“bottom-up”) approach 
would be an index which points, for each rule, to only the existent facts needed for the 
computation of that rule. In practice, this method is usually much faster, but it 
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requires extra memory for the index and introduces some problems if non-existent 
(i.e. zero-value) cells also contribute to the rule result.  

4.1   Finding and Matching Input Facts 

We have designed a data-parallel algorithm for computing such rules efficiently on the 
GPU data structure discussed above. As a simple example, we use the following rule: 

D1[0] = D1[1] ○ D1[2]. 

Recall that the element with ID 0 in dimension 1 should be calculated as a function of 
elements 1 and 2 in the same dimension, where the function is specified by the 
operator ○. In order to calculate an aggregate query over many cells whose D1 
coordinate is 0, we have to find the corresponding facts with 1 and 2 in that 
coordinate, match them, and calculate the result. On the GPU, this can be done in 
parallel for many facts at a time. 

As illustrated by the vertical arrows in Figure 3 (left), matching D1[1] and D1[2] 
cells are those that share the same dimension indexes for all dimensions but D1.  

The task of finding matching D1[1] and D1[2] facts that need to be processed 
together is non-trivial, as the fact table is assumed to be unordered. Figure 3 (right) 
displays the corresponding fact table of the data cube on the left.  

It is obvious that no information can be gained on where to find a matching fact for 
an arbitrarily chosen fact. Moreover, it is even uncertain if such a matching fact exists 
in the fact table at all, due to cube sparsity. In general, if either DR[a] or DR[b] does 
not have a matching fact we label them single facts. When a single fact is found, it 
depends on the arithmetic operation how this fact is processed. Since a non-existing 
fact is regarded to have the value zero, in the case of addition a single fact already 
provides the result of the operation. In many other cases, like multiplication, the result 
of an operation involving only a single fact is defined to be zero. 

Searching matching facts in the fact table implies that for each DR[a] and DR[b] 
fact the whole fact table needs to be scanned for finding the matching fact or for 
validating the non-existence of such a fact. Clearly, an unsorted fact table is an 
inappropriate data structure regarding the search of facts.  

However, we cannot ensure that the fact table is always sorted, especially when 
frequent updates to the cube occur, as is common in interactive planning scenarios. 
Our approach therefore utilizes a series of filters and only (re-)sorts small parts of the 
fact table when it is required. 
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Fig. 3. Matching facts in data cube and in a fact table 
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4.2   A Massively Parallel Solution 

The basic algorithm for computing a binary rule operation on the GPU consists of 
four parallel computation steps graphically represented in Figure 4. 

1. Filter all involved facts (as given by the right-hand side of the rule) and copy them 
to separate arrays A and B. 

2. Sort the B array in lexicographic order (yielding B'). 
3. Do a binary search for all A facts (in parallel) in B' to find matching and single 

facts. Perform the arithmetic operation as defined in the rule and prepare the 
following copy step. 

4. Copy all result facts to array C. 

In the following these steps are explained in more detail. 
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Fig. 4. Basic rule computation steps 

Finding Relevant Facts (Filter Step). As a first step, all facts required for computing 
the rule result must be found and collected. In order to achieve this, we use a variant 
of stream compaction, a standard building block in parallel computing, which, from a 
given set of data, returns all data points satisfying a specified condition. In the OLAP 
case, the condition is specified by a query range and the rule definition. In our 
example, it would consist of the given query range in all dimensions except D1. In D1, 
the original coordinate (the left-hand side of the rule; in our case, 0) is replaced by 
each of the coordinates on the right-hand side (here, 1 or 2).  

The basic parallel algorithm for extracting the D1[1] facts works as follows. For 
each entry of the fact table a CUDA thread is started that checks for its assigned fact 
whether the element ID of dimension D1 is 1. If such a fact is found, a flag is set at the 
corresponding position in the flag array F as depicted in Figure 5.  
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Fig. 5. Finding facts with D1 = 1 
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In order to copy the flagged facts to array A, each flagged fact must be assigned a 
position in A such that the copy operation can be performed in parallel. Determining 
the positions is done by computing the parallel prefix sum of F, which is stored in P. 
Our CUDA implementation is based on the parallel algorithms as proposed in [9] and 
[11]. 

The same method is applied for finding the D1[2] facts and copying them into the 
array B. Hence, the result of the first step consists of two subsets of the fact table (one 
for each of the operands of the rule function). Together, those subsets consist of all 
relevant facts required for the rule calculation.  

Sorting Step. If the fact table has not been sorted already, sort B in lexicographic 
order (i.e. within each dimension in a predefined nested order of dimensions), such 
that a binary search can be performed on the sorted table B'. We use a fast CUDA 
implementation of radix sort [17] as the basis for our sorting algorithm. 

Search, Process and Flag. In order to find matches we replace for each A and B' fact 
in their rule dimension the element ID with the element ID as given in the left-hand 
side of the rule. All A facts then search (in parallel) their own coordinate index in B'. 
We base our binary search kernel on the parallel GPU algorithm presented in [6]. If 
the B fact is found the rule operation can be performed on the values and we store the 
result of the operation in the value of the B' fact, yielding a modified table B''. 
Moreover, a flag is set at the corresponding position in a temporary array FB'' to keep 
track of all computed facts such that after this step we can distinguish between B facts 
that had a matching A fact (flagged) and single B facts without an A counterpart 
(unflagged). Conversely, single A facts are flagged in a temporary array FA after an 
unsuccessful search in B'.  

Copy. As we have replaced the element IDs of the rule dimension for all A and B 
facts in the previous step, we get the result array C by simply copying subsets of A 
and B'' to C. The decision which elements to copy solely depends on the rule 
operation. In an operation like addition in which single facts contribute to the result, 
we copy all single (flagged) A facts and all B'' facts to C. (For subtraction we 
basically do the same, but additionally have to multiply each single B'' fact by -1, as it 
stands on the right side of the operator). For operations like multiplication we can 
neglect all single facts, such that we only need to copy all flagged B'' facts.  

As a result, array C contains all rule results relevant for the given query based on 
the existing facts in the database. These can now be used for any aggregations 
required in the view.  

Special Cases. The above approach works only if the result value of a rule will 
always be 0 when all input values are 0. However, rules like DR[0] = DR[1] + c (where 
c ≠ 0) will not give a correct result for the 0 values of DR[1], as these facts are not 
represented in the table and thus will never be “seen” by the rule.  

This problem can be solved by assigning a default value to each such rule, which 
will be selected for each non-existing result. Since the overall number of values in a 
cube query is known (by the size of the query region) and the number of existing 
values is given by the size of array C, the number of records with the default value 
can easily be deduced and incorporated in an aggregation.  
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5   Utilizing Multiple GPUs 

In order to handle very large data volumes we have extended our algorithm such that 
it runs on multiple GPUs in parallel utilizing the GPU RAM of all devices. The basic 
idea is to distribute a fact table equally over all N devices (graphics cards) and 
execute, in parallel, an augmented version of the presented algorithm on each card. As 
a consequence the memory capacity can be increased by simply adding more devices. 
The distribution of the fact table is depicted in Figure 6.  
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Fig. 6. Distributing the fact table 

There are two options of getting our approach to work with multiple GPUs. The 
most desirable option would be to avoid device-to-device data transfer altogether by a 
suitable distribution of the data across devices. We will show in the next subsection 
that this is indeed possible within certain limitations. For all other cases, the basic 
algorithm of the last section needs to be adapted to the new data organization, which 
is described in section 5.2. 

5.1   Data Distribution 

In order to avoid data transfer between GPUs for rule calculation, it is necessary to 
distribute the data across the devices in such a way that the matching cells for each 
rule calculation will be located on the same device. Note that in the general case, 
especially in the presence of multiple rules, it may be impossible to achieve such a 
distribution for all rules simultaneously. Nevertheless, any reduction of unnecessary 
data transfer is desirable. 

Since data distribution is carried out on server startup (and later on during all 
updates of the cube), a preprocessing step of the data is required. As mentioned 
before, the GPU data storage we use supports sorting of the cube data. The default 
sorting order is a nested sorting determined by a given order of the dimensions, 
D1, D2, …, Dd. This dimension ordering is completely arbitrary and can be changed 
without affecting the correctness or performance of the algorithms.  

Since each rule is usually defined only on a (small) subset of dimensions and 
works across all other dimensions equally, we propose a simple reordering of the 
dimensions to ensure matching cells will be on the same device. 
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Consider the following simple example of a cube with 3 dimensions, 2 rules and a 
hardware system with k GPUs: 

D1 (“Years”): '2009', '2010', '2011', '2012' 
D2 (“Products”): 'Product 1', 'Product 2', …, 'Product N' 
D3 (“Datatypes”): 'Actual', 'Budget', 'Overhead%' 

R1: ['2012']  =  MAX(['2011'],[‘2010’],['2009']}) 
R2: ['Overhead%']  =  100 * ['Actual'] / ['Budget']  

The main idea is to split the cube data (for distributing them to the k devices) solely 
according to the “Products” dimension (which is not manipulated by any of the rules), 
meaning that the parts we create all consist of “slices” (sub-cubes) containing all data 
for one or more products. If we assume that for each product there are (roughly) the 
same number of filled base cells in the cube, we will simply divide the “Products” 
dimension into k equal portions each containing x = N/k elements, and put all data for 
the first x products on GPU0, the next x on GPU1, and so on. If the data are skewed 
along the “Product” dimension, we will have to create slices of possibly unequal 
width to make their actual sizes (i.e. the number of existing base cells for the 
respective range of product elements) as equal as possible.  

Since for any single base rule computation the source base cells must come from 
the same product, we can do each of these computations using data residing on the 
same GPU and will never have to move base data between devices. This is because 
the data are split along a dimension that is not targeted in any of the rules. Whenever 
a '2011' or 'Overhead%' cell is calculated, the matching pair of base cells for one 
computation must belong to the same product (because some element in that 
dimension has to be chosen in the query) and hence must also be on the same GPU. 

The necessary condition for this approach to work is that there is at least one 
dimension in the cube not targeted by any rule. Furthermore, it must be possible to 
split the cube along element boundaries in this dimension such that k roughly equally 
sized parts are created. While this may be true for the majority of real-life OLAP 
cubes, it cannot be always guaranteed. Therefore, we also need to be able to calculate 
rules across multiple GPUs. 

5.2   Augmented Algorithm 

Unfortunately, the extension of the basic rule computation in the general case of 
distributed facts over multiple GPUs is not as straightforward as for the basic 
aggregation approach. In particular, the task of finding matching facts, and 
determining single facts becomes more complicated on distributed data. For a better 
understanding let us consider the constellation as shown in Figure 7. 
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Fig. 7. Distributed matching facts 
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If we execute the basic algorithm on each of the devices we have to expect to get, 
as a result of the first step, some facts in A0 that have their matching fact on another 
GPU, e.g. in B1. As each algorithm can only see the data stored on its own assigned 
device, no matching fact would be found in this case and the algorithm would treat 
the fact as a single fact, thereby producing incorrect results.  

The first two steps of the basic algorithm remain unchanged, such that as a result of 
the filter step we get on device i the arrays Ai and Bi holding facts that have been 
filtered out of the partial fact table FTi,. After the sort step we have the sorted Bi-facts 
in Bi'. This is shown in the center column of Figure 8.  
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Fig. 8. Preparation of A on each device 

Before the binary search is carried out, we insert a new step in which we distribute 
the complete A array to each device. We do this by copying in parallel the Ai part of 
each GPU to all other devices. The resulting configuration can be seen on the left 
hand side of Figure 9.  
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We continue with the parallel binary search of all A facts in Bi' on device i (done on 
all devices at the same time). If for an A fact we find a matching fact in Bi' we process 
the facts normally. As on each device all A facts search on the Bi' facts it is guaranteed 
that all matching facts are found (each match on exactly one of the devices). 

However, if no match is found on device i we cannot directly flag the involved A 
fact as single because it can possibly have a match on another device. Although we 
still flag it, we understand the flagged facts not as single facts, but as single fact 
candidates. Only if an A fact is a single fact candidate on all devices it really is a 
single fact. As shown in Figure 9 for each part Aj of A on device i we store the single-
candidate flags in the array SAj,i. We then copy to device i the respective flag array SAi,j 
for Ai from all other devices j (j ≠ i) such that device i can determine the single Ai 
facts by ANDing all single-candidate flags for each Ai fact. Hence, in the end each 
device has determined the single facts of its original part of the A facts. 

It remains to copy, on each device i, the Ai and Bi values to a result array Ci just 
like in the basic algorithm. All required aggregations can then be performed in 
parallel with the multi-GPU aggregation algorithm (cf. section 3.2). 

6   Performance Evaluation 

In order to assess the performance of our GPU rule evaluation method, we have 
conducted a first set of tests, which confirms the feasibility and usefulness of the 
approach, though they are certainly not conclusive (only the single-GPU algorithm 
has been tested so far). The tests were carried out on a realistic data set (a 7-
dimensional OLAP cube with roughly 3 million filled cells), but with “artificial” rules 
in order to better control the setting. The rule was a simple division, computing the 
deviation of actual sales figures from budgeted ones. The GPU used was an Nvidia 
Tesla C1060 computing processor with 4 GB of memory (although the cube also fits 
easily in the memory of a standard consumer graphics card).  

Table 1 shows the timings for complete rule computation (i.e. rule operation on 
base facts followed by aggregation) on CPU and GPU, depending on the number of 
facts participating in the computation, i.e. used as input for the rule operation. 

Table 1.  Performance of rule processing 

#Facts in Rule CPU Time CPU Time (Index) GPU Time Speedup 

0.51 million 2655 ms 271 ms 17 ms 156x / 16x 

0.77 million 7922 ms 829 ms 21 ms 377x / 39x 

1.5 million 15890 ms 1527 ms 34 ms 467x / 45x 

3.0 million 31610 ms 2954 ms 54 ms 585x / 55x 

Some explanation is required for the CPU times. We have integrated our GPU 
algorithm in the open-source MOLAP server Palo [8]. This software offers two 
(CPU-based) ways for calculating rules: The default algorithm is driven by the 
aggregation to be computed and recursively searches all base cells involved in the 
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rule. Since sparsity is not taken into account, those searches include empty (non-
existing) cells, which explains the long CPU overall times, taking several seconds. In 
addition, Palo allows the use of so-called “markers” to handle cube sparsity by adding 
a special rule index which boosts the performance by roughly factor 10, but comes at 
the cost of increased memory usage. Our GPU approach computes the same rules in 
17-54 milliseconds, without any additional index. Though the results are preliminary, 
they show that the GPU approach is very promising, as the whole computation 
remains well within a time suitable for real-time interactive OLAP analysis.  

7   Conclusions and Future Work 

We have presented a massively parallel method for online computing of advanced 
OLAP rules, using GPU hardware as coprocessing units. Our algorithms outperform 
comparable sequential computations by several orders of magnitude and do not 
require any extra index.  

We have extended the approach to multi-GPU systems, which can be used in order 
to accommodate larger data volumes. The problem of inter-device communication is 
solved with relatively moderate transfer costs.  

Next steps include the extension of the approach to more complex rules, which can 
be broken down into smaller parts and handled by the simpler cases presented here. In 
addition, thorough performance testing is required, in particular for the multi-GPU 
approach, and a comparison with other OLAP systems supporting the rules concept. 

Future research could address the extension to clusters of GPU servers, which have 
recently been proposed as inexpensive high-performance computers. 
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Abstract. The random read efficiency of flash memory, combined with
its growing density and dropping price, make it well-suited for use as a
read cache. We explore how a system can use flash memory as a cache
layer between the main memory buffer pool and the magnetic disk. We
study the problem of deciding which data pages to cache on flash and
propose alternatives that serve different purposes. We give an analytical
model to decide the optimal caching scheme for any workload, taking
into account the physical properties of the flash disk used. We discuss
implementation issues such as the effect of the flash cache block size
on performance. Our experimental evaluation shows that questions on
systems with flash-resident caches cannot be given universal answers that
hold across all flash disks and workloads. Rather, our cost model should
be applied per case to provide an optimal setup with confidence.

1 Introduction

With growing capacities, improved i/o performance, and constantly dropping
prices, flash disks, or solid-state drives (ssds), are now a viable storage option
not only in personal computing, but also in the server market. In some cases,
ssds have completely replaced magnetic hard-disk drives (hdds) in the enter-
prise [13]; elsewhere, ssds have been used along with hdds to boost database
performance [11]. Our work stems from the low latency and high random read
efficiency of ssds. By comparing the price and performance characteristics of
ssds to those of dram and hdds, it follows that an ssd is ideal as a cache layer
between the main memory and the hdd; this implies a 3-tier memory hierarchy.
We study various aspects of such a system and provide analytical tools that aid
the designer to decide with high confidence the optimal system configuration.

ssds are arrays of flash memory chips packaged with a controller in a single
enclosure that provides a common interface (e.g., sata). Applications targeting
ssds should account for the i/o characteristics of flash memory; prominently,
no mechanical moving parts and, thus, no mechanical latency. Access latency
is irrespective of the access pattern and orders of magnitude less than that of
hdds. The electrical properties of flash memory make reading the value of a bit
faster than changing it. To aggravate matters for writes, to update an already
written sector one needs to first erase it. Erasures are carried out in erase units,
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i.e., blocks typically consisting of 256 sectors. Each erasure is two orders of
magnitude more expensive than a read or a write, so updating a sector is costly.
The erase-before-write limitation of ssds means that on-disk caches can do little
to help. Thus, writes perform poorly. The random read efficiency of flash is its
greatest advantage, while its random write inefficiency is its greatest bottleneck.

When designing a system with a 3-tier memory hierarchy like the one we
discuss, a salient decision is determining the sizes of the main memory and the
flash disk caches. As of February 2011, the cost of dram is about �16/GB; the
cost of ssds varies from about �1.6/GB for the low-performance ones [17], to
about �8/GB for the high-performance consumer ssds [8], and to about �30/GB
for enterprise-level solutions [6]. The performance of ssds in this price range
varies by two orders of magnitude for reads and four orders of magnitude for
random writes. Considering the price/performance trade-off for the two types of
cache, and given a specific budget, minimizing the ratio for main memory and
ssd capacities is not straightforward. Should an ssd be used as a cache, or is it
better to invest in dram memory? Should one buy a small but fast ssd or a large
but slow one? Such questions are crucial for performance and cannot be given
universal answers. If one can buy enough dram to fit the working set of the
workload, then this is the way to go. Similarly, for write-intensive workloads one
should invest in a high-performance ssd to use as a cache, instead of a cheaper
one. However, it is not safe to decide based on intuition: with the characteristics
of ssds constantly changing, decisions should constantly be re-evaluated.

Next, the designer should decide which data will be cached on the flash disk.
Contrary to buffering in main memory, pages do not need to be brought into
the flash cache before being processed. That is, a page may go directly from
the magnetic disk to the memory and may well never be written to flash. Thus,
deciding how data flows from one level of the memory hierarchy to the others is
not straightforward. A set of rules dictates the flow of data pages across levels:
we term this a page flow scheme. A related issue is how the workload of a page
affects the decision about caching the page or not. For instance, in the zfs
filesystem [18] dirty pages are never cached on flash. From an implementation
perspective, questions arise about the directory of pages cached on the flash
disk and the optimal page size to use on flash. We show why these questions
are crucial and provide the tools to address them. Our proposals and results are
independent of the page replacement algorithm used by either cache.

Contributions and Organization. We present how an ssd can efficiently act
as a page cache between the main memory and the hdd. Our contributions are:

– We study the problem of deciding which data should be placed in the flash
cache of a system. We identify three invariants for the sets of pages cached either
in main memory or on flash. For each invariant, the flow of pages between levels
of the memory hierarchy is different. We present the page flow scheme of each
invariant and an analytical model of the i/o cost it incurs (Section 3).

– We discuss several implementation issues that arise when using a flash disk
as a cache: (a) the page directory for the cache, (b) the size of flash pages, and
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(c) the caching only of pages that satisfy specific predicates; we show the corre-
lation between each alternative and the properties of the flash disk (Section 4).

– We have implemented and evaluated our techniques. Our results show that
questions on flash-resident caches cannot be given answers with confidence, un-
less one uses our cost model on a per-case basis (Section 5).

2 Related Work

The main problem of flash memory is its random-write inefficiency due to its
erase-before-write limitation. In [4] the authors study different write patterns
on ssds. They argue that (a) latency greatly affects performance, (b) i/o in
larger blocks can substantially improve random writes, (c) i/o blocks should be
aligned to flash pages, and (d) if random writes exhibit spatial locality they can
be performed almost as efficiently as sequential ones. The authors also point out
that ssds are more complex than “bare” flash chips. This is due to the on-disk
dram and controllers of ssds, which mainly aim to improve random writes. To
that end, they employ parallelism when accessing flash chips along with elaborate
Flash Translation Layer (ftl) algorithms (see also [1,3,5,10]).

To improve write efficiency in flash-based databases, [13] proposes in-page
logging (ipl): data changes are separately logged and each data page and its
log records are in the same erase unit. When out of room, log records and data
pages are merged into a new erase unit. Simulation shows that ipl substantially
improves performance. In [16] the authors argue that for flash writes one should
avoid in-place updates and sub-block deletions, while random writes should be
replaced with semi-random ones; blocks can be written to in any order, but
sectors belonging to the same block are written sequentially from the start of
the block. The results show these techniques boost random write performance.
In [11] the authors study systems equipped with both an ssd and an hdd and
propose placing read-intensive data pages on flash and update-intensive pages
on the magnetic disk, thus alleviating the high cost of random flash writes.

When the ssd is used for persistent storage bplru has been proposed as a
replacement policy for the on-disk cache [9]. The buffer is treated as a write cache
and ram buffers are grouped in blocks equal in size to the flash erase unit; page
replacement is performed at erase unit granularity (using lru). If not all sectors
of a dirty victim page are present in memory, the missing ones are read from
disk so that the whole block can be written to a new flash location without the
need for an in-place update. Additionally, a block that was written sequentially
is moved to the tail of the lru list and becomes the next victim. Evaluation
shows this technique to be very promising. The authors of [19] propose that the
buffer cache choose for replacement a clean page over a dirty one thus trading
writes for reads. This is generalized in [11] when the buffer pool holds pages
from both the ssd and the hdd. Not only the dirtyness of the page, but also its
access history and the read/write costs are considered when choosing a victim.

In [15] the authors propose an offline-only tool that uses multiple metrics, e.g.,
performance or energy efficiency, to decide the optimal storage configuration



156 I. Koltsidas and S.D. Viglas

for a workload. The tool does not address the relationship between the data
cached in flash and in ram. Our proposals go beyond the offline choice of the
optimal hardware, to the online decision of which data should be cached in
flash with respect to what is cached in ram. Not strictly database-related, is
the zfs filesystem [14,18]. The ssd acts as a cache for the hdd to improve the
performance of random read workloads. There is no eviction from main memory
to the ssd. The flash cache is asynchronously filled with clean pages only, thereby
avoiding write latencies on main memory evictions. Our work is an analytical
study of the behavior of flash caches; the techniques of zfs are complementary.

3 Page Flow Schemes

We describe page flow schemes for systems employing an ssd as a cache between
the main memory and the hdd. The schemes are independent of the replacement
policies used by the main memory buffer pool and by the page cache on flash.

3.1 Problem Statement

Consider a database, or any other data processing system, with three data stor-
age and staging components: (a) ram memory (e.g., dram chips), (b) one or
more ssds, and (c) persistent storage, e.g., a single hdd, or a disk array. Data
processing requires demand paging: on referencing, pages are brought into main
memory before being processed. Such a system is shown in Fig. 1. We refer to
main memory as ram and to the main memory buffer pool as ram cache. We
use flash to refer to the system’s ssd(s) used as a page cache (the on-flash
cache is termed flash cache); hdd is the underlying long-term storage.

Magnetic Disk(s)

Flash Disk

Main Memory

User-Level Page I/O

Replacement 
Policy

Replacement 
Policy

Flash Cache
Page

Directory

Fig. 1. An overview of our system

The key decision for a page cache is which
pages will be cached; how long pages are
cached for is decided by the replacement pol-
icy, which we do not consider. For a system
of only a ram cache and an hdd, the for-
mer decision is easy: demand paging requires
all referenced pages be written to the ram
cache. If there is an additional flash cache
there is no such requirement. To reduce i/o
to/from the hdd, the sensible choice is to
store in the flash cache the “hot” portion
of the dataset that cannot fit in ram. Let
Pram(t) be the set of pages stored in the ram
cache at time t, and Pflash(t) be the set of pages in the flash cache (for all prac-
tical cases, |Pram(t)| < |Pflash(t)|). We identify three invariants:
1. ∀t Pram(t)

⋂
Pflash(t) = Pram(t): Whenever a page is in ram it is also cached

in flash, in analogy to the inclusive memory hierarchies of cpus.
2. ∀t Pram(t)

⋂
Pflash(t) = ∅: No page is stored in both ram and flash at any

time. A page brought from flash to ram is removed from flash (and vice
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versa). Specifically, a ram victim is stored in the frame of the page hit on
flash, i.e., a ram page is swapped with a flash page.

3. ∀t Pram(t)
⋂

Pflash(t) ⊆ Pram(t): A page in ram may or may not be cached
in flash, depending on user-set criteria or the current workload.

Enforcing any one of the invariants results in a different page flow scheme across
the levels of the memory hierarchy. Each scheme incurs a different i/o cost for
a given workload. We detail the schemes and model their i/o costs. The ram or
flash cache page replacement policies are orthogonal to deciding which pages
should be cached where; our schemes can be used with any policy.

3.2 The Inclusive Scheme

Under the inclusive scheme, any page cached in ram is also cached in flash. To
fetch a page pg under inclusive we use Alg. 1. We look up pg in the ram cache
directory; if pg is found it is served in-memory. Else, we bring it in ram and
evict a page vr if memory is full. Given the invariant, vr is also cached in flash;
it is written back only if dirty. We look up pg in the flash cache directory and,
if pg is there, we read it and put it in the ram cache; else, the page is read from
hdd, and written to the flash and ram caches. If the flash cache is full, a
page vf is evicted; if dirty, it is written to hdd. Since |Pram(t)| < |Pflash(t)|, vf
will not exist in ram if both caches use the same replacement policy; otherwise,
the flash replacement policy must ensure that a page in ram is never evicted.

Let hr, mr, hf and mf respectively be the total number of ram hits, ram
misses, flash hits and flash misses incurred by the workload. Let FR, FW ,
DR, DW be the average cost of a flash read or write, and an hdd read or write,
respectively. These include the cost of writing the page to or reading the page
from ram. Consider the probability that a page in ram is dirty before its eviction
and let this probability be pd. Let Rram be the cost of running the replacement
algorithm for the ram cache and Rflash be the corresponding cost for the flash
cache. We assume constant time replacement algorithms, i.e., Rram and Rflash

are negligible; still, we include them in the cost formulas for completeness.

Algorithm 1. inclusive

if pg in ram cache then return pg;1
else if pg in flash cache then2

Evict victim page vr from ram;3
Write vr to flash, iff it is dirty;4
Read pg from flash;5
return pg;6

else7
Evict victim page vr from ram;8
Write vr to flash, iff it is dirty;9
Evict victim page vf from flash;10
Write vf to hdd, iff it is dirty;11
Read pg from hdd;12
Write pg to flash;13
return pg;14

Algorithm 2. exclusive

if pg in ram cache then return pg;1
else if pg in flash cache then2

Read pg from flash;3
Pick a victim page vr from ram;4
Replace pg with vr on flash;5
return pg;6

else7
Evict victim page vf from flash;8
Write vf to hdd, iff it is dirty;9
Evict victim page vr from ram;10
Write vr to flash;11
Read pg from hdd;12
return pg;13
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A ram hit incurs no i/o. On a ram miss either a flash hit or a flash miss
occurs (i.e., mr = hf +mf ). For a flash hit, a page is evicted from ram with
cost Rram + pdFW and a page is read from flash with cost FR. On a flash
miss, a ram page is evicted with cost Rram + pdFW ; a flash page is evicted
with cost Rflash + pdDW and the referenced page is read from disk and written
to flash, with cost DR + FW . The cost C1 of inclusive is:

C1 = hf (FR +Rram + pdFW ) +mf (Rram + pdFW +Rflash + pdDW +DR + FW )

⇒ C1 = hfFR +mr(Rram + pdFW )) +mf (Rflash + pdDW +DR + FW )

If the ram and flash page directories are stored in-memory for both caches,
the cost of a lookup or an update is O(1) for computationally cheap replacement
policies like lru. However, the page directory of the flash cache may require
substantial memory. When memory is limited it may be better to store the flash
directory on flash itself. We can similarly account for the directory costs; due
to lack of space we omit the details here, but present them thoroughly in [12].

3.3 The Exclusive Scheme

The exclusive scheme enforces Invariant 2: the set of pages cached in ram and
the set of pages cached in flash are disjoint. The exclusive algorithm for fetching
a page is given in Alg. 2. ram hits are treated the same as for inclusive. On a
ram miss, we look up pg in the flash cache directory; if found, the page is read
from flash. If the ram cache is full, a page is evicted from ram. The victim is
selected by the replacement policy and written to flash (whether it is dirty or
not); the referenced page is deleted from flash and inserted in ram. Effectively,
we swap the on-flash referenced page with the ram victim. For a flash miss,
the ram victim is written to flash and the referenced page is read from the
hdd into main memory. If the flash cache is full we evict a page from flash.

There is no i/o for a ram hit. A ram miss results in either a flash hit or a
flash miss. On a flash hit the cost of evicting from ram is Rram + FW . The
referenced page is read from flash with cost FR and the victim page is written
to flash with cost FW . On a flash miss, flash eviction costs Rflash + pdDW

on top of the RRAM + FW cost of evicting from the ram cache; reading the
referenced page from hdd adds a cost of DR. The cost C2 of exclusive is:

C2 = hf (Rram + FR + FW ) +mf (Rram + FW +Rflash + pdDW +DR)

3.4 The Lazy Scheme

The lazy scheme enforces Invariant 3 by caching an arbitrary set of pages in
flash. The system decides if a page will be cached in flash when it evicts it
from ram, i.e., after there is an indication for the workload of the page. The
algorithm is shown in Alg. 3 where we assume that a ram victim is always
written to flash and stays there until evicted by the flash replacement policy.
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A page is served in-memory if found
in ram. Otherwise, we look it up in the
flash directory. On a flash hit, the
page is read from flash (and the direc-
tory’s bookkeeping is updated). If the
ram cache is full, a victim is evicted
by the ram replacement policy. If the
victim is also in flash, it is written
back only if it is dirty. If not, a page is
evicted from flash (and written back
to hdd) to make room in flash for the
ram victim. On a flash miss, a page
is evicted from ram and written to the
flash cache, as for a flash hit. The
referenced page is read from hdd and
brought in main memory. Note that one
can apply any predicate to decide if the
page should be cached in flash or not.
We discuss alternatives later on.

Algorithm 3. lazy

if pg in ram cache then return pg;1
else if pg in flash cache then2

Read pg from flash;3
Evict victim page vr from ram;4
if vr in flash cache then5

Write vr to flash, iff it is dirty;6
else7

Evict victim page vf from flash;8
Write vf to hdd, iff it is dirty;9
Write vr to flash;10
return pg;11

else12
Evict victim page vr from ram;13
if vr in flash cache then14

Write vr to flash, iff it is dirty;15
else16

Evict victim page vf from flash;17
Write vf to hdd, iff it is dirty;18
Write vr to flash;19
Read pg from hdd into ram;20
return pg;21

Consider now the cost of the lazy scheme. A main memory victim may or may
not exist in the flash cache. Let the probability of a ram victim being on flash
be q. The cost CV

3 for a ram victim (i.e., Lines 5-11, 14-20) equals Rram+pdFW

if the page is in flash and Rram +Rflash + pdDW + FW otherwise. Therefore:
CV

3 = Rram+ qpdFW +(1− q)(Rflash+pdDW +FW ). For a flash hit the cost is
FR+CV

3 and for a a flash miss the cost is CV
3 +DR. The cost of this scheme is

therefore: C3 = hf(C
V
3 +FR)+mf(C

V
3 +DR) = (hf +mf)C

V
3 +hfFR+mfDR.

Recall (Section 3.2) that hf and mf are the total hits and misses for pages
of the workload. Thus, lookups in the flash index for the ram victim are not
accounted for by hf and mf . The probability of the ram victim being in flash
is expected to be equal to the probability of any referenced page being in flash:
it does not depend on whether the looked up page was in ram at the time of
the lookup. Therefore, q = hf/hf + mf and 1 − q = mf/hf + mf , giving: CV

3 =
Rram + (hf/hf + mf) pdFW + (mf/hf + mf) (Rflash + pdDW + FW ). Then:

C3 = (hf +mf )Rram + hfpdFW + hfFR +mf (Rflash + pdDW + FW ) +mfDR

⇒ C3 = hf (Rram + pdFW + FR) +mf (Rram +Rflash + pdDW +DR + FW )

Various criteria can be applied to decide whether a ram victim page should be
cached in flash. For instance, flash disks that are poor in random writes can
benefit from caching only clean pages (see also Section 5.6). Similarly, the access
history for a flash page can be maintained by tracking its hits, or the number of
times it has been dirtied. The system could then maintain a set of the f hottest
pages, where f is the capacity of flash in pages. Only these f pages will be
cached on flash, thus implementing a frequency-based replacement policy. One
may also cache the f pages that have the most read-intensive workload as in [11].
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These options can even be combined; however, we will not study them further
here as they assume or define some aspects of the cache replacement policy.

3.5 Comparison

We compare the three schemes based on their i/o costs. We assume (for now)
that the flash cache directory is stored in main memory and do not consider
directory maintenance costs. Given the formulas for C1, C2, and C3, one might
factor out hfFR+mf(Rflash+FW+DR)+mrRram. However, this falsely assumes
that, for a fixed workload, hf , mf remain fixed for all schemes.

Assume that a workload is executed three times, once with each scheme.
Throughout, the ram and flash replacement policies are the same. Also, assume
a stack replacement algorithm (not a fifo one), i.e., one that does not exhibit
Belady’s anomaly [2]. The hit ratio of the cache grows with cache size (that
is, with the number of available frames). Let r, f be the maximum capacity, in
pages, of the ram and flash caches, respectively. We define the effective capacity
of a cache at level i as the number of pages cached at level i that are guaranteed
not to be cached at any level higher than i at the same time. The effective size
of the ram cache is er = r. For the flash cache, its effective size ef is equal to
the number of pages cached in flash that are not cached in ram at the same
time. For inclusive the effective size of the flash cache is e1f = f − r, while for

exclusive it is e2f = f . For lazy, the subset of flash pages also cached in ram

varies with the workload; however, the following always holds: f − r ≤ e3f ≤ f .
Observe that the flash cache hit ratio depends on the effective size of the

cache, not its capacity. Consider, e.g., inclusive: when it looks a page up in flash,
it is only likely to find the requested page in f−r pages; if the requested page was
any of the r pages cached in ram, no lookup in flash would be needed. Thus,
the hit ratio is a function of the replacement policy, the effective size of the cache,
and the workload. For a replacement policy Y and a workloadW , let the hit ratio
be H = H(Y,W, ef). Thus: H(Y,W, e1f) ≤ H(Y,W, e3f) ≤ H(Y,W, e2f). Taking

into account that hf = H · |W |, we have that: h1
f ≤ h3

f ≤ h2
f ⇒ m1

f ≥ m3
f ≥ m2

f

for the three algorithms, since mr = hf+mf . The effective size of the ram cache
is the same for all three schemes; the same applies for the ram hit ratio.

One can only model the hit ratio for a page replacement policy if the char-
acteristics of the workload are priorly known. Our evaluation shows that for a
given policy the hit ratio varies widely across workloads. In a real deployment,
where the characteristics of the reference pattern are not known a priori, one
cannot statically determine the optimal page flow scheme. Thus, we continuously
monitor the hit ratio with respect to the effective size of the flash cache and
accordingly adapt the page flow scheme. We keep track of flash hits and misses
and the rate at which pages are dirtied (pd). Based on the normalized read and
write costs for the ssd and the hdd, which are known or can be measured [11],
we periodically evaluate the cost formula for each scheme and adopt the one that
minimizes the total cost. In Section 5.7, we discuss workload characteristics by
which one can decide the optimal scheme statically and with confidence.
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4 Implementation Issues

One important decision is the location of the flash cache page directory. Let
b bytes be the size of a directory entry, B be the size of a page, Sr be the size
of ram, and Sf be the size of flash; the number of flash directory entries is
f = Sf/B. For an in-memory flash directory, Sr − bf bytes are left in main
memory for caching. So, Sr − bf/B + b pages are cached in ram. If all memory is
used for the ram cache it fits Sr/B + b pages. Given a replacement policy and
a workload, H (Y,W, Sr/B + b) ≤ H (Y,W, Sr − bf/B + b) holds. Our experiments
show a large difference between these hit ratios as the discrepancy between the
ram and flash sizes grows. Larger flash pages may alleviate the situation.

Using Larger Pages for Flash. Let Br and Bf be the ram and flash page
sizes respectively; br bytes are required for a ram directory entry and bf bytes
for a flash directory one. An entry holds, at least, the hdd offset of the page
(acting as its identifier), a pointer to the page in the cache (a main memory
pointer for a ram page, or a disk offset for the flash cache) and a dirtyness bit.
The replacement policy requires extra bytes for bookkeeping e.g., a pointer to
the next lru page, bits for pinning, mutexes for concurrency control, etc.; the
same applies for br, but we will not detail br as it is not our focus.

If Bf > Br, each flash page has Bf/Br ram pages; we refer to such flash
pages as blocks. All i/o between the ssd and the hdd is in blocks of Bf bytes,
while data movement from/to the ram cache is in pages of Br bytes. The
ram cache and all in-memory structures use the hdd offset δ of a page as
its universal identifier. The ram directory uses δ/Br as the page identifier; the
flash directory uses δ/Bf as the identifier of a block stored at δ on hdd.
Thus, log2 δ/Bf bits are required to identify a page in the flash directory.

. . . . . .

RAM

FLASH

HDD

offset: 987136 

id: 987136/4K = 241

id: 987136/16K = 60

offset in block: 

987136 mod 16K = 4096 bytes

Fig. 2. Using larger flash pages

By knowing the ram directory identifier
of a page, one can use Bf and Br to obtain
the identifier of the host flash block. Let
pr be a ram page of flash block pf . For
each reference to pr, we look it up in the
flash directory. If pf is there, then pr is
located at offset (prBr mod Bf ) in pf , at
location (prBr÷Bf). Else, pf is read from
hdd into flash and pr is computed the
same way. flash evictions take place with Bf granularity. The case for Br = 4kB
and Bf = 16kB is shown in Fig. 2.

If pr is evicted from ram to flash but pf is not cached in flash at that
time (i.e., under exclusive or lazy), writing page pr of block pf to flash is not
straightforward. A solution is to fetch pf from hdd into flash and overwrite its
pr page incurring one extra hdd read; we term this overwriting. When fetching
the whole block from the hdd, some pages of the block may already be cached
in ram, thus compromising Invariant 2 of exclusive. Under inclusive this never
arises: any page cached in ram will have its host flash block cached in flash.
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An alternative is to assign a block to pf on flash, invalidate all its pages but
pr, and overwrite pr. If block pf is later read from hdd, only the invalid pages
will be overwritten on flash; if it is written to hdd, only the valid pages will be
written. We term this technique invalidating. Except for a slight implementation
complexity the main drawback of this solution is that a large number of pages in
a flash block may become invalid and waste space. This is especially true if the
reference pattern exhibits poor spatial locality. A solution is for invalid pages not
to be stored on flash blocks, but only marked as invalid in the flash directory.

Directory sizes for various flash blocks sizes for a 128GB flash disk are shown
in Table 1. Using larger flash pages saves considerable memory, which can be
used for caching in ram to increase the ram hit ratio. Larger flash pages reduce
the paging granularity; so the flash hit ratio will drop, especially for workloads
with poor spatial locality (see Section 5.5). Writing to flash using a large block
size (e.g., 32kB or 64kB) increases bandwidth and random write efficiency [4].

Table 1. flash directory size

Flash page size overwriting invalidating

4kB 568MB N/A

8kB 280MB 284MB

16kB 138MB 142MB

32kB 68MB 72MB

64kB 33.5MB 37.5MB

128kB 16.5MB 20.5MB

Thus, large flash blocks not only shrink the flash
directory and increase ram hits, but also speed up
random writes to flash. An alternative is to store
the flash directory (or a part of it) in flash
instead of ram. Due to lack of space this is not
discussed here; more details can be found in [12].
How much flash? How much RAM? With-
out a flash cache, assume hr ram hits and mr

ram misses occur for a workload. The total cost C0 for this case is C0 =
mr(DR+pdDW ). One can simulate the cache behavior of a system with varying
ram and flash cache sizes (or even with no flash cache). By simulating the
workload for various cache sizes, we can collect values for hr, mr, hf , mf , and
pd. These values, along with the read/write costs of specific flash and magnetic
disks, can determine which storage/cache configuration is the most i/o-efficient
for workloads of the given type. The price-to-i/o-cost ratio for each case gives
the most cost-efficient solution. Alternatively, the 5-minute rule of [7] can deter-
mine the optimal memory and ssd capacities required, assuming prior workload
knowledge. Our cost formulas determine the type of ssd that gives the best
price/performance ratio for a type of workload. The decision for the size of the
main memory and the ssd is an offline one and optimized for specific workloads.
However, the optimal page flow scheme can be decided online, on a per-workload
basis, by periodically evaluating the cost formulas. Our proposals are also appli-
cable in dbmss that employ per-file/relation buffer management: by monitoring
the workload for each file and calculating the cost of each scheme, our model
may lead to different files being buffered using different schemes.

5 Experimental Study

We evaluated our algorithms under various workloads. Our system consists of
a main memory buffer pool for caching in ram, a page cache on an ssd, and
an hdd for persistency. Each page is identified by its hdd offset. The system was
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implemented in C++ and ran on an Intel Pentium 4 at 2.26GHz with 1.5GB of
main memory running Linux (2.6.26 kernel). We used two hdds and one ssd. Our
system and the os ran from one of the hdds, while the other (referred to as hdd
hereafter) was used to store the data. The hdd was a 300GB Maxtor 6L300R0

with 16MB of cache. The ssd was a 32GBmlc nand SamsungMCAQE32G5APP.
To eliminate os caching we used both media as raw devices.

The ssd we used has a poor write performance and is unsuitable as a cache.

Table 2. Flash disks considered

Disk Model 4kB Read IOPS 4kB Write IOPS �/GB

Samsung 2500 21 1.6

Intel X25-M 12000 592 8.1

Intel X25-E 35000 3300 20

Fusion ioDrive 102000 101000 30

Thus, we considered other ssds, bet-
ter suited for caching, by using their
i/o costs in the equations of Sec-
tion 3. We used published bench-
marks ([6,8,17]) about the efficiency
of each disk in iops. We present the
read/write costs of all considered ssds
in Table 2. Random read performance varied by up to two orders of magnitude
among disks, while random write performance varied by as much as four orders
of magnitude.

We used three different workloads. The first, termed irp, is an independent
reference pattern where all pages in the dataset have the same probability of
reference. We varied the probability of a page being read or written to and
created workloads of varying dirtyness ratios. For the second workload, referred
to as tpc-c, we ran the tpc-c benchmark on the postgresql dbms and collected
a trace of page references, which we translated into hdd offsets. We did the same
for the tpc-h benchmark to obtain the third workload. We report the results
of executing these workloads on our system after varying its parameters. In all
cases, the main memory page size was set to 4kB. For all experiments we used
lru as the page replacement policy (for both the ram and the flash caches).

5.1 Impact of Cache Size on Hit Ratio

We measured the effect of the size of a page cache on its hit ratio, i.e., how
H(Y,W, S) varies with S, the effective size of the cache, under lru. We ran the
three workloads for different page cache sizes; we report the hit ratio in Fig. 3.
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Fig. 3. Varying S in H(Y,W,S)

The x-axis is S as a percentage of the
size of the whole dataset. Throughout,
the hit ratio grows with S (see also Sec-
tion 3.5). The growth rate varies with
the workload: it is linear for irp and
non-linear for tpc-c and tpc-h. This
is due to both tpc-c and tpc-h having
working sets (of different sizes), while
irp does not. Observe that, apart from
H growing with S, one cannot make assumptions or draw conclusions that hold
for all workloads.
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5.2 Impact of FLASH Size on RAM Hit Ratio

In our system, the directory for the flash cache is stored in main memory.
Recall from Section 4 that as the size of the flash cache grows, the available main
memory for the ram cache shrinks and the ram hit ratio is expected to drop. To
show this, we grew the size of the flash cache (and thus the flash directory)
while keeping the size of the ram cache fixed, and measured the ram hit ratioH .
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Fig. 4. H/H′ for varying flash cache

We also ran the same workloads with no
flash cache (and thus all main memory
available to the ram cache) and mea-
sured the ram hit ratioH ′. In Fig. 4 we
show H/H′ for different sizes of flash
cache. The hit ratio drops linearly for
irp as it has no working set, and for
tpc-h as its working set always fits in
ram. For tpc-c the working set fits in

main memory for small flash sizes, but not for larger ones; thus, the ratio drops
quickly and the curve is the inverse of the tpc-c curve of Fig. 3. In all cases,
the main memory given to the flash index greatly affects the ram hit ratio.

5.3 Validation of the Cost Formulas
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Fig. 5. Validation of the cost model

We now verify the validity of our cost
model. We executed a synthetic irp
workload using the Samsung ssd and
measured the running time of each
scheme. We also used the cost formu-
las of Section 3 with the i/o costs for
the ssd and hdd to estimate the total
cost of each scheme. We plot the ratio
of the execution time for each physical
run over the cost projected by the formulas for that scheme in Fig. 5. The ratio
remains constant for all flash cache sizes. Also, this ratio remains the same
across page flow schemes, indicating the consistency of the model. The ratio
being 6 − 8% greater than 1 is due to our cost formulas not accounting for the
cache warm-up time. Our formulas assume that each ram miss results in a ram
eviction (and thus either a flash hit or a flash miss), which does not hold until
after the ram cache is full. The same holds for the warm-up time of the flash
cache. Although we can estimate after how many references each cache fills up
and adapt the formulas to account for this we chose not to do so for simplicity;
moreover, this cost is negligible for workloads of interest. Additionally, for very
small datasets the on-disk caches of flash and hdd affect their read/write costs.
For all real-world workloads, however, our formulas were accurate in their cost
estimation.
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(a) Flash hit ratios per scheme
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Fig. 6. Comparison of page flow schemes

5.4 Comparison of Page Flow Schemes

Flash Hit Ratio. We measured the flash hit ratio for each scheme and work-
load. We experimented with different ram and flash sizes obtaining similar
results; due to space limitations we only report in Fig. 6a the results for a flash
cache 6 times the size of the ram cache. All ratios are normalized by the hit ratio
of inclusive. As explained in Section 3.5, exclusive has the highest hit ratio for all
workloads and inclusive has the lowest. The hit ratio for lazy varies between the
two. However, the highest hit ratio for exclusive does entail a lower i/o cost.

Total I/O Cost. We ran tpc-h and tpc-c for a varying flash size and a
fixed ram size. We plotted the total i/o cost as calculated using the formulas
of Section 3 for different ssds. We first ran tpc-h with the flash cache size
varying from 5 to 40 times the size of the ram cache. The projected i/o cost of
the FusionIO ioDrive is shown in Fig. 6b. Here, exclusive outperforms the other
two for all flash cache sizes; we will see that this is not always the case. Note also
that increasing the size of the flash cache significantly benefits performance.

We then ran tpc-c for the same flash cache sizes and calculated the to-
tal cost based on the i/o costs of the Samsung disk; the results are shown in
Fig. 6c(i). The exclusive scheme is unsuitable in this case due to the disk’s dis-
proportionally high write cost (as for each ram eviction exclusive pays the cost of
a flash write). For inclusive and lazy, while their costs are similar for large flash
sizes, there is a performance gap for small flash sizes (or, big ram sizes).

We repeated the calculations for tpc-c, but for the Intel X25-E disk; the
results are shown in Fig. 6c(ii). When the flash cache is less than 15 times
the size of the ram cache, exclusive is the most efficient scheme. Its i/o cost
is up to 30% lower than that of inclusive and 14% lower than the i/o cost of
lazy. Conversely, for a flash cache size more than 35 times that of the ram
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cache, lazy is the optimal scheme with an i/o cost that is 16% lower than that
of exclusive. Therefore, even for the same flash disk and workload, the optimal
scheme changes with the ratio of the flash cache size over the ram cache size.

Next, we kept the flash and ram cache sizes fixed and ran tpc-c under each
scheme and calculated the total i/o cost for all disks. The results of Fig. 6d show
that the optimal algorithm differs for each disk. Lazy is optimal for the mlc disks
(Samsung and Intel X25-M), while exclusive is optimal for high-performing slc
devices (Intel X25-E and FusionIO). This confirms our hypothesis: no scheme is
optimal across all workloads and disks. Though inclusive appears never to per-
forms best, this is not the case if directory maintenance costs are also added [12].

5.5 Impact of Flash Cache Block Size

We then investigated how the flash block size affects performance. The ram
page size was always set to 4kB. We first varied the flash cache block size from
4kB to 128kB. For each block size we ran tpc-h and measured the flash hit ratio
and the total number of hdd reads, using the overwriting technique of Section 4:
upon page eviction from ram, if the host block is not on flash then the whole
block is brought from hdd to flash. We ran tpc-h under inclusive and lazy.
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In Fig. 7 we show each scheme’s
flash hit ratio (top graph) and
number of hdd reads (bottom
graph). For inclusive, before a page
is brought into ram its flash block is
written to the flash cache. Subse-
quent accesses to the block’s pages
will be served from flash. Thus,
inclusive’s hit ratio grows with the
block size and overwriting acts as a
prefetching mechanism, greatly af-
fected by locality of reference. For
lazy, a block is written to flash when
one of its ram pages is first evicted
from ram. Even for workloads with a high degree of locality, pages of the same
flash block will have most likely been read into ram before one of them is evicted
to flash. Thus, locality does not affect lazy as much for small block sizes. As
the block size grows, so does the granularity at which the replacement policy
tracks the reference pattern through access recency (or frequency). Thus, the
hit ratio drops (for inclusive this effect is cancelled by the effect of prefetching).
As shown in the bottom graph, lazy performs about twice as many hdd reads
as inclusive. This is not only due to its lower hit ratio: when a ram victim is
written to flash, its host block needs to be read from hdd if it is not cached
on flash. For inclusive, Invariant 1 guarantees that the host block of the page
is on flash.

Next, we gauged the performance of overwriting and invalidating under tpc-c
and tpc-h as we varied the flash block size from 4kB to 128kB; we used the
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lazy scheme in all cases. Let ho and hi be the hit ratios for overwriting and
invalidating. In the top graph of Fig. 8 we report the ratio λ = ho/hi for the two
workloads; in the bottom graph we show the corresponding ratio of hdd reads.
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For both workloads, overwriting had
a higher hit ratio than invalidat-
ing due to the decribed prefetching
effect. This was more evident in
tpc-h as it has a higher degree of
locality than tpc-c. As explained,
under the lazy scheme the hit ra-
tio for both overwriting and inval-
idating shrinks with finer grained
replacement (e.g., 4kB blocks).
Overwriting performed more hdd
reads than invalidating for both
workloads (between 1.3 to two times

as many hdd reads). For workloads with locality of reference, overwriting is ex-
pected to give a higher hit ratio than invalidating at the cost of extra hdd reads.
The optimal choice depends on the read efficiency of the ssd and the hdd.

5.6 Caching Only Clean Pages

Recall from Section 3 that, for the lazy scheme, one may apply any criterion
to decide if a ram victim page will be cached in flash or not. Dirty pages
cached in flash are more likely to result in writes to flash. Thus, if the ssd is
inefficient at random writes, it makes sense to restrict flash caching to clean
pages only. Other criteria can also be used, e.g., the update frequency of a page,
but we do not explore these further due to lack of space. We used irp workloads
with different dirtyness ratios, i.e., the probability of a page being dirtied on
each next reference. Each workload was executed using the lazy scheme twice:
once caching all ram victims on flash and once caching only the clean ones.
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We used the inefficient at random
writes Samsung disk and measured
the hit ratio for the flash cache and
the total execution time for vary-
ing dirtyness. In Fig. 9 we show
hit ratios (left graph) and execu-
tion times (right graph). The hit ra-
tio drops when caching only clean
pages, as some of the hot dirty pages
are evicted to hdd. For low dirty-
ness, the hit ratio drops gradually, as the hottest dirty pages fit in ram. For
dirtyness ratios greater than 0.7, the hit ratio drops substantially. However, the
execution time is less when caching only clean pages, due to the write inefficiency
of the ssd. For dirtyness ratios between 0.1 to 0.7 the running time remains the
same when caching only clean pages: the increased miss ratio is counterbalanced



168 I. Koltsidas and S.D. Viglas

by the savings of avoiding flash writes. For higher dirtyness ratios the hit ratio
drop results in a 10% increase in execution time.

5.7 Discussion

The i/o cost of a workload depends heavily on: (a) the workload itself, (b) the
page flow scheme, and (c) the i/o costs of the flash disk. One cannot confidently
decide the optimal scheme a priori without evaluating our cost formulas. For
instance, exclusive writes to flash once for each ram miss, regardless of the dirty-
ness of the victim page; inclusive and lazy do so only for dirty pages. Hence, for
write-intensive workloads, exclusive will perform worse, more so if the flash disk
is write-inefficient. Then, multiple flash writes can be avoided if only clean pages
are cached on flash, (see Section 5). For large ram cache sizes exclusive is likely
the best option: no page will be cached on both caches, saving space on flash.

The results verify that hit ratios alone do not fully describe the system’s i/o
efficiency. Recall Figures 6a and 6d: although exclusive has the highest hit ratio
for tpc-c, it is not optimal across all ssds in terms of the total i/o cost. This
holds for all workloads we have tested. Even for a specific workload and flash disk,
the optimal scheme changes for different flash/ram cache sizes (e.g., Fig. 6c).

6 Concluding Remarks

Low read latencies, growing capacities, and dropping cost, make ssds ideal for
caching data between the main memory and the hdd. We studied the salient
aspects of such a setup. We presented: (a) three invariants for the set of pages
cached on flash, (b) algorithmic schemes enforcing the invariants, and (c) an i/o-
based cost model for the performance of the algorithms. We studied problems
such as the optimal page size for a flash cache and how the size of the page
directory affects performance. We implemented our proposals and experimented
with flash-resident caches. We showed that there is no universally optimal design
for a flash cache. To make informed decisions, our analytical tools are necessary.
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Abstract. Snapshot isolation (SI) is a popular concurrency control pro-
tocol, but it permits non-serializable schedules that violate database in-
tegrity. The Serializable Snapshot Isolation (SSI) protocol ensures (view)
serializability by preventing pivot structures in SI schedules. In this pa-
per, we leverage the SSI approach and develop the Declarative Serializ-
able Snapshot Isolation (DSSI) protocol, an SI protocol that guarantees
serializable schedules. Our approach requires no analysis of application
programs or changes to the underlying DBMS. We present an implemen-
tation and prove that it ensures serializability.

1 Introduction

Snapshot Isolation (SI) [3] is a popular multiversion concurrency control (MVCC)
protocol, but it permits non-serializable schedules. Fekete et al. [9] showed that
every non-serializable SI schedule necessarily contains an access pattern with two
consecutive vulnerable edges (see Sec. 2.2), and Cahill et al. [5] presented the
Serializable Snapshot Isolation (SSI) protocol that ensures serializable schedules
by preventing such structures.

We leverage the ideas of SSI, define pivot structures and propose the Declara-
tive Serializable Snapshot Isolation (DSSI) protocol, a declarative technique that
guarantees serializable schedules by preventing pivot structures while maintain-
ing the advantages of SI. We implement DSSI using our declarative scheduling
model called Oshiya. Oshiya models the scheduler state (including the gener-
ated schedule) in so-called scheduling relations and formalizes a protocol as
a protocol specification. A protocol specification is a set of constraints speci-
fied as boolean domain relational calculus expressions that have to hold for all
scheduling relation states. In Oshiya, a protocol specification is implemented
as declarative scheduling queries. Request scheduling is performed by applying
a generic scheduling algorithm that repeatedly executes the scheduling queries
over the scheduling relations. The queries determine the pending requests that
can be added to the relation modelling the schedule without violating the pro-
tocol specification. We show how to detect and prevent pivot structures using
Oshiya and implement the DSSI protocol specification as scheduling queries. Our
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implementation is concise and close to the formal protocol specification which
enables us to prove its correctness. The main contributions of the paper are:

• We introduce DSSI, a protocol that ensures serializable SI executions, and
formalize it as an Oshiya protocol specification.
• Using Oshiya we develop an SQL implementation of DSSI.
• We prove that the implementation ensures serializable schedules.

The paper structure is as follows: Sec. 2 describes SI and reviews the approach
applied by the SSI protocol to detect non-serializable schedules. Sec. 3 introduces
Oshiya. Sec. 4 shows how we model data snapshots and presents schemata for
the scheduling relations. Sec. 5 formalizes the DSSI protocol. Sec. 6 presents the
DSSI scheduler implementation. Sec. 7 proves that our implementation ensures
serializable executions. We review related work in Sec. 8 and conclude in Sec. 9.

2 Background: Snapshot Isolation and Serializability

We model a transaction ti as a sequence of read and write requests (denoted as
ri(x) resp. wi(x) where x stands for the accessed data item). Each transaction
finishes with an abort (ai) or commit (ci) request. The write-set WSi of ti con-
tains all data items written by ti. A history (schedule) is a sequence of interleaved
executions of requests from a set of concurrent transactions. The requests in a his-
tory are totally ordered. We write p <H q if request p is executed before request
q. Let boti denote the begin of ti (when ti executed its first request) and eoti its
end (when ti aborted resp. committed). The execution interval of a committed
transaction ti is [boti, ci], the one of a non-aborted, possibly committed transac-
tion ti is [boti, li] (li is ti’s latest operation). Two committed transactions ti and tj
overlapped if: Overlappedij ⇔ [boti, ci]∩ [botj , cj ] �= ∅. Two non-aborted (maybe
active) transactions ti and tj overlap if: Overlapij ⇔ [boti, li] ∩ [botj , lj ] �= ∅.

2.1 Snapshot Isolation

SI is a multiversion concurrency protocol that maintains multiple versions of data
items (tuples). Each write wi(x) creates a new version of item x that is visible to
other transactions after ci. Each read ri(x) accesses the latest version of x written
by transactions that committed before boti. Moreover, a transaction always sees
the versions it created itself. Under SI, reads are never delayed because of write
requests of concurrent transactions and vice versa. SI avoids inconsistent read
anomalies because transactions never access partial results of other concurrent
transactions. SI requires disjoint write-sets of concurrent committed transactions
which is, e.g., ensured by the First-Committer-Wins (FCW) rule. FCW specifies
that a transaction is aborted if a concurrent transaction with an overlapping
write-set already committed. FCW also prevents lost updates. A typical anomaly
that leads to non-serializable SI histories is the Write Skew [3], detailed in Ex. 1.

Example 1. Consider history Hws in Fig. 1. Initially, data items x = 50 and
y = 50 are consistent and satisfy constraint C = x+ y ≥ 0. Transaction t1 reads
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x and y. A concurrent transaction t2 reads x and y, writes x (after subtracting
90) and commits (after checking C). Finally, t1 writes y (after subtracting 90)
and commits (after checking C). In the final state, C is violated although t1 and
t2 checked C explicitly before committing. This happens because C is checked
on the version of x and y that is visible to t1 and t2 and not on the final state
resulting from their interleaved execution.

2.2 Detecting Non-serializable Histories

Serializability of SI histories can be checked using a multiversion serialization
graph MV SG = (N, E) [5]. The MVSG of a history H is a graph that contains
a node for each committed transaction ti of H : ti ∈ N ⇔ ci ∈ H . It contains an
edge from transaction ti to transaction tj with i �= j if (a) wi(x) <H wj(x), (b)
wi(x) <H rj(x), or (c) ri(x) <H wj(x). An edge of type (c) that occurs between
two overlapped transactions ti and tj is called a vulnerable edge [9]. A pivot
structure is defined as follows: Overlappedij∧(ri(x) <H wj(x))∧Overlappedjk∧
(rj(x) <H wk(x)). Fekete et al. [9] showed that every MVSG of a non-serializable
SI history must contain a pivot structure. The existence of a pivot structure is a
necessary but not sufficient condition for the non-serializability of an SI history.
Thus, an SI history is serializable if its MVSG does not contain pivot structures.

Example 2. Fig. 1 shows history Hws. Vulnerable edges are shown as dotted
lines. The MVSG for Hws in Fig. 2 has a node for each committed transaction
of Hws (t1 and t2) and two edges e: (e1) from t1 to t2 due to r1(x) <H w2(x);
(e2) from t2 to t1 due to r2(y) <H w1(y). Hws is not serializable and, thus, the
MVSG contains a pivot structure (two consecutive vulnerable edges e1 and e2).

2.3 Serializable Snapshot Isolation Protocol

The SSI protocol proposed by Cahill et al. [5] ensures serializability by pre-
venting pivot structures. The main idea is to check SI histories at runtime for
structures that can evolve into pivot structures. We call such structures potential
pivot structures. A potential pivot structure is defined as: Overlapij ∧ (ri(x) <H

wj(x)) ∧ Overlapjk ∧ (rj(x) <H wk(x)) ∧ ¬(ci ∧ cj ∧ ck). I.e., a potential pivot
structure is a pivot structure without the requirement that the three (not nec-
essarily distinct) participating transactions have committed. It evolves into a
pivot structure once all participating transactions have committed. The set of
transactions in potential pivot structures is naturally a superset of the trans-
actions in pivot structures. For each detected potential pivot structure, one of
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the participating transactions is aborted to prevent it from evolving into a pivot
structure. This approach guarantees that the resulting histories are serializable,
but it may produce false positives, i.e., not every potential pivot structure finally
results in a non-serializable history. Our implementation leverages this idea and
aborts transactions that participate in potential pivot structures (see Sec. 6).

3 Declarative Scheduling Model

We propose a declarative scheduling model [13] called Oshiya1 to model and
implement DSSI. The main ideas of Oshiya are: (1) The state of a scheduler
(including the history it produces) is modeled as instances of three scheduling
relations : PendingRequests (R) buffers arriving client requests for scheduling.
RelevantHistory (H) stores already executed requests in their execution order,
and models the schedule generated so far. Executable (E) buffers requests that
have been scheduled for execution. (2) Oshiya formalizes a protocol as a set of
constraints, called protocol specification, that have to hold for each generated
state of H. (3) The protocol specification constraints are implemented as declar-
ative scheduling queries: QSchedule, QRevoked, QIrrelevant. Request scheduling is
performed by repeatedly executing the scheduling queries over the scheduling
relations to determine which of the pending requests in R can be added to H
without violating the protocol specification constraints.

Example 3. For presentation purposes, we use simplified schemata for the schedul-
ing relations in this example. Assume the following schema for relationsR and E :
(TA, Op, Ob). For each request, TA is the transaction executing the request, Op
is the type of operation (e.g., r for a read), and Ob is the data object the opera-
tion accesses. RelationH has an additional attribute ID for recording the request
execution order. Using this schema, the scheduler state after scheduling the first
request from history Hws (Fig. 1) is as follows:

R1
TA Op Ob . . .
1 r x

H1
ID TA Op Ob . . .
1 1 r x

E1
TA Op Ob . . .
1 r x

The state of the scheduler is advanced in iter-
1 H = E = R = ∅
2 while t rue do begin
3 R = R − E ;
4 R = R ∪ N ;
5 R = R − QRevoked(H,R) ;
6 E = QSchedule(H,R) ;
7 Execute(E) ;
8 H = H ∪ E ;
9 H = H − QIrrelevant(H) ;

10 end

ative steps by applying a generic scheduling al-
gorithm (shown on the right) that evaluates the
scheduling queries over the current instances of the
scheduling relations. Each iterative step (one while
loop), called scheduler iteration, schedules multi-
ple requests at once, resulting in updated instances
of the scheduling relations. This is in contrast to
DBMSs that schedule requests individually. The algorithm is the same for every
protocol, but it is parameterized by the protocol specific schema of the scheduling

1 Oshiya refers to the passenger arrangement staff at Japanese train stations who help
to fill a train by pushing people onto the train or guiding them to free railway cars.
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relations and the scheduling queries. N is the set of newly arrived client requests.
QRevoked identifies nonexecutable requests (e.g., deadlocked) (line 5). QSchedule,
the main scheduling query, identifies the pending requests from R that should
be selected for execution in this iteration (line 6). QIrrelevant returns requests
that are irrelevant for future scheduling decisions. They are removed from H
(line 9). In the remainder of this paper we limit the discussion to QSchedule.

Example 4. Reconsider the scheduler state from Ex. 3. Two new requests got
inserted into R at the beginning of scheduler iteration 2: r1(y), r2(x). Assume
that running the scheduling queries selected both request from R for execution.
This leads to the following updated scheduler state:

R2
TA Op Ob . . .
1 r y
2 r x

H2
ID TA Op Ob . . .
1 1 r x
2 1 r y
3 2 r x

E2
TA Op Ob . . .
1 r y
2 r x

Applying the scheduling queries to a set of newly arrived requestsN , each sched-
uler iteration produces new instances of the scheduling relations R, H and E .
This yields a sequence of states of H called history, defined below. We use this
definition of history to reason over the properties of a protocol and to prove the
correctness of a scheduler implementation.

Definition 1 (History). Let I =< N0,. . . > be a sequence of sets of input
requests. Let q be protocol-specific versions of the scheduling queries. We define
the history Hq(I) generated according to q over input I as < H0, . . . >, where Hi,
called a history state, is the state of relation H after the ith scheduler iteration
produced using q to parameterize the generic algorithm and Ni as input N . In
the paper, we drop q and I if it is clear from the context and solely use H.

In the remainder of this paper, we use H to denote both the history relation and
one history state and drop indices on H if the scheduler iteration is irrelevant
for the discussion (same holds for R, E and N ). According to the algorithm
presented above, the history state Hi is a cumulative snapshot, i.e., it includes
all previous history states Hj with j < i.

Example 5. For instance, the history states shown below could be the result of
scheduling the requests I =< {(1, r, x), (2, r, x)}, {(1, r, y)}, {(2, r, y)} >:

H0
ID TA Op Ob . . .

H1
ID TA Op Ob . . .
1 1 r x

H2
ID TA Op Ob . . .
1 1 r x
2 1 r y
3 2 r x

H3
ID TA Op Ob . . .
1 1 r x
2 1 r y
3 2 r x
4 2 r y

We model a protocol as a set of constraints called protocol specification. A pro-
tocol specification constraint is a boolean domain relational calculus expression
over histories. We allow quantification over scheduler iterations to enable, e.g.,
constraints that check the order of requests in the history.

Definition 2 (Protocol Specification). A protocol specification Φ is a set of
boolean domain relational calculus expressions over H.
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The formalization of a protocol as logical constraints and its implementation as
queries allows us to formally reason about the correctness of an implementation.
Given a protocol specification Φ and an implementation of this protocol as a
set q of scheduling queries, the definition presented below defines what it means
for q to correctly implement Φ. Intuitively, this is the case if for every input I,
the history created by our scheduling algorithm using q satisfies Φ. We use this
definition in Sec. 7 to prove the correctness of our DSSI implementation.

Definition 3 (Correctness of Scheduling Queries). Scheduling queries q
satisfy a protocol specification Φ, denoted as q |= Φ, if for every input sequence
I the generated history H produced using q satisfies Φ: Hq(I) |= Φ.

3.1 Assumptions and Notational Remarks

We make the following assumptions: (1) Client requests read resp. manipulate
only one tuple. (2) A transaction waits until its current request is executed
before issuing new requests. (3) Object identifiers are unique over all relations.
(4) Rollbacks of transactions are considered as regular requests issued by clients.
Extending Oshiya to schedule complex queries like joins or range queries is an
interesting avenue for future work. Assumptions 2-4 simplify the presentation,
but can be changed with minor modifications to Oshiya.

Scheduling queries and protocol specifications are given as domain relational
calculus expressions. Capital letters denote variables, small letters indicate con-
stants and ε denotes null. All non-target variables not used in a universal quantifi-
cation are implicitly existentially quantified. E.g., instead of {A | ∃B : (I(A, B)
∧ ¬∃C : (J(C, A)))} we write {A | I(A, B)∧ ¬J(C, A)}. Unrestricted existen-
tially quantified variables are displayed as an underline (“ ”), disjunctive use of
constants by “|”. E.g., for the expression I(A, B) ∧ (A = a ∨A = c) we use the
shortcut I(a|c, ). We define aggregation as: {G, F1(A1), . . . , Fn(An) | E}. E is a
domain relational calculus expression, G is a set of attributes on which to group
on (can be empty), and each Fi is an aggregate over attribute Ai.

4 Modeling Data Relation Snapshots and Defining the
Oshiya Scheduling Relation Schemata for DSSI

In order to implement DSSI with Oshiya, we have to (1) specify the schema of the
scheduling relations that model the scheduler state, (2) formalize the protocol
specification based on these relations (Sec. 5), and (3) implement the protocol
specification as scheduling queries (Sec. 6). In this section, we show how to adapt
data relation schemata to support data item versions (Sec. 4.1) and develop
protocol-specific schemata for the Oshiya scheduling relations (Sec. 4.2).

4.1 Modeling Snapshots with Data Relations

We model snapshots explicitly by extending the schemata of data relations. This
allows us to achieve DB independence and to run DSSI on DBMSs that do not
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support snapshots. We identify a version of data item x using a tuple (TA, Seq)
where TA is the transaction that created the version and Seq is the position of
the request within this transaction. Of course, versions can be modeled differently
but this is orthogonal to our approach and beyond the scope of this paper.
Given a database schema with relations R1, . . . , Rn, we map each relation Ri

to a relation R′
i which has four additional attributes. These attributes store the

version identifier for the creator transaction (CTA and CSeq) and, if applicable,
for the transaction that deleted the data item (DTA and DSeq). The primary
key of R′

i is the primary key of Ri union the attributes CTA and CSeq.

Example 6. Assume a bank stores account data with account numbers and bal-
ances in relation Accounts(AccNr,Bal). We map this relation to Accounts′ by
extending its schema with the four additional attributes mentioned above. An
example instance shown on the right con- Accounts′

AccNr Bal CTA CSeq DTA DSeq
x 5 1 1 - -
x 10 2 2 - -
x 15 3 1 - -

tains an initial version of object x created
by transaction t1 (CTA = 1, CSeq = 1)
and two new versions created by t2 and t3.

4.2 Oshiya Scheduling Relation Schemata

For DSSI, we use the schemata for scheduling relations R, H and E shown below.
For simplicity, we present only attributes needed for scheduling and omit those
necessary for request execution (e.g., the value to be written for write requests).

R (TA,Seq,Op,OID) H (ID,TA,Seq,Op,OID,OTA,OSeq) E (ID,TA,Seq,Op,OID,OTA,OSeq)

For each incoming request, we insert a tuple into R storing an identifier Ti

for the transaction ti that issued the request (TA), the request position within
this transaction (Seq), the type of operation (read, write, abort or commit,
stored in attribute Op) and the data object the requests is applied to (OID).
Transactions identifiers (TA) are ordered, i.e., if boti < botj then Ti < Tj. H
and E contain additional attributes: ID records the execution order of requests.
For read requests, OTA and OSeq store which object version was read by the
request. These attributes correspond to the data relations attributes CTA and
CSeq.

Example 7. Assume the instances of relations R and H displayed below.
H contains the requests that produced the R

TA Seq Op Ob
H
ID TA Seq Op Ob OTA OSeq
1 1 1 w x - -
2 1 2 c - - -
3 2 1 r x 1 1
4 2 2 w x - -
5 3 1 w x - -
6 2 3 c - - -
7 4 1 r x 2 2

state of relation Accounts′ from Ex. 6: (1) and
(2) Transaction t1 created the initial version
of object x and committed. (3) Transaction t2
read this version of object x. (4) and (5) t2
and t3 wrote new versions of object x. (6) t2
committed. (7) t4 read the new version cre-
ated by t2. At this iteration, R contains no
pending requests that have to be scheduled.
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5 DSSI Protocol Specification

We now develop the protocol specification for DSSI based on the scheduling
relations presented in Sec. 4. Recall from Sec. 3 that a protocol specification
models a protocol as a set of domain relational calculus expressions over histories.

To formalize SI with Oshiya, we use views over relation H to get the relevant
information described in Sec. 2. For bot, we use view BOT (TA, ID) querying for
each transaction (TA) the ID of its first request in H. EOT (TA, Op, ID) selects
for each finished transaction ti (TA) the ID of its final request in H (corre-
sponds to eoti) and whether ti aborted or committed (Op). Overlap(TA1, TA2)
contains all pairs of concurrently executed, non-aborted transactions, i.e., they
do not have to be committed. PotPivotStr(TA1, TA2, TA3) selects all triples of
transactions forming potential pivot structures as described in Sec. 2.3.

C1 (Read Versions). The SI protocol specifies [3,5,14] that a read request ri(x)
of a transaction ti reads ti’s most recent changes to x. If no such changes exist,
then ri(x) reads the latest version of x created by transactions that committed
before ti started. These conditions are formalized as protocol specification con-
straint C1 (a) and (b) shown in Fig. 3: (a) The first case applies if a transaction
T has written object O before reading a version (X, Y ) of O:

H(I, T, N, r, O, X, Y ) ∧ H(I2, T, N2, w, O, , ) ∧ I2 < I

It follows that T read a version it created itself (X = T ) and (X, Y ) is the latest
version produced by T before the read (no newer versions exist):

X = T ∧ N2 = Y ∧ ¬(H( , T, N2, w, O, , ) ∧ Y < N2 < N)

(b) The second case applies if T has not written O before the read was executed:
¬(H(I2, T, , w, O, , ) ∧ I2 < I). It follows that (1) O was written by another
transaction X and X committed before T started. (2) (X, Y ) has to be the
latest version written by X and (3) there may not be another version written by
a transaction T2 that committed after X but before T started:
(1) X �= T ∧ EOT (X, c, I3) ∧ BOT (T, I4) ∧ I3 < I4 (2) ¬(H( , X, N3, w, O, , ) ∧ N3 > Y )

(3) ¬(H( , T2, , w, O, , ) ∧ EOT (T2, c, I5) ∧ I4 < I5 < I3)

C2 (FCW). SI requires disjoint write-sets for all committed concurrent trans-
actions. Protocol specification constraint C2 (see Fig. 3) models this condition
as follows. If (1) two overlapping transactions T and T2 (2) both wrote the same
object O and (3) T did already commit, then (4) T2 did not commit:

(1) Overlap(T, T2) (2) H( , T, , w, O, , ) ∧H( , T2, , w, O, , )

(3) EOT (T, c, ) (4) ¬EOT (T2, c, )

C3 (Serializability). Recall that an SI history is serializable, if it does not
contain pivot structures. In constraint C3 (see Fig. 3), we follow the approach
outlined in Sec. 2.3: If (1) relation H contains a potential pivot structure, then
we require that (2) at least one of the participating transactions did not commit:

(1) PotPivotStr(T, T2, T3) (2) ¬(EOT (T, c, ) ∧ EOT (T2, c, ) ∧ EOT (T3, c, ))
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(C1) (a) ∀I, N, O, T, X, Y : H(I, T, N, r, O, X, Y ) ∧ H(I2, T, N2, w, O, , ) ∧ I2 < I ⇒
X = T ∧ N2 = Y ∧ ¬(H( , T, N3, w, O, , ) ∧ Y < N3 < N)

(b) ∀I, N, O, T, X, Y : H(I, T, N, r, O, X, Y ) ∧ ¬(H(I2, T, , w, O, , ) ∧ I2 < I) ⇒
X �= T ∧ EOT (X, c, I3) ∧ BOT (T, I4) ∧ I3 < I4 ∧ ¬(H( , X, N3, w, O, , ) ∧ N3 > Y )∧
¬(H( , T2, , w, O, , ) ∧ EOT (T2, c, I5) ∧ I3 < I5 < I4)

(C2) ∀O, T, T2 : Overlap(T, T2) ∧ H( , T, , w, O, , ) ∧ H( , T2, , w, O, , ) ∧ EOT (T, c, )

⇒ ¬EOT (T2, c, )

(C3) ∀T, T2, T3 : PotPivotStr(T, T2, T3) ⇒ ¬(EOT (T, c, ) ∧ EOT (T2, c, ) ∧ EOT (T3, c, ))

Fig. 3. DSSI Protocol Specification

6 DSSI Implementation

Recall that with Oshiya, protocols are implemented as scheduling queries. We
implemented all scheduling queries for DSSI, but in this paper we only de-
scribe QSchedule. Our prototype implementation of Oshiya requires the schedul-
ing queries to be expressed in SQL. However, for conciseness, domain relational
calculus expressions are used throughout this section. QSchedule is developed in
two steps. First we present queries necessary to detect potential pivot structures
(Sec. 6.1). Afterwards, we use these queries to implement QSchedule (Sec. 6.2).
Recall that detecting potential pivot structures and aborting one of the partic-
ipating transactions ensure serializability. However, this approach may detect
false positives (see Sec. 2). Studying the trade-off between the number of false
positives and the cost of scheduling is an interesting avenue for future work.

6.1 Detecting Potential Pivot Structures

We now discuss how to express BOT , EOT , Overlap and PotPivotStr introduced
in Sec. 5 as queries overH. BOT and EOT are defined below. E.g., EOT queries
for each finished transaction T its abort resp. commit state (A) and its eot (I)
which is equal to the ID of its abort resp. commit request in H.

BOT = {T, I | H(I, T, , , , , ) ∧ ¬(H(I2, T, , , , , ) ∧ I2 < I)}
EOT = {T, A, I | H(I, T, , A, , , ) ∧ A = a|c}

Overlapping transactions are inferred as specified below. Two (1) non-aborted
transactions T1 and T2 overlap if (2) bot1 <H bot2 and (3) bot2 <H c1 (if T1 has
already committed) or (4) the symmetric case holds:

Overlap = {T1, T2 | T1 �= T2 ∧ ¬EOT (T1|T2, a, ) ∧ (1)

((BOT (T1, I) ∧ BOT (T2, I2) ∧ I < I2 ∧ (2)

(EOT (T1, c, I3) ⇒ I2 < I3)) ∨ (3)

(BOT (T2, I2) ∧ BOT (T1, I) ∧ I2 < I ∧ (EOT (T2, c, I3) => I < I3)))} (4)

We use PotVulnEdge to query all potential vulnerable edges between concurrent,
non-aborted transactions T and T2 (potential, because T and T2 might not yet
have committed). PotPivotStr detects potential pivot structures by checking for
transactions (T2) that have both an incoming and outgoing PotVulnEdge:
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PotVulnEdge = {T, T2 | H(I, T, , r, O, , ) ∧ H(I2, T2, , w, O, , ) ∧ Overlap(T, T2) ∧ I < I2}
PotPivotStr = {T, T2, T3 | PotVulnEdge(T, T2) ∧ PotVulnEdge(T2, T3)}

Example 8. We show the results of the queries defined above (highlighted) for
the history state H from Ex. 7. For instance, PotVulnEdge contains one potential
vulnerable edge from transaction t2 to t3, because t2 and t3 overlap and t2 read
object x and afterwards t3 wrote a new version of object x (r2(x) <H w3(x)).

H
ID TA Seq Op Ob OTA OSeq
1 1 1 w x - -
2 1 2 c - - -
3 2 1 r x 1 1
4 2 2 w x - -
5 3 1 w x - -
6 2 3 c - - -
7 4 1 r x 2 2

BOT
TA ID
1 1
2 3
3 5
4 7

EOT
TA Op ID
1 c 2
2 c 6

Overlap
TA1 TA2
2 3
3 2
3 4
4 3

PotVulnEdge
TAout TAin
2 3

PotPivotStr
TA1 TA2 TA3

6.2 QSchedule

The DSSI version of QSchedule implementing the protocol specification con-
straints C1-C3 is shown in Fig. 4. According to the SI conditions, all write,
abort, and read requests from R may always be selected for execution. QSchedule

selects all of these requests using queries AbortWrites and Reads. Which commit
requests can be selected without violating constraints C2 and C3 is determined
through query ValidCommits. In QSchedule, function GenID() generates unique
values for the ID attribute of H (modelling the execution order of requests).

Read Requests (C1). The Reads query uses LVV (last valid version) to select
for each read request of transaction T on object O the version (T2, N2) that has
to be read. Recall that attributes OTA and OSeq of relations E and H identify
a version of an object O. Version (T2, N2) is computed in two steps. LastOTA
queries the transaction identifier (T2) of the transaction that wrote the version
of O that has to be read by T . Based on this information LVV determines N2,
the Seq value of the latest write request of T2 on object O. T2 is the maximal
value from the following union: (a) T2=T if T itself created versions of O and
(b) transactions that wrote a version of O and committed before T started.
(a)H( , T2, , w, O, , ) ∧ T = T2 (b)H( , T2, , w, O, , ) ∧ EOT (T2, c, I2) ∧ (BOT (T, I) ⇒ I2 < I)

Example 9. Consider H from Ex. 8. r2(x) read the initial version of object x
(since c1 <H bot2) and r4(x) read the version written by t2 (since c2 <H bot4).

