
Comparing Metaheuristic Algorithms for Error

Detection in Java Programs

Francisco Chicano1, Marco Ferreira2, and Enrique Alba1

1 University of Málaga, Spain
{chicano,eat}@lcc.uma.es

2 Instituto Politécnico de Leiria, Portugal
mpmf@estg.ipleiria.pt

Abstract. Model checking is a fully automatic technique for checking
concurrent software properties in which the states of a concurrent system
are explored in an explicit or implicit way. The main drawback of this
technique is the high memory consumption, which limits the size of the
programs that can be checked. In the last years, some researchers have
focused on the application of guided non-complete stochastic techniques
to the search of the state space of such concurrent programs. In this
paper, we compare five metaheuristic algorithms for this problem. The
algorithms are Simulated Annealing, Ant Colony Optimization, Particle
Swarm Optimization and two variants of Genetic Algorithm. To the best
of our knowledge, it is the first time that Simulated Annealing has been
applied to the problem. We use in the comparison a benchmark composed
of 17 Java concurrent programs. We also compare the results of these
algorithms with the ones of deterministic algorithms.

Keywords: Model checking, Java PathFinder, simulated annealing, par-
ticle swarm optimization, ant colony optimization, genetic algorithm.

1 Introduction

Software is becoming more and more complex. That complexity is growing for
a variety of reasons, not the least of them is the need of concurrent and dis-
tributed systems. Recent programming languages and frameworks, such as Java
and .NET, directly support concurrency mechanisms, making them an usual
choice when developing concurrent and/or distributed systems. However, since
these systems introduce interactions between a large number of components,
they also introduce a larger number of points of failure. And this possible errors
are not discoverable by the common testing mechanisms that are used in soft-
ware testing. This creates a new need: to find software errors that may arise from
the components communication, resource access and process interleaving. These
are subtle errors that are very difficult to detect as they may depend on the
order the environment chooses to execute the different threads, or components
of the system. Some examples of this kind of errors are deadlocks, livelocks and
starvation.

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 82–96, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 83

One technique used to validate and verify programs against several properties
like the ones mentioned is model checking [1]. Basically, a model checker uses a
simplified implementation of the program, that is, a model, creating and travers-
ing the graph of all the possible states of that model to find a path starting in
the initial state that violates the given properties. If such a path is found it is a
counterexample of the property that can be used to correct the program. Oth-
erwise, if the algorithm used for the search of the counterexample is complete,
the model is proven to be correct regarding the given properties.

The amount of states of a given concurrent system is very high even in the
case of small systems, and it usually increases in a exponential way with the size
of the model. This fact is known as the state explosion problem and limits the
size of the model that a model checker can verify. Several techniques exist to al-
leviate this problem, such as partial order reduction [2], symmetry reduction [3],
bitstate hashing [4] and symbolic model checking [5]. However, exhaustive search
techniques are always handicapped in real concurrent programs because most of
these programs are too complex even for the most advanced techniques.

When, even after state or memory reduction is somehow performed, the num-
ber of states becomes too big, two problems appear: the memory required to
search for all states is too large and/or the time required to process those states is
extremely long for practical purposes. That means that either the model checker
will not be able to find an error nor prove the correctness of the model or, if it
does find an error or prove the correctness of the model, it will not be in a prac-
tical run time. In those cases, the classical search algorithms like Depth First
Search (DFS) or Breadth First Search (BFS), which are the most commonly
used in model checking, are not suited.

However, using the old software engineering adage: “a test is only successful
if it finds an error”, we can think of model checking not as a way to prove
correctness, but rather as a technique to locate errors and help in the testing
phase of the software life cycle [6]. In this situation, we can stop thinking in
complete search algorithms and start to think in not complete, but possibly
guided search algorithms that lead to an error (if it exists) faster. That way,
at least one of the objectives of model checking is accomplished. Therefore,
techniques of bounded (low) complexity as those based on heuristics will be
needed for medium/large size programs working in real world scenarios.

In this article we will study the behavior of several algorithms, including
deterministic complete, deterministic non-complete, and stochastic non-complete
search algorithms. In particular, the contributions of this work are:

– We analyze, compare and discuss the results of applying ten algorithms for
searching errors in 17 Java programs.

– We include in the comparison algorithms from four different families of meta-
heuristics: evolutionary algorithms (two variants), particle swarm optimiza-
tion, simulated annealing, and ant colony optimization.

