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Message from the General Chair

It is my great pleasure to welcome you to the Proceedings of the Third Inter-
national Symposium on Search-Based Software Engineering, SSBSE 2011, held
in the beautiful surroundings of Szeged, Hungary. This year, for the first time,
SSBSE 2011 benefited from co-location with a major event, ESEC/FSE, through
which we hope to widen our community and welcome many new faces.

Search-Based Software Engineering (SBSE) continues to be an exciting and
challenging field to work in, and one that is continually growing. SSBSE grew
again in terms of the number of submissions obtained this year – our sister
event, the Search-Based Software Engineering track at GECCO, also experienced
similar growth. SBSE began with the application of metaheuristic search to test
data generation in the 1970s. Since then, metaheuristic search has contributed
to state of the art results in a plethora of areas that span the entire software
engineering lifecycle, including requirements prioritization, automated design,
refactoring, bug fixing, reverse engineering and project management.

SSBSE 2011 was the result of the enthusiastic hard work and gracious kind
support of several individuals. I have several people to thank. To begin with, I am
grateful to Tibor Gyimóthy, General Chair of ESEC/FSE and the ESEC/FSE
Steering Committee for allowing us to co-locate with their prestigious event in
Szeged, and the support they gave to SSBSE. Thanks in particular are due to
László Vidács and Patricia Frittman, who took care of the local arrangements
and the interface between FSE and SSBSE.

SSBSE 2011 featured a strong program. It was a great pleasure to work with
Mel Ó Cinnéide and Myra Cohen, our Program Chairs. I would like to thank
them, too, for their hard work in formulating the Program Committee, managing
the review process and putting the program together. Of course, the program
could not be formed without the work of the authors themselves, whom we thank
for their high-quality work. I would also like to thank the Program Committee for
their efforts in reviewing and commenting on the papers, thereby providing the
authors with valuable feedback. I am also grateful to Westley Weimer, who not
only managed the Graduate Student Track, but worked hard to secure funding
from the NSF and CREST to ensure that doctoral students could travel and
register for both FSE and SSBSE.

It is my great pleasure that SSBSE hosted two exceptional keynote speakers
in Andreas Zeller and Darrell Whitley, both well known for their contributions
in software engineering and metaheuristic search, respectively. I would also like
to thank Mark Harman and Lionel Briand for providing two tutorials for us on
SBSE.

Thanks are also due to the Publicity Chairs, Tanja Vos, Mathew Hall and
Gregory Kapfhammer. Tanja was instrumental in securing industrial sponsor-
ship for the symposium, while Mathew managed our various social networks on
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Twitter, Facebook and LinkedIn. Gregory helped us further spread the word by
means of e-mail campaigns. Further thanks are due to Jon Bradley and his team
at Ninefootone Creative for designing our excellent website and a new look that
was featured in our promotional material.

I am grateful to Alfred Hofmann at Springer LNCS for managing the pro-
duction of the proceedings for us, and making the process smooth, efficient and
unbureaucratic. Thanks to Gillian Callaghan at the University of Sheffield, who
assisted me with managing the finances of this event and setting up the online
registration process. Throughout the organization of the symposium Mel, Myra,
Westley and I received valuable guidance from the SSBSE Steering Committee,
chaired by Mark Harman, to whom we are also grateful.

Thanks are also due to our sponsors. Thanks to Berner & Mattner, IBM,
the FITTEST project, Softeam and Sulake for funding the best paper prize.
While attracting top-quality submissions was key, it was also one of our aims
to provide valuable and useful feedback to the authors of those papers, whether
their work was accepted or not. I would like to thank SWELL, the Swedish
Research School in Verification and Validation, for funding our prize for best
reviewer and thus helping us strive toward this goal. Finally, I am also grateful
to Ericsson and Sigrid Eldh, our Industrial Chair, for further valuable support,
and the University of Sheffield for supporting the symposium both financially
and in kind.

If you were not able to attend in person, I hope that you find these proceedings
stimulating and thought-provoking. Either way, do consider submitting a paper
next year to SSBSE 2012, when the symposium will be co-located with ICSM in
Riva del Garda, Trento, Italy.

June 2011 Phil McMinn



Message from the Program Chairs

On behalf of the SSBSE 2011 Program Committee, it is our pleasure to present
the proceedings of the Third International Symposium on Search-Based Software
Engineering. It was a privilege to serve on this Organizing Committee and we
believe that the quality of the program reflects the excellent efforts of the authors,
reviewers, keynote speakers and tutorial presenters.

First and foremost we are grateful for the widespread participation and sup-
port from the SBSE community. We received 37 papers in the research track
and 6 papers in the graduate student track. The papers emanated from institu-
tions in 21 different countries, namely, Australia, Austria, Brazil, Canada, China,
Cyprus, France, Germany, Greece, Hungary, Ireland, Israel, Italy, Norway, Pak-
istan, Portugal, Russia, Spain, Sweden, Turkey, and the UK, so we can claim to
have a truly international authorship.

All submitted papers were reviewed by at least three experts in the field.
The review period was followed by a moderated online discussion. In the end, 15
manuscripts were accepted for publication as full papers, and three were accepted
in the graduate track. In addition we accepted eight papers for presentation as
posters during the symposium.

We particularly wish to thank Westley Weimer for running the graduate
student track and taking a very active role in reviewing every paper submitted.
Graduate students are a vital part of any research field and we are happy that
every paper submitted to this track was good enough to qualify as either a paper
or a poster.

The topics covered by the accepted papers at SSBSE 2011 included software
testing, software release planning, process reduction, project staff assignments,
concept identification, scalability, landscape analysis, parameter tuning, con-
currency and model-driven engineering. This broad range illustrates how SBSE
continues its expansion into new areas of software engineering. For the first time,
there was a full session devoted to Fundamentals of SBSE, which is further evi-
dence that SBSE has become an established discipline.

The SSBSE tradition of inviting keynote speakers from both the search com-
munity and from the software engineering community continued and we were de-
lighted to announce our two esteemed keynote speakers: Darrell Whitley (search)
and Andreas Zeller (software engineering). The symposium started with a short
tutorial introduction to SBSE delivered by Mark Harman, one of the original
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founders and tireless proselytizers of the field. Lionel Briand presented an valu-
able tutorial on conducting and analyzing empirical studies in SBSE. We were
also very pleased to have a panel of experts from the software engineering com-
munity join us for an interactive session where we explored how SBSE can be
further applied in software engineering.

We trust that you will enjoy the proceedings of SSBSE 2011 and find them
fruitful. We hope to see you at SSBSE 2012 in Trento.

Myra Cohen
Mel Ó Cinnéide
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Yann-Gaël Guéhéneuc École Polytechnique de Montréal, Canada
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Search-Based Program Analysis

Andreas Zeller

Saarland University, Saarbrücken, Germany
zeller@cs.uni-saarland.de

http://www.st.cs.uni-saarland.de/zeller/

Abstract. Traditionally, program analysis has been divided into two
camps: Static techniques analyze code and safely determine what can-
not happen; while dynamic techniques analyze executions to determine
what actually has happened. While static analysis suffers from overap-
proximation, erring on whatever could happen, dynamic analysis suffers
from underapproximation, ignoring what else could happen. In this talk,
I suggest to systematically generate executions to enhance dynamic anal-
ysis, exploring and searching the space of software behavior. First results
in fault localization and specification mining demonstrate the benefits of
search-based analysis.

Keywords: program analysis, test case generation, specifications.

1 The Two Faces of Program Analysis

Program analysis is a problem as old as programming. How can we assert that
a program has a specific property? This is the central issue in areas like soft-
ware verification and validation (be it symbolic, concrete, or casual), but also in
daily tasks like debugging, program understanding or reengineering. Tradition-
ally, program analysis has been divided into two camps:

Static analysis. infers software properties symbolically—that is, just from the
code and the code alone. Static analysis requires that all source code be
known (or at least accurately be summarized). It is also limited by the halt-
ing problem (which states there is no universal method that could predict
software behavior), and by the daunting complexity of large systems. As
any symbolic method, it must abstract away from details that may compro-
mise the desired property. Still, if all these demands are met, it is a terrific
technique: If static analysis shows the absence of a property, then this is
universally true. On the other hand, static analysis may also err on the pos-
itive side and flag the presence of properties which are not true; such false
positives are caused by conservative overapproximation.

Dynamic analysis. is different in all central aspects. It is concerned with a
finite set of concrete program runs, rather than the potentially infinite set of
symbolic analysis. It requires that the code in question be executable, but
does not require its source. Complexity is not so much an issue, as its runtime

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 1–4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.st.cs.uni-saarland.de/zeller/


2 A. Zeller

is proportional to execution time. It covers all abstraction layers, from the
GUI down to the bare circuits. But where static analysis overapproximates,
dynamic analysis underapproximates : Whatever it finds only applies to the
runs observed. If dynamic analysis detects a problem, then this is real; but
it may easily miss the one single run with the devastating error.

2 Making Program Analysis More Precise

Increasing the precision of static analysis and the recall of dynamic analysis is a
recurrent theme in program analysis:

– The precision of static analysis can be improved by adding improved sym-
bolic reasoning tools such as theorem provers or constraint solvers; such
tools also benefit from programmer annotations on types or pre- and post-
conditions. Likewise, we can make the analysis more control-sensitive, more
pointer-sensitive, and in particular more interprocedural.

– The precision of dynamic analysis can be improved by adding more execu-
tions to investigate. The higher the variance in these executions, the more to
learn from. In testing, for instance, the more execution aspects we cover, the
higher our chance of triggering a bug; this is why we have so many criteria
by which to design tests.

As increases in computational power allow more and more cycle-consuming anal-
yses, we can thus always increase the precision of static analysis. For dynamic
analysis, being concrete and therefore precise as can be, we do not have such an
option. What we can do, though, is increase the number of observed runs. This
is where search-based techniques come into play.

Traditionally, search-based techniques have been mostly applied to search-
based testing. Here, the typical aim is to generate an input that would reach a
specific point in the program, and thus help to achieve program coverage. The
distance between the covered lines and the target point becomes part of a fitness
function which guides the search towards the covering input. In the past decade,
search-based test generation has made tremendous advances; together with its
symbolic counterpart, concolic testing, it now allows for obtaining large coverage
of real systems automatically.

When we are generating runs rather than observing runs, we can increase
recall of properties (including bugs) at will. However, we also run the risk of
generating nonsensical executions—and learning from nonsense generates non-
sense. If our test generator feeds a NULL pointer into a function that does not
expect one, we can make the function crash. Unless that function is visible to
third parties, though, this may not be a real problem, as we could easily de-
termine that no caller of that function actually passes NULL. Hence, generated
runs may reduce false negatives, but do so by introducing false positives.

Generating nonsensical runs can be avoided by providing a specification of
valid inputs; this is the base of model-driven testing. But where are we going to
get the specifications from? If the tester writes it, how are we going to assess its
quality—and find bugs in the model?
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Fig. 1. How Specifications and Analysis depend on each other

3 A Virtuous Cycle

The recent decade has not only made tremendous progress in test case gener-
ation, but also in mining specifications—that is, extracting models of software
behavior from systems that are precise enough to serve as specifications. The
precision of specification mining strongly depends on the precision of its under-
lying analysis—when mining statically, the inferred models will overapproximate
behavior; when mining dynamically, the models will underapproximate behavior.

While the models thus depend on the precision of the underlying analysis, the
precision of the analysis depends on the presence of precise models. We thus get
a circular dependency, sketched in Figure 1.

This cycle is not vicious, it is virtuous. We can improve our analysis by mining
specifications, and we can improve our specifications by more precise analysis.
The analysis would focus on aspects not yet covered by the specification, and
the resulting findings (or executions) would then enrich the existing specification.
With every iteration, we learn more and more about our system, systematically
exploring program behavior by a series of targeted analyses—or, in the case of
dynamic analysis, simple executions. This explorative way of reasoning about
programs is neither inductive nor deductive; its feedback cycle makes it experi-
mental instead.

In a way, this cycle is an instance of the scientific method1 where we search
for a theory that explains some aspect of the universe. When the theory is
sufficiently refined, it becomes a predictive model for software behavior—and
hopefully precise enough to overcome both the imprecision of static and the
imprecision of dynamic analysis.
1 The term “scientific method” may sound overblown for a basic technique that three-

year old children use to explore the world—but it is the term used by sociologists to
characterize experimental research, and an experimental approach it certainly is.
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4 More on the Topic

In this invited talk, I will be referring to a number of recent research results
that implement the above cycle, mining specifications and generating tests at
the same time. Most important is the work by Dallmeier et al. [Dal10] which
leverages test case generation to systematically enrich specifications; however,
Fraser’s work on generating oracles [Fra10] uses search-based testing to system-
atically infer and refine oracles for test cases; in his latest work [Fra11], he even
shows how to extend this towards parameterized unit tests, going from concrete
values to symbolic specifications. None of this works can yet claim to come up
with full-fledged specifications that would always be immediately be usable as
such. In two position papers [Zel10, Zel11], I have described some of the obstacles
that lie ahead of us, and show how to overcome them using a series of real-life
examples.

For being in its infancy, the combination of search-based test case generation
and program analysis (or in short “search-based analysis”) already has pro-
duced impressive results. All in all, it would be a mistake to limit search-based
approaches to testing alone—there is a whole wide field of hybrid analyses that
could benefit from automatic experiments. Let’s go and search for them!
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Exploiting Decomposability Using
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An Exploratory Discussion
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Abstract. On certain classes of problems, recombination is more effec-
tive if the parents that are being recombined share common subsolutions.
These common subsolutions can be used to decompose the recombina-
tion space into linearly independent subproblems. If a problem can be
decomposed into k subproblems, a single greedy recombination can select
the best of 2k possible offspring. The idea of exploiting decomposabil-
ity works well for the Traveling Salesman Problem, and appears to be
applicable to other problems such as Graph Coloring. For Search Based
Software Engineering, these ideas might be useful, for example, when
applying Genetic Programming to fix software bugs in large programs.
Another way in which we might achieve decomposability is by exploiting
program modularity and reoccurring program patterns.

Keywords: Traveling Salesman Problem, Generalized Partition
Crossover, Search Based Software Engineering, Graph Coloring, Auto-
matic Bug Repair.

1 Introduction

Historically, genetic algorithms have emphasized recombination as the dominant
operator for exploiting structure in the search space, while mutation was thought
to be a background operator that helped to maintain diversity. Such a view is,
of course, highly simplistic. And these days, such a view is perhaps antiquated.
John Holland’s original theory used hyperplane sampling to explain how genetic
algorithms could yield a robust search [?]. Over the last ten years, both theory
and practice has moved away from the idea that genetic algorithms work largely
by hyperplane sampling. On the practice side, it is very common to see genetic
algorithms that use very small population sizes. This runs counter to the idea
that hyperplane sampling is important, because large population are required
to sample hyperplanes in any reliable way. Furthermore, the development of

� This effort was sponsored by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number FA9550-08-1-0422. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 5–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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algorithms such as Covariance Matrix Adaptation Evolution Strategies (CMA-
ES) have resulted in a new breed of evolutionary algorithms that are far more
effective than genetic algorithm on parameter optimization problems [?] [?].

Nevertheless, there are still some areas where genetic algorithms work very
well, such as the domain of resource scheduling, and where recombination can
greatly accelerate search. Genetic algorithms have also been successfully used
to generate new best known solutions to very large Traveling Salesman Prob-
lems. But in such domains, it is even harder to put forth an argument that the
performance of the genetic algorithm is in any way related to hyperplane sam-
pling. So what is going on? One answer is that genetic algorithms are exploiting
decomposability and modularity in the evaluation function.