Commit Requests (C2 and C3). To guarantee that constraints C2 and C3
hold for each history produced by QSchedule, we have to prevent commit requests
to be executed if (1) the commit would violate the FCW rule (C2) or (2) the
commit would violate serializability (C3). There are two possible ways how the
execution of commit requests can violate the FCW rule: (1a) A commit is from
a transaction whose write-set overlaps with the one of a concurrent but already
committed transaction and (1b) if R contains commit requests from multiple
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QSchedule = {GenID(), T, N, A, O, T2, N2 | R(T, N, A, O) ∧ (ValidCommits(T, N, T2, N2)

∨AbortsWrites(T, N, T2, N2) ∨ Reads(T, N, T2, N2))}
AbortsWrites = {T, N, ε, ε | R(T, N, a|w, )}

Reads = {T, N, T2, N2 | R(T, N, r, O) ∧ LVV (T, O, T2, N2)}
LVV = {T, O, T2, MAX(N2) | LastOTA(T, O, T2) ∧ H( , T2, N2, w, O, , )}

LastOTA = {T, O, MAX(T2) | R(T, , r, O) ∧ ((H( , T2, , w, O, , ) ∧ T = T2)∨
(H( , T2, , w, O, , ) ∧ EOT (T2, c, I2) ∧ (BOT (T, I) ⇒ I2 < I)))}

ValidCommits = {T, N, ε, ε | NonForbCs(T, N) ∧ ¬DelayedCs(T, N)}
DelayedCs = {T, N | NonForbCs(T, N) ∧ NonForbCs(T2, )∧

H( , T, , w, O, , ) ∧ H( , T2, , w, O, , ) ∧ T > T2}
NonForbCs = {T, N | R(T, N, c, ) ∧ ¬(ForbCs(T, N) ∨ ForbCinPPS(T, N))}

ForbCinPPS = {T, N | R(T, N, c, ) ∧ PotPivotStr(T2, T3, T4) ∧ (T = T2|T3|T4)∧
¬(R(T5, , c, , ) ∧ (T5 = T2|T3|T4) ∧ T < T5)}

ForbCs = {T, N | R(T, N, c, ) ∧ H( , T, , w, O, , ) ∧H( , T2, , w, O, , )∧
Overlap(T, T2) ∧ EOT (T2, c, )}

Fig. 4. QSchedule

transactions with overlapping write-sets, then only one of these transaction may
commit. Note that in the concrete implementation, commits identified to violate
C2 or C3 are selected by QRevoked and aborted.

We use a two stage approach to select valid commits: In step 1, query Non-
ForbCs selects commits from R and filters out commits of case 1a using query
ForbCs and those of case 2 using query ForbCinPPS. NonForbCs may still con-
tain sets of commit requests from transactions with overlapping write-sets (case
1b). We only allow the oldest transaction from each set to commit. Therefore, in
step 2, query ValidCommits selects all requests from NonForbCs and uses query
DelayedCs to keep only the commit request of the oldest transaction for each
set of transactions with overlapping write-sets.

Step 1. Query ForbCs (case 1a) identifies commits of transactions T that (a)
wrote an object also written by an (b) overlapping committed transaction T2.

(a) H( , T, , w, O, , ) ∧ H( , T2, , w, O, , ) (b) Overlap(T, T2) ∧ EOT (T2, c, )

ForbCinPPS (case 2) selects a commit of transaction T from R if (a) T belongs
to potential pivot structure p and (b) R does not contain a commit request of a
younger transaction T5 (recall that bot1 < bot2 ⇒ T1 < T2) also belonging to p.
Thus, if R contains commits of more than one of the transactions belonging to
p, we disallow only the youngest one to commit (and abort it using QRevoked).
(a) PotPivotStr(T2, T3, T4) ∧ (T = T2|T3|T4) (b) ¬(R(T5, , c, , ) ∧ (T5 = T2|T3|T4) ∧ T < T5)

Example 10. Consider the instances ofR andH shown below that model history
Hws from Fig. 1. To keep the example simple, we do not show the actions of
transaction t0 that created the initial versions of objects x and y. Requests c1

and c2 belong to the same potential pivot structure p. Their execution can lead
to a write skew violating C3. QSchedule selects c1 (smallest TA value). c2 (commit
of youngest transaction) is selected by ForbCinPPS and aborted to break p.
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R
TA Seq Op Ob
1 4 c -
2 4 c -

Q
S

c
h

e
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e
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P
P

S

X
X

H
ID TA Seq Op Ob OTA OSeq
1 1 1 r x 0 1
2 1 2 r y 0 2
3 2 1 r x 0 1
4 2 2 r y 0 2
5 1 3 w x - -
6 2 3 w y - -

Overlap
TA1 TA2
1 2
2 1

PotVulnEdge
TAout TAin
2 1
1 2

PotPivotStr
TA1 TA2 TA3
1 2 1
2 1 2

Step 2. DelayedCs detects case 1b by selecting all transactions T from NonFor-
bCs where (a) NonForbCs contains another transaction T2 which (b) wrote an
object O that has also been written by T and (c) which is older than T .

(a) NonForbCs(T2, ) (b) H( , T, , w, O, , ) ∧ H( , T2, , w, O, , ) (c) T > T2

Example 11. Consider the instances of R and H displayed below. QSchedule se-
lects all read (r6(x)) and write (w7(y)) requests. c3 belongs to ForbCs because
transaction t3 wrote the same object as the concurrent but already committed
transaction t2 and is, thus, not allowed to commit. c4 and c5 belong to NonFor-
bCs, but t4 and t5 both wrote the same object x. ValidCommits selects only c4

(oldest transaction from the set {t4, t5} of transactions with overlapping write-
set). c5 is filtered out by DelayedCs.

R
TA Seq Op Ob
3 2 c -
4 3 c -
5 2 c -
6 1 r x
7 1 w y
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H
ID TA Seq Op Ob OTA OSeq
1 1 1 w x - -
2 1 2 c - - -
3 2 1 r x 1 1
4 2 2 w x - -
5 3 1 w x - -
6 2 3 c - - -
7 4 1 r x 2 2
8 4 2 w x - -
9 5 1 w x - -

7 Correctness Analysis

We now proof that every history produced under DSSI is serializable. Recall
that an SI history is serializable if it does not contain a pivot structure. Thus,
we can show this fact by proving that H cannot contain a potential pivot struc-
ture between committed transactions (equivalent after Sec. 2.3). Note that the
influence of the other scheduling queries (mentioned in Sec. 3) on the results of
QSchedule and the compliance of C1 and C2 are not in the scope of this paper.

Theorem 1 ( QSchedule Prevents Pivot Structures). QSchedule |= C3

Proof. We omit to prove that the query PotPivotStr returns all potential pivot
structures contained in H, because the proof is trivial. We proof Theorem 1 by
contradiction. Assume the negation of C3 holds:

¬(∀T, T2, T3 : PotPivotStr(T, T2, T3) ⇒ ¬(EOT (T, c, ) ∧ EOT (T2, c, ) ∧ EOT (T3, c, )))

⇔ ∃T, T2, T3 : PotPivotStr(T, T2, T3) ∧ EOT (T, c, ) ∧ EOT (T2, c, ) ∧ EOT (T3, c, )
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Let k be the first scheduler iteration where this equation holds for a fixed T1,
T2, T3 and T4.

⇔ ∃T, T2, T3, k : PotPivotStrk(T, T2, T3) ∧ EOTk(T, c, ) ∧ EOTk(T2, c, ) ∧ EOTk(T3, c, )

Without loss of generality, let T3, the transaction at the third position of the
potential pivot structure (PotP ivotStr(T, T2, T3)), be the youngest transaction
of the participating transactions. This assumption does not result in a loss of
generality, because the position of T3 is irrelevant for the rest of the proof. There
must exist a scheduler iteration i < k where T3 has not yet committed but al-
ready belongs to PotPivotStr.

⇒ ∃i : PotPivotStri (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ ¬EOTi(T3, c, )

It follows that the commit request c3 of T3 occurs in relation R at some sched-
uler iteration j (i < j < k). To be executed, c3 has to belong to the set of
non-forbidden commits (NonForbCs). We can assume PotPivotStri(T, T2, T3)⇒
PotPivotStrj (T, T2, T3).

⇒ ∃j : PotPivotStrj (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ ¬EOTj(T3, c, ) ∧ NonForbCsj (T3 , )

We now replace NonForbCs by its definition and, afterwards, remove terms that
are not needed to derive the contradiction:

⇔ ∃j : PotPivotStrj (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ ¬EOTj(T3, c, ) ∧
Rj(T3, , c, ) ∧ ¬ForbCsj (T3, ) ∧ ¬ForbCinPPSj (T3, )

⇒ ∃j : PotPivotStrj (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ Rj(T3, , c, ) ∧ ¬ForbCinPPSj (T3, )

Since c3 in R is the commit request of the youngest transaction participating
in p, R cannot contain a commit request of a transaction that is both younger
than T3 and also belongs to p:

⇔ ∃j : Rj(T3, , c, ) ∧ PotPivotStrj (T, T2, T3) ∧ ¬(Rj(T4, , c, ) ∧ T4 = T |T2 ∧ T4 < T3) ∧
¬ForbCinPPSj (T3, )

From the first line of the equation shown above, we can follow ForbCinPPSj (T3, )
which leads to the contradiction and, thus, proves Theorem 1:

⇒ ∃j : ForbCinPPSj (T3, ) ∧ ¬ForbCinPPSj (T3, ) ⇒ � �

8 Related Work

The ACTA framework allows to formalize properties of transaction models us-
ing first-order formulas over schedules [6]. Its conciseness and clarity inspired us
to implement schedulers based on declarative protocol specifications. The basic
ideas of Oshiya have been presented in [13], but this work focused on single-version
protocols (2PL) and did not consider correctness. Recent research projects lever-
age the advantages of declarative languages in various areas [2,4,7,12,15,16]. The
Boom approach uses Overlog to build distributed systems [2], e.g., a scheduler
for MapReduce tasks with policies like First-Come-First-Served. In contrast to
our approach, Boom does not focus on DB requests or consistency.

Application analysis techniques have been presented in [10,9] to determine
if applications generate serializable executions when running on a system that
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applies SI. The key idea is that DBAs analyze transaction programs, produce
static dependency graphs and manually check for dangerous access patterns lead-
ing to non-serializability. Some approaches modify transaction programs to en-
sure serializable SI schedules: Fekete [9] proposed the techniques Materialize and
Promotion to achieve serializability. Jorwekar et al. [11] tried to automate the
check whether non-serializable SI executions can occur. However, this approach
still requires manual confirmation and modification. Fekete [8] executes certain
transactions of pivot structures under S2PL, others run under SI. This approach
requires the underlying platform to support both S2PL and SI. Alomari et al. [1]
set exclusive locks in an External Lock Manager (ELM) to ensure serializability
with SI. In contrast to DSSI, these approaches do not work for ad-hoc transac-
tions and require static analysis or manual program modifications.

Another line of work focused on modifying the SI algorithm of the underlying
system to ensure serializability. The closest approach to DSSI is the SSI proto-
col [5] described in Sec. 2.3. This approach modifies the DB lock manager with
an additional type of locks that are used to detect potential pivot structures.
DSSI infers all necessary information to detect and prevent these structures from
relation H. Our implementation works with DBMSs out of the box. The under-
lying DBMS does not even need to provide SI since we model data versions in
a standard relational schema (see Sec. 4). Using Oshiya, the implementation of
DSSI is close to its formal specification, which enabled us to prove its correctness.

9 Conclusions and Future Work

We develop Declarative Serializable Snapshot Isolation (DSSI) using our declar-
ative scheduling model Oshiya. DSSI ensures serializable schedules by avoid-
ing pivot structures and provides DB independence. We formally define DSSI
as an Oshiya protocol specification, present a scheduler implementation, and
prove that the implementation ensures serializability. In future work, we will
experimentally evaluate the performance of DSSI and investigate the trade-offs
involved in reducing the amount of false positives.
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Abstract. Resource allocation (RA) is one of the most important stages of 
distributed query processing in Data Grid systems. Recently, a number of 
papers that propose different methods for RA were published. To deal with 
specific characteristics of the data grid systems, such as dynamicity, 
heterogeneity and large-scale, many studies extend classic methods from 
distributed and parallel databases domains. Others invite fundamentally 
different methods based on incentives for autonomous nodes. The present study 
provides a brief description, qualitative comparison and performance evaluation 
of the most interesting approaches (extended classic and incentive-based) for 
RA. Both approaches are promising and appropriate for successful data grid 
systems. 

Keywords: Data grid systems, resource allocation, distributed query processing 
and optimization, incentive-based scheduling, extended classic scheduling. 

1   Introduction 

Currently, query processing in Data Grid environments is an actual research topic. 
Resource Allocation is one of the key stages of query processing, which determines 
the efficiency of the entire system. It constitutes optimal resource allocation for a set 
of operations of a query execution plan.  

To the best of knowledge, in the literature, there is currently no complete 
comparison of recently proposed resource allocation methods. [13] provided a brief 
overview of currently discussed issues, such as Resource Allocation algorithms, Fault 
tolerance, Security. Thus assumptions and metrics, widely used to solve the problem 
of resource allocation in the Calculation Grid environment, were highlighted. [11] 
carried out a review and comparison of the basic heuristics, used for selection of the 
optimal set of resources to solve the resource allocation problem. [1] proposed a 
classification of Resource Allocation architectures. They were categorized into 
Centralized, Hierarchical and Decentralized approaches and the first two of these 
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3   Background 

Here we will define aspects of the Data Grid to facilitate our further discussion. This 
is a computing infrastructure providing intensive computation and analysis of shared 
large-scale databases. That system unites multiple servers (nodes of the Grid) and 
stores large amounts of data within a common theme (for example biomedical). Its 
main characteristic features are [9]: heterogeneity, dynamicity and large scale. 

We will try to highlight some of the requirements that are imposed by these 
features for the resource allocation mechanism.  

3.1   Basic Requirements for Resource Allocation Methods in Data Grid Systems 

First of all, it should be noted that a common theme of the data stored in Data Grid is 
that it involves a limited number of entities of the domain. Although the number of 
relations is not limited, a large number of similar relations, which involve the same 
entity (by using ontological transformation schemes), can be regarded as a widely 
distributed relation. In the general case each relation in the Data Grid is distributed 
and duplicated among a set of nodes. This means that the resource allocation 
algorithm must consider distributed relations querying, i.e. allocate resources for 
queries, all relations of which are distributed and duplicated. 

Heterogeneity of nodes imposes upon the Resource Allocation mechanism a new 
requirement: the necessity to take into account the CPU and I/O performance, amount 
of local memory and network bandwidth of each node. This greatly complicates the 
task of parallelization, and not allows use of well-researched algorithms from the 
domain of Parallel and Distributed databases.  

New nodes that appear in the system during the query processing raise the problem 
of using their data and resources for the processing query. It is important to take into 
account leaving nodes and to provide an algorithm that allows successful completion 
of the query execution, even if one or more used nodes disconnect during it.  

A large scale system imposes serious restriction on the usage of global centralized 
Resource Allocation (or global catalogues of meta-data required for Resource 
Allocation), because when there are large numbers of nodes and queries, the global 
centralized scheduler can become a bottleneck of the entire system, seriously 
suppressing performance. In addition, in the event of a central node failure, it may 
lead to inoperability of the Data Grid. Also, decentralized allocation methods can be 
promising in the Data Grid environment in terms of scalability. 

In a large scale Data Grid environment with dynamicity of nodes, it can be more 
effective to modify the query execution plan in run-time, taking into account rapidly 
changing parameters, which leads to using dynamic reallocation techniques. An 
important criterion for evaluating the Resource Allocation algorithm is also the 
maximal usage of local data, or data locality principle. 

3.2   Performance Requirements 

An important general requirement for a Data Grid system is a performance. Naturally, 
having received a great number of queries, the system must provide results within a 
reasonable time for each of them. To do this it is necessary to effectively use 
computational resources and to take advantage of different types of parallelism. 
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Each query execution plan consists of a set of physical operations, many of which 
are independent and can be performed simultaneously, i.e. inter-operation 
independent parallelism (irop). For dependent operations one can often be use 
pipeline parallelism (pipl), which, however, requires full completion of resource 
allocation before execution of the query.The most low-level parallelism is intra-
operation (or partitioned) parallelism (iaop), which consists in splitting the relation 
into fragments and fulfillment operations against them on several sites 
simultaneously. An important factor limiting the usage of this type of parallelism is 
latency. We believe that the usage of basic forms of parallelism is required for 
optimal resource allocation in the Data Grid. 

While the Data Grid system is able to process a set of queries over certain time, it 
can have advantage from coordinated resource allocation for all of them at the same 
time. We will denote that by Multi-query scheduling. Still, this is not the perfect 
solution in a large scale environment, because it requires a global centralized resource 
allocation mechanism.  

3.3   Methods Comparison Criterions 

Those are several criteria that we have identified above; Here we have decided to 
separate them into two classes namely; Criteria of capability: 1. Distributed relations 
querying (Dst), 2. Using new appeared nodes’ data during execution-time (NN), 3. 
Node leaving tolerance (LT), 4. Dynamic reallocation (DR), 5. Data locality 
consideration (DL), 6. Scalability (Sca.). 

Criteria of performance: 1. Using inter-operation and intra-operation parallelism 
(Prl), 2. Taking into account heterogeneous nodes’ performance (Het.), 3. Multi-
query scheduling (Mlt). 

Based on these criteria, we will provide a brief overview and comparison of 
existing methods of Resource Allocation. As the two main approaches we have 
identified Extended classic and Incentive-based Resource Allocation. Let us consider 
both approaches. 

4   Analysis of Extended Classic and Incentive-Based Methods for 
Resource Allocation 

We analyze the major activities in the area of resource allocation and identified two 
main approaches: Extended classic approach and Incentive-based approach. The first 
is an extension and adaptation of classical methods developed in the area of Parallel 
and Distributed databases. The second approach is relatively new and represents an 
attempt to completely change the concept of site interactions in the Data Grid.  

4.1   Extended Classic Approach 

This is the classic approach to solving the problem, which is widely used in scientific 
work and practical implementations of Grid systems. Usually, resource allocation is 
done on the node that initiated a query. Firstly it collects meta-data about relations 
placement and performance characteristics of nodes etc. Then, using allocation 
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algorithms and cost models, it chooses optimal resource allocation among a set of 
possible variants and sends the generated query execution plan to the selected nodes. 
The algorithm is based on the assumption that all nodes of the Data Grid obey the 
overall discipline and the node-scheduler can directly give the nodes orders to execute 
operations. 

In this approach there are three main resource allocation strategies: static, dynamic 
and hybrid. The first strategy uses statistical data accumulated in the system during 
operations execution, i.e. it allows scheduling execution of all query operations with 
the maximum usage of parallelism. Its disadvantage, however, that in a rapidly 
changing Data Grid environment statistics may quickly become obsolete and the 
chosen resource allocation plan may become non optimal. In the second case the 
scheduler collects the necessary metadata just before the resource allocation. This 
approach can be considered reasonable in environments with high dynamicity of 
nodes. However, absence of a preliminary plan does not allow the use of pipeline 
parallelism, what can be considered as a significant disadvantage. To combine the 
advantages of both strategies was proposed a combined static resource allocation 
methods with dynamic reallocation during the execution. It can use all kinds of 
parallelism and, at same time, promptly adjust the execution plan to changing 
conditions in the Grid. 

Another important feature is the nature of the decision-making module in the 
process of resource allocation, which can be Centralized, Combined or Decentralized 
[1]. The first one is not suitable for a large-scale Grid environment due to low 
reliability and limited scalability. The second one is an extension of a scheduler with a 
centralized nature, which improves scalability, but does not eliminate its fundamental 
disadvantages. Decentralized is the most scalable, but also the most complex 
organization. In this section, we will examine in more detail methods of extended 
classic resource allocation and we will compare them on the basis of selected criteria. 

4.2   Methods Based on Static Strategy 

All of the most important static methods implement at least one of forms of the intra-
query parallelism. When [15] and [19] consider only inter-operation parallelism, [17] 
takes advantage also of intra-operation parallelism. While the method of [5] utilize all 
forms of parallelism, including parallelism pipeline. And it is the only method that 
considers a Distributed relations querying. 

The algorithm [5] sorts operations of an execution plan by cost and successively, 
starting with the most expensive, it determines their level of intra-operation 
parallelism. In [17], the authors propose an iterative algorithm, which takes the query 
bushy tree and parallelizes each operation on the optimal number of nodes. In order to 
provide Load Balancing, the scheduler selects the first sites that are not currently 
using the requested relation. This too can be considered as a disadvantage, because 
the selected node can still be overloaded with queries, that uses others relations. 

In [19], the author considers the problem of static resource allocation of a set of 
independent jobs with intensive usage of large volumes of data. As an objective he 
takes maximization of throughput. For the calculations the algorithm selects 
computational resources closest to the data sources. Here a disadvantage is the 
ignoring of dependent jobs, which is an important factor in query processing in the 
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Data Grid. The problem was reduced to a Set Covering Problem and used a well-
known algorithm for its solution. In [15], the author proposed an algorithm, which 
allocates all operations only on those nodes, which initially contains the data.  

4.3   Methods Based on Dynamic and Hybrid Strategies 

In papers [20, 3, 4] the authors proposed and described the system DartGrid. Its 
scheduler is a classic centralized dynamic approach, which uses only Inter-operation 
parallelism. They implemented a dynamic iterative scheme of resource allocation, 
whose principal objective is to minimize the size of intermediate results. The method 
works as follows: after the logical optimization, the optimizer demands all urgent 
meta-data (size of relations, the current load of node, etc) from all nodes that 
participle in query execution. Than it sequentially parallelize and performs all join 
operations in the query plan. Disadvantages of the system include the impossibility of 
inter-operation parallelism and pipeline, as well as a centralized scheduler, which 
collect data from all the sites that participate in query processing after each iteration. 

Technique of Adaptive Query Processing (AQP) was proposed in [6, 7]. It consists 
in monitoring of the current state of resources during query execution and changing 
the query plan if necessary for maximal performance improvement. It was 
implemented in system OGSA-DQP [8] with modifications for load balancing and 
dynamic resource allocation, which allows the usage of new resources that have 
become available since the beginning of the query execution. Failure recovery, allows 
the system to react to the shutdown or disconnection of one or more of the nodes 
during the execution phase, restoring the lost intermediate data. 

In [16] the author proposed a greedy resource allocation algorithm, which selects 
nodes based on their throughput capacity, known from previous query executions. It 
was implemented using a Dynamic Load Balancing algorithm on the base of the 
algorithm Eddies, which allows transferring the load between nodes during operation 
execution without interrupting the operation. Also, it implemented Dynamic 
Reallocation, which in the process of query execution checks the current throughput 
of the node, compares it with the preliminary estimated one and, if necessary, makes 
reallocation. 

4.4   Comparison of Classic Resource Allocation Methods 

In the Table 1 the above methods fulfillment of previously selected criteria is given.  
As shown the table, not all methods provide the very important Data Grid function of 
Distributed Relation Querying. Among those that provide this function, there are no 
methods that consider the problem of resource allocation for multiple queries (Multi-
query scheduling). Also, not all authors have proposed a complete approach, some of 
them paid attention only to resource allocation algorithms for matching operation on 
resources, ignoring the problem of Scheduler organization. Considering the 
Scalability criterion, the most interesting from our point of view is the method [17], 
which provides a hierarchical model of resource allocation for multiple queries. In 
other methods the centralized approach dominates, which creates a number of 
fundamental problems in Large scale Data Grids. 
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The main conclusion that can be made from the table is that we did not find any 
method that fully conforms with all our criteria. The most interesting by the whole set 
of criteria is the method [6, 7, 8] whose main disadvantage is the lack of resource 
allocation for a set of queries (Multi-query scheduling). 

Table 1. Characteristics of Extended classic resource allocation methods 

Work Dst Mlt Prl Het. NN LT Sca. DR DL 
DartGrid 
[20, 3, 4] 

Yes No iaop 
Yes (cpu, 
storage) 

No No 
Centralized scheduler 

reduce scalability 
No Yes  

Liu08 [15] No No irop 
Yes (cpu, 

ram) 
No No 

Based on centralized 
metadata services, 
Not very scalable 

No Yes 

Gounaris04 
[5] 

Yes No 
irop, 
iaop, 
pipl 

Yes (cpu, 
ram, i/o, 
network) 

No No 
Low complexity, but 

architecture is not 
proposed 

No Yes 

Soe05 [17] No Yes 
irop, 
iaop 

Yes (cpu, 
ram, i/o, 
network, 
storage) 

No No 

Hierarchical model 
for inter-query 

parallelism is more 
scalable 

No Yes 

Venugopal9
6 [19] 

No Yes irop 
Yes (cpu, 
storage) 

No No 

Algorithms are 
scalable, but 

architecture is not 
proposed 

No Yes 

Ogsa-dqp 
[6, 7, 8] 

Yes No 
irop, 
iaop, 
pipl 

Yes (cpu, 
ram, i/o, 
network) 

Yes No 
Centralized scheduler 

reduce scalability 
Yes Yes 

DaSilva06 
[16] 

Yes No 
irop, 
iaop 

Yes (node 
throughput) 

No No 
Centralized approach, 

not very scalable 
Yes No 

4.5   Incentive-Based Approach 

This is a relatively new approach, the basic premise of which is the full autonomy of 
Data Grid nodes. The site administrator can completely determine the policy, and use 
his own algorithms to estimate the execution time of local operations. An incentive-
based system gives nodes positive points for the successful execution of operations, 
and takes points off of those sites that could not perform the operation in the 
estimated time. The approach leaves execution time estimation to nodes-candidates so 
a significant part of computations for resource allocation is distributed among a large 
set of nodes-candidates. 

There are two main methods in this approach: (i) Economic principles based and 
(ii) Reputation based resource allocation. 

The first use such economic tools as money, trade and auctions. It works as 
follows. The user distributes a query among a set of Data Grid nodes. Each node on 
the basis of its own policies decides whether it wants to participate in the query 
processing or not. If yes, the node estimates and informs the user about the time 
necessary to finish the query, and cost of that work. The user selects the most 
attractive offer and reports its decision. Selected node executes the query and returns 
the result to the user. In case of delay in query execution, the node will have to pay to 
the user specified penalty. 
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In Reputation based methods, each node has its own reputation, which rises in the 
case of a successful query execution, and falls in the case of exceeding the defined 
execution time. The principle is very similar to the previous method, the main 
difference that the node informs the user only about estimated time of query 
execution. User, when he selects the best offer, takes into account the reputation of 
the site and selects the most reliable nodes with good reputation. 

4.6   Economic and Reputation Principles Based Resource Allocation 

As far as we know, the earliest work in this area is the article [18], in which the 
authors proposed wide-area distributed database system Mariposa. This was the first 
time the requirements for large-scale distributed database systems were defined 
namely: a) scalability; b) data mobility; c) no global synchronization; d) total local 
autonomy; c) easily configurable policies. Also, in the article the basic principles 
were described in detail, namely the architecture and algorithm of the economic-based 
scheduler, including: a virtual bank, auction system, a decentralized distribution 
system for query announcement and resource allocation, etc. These requirements, the 
architecture and algorithms without major changes lie at the basis of all the latest 
proposed economic-based resource allocation methods in the Data Grid domain. We 
will describe some of the most interesting recent works. 

In [21], an Economic-like resource allocation scheme was proposed. The method 
broadcasts a query among the nodes, which can bid on the query, i.e. make its 
proposals with the deadline and the virtual “cost” of the query, estimated by itself. 
The user selects the most profitable offer. This paper does not address directly the 
Load Balancing problem, but it is supposed that the economic-like system will 
encourage the sites to trace their load and determine their policies for participating in 
the query execution. 

In [12] was proposed to use the principle of continuous auction, during which 
candidate nodes can haggle with the customer to achieve the most acceptable price for 
both sides. This method, however, as the foregoing [21], not provides an 
implementation within the Data Grid environment. 

In [2] a Reputation based resource allocation algorithm was proposed. The method 
is targeted at a Grid with full autonomy of nodes. Each node on the basis of its own 
policy proposes itself as a candidate for participating in fulfilling the query, offering 
its estimated time in which it can fulfill the query. The scheduler selects the best node 
for query execution taking into consideration its reputation. The reputation of the 
node depends on how accurate was its previous estimations of the execution time. The 
method suffers from the lack of distributed relations querying. Also, usage of 
parallelism for query optimizing is not considered. 

4.7   Comparison of Incentive-Based Resource Allocation Methods 

In the Table 2 we present the above described incentive-based methods. Two methods 
[21, 12] do not take into account the principle of Data locality, i.e. strictly speaking, 
they are not suitable for use in the Data Grid. However, we believe that these methods 
can be extended, so we include them into consideration. 
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Table 2. Characteristics of Incentive-based resource allocation methods 

Work Dst Mlt Prl Het. NN LT Sca. DR DL 

Mariposa 
[18] 

Yes No irop 
Indirectly, 
with Price 

No No 
Decentralized, 

good scalability 
No 

Indirectly, 
with data 
migration 

Xiao08 
[21] 

No No No 
Indirectly, 
with Price 

No No 
Decentralized, 

good scalability 
No No 

Izakian09 
[12] 

No No irop 
Indirectly, 
with Price 

No No 
Decentralized, 

good scalability 
No No 

Costa09 
[2] 

No No No 
Indirectly, 
with Rep. 

No No 
Decentralized, 

good scalability 
No 

Yes 
(Indirectly) 

 
All the above methods has excellent scalability, however, the criteria set out 

namely Distributed Relations Querying, Parallelism, and Dynamic reallocation are a 
weak point practically of all the methods. As shown in the table, only one of the 
above methods supports Distributed Relations Querying, and this is [18]. We should 
also note one important feature of the Incentive-based approach namely: during the 
node selection, once an agreement has been concluded between the user and the 
nodes, it cannot be altered. This means that using newly appeared nodes' data during 
execution-time and Dynamic reallocation in this approach is fundamentally 
impossible. 

Comparing the principles of economic and reputation based resource allocation, we 
have concluded that the latter is much simpler to implement and better reflects the 
objective of the virtual parameter, introduced in the Incentive-based approach. After 
all, the task is to represent the quality of the Data Grid nodes functionality. The 
principle of Reputation can do this directly as it is the most transparent approach for 
both users and nodes. In the economic model the users do not have any information 
about the reliability of nodes. Also, the principle of payment generates a steady 
stream of virtual money from users to the sites, but without the reverse process, all the 
money of the system eventually will be stored at sites that provide query execution. 
Without a balanced circulation of money in the economy, such a model cannot 
operate effectively over a long period of time. 

Another problem of the economic model is the support of a Distributed relations 
querying. Indeed, in the case of the distributed relations, each of the nodes may 
contain an important part of requested relation, which means that user will not 
“choose” among the nodes, but "buy up" all parts of the relation of all the nodes. 

4.8   Comparison of the Two Approaches 

Let's compare the two basic resource allocation approaches by each of the selected 
criteria (Table 3). As we have seen before, both approaches can in principle have the 
support of Distributed relations querying, however, its realization in the Incentive-
based approach is more complicated. Also, Incentive-based approach loses by the 
criteria of Parallelism and Taking into account heterogeneous nodes 'performance, 
Using newly appeared nodes' data during execution-time, Dynamic reallocation.  
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Table 3. Characteristics of Extended classic and Incentive-based approaches 

Work Dst Mlt Prl Het. NN LT Sca. DR DL 

Classic Yes Yes Yes Yes Yes Yes Good Yes Yes 

Incentive
-based 

Yes, but 
more 

complicated 
No 

Yes, but 
much more 
complicated 

Yes 
(Indirectly) 

No Yes 
Very 
Good 

No 
Yes 

(Indir.) 

 
However, by the most important criterion Scalability, this approach is superior to 

the traditional Classic resource allocation. A key advantage of the Incentive-based 
approach is node autonomy, which, however, places strong responsibility for the 
functioning of the Grid system to administrators of nodes and poses many difficulties 
for them. 

5   Performance Evaluation 

For more detailed comparison of the highlighted resource allocation approaches, we 
have decided to perform an experiment. The main objective of the experiment is to 
study the most general characteristics of both approaches in the Data Grid 
environment: allocation methods cost and optimality of generated plans. For 
measuring the two characteristics a detailed implementation of the algorithms studied 
is required.  

We had examined a number of available program Grid simulators and real 
scientific-purpose Grid systems, and we did not found once that meets all of our 
requirements which are: very large number of nodes available for the experiment 
(1000 and more); dependent operations support; relations distribution and 
fragmentation control support. For example, GridSim does not have dependent 
operations support and we cannot reserve 1000 or more nodes for our experiment in 
real Grids. That is why we decided to develop a Data Grid simulator, specialized for 
our purposes.  

5.1   Simulation Model and System Parameters 

We created a Data Grid simulator, the main characteristics of which are: large number 
of nodes; heterogeneity of nodes by CPU, memory, I/O performance, network link 
connection performance; large number of distributed and duplicated relations. 

In our simulator we are interested only in resource allocation and query plan 
execution phases. It is highly parameterized and we will describe the major 
parameters and their settings used in this study. 

In Table 4 we can see the major parameters of our Data Grid simulator. Values are 
randomly generated in selected ranges that we found adequate. While the node’s 
parameters define performance of hardware resources of the Data Grid, the relation’s 
parameters define the size of relation, its fragmentation and duplication level and 
other characteristics. All of them are important for resource allocation decisions.  
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Table 4. System configuration and database parameters 

Parameter Value 
Node CPU performance 10  – 1 000 MIPS 
Node I/O performance 10 – 90 Mb/s; 
Node memory amount 0,001 – 40 Mb 
Node network connection bandwidth 10 – 60 Mbit 
Node network connection latency 0.5 s 
Relation number of attributes 10 
Relation size of attribute 300 Bytes 
Relation cardinality of attributes 0.3 – 0.9 
Relation size of tuple 3000 Bytes 
Relation number of tuples in relation 1000 – 11000 
Relation size 3Mb – 33Mb 
Relation fragments number 10 
Relation duplicates number 10 

 
As a minimum value for a node’s memory, we chose a value that is very close to 

zero for examining algorithms in the presence of highly charged nodes. For the study 
we used a high level of distribution and duplication: each relation is fragmented to 10 
equal fragments, each fragment is duplicated among 10 nodes, which means that each 
relation uses 100 nodes for storage of its different parts. In general, for a join 
operation we have 200 node-candidates. This is not applied to intermediate relations, 
because they have a level of distribution according to the level of join parallelism. 
Their level of duplication is always equal to 1. 

5.2   Performance Analysis 

In this study two algorithms were implemented, one for each approach. As a base for 
the algorithm of Extended classic approach we chose the method [5], implementing it 
with the combination of the greedy algorithm heuristic. We found it to be the most 
representative because of using the most common static strategy with all types of 
intra-operation and inter-operation parallelism. 

For the Incentive-based approach we used as a base the method [18], proposed for 
the Mariposa system. Although it is not the newest algorithm it is one of the better 
described and implemented for an environment that is very similar to a Data Grid. It 
is important to mention, that in origin the algorithm of Mariposa intended to optimize 
two parameters at the same time: response time and query cost. In our study we are 
not interested in the virtual economic efficiency of the generated plans. That is why 
we simplified the algorithm for optimizing only the response time, in our study.  

One of the principal differences between the capabilities of the above described 
algorithms is that the Incentive-based algorithm cannot use intra-operation 
parallelism. We expect that the limitation will bring lesser efficiency and greater 
response time in most cases. But we can expect also that, because of its lower 
allocation algorithm complexity and distributed nature, Incentive-based methods will 
have a smaller resource allocation time. 

The query execution plan that is generated in the resource allocation phase has a 
number of physical operations. Each of them is allocated to the selected node. We 
developed a query execution system that executes all independent operations 
simultaneously and uses the pipeline principle for the dependent ones. For the 
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operations that share the same resources, such as CPU, memory, I/O system or 
network, we provided a concurrency control mechanism. In our experiment we 
decided to take into account only the two most important logical operations: Join and 
Read. For join processing, we used the memory-adaptive hybrid hash join algorithm 
because it is one of the most universal and effective. 

We generated a simulated Data Grid with heterogeneous nodes and a set of 
distributed and fragmented relations. We randomly generated a series of queries of 
three types of complexity: simple (5 joins), middle (12 joins), complex (20 joins). For 
each query the two algorithms generated two execution plans. For execution time and 
resources consumption measurement for each type of query we used the average 
values of a series of 100 queries.  

Allocation Method Cost and Optimality of Generated Plan. In Fig.1 and 2 
displayed a dependency between resource allocation time and number of nodes-
candidates for Classic and Incentive-based methods. We denote allocation time by 
Talloc and total allocation time by Talloc total. Talloc allows comparison of the 
performance of the two algorithms. While Talloc total shows total time consumption 
for all participating nodes and allows comparision of the summary complexity of the 
examined algorithms. The following computation formulas were used respectively: 

Talloc = Tcentral + max(Tlocal i) . 

Talloc total = Tcentral + ∑ Tlocal i . 

Where Tcentral is an allocations time for the central node. Tlocal i is the local allocation 
time for nodes-candidates that participle in the resource allocation process in 
Incentive-based method. Naturally, since the Classic method is completely centralized 
and does not share any computations with local nodes, Tlocal i is always equal to zero 
for it and we have the same curve on both graphs. On the other hand for Incentive 
based method there is a considerable difference that indicates sharing of a large part 
of computations between a set of nodes.  
 

  

Fig. 1. Resource allocation time of Classic 
and Incentive-based methods 

Fig. 2. Total resource allocation cost of 
Classic and Incentive-based methods 



 Resource Scheduling Methods for Query Optimization in Data Grid Systems 197 

  

Fig. 3. Query response time of Classic and 
Incentive-based methods for simple, middle 
and complex queries 

Fig. 4. CPU cost of Classic and Incentive-
based methods for simple, middle and 
complex queries 

The diagrams show a significant time consumption superiority of the Classic 
method over the Incentive-based. Optimality of generated plans. 

Because of the computational work division between central and local nodes, the 
Incentive-based method has a significantly less allocation time. Since the Classic 
method considers intra-operation parallelism, it requires more computations for 
creating the query execution plans (Fig.2). 

Fig.3 displays the response time for the Classic and Incentive-based methods for 
simple, middle and complex queries. We used the following computation formula to 
determine this:  

Tresponse = Talloc + Texecution . 

Where Talloc is the resource allocation time and Texecution is the time of query execution. 
As we can see in Fig. 3, the Classic method provides a much lower response time for  
 

  

Fig. 5. I/O cost of Classic and Incentive-based 
methods for simple, middle and complex 
queries 

Fig. 6. Communication cost of Classic and 
Incentive-based methods for simple, middle 
and complex queries 
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all types of queries. From the performance point of view, the Classic method is 
significantly superior over the Incentive-based method. We found out that the CPU 
cost is very small for both methods and do not have a significant influence on the 
response time (Fig. 4). Analyzing Fig. 5 and 6, we can tell that the Classic method has 
a much lower I/O and communication cost. It can be explained by intra-operation 
parallelism, which is used by Classic method and raise the efficiency of the generated 
query execution plans. During our experiment we also identified that the most critical 
resources in the Data Grid are network and I/O performance.  

6   Conclusion 

In this paper we have presented our review of recent works in the field of resource 
allocation in the Data Grid environment. We have highlighted and analyzed two 
principal approaches: Classic and Incentive-based resource allocation. The first one is 
well developed and simple in realization, but the second one provides full node 
autonomy and excellent scalability. In the performance evaluation we found out, that 
Extended classic method provides more optimal resource allocation, but we believe, 
that because of calculation sharing, Incentive based resource allocation potentially 
more scalable and it is a promising avenue of research.  
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Abstract. Recommendation functionalities have been recently consid-
ered in traditional database systems as an approach for guaranteeing a
satisfactory interaction with the database also to users with a low or
moderate technical skill or in presence of huge volumes of, potentially
heterogeneous, data. Recommendation is performed by extending query
results with additional and potentially interesting items. Among the pro-
posed techniques, current-state approaches exploit the content and the
schema of a query result as well as the database instance in order to rec-
ommend new items. While some preliminary current-state approaches
have been proposed for relational databases, in this paper, we claim that
current-state approaches can also be relevant for providing new ways
of interactions in spatial databases. To support our claim, we present a
current-state recommendation approach for spatial data and topological
queries. The proposed approach exploits the principles of locality and
similarity between topological predicates to recommend new spatial ob-
jects besides those precisely returned by a query. An index-based query
processing algorithm for the proposed recommendation operator is also
proposed, to guarantee an efficient computation of recommended items.

1 Introduction

Recommendation techniques have been originally designed for Web search en-
gines with the aim of providing advice to the user with respect to her specific
needs. More recently, recommendation functionalities have been considered in
traditional database systems as an approach for extending query results with
additional and potentially useful items, guaranteeing a more satisfactory inter-
action with the database in all the cases in which it may be difficult for the user
to specify the query in a precise way (e.g., when users have a low or moder-
ate technical skill or in presence of huge volumes of, potentially heterogeneous,
data).

Most recommendation approaches rely on the user history [1]. However, in
database systems, there may be situations in which no user profile or history is
available, for example because the user is occasional, or profile maintenance is
considered too expensive. In those cases, the usage of history-based approaches
is not viable and other information should be used, e.g., external sources, like the
Web, or the database content itself. Techniques based only on database content

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 200–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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and query results have been called current-state techniques in [15], where a
current-state recommendation approach has been proposed for relational data.

The aim of this paper is to present a current-state recommendation approach
for spatial queries, In particular, based on their relevance from an application
point of view and their support in current spatial query language proposals and
standards (e.g., [8,14]), we consider topological selection queries, i.e., selection
queries based on a topological predicate (e.g., disjoint, touch, in, contain, equal,
cross, overlap, coveredBy, cover [17]). We then propose a parametric recom-
mendation operator which provides to the user additional results with respect
to those returned by the original query by taking into account the query result
and the database content. Additional results are also provided in case the result
of the original query is empty, thus providing a solution to the empty-answer
problem [2].

To motivate the proposed recommendation operator, consider a map, denoted
by MItaly, containing information about the provinces (represented as regions),
the main rivers and the railways (represented as lines), and the main towns (rep-
resented as points) in Italy. Now suppose the user is interested in the rivers that
somehow interact with the Bari and Arezzo provinces and suppose that she has
obtained with previous computation the polygons representing such provinces.
She may come out with the following formulation of the queries: Q1: Find the
rivers which are contained in the Bari province; Q2: Find the rivers which cross
the Arezzo province. Based on Figure 1 (a), we can see that no river satisfies
Q1, thus the query result is empty. However, objects that satisfy a very similar
condition exist, for example rivers exist that cross the province of Bari. Such
rivers could be recommended to the user since potentially interesting for her and
can be detected by executing a relaxed selection query, which is able to identify
the rivers which best fit the original query. On the other hand, query Q2 selects
those rivers which cross Arezzo, i.e., which intersect the interior of the Arezzo
province but are not contained in it. In this case, as we can see from Figure 1
(b), the query result is not empty. Further potentially interesting results may
correspond to affluents of the returned rivers, which are close to the boundary
of the Arezzo province. Such affluents can be detected by first generating a new
query object, starting from the original query results and the original query ob-
ject, and then executing a (set of) new topological selection queries, possibly in
a relaxed way, i.e., by exploiting similarity between topological relations in order
to return the results which best fits the given condition.

Starting from the previous examples, we design a flexible recommendation
operator which allows the user to specify her preferences in order to compute
recommended objects. Preferences can be specified in terms of: (i) a topological
similarity function ts, to be used to compare topological relationships; (ii) an
object function FO, to compute the new query object starting from the result of
the original query and the original query object; (iii) a predicate function FT ,
to determine the new set of topological predicates to be considered in the new
topological selection queries; (iv) a semantics, either precise or relaxed, for each
new selection query to be executed. Notice that functions FO and FT usually
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(a) Bari (b) Arezzo

Fig. 1. (a) The Bari province and the rivers which cross it. (b) The Arezzo province
and: (i) the rivers which cross it (dashed lines); (ii) the rivers which may be returned
as result of the recommendation process (non-dashed lines).

depend on the considered application domain and are not directly related to
spatial object properties. This is why they represent parameters for the proposed
recommendation operator.

Based on the specified preferences, the recommendation operator works as
follows. If the result of the original query is not empty, correlations between the
returned data and data contained in the database are detected. A new query
object is then generated from the original query object and the query result
through the usage of FO. The resulting object represents a potentially interesting
area for the user to be used for result extension. Then, new selection queries are
defined, based on FT , and executed with respect to the new query object, in
order to identify new potentially useful results for the user. In case the query
result is empty, a relaxed approach is directly applied on the given condition,
without changing the predicate and the query object.

Since in the spatial context query processing algorithms usually rely on the
usage of a given index structure (e.g., an R-tree), we also present an index-
based query processing algorithm for the proposed relaxed selection, taking into
account the way it is executed in the recommendation operator.

The paper is organized as follows. Section 2 surveys related work. Background
concepts are provided in Section 3. Section 4 then presents the recommendation
operator and discusses all components it relies on. The processing algorithm for
executing relaxed selections is presented in Section 5. Finally, Section 6 presents
some conclusions and outlines future work.

2 Related Work

Recommendation systems aim at recommending to the users items not in the
results of the posed queries but of potential interests. They have been initially
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proposed for Web services, very recently some approaches have also been pro-
posed for the database context [1]. Motivated by the fact that most recommen-
dation methods are hard-wired into the system, a framework for the declarative
specification of the recommendation process over structured data has been pro-
posed in [16]. The techniques reported in [15] and [6] present specific current-
state and content-based recommendation processes, respectively. Existing recom-
mendation approaches for spatial data mainly rely on history-based techniques
[19].

A current-state recommendation process can be considered a query relaxation
approach since the precise result of the query is extended with other poten-
tially interesting items. Preference-based queries like top-k and skyline [5,13]
are other examples of query relaxation operations. The recommendation oper-
ator presented in this paper relies on the usage of a relaxed selection operator
which represents a top-1 query with respect to a specific scoring function. It also
corresponds to a variation of the Best-Fit operator provided in [4] to take into
account specific recommendation issues.

The aim of a top-k operator is to restrict the number of returned results to
a fixed number (k), based on some ranking. Most top-k operators have been
proposed for monotone scoring functions, which give the opportunity of opti-
mizing top-k query processing, using some threshold value to prune the visit of
non-interesting data. When considering spatial data, spatial relationships, and
especially the distance-based ones, are often considered in computing scores.
Nearest neighbor operators are examples of top-1 queries, using distance as scor-
ing function [7,12,18]. Other approaches have then been proposed, using different
types of scoring functions, based on spatial and non-spatial properties of spatial
objects [20,21]. The most efficient algorithms assume that data are indexed and
use a Branch and Bound approach to prune index subtrees which cannot provide
any answer.

The proposed approach relies on the usage of specific topological similarity
functions to determine how close two topological relations are. In the literature,
several distance functions for topological relations have been proposed [9,10].
Often, similarity is computed only between pairs of objects with the same di-
mension and multiple object representations are not considered. More recent
proposals extend the distance function proposed in [9] (only for regions) to ge-
ometry type-independent set of topological or cardinal relations, computing a
value between 0 and 1 based on the matrix representation of the considered
relations [4].

3 Background

The spatial data model considered in this paper relies on the concept of feature
type (ft) [14], that represents a class of real spatial objects (e.g., rivers, roads,
towns, etc. . .). Each feature type has some descriptive attributes and a spatial
attribute o, having a given dimension d ∈ DIM = {0, 1, 2}. Values for o are
taken from a set of spatial objects SO, which in the paper we assume it contains
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Table 1. Definition of the reference set of topological relations (fo denotes the interior
of object f , i.e., the set of points of f which do not belong to the boundary of f)

Name Definition Object
dimension

disjoint (d) f1 ∩ f2 = ∅ All pairs

touch (t) (f◦
1 ∩ f◦

2 ) = ∅ ∧ (f1 ∩ f2) 
= ∅ All pairs but
0/0

in (i) (f1 ∩ f◦
2 = f1) ∧ (f◦

1 ∩ f◦
2 ) 
= ∅ 2/2, 1/1, 1/2,

0/2, 0/1

contain (c) (f◦
1 ∩ f2 = f2) ∧ (f◦

1 ∩ f◦
2 ) 
= ∅ 2/2, 1/1, 2/1,

2/0, 1/0

equal (e) f1 = f2 2/2, 1/1, 0/0

cross (r) dim(f◦
1 ∩ f◦

2 ) = (max(dim(f1), dim(f2)) − 1)∧ 1/2, 2/1, 1/1
(f1 ∩ f2) 
= f1 ∧ (f1 ∩ f2) 
= f2

overlap (o) dim(f1) = dim(f2) = dim(f◦
1 ∩f◦

2 )∧f1∩f2) 
= f1∧(f1∩f2) 
= f2 2/2, 1/1

coveredBy (b) (f1 ∩ f2 = f1) ∧ (f◦
1 ∩ f◦

2 ) 
= ∅ ∧ (f1 ∩ f◦
2 
= f1) 2/2, 1/1, 1/2

cover (v) (f1 ∩ f2 = f2) ∧ (f◦
1 ∩ f◦

2 ) 
= ∅ ∧ (f◦
1 ∩ f2 
= f2) 2/2, 1/1, 2/1

point, curve, and surface values (sas described in [14]).1 We define a map schema
MS as a set of feature types. An instance M of a map schema MS is a set of
features, instances of the feature types in MS. The set of features associated
with a feature type ft inside a map M is denoted by M.ft. The dimension of
a feature or feature type f in a map M is unique and is denoted by dim(f, M)
(dim(f) when there is no ambiguity).

In this paper, to explain the proposed concepts and techniques, we choose the
set of topological relations T presented in [17] even if the proposed approach
works for any set of topological relationships. The semantics of the chosen re-
lations is provided in Table 1. We notice that, independently from the chosen
set of topological relations, usually not all of them are defined for any pair of
dimensions (see, e.g., column 3 of Table 1). In the following, when we want to
remark the dimensions d1 and d2 of the pairs of features a topological relation
θ ∈ T is applied to, we denote θ with θd1,d2 (typed relation). Additionally, we
denote with Td1,d2 the set of typed relations defined for dimensions d1 and d2

and with TD the set of all typed relations.
Topological relations can be used to define topological selection conditions of

the form c ≡ ftθqO, where O ∈ SO, ft ∈ MS, θq ∈ Tdim(ft),dim(O). Given a
map M , instance of MS, the selection operation σftθqO(M) returns all features
f ∈M.ft such that fθqO holds.

The proposed recommendation operator relies on the usage of a topological
similarity function, defined as ts : TD×TD → [0, 1]. The returned value quantifies
the similarity between the two input typed topological relations. Of course, if
θ1

d1,d2
= θ2

d1,d2
, then ts(θ1

d1,d2
, θ2

d1,d2
) = 1. In the examples proposed in the

remainder of this paper, we consider the topological similarity function presented
in [4].

1 In the following, we use the term object also to denote features, when the specific
meaning is clear from the context.
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4 A Current-State Approach to Spatial Recommendation

As pointed out in [15], current-state approaches exploit the result of a user query
and the database content in order to recommend to the user further results. In
order to define a current-state recommendation operator for topological selection
queries, we use a very simple approach: the query object is modified based on
the query result and a set of new spatial selections are generated and executed
in either a precise or relaxed way. Relaxed selection allows one to determine the
features which best fit the given query condition, even if they do not precisely
satisfy it. Formally, relaxed selection can be defined as a top-1 query with respect
to a scoring function depending on the similarity between the topological relation
satisfied by a given feature and the query object and the query predicate.

The previous description points out all the elements required to set-up a
recommendation operator. They can be thought as preferences specified when
designing the recommendation operation for a given application and can be
summarized as follows:

– the function FO : 2SO × SO → SO used to generate the new query ob-
ject, based on the result of the original query and the original query object
(Subsection 4.2);

– the function FT : TD → 2TD used to generate the new query predicates
(Subsection 4.3);

– the type of selection semantics used, either precise (traditional) or relaxed,
for each new selection query to be executed. To make more evident the type
of semantics, we denote by σp precise selection and by σr relaxed selection
(Subsection 4.4).

In the following, we first present the recommendation operator in a parametric
way with respect to FO, FT , and the chosen selection semantics. Then, we
discuss how all such components can be defined.

4.1 Recommendation Operator

The current-state spatial recommendation operator can be defined as follows.

Definition 1 (Recommendation Operator). Let M be a map. Let O ∈ SO,
let θ ∈ TD. Let Qo(M) = {f.o|f ∈ Q(M)}. Let FO : 2SO × SO → SO. Let
FT : TD → 2TD . Let Q() ≡ σftθO(). The recommendation operator γftθO for Q
is defined as follows:

γftθO(M) =

{⋃
θi∈FT (θ)

[
σsi

ftθiFO(Qo(M),O)(M \Q(M))
]

if Q(M) �= ∅
σr

ftθO(M) if Q(M) = ∅

where s ∈ {p, r}. In the following, we denote by σftθiO(M, Q(M)) the expression
σr

ftθiO
(M \Q(M)) and we call operator σ restricted relaxed selection. �
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In the previous definition we notice that, when the result of the original query
is not empty, the selection operator is executed against a map obtained from the
original one by removing the result of the original query. This guarantees that
the recommendation operator will always return features which have not been
returned by the original query.

The reader may wonder why Q(M) has to be removed from the input map
instead of from the query result. The reason is that, while for precise selection
the following equivalence holds:

σp
ftθiO′(M \Q(M)) = σp

ftθiO′(M) \Q(M)

this is not true for relaxed selection, as we will show in Subsection 4.4, where
we also show that the result of a restricted relaxed selection cannot be empty if
M \Q(M) is not. We also notice that, when the result of the original query is
empty, we assume to execute a relaxed selection based on the original selection
condition, in order to provide to the user the most similar results to those she
is interested in.

Table 2 presents some examples of application of the recommendation opera-
tor, by considering specific preferences in terms of FO, FT , and types of executed
selection queries.

Table 2. Examples of usage of the recommendation operator. b(o, d) denotes the buffer
of object o with radius d.

Original query

Query expression 퓕퓞(𝑸𝒐
𝒊 (𝑴𝑰𝒕𝒂𝒍𝒚), 𝑶) 퓕퓣 (𝜽) Sel

type

Recommendation

𝑄1: Select the rivers that 𝑐𝑟𝑜𝑠𝑠 the province of Arezzo.

𝑄1 ≡ 𝜎𝑅𝑖𝑣𝑒𝑟𝑠 𝑐𝑟𝑜𝑠𝑠 𝐴𝑟𝑒𝑧𝑧𝑜(𝑀𝐼𝑡𝑎𝑙𝑦) 𝑏 ∩ (
∪

𝑄𝑜
1(𝑀𝐼𝑡𝑎𝑙𝑦)) 𝑡𝑜𝑢𝑐ℎ 𝑟

The affluents of the rivers that 𝑐𝑟𝑜𝑠𝑠 the province of Arezzo, close to the Arezzo
province: they touch the new query object (which is a set of portions of rivers) or well
approximate this condition.

𝑄2: Select the provinces interested by a certain agricultural area 𝐹𝐴.

𝑄2 ≡ 𝜎𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝐴(𝑀𝐼𝑡𝑎𝑙𝑦) 𝑏(𝐹𝐴, 𝑑1) ∩ 𝑏(
∪

𝑄𝑜
2(𝑀𝐼𝑡𝑎𝑙𝑦), 𝑑2) 𝑖𝑛, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑟, 𝑟

The provinces which may be influenced by the agricultural activity performed in 𝐹𝐴:
they are contained or overlap the new query object (which is a region) or well approx-
imate one of these two conditions.
𝑄3: Select the railway paths containing the railway segment 𝑁 .

𝑄3 ≡ 𝜎𝑅𝑎𝑖𝑙𝑤𝑎𝑦𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑁 (𝑀𝐼𝑡𝑎𝑙𝑦)
∪

𝑄𝑜
3(𝑀𝐼𝑡𝑎𝑙𝑦) 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑟

The railway paths that have a portion in common with those returned as original
query result: they overlap one of the railway path returned by the original query or
well approximate this condition.

𝑄4: Select the main towns in a specific polluted area PA.

𝑄4 ≡ 𝜎𝑀𝑎𝑖𝑛𝑇𝑜𝑤𝑛𝑠 𝑖𝑛 𝑃𝐴(𝑀𝐼𝑡𝑎𝑙𝑦) 𝑏(𝑃𝐴, 𝑑) 𝑖𝑛 𝑟

Other cities that may be polluted: cities near the boundary of the polluted area PA.

(Arezzo, d1)
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4.2 Detection of the New Query Object

In order to generate the new query object, various functions FO can be defined.
We claim that a good function should rely on two main principles:

– Principle of the memory: the result of the original query should be taken
into account in creating the new query object.

– Principle of locality: the new object must identify a region of space which is
close to that containing the original query object.

In order to implement the principle of the memory, we suggest that a given
aggregate operator is applied upon the objects returned by the original query.
Typical aggregate functions are union and intersection. In order to implement
the principle of locality, a buffering operation can be applied to such aggregate
object and/or to the original query object.

More generally, function FO can be defined by composing the following oper-
ators:

– agg : 2SO → SO, where agg ∈ {
⋃

,
⋂
}.

– buffer : SO × R→ SO.
– ∩,∪, \ operators over spatial data values, with the obvious meaning.

The following are some examples of recommendation objects which can be de-
fined:

– Dataset-based recommendation object. In this case, each part of the new query
object represents a portion of an object returned by the original query. The
new query object can be computed from the geometry of the objects con-
tained in the original query result. This is possible, for example, by creating
a buffer of the query object and intersecting it with the result of the original
query. The new object is composite and its dimension coincides with that of
the input features. The following expression implements this behavior (other
expressions can however be devised):

buffer(O, d) ∩ (
⋃

Qo(M)), with d > 0.

The recommendation operations for queries Q1 and Q3 in Table 2 rely on
the usage of dataset-based objects.

– Query-based recommendation object. In this case, the new query object is
obtained by modifying (usually, extending) the original query object. This
is possible, for example, by creating a buffer of the query object, a buffer for
the union of the result objects and taking the union of the two. In this case,
the result will always be a (possibly multi-)region. The following expression
implements this behavior (other expressions can however be devised):

buffer(O, d1) ∪ buffer(
⋃

Qo(M), d2) with d1, d2 > 0.

Another example of query-based recommendation object is provided for
query Q4 in Table 2; in this case, no dataset object is used for the com-
putation.
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– Domain-dependent recommendation object. It corresponds to any other com-
bination of the agg and buffer operators, e.g.,

buffer(O, d1) ∩ buffer(
⋃

Qo(M), d2) with d1, d2 > 0.

The object used in the recommendation operator for query Q2 in Table 2 is
an example of a domain-dependent object.

We notice that in the buffer computation, the radius d, d1, d2 may correspond
to either a system parameter or to a dynamic value, computed starting from O.

Example 1. Consider query Q1 ≡ σRivers cross Arezzo(MItaly).

– A dataset-based recommendation object corresponds to the portions of rivers
which cross Arezzo, contained in a specific buffer of the object representing
the Arezzo province. Such portions could be relevant, in the context of the
recommendation, for investigating what happens to rivers that cross Arezzo,
before entering in such province.

– A query-based recommendation object corresponds to a region enclosing the
surroundings of the Arezzo province and of the rivers which cross it. Such
new object could be relevant, in the context of the recommendation, for
investigating properties of rivers close to the Arezzo province or to one of
the rivers previously detected.

– A domain-dependent recommendation object, computed as described above,
returns the regions of space in the surroundings of Arezzo and of at least one
river that crosses Arezzo. Such new object could be relevant, in the context
of the recommendation, for investigating properties of rivers close to the
Arezzo province and to one of the rivers previously detected. �

4.3 Detection of the New Query Predicates

The new query predicates belong to Tdim(ft),dim(O′), where O′ is the new query
object, computed through function FO. They can be selected according to vari-
ous approaches, all depending on a specific topological similarity function ts. We
claim that at least the following three approaches should be taken into account:

– Best-Fit approach: the topological relations in Tdim(ft),dim(O′) which are most
similar to the query predicate, based on ts, are chosen.

– Threshold-based approach: all the topological relations in Tdim(ft),dim(O′)
whose similarity with respect to the query predicate is greater than a thresh-
old ρ are selected.

– Extensional approach: in this case, function FT is defined in a case by
case way. This approach can be useful when recommendation is domain
dependent. In this way, information about the domain (possibly represented
through ontologies) can be taken into account in order to select the new
query predicates.
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Example 2. Consider query Q1 ≡ σRivers cross Arezzo(MItaly). Suppose the new
query object is still a region (i.e., its dimension is 2). Different functions for the
detection of the new query predicates can be considered:

– Best-Fit approach: function FT on input cross1,2 returns the set of most
similar relations to cross1,2, defined for pairs composed of one line (the river)
and one region (the province). Based on the similarity function proposed in
[4], such relations are {in, coveredBy}.

– Threshold-based approach: when considering a threshold, say 0.7, function FT
on input cross1,2 returns the set of topological relations whose similarity with
respect to cross1,2 is greater than or equal to 0.7, i.e., the set {in, coveredBy,
touch}, based on [4].

– Extensional approach: assuming the user is interested in the affluents of the
rivers returned by the original query, function FT on input cross1,2 returns
{touch}. In this case, similarity function is not exploited. �

4.4 Relaxed Selection Operator

The result of a recommendation operator corresponds to the union of a set of
either precise or relaxed selection queries. In most contexts in which recommen-
dation can be useful (huge quantity of potentially heterogeneous data for which
the user has only a limited knowledge), relaxed selection operators can be quite
useful in order to always return a non-empty result which is as closest as possible
to the user request, i.e., which best fits the user requests.

The relaxed selection operator σr can be defined as a sort of top-1 operator
with respect to a scoring function which quantifies, for each feature, how well it
fits the given query. Since topological relationships are qualitative, in order to
define the scoring function, as a first step we need to quantify how similar two
features are with respect to a given topological relation.

Definition 2 (T -Based Spatial Similarity). Let θ ∈ TD. Let ts be a topologi-
cal similarity function for T . The T -based spatial similarity function sθ

ts, based on
ts and θ, is defined as sθ

ts : SO × SO → [0, 1], sθ
ts(o1, o2) = ts(θ, θ′) if o1θ

′o2. �

For example, if θ is the overlap relation then soverlap
ts (o1, o2) is equal to 1 if o1

and o2 overlap, otherwise it has a value that measures the similarity between
overlap and the existing relation θ′ between o1 and o2.

Based on sθ
ts it is now possible to define a scoring function quantifying how

well a feature fits a given selection condition and a top-k query based on it.

Definition 3 (T -Based Top-1 Query). Let θ ∈ T . Let O ∈ SO. Let sθ
ts be a

T -based spatial similarity function. The T -based scoring function τθ
O, based on θ,

O, and sθ
ts, on a feature f is defined as follows: τθ

O(f) = sθ
ts(f.o, O). The relaxed

selection operator σr can now be defined as a T -based top-1 query as follows:
σr

ftθO(M) = {f |f ∈ M.ft ∧ f is a top-1 feature with respect to the T -based
scoring function τθ

O}. �
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It is possible to show that the equivalence provided in Subsection 4.1 for the
precise selection operator does not hold for the relaxed one, since the presence
in the input map of the objects we do not want to return (i.e, the result of the
original query) may alter the result.

Proposition 1. Let Q() ≡ σftθO(). Let c ≡ ftθiO
′. For relaxed selection, the

following equality does not hold:

σr
c (M \Q(M)) = σr

c (M) \Q(M).

Proof Sketch. Relaxed selection looks for features which best fit c. Suppose
that σr

c (M) ⊆ Q(M), i.e., the features which best fit c in M are contained in
Q(M). In this case, the expression on the right will produce an empty result. On
the other hand, the expression on the left will never produce an empty result,
unless M \Q(M) is empty, i.e., when M and Q(M) coincide. �

5 Query Processing for the Recommendation Operator

The implementation of the recommendation operator strongly depends on how
operator σr is implemented, i.e., on how top-1 features are detected. In the
following, we therefore propose a specific query processing technique for T -based
top-1 queries, as defined in Definition 3. The proposed algorithm is a variation
of the one proposed in [4] to take into account specific recommendation issues.

We assume, as usual in the spatial context, that instances of each feature type
fti in a map M are indexed by an R-Tree Ri [11] or one of its variants, R+-trees
and R∗-trees [3], for guaranteeing a fast access. In the following, for the sake
of presentation simplicity, we assume that leaf nodes of any index tree contains
objects and not their approximations.

As a first consideration, we notice that the R-tree indexes all instances of a
given feature type. However, based on Definition 1 and Proposition 1, not all
such instances have to be considered during the processing (instances contained
in Q(M) have not to be considered). The proposed recommendation algorithm
therefore takes as input, besides the selection condition, also a given set of fea-
tures Q(M), not to be considered during processing. Thus, it directly implements
restricted relaxed selections (see Subsection 4.1).

Similarly to what has been done in [4], the algorithm relies on a Branch and
Bound approach. The following structures are therefore maintained during the
computation: (i) a priority queue PQ, used to store objects and R-tree nodes
visited so far which may potentially produce further results; (ii) a threshold value
ρ, representing the lowest score value in PQ. In order to visit first entries which
most probably will generate some results, we order entries and objects in PQ
based on their key value.

Under the Branch and Bound visit, the R-tree is visited in a breadth-first
way (see Algorithm 1). All R-tree nodes and objects to be visited are inserted
in PQ, which at the beginning contains the root of the tree. Nodes and objects
in PQ are visited starting from the maximum element, based on the considered
ordering (see below). Three cases may arise:
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1. Given a non-leaf node N , for each entry e in N , we determine whether the
visit of the subtree pointed by e has to be performed. The visit of a subtree
is avoided if and only if it is possible to establish that objects pointed by its
leaves do not belong to the result. To guarantee efficiency, such property has
to be checked locally at the corresponding index entry, using some key value.
A typical approach consists in defining the key value for an entry e, denoted
by key(e), as the minimum interval [smin, smax] containing all score values
assigned to features indexed by the subtree rooted by e. Ordering in PQ
can be defined based on the maximum value of each interval. The visit of
the subtree rooted by a given entry e can then be avoided if key(e).smax is
lower than ρ, since in this case no object in the subtree can belong to the
result (better results have already been detected). In case the visit has to be
performed, the entry is inserted into PQ, ρ is updated (only if key(e).smin >
ρ), and all elements in PQ which cannot produce further results, based on
the new ρ, are removed from PQ (i.e., all elements e such that key(e).smax
is lower than ρ).

2. Given a leaf node N , for each object o in N , the score for o is computed
only if o �∈ Q(M). In case τθ

O(o) is greater than or equal to ρ, this means
that o may potentially belong to the result and it is therefore inserted in
PQ. Similarly to the entry case, after the insertion ρ is updated, and all
elements in PQ which cannot produce further results, based on the new ρ,
are removed from PQ.

3. Finally, given an object o, it can be directly returned as result since PQ is
ordered and any node or object following the one at hand will generate lower
similarity values with respect to the query.

Algorithm 1 presents the approach described above. In order to compute key
values for entries, we exploit properties of minimum bounding rectangles and
the notion of compatible topological relation, presented in [17] for regions and
extended in [4] to objects with arbitrary dimension. The basic idea behind com-
patibility is that, given an object o contained in the subtree pointed by an entry
e and a query object O, if o θ O holds, the topological relation between mbr(e)
and mbr(O) cannot be arbitrary but must be compatible with θ. Compatibility
depends on dimension of the objects to which the topological relation is applied.
In the following, the set of relations in TD which are compatible with relation
θd1,d2 is denoted by c(θ, d1, d2).

Example 3. In order to illustrate compatibility, we consider its application to pre-
cise selection. Let SQ: σRivers overlap O(M). Suppose that during the visit of the R-
tree indexing rivers in M , we consider an entry e such that mbr(e) disjoint mbr(O)
holds. Since it is possible to show that the only relation which is compatible with
disjoint over a pair of region is disjoint (see [4]), objects contained in the subtree
rooted by e must be disjoint with respect to O, Thus, the subtree rooted by e can
be discarded since it cannot produce further query results. �

Using the notion of compatibility, key values for R-tree entries, with respect to
the query σr

ftθO(M), can be defined as follows.
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Definition 4. Let Q ≡ σr
ftθO(M) be a relaxed selection query. Let e be an entry

of the R-tree indexing ft features in M . We define the key value of e with respect
to θ and O, denoted by key(e, θ, O) as follows:

key(e, θ, O) = [ min{ts(θ, θ) | mbr(e) θ′ mbr(O) ∧ θ ∈ c(θ′, dim(ft), dim(O))},
max{ts(θ, θ) | mbr(e) θ′ mbr(O) ∧ θ ∈ c(θ′, dim(ft), dim(O))} ]. �

Algorithm 1. Restricted Relaxed Selection
Require: Query predicate θ, query object O, result set Q(M), R-tree R over ft instances in map

M
1: PriorityQueue PQ:= empty
2: PQ.insert(R.root,0)
3: ρ=0
4: while PQ is not empty do
5: N :=PQ.getMax()
6: if N is non-leaf node then
7: for all entries e in N do
8: compute key := key(e, θ, O);
9: let N ′ be the node pointed by e;

10: if key.smax >= ρ then PQ.insert(N ′,key.smax); endif
11: update PQ and ρ according to e;
12: end for
13: else if N is leaf node then
14: for all objects o in N do
15: if o 
∈ Qo(M) then

16: compute score := τθ
O(o);

17: if score >= ρ then PQ.insert(o,score); endif
18: update PQ and ρ according to o;
19: end if
20: end for
21: else
22: return N ;
23: end if

24: end while

6 Concluding Remarks

In this paper, we have presented a current-state recommendation approach for
spatial data. The recommendation operator is defined in a parametric way with
respect to some basic components and relies on the usage of restricted relaxed
selection operations. The restricted relaxed selection operator has been formally
defined as a sort of top-1 query and an index-based query processing algorithm
for its execution has been provided.

The proposed recommendation operator has been implemented in the context
of an existing prototype [4]. Based on the realized prototype, future work includes
an experimental evaluation of the efficiency and the efficacy of the proposed
approach. Concerning the efficacy, we plan to perform experiments with end-
users in order to compute quality-based evaluation measures, such as recall and
precision, for a set of workload queries. The design of an optimized algorithm
for the batch execution of a set of, either precise or relaxed, selection queries is
another issue we plan to investigate.
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Abstract. Research in Moving Objects Databases (MOD) has
addressed various aspects of storing and querying trajectories of moving
objects: from modelling, through linguistic constructs and formalisms/
algebras, to indexing structures and efficient processing of different query-
categories have been subjects to a large body of works. Given the archi-
tectural trends of multicore CPUs becoming a commonplace, in this work
we focus on efficient processing of spatio-temporal range queries in such
settings. We postulate that coupling the semantics of the problem do-
main into the query processing algorithms in a manner that is aware of
the multicore features, can yield performance improvements that surpass
the gains obtained by relying solely on the compiler-generated threads
parallelization. Towards that end, we present and evaluate heuristics for
processing variants spatio-temporal range queries in multicore settings
by partitioning the load (i.e., data set) and assigning partial tasks to the
individual cores. Our experiments demonstrate that 5-fold speed-ups can
be achieved, when compared to the (semi) naive approach which relies
on the compiler to generate the multicore-compatible code.

1 Introduction

Moving Objects Databases (MOD) [17] provide a foundation that enables a
wide range of applications relying on some form of Location Based Services
(LBS) [33]. The typical MOD-tasks evolve around the efficient (storage and)
retrieval of the spatio-temporal data representing the motion of a large number
of moving objects, along with the efficient processing of various queries of interest
(e.g., whereabouts-in-time, range, (k)Nearest-neighbor, similarity, skyline, etc.),
towards which various indexing techniques and processing algorithms have been
developed [3, 23, 27, 36].

Historically, variants of different problems – both from the perspective of
the architectures/environments, as well as the applications’ semantics – have
prompted researchers to address many issues related to parallel and distributed
processing [5] (and the many references therein). MOD-related research has also
� Research supported by NSF:CNS-0910952.
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generated works which, in one way or another, have addressed distributed con-
texts – from distributed data delivery and delegation of some responsibilities
among mobile clients [19,13,12], to processing of spatio-temporal queries in sen-
sor networks settings [4, 8].

One of the common trends in recent research is the hardware-software co-
design, related to efficient execution of algorithms in multiprocessor/multicore
settings [2,20,22,30]. Using multiprocessor and/or multi-core architectures max-
imizes the benefit of parallelizing various tasks involved in the overall solu-
tion [2, 20]. A typical high-level configuration is illustrated in Figure 1: (1) the
data that needs to be processed is stored initially in a commonly accessible
global structure (e.g., ”Global Queue” in Figure 1); (2) the data is then parti-
tioned among the different processing units (cores) which can execute threads in
parallel; (3) some of the partial results may need to be stored in a shared mem-
ory which, in turn, may be used as additional ”feedback” for the subsequent
steps/iteration of the respective threads.

While some algorithms are inherently sequential (or, have ”sequential bottle-
necks” [20]) and some are more amenable to parallelization, one possible avenue
of exploiting the parallelism is to rely on the existing compilers for languages
which are close in syntax to the existing ones (e.g., ”Cilk Plus”1). For a given
program, they will use a fixed set of translation-rules to maximize the extent of
parallelism in the executable code generated for a given hardware platform.

In this work, we postulate that incorporating the semantics of the underly-
ing data may yield considerable benefits in exploiting the multicore paralleliza-
tion capabilities, when compared to the ”vanilla” solutions which rely on the de-
fault (compiler-generated) parallelization. We focus on the efficient processing of
spatio-temporal range queries in multi-core settings, the basic syntax of which is:
Qr: Retrieve all the moving objects which are inside the region R between [t1, t2].

Different syntactic variants of Qr are possible (e.g., sometimes vs. always
within the time-interval of interest), even incorporating uncertainty [7, 25, 37]).
In this work, we specifically investigate the impact of the temporal-validity of
interest for a particular query like, for example, the variant:
1 http://software.intel.com/en-us/articles/intel-cilk-plus/
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QrΘ: Retrieve all the moving objects which are inside the region R at least Θ %
of the time between [t1, t2].
In addition, we consider settings in which multiple such range queries need to
be processed, as a Boolean combination:
QrΘ,B: Retrieve all the moving objects which are inside the region R1 and R2

and . . . Rq at least Θ % of the time between [t1, t2].
Our main objective is to devise assignments of partial-processing to the indi-

vidual cores, similar in spirit to the range-splitting in traditional databases for
query processing on multiprocessor machines [15]. In addition, we would like to
quantify the benefits of these assignments in comparison with the approaches
that rely on the compilers to utilize the threads parallelization. Towards that
end our main contributions can be summarized as follows:

• We introduce efficient algorithms for processing variants of spatio-temporal
range queries in multicore settings:
– two of the proposed heuristics focus on distributing the MOD data;
– the other heuristics focus on the query-syntax and use Computational Geom-
etry techniques to partition the load among the cores, based on the geographic
region(s) specified in the query.
• We conducted extensive experimental evaluations which provide quantitative
illustrations of the benefits of the proposed approaches.

The rest of this paper is structured as follows. In Section 2 we review the nec-
essary background. Section 3 presents the details of our proposed approaches.
In Section 4 we present the results of the experimental evaluations. Section 5
positions our work with respect to the related literature, summarize the results
and outline directions for future work.

2 Preliminaries

We now present the basic concepts and notation used throughout the rest of
this paper. In the MOD-literature, the motion of the objects is represented by
a trajectory [24, 25, 37]:

Definition 1. A trajectory Tr of a moving object, is a polyline in a 3D space
(2D spatial + time), represented as a sequence of points Tr = (x1, y1, t1), . . .,
(xn, yn, tn), where ∀(i, j)(i < j ⇒ ti < tj). Between two consecutive points
(xi, yi, ti) and (xi+1, yi+1, ti+1), the object is assumed to move along the straight
line-segment ((xi, yi)(xi+1, yi+1)), and with a constant expected speed
vi =

√
(xi+1 − xi)2 + (yi+1 − yi)2/(ti+1− ti). The expected location of the object

at any time-point t (∈ (ti, ti+1)) is the one obtained via linear interpolation
between the endpoints, using the expected speed vi. The projection of Trk in the
Euclidian 2D space is called its route.

According to Definition 1, a trajectory is function from Time domain into the
2D Euclidian space (i.e., f(t)→ R2), and we consider past motion [17,25], which
is, the entire motion of each objects is known and stored in the MOD. Such data
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may also correspond to future motion plan of a given object, obtained either via
some trip-planning tool (e.g., MapQuest or Google Maps), or dictated by some
business fleet-planning rules [10]. Other variations of trajectories’ representations
have been exploited in the literature – e.g., road-network constrained [9, 14,
16]; streaming updates of (location, time) data [27]; non-linear interpolation in-
between consecutive points [28] – each with their specifics on processing the
typical spatio-temporal queries. However, those settings are beyond the scope of
this work.

We note that the variants of spatio-temporal range queries considered in ear-
lier works [37] – sometimes and always within the temporal-interval of interest
are special cases of Θ �= 0 and Θ = 100%.

We assume multicore settings in a multiple-reader multiple-writer (MRMW)
shared memory context [20]. Specifically, each core Ci can access the different
portions of the MOD-data and, when applicable (cf. Section 3) can write in
a buffer(s) that can be read by the other cores for the purpose of determining
whether a particular thread running on Ci should be terminated or not, without
affecting the correctness of the answer to the query.

Lastly, we note that in this work, the region R of interest for the spatio-
temporal range queries are assumed to be convex polygons. Except for the
complexity-bounds of the underlying algorithms executed in a particular core,
this does not affect the general idea of the proposed approaches.

3 Algorithms in Multicore Context

We now present in detail the algorithms developed for efficient processing of
spatio-temporal range queries in multicore settings. In the sequel, we assume
that there is a total of m different trajectories ({Tr1, T r2, . . . , T rm}) stored in
the MOD, and that there are k cores ({C1, C2, . . . , Ck}) available.

3.1 MOD-Level Load Distribution

The first two heuristics partition the MOD data along two complementary di-
mensions.

The simplest heuristics, called H1, is illustrated in Figure 2(a). Essentially, it
partitions the MOD into collections of consecutive trajectories – assuming that
they are sorted by the unique object-ID – where each collection is essentially a
subset consisting of m/k trajectories. In the case that m is not an exact multiple
of k, in accordance with the pigeonhole (a.k.a. Dirichlet’s) principle, some chunks
will consist (m/k) + 1 trajectories.

Each of the k cores evaluates the complete query – both in terms of the region
R as well as the other parameters (Θ, [t1, t2]) – on a subset of the trajectories-
data. Although, based on Figure 2(a), it may appear that each core Ci is ”in-
charge” of consecutive trajectories, we note that in practice, this need not be
the case – for as long as each Ci has m/k trajectories from the entire MOD.
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Tr1 = [ (x11, y11,t11), (x12,y12,t12),…, (x1n1, y1n1, t1n1)]
Tr2 = [ (x21, y21,t21), (x22,y22,t22),…, (x2n2, y2n2, t2n2)]

Trj = [ (xj1, yj1,tj1), (xj2,yj2,tj2),…, (xjnj, yjnj, tjnj)]

Trs = [ (xs1, ys1,ts1), (xs2,ys2,ts2),…, (xsns, ysn, tsns)]

Trm = [ (xm1, ym1,tm1), (xm2,ym2,tm2),…, (xmnm, ymnm, tkmnm)]
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Fig. 2. MOD Data Partitions

Formally, each core executes the following algorithm:

Algorithm 1. Execution of H1 in the core Cj

Input: (Setj = {Trj,1, . . . , T rj,(m/k)}; R, [t1, t2], Θ)

1: for all Trj,s ∈ Setj do
2: Calculate the times of the entry/exit intersections of Trj,s with R.
3: if ((Total Time Inside)/(t2 − t1)) ≥ Θ then
4: Add Trj,s to the Common Answer
5: end if
6: end for

We rely on the algorithms for intersection of a trajectory-segment with a
region R of a spatio-temporal range-query in [25] (cf. line 2 of Algorithm 1).
Assume that R has l vertices/edges, and that each trajectory has at most n
segments. Due to the convexity of R, the time-complexity of obtaining the in-
tersections of a trajectory segment with its boundary ∂R is O(log l) [31]. Conse-
quently, the worst-case complexity of executing H1 in a given core Ci is bounded
by O((m/k) ·n · log l). Note that there is one shared structure denoted as ”Com-
mon Answer”, where the different cores are writing each of the trajectories that
qualify as an answer to the range query, which was implemented as a file. The
contents of the file are subsequently presented to the user as the complete answer-
set to the given query.

The basic idea behind the second heuristic – H2, is illustrated in Figure 2(b).
In contrast to H1, H2 partitions each individual trajectory into k chunks of
consecutive segments along its temporal dimension, and assigns O(n/k) such
segments from each of the m trajectories to an individual core Ci. Based on this,
there is a subtle difference of the algorithm that is executed in the individual
cores implementing H2, which is formally specified by:
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Algorithm 2. Execution of H2 in the core Cj

Input:
(Sj,1 = {(x1,(j−1)·(n/k), y1,(j−1)·(n/k), t1,(j−1)·(n/k)), . . . . . .
(x1,(j·(n/k))−1, y1,(j·(n/k))−1, t1,(j·(n/k))−1)};
. . .
Sj,m = {(xm,(j−1)·(n/k), ym,(j−1)·(n/k), tm,(j−1)·(n/k)), . . . . . .
(xm,(j·(n/k))−1, ym,(j·(n/k))−1, tm,(j·(n/k))−1)};
R, [t1, t2], Θ, F lag1, . . . F lagm)

1: for all Setj,q do
2: if Flagq �= true then
3: Calculate the times of the entry/exit intersections of the j-th portion of Trq

with R.
4: Add the fraction of the total time inside R to the Bufferq

5: if (((Time Inside Setj,q)/(t2 − t1)) ≥ Θ) OR (Total Time of Bufferq ≥ Θ)
then

6: Add Trq to the Common Answer
7: Flagq = true
8: end if
9: end if

10: end for

Observe that Algorithm 2, in addition to the different input-structure due
to the partitioning of the MOD data, has an additional collection of shared
variables. Namely, for each of the trajectories (e.g., Trq), there is a separate
Bufferq which aggregates the fractions of time that the portions of Trq (as-
signed to various Ci’s) have spent inside R. In addition, there is the collection
of Flagq variables, initially set to false, and changed to true only upon detect-
ing that the cumulative time of Trq detected by the current core (along with
some other cores that have already completed the processing of their portion of
Trq) has determined that it is part of the answer-set. This, in a sense, adds a
”lazy-evaluation” flavor to Algorithm 2, at the expense of having to perform an
extra-check of the corresponding flag, before moving to processing the query for
the (portion of the) corresponding trajectory. We note that due to the similar
reasoning as in Algorithm 1, the worst case time-complexity of the Algorithm 2
is O((n/k) ·m · log l).