– We use a simulated annealing algorithm (SA) for the first time in the domain
of model checking.

84 F. Chicano, M. Ferreira, and E. Alba

– We use large Java models that actually pose a challenge for traditional model
checking techniques and thus expand the spectrum of checkable programs.

The paper is organized as follows. In the next section we introduce some back-
ground information on heuristic model checking and Java PathFinder, which is
the model checker used in this work. Section 3 presents a formal definition of
the problem at hands. In Section 4 we briefly present the algorithms used in the
experimental study and their parameters. Then, we describe the experiments
performed and discuss the obtained results in Section 5. We conclude the paper
in Section 6.

2 Heuristic Model Checking

The search for errors in a model can be transformed in the search for one ob-
jective node (a program state that violates a given condition) in a graph, the
transition graph of the program, which contains all the possible states of the
program. For example, if we want to check the absence of deadlocks in a Java
program we have to search for states with no successors that are not end states.

Once we have transformed the search for errors in a search in a graph, we can
use classical algorithms for graph exploration to find the errors. Some classical
algorithms used in the literature with this aim are depth first search (DFS)
or breadth first search (BFS). It is also possible to apply graph exploration
algorithms that takes into account heuristic information, like A∗, Weighted A∗,
Iterative Deeping A∗, and Best First Search. When heuristic information is used
in the search, we need a map from the states to the heuristic values. In the
general case, this maps depends on the property to check and the heuristic value
represents a preference to explore the corresponding state. The map is usually
called heuristic function, that we denote here with h. The lower the value of h
the higher the preference to explore the state, since it can be near an objective
node.

The utilization of heuristic information to guide the search for errors in model
checking is called heuristic (or guided) model checking. The heuristic functions
are designed to guide the search first to the regions of the transition graph in
which the probability of finding an error state is higher. This way, the time
and memory required to search an error in a program is decreased on average.
However, the utilization of heuristic information has no advantage when the
program has no error. In this case, the whole transition graph must be explored.

A well-known class of non-exhaustive algorithms for solving complex problems
is the class of metaheuristic algorithms [7]. They are search algorithms used in
optimization problems that can find good quality solutions in a reasonable time.
Metaheuristic algorithms have been previously applied to the search of errors in
concurrent programs. In [8], Godefroid and Khurshid applied Genetic Algorithms
in one of the first work on this topic. More recently, Alba and Chicano used
Ant Colony Optimization [9] and Staunton and Clark applied Estimation of
Distribution Algorithms [10].

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 85

2.1 Verification in Java PathFinder

There are different ways of specifying the model and the desired properties.
Each model checker has its own way of doing it. For example, in SPIN [4] the
model is specified in the Promela language and the properties are specified using
Linear Temporal Logic (LTL). It is usual to provide the model checker with the
properties specified using temporal logic formulas, either in LTL or CTL. It
is also usual to find specific modelling languages for different model checkers.
Promela, DVE, and SMV are just some examples. However, model checkers
exist that deal with models written in popular programming languages, like C
or Java. This is the case of Java PathFinder (JPF) [11], which is able to verify
models implemented in JVM1 bytecodes (the source code of the models is not
required). The properties are also specified in a different way in JPF. Instead
of using temporal logic formulas, the JPF user has to implement a class that
tells the verifier algorithm if the property holds or not after querying the JVM
internal state. Out of the box, JPF is able to check the absence of deadlocks and
unhandled exceptions (this includes assertion violations). Both kind of properties
belong to the class of safety properties [12].

In order to search for errors, JPF takes the .class files (containing the JVM
bytecodes) and use its own Java virtual machine implementation (JPF-JVM in
the following) to advance the program instruction by instruction. When two or
more instructions can be executed, one of them is selected by the search algo-
rithm and the other ones are saved for future exploration. The search algorithm
can query the JVM internal state at any moment of the search as well as store
a given state of the JVM and restore a previously stored state. From the point
of view of the Java model being verified, the JPF-JVM is not different from
any other JVM: the execution of the instructions have the same behaviour. The
JPF-JVM is controlled by the search algorithm, which is an instance of a sub-
class of the Search class. In order to include a new search algorithm in JPF, the
developer has to create a new class and implement the corresponding methods.
This way, JPF can be easily extended; one aspect that is missing in other model
checkers like SPIN. The role of the search algorithm is to control the order in
which the states are explored according to the search strategy and to detect the
presence of property violations in the explored states.