Assume we have a solution S and a solution Z and we want to build a re-
combination function R such that R(S, Z) generates a new candidate solution.
Further assume that S and Z are decomposable relative to each other. This can
be meant in a very strong sense, where both the solution and the evaluation
function can be decomposed into k parts so that

f(S) = f(S1) + f(S2) + ... + f(Sk)

f(Z) = f(Z1) + f(Z2) + ... + f(Zk)

and to be decomposable, the parts Si and Zi must be interchangeable. Note
that if S and Z are decomposable with respect to each other, this need not
imply that the overall problem can be decomposed into subproblems. If problems
are strongly decomposable in the sense that the problems can be broken into
interchangeable, linearly independent subproblems, then 2k − 2 new solutions
can be generated from the two parent solutions.

We will start by looking at specific results for the Traveling Salesman Problem.
We will show that this strong decomposability indeed occurs for instances of the
TSP, and that the resulting recombination is extremely powerful. The remainder
of this paper is exploratory and speculative. Can this kind of decomposability be
found and exploited in other domains? Also, we might be able to define other,
weaker kinds of decomposability.

Part of the popularity of the Traveling Salesman Problem (TSP) is that it is
easily stated. Given n cities, and a cost matrix that gives the cost of traveling
between and city A and B, the goal is to find a circuit that visits all of the
cities and which minimizes the combined cost of the circuit. One of the reasons
that the TSP is decomposable is that it displays an elementary landscape: for
certain local search neighborhoods such as 2-opt and 2-exchange, the evaluation
function is an eigenfunction of the graph Laplacian [?] [?] [?]. When we look for
other problems that might be decomposable, it is then natural to look at other
elementary landscapes for decomposability.

For current purposes, it is enough to note that a key characteristic of ele-
mentary landscapes is that the objective function is linear, but with feasibility
constraints. The objective function is linear because the cost is just a linear com-
bination of all of the costs associated with traveling from one city to the next.
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The feasibility constraints reside in the fact that every city must be visited and
visited only once. But is there some way to exploit this linearity?

In a sense, local search methods for the TSP have been exploiting this linearity
for decades; one way this is done is by using “partial updates” to the evaluation
function when moving from a solution to a neighboring solution. Let X represent
the space of possible solutions for a TSP instance, in this case the set of all
Hamiltonian circuits that visits all of the cities in a TSP. Let x ∈ X denote one
solution, and let N(x) denote the set of solutions that are reachable in a single
move from x using a local search neighborhood operator; thus, y ∈ N(x) denotes
a neighbor of solution x.

Consider the classic 2-opt neighborhood that cuts two edges in solution x,
and breaking x into two segments. Then one of the segments is reversed, and the
segments are reattached. Clearly, if we have already computed f(x) then this
allows for a partial update where

f(y) = f(x)− wi,j − wq,r + wi,q + wj,r

where wi,j and wq,r are the weights associated with the edges that are cut when
a solution is broken into two segments, and wi,q and wj,r are the edges used to
reattach the two segments.

So far, this is common knowledge about basic properties of the 2-opt neigh-
borhood operator that is typically used to the define an O(n2) local search
neighborhood for the TSP. But when we exploit this kind of partial evaluation,
what we really have done is a linear decomposition of the evaluation function.
The two segments are two linearly independent partial solutions, which are then
reassembled in a new way.

From this, however, we want to ask three questions:

1) Can recombination also exploit linearly independent partial solutions for
the Traveling Salesman Problem? The answer to this question is yes. In this
case, the decomposition happens both naturally and easily and the resulting
operator is surprisingly powerful. In fact, the resulting operator is able to “tun-
nel” between local optima and “filter” solutions: recombination can take two
locally optimal solutions, decompose them and then reassemble them to gener-
ate thousands, even millions of other local optima in O(n) time without doing
any additional search.

2) Can similar recombination operators be developed for other problem do-
mains? We will look at Graph Coloring, which also displays an elementary
landscape, as well as a neighborhood with a partial update; again we find the
problems is decomposable, but the decomposition is (perhaps) not as natural or
easy as it is for the TSP. Or perhaps the right way of doing the decomposition
has not been found.

3) Can these ideas be exported to the search based software engineering com-
munity? At this point, this question is largely unanswered, but we can try to
leverage what we know about decomposability and how it can be exploited.
We can also draw parallels between the idea of decomposability and modu-
larity and “program patterns”. The recent work of Forrest et al. [?,?,?] has
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used evolutionary search methods to automatically repair bugs in large pro-
grams. These methods work largely by making small “mutations” to search for
code changes that repair the software. But in some cases these mutations are
not random. In some ways, their “mutation operator” might be seen as another
form of modular recombination.

2 Generalized Partition Crossover for the TSP

We first present our recombination operator for the TSP. Let G′ = (V, E′) rep-
resent the graph on which the Traveling Salesman Problem is defined, where V
is the set of vertices that correspond to cities, and E′ is the set of edges. We
will assume G′ is fully connected in the sense that there exists an edge for every
possible pair of vertices; furthermore, there is an additional cost matrix that
defines the cost (i.e., weight) associated with traversing any particular edge.

Assume we have been given two possible solutions, x1 and x2, and we want
to built a recombination operator that is a function R(x1, x2) such that the
function returns a new Hamiltonian circuit constructed only using the edges
found in solution x1 and x2. Furthermore, we will require that if an edge is
found in both solution x1 and x2, then the new Hamiltonian circuit must also
include that edge. If R(x1, x2) cannot generate a new Hamiltonian circuit, it
returns a flag indicating failure.

We construct a new graph G = (V, E) where V is the (same) set of vertices
(i.e., cities) of an instance of a TSP and E ⊂ E′ is the union of the edges found
in x1 and x2. An edge in E is a common edge if it is found in both x1 and x2;
an edge is an uncommon edge if it is in E but not a common edge. Common
edges count as a single edge. Next, we partition G into two or more subgraphs;
we attempt to find all partitions that cut only 2 edges (such a cut is said to have
cost 2). One can easily prove that a cut of cost 2 must cut 2 common edges,
otherwise the cost would be greater than 2. Thus a cut of cost 2 divides G into
independent subproblems.

Generalized partition crossover (GPX) exploits all partitions of cost 2 in a
single recombination in O(N) time [?]. We recombine solutions by creating an-
other subgraph of G, Gu = (V, Eu), where V is the vertex set of the original
TSP instance and Eu is the set of uncommon edges found in E. If a partition
is possible then Gu will be composed of multiple disconnected and independent
subgraphs. The topmost graph in figure 1 shows a graph G created from two
parents. The edges from one parent are represented by solid lines and those from
the other parent by dashed lines. In the bottommost set of subgraphs in figure 1
is the same graph with the common edges deleted (i.e., graph Gu); this breaks
the graph into 4 subgraphs. Multiple partitions of this graph have cost 2, as
shown by the heavy dark lines.

We use Breadth First Search on Gu to find each connected subgraph of Gu;
this has O(N) cost, because the degree of any vertex is at most 4, and each
vertex is processed only once. Finding all the cuts of cost 2 breaks the graph G
into k pieces which we call partition components; not all connected components
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The graph before deleting the common edges.

The graph after deleting the common edges.

Fig. 1. An example of a graph G′ created from the union of two parent tours. By
deleting common edges, we break this graph into 4 independent subgraphs which are
linearly independent.

in Gu yield feasible partition components because they may not yield cuts of
cost 2. We then prove the following result [?]:

The GPX Theorem
Let graph G be constructed by unioning the vertices and edges found in two
Hamiltonian Circuits for some instance of the TSP. If graph G can be separated
into k partition components using only cuts of cost 2, then there are 2k−2 possible
distinct offspring. Every potential offspring inherits all the common edges found
in the parents, and is composed entirely of edges found in the two parents. If the
parents are locally optimal, then every partition component that is inherited is
“piecewise” locally optimal.

Because the subpath solutions manipulated by GPX are linearly independent,
GPX can be applied in a greedy fashion, selecting the best subsolution from each
partition component. Solutions that are “piecewise” locally optimal are usually
also true local optima. Therefore, the power of GPX is that it can “filter” large
numbers of local optima in a single O(N) recombination step.

GPX is not guaranteed to be feasible. In fact, it is important to realize that
GPX almost always fails when it is used to recombine random solutions. GPX
depends on the two solutions having common subsolutions. On the other hand,
GPX is feasible with extremely high frequency when the solutions being recom-
bined are local optima. Locally optima solution have more edges in common.

To ascertain the number of partition components available to GPX, we re-
combined 50 random local optima generated using 2-opt and 3-opt [?] [?] (see
[?] for more details). The results are presented in Table 1. The problems att532,
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Table 1. Average number of partition components used by GPX in 50 recombinations
of random local optima found by 2-opt, 3-opt and LK-search

Instance att532 nrw1379 u1817

2-opt 3.3 ± 0.2 3.2 ± 0.2 5.0 ± 0.3
3-opt 10.5 ± 0.5 11.3 ± 0.5 26.2 ± 0.7

nrw1379 and u1817 are from the TSPLIB. The number of cities in each instance
is indicated by the numerical suffix. GPX was feasible in 100% of the cases when
combining these local optima. The majority of offspring produced by GPX are
also locally optima.

Clearly, 3-opt induces more partition components than 2-opt because it in-
duces more subtours made up of common edges that can be used to partition the
graph. When there are more than 10 partitions, recombination is filtering more
than 1000 solutions, most of which are local optima. When there are more than
20 partitions, recombination is filtering more than 1 million solutions, most of
which are local optima. GPX also displays excellent scaling: the larger the prob-
lem, the larger the number of partitions that are found.

2.1 GPX Experimental Results

We embedded GPX in a very simple genetic algorithm (GA) using a population
of only 10. Every solution is improved (when possible) using 1 pass of LK-Search
as implemented in the Concord package [?]. Chained Lin-Kernighan (Chained-
LK) is one of the better performing local search heuristics for the TSP [?]. We
then compared the results to Chained-LK, which also uses exactly the same
LK-Search with identical parameter settings. Chained-LK applies LK-search to
a single tour, uses a double bridge move [?] to perturb the solution and then
reapplies LK-search. Since the population size is 10, the GA+GPX uses 10 ap-
plications of LK-search each generation; therefore, Chained LK is allowed to
do 10 double-bridge moves and 10 LK-search improvements for every genera-
tion executed by the GA+GPX. Both algorithms call LK-search exactly the
same number of times. Table 2 lists the average percentage of the cost of the
minimum tour found compared to the cost of the global optimum for each prob-
lem instance. The GA+GPX was allowed to run for 100 generations in these
experiments.

GA+GPX yields better results on all of the problems except nrw1379. This
is remarkable because the Hybrid GA must optimize 10 solutions and the best
solution must be optimized 10 times faster than Chained-LK to obtain a better
result with the same effort. If each algorithm is run longer, the performance of
GA+GPX is increasingly better than Chained LK. The last column of Table 2
(SOLVED) shows how many times out of 50 attempts that each method finds
the global optimum after 1010 calls to LK-search.

The advantage of this approach is that GPX can be used to recombine solu-
tions generated by any other methods. The disadvantage of GPX is that it never
generates new edges, it only exploits the edges found in the current population.
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Table 2. Columns marked 10 to 50 show the average percentage of the cost of the
minimum tour found above the globally optimal cost averaged over 500 experiments
using Chained LK and GA+GPX. SOLVED shows how often each algorithm found an
optimal solution.

Generation −→ 10 20 50 100

Instance Algorithm 110 LK calls 210 LK calls 510 LK calls SOLVED

att532 GA+GPX 0.18 ± 0 0.12 ± 0 0.07 ± 0 26/50
Chained-LK 0.21 ± 0.01 0.13 ± 0 0.08 ± 0 16/50

nrw1379 GA+GPX 0.48 ± 0 0.34 ± 0 0.23 ± 0 1/50
Chained-LK 0.46 ± 0.01 0.32 ± 0 0.19 ± 0 1/50

rand1500 GA+GPX 0.52 ± 0.01 0.36 ± 0 0.22 ± 0 12/50
Chained-LK 0.54 ± 0.01 0.39 ± 0.01 0.25 ± 0 2/50

u1817 GA+GPX 1.26 ± 0.01 0.95 ± 0.01 0.63 ± 0.01 1/50
Chained-LK 1.61 ± 0.02 1.19 ± 0.01 0.83 ± 0.01 0/50

So another method is needed to generate high quality solutions that contain
edges not found in the current population.

One thing that our experiments have clearly demonstrated is this: random
mutations are hopelessly inefficient. We have not been able to accelerate search
using random mutations. GPX requires high quality solutions with shared com-
mon subsolutions that partition the problem in order to be effective.

3 Graph Coloring and Tunneling

How can we apply the concept of decomposition to graph coloring? Technically
we are referring to Graph Vertex Coloring.

In the case of the TSP, the partitions we used were a form of “edge separator”
of the graph G created by unioning two solutions. To translate GPX to graph
coloring, we are exploring the use of a “vertex separator” of the graph G. We
want to retain the exponential leverage from this decomposition: we would like to
decompose multiple solutions into k independent subsolutions so we can generate
the best of 2k − 2 possible solutions.

Assume we can divide the vertices in a graph denoted by G into three mutually
exclusive subsets, A, B, and C such that the vertices in A only have edges that
connect to vertices in the sets A and C, and the vertices in B only connect to
vertices in the sets B and C. If we use C to separate graph G, then the coloring
of subgraph A and subgraph B will be independent of each other. Typically, we
would like for the size of set C to be minimal. Finding a minimal separator of
an arbitrary graph is NP-hard.

Lipton and Tarjan [?] have a constructive method for finding separators in pla-
nar graphs. Spectral methods have also been used that extract the second eigen-
vector from the Laplacian form of the adjacency matrix of the graph. Leighton
and Rao used flow-based methods for finding separators [?]. However, we do not
require that the separator be minimal or balanced. So clustering methods can
also be used to find graph separators. Some types of graphs have good recursive
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separators (planar graphs, circuit layouts, social networks, and frequency as-
signment problems). Some types of graphs (e.g., hypercubes) do not have good
separators.

Graph separators will clearly give a linear decomposition we are seeking. This
decomposition is illustrated in Figure 2. Assume a graph can be broken into
subgraphs A, B, C, where C is a separator. If we are given two solutions, and
C has a common subsolution, then the solutions for subgraph A and B can be
exchanged. The bottom graph in Figure 2 shows the graph broken into subgraph
A1, A2, B1 and B2 with the separators being C, D1 and D2. Given two solutions,
if subgraphs C, D1 and D2 have a common solution, then subgraphs A1, A2, B1
and B2 can be exchanged, generating up to 24 − 2 = 14 new solutions from the
two parents. We can also again be greedy, and only pick the best solution for
each subgraph.

Graph Coloring poses several challenges however. For any coloring, we can
produce another coloring that is functionally the same by permuting the colors.
This means that there is a color matching problem. This is particularly prob-
lematic when solutions are only similar, with some common subsolutions, but
also subsolutions that are different.

Some preliminary results suggests it might be hard to find common subsolu-
tions that are also graph separators. One solution might be to force a common
subsolution over a graph separator before recombination. But it is still too soon
to say how best to exploit decomposability in Graph Coloring.

4 Questions for Search Based Software Engineering

One of the nice things about problems such as the Traveling Salesman Problem
and Graph Coloring is that they have simple but powerful constraints. These
are also highly regular problems.

At first glance, there might seem to be little that is simple or regular about
problems in search based software engineering. It might also seem futile to hope
that a problem might be decomposed in such a way that the evaluation function
is a linear combination of subfunctions. But there could be weaker forms of
decomposition that are still useful.

On the Traveling Salesman Problems, we have found that random mutations
are useless in combination with the GPX operator. This is because GPX can
assemble high quality solutions from high quality components. But random mu-
tations cause exactly what one would expect: regression toward the mean, and
lower quality solutions. A interesting line of research would be to explore con-
structive methods that build high quality solutions, but also introduce new di-
versity that can be exploited by recombination operators such as GPX. This
question can also transfer to the field of Search Based Software Engineering.