We conclude this section with the observation that both H1 and H2 need to
repeat the respective algorithms for each separate region in the case of a range
query for a Boolean combination of q(> 1) regions R1 . . ., Rq. This, in turn,
increases the upper-bound on the running time complexity to O(q·(n/k)·m·log l).

3.2 Query-Aware Load Distribution

The last approach that we present, named H3, separates itself from the previous
two because it distributes the load among the cores based on the query-parameter
R (the region of interest).
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Fig. 3. H3: R-based Load Distribution among Cores

As illustrated in Figure 3, the main intuition behind H3 is to partition the
query-region into k non-overlapping regions – R1, R2, . . . , Rk, having only a
common boundary-edge as intersection between two consecutive sub-regions.
The processing of the sub-query pertaining to Rj is assigned to the core Cj .
The pseudo-code of the corresponding algorithm is given by:

Algorithm 3. Execution of H3 in the core Cj

Input: (MOD, Rj , [t1, t2], Θ, F lag1 . . ., F lagm)

1: for all Tri ∈ MOD do
2: if Flagi �= true then
3: Calculate the times of the entry/exit intersections of Tri with Rj .
4: Add the fraction of the total time inside Rj to the Bufferi

5: if (((Time InsideRj)/(t2 − t1)) ≥ Θ) OR (Total Time of Bufferi ≥ Θ) then
6: Add Tri to the Common Answer
7: Flagi = true
8: end if
9: end if

10: end for

In a sense, the general layout of Algorithm 3 is similar to the one of Algo-
rithm 2. However, the main difference is in the structure of the input – while each
core Cj operates over the entire MOD, it is in charge of a sub-region from the
original query region R. Assuming that the number of cores in a multicore ma-
chine is typically a power-of-2 (e.g., [22], although other multicore architecture
exist), we can recursively apply the algorithms for bisecting a given polygon into
two (sub)polygons of equal areas [34], so that each core is assigned an equal-area
sub-region of R.

Note that, once again, we have the opportunity of a lazy-evaluation, in the
sense that whenever a particular trajectory has been determined to satisfy the
temporal-threshold required by the query, its processing is no longer needed with
respect to the rest of the sub-regions – and by the corresponding cores. As for
the complexity, noting that now each sub-region will have O(l/k�) sides, the
worst case time-complexity of Algorithm 3 is bounded by O(m · n · logl/k�).
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When it comes to processing Boolean conjunction of range queries QrΘ,B,
one can straightforwardly extend H3 by applying it to each of the regions Ri

(i ∈ {1, . . . , q}). However, that may cause a particular core Cj to be in charge of
subsets of regions which are geographically far apart. To minimize that effect, we
use a variant of H3 for multiple regions (denoted H3m), which can be specified
as follows. Let A(Ri) denote the area of the i-th query region, and let A(Qr)
=

∑j=q
j=1 A(Rj). Given a reference coordinate system, we traverse the regions

R1, R2, . . . , Rq based on the row-major order (X-axis value, followed by Y -axis
value) of the coordinates of their the centroids, and we assign the portions of
the regions to the cores sequentially, as follows:

(1) IF (A(R1) > A(Qr) / k)
divide R1 in two portions, μ1(R1) and μ2(R1), such that μ1(R1) = AQr / k.
Assign μ1(R1) to C1.

Recursively, proceed with the assignment, starting with C2 and considering
the boundary of the region μ2(R1) as a first polygon in the new sequence.

(2) Else IF (A(R1) = A(Qr) / k)
assign R1 to C1.

Recursively proceed with the assignment, starting with C2 and considering
2R2 as a first polygon in the new sequence.

(3) Else
Assign R1 to C1 and split R2 into two portions, μ1(R2) and μ2(R2), such that:
μ1(R2) = (A(Qr) / k) - A(R1). Assign the region bounding μ1(R2) to C1.

Recursively, proceed with the assignment, starting with C2 and considering
the boundary of μ2(R2) as a first polygon in the new sequence.

To achieve a weighted-bisection of a given region (e.g., splitting Ri into μ1(Ri)
and μ2(Ri)) we need a slight modification of the bisection algorithm in [34]
which, once again, can be done in a linear time [1]. In the worst case, assuming
that each of the q query-regions is bounded by m-sided convex polygon, this
incurs an additional overhead of O(q · m) in the upper-bound on the running
time complexity. Once the assignment of geographical regions to cores has been
completed, each core proceeds with executing the Algorithm 3 which, essentially
yields O(q ·m+m·n·logl/k�) as an upper bound on the running time complexity
of H3m.

4 Experimental Evaluation

We now proceed with presenting the observations from the experimental evalu-
ations of our proposed techniques. Our experiments were conducted on an Intel
Core i3 CPU machine with 4GB memory, with 4 dual-core processors at 2.13GHz.
We used a task-based parallelization model among the cores, where each task is
scheduled among the individual core-queues in a work-stealing manner.
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Fig. 4. Existential Variant

Data Sets: The trajectories data-sets were generated using the Random Way-
point Model (RWP) [6], with the restriction that the velocity in two consecutive
segments would not increase/decrease by more than 50%, and is bounded be-
tween 20 mph and 90 mph. The change of the angle between two consecutive
segments was bounded by +/− 2π/3. The length of the trajectories varied from
10 miles to 100 miles (uniformly distributed), within a 50 x 50 miles2 area. We
generated sets with cardinalities between 1,000 and 7,000 trajectories.

As for the query parameters, we used regular square, hexagon and octagon, with
varying sizes (in terms of the percentage of the total area of interest). We ran 10
different simulations for each type of a polygon and each size, and we report the
averaged results. The temporal interval of interest for the queries varied between
1h and 2h and, once again, we report the average values of the results.

First, we compared the benefits of each of H1, H2 and H3 against each other,
as well as against the baseline-approach – denoted H0. The baseline approach
is essentially the sequential algorithm for processing the respective (variants of
the) range queries. We report observations in both 2-cores and 4-cores settings
and, unless otherwise indicated, the time-values are expressed in milliseconds.

The first set of experiments that we report pertains to the existential (i.e.
∃t ∈ [t1, t2]) variant of the range query. The respective results for each of the
heuristics in 2-cores and 4-cores settings are illustrated in Figure 4(a) and 4(b).
As shown, the trend is similar in both settings except, as expected, the processing
time for each of H1, H2 and H3 is shorter in 4-core settings. In addition, while
the 2-core settings provide 3-times faster execution (when comparing H3 to H0),
the speed-up factor in 4-core settings is 5.

We note that H3 appears to yield the largest improvements in terms of pro-
cessing time for the existential queries – a trend which remains the same in all
the other experimental settings.

Next, we report the experiments pertaining to different values of the Θ-
threshold as a fraction of the temporal interval of interest for the query.

Figures 5(a) and 5(b) present the averaged running times for each of the H1,
H2 and H3 (as well as the baseline approach – H0), when the threshold-value
for a trajectory to qualify as an answer is 30% of the query time-interval, for
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Fig. 6. Speed up for Θ = 50%

2-cores and 4-cores settings, respectively. Once again, we observe the similar
phenomena as in Figures 4(a) and 4(b): the relative speed-up trends are similar,
in both 2-cores and 4-cores settings, and H3 yields the largest speed-up.

Figures 6(a) and 6(b) show the outcome of the same experiments when the
desired temporal threshold-value for a trajectory to qualify as an answer is 50%
of the query time-interval, for 2-cores and 4-cores settings, respectively.

The next set of experiments describes the impact of the size of the query
region when the answer-set consists of the trajectories which are inside of it
for at least 50% of the time-interval of interest for a given query. As can be
seen in Figure 7(a), as the area of the query polygon increases, the speed-up
benefits of H3 in 2-core settings are decreasing – equivalently, the processing
time taken by H3 is increasing. One of the reasons for this effect is that the
benefits of the ”lazy-evaluation” of H3 are diminished as larger portion of the
individual trajectories need to be examined. In contrast, in 4-core settings, the
trend of improvements, although very insignificant, is still present. We leave it
for a future work to investigate in greater detail whether there is some correlation
between the types of the polygons and the number of cores which could influence
this trend.
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Fig. 8. Boolean Conjunction of Spatio-Temporal Range Queries

We conclude this section with the results pertaining to evaluating a Boolean
conjunction combination of spatio-temporal range queries (cf. Figure 8). Fig-
ure 8(a) presents the running time of H1, H2 and H3m for 16 polygons (Θ =
30%), as function of the number of trajectories, whereas Figure 8(b) shows the
corresponding times for a query consisting of 32 polygons. Note that we do not
display the ”vanilla” (baseline) approach because its processing time was too
long. As can be seen, H3m consistently outperforms H1 and H2 which perform
similarly, with a slight advantage of H2.

5 Related Work and Concluding Remarks

MOD research has generated a large body of results pertaining various aspects
of the management of spatio-temporal data. Based on the model of the motion
(e.g., full-trajectories vs. streams of (location, time) updates, possibly with un-
certainty); spatial constraints (e.g., road-networks vs. free motion) quite a few in-
dexing methodologies and query processing techniques have been proposed with
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algorithms addressing various categories of queries of interest (range, (k)Nearest-
neighbor, similarity, skyline, etc.) [3,32,21,26,18,29,11,36,38] – to mention but
a few.

All the above works, in one way or another, have focused on the efficiency of
the overall processing of the respective queries, but certain results have specifi-
cally addressed the aspects of distributed and parallel processing. For example,
in [12], part of the responsibility for monitoring location-based queries has been
delegated to the participating mobile entities, whereas in [19] the inherent par-
allelism of a shared-nothing computing environment for storing and indexing
the spatiotemporal data was exploited. With a similar motivation [4, 8] have
considered the efficient processing of spatio-temporal queries in wireless sen-
sor networks. A load-shedding approach for processing/monitoring a variety of
spatio-temporal queries in the settings in which the (location, time) data arrives
in a streaming manner is presented in [27]. While all these works have a same
objective – exploiting the parallelism when processing spatio-temporal queries,
what separates our work is that we have specifically focused on exploiting the
benefits of multicore architecture for the purpose of efficient processing of spatio-
temporal range queries.

The results on developing parallel algorithms for multiprocessor and/or mul-
ticore architectures abound [20], and the ideas of range-based partitioning of the
data for efficient query processing have been around [15]. In this work, we proposed
and experimentally evaluated three heuristics for spatio-temporal range queries
processing in multicore settings – two of which (H1 and H2) focused on partition-
ing the trajectories’ data, and one (H3) which focused on partitioning based on
the query region. In addition, we considered a Boolean conjunction of regions of
interest for the query, towards which we proposed a modification of H3 – the H3m
heuristic to cater for distributing the ”geographical load” among the cores. Our ex-
periments have demonstrated that each of the proposed heuristics has consistently
outperformed the baseline (sequential) approach for processing of the respective
queries, with H3 yielding highest speed-ups. In a similar spirit, H3m outperformed
the sequential applications of H1 and H2 for the conjunctive range queries.

While we presented possible approaches to the problem of efficient processing
of spatio-temporal range queries in multicore settings, there are several chal-
lenging directions for future investigations. An immediate extension that we are
currently pursuing is to investigate whether some of the geometric techniques
(e.g., using variants of ham-sandwich cut [1,35] can further improve the benefits
of H3m. Along these lines, we would like to further generalize the conjunc-
tive range queries to an arbitrary Boolean combination including disjunctions
and negations. Another goal is to further investigate the level of the ”cache-
friendliness” of our approaches. In addition to increasing the efficiency of the
query processing, this may lead to a better understanding of the anomaly ob-
served in part of our experiments (cf. Figure 7(a) and 7(b)).

From a practical perspective, we need to incorporate some known constraints
(e.g., a motion restricted by a known road-network, density of the moving ob-
jects, etc.) into the policies for allocating tasks among the cores.
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Abstract. Processing of spatial queries has been studied extensively
in the literature. In most cases, it is accomplished by indexing spatial
data by an access method. For queries involving a single dataset, like
the Point Location Query, the Window (Distance Range) Query, the
(Constrained) K Nearest Neighbor Query, the R*-tree (a data-driven
structure) is a very popular choice of such a method. In this paper, we
compare the performance of the R*-tree for processing single dataset
spatial queries to the performance of a disk based structure that belongs
to the Quadtree family, the xBR-tree (a space-driven structure). We
demonstrate performance results (I/O efficiency and execution time) of
extensive experimentation that was based on real datasets, using these
two index structures. The winner depends on several parameters and
the results show that the xBR-tree is a promising alternative for these
spatial operations.

Keywords: Spatial Access Methods, R-trees, Quadtrees, Query Pro-
cessing.

1 Introduction

Due to the demanding need for efficient spatial access methods in many spatial
database applications, significant research effort has been devoted to the devel-
opment of new spatial index structures [13,16]. However, as shown in several
previous comparative studies [9,10,11,12], there is no single index structure that
works efficiently, in all cases, across a variety of modern applications, where a
variety of Spatial Queries arise, like Point Location, Window, Distance Range
and Nearest Neighbor Queries (involving one spatial dataset), or Distance Join,
Closest Pair and All-Nearest Neighbor Queries (involving two spatial datasets).

In this paper, we implement the External Balanced Regular (xBR) tree [17],
a secondary memory structure that belongs to the Quadtree family (widely used
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in graphics and GIS applications [16]), which is suitable for storing and index-
ing multidimensional points (and, in extended versions, line segments, or other
spatial objects). Moreover, we compare it with the popular R*-tree index, using
important criteria: storage requirements and time needed for the tree construc-
tion and spatial query operations performance. We have chosen the R*-tree,
which is the most commonly employed spatial indexing structure in the database
community [13].

The R*-tree is a member of the family of R-trees that are characterized as
data-driven access methods: they organize spatial objects into a hierarchy of Min-
imum Bounding Rectangles (MBRs), with shape, size and position that depends
to the data distribution in space. On the contrary, the xBR-tree belongs to the
family of Quadtrees that are characterized as space-driven access methods: they
organize spatial objects into a hierarchy of (hyper-)rectangles, formed by subdi-
viding the current region (originally, the whole space) into four sub-quadrants for
2d space, eight sub-octants for 3d space, etc., independently to the data distribu-
tion in this region. However, the number of levels of this hierarchical subdivision,
and thus the size of the rectangular areas, depend on the distribution of data.
The books [13,16] provide excellent information sources for the interested reader
about R-trees and Quadtrees, respectively.

The contributions of this paper are the conclusions arising from the (real data
based) experimental comparison of these two spatial access methods regarding
I/O performance and execution time for

– Tree building,
– Point Location Queries (PLQs),
– Window Queries (WQs) and Distance Range Queries (DRQs), also called

Distance Similarity Queries,
– K-Nearest Neighbor Queries (K-NNQs) and Constrained K-Nearest Neigh-

bor Queries (CK-NNQs), also called Distance-based Range Nearest-Neighbor
Queries.

This paper is organized as follows. In Section 2 we review Related Work on
comparing spatial access methods, regarding query processing and provide the
motivation for this report. In Section 3 (4), we briefly review R*-trees (xBR-
trees) and the algorithms for processing single dataset Spatial Queries. In Section
5, we present representative results of the extensive experimentation that we
have performed, using real datasets, for comparing the performance of the two
structures. Finally, in Section 6 we provide the conclusions arising from our
work and discuss related future work directions.

2 Related Work and Motivation

Several previous research efforts have focused on efficient spatial query algo-
rithms using the most cited spatial access methods (R-trees and Quadtrees).
In [9] a qualitative comparative study is performed taking into account three
popular spatial indexes (R*-tree, R+-tree and PMR Quadtree), in the context
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of processing spatial queries (point query, nearest line segment, window query,
etc.) in large line segment databases. The conclusion reached was that the R+-
tree and PMR Quadtree are the best when the operations involve search, since
they result in a disjoint decomposition of space. On the other hand, R*-tree is
more compact than R+-tree (and PMR Quadtree) but its performance is not as
good as the R+-tree, due to the non-disjointness of the decomposition induced
by it.

In [10], various R-tree variants (R-tree, R*-tree and R+-tree) and the PMR
Quadtree have been compared for the traditional spatial overlap join operation.
They showed that the R+-tree and PMR Quadtree outperform the R-tree and
R*-tree using 2D GIS spatial data. That is, with respect to the overlap join, the
spatial data structures based on a disjoint decomposition of space (as R+-tree
and PMR Quadtree) outperform spatial data structures based on a non-disjoint
decomposition such as the numerous variants of the R-tree including the R*-tree.
Moreover, as the size of the output of the spatial join increases with respect to
the larger of the two inputs, methods based on a disjoint regular decomposition
(PMR Quadtree) perform significantly better.

Moreover, in [12] the R-tree and the Quadtree have been compared, using a
variety of range and NN queries on spatial data arising in 2D Geographical Infor-
mation Systems (GISs). It was shown that, in general, the R-tree outperforms
the Quadtree. From this experimental comparison, Oracle, in general, recom-
mends using R-trees over Quadtrees, due to higher tiling levels in the Quadtree
that cause very expensive preprocessing and storage costs.

The All-Nearest Neighbor (ANN) operation takes as input two datasets of
multidimensional data points and computes for each point in the first dataset the
NN in the second one. For this operation, in [2], a new distance metric between
two MBRs was proposed, called NXNDIST (the minimum MinMaxDist), that
reduces the MaxMaxDist by allowing the use of the minimal MaxDist for exactly
one dimension. In general, NXNDIST is based on the observation that at each
side of an MBR, there must be exactly one data point contained which realizes
the minimum distance. It is a distance bound for MBRs that is guaranteed
to contain at least one NN to any query point in the query MBR (i.e. it is
an effective pruning distance for ANN). Moreover, the MBA algorithm that
traverses the index in a depth-first fashion and expands the candidate search
node bi-directionally was proposed. Finally, they showed that for ANN queries,
using a Quadtree index enhanced with MBR keys for the internal nodes (MBR-
Quadtrees) is a much more efficient indexing structure than the R*-tree index.

Recently, in [11] an experimental study comparing the R*-tree and the Quad-
tree using various criteria, including K-NNQs and K Distance Join Queries and
index construction methods (dynamic insertion and bulkloading algorithm), is
presented. It was shown that when data are static (when a bulkloading algo-
rithm is used for an index construction) and K-NNQs / K Distance Join Queries
are processed the R*-tree shows the best performance. However, when data are
dynamic (i.e. there are frequent updates), the Quadtree begins to outperform
the R*-tree. This is due to, once the dynamic R*-tree algorithm is used, overlap
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among MBRs increases with increasing dataset sizes, and the R*-tree perfor-
mance degrades.

xBR-trees have been presented in [17] and results related to the analysis of
their performance have been presented in [5]. Using xBR-trees for processing
PLQs, WQs, or DRQs is rather straightforward, due to the organization of the
xBR-tree. However, algorithms for processing K-NNQs and CK-NNQs by using
these trees have only recently been developed [14] and tested with real datasets,
with promising performance. The main objective of this paper is to compare the
xBR-tree performance against the performance of the most popular spatial access
method, the R*-tree, considering the most representative spatial queries where
a single index is involved and to highlight the performance winner, considering
the characteristics of each query.

3 R*-tree and Single Dataset Query Processing

3.1 R*-tree

R-trees [6] are hierarchical, height balanced data structures, designed for use in
secondary storage, derived from B-trees [3]. They are used for the organization
of a collection of arbitrary spatial objects by representing them as Minimum
Bounding d-dimensional Rectangles (MBRs). The MBR represents the smallest
aligned rectangle in which the spatial objects are contained. A 2d MBR is de-
termined by two 2-dimensional points that belong to its faces, one that has the
minimum and one that has the maximum coordinates (these are the endpoints
of one of the diagonals of the MBR). Each R-tree node corresponds to the MBR
that contains its children. The tree leaves contain pointers to the actual spatial
objects in the database, instead of pointers to children nodes. The nodes are
implemented as disk pages. For more details about the R-tree structure, see [13].

Many variations of R-trees have appeared in the literature (exhaustive surveys
can be found in [4,13]). One of the most popular and efficient variations of
the R-tree is the R*-tree [1], which uses more sophisticated node insertion and
splitting algorithm. In general terms, the R*-tree added two major enhancements
to the original R-tree, when a node overflow is caused. First, rather than just
considering the area, the node-splitting algorithm in R*-trees also minimizes the
perimeter and overlap enlargement of the MBRs. Second, an overflowed node is
not split immediately, but a portion of entries of the node is reinserted from the
top of the R*-tree (forced reinsertion).

3.2 PLQs, WQs, DRQs, K-NNQs and CK-NNQs on R*-trees

In general terms, the definitions of these spatial queries are as follows. Given
an index I and a query point q, the PLQ returns true if q belongs to I, false
otherwise. Given an index I and a query rectangle r, the result of the WQ is
the set of all points in I that are completely inside r. Given an index I, a query
point q and a distance threshold δ ≥ 0, the DRQ returns all points of I, that are
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within the specified distance δ from q (according to a distance function). Given
an index I, a query point q, and a value K > 0, the K-NNQ returns K points
of I which are closest to q based on a distance function. Finally, given an index
I, a query point q, a value K > 0 and a distance threshold δ ≥ 0, the CK-NNQ
returns k closest points of I which are within the distance δ from q.

PLQs and WQs can be processed in a top-down manner on the R*-tree. The
query point (or window) is tested first against each entry (MBR, Addr) in the
root. If the query point is inside (or query window overlaps with) the MBR, then
the search algorithm is applied recursively on the R*-tree node pointed by the
Addr. This process stops after reaching leaf nodes of the R*-tree. The selected
entries in leaves are used to retrieve the spatial objects associated with the Oids.

Based on the branch-and-bound paradigm, the distance-based query algo-
rithms use several metrics to prune the search space [15]. The most important
metric is mindist(q, M), which reports the minimum distance between q and any
point in a MBR M. Another metric, minmaxdist(q, M), refers to the minimum
distance from q within which a point in M is guaranteed to be found. Finally,
maxdist(q, M) is the maximum distance between q and any point in M.

The first Nearest Neighbor Query (NNQ) algorithm for R-trees, proposed
in [15], traverses recursively the tree in a Depth-First (DF) manner. Starting
from the root, all entries are sorted according to their mindist from q, and the
entry with the smallest mindist is visited first. The process is repeated recursively
until the leaf level is reached, where a potential NN is found. During backtracking
to the upper levels, the algorithm only visits entries whose mindist is smaller than
or equal to the distance of the NN found so far. The generalization to find the
K Nearest Neighbor (K-NN) is straightforward. We just need an additional data
structure, a (based on the distance from the query point q) maximum binary
heap, holding the K nearest points encountered so far.

A Best-First (BF) algorithm for NNQ was proposed in [7] for Quadtrees and
in [8] for R-trees. BF keeps a minimum binary heap with the entries of the nodes
visited so far. Initially the heap contains the entries of the root sorted according
to their mindist. When the root of the heap is chosen for processing, it is removed
from the heap and the entries of the R*-tree node pointed by Addr are added
together with their mindist. The algorithm continues visiting the entry with the
minimum mindist in the heap, until it becomes empty or the mindist value of
the node entry located in the root of heap is larger than the distance value of
the NN that has been found so far (i.e. the pruning distance). BF is I/O optimal
because it only visits the nodes necessary for obtaining the NN.

For the DRQ (δ ≥ 0), we just need to extent the DF or BF algorithms for NNQ
in a simple way. Starting from the root node, several tree nodes are traversed
down to the leaves, depending on the result of whether mindist is less than or
equal to δ. When the query algorithm reaches the leaf nodes, all the data points
which distance with respect to the query point q smaller than or equal to δ are
added to the answer set.

Finally, the CK-NNQ is a combination of K-NNQ and DRQ, where we can
also extent the DF or BF algorithms for NNQ. Starting from the root node,
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several tree nodes are traversed down to the leaves, depending on the result of
whether mindist is less than or equal to min{δ, z}, where z is the NN that has
been found so far. When the query algorithm reaches the leaf nodes, all the data
points (a maximum of k) with distance with respect to q smaller than or equal
to δ are added to the query result.

BF algorithms require considerable amounts of main memory. In this paper,
we consider that RAM is limited (due to several applications running in the
hosting server; a rather common situation), therefore, we use the DF R*-tree
algorithm against an analogous algorithm for the xBR-tree (described in the next
section). For the same reason, in our experimentation we do not use buffering
for storing tree nodes.

4 XBR-tree and Single Dataset Query Processing

Although xBR-trees [15] can be defined for various dimensions, for the ease of
exposition in the rest of the paper, we assume 2 dimensions. For 2 dimensions the
hierarchical decomposition of space is that of Quadtrees (the space is subdivided
in 4 equal subquadrants, any of which may be further subdivided recursively in
4 subquadrants).

The space indexed by an xBR-tree is a square, expressed in a coordinate
system of real numbers (not in a digitized space). The nodes of xBR-trees are
disk pages and are distinguished in two kinds: leaves, which store the actual
multidimensional data themselves and internal nodes, which provide a multiway
indexing mechanism for these data.

4.1 Internal Nodes

As described in [17], internal nodes contain pairs of the form (address, pointer).
During implementation and experimentation we concluded that more fields are
needed for each entry: (shape, address, REG, pointer). An address is used to
determine the region of a child node and is accompanied by the pointer to this
child. Since addresses are of variable size, the number of entries fitting in each
node is not predefined. Apparently, the space occupied by all entries within a
node must not exceed the size of this node. The maximum size of an address is
only limited by the node size and in practice it never reaches this limit. Shape
is a flag that determines if the region of the child is a complete or non-complete
square (the area remaining, after one or more splits; explained later in this
subsection). This field will be used widely in queries. Finally, REG stores the
coordinates of the region referenced by address. We measured the execution time
for queries and we found that it is more expensive if we do not save this field,
but calculate its value every time we need it.

Each address represents a subquadrant which has been produced by Quad-
tree-like hierarchical subdivision of the current space. It consists of a number
of directional digits that make up this subdivision. The NW, NE, SW and SE
subquadrants of a quadrant are distinguished by the directional digits 0, 1, 2
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Fig. 1. An xBR-tree with two levels of internal nodes

and 3, respectively. For example, the address 1 represents the NE quadrant of
the current space, while the address 10 the NW subquadrant of the NE quadrant
of the current space.

However, the region of a child is, in general, the subquadrant of the related
address minus a number of smaller subquadrants. The region of this child is the
subquadrant determined by the address in its entry, minus the subquadrants
corresponding to the next entries of the internal node (the entries in an internal
node are saved sequentially, in preorder traversal of the Quadtree that corre-
sponds to the internal node). For example, in Figure 1 an internal node (a root)
that points to 2 internal nodes that point to 6 leaves is depicted. The region of
the root is the original space, which is assumed to have a quadrangular shape.
The region of the right (left) child is the NW quadrant of the original space (the
whole space minus the region of the NW quadrant - a non complete square),
depicted by the union of the black regions of the leaves of this child. The *
symbol is used to denote the end of a variable size address. The address of the
right child is 0*, since the region of this child is the NW quadrant of the original
space. The address of the left child is * (has zero directional digits), since the
region of the left child is the whole space minus the region of the right child.

Each of these addresses is expressed relatively to the minimal quadrant that
covers the internal node (each address determines a subquadrant of this minimal
quadrant). For example, in Figure 1, the address 2* is the SW subquadrant of the
whole space (the minimal quadrant that covers the left right child of the root).
During a search, or an insertion of a data element with specified coordinates,
the appropriate leaf and its region is determined by descending the tree from
the root. More details are given in the description of PLQs, in the following.

4.2 Leaf Nodes

External nodes (leaves) simply contain the data elements and have a predeter-
mined capacity C. When C is exceeded, due to an insertion, the leaf is partitioned
according to hierarchical (Quadtree like) decomposition, until each of the result-
ing two regions contains N data elements, where N ≤ xC, 0.5 < x < 1. The
choice of x affects the number of necessary subdivisions of an overflowed node
and the size of addresses that result from a node split. A value closer to 0.5,
in general, results in more subdivisions and larger addresses, since it is more
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difficult to partition the region of the leaf in subregions with almost equal num-
bers of elements. Of course, such a choice provides a better guarantee for the
space occupancy of leaves. We used x = 0.75, which leads to a good compromise
between size of addresses and leaf occupancy. Splitting of a leaf creates a new
address that must be hosted by an internal node of the parent level. This can
cause backtracking to the upper levels of the tree and may even cause an increase
of its height.

4.3 Splitting of Internal Nodes

When an internal node overflows, it is split in two. The goal of this split is to
achieve the best possible balance between the space use in the two nodes. The
split is either based on existing quadrants or in ancestors of existing quadrants.
First, a Quadtree is built that has as nodes the quadrants specified in the xBR-
tree internal node. We use this tree for determining the best possible split of the
internal node in two nodes (for details, see [15]). Although, in [15] we seek for a
split in two nodes that have almost equal number of bits for storing addresses,
by experimentation, we found that seeking for a split in two nodes that have
almost equal number of addresses is equally effective and simpler.

4.4 PLQs, WQs, DRQs, K-NNQs and CK-NNQs on xBR-trees

PLQs can be processed in a top-down manner on the xBR, like the R*-tree.
During a PLQ for a point with specified coordinates, the appropriate leaf and its
region is determined by descending the tree from the root. Initially, the region
under consideration is the whole space (the region of the root). As noted in
subsection 4.1, the entries in an internal node are saved in preorder traversal
of the Quadtree that corresponds to the internal node and are examined in
reverse sequential order. So first we examine the last node of the Quadtree. If
its subquadrant (specified by the address field of the entry) does not contain the
query point, we continue with the next entry in reverse sequential order. The
first subquadrant that hosts the query point determines the smallest region that
hosts this point. Then we follow the pointer field to the related child at the next
lower level, until we reach the leaf level. This way, we reach the unique leaf that
may contain the query point. Unlike the R*-tree, in the xBR-tree a single path
to the point we seek is followed.

Processing of WQs follows the same strategy to PLQs, regarding the way we
examine regions/entries of an internal node. The decision about whether we are
at a entry with a region likely to contain points inside the query window is the
answer to the question: do the subquadrant of the current entry (specified by
the address field of the entry) and the query window intersect? If yes, then we
follow the pointer to the related child at the next lower level. We repeat until
we have examined all entries of the internal node, or until the query window
is completely inscribed inside the region of the entry that we examine (because
none of the other, not examined, regions of the tree overlaps with this region).
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DRQ follows the same strategy as WQ. At first, the querying circle is replaced
from its MBR (the calculations are faster in this way) and if the answer about
the intersection of the subquadrant of the current entry and the query MBR is
positive, then we follow the pointer to the related child at the next lower level.
If we reach a leaf with a region that intersects the query MBR, we select the leaf
points that are inside the query circle.

For K-NNQs the search algorithm traverses recursively the tree in a DF man-
ner, like proposed in [15]. Starting from the root (and for every node that is
current) all node entries are sorted according to their mindist from the query
point, and the entry with the smallest mindist is deleted from the list and visited
first. The process is repeated recursively until the leaf level is reached, where a
potential NN is found. Because of the xBR-tree structure, it is possible to reach
a leaf (to which the query point may even belong), but the next NN may exist in
a neighboring region (unlike the R*-tree, the regions to which the xBR-tree par-
titions space are not necessarily defined by points that fall on their boundaries).
So we use a global (based on the distance to the query point) max K-heap and
insert in it every point of this leaf that is nearest to the query point than the root
of the heap (if the heap is full, storing K elements, the new entry replaces the
root). When the heap is full and the next entry in mindist order of the current
node is at a longer distance from the query point to the distance of the root
of the heap, the search is stopped. Similarly, when the heap is full, this entry is
a complete square, the query point falls within this square and the distance of
the root of the heap is smaller than the minimum distance of the query point to
the edges of the square, the search is stopped. More details about this algorithm
appear in [14].

5 Experimentation

We designed and run a large set of experiments to discover advantages and
disadvantages of xBR and R*-trees. We used 5 real datasets of different sizes. We
used a real 2d dataset of California (CSN) that contains 98022 MBRs of streams
(line-segments). We also used data from real spatial datasets of North America.
Two datasets represent populated places (NApp) and cultural landmarks (NAcl)
consisting of 24493 and 9203 points, respectively; railroads (NArr) of 191637 line-
segments and, finally, roads (NArd) consisting of 569120 line-segments. To create
2d point datasets from non-point datasets, we used the centroids of the line-
segment MBRs. The experiments were run on a Linux machine, with Intel core
duo 2x2GHz processor and 3 GB of RAM. We run experiments for PLQs, WQs,
K-NNQs and CK-NNQs, counting disk-page accesses (I/O) and total execution
time for each index structure.

At first we built the xBR and R*-trees. We stored point coordinates as float
numbers and constructed each tree for the following node (page) sizes: 512b, 1K,
2K, 4K and 8K. Results for the construction characteristics (Table 1) indicate
that, in all cases, the xBR-tree uses less space (i.e. it is more compact) and
time than the R*-tree (the R*-tree creation is slower, partially, due to the use
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of forced reinsertion that improves searching efficiency) and the difference in
creation time is enlarged as the size of node increases. We show only one node
size for each dataset, due to the limited space (other results were analogous).
It must be noted that the R*-tree keeps points at leaf nodes by storing their
MBR (four coordinates), while the xBR-tree keeps only two coordinates for each
point.

Table 1. Tree construction characteristics

Dataset
Node Tree height Tree size (bytes) Creation time (secs)
size R* xBR R* xBR R* xBR

NAcl 512b 4 3 403284 130056 0.37 0.1
NApp 1K 3 2 1051846 334856 2.27 0.35
CSN 2K 3 2 3973953 1286152 45.02 2.04
NArr 4K 3 2 8032409 2576392 156.15 6.34
NArd 8K 3 2 24369063 7954440 1916.1 32.96

For the PLQ, for each dataset, we executed as many queries as the points in
the dataset by searching for each of these points (we used the original datasets as
query input). The results showed that the xBR-tree needs less disk read accesses
and executes every query faster than the R*-tree. Results for the smallest dataset
(NAcl) are shown in Figure 2. The results for the other datasets were analogous,
always in favor of the xBR-tree.

We noticed that the xBR-tree needs a number of disk accesses equal to its
tree height, while the R*-tree needs at least this number of access and, in most
cases, even more. This finding can easily be explained from the analysis of the
algorithms discussed above. When we use as input data points that did not exist
in the database, the xBR-tree needs the same number of accesses while the R*-
tree needs less. This is due to the structural difference of the two trees. Internal
nodes of R*-trees contain information only about MBRs that include the data
points. In this way, if the dataset has empty regions, the R*-tree does not build
MBRs for these. However, the xBR-tree saves in internal nodes information
about the regions in which the space is split, regardless if they contain the
reference data point. It is important to mention that page access number becomes
lower as the size of node increases, while execution time increases (for both trees).
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Fig. 3. Total disk accesses (left) and execution time (right) vs. node size for WQs

This may be surprising at first, but can be explained considering the fact that
when the size of nodes increases, so does the time for main memory calculations
and, consequently, the execution time. For large node sizes, the tree height,
however, may decrease disproportionally.

For each of the other query types, we executed a large number of queries,
as follows. For each dataset, we created rectangular query windows (and their
inscribed circles) for studying WQs (DRQs) by splitting the whole space into
24, 26, . . . , 216 windows, in a row-order mapping manner (this sums up to exe-
cuting the WQ and the DRQ 87376 times, for each node size, dataset and tree).
The centroids of these windows were also used as query inputs for all the other
queries (DRQs, K-NNQs and CK-NNQs). Especially, for K-NNQs and CK-NNQs
we used the following set of K values: 1, 10, 30, 70, 100 (this sums up to exe-
cuting the K-NNQ and the CK-NNQ 436880 times, for each node size, dataset
and tree). Since the number of experiments performed was vast, we show only
representative results, since results were analogous for each query category.

In Figure 3, for the WQ we depict the results for the second dataset (NApp),
as one representative example. It is shown that the xBR-tree needs more accesses
to find the population within the 1024 windows with which we scanned the whole
space occupied from the 24493 data points of this dataset. As the size of node
increases the I/O difference between the two trees becomes smaller. In both trees,
a linear dependence of the number of accesses to the size of the node appears.
This is due to reduction of tree height as the size of node increases. Note the
reduction of the difference from the first size (512b) to the biggest size (8K).

In Figure 4, for the WQ we depict for the same dataset, but only for those
query windows that were inhabited by points (non-empty windows). The sig-
nificant improvement of the xBR-tree performance is obvious. It now becomes
clearly faster (execution time) for all sizes of nodes. The explanation for this
is again related to empty regions. The I/O efficiency of the two trees is closer
now. R*-tree execution time is also improved, for non-empty windows, but the
improvement of xBR-tree is larger. This leads us to the conclusion that main
memory processing is simpler (and thus faster) for the xBR-tree.

For DRQs (1024 query circles, inscribed into the respective rectangular win-
dows, δ value equal to 1/(2

√
1024) =1/64 of the space side length), the xBR-tree

needs less disk accesses and is faster than the R*-tree, in all cases and for all
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datasets. In Figure 5, we show these results for the CSN dataset. The results
were even better when the DRQs addressed only non-empty regions.

For the NNQ, the xBR-tree shows similar behavior to the WQ. The xBR-tree
needs much more disk accesses for finding the NNs than the R*-tree. But the
difference became smaller when the size of node (for the same dataset) increased.
Regarding the execution time, the xBR-tree shows improved performance, in
relation to its I/O difference from the R*-tree. In Figures 6 and 7, we show
results for K=10 and the NArr dataset and for K=100 and the very large dataset
(NArd), respectively. At this point, note the worse time performance of both
trees, for larger node sizes (where the I/O cost is smaller). This is due to the
fact that as the node size increases, the trees become very wide and very short. In
this case, a node holds many elements to be processed and branching during tree
descend plays a smaller role in restricting the search space. This leads us to the
conclusion that the increase of the node size leads to many more calculations
in main memory, which cancels the benefit of reducing I/O. For K=100 the
I/O lines for the two trees are parallel and the relative performance difference
is smaller. Diagrams not included in this report due to space limitations show
that, for the 191637 points dataset and K>40, the xBR-tree is faster.

Finally, for the CK-NNQs we noticed that the xBR-tree is improved for both
performance categories of our study. In Figure 8, we present the results of CK-
NNQs for the large dataset (NArr) for all (1024 query points), setting K = 40
and δ value equal to 1/(2

√
1024) =1/64 of the space side length). Diagrams

not included in this report, due to space limitations, show that, for non-empty
regions, for the 98022 points dataset, the xBR-tree is faster, for K>10. In general,
depending on the dataset, for non-empty regions the CK-NNQ time performance
of the xBR-tree is almost the same to, or much better than the R*-tree.

In summary, the experimental comparison showed that

– The xBR-tree needs much less space and is built in much less time.
– The xBR-tree performance is higher for PLQs and DRQs.
– The R*-tree performance is higher for WQs, but when considering non-empty

query windows only, the xBR-tree time-performance is higher.
– The R*-tree performance is higher for K-NNQs (the R*-tree excels to the

xBR-tree more in I/O than in execution time).
– The R*-tree performance is higher for CK-NNQs, but when considering non-

empty query results, the xBR-tree time-performance is in most cases higher.
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– The fact that xBR-trees do not model empty regions affects their perfor-
mance for queries that do not return result points.

– Main memory processing of xBR-tree is simpler and faster.
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6 Conclusions and Future Work

We performed an extensive (real data based) experimental comparison1 of the
xBR-tree I/O and execution time performance against the performance of the
most popular spatial access method, the R*-tree, considering the most represen-
tative spatial queries where a single index is involved. The conclusions arising
from this comparison show that the two structures are competitive. The xBR-
tree is smaller (i.e. it is more compact) and is built faster than the R*-tree. The
performance of the xBR-tree is higher for PLQs and DRQs and for WQs when
the query window is non-empty, while the R*-tree is better for K-NNQs and
needs less disk access for CK-NNQs. The execution time winner for CK-NNQs
depends on whether the query returns result points (xBR-tree), or not (R*-tree).

Future work might include extending the xBR-tree for modelling empty re-
gions too and studying the relative performance of the two trees for two dataset
(join) queries. Moreover, studying the relative performance of the structures in
the presence of buffering, or using memory consuming BF algorithms is another
worthy target.
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Abstract. This paper deals with conjunctive fuzzy queries that yield an
empty or unsatisfactory answer set. We propose a cooperative answer-
ing approach which efficiently retrieves the minimal failing subqueries of
the initial query (which can then be used to explain the failure). The
detection of the minimal failing subqueries relies on a prior step of fuzzy
cardinalities computation. The main advantage of this strategy is to im-
ply a single scan of the database. Moreover, the storage of such knowledge
about the data distributions easily fits in memory.

1 Introduction

The idea of introducing preferences into queries is gaining more and more atten-
tion in the database community. In this paper, we focus on the fuzzy-set-based
approach to preference queries, which is founded on the use of fuzzy set member-
ship functions that describe the preference profiles of the user on each attribute
domain involved in the query.

With respect to Boolean queries, fuzzy queries reduce the risk of obtaining an
empty set of answers since the use of a finer discrimination scale — [0, 1] instead
of {0, 1} — increases the chance for an element to be considered somewhat
satisfactory. Nevertheless, the situation may occur where none of the elements
of the database satisfies the query even to a low degree.

In the context of fuzzy queries, beside the empty answer set (EAS) problem,
another situation deserves attention: that where the answer set is not empty but
only contains elements which satisfy to a low degree the preferences specified in
the user query. We will show in this paper that a generic — and very efficient
— type of approach, based on the use of fuzzy cardinalities, may be employed
to provide explanations for both types of situations (empty or unsatisfactory
answer set, the latter being denoted by UAS in the following). Minimal failing
subqueries [1] constitute useful explanations about the conflicts in a failing query.
These explanations may i) help the user revise or reformulate his/her initial
query or ii) be used to set up an automatic and targeted relaxation strategy.
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The remainder of the paper is structured as follows. Section 2 consists of a
reminder about fuzzy sets and fuzzy queries. In Section 3, we deal with the issue
of explaining the causes of the failure (or near failure) of a query. More precisely,
we propose an algorithm for efficiently computing the minimal failing subqueries
associated with a failing (or almost failing) conjunctive fuzzy query. Section 4
presents an experimentation which illustrates the efficiency of the approach and
the relevance of the explanations. Section 5 drafts the main lines of a repair
strategy, whereas Section 6 discusses related work. Finally, Section 7 recalls the
main contributions and outlines perspectives for future work.

2 Reminder about Fuzzy Sets and Fuzzy Queries

2.1 Basic Notions about Fuzzy Sets

Fuzzy set theory was introduced by Zadeh [2] for modeling classes or sets whose
boundaries are not clear-cut. For such objects, the transition between full mem-
bership and full mismatch is gradual rather than crisp. Typical examples of such
fuzzy classes are those described using adjectives of the natural language, such
as young, cheap, fast, etc. Formally, a fuzzy set F on a referential U is character-
ized by a membership function μF : U → [0, 1] where μF (u) denotes the grade of
membership of u in F . In particular, μF (u) = 1 reflects full membership of u in
F , while μF (u) = 0 expresses absolute non-membership. When 0 < μF (u) < 1,
one speaks of partial membership. Two crisp sets are of particular interest when
defining a fuzzy set F :

– the core C(F ) = {u ∈ U | μF (u) = 1}, which gathers the prototypes of F ,
– the support S(F ) = {u ∈ U | μF (u) > 0}.

In practice, the membership function associated with F is often of a trapezoidal
shape. Then, F is expressed by the quadruplet (A, B, a, b) where C(F ) = [A, B]
and S(F ) = [A− a, B + b], see Figure 1.

The α-cut of a fuzzy set F , denoted by Fα is an ordinary set of elements
whose satisfaction degree is at least equal to α: Fα = {u ∈ U | μF (u) ≥ α}.
Thus, C(F ) and S(F ) are two particular α-cuts of F where α is respectively
equal to 1 and 0+.

Fig. 1. Trapezoidal membership function
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Let F and G be two fuzzy sets on the universe U , we say that F ⊆ G iff
μF (u) ≤ μG(u), ∀u ∈ U . The complement of F , denoted by F c, is defined by
μF c(u) = 1− μF (u). Furthermore, F ∩G (resp. F ∪G) is defined the following
way: μF∩G = min(μF (u), μG(u)) (resp. μF∪G = max(μF (u), μG(u))).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and
complementation operator correspond respectively to the conjunction ∧, disjunc-
tion ∨ and negation ¬. See [3] for more details.

2.2 About SQLf

The language called SQLf described in [4] extends SQL so as to support
fuzzy queries. The general principle consists in introducing gradual predicates
wherever it makes sense. The three clauses select, from and where of the base
block of SQL are kept in SQLf and the “from” clause remains unchanged.
The principal differences affect mainly two aspects: i) the calibration of the
result since it is made with discriminated elements, which can be achieved
through a number of desired answers (k), a minimal level of satisfaction (α),
or both, and ii) the nature of the authorized conditions as mentioned
previously.

Therefore, the base block is expressed as:

select [distinct] [k | α | k, α] attributes from relations where fuzzy-cond

where “fuzzy-cond” may involve both Boolean and fuzzy predicates. This ex-
pression is interpreted as:

– the fuzzy selection of the Cartesian product of the relations appearing in the
“from” clause,

– a projection over the attributes of the “select” clause (duplicates are kept
by default, and if “distinct” is specified the maximal degree is attached to
the representative in the result),

– the calibration of the result (top k elements and/or those whose score is over
the threshold α).

The operations from the relational algebra — on which SQLf is based — are
extended to fuzzy relations by considering fuzzy relations as fuzzy sets on the
one hand and by introducing gradual predicates in the appropriate operations
(selections and joins especially) on the other hand. The definitions of these ex-
tended relational operators can be found in [5]. As an illustration, we give the
definitions of the fuzzy selection and projection operators hereafter, where r
denotes a fuzzy relation defined on the set of domains X .

– μselect(r, cond)(t) = �(μr(t), μcond(t)) where cond is a fuzzy predicate and �
is a triangular norm (most usually, min is used),

– μproject(r, Y )(u) = maxt∈r | t[Y ]=uμr(t) where Y is a subset of X and u one
of its values,
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3 Explaining a Failure

3.1 About Minimal Failing and Unsatisfactory Subqueries

An empty set of answers associated with a fuzzy query Q = P1 ∧ P2 ∧ . . . ∧ Pn

is necessarily due to an empty support (w.r.t. the current state of the database)
for one at least of the subqueries of Q. The notion of an unsatisfactory set of
answers generalizes this problem by considering an empty α-cut of Q where α
is a user-defined qualitative threshold. As explained in Section 2, the support
and the core of a fuzzy set are particular cases of α-cuts where α is respectively
equal to 0+ and 1. In the rest of the paper we only use the notion of an empty
α-cut to refer to failing queries as well as unsatisfactory ones.

Thus, an extreme case of a failing query corresponds to an empty 1-cut for Q
only. The opposite extreme is when one or several predicates Pi have an empty
0+-cut. Between these two situations, it is of interest to detect the subqueries
composed of more than one predicate and less than n predicates, which have an
empty 0+-cut. From an empty to an unsatisfactory set of answers, the problem
defined above just has to be slightly revisited, where the condition of an empty
0+-cut is transposed to α-cuts, where α is taken from an a priori defined scale
of membership degrees S : 1 = α1 > α2 > ... > αf = 0+.

Definition 1. Let Q be a query s.t. Q = P1 ∧ P2 ∧ . . . ∧ Pn, let S and S′ be
two subsets of predicates s.t. S′ ⊂ S ⊆ {P1, P2, . . . , Pn}. A conjunction of the
elements of S is a subquery of Q. A conjunction of the elements of S′ is a
strict subquery of Q.

If one wants to explain why the result of the initial query is empty (resp. unsat-
isfactory), and/or weaken the query by identifying the subqueries whose α-cut is
empty, one must naturally require that such subqueries be minimal: a subquery
Q′ of a query Q constitutes a minimal explanation if the considered α-cut is
empty and if no (strict) subquery of Q′ has an empty α-cut. This corresponds
to a generalization of the concept of a Minimal Failing Subquery (MFS) [6].

Let us denote by Σα
Q the set of answers to the α-cut of a query Q against a

given database D: Σα
Q = {t ∈ D | μQ(t) ≥ α} (Σα

Q gathers those elements from
D which satisfy Q with a degree of at least α).

Definition 2. A Minimal Failing Subquery of a query Q = P1∧P2∧ . . .∧Pn

for a given α is any subquery Q′ of Q such that Σα
Q′ = ∅ and for all strict subquery

Q′′ of Q′, Σα
Q′′ �= ∅.

When faced with an empty set of answers for a user-defined threshold α, the
explanation process that we propose in this paper generates layered MFSs for
different satisfaction degrees αi, αi ∈ [α, 1]. This interval of satisfaction degrees
is discretized using a scale S : 1 = α1 > α2 > ... > αf = 0+ of membership
degrees. We will see in Section 3.2 that this discretization greatly facilitates the
detection of gradual MFSs.
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Obviously, due to the monotony of inclusion of α-cuts, one has Σαi

Q ⊆ Σ
αj

Q

if αi ≥ αj . Therefore, a query Q that fails for a given αj also fails for higher
satisfaction degrees αi > αj . However, this property is not satisfied by mini-
mal failing subqueries. Indeed, a subquery Q′ can be an MFS of Q for a given
αj without being minimal for higher satisfaction degrees αi > αj as a strict
subquery of Q′, say Q′′, may fail for αi and not for αj .

During the layered MFS detection step (Section 3.2), when a subquery Q′ of
an initial failing or unsatisfactory query Q is detected for a degree αj , one has to
check for each higher level αi > αj if Q′ is also minimal according to previously
identified MFSs before considering Q′ as an MFS for level αi.

3.2 Cardinality-Based MFS Detection

Our first contribution concerns the detection of layered MFSs of a conjunctive
fuzzy query. We propose an efficient algorithm, which involves a single scan of the
relation (or the join of relations) concerned during which fuzzy cardinalities are
computed for each possible combination of the predicates specified in the initial
query. A fuzzy cardinality for a given query Q and a given scale of membership
degrees S : 1 = α1 > α2 > ... > αf = 0+ is represented as follows: FQ =
α1/c1 + α2/c2 + ... + αf/cf and expresses that c1 tuples fully satisfy Q, c2

tuples satisfy Q to a degree of at least α2 and so on. For the examples and the
experimentation we use the following scale S : 1 = α1 > α2 = 0.8 > α3 = 0.6 >
α4 = 0.4 > α5 = 0.2 > α6 = 0+.

Let us consider a query Q = P1∧ . . .∧Pn. The preprocessing step — aimed at
computing the fuzzy cardinalities associated with the results of all the possible
subqueries — is as follows. One accesses each tuple t from the relation r (or the
join of the relations) concerned and computes the satisfaction degrees of t for the
predicates of the query. Then, one explores the possible conjunctions of those
predicates and stops the development of a conjunction as soon as it returns an
empty set of answer. During this process, one maintains a fuzzy cardinality for
each combination in order to know how many tuples satisfy this combination for
the different αi’s from S. One just needs to maintain in the worst case 2n − 1
variables containing these diverse fuzzy cardinalities (which is not a problem in
practice since in general n ≤ 10). In the following, it is assumed that a single re-
lation is concerned. Let us denote by V the vector of degrees 〈μP1(t), . . . , μPn(t)〉
associated with the current tuple t. The algorithm that computes the set of fuzzy
cardinalities is as follows:

for every tuple t of r do
compute μP1(t) and ... and μPn(t);
V ←< μP1(t), ..., μPn(t) >;
update the fuzzy cardinalities for all parts of V ;

done.

Remark. A possible heuristic for optimizing this fuzzy cardinality computation
process is to consider the different predicates in increasing order of their size and
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to cut branches of the exploration tree as soon as a zero cardinality is found for
an intermediate conjunction.

One may now detect the MFSs thanks to these fuzzy cardinalities for different
empty α-cuts of Q, starting from a user-defined qualitative threshold to the
highest satisfaction degree 1.

In the manner of Apriori [1], Algorithm 1 starts with atomic predicates and
the first αi-cut of interest, the one corresponding to the user-defined qualitative
threshold αi. To determine if an atomic predicate Pa is a failing subquery of Q,
one just has to check the computed fuzzy cardinalities. If no tuple satisfies Pa at
least with the degree αi then Pa, as an atomic predicate, is by definition an MFS
of Q and is also an MFS for αj > αi. Then, for the second round of the loop
(line 1.7 of Algorithm 1), conjunctions containing two non failing predicates are
generated and for each of them (line 1.11) one checks the fuzzy cardinalities so
as to determine if it is an MFS. If one of these conjunctions, say Pb ∧ Pc, is an
MFS for a degree αi one tries to propagate it to higher satisfaction degrees (see
Algorithm 2 where isMFS(L,MFSαj (Q)) returns true if L ∈ MFSαj (Q), false
otherwise). As the MFS property is not monotone with respect to α-cuts, one
checks with Algorithm 2 for each αj > αi if a subquery of Pa∧Pb corresponds to
a previously detected MFS for degree αj ; if it is not the case Pa ∧Pb is stored as
an MFS of Q for αj . Obviously, an atomic failing query is an MFS for all α-cuts.
Then, the algorithm goes back to the loop (line 1.7) and conjunctions containing
three predicates are generated for each considered satisfaction degree (line 1.8)
taking care that these conjunctions do not contain an already identified MFS.
This recursive process goes on until candidate conjunctions cannot be generated
anymore.

Remark. In case of Boolean queries, Algorithm 1 can also be used without be-
ing reconsidered as one just needs to change the scale of satisfaction degrees for
the singleton {0+}.

The complexity of this algorithm is obviously exponential in the number of pred-
icates involved in the failing query to explain, where the worst case corresponds
to a single MFS Q for the maximal satisfaction degree of 1. In this case, the
foreach loop (line 1.11) makes 2n iterations where n is the number of predicates
in Q. For a complete gradual explanation from α = 0+ to 1, the 2n iterations
are repeated f times, where f is the number of considered satisfaction degrees
in S : 1 = α1 > α2 > ... > αf = 0+. Thus, the final complexity in the worst case
is f × 2n and more generally Θ(2n).

But, as we said previously, this is not a problem in practice as the number
of predicates specified by a user is rather low (≤ 10) in most applicative con-
texts. Therefore, this process remains tractable as we will show experimentally
in Section 4.

Once the MFSs have been detected, it is possible to inform the user about
the conflicts in his/her query, which should help him/her revise the selection
condition of the failing query.
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Input: a failing query Q = P1 ∧ . . . ∧ Pn; a scale of degrees
A = αf < ... < α2 < (α1 = 1); a user-defined qualitative
threshold αu;

Output: MFS(Q) ordered sets of MFS’s of Q, one set for each α-cut of
Q.

begin1.1

foreach αi ∈ A | αi ≥ αu do1.2

MFSαi(Q) ← ∅; Eαi ← {P1, . . . , Pn};1.3

Candαi ← Eαi ;1.4

end1.5

nbPred← 1;1.6

while Candα1 �= ∅ do1.7

foreach αi ∈ A | αi ≥ αu do1.8

// generation of the candidates of size nbPred1.9

Candαi ← {M composed of nbPred predicates present in Eαi1.10

such that ∀M ′ ⊂ M, M ′ /∈MFSαi(Q)};
foreach L in Candαi do1.11

if card(Lαi) = 0 then1.12

MFSαi(Q)←MFSαi(Q) ∪ {L};1.13

//EL contains the atomic predicates that compose L1.14

Eαi ← Eαi − EL;1.15

//Propagate L to higher satisfaction degrees1.16

// E = ∪i Eαi and MFS = ∪i MFSαi(Q)1.17

propagate(αi, A, L, MFS, E);1.18

end1.19

end1.20

end1.21

nbPred→ nbPred + 1;1.22

end1.23

end1.24

Algorithm 1. Gradual MFS computation

Example 1. Let us consider a real-estate database, and the failing query:

Q = big garden ∧ recent ∧ city center ∧ open view ∧ street-level

Let us assume that the satisfaction degrees associated with the predicates from Q
are those represented in Table 1 (left). The computed fuzzy cardinalities appear
in Table 1 (right). The minimal failing subqueries found are:

– for α = 0+: i) recent ; ii) big garden∧city center; iii) city center∧openview∧
street-level.

– ...
– for α = 1: i) recent ; ii) biggarden; iii) openview; iv) citycenter∧street-level∧

recent; v) citycenter∧street-level∧biggarden; vi) citycenter∧street-level∧
open view.
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Input: a satisfaction degree: αi; a scale of degrees: A; detected MFS for αi:
L; a reference to the array of layered MFS: MFS; a reference to the
array of predicates used for the generation of candidates: E;

procedure propagate(αi, A, L, MFS, E) begin2.1

foreach αj ∈ A | αj ≥ αi do2.2

if isAtomic(L) or isMFS(L,MFSαj (Q)) then2.3

MFSαj (Q)←MFSαj (Q) ∪ {L};2.4

Eαj ← Eαj − EL;2.5

else2.6

break;2.7

end2.8

end2.9

end2.10

end2.11

Algorithm 2. Procedure that propagates an MFS to higher satisfaction degrees

Then, the system provides the user with the following explanation: “no element
is somewhat recent (r), there is a conflict between big garden (g) and city center
(c) on the one hand, and between city center, open view (v), and street-level
(s) on the other hand.” Such explanations can be provided for any α-cut of the
initial query, α being a user-defined threshold present in the query. �

Table 1. Degrees associated with the predicates (left), and fuzzy cardinalities (right)

#id (g) (r) (c) (v) (s)

t1 0.9 0 0 0.4 1
t2 0 0 0.7 0.2 0
t3 0.8 0 0 0.9 1
t4 0.7 0 0 0.8 0
t5 0 0 1 0 1

combination fuzzy cardinality

g 1/0 + 0.8/2 + 0.6/3 + 0.4/3 + 0.2/3 + 0+/3

r 1/0 + 0.8/0 + 0.6/0 + 0.4/0 + 0.2/0 + 0+/0

c 1/1 + 0.8/1 + 0.6/2 + 0.4/2 + 0.2/2 + 0+/2

v 1/0 + 0.8/2 + 0.6/2 + 0.4/3 + 0.2/4 + 0+/4

s 1/3 + 0.8/3 + 0.6/3 + 0.4/3 + 0.2/3 + 0+/3

g ∧ r 1/0 + 0.8/0 + 0.6/0 + 0.6/0 + 0.2/0 + 0+/0

g ∧ c 1/0 + 0.8/0 + 0.6/0 + 0.4/0 + 0.2/0 + 0+/0

g ∧ v 1/0 + 0.8/2 + 0.6/2 + 0.4/2 + 0.2/2 + 0+/2

. . .
g ∧ r ∧ c ∧ v 1/0 + 0.8/0 + 0.6/0 + 0.4/0 + 0.2/0 + 0+/0

g ∧ r ∧ c ∧ v ∧ s 1/0 + 0.8/0 + 0.6/0 + 0.4/0 + 0.2/0 + 0+/0

Jannach [7] proposes an algorithm which is somewhat similar to ours, but
which does not precompute the cardinalities (Table 1 (right)). Instead, it builds
a binary matrix containing the satisfaction degrees obtained by each tuple for
each atomic predicate, and combines these degrees in order to detect the MFS’s.
The main problem is that such a table can be very large, to the point of not
fitting in memory and that a query is submitted for each atomic predicate on
the whole dataset.
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4 Experimentation

4.1 Context

We have implemented this cooperative approach as a research prototype over a
database containing 10,479 ads about second hand cars respecting the follow-
ing schema: {idads , year, mileage, price, optionLevel, securityLevel, engineSize,
horsePower, consumption}. To provide a clear and user-friendly access interface,
a vocabulary composed of 44 fuzzy predicates has been defined on the domains
of eight of the attributes describing the different items, obviously the surrogate
key is discarded. Figure 2 illustrates how this vocabulary is used to query the
database and shows the explanations that are given in case of a failure.

Using this interface, we have submitted various conjunctive queries and an-
alyzed the efficiency of this fuzzy cardinality-based explanation process for 100
failing queries. Figure 3 graphically shows the evolution of the execution time for

Fig. 2. Cooperative query interface
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Fig. 3. Evolution of the computation time
for FC MFS

Fig. 4. Evolution of the computation time
for the naive version

the fuzzy cardinality-based approach, where the measure FC MFS includes the
processing time of the two subsequent tasks: the fuzzy cardinalities computation
step (FC T) and the gradual MFS detection step (GM T) (FC MFS = FC T +
GM T). Figure 4 illustrates the exponential execution time of a naive approach,
where every subquery is executed on the database [8]. The comparison of these
two curves, and especially the scale of the y−axis, explicitly shows the benefit of
our cardinality-based approach which only implies a single scan of the database.

Figure 5 shows the evolution of the size of the data structure needed to store
the computed fuzzy cardinalities (plain curve), which is compared with the size
of the binary matrix used by [7] (dotted curve). These results reflect the average
size of memory used by the two data structures for 25 failing queries containing
8 predicates.

As expected, the size of the binary matrices evolves linearly with respect to
the size of the database times the number of predicates involved in the query.
One can easily imagine that for large scale databases this data structure does
not fit in memory. The most interesting phenomenon that can be observed in
Figure 5 is that the the size of the memory used to store the fuzzy cardinalities
is insignificant and increase in a logarithmic way according to the number of tu-
ples. Indeed, the number of fuzzy cardinalities that have to be stored increases
rapidly from 0 to 1,000 tuples, then very slowly to 6,000 and is stable from
6,000 to 10,000. This phenomenon was predictable and can easily be explained
by the fact that whatever the number of tuples, the possible combinations of
properties to describe them is finite and can quickly be enumerated. As an
example, let us consider the failing fuzzy query Q composed of 8 predicates:
year IS recent AND mileage IS low AND price IS cheap AND optionLevel IS
high AND securityLevel IS very high AND engineSize IS big AND horsePower
IS high AND consumption IS very low. On a subset of the initial database com-
posed of 6,000 randomly selected tuples, 122 fuzzy cardinalities need to be stored
to represent the data distribution over the 8 attributes. On the whole data set
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Fig. 5. Comparison of the fuzzy cardinalities-based approach and a naive one for
queries containing 8 predicates

(10,479 tuples), 122 fuzzy cardinalities are needed too to represent the whole
data distribution. The difference between the number of possible combinations
of 8 predicates (28 = 256) and the observed number of useful combinations (122)
is due to the presence of MFSs. Whatever the number of tuples in the database,
some combinations of properties, corresponding to false presuppositions, are not
observed, such as: year IS recent AND mileage IS low AND price IS cheap,
engineSize IS big AND horsePower IS high AND consumption IS very low, ...

So, one can legitimately expect that the size of the memory used to store
the fuzzy cardinalities will not increase significantly. This phenomenon has been
observed in the particular context of a database containing ads about second
hand cars, but it obviously would occur for any database containing somewhat
correlated attributes.

Concerning this prototype, it is worth noticing that it has been implemented
with an interpreted language (PHP) and one may legitimately expect better
execution times with a compiled language like C and parallel programming for
the fuzzy cardinalities computation step. The efficiency of our approach relies on
the fact that instead of depending on the size of the database, its complexity is
related to the number of predicates involved in the query to explain. To illustrate
the relevance of this strategy, we have analyzed the query interface of 12 web
sites1 proposing an access to ads about second hand cars. The maximum number
of constraints (i.e. predicates) a user can specify through these interfaces varies
from 5 to 12 with an average of 8.8 predicates. This observation confirms that
in practice, the maximum number of predicates involved in queries is rather low
(≈ 10).

1 Some examples of web portals to databases containing ads about second hand cars:
annoncesauto.com, paruvendu.fr, auroreflex.com, ebay.fr, lacentrale.fr, ...

annoncesauto.com
paruvendu.fr
auroreflex.com
ebay.fr
lacentrale.fr
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5 Exploiting MFSs to Repair Failing Queries

When faced with a failing query, the explanations given by the layered MFSs
help the user revise his/her initial query. Depending on the nature of the conflicts
underlined in the MFSs, a user may:

– reconsider the qualitative threshold α specified in the query,
– remove one or several predicates involved in a conflict,
– replace one or several predicates involved in an MFS by predicates from the

shared vocabulary that appear less conflicting,
– apply a repair step which aims at relaxing the definition of some predicates

[9] or replace the conjunctive query Q by a fuzzy quantified statement of the
type Q∗ = most(P1, P2, . . . , Pn) [10].

Figure 2 of Section 4 illustrates a failing situation for an initial query year IS
very recent AND mileage IS very low AND price IS cheap AND securityLevel IS
high and a user-defined qualitative threshold α = 0.6. The explanations related
to this failure clearly point out that the predicate price is CHEAP is in conflict
with the conjunctions of properties year IS very recent AND mileage IS very low
on the one hand and year IS very recent AND securityLevel IS high on the other
hand. Guided with these explanations, one may revise the qualitative thresh-
old and decrease it from 0.6 to 0.4 or replace the conflicting predicate price is
CHEAP for a less demanding one like price is MEDIUM (Figure 6).

Fig. 6. Example of an MFS-guided revision of an initial failing query

Figure 7 shows the gradual explanations given for another failing query con-
cerning very cheap vintage cars:

Q = year is V INTAGE and price is V ERY CHEAP.

Thanks to the gradual MFSs, the user knows that it is useless to expect an-
swers with a maximum level of satisfaction if he/she keeps the predicate year is
VINTAGE which constitutes an atomic MFS for α = 1.



Efficient Detection of Minimal Failing Subqueries 255

Fig. 7. Gradual explanations of a failing query

6 Related Work

Compared with the binary matrix computed in the approach advocated by Jan-
nach [7] that linearly increases with the size of database times the number of
predicates, the size of the table of fuzzy cardinalities depends only on the num-
ber of predicates and we have experimentally shown that this size quickly con-
verges and can easily fit in memory (contrary to the binary matrix used in
[7]). Moreover, contrary to the approach described in [8,1], a single scan of the
database is needed to compute the fuzzy cardinalities and then to detect gradual
MFS. Finally, except the study done in [9] and to the best of our knowledge,
there is no other work that has addressed the problem of MFS detection in
the context of preference queries which induces a larger context of application
that goes beyond failing queries stricto sensu. Indeed, it appears very useful
for a user to know why his/her preferences are not satisfied or are only poorly
satisfied.

With respect to the algorithm proposed in [6] which processes every query
corresponding to a candidate MFS, the major interest of our approach is that,
thanks to the precomputation of fuzzy cardinalities, the determination of the
MFSs does not imply any additional query processing. Thus, the size of data
linearly affects the complexity of our fuzzy cardinality-based approach to MFS
detection.

7 Conclusion

In this paper, we first have generalized the problem of failing queries showing
that this problem is a special case of poorly satisfied fuzzy queries. We then
have proposed an efficient strategy for computing the MFSs of a failing or un-
satisfactory query, which relies on the computation of fuzzy-cardinalities. The
main benefits of this approach compared to related works are that: i) a single
scan of the database is needed to compute the fuzzy-cardinalities, ii) the storage
of these cardinalities is not costly and easily fits in memory. Thanks to these
fuzzy cardinalities, MFSs can be detected for gradual satisfactions degrees of
the user preferences. The MFSs provide interesting explanations of the failure
or the dissatisfaction that the user can use to revise his/her initial query.

Among perspectives for future work, we intend to improve the computa-
tion of the fuzzy cardinalities using a compiled language and parallel program-
ming.
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Abstract. This paper proposes an approach to the tolerant rewriting
of queries in terms of views when the views and the queries may involve
fuzzy value constraints in the context of a Local-As-View mediation sys-
tem. These constraints describe attribute values as a set of elements
attached with a degree in [0, 1] that expresses the plausibility attached
to a given element, i.e., attribute values more or less plausible/typical
in the views, while in the queries, they denotes preferences, i.e., more or
less desired values. The problem of rewriting queries is formalized in the
setting of the description logic FL0 extended to fuzzy value constraints.
We propose an algorithm of gradual and structural subsumption for this
extended logic, that plays a key role in the query rewriting algorithm.
Finally, we characterize the tolerant query rewriting forms and propose
an algorithm to compute them.

Keywords: Data Integration System, LAV Approach, Fuzzy prefer-
ences, Imprecise views.

1 Introduction

Data integration systems provide a uniform querying interface to a set of dis-
tributed data sources, in the form of a global schema. The problem of answering
queries in data integration systems has been much studied in the last decade [11].
Until recently, the global schema and the descriptions of the data sources of an
integration system were assumed to be precise. In this context, it has been proven
that the semantics of queries may be formalized in terms of certain answers [1].
A certain answer to a query Q expressed in terms of the global schema, according
to the set of instances of the data sources, is an answer to Q for every database
defined on this global schema which is consistent with the source instances. A
technique for computing the certain answers to a query in a data integration
system following an LAV (Local-As-View) approach, where the data sources are
defined as queries, i.e, views, on the global schema, consists in reducing this prob-
lem into that of query rewriting using views. Given a query Q expressed on the
global schema, the data sources which are relevant with respect to the resolution
of the query are selected by means of a rewriting algorithm which reformulates
Q into a query which is either equivalent to Q or maximally contained in Q, and
whose definition only refers to the views. Every such rewriting must satisfy all
of the constraints involved in Q in order to only return correct answers to Q.

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 257–270, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Classical data integration systems face the problem of empty/plethoric an-
swers. Indeed they are not exception-tolerant, i.e., query rewritings supplying
undesired data are discarded, even when these undesired data are not at all rep-
resentative of the views involved (i.e., can be viewed as exceptions). They do
not rank query rewritings according to the satisfaction level of the tuples they
supply either. Moreover, to our knowledge, data integration systems do not allow
vague description of views. However, in some integration contexts as well as in
the setting of distributed multimedia information systems [10],[25], it may be the
case that some source descriptions are imprecise, either because they have been
subjectively defined by an expert, or because they have been obtained applying
fuzzy rules, or because data are inherently vague. For example, in an oceano-
graphic context, a biological station could list regions whose plausible fish species
are {1/Tuna, 0.9/Mackerel, 0.5/Sardine} in its study area, knowing some pa-
rameters as salinity or depth of the regions. An expert can also describe regions
whose plausible fish species are only big fish where big is a fuzzy predicate. One
way to overcome these disadvantages is to allow for the expression of preferences
in the queries and imprecise descriptions in the views and then to use a tolerant
mechanism of subsumption between queries and query rewritings.

Contributions. In this paper, we assume a data integration system based on
the LAV approach, in which the views (assumed to be sound) and the queries
involve fuzzy value constraints. We first express the query rewriting problem in
this context using the formal framework of description logics [2], then we show
how a fuzzy pattern matching technique can be exploited to determine whether
a combination of views may constitute a satisfactory rewriting of a query, hence
to define a new gradual and structural subsumption algorithm. This measure
makes it possible to rewrite queries in the presence of exceptions. The semantics
of answers is revisited in this context and we introduce the notion of an α-certain
answer. Finally, we propose an algorithm to compute the rewritings satisfying a
given query to a level at least equal to a threshold α.

Related Work. In this paper, the issue of rewriting fuzzy queries using im-
precise views is formalized in the setting of description logics, which constitute
a family of knowledge representation and reasoning formalisms based on first
order logic. They make it possible to represent a knowledge domain by means
of classes of elements and binary relationships between these classes. They are
widely used in the context of the semantic web, notably through OWL which
is a W3C standard for the definition of ontologies. Moreover, numerous fuzzy
extensions of description logics (see [24], [23],[3],[17]) have been defined. To the
best of our knowledge, none of these fuzzy extensions deals with the problem of
rewriting queries using views. It is worth noting that the purpose of the proposed
approach is not to define a new extension for description logics but rather to ex-
ploit an existing logics as a basis to our study. Recently, a few papers contributed
to the development of data integration systems capable of taking into account
imprecision or uncertainty. Most of the works along that line use probability
theory in order to capture the form of uncertainty that stems from the schema
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definition process [6], [12], [16], [19], or that associated with the mere existence
of data [5], or aim at modeling the approximate nature of the semantic links be-
tween the data sources and the mediated schema [7]. In this paper, the nature of
the imprecision is different as it stems from the description of the data involved
in the views and not from the view definition in terms of the global schema.
In [13], the authors describe an approach that deals with query rewriting using
views in the presence of value constraints. However, the constraints considered
are not fuzzy and the semantics of the answers is that of certain answers. Conse-
quently, the search for rewritings relies on a Boolean subsumption principle and
the algorithms cannot be directly adapted to the context considered here. On
the contrary, the work proposed here allows for generalizing the results of [13].
To our knowledge, none of the existing works in data integration systems has
studied the problem of rewriting queries with preferences and imprecise descrip-
tions of data. The work which relates the most to the approach presented here
is [21] which describes an extension of object-oriented models to fuzzy classes in
order to allow for the representation of imprecise data and the notion of excep-
tion. However, the type of reasoning that it considers mainly aims at classifying
instances according to a hierarchy of fuzzy classes and is thus different from
that involved in a query rewriting process. Finally, let us mention that the fuzzy
descriptions that we use in this approach correspond to the concept of a closed
positive veristic variable studied by R.R. Yager [20] in a different context.

The remainder of the paper is structured as follows. In Section 2, we give
an example that illustrates our approach and we justify our modeling choices.
In Section 3, we present the formal frameworks of fuzzy logic and description
logics, and we focus on the logic FL0(OF ) used further. We also characterize
a structural subsumption test for the logic FL0(OF ), suited to the rewriting
problem. Section 4 addresses the issue of rewriting queries in the presence of
fuzzy value constraints. Section 5 is devoted to the computation of α-certain
answers whereas Section 6 concludes the paper and outlines perspectives for
future work.

2 Running Example and Motivations

Let us introduce our running example and assume a query Q aimed at retrieving
the regions whose fish species are {1/Tuna, 0.8/Mackerel, 0.5/Eel}. Four views
are assumed available:

V1 returns regions,
V2 returns objects whose species are {1/Tuna},
V3 returns objects whose species are {1/Mackerel, 0.9/Tuna, 0.3/Sardine} and,
V4 returns objects whose species are {1/Mackerel, 0.8/Tuna, 0.6/Bass}.

The first two views may be considered precise whereas views V3 and V4 describe
their data in an imprecise way. The degree attached to a value v in a fuzzy
set F expresses the extent to which v matches the graded concept associated
with F (here, the plausibility to be present in a certain region). Degrees do not
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correspond to probability degrees but rather give an order relationship between
values. Some values are simply considered more likely than others.

Let us consider the problem of answering the query Q. It is possible to answer
it using the semantics of certain answers by combining the data stemming from
V1 with those from V2 but this cannot be done by combining V1 with the views
V3 or V4 alone. In a classical data integration framework, one can nevertheless
combine the data from V3 with those from V4 so as to guarantee a specie in
the set {Mackerel, Tuna} and thus satisfy the criterion from the query. How-
ever, no indication about the satisfaction degree with respect to the preferences
specified in the query can be given in this case. In a classical querying frame-
work, V3 would be discarded from the rewriting process. However, it is not very
likely that it returns objects containing Sardine according to its description
(Sardine is only 0.3-plausible). Furthermore, since the objects it returns are
more likely to contain Mackerel or Tuna, it would be interesting to select it, by
making the rewriting process tolerant to exceptions. The fuzzy pattern match-
ing technique, in particular the necessity measure that relies on Kleene-Dienes
implication (p →KD q = max(1 − p, q)), constitutes an appropriate tool for
expressing the extent to which view V3 is a good rewriting candidate. This mea-
sure returns a degree between 0 and 1. Degree 1 means that the rewriting only
returns answers which totally satisfy the query, i.e., certain answers. Degree 0
means that the query rewriting is not at all subsumed by the query (there is
a full exception, i.e., a value which is totally in the rewriting but which does
not satisfy the query at all). On the other hand, a degree in ]0, 1[ reflects the
existence of partial exceptions, i.e., elements which are either unsatisfactory but
not completely plausible, or plausible but weakly preferred. With our running
example, this technique yields the following results. The truth value associated
with the fact that any tuple obtained through the conjunction of V1 and V3 (resp.
V1 and V4) be satisfactory w.r.t. the query equals min(0.8, 1, 0.7) = 0.7 (resp.,
min(0.8, 1, 0.4) = 0.4). If the user considers that a truth degree lower than 0.8
is not sufficient, then the combinations V1 and V3, as well as V1 and V4, cannot
be considered satisfactory rewritings. On the other hand, the combination V1

and V3 and V4 constitutes a satisfactory rewriting since it is included in Q to a
degree 0.8 in the sense of Kleene-Dienes implication.

Note that in our running example, we consider a non-functional attribute
(whose values are not mutually exclusive). If we had to deal with functional at-
tributes (as for example the pollution degree of a zone), we could use the same
theoretical framework to match user preferences against data source descrip-
tions. The only difference is that the fuzzy sets used in the view descriptions
would be interpreted as possibility distributions [26] with a disjunctive meaning.
In the sequel, we will assume that a non-normalized intersection between two
fuzzy sets describing non-disjoint geographical zones corresponds to an inconsis-
tency. Notice that such an assumption makes sense in the context of a densely
populated space (here, it corresponds to assuming that at least one species is
fully compatible with every area of the ocean). Since the views are supposed to
be sound, the possibility of such inconsistencies will be ignored.
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3 Preliminaries

3.1 Basic Notions about Fuzzy Sets

Fuzzy set theory was introduced by Zadeh [15] for modeling classes or sets whose
boundaries are not clear-cut. For such objects, the transition between full mem-
bership and full mismatch is gradual rather than crisp. Typical examples of such
fuzzy classes are those described by means of adjectives of the natural language,
such as young, cheap, fast, etc. Formally, a fuzzy set F on a referential U is
characterized by a membership function μF : U → [0, 1] where μF (u) denotes
the grade of membership of u in F . In particular, μF (u) = 1 reflects full mem-
bership of u in F , while μF (u) = 0 expresses absolute non-membership. When
0 < μF (u) < 1, one speaks of partial membership.

Two crisp sets are of particular interest when defining a fuzzy set F :

– the core C(F ) = {u ∈ U | μF (u) = 1}, which gathers the prototypes of F ,
– the support S(F ) = {u ∈ U | μF (u) > 0}.

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and com-
plementation operator correspond respectively to the conjunction ∧, disjunction
∨ and negation ¬ (see [9] for more details).

3.2 Logic FL0(OF )

Description logics [2] model a knowledge domain in terms of concepts (by means
of unary predicates) which characterize subsets of elements (individuals) of a
domain, and roles (by means of binary predicates) on this domain. Concepts are
described by expressions formed using constructs. The various description logics
differ according to the types of constructs they authorize. The concepts in FL0

are defined by means of constructs as follows:

B → A | ∀R.C | �

C → B | C1 � C2

where A and R respectively denote an atomic (non decomposable) concept and
an atomic role; B is a basic concept and may be either an atomic concept, or
a restriction of role R to concept C, or the special concept Top (�); C is a
general concept which may be formed of the conjunction of two general concepts
C1 and C2. For instance, the concept Father can be described by means of the
conjunction Parent � Male whereas the set of individuals whose children are
only boys can be defined as ∀child.Male.

In this paper, on top of these constructs, we use a restriction of the One-Of
(O) operator [22,4] which makes it possible to restrict the range of roles to a
set of concrete values, i.e., values different from those of the individuals of the
domain [13]. By doing so, ∀color.{red, yellow, green} is a concept which denotes
those individuals whose color is necessarily red, yellow or green. In the following,
the notion of a set of concrete values is extended to a fuzzy set somewhat in the
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manner of [3]. This construct defined as ∀RC .{d1/o1, . . . , dn/on} and denoted by
OF can be used for instance to express that the most plausible colors for a set of
individuals are red, yellow and that white is a less plausible color: ∀color.{1/red,
1/yellow, 0.2/white}. As in [13,4], we will distinguish between two disjoint sets
of roles: the roles from RA whose range is a basic or general concept, and the
concrete roles from RC whose range is a fuzzy set of concrete values.

The knowledge base considered in this article only aims at giving an inten-
sional description of an application domain. Therefore, it will be reduced to a
terminology (T ), also known as an ontology or schema, and will only consist of
a set of concept definitions A ≡ C where A is a concept name and C is a concept
expressed in FL0(OF ).

Semantics of FL0(OF )
The semantics of the concepts will be given by a fuzzy interpretation I = (ΔI , .I)
associated with a concrete domain ΔC which denotes the set of the concrete
values. ΔI is a nonempty set of individuals called the interpretation domain,
disjoint from ΔC , and .I is a fuzzy interpretation function which associates with
each concrete value oi an element of ΔC such that oi �= oj implies oIi �= oIj .
Moreover, it associates

– with each C: a function CI : ΔI → [0, 1],
– with each abstract role Ra: a function of RI

a : ΔI ×ΔI → {0, 1} and
– with each concrete role Rc: a function of RI

c : ΔI ×ΔC → [0, 1].

For x ∈ ΔI , CI(x) gives the degree to which x satisfies the fuzzy con-
cept CI under the fuzzy interpretation I. Function .I can be generalized to
constructs the following way. Let x ∈ ΔI and E be a fuzzy set such that
E = {d1/o1, . . . , dn/on}), then:

– EI(v) = di if v = oi,
– �I(x) = 1
– (C1 � C2)I(x) = CI

1 (x) ∧min CI
2 (x)

– (∀Ra.C)I(x) = infy∈ΔI{RI
c (x, y)→KD CI(y)}

– (∀Rc.E)I(x) = RI
c (x, v) →KD EI(v) with v ∈ ΔC

where →KD denotes Kleene-Dienes’ fuzzy implication. It is worth noting that
data are not uncertain but they belong with a certain degree to the fuzzy con-
cepts involved in the descriptions of the data sources.

A concept C is satisfiable iff there exists a fuzzy interpretation I and an
individual x ∈ ΔI such that CI(x) > 0. One then says that I is a model for C.
A fuzzy interpretation I satisfies the definition A ≡ C iff AI = CI . Lastly, a
fuzzy interpretation satisfies a terminology T , i.e., is a model for T , iff it satisfies
all of the concept definitions of T .