In JPF, it is possible to use search algorithms guided by heuristic information.
To this aim, JPF provides some classes that ease the implementation of heuristic
functions and heuristically-guided search algorithms.

3 Problem Formalization

In this paper we tackle the problem of searching for safety property violations in
concurrent systems. As we previously mentioned, this problem can be translated
into the search of a walk in a graph (the transition graph of the program) starting

1 JVM stands for Java Virtual Machine.

86 F. Chicano, M. Ferreira, and E. Alba

in the initial state and ending in an objective node (error state). We formalize
here the problem as follows.

Let G = (S, T) be a directed graph where S is the set of nodes and T ⊆ S×S
is the set of arcs. Let q ∈ S be the initial node of the graph, F ⊆ S a set
of distinguished nodes that we call objective nodes. We denote with T (s) the
set of successors of node s. A finite walk over the graph is a sequence of nodes
π = π1π2 . . . πn where πi ∈ S for i = 1, 2, . . . , n and πi ∈ T (πi−1) for i = 2, . . . , n.
We denote with πi the ith node of the sequence and we use |π| to refer to the
length of the walk, that is, the number of nodes of π. We say that a walk π is a
starting walk if the first node of the walk is the initial node of the graph, that
is, π1 = q.

Given a directed graph G, the problem at hand consists in finding a starting
walk π (π1 = q) that ends in an objective node, that is, π∗ ∈ F . The graph G
used in the problem is the transition graph of the program. The set of nodes S
in G is the set of states in of the program, the set of arcs T in G is the set of
transitions between states in the program, the initial node q in G is the initial
state of the program, the set of objective nodes F in G is the set of error states
in the program. In the following, we will also use the words state, transition and
error state to refer to the elements in S, T and F , respectively. The transition
graph of the program is usually so large that it cannot be completely stored in
the memory of a computer. Thus, the graph is build as the search progresses.
When we compute the states that are successors in the transition graph of a
given state s we say that we have expanded the state.

4 Algorithms

In this section we will present the details and configurations of the ten algorithms
we use in the experimental section. In Table 1 we show the ten algorithms clas-
sified according two three criteria: completeness, determinism and guidance. We
say that an algorithm is complete if the algorithm ensures the exploration of
the whole transition graph when no error exists. For example, DFS and BFS
are complete algorithms, but Beam Search and all the metaheuristic algorithms
used here are non-complete algorithms. One algorithm is deterministic if the
states are explored in the same order each time the algorithms is run. DFS and
Beam Search are examples of deterministic algorithms, while Random Search
and all the metaheuristics are non-deterministic algorithms. Guidance refers to
the use of heuristic information. We say that an algorithm is guided when it uses
heuristic information. A∗ and Beam Search are guided algorithms while Random
Search and BFS are unguided algorithms.

For the evaluation of the tentative solutions (walks in the transition graph) we
use the same objective function (also called fitness function) in all the algorithms.
Our objective is to find deadlocks in the programs and we prefer short walks.
As such, our fitness function f is defined as follows:

f(x) = deadlock + numblocked +
1

1 + pathlen
(1)

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 87

Table 1. Algorithms used in the experimental section

Algorihm Acronym Complete? Deterministic? Guided?

Depth First Search [11] DFS yes yes no
Breadth First Search [11] BFS yes yes no
A∗ [11] A∗ yes yes yes
Genetic Algorithm [13] GA no no yes
Genetic Algorithm [13]

GAMO no no yes
with Memory Operator

Particle Swarm Optimization [14] PSO no no yes
Ant Colony Optimization [9] ACOhg no no yes
Simulated Annealing SA no no yes
Random Search RS no no no
Beam Search [11] BS no yes yes

where numblocked is the number of blocked threads generated by the walk while
pathlen represents the number of transitions in the walk and deadlock is a con-
stant which takes a high value if a deadlock was found and 0 otherwise. The
high value that deadlock can take should be larger than the maximum number
of threads in the program. This way we can ensure that any walk leading to a
deadlock has better fitness than any walk without deadlock. All the metaheuris-
tic algorithms try to maximize f .

The random search is a really simple algorithm that works by building limited-
length random paths from the initial node of the graph. Then, it checks if an
error was found in the path.

In the following we describe the SA algorithm, since it is the first time that
this algorithm is applied to this problem (up to the best of our knowledge).
We omit the details of the remaining algorithms due to space constraints. The
interested reader should refer to the corresponding reference (shown in Table 1).