An interesting example of this occurs in the work of Weimer and Forrest
[?,?,?] and colleagues on automatic program repair using a form of genetic pro-
gramming. The evaluation function takes the form of test cases. Negative test
cases that cause the original program to fail are needed. And positive test cases
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The graph showing a separator C.
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C

The graph showing another separator that breaks the problem into multiple linearly
independent subproblems.

Fig. 2. By exploiting graph separation, we can break this graph into 4 indepen-
dent subgraphs. From 2 solutions, we can potentially generate up to 16-2, or 14 new
solutions.

that can be used to check that other functionality is preserved after the repair
are also needed.

What is interesting is how “mutations” are made in the program that is to
be repaired. Changes are only made at the statement level, and operators act
on Abstract Syntax Trees (AST). The authors then make two key innovations:
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First, we restrict the algorithm so that all variations introduced through
mutation and crossover reuse structures in other parts of the program.
Essentially, we hypothesis that even if a program is missing important
functionality (e.g., a null check) in one location, it likely exhibits the
correct behavior in another location, which can be copied and adapted
to address the error. Second, we constrain the genetic operations of mu-
tation and crossover to operate only on the region of the program that is
relevant to the error, specifically the AST nodes on the execution path
that produces the faulty behavior. [?]

So the mutations that are being used are not random. And the locations of the mu-
tations are not random. Let statement s represent a statement in the section of
program that is to be modified; let s′ be a statement from another section of the
code. A statement can be deleted (s ← {}); a statement can be inserted after an-
other statement (s← {s; s′}); or statements can be swapped (s← s′ and s′ ← s).

An extremely interesting question is how s and s′ are selected. The most widely
cited publications on this work ([?,?,?]) are relatively short summary papers that
do not provide a great deal of detail on the selection of s and s′. Obviously, s and
s′ must be different. Nevertheless, it seems reasonable that they must also be sim-
ilar in structure and function if we accept the hypothesis that a program missing
functionality in one location exhibits the correct behavior in another location. So
a selection progress that allow some randomness, but which is biased toward the
selection of statements with similar structure would seem to be useful.

The point is that mutations should not be completely random. One might
also argue that the mutations that perform “swaps” are not really mutations at
all, but a form of localized recombination that exploits reoccurring patterns in
programs. How the operator it is labeled is unimportant, but the idea of reusing
patterns in programs is important. Finally, the use of the abstract syntax tree
(AST) and the ability to swap statements represents a kind of weak decompos-
ability. This idea might be used further to better exploit decomposability.

5 Conclusions

Generalize Partition Crossover (GPX) is the first operator for the Traveling
Salesman Problem that can take two solutions, decompose the two solutions,
and reassemble the parts (and use only those partial solutions) to create a new
“offspring.” It also has the ability to accelerate other heuristic search methods,
because good solutions can be collected and mined for their components to
more quickly find other high quality solutions. This strategy can be extended to
other elementary landscapes, such a graph coloring. Whether the strategy can
be executed in other domains in a “computationally competitive” fashion is yet
to be determined.

What lessons from there results might be applied to search based software
engineering? Certainly the use of decomposition strategies and the use of con-
structive methods to generate diversity instead of random mutation is one idea
that might be borrowed. It might be true that the problems faced by the search
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based software engineering community might not be regular or decomposable.
At the same time, an enormous amount of engineering is built on the use of
linear approximations to solve problems that are not strictly linear. So even if
we have approximate decomposability, this might be enough.
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Jerffeson Souza. This means that there will be no need for me to survey
the history of the subject in this talk. Rather, I will provide a very brief
introduction to the field of SBSE, summarising some of its advantages
and motivations, explaining why software is the ideal engineering ma-
terial for optimisation algorithms and how SBSE can serve to (re)unify
apparently unconnected areas of Software Engineering.
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Abstract. Search-Based Software Engineering (SBSE) has shown itself
to be a promising and practical approach to address many long-standing
software engineering problems (e.g., test case generation, automatic bug
fixing, release planning). They must, however, be carefully evaluated
through empirical studies, for example in terms of cost-effectiveness and
scalability. Indeed, in most cases, there exist alternatives to solutions
based on search, and a careful comparison is typically needed in order
to better understand under which conditions each technique can be ex-
pected to perform best.

However, because search algorithms are randomized (e.g., metaheuris-
tic search) and many contextual factors can affect their outcome, de-
signing, running, and analyzing such empirical studies is fraught with
issues and potential threats to validity. This tutorial aims at providing
a number of introductory and fundamental principles to guide the de-
sign, execution, and analysis of empirical studies in SBSE. Though such
principles will in many cases apply to contexts other than SBSE, the
tutorial will target issues that are specific to that realm of research and
use representative examples from its literature.
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Abstract. Despite preceding related publications, works dealing with the 
resolution of software engineering problems by search techniques has especially 
risen since 2001. By its first decade, the Search Based Software Engineering 
(SBSE) approach has been successfully employed in several software 
engineering contexts, using various optimization techniques. Aside the 
relevance of such applications, knowledge regarding the publication patterns on 
the field plays an important role to its understanding and identity. Such 
information may also shed light into SBSE trends and future. This paper 
presents the first bibliometric analysis to SBSE publications. The study covered 
740 publications of the SBSE community from 2001 through 2010. The 
performed bibliometric analysis concerned mainly in four categories: 
Publication, Sources, Authorship, and Collaboration. Additionally, estimates for 
the next years of several publication metrics are given. The study also analyzed 
the applicability of bibliometric laws in SBSE, such as Bradfords and Lotka.  

Keywords: sbse research analysis, bibliometric, authorship pattern. 

1   Introduction 

Optimization approaches have been applied to solve software engineering problems 
since the 1970s [1]. The early works were mostly concerned of solving software 
testing problems, and, in particular, test data generation. Until the 1990s, some 
sporadic works also used search techniques in software estimations and software 
management.  

In 2001, the SEMINAL (Software Engineering using Metaheuristic INnovative 
ALgorithms) workshop was organized to discuss the wider use of optimization 
methods in the software engineering context [2]. Also in 2001, a special issue of the 
Information and Software Technology journal was devoted to the application of 
search methods in software engineering. A paper [3] stated the validity of the 
approach in the software engineering context and the term “Search Based Software 
Engineering” (SBSE) was coined to identify such approach. Since then, the SBSE 
approach has received increasing attention. The frequency and diversity of SBSE 
applications has increased significantly, and it is now considered a consolidated 
research field [4]. 
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From 2001 to 2010, the number of works relating to the field has increased 
considerably. As an attempt to cover the state-of-the-art status of the field, survey 
papers on SBSE have been presented [4][5]. Beyond the information summarized in 
such works, mainly concerned on the applications and problems tackled, publication 
patterns of the field should also be analyzed. This sort of information may be used as 
a way to improve the understanding of the field, recognize its research community, 
and identify its trends, among others. 

Given the importance of such aspects for the development of the SBSE field, this 
work presents the first bibliometric analysis of the area.  The main contributions of 
this paper are to: 

1. Provide facts about the growth of the field, regarding both publications and 
authors. For completeness’ sake, the analysis is performed in a year-on-year 
basis, and includes the discussion of several related metrics.  

2. Indicate rankings of the SBSE literature. This aspect includes the most cited 
papers, the most prolific authors, and the journal with most SBSE papers. 

3. Show the distribution of the SBSE publications among the available sources. 
Additionally, an analysis of the number of publications in conference 
proceedings against the number of journal articles is performed.  

4. Present and discuss the level of collaboration among researchers in the SBSE 
literature. The collaboration is analysed regarding the amount the authors in 
the papers, and also as in relation to the cooperation among different 
universities and countries. The level of participation of researches institute and 
companies is also analysed. 

5. Verify the application of two bibliometric laws in SBSE: Bradford’s and 
Lotka’s laws. 

6. Compare the behaviour of the field in its first official decade against the 
previous period (since 1970 until 2000), and supply estimates for the next 
years regarding some bibliometric metrics, based on the previous behavior. 

The paper is organized as follows. Section 2 describes the methodology used in this 
study, including the definition of the categories analysed, as well as the data used. 
Section 3 shows the bibliometric analysis for the four categories analysed 
(Publications, Sources, Authorship, and Collaboration) in the 2001-2010 period. 
Section 4 presents and discusses the estimates for the next years of the area. Section 5 
briefly compares the metrics for the decade 2001-2010 with publication patterns of 
the period before 2001. Finally, Section 6 discusses conclusions and states future 
works. 

2   Methodology 

The bibliometric analysis presented in this study is divided on four main segments. 
Each segment represents a group of statistics related to a bibliometric aspect. The 
segments are described on Section 2.1.  

In Section 2.2, the data used for the study is explained, together with its source. 

2.1   Segments 

Publications. This category covers information about the SBSE published works.  
The number of publications of a research field is an important indicative of its 
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development. The evolution of this amount through the years is also a significant 
figure. The most cited works are also presented and discussed.  

Sources. One aspect related to the publications is the type of venue where the works 
are published. In this context, the distribution of the SBSE publications among 
sources such as conference proceedings, journals, books, etc., is analyzed. In addition, 
this category also examines the core journals of the field, i.e., the venues that 
published the most amounts of SBSE articles. This data is used to verify the Lotka’s 
bibliometric law [6] of scientific productivity. 

Authorship. Aside the works of a field, the researchers authoring these works should 
also be studied. In order to do this, the year by year amount of active, new and 
cumulative authors on SBSE is presented. The distribution of the number of works 
published by authors is used to evaluate the validity of the Bradford’s bibliometric 
law [7] in the SBSE field. A ranking of the most prolific authors is also discussed. 

Collaboration. The level of collaboration among SBSE authors is covered in this 
category. The analysis comprises two aspects: the number of authors per paper, and 
collaboration among groups. The cooperation among groups includes internal 
collaboration, when two or more groups in the same country collaborate in the paper, 
and external collaboration, when there are authors from more than one country. 

2.2   Data Source 

The source of the publications is one important aspect for a bibliometric analysis. One 
alternative is to use academic databases, but them may not include all the works from 
a field. For the SBSE field, this problem can be avoided by the use of the SBSE 
Repository from SEBASE [8], which is a tool that provides a comprehensive list of 
SBSE publications. Indeed, by covering works from different sources, it includes 
papers that may not appear in a particular database. The list is actively updated, 
including updates suggested by the SBSE community. Such repository is appropriate 
as source of information for this study, since it portrays the wider status of the field.  

The inclusion of a work may take time. Then, more recent works may not appearr 
in the database. The publication data online in late 2010 covered 667 publications in 
2001-2010. Those data were used for all the segments, but “Publications”. For such 
segment, we were able to get an ongoing updated list in June 2011 with 740 works. 

The repository is formed by a list of publications, and tools for search and 
ordering. For our analysis, scripts were used in order to extract the required 
information. Some information necessary for the study were not available in the 
repository. The citations data were collected for each work in Scopus and Google 
Scholar. Authors’ affiliations were obtained by the related information in each work.  

3   SBSE Bibliometric Analysis 

3.1   Publications 

The number of publications in a field is a central information of its development.  
Table 1 presents, on a year-on-year basis, the evolution of the number of SBSE 
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publications. The cumulative amount by each year is also presented.  The contribution 
of a year on the total amount and the growth of the quantity against the previous year 
are also indicated. 

Table 1. Number of works in each year between 2001 and 2010, including cumulative amount 

Year Quantity % Growth Cumulative % Growth 
2001 24 3.24% - 24 3.24% - 
2002 30 4.05% 25.00% 54 7.30% 125.00% 
2003 37 5.00% 23.33% 91 12.30% 68.52% 
2004 45 6.08% 21.62% 136 18.38% 49.45% 
2005 54 7.30% 20.00% 190 25.68% 39.71% 
2006 61 8.24% 12.96% 251 33.92% 32.11% 
2007 83 11.22% 36.07% 334 45.14% 33.07% 
2008 127 17.16% 53.01% 461 62.30% 38.02% 
2009 126 17.03% -0.79% 587 79.32% 27.33% 
2010 153 20.68% 21.43% 740 100.00% 26.06% 

2001-2010 740 100.00% - 740 100.00% - 
 

As shown in Table 1, the quantity of works by year was continuously increasing 
since 2001. Indeed, in the first three years after 2001, for example, the growth rate 
between sequential years was higher than 20%. Also, significant growth rates of 
36.07% and 53.01% are found in 2007 and 2008, respectively. In 2009 there was a 
negativegrowth of 0.79%. In 2010, the number of works published was 21.43% 
higher than the previous year (153 against 126). In addition, the works published in 
2010 correspond to 20.68 of all works, being the first year in number of publications. 
This shows that the field progress was still in considerable development in 2010. 

The cumulative amounts on the first years indicate that the SBSE community 
achieved the first hundred publications in 2004, i.e., three years after its formal 
creation. The next hundred publications level was reached only two years after 2004, 
in 2006. Then, the next hundred publications were achieved in 2007, i.e., only one 
year after the previous landmark. These findings are a way to indicate the acceleration 
on the number of SBSE publications in the period. 

Table 1 indicates that the cumulative number of publications in 2007 was 
equivalent to 45.14% of the total. This means that more than half (54.86%) of the 
SBSE publications were published through 2008 and 2010. Therefore, more than 50% 
of the SBSE works were published in the last 30% years of the considered period, 
which indicates the concentration of the most advances in recent years. 

A final analysis in Table 1 regards the cumulative growth acquired in 2010, which 
was of 26.06%. This figure is an additional indication that the SBSE field is still 
expanding at significant rates, even after 10 years. 

Table 2 below presents a ranking of the most cited publications of the decade. The 
order in the list is set according to the citation count in Scopus. Additionally, the 
citations given by Google Scholar are also shown, in order to present a more complete 
citation scenario, given that Google Scholar cover publications such as books, 
chapters, thesis, technical reports, and other types of publication that are not present 
in academic databases. Since this bibliometric analysis is concerned with the time 
period until 2010, the data shown in Table 2 the citation statics until December 31th, 
2010. 
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Table 2. The 15 most cited SBSE works, ordered by Scopus 

Ref. Authors Work Scopus GS 

[9] McMinn, Phil 
Search-based software test data 
generation: a survey 

209 382 

[10] 
Wegner, J., Baresel, A. and 

Sthamer, H. 
Evolutionary test environment for 
automatic structural testing 

162 282 

[11] 
Michael, C.,  McGraw, G. 

and Schatz, M. 
Generating software test data by 
evolution 

158 298 

[12] Clarke, J. et al. 
Reformulating software engineering as 
a search problem 

90 149 

[3] Harman, M. and Jones, B. Search-based software engineering 82 163 
[13] Harman, M. et al. Testability transformation 77 122 

[14] 
Li, Z., Harman, M. 

and Hierons, R. 
Search algorithms for regression test 
case prioritization 

75 126 

[4] Harman, M. 
The current state and future of search 
based software engineering 

72 171 

[15] 
Mitchell, B. and 
Mancondris, S. 

On the automatic modularization of 
software systems using the bunch tool 

71 105 

[16] Dolado, J. 
On the problem of the software cost 
function 

71 128 

[17] Cohen, M. et al. 
Constructing test suites for interaction 
testing 

69 120 

[18] Tonella, P. Evolutionary testing of classes 67 138 

[19] Greer, D. and Ruhe, G. 
Software release planning: An 
evolutionary and iterative approach 

65 119 

[20] 
Bagnall, A., Rayward-

Smith, V. and Whittley, I. 
The next release problem 63 91 

[21] Canfora, G. et al. 
QoS-aware replanning of composite 
Web services 

54 137 

 
From the 15 works presented in Table 2, 7 are related to software testing, including 

the 3 most cited works. Among these 7 publications, the test data generation issue is 
covered in 4, including the most cited work [9]. This observation may be related to 
the higher amount of software testing works in the SBSE publications. Nonetheless, 
the fact represents the high force and impact of the software testing area in SBSE in 
general, and of test data generation inside software testing. 