The reasoning service which is at the basis of the query rewriting process is
the notion of subsumption between two concepts. In this paper, the semantics
of subsumption between two concepts C and D (C � D) is based on the ne-
cessity measure defined in [8]. The necessity measure makes it possible to assess
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the degree of subsumption of C in D. Its evaluation relies on Kleene-Dienes’s
implication. Thus, concept subsumption is defined by the following expression:

(C � D)I = infx∈ΔI{CI(x) →KD DI(x)} (1)

where CI(x) →KD DI(x) = max(1 − CI(x), DI(x)). An axiom of concept
subsumption 〈C � D ≥ n〉 where n ∈]0, 1] is said to be satisfiable by a fuzzy
interpretation .I , denoted by I |= 〈C � D ≥ n〉, iff (C � D)I ≥ n. We will say
that concept C is subsumed by concept D to degree n, denoted by 〈C � D ≥ n〉,
iff for every fuzzy interpretation I, (C � D)I ≥ n.

Subsumption in FL0(OF )
Two types of algorithms have been proposed for testing concept subsumption:
the structural approach and the semantic one [2], the latter being also known as
the tableaux method [2]. The first approach relies on a comparison of the syntax
of each of the concepts whereas the second one tries to build a valid interpreta-
tion for the axiom being tested. In the perspective of computing the rewritings
of a query, given the large size of the search space, it is more convenient to have
syntactical indications about the form of the rewritings in order to prune the
search space. Therefore, we propose hereafter a characterization of subsump-
tion in FL0(OF ) which makes it possible to devise a structural subsumption
algorithm for FL0(OF ).

Characterizing the notion of subsumption as defined above entails expressing
the concepts in their normal form, i.e., transforming them into an equivalent
concept which makes its hidden related knowledge explicit. The normal form
of a concept consists of a conjunction of atoms of the form ∀m.P where m =
r1. . . . .rn is a shortcut used to express a multilayered nesting of value restrictions
∀r1.∀r2. . . . .∀rn.P and P is either an atomic concept (A) or a fuzzy set (E).
r1. . . . .rn−1 is a word in R∗

A and rn ∈ RA ∪RC . If n = 0, then m is the empty
word ε and ∀m.P is equivalent to P .

Let C and C′ be two classical concepts, and E and E′ two fuzzy concepts. The
normal form of a concept in FL0(OF ) is obtained by applying the normalization
rules 1) et 2) as long as this is possible, then rule 3).

1. ∀m.C � ∀m.C′ → ∀m.(C � C′)
2. ∀m.(E1 � E2)→ ∀m.E where E = E1 ∧min E2

3. ∀m.(C � C′) → ∀m.C � ∀m.C′

Let C and D be two fuzzy concepts in FL0(OF ). The following algorithm com-
putes the subsumption degree associated with 〈C � D ≥ α〉:

1. if D ≡ � then α = 1
2. otherwise

(a) if there does not exist ∀mi.P
′
i in C for a ∀mi.Pi of D, then α = 0

(b) otherwise, for all ∀mi.Pi of D, there exists ∀mi.P
′
i in C such that

– if Pi = �, then di = 1
– if Pi = A and P ′

i = A then di = 1 (otherwise di = 0)
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– if Pi = E and P ′
i = E′ then di = (E′ →KD E)

and α = mini{di}.

The proof of the soundness and completeness of this algorithm mainly relies on a
result from possibility theory which concerns the evaluation of the truth degree of
a proposition [8]. This result states that for normalized possibility distributions
(or fuzzy sets), the degree of inclusion (based on Kleene-Dienes’ implication)
between two conjunctive events C = (C1 × . . .× Cn) and D = (D1 × . . .×Dn)
such that for each pair (Ci, Di) both Ci and Di are defined over the same
domain, is equal to the smallest of the inclusion degrees Ci � Di.

4 Rewriting Fuzzy Queries Using Imprecise Views

4.1 Definition of the Data Integration System

Let us consider a data integration system based on a LAV approach. The schema
and the views are defined by means of two terminologies S and V in FL0(OF ).
The queries are made of concepts defined in FL0(OF ) in terms of S.

Example 1. Let S be an ontology that partially describes shallow sea on Brittany
coasts:

ShallowSea ≡ WaterArea � ∀habitat.{1/rock, 1/sand, 1/sediment}
FishAreaOnShallowSea ≡WaterArea � ∀fishPopulation.(Fish �

∀size.{1/small, 1/intermediate, 0.2/big} �
∀species.{1/Mackerel, 1/Sardine, 0.5/Tuna}).

Let V be the terminology associated with the views, which gives the description
of the result of the queries that can be processed on the sources:

V1 ≡ Area
V2 ≡ ∀fishPopulation.∀species.{1/Tuna}
V3 ≡
∀fishPopulation.∀species.{1/Mackerel, 0.9/Tuna, 0.3/RedMullet, 0.2/eel}

V4 ≡ ∀fishPopulation.∀species.{1/Mackerel, 0.8/Tuna, 0.8/Bass, 0.3/eel}
V5 ≡ ∀fishPopulation.∀size.{1/small, 0.8/intermediate,0.2/big}

An example of a query over S is

Q ≡Area �
∀fishPopulation.∀species.{1/Tuna, 0.8/Mackerel, 0.5/Sardine} �
∀fishPopulation.∀size.{1/small, 1/intermediate}.�

Let (S,V) be a mediation system in FL0(OF ). One assumes hereafter that S
and V are acyclic, i.e., they do not contain any concept which refers to itself in
its definition. Furthermore, descriptions in S and V are supposed to be extended,
i.e., each defined concept A (A ≡ D) is replaced by its definition D. The views
are also assumed to be given in their normal form.
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4.2 Computing the Rewritings

One now deals with the computation of the answers to Q involving preferences
in the presence of imprecise views V . Each query Q is associated with a threshold
α ∈ [0, 1] that specifies the minimal expected satisfaction degree attached with
the answers. However, one aims at approximating this set of answers by autho-
rizing exceptions, i.e., data whose plausibility degree w.r.t. to the description of
their original source is less than 1−α. In other words, an answer t, from a given
source to a query Q, either has a low plausibility degree with respect to that
source — hence can be seen as an exception —, or is has a high enough satisfac-
tion degree with respect to Q. As an illustration, let us consider the Figure 1.
The diamonds represent the query preferences, i.e., values 5, 8, 11, are preferred
to 12, itself preferred to 13 then 10. If the threshold associated with the query
is 0.6, then 10 and 13 are considered undesirable as any value of the domain
that is not in the set {4, 7, 10, 11}. The only exceptions that are authorized are
those values whose plausibility is less than 0.4, i.e., any value whose truth degree
(w.r.t. to the description of the source) in under the green line. Therefore, the
data plausibility given by triangles can provide an interesting approximation of
the expected answers. The semantics of the answers in this context can be de-
fined in terms of α-certain answers. Those are data stemming from the views for
which it is certain to a degree ≥ α that they satisfy the query. These answers can
be computed by means of the α-certain rewritings of Q on the basis of Formula
(1), as explained hereafter.

Fig. 1. Query semantics

Definition 1 (α-certain rewritings). Let (S,V) be a mediation system in
FL0(OF ), Q a query in terms of S and α ∈ ]0, 1]. A concept Q′ is an α-certain
rewriting of Q in terms of V iff:

i) Q′ is a conjunction of views in terms of V
ii) 〈Q′ �(S,V) Q, β〉 and β ≥ α

Q′ is a maximal rewriting of Q in terms of V if there does not exist any α-certain
rewriting Q′′ of Q such that Q′ � Q′′.
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Example 2. Let us come back to Example 1 and assume that the user wishes to
obtain answers to Q with a satisfaction degree ≥ 0.6. Let us consider the concept
Q1 ≡ V1 � V2 � V5 formed of the conjunction of the views V1, V2, and V5. After
extending Q1, one gets

Q1 ≡ Area � ∀fishPopulation.∀species.{1/Tuna} �
∀fishPopulation.∀species.{1/small, 0.8/intermediate, 0.2/big}.

Then, using the subsumption algorithm previously defined, one deduces

〈V1 � Area, 1〉,
〈V2 � ∀fishPopulation.∀species.{1/Tuna, 0.8/Mackerel, 0.5/RedMullet}, 1〉
〈V5 � ∀fishPopulation.∀size.{1/small, 1/intermediate}, 0.8〉.

Consequently, one has 〈Q1 �(S,V) Q, 0.8〉. Q1 is therefore an acceptable rewriting
of Q.�

In order to obtain as many answers as possible, one tries to compute all the
maximal α-certain rewritings of Q. By definition, these rewritings contain a
minimal number of views. For instance, let Q′ ≡ Vi1�Vi2�Vi3 and Q′′ ≡ Vi1�Vi2

such that Q′ and Q′′ are two α-certain rewritings of Q; then Q′ is not maximal
since Q′ � Q′′ (which is checked without extending the definitions of the views).
Indeed, Q′′ returns more answers than Q′. Let us first consider that Q is reduced
to a sole atom ∀m.C. The following lemma, based on the subsumption algorithm
defined in Subsection 3.2, gives the forms of its rewritings according to the
properties of C as well as the maximal number of views needed to rewrite it.

Lemma 1 (Forms of the rewritings). Let Q ≡ ∀m.C, l the cardinality of
the largest fuzzy set in V, and Q′ ≡ Vi1 � . . . � Vin , a conjunction of views from
V. Q′ is a maximal α-certain rewriting of Q if it is formed of a minimal subset
of views from V such that:

– if C ≡ A (resp. �), then n = 1 and the view from Q′ contains the atom
∀m.A (resp. any concept C) in its description,

– if C ≡ E, then the set {Vi1 , . . . , Vin} is such that i) every view Vij contains
an atom ∀m.Eij , ii) (

∧
j Eij →KD E) ≥ α and iii) n ≤ l + 1.

This lemma generalizes the results of [13] to fuzzy sets. Note that the rewriting of
fuzzy value constraints may require multiple views, and the worst case remains
that of [13], i.e., the case where a total inclusion in E is expected (α = 1) and
there exists l + 1 views whose pairwise fuzzy sets contains l common values,
disjoint from those in E. The intersection of l +1 views products an empty set.

Example 3. Let us continue Example 2. The other candidate rewritings that we
obtain are given hereafter:

Q2 ≡ V1 � V3 � V5 with degree 0.4,
Q3 ≡ V1 � V4 � V5 with degree 0.2
Q4 ≡ V1 � V3 � V4 � V5 with degree 0.8.
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Only Q1 and Q4 are maximal α-certain rewritings. Indeed, Q2 and Q3 do not
reach the threshold (0.6) specified by the user, and the rewritings Q5 ≡ V1 �
V2 � V3 � V5, Q6 ≡ V1 � V2 � V4 � V5 and Q7 ≡ V1 � V2 � V3 � V4 � V5 are not
maximal since they are all subsumed by Q1.�

5 Algorithm for Computing α-Certain Query Rewritings

A classical approach to computing the global rewritings of a query, which can
still be used here because we deal with unary predicates, consists in

1. computing, for each atom of the query (Algorithm 1, lines 2-6), a bucket
which contains all of its α-certain rewritings,

2. building the global rewritings (Algorithm 1, lines 8-9) of the query by com-
puting covers of query atoms from the elements in the buckets, and finally

3. discarding the rewritings which are not maximal (Algorithm 1, line 11).

Algorithm 1. ComputeRew
Require: V = {V1, ..., Vm} a set of views, Q a query and α a threshold comprised

between 0 and 1.
Ensure: M the set of maximally-contained rewriting of Q using V
1: Let Q ≡ �n

i=1∀wi.Pi

2: /* Step 1: Buckets computation */
3: for all conjunct ∀wi.Pi do
4: B(wi, Pi) = BucketBuilding(V,∀wi.Pi)
5: /* Pruning of inconsistent and non maximal rewritings */
6: B(wi, Pi):=BucketPruning(B(wi, Pi))
7: end for
8: /* Step 2: Rewritings generation */
9: M:=Cart Prod(B(wi, Pi), i ∈ {1, ..., n})

10: /* Pruning of inconsistent and non maximal rewritings */
11: M:=Pruning(M)
12: return M

The computation of each query conjunct (BucketBuilding(V ,∀wi.Pi)) is per-
formed by Algorithm 2 that lies on Lemma 1. One of the most costly step is
that devoted to the retrieval of the rewritings of the conjuncts associated with
elementary preferences (lines 7-9). In order to improve the step of generation
and testing of preference rewritings made of multiple views, it would be inter-
esting to envisage using data mining techniques in order to efficiently compute
the rewritings, in the spirit of the approach proposed in [13]. Fortunately, the
monotonicity of Kleene-Dienes implication makes this approach possible.

Let us consider the problem of rewriting the conjunct ∀w.E (line 8 of Algo-
rithm 2 ) and let us denote by Vcand the subset of views stemming from V that
contain in their description a conjunct ∀w.Ei. The rewritings Sol(w, E) of ∀w.E
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Algorithm 2. ComputeBucket
Require: V = {V1, ..., Vm} a set of views, ∀wi.Pi a subquery and α a threshold
Ensure: B(wi, Pi) the bucket associated with ∀wi.Pi

1: if Pi = A then
2: B(wi, Pi) ← B(wi, Pi) ∪ {{V ∈ V}|V contains ∀wi.Pi}
3: end if
4: if Pi = 	 then
5: B(wi, Pi) ← B(wi, Pi) ∪ {{V }|V ∈ V and V contains ∀wi.AnyConcept}
6: end if
7: if Pi = E then
8: B(wi, Pi)← B(wi, Pi)∪ {V ′ ⊆ V|∀vk ∈ V ′, vk contains ∀wi.Ek and

(
⋂

k Ek →KD E) ≥ α and V ′ is minimal}
9: end if

10: return B(wi, Pi)

are conjunctions of the elements of minimal subsets of Vcand whose intersection
of fuzzy sets Ei implies E to a certain degree α:

Sol(w, E) = Min⊆{ U ∈ 2Vcand |
⋂

Vk∈U

Ek →KD E) ≥ α}

The problem of computing Sol(w, E) can be reformulated as a problem of
mining interesting patterns since it now has a set representation. For doing so,
one has to set it in the theoretical framework of Mannila and Toivonen ([18])
that can be expressed as follows:

Let D be a database. Let L be a set of patterns and P a predicate that qualify
the interesting patterns (Theory) with respect to D. The problem is to generate
all interesting patterns. However when a partial order (�) exists among the pat-
terns and if P is anti-monotonic, the interesting patterns in L can be represented
by their positive and negative borders defined as follows:

Bd+ = {X ∈ L | P (X) is true and � ∃Y ∈ L s.t. X � Y and P (Y ) is true}
Bd− = {X ∈ L | P (X) is false and ∀Y ∈ L s.t. Y � X then P (Y ) is true}

Sol(w, E) can be set in this framework as follows. The pattern language is
LSol(w,E) = {U ⊆ Vcand} while the chosen predicate PSol(w,E)(X) is true iff for
all Vi ∈ X and ∀w.Ei ∈ Vi,

(⋂
Vi∈X Ei →KD E

)
< α. The partial order is the

set inclusion ⊆.

Property 1. PSol(w,E)(X) is anti-monotonic w.r.t. the set inclusion.

This yields the following result:

Theorem 1. Bd−(Theory(LSol(w,E), PSol(w,E)(X))) is equal to Sol(w, E).

This makes it possible to use a levelwise approach as that underlying the APriori
algorithm [18] to compute Sol(w, E) and hence query rewritings in the presence
of fuzzy value constraints. Preliminary experimentations show that it is possible
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to deal with 10, 000 views in Vcand (with at most 20 values in the fuzzy sets
involved) to rewrite each fuzzy atom. In this case, there are 210000 possible query
rewritings for a given fuzzy atom. The second step of our algorithm requires
the computation of covers of the query subgoals with minimal sets of views.
Efficient implementations of this problem have been proposed, notably in [14].
An interesting perspective is then to adapt this algorithm in order to compute
satisfactory query rewritings.

6 Conclusion

This paper constitutes a contribution to the definition of flexible data integration
systems. It deals with query rewriting using views in the presence of fuzzy value
constraints, which led us to introduce a new semantics of queries in integration
systems, namely that of α-certain answers. Those are answers such that i) either
their satisfaction degree w.r.t. the query is at least equal to a threshold α ∈ ]0, 1]
or ii) their plausibility w.r.t. the data sources is low (≤ 1−α). The problem was
formalized in the setting of the fuzzy description logic FL0(OF ). In order to
devise an algorithm aimed at computing the α-certain rewritings, we defined a
test of structural subsumption in FL0(OF ), which is sound and complete. Lastly,
we described the formats of the query rewritings in FL0(OF ) and showed that
it is possible to adapt levelwise approaches to perform one of the most costly
steps of our algorithm.

As a short-term perspective, we intend to implement the second step of our
algorithm. Another perspective is to address the issue of extending the results re-
ported here to a fuzzy hybrid language such as fuzzy-CARIN [17]. Finally, we also
intend to investigate the potential application of this approach in geographical
information systems.
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Abstract. We present a formal framework for the processing of pref-
erence queries over large data tables, in which user preferences are ex-
pressed as comparisons between attribute values (e.g. “I prefer Red to
Black”).The main contributions of the paper are as follows: (a) a for-
mal framework for the statement of the problem, under no restrictions
whatsoever on the preferences expressed by the user, (b) a rewriting al-
gorithm that takes as input a preference query and returns a sequence of
ordinary sub-queries whose evaluations construct the answer to the pref-
erence query, (c) a general definition of “skyline” and (d) a user-friendly
interface supporting preference query formulation and incremental query
evaluation with on-the-fly modification.

1 Introduction

Information personalization is an important aspect of the interaction between
users and information systems. Its goal is to tailor, or customize the information
returned to a user according to user needs and preferences. This paper focuses
on a specific facet of information personalization, namely query personalization.
The general idea is to allow users of information systems to express preferences
online and take the preferences into account in presenting query results. Let us
explain our approach informally using a very simple example.

Consider an internet company selling second hand cars through an e-catalogue
T that can be thought of as a relational table (see Fig. 1). Each entry in T de-
scribes a car for sale, and T usually contains thousands or even tens of thousands
of entries (or tuples). Potential customers access T to search for cars to buy. For
example, consider a customer looking for a car which is either Red or Black.
As the table T is often very large, the answer set is likely to contain hundreds
of tuples. However, if the user can express a preference, say, “Red is preferred
to Black”, then the system can take this information into account in order to
(a) compute the set TRed of all tuples in T with Red as their Color attribute;
and the set TBlack of all tuples in T with Black as their Color attribute and (b)
present to the user first the tuples in TRed and (if none of the cars in TRed is of
the user’s liking) then present the tuples in TBlack.

If we consider the expressed preference P : “Red is preferred to Black” as
a query, then the sequence 〈TRed, TBlack〉 can be seen as the answer to P , in
the sense that the set TRed of red cars precedes the set TBlack of black cars (as
required by P ). The main advantage in viewing the preference P as a query

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 271–284, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



272 N. Spyratos, T. Sugibuchi, and J. Yang

and its answer as a sequence of sets of tuples is that the user will see the most
preferred cars first (i.e. those in TRed). Therefore it is quite likely that the user
will like one of those cars, and that it will not be necessary to look for a car in
the second set of tuples (i.e. the tuples in TBlack).

Note that if the preference is inverted (i.e. “Black is preferred to Red”), then
the answer will be 〈TBlack, TRed〉 that is, each of the sets TBlack and TRed remains
unchanged but the order in which these sets are presented to the user is inverted.

Now, it is not difficult to see that the sets of tuples TBlack and TRed are the
answers to the following ordinary queries: QRed : (Color = Red) and QBlack :
(Color = Black). Therefore we can rewrite the preference P as a sequence
〈QRed, QBlack〉, where QRed and QBlack are ordinary queries whose evaluations
return the answer of P .

In the rest of the paper, we call preference query over T any set P of pref-
erences, and we call ordinary query over T any boolean combination of elemen-
tary conditions of the form 〈attribute〉 = 〈value〉; for example, Q : (Color =
Red) ∧ (Model = BMW ) is an ordinary query over T . To simplify the presen-
tation, we shall omit attribute names when writing down an ordinary query; for
example, the previous query will be written as follows: Q : Red ∧ BMW (the
attributes Color and Model are understood from the values appearing in Q).

Note that what we call an ordinary query over T is just a usual SQL query, in
which we omit the “select” clause (because we assume that each tuple is returned
with all its attributes), and we also omit the “from” clause (because we assume
only one table, namely the table T ). In other words, an ordinary query is just
the boolean combination of elementary conditions that appears in the “where”
clause of a usual SQL query.

There are at least three advantages in performing the rewriting of a preference
query P into a sequence of ordinary queries such as QBlack and QRed above.
First, the answer to P can be evaluated “incrementally” under user control. For
example, if the user finds the car he is looking for in the result of QRed then he
can ask the system to terminate the evaluation (i.e. not to evaluate QBlack).

Second, the user can influence query evaluation “on the fly”. For example,
if the user doesn’t find the car he is looking for in the result of QRed then
it is reasonable to expect him to modify his preferences before evaluation of
QBlack, since QBlack will return less preferred cars. For example he might ask
the system to add a condition (such as Model = BMW , or Price ≤ 10000, or
order by “Mileage” etc.) before the system evaluates QBlack.

Third, if the rewritng of the preference query and the presentation of its an-
swer are done by an interface, then the whole process becomes transparent to the
information system (i.e. the system evaluates just ordinary queries, submitted
to it by the interface, and returns the answers).

The contributions of the paper can be summarized as follows:

– A formal framework for the statement of the problem under no assumptions
whatsoever on the preferences expressed by the user.

– A rewriting algorithm that takes as input a preference query and returns a
sequence of ordinary sub-queries whose evaluations construct the answer.
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– A general definition of skyline with no restriction whatsoever over the pref-
erence relation producing it.

– A user-friendly interface, demonstrating the feasibility of the proposed ap-
proach.

In order to simplify the presentation, we shall assume that the information sys-
tem is a relational database and that preference queries are expressed against a
single table T , which is either present in the database or has been derived from
the database tables using some SQL query. As mentioned earlier, our running ex-
ample will be the table T (Id, Model, Color, Price, Mileage) in which each entry
describes a second hand car for sale (an instance of T is shown in Fig 1).

The paper is organized as follows. In section 2 we introduce the formal frame-
work. In section 3 we present our rewriting algorithm assuming that the pref-
erences are expressed over a single attribute. In section 4 we present rewriting
algorithms in the case where preferences are declared over two or more attributes.
In section 5 we present the basic ideas underlying our interface design. Section
6 concludes the paper with a discussion of related work, and perspectives.

Serial Model Color Mileage Price Year

1 VW red 35000 3800 2002
2 Clio green 48000 4500 2001
3 VW white 30000 3500 2003

. . . . . . . . . . . . . . . . . .

Fig. 1. An instance of the table T of our running example

2 Basic Definitions

We begin this section by noting that there are various kinds of preferences and
that they can be roughly classified in terms of their nature or in terms of their
persistence in time. In terms of their nature preferences can be:

– quantitative preferences (or “absolute preferences”), which are expressed as
a percentage capturing intensity of desire (e.g. I like BMW 80%, I like VW
30%, . . . ); however preferences of this kind are difficult to express by the
casual user, albeit easy to compute by a machine (from query logs)

– qualitative preferences (or “relative preferences”), which are expressed by
comparison and convey no intensity of desire (e.g. I like BMW more than
VW); such preferences are easy to express by the casual user, and also easy
to infer by a machine (from query logs)

In terms of their persistence in time preferences can be:

– long term preferences, which are either discovered by the system (unobtru-
sively, from query logs) or declared explicitly by the user (and in both cases
stored in the so called “user profile”)
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– short term preferences (or “ephemeral preferences”), which are expressed
explicitly by the user, online, and can be seen as queries.

We note that the nature of preferences and their persistence in time are orthog-
onal features. Long term preferences (whether qualitative or quantitative) are
invoked during query evaluation and act as filters for delivering customized re-
sults. In contrast, short term preferences, are not stored in a profile; they are ex-
pressed on-line, explicitly, and override the user profile during query evaluation.
We note that recommendation systems rely mostly on long term quantitative
preferences stored in users’ profiles.

In general, eliciting and managing user preferences is not a trivial task. More-
over, when preference elicitation is not performed over query logs but involves
a dialogue with the user, a user friendly interface aiding the user to express
preferences is indispensable.

In this paper, we focus on short term, qualitative preferences. Formally, qual-
itative preferences can be expressed as pairs of values from an attribute domain
as defined below.

Definition 1 (Preference). Let T (A1, . . . , An) be a relational table; a prefer-
ence over an attribute A of T is a pair (x, y), where x and y are values from
the domain of A. The declaration of such a pair is interpreted as follows: “x is
preferred to y”, or “x precedes y”. We shall call preference relation on A any
finite set of preferences over A, and we shall denote it as P.A.

For example, the following set of pairs is a preference relation over the attribute
Color of our running example:

– P.Color = {(Red, White), (Red, Y ellow), (Y ellow, Blue)}

Each pair in this set represents a preference over the attribute “Color”. As a
preference relation is just a binary relation, we can represent it as a directed
graph. This graph, called the preference graph of P.A, is defined as follows:

1. the value x is a node of the preference graph iff x appears in P.A.
2. x → y is an edge of the preference graph iff the pair (x, y) is in P.A.

A preference relation P.A will be called (indifferently) a preference relation, a
preference graph or a preference query; and a value x appearing in P.A will be
called (indifferently) a value or a node.

We stress here that, in our approach, no assumption is made on the shape of
a preference relation. In particular, a preference relation might not be transitive
and/or might contain cycles. In other words, the user can declare any set of
preferences he wants. However, in defining the notion of rank below, we do make
the assumption that the preference relation does not contain cycles (i.e. it is
acyclic). Later on, in section 5, we shall see how this assumption can be relaxed.

Definition 2 (Rank). Let P.A be a preference relation whose preference graph
is acyclic; then each node x of the preference graph can be associated to a non-
negative integer called the rank of x; the rank of x, denoted as rank(x), is defined
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as follows: if x is a root then rank(x) = 0 else rank(x)= the maximal length of
path among all paths going from a root to x.

Note that not every value of A has necessarily a rank: a value a of A has a rank
only if it appears in P.A.

The above definition of rank reflects the preferences expressed by the user
in the following sense: (a) the roots are the most preferred values (as no value
precedes a root) and (b) the further away from the roots a value is the less this
value is preferred. Moreover, if two values have the same rank, then there is no
edge between them; therefore they are non comparable, in the sense that they
are equally distant from the roots and none of the two is preferred to the other.

The following algorithm takes as input an acyclic graph G and returns the
sequence B0, B1, . . . , Bm , where Bi is the set of all nodes of rank i and m is the
maximal length of path among all paths starting from a root.

Ranking Algorithm
Aux← G, i ← 0
while Aux �= ∅ do

Bi ← {r|r is a root of Aux}
Aux← Aux− {all the roots and the edges leaving the roots}
return Bi

i ← i + 1
end while

The complexity of this algorithm is in the order of n + e, where n is the number
of nodes and e the number of edges of G. Note that:

– this algorithm is a variant of the well known topological sorting algorithm.
– the sets (or “blocks”) Bi form a partition of the set of nodes of G.
– there is no edge between any two nodes of Bi, i = 0, . . . , m (i.e. no node of

Bi is comparable to any other node of Bi).
– for each node y ∈ Bi, there is a node x ∈ Bi−1 such that x → y is an edge

of G, i = 1, . . . , m.

3 Preferences over a Single Attribute

In this section we study preferences expressed over a single attribute, and in
the following section we generalize the results to preferences over any number of
attributes.

A basic assumption underlying our work is that a user declaring a preference
relation P.A is actually interested in every value a appearing in P.A but in
varying degrees; and in fact, the degree of interest in a value a is expressed by
its rank1. This leads to the following definition of implied query:
1 We also tacitly assume that a user declaring a preference query P.A is not interested

in any value not appearing in P.A (i.e. we make a sort of Closed World Assumption,
similar to the one for databases [18]).
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Definition 3 (Implied Query). Given a preference query P.A, let a1, a2, . . . , an

be all the values of A appearing in P.A. The implied query of P.A, denoted IQ(P.A),
is the ordinary query defined as IQ(P.A) = a1 ∨ a2 ∨ . . . ∨ an.

Fig. 2 shows a preference relation P.Model and its implied query IQ(P.Model).
In order to define the answer of a preference query we need the notion of rank
for a tuple.

Definition 4 (Rank of a Tuple). Given a preference query P.A, the rank of
a tuple t with respect to P.A is defined as follows: if the value t.A appears in P.A
then rank(t) = rank(t.A)) else rank(t) is undefined.

We can now define the answer to a preference query P.A as follows.

Definition 5 (Answer of a Preference Query). The answer to a preference
query P.A is defined to be the sequence 〈T0, T1, . . . Tm〉, where Ti is the set of all
tuples of rank i, and m is the maximal length of path among all paths starting
from a root of the preference graph.

To compute the answer of a preference query P.A we can proceed in one of two
ways, namely either by direct computation or by rewriting:

Direct Computation. We proceed in three steps as follows:

1. Compute the rank of each value appearing in P.A.
2. Compute the answer to the implied query IQ(P.A).
3. Compute Ti = {t ∈ ans(IQ(P.A))|rank(t) = i}, for i = 0, 1, . . . , m.

Note that the higher the index i the less preferred the tuples of Ti are (i.e. T0

contains the most preferred tuples, T1 the next preferred tuples, and so on).

Rewriting. Let B0, B1, . . . , Bm be the sequence produced by the ranking al-
gorithm applied to the preference graph, and let Bi = {ai1, . . . , aini}, i =
0, 1, . . . , m. Clearly, the set Ti can be obtained as the answer to the (ordinary)
query Qi = ai1 ∨ . . . ∨ aini , which is the disjunction of all values in Bi.

It follows that the preference query P.A can be rewritten into a sequence of
ordinary queries as follows:

1. Compute B0, B1, . . . , Bm (applying the ranking algorithm).
2. For i = 0, 1, . . . , m, define Qi = ai1 ∨ . . . ∨ aini .

Therefore the answer to P.A is the sequence ans(Q0), ans(Q1), . . . , ans(Qm),
which is actually the sequence T0, T1, . . . , Tm of the direct computation but com-
puted in a different way (i.e. T0 = ans(Q0), . . . , Tm = ans(Qm)).

Note that the rewriting of the query P.A into the sequence Q0, Q1, . . . , Qm

is actually an ordered partition of the implied query IQ(P.A) into m parts
(sub-disjunctions) as shown in Fig. 2. Also note that one or more among the
sets Ti = ans(Qi) might be empty. This is the case when none of the values
ai1, . . . , ain of Bi appears in the current instance of T .
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P.Model :

BMW 0

Toyota0

V W 1

Honda2

IQ(P.Model) = BMW ∨ Toyota︸ ︷︷ ︸
Q0

∨V W︸︷︷︸
Q1

∨Honda︸ ︷︷ ︸
Q2

Fig. 2. The graph of P.Model with its
ranks and the implied query of P.Model

ans(Q0)

ans(Q1)

ans(Q2)

ans(Mod=Toyota)

ans(Mod=BMW )

Fig. 3. The partitioned answer of
implied query IQ(P.Model)

In principle, the answer to a preference query P.A should be presented to the
user in the form of pairs (i, ans(Qi)), i = 0, 1, . . . , m, even if ans(Qi) is empty
for one or more values of i. Clearly, the first nonempty answer in the sequence
ans(Q0), . . . , ans(Qm) contains the “best” tuples currently available in the ta-
ble. This first nonempty answer is called the skyline answer.

Definition 6 (Skyline). Let P.A be a preference query and let T0, T1, . . . , Tm

be its answer (recall that Ti = ans(Qi)). The skyline answer of P.A (with respect
to T ) is defined to be the first non-empty Ti in the sequence; and if all Tis are
empty then the skyline is defined to be empty.

Hereafter, we shall simply say “skyline” instead of “skyline answer”. Clearly, the
skyline is nonempty iff at least one value appearing in P.A also appears in T .
Also, the skyline, say Ts, obviously depends on the current instance of T . Indeed,
if one or more tuples are added in T , or removed from T , then the skyline might
change in one of two ways: (a) Ts remains the first nonempty set in the answer of
P.A but contains different tuples than before the update of T , or (b) the skyline
is not Ts any more but some Tr, where r is different than s.

The notion of skyline is an important notion. Indeed, when querying very
large data sets (where answers are expected to be large as well) it is reason-
able to expect that the user is interested only in the best tuples of the an-
swer (where “best” is measured with respect to preferences expressed by the
user).

The notion of skyline was first introduced in [4] for numeric attributes and
has since been studied extensively in the context of data warehouses [14] [17].
It has generally been studied for numeric attributes, and to a lesser extent for
categorical attributes [21].

Our approach to defining the skyline over categorical attributes generalizes
that of [21], as we make no assumption on the preference relation P.A. In con-
trast, the approach in [21] makes the assumption that P.A is a partial order over
the domain of A.
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4 Preferences over Two or More Attributes

Until now we have considered preferences over a single attribute A, and have
defined a preference relation P.A to be a binary relation over the domain of A.

Clearly, if the preference relation is a binary relation over tuples (e.g. over
Color and Model), the approach remains the same except for one point: instead
of having atomic values, such as “Red” or “Y ellow” over the single attribute
Color, we will now have tuples, such as “Red ∧ V W” over the set of attributes
{Color, Model}. In other words, if instead of having a preference relation P.A
we have a preference relation P.{A, B}, then the only difference is that each
value appearing in P.{A, B} is not an atomic value but a conjunction of two
atomic values, one from the domain of A and the other from the domain of B.
For example, the following is a preference relation over {Model, Color}.

P.{Model, Color}:
Red ∧ V W 0

Black ∧ V W 0
Y ellow ∧BMW 1

Using the ranks we can rewrite P.{Model, Color} as follows:

Q0 : (Red ∧ V W ) ∨ (Black ∧ V W ); Q1 : Y ellow ∧BMW

The answer to P.{Model, Color} is now the sequence : 〈ans(Q0), ans(Q1)〉.
However, things become more complex when the user wishes to express prefer-
ences over two or more attributes, but independently on each attribute. In other
words, instead of expressing a single preference relation P.{A1, . . . , Ak} over k
attributes, the user wishes to express k preference relations P.A1, . . . , P.Ak, one
over each of the k attributes. In this case, we adopt the following approach:
first we generate a preference relation P.{A1, . . . , Ak} from the given preference
relations P.A1, . . . , P.Ak, and then we proceed as in the previous example of
P.{Model, Color}. To do this we need to know whether each of P.A1, . . . , P.Ak

carries the same weight.
In this paper, we consider two cases: the case where all preference relations

carry the same weight, known as the Pareto case (or “without priorities”); and
the case where there is a priority over the k preference relations, known as the
prioritized case (or “with priorities”). By priority over the attributes A1, . . . , Ak

we mean a total order over these attributes (and if such a priority is desired
then it should be expressed by the user, together with the preference relations).
The generated Pareto and prioritized preference relations over A1, . . . , Ak are
defined below, where Pa stands for “Pareto preference relation” and Pr stands
for “Prioritized preference relation”.

Note: We say that two tuples s and t of T are equivalent over A1, . . . , Ak. iff
s.Ai = t.Ai for all i = 1, . . . , k (i.e. iff s and t have the same value over each of
A1, . . . , Ak.). In the following definitions all tuples are treated “up to equivalence”.

Definition 7 (Pareto). Let P.A1, . . . , P.Ak be preference relations. The Pareto
preference relation generated by P.A1, . . . , P.Ak, denoted by Pa(A1, . . . , Ak) or
simply by Pa, is defined as follows: (s, t) ∈ Pa iff for all i = 1, . . . , k either
s.Ai = t.Ai or (s.Ai, t.Ai) ∈ P.Ai, where s and t are tuples of T which are not
equivalent over {A1, . . . , Ak} (i.e. their values differ over at least one Ai).
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Roughly speaking, s precedes t under Pa if s.Ai either is equal to t.Ai or precedes
t.Ai with respect to P.Ai, for all i = 1, . . . , k.

In the example of Fig. 4, we see two preference relations P.Model and P.Color
over the table T (hence k = 2 in this case). To derive the Pareto preference
relation over {Model, Color} we proceed as follows. First, we form all possible
pairings (i.e. all possible 2-tuples) using one value appearing in P.Model and one
value appearing in P.Color; this gives four tuples over {Model, Color}, which
are the nodes of the derived preference graph (see Fig. 4). To find the edges
of the derived preference graph, we apply definition 7 to compare each node to
all other nodes: if two nodes are comparable then we place an edge between
them with the appropriate direction, otherwise no edge is placed between the
two nodes. The resulting graph is the derived Pareto preference graph.

Definition 8 (Prioritized). Let P.A1, . . . , P.Ak be preference relations, and
suppose (without loss of generality) that the priority over attributes is that of
increasing index. The Prioritized preference relation over A1, . . . , Ak generated
by P.A1, . . . , P.Ak, denoted by Pr(A1, . . . , Ak) or simply by Pr, is defined as
follows: (s, t) ∈ Pr iff
either (s.A1, t.A1) ∈ P.A1

or [s.A1 = t.A1 and s.(A2 . . . Ak), t.(A2 . . . Ak) ∈ Pr(P.A2, . . . , P.Ak)]
where s and t are tuples of T which are not equivalent over {A1, . . . , Ak}.

Roughly speaking, s precedes t under Pr if either s.A1 precedes t.A1 with respect
to P.A1 or (in case s.A1 = t.A1) s.A2 . . . Ak precedes t.A2 . . . Ak applying the
previous rule recursively.

Continuing with the example of Fig. 4, in order to find the derived preference
graph we proceed as in the Pareto case but this time applying definition 8.
The result is shown in Fig. 4. Note that Black ∧ V W and Red ∧ Clio are non
comparable under Pareto while they are comparable under Prioritized.

For a more detailed discussion on derived preference relations (with or without
priorities), as well as on some variants of these derived relations, the interested
reader is referred to [1][19].

Fig. 4. Deriving the preference graph under Pareto and Prioritized
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As the example of Fig. 4 shows, the number of nodes in the derived preference
graph is the product of the number of nodes in the two given preference graphs.
In general, the size of the derived preference graph grows rapidly with the num-
ber of given preference graphs and the number of nodes in each preference graph.
On the other hand, as we have seen, the only reason why we use a preference
graph is to compute the partition of its nodes into the blocks B0, ..., Bm that
serve in the rewriting into a sequence of sub-queries. Hence the following ques-
tion: is it possible to generate the partition B0, ..., Bm of the derived preference
graph without constructing this graph, by simply combining the partitions of the
given preference graphs? The answer is yes and the interested reader can find a
complete account in the full version of this paper [22].

5 The User Interface

In our approach, query formulation and query evaluation are based on a dia-
logue between the user and the system. This dialogue is established through
an interface which supports all the required steps, namely preference elicitation,
rewriting, incremental evaluation with the possibility for on-the-fly modification,
and presentation of the answer.

More precisely, when the user expresses a preference query P , the interface
rewrites it into a sequence of sub-queries, as seen earlier. Actually the interface
stores the sub-queries locally and passes control to the user for their evaluation
(in a sense, the stored sequence of sub-queries constitutes a sort of “ephemeral”
user profile). During the evaluation of P , the user can perform three main actions:

Action 1: Request the Skyline. In this case, the system returns the first
pair (i, ans(Qi)) for which ans(Qi) is nonempty. Optionally, the user can ask
for the skyline together with a “order-by” and (eventually) a “top-k” clause. In
this case the user will receive the top k tuples in the skyline, determined with
respect to the attribute specified in the “order-by” clause. For example, if the
user asks for the skyline answer together with the clauses “order-by increasing
mileage” and “top-5”, the interface will return the top 5 tuples from the skyline
�after the skyline has been sorted in increasing order of mileage.

Action 2: Request the Evaluation of the “Next” Sub-query. In this case
(assuming that the user has already seen the answer to sub-query Q(i−1)), the
interface simply asks the system to evaluate the next sub-query, namely Qi, and
return the answer. Optionally, before the evaluation of Qi takes place, the user
can ask the interface to modify Qi in one of the following ways:
1. Add a condition to Qi. For example, let Qi = BMW ∨ Toyota and suppose

that the interface informs the user that the size of the answer to Qi is in
the order of hundreds. Then the user might decide to add the condition
Price ≤ 8000, in which case the interface will ask the system to evaluate the
query: Qi ∧ (Price ≤ 8000), instead of evaluating Qi

2.
2 Estimating the size of the answer can be done using the frequency of appearance in

T of the attribute values appearing in the query (and the frequencies of appearance
in T can be estimated using probabilistic methods [16]).
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2. Add a “order by” clause to Qi and, optionally, a “top k” clause, as seen
above.

Action 3: Terminate Evaluation. The user can terminate the evaluation of
sub-queries, using a “next/stop” button. Typically, the “stop” button is used as
soon as the user has found what he is looking for in the result of a sub-query.

Clearly, the above features allow the user to influence the evaluation of the
query, inspect parts of the answer in decreasing order of preference, and stop
evaluation at will. This way of evaluating the answer results in increased user
convenience as well as in computational savings.

A last remaining point is the presence of cycles in the preference relation. As
we mentioned earlier, the rewriting of a preference query into a sequence of sub-
queries relies on the assumption that the preference graph contains no cycles.
There are three approaches to cope with the creation of cycles during the the
declaration of preferences:

– In the first approach, the user declares all his preferences, and if there is
a cycle in the preference graph then the interface computes all (maximal)
cycles, shows them to the user, and asks him to “break” them (by removing
one or more of the declared preferences, as needed).

– In the second approach, the user declares all his preferences, and if there is
a cycle in the preference graph then the interface transforms the preference
graph into an acyclic graph by (a) considering all values in a cycle to be
equivalent (i.e. of equal preference), and (b) coalescing all nodes of each
maximal cycle into a single node (in this way, all cycles are “eliminated”).

– In the third approach, the user declares his preferences one by one. After
each preference is declared, the interface accepts the preference if its addi-
tion to the previously declared preferences creates no cycle, otherwise the
interface follows one of two directions: refuse the declared preference or let
the user declare all his preferences and then revert to one of the previous
two approaches.

The main drawback of the first approach is that it requires quite sophisticated
user intervention, namely inspecting all cycles and then “breaking” them; and a
casual user might not have the desire or the time to do that.

The second approach does not require user intervention, and this is an advan-
tage over the first approach. However, this approach introduces somewhat more
complex semantics. Indeed, as we mentioned in the previous sections, our algo-
rithms work “up to equivalence”, where equivalence is understood as equality of
tuples over the attributes used in declaring preferences; this kind of equivalence
is quite natural to understand. However, if the second approach is adopted, then
a new kind of equivalence is introduced (whereby two tuples are equivalent if
they are on the same cycle). In presence of these two kinds of equivalence, the
semantics of the answer becomes quite involved.

The third approach provides a sort of compromise in the following sense: if the
user is prepared to accept refusal of some of his preferences then this approach
becomes incremental (as to the declaration of preferences) and requires no user
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intervention (therefore more convenient for the user); otherwise this approach
becomes similar to the first two approaches.

Note that the first two approaches need an algorithm to find all (maximal)
cycles in a graph, and such algorithms do exist in the literature [13]; moreover,
the preference graph is usually of small size, therefore computational time is not
an issue.The third approach (in its simplest form) requires just an algorithm
to check whether the addition of an edge to an acyclic graph creates a cycle;
this can be easily checked by running a simple variant of the topological sorting
algorithm (roughly, the addition of the new edge creates no cycle iff the result
of applying topological sorting is the empty graph).

The current implementation of our interface follows the simplified form of the
third approach, whereby a declared preference is accepted iff it does not create
a cycle. Clearly, the choice of one of the approaches described above depends on
the application environment and the user profiles, and its validation can only be
done through experimentation.

6 Related Work and Concluding Remarks

Using preferences for ranking alternative choices has been around for over two
centuries [2][7], and there is a huge body of literature in decision making and
social choice theory since the 1950s (see [23] for a survey). However, the use of
preferences in ranking query answers in information systems is quite recent and
their embodiment in a query language presents a number of subtle problems [20].
Influential, recent papers on the subject include Andreka [1], Chomicki [5][6], and
Kießling [11][12].

Probably the most important features that distinguish our approach from
existing approaches are: (a) the definition of the answer to a preference query
through rewriting, (b) incremental evaluation with on-the-fly modification of in-
termediate sub-queries and (c) a general definition of skyline and its computation
by an ordinary query (with no restriction over the preference relation).

We note that the definition of the answer to a preference query through rewrit-
ing has also been considered in previous work by the first author of the present
paper ([15] and [10]). However, the approach proposed in the present paper
differs from those in [15] and [10] as follows:

– A preference query in [15] and [10] is defined to be a pair (Q, P ), where Q
is an SQL query and P a set of preferences over one or more attributes.
However, the query Q is considered to have priority over the preferences P
and therefore the semantics of the answer is different than in the present
work.

– In [15] and [10] there is no possibility for on-the-fly modification before the
evaluation of a sub-query, and no notion of skyline.

– In contrast to the present work, the approach in [10] assumes transitivity of
the preference relation, an assumption which is debatable in the literature
[9], and which limits the generality of the approach.
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We are currently studying several aspects of the interface that we have imple-
mented. The first concerns providing help to the user during preference declara-
tion. Indeed, when a user declares preferences, he is not aware of the data values
currently available in the table. Therefore we consider the possibility of adding
a data preview facility, whereby the user can select an attribute of the table and
have a look (by scrolling) at the current values of that attribute before declaring
preferences. The second aspect concerns discretization of numeric attribute do-
mains. For instance, referring to our running example, we would like to give the
user the possibility to declare keywords of the sort “LowPrice : Price ≤ 5000”
and “HighPrice : Price ≥ 5000”, and use such keywords in the declaration of
preferences. A third aspect that we consider is the organization of discrete do-
mains into hierarchies (e.g. dark: {blue, black, green}, light: {white, yellow})
and its influence in preference declaration. For example, if the user declares a
preference of dark over light how should we interpret it: “for every color x in
dark and for every color y in light x is preferred to y”? or should it be: “for
every color x in dark there is color y in light such that x is preferred to y”? and
so on. A final aspect that we are studying is the usability of the interface. Indeed,
in spite the choice of a rather simple mode of interaction, the combined activity
of expressing queries and preferences at the same time might prove ”cognitively”
difficult to the casual user.

Regarding further work, there is one direction which is promising in our opin-
ion. As pointed out in [3], most of the work done on preferences in the context
of information systems takes into account the attributes over which preferences
are declared but ignores completely the values of the attributes over which no
preferences are declared. Therefore the authors of [3] propose a ceteris paribus
assumption on these other attributes. We believe that what is actually needed is
a preference specification language which allows the user to declare both, prefer-
ences and assumptions, on all attributes of the table. We are currently working
towards that direction.
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Abstract. In recent years, the World Wide Web (WWW) has trans-
formed to a gigantic social network where people interact and collab-
orate in diverse online communities. By using Web 2.0 tools, people
contribute content and knowledge at a rapid pace. Knowledge-intensive
social networks such as Q/A communities offer a great source of expertise
for crowdsourcing applications. Companies desiring to outsource human
tasks to the crowd, however, demand for certain guarantees such as qual-
ity that can be expected from returned tasks. We argue that the qual-
ity of crowd-sourced tasks greatly depends on incentives and the users’
dynamically evolving expertise and interests. Here we propose expertise
mining techniques that are applied in online social communities. Our ap-
proach recommends users by considering contextual properties of Q/A
communities such as participation degree and topic-sensitive expertise.
Furthermore, we discuss prediction mechanisms to estimate answering
dynamics considering a person’s interest and social preferences.

Keywords: Online communities, Expertise mining, Crowdsourcing.

1 Introduction

The collaboration landscape has changed dramatically over the last years by en-
abling users to shape the Web and availability of information. While in the past
collaborations were bound to intra-organizational collaborations using company-
specific platforms, and also limited to messaging tools such as email, it is nowa-
days possible to utilize the knowledge of an immense number of people
participating in collaborations on the Web. The shift toward the Web 2.0 al-
lows people to write blogs about their activities, share knowledge in forums,
write Wiki pages, and utilize social platforms to stay in touch with other people.
Task-based platforms for human computation and crowdsourcing enable access
to the knowledge of thousands of people on demand by creating human tasks
that are processed by the crowd. Platforms for human computation including
Amazon Mechanical Turk (MTurk)1 are examples for crowdsourcing applica-
tions associated to the business domain. Human tasks include activities such as
1 http://www.mturk.com/
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designing, creating, and testing products, voting for best results, or organizing
information.

In open and dynamic crowdsourcing environments it becomes essential to
manage expertise profiles and reputation of people in an automated manner.
Here we argue that the quality of crowd-sourced tasks depends to a large extent
on the users’ dynamically evolving expertise and interests. Companies desiring
to outsource human tasks to the crowd typically demand for certain guarantees
such as quality that can be expected from returned tasks. Therefore, we pro-
pose expertise mining techniques that are applied in online social communities.
Somebody seeking help or advice on a specific problem or businesses issuing
task requests using, for example, crowdsourcing platforms need to be able to
find the right person who can assist by offering his or her expertise. Work in
expert finding, see for example [4], has been addressing the search for persons
with the right skill level by using ontologies and by combining diverse semantic
information from user skill profiles. Since Web-scale collaborations involving a
large amount of people does not only demand for scalable algorithms and ranking
solutions, but in many cases it is also desirable to consider the global properties
of a human interaction network to determine the importance of users.

In this paper, we present research performed in the context of Q/A commu-
nities and crowdsourcing with the following key contributions:

– We discuss the key characteristics of Q/A communities by studying the prop-
erties of a real-world dataset obtained from Yahoo! Answers [19]. Investigat-
ing interactions and Q/A behavior of people using Yahoo! Answers allows us
to analyze community structures and evolution over time. Our analysis has
important implications for the design of future crowdsourcing applications
that demand for high-quality results of delivered crowd-sourced tasks.

– We highlight expertise mining techniques that are applied in online so-
cial communities. Our approach recommends users by considering contex-
tual properties of Q/A communities such as participation degree and topic-
sensitive expertise.

– We propose link analysis techniques derived from popular ranking and min-
ing algorithms such as PageRank [14]. The presented approach accounts for
social dynamics in Q/A communities. Furthermore, we propose prediction
mechanisms to estimate answering dynamics considering a person’s interest
and social preferences.

– Our evaluations and discussions are based on the properties of a real Q/A
community. Our experiments confirm that our proposed ranking approach
is well suited for expertise mining and recommendations.

This paper is organized as follows: In Sect. 2 we present related work in the area
of online communities and social network analysis techniques applied to expertise
networks. Sect. 3 is concerned with the definition of interactions in Q/A systems
and basic community characteristics. In Sect. 4, we present our expertise mining
model that is based on fine-grained contextual answering behavior followed by
our recommendation approach in Sect. 5. Finally, we conclude the paper in
Sect. 6.



Analysis of the Structure and Dynamics of Large-Scale Q/A Communities 287

2 Background and Related Work

The availability of experts in emerging Q/A Web communities raises a number
of research issues and provides unique opportunities for new business models.
Recent crowdsourcing environments enable novel ways to utilize external expert
knowledge. When focusing on large-scale networks, where thousands of indi-
viduals are interlinked through a social and collaborative network, the broad
applicability of efficient and scalable algorithms becomes evident.

Discovery of experts in Q/A communities. Experts contribute their knowledge
in various fields by providing answers, e.g., posting comments, in respective sub-
communities [1]. However, since Q/A communities are typically open platforms
(everyone can join), quality of provided content becomes a key issue [2]. One
approach to cope with quality issues is to find authoritative users based on
the link-structure in Q/A communities [8,11]. Well-established ranking models
including HITS [12] and PageRank [14] have been applied and tested in online
communities [21]. Our approach is to find experts with respect to different topics
[15]. Most existing expertise mining approaches do not consider user posting
behavior in different topics. An approach for calculating personalized PageRank
scores was introduced in [9] to enable topic-sensitive search on the Web. In [18],
topic-sensitive ranking in Twitter networks was discussed. The connectivity of
users in different contexts (e.g., topics) may be very different based on their
personal interaction preferences such as frequency of exchanged messages [6].
Thus, considering context and discussion topics may help to discover relevant
experts in sub-communities.

Routing of requests within Q/A communities. The best candidate user for an-
swering a given question may be the person with the highest reputation in a
specific sub-community and with the highest number of trusted links. Aard-
vark [10], for example, is a social search engine that utilizes the social network
structure of its users to route questions to be answered by the community. In
such a system, it is essential to maintain an up-to-date view on users interests
and trust relations. A wide range of computational trust models to control in-
teractions have been proposed (e.g., [3]). Our approach is related to social trust
[7,16,22] relying on previous behavior. In such Q/A communities, one of the key
issues also is to provide recommendations to users whose questions they should
answer based on their evolving interests.

Integration of crowds in enterprise systems. An emerging new business model
is to integrate the capabilities of crowds in enterprise systems through crowd-
sourcing techniques [5]. The first commercially available platform was MTurk
offering the crowd’s capability via Web service-based interfaces. One of the key
challenges in crowdsourcing is to estimate the quality that can be expected from
a particular crowd member. This could be done based on the user’s expertise.
If the quality of returned task results is expected to be low (due to missing ex-
pertise), different actions can be taken such as issuing multiple instances of the
same task and voting for best results. However, since open Web-based platforms
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are subject to frequent changes (members are joining and leaving), the user’s
expertise must be calculated automatically.

3 The Yahoo! Answers Community

The goal of this work is to study the characteristics of Q/A communities. To
date, Yahoo! Answers (YA) [19] is one of the biggest and most successful Q/A
community on the Web. YA was established in 2005 and attracts a large number
of users to ask questions regarding different topics. The goal of our analysis of
the YA community is twofold:

1. In this work, we analyze the basic properties of the popular YA community
with the aim of providing insights in the structure and Q/A behavior of
users. The results could be a valuable input when designing, for example,
new rewarding or reputation schemes in online communities.

2. By understanding the basic properties of the community, we design a topic-
sensitive expertise mining algorithm. Also, understanding the evolution of
user interest plays a significant role when recommending questions or users
in Q/A communities.

3.1 Interactions and Actor Relations

In the following (Fig. 1) we give an overview of the basic interactions as com-
monly found in Q/A communities such as YA.

Asker (A) Responders (R)

...

Q1 A1 Ai...
Yahoo! Answers

(a) Basic Q/A model.

Q1 A1

T1

T2

Q2 A2

A R

(b) Topic relation.
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wv

x

A

R A

R

AR
Edges:
o Questions
o Answers
o Best answers

Nodes:
o Points
o Topics
o Num (best) 

answers

(c) Graph representation.

Fig. 1. Representation of Q/A communities

Figure 1(a) shows the very basic actions taken by Askers (A) and Responders
(R). Askers post questions that may be replied by answers of one or more re-
sponder(s). Typically, one answer is selected as the best answer, thereby setting
the status of a question from open to closed. However, if the asker does not opt
for a best answer, other community members may vote for a best answer and
close a given question. Users get points for answering questions and more points
if answers are selected as best answer (see [20] for details about the YA scoring
system). The YA system has a predefined set of categories (hereafter refereed
to as topics) in which questions are posted. Categories typically depict popular
question topics. Thus, as shown in Fig. 1(b), each question and answer between
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A and R is associated with a topic identifier. Of course, users may post and
answer questions regarding different topics.

A central theme of our work is the automated analysis of expertise based on
the users’ answering behavior. The basic idea of our approach is to apply sound
techniques from the information retrieval and social network analysis domain.
An intuitive approach is to model the Q/A community as a directed graph
G(N, E) composed of the set of node N and the set of edges E. Nodes represent
users and edges are established based on interactions that are derived from the
underlying question/answering behavior. Given the YA system, each node has a
set of properties such as the total collected points, set of topics the user is engaged
in, number of answers as well as best answers, and so forth. Fig. 1(c) shows the
essential graph model and the meaning of directed edges. In our approach, an
edge points from, e.g., v to u, in standard graph notation written as (v, u) ∈ E, if
u responded to v’s question. Each edge between nodes holds further information
such as the number of questions being asked and answered between a pair of
nodes u and v.

3.2 Q/A Structure and Community Evolution

The presented analysis of the answers community is based on user interactions
(questions and answers) that were posted from 2005 to 2008. We start our dis-
cussion of the YA community by analyzing basic statistics. In the following we
show the amount of questions and answers posted over time.

Table 1. Q/A volume over time

2005 2006 2007 2008

Number of questions |Q| 15886 76084 74501 50088
Number of answers |A| 40797 828282 790918 304138

Ratio A/Q ≈2.6 ≈11 ≈11 ≈6

|Q|year/|Q|total 7% 35% 34% 23%
|A|year/|A|total 2% 42% 40% 15%

In Table 1, the number of questions and answers in consecutive years from
2005 to 2008 is shown. YA was established in 2005 so the number of questions |Q|
and answers |A| is the lowest in this year. An answer per question ratio A/Q of
approximately 11% can be observed (i.e., there is a high chance that a question
receives multiple answers). Crawling of the dataset was performed until half of
2008. Thus, 2006 and 2007 represented the only years of full Q/A volume. In
2008, the A/Q ratio is lower due to a cutoff in the YA dataset.

The Q/A behavior in the YA community is best approximated as a power-
law distribution, which is commonly used to describe the scaling laws of many
naturally evolving social networks such as email communications or the access
of Web resources [17]. We show the distributions of both questions per user and
answers per user (see Fig. 2). The results show the distributions for the entire
interval 2005-2008. The distributions in respective sub-figures can be modeled
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Fig. 2. Question and answer distributions

as N(k) ∼ k−x with exponent x. First, we analyzed the distribution of questions
per user (see Fig. 2(a) with x = −1.79) and questions per user who also respond
to answers (see Fig. 2(b) with x = −1.77). As in many Q/A communities, some
users only ask questions (being askers only) and some users ask and answer
questions. Second, we analyzed the community structure with respect to answers
per users (see Fig. 2(c) with x = −1.19) and best answers per user (see Fig. 2(d)
with x = −1.39).

In Fig. 3 we show the answering behavior per question. In Fig. 3(a), one can
see that a large number of questions is answered by at least one response. Some
questions are answered by a large number of responders. This is typically the
case when users ask for opinions rather than factual answers. For example, in
some cases the YA platform is used like a discussion forum to chat with other
users about current news or celebrities [8]. This behavior is reflected by the tail
of the distribution in Fig. 3(a).
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Fig. 3. Answers per question

By selecting only those answers that were voted using the thumb-up feature of
YA (a ‘like’ button), the maximum number of answers per question moves from
about 50 to about 30 (see the tail of the distribution in Fig. 3(b)). Given that a
large number of questions is answered by more than one answer, recommending
users who are able to provide high-quality answers becomes important in Q/A
communities. For example, a ranked list of answers could be presented to the
asker based on the responders community reputation and experience.

The next step in this work is to analyze the role of askers and responders. The
interesting aspect in YA is the role of two-sided markets [13]. In YA, users get



Analysis of the Structure and Dynamics of Large-Scale Q/A Communities 291

1 100 10.000 500.000
10

0

10
2

10
4

Total Points per User

N
um

be
r 

of
 U

se
rs

 

 

Asker Only
Responder

Fig. 4. Total points asker and responder

100 points by signing-up to the platform [20]. For each answer being provided,
users get additional points (more points if the answer is selected as best answer).
However, users lose points if they ask questions, thereby encouraging members
to provide answers. Based on the rewarding scheme in YA, users tend to have
either role – being asker or responder – instead of having both roles. This behav-
ior is shown by Fig. 4 where we plot the total number of points and the count of
users considering (i) askers only (see diamond shaped symbols) and (ii) respon-
ders (star-shaped symbols). One can see that users who only ask question have
typically considerably less points than those who also answer questions (respon-
ders). Given those two sets of users, the highest scoring asker collected a total
points value of 16.431 whereas the maximum value for responders is 425.225.

This observation means that many users who respond to questions also tend
to use the YA platform over a longer period of time since more points are ac-
cumulated over time. On the contrary, many users just try using the platform
by signing up to YA and asking a single question (see the spike at 100 points in
Fig. 4). The details regarding user participation over time are shown in Table 2
by analyzing the overlap of community members (based on their Q/A behavior)
in consecutive years and within the total duration from 2005 to 2008.

Table 2. User participation over time

2005/2006 2006/2007 2007/2008 2006/2008

sim(ya, yb)A 9% 4% 5% 1%
sim(ya, yb)R 47% 31% 39% 12%

sim(ya, yb)A∩R 20% 5% 7% 1%

We use the following equations to obtain the entries in Table 2:

sim(ya, yb) =
|Uya ∩ Uyb

|
|Uya |

(1)

The first equation (Eq. 1) calculates the similarity of sets of users Uya and Uyb

between two years ya and yb (these need not to be consecutive years). Thus,
Eq. 1 calculates the overlap of how many users participating in year ya also
participated in year yb in YA. In other words, Eq. 1 denotes the containment of
ya in yb. The results are shown in Table 2 as sim(ya, yb)A (for askers only) and
sim(ya, yb)R (responders only). One can observer that the number of responders
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continuing using the platform is much higher than the number of askers. This
fact is even more drastic by comparing the overlap of users between the years
2006 and 2008. In particular, only 1% of askers who signed up in 2006 also
continued to ask questions in 2008, whereas 12% of responders kept using the
platform also in 2008.

Second, we calculate the similarity sim(ya, yb)A∩R of users who are askers and
responders as follows:

sim(ya, yb)A∩R =
|UA

ya
∩ UR

ya
∩ UA

yb
∩ UR

yb
|

|UA
ya
∩ UR

yb
| (2)

The results are again shown in Table 2 (last row). The percentage of users who
have both roles and continue using the platform in consecutive years is higher
than for askers only but still much lower as compared to the set of responders.
This is especially true for the comparison 2006/2008 where we observe equal
values of sim(ya, yb)A and sim(ya, yb)A∩R. Thus, users who ask and answer
questions do not typically use the platform over a longer period of time.

3.3 Community Topics

The YA community is structured in topics helping users to quickly access a set
of relevant questions and answers. Before designing a topic-sensitive expertise
mining approach, it is useful to understand the preference of users to post in
one or more topics (i.e., whether users post in different topics at all). Figure 5
visualizes the number of topics per user.
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(b) Answer topics

Fig. 5. Number of topics per user

In Fig. 5(a), the number of topics by askers are shown. Since many users
only ask one question (cf. previous section), the majority of askers is active in
one topic only. The responders’ behavior is shown in Fig. 5(b). We count the
number of topics per user if the user provided at least one answer. Based on
the results, we expect that a large fraction of responders typically post in 20-50
topics. However, by looking at those users who provided at least one best answer,
about 20 topics by responder can be expected.

In the next step, we picked questions and answers in one particular year (2007)
and analyzed the following properties: (i) which are the most discussed topics,
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(b) Interest change

Rank Topic Rank Topic

1 Cancer 11 Women’s Health
2 Philosophy 12 Baseball
3 Heart Diseases 13 Men’s Premiere Leagues (UK)
4 Football (American) 14 Men’s Health
5 Words & Wordplay 15 Mathematics
6 Wrestling 16 Mental Health
7 Books & Authors 17 2006 FIFA World Cup(TM)
8 Diet & Fitness 18 Trivia
9 NASCAR 19 General Health

10 Astronomy & Space 20 Hockey

(c) Top 20 topics

Fig. 6. Top answer topics in YA (2007) and interest evolution

(ii) how much overlap is between the sub-communities in terms of users posting
in multiple topics, and (iii) the evolution and change of user interest. The results
are illustrated in Fig. 6. First, we rank each topic based on the number of answers,
which is a good indicator for community interest (see Top 20 topics shown in
Table 6(c)). For each topic in Table 6(c), we calculate how similar the user
base is compared with another top-ranked topic using the formula sim(Ta, Tb) =
|UTa∩UTb

|
|UTa | . In other words, similarity is expressed by how many users post in both

topics Ta and Tb. This measure is useful when comparing the impact and results
of topic-sensitive expertise mining. If topics (sub-communities) have virtually
now overlap in their user base, it does not bring any benefit to rank experts
in joint topics. The similarities of (ranked) topics are shown in Fig. 6(a). Here,
the elements are interpreted as follows: given a top-ranked topic, say ‘Cancer’
(Rank 1), the similarity to other topics is shown from the left to the right were
the index corresponds to the rank in Table 6(c). The color shade of each element
in the topic comparison matrix corresponds to the numerical similarity value
(see the colorbar on the right).

For all users who were active in 2007, we compared their interest evolution
by analyzing user topics (in which topics users were active) in 2007 and 2008.
We created a chart (Fig. 6(b)) that shows the percentage of users within the
similarity intervals [1, 0.8), [0.8, 0.6), [0.6, 0.4), [0.4, 0.2), and [0.2, 0] according to
the similarity value calculated using the definition of set overlap as discussed



294 D. Schall and F. Skopik

in the previous paragraph. Fig. 6(b) shows that 73% of users mostly post in
the same topics they had posted in the past year. The remaining 27% have
changing interests (to some degree) whereby a very low fraction of users have a
high interest change (see most right category 0.2).

4 Topic-Sensitive Expertise Mining in Q/A Communities

Here we propose link-based expertise mining techniques. Open Web-based com-
munities are governed by changes such as people joining and leaving the com-
munity. It is therefore important to automate aspects such as the management
of interest and expertise profiles due to scale and temporary nature of commu-
nities. We propose the application of well-established ranking methods used by
search engines to estimate users’ experiences based on the link structure of Q/A
communities. The goal of this work is to establish a relative order of users based
on their participation degree. The top-ranked users (i.e., responders) are consid-
ered to be authoritative experts who are recommended for answering questions
regarding a specific topic.

Specifically, we propose the PageRank method [14], which can be personalized
for different topics as discussed in [9]. Consider a graph structure as previously
introduced (cf. Fig. 1(c)), where edges point from askers A to responders R. An
edge is thus established whenever R responds to a question from A, regardless
whether the answer was selected as best answer. The PageRank PR(u) of a node
u is defined as follows:

PR(u) = (1 − α)p(u) + α
∑

(v,u)∈E

PR(v)
outdegree(v)

(3)

The equation consists of two parts. The first part p(u) is called personalization
vector that is used to assign preferences to certain nodes (we shall discuss shortly
how this is done). Without any preferences or bias towards a particular node, a
personalization vector p = [ 1

|N | ]|N |×1 is assumed. The second part of Eq. 3 can
be regarded as u’s relative standing (reputation) within the entire network. The
factor α is typically set to 0.85 because a random surfer on the Web is assumed
to follow six links (1 − α) = 1/6 = 0.15 and ‘teleports’ with probability 0.15 to
a randomly selected Web page.

Our approach is to assign preferences to users based on their answering behav-
ior in a particular topic of interest. For example, if experts need to be discovered
with regards to a topic T (see footnote2), then preferences are assigned to those
users who have answered questions with respect to this topic T . Formally, the
topic-sensitive personalization vector p is assigned as follows:

personalizationtopic : (u, T ) �→
{

0, if u has not been active in T

answers(u, T ), otherwise

2 Notice, T could be a single topic or a joint topic with T = {Ta, Tb}.
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The function answers(u, T ) returns the number of all answers of u in topic T .
Answers may include best answers or even answers that were not useful at all
(e.g., even thumb-down voted answers). Our hypothesis is that both answering
behavior of users in a certain topic (i.e., personalization) and also a user’s global
(community wide) reputation are important.

Results. We performed three experiments in different topics and combinations
thereof. All experiments are visualized in Fig. 7 (top-25 ranked users that are
ordered based on their ranking scores). Ranking results have been obtained by
using the personalized PageRank model as discussed before using the parameter
α = 0.75. If α was set to a higher value, ranking scores were biased too much
towards the global reputation of a user. On the other hand, by setting α too low,
also ‘spammers’ would be ranked high with, however, low community reputation.
Each node in Fig. 7 is labeled by its position in the ranking result. The position of
a node corresponds to an entry (# column) in Table 3. Only edges that connect
nodes within the top-25 rankings results are shown. Also, to understand the
quality of our results, we rank nodes according to (i) best answer count BAC
(not topic sensitive) and topic-based best answer count BACT (the rank R is
shown in parenthesis in Table 3).

This information is also encoded in the nodes’s color and shape. The border
of nodes is octagon-shaped and nodes have black fill color if nodes are ranked
within the top-25 list by BAC and within the top-25 list by BACT . Nodes with
fill color gray are only ranked in a high position by our method, but not by
BAC or BACT . Nodes with dark borders and gray core are ranked high by our
approach and also by BAC. Nodes with gray borders and a dark core are ranked
high by our approach and also by BACT .

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig. 7. Topic-sensitive expertise mining (users in top-25 results)

Further information shown in Table 3 includes: AC answer count, number of
topics T the user posts answers in, and ILT depicting the number of inbound
neighbors (askers) given a specific topic. For each experiment, we create 5 rows
depicting the properties of the top-10 ranked nodes (reduced from top-25 to
top-10 due to space limits).
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The first experiment (see Fig. 7(a) and first segment of rows in Table 3)
shows the ranking results within the topic General - Health, which we selected
because health related issues are of general interest in YA (a top ranked topic).
The first ranked user at position 1 would have been ranked at position 1 based
on BAC as well. However, the user never responded to a question in the specific
topic (thus, topic related info is not shown in the table – n/a). In this case, the
user’s community-wide reputation was predominant over the personalization.
By using a parameter α = 0.65 (giving more preference towards topic-based
personalization), the order of users ranked at position 1 and 2 would have been
changed. However, we noticed that many other globally low ranked (by BAC)
users would be ranked too high. The results of experiment 1 show that 8 of 10
have been active in the given topic, 4 of 10 would have been ranked top-10 by
BACT in the topic, and 4 of 10 would have been ranked top-10 by BAC.

The second experiment (see Fig. 7(b) and second segment of rows in Table
3) shows the ranking results within the topics General - Health and Diet &
Fitness, which we selected because both topics have a good overlap of users. The
visualization shows that adding another overlapping topic results in more edges
being added among the top-25 ranked nodes. The same node as in experiment 1
is ranked at position 1. However, the user previously ranked at position 4 is now
ranked at position 3. Notice, the node with label 3 is now connected with a set of
other nodes and was therefore ranked at a higher position (i.e., the community
embedding of the user improved by adding another topic). In experiment 2, 8 of
10 have been active in the given topics, 3 of 10 would have been ranked top-10 by
BACT given both topics, and 5 of 10 would have been ranked top-10 by BAC.

The third experiment (see Fig. 7(c) and third segment of rows in Table 3)
shows the ranking results within the topics General - Health and Heart Diseases,
to test the impact of combining the previously selected topic with the highest

Table 3. Experiment node properties

# AC BAC(R) T ILT ACT BACT (R) # AC BAC(R) T ILT ACT BACT (R)

1 2072 1219 (1 ) 3 n/a n/a n/a 6 595 275 (6 ) 12 5 5 5(2 )
2 396 257 (9 ) 22 29 29 26(1 ) 7 172 8 (386 ) 42 8 8 1(2 )
3 505 118 (14 ) 18 18 18 0(589 ) 8 302 11 (266 ) 43 6 6 0(686 )
4 1328 851 (2 ) 6 1 1 0(918 ) 9 58 14 (190 ) 12 7 7 2(8 )
5 445 89 (17 ) 22 10 10 3(5 ) 10 126 63 (27 ) 2 n/a n/a n/a

1 2072 1219 (1 ) 3 n/a n/a n/a 6 35 5 (637 ) 2 30 30 5(6 )
2 396 257 (9 ) 22 60 60 50(1 ) 7 370 33 (57 ) 14 19 19 1(496 )
3 1328 851 (2 ) 6 1 1 0(4268 ) 8 97 3 (1359 ) 23 26 26 0(3895 )
4 505 118 (14 ) 18 38 39 1(396 ) 9 845 316 (4 ) 10 1 1 0(2821 )
5 445 89 (17 ) 22 29 29 4(9 ) 10 365 258 (8 ) 2 n/a n/a n/a

1 1328 851 (2 ) 6 1167 1300 842(1 ) 6 365 258 (8 ) 2 338 354 252(2 )
2 2072 1219 (1 ) 3 n/a n/a n/a 7 491 128 (13 ) 7 456 482 124(6 )
3 618 258 (7 ) 3 441 570 240(4 ) 8 126 62 (27 ) 2 121 125 62(11 )
4 595 275 (6 ) 12 362 544 247(3 ) 9 393 15 (175 ) 9 360 380 15(39 )
5 845 316 (4 ) 10 445 465 163(5 ) 10 286 59 (28 ) 2 270 285 59(12 )
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ranked topic. Using these topics, the top-ranked user is now also top-ranked by
BACT and also high ranked by BAC. The combination with a high answering
amount topic results in even more connections between the nodes. In experiment
3, 9 of 10 have been active in the given topics, 6 of 10 would have been ranked
top-10 by BACT given both topics, and 6 of 10 would have been ranked top-10
by BAC.

To conclude the discussion on topic-sensitive expertise mining, personaliza-
tion based on topic activity combined with community-wide reputation delivers
very good results. Thus, the automatic discovery of experienced (authoritative)
users with respect to topics is possible by using the link-structure of Q/A
communities.

5 Personalized Recommendations

Due to the high number of questions that are typically asked in today’s Q/A
community, it becomes essential to provide recommendations (e.g., which ques-
tions should be answered). Our previous expertise ranking approach was based
on the assumption that authoritative users also provide good answers, which we
confirmed by comparing the rank of a user with the user’s best answer count.
Our recommendation approach works in a manner similar. Instead of analyzing
questions, we recommend users that ask ‘good’ questions. This approach can be
used to order, for example, askers in a responder’s buddy list.

However, before actually designing a recommendation algorithm, the peer
answering behavior of users must be analyzed. If responders rarely (or never)
answer questions from the same asker, it is obviously not useful to provide rec-
ommendations because users would not prefer to interact repeatedly. The results
are shown by Fig. 8.
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Fig. 8. Peer answering behavior

Here we take all edges in G and count the number of answers associated with
(v, u) ∈ E. In Fig. 8, we show the number of asker/responder pairs and how
often questions are typically answered by the same responder. On average, 6
answers are provided between the pair v, u (calculated as the weighted average).
The average of best answers only is much lower (i.e., ≈ 0.4).

Notice, the objective is to recommend good askers to responders. To provide
recommendations, we use essentially the same equation (cf. Eq. 3) as previously.
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What we do, however, is to change the direction of edges. For example, (v, u) ∈ E
becomes (u, v) ∈ E′ where the link inverted graph is defined as G′(N, E′). This
means that nodes (users) are ranked by their question authority instead of their
answer authority. In particular, those users who ask good questions are recom-
mended. However, not all responders should receive the same recommendations
but rather based on their previous interactions. Thus, recommendations should
be given from each responder’s individual point of view. Thereby, recommen-
dations are calculated using Eq. 3 based on the inverted graph G′(N, E′) with
n ∈ N and the following personalization of the preference vector:

recommendation : (u) �→
{

1, if n = u

0, otherwise

This means that for each node n ∈ N personalized PageRank scores are created
by setting the preference to n with p(n) ← 1. To evaluate our approach we use
the standard precision and recall metrics.

Recall: A measure of the ability of the system to present all relevant items.

recall =
|{rel nodes} ∩ {rec nodes}|

|{rel nodes}|

The set {rel nodes} holds those nodes that are actually relevant and the set
{rec nodes} those nodes that were recommended.

Precision: A measure of the ability of the system to present only relevant items.

precision =
|{rel nodes} ∩ {rec nodes}|

|{rec nodes}|

Results. We performed recommendations for the top-200 ranked users based on
their answer count AC (see Table 4). We calculated recall and precision for rec-
ommendations for a reduced list of 25, 50, 100, 150, and the full list of 200 users.
Recommendations are performed as follows: based on the year 2007 we calculate
recommendations as discussed before. So for example, a node u would be recom-
mended a set of users s/he should also interact in the following year 2008 (i.e.,
{rec nodes} based on previous interactions). Notice, the set {rec nodes} would
contain all users within YA since recommendations are available for all nodes
in the graph G′. We reduced the number of users in {rec nodes} by populating
the set with users based on the ranked (recommended) list with a cutoff at IL
in 2007 (i.e., the number of inbound (askers) neighbors in 2007). We compare
recommendation results with the actual neighbors (asker) in year 2008 to check
whether recommendations were accurate. The parameter α was set to 0.2. In
PageRank nomenclature, the restart probability of a random walk on the graph
G′ is set to (1 − α) = 0.8; thus with high probability a random walk would be
restarted at node u. The simplest approach to provide recommendations, how-
ever, is to recommend the exact same asker neighborhood from 2007 in 2008
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Table 4. Recall and precision in ranking results

@25 @50 @100 @150 @200

Avg. IL (2007) 413 263 178 141 122
Avg. IL (2008) 426 284 199 163 143

Recall (noRank) 0.948 0.890 0.836 0.816 0.803
Precision (noRank) 1.000 1.000 1.000 1.000 1.000
Avg. RQ (noRank) 436 296 212 172 152
Avg. PQ (noRank) 426 284 199 163 143

Recall (rank) 0.944 0.883 0.827 0.804 0.789
Precision (rank) 0.995 0.992 0.988 0.984 0.980
Avg. RQ (rank) 437 297 214 174 153
Avg. PQ (rank) 427 285 200 164 145

again. These results are also calculated as noRank and compared against our
approach rank.

The first two rows in Table 4 show the average IL neighborhood comparing
the sets of users in 2007 and 2008. One can see a rising number IL which means
that responders actually increased answering questions (more asker neighbors).
This shows that recommendations are useful because responders increasingly
answer questions of ‘new’ askers which they have not previously interacted with.
In the next segment of Table 4, the average recall and precision of noRank
recommendations are shown. These recommendations achieve surprisingly high
accuracy in terms of precision and recall. This means that responders tend to
interact with the same askers also in 2008 compared to 2007.

The next two rows show the average recall quality RQ and the average pre-
cision quality PQ. Instead of calculating recall and precision as a percentage
value, we calculated a weighted average that takes the number of IL neighbors
of askers into account. For example, recall and precision of responders who are
very active in terms of answering questions are given more weights since they
contribute more answers to the community. The following rows show the results
in terms of recall and precision of our recommendation approach (rank). Our
approach results are approximately as accurate as the noRank results. How-
ever, by comparing the average RQ and PQ, our approach outperforms noRank
recommendations.

Final Remarks on Personalization and Performance Issues. Considering
non-personalized recommendations using the standard PageRank model with G′

as input, we obtained an average recall value of 0.011 and average precision
value of 0.014. This approach is clearly not usable for recommendations because
personalization greatly increases the accuracy of results (i.e., recall and precision
of the recommended neighborhood of askers).

Personalized recommendations and topic-sensitive expertise rankings using
Eq. 3 are much faster computed due to faster convergence of the ranking al-
gorithm towards stable ranking results (i.e., the iteratively computed ranking
scores do not change the order of nodes in the ranked result list). Computing
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non-personalized recommendations or expertise rankings takes a magnitude longer.
For example in graphs with |N | = 59000 computing personalized results takes
a couple of minutes whereas computing non-personalized results takes several
hours. This leads us to the conclusion that personalization is achievable also
in larger graphs. Other approaches such as the PageRank linearity theorem as
proposed in [9] could be applied to compute personalized PageRank results even
faster.

6 Conclusion

In this paper, we provided a comprehensive analysis of the structure and dy-
namics of Q/A communities with the focus on Yahoo! Answers – one of the
most popular Q/A platforms on the Web. Our analysis was based on funda-
mental properties such as Q/A answering behavior of users over time. Also, we
studied context-based properties of Yahoo! Answers by analyzing topic-sensitive
answering behavior. Our analysis provides important insights for the design of
topic-based expertise mining algorithms. Furthermore, we discussed experiments
focusing on recommending users to responders whose questions may be relevant
to answer. Our research has important implications for future crowdsourcing
environments in terms of designing incentive mechanisms for user participation
as well as algorithms to assist question routing to relevant experts in open Web-
based communities. In our future work, we will study different rewarding models
in two-sided markets and crowdsourcing with the aim of encouraging crowd users
to solve more complex tasks instead of just answering simple questions.
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Abstract. Real-time balancing of energy demand and supply requires accurate
and efficient forecasting in order to take future consumption and production into
account. These balancing capabilities are reasoned by emerging energy market
developments, which also pose new challenges to forecasting in the energy do-
main not addressed so far: First, real-time balancing requires accurate forecasts
at any point in time. Second, the hierarchical market organization motivates fore-
casting in a distributed system environment. In this paper, we present an approach
that adapts forecasting to the hierarchical organization of today’s energy markets.
Furthermore, we introduce a forecasting framework, which allows efficient fore-
casting and forecast model maintenance of time series that evolve due to contin-
uous streams of measurements. This framework includes model evaluation and
adaptation techniques that enhance the model maintenance process by exploiting
context knowledge from previous model adaptations. With this approach (1) more
accurate forecasts can be produced within the same time budget, or (2) forecasts
with similar accuracy can be produced in less time.

Keywords: Forecasting, Energy, Hierarchy, Parameter Estimation.

1 Introduction

The energy market is changing from a day-ahead market to a continuous, intra-day trad-
ing that allows dynamic interactions between market participants. This new, liberalized
energy market in combination with emerging smart meter technologies requires fine-
grained planning capabilities. Also, the integration of more renewable energy sources
(RES, e.g. wind, solar) poses additional challenges. Unlike traditional energy sources,
the energy production of RES cannot be exactly planned, because the supply from RES
heavily depends on external factors like the weather. It is also very inefficient to store
energy produced from those sources, for what reason they have to be directly used when
they are available. As a result, it is necessary to balance energy demand and supply in
a fine-grained manner and establish possibilities of real-time balancing [1]. In addition,
real-time balancing in combination with the hierarchical organization of the energy mar-
kets with role-specific access to relevant demand and supply data lead to a distributed
data management architecture and therefore a distributed usage of forecasting models.