4.1 Simulated Annealing

Simulated annealing (SA) is a trajectory-based metaheuristic introduced by
Kirkpatrick et al. in 1983 [15]. It is based on the statistical mechanics of an-
nealing in solids. Just like in the physical annealing, SA allows the solution to
vary significantly while the virtual temperature is high and stabilizes the changes
as the temperature lows, freezing it when the temperature reaches 0. We show
the pseudocode of SA in Algorithm 1.

SA works by generating an initial solution S, usually in some random form,
and setting the temperature T to an initial (high) temperature. Then, while
some stopping criteria is not met, SA randomly selects a neighbor solution N
of S and compares its energy (or fitness) against the current solution’s energy,
getting the difference ΔE in temperature between them. The neighbor solution
is accepted as the new solution if it is better than the current one or, in case it
is worse, with a probability that is dependent on both ΔE and temperature T .
SA then updates the temperature using some sort of decaying method. When
the stopping criteria is met, the algorithm returns the current solution S.

88 F. Chicano, M. Ferreira, and E. Alba

Algorithm 1. Pseudo code of Simulated Annealing
1: S = generateInitialSolution();
2: T = initialTemperature;
3: while not stoppingCondition() do
4: N = getRandomNeighbor(S);
5: ΔE = energy(N) - energy(S);
6: if ΔE > 0 OR random(0,1) < probabilityAcceptance(ΔE, T) then
7: S = N
8: end if
9: T = updateTemperature(T);

10: end while
11: return S

The energy function in this case is the objective function f defined in Equation
(1). Since we want to maximize this function (the energy), given an energy
increase ΔE and a temperature T , the probability of acceptance is computed
using the following expression:

probabilityAcceptance(ΔE, T) = e
ΔE
T (2)

One critical function of the Simulated Annealing is the updateTemperature
function. There are several different ways to implement this method. In our
implementation we used a simple, yet commonly used technique: multiplying
the temperature by a number α between 0 and 1 (exclusive). The smaller that
number is, the faster the temperature will drop. However, if we detect a local
maxima (if the solution isn’t improved for a number of iterations) we reset the
temperature to its initial value to explore new regions.

4.2 Parameter Settings

In a comparison of different kinds of algorithms one problem always poses: how
to compare them in a fair way? This problem is aggravated by the fact that the
algorithms work in fundamentally different ways: some algorithms search only
one state at a time, some search for paths. Some check only one state per itera-
tion, others check many more states per iteration, etc. This large diversification
makes it very hard to select the parameters that make the comparison fair. The
fairest comparison criterion seems to be the computational time available to each
algorithm. However, this criterion would make it impossible to use the results in
a future comparison because the execution environment can, and probably will,
change. Furthermore, the implementation details also affect the execution time
and we cannot guarantee that the implementations used in the experiments are
the most effective ones. For this reason, we decided to established a common
limit for the number of states each algorithm may expand. After a defined num-
ber of states have been expanded the search is stopped and the results can be
compared.

In order to maintain the parameterization simple, we used the same maximum
number of expanded states for every model even though the size of each model is

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 89

considerably different. We defined that maximum number of states to be 200 000,
as it was empirically verified to be large enough to allow the algorithms to find
errors even on the largest models. Having established a common value for the
effort each algorithm may use, the parameterization of each individual algorithm
can be substantially different from each other. For instance, we don’t have to
define the same number of individuals in the GA as the same number of particles
in the PSO or as the same number of ants in the ACO. This gives us the freedom
to choose the best set of parameters for each algorithm. However, in the case of
the stochastic algorithms, and since this is a parameter that largely affects their
execution, we have used the same heuristic function for all of them.

DFS, BFS and A* do not require any parameter to be set as they are generic,
complete and deterministic search algorithms. For the metaheuristic algorithms,
on the other hand, there are a variety of parameters to be set and although they
could be optimized for each individual experiment, we have opted to use the same
set of parameters for every experiment. These parameters were obtained after
some preliminary experiments trying to get the best results for each particular
algorithm. The parameters are summarized, together with the ones of RS and
BS, in Table 2.