General works also occurs vastly among the most cited publications [10][4]. 
Additionally, the most cited work is a survey [9]. Another main publication area on 
Table 2 is requirement engineering [19][20]. 

3.2   Source 

As cited in Section 22, the data of 2010 for the following segments is not complete. 
Nevetheless, the analysis represents the state of SBSE up to 2010 with some works of 
the year. In order to further improve the publication analysis presented in Section 3.1, 
this section shows the distribution of the works among different sources. Table 3 
presents the amount of 2001-2010 works in five main publications types, and it also 
shows the percentage contribution of each type in relation to all publications. In Table 
4, the two main sources are examined yearly. 
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Table 3. Number of works from 2001 through 2010 by publication type 

Type Proceeding Journal Book/Chapter Tech Report Thesis Other 
Amount 469 140 6 23 26 3 

% 70.32% 20.99% 0.89% 3.45% 3.90% 0.45% 

Table 4. Works in proceedings and journal, and its relation (2001-2010) 

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 01-10 

Proceeding 8 24 33 30 38 33 63 80 89 71 469 
Journal 16 3 2 7 11 18 16 32 22 13 140 

Proceeding/
Journal 0.50 3.00 16.50 4.29 3.46 1.83 3.94 3.64 4.05 5.46 3.35 

 

From Table 3, the source with more works published in the decade is conference 
proceedings (70.32%), followed by journals (20.99%). This preponderance of 
proceeding publications compared to journal articles is also observed in the Computer 
Science field as a whole [22]. The SBSE publication in books, including chapters, 
achieved only 6 works, which represents less than 1% (0.89%). This overall behavior 
is also in general consonant with the one presented in the overall Computer Science 
field [22]. The number of of works for technical reports and thesis, in the time span 
analyzed, were similar (3.45% and 3.90%, respectively). 

The relation between the number of works published in conference proceedings 
and journals is a measure to be studied. In the decade under analysis, 2001 was the 
only year with this figure below 1.00, i.e., with more journal articles than proceedings 
papers. This result reflects the publication of the special issue of Information and 
Software Technology, in December 2001. In the subsequent years, the relation 
reached levels that, in general, were more than 2.00, with the exception of 2006 
(1.83). In 2003, this measure got abruptly to more than 16.00. This observation was 
caused by the significantly increase of publication in conference in 2003 against 2002, 
which was not followed by articles in journals. From 2008 onwards, the values are 
increasing: 3.64, 4.05, 5.46; from 2008 to 2010, respectively. This trend is partially 
explained by the foundation of conferences dedicated to the area, which added a large 
number of papers. The specialized venues include the International Workshop on 
Search-Based Software Testing (SBST) in 2008, and the International Symposium on 
Search Based Software Engineering (SSBSE) in 2009. 

Despite this predominance of proceedings publications, journal articles are 
generally taken as fundamental contributions to a field [22]. Thus, special attention to 
this publication type should be given. In Table 5, the top 11 journals with the most 
amounts of SBSE publications are presented. 

As shown in Table 3, the top 3 journals are software engineering focused. Beyond 
that, the majority of the 11 journals are of software engineering. Aside general 
software engineering venues, as the top 3, journals of specific areas are also present, 
including software testing and requirements engineering. As a sign of the cross-
disciplinarily of SBSE, journals of Operational Research and Soft Computing are also 
present. Among the venues on the ranking, three journals dedicated special issues to 
SBSE: Information and Software Technology (2001), Computers and Operations 
Research (2008), and Journal of Software Maintenance and Evolution (2008).  
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Table 5. Ranking of journals with the most number of SBSE publications 

Journal # % 
Information and Software Technology 23 16.43% 
Journal of Systems and Software 12 8.57% 
IEEE Transactions on Software Engineering 10 7.14% 
Computers and Operations Research 7 5.00% 
Software Testing, Verification and Reliability 5 3.57% 
Applied Soft Computing 4 2.86% 
IEEE Transactions on Reliability 4 2.86% 
Information Sciences 4 2.86% 
Journal of Software Maintenance and Evolution 3 2.14% 
Requirements Engineering 3 2.14% 
Soft Computing 3 2.14% 

 

Table 6 shows the distribution of SBSE articles among journals. In this case, the 
data shows how many journals have published each number of papers. 

Table 6. Number of journals that published each article amount 

Article amount 23 12 10 7 5 4 3 2 1 
Journals 1 1 1 1 1 3 3 14 34 

 
By examining the data in Table 6, the Bradford’s Law [7] is applied. This 

bibliometric law states that the journals that publish works from a field may be 
grouped in three categories, each with roughly a third of the publications. The relation 
among the number of journals in each group is estimated to be of 1:n:n2, which means 
that among groups it is necessary to look into exponentially more journals to find the 
same number of articles. The first group is composed by the core journals, i.e., the 
main venues for the field. The next group has journals with average number of papers. 
The last category, the long tail, is formed by several journals, each with few 
publications. From Table 6, the top three journals play as core journals, since they 
correspond to 45 articles, which is 32.14% of all. The next group is found in the next 
12 journals (41 articles, or 29.28%). In order to represent the last articles, the 43 
remaining journal are necessary. Then, the Bradford relation in SBSE is 3:12:43.  

3.3   Authorship 

Table 7 shows statistics regarding the number of publishing authors in the SBSE field. 
The “New” column shows the number of authors publishing for the first time in each 
year, considering the time span from 2001 to 2010. The percentage participation and 
growth of this aspect are also presented. The “Active” column refers to the amount of 
different authors publishing in a given year. Finally, the numerical relation between 
new and active authors is indicated. 

The number of authors joining the SBSE community has significantly increased 
each year since 2001. Therefore, beyond the strong increase in the number of 
publications (as shown in Table 1), the number of new authors also firmly increased. 
The increase in the number of publications could be merely because of regular 
authors. Alternatively, in fact, more authors continue to publish SBSE works for the 
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first time each year. Indeed, 2010 alone was responsible for more than 10% (12.32%) 
of the new authors in the decade. The renewing factor was even higher since 2008, 
with 17.25% in 2008 and 17.63% in 2009. 

Table 7. Statistics for new and active authors per year (2001-2010) 

Year New % Growth 
New/ 

Works
Active Growth 

New/ 
Active 

2001 49 6.36% - 2.04 49 - 1.00 
2002 43 5.58% -12.24% 1.43 60 22.45% 0.72 
2003 54 7.00% 25.58% 1.46 83 38.33% 0.65 
2004 48 6.23% -11.11% 1.07 87 4.82% 0.55 
2005 51 6.62% 6.25% 0.98 100 14.94% 0.51 
2006 67 8.69% 31.37% 1.12 116 16.00% 0.58 
2007 95 12.32% 41.79% 1.14 162 39.66% 0.59 
2008 133 17.25% 40.00% 1.08 230 41.98% 0.58 
2009 136 17.63% 2.26% 1.10 236 2.61% 0.58 
2010 95 12.32% -30.15% 1.07 168 -28.81% 0.57 

2001-2010 771 100% - - - - - 
 

An additional study concerning the new authors is to analyze this aspect taking into 
account the number of works in each year. As expected, the highest value is found in 
2001, since all authors, in the time span, are considered new in that year. The amount 
in general reduces through the years. An observation that must be highlighted is that 
in 2010, despite the fewer new authors, the average amount of new authors per works 
is similar to the presented in previous years. This also occurs in the relation between 
new and active authors: in 2010 there were less new authors, but they corresponded to 
57% of the authors in that year, indicating the dynamism of the SBSE community. 

In addition to the new authors, the number of active authors is also an aspect of 
interest. From Table 7, one can observe that this number has increased since 2001, 
with exception to 2010, when the number of active authors was 28.81% lower than in 
2009. However, 2010 stands as the third year with most active authors, which is a 
sign of the yet strong recent activity of the SBSE field. 

Using the information of new authors in each year given in Table 7, the cumulative 
amount per year can be calculated. The evolution of such statistic is presented in 
Figure 1. Until 2005, the cumulative amount achieved 245 (31.78%). This means that 
the last half of the decade was responsible for about 70% of the authors. 
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Fig. 1. Cumulative evolution of number of authors, between 2001 and 2010 
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In Table 8 below, the distribution of publications among authors is presented. 

Table 8. Number of authors that published each number of works 

Works 1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 19 20 24 27 86 
Authors 477 126 58 27 27 12 9 6 8 4 1 4 2 1 1 1 3 2 1 1 

 
Authors who published only one work represent the larger group, formed of 477 

researches (61.87% of the SBSE community). Researchers that published two works 
also add up to more than a hundred, being in total 126, or 16.34%. As the number of 
publication increases, in general the number of authors with that amount reduces. In 
fact, there is a bibliometric law to study this phenomenon. The Lotka’s law indicates 
that the number of authors publishing n works is roughly1/n2 of the amount that 
published one work. In fact, the exponent in the fraction is specific for each field, and 
also may vary over time, but number 2 is generally used. It should be highlighted that 
the law is only an estimate and its accuracy may depend on the scientific field under 
analysis and the considered time span.  

As a result from Lotka’s law, the expected number of authors with one publication 
is 60%. By the previous analysis, it can be observed that this roughly occurs in the 
SBSE field (61.87%). In addition, the number of authors with two publications is 
expected to be (1/22)*60%, equals to 15%, which also can be considered valid for the 
SBSE community (16.34%). For three publications, the number of authors, according 
to Lotka’s law, should be (1/32)*60%, about 6.67%. In SBSE, there are 8.69% in this 
group. The number of authors with 4 publications, 27, is also cosistent to the expected 
value from Lotka’s law (25). For 10 publications, the amount also nearly conforms to 
the law, with 4 authors (1/102*60% from 771). For authors with more publications, 
however, the Lotka’s law does not apply. For 20 publications, for instance, the 
expected number of authors is 1, while there are 3 authors in SBSE. 

Among the authors, a ranking of the most prolific ones can be formed. Table 10 
indicates a list ordered with regard to the total number of publications, including 
conference works, journal articles, books chapters, etc. The percentage participation 
in relation to all SBSE publications is also given. In order to present more complete 
information, the amount and position of each author concerning only publications in 
conference proceedings and journal articles is also presented. 

From Table 10, the most prolific author has participated in more than 10% 
(11.15%) of the SBSE publications. For the 2nd position, the percentage participation 
is of 3.50%, indicating a large gap between the 1st position and this one. On the other 
hand, from the 2nd spot onwards, the difference among the sequential positions is not 
so large, which indicates a smooth distribution among the authors. The first and 
second authors with most publications appear alone in their positions. That also 
happens with positions 5, 6, 7, and 10. In the other positions, some authors share the 
same spot: there are two authors in 3rd, three in 4th, two in 8th, and three in 9th.  

Given the information in Table 10, it is possible to compare the main order, that 
takes into account all publications, with the specific ranking for conferences and 
journals. Aside from authors in 1st, 5th, and one in 9th, the spots of the authors differs 
among the different rankings.  For instance, authors in 9th place in the total ordering 
appear in 3rd in journal articles.  
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A final analysis of Table 10 can be performed by taking information from Table 2, 
that concerns on the most cited publications. Among the 15 most cited publications, 
10 have at least one of the most prolific authors shown in Table 9. If we consider the 
top 10 most cited publications, the participation of one of the most prolific authors 
achieves 8. This indicates that in SBSE there is a correlation between the groups of 
authors from the most cited publications and the most prolific authors group 

Table 9. The ranking of SBSE authors with more than 10 publications in 2001-2010 

Rank Author Works % 
Conference 
Proceedings 

(rank) 

Journal 
Articles 
(rank) 

1 Mark Harman 86 11.15% 61 (1) 20 (1) 
2 Xin Yao 27 3.50% 19 (2) 4 (5) 
3 John Clark 24 3.11% 15 (5) 7 (2) 
3 Robert Mark Hierons 24 3.11% 16 (4) 7 (2) 
5 Andrea Arcuri 20 2.59% 15 (5) 1 (8)  
5 Joachim Wegener 20 2.59% 15 (5) 5 (4) 
5 Massimiliano Di Penta 20 2.59% 17 (3) 3 (6) 
8 Phil McMinn 19 2.46% 15 (5) 4 (5) 
9 Giuliano Antoniol 18 2.33% 16 (4) 2 (7) 

10 Enrique Alba 16 2.08% 13 (6) 3 (6) 
11 Andre Baresel 14 1.82% 11 (7) 3 (6) 
11 Francisco Chicano 14 1.82% 11 (7) 3 (6) 
13 Günther Ruhe 12 1.56% 5 (12) 6 (3) 
13 Shin Yoo 12 1.56% 7 (10) 2 (7) 
13 Spiros Mancoridis 12 1.56% 9 (8) 3 (6) 
13 Stefan Wappler 12 1.56% 9 (8) 1 (8) 
17 Per Kristian Lehre 11 1.43% 7 (10) 1 (8) 

3.4   Collaboration 

After the previous study regarding the authorship in SBSE, the cooperation among the 
authors is discussed in this section. Firstly, Table 10 shows statistics about the number 
of authors per paper. Papers with more than five authors were grouped together with 
the ones with five authors. The yearly evolution of the percentage participation of 
each group is shown in Figure 2. 

Table 10. Authorship pattern in the period 2001-2010 

Authors 1 2 3 4 5+ 
# Works 87 230 209 101 40 
% 13.04% 34.48% 31.33% 15.14% 6.00% 

 
Considering the decade 2001-2010, the predominant group of collaboration is the 

one with 2 authors (34.48%). The next group, with 3 authors, has a similar rate 
(31.33%). The number of publications with one author, 87, corresponds to 13.04%, 
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Fig. 2. Authorship percentage evolution per year 

which indicates a collaboration rate of 86.96%, i.e., nearly 87% of SBSE publications 
have more than one author. In Computer Science, this collaboration rate reached 86% 
[23]. From Figure 2, the predominance of papers with 2 authors is observed through 
the years. Indeed, it happened in seven of the ten years. However, since 2008 the 
group with 2 authors is in a trend of reduction, while, simultaneously, the group with 
3 authors is increasing. With the exception of 2007, the group with 5 or more author 
is the small one in the years. 

Table 11 shows the collaborative level, i.e., the average of authors per paper, in 
each year, including the average for the decade. For better visualization of the 
evolution, the data are also presented in Figure 3.  

Table 11. Collaborative level (CL) of SBSE, i.e., the average amount of authors per paper 

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 01-10 
CL 2.37 2.80 2.89 2.73 2.86 2.40 2.78 2.64 2.71 2.75 2.70 

2

2,2

2,4

2,6

2,8

3

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010  

Fig. 3. Evolution of SBSE collaborative level by year (2001-2010) 

As show in Table 11 and Figure 3, the average number of authors per paper 
strongly increases between 2001 and 2002. Until 2005, the value remained near 2.8, 
and in 2006 reduced to about the same level of 2001. Given the increase trend of 
papers with 3 authors alongside the decrease of papers with 2 authors since 2008, the 
average amount shows an increase trend since 2008.  
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Table 12. Collaboration aspect regarding authors’ affiliation 

Year External % year Internal % year 
Out  

Univ. 
% year 

2001 1 4.17% 6 25.00% 6 25.00% 
2002 3 10.00% 7 23.33% 7 23.33% 
2003 4 10.81% 9 24.32% 6 16.22% 
2004 8 17.78% 13 28.89% 8 17.78% 
2005 6 11.54% 8 15.38% 3 5.77% 
2006 7 11.67% 15 25.00% 8 13.33% 
2007 12 14.46% 20 24.10% 9 10.84% 
2008 22 17.89% 28 22.76% 16 13.01% 
2009 20 15.38% 25 19.23% 17 13.46% 
2010 6 6.82% 16 18.18% 6 6.82% 

2001-2010 89 11.54% 147 19.02% 86 11.10% 

 
The Table 12 above shows statistics about collaboration concerning authors’ 

affiliations. The cooperation among countries occurred in more than 10% of the 
papers, with exception for 2001. In 2004 and 2008, the rate achieved more than 17%. 
Aside the percentage participation, it is important to highlight the increase in the 
amount of such collaboration throughout the years. The internal cooperation, i.e., with 
authors in different institutions of the same country, has achieved, except in 2005, 
more than 20%, which shows a strong internal collaboration. The other aspect counts 
the participation of research institutes outside universities and software companies. 
From Table 13, the percentage evolution of this cooperation shows that in general the 
rates in the last five years are lower than in the previous years: in 2001-2005, the 
value range from 5% to 25%; among 2006 and 2010 the rate varies from 6% to 13%. 
In the decade as a whole, the percentage is more than 10% (11.10%). 