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 302–315, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Research projects like MIRABEL [2], MeRegio [3] and many more address the is-
sues of real-time balancing and fine-grained scheduling of energy demand and supply.
To do so a fundamental requirement is the availability of accurate predictions of future
energy consumption and production. For this purpose we employ model-based forecast
techniques, where a quantitative model is used to describe the characteristics and be-
havior of historic energy time series. Most forecast models involve a number of param-
eters, with each describing a specific aspect of the time series (e.g., seasonal patterns,
energy output). The parameters are estimated on a training data set by minimizing the
forecast error (i.e., difference between predicted and actual value) that is measured in
terms of an error metric like (Symmetric) Mean Absolute Percentage Error [4]. The so
created instances of forecast models are used to predict future values up to a defined
horizon (e.g., one day). Important classes of forecast models are: autoregressive mod-
els [5], exponential smoothing models [6] and models that apply machine learning [7].
In most cases, forecast models from these classes are specifically adapted to the spe-
cial characteristics of energy time series such as multi-seasonality and the dependence
on exogenous factors. Thus, they produce more accurate forecasts compared to general
purpose forecasting methods. However, the necessary real-time balancing capabilities
pose new challenges to forecasting of energy demand and supply. Most importantly,
accurate forecasts are necessary at any point in time to allow quick adaptations of the
energy schedules. Fortunately, in the energy domain the current energy consumption
and production can be measured constantly. This can be seen as a continuous stream of
updates append to the time series in regular intervals. To ensure high accuracy in terms
of exploiting this continuous feedback it is necessary to adapt the forecast model to
the updates. However, the naïve adaptation strategy of re-estimating the forecast model
after each update is not applicable, because typically the estimation of a forecast model
is very time-consuming, as potentially a large number of parameters, spanning an ex-
ponential search space, have to be adjusted.

Our primary contribution is a forecast model maintenance framework, which con-
tinuously monitors the forecasting accuracy and exploits context knowledge from pre-
vious model adaptations and the hierarchical system to increase the model adaptation
efficiency. The core idea bases on the assumption that forecast models, i.e. the values
of the parameters, only gradually change over time, which typically can be observed in
the energy domain. This framework enables existing forecasting models to work with
evolving time series in the context of real-time energy balancing. Furthermore, we make
the following more concrete contributions that also reflect the structure of this paper:

– We introduce a concept for forecasting in distributed systems in Section 2. Our
approach synchronizes the forecast models instead of exchanging forecasts or mea-
surements and therefore reduces the communication overhead.

– Subsequently, in Section 3, we present our novel maintenance approach that in-
cludes model evaluation techniques and a parameter estimation framework to en-
sure efficient model adaptations on single entities of the hierarchical system.

– We compare our estimation framework to other global optimization approaches in
Section 4 and show the advantages of our solution.

Finally we conclude the paper with a summary and future work discussion in Section 5.
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2 Distributed Forecasting

The European energy market is hierarchically organized. The lowest level comprises
consumers and producers organized in balance groups, where a Balance Responsible
Party (BRP) manages the energy consumption and production of each group. The BRPs
represent the second level. The market operators that are responsible for the market bal-
ance areas represent the third level. Additional levels are possible (e.g., Neighborhood-
Oriented Energy Balancing). This hierarchical organization of the energy market in
combination with different roles and role-specific access to relevant demand and supply
data motivates the use of a distributed data management architecture. This also requires
a forecasting solution that works in this kind of architecture.

Related Work: Currently, no solution fully adapts forecasting to a distributed system ar-
chitecture. Only partial aspects are solved like the distributed collection of data. Brabec
et al., presented the nonlinear mixed effects model (NLME) implemented at the cus-
tomer that provides information to a central system. Challa et al. described an approach
for distributed sensor networks to incorporate values from different sources into one
forecasting system [8]. To do so, they used a State-Space-Model based on Vector Auto
Regression combined with the Interacting Multiple Model (IMM) estimation algorithm
[9]. In addition, some work was done regarding hierarchical forecasting. For example
the use of an AR-GARCH Model as suggested by Sohn et al. [10] or by combining
hierarchically organized models using a special regression model as discussed by Hyn-
dman et al. [11]. However, they mostly focused on aggregation strategies with regard to
local settings and accuracy only rather than the distribution of the forecasting effort. In
contrast to the aforementioned approaches, our solution addresses to provide efficient
forecasting functionality to a distributed energy data management system.

2.1 Distributed System Architecture

A naïve approach for forecasting in a distributed system means the direct propagation
of measurements or forecasts of lower level entities to the responsible next level entity.
This entity then calculates a global forecast. This approach exhibits several drawbacks
such as limited transmission granularity due to privacy restrictions that only allows data
transmission every 15 minutes and a large communication overhead (e.g., 700 million
customers in Europe sending data every 15 minutes).

For this purpose we introduce a more sophisticated forecasting approach for a dis-
tributed environment. The approach is based on the assumption that demand and sup-
ply measurements are available for all entities in the hierarchy, which motivates a more
independent forecasting between hierarchy levels. Figure 1 presents an independent
distributed forecasting approach that involves model synchronization. Each entity (S)
calculates its own forecasting (F - forecast model) based on its own measurements. No
measurements or predicted values are communicated. We rather suggest a synchroniza-
tion of the forecast models between the different levels to still recognize local changes
and to guarantee consistency between forecasts at different hierarchy layers. Model
synchronization is conducted less frequently and by fewer entities compared to peri-
odic measurement transmissions from all entities. Therefore, the communication effort
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Fig. 1. Distributed Forecasting with Model Synchronization

between hierarchy levels is significantly reduced. In addition, privacy restrictions do
not apply, because no measurements or predictions are transmitted. Thus, the forecast-
ing can be based on data with a granularity lower than 15 min. Furthermore, model
synchronization provides context knowledge about model adaptations on lower levels
that can be used to enhance the model adaptation process on higher level entities. In the
following, we describe the model synchronization in such a distributed architecture.

2.2 Model Synchronization

The goals of the model synchronization approach is to ensure the consistency of the
forecasting results between the levels of the hierarchy, e.g., the aggregation of individ-
ual lower level forecasts should almost provide the same result as the forecast on the
upper level. To reduce the communication efforts we assume that the impact of most
single entities on the global forecasting is rather low, where the impact of an entity can
be estimated by its share on the total consumption and production of its group. There-
fore, it is not necessary to adapt the forecast model on higher levels for each model
adaptation on a lower level entity. However, a large group of single entities could cre-
ate a critical mass that is large enough to generate impact on the global forecasting. In
addition, large customers, e.g., big companies, could have an impact that is sufficient
to influence the forecast on upper level entities. We therefore, use a propagation strat-
egy that involves selective change notifications from lower levels. This means that the
change notification is only transmitted to the responsible next level entity. The model
synchronization process works then as follows:

1. An entity adapts its forecast model (triggered by local model evaluation [as de-
scribed in Section 3.2]).

2. A notification is sent to the responsible entity on the next level that includes a
description of the model adaptation. The descriptions are transmitted as change
vectors, containing the old and new forecast model parameters.

3. The next level entity collects the notifications until a critical mass with sufficient
impact on its own forecast model is reached. The exact calculation of the critical
mass is subject to future work.

4. Afterwards, an adaptation of the forecast model on the next level is performed using
the change vectors of the lower level entities as input for the optimization.

This approach reduces the communication efforts by notifying responsible entities only
when a forecast model adaptation is triggered. The information about the model adap-
tations can be used to enhance the model adaptation process on the next level entity.
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For this purpose, before starting the model adaptation process the most recent changes
on the child entities are considered, avoiding the usage of outdated information.

3 Forecast Model Maintenance

To ensure an efficient forecasting in the hierarchical system, it is important to also
consider the forecasting processes on a single system entity. As mentioned before time
series in the energy domain evolve over time. To guarantee up-to-date forecast models
at any point in time a continuous model maintenance is needed. Also, additional energy
domain specific particularities pose the challenge of causing unpredictable but gradual
changes: (1) The energy consumption and the supply of renewable energy sources is
influenced by uncertain exogenous factors like weather or temperature. (2) Real-time
balancing capabilities allow market actors to constantly adapt energy consumption and
production. These particularities require efficient model maintenance. In this section,
we introduce the overall forecast model maintenance strategy for single system entities,
which includes several model evaluation and adaptation techniques.

3.1 Maintenance Strategy Overview

Figure 2 illustrates our forecast model maintenance strategy that consists of three steps.
First, for each new measurement we initiate an update of the local model. This step in-
cludes the incremental state adaptation (e.g., smoothing constant) of the forecast model
and the persistent storage of measurements. This update is a simple insertion such that
it is not the focus of this paper. Second, we continuously evaluate the accuracy of the
forecast model upon evolution of the time series using different model evaluation tech-
niques. Third, based on the outcome of the accuracy evaluation the adaptation of the
forecast model to the new situation is triggered, which means a re-estimation of the
parameters involved in the forecast model. When considering complex models that de-
scribe a lot of information like multiple seasons and exogenous information, the models
involve a high number of parameters. Each parameter adds an additional dimension to
the solution space, which increases the amount of solutions that have to be evaluated.
For this reason the parameter re-estimation can be very time consuming. Triple Sea-
sonal Holt Winters [12] for example involves five parameters, which leads to a number
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of x5 possible parameter combinations, with x being the granularity of a parameter. The
autoregressive multi-equation model EGRV [13] and its adaptations (e.g., Cottet et al.
[14] and Dordonnat et al. [15]) model each hour as a separate model which leads to an
even larger parameter space (e.g., EGRV: 24 times up to 31 parameters ). As a result,
parameter estimation approaches that efficiently find new optimal parameter combina-
tions are needed to adapt even complex forecast models in reasonable time.

3.2 Forecast Model Evaluation

The second step in the maintenance process is the model evaluation. We distinguish two
major groups of evaluation strategies: First, fixed interval model evaluation, where the
model adaptation is triggered periodically. This strategy does not evaluate the forecast
error. Therefore, it exhibits the problem of determining a reasonable model adaptation
interval. Too short intervals mean unnecessary adaptations, whereas too long intervals
pose the risk that arbitrary large errors may build up between the model adaptation
intervals. The threshold-based model evaluation is the second strategy. It continuously
evaluates the forecast model accuracy and triggers a model adaptation when the forecast
error violates a previously defined error threshold. This enables quick adaptations of the
forecast model to changes of the evolving time series. While this strategy guarantees
that a certain forecast error is not exceeded, it exhibits a similar drawback like the fixed
interval model adaptation as it also depends on the definition of suitable thresholds.

Due to the high influence of the adaptation criteria, we propose a heuristic approach
that combines evaluation strategies. A combination weakens the disadvantages of the
single techniques. There, a model adaptation is periodically triggered after a specified
amount of time. Also, the model is continuously evaluated and adapted each time the
error surpasses a defined threshold. The time counter is reset after a model adaptation
was triggered by a threshold violation, to avoid unnecessary adaptations of the forecast
model. The combination of model maintenance strategies reduces the dependence on
single adaptation criteria, which makes it easier to determine suitable thresholds.

3.3 Enhanced Parameter Estimation

Once a model adaptation has been triggered, we try to re-estimate the parameters of
the forecast model, which typically is a very time-consuming task. For this reason, a
parameter estimation method that efficiently finds a new optimal parameter combination
with regard to the forecast error is necessary.

Related Work: For the optimization of forecast model parameters several algorithms
exist, which can be divided into two classes: (1) Algorithms that need a derivable func-
tion and (2) algorithms that can be used with arbitrary functions. In this paper, we only
focus on the class of algorithms that do not require a derivable function, because they
are more general and can be used with arbitrary forecasting models and error functions.
These algorithms are classified into local and global optimization algorithms. Global
optimization algorithms consider the whole solutions space with the goal of finding a
solution that is the global optimum. Thus, in general they need more time to terminate.
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In contrast, local optimization algorithms follow a directed approach and therefore con-
verge faster to a solution but exhibit the risk of starvation in local suboptima. Also, they
strongly depend on the position of a provided starting point that has to be close enough
to the optimum to guarantee convergence. Examples for global optimization algorithms
are: Simulated Annealing [16] or genetic algorithms [17]. Examples for local optimiza-
tion are: Hook-Jeeves [18] and Nelder-Mead [19]. In addition to the described opti-
mization algorithms, we can find parameters empirically using a naïve method called
grid search that sequentially evaluates all solutions in a given granularity. However, its
runtime exponentially increases with the number of parameters. Due to the limitations
of the naïve method as well as local and global optimization algorithms, we enhance
the parameter estimation process by introducing our parameter estimation framework.

Our core idea is to exploit context knowledge of previous model adaptations by de-
termining starting points using information from the model synchronization within the
hierarchical system and the previous parameter combination. The underlying assump-
tion is that the combined parameter changes of the child entities approximately reflect
the parameter changes of the forecast model at the parent entity. In addition, due to the
continuous model evaluation we also assume that forecast model parameters will not
change abruptly, but will be in the neighborhood of previous parameters. Our approach
exploits both assumptions by combining the parameter changes suggested by the model
synchronization with the previous parameter combination. Thus, we reduce the prob-
lem of finding a global optimum to the problem of finding local suboptima in the near
surrounding of the determined starting point.

We supplement this local strategy with global coverage approaches. For this purpose,
we introduce a parameter estimation framework for different search strategies that is
illustrated in Figure 3: A starting point is determined by exploiting context knowledge
of the continuous model maintenance and adaptation information of child entities in
the hierarchical system. This starting point serves as input for a two-phase optimization
process that refines the starting point to find a new, optimal parameter combination. The
process consists of a local search for fast convergence and a global search to reduce the
probability of getting stuck in local suboptima. In the following we describe (1) how to
determine starting values for the parameter estimation process and (2) how to optimize
this initial solution to find the global optimal parameter combination in detail.

1. Start Point
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2. Local Optimization

System Hierarchy

Change Vector11
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1312

112 121 131111
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Starting Point Determination. For local optimization approaches a good starting point
is essential for finding a global optimal solution. Also, the runtime of such approaches
is directly influenced by the position of the starting points. The closer the location of
the starting point to the optimum, the lower the time needed to converge.

In our solution the forecast model is evaluated continuously and adapted regularly,
which leads to the assumption of rather slight adaptations of the forecast model configu-
ration. For the parameter estimation we therefore assume that the probability of finding
the new global optimal parameter combination is highest in the near surrounding of the
current combination. Given this assumption we set the current parameter combination
as a starting point for any subsequent search strategy.

We further enhance the starting point determination by using the context knowledge
of model maintenance from child entities in the hierarchy. The basis is the parameter
change vector that is exchanged during model synchronization (compare Section 2.2).
This vector contains the parameter combinations before and after the model adaptation
of an entity, which means that the change vector represents the transition between fore-
cast model configurations. These two parameter combinations can be used to estimate
the direction of the parameter change by calculating their difference. We could also di-
rectly provide the difference of both vectors, but to allow more complex operations in
the future we chose a more general solution in providing the parameter combinations.
We can assume that the combination of all forecast model adaptations from entities on
the lower level nearly represents the necessary changes to the model of the responsible
parent entity. This is reasoned by the fact that the forecasting of the parent entity reflects
the aggregated consumption or production of all connected child entities. To determine
the starting point first, a global change vector is computed by combining the parame-
ter change directions of the change vectors of multiple system nodes, weighting them
according to the integral of consumed or produced energy. It is important to note that
deviations from single entities are equalized due to the aggregation of many entities and
the weighting. Subsequently, the new starting point is computed as the arithmetic mean
of the old parameter combination and the global change vector.

In conclusion, for entities at the lowest level we exploit the continuous model adap-
tation with the assumption that the new global optimal solution is located in the near
surrounding of the old parameter combination. On higher hierarchy levels, we use a
combination of old parameter values and propagated changes of child entities to deter-
mine the start value. As a result, we compute start values that have a high probability of
being close to the global optimal solution and thus, serve as good initial values.

Optimization Process. With a good starting point in place and assuming to find the
optimal solution in the near surrounding of this starting point, we define a parameter es-
timation framework that allows fast convergence and that ensures stochastic properties
of finding the global optimal solution likewise. The process comprises of the following
two phases: First, we use the determined starting point as the input for a local optimiza-
tion approach like the Nelder-Mead algorithm [19]. This simplex-based algorithm iter-
atively evaluates the neighborhood of the starting point until a local optimum is found.
Due to the starting point determination the probability of the local optimum to be also
the global optimal solution is fairly high. At the same time the local optimization with
given starting points converges relatively fast. After the local optimum has been found,
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in the second phase we try to ensure its global optimality. For this purpose we start a
hierarchical optimization that converges to the global optimal solution:

1. We span an area with a user defined margin ±ε in all dimensions of the solution
space around the local optimum.

2. Within this area, we sequentially evaluate all possible parameter combinations,
which we did not evaluate in the first phase, in a predefined granularity.

3. We double the margin ε spanning a second area around the first one.
4. We repeat the search within this area. There, the search granularity is increased by

considering the same amount of parameter combinations as in the first iteration, but
distributed over an area that is 2d times larger than the first one.

This process is repeated until the end of the grid is reached. If a solution is found that
is better than the current best one, the local search starts again from this combination.
It is important to note that for different start values during the continuous model adap-
tation process, the parameter combinations of the outer areas evaluated by this process
also change. Thus, over time, the probability to find possible optima in other regions
increases. An example of the deterministic approach is illustrated in Figure 4(a).

In addition to the standard deterministic search, a second possibility is to stochas-
tically evaluate the solution space given a specific probability density function. It is
faster due to the fact that no specific order of the results is required. Also, in contrast
to the deterministic search, over time the stochastic search asymptotically evaluates all
possible combinations in expectation. This leads to the following search strategy: In the
ε-area all possible solutions are considered. In the further areas solutions are picked ran-
domly, while the number of considered solutions always corresponds to the number of
solutions in the core area. This leads to a more coarse-grained search resolution. Figure
4(b) illustrates an example of the hierarchical, stochastic search.

The size of the ε-area and the search resolution (res) can be defined freely. Never-
theless both directly influence the number of considered solutions. When considering
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complex forecast models (e.g., EGRV >30 parameters) the number of considered solu-
tions in the ε-area increases exponentially with the number of parameters. We therefore
define a maximal number of solutions in the ε-area, maxPoints, and therefore limit
the maximal runtime of the enhanced grid search. To further reduce the run time of the
global coverage, we can add some aspects of the well-known hill climbing optimization
approach by terminating the grid search when in a subsequent area no better solutions is
found than the current best. For example, if no better solution is found after the second
expansion of the search area, the algorithm terminates. Essentially, the enhancements
reduce the runtime, while sacrificing robustness.

4 Experimental Evaluation

In this section, we present our experiments that show the benefits of our parameter esti-
mation framework. We demonstrate that precomputed start values enhanced by a local
and a global search yield better results than solutions involving multiple random start-
ing points. We validate our claims by comparing our parameter estimation framework
to other global optimization algorithms.

4.1 Experimental Setting

We base our experiments on the publicly available data set from the UK National Grid
organization. The data set contains metered electricity demand of the United Kingdom
(UK) from April 1st 1971 to December 31st 2009. For our experiments we used the
INDO1 measure from January 1st 2002 to December 31st 2009 in a half hour granularity.

For the computation of the forecast, we chose the triple seasonal Holt Winters Expo-
nential Smoothing (HWT). This model is tailor made for data from the energy domain
and performs well on the above mentioned data set [12]. For the estimation process we
split our data set as follows: The model was initialized with the years 2002 to 2008.
We forecasted the year 2009 using a one-step ahead forecast to evaluate the applicabil-
ity of the tested parameter combination. The forecasting error was calculated with the
SMAPE error metric [4]. For our evaluation we used the following environment: Intel
Core 2 Duo 2,0 GHz, 3 GB RAM, Windows 7 32bit operating system. All experiments
were implemented using the C++ programming language.

4.2 Comparison of Efficiency and Accuracy

Parameter Estimation Framework versus Monte Carlo Grid Sampling: In the first ex-
periment, we compared our parameter estimation framework to Monte Carlo grid sam-
pling. Unfortunately, we did not have a hierarchical system with sufficient measurement
data in place. For this reason, we simulated the start value for our framework by execut-
ing a coarse-grained grid search with a step size of 0.25 and subsequently modified the
found point by 0.005 in random directions. The grid is configured with an ε-area of 0.1
and a search resolution of 0.05. Monte Carlo grid sampling chooses points from the so-
lution space in a random fashion without using any further optimization. This method is

1 "INDO - Initial Demand Outturn based on operational generation metering." [20]
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Fig. 5. Experiment: Comparing Accuracy and Efficiency

much faster in selecting possible solutions but it is totally stochastic with uniform PDF.
Thus, we repeated the experiment 20 times and used the average of all attempts as the
result. For both solutions, we tracked the development of the best-found solution.

Figure 5(a) illustrates the result of this experiment, which shows that at no point
in time the Monte Carlo grid sampling exhibited a better development than the pa-
rameter estimation framework. The error progression is always below the curve of the
Monte Carlo grid sampling with a minimal forecast error of 0.494%. In comparison the
minimal forecast error of the Monte Carlo grid sampling was 1.446% using the same
runtime as the estimation framework. The framework found its best solution already
after 51 s, while the subsequent time was used for the global coverage. The framework
quickly converged to a local optimum with a forecast error of 0.499% the subsequent
grid search then found a better solution (forecast error 0.495%) that was then again en-
hanced by the Nelder-Meads algorithm to the global optimal solution. The Monte Carlo
grid search started with a higher error value and converged slower than the parameter
estimation framework. This clearly shows the benefit of using optimization algorithms
instead of just randomly selecting points from the grid.

The overall time to converge is rather short with 91 s, however, when considering
more complex models or longer time series the time frame needed to converge to the
global optimum will increase considerably. When using the EGRV model with 22 pa-
rameters (22 instead of 31 due to missing weather information), where we limited the
maximal considered solutions in the ε-area to 1000, the parameter estimation took 635 s.

Parameter Estimation Framework versus Local Search with Random Starting Points: In
the second experiment we compared our parameter estimation framework to a repeated
local optimization with random starting points. Since the local search is repeated with
multiple starting points, it is equivalent to a global optimization. To ensure comparabil-
ity we also chose Nelder-Mead for local optimization. Our estimation framework used
the same configuration as in the first experiment.

The results are illustrated in Figure 5(b). For the local search with random starting
point we exhibit a better error development compared to the Monte Carlo grid sampling.
However, it still converged slower and did not reach an error as low as our estimation
framework. The average error value of the local search with random starting point af-
ter 91 s was 0.566%. At any point in time we get a better solution with our parameter
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estimation framework. To find out the timeframe necessary for the local search with ran-
dom starting point to converge to the same result as the parameter estimation framework,
we removed the time limitation. The overall runtime was ten hours. The best results was
found after 100 min with an error value of 0.499%. This also suggests that no better
solution exists in the search space, which means that our estimation framework found
the global optimal solution. In conclusion, the computation of a decent starting point in
combination with our estimation framework is beneficial compared to just randomly se-
lecting points as an input for the local optimization. We also showed that the subsequent
global optimization is necessary to ensure that the global optimal solution is found.

Parameter Estimation Framework versus Nelder-Mead with Simulated Annealing: In
this experiment, we compare the error development of our framework using enhanced
grid search and simulated annealing for global coverage. The results show that first,
both algorithms converge to the same intermediate solution of 0.499%, because both
use the same local search algorithm. However, subsequently the enhanced grid search
found a better solution that was again refined by the Nelder-Mead algorithm to 0.494%.
In contrast, the simulated annealing algorithm did not find a better solution. An expla-
nation is that our enhanced grid search considers solutions with minimal granularity
in the near surrounding of the starting point, while the simulated annealing randomly
selects points from the whole solution space.

Increasing Distance to the Starting Point: The starting point used for our framework
was pre-computed via a coarse-grained grid search to simulate that the starting point
is the last know parameter combination. To estimate the dependence of our framework
to the starting point, in this experiment we increased the distance to the starting point
from 0.005 to 0.1 and 0.35. The results are illustrated in Figure 6(a). They show that in
all cases a similar error value is reached, but with a different convergence speed. For
a distance of 0.1 the framework first converged slower to an intermediate solution that
is tight above the result when using a distance of 0.005. The global optimal solution
was reached after 194 s compared to 91 s. Using a distance of 0.35 the global optimal
solution was not reached. The framework found another solution with an error value
of 0.4943% that is almost as good as the global optimal solution with 0.4942%. As a
result, when increasing the distance the timeframe to converge to the global optimal
solution is increased and the chance of finding the global optimum is reduced.

Simulation of a Evolving Time Series: In this experiment, we simulated an evolving
time series to demonstrate the knowledge exploitation of previous model adaptations.
We used the data from the years 2002 to 2007 to initialize the model, the year 2008 to
evaluate the initial parameters and the year 2009 to simulate the evolving time series.
We continuously monitored the error and triggered a model adaptation when either the
error threshold was violated (defined: 0.5% SMAPE) or once a day (48 data points). Our
estimation framework was used with an ε-area of 0.1 and a search resolution of 0.1.

Figure 6(b) illustrates the error development over the year 2009. We observed the
typical behavior of higher error values in the winter months, because there are more
peak demands in the winter due to illumination and heating than in the summer. These
peaks are harder to predict. Using a continuous evaluation and model adaptation, the
error is always lower compared to a solution without continuous maintenance. This
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shows the benefit of continuously adapting the forecast model to the current situation.
In our evaluation the model adaptation based on previous parameters needed 28.23 s on
average. The model adaptation was triggered 388 times and a better model was found
183 times. The small extract in Figure 6(b) illustrates the effect of a single parameter
re-estimation. There, the error is reduced from 0.510% to 0.505%. In conclusion, our
concept of exploiting knowledge from previous model adaptation is beneficial, because
our framework finds parameter combinations that improve the forecast accuracy.

5 Conclusion

The liberalized energy market requires the balancing of energy demand and supply in
real-time. This poses the challenge of forecasting in a distributed environment and the
need for continuous model maintenance to provide reliable forecasts. In this paper, we
introduced a forecasting approach for a hierarchical energy management system. This
approach uses model synchronization instead of communicating measurements or fore-
casts to reduce the communication overhead. Thus, it allows an efficient forecasting
in a distributed environment. We then investigated the maintenance of forecast models
on a single entity and introduced our estimation framework that exploits context in-
formation from previous model adaptations and the hierarchical system to compute a
suitable starting point for further optimization. The framework employs a combination
of local and global search algorithms to find the global optimal solution in reasonable
time, whereas arbitrary local and global algorithms can be used. Our evaluation shows
the benefits of precomputed start values in combination with our estimation framework
to increase the probability of finding the global optimal solution. In conclusion, we
presented an efficient way to apply forecasting to distributed environments and to con-
tinuously maintain the forecast models on the entities of the system. With our approach
efficient forecasting in distributed environments is possible. In addition, more accurate
forecasts can be produced within the same time budget, or forecasts with similar accu-
racy can be produced in less time. In the future we will extensively evaluate the model
synchronization approach to estimate its concrete potential in the application context.
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Abstract. Business process models are designed using a set of control-
flow and data-flow constructs provided by the chosen Business Process
Modeling Language (BPML). As research confirms, the adoption of a
structured control-flow is always desirable for enhancing model compre-
hensibility and reducing the presence of errors. However, existing BPMLs
cannot promote a fully structured approach to control-flow design be-
cause any restriction imposed on the existing language constructs results
in a loss of expressiveness in terms of definable models. This paper pro-
poses a novel BPML called NestFlow, characterized by a small set of
language constructs that together overcome the aforementioned limita-
tion. NestFlow expressiveness is discussed in terms of supported Work-
flow Control-Flow Patterns (WCPs), showing how the right combination
of control-flow and data-flow constructs allows one to express most of
these patterns in a structured way.

Keywords: structured business process modeling languages, workflow
control-flow patterns, process-aware information systems.

1 Introduction

A Business Process (BP) is a set of interrelated activities performed by a group
of agents inside an organization in order to achieve a predefined goal. BPs are
usually designed and specified using a graphical Business Process Modeling Lan-
guage (BPML). The produced models can help to understand BPs and share
knowledge about them among the different stakeholders. An executable BPML,
like YAWL [1] and BPMN with WS-BPEL semantics [2], is used to design com-
plete BP specifications that can be directly interpreted by a Process-Aware In-
formation System (PAIS). Available BPMLs are usually unstructured, with a
graph-oriented syntax and a token-based semantics: they allow a free compo-
sition of constructs without worrying much about type or position of the con-
nected elements. The resulting models can be more or less structured, depending
on the presence of properly nested sub-graphs with single entry and single exit
points, in which correlated constructs have compatible types [3]. Research con-
firms that the use of structured forms leads to more comprehensible and modular
models with less errors, as extensively discussed in [4,5,6,7]. However, existing
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BPMLs are not able to support a fully structured control-flow design without
losing expressiveness: to obtain a structured control-flow some syntactical re-
strictions have to be imposed on the existing constructs, reducing the number
of representable models. Conversely, the NestFlow BPML introduced in this pa-
per goes beyond the usual set of constructs and is able to support a structured
control-flow design by means of well-formed nested control structures. NestFlow
expressiveness is evaluated in terms of supported Workflow Control-Flow Pat-
terns (WCPs) [1,8] showing how a structured BPML can represent the behavior
of most WCPs with a small set of control-flow and data-flow constructs. The
remainder of this paper is organized as follows: Sec. 2 discusses some related
work that has inspired the NestFlow language. Sec. 3 presents the syntax and
semantics of NestFlow with its essential properties. Sec. 4 shows how WCPs can
be implemented with this language. Sec. 5 explains the method used to evaluate
NestFlow expressiveness and its suitability for BP design. Evaluation parame-
ters and results are exposed in Sec. 6. Finally, Sec. 7 summarizes the findings
and how they are obtained.

2 Related Work

Structuredness is a recurring topic in BP modeling and in BPML design. A first
notion of structured form can be found in [3], where Liu and Kumar introduce
a taxonomy of unstructured forms and study which ones have an equivalent
structured counterpart. In [9] Vanhatalo et al. introduce a parsing technique,
called Refined Process Structured Tree (RPST), for detecting structured forms
inside arbitrary models. The main idea of RPST is to extract the structure of
a model to ease its mapping to a low-level executable language. The relation
between structuredness and the probability to find errors inside a model has
been empirically studied by Laue and Mendling in [4]: the authors conclude that
structuredness is a key factor for enhancing the quality of BP models. Similarly,
in [6] Reijers and Mendling experimentally measure the effect of modularity on
model comprehension, determining the existence of a positive relationship be-
tween modularity and comprehensibility in large-scale BP models. On the basis
of these and other empirical results, in [7] Mendling at al. define seven process
modeling guidelines for enhancing BP quality. These guidelines have been pri-
oritized on the basis of the opinion of several modeling experts and the two
most important ones are: (1) design models as structured as possible and (2)
decompose a model with more than 50 elements. The positive effects of struc-
tured forms for model comprehensibility have been also recognized in [9] where
the authors suggest that RPST can help in analyzing and solving structural is-
sues in BP models. However, as a parsing technique, RPST does not solve by
itself problems that emerge with unstructured compositions: unstructured forms
are ultimately mapped to unstructured constructs of the target executable lan-
guage whenever possible. In [10] we discuss the main issues that can arise when
an unstructured control-flow design is coupled with shared variables, parameter
passing and message passing constructs, explaining why unstructured forms are
mostly avoided during BP design.
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3 The NestFlow Modeling Language

NestFlow is conceived to explore a particular BPML design solution in which
structured control-flow constructs are tightly-coupled with asynchronous mes-
sage passing connections. This is clearly a different approach from the estab-
lished BPML solutions, in which unstructured control-flow constructs are cou-
pled with parameter passing and shared task variables. In NestFlow control-flow
constructs can be composed only in properly nested structures and task variables
cannot be shared among concurrent entities. Furthermore, data-flow constructs
are promoted as first-class citizens because they are invaluable for offering a
uniform hierarchical decomposition mechanism that increases modularity. Con-
versely, data-flow constructs are a marginal feature in existing BPMLs that focus
mainly on control-flow, in an attempt to design simpler languages. Actually, there
is no evidence that a simple language simplifies the modeling activity: a simple
language with few constructs often produces large and complex models. On the
contrary, a fully-featured language can ease BP design by tackling the inherent
complexity of the modeled reality through more expressive constructs. A ques-
tionable assumption about BPMLs is that control-flow relations are sufficient
for expressing business logics and unstructured control-flow must be accepted
for not reducing this expressiveness. Unfortunately, control-flow and data-flow
concerns cannot be easily separated, and this is exceptionally true if the aim is to
obtain executable specifications. The NestFlow rationale is to fuse control-flow
and data-flow aspects for offering a structured control-flow without any loss of
expressiveness and with positive effects on modularity.

3.1 NestFlow Syntax and Annotations

The concrete syntax of a programming language can be formally described
through a context-free grammar encoded in one of the many extensions of the
Backus-Naur-Form (BNF) meta-language. In similar way, the concrete syntax of
NestFlow is given by the graphical BNF-like grammar depicted in Fig. 1, where
〈P 〉 denotes the starting symbol, | is the usual BNF choice operator, 〈A〉 denotes
non-terminal control-flow blocks and 〈C〉 denotes terminal command blocks.

A task declaration is essentially obtained by recursively substituting the non-
terminal symbol 〈A〉 in 〈P 〉 with the other blocks 〈A〉 and 〈C〉. Some minor
restrictions are applied in this recursive composition: for instance, a spawn com-
mand can be placed only inside a concurrent block, while a throw command
can be used only inside a proper catch block or a task that declares to raise
the corresponding exception. These and other well-formedness properties can be
statically checked and the most important ones are discussed in Sec. 3.2.

NestFlow distinguishes between a task type and its instances called cases. A
task instance is denoted as t :T , where t ∈ I is an identifier chosen among the set
of valid identifiers I, and T is its type. In the graphical representation the textual
identifier can be left implicit, because a task instance is uniquely identified by
its place in the model, as further explained in the following sections.
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Fig. 1. The graphical concrete syntax of the NestFlow modeling language

In NestFlow data have a central role and their declaration is mandatory.
However, many details are graphically shown in the diagram only when they
are strictly necessary for understanding the expressed logic. From a preliminary
modeling point of view, they can be seen as optional disambiguating annotations.
The flow of objects among tasks is represented through links graphically denoted
with dashed arrows, as in Fig. 2.
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Fig. 2. Different combinations of NestFlow link notations

We can distinguish between internal and external links depicted in Fig. 2.a
and Fig. 2.b, respectively. If necessary, links can be annotated with stream and
variable identifiers. NestFlow links and their related commands can be hidden
anywhere they can be subsumed by the control-flow. For instance, links with
the same source and target can be grouped into a unique collapsed link and
subsumed by a control-flow with the same direction; receive and send with
only subsumed links can be hidden as well. The remaining links mostly describe
interactions among concurrent entities.
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3.2 NestFlow Semantics and Properties

In NestFlow a task can be atomic or compound: an atomic task can be imple-
mented with a general-purpose language to provide some functionalities; for in-
stance, it can provide a user-interface to support human activities or an adapter
to drive external programs. The concept of compound task embodies the usual
notions of sub-process and super-task. In this paper we do not consider all as-
pects of a BPML and a BP model simply coincides with a main process defini-
tion, obtained declaring a compound-task that has other tasks as components.
Each compound-task has a main entry and exit point marked with a start ar-
row symbol and a stop square symbol, respectively. The task logic is expressed
by expanding the non-terminal 〈A〉 between these two points with blocks in
Fig. 1 and invoking instances of previously defined atomic or compound tasks:
the recursive definition of tasks is essential for supporting uniform hierarchical
decompositions. A task T can declare zero or more task variables with their own
type; the set of all declared variables is called store and denoted as M(T ). A
variable may either contain an object of the declared type or may be unbound.
Defining a complete type system is beyond the scope of this paper: we assume
that a type X can be built starting from primitive types as in usual object-
oriented languages, and we denote with x : X an object x of type X . Variables
are visible only inside the task where they have been declared and their scope
does not extend to tasks contained in it. All task instances and variables inside
the same compound-task have a unique identifier.

Any task T exposes a specific interface given by a set of streams Λ (T ) =
Λin (T )∪Λout(T ), where Λin(T )∩Λout(T ) = ∅, and a set of exceptions E(T ) that
may be raised during its execution. We refer to Λ(T ) as the stream interface of
T , Λin(T ) and Λout(T ) as sets of input streams and output streams, respectively.
A stream is simply a queue of objects of a predefined type that can be used
for modeling, not only the information flow, but also the set of objects needed
and produced by a task. If an instance t : T needs an object a : A to proceed,
it declares in its interface an input stream αin of type A denoted with αin : A,
such that αin ∈ Λin (T ). In similar way, if a task t may produce an object b :B
relevant for other tasks, it declares an output stream βout ∈ Λout(T ) such that
βout :B. An instance of T can refer to one of its own interface stream α ∈ Λ(T )
through the dot notation self .α, where self is a language keyword. Similarly, a
stream α of an internal task instance u : U is referred by u.α, where u is the
instance identifier and α ∈ Λ(U). The dot-notation ensures that all streams in
a compound-task are uniquely identified and self may be left implicit.

As previously mentioned, task logic is declared using 〈A〉 and 〈C〉 blocks
in Fig. 1. The behavior of these elements is explained in the following, where
x̄ ⊆M(T ) is a set of variables and ϕ(x̄) is a condition over x̄.

1. sequence block – It executes the specified blocks in sequence.
2. loop block – It executes the blocks contained in its branches multiple times.

After the execution of the right branch in Fig. 1, the condition ϕ over a set of
task variables x is evaluated. If the condition is false the loop exits, otherwise
it executes the left and the right branch in sequence.
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3. concurrent block – It is a dynamic parallel block. It initially executes
〈A〉 but one or more parallel branches can be added at run-time using a
spawn; all threads join before exiting the block. A spawn/concurrent block
pair provides a graphical representation of dynamically created instances by
varying the model at run-time. BPMLs usually do not offer any representa-
tion of this dynamic behavior and concurrent instances are often left implicit.

4. parallel block – It executes the specified branches in parallel each one
with its own thread of control. Threads are joined at the end of the block or
reverted if an unhandled exception is thrown in one of the branches.

5. choice block – It evaluates the conditions ϕi(x) associated to the i-th
branch in sequence, as soon as one of these conditions is true the corre-
sponding branch is executed, otherwise the default branch is chosen.

6. catch block – It executes the default branch and if an exception of type ξ
is raised inside it, the execution is interrupted and resumed from the branch
annotated with the corresponding exception to handle it. Exceptions may
be raised by blocks and task instances inside the default branch or using an
explicit throw command. When an exception of the specified type is raised,
all blocks that contain it are recursively reverted until a proper catch block
is reached, similarly to what happens in modern programming languages. A
parallel branch exception, without a corresponding catch block, causes the
raising of an asynchronous interruption in the remaining branches in order
to revert the entire block. Different exceptions raised by parallel branches
are grouped into a single exception before leaving the block.

7. threshold block – It limits to k the number of threads that can execute
concurrently inside its body. The number of existing threads remains the
same and corresponds to the number of declared parallel branches. If the
number n of existing threads is greater then k, then n − k threads will be
suspended until the first k have completed their execution.

8. skip – It is useful for obtaining specific control-flow structures from generic
ones; for instance, the usual while and repeat-until loops can be obtained
replacing the right or the left branch of a loop with a skip, respectively.

9. run – It executes a task instance of the specified type. The thread of control
is suspended until the task is completed or reverted with an exception.

10. spawn – It can be executed only inside a concurrent block. It creates a new
task instance t : T that is immediately executed into a new parallel branch
added to the inner concurrent block containing the command.

11. throw – It raises an exception of the specified type, reverting recursively all
blocks that contain it until a proper handler is reached.

12. send – It inserts the value of one or more variables into one or more cor-
responding output streams; the sending is asynchronous and the execution
continues with the next block without waiting.

13. receive – It stores into one variable an object extracted from one of the
available input streams. The receive temporally suspends the current thread
of control until an object arrives or a timeout θ raises an exception. A
receive with an associated timeout θ can be graphically annotated as in
the second row of Fig. 2.c. A multiple receive stores the first arrived object
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from a stream αi
in into the corresponding variable xi, resets the others to

unbound and continues the execution: this behavior is called or-receive. A
sequence of receive commands can be conceptually grouped into a unique
and-receive which waits for an object from each connected stream before
proceeding and is graphically depicted as in the first row of Fig. 2.c.

14. empty – It removes all objects in the specified stream α.

A send accepts only output streams and a receive only input streams: re-
gardless of its name, a stream can have a different direction depending on the
internal or external perspective. Furthermore, send and receive commands can
be viewed as special task instances with their own identifiers: each variable x
involved in a send s :S can be considered as an output stream s.xout, while each
variable y of a receive r :R can be considered as an input stream r.yin.

Example 1. Fig. 3 depicts three NestFlow models that are useful for exemplify-
ing several concepts about the notation and the semantics of some constructions.
In order to keep at minimum the number of core constructs, NestFlow supports
only message passing: this is not a limitation because parameter passing can be
easily simulated by a send/receive pair. For instance, if task B in Fig. 3.a needs
to store an object into the y variable at its completion, it can send such object
through an output stream connected to the following receive. Such construc-
tion can be briefly denoted as in Fig. 3.b with B | y. In similar way, a send to a
following task can be denoted as in Fig. 3.a with x | D. The model in Fig. 3.a can
be further simplified by directly connecting B and D with a link, discarding the
intermediate send and receive commands. Direct connections are essential for
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Fig. 3. (a) B produces an output that may be used by D. (b) E starts as soon as one
input is made available. (c) The output of A is useful only if produced in time.
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large-scale BP models; for instance, if B is a complex compound-task its output
must be made available as soon as possible and not at completion. In similar way,
D can run in parallel with B until the required input becomes strictly necessary.
Not using an output produced by a task does not impact the model correctness:
unused objects can be left in the case for successive executions, removed by an
empty command or discarded when the case completes. For instance, Fig. 3.b
depicts a model with an or-receive construction: task E is executed as soon as
an object is stored in z by A or B. E needs only one input to run, the other one
will be left in the case, if produced at all. As for the first model, the receive
and the send after B can be substituted by a direct connection. In the model of
Fig 3.c, D waits for the output of A at most θ units of time from the completion
of B. In this case the output is useful only if produced in time: if the timeout
expires an exception is raised and E is executed in place of D.

The NestFlow constructs description and the previous example should be suf-
ficient for understanding the WCPs implementation in Sec. 4. A more detailed
and formal description of the NestFlow semantics can be found in [11]. Two well-
formedness properties are central in NestFlow models correctness: (1) a model
T is valid only if its parallel branches do not share variables; (2) a model T is
valid only if every task instance a : A in T has a unique identifier a ∈ I and is
executed in only one place. The first property avoids race conditions, while the
second one guarantees a unique correspondence between graphical occurrences
and task instances ensuring a unique graphical representation of senders and
receivers: a task a : A that sends an object to b : B can be simply represented
using an arrow from a to b and task identifiers can be left implicit.

4 NestFlow Representation of WCPs

The aim of this section is to give an idea on how WCPs can be obtained in
NestFlow. To shorten the presentation, patterns are grouped by similarity and
whenever possible they are described by difference with respect to the preceding
ones. A more detailed description can be found in [12] where each WCP is
recalled and explicitly implemented.

Sequence Patterns (G1) – Sequence (Wcp-01) is represented in NestFlow
through one or more sequence block. Interleaved Partial Order (P.O.) Routing
(Wcp-17) and Interleaved Routing (Wcp-40) can be considered as special kinds
of sequence, where only a partial order or no order between tasks is defined.
In general, any finite partial order R ⊆ S×S, among a set of tasks S, can
be represented in NestFlow using parallel block, sequence block and link
constructs, surrounded by a threshold block with k = 1. This block ensures
that only one thread of control at time can execute inside the parallel block,
thus only one task at time is running, while the other ones are suspended. A
naive construction can be obtained with a single parallel block containing
exactly one parallel branch for each task instance t ∈ S, then for each (u, v) ∈ R
a send s is added at the end of the branch containing u, a receive r is added at
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Fig. 4. (a) and (b) depict two possible representations of Interleaved Parallel Routing
(Wcp-17) of a set of four tasks. (c) depicts how to obtain a Milestone (Wcp-18).

the beginning of the branch containing v and a link is added from s to r, as for A
and B in Fig. 4.a. In Interleaved Routing (Wcp-40) no order is defined and the
tasks are distributed into a single parallel block wrapped by a threshold
block with k = 1. This solution is used to prove the support of Interleaved
P.O. Routing (Wcp-17), but simpler constructions are possible, as exemplified
in Fig. 4.b where all links have been substituted by control-flow constructs.

Critical Section (Wcp-39) assumes the presence of a shared resource that
has to be accessed in a mutually exclusive way. This resource can be managed
by a single task instance, the other tasks can gain access to the underlying
resource sending messages to it: stream serialization ensures the exclusive access
to the resource. A shared resource can also be represented with a unique object
exchanged by tasks using message passing. In Milestone (Wcp-18) a task B can
execute only when the process instance is in a specific state: for example, another
task A is just concluded. This pattern can be represented as in Fig. 4.c: after A
completion, an object is sent to the receive before B and if the thread of control
in this branch is blocked in that receive, namely it is waiting that a specific
state is reached, then the object is received and B is executed; otherwise, if the
receive is performed some time after the completion of A, the empty command
deletes all objects previously received in the stream r.yin and B is not executed.

Repetition Patterns (G2) – Structured Loop (Wcp-21) is directly supported
in NestFlow through the loop block that can also represent repeat-until and
while-do loops by placing a skip in the first or second branch of the loop
block, respectively. Recursive declarations of tasks (Wcp-22) are also supported
through lazy evaluation: an internal task instance will be created only when
strictly necessary. As a design choice, arbitrary cycles (Wcp-10) are not sup-
ported in NestFlow, because they drastically reduce modularity: this is not a



The NestFlow Interpretation of WCPs 325

severe limitation since any sequential composition of unstructured cycles can
be transformed into an equivalent structured form [13], for instance duplicating
some tasks or conditions.

Cancellation Patterns (G3) – The possibility to cancel a single activity
(Wcp-19) in any place of a model implies the ability to cancel an arbitrary
region (Wcp-25) or the entire case (Wcp-20). We consider a generic behavior
for Wcp-19, because the original description does not clarify how to deal with
compound tasks that are in an intermediate state, namely started but not com-
pleted. NestFlow supports cancellation through hierarchical exception handling
that provides both a mechanism to manage task cancellation and the ability
to specify clean-up actions to perform during the cancellation phase. Whenever
required, a task has to be built cancellable for ensuring encapsulation, because
only a task knows exactly how to exit. The cancellation of a task from a differ-
ent thread of control can be obtained by sending a cancellation message to it.

ξ

x

y unboundy

B

ξ t1

t1
t2

Fig. 5. A possible representation of Cancel-
lation Patterns (G3)

When cancellation is not provided,
a single or a block of activities 〈B〉
can be wrapped in a structure simi-
lar to the one in Fig. 5: if a cancel-
lation message is sent to R during
〈B〉 execution, an interruption ex-
ception ξ is thrown on branch t1 and
the activities in this branch are can-
celled; otherwise, after 〈B〉 comple-
tion a message is sent to R for ter-
minating the other branch without
raising an exception.

Trigger Patterns (G4) – The activation of a task A through a signal is nat-
urally supported by a link connected to A. In NestFlow streams are persistent
(Wcp-24): they retain objects until the receiver is able to consume them. A
Transient Trigger (Wcp-23) can be simulated by placing an empty command
just before the receive, for canceling the content of its incoming stream.

Termination Patterns (G5) – In NestFlow there is no real difference between
Implicit Termination (Wcp-11) and Explicit Termination (Wcp-43), because
only one thread of control can enter a block and when it leaves the block, no other
thread is left behind: only one thread reaches the stop place and the stop place
is reached only when the last task instance completes. Besides the stop place,
an explicit termination can be obtained by raising an exception that should be
properly managed.

Branching Patterns (G6) – Branching patterns describe the divergence of
thread of controls from a single point in the model. Parallel Split (Wcp-02)
is obtained with a single parallel block, while the Exclusive Choice (Wcp-
04) behavior is given by a single choice block. Conversely, there is no specific
construct that supports Multi Choice (Wcp-06) because its behavior can be
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obtained combining a parallel block with one choice block for each branch
and an additional default branch. Undoubtedly, the introduction of such con-
struct improves usability but redundancy shall be avoided in a core language.

Deferred Choice (Wcp-16) is the most contrived WCP because any system
has its own particular implementation: BPMN/WS-BPEL supports it with a
<pick/> construct which suspends its thread of control and waits until an ex-
ternal event occurs, for instance receiving a message or a timeout expiration.

ξ

ξ t1
ξ

B

ξ

A

t3

t1
t2 TT

ξ t3
ξ t2

C

TT1
Fig. 6. One of the possible implementations of Deferred
Choice (Wcp-16)

In YAWL the deferred
choice places two or more
tasks in the work-list;
when one of these is chosen
the other ones are instan-
taneously withdrawn. In
NestFlow the first kind of
behavior can be obtained
with a single receive
command that waits for
the first incoming object
from multiple streams or a
timeout event. The second
kind of behavior can be also obtained, but here a slightly different solution is
presented based on the threshold block suspension semantics. This solution is
exemplified in Fig. 6, where a ¬ti in a throw command means “raise an excep-
tion to interrupt all parallel branches except ti”. The threshold block ensures
that only one branch at a time is executed, while the other ones are suspended.
Suspended tasks are not removed from the work-list, but they cannot be chosen
by users. If the chosen task completes successfully, then the suspended tasks are
definitively removed, otherwise they can become available again as alternatives
of the failed one.

Synchronization Patterns (G7) – Synchronization (Wcp-03) and Structured
Synchronizing Merge (Wcp-07) are characterized by only one divergency point
and are directly supported by parallel block and choice block. Structured
Discriminator (Wcp-09), Blocking Discriminator (Wcp-28) and Canceling Dis-
criminator (Wcp-29) are a specialization of Structured Partial Join (Wcp-30),
Blocking Partial Join (Wcp-31) and Canceling Partial Join (Wcp-32), respec-
tively, when the number k of synchronized branches is one. In the same way,
Structured Partial Join (Wcp-30) and Blocking Partial Join (Wcp-31) are a
specialization of Canceling Partial Join (Wcp-32) where the cancellation of the
remaining activities is not necessary. Fig. 7.a shows the implementation of the
most general Canceling Partial Join (Wcp-32) from which the other patterns
can be derived. After completion, each task involved in the synchronization sends
a message to r which stores the first arrived object in the corresponding variable
and continues the execution. The receive is performed k times for waiting the
completion of exactly k tasks. When k tasks complete, multiple messages are sent
to cancel the tasks that are still running. A cancellation message is sent to all
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involved task instances, but it does not affect the completed ones. The pattern
can be executed multiple times preceding it with a reset phase. The blocking
variation of partial joins (Wcp-30, Wcp-31) can be obtained by removing the
send s after the loop block in Fig. 7.a. In the structured case all involved task
instances belong to the same parallel block, while in the unstructured case
they can belong to different execution paths. The discriminator patterns (Wcp-
29, Wcp-09 and Wcp-28) can be obtained in the same way of the corresponding
partial join ones by removing the counting loop block around the receive r.

Generalized And-Join (Wcp-33) can be obtained by replacing the bottom
branch in Fig. 7.a, with a single and-receive followed by B. Acyclic Synchro-
nizing Merge (Wcp-37) and Generalized Synchronizing Merge (Wcp-38) can
be obtained using an and-receive, as in the previous case, and wrapping each
task A1, ..., An into the branches of a choice block followed by a send. If the
choice block condition ϕj(x̄j) evaluates to true, then Aj executes, otherwise
a skip is performed; in any case a message is sent to notify the and-receive.

Bi ≤ ki ← 1 i ← i 1
An

: :

n:

i ← 1 i ← i 1:

B

a

b

A1 1:

B i ≤ k

Fig. 7. (a) depicts the implementation of Canceling Partial Join (Wcp-32). (b) repre-
sents the alternative branch for obtaining Multi Merge (Wcp-08).

Simple Merge (Wcp-05) can be obtained from the model in Fig. 7.a by remov-
ing the send s and placing B inside the loop block: this construction ensures
that B is executed multiple times respecting the completion order of the involved
task instances but without overlapping executions. Multi Merge (Wcp-08) can
be obtained by replacing the branch containing the loop in Fig. 7.a with the one
in Fig. 7.b: any time one of the involved task instances completes a message is
sent to r and the following spawn command creates a new instance of B which
is immediately executed inside the concurrent block.
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5 Evaluation Method

WCPs are a collection of behavioral patterns recurrently found in BP models.
They are described in natural language and formalized as Colored Petri Nets
(CPNs): a proper extension of Petri Nets enhanced with data, types and func-
tional expressions. A particular WCP can be encoded as a CPN in several differ-
ent ways; however, if the use of Petri nets constructs is preferred against the use
of functional expressions, then the pattern complexity can be roughly quantified
by the number of graphical constructs used for representing it. In particular, the
WCPs encoding in [8] can be taken as a unit of comparison because it uses basic
constructs and it is reasonable to assume that this encoding is nearly optimal,
namely no simpler encoding can be given without exploiting advanced features.

WCPs has been used to analyze and classify a great number of BPMLs in
order to expose their peculiarities and ease system comparison. In such analysis
the commonly accepted scoring assigned to each WCP implementation is fully
supported (+), if there is a language construct that directly implements the
pattern, partially supported (±), if there is a construct that produces only a
similar behavior to the one prescribed by the pattern, or unsupported (−), if
none of the provided constructs reproduces the required behavior.

This approach is questionable because it focuses only on language constructs
at the expense of the actual behavior that can emerge when such constructs
are put together. This leads to paradoxical conclusions: for instance, one should
accept that CPNs, the language chosen to formalize all WCPs, supports only few
of them, hence it is not suitable for BP design. The same conclusion holds even
more for classical Petri nets that are strictly less expressive than CPNs, despite
they are a widely accepted formal language for BP modeling and analysis.

In this paper the NestFlow evaluation is based on how many constructs are
needed to reproduce a particular WCP with respect to the CPNs constructs used
in [8]. CPNs seem a good reference for comparison because it is hard to conceive a
graphical formal language with simpler constructs and equal expressiveness. Any
language tailored for BP modeling should generally perform better in encoding
WCPs than CPNs, otherwise something goes wrong with the language design.

At first glance, it seems easy to reach the maximum score in a WCPs analysis
by conceiving a BPML that provides one construct for each pattern. Although
this is ideally possible, one should explain what happens when two or more of
these constructs are put together to design a BP model and how they can be used
to express emerging patterns not considered in the current WCPs collection.

6 Evaluation of NestFlow WCPs Support

This section exposes the results of the NestFlow evaluation, giving a first evi-
dence about its expressiveness and suitability for BP design. Multiple-instance
patterns are not considered because they can be seen as a specialization of those
presented here, where the involved task instances are always of the same type.

The result of this analysis is summarized in Table 1: the NestFlow support
of each WCP is ranked excellent (���), good (���), fair (���) and none
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Table 1. A summary of NestFlow WCPs support. WCPs are grouped as in [1] and
ordered on the basis of their similarities. Code is a unique pattern identifier defined in
[8] and Name is its common name. Given the number of involved tasks n, NF is the
number of NestFlow constructs used to represent the WCP in the worst case scenario,
while CPN is the number of CPN constructs used in [8]; ρ is the ratio between the
values in NF and CPN columns for large n, and γ is the ratio between the number of
used links and the total number of NestFlow constructs. Eval is the overall evaluation.

Code [8] Name NF CPN ρ γ Eval

G1

Wcp-01 Sequence n + 2 4n + 2 0.25 0.00 ���
Wcp-17 Interleaved P.O. Routing 4n + 1(a) 14n + 6(a) 0.29 0.25 ���
Wcp-40 Interleaved Routing n + 4 10n + 10 0.10 0.00 ���
Wcp-39 Critical Section 8n + 9 14n + 8 0.57 0.37 ���
Wcp-18 Milestone 10 18 0.56 0.10 ���

G2

Wcp-10 Arbitrary Cycles — 29 — — ���

Wcp-21 Structured Loop 4 15 0.27 0.00 ���
Wcp-22 Recursion 11 17 0.65 0.18 ���

G3

Wcp-19 Cancel Activity 14 30 0.47 0.14 ���
Wcp-25 Cancel Region 14n — — 0.14 ���
Wcp-20 Cancel Case 14 — — 0.14 ���

G4
Wcp-23 Transient Trigger 6 16 0.37 0.17 ���
Wcp-24 Persistent Trigger 5 9 0.55 0.20 ���

G5
Wcp-11 Implicit Termination 0 — — — ���

Wcp-43 Explicit Termination 1 — — 0.00 ���

G6

Wcp-04 Exclusive Choice n + 2 6n + 4 0.17 0.00 ���
Wcp-16 Deferred Choice 5n + 4 4n + 6(b) 1.25 0.00 ���
Wcp-06 Multi Choice 4n + 1 7n + 3 0.57 0.00 ���
Wcp-02 Parallel Split 2n + 1 7n + 3 0.29 0.00 ���
Wcp-42 Thread Split — n + 5 — — ���

G7

Wcp-09 Structured Discriminator 5n + 2 5n + 14 1.00 0.20 ���
Wcp-28 Blocking Discriminator 5n + 2 9n + 17 0.56 0.20 ���
Wcp-29 Canceling Discriminator 6n + 4 10n + 15 0.60 0.33 ���
Wcp-30 Structured Partial Join 5n + 6 5n + 14 1.00 0.20 ���
Wcp-31 Blocking Partial Join 5n + 6 9n + 17 0.56 0.20 ���
Wcp-32 Canceling Partial Join 6n + 7 10n + 15 0.60 0.33 ���
Wcp-05 Simple Merge 5n + 8 5n + 5 1.00 0.20 ���
Wcp-08 Multi Merge 7n + 9 5n + 5 1.40 0.20 ���
Wcp-07 Structured Synch. Merge 4n + 1 9n + 6 0.44 0.00 ���
Wcp-37 Acyclic Synch. Merge 7n + 2 11n + 6 0.64 0.14 ���
Wcp-38 Generalized Synch. Merge 7n + 2 — — 0.14 ���
Wcp-03 Synchronization 2n + 1 7n + 3 0.14 0.00 ���
Wcp-33 Generalized And-Join 5n + 2 7n + 3 0.71 0.20 ���
Wcp-41 Thread Merge — n + 5 — — ���

G1 Sequence Patterns G4 Trigger Patterns G7 Synchronization Patterns

G2 Repetition Patterns G5 Termination Patterns (a) Assuming P.O. graph size n − 1

G3 Cancellation Patterns G6 Branching Patterns (b) Considering the richer representation
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(���) using the following parameters: (1) the ratio ρ between the number of
NestFlow constructs used to encode the pattern in the worst case scenario and
the number of CPNs constructs used in [8] for representing the same behav-
ior, (2) the ratio γ between the number of links and the number of control-flow
constructs used in the NestFlow interpretation and finally (3) the variety of in-
volved NestFlow constructs. The NF column contains the total number of used
NestFlow constructs, including the number of links and the maximum number
of running threads. Similarly, the CPN column contains the number of CPNs
constructs used in [8], including the number of transitions, places, arcs and the
maximum number of involved tokens. For both languages the count does not
include additional notations used to specify conditions and expressions. For esti-
mating pattern complexity, a link can be considered a weak control-flow relation
manipulated by more reliable control-flow structures; with this interpretation,
γ gives a first clue about the level of unstructuredness of the pattern because
links may cross the main control-flow structure; in practice structured forms are
always preferred during design, and the number of links will be substantially
below γ, which represents a worst case estimation.

Pattern support with worst case ρ ≤ 0.50 and γ ≤ 0.20 and an optimal use of
constructs is ranked excellent (���). We also accept in this category pattern
implementations with ρ > 0.50 or a value of γ near to 0.20 when these ratios
do not depend on the number of tasks n. Deferred Choice (Wcp-16) and Multi
Choice (Wcp-06) are also ranked excellent even if ρ > 0.50, because Wcp-16
has an optimal implementation given by the receive construct and Wcp-06
can be captured by a single specialized construct [12]. Patterns with worst case
ρ ≤ 1.00 and γ ≤ 0.20 and an adequate use of constructs are ranked good
(���). Interleaved P.O. Routing (Wcp-17) is also ranked good, because the
worst case coefficients ρ = 0.29 and γ = 0.25 are related to an ideal worst
case partial order. Patterns with ρ > 1.00 or γ > 0.20 are ranked fair (���),
while the unsupported patterns are ranked none (���). Such criteria allows a
more fine-grained and measurable evaluation of WCP support. Nevertheless, a
pattern-based analysis remains a qualitative evaluation of expressiveness: a WCP
specifies a system behavior that can be obtained in different ways, combining
more or less sophisticated constructs. For instance, in modeling a process by
CPNs we can obtain a particular behavior mainly using Petri nets constructs or
alternatively using few graphical constructs, encoding most of the logic in func-
tional arc expressions and transition guards. The considered language constructs
are also important but a pattern-based evaluation that puts too much emphasis
on constructs, instead of on the overall behavior, leads to paradoxical conclu-
sions as explained in the previous section. The NestFlow evaluation is mainly
based on the effort needed to replicate WCPs behavior: for each pattern such
effort has been quantified by comparing the NestFlow implementation in the
worst case scenario with the CPNs reference implementation [8]. The count of
CPNs constructs is omitted for those patterns whose CPNs model is an ad-hoc
construction that cannot be easily quantified, for instance because the number
of constructs depends on the reachable states.
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Any high-level BPML that wants to support WCPs will likely provide a more
compact representation of these patterns, with more specific constructs than
CPNs. Except for few patterns, the NestFlow ratio ρ is always less than one;
more specifically, it usually needs half of the CPNs constructs for expressing the
same behavior. In some cases the ratio ρ is greater than one or the pattern is
not supported at all, as for Multi Merge (Wcp-08), Arbitrary Cycles (Wcp-10),
Thread Merge (Wcp-41) and Thread Split (Wcp-42). The lack of support for
these patterns is acceptable because consistent with the initial design intentions:
NestFlow is built to be modular and these patterns hinder modularity.

7 Conclusion

Well established BP modeling practices and empirical research experiments sug-
gested that structured control-flow forms are always desirable to enhance com-
prehensibility and modularity, and reduce the probability of introducing new
errors in BP models. Unfortunately, existing BPMLs are not able to support a
fully structured control-flow design without losing expressiveness. This paper in-
troduces a novel structured BPML called NestFlow and shows how WCPs [8] can
be implemented in a structured way. WCPs are a well accepted framework for
evaluating BPMLs expressiveness and suitability; however, the generally adopted
scoring method in WCPs-based analysis focuses on language constructs limit-
ing its applicability. In this paper a more objective scoring method is introduced
and the NestFlow WCPs support is evaluated on the basis of the used constructs
with respect to the CPNs reference implementation proposed in [8], the number
of links with respect to the total number of used constructs and the constructs
variety. The analysis is performed, whenever possible, for a large number of in-
volved tasks in the worst case scenario. NestFlow proves that structured BPMLs
can be effectively built and are potentially more expressive than the existing ones
especially when modularity is seriously taken into consideration.
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Abstract. This paper deals with the problem of integrated physical
database design involving two optimization techniques: horizontal data
partitioning (HDP) and bitmap join indexes (BJI). These techniques
compete for the same resource representing selection attributes. This
competition incurs attribute interchangeability phenomena, where same
attribute(s) may be used to select either HDP or BJI schemes. Exist-
ing studies dealing with integrated physical database design problem
not consider this competition. We propose to study its contribution on
simplifying the complexity of our problem. Instead of tackling it in an
integrated way, we propose to start by assigning to each technique its
own attributes and then it launches its own selection algorithm. This
assignment is done using the K-Means method. Our design is compared
with the state of the art work using APB1 benchmark. The results show
that an interchangeability attribute-aware database designer can improve
significantly query performance within the less space budget.

1 Introduction

Optimizing complex queries running on the top of very large database schemes
such as data warehouses and scientific databases represents a crucial perfor-
mance issue [19,21]. To reach this objective, several important tasks need to be
performed by database administrators (DBA): (1) the choice of optimization
techniques (OT ), (2) the choice of their selection mode (isolation or multiple),
(3) the development of selection algorithms, (4) the generation of scripts cor-
responding to each selected OT and (5) the validation and deployment of the
obtained solutions. Note that task 2 is the most important and more complex in
the physical design phase, since it may impact the other tasks. Database com-
munity has demonstrated a great attention of studying the individual selection
(where only one technique is selected) of OT (formalization, proposition of selec-
tion algorithms, development of advisors based in this mode, etc.) [2,3,7,8,13].
The individual selection is not sufficient to optimize the whole workload, since
each OT is adapted to a particular class of queries. As consequence, the multiple
selection mode has been introduced. Historically, studies related to this mode
start with two OT [19], three [20] and now four [18,21]. Microsoft AutoAd-
min project [19] is an example of work that deals with the multiple selection
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of materialized views and indexes for a given workload. It has been extended
by incorporating two others OT : vertical and horizontal partitioning [18]. IBM
database research group proposed a design advisor that supports four OT : ma-
terialized views, partitioning, indexes and clustering. This mode is more compli-
cated than the individual selection, since it requires the exploration of a large
search space [21]. Three main implementations of this mode exist: iterative, joint
(or integrated) and hybrid. The iterative solution is a naive way to implement
the multiple selection, in which the selection of involved OT is done sequentially
[20]. This solution ignores interaction between OT . In the integrated implemen-
tation, a joint searching is performed directly in the combined search space, and
heuristic rules are applied to limit the candidate sets being considered [21]. This
implementation can better handle the interdependencies among different OT .
It has been used in AutoAdmin project to recommend indexes and materialized
views by exploiting their interdependencies: both are redundant (they duplicate
data), compete for the same resource representing storage space and cause up-
date overhead [19]. The main drawback of this implementation is its extensibility
and high complexity [21]. To reduce this complexity and to consider the inter-
action between OT during the selection process, a hybrid implementation has
been proposed [6,21]. Its main idea is to analyze the interaction between OT and
then imposes a selection order. Two main solutions of this implementation exist.
The work done by [21], where two dependency relations between pairs of OT are
identified: strongly and weakly dependencies. An OT ot1 ”strongly” depends on
OT ot2, if a change in selection of ot2 often results in a change in that of ot1
(example of materialized views and indexes). Otherwise, ot1 ”weakly” depends
on ot2. These relations are used to establish selection order. For instance, if only
ot1 strongly depends on ot2, the authors propose to iteratively search ot2 and
ot1, but make sure that ot2 is searched before ot1 so that ot1 is properly influ-
enced by ot2. The second solution is given in [6], where the authors propose the
use of horizontal data partitioning HDP (considered as a non redundant OT ) to
prune the search space of bitmap join indexes BJI (a redundant OT ) selection
problem. Their methodology starts by partitioning a data warehouse, identifies
queries that will get benefit from this partitioning and selects BJI by considering
only queries that do not get benefit from HDP (called non profitable queries).
This work imposes a predefined selection order (HDP then BJI).

The proposed solutions dealing with the implementation of multiple selection
do not analyze the body of OT 1. To illustrate this, let us consider two OT : HDP
and BJI, both are usually defined using the same set of selection attributes. If
an attribute Aj is used to partition a given database and it gives satisfaction in
optimizing queries, then why we keep it for indexing selection process. If, it is
removed from the list of candidate attributes for indexing, the complexity of BJI
selection problem may be reduced and a gain of storage and maintenance over-
head may be guaranteed. The same reasoning is made if Aj is used to index the
database. Removing this attribute from partitioning list may reduce the number
of final fragments and facilitates the manageability of the partitioned database.

1 The body of an OT describes table(s), attributes used in the definition of that OT .
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As consequence, the body analysis incurs a new phenomenon called attribute
interchangeability. Recently, in Coradd project [14], another consequence of the
body analysis of OT is identified and incurs attribute correlation phenomenon
which has been exploited to select two redundant OT : materialized views and
indexes. The fact of ignoring body analysis of OT may affect seriously the de-
pendency relations identified in [14,21]. For instance, the dependency relations
between indexes and partitioning (partitioning and indexes) are considered as
weak in [21]. But, if we consider attribute interchangeability phenomenon they
become mutually strong dependent.

This paper studies the impact of body analysis on selecting HDP and BJI
and proposes other solutions for the hybrid implementation to solve the multiple
selection.

This paper is organized into seven sections. Section 2 presents background
related to HDP and BJI. A genetic algorithm for selecting BJI is given in Section
3. Section 4 studies the impact of attribute interchangeability on OT selection.
Section 5 describes an approach to assign attributes between HDP and BJI based
on the K-Means method. Section 6 experimentally compares our proposal with
existing studies. Section 7 concludes the paper summarizing the main findings
of our research, and proposing directions for future work.

2 Background

To facilitate the understanding of attribute interchangeability, concepts and ex-
amples related to partitioning and BJI are given.

2.1 Horizontal Data Partitioning

HDP decomposes a table based on its instances. It is supported by most com-
mercial and non commercial DBMS (Oracle, SQL Server, DB2, Postgres, etc.),
where a native data definition language is proposed. Two main types of HDP ex-
ist: mono table partitioning and table-dependent partitioning. In the mono table
partitioning, a table is partitioned using its own attributes used in selection oper-
ations. Several modes are proposed to implement this partitioning: Range, List,
Hash, Round Robin (supported by Sybase), Composite (List-List, Range-List,
Range-Range, ....), etc. Mono table partitioning optimizes selection operations,
when partitioning keys match with selection attributes. In table-dependent parti-
tioning, a table inherits the partitioning characteristics from other table. For ex-
ample, a fact table of a given relational data warehouse schema may partitioned
based on the fragmentation schemes of dimension tables2 [9]. This partitioning
is supported by Oracle11G (known under the name referential partitioning). It
optimizes selections and joins simultaneously.

The problem of HDP has been formalized (in isolation form) in the context of
relational data warehouses RDW with d dimension tables {D1, ..., Dd} and a fact

2 A fragmentation schema is the result of partitioning process.
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table F as follows [4,17]: given (i) a representative workload Q = {Q1, ..., Qn},
where each query Qi (1 ≤ i ≤ n) has an access frequency fi, defined on the RDW
and (ii) a constraint (called maintenance bound B given by DBA) representing
the maximum number of fact fragments that she/he wants. The problem of
HDP consists in identifying dimension table(s) that could be used to partition
the fact table F into N fragments, such that the overall execution cost of queries
(
∑

Qi∈Q fi×Cost(Q, FS)) is minimized and maintenance constraint is satisfied
(N ≤ B), where FS represents the obtained fragmentation schema. This problem
is known as NP-hard [4]. Several types of algorithms to find a near-optimal
solution of this problem are proposed: greedy, genetic, simulated annealing, data
mining driven algorithms [3,4,16].

2.2 Bitmap Join Indexes

Indexes considered in traditional databases and recommended by advisors usu-
ally concern only one table (B-tree, Bitmap, hash, etc.) [19,21]. A BJI is another
form of indexes involving several tables. It computes the joins between the fact
table and l (l ≥ 1) dimension tables using s (s ≥ 1) attributes used in selection
operations. This join is materialized through a set of bit vectors built on the fact
table based on dimension attribute(s) of low cardinality. The BJI are more effi-
cient for count, and, or, not queries. The size of the binary index is proportional
to the cardinality of the indexed attributes.

The formalization of the problem of selecting BJI in isolation form is quite
similar to HDP problem, except it uses a storage capacity (S) as a constraint [1].
The selected BJI shall minimize the query execution cost and satisfies S. This
problem is known as NP-hard [1]. To the best of our knowledge, only two classes
of algorithms were proposed to deal this problem: greedy heuristics [6] and data
mining techniques [1]. To give DBA a large spectrum of choices of BJI selection
algorithms, we propose new genetic algorithm (GA) that selects BJI.

3 A Genetic Algorithm for Selecting BJI

GA have been used for a long time in the database physical design and proven to
be a good for selecting optimization schemes [3,12]. Given a well-defined search
space, they apply three different genetic search operations, namely, selection,
crossover and mutation, to transform an initial population of chromosomes,
with the objective to improve their quality.

For BJI selection, each chromosome is represented by an array of bits, where
each cell corresponds to an indexable attribute. A cell value is set 1, if its cor-
responding attribute is used by a BJI, 0 otherwise. Figure 1 shows an example
of chromosome involving five indexable attributes. This coding generates three
different BJI defined on City, Year and TypeProduct. Note that the number of
attributes candidates for BJI (or partitioning) is very important. For instance,
the star schema of photographic objects of Sloan Digital Sky Server Dat contains
more than 400 attributes [11].
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Fig. 1. An example of chromosome

Note that each chromosome ci of our GA represents a configuration of BJI.
Let Configci and Nci be the set of selected indexes and its cardinal. To evaluate
the quality of this configuration, two cost models are needed: one for estimating
the cost needs to store Configci and the second to calculate the global query
processing cost (in terms of inputs outputs) in the presence of Configci. The
storage cost required for a BJI bjij of Configci defined on attribute Ak is given
by [1,5]: storage(bjij) = ( |Ak|

8 + 16) × |F| bytes, where |Ak| and |F| represent
respectively, the cardinality of the attribute Ak and the number of instances of
the fact table F . The cost of executing a query Qi (1 ≤ i ≤ n) in presence of bjij

is given by: Cost(Qi, bjij) = logm|Ak|−1+ |Ak|
m−1 +d× ||F||

8×PS + ||F||×(1−e−
Nr

||F|| )
I/O, where ||F||, Nr, PS and d represent respectively the number of pages used
by fact table F , the number of tuples accessed by bjij , the size of a disk page
and the number of bitmaps used to evaluate the query Qi. The global cost of
executing all the n queries in the presence of the index configuration Configci

is given by: Cost(Q, Configci) =
∑n

i=1

∑Nci

j=1 Cost(Qi, bjij) I/O.
To penalize a chromosome generating a configuration violating the storage

constraint, a penalty value is introduced as a part of the fitness function. It is de-
fined as follows: Pen(Configci) = storage(Configci

)

S where storage(Configci) =∑Nci

j=1 storage(bjij). Our fitness function is defined as follows:

F (Configci) =
{

Cost(Q, Configci)× Pen(Configci), if Pen(Configci) > 1
Cost(Q, Configci), otherwise

4 Attribute Interchangeability Impact on OT Selection

To facilitate the understanding the basic idea behind the attribute interchange-
ability and to show its utility, we consider the following motivating example.

4.1 Motivating Example

Let us assume that DBA decides to use HDP and BJI to optimise a set of
parameterized queries3, where each one has the following form:

Select count(*)

From Sales S, Customer C

Where C.Gender = ’F’ And C.CID = S.CID

3 A parameterized query is a query with selection operation defined on each different
value of domain attribute.
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She/he may execute algorithms for selecting relevant HDP and BJI. The ob-
tained recommendations are: (1) the fact table Sales may be partitioned based on
the fragmentation schema of the dimension table Customer also decomposed into
two horizontal fragments based on the attribute Gender (that we call partition-
ing attribute). The obtained schemes are materialized by the following pseudo
SQL statements (Oracle Syntax ).

Create Table Customer (CID Number, Name Varchar2(20), Gender Char, Age Number)

Partition By List (Gender)

Partition Female Values (’F’), Partition Male Values (’M’)

CREATE Table Sales (CID Number, PID Number, TID Number, ..., )

...

Partition by Reference (CID)

(2) Defining a BJI on the fact table Sales using the attribute Gender (indexable
attribute) of dimension table Customer.

Create Bitmap Index sales_cust_gender On Sales (Customer.Gender)

From Sales S, Customer C Where S.CID= C.CID

These two OT may give equivalent performance for the queries, as consequence,
it is useless to consider them together (BJI require storage and maintenance
costs, whereas HDP does not cause these overheads). Therefore, it will be better
to assign attributes to OT before launching their selection algorithms, which
reduces significantly DBA tasks. Note that the selection process is a task that
requires much expertise from the DBA and consumes time and effort [10]. In
order to capture the difficulty of the attribute assignment problem and to solve
it, a formalisation of our integrated physical database design problem is recom-
mended.

4.2 Formalisation

Our problem is formalized as follows: given a (i) workloadQ = {Q1, Q2, · · · , Qn},
where each query Qj has an access frequency fj , (ii) a set of restriction attributes
R extracted from Q, (iii) storage capacity S for BJI and (iv) a threshold B
representing the maximum number of fact fragments. Our problem consists in
selecting HDP and BJI schemes that reduce the query processing cost and satisfy
the defined constraints (B and S).

The resolution of this problem requires an exploration of the combined search
space of HDP and BJI problems given by: 2InsHDP +InsBJI , where InsHDP and
InsBJI represent respectively, the number of instances of both problems [21].
To simplify this resolution of this problem, we propose to first share attributes
between these HDP and BJI and then to select each OT based on its assigned
attributes using a selection algorithm.

To assign R to HDP and BJI, two main solutions are available for DBA: (i)
she/he may use a manual assignment based on her/his experience. This solution
is feasible if the cardinal of R is small. For extremely large databases with an
important number of attributes, this solution is not useful. (ii) She/he may
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consider an exhaustive enumeration of all possible assignments (given by 2||R||,
where ||R|| represents the cardinal of R). HDP and BJI selection algorithms are
then executed for each assignment. Finally, the assignment offering a lower cost
will be considered. This solution has high computational complexity which makes
it unsuitable for practical applications and hence a low complexity suboptimal
solution is proposed in the next section.

5 Clustering-Based Attribute Assignment by K-Means

Based on a deep analysis of each OT (BJI and HDP) [1,3,16,17,20], three clus-
tering criteria are identified to guide attribute assignment process.

1. Access frequency of a selection attribute: this criterion represents the number
of appearance of each attribute in queries. The existing works showed that
HDP gives usually better performance when it is defined on most frequently
attributes. Similarly, BJI defined on this type of attributes are efficient,
especially for some classes of queries (e.g., count). If an attribute with high
access frequency is concerned by HDP and BJI, we recommend using it for
HDP due to its non redundancy nature.

2. Attribute cardinality: when the cardinalities of attributes are higher, the size
of each fragment may increase, since HDP selection is based on splitting
attribute’s domains into sub domains [3]. This type of attribute may offer
a large number of smallest fragments, especially when the maintenance cost
(B) is large enough (Section 2). When BJI is defined on higher cardinality, the
storage cost increases dramatically. Based on this observation, the following
assignment rule is established: a high cardinality attribute is recommended
for partitioning, whereas a lower cardinality attribute for BJI 4.

3. Selectivity factor defined on restriction predicates : let Ai be an attribute
used by ki (ki ≥ 0) restriction predicates {p1, · · · , pki}. If selectivity factors
of these predicates are low then Ai is recommended for BJI. This is because
to execute (sum, avg, min, max,...) queries, a small piece of fact table need
to be loaded in the main memory. We define the selectivity factor (SF ) of Ai

as the average of selectivity factors of its predicates:SF (Ai) =
∑ ki

i=1 Sel(Pi)

ki

To assign R to our OT , clustering techniques such as K-Means [15], decision
trees, etc. may be used. In this work, we use the K-Means method for the fol-
lowing reasons: a) it is well adapted to our assignment problem and b) it has
been used to partition XML data warehouses in isolation way [16].

The K-Means method classifies a given data set T , represented in �n space,
through k clusters a priori fixed [15]. It defines k centroids c1, ..., ck, one for each
cluster, and then assigns each point to one of the k clusters so as to minimize a
measure of dispersion within the clusters. The algorithm is composed of the fol-
lowing steps: (1) place k initial points into the space represented by the data set
T ; (2) assign each object xi from T to the cluster that has the closest centroid cj

4 This rule follows partially the proposal in [20].
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Fig. 2. Architecture of the HDP and BJI selection

(the proximity is often evaluated with the Euclidean metric); (3) re-compute the
positions of the k centroids when all objects have been assigned; (4) repeat Steps
2 and 3 until the centroids no longer move. The best grouping is the partition
of the data set T that minimizes the sum of squares of distances between data
and the corresponding cluster centroid. To adapt the K-means method to our
problem, correspondences are performed as follows:

– the data set of K-means represents our set of restriction attributes R;
– K is equal to 2, since our combined selection problem concerns two OT :

HDP and BJI.
– The attributes are represented in �2 space with coordinates (x, y) computed

as follows: We define a classification weight for each restriction attribute
Ai based on the three above criteria: Weight(Ai) = Frc(Ai) + SF (Ai) +
Card(Ai), where Frc(Ai), SF (Ai) and Card(Ai) represent respectively, the
frequency, selectivity factor and cardinality of Ai. During the development
of the weights of attributes, we have noticed that the three criteria have
different scales. To make the weight consistent, normalization is necessary.
Once the weight is calculated, the coordinates in �2 of each attribute Ai are
specified as follows:

(x, y) = (position of attribute Ai, weight(Ai) (1)

Example 1. Let us consider a subset of queries5 of our workload involving five
attributes: R = {Month, Y ear, City, Country, Class}. The weight of each
attribute is given in Table 1. The coordinates of each attribute are given
in Table 2. NFrc, NSF and NCard represent respectively the normalized
factor of frequency and selectivity factor and cardinality criteria.