5 Experimental Section

In our experiments we want to verify the applicability of metaheuristic algo-
rithms to model checking. We performed several experiments using the algo-
rithms of the previous section and different Java implemented models. In order
to determine the behavior of each search algorithm we have selected several types
of models, including the classical Dining Philosophers toy model (both in a cyclic
and a non-cyclic version), the more complex Stable Marriage Problem and two
different communication protocols: GIOP and GARP. The Dining Philosopher
models illustrate the common deadlock that can appear on multi-threaded algo-
rithms. The difference of the cyclic and non-cyclic version is that while in the
first one, called phi, each philosopher cycles through the pick forks, eat, drop
forks and think states, in the non-cyclic version, called din, each philosopher
only picks the forks, eats and drops the forks once, thus limiting the number of
possible deadlocks. The Stable Marriage Problem (mar) has more interactions
between threads and its implementation leads to a dynamic number of threads
during executions. It contains both a deadlock and an assertion violation. Both
the Dining Philosophers problem and the Stable Marriage Problem can be in-
stantiated in any size (scalable), which makes them good choices to study the
behavior of the search algorithms as the model grows. Finally, the communi-
cation protocols represent another typical class of distributed systems prone
to errors. Both of these protocol implementations have known deadlocks which
makes them suitable for non-complete search algorithms, because although they
cannot prove correctness of a model, they can be used to prove the incorrectness
and help the programmer to understand and fix the properties violations.

The results obtained from the experiments can be analyzed in several ways.
We will discuss the results on the success of each algorithm in finding the errors,

90 F. Chicano, M. Ferreira, and E. Alba

Table 2. Parameters of the algorithms

Beam Search Random Search
Parameter Value Parameter Value

Queue limit (k) 10 Path length 350
GeGA algorithm

Parameter Value
Minimum path size 10
Maximum path size 350
Population size 50
Selection operator Tournament (5 individuals)
Crossover probability 0.7
Mutation probability 0.01
Elitism true (5 individuals)
Respawn after 5 generations with same population average fitness

or 50 generations without improvement in best fitness
GeGAMO algorithm

Parameter Value
Minimum path size 10
Maximum path size 50
Population size 50
Selection operator Tournament (3 individuals)
Crossover probability 0.7
Mutation probability 0.01
Elitism true (3 individuals)
Memory operator frequency 10
Memory operator size 25
Respawn after 5 generations with same population average fitness

or 60 generations without improvement in best fitness
PSO algorithm ACOhg algorithm

Parameter Value Parameter Value
Number of Particles 10 Length of ant paths 300
Minimum path size 10 Colony size 5
Maximum path size 350 Pheromone power (α) 1
Iterations Until Perturbation 5 Heuristic power (β) 2
Initial inertia 1.2 Evaporation rate (ρ) 0.2
Final inertia 0.6 Stored solutions (ι) 10
Inertia change factor 0.99 Stage length (σs) 3

SA algorithm
Parameter Value

Path size 350
Initial temperature 10
Temperature decay rate (α) 0.9
Iterations without improvement 50

measured as the hit rate, and the length of the error trail leading to the error.
Deterministic algorithms always explore the states in the same order, which
means that only one execution per problem instance is needed. The results of
stochastic search algorithms, however, could change at each execution. For this
reason, each stochastic algorithm was executed 100 times per problem instance.

5.1 Hit Rate

We show the results of hit rate in Table 3. Regarding the Dining Philosophers
cyclic problem (phi), we can observe that none of the exact search algorithms
could find an error in the larger instances. In fact, all of them (DFS, BFS and A*)
exhausted the available memory starting with 12 philosophers, while all of the
stochastic search algorithms (GA, GAMO, PSO, SA, ACOhg and even RS) and
BS had a high hit rate in all of the instances. To better understand the reason for

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 91

this, Figure 1(a) shows the distribution of the explored states after 200 000 states
had been observed by two exact algorithms (DFS and BFS) and two stochastic
algorithms (GA and RS). The remaining search algorithms were removed from
the figure in order to have an uncluttered graphic. Figure 1(a) shows that DFS
searched only one state per depth level (states explored in depths superior to 350
are not shown to maintain the graphic readability). That is coherent with the
search algorithm which searches first in depth. However, this makes it difficult to
find the error if it is not on the first transitions of each state. BFS, on the other
hand, tried to fully explore each depth level before advancing to the next one.
However, since the phi problem is a very wide problem (meaning that at each
state there is a large number of possible outgoing transitions), the 200 000 states
limit was reached quite fast. We can see a large difference in the behavior of the
stochastic search algorithms. Both explore the search space both widely and in
depth, simultaneously. This means that they avoid using all the resources in the
few first depth levels, but also do not try to search too deep. Although they only
visit the same number of states as their exact counterparts, they are spreader
than the exact algorithms, which helps them find the error state. Considering
that there are paths leading to errors in depths around 60, it is easy to see in
Figure 1(a) why the stochastic algorithms found at least one of them while the
exact algorithms missed them.