4   Further Analysis 

In Section 4.1, we compare measures from SBSE between the period pre-2001 (1976-
2000) with the 2001-2010 decade. In 4.2 estimates for the next five years are given. 
Due to size constraints, only some statistics are covered in this section. 

4.1   SBSE Pre-2001 

Table 13 regards authorship in SBSE pre-2001. During the 25 years on that period, 
the number of SBSE authors reached 122 against the 771 authors in the 2001-2010 
decade (Table 7). The CL column indicates the collaborative level, i.e., the average 
number of authors per paper. The value for the pre-2001 period, 2.52, is similar to 
2.70 for 2001-2010 (Table 11). In the number of authors per paper, an interesting 
change can be observed. Before 2001, the predominance was of 1 author (27.91%), 
followed by 2 authors per paper (26.74%). In the 2001-2010 time span (Table 10), the 
most predominant groups are “2 authors” (34.48%), and “3 authors” (31.33%). 
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Table 13. Authorship measures for SBSE pre-2001 (1976-2000) 

Amount of authors per paper Ative 
Authors 

CL 
1 2 3 4 5+ 

122 2.52 27.91% 26.74% 22.09% 17.44% 5.81% 

4.1   Estimates 

The estimation used the linear trend approach, since it was successful to estimate the 
values for 2010 based on the data from the previous years. Projections for the next 5 
years of the number of active authors, number of works, and relation between 
conference proceeding papers and journal articles (C/J) are given in Table 14.  

Table 14. Estimates of number of works and active authors for 2011-2015 

Year 2011 2012 2013 2014 2015 
Authors 179 191.9 204.8 217.7 230.6 
Works 94.4 101.5 108.6 115.7 122.8 

C/J 4,17 4,08 3,99 3,89 3,80 
 
As shown in Table 14, the number of active authors is expected to achieve 200 by 

2013. Such landmark occurred in 2008 and 2009 (Table 7), but the decreased 
observed in 2010 (168) reflects on the trend. Based on the estimations, 2011 is to have 
less than 100 publications. The low behavior in 2010 also explains this landmark in 
2011. The relation between conference and journal publications has a decreasing 
trend. This indicates that the field is expected to have relatively more publications in 
journals. 

5   Conclusions 

SBSE publications have, in general, continuously increased since 2001. In 2009 
however, there was a negative growth compared to 2008. In relation to all works 
published in 2001-2009, 2010 had a cumulative growth of 26.06%, which indicates 
the recent development on the field. Other sign of that expansion is that more than 
50% of the publications in the decade were from the last three years.  Among the most 
cited works, software testing is the predominant area. Among software testing works, 
the data generation problem stands as the most cited issue in SBSE. 

Conference proceedings are the most common type of publication in SBSE. In the 
decade 2001-2010, the rate achieved 70.32%. Publication in books and chapters are 
weakly represented. The relation between conference proceeding and journal articles 
was 3.35 in the decade, i.e., in average 3.35 conference works for each journal article. 
The relation increased in the last three years of the decade. In journals that most 
published SBSE papers, there is a predominance of software engineering venues, but 
journals of operational research and soft computing are also present.  The Bradford’s 
Law seems to apply to SBSE, and the core journals for SBSE was identified as the top 
three venues. 
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The joining of new authors in SBSE is still significant. The year 2010 was 
responsible for 12% of the total in the decade. In the last five years of the decade, a 
rate of about 0.58 was observed in the participation of new authors in each year. The 
Lotka’s Law was found to be applicable to the SBSE field in most cases. A 
correlation between the most prolific authors and authors with the most cited papers 
was also found.  

The predominant number of author per paper in 2001-2010 is two. However, the 
evolution through the years indicates the reduction of that group and the ascending of 
papers with 3 authors. The collaboration among countries was observed in 11.54% of 
the papers. Cooperation among affiliations inside countries reached 19%, indicating 
the high level of cooperation in the SBSE field. The presence of authors from research 
institutes and software companies achieved 11.10% of publications in 2001-2010. 

The comparison of the decade against the pre-2001 period shows that the 
predominant group of authors per paper went from 1 to 2. The collaboration level 
increased from 2.52 to 2.70, indicating more collaboration in 2001-2010. Estimates 
for the next 5 years using the linear trend show the expected continuous expansion of 
the field. Additionally, relatively, more journal articles are expected to be published. 

Future works regard the coverage of more recent works uncovered in the last three 
segments, mainly from 2010. Further research includes bibliometric analysis specific 
on SBSE areas, such as software testing or requirements engineering. The 
identification of the most collaborative authors and countries may also be addressed.  
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Abstract. When applying search-based software engineering (SBSE) techniques
one is confronted with a multitude of different parameters that need to be chosen:
Which population size for a genetic algorithm? Which selection mechanism to
use? What settings to use for dozens of other parameters? This problem not only
troubles users who want to apply SBSE tools in practice, but also researchers
performing experimentation – how to compare algorithms that can have different
parameter settings? To shed light on the problem of parameters, we performed
the largest empirical analysis on parameter tuning in SBSE to date, collecting
and statistically analysing data from more than a million experiments. As case
study, we chose test data generation, one of the most popular problems in SBSE.
Our data confirm that tuning does have a critical impact on algorithmic perfor-
mance, and over-fitting of parameter tuning is a dire threat to external validity
of empirical analyses in SBSE. Based on this large empirical evidence, we give
guidelines on how to handle parameter tuning.

Keywords: Search based software engineering, test data generation, object-
oriented, unit testing.

1 Introduction

Recent years have brought a large growth of interest in search based software engineer-
ing (SBSE) [1], especially in software testing [2]. The field has even matured to a stage
where industrial applications have started to appear [3,4]. One of the key strengths
of SBSE leading to this success is its ability of automatically solving very complex
problems where exact solutions cannot be deterministically found in reasonable time.
However, to make SBSE really usable in practice, no knowledge of search algorithms
should be required from practitioners who want to use it, as such knowledge is highly
specialized and might not be widespread. In other words, SBSE tools should be treated
as “black boxes” where the internal details are hidden, otherwise technology transfer to
industrial practice will hardly be feasible.

One of the main barriers to the use of a search algorithm in SBSE is tuning. A search
algorithm can have many parameters that need to be set. For example, to use a genetic
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algorithm, one has to specify the population size, type of selection mechanism (roulette
wheel, tournament, rank-based, etc.), type of crossover (single point, multi-point, etc.),
crossover probability, type and probability of mutation, type and rate of elitism, etc.
The choice of all these parameters might have a large impact on the performance of a
search algorithm. In the worst case, an “unfortunate” parameter setting might make it
impossible to solve the problem at hand.

Is it possible to find an optimal parameter setting, to solve this problem once and
for all? Unfortunately, this is not possible, and this has been formally proven in the
No Free Lunch (NFL) theorem [5]: All algorithms perform on average equally on all
possible problems. For any problem an algorithm is good at solving, you can always find
another problem for which that algorithm has worse performance than other algorithms.
Because the same algorithm with different parameter settings can be considered as a
family of different algorithms, the NFL theorem applies to tuning as well. However,
the NFL is valid only when all possible search problems are considered. SBSE only
represents a subset of all possible problems, so it could be possible to find “good”
parameter settings that work well for this subset. Such a known good configuration is
important when handing tools over to practitioners, as it is not reasonable to expect
them to tune such tools as that would require deep knowledge of the tools and of search
algorithms in general. Similarly, it is also important from a research perspective to avoid
skewing results with improper parameter settings.

In this paper, we present the results of the largest empirical analysis of tuning in
SBSE to date to address the question of parameter tuning. We chose the scenario of
test data generation at unit test level because it is one of the most studied problems
in SBSE [1]. In particular, we consider test data generation for object-oriented soft-
ware using the EVOSUITE tool [6], where the goal is to find the minimal test suite that
maximizes branch coverage (having a small test suite is important when no automated
oracles are available and results need to be manually checked by software testers). We
chose to consider five parameter settings (e.g., population size and crossover rate). To
make the experiments finish in feasible time, we only considered 20 software classes as
case study (previous empirical analyses of EVOSUITE were based on thousands of dif-
ferent classes [6]). Still, this led to more than one million experiments that took weeks
to run even on a cluster of computers.

Although it is well known that parameter tuning has impact on the performance of
search algorithms, there is little empirical evidence in the literature of SBSE that tries
to quantify its effects. The results of the large empirical analysis presented in this paper
provide compelling evidence that parameter tuning is indeed critical, and unfortunately
very sensitive to the chosen case study. This brings to a compulsory use of machine
learning techniques [7] if one wants to evaluate tuning in a sound scientific way. Fur-
thermore, a problem related to tuning that is often ignored is the search budget. A prac-
titioner might not want to deal with the choice of a genetic algorithm population size,
but the choice of the computational time (i.e., how long she/he is willing to wait before
the tool gives an output) is something that has a strong impact on tuning. To improve
performance, tuning should be a function of the search budget, as we will discuss in
more details in the paper.
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This paper is organized as follows. Section 2 discusses related work on tuning. The
analyzed search algorithm (a genetic algorithm used in EVOSUITE ) is presented in
Section 3 with a description of the parameters we investigate with respect to tuning.
Section 4 presents the case study and the empirical analysis. Guidelines on how to
handle parameter tuning are discussed in Section 5. Threats to validity are discussed in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Eiben et al. [8] presented a survey on how to control and set parameter values of evo-
lutionary algorithms. In their survey, several techniques are discussed. Of particular
interest is the distinction between parameter tuning and parameter control: The for-
mer deals with how to choose parameter values before running a search algorithm. For
example, should we use a population size of 50 or 100? On the other hand, parameter
control deals with how to change parameter values during the run of a search algorithm.
A particular value that is good at the beginning of the search might become sub-optimal
in the later stages. For example, in a genetic algorithm one might want to have a high
mutation rate (or large population size) at the beginning of the search, and then decrease
it in the course of the evolution; this would be conceptually similar to temperature cool-
ing in simulated annealing. In this paper we only deal with parameter tuning. Parameter
control is a promising area of research, but mainly unexplored in SBSE.

Recently, Smit and Eiben [9] carried out a series of experiments on parameter tun-
ing. They consider the tuning of six parameters of a genetic algorithm applied to five
numerical functions, comparing three settings: a default setting based on “common wis-
dom”, the best tuning averaged on the five functions (which they call generalist), and
the best tuning for each function independently (specialist). Only one fixed search bud-
get (i.e., maximum number of fitness evaluations as stopping criterion) was considered.
Our work shares some commonalities with these experiments, but more research ques-
tions and larger empirical analysis are presented in this paper (details will be given in
Section 4).

In order to find the best parameter configuration for a given case study, one can run
experiments with different configurations, and then the configuration that gives highest
results on average can be identified as best for that case study. However, evaluating all
possible parameter combinations is infeasible in practice. Techniques to select only a
subset of configurations to test that have high probability of being optimal exist, for
example regression trees (e.g., used in [10]) and response surface methodology (e.g.,
used in [11]). The goal of this paper is to study the effects of parameter tuning, which
includes also the cases of sub-optimal choices. Such type of analysis requires an exhaus-
tive evaluation. This is done only for the sake of answering research questions (as for
example to study the effects of a sub-optimal tuning). In general, a practitioner would
be interested only in the best configuration.

If a practitioner wants to use a search algorithm on an industrial problem (not nec-
essarily in software engineering) that has not been studied in the literature, then she
would need to tune the algorithm by herself, as default settings are likely to bring to
poor performance. To help practitioners in making such tuning, there exist frameworks
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such as GUIDE [12]. The scope of this paper is different: we tackle known SBSE prob-
lems (e.g., test data generation for object-oriented software). For known problems, it is
possible to carry out large empirical analyses in laboratory settings.

There might be cases in which, even on known problems, it might be useful to let
the practitioners perform/improve tuning (if they have enough knowledge about search
algorithms), and tools like EvoTest support this [3]. As an example, a SBSE problem
instance type might need to be solved several times (e.g., a software system that is
slightly modified during time). Another example could be to do tuning on a sub-system
before tackling the entire system (which for example could be millions of lines of code).
Whether such cases occur in practice, and whether the tuning can be safely left to prac-
titioners, would require controlled empirical studies in industrial contexts. As such em-
pirical evidence is currently lacking in the literature of SBSE, we are in the conditions
to claim that parameter tuning is needed before releasing SBSE tool prototypes.

3 Search Algorithm Setting

We performed our experiments in a domain of test generation for object-oriented soft-
ware. In this domain, the objective is to derive test suites (sets of test cases) for a given
class, such that the test suite maximizes a chosen coverage criterion while minimizing
the number of tests and their length. A test case in this domain is a sequence of method
calls that constructs objects and calls methods on them. The resulting test suite is pre-
sented to the user, who usually has to add test oracles that check for correctness when
executing the test cases.

The test cases may have variable length [13], and so earlier approaches to testing
object-oriented software made use of method sequences [14,15] or strongly typed ge-
netic programming [16,17]. In our experiments, we used the EVOSUITE [6] tool, in
which one individual is an entire test suite of variable size. The entire search space of
test suites is composed of all possible test suites of sizes from 1 to a predefined max-
imum N . Each test case can have a size (i.e., number of statements) from 1 to L. For
each position in the sequence of statements of a test case, there can be up to Imax

possible statements, depending on the SUT and the position within the test case (later
statements can reuse objects instantiated in previous statements). The search space is
hence extremely large, although finite because N , L and Imax are finite.

Crossover between test suites generates two offspring O1 and O2 from two parent
test suites P1 and P2. A random value α is chosen from [0,1], and the first offspring O1

contains the first α|P1| test cases from the first parent, followed by the last (1− α)|P2|
test cases from the second parent. The second offspring O2 contains the first α|P2| test
cases from the second parent, followed by the last (1 − α)|P1| test cases from the first
parent.

The mutation operator for test suites works both at test suite and test case levels:
When a test suite T is mutated, each of its test cases is mutated with probability 1/|T |.
Then, with probability σ = 0.1, a new test case is added to the test suite. If it is added,
then a second test case is added with probability σ2, and so on until the ith test case
is not added (which happens with probability 1 − σi). Test cases are added only if the
limit N has not been reached.
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If a test case is mutated, then three types of operations are applied with probability
1/3 in order: remove, change and insert. When removing statements out of a test case of
length l, each statement is removed with probability 1/l. Removing a statement might
invalidate dependencies within the test case, which we attempt to repair; if this repair
fails, then dependent statements are also deleted. When applying the change mutation,
each statement is changed with probability 1/l. A change means it is replaced with a
different statement that retains the validity of the test case; e.g., a different method call
with the same return type. When inserting statements, we first insert a new statement
with probability σ′ = 0.5 at a random position. If it is added, then a second statement
is added with probability σ′2, and so on until the ith statement is not inserted. If after
applying these mutation operators a test case t has no statement left (i.e., all have been
removed), then t is removed from T . The initial population of test cases is generated
randomly, by repeatedly performing the insertion operator also used to mutate test cases.

The search objective we chose is branch coverage, which requires that a test suite
exercises a program in such a way that every condition (if, while, etc.) evaluates to true
and to false. The fitness function is based on the well-established branch distance [18],
which estimates the distance towards a particular evaluation of a branch predicate. The
overall fitness of a test suite with respect to all branches is measured as the sum of the
normalized branch distancesof all branches in the program under test. Using a fitness
function that considers all the testing targets at the same time has been shown to lead to
better results than the common strategy of considering each target individually [6]. Such
an approach is particularly useful to reduce the negative effects of infeasible targets for
the search.