Figure 3 shows a classification of restriction attributes into two subsets
ClusterBJI = {Country, Class} and ClusterHDP = {Y ear, Month, City}.
5 http://www.lisi.ensma.fr/ftp/pub/documents/reports/2011/2011-LISI-.pdf
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Table 1. Weight computation

Attribute Frc SF Card NFrc NSF NCard Weight

Year 11 0.5 23 1.14 0.53 0.01 1.70
Month 5 0.33 12 0.26 1.41 -0.3 1.37
City 6 0.1 55 0.41 -0.13 0.94 1.22
Country 9 0.09 20 0.85 -0.2 -0.07 0.57
Class 3 0.02 62 0.02 -0.67 1.14 0.44

Table 2. Coordinates of restriction attributes

Attribute Year Month City Country Class

Coordinates [1, 1.70] [2, 1.37] [3, 1.22] [4, 0.57] [5, 0.44]

Fig. 3. Result of our classification Fig. 4. Result of K-means

6 Performance Study

To validate our proposal, we conduct intensive experiments using data set of APB1
benchmark6 and 47 queries7 involving 11 restriction attributes. The schema of
the used warehouse contains one fact table Actvars (24 786 000 tuples) and 4
dimension tables Prodlevel (9000 tuples), Custlevel (900 tuples), Timelevel (24
tuples) and Chanlevel (9 tuples). A Core 2 Duo machine with 2 GB of mem-
ory is used. To select our OT , we use two different GA: one developed in [4]
for HDP and another described in Section 3 for BJI. Our algorithms are imple-
mented using Java Eclipse. Two API have been integrated: one named SimpleK-
Means8 that implements the K-Means method and the second, named, JGAP
(Java Genetic Algorithms Package: http://jgap.sourceforge.net) used to imple-
ment our two GA. JGAP requires essentially coding of chromosome and fitness
functions. To conduct our experiments, these steps are followed: (i) classifica-
tion of the 11 restriction attributes : for 50 iterations, K-Means generates two
6 http://www.olapcouncil.org/research/bmarkly.htm
7 47 queries are available at

http://www.lisi.ensma.fr/ftp/pub/documents/reports/2010/2010-LISI-.pdf
8 http://weka.sourceforge.net/doc/weka/clusterers/SimpleKMeans.html
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clusters (Figure 4): CHDP = {Gender, Month, Y ear, All, Quarter, Group} and
CBJI = {Family, Division, Class, City, Retailer}. (ii) Selection of HDP and
BJI schemes : HDP GA is first executed and followed by BJI GA using CBJI clus-
ter and the attributes discarded by HDP. (iii) Implementation of the obtained opti-
mization schemes : each obtained schema is implemented on a real data warehouse
on Oracle11G using appropriate scripts. (iv) Computation of the real Oracle cost
of the queries : to compute execution cost of a query running on a partitioned and
indexed data warehouse, we developed a Java class, named OracleCost that calls
Explain plan Oracle Optimizer tool (that displays execution plans) and accesses
Plan Table (a system table) to get its cost.

6.1 Tests and Results

In this section, we detail our obtained results. Unfortunately we could not com-
pare our proposal with commercial and academic studies for two main reasons:
referential partitioning is not well supported and the interaction between BJI
and HDP is not clearly established. So, we compare three solutions of a hybrid
implementations to select of HDP and BJI: (1) OWC (Optimisation With Clas-
sification), (2) OPQ (Optimisation with Profitable Queries) based on Boukhalfa
et al.’s methodology that starts by partitioning the warehouses and indexes it
by considering non profitable queries [6] (Section 1) and (3) OWS (Optimisation
With Simple selection) that does not consider both attribute assignment and non
profitable queries aspects (HDP is performed first on all restriction attributes,
then BJI GA is executed on attributes not used in the final schema of HDP).

The first experiment aims at comparing the previous hybrid solutions using
four optimization modes: (1) without optimisation, (2) only BJI, (3) only HDP
and (4) multiple selection of HDP and BJI (HDP&BJI). For each mode, an
instance of data warehouses is created and populated on Oracle11G and the
cost of executing of 47 queries is computed. The storage space reserved for BJI
is 500 MB and the maintenance constraint for HDP selection is B = 70. Figure
5 and 6 give the cost in terms of inputs outputs (I/O) of executing the 47
queries and the rate of optimized queries offered by each mode. These results
show that multiple selection outperforms the other methodologies, especially
when attribute assignment is used (OWC). Indeed, the cost rises from 28.4 to
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12.5 million of I/0, which represents a reduction of 56 % of the total cost, and
91 % of queries are optimized. Lessons learned from these results are: (a) the
multiple selection outperforms largely the individual ones; (b) the schema of
HDP when OWC is used gives better results than that defined on all restriction
attributes and (c) OWC slightly outperforms the other methodologies, especially
for HDP&BJI mode. Indeed, OWC chooses for each OT selection the most
appropriate attribute, contrary to the OPQ selection that only improves BJIs
performance (BJI are selected to speed up the non profitable queries).

To study the impact of the maintenance bound B on query performance when
using HDP&BJI, we varied B while fixing the storage constraint S = 500 MB.
For each value of B, we consider the above three solutions of the hybrid imple-
mentationn. The results illustrated in Figure 7 show that the best optimization
is achieved when OWC is used, especially for B > 100. Indeed, the cost is re-
duced from 58 % to 61 %, and 91% of 47 queries are optimized (Figure 8). When
the maintenance bound B becomes larger, the probability that all attributes will
be used in the partitioning process becomes higher.

We conduct other experiments to evaluate the impact of the storage constraint
S on query performance. To do so, we vary S while fixing the value of main-
tenance bound B = 20 (this value makes favourite indexing process). Figure 9
shows the obtained results. We note that, for S < 900 MB, OPQ gives better
results than the simple selection OWS. Indeed, for these values of S, choos-
ing restriction candidate attributes for indexing from a subset of queries (not
profitable) reduces the complexity of BJI selection problem. But, when storage
space increases, the costs corresponding to OPQ and OWS become linear. On
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the other hand, whatever the value of S, our approach outperforms OPQ and
OWS. In fact, the query processing cost for OWC is reduced to 15.8 million I/O,
when S > 600MB. This is due to the fact that our K-Means method assigns the
right attributes for BJI.

Tests conducted so far select HDP then BJI (HDP then BJI). We conduct
the same experiments as previously, but instead of considering (HDP then BJI)
order, we consider two other selection orders: BJI then HDP and HDP//BJI
(the selection is done in a separate way, where each OT uses only its own at-
tributes). This means that only OWC can be performed with this selection order.
S and B are set to 500 MB and 70. Figure 10 summarizes the obtained results.
The best performance of multiple selection is obtained when (HDP then BJI)
is used with attribute assignment (12.5 millions of I/O). The second best ap-
proach is OWC with HDP//BJI order (13.7 millions of I/O). The worst mode
is attributed to OWS when BJI then HDP order is used (18.1 millions of IO).
Several lessons can be learned from these results: (a) BJI then HDP gives worst
performance. Indeed, the discarded attributes by BJI selection will be included
to the attributes assigned to HDP, which may affect the choice of the final HDP
schema. Contrary to the selection of BJI, where an attribute is either chosen
or not, HDP selection may choose non appropriate attribute(s) that generate
a small number of fragments, (b) the order HDP//BJI is less beneficial than
(HDP followed by BJI), since the two selections are done separatly.

To investigate the relevance of our three assignment criteria, we conduct an
experiment, where only OWC methodology is used, by changing the weight for-
mula. This gives seven possible combinations. The results are shown in Figure 11.
We note that the best optimization is obtained when all factors are used which
confirms the relevancy of our criteria.

7 Conclusion

To meet the complex queries requirement, multiple selection of OT becomes a
key solution. It is more complex than single selection due the large search space
that should be explored. In addition to this complexity, interaction between
certain OT shall be considered during the selection process. In this paper, we
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focused on hybrid implementation of this selection and we studied the contri-
bution of attribute interchangeability on the selection process of two OT : HDP
(a non redundant structure) and BJI (a redundant structure). Similarities are
identified between these OT : both are defined on attributes of dimension tables
and optimize restrictions and joins. These similarities are exploited to propose
other solutions for the hybrid implementation that reduce the complexities of
two sub problems. Instead of dealing with the joint problem exploring a large
search space, we first assign restriction attributes to HDP and BJI and then
each OT is selected based on its own attributes. This assignment is performed
by a K-Means method with three criteria that we considered important: attribute
frequency, selectivity factor and cardinality of attributes. A genetic algorithm is
proposed for selecting BJI defined on a single attribute of a dimension table. In-
tensive experiments were conducted to compare our proposal with the existing
state of art studies.

Two main issues need to be explored: (i) studying criteria when assigning the
restriction attributes, such as storage and profiles of used queries, (ii) enriching
our proposal by other optimisation techniques, such as materialized views and
parallel processing and (iii) compare our proposal with more others selection
approaches.
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Abstract. Effective and scalable distributed solutions for data index-
ation and management should provide solutions for three sensitive is-
sues: the system’s architecture that integrates the mentioned facilities,
the management of the indexation techniques and the modeling of the
metadata that describe the multimedia contents. This paper presents
a generic and scalable distributed architectural solution that integrates
a flexible indexation management technique and enables to deal with
any metadata models. Our solution was developed in the context of the
LINDO project, by capitalizing and enhancing the existing solutions for
each issue while also respecting the project’s requirements. The solution
proposes an innovative indexing management technique, and includes the
system’s architecture and the metadata model that sustain it. In order
to validate our proposal, several implementations are presented which
are related to broadcast, video surveillance and archive activities.

Keywords: Multimedia Distributed Systems, Generic Architecture,
Content Indexation Management, Implicit and explicit indexation.

1 Introduction

Nowadays, many multimedia contents are available in various domains, such
as video surveillance, patient medical records, broadcast, personal information
management. These contents are generally acquired and stored on different and
heterogeneous locations. The huge quantity of multimedia contents, the increas-
ing number of data transmissions between remote servers, as well as the indexa-
tion of the multimedia contents and the management of the generated metadata
constitute the main scalability issues that have to be handled by a multimedia
information management system. In this context, three sensitive problems occur
in such a system [11], which are discussed in this paper:

– Architectural solutions : most of the current systems define a specific archi-
tecture that is strongly use case dependent;
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– Indexation management techniques are used to manage the indexation al-
gorithms and the indexation process. In general, multimedia collections are
indexed with a fixed and predefined set of indexing algorithms;

– Metadata models are used to organize and retrieve multimedia contents. Cur-
rently, a large palette of multimedia metadata formats exists, which specifies
different vocabularies and structures, that are not necessary interoperable.

The paper exposes a generic framework developed in the context of LINDO
project1 (Large scale distributed INDexation of multimedia Objects) and in-
tended to guide the formalization and the development of large scale distributed
multimedia systems. Our focus was not to define yet another information index-
ing and retrieval model but rather to reuse many existing frameworks, by capi-
talizing and enhancing the existing solutions for each issue while also respecting
the project’s requirements. More precisely, the LINDO framework provides:

– an architectural solution that is applicable in multiple use cases, such as
video surveillance, broadcast and archive systems;

– a distributed and dynamic indexing management, which has the advantage
that any indexing algorithms could be integrated and deployed on demand on
remote sites, depending on site’s characteristics and on users queries; more-
over, we developed the indexing management technique such as to minimize
the system resources consumption while employing a dynamic algorithms
selection before indexing, corresponding to each particular query;

– support for integrating different metadata models via translation facilities.

In the remainder, the paper presents first how existing projects address the three
mentioned issues. Then, the LINDO generic architecture is detailed in Section 3,
and exemplified in Section 4, including the presentation of its main workflows
and a concrete use case implementation. Other possible instantiations of the
framework are presented in Section 5 related to some specific use cases. Sec-
tion 6 describes in more details the technical implementation of this architecture.
Conclusions and further works are exposed in the end of the paper.

2 Related Work

We present in this section how existing projects related to large-scale distributed
multimedia information systems address the three issues mentioned in Introduc-
tion. Some comparisons with the LINDO approach are then provided for each
issue in order to emphasize its advantages.

2.1 The Employed Architectural Solutions

Two main architectural solutions are considered in the large-scale distributed
multimedia information systems: peer-to-peer solutions and distributed archi-
tecture with a centralized management.
1 http://www.lindo-itea.eu

http://www.lindo-itea.eu
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In a peer-to-peer architecture each peer is in general equivalent in functionality
and cooperates with other peers for retrieving some multimedia information [14].
Some multimedia information systems adopted a peer-to-peer architecture, such
as [2] and SAPIR2 project. However, this architecture involves many transactions
between peers, while these operations are highly resource consuming. Moreover,
a global view of the system is not available that could have enabled the selection
of the most suitable indexing algorithms for a specified user query.

A distributed architecture with a centralized management is composed of
many remote servers controlled by a central server, which is able to handle an
overview of the entire distributed multimedia collection [16]. Such architecture is
adopted by the distributed multimedia information systems that prefer to limit
the number of transactions between servers, as the case of the following systems.

In the CANDELA project3 (Content Analysis and Network DELivery Archi-
tectures) [12], a media distribution management component is included in the
central server, which manages three data types: digital content, system control
data, and the metadata that describes and controls access to the content. Its
aim is to enable data storage and data exchange from content producers to dis-
tribution servers and all the way to end users devices, while an optimization of
the data transfer or data indexing is not considered.

The VITALAS project4 (Video & image Indexing and reTrievAl in the LArge
Scale) [18] adopts the Web services solution for defining the architecture compo-
nents in order to enable the uniform integration of the different partners indexing
tools and infrastructures; with this respect, the architecture is generic and as-
sures the centralized management of distributed multimedia servers.

The KLIMT project (Knowledge InterMediation Technologies) [8] proposes
also a service-oriented architecture that allows the integration of heterogeneous
multimedia indexing tools. A global centralized registry records all KLIMT ser-
vices, while a controller manages the distribution of these services.

In the WebLab project5, the indexing algorithms are also considered as Web
Services, and are manually managed through a central facility [9].

In [13], a distributed image search engine based on mobile software agents is
proposed. In order to deal with the metadata generated by the indexing algo-
rithms, the authors propose two architectures: one centralizing the index and
the another one distributing the indexes on the remote servers.

2.2 Information Indexation Management Techniques

The design of indexation workflow inside a distributed multimedia system could
be set up in a multitude of ways, by developing solution for some important
issues. The indexation process is managed through an indexation engine, which
could includes a fix or variable set of indexing algorithms. The algorithms could

2 http://www.sapir.eu
3 http://www.hitech-projects.com/euprojects/candela
4 http://vitalas.ercim.org
5 http://weblab-project.org/

http://www.sapir.eu
http://www.hitech-projects.com/euprojects/candela
http://vitalas.ercim.org
http://weblab-project.org/
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be executed over the entire multimedia collection or only over a filtered sub-
collection. Moreover, the indexing algorithms set could be filtered or not before
their effective execution. Also, the indexation could be accomplished in real
time or off-line, at a central server level or at the remote servers level. As will
be illustrated in Sections 3 and 4, the solutions for these issues developed in the
LINDO framework were directed to the optimization of resources consumption
by employing the indexation only when and where needed.

In this section we present the information indexation management approaches
adopted by some multimedia distributed systems. As will be noticed, each of
these systems raise some of the above mention issues and develop some corre-
sponding solutions. Capitalizing their experience, LINDO framework integrated
solution for all the issues, guided by the mentioned optimization principle.

CANDELA project, the indexation is uniformly accomplished in all remote
servers, and managed at the central server level. Thus, time consumption is
acquired because of the indexing the irrelevant information.

In order to develop large-scale search in audio-visual databases, Sapir project
[1] adopts a centralized approach consisting in two steps: distributed multimedia
information ingested at peers level is indexed in three specialized servers (one for
images, one for textual documents and one for audio-visual content) and then it
is fused by super-peers.

The indexation technique adopted by VITALAS project considers the integra-
tion (via web services) of partners’ know-how cross-media indexing tools (text
and visual features), as well as their complex combination based on support
vector machine solutions managed by the central server.

The KLIMT project integrated different indexation algorithms for each media
type, implemented as Web services. It provides also support for chaining and
combining services for content indexation, thus the extracted information can
be different in function of the use case scenario.

In the WebLab project the indexing algorithms are considered also as Web
Services. The installation, the deployment and the execution of the available
algorithms are manually accomplished, through an interface enabling as well to
define certain algorithm chaining rules.

In [13] the indexation is accomplished with a fixed set of indexing algorithms
that are implemented as mobile agents. These agents migrate from one site to
another in order to extract different multimedia features. Thus the multimedia
contents are not transfered over the network.

2.3 Multimedia Metadata Models

The multimedia metadata are available into a wide variety of standards, such
as EXIF, DC, MXF. In order to avoid the interoperability problem, the systems
that deal with multiple multimedia metadata formats must develop a solution
for uniformly handle them. Such solutions are based on unified metadata models,
which might be XML-based or RDF-based.

XML-based metadata models provide a uniform structure aiming to include
the multimedia features into an exhaustive way:
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– In CANDELA project the content labeling is based on MPEG-7, while the
compliance with MPEG-4 and MPEG-21 is totally or partially covered.

– VITALAS project defined some concept dictionaries for expressing the cross-
media indexing results, and developed an XML metadata repository includ-
ing XML-based standard metadata formats.

– KLIMT project adopts an XML-based solution for managing multimedia
metadata. The solution is developed on top of the SOAP messaging frame-
work because the indexing algorithms are handled as Web services.

Current RDF-based metadata models are based on MPEG-7[17]. Some models
were defined and/or adopted in some projects:

– The aceMedia Ontology Framework [4], developed inside the aceMedia
project6 define an integrated multimedia annotation framework.

– COMM (Common Ontology for Multimedia)[3] was developed by K-Space7

and X-Media8 projects in order to provide a formal semantics for MPEG-7.
– WebLab Reference Model was developed by WebLab project in order to

provide support for annotating different segments of the multimedia content.

After presenting some important existing solutions for the three issues exposed
in the Introduction, we provide in Table 1 an overview of these solutions.

Table 1. A comparative overview of some representative systems and approaches

System Architecture Indexation Metadata

SAPIR Peer-to-Peer
Uniform and fixed indexation

at each peer
XML-based format, derived

from MPEG-7

CANDELA
Generic

distributed with
central control

Uniform and fixed indexation
at the same server as the

content storage

XML-based format, derived
from MPEG-7

VITALAS
Service oriented

architecture

Variable set of indexing
algorithms, running on some

indexation servers
XML-based format

KLIMT
SOA with a

central control

Realized at the query moment,
with a variable set of IA, on

dedicated servers
XML-based format

WebLab
SOA with central

control

Realized at the acquisition
moment, with a fixed set of

IA, on dedicated servers
RDF-based format

[13]
Distributed

architecture based
on mobile agents

Accomplished by a fixed set of
mobile IA on the content

server
A set of feature vectors

After a careful study of solution proposed by the state of the art and an
analysis of the concrete LINDO system needs, we decided to adopt a distributed
architecture with a centralized management because it enables:

– To have a centralized management of indexing algorithms;
6 http://www.acemedia.org/
7 http://kspace.qmul.net:8080/kspace/
8 http://www.x-media-project.org/

http://www.acemedia.org/
http://kspace.qmul.net:8080/kspace/
http://www.x-media-project.org/
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– To extract simultaneously multiple and diverse metadata by executing dif-
ferent indexation engines, in parallel, on different remote servers.

– To dispatch user queries only to some specific remote servers that might give
some desired information.

– To process queries simultaneously on the central server and on remote servers.

The indexation process adopted in the LINDO project is managed at the central
server level and intelligently accomplished at the remote servers levels:

– A generic interface was defined for indexing algorithms in order to uniformly
handle them [7], and to enable the integration of new algorithms at any time
into the LINDO architecture;

– There exist two indexation processes: (1) an implicit indexation that is exe-
cuted over the multimedia contents from each remote server in the moment
of acquisition; (2) an explicit indexation that could be executed, on demand,
on a specific remote server, with a subset of indexing algorithms and only
on a sub-collection of the multimedia contents.

Since LINDO project aims to integrate any metadata models, we defined an inte-
grative metadata format [6], and included in LINDO architecture a translation
module that assures the conversion between this format and other multimedia
metadata vocabularies. In the following we detail the LINDO architecture.

3 The LINDO Generic Architecture

We have defined the LINDO generic architecture, illustrated in Figure 1, over
two main components: (1) remote servers (§3.1) which acquire, index and store
multimedia contents, and (2) a central server (§3.2) which has a global view
of the overall system. Our architecture provides two advantages. First, each
remote server is independent, i.e., it can perform uniform as well as differentiated
indexations of multimedia contents. For instance, some remote servers may index
in real time acquired multimedia contents, while others may proceed to an off-line
indexation. Secondly, the central server can send relevant indexation routines or
queries to relevant remote servers, while the system is running.

3.1 The Remote Servers Components

The remote servers in LINDO-based systems store and index all acquired multi-
media contents, to provide answers to user queries. Hence, several modules have
been defined and linked together in order to cover all these tasks:

The Storage Manager (SM) stores the acquired multimedia contents. Through
the Transcode module, a multimedia content could be converted into several
formats. Thus, an user can download different encodings of a desired content.

The Access Manager (AM) provides methods for accessing the multimedia
contents stored into the SM. Apart from accessing a whole content, this module
can select different parts of one multimedia content.
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Fig. 1. The LINDO generic architecture

The Feature Extractors Manager (FEMrs) is in charge of managing and ex-
ecuting a set of indexing algorithms over the acquired multimedia contents. At
any time, new algorithms can be uploaded into this module, while others can be
removed or updated. It can permanently run the algorithms over all the acquired
contents or it can execute them on demand only on certain multimedia contents.

The Filtering module module summarizes the metadata produced by indexing
algorithms that may contain redundant or useless metadata.

The Metadata Engine (MDErs) collects and aggregates all extracted metadata
about multimedia contents. Naturally, the metadata stored into this module can
be queried in order to retrieve some desired information.

The Time Client handles time synchronization with the central server.
The Service Description Controller stores the description of the remote server,

such as its location, its capacities, its configuration, all the indexing algorithms
installed and their status, and the media acquisition context.

3.2 The Central Server Components

The central server controls the distributed remote servers by managing the re-
mote indexation and query processes. One major difference between the central
server and a remote server is that the central server does not index multimedia
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contents, but manages the indexation and includes a general knowledge about
the indexed content. Thus, a central server is composed of:

The Terminal Interface (TI) enables a user to specify some queries and dis-
plays the query’s results. Other functionalities are included in the TI, such as
visualization of metadata collections and management of indexing algorithms.

The Metadata Engine (MDEcs) gives a global view of the system. It can
contain some extracted metadata about multimedia contents, some contextual
information about the system, the remote servers’ descriptions, the descriptions
of the available indexing algorithms, etc.

The Service Description Controller collects all remote server descriptions.
The Feature Extractors Manager (FEMcs) manages the entire set of indexing

algorithms used in the system.This module communicates with its equivalent on
the remote server side in order to install new indexing algorithms if it is necessary
or to ask for the execution of a certain indexing algorithm on a multimedia
content, or part of multimedia content.

The Request Processor (RP) treats some queries on the MDEcs or forwards
them to specific remote server metadata engines. Moreover, through the FEMcs,
it can decide to remotely deploy some indexing algorithms.

The Results Aggregator (RA) aggregates the results received from all the
queried metadata engines and sends them to the TI, which displays them.

The Translation module homogenizes the data stored into the central server
metadata engine. Indeed, many different models can be used by remote servers
for indexing multimedia contents or describing their characteristics. Hence, this
module unifies all descriptions in order to provide a global system view.

The Time Server provides a unique synchronization system time.
As could be noticed, the architecture’s scalability is sustained by the oppor-

tunity to integrate at any moment new and heterogeneous remote servers. The
central server considers this diversity when treating the user query. The provided
solution is thus generic in terms of remote servers, multimedia data, as well as
their associated metadata. Each remote server could employ a particular meta-
data format (e.g., XML or RDF based), while the Translation Module assures a
uniform handling at the central server level.

Thus, the proposed scalable generic architectural solution offers an efficient
distributed and dynamic indexing algorithms management, and enables to em-
ploy different metadata models. In order to illustrate how the global system is
running, we present in the next section a concrete illustration of the system
functioning.

4 A Concrete Illustration of the System Functioning

In this section, we will present the logic of our framework from two perspectives.
First the chaining steps in the main workflows will be presented in §4.1 from a
conceptual point of view. Further a concrete instantiation of the system for a
particular use case will be detailed in §4.2.
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4.1 The System’s Workflows to Acquire Content Indexation
Management

In order to save servers’ resources consumption, multimedia content indexation
can be accomplished at acquisition time (implicit indexation) and on demand
(explicit indexation), that are explained in this section.

When a remote server acquires new multimedia content, the SM stores it and
then the FEMrs starts its implicit indexation by executing a predefined set of
indexing algorithms which is established according to the server particularities.

Once the execution of an indexing algorithm is achieved, the obtained meta-
data is forwarded to the Filtering module. The filtered metadata is then stored
by the MDErs. In order to avoid the transmission of the whole collection of
metadata computed on the remote servers, the MDErs only sends a summary of
these metadata to the Translation Module on the central server9. Once transla-
tion is done, the metadata are sent to the MDEcs to be stored and further used
in the querying process. Thus, the implicit indexation process is achieved.

The query process begins with the query specification through the TI. The
user’s query is sent to the RP module in order to be executed over the metadata
collections. First, the RP processes the query in order to select the remote servers
that could provide answers to the query and sends them the query for execution.
Among the servers that were not selected at the first step there could be some
servers that contain relevant information that has not been indexed with the
right algorithms. For this reason, our solution detects such supplementary algo-
rithms [5] and starts their execution (i.e., explicit indexation) on a sub-collection
of multimedia contents. All the results obtained from the remote servers are sent
to the RA, where they are combined and ranked in order to be displayed.

An important remark is that the two kinds of indexation can be mixed in the
LINDO system, i.e., on some remote servers only the implicit indexation can
be accomplished, while on others only the explicit indexation is done, while on
others both indexation processes can be performed.

4.2 Implementation of a Video Surveillance Use Case

A first implementation of the LINDO architecture was realized for a specific
video surveillance use case proposed by an industrial partner10.

This use case concerns a public transportation company, that placed surveil-
lance cameras in their buses, around the bus stations and the bus ticket machines.
Each video stream is recorded with a real time association to a common time
stamp and GPS location. A typical query may be to find all videos containing a
specific event, such as a person with a red pullover, who took the bus in Place de
la Concorde, Paris, on Monday 3rd May, between 6pm and 8pm.

The main identified issues are the extraction of metadata from real time
videos, the storage of huge amounts of multimedia contents and their associated
9 [10] proposes an algorithm which computes several metadata summaries based on

RDF descriptions.
10 http://www.thalesgroup.com/security-services

http://www.thalesgroup.com/security-services
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metadata, and the retrieval of the relevant content to users queries. The LINDO
architecture provides a solution for these issues by associating several cameras
to one remote server that stores and indexes the acquired video contents. Given
the complexity of this particular use case, all the modules presented in Fig-
ure 1 are used. For example, the Time Server and the Time Client modules
are important to synchronize the acquired videos. The SDCs are used to locate
the cameras and to describe their acquisition contexts, e.g, street names, bus
numbers.

At the central server level, the MDEcs stores the metadata received from the
remote servers, that is enriched with additional semantic information (e.g., buses
timetables). In order to semantically define contextual information, we have used
an RDF-based representation for the MDEcs. Since different metadata models
are used on the central server and on remote servers, the Translation module
transforms the metadata through a modifiable set of transformation rules.

Concerning the workflows, the implicit and explicit indexation is done in real
time, and thus the number of indexing algorithms executed must be minimum.
From the specifications we can determine three categories of remote servers corre-
sponding to cameras placed: (1) inside a bus, (2) nearby the bus ticket machines
and (3) around a bus station. Thus, we establish different sets of implicit in-
dexing algorithms to be installed on each type of server. For example, a crowd
detection algorithm is associated with cameras placed around bus stations, while
an algorithm for counting persons is associated with cameras placed inside the
buses as well as nearby bus ticket machines.

In order to provide response to a particular user query, such as the one men-
tioned above, first the MDEcs is queried. If no results could be provided, the
query is processed in two steps: (1) the spatio-temporal information are extracted
[15], e.g., Paris, 3rd of May. These information are used to locate the relevant
remote servers (e.g., related to cameras from the buses that stopped in Place
de la Concorde in Paris) and the corresponding video fragments (e.g., the video
fragments took on 3rd of May, between 6pm and 8pm). (2) the remained part of
the query is used in order to determine what indexing algorithms are necessary
to be executed over the video contents located at the first step. For our example,
a color and a person detection algorithms are deployed and executed over the
selected video content.

Through this indexing strategy, we avoid the execution of the entire set of
indexing algorithms which is consuming all CPU resources and cannot be exe-
cuted in real time. Thus, we limit resources consumption and we generate only
the strict necessary metadata for a video surveillance system. If some other infor-
mation is needed, the relevant indexing algorithms are applied, only on a part of
the content. Hence, the size of the managed metadata collections is also limited.

5 Adopting the Framework in Other Use Cases

In order to illustrate that our architecture is generic enough to be adopted by
various types of distributed multimedia information systems, we will present
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further two other use cases that involve different scenarios of utilization: broad-
cast (§5.1) and archive (§5.2) use cases. These use cases were proposed by the
industrial partners involved in the LINDO project.

5.1 Broadcast Use Case

Our given broadcast use case11 consists in the distribution of TV programs and
movies diffused by a certain television during the last two months. A constraint
specified for this use case is that the broadcaster has a unique access point and
that only the low quality version of the multimedia contents are stored on a single
remote server. Furthermore, all user queries are treated by the remote server. A
typical query may be to find the comedies of Jim Carrey broadcasted last week.

Based on these requirements, the LINDO-based implementation is composed
of a central server and a unique remote server. This simple architecture contains
only the strict necessary modules. At the central server level only the creation
of queries, their transmission to the remote server and the display of the results
are needed. Thus, only the TI and the RP are necessary. Actually, the MDEcs
and the RA are not used because all the metadata are stored on the unique
remote server. At the remote server level, certain modules are not necessary,
namely the Time Client and the SDC, because only one remote server is required.
Furthermore, the requirements do not specify the need to filter the metadata
obtained from the indexing process, thus the Filtering module is also skipped.

In this use case, the indexation process is accomplished off-line and there is no
time constraint for the execution of the indexing algorithms. As a consequence,
the explicit indexation is not needed. However, new indexing algorithms could
be installed at any time on the remote server, thus improving the indexation.

Given the homogeneity of the multimedia contents, only one uniform meta-
data model is adopted. For the implementation of the MDErs we have used the
Sinequa12 engine because it treats uniformly the extracted metadata and the
semantic knowledge associated to the multimedia contents.

The components used for both servers and the lack of the explicit indexation
process simplify the query workflow. Actually, the RP gets the query from the
TI and sends it directly to the MDErs. Because the RA is not used in this use
case, the results obtained to a user query are directly sent to the TI.

5.2 Archive Use Case

Our given archive use case13 consists in the management of patient medical
records in a certain city. The system has to collect different information from
all the hospitals. A constraint specified is that some of the information are kept
only on the hospitals servers for privacy reasons. A typical query may be to find
the medical history of a patient.

11 http://www.sgt.eu/
12 http://www.sinequa.com
13 http://www.hi-stor.com/

http://www.sgt.eu/
http://www.sinequa.com
http://www.hi-stor.com/
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The instantiation of this use case is a system composed of numerous remote
servers, related to each hospital, and a central server. Moreover, almost all the
modules presented in Figure 1 are used. For example, the SDCs are used to
locate and describe the hospitals, e.g., the hospitals facilities.

The information used for the retrieval of documents are not very complex, e.g.,
the patient identification, the date of the visit. Consequently, the indexation
is realized only at acquisition time and the explicit indexation is not needed.
Furthermore, since many textual medical reports have to be acquired, we have
decided to employ Lucene14 which offers full-featured text search engine facilities.

At the central server level, the MDEcs stores some metadata received from
remote servers in the same model as the one used in remote servers. Hence, the
Translation module is skipped. Because some information are confidential, from
the remote servers only secured metadata are transmitted to the central server.

In this context, the querying process is simplified: the central server only sends
the query to the remote servers that might have some answers and collects the
results from all the remote servers in order to display them to the user.

These three use cases and their instantiations demonstrate that our architec-
ture responds to the three issues mentioned in the Introduction:

– an architectural solution that can be used for multiple use cases;
– a distributed and dynamic indexing algorithms management where the in-

dexation can be realized at acqusition time (implicit indexation) and/or on
demand (explicit indexation);

– support for integrating different metadata models via translation facilities
encapsulated in the Translation module.

6 Experimental Tests and Results

Exploiting the specific competences of the project partners, we adopted the
proposed architecture in developing a distributed system with a single central
server, where remote servers were progressively integrated corresponding to dif-
ferent domains as video surveillance, broadcast and archive.

For implementation, we adopted the Java programming language for all mod-
ules, except the SM module that is implemented in C++. The communication
between the different modules is realized through Java implementations of Web
services and JMS (Java Message Service)15 API. These implementations were
employed and tested for both Unix and Windows platforms.

At the central server level, the RP employs some natural language processing
techniques in order to treat the user query and to transform it into a machine
understandable format (such as XQuery).

We proposed ourselves to integrate many indexing algorithms developed
and/or currently used by the project partners16,17. As a matter of fact, the ma-
14 http://lucene.apache.org
15 http://java.sun.com/products/jms/overview.html
16 http://www.supelec.fr/
17 http://www-list.cea.fr/
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jority of these algorithms have their outputs encoded in an XML-based model.
For this reason, we decided to employ at the remote server level an XML-based
model for the metadata representation, such as the one proposed in [6] which en-
capsulates the most common metadata standards. We adopted Oracle Berkeley
DB XML18 to store and query our XML-based metadata in the MDErs.

The MDEcs of central server provides a global view of the existing information
in the entire system. This is acquired with the support of Topic Maps19 repre-
sentation of the concise version of the metadata stored on the remote servers,
as mentioned in §4.1. This general Topic Map includes also information that
describes the characteristics and the context of each remote server. The unifica-
tion of these disparate information inside the mentioned topic map is acquired
through a data virtualization technology proposed by a project partner20.

7 Conclusions and Perspectives

In this paper, we have presented a generic framework for indexing large scale
distributed multimedia contents, developed in the LINDO project and tested
for several use cases. We addressed the scalability issues by providing a flexible
architecture which encapsulates distributed and dynamic indexation techniques
and multiple metadata models. The indexation process comprises two steps: an
implicit indexation and an explicit indexation that is applied when needed.

Currently, the relevance of a query result is established according to the in-
dexation techniques used on each remote server. At the central server side, a
general order of these relevancies is accomplished. In the future, we plan to
study different merging techniques for improving the global results relevance.
More precisely, different result rankings will be compared and evaluated in order
to establish their real impact to the global results list.

Acknowledgment. This work is supported by the EUREKA project LINDO
(ITEA2 – 06011).
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CANDELA – storage, analysis, and retrieval of video content in distributed sys-
tems. In: The IEEE Conference on Multimedia and Expo, pp. 1557–1560 (2005)

13. Roth, V., Peters, J., Pinsdorf, U.: A distributed content-based search engine based
on mobile code and web service technology. Scalable Computing: Practice and
Experience 7(4), 101–117 (2006)

14. Schoder, D., Fischbach, K., Schmitt, C.: Core concepts in peer-to-peer networking.
In: Peer to Peer Computing: The Evolution of a Disruptive Technology. ch.1, pp.
1–27. Idea Group Inc, USA (2005)

15. Strötgen, J., Gertz, M., Popov, P.: Extraction and exploration of spatio-temporal
information in documents. In: The 6th Workshop on Geographic Information Re-
trieval, pp. 1–8. ACM, New York (2010)

16. Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, Upper Saddle River (2001)

17. Troncy, R., Bailer, W., Hausenblas, M., Hofmair, P., Schlatte, R.: Enabling multime-
dia metadata interoperability by defining formal semantics of MPEG-7 profiles. In:
The 1st Conference on Semantics And digital Media Technology, pp. 41–55 (2006)
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Abstract. In this paper we conceptualize the database layout problem
as a state space search problem. A state is a given assignment of tables
to computer servers. We begin with a database and collect, for use as a
workload input, a sequence of queries that were executed during normal
usage of the database. The operators in the search are to fully replicate,
horizontally partition, vertically partition, and de-normalize a table. We
do a time intensive search over different table layouts, and at each itera-
tion, physically create the configurations, and evaluate the total through-
put of the system. We report our empirical results of two forms. First, we
empirically validate as facts the heuristics that Database Administrators
(DBAs) currently use as in doing this task manually: for tables that have
a high ratio of update, delete, and insert to retrieval queries one should
horizontally partition, but for a small ratio one should fully replicate a ta-
ble. Such rules of thumb are reasonable, however we want to parameterize
some common guidelines that DBAs can use. Our second empirical result
is that we applied this search to our existing data test case and found a re-
liable increase in total system throughput. The search over layouts is very
expensive, but we argue that our method is practical and useful, as entities
trying to scale up their Web-based applications would be perfectly happy
to spend a few weeks of CPU time to increase their system throughput
(and potentially reduce the investment in hardware). To make this search
more practical, we want to learn reasonable rules to guide the search to
eliminate many layout configurations that are not very likely to succeed.
The second aspect of our project (not reported here) is to use the created
configurations as input into a machine learning system, to create general
rules about when to use the different layout operators.

Keywords: Database tuning, partitioning, layout search, Web-based
applications.

1 Introduction

Nowadays, Database Administrators have to be familiar with multiple available
data stores to select the best fit for their Web-based applications. Upon a suc-
cessful selection, scalability issues related to the database could be a possible
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bottleneck of the system. Especially, if the requests are distributed among mul-
tiple database servers that could lead to slow response time or a possible system
crash. Scalability issues and their possible solutions should be automatically ad-
dressed without spending enormous amount of time on investigating the database
structure or investing into expensive hardware solutions. Our work is motivated
by scalability issues of Web-based applications. Our novel assumption is that we
can increase the total throughput of a Web-based application by automatically
creating database configurations that are capable of answering all the incoming
query templates using a single node. We use a second assumption that in the
case of a Web-based application we can know all the incoming query templates
beforehand because the user interacts through a possible Web interface such as
web forms [9]. The application logic executes the same hard wired queries over
and over again for the same web form request. We conceptualize the database
layout problem as a state search problem where each state is a valid configu-
ration of layouts across database nodes. We search for the best configuration
that can maximize the total system throughput and increase the performance of
the application. Our system is capable of connecting to the application database
and it conducts an automated state space search over the database layouts based
on the given workload. The workload needs to contain all the incoming query
templates of the application to be able to create the join graph of the tables
and determine the applicable operators. The join graph represents the connec-
tions between tables in all the queries. The system also examines the constraints
graph of the tables of the database to validate the relationships of each involved
tables. The constraint graph represents the relationships between tables that
are involved in the queries such as one-to-one, one-to-many, and many-to-many.
Based on the constructed graphs the system performs an analysis to determine
the groups of possible applicable partitioning operators. These groups serve as
an input to the state space search that can eliminate many invalid created layout
configurations. A state Sn is considered to be valid if and only if the created lay-
out configuration Li correctly answers each and every query Qi from the given
workload W . To further increase the practical aspect of the state space search
we propose to learn general guiding rules that can eliminate valid states with
high precision. These valid states have no or have worse impacts on the over-
all throughput of the system. In Section 2 we describe the related work and in
Section 3 we outline our proposed solution. Our solution for State Space Search,
features selection, and Cut-off points detection is described in Section 4. Our
middleware system is described in Section 5. Experimental results are discussed
in Section 6, in Section 7 we summarize our contribution, and in Section 8 we
conclude the work and discuss future directions.

2 Related Work

2.1 Parallel and Hybrid Solutions

MapReduce [7] is a programming model with an associated implementation
to process and generate huge amounts of data in a large scale (hundreds and
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thousands nodes), heterogeneous shared-nothing environment. More recently, a
marriage of MapReduce with DBMS Technologies led to HadoopDB [1] a hybrid
architecture. HadoopDB targets the performance and scalability of a parallel
database and the fault-tolerance feature of the flexible MapReduce to achieve
better structured data processing. It uses Hadoop [22], the open source imple-
mentation of MapReduce, to parallelize the queries across nodes. HadoopDB uses
PostgreSQL [10] as a database layer that processes the translated SQL queries.
Parallel databases use shared-nothing infrastructures in a clustered environment
and execute queries in parallel using multiple nodes. They can scale up well if the
number of the involved nodes is small. In a heterogeneous environment the prob-
ability of a possible server failure is high and parallel databases are not designed
for use in a large-scale heterogeneous environment. There is a conceptual differ-
ence between parallel database management systems (DBMS) and MapReduce
based systems (Hadoop). In the case of DBMS, user can state what he/she wants
in SQL language. In the case of MapReduce-like systems the user presents an al-
gorithm to specify what he/she wants in a low-level programming language [17].
Analytic Database [27] utilizes cheap shared-nothing commodity hardware and
it is designed for large scale data warehouses. It uses a column-store architecture
where each column is independently stored on different nodes. It applies vertical
partitioning on the original dataset to create multiple partitions that can be
replicated across cluster nodes. It is used mostly for read intensive analytical
applications where the system has to access a subset of columns. Verticas opti-
mizer is designed to operate on this column-partitioned architecture to reduce
I/O cost dramatically. The optimizer of HadoopDB does not have full support
for joins nor cost-based optimization of the queries. Netezza’s [6] parallel system
is a two-tiered system capable of handling very large queries from multiple users.
Teradata [25] supports single row manipulation, block manipulation and full ta-
ble or sub-table manipulation as well. It distributes the data randomly utilizing
all the nodes. Its built-in optimizer can handle sophisticated queries, ad-hoc
queries, and complex joins. IBM DB2’s data partitioning [21] tool suggests pos-
sible partitions based on the given workload and the frequency of each SQL
statement occurrence. For IBM DB2’s data partitioning selection strategy [29]
the main goal is - for a given static database schema and workload characteristic
- to minimize the overall response time of the workload in multiple nodes. There
are several other parallel databases available like Exadata [15] (parallel database
version of Oracle), MonetDB [26], ParAccel [12], InfoBright [24], Greenplum [8],
NeoView [28], Dataupia [5], etc. that all combine different techniques to achieve
better performance and reliability. According to our best knowledge, none of
them conducts a state space search and involves full replication, horizontal and
vertical partitioning, and de-normalization operators by answering each query
using a single database node.

2.2 Automated Physical Design Solutions

While there has been work in the area of automating physical database design
[21,29] we are not aware of any work that addresses the problem of incorporating
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the full range of common operators and can learn rules to better partition a given
database with multiple database nodes. Papers [19,29,2,20] study full replication
and data consistency using distributed heavy weighted transactions. For example,
in [3] they automatically select an appropriate set of materialized views and in-
dexes to optimize the physical design for a given database and query workload as
a built in tool in Microsoft SQL server 2000 using a single node. The paper [3] has
tackled the very related problem of how to know automatically which indexes the
system should use and which materialized views should apply. In paper [2], they
added a new operator, called horizontal partitioning, to the previous optimization
goal in Microsoft SQL server 2005. Microsoft SQL server 2005 offers an automated
databasedesign tool that offers physical design recommendation for horizontal par-
titioning. IBM DB2 [21] examined the problem of laying out multiple nodes which
use many of the same operators we propose. GlobeTP [9] exploits the same fact
that our system does: the workload of the web application is composed of a small
set of query templates. In [13] their approach describes two common properties
of Web-based applications. According to their strong assumption, workload is (1)
dominated by reads and (2) it consists of a small number of query and update tem-
plates (typically between 10 and 100). Using the second assumption, their system
solves strong consistency management of the servers. DBProxy [4] observed that
most applications issue template-based queries and these queries have the same
structure that contains different string or numeric constraints. AutoPart [14] deals
with large scientific databases where the continuous insertions limit the applica-
tion of indexes and materialized views. For optimization purposes, their algorithm
horizontally and vertically partitions the tables in the original large database ac-
cording to a representativeworkloadusing a single node. Ganymed [18] uses a novel
scheduling algorithm that separates update and read-only queries using multiple
nodes. GlobeDB [23] offers a different approach for edge servers to handle data
distribution. Their system automatically partitions and replicates the database
through a wide area network using multiple nodes.

3 Proposed Solution

Our middleware architecture is also based on shared-nothing commodity hard-
ware where each node has its own CPU, disk, RAM, and file system. We focused
on a Web-based application where the workload consists of a fixed number of
query templates. This means the system is not presented with ad-hoc and unex-
pected queries. According to our best knowledge, none of the existing systems
specializes for Web-based applications and considers the database layout prob-
lem as a state space search problem with the assumption that all the incoming
queries should be answered by a single node. Our system is also novel because
the state based search applies four different operators: full replication, horizon-
tal and vertical partitioning, and de-normalization. Since we know all the query
templates beforehand our system can pre-partition the data using these opera-
tors and pre-determined heuristics. Comparing to HadoopDB, we do not need
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to re-partition the data since we do not have unexpected and ad-hoc queries. By
characterizing the problem as a state space search over database layout configu-
rations, we iteratively minimize the total cost of the workload creating different
database layouts and increase the total system throughput. Moreover, the sec-
ond aspect of the project is a system that has a built-in corpus with generalized
machine learned rules to determine which operator is applicable and when. As
soon as the layout is determined, the data is distributed across the server nodes.
A central dispatcher similar to the HadoopDN catalog - maintains the statistics
about the current layout (table descriptors, data part locations, etc.). All the
joins are pre-computed in our middleware and the communication bottleneck
is eliminated. Our central dispatcher can push each query into the database
layer directly where the well-defined schemas support indexing. We support SE-
LECT with joins, INSERT, UPDATE, and DELETE SQL statements natively.
We do not have additional failure detection mechanism, but the system is easily
expandable with a full copy of the original database. Furthermore, a possible
integration with Hadoop grants an additional layer that is capable to scale up
to thousands of nodes as needed.

4 State Space Search over Layouts

We consider the database layout problem as a state space search problem with
the assumption that all incoming queries should be answered by a single node.
We do a time intensive search over different layouts, and each time, physically
create the configurations, and evaluate the total throughput of the system. A
state is a given assignment of tables to computer servers. The operators in the
search are to fully replicate, horizontally partition, vertically partition, and de-
normalize a table. The search over layouts is very expensive, but we argue that
our method is practical and useful, as entities trying to scale up their Web-based
applications would be perfectly happy to spend few weeks of CPU time to in-
crease their system throughput. Figure 1 shows an initiated complete search.
As a start state (state 0) we fully replicate all tables across all database nodes
and measure the total throughput of the system using the given workload. The
system provides breath-first-search and depth-first-search algorithms to traverse
the search tree. The default search algorithm is depth-first-search. We traverse
down an entire path (state 1, 2, 3, and 4) before backtracking to the next valid
path (state 2, 5, and 6). A state Sn is considered to be valid if and only if
the created layout configuration Li correctly answers each and every query Qi

from the given workload W . As soon as a valid state is created the system mea-
sures the system throughput. As one of the guiding rules we backtrack to the
next valid path if the throughput of a child is less than the throughput of its
parent. For example, if the throughput of sate 18 is less than the throughput
of state 17 then we will not explore states 19, 20, 21, and 22. To further in-
crease the practical aspect of the state space search we propose to learn general
guiding rules that can eliminate valid states that are not very likely to succeed
because they have worse or no impact on the overall throughput of the system.
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Fig. 1. State Space Search

Table 1. Illustrating Table, Query, Workload, and State features used by the system

Table Features

Table size

Primary key

Foreign key

# of indexes

# of distinc values

# of columns

Is schema heavy?

# of INSERTS

# of UPDATES

# of DELETES

# of table accesses

State Features

Full Replication

Horizontal Partitioning

Vertical Partitioning

De-normalization

Total Throughput

Query & Workload Features

UDI vs. R query ratio

% of UDI and R queries for
Table A

% of queries of Table A with
”WHERE” condition

% of ”JOINS” on Table A
comparing to other JOIN queries

% of queries that involves a JOIN
and Table A comparing to all queries

% of queries that involves Table A
compared to other queries

% of queries that involves Table A and
other tables compared to all queries

% of queries that involves Table A’s columns
compared to other queries

% of queries that involves Table A’s columns
and other tables’ columns compared

to other queries

The frequency of UDI and R queries

We parameterize common guidelines that DBAs use as heuristics in doing this
task manually. Table 1 shows the features we applied to parameterize guide-
lines for the search. We divided the features into three categories: table-related,
query- and workload-related, and state-related features. Table-related features
like table size, distinct values, number of columns, etc. help to pre-select the ap-
plicable operators for a specific table. ”Is schema heavy?” feature considers the
table schema heavy if one of the table columns’ type can generate high database
memory and caching demand. If the column type is text, byte, xml, etc. and
the frequency of the column specific retrieval query is high then one should help
the database to share the memory requirements among multiple nodes. The de-
tection of ’WHERE’ conditions can help to identify a possible operator and a
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partitioning key. We do not consider horizontal partitioning operator for tables
that are involved in queries without a ’WHERE’ clause. For example ’SELECT
* from table a’ can break our assumption that we can answer each query us-
ing a single node. Although we rule out applicable operators if specific query
templates are involved, this assumption can reduce the intercommunication cost
between nodes because each join is pre-computed and pushed into a single data
node. Query and workload features are also very important to determine exact
cut-off points. For example, a table with few tuples is not worth horizontally
partition unless the number of table-related inserts versus the select queries’ ra-
tio is high enough. As another example: consider the frequency of the queries
in the workload (for all queries and table specific ones as well) and determine
a cut-off point to characterize the application as write intensive (high number
of Update, Delete, and Insert queries) or as read intensive one (high number of
Select queries). With the determination of cut-off points we can pre-determine
heuristics, guide a parameterized state space search better, and eliminate valid
states that otherwise would not increase the system throughput.

4.1 Cut-Off Points Detection

Cut-off points help the state space search to focus on creating layout configura-
tions that could boost the performance of the application. Cut-off points reduce
the size of the search space by eliminating valid table-operator keypairs because
of their possible negative performance effect on the system. Figure 2 presents an
example for the detection of the cut-off points. ASSISTments [11] is a Web-based
Intelligent Tutoring System. In the system the number of sessions can be bal-
anced among application servers but the continuous database retrieval queries,
and update, delete and insert (UDI) queries decrease the system response time
significantly. Currently, the ASSISTments system supports thousands of users
over Massachusetts. It consists of multiple application servers, a load balancer,
and a database server. We collected real-time queries during a week interval and
constructed a workload that reflects a heavy tutoring day. The workload has all
the query templates of the system (136) and 50,000 queries. The frequency of
the queries reflects the real system’s workload characteristics. We determined the
Cut-off points for select vs. insert, select vs. update, and select vs. delete query
ratios. We removed all the UIDs from the workload and replaced them with
retrieval queries to maintain 50,000. The system fully replicated all the tables
and created multiple partitions across three database nodes. We simulated three
application servers each with the 50,000 queries and captured the total through-
put of the system (Times[s]) averaging the results. We turned off the cache of
the PostgreSQL servers to eliminate the effect of query caching. After the initial
measurements we increased the UDI query ratios in the workload. We measured
each state three times to be able to determine that the results are significantly
different. We found significant differences in each case. Table 2 presents one of
the two-tailed T-TEST results. We zoomed into the 0%-75% interval to make
the Cut-off points precise. Based on the results, we can see that is worth fully



368 J. Patvarczki and N.T. Heffernan

Table 2. Two-tailed T-TEST results for retrieval vs. update ratio

R/U ratio Run 1[s] Run 2[s] Run 3 [s] AVR[s] TTEST p-value

75%/25%

Full Replication 4080.551 4089.372 4085.493 4085.139 less than 0.01

Horizontal Part. 4624.573 4630.825 4632.409 4629.269

81.25%/18.75%

Full Replication 5416.133 5452.314 5421.186 5429.878 0.6394

Horizontal Part. 5501.191 5450.292 5393.945 5448.476

87.5%/12.5%

Full Replication 5169.829 5170.803 5176.965 5172.532 less than 0.01

Horizontal Part. 5195.582 5194.494 5206.076 5198.717

93.75%/6.25%

Full Replication 4913.791 4911.573 4925.373 4916.912 0.1231

Horizontal Part. 4914.215 4914.195 4927.423 4918.611

100%/0%

Full Replication 4401.551 4409.372 4402.493 4404.472 less than 0.01

Horizontal Part. 4673.159 4660.961 4675.263 4669.794

Fig. 2. Cut-off points of Horizontal Partitioning and Full Replication (upper: retrieval
vs. insert query ratio with detected Cut-off point; lower: retrieval vs. update query
ratio with zoomed Cut-off range
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replicating a table if the percentage of the UDI vs. retrieval query ratio is less
than or equal to 6%. We can also see that is worth considering horizontal parti-
tioning if this ratio is greather than 18%. The average of the standard deviations
is +/- 9.7. We also tried to change the total number of queries in the workload
from 50,000 to 100,000 (system response time increased), but the Cut-off points
did not change significantly.

5 The Middleware

In this section, we describe our middleware and the process of the state space
search over different layout configurations. Figure 3 illustrates the high-level
architecture of the system and its main inputs. The workload specifies the se-
quence of queries that were collected during normal usage of the database. It
needs to contain all incoming query templates of the application. Constraints rep-
resent the relationships between tables. We considers one-to-one, one-to-many,
and many-to-many relations. The placement algorithm determines the appli-
cable operators, partitions, and partitioning keys based on the workload and
constraints. The system also considers the application source database and the
available database nodes for partitioning which applies the nodes’ addresses and
database connector strings. Figure 4 shows the modularized architecture of the
system. The Data Placement Algorithm (DPA) [16] is responsible for deter-
mining the valid sets of tables and keys for each operator based on the given
workload, constraints, and node information. As soon as the algorithm creates
the sets it passes them to the State Space Search Module (SSSM) (Section 4).
This module is the heart of the search. If the SSSM determines a valid state
then it contacts the Layout Module (LM) to initiate the creation of the physi-
cal configuration with the selected operator. The LM stores information about
the created configurations in the Layout Bank (LB). Therefore, it asks the LB
for the required configuration. If the LB has no previous information about
the requested layout then the LM starts the layout generation process. First,
it connects to the source database to initialize the layout generation. Then it

Fig. 3. High-level architecture of the Database Tuning Middleware
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Fig. 4. Modules of the Database Tuning Middleware

collects information about the source table Users (e.g. column names and types,
indices, triggers, etc.) and generates the new table schema (Table name + Ap-
plied operator + New Table identifier + Partitioning Key) utilizing the given
database nodes (e.g. Users HP 2abc4 id). In the next step the LM creates the
new tables using the cloned table information on each node. With a pre-defined
hash function, it distributes the tuples among multiple database nodes before
sending the layout information to the LB. When the layout creation finishes,
the SSSM initiates a test request to measure throughput of the created state.
The Tester Module (TM) simulates the real world example with multiple appli-
cation servers. Each simulated application server uses the workload to generate
hundreds or thousands of requests for the back-end. The Database Connector
(DCM) and Linker (DLM) modules are responsible for initializing and maintain-
ing the database connections towards the available database nodes. The Query
Analyzer Module (QAM) parses the queries in the workload and rewrites them
to replace the original table names with the partitioned ones (e.g. replace table
Users with Users HP 2abc4 id). It uses the same hash function the LM applies
to determine the correct database nodes for data retrieval. Once the data is laid
out on the database servers, the LM updates the middleware’s Query Router
(QR) about the new changes in the layout configuration [16]. The QR maintains
multiple connections to the database nodes, routes queries to the correct node,
and transfers results back to the requestor. As soon as a new configuration is laid
out, the Web-based application can connect to the QR without needing any code
modification. The application detects the QR as a database node that manages
and hides the configuration differences utilizing multiple databases.

6 Experimental Results

Our empirical result is determining a reliable increase in total system through-
put by applying a hill climbing search to our existing data test case (the AS-
SISTments Intelligent Tutoring System). We understand that heuristics searches
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converge to local minimums but this is an acceptable compromise to achive a
faster search. We collected real-time queries during a week interval and con-
structed a workload that reflects an average tutoring day. The workload had
all the query templates of the system (136) and consisted of 1000 queries. The
frequency of the queries reflected the real system’s workload characteristics. Our
three database nodes had the following configurations: node 1, node 2, and node
3 are an Intel Xeon 4 Core CPU with 8 GB RAM running FreeBSD 7.1 i386. The
database software used on all nodes is PostgreSQL version 8.2.13. We turned off
the cache of the PostgreSQL servers to eliminate the effect of query caching.
We utilized our query router and used three simulated application servers, each
issued 1000 queries respectively. The router was an Intel Pentium 4, 3 GHz ma-
chine with 4 GB RAM running Ubuntu 4.1.2 OS. The code for this middleware
is written in Python version 2.6. The bandwidth between the query router and
the database nodes is 100 Mbps, and the number of hops from the query router
to the database servers are equal. Each simulated application server repeated
the throughput measurement 4 times and the entire measurements was repeated
3 times. We took the average of the three repeated executions. The experiment
was running for 48 hours. The state space search considered 168 valid states
and eliminated 155 ones that had no effect on the total throughput of the sys-
tem. Figure 5 shows the results. We had 11 distinct operators. Each state is
significantly different from the initial state 0 where we fully replicated all the 44
tables across the nodes. We found that State 10 gave the most significant 10%
throughput improvement of the system.

Fig. 5. Experimental results
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7 Contributions

The contribution of this paper is a methodology which can help Web-based ap-
plications that deal with scalability problems. The typical scaling bottleneck of
an application is at the database side. We propose a simple solution to resolve
this issue and we make certain assumptions about how to simplify the task.
We propose a search methodology by which we search for better database lay-
outs. One of the assumptions we actually impose upon ourselfs is that queries
should be answerable by a single database node. By making this assumption
we simplified the processing of individual queries to the databases. Of course,
sometimes DBAs want to write queries that can go accross all database nodes
involving multiple tables, e.g. for analytic purposes but these analytic queries
can be executed as a background task by the DBAs. Furthermore, we proposed
an established middleware that is general and it can be used by any Web-based
application. We established two empirical results. First, we verified and parame-
terized the common assumption that one should horizontally partition tables or
fully replicate them if the ratio of UDIs to the retrieval queries is greather than
18% or less than 6%. Second, we reported our experimental results using real
application workload and performing the layout search over multiple database
nodes. By conceptualizing the problem as a state space search problem and by
doing a full state space search, we were able to physically create the layouts and
evaluate the overall throughput of the system to parameterize the guiding rules.
With our methodology we were able to increase the overal system throughput
by 10%. We also identified other features that can be important to guide the
search. We propose to use them as an input of a machine learning system to
create general rules about when to use the different layout operators.

8 Future Work

We would like to use our middleware to actually find more interesting rules
involving the proposed features of tables, queries, workload, and states. We pro-
pose to use them as rules of thumb of a machine learning system to recommend
when to use the different layout operators. Our hypothesis is that we can learn
more rules to capture human-like expertise and use these rules to better parti-
tion a given database. We also propose to evaluate our solution against many
different web applications to illustrate the benefits of our approach.
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Abstract. One of the key characteristics of XML applications is their
dynamic nature. When a system grows and evolves, old user requirements
change and/or new requirements accumulate. Apart from changes in the
interface, it is also necessary to modify the existing documents with each
new version, so they are valid against the new specification. The approach
presented in this paper extends an existing XML conceptual model with
the support for multiple versions of the model. Thanks to this extension,
it is possible to define a set of changes between two versions of a schema.
This work contains an outline of an algorithm that compares two versions
of a schema and produces a revalidation script in XSL.

Keywords: XML schema, conceptual modeling, evolution, revalidation.

1 Introduction

The eXtensible Markup Language (XML) [16] has become a standard for data
representation and manipulation and, hence, invoked a boom of so-called XML
applications that exploit a whole family of XML technologies. A typical cur-
rent XML application usually consists of a set of sub-applications, each being
responsible for a particular logical execution part. The life-cycle of a such an
XML system of applications is similar to a life-cycle of a single application, how-
ever the complexity is much higher. First of all we need to design of numerous
data structures, i.e. XML schemas, that are exchanged and processed by busi-
ness processes of the system. What is more, they are usually mutually related or
overlayed. In other words, each application of the system utilizes several views
of a common problem domain represented by XML schemas. Hence, they can-
not be designed separately, but as a whole complex system. In addition, sooner
or later the user requirements of the applications change and, hence, the data
structures they input, process and output must be modified respectively – we
usually speak about the problem of XML schema evolution.

In our previous work [15] we have proposed a five-level XML evolution frame-
work that enables one to face the described issues. It utilizes the concepts of
MDA (Model-Driven Architecture) [12] hierarchy of conceptual models that en-
able a user to abstract from specifics of a particular XML format, enables one to
model a whole set of related XML applications concurrently and preserves the
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respective relations between them. Consequently, it naturally supports evolution
management.

In this paper we focus on one particular aspect of the complex framework
– propagation of changes between multiple versions of an XML schema to the
respective instances, i.e. XML documents. We speak about the process of reval-
idation. We describe a unique approach that enables one to output so-called
revalidation script, i.e. an XSLT [6] script that, when applied on the given set of
XML documents valid against an old version of an XML schema, outputs a set
of XML documents valid against the new version of the schema. The approach
enables to reduce manual and, hence, error-prone tasks via cutting down the
user interaction to the necessary minimum.

The paper is structured as follows: In Section 2 we provide an overview of the
related work. In Section 3 we describe the conceptual model we utilize for the
purpose of change specification. In Section 4 we define the set of changes that
can be performed over the models and in Section 5 we provide the algorithm for
generation of the XSLT revalidation script. In Section 6 we describe implemen-
tation of our approach and provide a complete illustrative example. Finally, in
Section 7 we conclude and outline future work.

2 Related Work

For the goal of determining whether the set of documents was invalidated with
the newly coming version of the schema, the system must recognize and analyze
the differences between them. There are two possible ways to recognize changes
– recording of the changes as they are conducted during the design process and
comparing the two versions of the schema.

An evolution system that utilizes recording of the changes (e.g. [7]) usually
provides some kind of a command that initiates the recording and after issuing
this command all operations carried out by a user over the schema are recorded.
When the desired schema is reached, the user finishes recording and the system
has all the information about the changes made – the sequence of performed op-
erations. When the recording is finished, the system can normalize the sequence
for example by eliminating operations that cancel each other or by replacing
groups of operations by other groups that lead to the same result but in a more
straight way. These normalizing rules must be defined in the system.

An alternative approach is to base the change detection on comparison of the
two versions. The user can work with both schemas independently until (s)he
is satisfied with them. Before detecting changes, the mapping between the two
schemas must be found, which requires some degree of user interaction ([10]
uses a visualization tool for mapping editing). The change detection algorithm
then takes the two schemas as an input and compares them. The result of the
comparison is a list of differences between the schemas.

On the contrary, systems X-Evolution [3] and XEM [4], built upon graphical
editor for creating schemas in the XML Schema [18] or DTD [19] respectively,
use an incremental validation. Each single evolution operation executed upon the
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schema is propagated to valid documents. In addition, neither of the systems
uses any conceptual model for the schemas, so the user must cope with all
technical details of the languages. The authors of [2] also chose this method,
only the evolution operations are executed upon UML model, from which they
are propagated to XML schemas and documents.

None of the existing approaches meets the requirements for a full-fledged
evolution framework. Moving elements/attributes is not supported in [3,4], [7]
does not support cardinalities entirely, [4], [7] and [10] are strongly dependent on
the chosen implementation language. Except for [2], none of the aforementioned
approaches utilizes a conceptual model or any higher level of abstraction. The
drawback of [2] is the lack of control over the resulting XML schema (common
constructs like choice or set have no counterpart in UML). All the incremental
approaches are not suitable when XML documents are stored in a relational
database supporting schema evolution [1], because in this scenario, a complete
revalidation script is required for the revalidation cycle.

3 Conceptual Model

Our approach does not work directly at the low level of XML schemas. Instead,
we proposed a two-layered framework called XSEM [14] for schema modeling
and revalidation. XSEM is a model for XML data and it exploits two layers
of the MDA – platform-independent model (PIM) and platform-specific model
(PSM). A schema in a platform-specific model (PSM) models how a part of the
reality modeled by the PIM schema is represented in a particular data model.
In our case, we consider XML as the data model and our PSM schema specifies
representation in a particular XML format. Separation of the PIM allows to
easily model a whole family of related schemas sharing the same problem domain.
Moreover, the layered model is highly useful for integration of heterogenous
systems sharing a problem domain, as we have shown in [9], and especially for
evolving the family of schemas as a whole (where a one conceptual change must
be reflected in several parts of the system). In the rest of this paper, we will use
following notation:

– L to denote an infinite set of string labels, λ will be used for empty string,
– D to denote a finite set of data types (a data type D ∈ D is a possibly infinite

set of data values, e.g. an infinite set of all positive integers, etc.),
– D∗ to denote the union of all considered data types (D∗ =

⋃
D∈D D),

– C = {m..n : m ∈ �0∧n ∈ (�0∪{∗})∧(m ≤ n∨n = ∗)} to denote an infinite
set of cardinality constraints where �0 denotes the set of natural numbers
including 0. We will use auxiliary functions low and upp : c = {m..n} ∈ C →
low(c) = m ∧ upp(c) = n.

– 2X and 2(X ) to denote the set of all subsets and ordered subsequences of a
set X , respectively. For x ∈ L, L ∈ 2(X ) the function position(x, L) returns
position of x in the ordered subsequence L.
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The full specification of both PIM and PSM for XSEM can be found in [13],
its prototype implementation XCase was presented in [8]. We use (simplified)
UML class diagrams on the PIM level (class, attributes, binary associations).
PIM contains exactly one schema (unlike PSM). For this paper, we will use a
slightly simplified definition of PSM. Def. 1 formally introduces PSM schemas.
A PSM schema ‘shapes’ PIM concepts to model a particular XML format. The
separate PSM layer allows reuse of shared concepts from the PIM and thus reduce
the manual work of the schema designer. A PSM schema can be automatically
translated to an XSD [13].

Fig. 1 shows an XML format for a purchase in an e-commerce system, each
purchase document has an identification of the customer, customer’s address and
the list of purchased products.

Definition 1. A platform-specific schema (PSM schema) is a 5-tuple S′ =
(S′

c,S′
a,S′

r,S′
m, C′S′) of disjoint sets of classes, attributes, associations, and con-

tent models, respectively, and one specific class C′S′ ∈ S′
c called schema class. S′

must be a forest with one of its trees rooted in C′S′ . In addition, PSM schema
defines functions name’, card’, type’, xform’, attributes’, cmtype’, content’ :

– Class C′ ∈ S′
c has a name ∈ L assigned by function name′(C′).

– Attribute A′ ∈ S′
a has a name ∈ L, data type ∈ D, cardinality ∈ C and

XML form ∈ {e, a}, assigned by function name′(A′), type′(A′),card′ (A’)
and xform′(A′) respectively. Function attributes′(C′) : S′

c → 2(S′
a) assigns a

sequence of attributes for each class.
– Association R′ ∈ S′

r is a pair R′ = (C′
1, C

′
2) where C′

1 and C′
2 are called

parent and child of R and denoted parent′(R′) and child′(R′). R′ has a name
∈ L and cardinality ∈ C assigned by function name′(R′) and card′(R′).

– Content model M ′ ∈ S′
m has a content model type ∈ {sequence, choice,

set} assigned by function cmtype′(M ′) .
– N ′ = S′

c∪S′
m, function content′ : N ′ → 2(S′

r) assigns to each node an ordered
sequence of association starting in that node.

The graph Ŝ′ = (N ′,S′
r) with classes and content models as nodes and associa-

tions as ordered edges is a tree rooted in the schema class C′
S′ . Members of S′

c,
S′

a, S′
r, and S′

m are called components of S′.

We will also use auxiliary functions inAssociation′, parentNode′ and childNodes′:

inAssociation′(N ′) = R′ ⇔ ∃R′ ∈ S′
r s.t. child′(R′) = N ′

childNodes′(N ′) = (N1
′, . . . , Nn

′)⇔ content′(N ′) = (R1
′, . . . , Rn

′) ∧
N1

′ = child′(R1
′) ∧ . . . ∧Nn

′ = child′(Rn
′)

Tab. 1 shows how a specific XML format is modeled by a PSM schema.

4 Changes between Versions

Before revalidation, we need to find out what changes were made during schema
evolution, i.e. what operation the user performed when evolving a PSM schema



XML Data Transformations as Schema Evolves 379

Purchase

customer-info

purchase-date: date

Customer

customer-no: integer
email: string {0..*}

Item

ItemIAddress

zip: integer
city: string
street: string

amount:integer
unit-price:integer

qty

item

Product

code: integer
subcode: integer
title: string
weight: integer

productaddress

1..*

PurchaseSchema

purchase

CustomerInfo
customer 0..1

<purchase>
<purchase-date>#
<customer-info>
<customer>
<customer-no>#
<email>#
… 
</customer>
<address>… 
</customer-info>
<item>
<product>… 
<qty>… 
</item>
…  
</purchase>

Fig. 1. Sample PSM schema (and a rough structure of a modeled XML document)

Table 1. XML attributes and XML elements modeled by PSM constructs

Construct Modeled XML Construct

C′ ∈ S ′
c A complex content which is a sequence of XML attributes and XML

elements modeled by attributes in attributes′(C′) followed by XML
attributes and XML elements modeled by associations in content′(C′)

A′ ∈ S ′
a, s.t.

xform′(A′) = a
An XML attribute with name name(A′), data type type(A′) and car-
dinality card(A′)

A′ ∈ S ′
a, s.t.

xform′(A′) = e
An XML element with name name(A′), simple content with data type
type(A′) and cardinality card(A′)

R′ ∈ S ′
r, s.t.

name(R′) �= λ
An XML element with name name(R′), complex content modeled by
child′(R′) and cardinality card(R′)

R′ ∈ S ′
r, s.t.

name(R′) = λ
Complex content modeled by child′(R′)

M ′ ∈ S ′
m A complex content which is a sequence (or choice or set, respectively)

of XML attributes and XML elements modeled by associations in
content′(C′)

S′ to its new version S̃′ (we use tilde mark c̃ to denote the evolved schema/con-
struct c). The detected changes can then be propagated to the XML documents.
The algorithm for change detection takes S′ and S̃′ as an input and outputs the
set of detected changes. Tab. 2 lists types of changes that can occur grouped by
their scope (class, attribute, association, content model). We also further cat-
egorize classes into four groups: addition, removal, migratory (e.g. classAdded,
classRemoved, classMoved, classRenamed) and sedentary.

Due to space limitations, we will not explain in detail the algorithm of detect-
ing changes, the in-depth description can be found in [11]. Here we cover only the
core principles. The change detection combines the comparison and recording ap-
proaches to gain the benefits of both. The main principle is to compare the two
versions, but during the user’s evolution operations, each construct stays linked to
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Table 2. Changes identified in XSEM between two versions of the same schema

Change Description

classAdded A new class was added to the schema
classRemoved A class was removed from the schema
classRenamed An existing class was renamed
classMoved A class is moved to a new location in the tree

attributeAdded/Removed/Renamed An attribute was added/removed/renamed
attributeTypeChanged An attribute type changed
attributeIndexChanged Attributes were reordered in the class
attributeCardinalityChanged A cardinality of an attribute was changed
attributeXFormChanged An xform of an attribute was changed
attributeMoved An attribute was moved from a class to another

associationAdded/Removed/Renamed An association was added/removed/renamed
associationIndexChanged Associations were reordered in the class
associationCardinalityChanged A cardinality of an attribute was changed
associationMoved An association is moved in the PSM tree

contentModelAdded/Removed A content model was added/removed
contentModelMoved A content model is moved to the PSM tree
contentModelTypeChanged A type of content model changed

its other versions. This eliminates possible misinterpretations of changes, where
e.g. some ‘rename’ operation is incorrectly interpreted as ‘remove & add’.

According to the categories of changes, the algorithm divides classes, at-
tributes and content models in the schema into disjoint sets Ka, Kr, Km and Ks

(of added, removed, moved and sedentary constructs) and also classifies nodes
Ñ ′ ∪ S̃′

a in schema S̃′ the tree into three disjoint groups:

– red nodes – the nodes that were changed + old and new parent nodes of all
the migrated and renamed nodes/associations + classes that contain changed
attributes + classes from which attributes were moved

– blue nodes – nodes that are not red, but contain a red node in their subtrees
– green nodes – other nodes

During revalidation, each of these groups is treated differently. Treatment of
green nodes is straightforward – they can be skipped/copied to the result (with
their whole subtree). Blue nodes were not modified, but the subtree cannot be
copied as in the case of green nodes, because it contains at least one red node
that needs to be revalidated. And finally, each red node needs to be processed
separately.

5 Revalidation

The change detection algorithm outputs the set of changes between the schemas.
Having the set of changes, we can now describe the algorithm for producing a
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revalidation script that outputs document D̃′ revalidated against S̃′ when ap-
plied on XML document D′ valid against S′. The sequence of changes made over
a PSM schema can be converted to an expression in any implementation lan-
guage, e.g. XQuery Update Facility [21] or XSLT [6]. Assuming that the XQuery
Update Facility is the implementation language, each change would be translated
to an XQuery Update command(s):

– addition changes to insert commands
– removal changes to delete commands
– migratory changes would generate first insert command referencing some

part of the document and thus copying the content and delete command
to remove the content from its old location

– sedentary changes would generate rename command or again insert or
delete commands

Each command would then be executed upon the revalidated document. The pro-
cedure when using DOM API [20] would be analogous. However, our approach,
called XSEM-Evo, uses XSL stylesheets as implementation language due to the
wide support for XSL among the tools working with XML data and especially
the database systems supporting XML Schema [18] evolution. But, the previous
procedure of translating each change into one command, is not directly applica-
ble when using XSLT – for the following reasons:

1. No Removal : XSL does not have any means of explicit removing a content
from a document. Removal is achieved by not putting the particular part
of content to the output so that the processor never reaches the particular
part of content, or by letting the processor go through the content without
sending anything to the output.

2. Processing of Unchanged Content : XSL must process all content that should
be sent to the output, not only content modified by some of the changes.

3. Output Definitiveness : When XSLT processor sends a content to the output,
it can not be changed during the same transformation, the changes have to
be grouped and conducted together.

5.1 Revalidation Script Overview

In XSL, stylesheets producing the same output can be written in several forms.
To keep it transparent, comprehensible and easily modifiable, the revalidation
stylesheet F generated by XSEM takes the following form:

– It is a one-pass stylesheet.
– It follows the navigational stylesheet pattern described in [5]. It relies on a

detailed knowledge of the input document. XPath expressions used for match
attributes of all top-level templates are always absolute.

– A top-level template is created for each red node.
– Each top-level template describes attributes and direct subelements of the

processed red node.
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– One common top-level template is added to process all green nodes and
another to process all blue nodes.

– Implicit XSLT templates are never used, because they do not serve the de-
sired purpose.

– The stylesheet grows (counting the number of top-level templates) with the
amount of changes made in the schema, not with the complexity of the
schema.

5.2 Generation of the XSLT Revalidation Script

Due to space limitations, we will show how the algorithm processes only the core
constructs (classes, attributes with xform′ = e and associations with name′ �= λ).
For the full description of the algorithm, see [11]. We start by showing the
templates that process the blue and green nodes and then we show how templates
processing the red nodes are constructed. For processing blue and green nodes, F
contains templates depicted in Listing 1.1. The first template copies an element
with its attributes and instructs the processor to continue with its subelements
(where at least one element corresponding to a red node exists, which must be
revalidated). The second template copies the element with its whole subtree to
the output. Since all red and green nodes are processed by these two templates,
the complexity of F does not grow with the size of the schemas, but with the
amount of changes mad between S′ and S̃′.

<xsl : template match=”{blue-nodes-paths}”>
<xsl : copy>

<xsl : copy−of select=‘@∗ ’ />
<xsl : apply−templates select = ‘∗ ’ />

</xsl : copy>
</xsl : template>
<xsl : template match=‘{green-nodes-paths}’>

<xsl : copy−of select = ‘. ’ />
</xsl : template>

Listing 1.1. Green and blue nodes template

For each red node Ñ ′ the algorithm generates one template in F . During the
process, the algorithm keeps a track of the currently processed node in the source
schema (available through a variable processedPath). The algorithm can com-
pute the XPath expression that selects instances of a given node in the input doc-
ument from the processed node via function relativeXPath(X, processedPath).
For example:

processedPath Path to node X Relative path

/Purchase /Purchase/Item/@amount Item/@amount

/customer-info/Customer /customer-info/Address/city ../Address/city

Listing 1.2 shows the basic structure of the template. If the processed node is
an added node (i.e. Ñ ′ ∈ Ka), it will be a named template (an auxiliary func-
tion suggestName returns a unique, but human-friendly name for the template).
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Otherwise, it will be a template with match attribute. The template copies the
element corresponding to the node via xsl:copy, then processConstruct sub-
routine is called for processing each attribute (if Ñ ′ is a class and not a content
model) and the same subroutine is called also for each child of the processed
node.

If the node is an attribute, xsl:value-of is used to retrieve its value and
copy it to the result. If the type of the attribute changed (attributeTypeChanged
is detected, in that case let D′ be the old type of the attribute and D̃′ the
new one), a conversion function must be called. In the pseudocode, this call is
represented by the function conv

Ñ ′ : D′ → D̃′. If the type did not change, the call
can be omitted (conv

Ñ ′ = identity), similarly in the case when D′ ⊆ D̃′ (which
is guaranteed e.g. when D′ is a subtype of D̃′). Subroutine processConstruct
examines the state (whether the construct belongs to the set of added nodes)
and also its cardinality.

<xsl : template

{ i f Ñ ′ ∈ Ka } match=‘{Ñ ′.XPath} ’ { else } name=‘{suggestName(Ñ ′)}’>

<{name′(Ñ ′)}>
{ i f Ñ ′ ∈ S′

c then foreach Ã ∈ attributes′(Ñ ′)
processConstruct (Ã, card′(Ã))

i f Ñ ′ /∈ S′
a foreach C̃ ∈ childNodes′(Ñ ′)

processConstruct (C̃, card′(inAssociation′(C̃)))
else } // a t t r i b u t e ( l e a f ) → add the va lue

<xsl : value−of select =‘{conv
Ñ′ }{(relativeXPath(Ñ ′, processedPath))} ’ />

<{name′(Ñ ′)}>
</xsl : template>

procedure processConstruct

parameter Ñ ′ ∈ S′
a ∪ S′

c // processed a t t r i b u t e or c l a s s
parameter card ∈ C // c a rd ina l i t y
{

case Ñ ′ ∈ Ka ∧ low(card) = 0 :
exit ; // added op t iona l element can be skipped

case Ñ ′ ∈ Ka ∧ low(card) > 0 :

case Ñ ′ ∈ Ks ∪Km ∧ cardinalityChanged(Ñ ′) :

generateElementCardinalityReference (Ñ ′ , card)
otherwise : // added with card = 1 or card unchanged

generateElementSingleReference (Ñ ′ )
}

Listing 1.2. Red nodes template – basic structure

Function cardinalityChanged looks up associationCardinalityChanged/att-
ributeCardinalityChanged change (if there is one). There are two variants of
reference generating subroutine – single (not dealing with cardinalities) and
cardinality (designed to revalidate changes in cardinality). The first one is de-
picted in the first part of Listing 1.3. If the processed node is added, call of
instanceGenerator template for the node is added to F . This function must
be supplied by the user after F is generated and should create the subtree for
the added node. If the process node is not added, xsl:apply-templates is
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procedure generateElementSingleReference

parameter : Ñ ′ ∈ Ñ ′ // re ferenced node
parameter : c ond i t i on : XPath exp r e s s i on optional

{ i f Ñ ′ ∈ Ka }
<xsl : ca l l−template name=‘{suggestName(Ñ ′)} ’ />

{ else }
{ var xpath ← relativeXPath(Ñ ′ , processedPath) }
{ i f condition i s set }

<xsl : apply−templates select=‘{xpath } [{ cond i t i on } ] ’ />
{ else }

<xsl : apply−templates select=‘{xpath } ’ />
{ end i f }

{ end i f }

procedure generateElementCardinalityReference

parameter : Ñ ′ ∈ Ñ ′ // re ferenced node
parameter card ∈ C // c a rd ina l i t y
/∗ rout ine ca l l e d e i the r when c a rd ina l i t y of element N changed

or N’ was added with lower c a rd ina l i t y > 1 ∗/
{ i f Ñ ′ ∈ Ks ∪ Km // ex i s t i n g node

// c a rd ina l i t y of N’ changed , dea l with e x i s t i n g nodes

i f ¬upper cardinality of Ñ ′ decreased

generateElementSingleReference(Ñ ′)
else

generateElementSingleReference(Ñ ′ , condition = ‘position() ≤ ’.upp(card)
end i f

end i f

i f Ñ ′ ∈ Ka∨ lower cardinality of Ñ ′ increased
// new nodes need to be created
var countExpr
var lower ← low(card)

i f (N ′ ∈ Ka )
countExpr ← lower

else

var e x i s t i n g ← relativeXPath(Ñ ′, processedPath)
countExpr ← lower . ‘ − . count ( ’ . e x i s t i n g . ’ ) ’ }
<xsl : ca l l−template name=‘{instanceGenerator

Ñ′}’>

<xsl : with−param name=‘count ’ select =‘{countExpr } ’ />
</xsl : ca l l−template>

{ end i f }
{ end i f }

Listing 1.3. Generating element reference

outputted (with possible condition – a parameter that is used when the single
variant is called from the cardinality variant.

Finally, the cardinality variant of reference generating is depicted in the second
part of Listing 1.3. There are two parts of the template. The first part concen-
trates on instances already present in the document (and is therefore skipped for
added elements). Existing instances are processed again by the single reference
subroutine – either all existing instances (when the upper cardinality of node
Ñ ′ was not decreased i.e. all existing instances can remain in the document)
or the first k instances, where k is the new upper cardinality. The condition
parameter of single variant with built-in XPath function position is utilized to
restrict the number of instances processed. The purpose of the second part is
to add new instances of N ′ to the document. Adding several instances may be



XML Data Transformations as Schema Evolves 385

Purchase

customer-info

purchase-date: date

Customer

customer-no: integer

Item

ItemIAddress

amount: integer
unit-price: double

qty

items

Product

code: integer
subcode: integer
title: string

product
delivery-address

1..*

PurchaseSchema

purchase

CustomerInfo
customer

CustEmail

email: string {0..5}

emails0..1

Items
item

city: string
street: string
zip: integer

<purchase>
<purchase-date>#
<customer-info>
<customer>
<customer-no>#
<delivery-address>
<emails>… 
</customer>
</customer-info>
<items>
<item>
<product>…
<qty>...
</item>
…
</items>
</purchase>

Fig. 2. Sample PSM schema – evolved version of the schema from Figure 1

needed for two reasons: either Ñ ′ is an node with lower cardinality > 1 or the
lower cardinality of Ñ ′ was increased. Again, instanceGenerator template is
made responsible for creating new instances.

As we stated in the beginning of 5.2, we will not show detailed pseudocode
for revalidating content models. In brief, sequence model is revalidated similarly
as class, choice and set models introduce branches to the generated stylesheets.