On the non-cyclic version of Dining Philosophers (din), DFS was able to
detect errors in larger instances than the other exact algorithms. Figure 1(b)
shows the reason why: since this problem is not cyclic, it ends after all the
philosophers have had their dinner. Considering 12 philosophers, this happens,
invariably, after 50 transitions. Since DFS has no more states to follow it starts to
backtrack and check other transitions at the previous states. DFS concentrates
its search at the end of the search space, and since the error state is at depth 36
(which is near the end), it is able to backtrack and explore other states at that
depth level before consuming all the available memory. Figure 1(b) shows how

N
um

be
r o

f d
iff

er
en

t s
ta

te
s

2000

1600

1200

800

400

0

DFS BFS GA RS

Depth
50 150 200 250 300 3501000

(a) DFS, BDS, GA and RS in phi.

DFS BFS

35000

30000

25000

20000

15000

10000

5000

0
0 10 20 30 40 50

Depth

N
um

be
r o

f d
iff

er
en

t s
ta

te
s

(b) DFS and BFS in din.

Fig. 1. Search behavior of algorithms. The X axis is the depth in the graph and the
Y axis is the number of expanded states.

92 F. Chicano, M. Ferreira, and E. Alba

Table 3. Hit rate of the algorithms

Problem DFS BFS A* GA GAMO PSO SA ACOhg RS BS

phi 4 100 100 100 100 100 100 100 100 100 100
phi 12 0 0 0 100 100 100 100 100 100 100
phi 20 0 0 0 100 100 100 100 100 100 100
phi 28 0 0 0 100 100 100 100 100 100 100
phi 36 0 0 0 82 100 53 79 100 100 100

din 4 100 100 100 100 100 100 100 100 100 100
din 8 100 0 0 100 100 100 76 100 96 100
din 12 100 0 0 100 96 85 13 68 0 100
din 16 0 0 0 91 58 20 0 2 0 100
din 20 0 0 0 52 24 0 0 0 0 100

mar 2 100 100 100 100 100 100 100 100 100 100
mar 4 100 100 100 100 100 100 96 100 100 100
mar 6 100 0 0 100 100 100 100 100 100 100
mar 8 100 0 0 100 95 100 100 100 100 100
mar 10 100 0 0 100 25 100 100 100 100 100

giop 100 0 0 100 68 100 100 100 100 100
garp 0 0 0 100 2 80 87 87 100 0

many different states per depth level the DFS and BFS algorithms had checked
after 200 000 expanded states. Although 200 000 were not enough for BFS to
find the error, we can see that DFS was already exploring in the error state
neighborhood. BFS, on the other hand, concentrates the search in the beginning
of the search space and, after visiting 200 000 states, it is still far from the
neighborhood of the error state. The din problem is much less forgiving than
phi. There is only one error state, and one chance to find it. This creates an
interesting problem: the probability that a random walk through the search space
would find the error decreases substantially. In fact, our results show exactly that:
RS starts to miss the error as the number of philosophers grow (and search space
increases, therefore). All the metaheuristic search algorithms found the error in
larger instances, but they too started to struggle to find it. Only the genetic
algorithms found the error in all instances. Since these are the only algorithms
in the set that mixes paths from different individuals to create new ones, it
seems that they were able to find a pattern to reach the error, while the other
stochastic algorithms have not. Finally, BS finds the error in all the cases.

Like the din problem, mar is also finite. This means that there is a (relatively
small) limit on the maximum depth the search algorithm may look into. This
knowledge, and the fact that DFS successfully found an error in all the problem
instances may lead us to think that the problem is small and, therefore, simple.
That is not, however, the case: the size of the search space grows exponentially
with the size of couples. An interesting observation is that shape of the search
space remains mainly unaffected with the growth of the number of couples, as
seen in Figure 2. Considering the size of the search space, the good results of RS
and the observations we made on the Dining Philosophers problems, it seems
that the mar problem have many different paths leading to an error state. To

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 93

mar2

mar3

mar4

100000

10000

1000

100

10

1
0 15 30 45 60 75

Depth

N
um

be
r o

f d
iff

er
en

t s
ta

te
s

Fig. 2. Search space for the mar problem as seen by DFS for instances of 2, 3 and 4
couples. Note that the Y axis is logarithmic.

check this hypothesis we have checked all of the search space for the mar problem
with 3 couples and found that with only 5156 different states in the search space,
there are 30 error states and 216 different paths leading to those error states.
This is indeed a large number of paths for the search space size and supports
our hypothesis.