We applied several bloat control techniques [19] to avoid that the size of individuals
becomes bloated during the search.

In the experiments presented in this paper, we investigated five parameters of the
search, which are not specific to this application domain. The first parameter is the
crossover rate: Whenever two individuals are selected from the parent generation, this
parameter specifies the probability with which they are crossed over. If they are not
crossed over, then the parents are passed on to the next stage (mutation), else the off-
spring resulting from the crossover are used at the mutation stage.

The second parameter is the population size, which determines how many individuals
are created for the initial population. The population size does not change in the course
of the evolution, i.e., reproduction ensures that the next generation has the same size as
the initial generation.

The third parameter is the elitism rate: Elitism describes the process that the best
individuals of a population (its elite) automatically survive evolution. The elitism rate
is sometimes specified as a percentage of the population that survives, or as the number
of individuals that are copied to the next generation. For example, with an elitism rate
set to 1 individual, the best individual of the current population is automatically copied
to the next generation. In addition, it is still available for reproduction during the normal
selection/crossover/mutation process.

In a standard genetic algorithm, elitism, selection and reproduction is performed
until the next population has reached the desired population size. A common variant
is steady state genetic algorithms, in which after the reproduction the offspring replace
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their parents in the current population. As the concept of elitism does not apply to
steady state genetic algorithms, we treat the steady state genetic algorithm as a special
parameter setting of the elitism rate.

The fourth parameter is the selection mechanism, which describes the algorithm used
to select individuals from the current population for reproduction. In roulette wheel se-
lection, each individual is selected with a probability that is proportionate to its fitness
(hence it is also known as fitness proportionate selection). In tournament selection, a
number of individuals are uniformly selected out of the current population, and the one
with the best fitness value is chosen as one parent for reproduction. The tournament size
denotes how many individuals are considered for the “tournament”. Finally, rank selec-
tion is similar to roulette wheel selection, except that the probability of an individual
being selected is not proportionate to its fitness but to its rank when ranking individuals
according to their fitness. The advantage of this approach over roulette wheel selection
is that the selection is not easily dominated by individuals that are fitter than others,
which would lead to premature convergence. The probability of a ranking position can
be weighted using the rank bias parameter.

Finally, the fifth parameter we consider is whether or not to apply a parent replace-
ment check. When two offspring have been evolved through crossover and mutation,
checking against the parents means that the offspring survive only if at least one of the
two offspring has a better fitness than their parents. If this is not the case, the parents
are used in the next generation instead of the offspring.

In addition to these parameters, another important decision in a genetic algorithm
is when to stop the search, as it cannot be assumed that an optimal solution is always
found. The search budget can be expressed in many different formats, for example, in
terms of the time that the search may execute. A common format, often used in the
literature to allow better and less biased comparisons, is to limit the number of fitness
evaluations. In our setting, the variable size of individuals means that comparing fitness
evaluations can be meaningless, as one individual can be very short and another one
can be very long. Therefore, in this setting (i.e., test data generation for object-oriented
software) we rather count the number of statements executed.

4 Experiments

In this paper, we use as case study a subset of 20 Java classes out of those previously
used to evaluate EVOSUITE [6]. In choosing the case study, we tried to balance the
different types of classes: historical benchmarks, data structures, numerical functions,
string manipulations, classes coming from open source applications and industrial soft-
ware. Apart from historical benchmarks, our criterion when selecting individual classes
was that classes are non-trivial, but on which EVOSUITE may still achieve high cov-
erage to allow for variation in the results. We therefore selected classes where EVO-
SUITE used up its entire search budget without achieving 100% branch coverage, but
still achieved more than 80% coverage.

We investigated five parameters:

– Crossover rate: {0 , .2 , .5 , .8 , 1}.
– Population size: {4 , 10, 50 , 100 , 200}.
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– Elitism rate: {0 , 1, 10% , 50%} or steady state.
– Selection: roulette wheel, tournament with size either 2 or 7, and rank selection

with bias either 1.2 or 1.7.
– Parent replacement check (activated or not).

Notice that the search algorithm used in EVOSUITE has many other parameters to tune.
Because the possible number of parameter combinations is exponential in the number of
parameters, only a limited number of parameters and values could be used. For the eval-
uation we chose parameters that are common to most genetic algorithms, and avoided
parameters that are specific in EVOSUITE to handle object-oriented software. Further-
more, because the goal of this paper is to study the effects of tuning, we analyzed all
the possible combinations of the selected parameters. On the other hand, if one is only
interested in finding the “best” tuning for the case study at hand, techniques such as the
response surface methodology could be used to reduce the number of configurations to
evaluate.

Another important factor is the search budget. A search algorithm can be run for
any arbitrary amount of time – for example, a practitioner could run a search algorithm
for one second only, or for one hour. However, the search budget has a strong effect
on parameter tuning, and it is directly connected to the concept of exploration and
exploitation of the search landscape. For example, the choice of a large population size
puts more emphasis on the exploration of the search landscape, which could lead to a
better escape from local optima. On the other hand, a large population can slow down
the convergence to global optima when not so many local optima are present. If one
has a small search budget, it would be advisable to use a small population size because
with a large population only few generations would be possible. Therefore, parameter
tuning is strongly correlated to the search budget. In fact, the search budget is perhaps
the only parameter a practitioner should set. A realistic scenario might be the following:
During working hours and development, a software engineer would have a small budget
(in the order of seconds/minutes) for search, as coding and debugging would take place
at the same time. On the other hand, a search could then be left running overnight, and
results collected the morning after. In these two situations, the parameter settings (e.g.
population size) should be different. In this paper, we consider a budget of 100,000
function call executions (considering the number of fitness function evaluations would
not be fair due to the variable length of the evolved solutions). We also consider the
cases of a budget that is a tenth (10,000) and ten times bigger (1,000,000).

For each class in the case study, we run each combination of parameter settings and
search budget. All experiments were repeated 15 times to take the random nature of
these algorithms into account. Therefore, in total we had 20 × 54 × 2 × 3 × 15 =
1,125,000 experiments. Parameter settings were compared based on the achieved cov-
erage. Notice that, in testing object-oriented software, it is also very important to take
the size of the generated test suites into account. However, for reasons of space, in this
paper we only consider coverage, in particular branch coverage.

Using the raw coverage values for parameter setting comparisons would be too noisy.
Most branches are always covered regardless of the chosen parameter setting, while
many others are simply infeasible. Given b the number of covered branches in a run for
a class c, we used the following normalization to define a relative coverage r:
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r(b,c) =
b−minc

maxc −minc
,

where minc is the worst coverage obtain in all the 56,250 experiments for that class c,
and maxc is the maximum obtained coverage. If minc == maxc, then r = 1.

To analyze all these data in a sound manner, we followed the guidelines in [20].
Statistical difference is measured with the Mann-Whitney U-test, whereas effect sizes
are measured with the Vargha-Delaney Â12 statistics. The Â12 statistics measures the
probability that a run with a particular parameter setting yields better coverage than
a run of the other compared setting. If there is no difference between two parameter
setting performances, then Â12 = 0.5. For reasons of space it is not possible to show all
the details of the data and analyses. For example, instead of reporting all the p-values,
we only state when those are lower than 0.05.

In the analyses in this paper, we focus on four specific settings: worst (W ), best (B),
default (D) and tuned (T ). The worst combination W is the one that gives the worst
coverage out of the 54 × 2 = 1,250 combinations, and can be different depending on
the class under test and chosen search budget. Similarly, B represents the best config-
uration out of 1,250. The “default” combination D is arbitrarily set to population size
100, crossover rate 0.8, rank selection with 1.7 bias, 10% of elitism rate and no parent
replacement check. These values are in line with common suggestions in the literature,
and that we used in previous work. In particular, this default setting was chosen before
running any of the experiments. Finally, given a set of classes, the tuned configura-
tion T represents the configuration that has the highest average relative coverage on all
that set of classes. When we write for example ÂDW = 0.8, this means that, for the
addressed class and search budget, a run of the default configuration D has 0.8 proba-
bility of yielding a coverage that is higher than the one obtained by a run of the worst
configuration W .

The data collected from this large empirical study could be used to address several
research questions. Unfortunately, for reasons of space we only focus on the four that
we believe are most important.

RQ1: How Large is the Potential Impact of a Wrong Choice of Parameter
Settings?

In Table 1, for each class in the case study and test budget 100,000, we report the relative
coverage (averaged out of 15 runs) of the worst and best configurations. There are cases
in which the class under test is trivial for EVOSUITE (e.g., DateParse), in which tuning
is not really important. But, in most cases, there is a very large difference between the
worst and best configuration (e.g., BellmanFordIterator). A wrong parameter tuning can
make it hard (on average) to solve problems that could be easy otherwise.

Different parameter settings cause
very large variance in the performance.
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Table 1. Relative coverage averaged out of 15 runs for default, worst and best configuration. Ef-
fect sizes for default compared to worst (ÂDW ) and and compared to best configuration (ÂDB).
Statistically significant effect sizes are in bold.

Class Default Worst Best ÂDW ÂDB

Cookie 0.49 0.33 0.86 0.93 0.00
DateParse 1.00 1.00 1.00 0.50 0.50
Triangle 1.00 0.60 1.00 0.70 0.50
XMLElement 0.90 0.43 0.97 1.00 0.10
ZipOutputStream 1.00 0.47 1.00 0.77 0.50
CommandLine 0.41 0.11 0.59 0.98 0.34
Remainder 0.82 0.30 0.98 0.98 0.13
Industry1 0.95 0.53 0.98 1.00 0.18
Industry2 0.90 0.42 0.95 1.00 0.11
Attribute 0.47 0.21 0.90 1.00 0.00
DoubleMetaphone 0.63 0.22 0.96 1.00 0.00
Chronology 0.77 0.43 0.94 1.00 0.00
ArrayList 1.00 0.67 1.00 0.67 0.50
DateTime 0.60 0.21 0.95 1.00 0.00
TreeMap 0.65 0.00 0.78 0.93 0.27
Bessj 0.65 0.42 0.95 1.00 0.00
BellmanFordIterator 0.13 0.00 1.00 0.57 0.07
TTestImpl 0.55 0.21 1.00 0.88 0.00
LinkedListMultimap 0.81 0.18 1.00 1.00 0.03
FastFourierTransformer 1.00 0.29 1.00 0.98 0.47

RQ2: How Does a “Default” Setting Compare to the Best and Worst Achievable
Performance?

Table 1 also reports the relative coverage for the default setting, with effect sizes of
the comparisons with the worst and best configuration. As one would expect, a default
configuration has to be better than the worst, and worse/equal to the best configuration.
However, for most problems, although the default setting is much better than the worst
setting (i.e., ÂDW values close to 1), it is unfortunately much worse than the best setting
(i.e., ÂDB values are close to 0). When one uses randomized algorithms, it is reasonable
to expect variance in the performance when they are run twice with a different seed.
However, consider the example of Bessj in Table 1, where ÂDW = 1 and ÂDB = 0.
In that case, the coverage values achieved by the default setting in 15 runs are always
better than any of the 15 coverage values obtained with the worst configuration, but
also always worse than any of the 15 runs obtained with best configuration. These data
suggest that, if one does not have the possibility of tuning, then the use of a default
setting is not particularly inefficient. However, there is large space for performance
improvement if tuning is done.

Default parameter settings perform relatively well, but are
far from optimal on individual problem instances.
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RQ3: If we Tune a Search Algorithm Based On a Set of Classes, How Will Its
Performance Be On Other New Classes?

To answer this research question, for each class, we tuned the algorithm on the other 19
classes, and then compared this tuned version with the default and best configuration
for the class under test. Table 2 reports the data of this analysis. If one makes tuning
on a sample of problem instances, then we would expect a relatively good performance
on new instances. But the ÂTB values in Table 2 are in most of the cases low and
statistically significant. This means that parameter settings that should work well on
average can be particularly inefficient on new instances compared to the best tuning
for those instances. In other words, there is a very high variance in the performance of
parameter settings.

Of particular interest are the ÂTD values. In three cases they are equal to 0.5 (so no
difference between tuned and default settings), in seven cases they are higher than 0.5
(so tuning helps), but then in 10 cases they are lower than 0.5 (but only in four cases
there is statistically significant difference). This means that, on the case study used in
this paper, doing tuning is even worse than just using some arbitrary settings coming
from the literature! This might be explained with the concept of over-fitting in machine
learning [7]. A too intensive tuning on a set of problem instances can result in parameter
settings that are too specific for that set. Even the case of 19 problem instances, as done
in this paper, is too small to avoid such type of over-fitting.

Tuning should be done on a very large sample of problem
instances. Otherwise, the obtained parameter settings are

likely to be worse than arbitrary default values.

RQ4: What are the Effects of the Search Budget On Parameter Tuning?

For each class and the three search budgets, we compared the performance of the default
setting against the worst and the best; Table 3 shows the data of this analysis. For a
very large search budget one would expect not much difference between parameter
settings, as all achievable coverage would be reached with high probability. Recall that
it is not possible to stop the search before because, apart from trivial cases, there are
always infeasible testing targets (e.g., branches) whose number is unknown. The data in
Table 3 show that trend for many of the used programs (e.g., see LinkedListMultimap)
regarding the default and best settings, but the worst setting is still much worse than the
others (i.e., ÂDW close to 1) even with a search budget of one million function calls.
What is a “large” search budget depends of course on the case study. For example, for
DateParse, already a budget of 100,000 is enough to get no difference between best,
worst and default configuration. On the other hand, with a search budget of 1,000,000,
for example for CommandLine there is still a statistically strong difference.

As said, a very large search budget might reduce the importance of tuning. How-
ever, when we increase the search budget, that does not always mean that tuning be-
comes less important. Consider again the case of CommandLine: At budget 10,000,
the ÂDW is not statistically significant (i.e., close to 0.5 and Mann-Whitney U-test has
p-value greater than 0.05), whereas it gets higher (close to 1) for 100,000 and then for
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Table 2. Relative coverage averaged out of 15 runs for tuned configuration. Effect sizes for tuned
compared to default (ÂTD) and and compared to best configuration (ÂTB). Statistically signifi-
cant effect sizes are in bold.

Class Tuned ÂTD ÂTB

Cookie 0.78 0.98 0.27
DateParse 1.00 0.50 0.50
Triangle 1.00 0.50 0.50
XMLElement 0.81 0.40 0.11
ZipOutputStream 0.93 0.47 0.47
CommandLine 0.38 0.32 0.22
Remainder 0.62 0.23 0.05
Industry1 0.90 0.24 0.08
Industry2 0.84 0.30 0.17
Attribute 0.52 0.75 0.00
DoubleMetaphone 0.57 0.08 0.00
Chronology 0.87 0.76 0.28
ArrayList 1.00 0.50 0.50
DateTime 0.93 1.00 0.30
TreeMap 0.32 0.33 0.26
Bessj 0.81 0.92 0.18
BellmanFordIterator 0.00 0.43 0.00
TTestImpl 0.68 0.93 0.03
LinkedListMultimap 0.98 0.96 0.33
FastFourierTransformer 0.97 0.28 0.25

1,000,000. For ÂDB , it is statistically significant when budget is 10,000, but not when
we increase the budget to 100,000. Interestingly, it comes back to be statistically sig-
nificant at 1,000,000, with an effect size that is even stronger than in the case of budget
10,000. How come? The reason is that the testing targets have different difficulty to
be covered. Even with an appropriate tuning, for some targets we would still need a
minimum amount of search budget. If the search budget is lower than that threshold,
then we would not cover (with high probability) those targets even with the best tuning.
Therefore, tuning might not be so important if either the search budget is too “large”,
or if it is too “small”, where “large” and “small” depend on the case study. But such an
information is usually not known before doing tuning.