6 Implementation and Example

To prove our concepts we are continuously working on the implementation of
the proposed models and algorithms. The first tool which utilizes our XML
conceptual modeling framework XSEM is called XCase. XCase is available to
the community as a free open-source software1 and contains a full-fledged UML
editor for creating and editing the PIM schema and deriving PSM schemas, sup-
port for maintaining an arbitrary amount of versions of schema and generating
revalidation scripts. In XCase, the restrictions mentioned in 5.2 of the model are
not enforced; content models, attributes and also our method for type reuse are
included in this implementation.

We conclude the description of our approach by showing a concrete revalida-
tion script that the algorithm generates for the schema depicted in Fig. 1 and a
new version of the schema depicted in Fig. 2 – see Listing 1.4.

In the new version, association address was moved from CustomerInfo to
Customer and renamed to delivery-address.New classes Items and CustEmail
were added. Attribute email was moved from Customer to CustEmail and its
cardinality was restricted to 0..5. Attributes of Address class were reordered
and attribute weight was removed from the schema.
1 http://xcase.codeplex.com/

http://xcase.codeplex.com/
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<xsl : template match=‘/purchase ’>
<purchase>

<xsl : apply−templates select=‘purchase−date ’/>
<xsl : apply−templates select=‘customer−i n fo ’/>
<xsl : ca l l−template name=‘purchase−items ’/>

</purchase>
</xsl : template>
<xsl : template match=‘/purchase /customer−i n fo ’>

<customer−i n fo>
<xsl : apply−templates select=‘customer ’/>

</customer−i n fo>
</xsl : template>
<xsl : template match=‘/purchase /customer−i n f o /customer ’>

<customer>
<xsl : apply−templates select=‘customer−no’/>
<xsl : apply−templates select = ‘ . ./ address ’/>
<xsl : ca l l−template name=‘emai ls ’/>

</customer>
</xsl : template>

<xsl : template match=‘/purchase /customer−i n f o / address ’>
<de l i v e ry−address>

<xsl : apply−templates select=‘ c i ty ’/>
<xsl : apply−templates select=‘ s t r e e t ’/>

<xsl : apply−templates select=‘zip ’/>
</de l i v e ry−address>

</xsl : template>

<xsl : template name=‘emai ls ’>
<emai ls><xsl : copy−of select=‘emai l [ p o s i t i o n ( ) &l t ;= 5] ’/></ emai ls>

</xsl : template>
<xsl : template name=‘purchase−items ’>

<items><xsl : apply−templates select=‘item ’/></ items>
</xsl : template>
<xsl : template match=‘/purchase / item/product ’>

<product><xsl : apply−templates select=‘code | subcode | t i t l e ’/></product>
</xsl : template>

<!−− b lue nodes template −−>
<xsl : template match=‘/purchase / item ’>

<xsl : copy>
<xsl : copy−of select=‘@∗ ’/>
<xsl : apply−templates select=‘∗ ’/>

</xsl : copy>
</xsl : template>
<!−− green nodes template −−>
<xsl : template match=’/purchase /purchase−date

| / purchase /customer−i n f o /customer /∗
| / purchase / item/product/∗ [ .= . . / code | . . / subcode | . . / t i t l e ]
| / purchase / item/qty/∗ | /purchase /customer−i n f o / address /∗ ’>

<xsl : copy−of select =‘. ’/>
</xsl : template>

Listing 1.4. Purchase revalidation example

7 Conclusion and Open Problems

In this paper we proposed an algorithm for automatic revalidation of XML doc-
uments according to changes in respective XML schema. The revalidation script
can deal with structural modifications automatically, user input is required only
where necessary (e.g. when a new content must be added during revalidation).
Our approach expects that there may exists several versions (which can be edited
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separately) in the system and can produce revalidation script between any se-
lected pair (including translation from a new version to the old one). It is effec-
tive – the change detection step can decide, which changes does not invalidate
existing documents and skip the revalidation in those cases, the document is
processed only once and the revalidation script grows linearly with the amount
of changes made. The algorithm is able to correctly distinguish moving opera-
tions from adding/deleting, correctly handle renaming, reordering and complex
composite changes in the structure of the document.

Using our approach, the designer does not have to create XSLT scripts man-
ually, instead of working at the low level of XML schemas, XML documents and
XSLT (which would require him to study both the old and new version of the
schema, spot the differences and write and debug the lengthy revalidation scripts
manually), he can make the changes at a conceptual level. He can also generate
revalidation scripts for any two versions in the system. A script, that transforms
from version A to C can be simpler and more effective then the pair A → B, B
→ C (some operations may cancel each other, etc.). Combining them manually
can be very difficult when the scripts get more complex.

The algorithm in its current version deals mainly with revalidation of (1)
structure and (2) data already present in the document. Since new data are
often required for new versions, we will focus our future work on obtaining this
data for the revalidated documents. For this purpose, we will utilize the existing
connection between PIM and PSM and a new similar connection between PIM
and the model of a data storage (e.g. an ER schema [17]).

How to obtain the list of changes between the versions of the schema is not
described in this paper. It is created automatically when the new version is
obtained via editing the old version in the tool. However, when both old and new
version of the schema is imported to the system, the mapping needs to be defined.
We plan to propose heuristics for finding the mapping semi-automatically.

Finally, a complex system, besides a precise definition of how the data are
structured, requires a support for modeling and checking integrity constraints
(ICs). ICs also change as system evolves and can also be used to describe evolu-
tion operations in greater detail. Support for ICs will further enhance capabilities
and applicability of the algorithm.
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9. Kĺımek, J., Nečaský, M.: Semi-automatic integration of web service interfaces. In:
IEEE International Conference on Web Services, pp. 307–314 (2010)

10. Kwietniewski, M., Gryz, J., Hazlewood, S., Van Run, P.: Transforming xml docu-
ments as schemas evolve. Proc. VLDB Endow. 33, 1577–1580 (2010)
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Partial Repairs That Tolerate Inconsistency
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Abstract. The consistency of databases can be supported by enforcing
integrity constraints on the stored data. Constraints that are violated
should be repaired by eliminating the causes of the violations. Tradition-
ally, repairs are conceived to be total. However, it may be unfeasible to
eliminate all violations. We show that it is possible to get by with par-
tial repairs that tolerate extant inconsistencies. They may not eliminate
all causes of integrity violations but preserve the consistent parts of the
database. Remaining violations can be controlled by measuring inconsis-
tency, and further reduced by inconsistency-tolerant integrity checking.

1 Introduction

The semantic consistency of stored data can be modeled by integrity constraint
conditions to be enforced on the database.

Integrity can be enforced in essentially two ways, that complement each other.
One is to check each update for preserving the conditions imposed by the con-
straints. Another is to eliminate the causes of extant inconsistencies that have
manifested themselves as violations of the integrity constraints.

In spite of a variety of possible preventive measures, such as integrity check-
ing or careful transaction modeling, the accumulation of integrity violations in
databases is commonplace and eventually unavoidable. That may be due to neg-
ligence (e.g., integrity checking had been switched off for database uploading a
backup and not switched on again afterwards), efficiency considerations (e.g.,
integrity is not taken care of sufficiently in real-time applications), architectural
impediments (e.g., the lack of integrity support in distributed databases) or other
circumstances (e.g., altered constraints are not checked against legacy data, or
locally consistent data fail to comply with global constraints after federation).
Thus, the accumulation of inconsistency in databases is inevitable and common-
place. Hence, some approach to cope with extant inconsistencies is needed.

A radical way to deal with inconsistency is to eliminate it. That is the objective
of database repairing. Traditionally, repairs are conceived to be total, i.e., all
causes of violations are supposed to be eliminated, so that none of them persists
and no new violation is caused. Although several solutions for total repairs have
been proposed in the literature, for limited classes of constraints, the general
case of eliminating all integrity violations is intractable in theory and may be
infeasible in practice [15,6,3], even for propositional integrity constraints [4].
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In this paper, we relax the ambitious radicality of a total elimination of incon-
sistency. That relaxation is achieved by partial repairs that are inconsistency-
tolerant. Such repairs procure, for a database D and an integrity theory IC ,
the elimination of some subset S of all constraint violations while tolerating the
persistence of violations in the complement of S, for an indefinite amount of
time. Remaining violations can be controlled by inconsistency-tolerant integrity
checking. The latter may be based on some violation metric, and may also serve
to further reduce inconsistency.

The main problem with partial repairs is that they may have the unwanted
side effect to induce new violations of constraints that are not in the repaired
subset S. Our solution to this problem is the concept of inconsistency-tolerant
repairs that are also integrity-preserving. These are partial repairs which ensure
that the total amount of integrity violations before the repair is not increased
after the repair. In other words, integrity-preserving repairs are updates which
assure that, over time, inconsistency decreases, while, at any time, any amount
of integrity violations can be tolerated.

As we are going to see, an easy way to decide if a repair is integrity-preserving
is to examine the repairing update by a method for integrity checking that is
inconsistency-tolerant [11]. In [11], we have shown that most, though not all
known integrity checking methods are inconsistency-tolerant. Without incurring
any additional cost, such methods can simply waive the usual but gratuitous re-
quirement that all constraints must be satisfied before an update can be checked
efficiently for consistency preservation.

In Section 2, we sketch the formal framework for the remainder. In Section 3,
we define repairs in general, and partial as well as integrity-preserving repairs in
particular. Both partial and integrity-preserving repairs tolerate inconsistency,
but only the latter guarantee the preservation of consistency. The theme of Sec-
tion 4 is integrity-preserving repair management. Its goal is to show how to
compute partial integrity-preserving repairs, in 4.3. For that purpose, we reca-
pitulate inconsistency-tolerant integrity checking in 2.3, and integrity-preserving
updating in 4.2. In Section 5, related work is addressed. In Section 6, we conclude
with an outlook to further work.

2 The Formal Framework

In subsection 2.1, we first outline some elementary preliminaries. Then, we re-
capitulate the notion of ‘cases’, i.e., instances of constraints that are going to be
of use for three objectives: simplified integrity checking, quantifying constraint
violations and tolerating inconsistency. In subsection 2.2, we axiomatize violation
metrics for measuring inconsistency. Based on violation metrics, we character-
ize inconsistency-tolerant integrity checking in subsection 2.3. Unless specified
otherwise, we use notations and terminology that are common for datalog [24]
and first-order predicate logic.
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2.1 Databases, Updates, Constraints, Cases

A database clause is a universally closed formula of the form A←B, where the
head A is an atom and the body B is a possibly empty conjunction of literals. A
database is a finite set of database clauses.

By overloading, we use = as the identity predicate, as assignment in sub-
stitutions, or meta-level equality; �= is the respective negation. The symbol ⇒
denotes meta-implication.

An update is a finite set of database clauses to be inserted or deleted. For an
update U of a database state D, we denote the database in which all inserts in
U are added to D and all deletes in U are removed from D, by DU .

An integrity constraint (in short, constraint) is a first-order predicate logic
sentence which, w.l.o.g, we assume to be always represented by a denial clause,
i.e., a universally closed formula of the form ←B, where the body B is a con-
junction of literals that asserts what should not hold in any state of the database.
An integrity theory is a finite set of constraints.

As usual, we assume that each variable is range-restricted (i.e., for each clause
F , each variable in F occurs in a positive literal in the body of F ), and has a
finite universal domain, the elements of which we represent by natural numbers.

From now on, let D, IC , I, U and adornments thereof always stand for a
database, an integrity theory, a constraint and, resp., an update.

For each sentence F , we write D(F ) = true (resp., D(F ) = false) if F
evaluates to true (resp., false) in D. Similarly, we write D(I) = true (resp.,
D(I)= false) if I is satisfied (resp., violated) in D, and D(IC )= true (resp.,
D(IC )= false) if all constraints in IC are satisfied in D (resp., at least one
constraint in IC is violated in D). A case of I is an instance of I obtained by
substituting the variables in I with terms of the underlying language.

Let Cas(IC ) denote the set of all cases of all I∈IC . Further, let SatCas(D, IC ),
resp., VioCas(D, IC ) be the set of all C ∈Cas(IC ) such that D(C) = true, resp.,
false. The use of cases for simplified integrity checking is illustrated in Example 1.

Example 1. A constraint which requires that each person’s ID be unique, by
asserting that no two persons with the same identifier x may have different
names y1, y2, nor different birth dates z1, z2, is represented by the denial
I = ← p(x, y1, z1)∧ p(x, y2, z2)∧ (y1 �= y2 ∨ z1 �= z2). For the insertion of a
new person, e.g., p(999, joe, 1-1-11), methods for simplified integrity checking
do not evaluate I in its full generality, but just the relevant (non-ground) case
← p(999, joe, 1-1-11) ∧ p(999, y2, z2) ∧ (y1 �= y2 ∨ z1 �= z2).

2.2 Violation Metrics

Let � symbolize an ordering that is antisymmetric, reflexive and transitive. For
expressions E, E′, let E≺E′ denote that E � E′ and E �=E′. Further, for two
elements A, B in a lattice, let A⊕B denote their least upper bound.
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Definition 1. We say that (μ, �) is a violation metric (in short, a metric) if μ
maps pairs (D, IC ) to some lattice that is partially ordered by �, and, for each
pair (D, IC ) and each pair (D′, IC ′), the following properties (1) – (4) hold.

If D(IC) = true and D′(IC ′) = false then μ(D, IC) ≺ μ(D′, IC ′) (1)

If D(IC ) = true then μ(D, IC) � μ(D′, IC ′) (2)

μ(D, IC ∪ IC ′) � μ(D, IC) ⊕ μ(D, IC ′) (3)

μ(D, IC) � μ(D, IC ∪ IC ′) (4)

Property (1), called violation is bad in [10], ensures that the measured amount of
inconsistency in any pair (D, IC ) for which integrity is satisfied is always smaller
than what is measured for any pair (D′, IC ′) for which integrity is violated.
Property (2), which could be called satisfaction is best, ensures that inconsistency
is lowest, and hence integrity is always highest, in any database that totally
satisfies its integrity theory. Property (3) is a triangle inequality which states
that the inconsistency of a composed element (i.e., the union of (D, IC ) and
(D, IC ′)) is never greater than the least upper bound of the inconsistency of the
components. Property (4) requires that the values of μ grow monotonically with
growing integrity theories.

Occasionally, we may identify a metric (μ, �) with μ, if � is understood.

Example 2. A simple example of a coarse, binary violation metric β is provided
by the equation β(D, IC ) = D(IC ), with the natural ordering true≺ false of the
range of β, i.e., integrity satisfaction (D(IC )= true) means lower inconsistency
than integrity violation (D(IC )= false).

Other examples of violation metrics are given by (VioCas,⊆) and by the car-
dinalities of sets VioCas(D, IC ), with � =≤. Similar to cases, another kind of
metrics can be defined by sets of causes or by counting causes; roughly, causes
are minimal extracts of the database that explain why a constraint is violated
[9]. Other violation metrics are discussed in [10].

Violation metrics can be used to decide if an update preserves integrity, i.e.,
does not cause any integrity violation that did not exist before the update,
according to the following definition. Intuitively, an update preserves integrity if
it does not increase the measured violation.

Definition 2. For a metric (μ, �), an update U of a database D with integrity
theory IC is said to be integrity-preserving (or, synonymously, to preserve in-
tegrity) with regard to (μ, �) if μ(DU , IC )�μ(D, IC ).

2.3 Inconsistency-Tolerant Integrity Checking

Due to the possibly complex quantification of constraints, integrity checking
tends to be prohibitively expensive, unless some simplification method is used
[7]. Simplification theory traditionally requires that, for each update U , the state
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to be updated by U must satisfy all constraints. However, that requirement is
unnecessary for inconsistency-tolerant integrity checking, as shown in [11].

The definition below significantly generalizes the one in [11], since the latter
is based on sets of cases, which is a special instance of a metric, as seen in 2.2.
Inconsistency-tolerant integrity checking methods (in short, methods) are ab-
stractly defined by their i/o behaviour. Each method M maps triples (D, IC , U)
to {ok , ko}. Intuitively, ok means that U does not increase the amount of incon-
sistency given by some metric, and ko that it may.

Definition 3. (Inconsistency-tolerant Integrity Checking)
An integrity checking method maps triples (D, IC , U) to {ok , ko}. For a metric
(μ, �), a methodM is called sound (complete) for μ-based inconsistency-tolerant
integrity checking if, for each (D, IC , U), (1) (resp., (2)) holds.

M(D, IC, U) = ok ⇒ μ(DU , IC) � μ(D, IC) (5)

μ(DU , IC) � μ(D, IC) ⇒ M(D, IC, U) = ok (6)

Intuitively, (5) says: a method is sound if, whenever it outputs ok , the amount
of violation of IC in D as measured by μ is not increased by the update U .
Conversely, (6) says: a method is complete if it outputs ok whenever U does not
increase the amount of integrity violation.

Essentially, the only difference between conventional integrity checking and
inconsistency-tolerant checking is that the former additionally requires total
integrity before the update, i.e., that D(IC )= true in the premise of Defini-
tion 3. The metric μ used for traditional integrity checking has a binary range:
μ(D, U)= true means that IC is satisfied in D, and μ(D, U)= false that it is
violated.

Example 3. Let I and U = insert p(999, joe, 1-1-11) be as in Example 1. Then,
VioCas-based inconsistency-tolerant integrity checking methods evaluate the case
C = ← p(999, joe, 1-1-11)∧ p(999,y2, z2)∧ (y1 �=y2 ∨ z1 �=z2) in order to check U
for integrity preservation. If DU (C) = true, there is no other person with ID

999. Thus, U does not increase the set of violated cases of I, no matter if any
such violations exist or not. Hence, that check is inconsistency-tolerant, while
guaranteeing that all consistent parts of the database remain consistent.

3 Repairs

Roughly, repairing is to compute and execute updates to databases in order
to eliminate extant integrity violations. As already mentioned, repairing can
be intractably costly. Thus, it should be a reasonable heuristic to curtail in-
consistency by not repairing all, but only some violations, particularly in large
databases with hidden or unknown inconsistencies.

The definition below distinguishes between total repairs, which eliminate all
inconsistencies, and partial repairs, which repair only a fragment of the database.
Partial repairs tolerate inconsistency, since violated constraints in the comple-
ment of the repaired set may persist.
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Definition 4. (Repair) [11]
Let D be a database, IC an integrity theory and S a subset of Cas(IC ) such
that D(S) = false . An update U is called a repair of S in D if DU (S)= true.
If DU (IC )= false , U is also called a partial repair of IC in D. Otherwise, if
DU (IC )= true, U is called a total repair of IC in D.

In the literature, repairs usually are required to be total and minimal. Mostly,
subset-minimality is opted for, but several other notions of minimality exist [6] or
can be imagined. Note that Definition 4 does not involve any particular variant
of minimality. However, Example 4 features subset-minimal repairs.

Example 4. Let D = {p(a, b, c), p(b, b, c), p(c, b, c), q(a, c), q(c, b), q(c, c)} and
IC = {← p(x, y, z)∧∼q(x, z), ← q(x, x)}. Clearly, the violated cases of IC in D
are ← p(b, b, c)∧∼q(b, c) and ← q(c, c). There are exactly two minimal total
repairs of IC in D, viz. {delete q(c, c), delete p(b, b, c), delete p(c, b, c)} and
{delete q(c, c), insert q(b, c), delete p(c, b, c)}. Each of U1 = {delete p(b, b, c)} and
U2 = {insert q(b, c)} is a minimal repair of {← p(b, b, c)∧∼q(b, c)} in D and
a partial repair of IC in D. Both tolerate the persistence of the violation of
← q(c, c). Similarly, U3 = {delete q(c, c)} is a minimal repair of {← q(c, c)} in D
and a partial repair of IC , which tolerates the violation of ← p(b, b, c)∧∼q(b, c).

A significant problem with partial repairs is that they may not preserve integrity,
i.e., they may cause the violation of some constraint that is not in the repaired
set, as shown by the following example.

Example 5. Consider again D and IC in Example 4. As opposed to U1 and U2,
U3 causes the violation of a case in the updated state that is satisfied before
the update. That case is ← p(c, b, c)∧∼q(c, c); it is satisfied in D but not in
DU3 . Thus, the non-minimal partial repair U4 = {delete q(c, c); delete p(c, b, c)}
is needed to eliminate the violation of← q(c, c) in D without causing a violation
that did not exist before the partial repair. Indeed, all cases in SatCas(D, IC )
remain satisfied in DU4 .

The enlargement of U3 to U4, i.e., deleting also p(c, b, c), fortunately does not
induce any similar side effect as produced by deleting q(c, c) alone. In general,
iterations such as the one from U3 to U4 may possibly continue indefinitely,
due to iterative side effects. The termination of such iterations is unpredictable,
in general, as is known from repairing by triggers [5]. However, such iterations
can be avoided by checking if a given repair is an integrity-preserving update,
according to Definition 2.

Example 6. As seen in Example 5, both U1 and U2, and also U4, preserve in-
tegrity since all cases in SatCas(D, IC ) remain satisfied in the updated state.
According to Definitions 2 and 4, U4 is a minimal integrity-preserving repair of
{← q(x, x)}, although U4 is not a mere minimal repair of {← q(x, x)}, since the
minimal repair U3 of {← q(x, x)} is a proper subset of U4. However, U4 is prefer-
able to U3 since U4 preserves integrity, while U3 does not, as seen in Example 5.
In general, each total repair (e.g., the two total repairs in Example 4) trivially
preserves integrity, since no violations remain after total repairs.
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4 Integrity-Preserving Repair Management

In Section 3, we have distinguished desirable (partial) and preferable (integrity-
preserving) repairs. However, all we have so far are definitions and examples,
while a method to compute such repairs is still missing. The goal of this section
is to close that void.

Fortunately, the main building blocks of the technology to compute partial
and inconsistency-preserving repairs already exist. They recur on inconsistency-
tolerant integrity checking (from now on, in short, ITIC), as outlined in 2.3, and
methods for computing integrity-preserving updates for satisfying given update
requests, as discussed in [11], for the special case of (μ, �)= (VioCas,⊆)). In
4.1, we show how to check if repairs are integrity-preserving or not. In 4.2,
we then recapitulate update computation. In 4.3, we finally show how update
computation plus ITIC can compute partial and integrity-preserving repairs.

4.1 Checking Repairs for Integrity Preservation

Clearly, each integrity-preserving update, hence each integrity-preserving repair,
is inconsistency-tolerant, in the sense that there may be arbitrarily many con-
straint violations in D that persist in DU . Thus, the following result is an im-
mediate consequence of Definitions 2 and 3.

Theorem 1. For each triple (D, IC , U) and each inconsistency-tolerant in-
tegrity checking method M, U is integrity-preserving if M(D, IC , U) = ok .

In general, the only-if version of Theorem 1 does not hold. A counter-example is
provided by each method that is incomplete for inconsistency-tolerant integrity
checking in the sense of Definition 3 (e.g., those in [22,25] have been shown to be
incomplete in [11]). However, it is easy to see that it does hold for methods that
are complete for inconsistency-tolerant integrity checking e.g., the well-known
method in [23] is complete with regard to the metric (VioCas,⊆), as shown in
[11]).

Thus, theorem 1 is important for the following reason: For each partial repair
U , each inconsistency-tolerant integrity checking method can be used to check
if U is integrity-preserving, and each complete inconsistency-tolerant method is
a procedure for deciding if U is integrity-preserving or not.

4.2 Integrity-Preserving Update Methods

We are going to define update methods as algorithms that take as input an
update request and compute candidate updates as their output.

Definition 5
a) An update request in a database D is a first-order sentence R that is to be
made true by some integrity-preserving update U , i.e., DU (R)= true is requested
to hold.
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b) An update U is said to satisfy an update request R if DU (R)= true and U
preserves integrity. Clearly, view update requests are a well-known special kind
of update requests.
c) An update method is an algorithm that, for each database D and each
update request R, computes candidate updates U1, . . ., Un (n ≥ 0) such that
DUi(R)= true (1 ≤ i ≤ n).

A well-known special case of update requests are view update requests. Essen-
tially, a view update request is expressed by a literal whose predicate is not a
base relation but a database view predicate. It is to be satisfied, i.e., to be made
true, by an update of the base relations by which the view predicate is defined.
Thus, the class of methods for computing view update requests is a special case
of update methods.

Note that, according to Definition 5c, an update method is impartial with
regard to any integrity violation that may be caused by any of the Ui. As opposed
to that, Definition 6, below, is going to take such undesirable side effects into
account.

To avoid that updates cause new integrity violations, many of the known
update methods in the literature (e.g., [8,16,19]) postulate the total satisfac-
tion of all constraints in the state before the update, in analogy to the total
integrity premise of traditional integrity checking, as mentioned in 2.3. However,
that requirement is as superfluous for satisfying update requests as for integrity
checking, for the class of update methods defined next.

Definition 6. (Integrity-preserving Update Method)
An update method UM is integrity-preserving if each update computed by UM
preserves integrity.

For an update request R and a database D, several update methods in the
literature work by two separate phases. First, a candidate update U such that
DU (R) = true is computed. Then, U is checked for integrity preservation by
some integrity checking method. If that check is positive, U is accepted. Else,
U is rejected and another candidate update, if any, is computed and checked.
Hence, Theorem 2, below, follows from the definitions above.

Theorem 2. Each update method that uses an inconsistency-tolerant method
to check its computed candidate updates is integrity-preserving.

Theorem2 serves to identify several known update methods as integrity-
preserving, since they use inconsistency-tolerant integrity checking. Among them
are the update methods described in [8] and [16,17]. Several other known up-
date methods are abductive e.g., [19,20,12]. They interleave the two phases as
addressed above. Most of them are also integrity-preserving, as has been shown
in [11] for the method in [19].

The following example illustrates the usefulness of integrity-preserving update
methods, by featuring what can go wrong if an update method that is not
integrity-preserving is used.
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Example 7
Let D = {q(x)← r(x)∧ s(x); p(a, a)}, IC = {← p(x, x); ← p(a, y)∧ q(y)} and
R the update request to make q(a) true. To satisfy R, most update methods
compute the candidate update U = {insert r(a); insert s(a)}. To check if U pre-
serves integrity, most methods compute the simplification← p(a, a) of the second
constraint in IC . Rather than accessing the p relation for evaluating ← p(a, a),
integrity checking methods that are not inconsistency-tolerant (e.g., those in
[18,21]) may be mislead to use the invalid premise that D(IC ) = true, by
reasoning as follows.

The constraint ← p(x, x) in IC is not affected by U and subsumes ← p(a, a);
hence, both constraints remain satisfied in DU . Thus, such methods wrongly
conclude that U preserves integrity, since the case ← p(a, y)∧ q(y) is satisfied in
D but violated in DU . By contrast, each inconsistency-tolerant method rejects
U and computes the update U ′ = U ∪{delete p(a, a)} for satisfying R. Clearly,
U ′ preserves integrity. Note that, incidentally, U ′ even removes the violated case
← p(a, a).

In fact, the reduction of the amount of inconsistency in Example 7 is not entirely
coincidental. In general, as long as inconsistency-tolerant integrity checking is
applied for each update, the number of violated cases is not only prevented
from increasing, but also is likely to decrease over time, since each update, be it
accidentally or on purpose, may repair some or all inconsistencies.

4.3 How to Compute Integrity-Preserving Repairs

The following example illustrates a general approach of how partial repairs can
be computed by update methods off the shelve.

Example 8. Let S = {←B1, . . ., ←Bn} (n ≥ 0) be a set of cases of constraints
in an integrity theory IC of a database D. Thus, D(S) = false if and only if
D(Bi)= true for some i. Further, suppose that there is a case in IC \S that is
violated in D. Hence, a partial repair can be computed by each update method,
simply by issuing the update request ∼vioS , where vioS be defined by the clauses
vioS ←Bi (1≤ i≤n).

Now we recall from Section 3 that partial repairs may not preserve integrity.
That problem is solved by the following consequence of Theorems 1 and 2. It says
that the integrity preservation of partial repairs can be checked by inconsistency-
tolerant integrity checking (part a), and that integrity-preserving repairs can be
computed by integrity-preserving update methods (part b).

Theorem 3
a) For each tuple (D, IC ), each partial repair U of IC in D and each inconsisten-
cy-tolerant method M such that M(D, IC , U)= ok , U is integrity-preserving.

b) Each partial repair computed as in Example 8 with an integrity-preserving
update method is integrity-preserving.
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5 Related Work

Traditionally, concepts of repair in the literature (e.g., in [2,15,13] only deal
with total repairs. To the best of the author’s knowledge, partial repairs have
never been addressed elsewhere, except in [11]. In [14], null values and a 3-valued
semantics are used to “summarize” total repairs. Since integrity preservation is
a trivial issue for total repairs, there is also no notion of integrity-preserving
updates or repairs in the literature.

Total repairs can be exceedingly costly, and so can partial repairs, in general.
However, by comparison, partial repairs are more feasible than total repairs,
simply because the violations of some integrity constraints may be hidden, un-
known or not resolvable, while the repair of the violation of others may be fairly
straightforward. Moreover, the application of our definitions and results is not
compromised by any limitation with regard to the syntax of integrity constraints,
while severe syntactical restrictions are typical in the literature on repairs.

A broadly discussed issue in the literature about repairs is repair checking, i.e.,
algorithms for deciding if a given update is a repair or not. Analogous to similar
definitions in [6,1], the problem of integrity-preserving partial repair checking can
be defined as the check if a given update is an integrity-preserving repair. Thus,
Theorem 3a entails that each inconsistency-tolerant integrity checking method
is an implementation of inconsistency-tolerant repair checking.

Probably the most widely discussed topic related to repairs is consistent query
answering (CQA) [2]. It defines an answer to be consistent in (D, IC ) if it is true
in each minimal repair of IC in D. CQA suffers from its dependence on the chosen
notion of minimality, of which our definitions are steered clear. Moreover, CQA

usually is not computed by computing each repair, but by techniques of semantic
query optimization or disjunctive logic programming. It should be interesting
to devise a new way of computing CQA by computing partial instead of total
repairs, since, in general, not all violated constraints are relevant with regard to
the given query.

6 Conclusion

The evolution of a database typically involves fallacious updates and other events
that may compromise the integrity of the stored data, e.g., during down- and
uploads, migrations, changes in the schema, system failures, etc. In particular, it
is hard to avoid that some violations of integrity constraints occur and persist.
Thus, the need for a systematic control of the integrity of the stored data arises.
One way to meet that challenge is to eliminate extant violations of integrity con-
straints. Since a total elimination of all inconsistencies is intractable, in general,
the need to tolerate inconsistency imposes itself as well.

In this paper, we have presented an approach to reconcile the conflict be-
tween eliminating and living with integrity violations in databases. It consists in
possibly partial repairs, instead of total repairs. Partial repairs are inconsistency-
tolerant, in the sense that only some but not all causes of integrity violations are
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eliminated, while violations of constraints not included in the repaired subset
may remain inconsistent. With regard to inconsistency tolerance, partial repairs
are not only useful, but there may even be no better choice, since some integrity
violations may be hidden or unknown. As illustrated by a paradigmatic example,
partial repairs can be computed by any method for view updating.

A severe problem with partial repairs is that they may have the unpleas-
ant side effect of increasing the amount of inconsistency in the fragment of the
database that is not repaired. In order to avoid that problem, inconsistency-
tolerant updates that are integrity-preserving need to be filtered out of the set
of candidate partial repairs. To do that, the updates associated to partial repairs
should be checked for integrity preservation.

Traditionally, integrity checking methods had been believed to be not ap-
plicable for checking updates for inconsistency-tolerant integrity preservation.
They all have insisted on the requirement of total consistency, which cannot be
complied with whenever repairs are partial. Fortunately, however, many known
integrity checking methods could be shown to be inconsistency-tolerant [11], and
hence applicable to check partial repairs for integrity preservation.

Future work is concerned with replacing the notion of cases by a similar but
more basic notion of causes, for explaining the reasons for integrity violations.
Causes provide a uniform basis for an alternative concept of inconsistency tol-
erance and, at the same time, of ‘answers that have integrity’ (AHI) [9]. The
latter is not provided by case-based ITIC. Based on causes, AHI is, by intents
and purposes, similar to CQA, and, as argued in [9], compares favorably to CQA.

Replacing repairs of violated cases by repairs of the actual causes of integrity
violation is going to be elaborated in a follow-up version of this paper.
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Abstract. We formalize a Parametrized Role-Based Access Control in
the language Maude. We demonstrate how this formalization can be
used to specify a row level access control policy in a database and how
module algebra capabilities of Maude assist in modularization of such
specification.

1 Introduction

Ever growing demands on sensitive data and privacy protection made crude table
level access control, now standard in database management systems, insufficient
for many applications. This has led to the creation of row level access control
frameworks, such as SE-PostgreSQL, Oracle Virtual Private Database [1], and
some in-house solutions (see e.g. [18]).

Unfortunately, fine grained access control increases greatly the burden of ac-
cess rights administration. Roles [22], [11], [21] are now the standard adminis-
trative help directly supported by majority of databases. For row level access
control, however, simple RBAC is not sufficient because of proliferation of roles
which differ only by a partition of data they are associated with. For instance,
there may be separate accounting role for each division of an enterprise. Even
more demanding would be to allow each of the employees to have access to their
own personal data and not to the data of other people, unless specifically au-
thorised. Creating a separate role for each user is certainly not what RBAC is
about!

A natural solution is to add attributes to roles. Parametrized RBAC [2], [15],
[12] introduces role templates (constructors), the arguments of which define some
partition of data. Instantiation of such templates with actual parameters creates
the usual roles. For example, consider the role template

accountant(d : department)

with single argument of sort department. Instantiation accountant("Phys")
creates the role of (presumably) an accountant in the Department of Physics at
the university. The advantage of this approach is that one can use quantification
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with respect to role parameters when defining the permissions associated with
roles, e.g.:

For all departments d, allow accountant(d) to select financial data of the
employees of the department d.

Even with the help of role parametrization, specifying roles for large system
containing hundreds of tables and numerous ways of partitioning data within
the tables can be very daunting without some support for modularisation and
creating abstractions, just like in the case of writing large procedural programs.
In particular it should be possible to first define partitioning of data into semantic
categories independently of its physical division into tables and to define roles
in terms of accesses to those semantic categories. Only on the lower level, those
semantic categories should be associated with particular (parts of) tables.

This work examines the possibility of using Maude system [8] to specify in a
modular way the parametrized RBAC policy for a row level access control system
in a database. In our approach, while the specification is defined outside the
database system, it is designed specifically to allow easy automatic generation of
the database code implementing the policy. Our only essential assumption is that
the row level access control is implemented by some variant of query modification
[24], [20], and therefore our work should be aplicable to many systems (like those
using Oracle VPD [1]). Our solution is, however, ultimately designed with a
specific system [18] in mind, our original purpose being the creation of a high
level policy description language for the HR database at the University of �Lódź.

Note that the current database systems lack high level, modularized policy
description languages, apart from the support for (unparametrized) roles.

A theory of access control policy modularisation was extensively studied (see
e.g. [14], [10]), especially for the needs of heterogenous access control policies.

Mathematical basis of Maude system are term rewriting logic [16] and, as its
subset, membership equational logic [17], [5]. Using term rewriting and algebraic
methods to specify security policies is already well established in the literature
(see e.g. [19], [3], [10], [6]). Also Maude itself was used in the specification of
security protocols (see e.g. [9]) and the analysis of access control policies (see
e.g. [23]).

We were unable to find any published work describing term rewriting formal-
ism for specification of access control policy, which would be geared towards the
needs of row level access control in relational databases and which would allow
easy, automatic translation into implementation code. To the best of our knowl-
edge, at least in the context of term rewriting and relational databases, the idea
of using high level abstract predicates to describe data to which we grant access
is also new.

2 Access Control by Query Modification

The basic idea of access control by query rewriting [24], [20] is to modify user
query by adding appropriate WHERE clauses to each query referring to protected
tables. For example, the query
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SELECT * FROM Employees WHERE salary>3000;

sent by the user allowed to see only data of employees from a certain department
might get rewritten to

SELECT * FROM Employees WHERE salary>3000 and department_id=10;

Oracle VPD does it internally, dynamically appending to each query the VARCHAR
value returned by special user-defined functions associated with protected ob-
jects and types of access. Also updatable views can be used as a mechanism for
implementing such query rewriting which does not require modifying the query
compiler. For large systems, with additional requirements such as controlling
access with respect to sessions, using views directly is impractical, and some
additional framework for access control is needed, such as the one described in
[18].

Access control systems which work by rewriting user queries are sometimes
called Truman systems [20]. Their advantage is the simplicity of implementation.
Their main disadvantage, is that while a true access control system should either
accept or reject a query, Truman systems silently change the query semantics,
which can be especially dangerous for aggregate queries. Therefore non-Truman
systems were proposed [20], in which user query is either proven to be equivalent
to the modified one, and then executed unchanged, or rejected otherwise. There
are unfortunately no simple ways of implementing such systems. The formalism
developed in this paper, however, should work equally well for Truman and non-
Truman systems.

3 Equational Membership Logic and Maude

This section will give very basic overview of mathematics behind Maude and
algebraic specifications. The readers should be aware that some of the material
is oversimplified. We will use only functional modules and theories of Maude,
which can be understood as describing an order sorted algebra with the equa-
tional membership logic used to specify the properties of algebra operators. The
simplifications of algebra expressions are Maude computations, and the posible
simplifications are given by equations understood as rewritings.

3.1 Order Sorted Algebras

Let (S,≤) be an ordered set, called the set of sorts (type names). An S-sorted
set A is a collection of sets {Ar}r∈S. Denote by S∗ the set of all finite strings in
the alphabet S, including the empty string ε. The order on S extends to S∗ by
the formula:

r1 . . . rn ≤ s1 . . . sm ≡ n = m ∧ r1 ≤ s1 ∧ . . . ∧ rn ≤ sn .

An order sorted signature (see e.g. [13]) (S, Σ) is an S∗ × S-sorted set Σ of
function symbols. A function symbol f ∈ Σw,r can be also written as f : w → r
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to avoid ambiguity as sets Σw,r and Σw′,r′ are not assumed to be disjoint for
(w, r) �= (w′, r′) (we allow overloading of symbols). Function symbols c : ε → r
are constant symbols of sort r. The signature can be understood as a syntax of
a program.

An order sorted (S, Σ)-algebra A (see e.g. [13]) consists of an S-sorted set
|A| and a collection of functions {|A|f :w→r : |A|w → |A|r}w∈S∗,r∈S,f∈Σw,r

, where
|A|r1...rn = |A|r1 × . . .× |A|rn , satisfying

1. r ≤ r′ ⇒ |A|r ⊆ |A|r′ ,
2. r ≤ r′ ∧ w ≤ w′ ∧ f ∈ Σw,r ∩Σw′,r′ ⇒ |A|f :w′→r′ ||A|w = |A|f :w→r.

As sorts r corespond to types |A|r, the two conditions above mean that an order
on sorts correspond to type hierarchy, and function overloading works well with
type hierarchies. The algebra of a signature can be understood as a semantics of
a program – it gives meaning to the function symbols defined by the signature.

A homomorphism h of (S, Σ)-order sorted algebras (see e.g. [13]) A and B is
a collection of functions {h : |A|r → |B|r}r∈S which preserve constants and such
that for all function symbols f : w → r in the signature Σ we have hr◦|A|f :w→r =
|B|f :w→r ◦ hw, where hw1...wn = hw1 × . . .× hwn .

Let V be an S-sorted set of variables, where we might denote by x : r the
element of Vr to emphasize the sort (though we do not allow overloading for
simplicty). The term algebra TΣ,S(V) (see e.g. [13]) is defined recursively as:

1. x : r ∈ |TΣ,S(V)|r′ for all r ≤ r′.
2. f : ε → r ∈ |TΣ,S(V)|r′ for all r ≤ r′.
3. If r1 . . . rn ≤ w and ti ∈ |TΣ,S(V)|ri for all 1 ≤ i ≤ n, then f(t1, . . . , tn) ∈
|TΣ,S(V)|r′ for all f : w → r and r ≤ r′.

Hence the term algebra is just the set of all type-correct formulas. The algebra op-
erations are defined in an obvious way, i.e., |TΣ,S(V)|f (t1, . . . , tn) = f(t1, . . . , tn).
Terms which are variable free are called ground terms. We denote the sub-algebra
of ground terms by TΣ,S.

When a signature satisfies the preregularity condition [13], which means that
all terms in the term algebra can be assigned a unique least sort, then the ground
term algebra TΣ,S is initial. This means that for all order sorted (S, Σ)-algebras
there exists a unique algebra homomorphism h : TΣ,S → A.

3.2 Conditional Equations

Any sort preserving map v : V → TΣ,S(V) such that v(x) = x for all but a finite
number of elements of V is called a variable substitution. This map extends in
an obvious way to an algebra endomorphism v̂ : TΣ,S(V)→ TΣ,S(V).

Usualy we define algebras as quotients of ground term algebra by an equiva-
lence relation defined by a family of equations. In Equational Membership Logic
[17] those equations can be conditional, and in the most general case they have
the form

p = q if p1 = q1 ∧ . . . ∧ pn = qn ∧ t1 : r1 ∧ . . . ∧ tm : rm
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where p, q, pi’s and qi’s are terms in TΣ,S(V), and the ri’s are sorts in S.
Expression t : r is true if and only if term t has sort r. The equations are
understood to be implicitly universally quantified with respect to all posible
substitutions, i.e., for all substitutions v : V → TΣ,S(V) such that

v̂(p1) = v̂(q1) ∧ . . . ∧ v̂(pn) = v̂(qn) ∧ v̂(t1) : r1 ∧ . . . ∧ v̂(tm) : rm

also v̂(p) = v̂(q) holds.
Maude computes the simplifications of terms using equations as rewrite rules

from left to right [7]. Hence it requires that the rewriting system defined by
equations is terminating and Church-Rosser (i.e., all paths of computation lead
to a unique normal form).

Some properties of operations like commutativity and associativity are dif-
ficult or impossible to express using equations interpreted as terminating and
Church Rosser rewritings. Therefore Maude allows to define associativity and
commutativity of algebra operations using special attributes (assoc and comm).

Functional modules in Maude have the initial semantics, i.e., equations are
assumed to fully define the result of operations in algebra. Maude also allows
defining functional theories which have the loose semantics, i.e., the equations
are assumed to define properties of a class of algebras.

Algebras defined in modules are declared to satisfy a theory through the use
of views.

4 Parametrized RBAC for Row Level Access Control

In this section we present a specification in Maude of a significant part of flat
parametrized RBAC model [21] and we outline the method of generating the
implementation of the policy in the database from the specification. In Role
Based Access Control access permissions are assigned to roles, instead of being
assigned directly to subjects. Each subject is viewed by a security system as a
part of some session. Roles are assigned to sessions, and accesses are granted to
sessions if they are permitted by some role belonging to a given session.

Sessions are created on behalf of the users. For each session there is a unique
user on behalf of whom the session was created. For accounting reasons, one
usually requires one to one correspondence between users and physical persons.
Each user has a pool of roles and the session created on behalf of a given user can
have only the subset of the user roles. We omit the discussion of formalization
of user session relations.

Some explanations of Maude syntax accompany most of the code listings.
Readers are referred to [7] for more details about the language.

4.1 Specification in Maude

First, possible access types need to be defined in order to allow different treat-
ment of, say, selects and updates. In order to separate various aspects of the
system as much as possible we do it in a separate, very simple module:
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fmod ACCESSTYPES is
sort AccessType .
ops select update insert delete : -> AccessType [ctor] .

endfm

which defines only one sort AccessType and four constants of this sort. The
attribute ctor means that the constants are constructors, and are not supposed
to be simplified any further.

Next, we need to describe basic access decisions. We also need an operation
(or) to combine access decisions, for example from different roles active in the
same session. Here for simplicity, we assume that the access policy cannot contain
negative access rights, and therefore, it is enough for the access to be granted
that the session has one role for which the access decision is positive. Hence,
in the module below, we introduce only two constants, permit and notpermit,
with the rule that permit combined with anything yields permit:

fmod ACCESSDECS is
sorts Decision .
ops permit notpermit : -> Decision [ctor] .
op _ or _ : Decision Decision -> Decision [assoc comm] .
var D : Decision .
eq (permit or D) = permit . eq (notpermit or D) = D .

endfm

Note that the infix operator or was defined as associative and commutative
(attributes assoc and comm) and that its identity is notpermit. Note also that
the property that permit or anything else is permit and the identity property
were expressed using a (universaly quantified) variable D instead of using explicit
values. As a consequence, when we extend the module ACCESSDECS with more
irreducible terms of sort Decision, the permit constant preserves its dominant
property and notpermit is still an identity.

One of the key ideas of this paper is the introduction of “unfinished” decisions
(i.e., additional, not always reducible terms of sort Decision), which essentially
correspond to WHERE clauses which the database system should add to user query.
In short, instead of letting Maude do the whole job, we leave some of it to the
database. We cannot define such unfinished decisions in the general ACCESSDECS
module because they must refer to the data sorts. This time we create a theory
instead of a module to allow a parametrization of further layers of our access
control system by a different relational schemas, or even other data models.

fth DATATH is
including ACCESSDECS .
sort DataItem .
op [_ when _] : DataItem Bool -> Decision .
var DI : DataItem . vars P Q : Bool .
eq [DI when P] or [DI when Q] = [DI when P or Q] .
eq [DI when true] = permit .
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eq [DI when false] = notpermit .
endfth

Here DataItem is the most general sort corresponding to the data objects we
want to deal with in our security policy. The partial “mixfix” decision operator
[_ when _] has two arguments – one is a data item argument, the other one is
a boolean term. Usually the boolean term will be some predicate on data item.
For example, the request of access to a row t in a relational table EMPLOYEES, by
someone entitled only to seeing data on employees in a particular department,
might return a partial decision term

[t when dept-id(t)==10]

Whether the above term gets reduced any further or not, depends on the opaque-
ness of the term t. When the term t is, say, a full row expression, it might
allow a full evaluation of the predicate dept-id(t)==10 into true or false con-
stants and hence the full reduction of [t when dept-id(t)==10] into permit
or notpermit terms. On the other hand, when the term t is completely opaque –
it means only “some row of table EMPLOYEES”, then the unreduced decision term
[t when dept-id(t)==10] might be used to generate appropriate WHERE-clause
for the query rewriting engine in the database.

Next, we create a theory for roles, which includes the theory for data items
and the module for access types. These are necessary to define the signature for
the operation request:

fth ROLESTH is
including DATATH . protecting ACCESSTYPES .
sort Role .
op request : Role AccessType DataItem -> Decision .
endfth

Modules implementing the above theory of roles will have to define constructors
of sort Role corresponding to (parametrized) roles. Each reduction rule for the
request operator will correspond to adding some access right to the role.

Each session will have a set of roles attached. In Maude one can use a standard
module SET parametrized by the trivial theory TRIV of elements. The TRIV theory
contains only the definition of sort Elt of elements. In order to use sets of terms
of sort Role we need a view from TRIV theory into ROLETH theory:

view RolesT from TRIV to ROLESTH is
sort Elt to Role .

endv

and later also views from TRIV theory into modules implementing ROLETH theory.
Our module specifying basic session operations will be parametrized with the

ROLETH theory. Note that one still needs to extend the instatiation of this module
with definitions of session constants and sets of roles associated with them.

We start with declaring the theory parameter X and importing instantiation
of the SET module (see [7] for details):
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fmod SESSIONS{X :: ROLESTH} is
protecting SET{RolesT}{X}

* (sort Set{RolesT}{X} to RoleSet{X}) .

Note the module algebra operator * used to rename the sort Set{RolesT}{X}.
Next, we define the sort name Session{X}, and signatures of session operations:

sort Session{X} .
op roles : Session{X} -> RoleSet{X} .
op request : Session{X} AccessType X$DataItem -> Decision .
op nrsrequest : NeSet{RolesT}{X} AccessType X$DataItem

-> Decision .

Operations roles and request are required by the RBAC model. The function
roles returns the session roles, and the function request gives the access deci-
sion based on the roles associated with a session. The operation nrsrequest is
an auxiliary one needed for recursive implementation of the request operation.
Note that the Session{X} sort name is parametrized by the module parameter.
Different instantiations of the role theory implementations will create different
session types. This might be useful if we want to model accesses to different
databases or different parts of a database. Note also that the sort names from
the ROLESTH theory are prefixed by X$ ([7]).

Next we declare variables:

var R : X$Role . var NRS : NeSet{RolesT}{X} .
var DI : X$DataItem . var AT : AccessType .
var S : Session{X} .

needed in recursive implementation of request:

ceq request(S,AT,DI) = notpermit if roles(S) == empty .
ceq request(S,AT,DI) = nrsrequest(roles(S),AT,DI)

if roles(S) =/= empty .
eq nrsrequest(R,AT,DI) = request(R,AT,DI) .
eq nrsrequest((R,NRS),AT,DI) = request(R,AT,DI) or

nrsrequest(NRS,AT,DI) .
endfm

which ends the module. The operation request works as follows. It returns
notpermit if the session has no roles. Otherwise it reduces to the auxiliary
operation nrsrequest called with the set of roles associated to a session as a
first argument. Then nrsrequest reduces (recursively) to the or of the request’s
for roles, for each role in the set. Note that for this operation to be well defined,
it was essential to declare or as commutative and associative. The intended
semantics of requests for sessions is that the operation is allowed for a session if
and only if at least one of the session’s roles allows it.

Now we can start implementing concrete data and role descriptions. We start
with the module BASICDATA, the contents of which is just copy and paste from
the contents of the theory DATATH:
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fmod BASICDATA is
including ACCESSDECS .
sort DataItem .
op [_ when _] : DataItem Bool -> Decision .
var DI : DataItem . vars P Q : Bool .
eq [DI when P] or [DI when Q] = [DI when P or Q] .
eq [DI when true] = permit . eq [DI when false] = notpermit .

endfm

Now we can extend this module, creating the high level description of partitions
of data, the use of which is another of the leading ideas of this paper. For example
the following module

fmod DATAPREDICATES is
including BASICDATA . protecting STRING .
sorts Dept Person .
op persinfo : DataItem Person -> Bool .
op fininfo : DataItem -> Bool .
op deptinfo : DataItem Dept -> Bool .
op dept : String -> Dept [ctor] .
op person : String -> Person [ctor] .

endfm

declares parametrized predicates persinfo, fininfo, and deptinfo the in-
tended meaning of which is to define the division of all data into:

– Personal information of person p: the data items I for which persinfo(I,p)
reduces to true.

– Financial information: the data items I for which fininfo(I) reduces to
true.

– Departmental information for the department d: the data items I for which
deptinfo(I,d) reduces to true.

In addition, functions dept and person allow to construct terms of sort Dept and
Person, respectively, from character strings, which might represent the person
and department identifiers in the database.

The next module will declare the database relations as opaque tables. These
declarations will then be used to define the predicates from the DATAPREDICATES
module:

fmod RELVARS is
including DATAPREDICATES .
sorts SalaryD PersonD PersNSD DeptD .
subsorts SalaryD PersonD PersNSD DeptD < DataItem .
subsort PersNSD < PersonD .
op deptd : DeptD Dept -> Bool [ctor] .
op salaryd : SalaryD Dept -> Bool [ctor] .
op salaryd : SalaryD Person -> Bool [ctor] .



410 Ś. Sobieski and B. Zieliński

op persond : PersonD Dept -> Bool [ctor] .
op persond : PersonD Person -> Bool [ctor] .
op salaries : -> SalaryD [ctor] .
op people : -> PersonD [ctor] .
op peopleNS : -> PersNSD [ctor] .
op departments : -> DeptD [ctor] .

endfm

Here the subsorts SalaryD, PersonD, DeptD of the DataItem sort correspond
to the (sets of) the rows of relational tables salaries, people, departments.
Subsort PersNSD corresponds to the rows of the view peopleNS of people table
which contains only “nonsensitive” subset of columns, such as name and family
name, but not, say, passport number or national ID. Predicates deptd, salaryd
and persond choose a part of the respective table associated to a given person or
department. For example, persond(I,d) should reduce to true only for those
rows I of the table people which describe employees of the department d.

Now we are ready to implement parametrized predicates persinfo, fininfo,
and deptinfo from the module DATAPREDICATES:

fmod PREDSIMPL is
including RELVARS .
var P : PersonD . var PNS :PersNSD . var S : SalaryD .
var DP : DeptD . var pP : Person . var pD : Dept .
var DI : DataItem .
eq persinfo(P,pP) = persond(P,pP) .
eq persinfo(S,pP) = salaryd(S,pP) .
eq persinfo(DI,pP) = false [owise] .
eq fininfo(DP) = true .
ceq fininfo(P) = true if (P :: PersNSD) .
ceq fininfo(P) = false if not (P :: PersNSD) .
eq fininfo(DI) = false [owise] .
eq deptinfo(P,pD) = persond(P,pD) .
eq deptinfo(DP,pD) = deptd(DP,pD) .
eq deptinfo(S,pD) = salaryd(S,pD) .

endfm

Note that the personal data for a person p, as defined by the predicate persinfo,
consists of rows from tables people and salaries (sorts PersonD and SalaryD)
associated with person p and nothing else (attribute owise means “otherwise”).

Note also the conditional equations defining the fininfo predicate for rows
from Personal table. The intended meaning is that only the non-sensitive part
(sort PersNSD) of people table is contained in the financial data. Here we use
the Bool valued, built in function _:: PersNSD. Such a function is defined for
each sort.

We are now ready to define example role constructors in terms of the just
defined predicates persinfo, fininfo, and deptinfo. First, we declare the sort
Role and the signature for the request operation and role constructors named
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persrole and accountant parametrized by the person and department, respec-
tively:

fmod ROLES is
including PREDSIMPL . protecting ACCESSTYPES .
sort Role .
op request : Role AccessType DataItem -> Decision .
op persrole : Person -> Role [ctor] .
op accountant : Dept -> Role [ctor] .

Next we declare variables needed for the request operation definition:

var pP : Person . var pD : Dept .
var DI : DataItem . var AC : AccessType .

Then we assign permissions to the role persrole(pP) to read (but not modify)
the data associated to a person pP.

eq request(persrole(pP),select,DI) = [DI when persinfo(DI,pP)] .
eq request(persrole(pP),AC,DI) = notpermit [owise] .

Note that here we assign the access permissions to the roles in terms of high level
predicates describing meaning of data, such as the predicate persinfo, and not
in terms of tables. Similarily, we define permissions for the accountant(pD) role:

eq request(accountant(pD),AC,DI)
= [DI when fininfo(DI) and deptinfo(DI,pD)] .

eq request(accountant(pD),AC,DI) = notpermit [owise] .
endfm

Here one can observe how one can combine in a natural way the high level
predicates, in order to express the property, that an accountant should have
access to financial data, but only in his own department.

In order to define specific sessions by extending and instantiating module
SESSIONS, we first need to define view from the role theory ROLETH to the module
ROLES:

view RolesV from ROLESTH to ROLES is endv

The view is trivial, as we took care to name the sorts and operations identically
in the module as in the theory. Finally we define specific session named session:

fmod EXAMPLESESSION is
including ROLES . including SESSIONS{RolesV} .
op session : -> Session{RolesV} .
eq roles(session) = (persrole(person("A")),

accountant(dept("B"))) .
endfm

The session session has two roles: persrole(person("A")) and accountant(
dept("B")). With all the definitions above, the term
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request(session, select, people)

should reduce to

[people when persond(people, person("A"))]

Finally we present how the actual database policy can be generated from Maude
specification. We need to generate WHERE conditions which will be added to user
queries (for instance by using them in the definition of security views), for each
combination of the role, access type and protected relational variable. In the
module MAUDETOSQL we define a function permtostr which converts terms of
sort Decision to strings using the auxillary function condtostr:

fmod MAUDETOSQL is
including PREDSIMPL . including ROWCONSTRUCTORS .
op condtostr : Bool -> String .
op permtostr : Decision -> String .
var di : DataItem . var b : Bool .
eq permtostr(permit) = "1=1" .
eq permtostr(notpermit) = "1<>1" .
eq permtostr([di when b]) = condtostr(b) .

Hence condtostr does most of the job and it is defined as follows:

var D : DeptD . var S : SalaryD .
var P : PersonD . var St : String .
eq condtostr(true) = "1=1" . eq condtostr(false) = "1<>1" .
eq condtostr(deptd(D,dept(St))) = "Item.DeptId=’" + St + "’" .
eq condtostr(salaryd(S,dept(St))) = "’" + St + "’=(

SELECT q.DeptID FROM People q WHERE q.Id = Item.PersId" .
eq condtostr(salaryd(S,person(St)))

= "Item.PersId=’" + St + "’" .
eq condtostr(persond(P,dept(St)))

= "Item.DeptId = ’" + St + "’" .
eq condtostr(persond(P,person(St))) = "Item.Id = ’" + St + "’" .

endfm

Lines above represent actual implementation of predicates such as salaryd.
While most of them are defined as simple comparison of a column with a value,
in many cases the SQL implementation involves complicated joins, like in the
example above, where the DeptID for comparison had to be provided by a sub-
query. After loading the modules MAUDETOSQL and ROLES:

fmod POLICYGEN is including MAUDETOSQL . including ROLES . endfm

one can start generating the where clasuses. For instance the term

permtostr(request(persrole(person("John")),select,salaries))

gets reduced to the string "Item.PersId = ’John’".
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5 Conclusion and Future Work

We have shown how to specify (a significant part of) a flat parametrized RBAC
in Maude, in a way which is particularly well suited for row level access con-
trol systems, implemented by query rewriting methods, and which allows easy
automatic code generation from the specification. We have also shown how as-
signment of access premissions to (parametrized) roles might be carried in terms
of high level predicates defining semantic partitioning of data. And finally, we
have demonstrated how sophisticated module algebra capabilities of Maude as-
sist in structuring such a specification. This is the begining of a research project,
and the study described in this paper can be extended in several directions:

– We have specified only flat RBAC. It would be interesting to add role hier-
archies and separation of duty constraints [21] as well.

– A lot of research (see e.g. [14], [10]) goes into cooperation between different
kinds of security policies. It would be interesting to define in our formal-
ism cooperation between, say, parametrized RBAC and Bell-LaPadula [4]
policies.

– Finally, our formalizm works well with the rows coming from single tables
(views). However a more general solution, would require implementing some
part of relational algebra in Maude, which is an interesting project in itself.
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Abstract. Schema and ontology matching have attracted a great deal
of interest among researchers. Despite the advances achieved, the large
matching problem still presents a real challenge, such as it is a time-
consuming and memory-intensive process. We therefore propose a
scalable, clustering-based matching approach that breaks up the large
matching problem into smaller matching problems. In particular, we first
introduce a structure-based clustering approach to partition each schema
graph into a set of disjoint subgraphs (clusters). Then, we propose a new
measure that efficiently determines similar clusters between every two
sets of clusters to obtain a set of small matching tasks. Finally, we adopt
the matching prototype COMA++ to solve individual matching tasks
and combine their results. The experimental analysis reveals that the
proposed method permits encouraging and significant improvements.

1 Introduction

There is a proliferation of schema- and ontology-based web data sources using
models and languages, such as XML, RDF, and OWL [1]. Identifying semantic
correspondences among such heterogeneous data sources and their metadata
models (schemas and ontologies) is the biggest obstacle for making these data
sources interoperable. The process of identifying these correspondences across
different metadata models is called schema matching or ontology matching.

For its importance, a myriad of matching algorithms has been proposed and
a large number of matching systems have been developed (see e.g., [17,4,2] for
surveys). Unfortunately, most of these systems severely lack performance when
dealing with large matching problems. The results of previous OAEI contests1

show that more than half of the matching systems couldn’t match large ontolo-
gies in less than one hour [12]. Consequently, several approaches have been pro-
posed to address the problem of matching two large schemas, such as MOM [20],
COMA++ [6] and Falcon [11]. As we will further discuss in Section 2, the current
approaches to partition-based matching have several limitations and the design
space for such solutions has not yet sufficiently been explored.

In this paper we address two of these limitations. The first issue is partition
identification. Some solutions, such as Falcon, are specific to certain ontology
1 http://www.ontologymatching.org

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 415–428, 2011.
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languages and cannot be applied to other data models. Other solutions, such as
COMA++, use relatively simple heuristic rules to partition the input schemas
resulting often in too few or too many partitions. The second issue is determina-
tion of similar partitions. Some solutions, such as COMA++, only use limited
information about the partition (only the root node of the partition) to deter-
mine the similarity between partitions of the input schemas, which results in
less matching quality. Other solutions such as Falcon, fully evaluate the input
ontologies to assess the partition similarity that leads to higher response time.

To cope with these challenges and limitations, we therefore propose and eval-
uate a new, more efficient, partition-based matching strategy. The proposed
approach shares the general procedure to match large ontologies with exist-
ing matching systems. However, the approach introduces new methodologies to
overcome the observed limitations. In particular, we make the following contri-
butions:

– We propose a new clustering-based approach to cope with the large matching
problem. The approach is generic. Similar to the current implementation of
COMA++ [6], we first represent input schemas and ontologies as directed
acyclic graphs, called schema graphs. We further apply a structure-based
clustering algorithm to partition each input ontology into a set of disjoint
sub-graphs. We thus achieve that elements that are structurally similar are
in the same cluster, while elements in different clusters are dissimilar.

– Given the two cluster sets of the input ontologies, we apply a light-weight
similarity measure to efficiently assess the similarity between cluster pairs.
To this end, we represent each cluster as a cluster document and use of both
the Vector Space Model and TF-IDF to determine the similarity between
cluster documents. Having similar clusters, we adopt a standard match tool
such as COMA++ to fully match elements inside similar clusters.

– We experimentally evaluate the efficiency and match quality of the proposed
approach for different real-world schemas and ontologies. The resulting in-
sights should be helpful for the development and evaluation of future match
systems.

Section 2 discusses related work. We then introduce the basic definitions in Sec-
tion 3. Sections 4 and 5 present the new approaches for structure-based clustering
and identifying similar pairs of clusters. Section 6 presents experimental results.
We conclude in Section 7.

2 Related Work

To cope with matching two large ontologies, several techniques can be used, such
as reduction of search space, parallel matching, and self-tuning [16]. Reducing
the match search space aims to limit the number of element comparisons ei-
ther by early pruning dissimilar element pairs [7,14] or by partitioning the two
ontologies [18,6,11,19,10]. Quick ontology mapping [7] was one of the first ap-
proaches that considers both matching quality and run-time complexity. It first
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Fig. 1. Steps of matching two large ontologies

determines match candidates based on element labels and evaluates structure
properties only for the most similar pairs from the first step. The approach pro-
posed in [14] uses a set of filters within the matching process to prune dissimilar
element pairs from intermediate match results.

Similar to our approach, partition-based matching aims at partitioning input
ontologies/schemas in such a way that each partition of the first ontology has to
be matched only with a subset of the second ontology. As shown in Fig. 1, the
skeleton of partition-based matching involves four main steps. Step 1, partition
identification, partitions the input schemas into a set of disjoint clusters. The
second step, determination of similar partitions, is devoted to identifying similar
partitions. Once settling on similar partitions (called fragments in COMA++ [6]
or blocks in Falcon [11]), in Step 3, normal matching algorithms can be used to
determine local correspondences between similar partitions. Finally, from these
local correspondences, Step 4 is to construct the final match result. COMA++
implements one of the first approaches for partition-based matching. Its approach
called fragment matching [6] has the four general steps similar of Fig. 1. Fragment
matching first partitions two input schemas into two set of fragments, which
are then compared with each other to identify the most similar fragments in
the two sets worth to be fully matched later. Both Falcon [11] and Anchor-
Flood [19] focus on matching (OWL) ontologies but do not support matching of
XML schemas or relational schemas. The Falcon system uses a specific structure-
based clustering technique to partition entities of ontology into blocks. Matching
is then applied to the most similar blocks from the two ontologies. The Anchor-
Flood system follows a dynamic partitioning technique. It starts off with an
anchor, a pair of look-alike concepts from each ontology, gradually exploring
concepts by collecting neighboring concepts until no further matches are found
or all concepts are processed. The partitions are located around the anchors
and their size depends on the continued success of finding match partners of
the considered concepts. Further details about different techniques of large-scale
matching can be found in [16].

3 Preliminaries

We first present definitions and basic concepts used throughout the paper.
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Fig. 2. Schema graph representation

Schema Graph. In order to make the proposed approach generic, we represent
input schemas (e.g., XML schemas) and ontologies as labeled directed acyclic
graphs, called schema graphs (SG).

Definition 1. A schema graph is a rooted node-labeled directed acyclic graph.
It is represented as a 3-tuple (V, E, Labv), where: V = {r, v2, ..., vn} is a finite
set of nodes, each of them is uniquely identified by an object identifier (OID),
where r is the schema graph root node. E = {(vi, vj)|vi, vj ∈ V } is a finite set of
edges. Labv is a finite set of node labels. These labels are strings for describing
the properties of the element and attribute nodes, such as name and data type.
Fig. 2 represents the schema graph representation of an XML schema taken from
[3]. DeptDB represents information about departments with their employees and
grants, as well as the projects for which grants are awarded. The figure shows
that each node is associated with the node name and the node identifier. For
example, the node v1 has the name deptDB.

Node Context. The context of a node in a schema graph is represented by
its descendants, ancestors, and siblings. The descendants of the node include
both its immediate children and the leaves of the subgraphs rooted at the node.
The immediate children reflect its basic structure, while the leaves reflect the
node’s content. Without loss of generality, to construct the context of a node, we
consider descendants and ancestors of the node up to one level, i.e., the parents
and the children elements, as well as the node itself. Formally, we introduce the
definition of the node context (C) as follows:

Definition 2. Given a schema graph SG = (V, E, Labv), the context of a node
v ∈ V is given by C(v) = {vi|(v, vi) ∈ E ∪ (vi, v) ∈ E ∪ v}

For the schema graph in Fig. 2, C(v6) = {v1, v6, v7, v8, v9}. We claim that the
more contexts two nodes share, the higher their structural similarity is. We
therefore define and use the following context-based similarity measure.
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Definition 3. Given two nodes vi and vj ∈ SG, the context similarity, σ, be-
tween them is computed using the node contexts as follows:

σ(vi, vj) =
|C(vi) ∩ C(vj)|√
|C(vi)|.|C(vj)|

(1)

|C(vi) ∩ C(vj)| represents the number of common nodes between their contexts
and

√
|C(vi)|.|C(vj)| is the geometric mean of the two contexts’size used to nor-

malize the value of the structure similarity. In fact, Eq.1 guarantees that the
more common nodes the two nodes share, the higher context similarity they
have. Furthermore, the equation shows that context similarity has several prop-
erties. Among them are: it is normalized, 0 ≤ σ(vi, vj) ≤ 1, and symmetric,
σ(vi, vj) = σ(vj , vi).

Example 1. The node contexts of nodes v2 , v4 and v6 are as follows: C(v2) =
{v1, v2, v3, v4, v5}, C(v4) = {v2, v4} and C(v6) = {v1, v6, v7, v8, v9}, respectively.
The structure similarity between these nodes can be computed as follows:
σ(v2, v4) = 0.63, σ(v2, v6) = 0.2, and σ(v4, v6) = 0.

4 Structure-Based Clustering

Our goal is to divide the schema graph into disjoint subgraphs in order to fa-
cilitate matching large ontologies represented as schema graphs. Clustering is
a useful technique for grouping nodes such that nodes within a single cluster
are structurally similar, while nodes in different groups are dissimilar. In the
following, we present a clustering algorithm based on the introduced context
similarity so that structurally similar nodes are placed in the same cluster while
the nodes of different clusters are structurally dissimilar. We first describe how
to use the computed structure similarity to construct so-called links. After this
we introduce the proposed clustering algorithm.

To avoid the repeated calculation of intra-ontology element similarities for
clustering, we predetermine and store the structural similarity between selected
node elements as so-called links. In particular, we are interested in the follow-
ing set of element pairs for which the context similarity exceeds a predefined
threshold, th:

links = {Li|Li = (vi, vj , σ(vi, vj)) s.t. σ(vi, vj) ≥ th , vi, vj ∈ SG} (2)

Using this set of items (links) we construct a links hash table. Given a schema
graph SG with n nodes, the worst case each node may be compared with n− 1
other nodes resulting in quadratic number of comparisons. However, as shown
in Example 1, σ(v4, v6) = 0 since the two nodes have no common nodes in their
contexts. Therefore, we limit the comparison of a node with the set of neighboring
nodes to achieve a linear number of comparisons. By using a threshold value
greater than 0 we can dramatically reduce the number of entries in the links
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.

hash table. It should be noted that the similarity is assumed to be 0 if there is
no pre-computed link.

The clustering algorithm presented in this paper is an agglomerative hierar-
chical algorithm mainly extended from the SCAN approach [21], which is a
very scalable algorithm in the area of network clustering. The algorithm pro-
duces a tree representing the hierarchy of clusters in a bottom-up fashion, called
dendrogram. Initially, each node represents its own single-member cluster. The
algorithm iteratively merges nodes of a schema graph in descending order of
structure similarity to build the hierarchy. As shown in Algorithm 1, the pro-
posed clustering algorithm proceeds in four stages as follows.

– Preparation. The algorithm accepts the schema graph, SG, to be clustered
and prepares it for the next stages. The stage starts by initializing the out-
put set of clusters (ClusterSet) and the cluster hierarchy (Dendro), line 1.
Then, the algorithm proceeds to extract schema graph nodes, elements to
be clustered, line 2, and constructs the links hash table.

– Cluster initialization. The initialization stage constructs the bottom level of
the cluster hierarchy. Each node represents its own cluster resulting into n
clusters in the cluster set (ClusterSet), lines 4 to 7. Once getting the initial
cluster set, the bottom level of the hierarchy is added to the dendrogram,
line 8.
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– Cluster hierarchy construction. This is the main stage of the clustering algo-
rithm and is dedicated to construct the cluster hierarchy. It first initializes
the distance between levels of hierarchy with 1, line 9. The algorithm iter-
atively merges clusters at a certain level until either the number of clusters
reaches 1 or there is no possibility to merge more clusters. We keep the
current size of the cluster set in variable k, lines 11& 16. If the number of
clusters after merging is changed, line 13, the new cluster set is added to the
cluster hierarchy at the specified level. Furthermore, as we will explain later,
the intra-cluster similarity is computed and the k value is updated. After
that the algorithm checks if there is a possibility to further merge clusters
and finally updates the distance for the current hierarchy level.

– Best cluster set selection. The task of the final stage is to select the best
cluster set. Each level in the dendrogram is associated with a value that
represents the average value of intra-cluster similarities of clusters at that
level. Therefore, the algorithm returns the cluster set at the level with the
best value, line 23.

In the following we give more details considering the two main operations in the
clustering algorithm: cluster merging and intra-cluster similarity computation.

Cluster Merging. Once obtaining the first (bottom) level of the cluster hier-
archy (line 8, Algorithm 1), we need to merge nodes into groups such that nodes
in the same group are structurally similar while nodes in different groups are
dissimilar. To this end, we call for a measure that quantifies relationship between
individual clusters as well as a condition that should be satisfied to decide that
nodes in two clusters have to be merged into one. To quantify the relationship
between clusters, we rely on the pre-computed links. Having two clusters C1 and
C2 containing k1 and k2 nodes (elements) respectively, the similarity between
them can be expressed as the average context similarity of their elements. It can
be represented as follows [9]:

Sim(C1, C2) =

∑k1
i=1

∑k2
j=1 σ(v1i, v2j)

k1 + k2
. (3)

where σ(v1i, v2j) is the context similarity between nodes v1i ∈ C1 and v2j ∈ C2

computed by Eq.1. Having this similarity between every cluster pair, a condi-
tion is required to decide if elements in the cluster pair should be merged. This
condition has to reflect the level of the cluster hierarchy at which elements come
together. Therefore, the introduced distance variable is used (dist, line 9). Ele-
ments of every cluster pair are combined when the similarity between the two
clusters exceeds the predefined level similarity threshold (1/dist). The value of
the level distance is then updated to reflect the nature of the next level (line 21,
Algorithm 1).

It is worth noting that we add another condition in order to limit the merging
process. Once two nodes in two different clusters have been merged into a new
cluster, their links in the links hash table have been removed. The merging
process stops when no more links are in the table, (lines 18& 19).
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Intra-Clustering Similarity. The proposed clustering algorithm produces a
cluster hierarchy (dendrogram) in a bottom-up fashion. The cluster solution does
not give information regarding the cut-off level. Cutting off the hierarchical tree
requires the selection of a suitable level. To select the best level, we compute
intra-clustering similarity at each level (line 15, Algorithm 1).

The intra-clustering similarity measures the cohesion within a cluster, how
similar nodes within a cluster are. This is computed by measuring the similarity
between each pair of data within a cluster, and the intra-clustering similarity
of a clustering solution is determined by averaging all computed similarities
taking into account the number of nodes. Let at a certain level of the cluster
hierarchy, L, be a number of clusters K of the n nodes of a schema graph. The
intra-clustering similarity, IntraSim, at this level can be computed from the
following formula:

IntraSimL =
∑K

i=1 IntraSim(Ci)
n

. (4)

where IntraSim(Ci) is the intra-clustering similarity for the cluster Ci. In gen-
eral, the larger the values of intra-clustering similarity (IntraSim), the better
the clustering solution is.

Example 2. Applying Algorithm 1 to the schema graph represented in Fig. 2, the
cluster solution consists of two clusters C1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9} and
C2 = {v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, }2. It should be noted that this
cluster solution represents a reasonable solution in the sense that C1 includes
information about projects and grants for these projects, while C2 represents
information about departments and their employees.

Complexity Analysis of Clustering Algorithm. Given a schema graph with
n nodes, the algorithm contains four main stages. The worst case total cost of the
preparation stage is O(n(n− 1)) = O(n2) if every node in the schema graph has
to be compared with all other n− 1 nodes. However, on average, each node can
only be compared with a set of nodes in the context of the node. With a typically
constant average context size, this results in an average cost O(n). The worst
case total cost of the initialization stage is O(n), and the time complexity of
the final stage is O(1). The cluster hierarchy construction stage initially iterates
over n clusters, and then n/2 until either the number of clusters reduces to
one or the merge condition, line 18, is satisfied. This results in an average time
complexity of O(n). Therefore, the time complexity of the clustering algorithm
is O(n)+O(n)+O(n)+O(1) = O(n). Results reported in the evaluation section
verify and confirm this complexity.

2 It should be noted that the cluster solution is based on the state of the schema
graph. The state of schema graph represented in Fig. 2 is reduced. More information
can be found in [6].
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5 Determination of Similar Clusters

The goal of this step is to identify partitions (clusters) of the two schema graphs
that are sufficiently similar to be worth matching in more detail. This aims at
reducing the match overhead by not trying to find correspondences between
unrelated partitions. The approach determines a cluster document per partition
and makes use of the Vector Space Model (VSM) for computing the similarity
between cluster documents.

To determine the similarity between clusters of different ontologies we can
utilize different features of cluster elements, such as name, data type, cardinality
constraints, etc. It has been verified that the node name is the most dominant
feature [2]. Therefore, we construct a so-called cluster document based on the
node name.

Definition 4. Given a cluster J, the text document that contains the names of
cluster elements is called a cluster document, CDJ .

Adopting VSM provides the possibility to model document terms as elements of
a vector space. Let W1, W2, ..., Wt be the words (terms) in a cluster document.
Let us suppose that there exists a unit length vector in the space corresponding
to each word. We therefore can express each cluster document (CDJ ) as a vector
in terms of words as follows:

VJ = (W1J , W2J , ...., WtJ ) (5)

where WiJ s are real numbers reflecting the importance of word i in CDJ . Given a
vector VJ representing the cluster document CDJ containing t words, the values
of the vector elements can be computed using the WiJ = TF ∗ IDF equation
[5], where TF is the term frequency and IDF is the inverse document frequency.

To determine the cluster similarity, we propose the use of a light-weight simi-
larity function based on the vector representation of the cluster document. Given
two vectors V1I and V2J representing two cluster documents from two different
ontologies, the cluster document similarity, CDSim, can be defined as the inner
product (cosine) of the two vectors. It can be expressed as:

CDSim(CD1I , CD2J ) = cos(V1I , V2J ) =

∑t
i Wi1I .Wi2J√∑t

i(Wi1I)2.
∑t

i(Wi2J )2
(6)

where t is the size of the vectors. It should be noted that the equation yields a
value of 0 when the elements of the two clusters do not have names in common,
however, the similarity value becomes 1 when the elements of the two clusters
have the same names. It is worth noting that representing cluster documents as
vectors provides the possibility to utilize efficient similarity measures, such as
the used one.

Now we are in a position to state the problem of similar clusters determination.
Given two schema graphs SG1 and SG2 with n and m elements, and K and K ′

clusters, respectively. The problem is to identify the similar clusters between the
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Table 1. Data set specification
Series Tested schemas No. matching tasks min./max. No. of elements

1
PO (5 XDR) 10 27/74

Spicy (4 XSD) 2 20/125

2 Webdirectory (4 OWL) 6 418/1132

3 Anatomy (2 OWL) 1 2746/3306

two sets. The computed similarities between cluster pairs of the two ontologies
are used to construct a so-called cluster similarity matrix. Due to uncertainty
inherent in ontology/schema matching, the best matching can actually be an
unsuccessful choice [8]. To overcome this problem, the elements of the matrix
are ranked according to their similarity to each other and the top-k3 elements
are selected from the ranked list.

Once settling on the similar clusters of the two ontologies, the next step is
to fully match similar clusters to obtain the correspondences between their el-
ements. Each pair of the similar clusters represents an individual match task
that is independently solved. Match results of these individual tasks are then
combined to a single mapping, which represents the final match result.

6 Experimental Evaluation

In order to evaluate the performance of the clustering-based matching approach,
we conducted a set of experiments utilizing real-world ontologies of different sizes.
We aim to evaluate both the quality and the efficiency of the proposed approach.
We ran all our experiments on a 2.66 GHz Intel(R) Xeon(R) processor with 4
GB RAM running Windows 7.

6.1 Data Sets and Evaluation Criteria

Table 1 shows the characteristics of the test ontologies. In Series 1, we use five
XML schemas for purchase orders (PO) taken from the COMA++ evaluation
[6] and four XML schemas from [15]. In Series 2, we match four ontologies
taken from the Web directory domain [13]. Series 3 contains a single match
task taken from the OAEI initiative to match two large anatomy ontologies
(AdultMouseAnatomy with 2,746 concepts vs. the anatomical part of the NCI
Thesaurus with 3,306 concepts)4. We choose these data sets to demonstrate the
applicability of our approach to different data sources represented in different
models and having different characteristics. We performed the required matching
tasks between schemas/ontologies within the similar domains with a total of 22
different matching tasks. More details about data sets in Table 1 can be found
in [6,13].

3 k may equal 1, 2, or 3 based on the similarity value between clusters.
4 http://www.ontologymatching.org/
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(a) Series1: PO (b) Series2: Web directory

Fig. 3. Matching quality

To match elements within similar clusters, we used the COMA++’s Allcontext
(a combination of Name, Path, Leaves, and Parents matchers) for match tasks
of Series 1, the Context strategy (a Path matcher) for match tasks of Series
2, while the name matcher (without using synonyms) is used to perform the
anatomy matching task. The threshold (th) used to construct links hash table
is set to 0.15.

To measure the matching quality, we use the same criteria used in the lit-
erature, including precision, recall and F-measure. We call the execution time
needed to perform the matching process including four steps of Fig. 1 the re-
sponse time. We use it as a criterion of matching efficiency.

6.2 Experimental Results

We present results for two sets of experiments. The first set is used to answer
the following question: ”Which node context shall be used in computing context
similarity?”. To this end, we made use of five different contexts, namely children
(Ch), parents (P), grandparents (GP), siblings (S), and leaves (L) in eight dif-
ferent combinations. The experimental results on matching quality (precision,
recall, and F-measure) are reported in Fig. 3.

Figs 3(a,b) give the matching quality for matching tasks of the PO and Web
directory domains, respectively. For the PO domain, all the exploited contexts,
except the child and Ch+P+S contexts, produce F-measure equal to or higher
than 80%. It should be noted that both P and Ch+P contexts achieves the
highest F-measure (82%), as shown in Fig. 3(a). Since schemas in the Web
directory domain contain more heterogeneities and a simple matcher is used, the
highest F-measure merely reaches 55% using also the Ch+P context, as shown
in Fig. 3(b). This motivates and verifies our selection of the Ch+P context in
computing context similarity. To verify this selection, we also investigated the
generated number of partitions and the response time using of the ontologies in
Series 2 (Web directory).

Table 2 illustrates the average number of partitions (clusters) generated using
different node contexts. The Ch+P+S, P, and Ch contexts lead to mostly higher
number of partitions while the Ch+P context achieves a medium number of
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Table 2. Average no. of partitions
Context Ch P Ch+P Ch+P+GP Ch+P+S Ch+P+S+GP Ch+P+L Ch+P+L+GP

Avg. partitions 38 62 22.8 19.8 112.7 28.9 25.6 19.1

partitions that is largely in the same range for different match tasks. Further-
more, using this context performs on average faster than the other contexts.
Hence, we conclude that the Ch+P context is most suitable for our clustering
approach and we will use this choice in the next set of experiments.

The second set of experiments is used to compare the proposed approach with
two current matching strategies in COMA++ and Falcon (for the anatomy match
task). For COMA++ we consider the non-partitioned strategy (AllContext) and
different Fragment-based strategies [6]. We choose different techniques to select
fragments, such as inner (Fragment inner) and Parent of Leaves (Frag P L). The
first selects inner nodes as roots of fragments, while parents of leaves are selected
as roots of fragments in the second strategy. The experimental results are reported
in Fig. 4.

(a) Series 1: Spicy (b) Series 1: PO (c) Series 2: Web directory

Fig. 4. Matching quality comparison

Figs. 4(a, c) show that our proposed approach achieves, despite its reduced
search space for matching, the best matching quality for the Spicy and Web
directory schemas. The approach produces the highest F-measure compared with
the other matching strategies. The clustering-based approach could correctly
identify similar clusters which helps in achieving good recall; good precision is
favored by the restricted search space reducing the risk of false positives. Fig. 4(b)
also illustrates that the approach realizes a sufficient matching quality for the
PO schemas.