In general, when searching for errors, we have observed that non-complete al-
gorithms have a higher success rate than the tested complete algorithms. From
figures 1(b) and 2 we can observe that one reason seems to be the concentration
of the search in either the beginning of it (BFS) or the end of it (DFS). Pure
stochastic algorithms, like random search, explores a wider portion of the space
at all the allowed depths (our random implementation is depth bounded). The
metaheuristic algorithms tend to explore more through the search space and ex-
ploit areas that seem interesting, which typically are neither at the beginning or
at the end of the search space. Complete search algorithms start to fail to search
the whole search space very soon. Are they really applicable for software model
checking? If some form of abstraction can be used, then maybe. However they
still require large amount of memory and they are not checking the final imple-
mentation, so specific implementation details could still violate the properties
checked before. However, failing to prove the model correctness does not mean
they cannot be used to find errors. The mar problem is a good example of that.
The search space could not be completely verified after using only 4 couples,
but DFS was able to find errors even with 10 couples. The ability of DFS and
BFS to find errors in large search spaces depends not so much on the size of the
search space but more on its shape, as shown in the din and mar tests.

5.2 Length of the Error Trails

The length of the error trail for each algorithm is also an important result that
must be compared. Since the error trail is the information the developers have
to debug the application, the more concise it is, the better. So, shorter error

94 F. Chicano, M. Ferreira, and E. Alba

trails means that less irrelevant states exists in the trail, making it easier for
the developer to focus on what leads to the errors As with the hit rate, exact
algorithms always return the same error trail for each problem. Stochastic al-
gorithms do not, so we present in Table 4 both the averages of the length of
the first error trail found and of the shortest error trail length found in the 100
executions. We include both of these values because the stochastic algorithms
do not stop after an error has been found, but only after 200 000 states have
been expanded, which means that more than one path to an error may be found
during the search.

Table 4. Length of the error trails (first/shortest)

Prob. DFS BFS A* GA GAMO PSO SA ACOhg RS BS

phi 4 169 16 16 48/16 28/16 52/16 47/16 71/16 50/16 22
phi 12 – – – 149/52 78/58 173/55 178/70 175/72 193/62 74
phi 20 – – – 220/116 131/114 248/126 251/140 244/163 319/135 224
phi 28 – – – 267/192 188/174 275/210 278/216 351/268 504/227 393
phi 36 – – – 283/269 248/232 282/278 290/274 495/381 616/324 753

din 4 12 12 12 12/12 12/12 12/12 12/12 12/12 12/12 12
din 8 24 – – 24/24 24/24 24/24 24/24 24/24 24/24 24
din 12 36 – – 36/36 36/36 36/36 36/36 36/36 – 36
din 16 – – – 48/48 48/48 48/48 – 48/48 – 48
din 20 – – – 60/60 60/60 – – – – 60

mar 2 14 12 12 13/12 13/12 13/12 12/12 13/12 12
mar 4 63 26 28 42/27 39/27 43/27 45/29 42/28 44/29 36
mar 6 140 – – 91/48 75/56 94/51 93/57 93/56 92/55 59
mar 8 245 – – 148/77 108/94 154/79 149/91 152/92 151/88 172
mar 10 378 – – 199/109 154/142 215/114 207/127 214/130 223/125 260

giop 232 – – 251/238 252/247 263/236 264/243 256/242 284/239 355
garp – – – 184/115 123/121 184/128 204/147 305/278 245/111 –

In all the problems, BFS shows the shortest possible error trail. However,
as we have seen in the previous section, it starts to fail to find the error very
quickly, so it cannot be used as a base comparison value for all the problem
instances. DFS, on the other hand, finds the error in larger instances but the
error trails provided by this algorithm are the largest of all the algorithms,
with one exception: the giop problem. In this problem, the shortest error trail
consists on always choosing the left-most transition available in each state, which
is exactly the behavior DFS always present. The A* behaves mostly like BFS,
again with one strange exception: in the mar4 problem, the error trail is not the
smallest one possible. This means that the heuristic we used is not very good
for this problem, as it slightly misleads A*. This is also the reason for the low
hit rate of A*. BS is very effective at finding the error but the length of the tail
is usually far from the optimum, except for some small instances.