Available search budget has strong impact on the
parameter settings that should be used.

5 Guidelines

The empirical analysis carried out in this paper clearly shows that tuning has a strong
impact on search algorithm performance, and if it is not done properly, there are dire
risks in ending up with tuned configurations that are worse than suggested values in the
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Table 3. For each test budget, effect sizes of default configuration compared to the worst (ÂDW )
and best configuration (ÂDB). Statistically significant effect sizes are in bold. Some data are
missing (-) due to the testing tool running out of memory.

Class Test Budget
10,000 100,000 1,000,000

ÂDW ÂDB ÂDW ÂDB ÂDW ÂDB

Cookie 0.77 0.07 0.93 0.00 0.82 0.11
DateParse 0.63 0.50 0.50 0.50 0.50 0.50
Triangle 0.67 0.50 0.70 0.50 0.69 0.50
XMLElement 0.81 0.07 1.00 0.10 1.00 0.50
ZipOutputStream 0.87 0.43 0.77 0.50 0.71 0.50
CommandLine 0.54 0.23 0.98 0.34 1.00 0.00
Remainder 0.72 0.21 0.98 0.13 1.00 0.46
Industry1 0.63 0.00 1.00 0.18 - -
Industry2 0.82 0.06 1.00 0.11 1.00 0.42
Attribute 0.80 0.06 1.00 0.00 1.00 0.15
DoubleMetaphone 0.87 0.06 1.00 0.00 0.92 0.14
Chronology 0.90 0.08 1.00 0.00 1.00 0.17
ArrayList 0.70 0.43 0.67 0.50 1.00 0.50
DateTime 0.69 0.06 1.00 0.00 0.88 0.45
TreeMap 0.60 0.24 0.93 0.27 1.00 0.27
Bessj 0.83 0.10 1.00 0.00 1.00 0.33
BellmanFordIterator 0.50 0.00 0.57 0.07 - -
TTestImpl 0.88 0.21 0.88 0.00 0.95 0.31
LinkedListMultimap 0.60 0.05 1.00 0.03 0.96 0.50
FastFourierTransformer 0.83 0.00 0.98 0.47 - -

literature. To avoid these problems, it would hence be important to use machine learn-
ing techniques [7] when tuning parameters. Which ones to use is context dependent,
and a detailed discussion is beyond the scope of this paper. Instead, we discuss some
basic scenarios here, aiming at developers who want to tune parameters before releasing
SBSE tool prototypes, or researchers who want to tune tools for scientific experiments.
Further details can be found for example in [7].

Given a case study composed of a number of problem instances, randomly partition
it in two non-overlapping subsets: the training and the test set. A common rule of thumb
is to use 90% of instances for the training set, and the remaining 10% for the test set. Do
the tuning using only the problem instances in the training set. Instead of considering
all possible parameter combinations (which is not feasible), use techniques such as
the response surface methodology (e.g., used in [11]). Given a parameter setting that
performs best on this training set, then evaluate its performance on the test set. Draw
conclusions on the algorithm performance only based on the results on this test set.

If the case study is “small” (e.g., because composed of industrial systems and not
open-source software that can be downloaded in large quantities), and/or if the cost of
running the experiment is relatively low, use k-fold cross validation [7]. In other words,
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randomly partition the case study in k non-overlapping subsets (a common value is
k = 10). Use one of these as test set, and merge the other k − 1 subsets to use them as
training set. Do the tuning on the training set, and evaluate the performance on the test
set. Repeat this process k times, every time with a different subset for the test set, and
remaining k−1 for the training set. Average the performance on all the results obtained
from all the k test sets, which will give some value v describing the performance of the
algorithm. Finally, apply tuning on all the case study (do not use any test set), and keep
the resulting parameter setting as the final one to use. The validity of this parameter
setting would be estimated by the value v calculated during the cross validation.

Comparisons among algorithms should never be done on their performance on the
training set — only use the results on validation sets. As a rule of thumb, if one com-
pares different “tools” (e.g., prototypes released in the public domain), then no tuning
should be done on released tools, because parameter settings are an essential component
that define a tool. On the other hand, if the focus is on evaluating algorithms at a high
level (e.g., on a specific class of problems, is it better to use population based search
algorithms such as genetic algorithms or single individual algorithms such as simulated
annealing?), then each compared algorithm should receive the same amount of tuning.

6 Threats to Validity

Threats to internal validity might come from how the empirical study was carried out.
To reduce the probability of having faults in our experiment framework, it has been
carefully tested. But it is well known that testing alone cannot prove the absence of
defects. Furthermore, randomized algorithms are affected by chance. To cope with this
problem, we repeated each experiment 15 times with different random seeds, and we
followed rigorous statistical procedures to evaluate their results.

Threats to construct validity come from the fact that we evaluated parameter settings
only based on structural coverage of the resulting test suites generated by EVOSUITE .
Other factors that are important for practitioners and that should be considered as well
are the size of the test suites and their readability (e.g., important in case of no formal
specifications when assert statements need to be manually added). Whether these factors
are negatively correlated with structural coverage is a matter of further investigation.

Threats to external validity come from the fact that, due to the very large number of
experiments, we only used 20 classes as case study, which still took weeks even when
using a computer cluster. Furthermore, we manually selected those 20 classes, in which
we tried to have a balance of different kinds of software. A different selection for the
case study might result in different conclusions. However, to the best of our knowledge,
there is no standard benchmark in test data generation for object-oriented software that
we could have rather used.

The results presented in this paper might not be valid on all software engineering
problems that are commonly addressed in the literature of SBSE. Based on the fact that
parameter tuning has large impact on search algorithm performances, we hence strongly
encourage the repetition of such empirical analysis on other SBSE problems.
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7 Conclusion

In this paper, we have reported the results of the largest empirical study in parameter
tuning in search based software engineering to date. In particular, we focus on test data
generation for object-oriented software using the EVOSUITE tool [6].

It is well known that parameter tuning has effects on the performance of search
algorithms. However, this paper is the first that quantifies these effects for a search based
software engineering problem. The results of this empirical analysis clearly show that
arbitrary parameter settings can lead to sub-optimal search performance. Even if one
does a first phase of parameter tuning on some problem instances, the results on new
problem instances can be very poor, even worse than arbitrary settings. Hence, tuning
should be done on (very) large samples of problem instances. The main contribution
of this paper is that it provides compelling empirical evidence to support these claims
based on rigorous statistical methods.

To entail technology transfer to industrial practice, parameter tuning is a task of re-
sponsibility of who develops and releases search based tools. It is hence important to
have large tuning phases on which several problem instances are employed. Unfortu-
nately, parameter tuning phases can result in over-fitting issues. To validate whether
a search based tool can be effective in practice once delivered to software engineers
that will use it on their problem instances, it is important to use machine learning tech-
niques [7] to achieve sound scientific conclusions. For example, tuning can be done on
a subset of the case study (i.e., the so called training set), whereas performance eval-
uation would be done a on a separate and independent set (i.e., the so called test set).
This would reduce the dire threats to external validity coming from over-fitting the pa-
rameter tuning. To the best of our knowledge, in the literature of search based software
engineering, in most of the cases parameter tuning is either not done, done on the entire
case study at hand, or its details are simply omitted.

Another issue that is often neglected is the relation between tuning and search bud-
get. The final user (e.g., software engineers) in some cases would run the search for
some seconds/minutes, in other cases they could afford to run it for hours/days (e.g.,
weekends and night hours). In these cases, to improve search performance, the parame-
ter settings should be different. For example, the population size in a genetic algorithm
could be set based on a linear function of the search budget. However, that is a little
investigated topic, and further research is needed.
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Abstract. Landscape theory provides a formal framework in which com-
binatorial optimization problems can be theoretically characterized as a
sum of a special kind of landscape called elementary landscape. The de-
composition of the objective function of a problem into its elementary
components provides additional knowledge on the problem that can be
exploited to create new search methods for the problem. We analyze
the Test Suite Minimization problem in Regression Testing from the
point of view of landscape theory. We find the elementary landscape de-
composition of the problem and propose a practical application of such
decomposition for the search.

Keywords: Fitness landscapes, test suite minimization, regression test-
ing, elementary landscapes.

1 Introduction

The theory of landscapes focuses on the analysis of the structure of the search
space that is induced by the combined influences of the objective function of the
optimization problem and the choice neighborhood operator [8]. In the field of
combinatorial optimization, this theory has been used to characterize optimiza-
tion problems and to obtain global statistics of the problems [11]. However, in
recent years, researchers have been interested in the applications of landscape
theory to improve the search algorithms [5].

A landscape for a combinatorial optimization problem is a triple (X, N, f),
where f : X �→ R defines the objective function and the neighborhood operator
function N(x) generates the set of points reachable from x ∈ X in a single
application of the neighborhood operator. If y ∈ N(x) then y is a neighbor of x.

There exists a special kind of landscapes, called elementary landscapes, which
are of particular interest due to their properties [12]. We define and analyze the
elementary landscapes in Section 2, but we can advance that they are charac-
terized by the Grover’s wave equation:

avg{f(y)}
y∈N(x)

= f(x) +
λ

d

(
f̄ − f(x)

)

where d is the size of the neighborhood, |N(x)|, which we assume is the same
for all the solutions in the search space, f̄ is the average solution evaluation over
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the entire search space, λ is a characteristic constant and avg{f(y)}y∈N(x) is the
average of the objective function f computed in its neighborhood:

avg{f(y)}
y∈N(x)

=
1

|N(x)|
∑

y∈N(x)

f(y) (1)

For a given problem instance whose objective function is elementary, the values
f̄ and λ can be easily computed in an efficient way, usually from the problem
data. Thus, the wave equation makes it possible to compute the average value of
the fitness function f evaluated over all of the neighbors of x using only the value
f(x), without evaluating any of the neighbors. This means that in elementary
landscapes we get additional information from a single solution evaluation. We
get an idea of what is the quality of the solutions around the current one. This
information can be used to design more clever search strategies and operators
which effectively use the information.

Lu et al. [5] provide a nice example of the application of the landscape anal-
ysis to improve the performance of a search method. In their work, the perfor-
mance of the Sampling Hill Climbing is improved by avoiding the evaluation of
non-promising solutions. The average fitness value in the neighborhood of the
solutions computed with (1) is at the core of their proposal.

When the landscape is not elementary it is always possible to write the objec-
tive function as a sum of elementary components, called elementary landscape
decomposition of a problem [1]. Then, Grover’s wave equation can be applied to
each elementary component and all the results are summed to give the average
fitness in the neighborhood of a solution. Furthermore, for some problems the av-
erage cannot be limited to the neighborhood of a solution, but it can be extended
to the second-order neighrbors (neighbors of neighbors), third-order neighbors,
and, in general, to any arbitrary region around a given solution, including the
whole search space. Sutton et al. [10] show how to compute the averages over
spheres and balls of arbitrary radius around a given solution in polynomial time
using the elementary landscape decomposition of real-valued functions over bi-
nary strings. In [9] they propose a method that uses these averages over the
balls around a solution to escape from plateaus in the MAX-k-SAT problem.
The empirical results noticed an improvement when the method was applied.
Langdon [4] also analyzed the spheres of arbitrary radius from the point of view
of landscape theory, highlighting that the Walsh functions are eigenvectors of
the spheres and the mutation matrix in GAs.

If we extend the landscape analysis of the objective function f to their powers
(f2, f3, etc.), Grover’s wave equation allows one to compute higher-order mo-
ments of the fitness distribution around a solution and, with them, the variance,
the skewness and the kurtosis of this distribution. Sutton et al. [10] provide an
algorithm for this computation.

We analyze here the Test Suite Minimization problem in regression testing
from the point of view of landscape theory. This software engineering problem
consists in selecting a set of test cases from a large test suite that satisfies a given
condition, like maximizing the coverage and minimizing the oracle cost [13].
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The remainder of the paper is organized as follows. In Section 2 we present the
mathematical tools required to understand the rest of the paper and Section 3
formally defines the Test Suite Minimization problem. Section 4 presents the
two main contributions: the elementary landscape decomposition of the objec-
tive function of the problem and its square. We provide closed-form formulas for
both f and f2. In the mathematical development we include a novel application
of the Krawtchouk matrices to the landscape analysis. Section 5 proposes an
application of the decompositions of f and f2 and presents a short experimen-
tal study showing the benefits (and drawbacks) of the proposal. Finally, with
Section 6 we conclude the paper.

2 Background

In this section we present some fundamental results of landscape theory. We will
only focus on the relevant information required to understand the rest of the
paper. The interested reader can deepen on this topic in [7].

Let (X, N, f) be a landscape, where X is a finite set of solutions, f : X → R

is a real-valued function defined on X and N : X → P(X) is the neighborhood
operator. The adjacency and degree matrices of the neighborhood N are defined
as:

Axy =
{

1 if y ∈ N(x)
0 otherwise ; Dxy =

{
|N(x)| if x = y
0 otherwise (2)

We restrict our attention to regular neighborhoods, where |N(x)| = d > 0 for
a constant d, for all x ∈ X . Then, the degree matrix is D = dI, where I is
the identity matrix. The Laplacian matrix Δ associated to the neighborhood is
defined by Δ = A −D. In the case of regular neighborhoods it is Δ = A − dI.
Any discrete function, f , defined over the set of candidate solutions can be
characterized as a vector in R

|X|. Any |X | × |X | matrix can be interpreted as a
linear map that acts on vectors in R

|X|. For example, the adjacency matrix A
acts on function f as follows

A f =

⎛
⎜⎜⎜⎝

∑
y∈N(x1)

f(y)∑
y∈N(x2)

f(y)
...∑

y∈N(x|X|) f(y)

⎞
⎟⎟⎟⎠ ; (A f)(x) =

∑
y∈N(x)

f(y) (3)

Thus, the component x of (A f) is the sum of the function value of all the
neighbors of x. Stadler defines the class of elementary landscapes where the
function f is an eigenvector (or eigenfunction) of the Laplacian up to an additive
constant [8]. Formally, we have the following

Definition 1. Let (X, N, f) be a landscape and Δ the Laplacian matrix of the
configuration space. The function f is said to be elementary if there exists a
constant b, which we call offset, and an eigenvalue λ of −Δ such that (−Δ)(f −
b) = λ(f − b). The landscape itself is elementary if f is elementary.
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We use −Δ instead of Δ in the definition to avoid negative eigenvalues. In con-
nected neighborhoods (the ones we consider here) the offset b is the average value
of the function over the whole search space: b = f̄ . Taking into account basic
results of linear algebra, it can be proved that if f is elementary with eigenvalue
λ, af + b is also elementary with the same eigenvalue λ. Furthermore, in regular
neighborhoods, if g is an eigenfunction of −Δ with eigenvalue λ then g is also an
eigenvalue of A, the adjacency matrix, with eigenvalue d− λ. The average value
of the fitness function in the neighborhood of a solution can be computed using
the expression avg{f(y)}y∈N(x) = 1

d(A f)(x). If f is an elementary function with
eigenvalue λ, then the average is computed as:

avg{f(y)}
y∈N(x)

= avg
y∈N(x)

{f(y)− f̄}+ f̄ =
1
d
(A (f − f̄))(x) + f̄

=
d− λ

d
(f(x) − f̄) + f̄ = f(x) +

λ

d
(f̄ − f(x))

and we get Grover’s wave equation. In the previous expression we used the fact
that f − f̄ is an eigenfunction of A with eigenvalue d− λ.