We conducted another set of experiments to verify the matching efficiency.
We measured the response time required to perform the specified match tasks
of Series 2 illustrated in Table 1. We also compared the response time of the
clustering-based approach to the mentioned strategies of COMA++. Results
are reported in Fig. 5. The figure shows that the clustering-based approach
outperforms the other strategies. The approach needs a total of 28 seconds
to match the specified matching tasks. While, AllContext, Fragment inner and
Fragement parents leaves require 101, 72, and 66 seconds, respectively. We also
analyzed the number of generated partitions (clusters or fragments) and we found
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Fig. 5. Res. time comparison

Table 3. Anatomy results

Clustering-based Falcon

No. of partitions 84/80 139/119

Precision 0.975 0.964
Recall 0.613 0.591

F-measure 0.753 0.73

Res. time 58.8 sec 10 mins.

that COMA++ generates more partitions than the new cluster approach. We
also tested with Frag sub [6], we found that only few partitions are determined
so that no correspondences could be found for several matching tasks. We thus
do not include the detailed results produced by the Frag sub strategy.

We finally evaluate our clustering approach on the anatomy match task and
compare it with Falcon. For this purpose, we installed the publicly available Fal-
con system and run it on the same machine. Results are reported in Table 3. The
table shows that our approach achieves a slight improvement in matching quality
as Falcon, however, our system is about ten times faster (1 vs. 10 minutes).

In summary, the evaluation results show that the proposed approach achieves
for different domains better matching response times compared to previously
proposed partition-based strategies at a comparable or better match quality.

7 Conclusions

We proposed a new clustering-based matching approach for large-scale ontology
matching. The proposed approach is generic and can be applied to different data
models including XML schemas. It shares the same steps of other partition-
based match strategies. However, it uses different techniques for partitioning
and finding similar partitions. The partitioning process is based on a bottom-
up clustering scheme utilizing context-based structural node similarities, while
finding similar partitions to match is based on an effective and light-weight
linguistic technique. To verify the performance of the proposed approach, we
conducted several sets of experiments. The results show that the proposed ap-
proach presents significant and encouraging improvement, especially in runtime
efficiency. In future work we want to further explore the design space of partition-
based match strategies by taking further algorithms for the key steps and further
application domains into account.

Acknowledgements. This work is supported by the Federal Ministry of Edu-
cation and Research (BMBF), grant 03FO2152 (“Web Data Integration”).
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2 Université Gaston Berger de Saint-Louis - LANI
{first.last}@ugb.sn

Abstract. Our objective is to automatically build a global ontology from several
data sources, annotated with local ontologies and aiming to share their data in
a specific application domain. The originality of our proposal lies in the use of
a background knowledge, i.e. a reference ontology, as a mediation support for
data integration. We represent ontologies using Description Logics and we com-
bine syntactic-matching with logical-reasoning in order to build the shared global
TBox from both the TBoxes of sources and that of the reference ontology.

Keywords: Background Knowledge, Data Integration, Descripion Logic.

1 Introduction

As the need for Web Data Integration is still growing, we address here the first chal-
lenge pointed out in [15]: ”How to build an appropriate global schema”. Indeed, many
organizations hold some similar data in specific domain and want to share some parts of
it. Data integration may alleviate users from knowing the structure of different sources,
as well as the way they are conciliated, when making queries [15].

When the access to heterogeneous data sources is made possible using ontologies,
the integration process in called ontology-based data integration. Ontologies offer a
formal semantics which allows the automation of tasks such as heterogeneity resolu-
tion, consistency checking, inferrence, etc. There are three main ontology-based data
integration architectures in the literature [21], namely (i) the single-ontology, (ii) the
multiple-ontologies and (iii) the hybrid approaches. In the first one, all the data sources
are related to a global ontology: this approach requires from all the sources the same
view of the domain, for instance the same granularity-level, because in the presence of
sources with a different view of the domain, finding a consensus in a minimal ontology
commitment is a difficult task. This approach is implemented for instance in [3].

In the multiple-ontologies approach, for instance in the OBSERVER system [16],
each data source is described with its own (local) ontology, and inter-ontology map-
pings must be defined for interoperability. The lack of a common vocabulary between
the sources makes this task difficult. The hybrid approach combines the two precedent
ones, allowing to overcome their drawbacks by defining a global shared vocabulary in
addition to local ontologies: [11] is an example of such an integration architecture.

In this paper we build on the hybrid approach as we propose to automatically build
a global ontology from local ones. As usual in data integration systems, our global

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 429–443, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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ontology must be linked to local ontologies by mappings. The two basic solutions for
doing so are the LAV (local as view) and the GAV (global as view) mappings. Each of
them has advantages and drawbacks: LAV approach allows to define the global ontology
independently from the sources, so adding or removing a new data source is easy but
query processing is harder. Query processing is less complex with GAV approach, since
the global ontology is defined from the data sources, but sources must be known in
advance and adding new data source is not easily supported.

We propose to overcome some drawbacks of both hybrid approach and GAV map-
pings by using a background-knowledge, represented by a reference ontology, in order
to automatically build a global ontology from local sources. We call reference ontol-
ogy an ontology developed independently from any specific objective by experts in
knowledge engineering with the collaboration of domain experts. It is a robust concep-
tualization of the knowledge about a given generic domain such as medicine, tourism,
agriculture, etc. AGROVOC1 and NALT2 in the agriculture domain and MeSH3 in the
medical field are some examples of reference ontologies. The growth of Semantic Web
allows to expect that such reference ontologies will become more and more accessible
and usable by machines in the coming years.

The algorithm presented in this paper follows the mediation-based process illustrated
in Fig. 1: each source (Si) involved in the sharing process is represented by its local
ontology (LOi) and the reference ontology (MO) allows to find the portion of knowledge
that each source can share with others. This portion is called agreement (A in Fig. 1(a)).
Then each agreement is incrementally integrated in the global ontology (GO) via MO
in what we call the conciliation phase (Fig. 1(b)).

 

LO 
 

 S 

MO 

A 

(a) Agreement

 

S1

A1 

LO1 LO2 

 S2 

A2 

LO3 

 S3 

A3 

GOMO 

(b) Conciliation

Fig. 1. General overview of our mediation-based process

The challenge that we point out is: how to automatically build an appropriate global
ontology for several data source owners that want to share parts of their data for a spe-
cific web application, but that do not want to (or can not) invest much efforts on the
hard task of building a consensual appropriate shared conceptual level ? An appropriate

1 http://www.fao.org/agrovoc
2 http://agclass.nal.usda.gov/agt
3 http://www.nlm.nih.gov/mesh/
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global ontology in such a sharing context should provide an appropriate conceptualiza-
tion of the application domain (maximizing relevant information for the sharing process
and minimizing irrelevant one). It must allow to add easyly new data sources, and also
to remove or update sources. It must allow an easy querying of sources. Finally it must
be automatically built and maintained.

This is what our algorithm builds. For an easy query processing it lies on the GAV
approach. However it generalizes existing proposals so that it is no longer necessary to
have sources known in advance. An anchoring phase allows each source to participate
in the global ontology to some extent, whatever it is. For scalability, it incrementally
integrates data sources, so it is easy to add a new source involved in the sharing pro-
cess. For an appropriate conceptualization, it selects in the reference ontology the
smallest relevant information portion and, in each data source involved in the sharing
process, it selects only information that is relevant to be shared in the application do-
main. For automation, we use Description Logics to represent ontologies. Description
Logics (or DL) are formalisms for conceptual representations which have already been
successfully used for (i) linking Data to Ontologies [17] and (ii) building Data Integra-
tion Systems [7]. Our choice of DL is mainly motivated by their capability to represent
hierarchies and to automaticaly reason on these relationships. Moreover, the inference
capabilities of DL are not limited to hierarchies (they are equipped with a formal logic-
based semantics), so DL are fully justified here as a data model that allows inferences.

The rest of this article is organized as follows: in Section 2 we addres related works,
in Section 3 we define the notions used in our algorithm, in Sections 4 and 5 we present
our global-ontology-building process, and Section 6 concludes.

2 Related Works

Our approach deals with ontology-based data integration. Very close to our interests are
the works based on (i) Description Logics and (ii) Ontology Matching.

In [8] and [19], a formalism for reasoning with multiple local ontologies connected
by directional semantic mappings is presented, in other words they introduce the no-
tion of distributed description logics, useful for linking different data sources. The ap-
proach presented in [13] is another solution exploiting description logics, namely the
E-connections framework, to link different sources for an integration purpose. Both of
these approaches have successfully shown the interest of using description logics for
efficiently exploiting distributed data sources. The contribution of our proposal is the
introduction of automation in the linking process. We use for this a reference ontology:
on the one hand links between source ontologies are obtained from the taxonomical re-
lationships of the reference ontology. On the other hand, mappings between the global
ontology and sources are obtained by syntactic-matching, from source-concepts’ names
to reference-ontology-concepts’ names.

For that reason, our algorithm depends on the performance of Ontology Matching
techniques (cf. Section 4), which constitute a very active research field (see [20] for
a survey). The use of reference ontologies has been investigated in this field, see for
example [2], [1] and [18]. It was shown that the reference ontology can significantly
improve the performance of the matching process. The contribution of our proposal is to
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show that the reference ontology also allows to enrich the semantics of links discovered
in the matching process. As an example, we can have in a local ontology two anchored
concepts, e.g. Onion and Tomato, not related: our conciliation algorithm can relate them
via a common ancestor of their anchor concepts, e.g. Vegetable (see Fig. 7).

Finally, our work is related to data integration systems using GAV mapping ([15], [6]
and [12]) and our contribution here is again the use of the reference ontology. It stands
for the information about sources that allows adding easily new sources.

3 Preliminaries

In our approach, ontologies are expressed in Description Logics (DLs) [4], a family of
logic-based representation formalisms. They allow representing the domain of interest
in terms of concepts, denoting sets of objects, and roles, denoting binary relations be-
tween (instances of) concepts [17]. A DL ontology consists of a TBox (Terminological
Box) and an ABox (Assertional Box): the former formally specifies concepts and roles
and the latter represents their instances. DLs differ in constructs they allow to specify
concepts and roles. In this paper, we consider the DL-LiteA description logic [17]. It is
known as one of the most expressive DL in the DL-Lite family [9].

3.1 DL-LiteA Syntax and Semantics

The syntax of DL-LiteA expressions is defined as follows [17]:

B ::= A | ∃Q | δ(UC)
C ::=�C | B | ¬B |∃Q.C
E ::= ρ(UC)
F ::=�D | T1 | ... |Tn

Q ::= P | P−

R ::= Q | ¬Q

VC ::= UC | ¬UC

Where A denotes an atomic concept, i.e., a concept denoted by a name, B a basic con-
cept, C a general concept, and �C the universal concept. E denotes a basic value-
domain, i.e., the range of an attribute, F a value-domain expression, and �D the uni-
versal value-domain. P denotes an atomic role, Q a basic role, and R a general role. UC

denotes an atomic attribute and VC a general attribute.
The semantics of every DL expression is specified in term of its first-order inter-

pretation. An interpretation is defined as a pair I = (ΔI ,.I ), where ΔI is the domain
interpretation and .I an interpretation function. In DL-LiteA , ΔI is composed of two
non-empty sets: ΔI

O, the domain of objects, i.e. the set of all allowed objects in the do-
main, and ΔI

V , the domain of values, i.e. the set of all allowed values in the domain
(ΔI = ΔI

O ∪ΔI
V ). The interpretation function assigns a subset of ΔI to each concept or

value domain, and a subset of ΔI ×ΔI to each role or attribute, in such a way that the
following conditions are satisfied:

�I
C = ΔI

O

�I
D = ΔI

V

AI ⊆ ΔI
O

PI ⊆ ΔI
O×ΔI

O

U I
C ⊆ ΔI

O×ΔI
V

(¬UC)I = (ΔI
O×ΔI

V )\U I
C
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(ρ(UC))I = {v | ∃o.(o,v) ∈U I
C}

(δ(UC))I = {o | ∃o.(o,v) ∈U I
C}

(P−)I = {(o,o′) | (o′,o) ∈ PI }

(∃Q)I = {o | ∃o′.(o,o′) ∈QI }
(¬Q)I = (ΔI

O×ΔI
O)\QI

(¬B)I = ΔI
O\BI

3.2 Our DL-LiteA Ontologies

A DL-LiteA ontology O = 〈T ,A〉 specifies a given application domain in terms of a
TBox T representing its intensional part and an ABox A representing the extensional
one. T consists in a set of intensional expressions specified according to the following
syntax: B�C | E � F | Q� R |UC �VC | ( f unct Q) | ( f unct UC)

A concept (respectively, value-domain, role, and attribute) inclusion expresses that a
basic concept B (respectively, basic value-domain E , basic role Q, and atomic attribute
UC) is subsumed by a general concept C (respectively, value-domain F , role R, attribute
VC). A role (attribute) functionality expresses the functionality of a role. The semantics
of a DL-LiteA TBox is defined by its interpretations. A given interpretation I satisfies:

− a concept (respectively, value-domain, role, attribute) inclusion assertion B � C
(respectively, E � F , Q � R, UC � VC), if BI ⊆ CI (respectively, EI ⊆ FI ,QI ⊆
RI ,U I

C ⊆V I
C )

− a role functionality assertion ( f unct Q), if for each o1,o2,o3 ∈ ΔI
O (o1,o2) ∈ QI

and (o1,o3) ∈ QI implies o2 = o3

− an attribute functionality assertion ( f unct UC), if for each o ∈ ΔI
O and v1,v2,∈ ΔI

V
(o,v1) ∈U I

C and (o,v1) ∈U I
C implies v1 = v2

I is a model of T if and only if I satisfies all intensional expressions in T . T is satisfi-
able (or consistent) if it has at least one model. In this article, we reason essentially on
the structural part of an ontology, i.e., a TBox-level reasoning. Moreover, when consid-
ering the mediator ontology we restrict ourselves to specify atomic concept inclusion
(ACI) expressions. An ACI expression is defined as an inclusion of the form A � D,
where A and D are atomic concepts. A finite set of ACI expressions is called an atomic
TBox.

Definition 3.1. An ACI is an expression of the form A� D, where A and D are atomic
concepts. A finite set of ACIs is called an atomic TBox.

Finally, A consists in a finite set of membership assertions of the form: A(a), P(a,b)
and UC(a,b). As said before, we don’t address this part in the present article.

3.3 Inference Capabilities

One of the traditional inference services provided by DLs is computing subsumption
relationships between concepts.

Definition 3.2. Let T be a TBox, C and D two concept descriptions. The concept C is
subsumed by D w.r.t the TBox T (C �T D) iff CI ⊆ DI for all models I of T .

In the present article, we explore subsumption reasoning in order to compute the de-
ductive closure of an atomic TBox, defined as follows.
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Definition 3.3. Let T be an atomic TBox. The deductive closure of T , denoted by clT ,
is the TBox inductively defined as follows:

1. If A1 �T A2, then A1 �cl(T ) A2.
2. If A1 �cl(T ) A2 and A2 �cl(T ) A3, then A1 �cl(T ) A3.

3.4 Building an Appropriate DL-LiteA Global TBox

Our objective consists in building a global ontology, more precisely a DL-LiteA TBox
Tg, based on the local-sources’ TBoxes and that of a mediated (reference) ontology.
Precisely, the following are the four kinds of TBoxes that we deal with here.

- The set of local TBoxes {Tli} involved in the sharing process. Each data source Si

is represented by its local TBox Tli, denoted LOi in Fig. 1.
- The mediator TBox Tm. It is a DL-LiteA atomic TBox providing general inten-

sional knowledge on the application domain. We consider it as a set of atomic
concepts inclusions (ACI), i.e. a subsumption hierarchy. It is denoted MO in Fig. 1.

- The set of agreement TBoxes {Tai}, denoted Ai in Fig. 1. An agreement TBox
Tai =

〈
T ′

li ,Mi
〉

is built for each local TBox Tli. It is composed of T ′
li, the subset of

Tli containing expressions of Tli that are relevant for the application domain, and
Mi, the set of mappings between Tli and Tm.

- The global TBox Tg = 〈{Tai},T ′
m〉, denoted GO in Fig. 1. It consists in the set of

agreement TBoxes {Tai} together with T ′
m, which is the smallest subset of Tm that

conciliates every Tai.

We show how to build Tg from {Tli} by using Tm. It consists in the selection of parts of
{Tli} to be included in Tg (Section 4) and then their conciliation (Section 5) in Tg.

4 Agreement

Agreement process consists in the selection of the expressions in Tl to be included in the
global TBox Tg. To identify such knowledge we proceed first by applying an anchoring
process [2] to select from the local TBox relevant concepts for the application domain.
Anchoring consists in associating atomic concepts of a local Tbox, called anchored
concepts, with concepts of the mediator TBox, called anchor concepts. Consider the
example shown in Fig. 2, where concepts are represented by ovals, attributes by rectan-
gles and roles by dashed arrows. Single-full arrows represent subsumption relationships
between two concepts. Fig. 2(a) shows an excerpt of a local TBox Tl that deals with both
agricultural and accommodation knowledge. We assume that the application domain in
which the source Tl shares its data is the agricultural domain: Fig. 2(b) shows an ex-
cerpt of the agreement TBox obtained after the anchoring process. Prefix mo : denotes
anchor concepts from the mediator TBox Tm. We can notice that only concepts related
to agriculture are anchored because no anchor is found for accommodation knowledge.
Anchor concepts generalize anchored concepts and will be used for finding semantic
links between concepts in different local TBoxes.
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Fig. 2. Example of the agreement process

We perform two successive anchoring steps: a lexical anchoring process that selects
relevant concepts to be anchored, based on syntactic-matching, followed by a semantic
one (logical-inference) that selects other ones not detected in the first step.

Lexical Anchoring Process. It consists in matching a local TBox Tl with the mediator
TBox Tm, i.e. in computing a set of mappings as defined in [20].

Definition 4.1. Let Tl be a local TBox and Tm be the mediator TBox. Lexical anchoring
of Tl w.r.t Tm consists in finding a set of mappings M = 〈m1, ...,mn〉 such that each mi

is an assertion of the form: mi = Al � Am, where Al ∈ Tl , Am ∈ Tm, Al and Am are both
atomic concepts. Am is called the anchor of Al.

The key point in the lexical anchoring (or matching) process is to measure how much
an atomic concept Al in a local TBox Tl is related to an atomic concept Am in the
mediator TBox Tm. This is done by syntactically comparing concepts names (labels).
Many lexical similarity measures, proposed in the literature [14], [10], [20], may be
used and, as noticed in [20], no similarity measure can give good results in all cases:
it is still necessary to look for the best one for each specific application. However,
whatever the application is, the relation between Al and Am is obtained as follows,
considering that ϕ is the chosen similarity measure: ΓNl × ΓNm → [0,1], where ΓNl ,
ΓNm are respectively the set of atomic concept names in Tl and Tm. In general, let
nl ∈ ΓNl be the name of Al and nm ∈ ΓNm the name of Am, the mapping m = Al � Am

is established if and only if (ϕ(nl ,nm)≥ α) and (∀nmi ∈ ΓNm ϕ(nl,nm)≥ ϕ(nl,nmi)) or
(α ≥ ϕ(nl,nm) ≥ β) and (nm % nl), where α, β are respectively the maximum and the
minimum threshold similarity and % denotes a lexical inclusion relation.

Semantic Anchoring Process. It consists in finding additional local concepts that may
be relevant for the application domain and which have not been anchored during the lex-
ical anchoring process. We assume that all atomic concepts subsumed by an anchored
concept are relevant for the application domain and then must be considered as anchored
concepts even if they have not been anchored during the lexical anchoring process. To
identify such concepts we automatically compute what we call the anchoring closure
of a local TBox based on subsumption relationship.
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Definition 4.2. Let Tl be a local TBox, Tm the mediator TBox, and M = 〈m1, ...,mn〉
the result of anchoring Tl w.r.t Tm. The anchoring closure of Tl , denoted by a cl(Tl), is
inductively defined as follows:

1. All assertions in M are also assertions in a cl(Tl).
2. All ACI assertions in Tl are also assertions in a cl(Tl).
3. If A1, A2, A3 are atomic concepts and A1 � A2 and A2 � A3 are in a cl(Tl), then

A1 � A3 is in a cl(Tl).

According to this definition we can say that an anchored concept Al of Tl is a concept
appearing in a cl(Tl) and is of the form: Al � mo : Am, where Am ∈ Tm and mo : is a
prefix used to distinguish anchor concepts from other concepts.

For example, consider the TBox in Fig. 3(a). It is composed of ACIs of the local
TBox Tl , shown graphically in Fig. 2(a), enriched with assertions of the lexical anchor-
ing of Tl w.r.t Tm. The anchoring closure of this TBox is shown in Fig. 3(b). Notice in
Fig. 2(a) that we have Niambi that appears as an unanchored concept, because there is
no assertion of the form Niambi � mo : Am, where Am ∈ Tm. But, we have the assertion
Niambi � mo:Varieties in the anchoring closure in Fig. 3(b), and Varieties ∈ Tm. So,
Niambi becomes an anchored concept, semantically selected, and its anchor is Varieties.

ACI assertions Lexical anchoring assertions
Hotel � Accomodation Activity � mo:Activities
House � Accomodation Agriculture � mo:Agriculture
Tomate � CropsVarieties StatDepartement � mo:Departement
FriedRice � CropsVarieties CropsVarieties � mo:Varieties
Niambi � CropsVarieties Tomate � mo:Tomato

FriedRice � mo:Rice

(a) ACI assertions with lexical anchoring ones

Anchoring closure assertions
Activity � mo:Activities Tomate � CropsVarieties
Agriculture � mo:Agriculture FriedRice � CropsVarieties
StatDepartement� mo:Departement Niambi � CropsVarieties
CropsVarieties � mo:Varieties Tomate � mo:Varieties
Tomate � mo:Tomato FriedRice � mo:Varieties
FriedRice � mo:Rice Niambi� mo:Varieties
Hotel � Accomodation House� Accomodation

(b) Anchoring closure TBox

Fig. 3. Semantic anchoring process

From Anchoring to Agreement. We build the agreement of Tl w.r.t Tm starting from
anchored concepts, i.e. those in a cl(Tl). The agreement of Tl w.r.t Tm is indeed a TBox
Ta composed by T ′

l , a subset of Tl containing assertions of Tl that are relevant for the
application domain, and M the result of anchoring Tl w.r.t Tm. We compute T ′

l by
selecting in Tl assertions that are related to anchored concepts.

Precisely, we aim to select assertions such that: (i) T ′
l contains the maximum pos-

sible of relevant assertions w.r.t. the application domain, (ii) T ′
l contains the minimum

possible of irrelevant assertions w.r.t. the application domain, and (iii) T ′
l is consistent

if Tl is consistent.
Thus, in addition to anchored concepts, T ′

l may contain unanchored concepts that
we call selected concepts. A selected concept C is an unanchored concept that must
be related to an anchored concept A in order to avoid loosing information about A and
also to avoid inconsistency in T ′

l . We consider that an unanchored concept C must be a
selected concept if Tl contains assertions of the form:

- A�C, where A is an anchored concept.
- ∃R� A and ∃R− �C, where A is an anchored concept and R is a basic role.
- C �C1, where C1 is a selected concept.
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∃ relateTo � Activity ∃ concern� Agriculture
∃ relateTo− � Agriculture ∃ concern− � CropsVarieties

Fig. 4. Case of selected concept

For instance, consider the local TBox Tl in Fig. 2 and assume that the concept Agri-
culture is an unanchored concept. Because we have in T ′

l the indirect relation between
the two anchored concepts Activity and CropsVarieties, as illustrated with assertions in
Fig. 4, it is necessary to select the concept Agriculture in order to keep it in T ′

l .

Definition 4.3. Let Tl be a local TBox and Tm be the mediator TBox, the agreement
Ta =

〈
T ′

l ,M
〉

for Tl w.r.t Tm is such that (i) M = 〈m1, ...,mn〉 is the result of the an-
choring of Tl w.r.t Tm, and (ii) T ′

l is inductively defined as follows:

1. All assertions in M are in Ta.
2. If A is an anchored concept and B� A is in Tl , then B� A is in Tl′ .
3. If A is an anchored or a selected concept and A� B is in Tl , then A� B is in T ′

l .
4. If Q� R is in Tl and ∃R� B is in T ′

l , then Q� R is in T ′
l .

5. If ( f unct Q) is in Tl and ∃Q� B is in T ′
l , then ( f unct Q) is in T ′

l .
6. If ρ(UC)� F is in Tl and B� δ(UC) is in T ′

l , then ρ(UC)� F is in T ′
l .

7. If UC �VC is in Tl and B� δ(VC) is in T ′
l , then UC �VC is in T ′

l .
8. If ( f unct UC) is in Tl and ∃Q� B is in T ′

l , then ( f unct UC) is in T ′
l .

Notice that all rules in Definition 4.3 are designed to keep in T ′
l as much semantic

information contained in Tl as possible. Fig 5 shows the agreement TBox computed
from assertions of the local TBox Tl shown graphically in Fig. 2(a). Anchored concepts
are those obtained in the example shown in Fig. 3(b).

Local TBox Agreement TBox
∃ manageDataFor� StatDepartement ∃ manageDataFor− � Activity StatDepartement� mo:Departement Activity� mo:Activities
∃ relateTo � Activity ∃ relateTo− � Accomodation ∃ manageDataFor� StatDepartement ∃ manageDataFor− � Activity
∃ relateTo− � Agriculture Accomodation� δ(capacity) Agriculture� mo:Agriculture ∃ relateTo � Activity
Accomodation� δ(rate) ρ(capacity)� xsd:string ∃ relateTo− � Agriculture ∃ concern � Agriculture
ρ(rate) � xsd:string Hotel� Accomodation ∃ concern− � CropsVarieties CropsVarieties� mo:Varieties
House � Accomodation House�¬ Hotel CropsVarieties� δ(type) CropsVarieties� δ(price range)
∃ concern � Agriculture ∃ concern− � CropsVareities ρ(type) � xsd:string ρ(price range)� xsd:string
Cropsvarieties� δ(type) Cropsvarieties� δ(price range) Tomate � mo:Tomato Tomate � Cropsvarieties
ρ(type) � xsd:string ρ(price range)� xsd:string FriedRice� mo:Rice Niambi� Cropsvarieties
Tomate � Cropsvarieties FriedRice� Cropsvarieties Tomate � ¬ Niambi Tomate � ¬ FriedRice
Niambi� Cropsvarieties Tomate � ¬ Niambi FriedRice� ¬ Niambi
Tomate � ¬ FriedRice FriedRice� ¬ Niambi

Fig. 5. Example of an agreement TBox

5 Conciliation

We can now build the global TBox Tg by conciliating the different agreement TBoxes
Tai =

〈
T ′

li ,Mi 〉 obtained above. The conciliation is achieved incrementally by integrat-
ing the agreement TBoxes into Tg, one after another. Integrating an agreement TBox Ta

in Tg consists in linking its concepts with the ones of other agreement TBoxes already
conciliated in Tg. Links between concepts in Tg are established through anchor concepts
contained in Mi for every agreement TBox Tai. Let us recall that all anchor concepts
are part of the mediator TBox Tm. Thus, we search for links between anchor concepts
in Tm in order to use them to conciliate concepts in Tg. In this way, our global TBox Tg

contains the following components:
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- the set of agreement TBoxes Tai=
〈
T ′

li ,Mi
〉
. They represent the part of local TBoxes

that are shared (T ′
li), together with the mappings between these local concepts and

the mediator ones (Mi).
- an as small as possible subset T ′

m of Tm containing only the part of the hierarchy
which is usefull to link local concepts.

To illustrate this process in the context of agricultural domain, consider the example in
Fig. 6. In this example the concepts Tomate of the agreement TBox Ta1 and FriedRice
of the agreement TBox Ta2 are respectively anchored by the concepts Tomato and Rice
of the mediator TBox Tm. The structure of the mediator TBox reveals that Tomato and
Rice have a common ancestor which is the concept plan product. We reproduce this
relation to conciliate the concepts Tomate and FriedRice in the global TBox Tg.

  

Tomato    Rice

Plan_products

Tomate FriedRice

Tomato 

Tomate

Anchoring 

Conciliation

Ta1 Ta2 

Tomato    Rice

    …     …

  Rice

FriedRice

Plan_products 

Tm Tg 

Fig. 6. General overview of the conciliation phase

Definition 5.1. Let {Tli} be a set of local TBoxes and Tm be a mediator TBox. The
corresponding Global TBox Tg is 〈{Tai},T ′

m〉, where (i) {Tai} is the set of agreement
TBoxes built from local TBoxes according to Definition 4.3, and (ii) T ′

m is the smallest
subset of Tm that conciliates every Tai in Tg, built by Algorithm 1.

As suggested by the example in Fig. 6, one particular interest in our approach is the
use of the hierarchy of the mediator TBox Tm in order to find links between anchor
concepts. These links are reproduced in the global TBox for conciliating agreements.

The relation that we are looking for within the hierarchy of Tm is the least common
subsumer (lcs) of two anchor concepts. It is important to notice that in our first exper-
iments we have only considered tree taxonomies, we plan to generalize this point in
future work. We can follow the algorithm proposed in [5] to compute the lcs of two
concepts C1 and C2 in Tm, according to the definition of lcs that we recall hereafter.

Definition 5.2. Let Tm be the mediator TBox, C1 and C2 two given atomic concepts in
Tm, the concept C of Tm is the lcs of C1 and C2 in Tm (C = lcsTm(C1,C2)) iff (i) Ci �C
for i = 1,2, and (ii) C is the least concept with this property, i.e. i f C′ satisfies Ci �C′

for i = 1,2, then C �C′.

Based on lcs computation in [5], T ′
m consists in a subsumption hierarchy between all

anchor concepts of all Tai and their lcs in Tm. The algorithm that we propose to achieve
this uses the hierarchical proximity measure proposed by [22], that we recall in the
following definition.
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Definition 5.3. Let Tm be the mediator TBox, C1 and C2 two concepts of Tm. The hier-
archical proximity measure between C1 and C2 in Tm is such that:

simH (C1,C2) =
2 ∗ depthO f (lcsTm(C1,C2))

depthO f (C1)+ depthO f (C2)
,

where depthO f (C) returns the number of subsumers of C in Tm.

Definition 5.4. Let C ∈ Tm. If simH (C,Cj) ≥ simH (C,Ci),∀Ci ∈ Tm, then we say that
Cj is the closest concept of C in Tm and we denote it by closestTm(C).

If simH (C,Cj) ≥ simH (C,Ci),∀Ci ∈ T ′
m ⊆ Tm, then we say that Cj is the closest

concept of C in T ′
m w.r.t. Tm and we denote it by closestT ′m/Tm(C).

The conciliation of an agreement TBox Tak =
〈
T ′

lk,Mk
〉

with others agreement TBoxes
already conciliated in Tg =

〈
{Tai}i�=k,T ′

m

〉
consists in integrating each anchor concept

Am of Mk within the hierarchy T ′
m. To integrate a concept Am within the hierarchy T ′

m we
have to compute the lcs in Tm between Am and the closest concept of Am in Tm among
the anchor concepts already present in the hierarchy T ′

m. In order to express these fea-
tures in our conciliation algorithm, we use Definitions 5.4, as it can be noticed in what
follows:

Algorithm 1
Input: Tak =

〈
T ′

lk,M k
〉
, Tg =

〈
{Tai}i�=k,T ′

m

〉
Output: Tg = 〈{Tai}∪ Tak,T ′

m〉
1: for each (mk = Al � Am in M k) do
2: if ((T ′

m �= /0) and (Am /∈ T ′
m)) then

3: Acl ← closestT ′
m/Tm(Am)

4: Alcs ← lcsTm(Am,Acl)
5: if (Alcs = Acl) then
6: T ′

m ← T ′
m ∪{Am � Acl}

7: else if (Alcs = Am) then
8: T ′

m ← T ′
m ∪{Acl � Am}

9: if (∃A ∈ T ′
m | A = lcsT ′

m
(Acl ,A)) then

10: T ′
m ← T ′

m ∪{Am � A}
11: end if
12: else
13: T ′

m ← T ′
m ∪{Am � Alcs,Acl � Alcs}

14: if (∃A ∈ T ′
m |= lcsT ′

m
(Acl ,A)) then

15: T ′
m ← T ′

m ∪{Am � A}
16: end if
17: end if
18: else if (T ′

m = /0) then
19: T ′

m ← T ′
m ∪{Am ��}

20: end if
21: end for

. Conciliation
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To illustrate our algorithm, we consider two TBoxes Ta1 =
〈
T ′

l1,M1
〉

and Ta2 =〈
T ′

l2,M2
〉

such that :

- M1 = 〈FrideRice� mo : rice,Onion� mo : Onion〉
- M2 = 〈Sorgho� mo : Sorgho,Tomate� mo : Tomato〉

Results obtained by conciliating Ta1 and Ta2 are as follows:

1- Integrate Ta1 in Tg

Input: Ta1, Tg = 〈{},T ′
m = /0〉

iteration 1 − m1.1 = FrideRice� mo : Rice
T ′

m = {Rice��}
iteration 2 − m1.2 = Onion� mo : Onion

Acl = Rice ; Alcs = PlanProducts
T ′

m = {Rice� PlanProducts,Onion� PlanProducts}
2- conciliate Ta1 and Ta2 in Tg

Input: Ta2, Tg = 〈{Ta1},T ′
m = {Rice� PlanProducts,Onion� PlanProducts}〉

iteration 1 − m2.1 = Sorgho� mo : Sorgho
Acl = Rice; Alcs = Cereals
T ′

m = {Rice � Cereals,Sorgho � Cereals,Cereals � PlanProducts,Onion �
PlanProducts}

iteration 2 − m2.2 = Tomate� mo : Tomato
Acl = Onion ; Alcs = Vegetables
T ′

m = {Rice � Cereals,Sorgho � Cereals,Cereals � PlanProducts,Onion �
Vegetables,Tomato�Vegetables,Vegetables� PlanProducts}

Fig. 7 illustrates graphically the global TBox Tg resulting from the conciliation of Ta1

and Ta2 . We have distinguished the hierarchy T ′
m, composed of all anchor concepts in

M = M1∪M2, linked to each other by containment assertions found in Tm. Notice that
all information existing in local TBoxes also exists in Tg. In fact, the part of Tg which is
not in T ′

m represents the data sources that can be accessed from the global schema, this
access being supported by the mapping M (following a GAV approach).

It can be noticed that the global TBox Tg is composed of (i) the union of all T ′
l (local

parts of each source agreement), (ii) the union of all M (mapping parts of each source
agreement) and (iii) the hierarchy extracted from Tm to relate anchors in Tg. Thus,
managing dynamic changes that occur frequently in a semantic web context requires
to consider not only to add new sources but also to remove a source or to update a
source’s schema. We consider these three operations: adding a new source S consists of
the following steps:

– the computation of S’s agreement: Ta =
〈
T ′

l ,M
〉
,

– the union of T ′
l with local parts of the other sources,

– the union of M with mapping parts of the other sources,
– the integration of anchors of M into the hierarchy T ′

m (using Algorithm 1).
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Removing a source S that became unavailable will follow two stages:

– the removal from Tg of Ta =
〈
T ′

l ,M
〉

corresponding to S,
– an iteration on the hierarchy T ′

m, in order to remove items that became unnecessary.
We plan to design the corresponding algorithm in future works and to compare it
with the simple recomputation of T ′

m based on remaining sources.

Finally, taking into account an update performed on a source TBox Tl will require first
to compute the corresponding new agreement. This is again one of our future works to
design an incremental update algorithm, more efficient than removing the old version
and adding the new one.

6 Conclusion and Future Work

Our proposition in this article brings a solution to the problem of automatic construction
of an appropriate global ontology. This ontology will be shared between a set of loosely-
interrelated partners. We have tackled this problem using a background-knowledge, i.e.,
a domain-reference ontology, as a mediator to build the global ontology. The global
ontology offers interesting properties, especially an appropriate conceptualization and
easy resource-adding and querying processes. For our solution to be automated, we use,
on one hand, logical-inference techniques offered by description logics, the knowledge-
representation formalism used for ontology specification. On the other hand, we make
use of some classical syntactic-matching techniques for ontology matching. Our ap-
proach is that hybrid. To the best of our knowledge, no other solution has already been
proposed in the literature combining these two techniques for an automatic construction
of a global ontology.

We are working to go further in exploring automatic-reasoning capabilities of DL-
LiteA Description Logic, in order to (i) check the global-ontology’s consistency and (ii)
answer queries using the global ontology. Moreover, in future work all types of rela-
tions will be considered in the reference ontology, we will thus extend our proposition

 

 

 

 

 

 

  

 

 

 

  

 price_range
FriedRice 

mo:Tomato 

mo:Rice
CropsVarieties 

  type 

Onion 

 surface 
Sorgho

mo:Onion 

mo:Sorgho 
Cultures 

  production 

PlanProduct 

Vegetables 

Cereals 

Onion 

Tomato 

Sorgho 

Rice 

Onion 

Sorgho 

FriedRice 

price_range

CropsVarieties

 type
  surface 

Cultures 

  production 

T
m
 

M 

’

T
a1

T
a2
 

T
g
 

Tomate 

Tomate 

Fig. 7. Overview of a global TBox that conciliates two agreement TBoxes



442 C. Niang et al.

that concerns here only subsumption relationship. Another important future work is to
specify the complete life cycle management of the global ontology.

Finally, we will build upon our first experiments, which have been realized as a
proof of concept but are not yet an actual publishable evaluation, in order to turn our
proposition into a robust software for ontology-based data integration.
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Abstract. For autonomously developed information systems to interoperate in a 
meaningful manner, ontologies capturing the intended semantics of that intero-
peration have to be developed by a community of stakeholders in those infor-
mation systems. As the requirements of the ontology and the ontology itself 
evolve, so in general will the community, and vice versa. Ontology construction 
should thus be viewed as a complex activity leading to formalized semantic 
agreement involving various social processes within the community, and that 
may translate into a number of ontology evolution operators to be implemented. 
The hybrid ontologies that emerge in this way indeed need to support both the 
social agreement processes in the stakeholder communities and the eventual 
reasoning implemented in the information systems that are governed by these 
ontologies. In this paper, we discuss formal aspects of the social processes in-
volved, a so-called fact-oriented methodology and formalism to structure and 
describe these, as well as certain relevant aspects of the communities in which 
they occur. We also report on a prototypical tool set that supports such a me-
thodology, and on examples of some early experiments. 

Keywords: ontology development, methodology, social process, business se-
mantics management, fact-orientation, natural language. 

1   Introduction 

Ontologies are keystone technologies for the meaningful and efficient interoperation 
of information systems. Information systems on the Web are in general developed and 
maintained autonomously, which necessitates agreement to be negotiated between 
Web services. This, in turn, requires agreement between the stakeholders and design-
ers on the semantics of the shared concepts involved. As a consequence, ontologies in 
general will evolve while such agreements are developed and finally put in place. 
These ontologies are approximations of a real world; in fact to the Web services in-
volved, ontologies are the world. Ontologies represent an externalization of the se-
mantics outside of the information system. The basic techniques and architecture for 
semantic interoperation is based on annotation (of an application system) and reason-
ing (about the concepts involved, in terms of the ontology). 

From above it follows that the modeling of ontologies within a community of stake-
holders and designers is a critical activity for the eventual success of interoperability. In  
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Fig. 1. Two autonomously developed information systems interoperating at runtime, exchang-
ing messages via the application symbols annotated with the shared ontology 

this paper, we discuss the social processes involved, a methodology and formalism to 
structure these and the communities in which they occur, and a prototypical tool set that 
supports such a methodology. 

Fundamental to our approach is the involvement of structured natural language as a 
vehicle to elicit useful and relevant concepts from community communication, and 
the mapping of these social processes to evolutionary processes in the emerging on-
tology. The formalism and language presented here are therefore “upstream” from the 
usual ontology languages such as RDF(S) and OWL and should not be confused with 
those; in fact it is relatively straightforward to compile the resulting/emerging ontolo-
gies into, for example, RDF(S) and OWL at any time. 

One fundamental principle of all large system design is the so-called separation of 
concerns resulting in architectures that delegate respective functionalities to the 
stakeholders responsible for them. Examples are modules, etc. provided by the (ge-
neric) architecture of information systems driven by a database, largely separating the 
concern of basic data management from that of application development, the famous 
paradigm of data independence. 

We reapply this principle in our approach by the rigorous separation in conceptua-
lizations of “fact modeling” from all application-specific interpretations. It is this 
interpretation process (formally, of statements shared in the application system in 
terms of ontology concepts) that usually is called “reasoning” in the Semantic Web 
literature. However, there is little or no attention to such separation of concerns in the 
usual reasoning formalisms of Semantic Web in terms of Description Logic and its 
syntactical manifestations such as OWL and its dialects. In our approach, this inter-
pretation is exclusively delegated to the mapping between application system and the 
“lexon base”1 of the ontology. We shall call these mappings ontological commitments 
after Guarino [10], but we shall reify them in a well-defined manner suited to our 
formalism. Intuitively, our commitments select the facts needed, map application 
symbols to ontology concepts, and contain the rules and constraints, expressed in 
ontology terms, under which application symbols, relationships and business rules 
must be interpreted when they are to be shared with other autonomous systems. Those 

                                                           
1  We shall call the facts in the ontology lexons to distinguish the terminology from application 

context. See Section 3 for details. 
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systems will share the concepts, but of course will have their own symbols, business 
rules, etc. 

This separation of concerns now allows a natural introduction of formalized social 
processes in goal-oriented communities such as exist in enterprises, professional net-
works, standardization groups, etc. and in fact in any “human agent” context for 
which agreement about facts is more efficient than reasoning from axioms. Note that 
nearly all data models for databases and business information systems were arrived at 
in this manner for the last 50 or so years. 

And finally, as we shall argue in the next sections, this provides for a suitable and 
elegant context in which such business information systems can be made truly open 
by “lifting” their data models to an ontological level by widening the scope of the 
social processes. It follows that data schemas (e.g. defining a relational database) 
should not be seen as equal to ontologies. At best they will serve, after lifting by a 
community into a more “agreed” and “shared” form, as first approximations of one. In 
fact the same is true for any “conceptual schema” [1] that was used for designing an 
information system within one given enterprise. For more details on the distinction 
between a data model and an ontology, we refer to [18].  

2   Related Work 

Social interactions have been studied by observation in mediawiki talk pages by [21], 
which resulted in a (fairly limited) taxonomy of possible discussion items on a Wiki-
pedia article. [17] also noted a correlation between the number of edits and the 
amount of discussion in an article. [17] extended this classification by using a larger 
dataset and added about 5 extra types. The goal of [17] was to create subclasses of 
sioc:Post so different types of discussion items can be easily accessed and mined 
upon. The SIOC Ontology2 focuses on the integration of online community socializa-
tion and is used in conjunction with the FOAF3 vocabulary for expressing personal 
profile and social networking facts. In the context of a discussion, forum topics can 
range from conceptions that must be added to the ontology to meta-concept types that 
constitute the community meta-model itself. 

Fact-oriented modeling, such as ORM [11] and NIAM [22], is a method for ana-
lyzing and creating conceptual schemas for information systems starting from (usual-
ly binary) relationships expressed as part of human-to-system communication. Using 
concepts and a language people are intended to readily understand, fact-oriented 
modeling helps ensuring the quality of a database application without caring about 
any implementation details of the database, including e.g. the grouping itself of lin-
guistic concepts into records, relations, … In fact-oriented approaches, every concept 
plays roles with other concepts, and those roles may be constrained. It is those con-
straints that allow the implementer of a database (or in fact an algorithm) to determine 
whether some linguistic concept becomes an entity or an attribute, or whether a role 
turns out to be an attribute relationship or not. This is different from other approaches 
such as (E)ER and UML, where these decisions are made at design time. 

                                                           
2  http://www.sioc-project.org/  
3  http://xmlns.com/foaf/spec/  
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3   DOGMA 

In [14, 15] a formalism and methodology for ontology development called DOGMA4 
was defined that illustrated and implemented these principles, now lifted to domain 
level from the mere enterprise system level. We first define a DOGMA ontology 
description. As indicated in the introduction, such descriptions must be seen as differ-
ent from their eventual implementations, e.g. using RDF(S) and/or OWL. In the me-
thodology and lifecycle of semantic systems the creation of DOGMA ontology de-
scriptions belongs upstream from such implementation – although of course in many 
cases one will have to “mine” or elicit the required knowledge from existing informa-
tion systems and their enterprise environments. 

3.1   Towards Hybrid Ontology Descriptions 

Definition 1. A DOGMA Ontology Description Ω is an ordered triple 
< Λ,ci,K >where Λ  is a lexon base, i.e. a finite set of lexons. A lexon is an ordered 
5-tuple < γ , t1,r1,r2 , t2 >where γ ∈Γ  is a context identifier, t1, t2 ∈T  are terms, and 
r1,r2 ∈R  are role labels. A lexon is a binary fact type that can be read in two direc-
tions: t1 playing the role of r1 on t2  and t2  playing the role of r2  on t1. We omit here 
for simplicity the usual alphabets for constructing the elements of T ∪ R . 
ci :Γ × T → C  is a partial function mapping pairs of context identifiers and terms to 
(unique) elements of C , a finite given set of concepts. The nature of these concepts is 
intentionally left unspecified but intuitively it is assumed that all users of an ontology 
described by Ω, i.e. sharing Λ  and K , agree on the nature of all concepts in C . In a 
concrete way, within a context γ , ci(γ , t)  is the definition itself of the concept agreed 
by all such users. To emphasize this explicit agreement, we shall avoid to label con-
cepts as such in our formalism, and assume they are “computed” by the community 
from the term labels. K  is a finite set of ontological commitments. Each commitment 
is an ordered triple < σ ,α ,c >  where σ ⊆ Γ  is a selection of lexons, α : Σ → T  is a 
mapping called an annotation from the set Σ  of application (information, system, 
database) symbols to terms, and c  is a predicate over T ∪ R  expressed in a suitable 
first-order language, not defined further in this paper but an example syntax named Ω-
RIDL may be found in [19,20]. 

Context identifiers are pointers to a community, they can be a name, a URI to a web-
site or even a URI to a document describing the community. To improve readability, 
we use names as a context identifier in the following examples. For example, the 
DOGMA ontology description might contain the following plausible lexons in its 
lexon base:  - <VCard Community, VCard, with, of, Email Address> - <Vendor Community, Offer, with, of, Title> - <Vendor Community, Offer, contains, contained in, Product> - <Vendor Community, Offer, made by, makes Vendor> - <RFP Community, Request For Proposals, corresponds to, matches, Offer> 

                                                           
4  Developing Ontologies-Grounded Methodology and Applications. 
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The function ci  maps terms in those lexons to concepts, e.g. 
ci(Vendor  Community,Offer)  points to a URL of a concept definition in which all 
synonyms are centralized, e.g. ci(RFP Community,Offer) of a fact entered in the 
lexon base by a different community with overlapping concepts in their domains. 
These lexons are then used to construct commitments. Fig. 2 depicts an example 
commitment. The characters in boldface are reserved words for creating the con-
straints and mappings. The underlined characters represent variables. For more details 
on the syntax of commitments, we refer to [19,20]. 

 
BEGIN SELECTION 
  <Vendor Community, Offer, with, of, Title> 
  <Vendor Community, Offer, contains, contained in, Product> 
  <Vendor Community, Offer, made by, makes, Vendor> 
  <Vendor Community, Vendor, located on, location of, Address> … 
END SELECTION 
BEGIN CONSTRAINTS 
  Offer contains at least 1 Product. 
  Vendor located on exactly 1 unique Address. … 
END CONSTRAINTS 
BEGIN MAPPING 
  map “APP_OFF.TITLE” on Title of Offer. 
  map “APP_VEN.ADDR” on Address location of Vendor. … 
END MAPPINGS 

Fig. 2. Example of a commitment for a particular application showing pieces of the three parts: 
selection σ , constraints c  and annotations (or application symbol mappings) α  

Note that the separation of concerns mentioned in the previous section is reflected 
here through the set of plausible facts in the lexon base on one side, and the con-
straints, rules, … on a relevant selection of those lexons on the other. In fact there are 
no constraints or any other reasoning supports included in the lexon base, making for 
a so-called light ontology. 

Also note this definition imparts a well-defined hybrid aspect on ontologies as they 
are to be resources shared among humans working in a community as well as among 
networked systems such as exist in the World Wide Web. As the “unique concept” 
property mentioned above informally and intuitively results from a community 
agreement, for the purpose of this paper we find it useful therefore to formalize a 
community precisely as such a context, and to name the resulting notion a hybrid 
ontology (see also [16]). We also introduce a special linguistic resource, called a glos-
sary, recording and supporting all the social processes. 

 
Definition 2. A Hybrid Ontology Description (HOD) is an ordered pair 
HΩ =< Ω,G > where Ω is a DOGMA ontology description where the contexts in Γ  
are labeled communities and G  is a glossary, a finite set of functions either of the 
form g1 :Γ × T → Gloss, the Term Glossary or of the form g2 : Λ → Gloss, the Lex-
on Glossary. Gloss is a set of linguistically interpretable objects. We shall write 
G = G1 ∪ G2if the distinction needs to be made explicit. 
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For example, given the DOGMA ontology description Ω from the previous example, 
a HOD can be constructed where G  contains (among others): - (<VCard, Email Address>, “The address of an email (system of world-wide electronic 

communication in which a user can compose a message at one terminal that can be rege-
nerated at the recipient's terminal when the recipient logs in)”) - (<Vendor Community, Offer>, “Represents the public announcement by a vendor to 
provide a certain business function for a certain product or service to a specified target 
audience.”) - (<Vendor Community, Offer, contains, contained in, Products>, “Represents the relation 
of a product for sale being included in an offer.”) 

Note that in this paper, we shall not concern ourselves with the precise nature of the 
elements of Gloss. For the sake of simplicity and understanding it will be sufficient to 
think of Gloss as a set of natural language documents each providing an “explanation” 
for a term in T  or a lexon in Λ  adequate within a given community. 

3.2   Glossaries 

Glossaries turn out to require a fairly rich structure when to be deployed for the pur-
pose of (hybrid) ontology engineering, as they are used to build agreements in com-
munities about concepts. It is natural to associate them with concepts (in a DOGMA 
ontology description through the terms of lexons). 

Definition 3. Given a HOD HΩ =< Ω,G >, we call a glossary coherent if 
∀γ ∈Γ,∀λ =< γ , t1,r1,r2 , t2 >∈Λ : g1(γ , t1)→g2 (γ ,λ) ∧g1(γ , t2)→g2 (γ ,λ) . Where → 
stands for “is subsumed by”, which is not a logic property, but a binary (linguistic) 
predicate on the set Gloss, intended to express that any community agreement on its 
first argument is implied by a community agreement about its second. (One way to 
implement such a predicate may be by simply listing its extension.) 

Indeed, it would be undesirable to describe a relation between two terms if one or 
both terms playing the roles in that relation are not described themselves, meaning 
that their intended meaning has not yet been made explicit. 

 
Definition 4. The glossary consistence property. We say that a hybrid ontology 
satisfies this property if for every two pairs < γ1,t1 >,< γ 2,t2 >  ∈ Γ ×T , if 
g1(γ1,t1) = g1(γ 2, t2)  then ci(γ1,t1) = ci(γ 2,t2). The converse does not necessarily 
hold. In other words, if two terms in two communities point to exactly the same gloss, 
then they must refer to the same concept as well. For most purposes this condition is 
too limiting since often glosses will express “the same thing” without being textually 
identical. It suffices that the communities agree on their equivalence; this lead to the 
following definition. 

Definition 5. Two term glosses are community-equivalent EQγ  if that community 

agrees that the described terms refer to the same (abstract) concept. A similar defini-
tion may be given for lexon glosses; it is omitted here. Two term glosses are term-
equivalent EQT  if any two communities agree that a given term refers to the same 
concept for both. It is easy to see that EQγ  and EQT  define equivalence relations 
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(reflexive, symmetric and transitive) on G . Again, implementation could be by listing 
(or e.g. logging) its extension. 

Definition 6. Given a hybrid ontology description HΩ =< Ω,G > and communities 
γ1,γ 2 ∈Γ  and t1 ∈T , we say that community γ 2  adopts < γ1, t1 >  when 
gloss1 = g1(γ1, t1)  and gloss2 = g1(γ 2 , t1)  are defined, and we have (i) 
EQT (gloss1,gloss2) , i.e. first “match” the two glosses; and (ii) ci(γ1, t1) = ci (γ 2, t1) , 
i.e. agree that both concepts are equal. 

In other words, γ1 and γ 2  agree behind the concepts on their respective glosses (a 
symmetric condition) and γ 2  agrees to use t1 as a term to refer to γ1’s concept be-
hind it (an asymmetric condition). Fig. 3 shows an example of agreeing on the equi-
valence of two glosses that are synonyms inside the Business Semantics Glossary (see 
Section 5). If their synonym relation was not already established, it will be after this 
action. 

 

  

Fig. 3: Example of two glosses the two different communities deem to be the same. The first is 
a definition for the term “email address” in community interested in exchanging information 
about offers of parking spots. Their definition came from their domain expert. The second was 
the definition of a different community whose effort went to lifting vCard into a hybrid ontolo-
gy description. The result of agreeing on the equality was a link stating that these two terms in 
those two communities were synonyms. 

What the definition does not tell is how to achieve the shared understanding from 
those glosses that the concepts are the same. For this, one option is to let the commun-
ities involve their commitments to t1 from their respective intended applications; in 
particular we need to study the reference structures for t1 in those commitments. 

Several guidelines on the construction of such glosses were given in [13]. While 
formally adequate to be useful in practice, we shall require more details of the struc-
ture (i.e. organizations) and the processes by which such a community achieves 
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agreement about lexons and about the commitment of a specific information system. 
An immediate consequence is the requirement that a community viewed as a context 
must agree on unique concepts based on terms used in lexons. In this paper, we pro-
pose a formalism and methodological approach for such interactions of communities 
with the repositories of the knowledge they own. 

The hybrid aspect is reflected in a dual perspective on the ontology Ω, and in par-
ticular on the glossary underpinning its lexons within a community: the community 
members agree on unique concepts based on glosses while systems interoperate (rea-
son) based on the relationships (facts) that are deemed to exist between terms that 
refer to those same concepts. 

Fig. 4 depicts a simplification of the iterative process involved. The Hybrid Ontol-
ogy Description is used downstream (ref. Fig. 5) to generate a knowledge base, e.g. as 
RDF(S)-defined “storage structures” and constraints/rules implementing relevant 
commitments for the enterprise information systems to be served. The co-evolution of 
a community and its Hybrid Ontology Description is a natural consequence of this 
process. Externalization - identifying the key conceptual patterns that are relevant 
from the discussions [7]- results in a series of ontology evolution operators for the 
next version and (re-)internalization – by committing instance bases to the new ver-
sion of the ontology [7] - changes the community’s composition: members depart 
when their goals differ too much from the common goal, or others join. 

 

Fig. 4. Feedback loop between an organized community and an ontology. The interactions 
between the community result in ontology evolution operators applied to the ontology. These 
operators thus enact the externalization of the reflections of that community. The new ontology 
description, after a while, will be re-internalized as the community achieves (and discusses 
about) new insights. 

 

Fig. 5. “Downstream” usage of the Hybrid Ontology Description to implement the ontology, 
used for annotating the application symbols of an information system. Users and software agents 
“recognize” the kind of annotated data provided by the information system and the ontology 
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Before describing the procedure of the methodology and the description of social 
processes in the next sections, we would like to note that communities in a collabora-
tive ontology engineering methodology are relevant only if there are two or more 
autonomously developed information systems that need to interoperate. When there is 
only one information system, the semantics resulting from that community (even if 
the number of people is greater than one) are of that application. This would bring us 
no step further from going from a closed information system to open information 
systems. 

3.3   Procedure of the Methodology 

To achieve this we first define a set of operations on a community that are intended to 
reflect its member interaction with the “real world” and with each other. Then we 
“map” those operations onto a sequence of ontology evolution operators, as defined 
by [4]. It is essential to observe that the ontology description evolves only as the result 
of agreements, viz. actions performed in principle by multiple community members. 

Every ontology evolution operation is subject to discussion before approval during 
the re-internalization phase of mentioned earlier. Members request certain changes 
under the form of those operators with a motivation. The status of each such request is 
initially “candidate”. Depending on the outcome of the discussion, the request is “ap-
proved”, “denied” or “postponed for future iteration”. The latter is useful when the 
community agrees that the request falls out the scope of the current iteration. Once 
proposed changes have been accepted and the community decides to go to a next 
version of the hybrid ontology description, all changes are translated into ontology 
evolution operators. 

The next section starts from an existing collaborative ontology engineering ap-
proach built on top of DOGMA in which – for every iteration – a set of ontology 
engineering phases are identified. For every phase, the different social processes (e.g. 
the request to add a lexon and its discussion) and corresponding ontology evolution 
operators are identified (e.g. adding a lexon). 

4   Social Processes in Ontology Engineering 

These operations can be classified according to the different phases of a collaborative 
ontology engineering process. Business Semantics Management (BSM) [5], devel-
oped by Collibra5, is such a collaborative ontology engineering methodology drawing 
from best practices in ontology management [12] and ontology evolution [6]. The 
representation of business semantics is based on the DOGMA approach6. BSM con-
sists of two complementary cycles: semantic reconciliation and semantic application 
(see Fig. 6) that each groups a number of activities.  

                                                           
5  Collibra nv/sa, launched in 2008, is a spin-off company of the Vrije Universiteit Brussel that 

validates and further develops the technology of the DOGMA research project. 
http://www.collibra.com/ 

6  Recently, BSM adopted Semantics of Business Vocabulary and Business Rules (SBVR) [3], 
a recent OMG standard pushed by the business rule community and the fact-oriented model-
ing community (and fully compatible with DOGMA). 
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Semantic Reconciliation is the first cycle of the methodology. In this phase, busi-
ness semantics are modeled by extracting, refining, articulating and consolidating 
lexons from existing sources such as natural language descriptions, existing metadata, 
etc. Ultimately, this results in a number of consolidated language-neutral semantic 
patterns that are articulated with glosses (e.g. WordNet [9] word senses). These pat-
terns are reusable for constructing various semantic applications. This process is sup-
ported by the Business Semantics Glossary, which will serve as basis for our proto-
type (see Section 5). 

Semantic Application is the second cycle. During this cycle, existing information 
sources and services are committed to a selection of lexons, as explained earlier. In 
other words, a commitment creates a bidirectional link between the existing data 
sources and services and the business semantics that describe the information assets 
of an organization. The existing data itself is not moved nor touched. 

 

Fig. 6. Business Semantics Management consists of two complementary cycles: semantic re-
conciliation and semantic application. Both cycles communicate via the unify-activity 

4.1   Semantic Reconciliation and Its Social Processes 

Scope defines the borders of the current ontology engineering iteration and helps 
grounding discussions, preventing members of a community to go “off topic” on the 
current problem. The first iteration consists of the initial community of members 
representing autonomously developed information systems that need to interoperate. 
The discussions are grounded on the basis of a motivation and a problem scope. The 
motivation expresses why a HOD7 or an incremental extension of a HOD is needed. 
The scope of the next iteration limits the problem that needs to be tackled, e.g. the 
definition and relations around one particular term, to avoid divergent discussions. 
During this phase, members can also propose the use of relevant sources from which 
inspiration can be drawn upon. Sources of inspiration can be legacy database sche-
mas, standards, documentation, etc. Before going on to the next phase, the relevance 
of these sources is agreed upon by the community. The social processes here are: - Creating the motivation by a member with sufficient rights to start the process. In 

the case of bootstrapping the ontology, the creator is the community-leader (found-
er) or one of the founders of the community. The motivation is discussed by all 
members and refined in terms of the discussion until a consensus is achieved. - Scoping the problem. Similarly to the motivation, a founder or a member with suffi-
cient rights creates the scope. It is also the subject of discussion and refinements un-
til a consensus is achieved. 

                                                           
7  In the case of a first iteration, the hybrid ontology description is initially empty. 
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- Add (invite) member and remove member. Members can join (or invited) to take 
part in refining the motivation and scope and the subsequent ontology engineering 
processes. When the goals of a community differ to greatly from the interest of one 
of the stakeholder, a member can decide to leave the community. - Proposing resources that can be used to draw inspiration from. At any time, users 
can propose a list of resources that can be accepted or not. Examples of such re-
sources can be the use of existing standards. 

 

Fig. 7. A proposition to use an existing standard to create lexons concerning dates 

From the creation phase onwards, every ontology operation is subject to discussion 
before approval as mentioned in the previous section. During the create process, lex-
ons are generated from the collected sources in the scoping activity (e.g. documents or 
legacy database schemas). The operations in this phase are: - Request to add a lexon < γ , t1,r1,r2 , t2 >  on which the community members as a 

whole accept or refuse the new lexon (see Fig. 8). - Request to add a constraint such as internal and external mandatory constraints. 
The role or roles on which the constraint is put on have to exist in the ontology. 
Constraints on lexons are modeled using a predicate language such as Ω-RIDL [19]. 

 

Fig. 8. The addition of a lexon is initially pending or “candidate”. In this example, a user added 
a lexon around a specific type of product (see Section 5). Users can discuss this lexon before 
accepting, denying or postponing the decision. 

The refine process is used to refine existing lexons and constraints in the HOD.  Ac-
tions that correspond in this phase are: - Request to remove lexon. All constraints involving roles in this lexon will be af-

fected as well as well as the glosses around this lexon. - Request to change the supertype of a term. The class hierarchy is constructed with a 
lexon whose roles bear a special meaning (the taxonomic relation, e.g. with role and 
co-role “is a” and “subsumes”). When no supertype was defined, a taxonomic rela-
tion is added between the two terms. When such a relation already exists between 
the terms and another super terms, the existing taxonomic relation is removed be-
fore the creation of the new one. 
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- Request to change “super lexon” of a lexon. Which indicates that the population of 
a lexon is a subset of the more general lexon. A special operation, as it corresponds 
with a subset constraint on both roles of the two lexons [11,19].  - Request to remove a constraint. 

Articulate is used to create informal meaning description, i.e. glosses, as extra docu-
mentation that can serve as anchoring points when stakeholders have used different 
terms for the same terms (synonyms). When descriptions are already available, e.g. in 
source documents, they can already be imported to speed up this process. The opera-
tions in this phase are: - Request to add gloss, for a particular term t ∈T  or lexon λ ∈Λ  in a community 

γ ∈Γ , or request to g1(γ , t) ← gloss  or g2 (λ) ← gloss . Lexon glosses have to fol-
low the glossary coherence property, the glosses of those terms have to be delivered 
or the request is ignored. - Request to remove a gloss. When all glosses of a term are removed, the lexons 
around this term that are articulated loose their glosses as well. This impact is 
shown to the user. All EQγ  around this gloss will be removed. - Request to change a gloss. When accepted, all EQγ  assertions around this gloss are 

removed and the other communities are notified to reconsider whether the changed 
gloss still EQγ  theirs. - Request to add synonym. A request to link terms across different communities, such 
that ci(γ1,t1) = ci(γ 2,t2) where t1,t2 ∈T  and γ1,γ 2 ∈Γ . This action will make 
those two terms term-equivalent EQT . - Request to remove synonym. This action happens when the definitions of both con-
cepts diverge in such a way that they do not handle about the same anymore. Natu-
rally, different lexons will emerge around those terms using other operations. The 
EQT  assertion is thus removed. 

At any given point, in order to achieve unification, discussions between users can take 
place. One can compare such discussions with posts and Web forums. By linking 
posts with their replies, one can create threads. An item in such discussion can be a 
trigger for an ontology operation or a task assigned to a person. A link is therefore 
kept between a task and an ontology operation if the post in question was the source 
of this action. For example, users who do not feel comfortable with formal ontology 
operators or do not know how to solve a problem might request an edit. - Request for edit. A general request for edit (or solving a problem). For instance 

used when a member feels he has not enough responsibility over the concept to 
propose the actual changes. - Request for information. Not to be confused with a request for edit for glosses, but 
rather a request for clarification. Such a request might result in a request for edit or 
as a request for an ontology operation. - Request for peer review. A invitation to review some aspects of the ontology, e.g. 
inviting members of the community to give comments to certain proposed changes, 
even though they are not immediately affected by the concepts in question. - Request for help, in contributing to certain aspects of the HOD. 
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- Comment. A comment to a post or a concept, a general class of posts that are not 
related to the other types of posts. - Reply. All posts not belonging to any category in a thread. 

 

Fig. 9. Example of a request for edit, a user proposing a better definition and pointing to a 
problem in the existing definition 

 

Fig. 10: Request for information. In this particular case, someone noted an overlap between 
two ontologies. Another member replied that an attempt was made to define synonyms, but was 
unable to do so. A third user then made the request instead. 

 

Fig. 11: Request for Peer Review. In the Business Semantics Glossary, ontologies are referred 
to as vocabularies, a term more “accessible” to users. In this particular case, a member of the 
community noticed that one of the ontologies was redundant. 

4.2   Application Commitments in the Feedback Loop 

Commitments provide valuable information on which terms and lexons the different 
members of the community representing their organization commit to. This selection 
is exploited by informing those members when changes are requested (and occur) in 
the ontology as to stimulate discussion. 

The mapping α  in those commitments is furthermore used to delve into the anno-
tated data in search for support or counterexamples for certain statements made by the 
community, e.g. to notify the community whether proposed constraint is true for all 
annotated information systems currently known in the community. This process will 
guide the community in its dialogue to achieve agreement. This is done by generating 
the necessary queries using the commitments of each of the applications, populating 
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the lexons in the conceptual schema and then reason over the data in terms of lexon 
populations. This tool, called the Ω-DIPPER, has been described in [8] and the results 
will be reported elsewhere. Fig. 12 extends Fig. 4 and depicts the place of Ω-DIPPER 
in the feedback loop. 

 

Fig. 12. Feedback loop from the ontologies to the community by not merely taking into account 
the lexons committed to by the application, but the data in the annotated organization informa-
tion systems as well 

5   Tool 

These results were implemented and tested in a web application supporting BSM 
called Business Semantics Glossary (BSG, see Fig. 13), also developed by Collibra 
nv/sa. BSG is based on the Wiki paradigm that is a proven technique for stakeholder  
 

 

Fig. 13. Screenshot of the Business Semantics Glossary. Here we see the definition of Email 
Address in the VCARD ontology by the same community. Note the discussion between users 
around this concept.  



458 C. Debruyne and R. Meersman 

 

collaboration. Governance models are built-in and user roles can be applied to distribute 
responsibilities and increase participation. Fig. 13 also shows the lexons and gloss (here 
called “Description”) of that community around the concept of Home Address. 

The interactions and resulting ontology operations were implemented using the 
flexible architecture provided by XWiki8, on which the BSG is based. The figures in 
the previous section depict some screen shots of the user interactions and resulting 
ontology evolution operators registered by the system. The tool was used by 45 users 
worked collaboratively on creating several ontologies concerning e-business (prod-
ucts, offers and requests for proposals). The 45 people represented 9 autonomously 
developed information systems: 4 request for proposals (RFP) systems and 5 vendor 
systems. The communities were: (i) a product community, which concerned everyone, 
(ii) an RFP community and (iii) a vendor community. As the experiment progressed, 
different communities evolved around general concepts such as Address, Dates, Con-
tact Details, etc. in which some of the original 45 users are part of. 

6   Conclusions 

Ontologies are key in meaningful and efficient interoperation of autonomously devel-
oped and maintained information systems and come to be as a community effort. 
Those members in a community interact with each other, talking about the concepts 
and their relations in their natural languages. The result of those interactions is re-
flected in changes on the ontology. One important tool in agreeing on the meaning of 
concepts are glosses, natural language descriptions of those concepts. 

In this paper, we presented a method for ontology engineering based on fact-
oriented conceptual modeling techniques called DOGMA, in which the implementa-
tion details of an ontology has no importance at design time. This method returns 
ontology descriptions as an artifact, which will be used for the implementation of 
ontologies in languages such as RDF(S) and OWL in similar way database schema's 
were distilled from conceptual schemas in information systems modeling. 

We extended those DOGMA ontology descriptions with hybrid aspects by giving 
the glosses a more prominent role in the agreement process and furthermore forma-
lized the social processes involved in ontology engineering and how these are trans-
lated into ontology evolution operators. We proposed operators involving glosses that 
capture the agreement processes between members of a community and how glosses 
are used to identify the concepts. These describe flow from community to hybrid 
ontology description in the feedback loop. The use of the annotated information sys-
tems to provide feedback and steer the community in the engineering process will be 
reported elsewhere. These ontology evolution operators and the social interactions 
were implemented in a tool called Business Semantics Management, which supports 
the Business Semantic Management methodology built around DOGMA. 
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Zieliński, Bartosz 401


	Title
	Preface
	Organization
	Table of Contents
	Invited Papers
	Ontological Query Answering via Rewriting
	Introduction
	Preliminaries
	First-Order Rewritability
	Concrete First-Order Rewritable Classes
	Rewriting Approaches
	Conclusion
	References

	On the Convergence of Data and Process Engineering
	Introduction
	Illustrative Scenario
	The Artifact-Centric Process Management Paradigm
	Outlook: Artifact-Centric Interoperation Hubs
	References


	Query Processing 1
	Mixing Bottom-Up and Top-Down XPath Query Evaluation
	Introduction
	Motivation
	Contributions
	Query Language
	Paper Organization

	Our Solution
	Overview of Our Solution
	XPath Automata
	Evaluation of Filter-Less Paths
	Optimization Using a Navigation Cache
	Evaluation of Queries with Filters
	Evaluation Strategies

	Evaluation of Our Prototype Implementation
	Experimental Setup
	Comparison of DecisionModules
	Comparison with Other Evaluators

	Related Works
	Summary and Conclusions
	References

	Querying Versioned Software Repositories
	Introduction
	Related Work
	Running Example, Grammar, Parse Trees, and DB Schema
	Example
	Grammar
	Parse Trees
	Terminal Relations

	Declarative Querying
	Data at Leaves and Data at Inner Nodes
	Annotations
	Annotating the Leaves
	Annotating the Non-leaves
	General Queries of Software Repositories
	Use Case: Find All Versions of the Software That Have Loops of Depth Three or Higher

	Implementation of Qvestor
	Architecture
	DB Schema
	Query Formulation, Translation, and Execution

	Conclusions and Future Work
	References

	Subsuming Multiple Sliding Windows for Shared Stream Computation
	Introduction
	Background and Related Work
	Window-Based Stream Processing
	Sharing Window State and Computation
	Multi-granular Windowing

	A Multi-subsumption Framework for Sliding Windows
	Problem Specification
	Identifying Suitable Embeddings among Sliding Windows
	Embedding Windows at Runtime

	Shared Evaluation over Subsumed Windows
	Experimental Evaluation
	Conclusions and Future Work
	References


	Data Warehousing 1
	Revisiting the Partial Data Cube Materialization
	Introduction
	Preliminaries
	Notations
	Cost Model and Performance Measures
	Related Work

	View Selection Problem
	View Selection as Minimal Weighted Vertex Cover
	Exact Solution
	Approximate Solution
	Reducing the Search Graph

	Introducing Indexes
	Exact Solution

	Dynamic Maintenance
	Stability

	Experiments
	Stability Analysis

	Conclusion and Future Work
	References

	Mining Preferences from OLAP Query Logs for Proactive Personalization
	Introduction and Motivation
	Related Work
	Preliminaries
	Schemata and Instances
	Queries

	The myMDX Preference Language
	A Proactive Approach to OLAP
	Log Mining
	Rule Selection
	Fragment Translation

	Experimental Results and Conclusions
	References

	A Novel Integrated Classifier for Handling Data Warehouse Anomalies
	Introduction
	Background
	RFID
	Non-Monotonic Reasoning
	Bayesian Networks
	Neural Networks

	Proposed Methodology
	Motivation
	Architecture
	Intended Scenario
	Assumptions

	Experimental Evaluation
	Environment
	Results

	Conclusion
	References


	Data Warehousing 2
	Variable Granularity Space Filling Curve for Indexing Multidimensional Data
	Introduction
	The Variable Granularity Space Filling Curve (VG-Curve)
	Partitioning Method
	Insertion Method

	Query Answering: Interval Queries
	Experiment
	Results and Analysis

	Conclusion and Future Work
	References

	MOLAP Cube Based on Parallel Scan Algorithm
	Introduction
	Real-Time OLAP Cube
	OLAP Cubes and Graphical Devices

	Multidemensional OLAP Cube Structure and Algorithms
	Compressed In-Memory OLAP Cube 
	Scan-Based Parallel Primitives
	Massively Parallel Creation Algorithm
	Querying Multidimensional OLAP by Linear Searching

	Implementation and Run-Time Experiments
	Cube Creation with Scan Primitives
	Massively Parallel Cube and Database Queries

	Conclusions and Future Works
	References

	Real-Time Computation of Advanced Rules in OLAP Databases
	Introduction
	Background and Related Work
	Parallel Database and OLAP Computation
	Rules in OLAP Cubes

	OLAP Computation on GPUs
	GPU Cube Data Structure
	OLAP Aggregations on GPUs

	GPU Rule Computation
	Finding and Matching Input Facts
	A Massively Parallel Solution

	Utilizing Multiple GPUs
	Data Distribution
	Augmented Algorithm

	Performance Evaluation
	Conclusions and Future Work
	References


	DB Systems
	Designing a Flash-Aware Two-Level Cache
	Introduction
	Related Work
	Page Flow Schemes
	Problem Statement
	The Inclusive Scheme
	The Exclusive Scheme
	The Lazy Scheme
	Comparison

	Implementation Issues
	Experimental Study
	Impact of Cache Size on Hit Ratio
	Impact of FLASH Size on RAM Hit Ratio
	Validation of the Cost Formulas
	Comparison of Page Flow Schemes
	Impact of Flash Cache Block Size
	Caching Only Clean Pages
	Discussion

	Concluding Remarks
	References

	Declarative Serializable Snapshot Isolation
	Introduction
	Background: Snapshot Isolation and Serializability
	Snapshot Isolation
	Detecting Non-serializable Histories
	Serializable Snapshot Isolation Protocol

	Declarative Scheduling Model
	Assumptions and Notational Remarks

	Modeling Data Relation Snapshots and Defining the Oshiya Scheduling Relation Schemata for DSSI
	Modeling Snapshots with Data Relations
	Oshiya Scheduling Relation Schemata

	DSSI Protocol Specification
	DSSI Implementation
	Detecting Potential Pivot Structures
	QSchedule

	Correctness Analysis
	Related Work
	Conclusions and Future Work
	References

	Resource Scheduling Methods for Query Optimization in Data Grid Systems
	Introduction
	Resource Allocation Problem
	Background
	Basic Requirements for Resource Allocation Methods in Data Grid Systems
	Performance Requirements
	Methods Comparison Criterions

	Analysis of Extended Classic and Incentive-Based Methods for Resource Allocation
	Extended Classic Approach
	Methods Based on Static Strategy
	Methods Based on Dynamic and Hybrid Strategies
	Comparison of Classic Resource Allocation Methods
	Incentive-Based Approach
	Economic and Reputation Principles Based Resource Allocation
	Comparison of Incentive-Based Resource Allocation Methods
	Comparison of the Two Approaches

	Performance Evaluation
	Simulation Model and System Parameters
	Performance Analysis

	Conclusion
	References


	Spatial Data
	A Recommendation Technique for Spatial Data
	Introduction
	Related Work
	Background
	A Current-State Approach to Spatial Recommendation
	Recommendation Operator
	Detection of the New Query Object
	Detection of the New Query Predicates
	Relaxed Selection Operator

	Query Processing for the Recommendation Operator
	Concluding Remarks
	References

	Processing (Multiple) Spatio-temporal Range Queries in Multicore Settings
	Introduction
	Preliminaries
	Algorithms in Multicore Context
	MOD-Level Load Distribution
	Query-Aware Load Distribution

	Experimental Evaluation
	Related Work and Concluding Remarks
	References

	Performance Comparison of xBR-trees and R*-trees for Single Dataset Spatial Queries
	Introduction
	Related Work and Motivation
	R*-tree and Single Dataset Query Processing
	R*-tree
	 PLQs, WQs, DRQs, K-NNQs and CK-NNQs on R*-trees

	XBR-tree and Single Dataset Query Processing
	Internal Nodes
	Leaf Nodes
	Splitting of Internal Nodes
	PLQs, WQs, DRQs, K-NNQs and CK-NNQs on xBR-trees

	Experimentation
	Conclusions and Future Work
	References


	Query Processing 2
	Efficient Detection of Minimal Failing Subqueries in a Fuzzy Querying Context
	Introduction
	Reminder about Fuzzy Sets and Fuzzy Queries
	Basic Notions about Fuzzy Sets
	About SQLf

	Explaining a Failure
	About Minimal Failing and Unsatisfactory Subqueries
	Cardinality-Based MFS Detection

	Experimentation
	Context

	Exploiting MFSs to Repair Failing Queries
	Related Work
	Conclusion
	References

	Rewriting Fuzzy Queries Using Imprecise Views
	Introduction
	Running Example and Motivations
	Preliminaries
	Basic Notions about Fuzzy Sets
	Logic FL0(OF)

	Rewriting Fuzzy Queries Using Imprecise Views
	Definition of the Data Integration System
	Computing the Rewritings

	Algorithm for Computing -Certain Query Rewritings
	Conclusion
	References

	Personalizing Queries over Large Data Tables
	Introduction
	Basic Definitions
	Preferences over a Single Attribute
	Preferences over Two or More Attributes
	The User Interface
	Related Work and Concluding Remarks
	References


	Information Systems
	An Analysis of the Structure and Dynamics of Large-Scale Q/A Communities
	Introduction
	Background and Related Work
	The Yahoo! Answers Community
	Interactions and Actor Relations
	Q/A Structure and Community Evolution
	Community Topics

	Topic-Sensitive Expertise Mining in Q/A Communities
	Personalized Recommendations
	Conclusion
	References

	Forcasting Evolving Time Series of Energy Demand and Supply
	Introduction
	Distributed Forecasting
	Distributed System Architecture
	Model Synchronization

	Forecast Model Maintenance
	Maintenance Strategy Overview
	Forecast Model Evaluation
	Enhanced Parameter Estimation

	Experimental Evaluation
	Experimental Setting
	Comparison of Efficiency and Accuracy

	Conclusion
	References

	The NestFlow Interpretation of Workflow Control-Flow Patterns
	Introduction
	Related Work
	The NestFlow Modeling Language
	NestFlow Syntax and Annotations
	NestFlow Semantics and Properties

	NestFlow Representation of WCPs
	Evaluation Method
	Evaluation of NestFlow WCPs Support
	Conclusion
	References


	Physical DB Design
	On Simplifying Integrated Physical Database Design
	Introduction
	Background
	Horizontal Data Partitioning
	Bitmap Join Indexes

	A Genetic Algorithm for Selecting BJI
	Attribute Interchangeability Impact on OT Selection
	Motivating Example
	Formalisation

	Clustering-Based Attribute Assignment by K-Means
	Performance Study
	Tests and Results

	Conclusion
	References

	Generic Information System Architecture for Distributed Multimedia Indexation and Management
	Introduction
	Related Work
	The Employed Architectural Solutions
	Information Indexation Management Techniques
	Multimedia Metadata Models

	The LINDO Generic Architecture
	The Remote Servers Components
	The Central Server Components

	A Concrete Illustration of the System Functioning
	The System's Workflows to Acquire Content Indexation Management
	Implementation of a Video Surveillance Use Case

	Adopting the Framework in Other Use Cases
	Broadcast Use Case
	Archive Use Case

	Experimental Tests and Results
	Conclusions and Perspectives
	References

	Automatic Physical Database Tuning Middleware for Web-Based Applications
	Introduction
	Related Work
	Parallel and Hybrid Solutions
	Automated Physical Design Solutions

	Proposed Solution
	State Space Search over Layouts
	Cut-Off Points Detection

	The Middleware
	Experimental Results
	Contributions
	Future Work
	References


	Evolution, Integrity, Security
	XML Data Transformations as Schema Evolves
	Introduction
	Related Work
	Conceptual Model
	Changes between Versions
	Revalidation
	Revalidation Script Overview
	Generation of the XSLT Revalidation Script

	Implementation and Example
	Conclusion and Open Problems
	References

	Partial Repairs That Tolerate Inconsistency
	Introduction
	The Formal Framework
	Databases, Updates, Constraints, Cases
	Violation Metrics
	Inconsistency-Tolerant Integrity Checking

	Repairs
	Integrity-Preserving Repair Management
	Checking Repairs for Integrity Preservation
	Integrity-Preserving Update Methods
	How to Compute Integrity-Preserving Repairs

	Related Work
	Conclusion
	References

	Modularisation in Maude of Parametrized RBAC for Row Level Access Control
	Introduction
	Access Control by Query Modification
	Equational Membership Logic and Maude
	Order Sorted Algebras
	Conditional Equations

	Parametrized RBAC for Row Level Access Control
	Specification in Maude

	Conclusion and Future Work
	References


	Data Semantics
	A Clustering-Based Approach for Large-Scale Ontology Matching
	Introduction
	Related Work
	Preliminaries
	Structure-Based Clustering
	Cluster Merging.
	Intra-Clustering Similarity.
	Complexity Analysis of Clustering Algorithm.


	Determination of Similar Clusters
	Experimental Evaluation
	Data Sets and Evaluation Criteria
	Experimental Results

	Conclusions
	References

	Automatic Building of an Appropriate Global Ontology
	Introduction
	Related Works
	Preliminaries
	DL-LiteA Syntax and Semantics
	Our DL-LiteA Ontologies
	Inference Capabilities
	Building an Appropriate DL-LiteA Global TBox

	Agreement 
	Conciliation 
	Conclusion and Future Work
	References

	Semantic Interoperation of Information Systems by Evolving Ontologies through Formalized Social Processes
	Introduction
	Related Work
	DOGMA
	Towards Hybrid Ontology Descriptions
	Glossaries
	Procedure of the Methodology

	Social Processes in Ontology Engineering
	Semantic Reconciliation and Its Social Processes
	Application Commitments in the Feedback Loop

	Tool
	Conclusions
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