Among the stochastic algorithms, the genetic algorithms seem to be the ones
that provide the shortest error trails. There is a difference in behavior between
the GA using the memory operator (GAMO) and not using it. While the GA

Comparing Metaheuristic Algorithms for Error Detection in Java Programs 95

usually finds the shortest error trail, the length of the error trail for the first error
found is usually smaller using the memory operator, and is not too far from the
shortest error trail. This means that if we change the stopping criteria of the
algorithms in order to stop as soon as an error is found, then using the memory
operator seems to be a better choice. All the guided stochastic algorithms show
good results both on the first error trail and the shortest error trail. RS, which
is not guided, also shows good results in these problems when we consider the
shortest error trails only. However, the length of the first error trail found by RS
is usually much larger than the ones found by the other algorithms.

6 Conclusion and Future Work

In this work we presented a comparison of five metaheuristic algorithms and
five other classical search algorithms to solve the problem of finding property
violations in concurrent Java programs using a model checking approach. We
used a benchmark of 17 Java programs composed of three scalable programs
with different sizes and two non-scalable programs. We analyzed the results of
the algorithms in terms of efficacy: the ability of a search algorithm to find the
property violation and the length of the error trail. The experiments suggests
that metaheuristic algorithms are more effective to find safety property violations
than classical deterministic and complete search algorithms that are commonly
used in the explicit-state model checking domain. They also suggest that non-
complete guided search algorithms, such as Beam Search, have some advantages
against both guided and non-guided complete search algorithms such as A* and
DFS. Finally, these experiments also suggest that distributing the search effort
in different depths of the search space tends to raise the efficacy of the search
algorithm.

As future work we can explore the possibility of designing hybrid algorithms
that can more efficiently explore the search space by combining the best ideas
of the state-of-the-art algorithms. We can also design stochastic complete algo-
rithms that are able to find short error trails in case error exist in the software
and can also verify the program in case no error exists.

Acknowledgements. This research has been partially funded by the Spanish
Ministry of Science and Innovation and FEDER under contract TIN2008-06491-
C04-01 (the M∗ project) and the Andalusian Government under contract P07-
TIC-03044 (DIRICOM project).

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

2. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. International Journal on Software Tools for Technology
Transfer (STTT) 2(3), 279–287 (1999)

96 F. Chicano, M. Ferreira, and E. Alba

3. Lafuente, A.L.: Symmetry reduction and heuristic search for error detection in
model checking. In: Workshop on Model Checking and Artificial Intelligence (2003)

4. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2004)
5. Burch, J., Clarke, E., Long, D., McMillan, K., Dill, D.: Symbolic model checking

for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 13(4), 401–424 (1994)

6. Bradbury, J.S., Cordy, J.R., Dingel, J.: Comparative assessment of testing and
model checking using program mutation. In: Proceedings of the 3rd Workshop on
Mutation Analysis (MUTATION 2007), Windsor, UK, pp. 210–222 (2007)

7. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

8. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic al-
gorithms. International Journal on Software Tools for Technology Transfer 6(2),
117–127 (2004)

9. Alba, E., Chicano, F.: Finding safety errors with ACO. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1066–1073. ACM Press,
London (2007)

10. Staunton, J., Clark, J.A.: Searching for safety violations using estimation of distri-
bution algorithms. In: International Workshop on Search-Based Software Testing,
pp. 212–221. IEEE Computer Society, Los Alamitos (2010)

11. Groce, A., Visser, W.: Heuristics for model checking java programs. International
Journal on Software Tools for Technology Transfer (STTT) 6(4), 260–276 (2004)

12. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York (1992)

13. Alba, E., Chicano, F., Ferreira, M., Gomez-Pulido, J.: Finding deadlocks in large
concurrent java programs using genetic algorithms. In: Proceedings of Genetic and
Evolutionary Computation Conference, pp. 1735–1742. ACM, New York (2008)

14. Ferreira, M., Chicano, F., Alba, E., Gómez-Pulido, J.A.: Detecting protocol errors
using particle swarm optimization with java pathfinder. In: Smari, W.W. (ed.)
ISHPC 2000, pp. 319–325 (2008)

15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

	Comparing Metaheuristic Algorithms for Error Detection in Java Programs
	Introduction
	Heuristic Model Checking
	Verification in Java PathFinder

	Problem Formalization
	Algorithms
	Simulated Annealing
	Parameter Settings

	Experimental Section
	Hit Rate
	Length of the Error Trails

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