The previous definitions are general concepts of landscape theory. Let us fo-
cus now on the binary strings with the one-change neighborhood, which is the
representation and the neighborhood we use in the test suite minimization prob-
lem. In this case the solution set X is the set of all binary strings of size n.
Two solutions x and y are neighboring if one can be obtained from the other by
flipping a bit, that is, if the Hamming distance between the solutions, denoted
with H(x, y), is 1. We define the sphere of radius k around a solution x as the
set of all solutions lying at Hamming distance k from x [10]. A ball of radius k
is the set of all the solutions lying at Hamming distance lower or equal to k. In
analogy to the adjacency matrix we define the sphere and ball matrices of radius
k as:

S(k)
xy =

{
1 if H(x, y) = k
0 otherwise ; B(k)

xy =
k∑

ρ=0

S(ρ)
xy =

{
1 if H(x, y) ≤ k
0 otherwise (4)

Since the ball matrices are based on the sphere matrices we can focus on the
latter. The sphere matrix of radius one is the adjacency matrix of the one-change
neighborhood, A, and the sphere matrix of radius zero is the identity matrix, I.
Following [10], the matrices S(k) can be defined using the recurrence:

S(0) = I; S(1) = A; S(k+1) =
1

k + 1

(
A · S(k) − (n− k + 1)S(k−1)

)
(5)

With the help of the recurrence we can write all the matrices S(k) as polynomials
in A, the adjacency matrix. For example, S(2) = 1

2

(
A2 − nI

)
. As we previously

noted, the eigenvectors of the Laplacian matrix Δ are eigenvectors of the ad-
jacency matrix A. On the other hand, if f is eigenvector of A, then it is also
an eigenvector of any polynomial in A. As a consequence, all the functions that
are elementary are eigenvectors (up to an additive constant) of S(k) and their
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eigenvalues can be computed using the same polynomial in A that gives the
expression for S(k). The same is true for the ball matrices B(k), since they are a
sum of sphere matrices. Let us define the following series of polynomials:

S(0)(x) = 1 (6)

S(1)(x) = x (7)

S(k+1)(x) =
1

k + 1

(
x · S(k)(x)− (n− k + 1)S(k−1)(x)

)
(8)

We use the same name for the polynomials and the matrices related to the
spheres. The reader should notice, however, that the polynomials will be always
presented with their argument and the matrices have no argument. That is, S(k)

is the matrix and S(k)(x) is the polynomial. Using the previous polynomials, the
matrix S(k) can be written as S(k)(A) (the polynomial S(k)(x) evaluated in the
matrix A) and any eigenvector g of A with eigenvalue λ is also an eigenvector of
S(k)(A) with eigenvalue S(k)(λ).

One relevant set of eigenvectors of the Laplacian in the binary representation
is that of Walsh functions [11]. Furthermore, the Walsh functions form an or-
thogonal basis of eigenvectors in the configuration space. Thus, they have been
used to find the elementary landscape decomposition of problems with a bi-
nary representation like the SAT [6]. We will use these functions to provide the
landscape decomposition of the objective function of the test suite minimization
problem. Given the space of binary strings of length n, B

n, a (non-normalized)
Walsh function with parameter w ∈ B

n is defined as:

ψw(x) =
n∏

i=1

(−1)wixi = (−1)
∑n

i=1 wixi (9)

Two useful properties of Walsh functions are ψw · ψv = ψw+v where w + v is
the bitwise sum in Z2 of w and v; and ψ2

w = ψw · ψw = ψ2w = ψ0 = 1. We
define the order of a Walsh function ψw as the value 〈w|w〉 =

∑n
i=1 wi, that

is, the number of ones in w. A Walsh function with order p is elementary with
eigenvalue λ = 2p [8]. The average value of a Walsh function of order p > 0 is
zero, that is, ψw = 0 if w has at least one 1. The only Walsh function of order
p = 0 is ψ0 = 1, which is a constant.

In the mathematical development of Section 4 we will use, among others,
Walsh functions of order 1 and 2. Thus, we present here a special compact
notation for those binary strings having only one or two bits set to 1. We will
denote with i the binary string with position i set to 1 and the rest set to 0.
We also denote with i, j (i 
= j) the binary string with positions i and j set to 1
and the rest to 0. We omit the length of the string n, but it will be clear from
the context. For example, if we are considering binary strings in B

4 we have
1 = 1000 and 2, 3 = 0110. Using this notation we can write

ψi(x) = (−1)xi = 1− 2xi (10)

Given a set of binary strings W and a binary string u we denote with W ∧ u
the set of binary strings that can be computed as the bitwise AND of a string
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in W and u, that is, W ∧ u = {w ∧ u|w ∈ W}. For example, B
4 ∧ 0101 =

{0000, 0001, 0100, 0101}.
Since the Walsh functions form an orthogonal basis of R

2n

, any arbitrary
pseudoboolean function can be written as a weighted sum of Walsh functions in
the following way:

f =
∑

w∈Bn

awψw (11)

where the values aw are called Walsh coefficients. We can group together the
Walsh functions having the same order to find the elementary landscape decom-
position of the function. That is:

f (p) =
∑

w ∈ B
n

〈w|w〉 = p

awψw (12)

where each f (p) is an elementary function with eigenvalue 2p. The function f can
be written as a sum of the n+1 elementary components, that is: f =

∑n
p=0 f (p).

Thus, any function can be decomposed in a sum of at most n elementary land-
scapes, since we can add the constant value f (0) to any of the other elementary
components.

Once we know that the possible eigenvalues of the elementary components of
any function f are 2p with 0 ≤ p ≤ n, we can compute the possible eigenvalues
of the sphere matrices. Since the size of the neighborhood is d = n, we conclude
that the only possible eigenvalues for the spheres are S(k)(n − 2p) with p ∈
{0, 1, . . . , n}. With the help of Eqs. (6) to (8) we can write a recurrence formula
for the eigenvalues of the sphere matrices whose solution is S(k)(n− 2p) = K(n)

k,p ,

where K(n)
k,p is the (k, p) element of the n-th Krawtchouk matrix [10], which is an

(n + 1) × (n + 1) integer matrix. We will use Krawtchouk matrices to simplify
the expressions and reduce the computation of the elementary components of
the test suite minimization. The interested reader can deepen on Krawtchouk
matrices in [3]. One important property of the Krawtchouk matrices that will
be useful in Section 4 is:

(1 + x)n−p(1− x)p =
n∑

k=0

xkK(n)
k,p (13)

Each component f (p) of the elementary landscape decomposition of f is an
eigenfunction of the sphere matrix of radius r with eigenvalue S(r)(n − 2p) =
K(n)

r,p . Thus, we can compute the average fitness value in a sphere of radius r
around a solution x as:

avg{f(y)}
y|H(y,x)=r

=
(

n
r

)−1 n∑
p=0

K(n)
r,p f (p)(x) (14)
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We can also compute the c-th moment of the function f in a sphere of radius r
if we know the elementary landscape decomposition of f c:

μc = avg{f c(y)}
y|H(y,x)=r

=
(

n
r

)−1 n∑
p=0

K(n)
r,p (f c)(p) (x) (15)

3 Test Suite Minimization Problem

When a piece of software is modified, the new software is tested using some
previous test cases in order to check if new errors were introduced. This check
is known as regression testing. In [14] Yoo and Harman provide a very complete
survey on search-based techniques for regression testing. They distinguish three
different related problems: test suite minimization, test case selection and test
case prioritization. The problem we face here is the test suite minimization [13].
We define the problem as follows. Let T = {t1, t2, . . . , tn} be a set of tests for
a program and let M = {m1, m2, . . . , mk} be a set of elements of the program
that we want to cover with the tests. After running all the tests T we find that
each test can cover several program elements. This information is stored in a
matrix T that is defined as:

Tij =
{

1 if node mi is covered by test tj
0 otherwise (16)

We define the coverage of a subset of tests X ⊆ T as:

coverage(X) = |{i|∃j ∈ X, Tij = 1}| (17)

The problem consists in finding a subset X ⊆ T such that the coverage is
maximized while the number of tests cases in the set |X | is minimized. We can
define the objective function of the problem as the weighted sum of the coverage
and the number of tests. Thus, the objective function can be written as:

f(X) = coverage(X)− c · |X | (18)

where c is a constant that set the relative importance of the cost and coverage. It
can be interpreted as the cost of a test measured in the same units as the benefit
of a new covered element in the software. We assume here that all the elements
inM to be covered have the same value for the user and the cost of testing one
test in T is the same for all of them. We defer to future work the analysis of
the objective function when this assumption is not true. Although the function
proposed is a weighted sum, which simplifies the landscape analysis, non-linear
functions can be also used and analyzed.

In the following we will use binary strings to represent the solutions of the
problem. Thus, we introduce the decision variables xj ∈ B for 1 ≤ j ≤ n.
The variable xj is 1 if test tj is included in the solution and 0 otherwise. With
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this binary representation the coverage, the number of ones of a string and the
objective function f can be written as:

coverage(x) =
k∑

i=1

n
max
j=1
{Tijxj}; ones(x) =

n∑
j=1

xj (19)

f(x) =
k∑

i=1

n
max
j=1
{Tijxj} − c · ones(x) (20)

4 Elementary Landscape Decomposition

In this section we present two of the main contributions of this work: the elemen-
tary landscape decomposition of f and f2. In order to simplify the equations let
us introduce some notation. Let us define the sets Vi = {j|Tij = 1}. Vi contains
the indices of the tests which cover the element mi. We also use in the following
the term Ti to refer to the binary string composed of the elements of the i-th
row of matrix T . Ti is a binary mask with 1s in the positions that appear in Vi.

4.1 Decomposition of f

The goal of this section is to find the Walsh decomposition of f . We first de-
compose the functions coverage(x) and ones(x) into elementary landscapes and
then we combine the results. Let us start by analyzing the coverage function
and, in particular, let us write the maximum in its definition as a weighted sum
of Walsh functions with the help of (10).

n
max
j=1
{Tijxj} = 1−

n∏
j=1

(1− Tijxj) = 1−
∏
j∈Vi

(1 − xj)

= 1−
∏
j∈Vi

1 + ψj(x)

2
= 1− 2−|Vi|

∏
j∈Vi

(1 + ψj(x)) (21)

We can expand the product of Walsh functions in (21) using ψuψv = ψu+v to
get the Walsh decomposition of maxn

j=1.

n
max
j=1
{Tijxj} = 1− 2−|Vi|

∏
j∈Vi

(1 + ψj(x)) = 1− 2−|Vi|
∑

W∈P(Vi)

∏
j∈W

ψj(x) (22)

= 1− 2−|Vi|
∑

w∈Bn∧Ti

ψw(x)

Using the Walsh decomposition we can obtain that elementary landscape decom-
position. The elementary components are the sums of weighted Walsh functions
having the same order (number of ones in the string w). We can distinguish two
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cases: the constant elementary component (with order 0) and the non-constant
components. Then, the elementary landscape decomposition of maxn

j=1 is:

n
max
j=1
{Tijxj}(0) = 1− 1

2|Vi| (23)

n
max
j=1
{Tijxj}(p) = − 1

2|Vi|
∑

w ∈ B
n ∧ Ti

〈w, w〉 = p

ψw(x) where p > 0 (24)

Eqs. (23) and (24) are the elementary landscape decomposition of the coverage
of one single software element. We just have to add all the components of all the
k elements to get the elementary landscape decomposition of coverage(x). How-
ever, we should highlight that the previous expression is not very efficient to
compute the components of the maximum. We can observe that it requires
to compute a sum of

(
|Vi|
p

)
Walsh functions. Before combining all the pieces

to get the elementary landscape decomposition of the objective function of the
problem, we need first to find a simpler and more efficient expression for the
elementary components of the coverage of one single element.

Up to the best of our knowledge, this is the first time that the following
mathematical development is performed in the literature. The essence of the
development, however, is useful by itself and can be applied to other problems
with binary representation in which the Walsh analysis can be applied (like the
Max-SAT problem). We will focus on the summation of (24). Let us rewrite this
expression again as:

∑
w ∈ B

n ∧ Ti

〈w, w〉 = p

ψw(x) =
∑

W ∈ P(Vi)
|W | = p

∏
j∈W

ψj(x) (25)

Now we can identify the second member of the previous expression with the
coefficient of a polynomial. Let us consider the polynomial Q

(i)
x (z) defined as:

Q(i)
x (z) =

∏
j∈Vi

(z + ψj(x)) =
|Vi|∑
l=0

zl

⎛
⎜⎜⎜⎝

∑
W ∈ P(Vi)

|W | = |Vi| − l

∏
j∈W

ψj(x)

⎞
⎟⎟⎟⎠ =

|Vi|∑
l=0

qlz
l (26)

From (26) we conclude that the summation in (25) is the coefficient of z|Vi|−p

in the polynomial Q
(i)
x (z), that is, q|Vi|−p. According to (10) and (26) we can

write Q
(i)
x (z) = (z + 1)n

(i)
0 (z − 1)n

(i)
1 where n

(i)
0 and n

(i)
1 are the number of zeros

and ones, respectively, in the positions xj of the solution with j ∈ Vi. It should
be clear that n

(i)
0 + n

(i)
1 = |Vi|. Now we can profit from the fact that, according

to (13), the polynomials Q
(i)
x (z) are related to the Krawtchouk matrices by

Q
(i)
x (z) = (−1)n

(i)
1

∑|Vi|
l=0K

|Vi|
l,n

(i)
1

zl and we can write ql = (−1)n
(i)
1 K|Vi|

l,n
(i)
1

. Finally
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we obtain:
∑

w ∈ B
n ∧ Ti

〈w, w〉 = p

ψw(x) =
∑

W ∈ P(Vi)
|W | = p

∏
j∈W

ψj(x) = q|Vi|−p = (−1)n
(i)
1 K|Vi|

|Vi|−p,n
(i)
1

(27)

The first N Krawtchouk matrices can be computed in O(N3). Furthermore, they
can be computed once and stored in a file for future use. Thus, we transform the
summation over a large number of Walsh functions into a count of the number of
ones in a bit string and a read of a value stored in memory, which has complexity
O(n). Eq. (27) is an important result that allows us to provide an algorithm for
evaluating the elementary landscape decomposition of our objective function.
This algorithm is more efficient than the one proposed by Sutton et al. in [10].
We can now extend the elementary landscape decomposition to the complete
coverage of all the elements. That is:

coverage(0)(x) =
k∑

i=1

n
max
j=1
{Tijxj}(0) =

k∑
i=1

(
1− 1

2|Vi|

)
(28)

coverage(p)(x) =
k∑

i=1

n
max
j=1
{Tijxj}(p) = −

k∑
i=1

1
2|Vi| (−1)n

(i)
1 K|Vi|

|Vi|−p,n
(i)
1

(29)

where p > 0. The previous expressions can be computed in O(nk).
We now need the decomposition of the function ones(x):

ones(x) =
n∑

j=1

xj =
n∑

j=1

1− ψj(x)

2
=

n

2
− 1

2

n∑
j=1

ψj(x) (30)

Then, we can write:

ones(0)(x) =
n

2
; ones(1)(x) =

−1
2

n∑
j=1

ψj(x) = ones(x)− n

2
(31)

which is the elementary landscape decomposition of ones(x). Finally, we combine
this result with the decomposition of coverage(x) to obtain the decomposition
of f :

f (0)(x) =
k∑

i=1

(
1− 1

2|Vi|

)
− c · n

2
(32)

f (1)(x) = −
k∑

i=1

1
2|Vi| (−1)n

(i)
1 K|Vi|

|Vi|−1,n
(i)
1

− c ·
(
ones(x)− n

2

)
(33)

f (p)(x) = −
k∑

i=1

1
2|Vi| (−1)n

(i)
1 K|Vi|

|Vi|−p,n
(i)
1

where 1 < p ≤ n (34)
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All of the previous expressions can be computed in O(nk). Since the maximum
number of elementary components is equal to n, we can obtain the evaluation of
all the elementary components of an arbitrary solution x in O(n2k). We found an
algorithm with complexity O(nk) to compute all the elementary components of
f . This complexity is lower than the O(nn) complexity of the algorithm proposed
in [10].

4.2 Decomposition of f2

In the previous section we found the elementary landscape decomposition of f . In
this section we are interested in the elementary landscape decomposition of f2,
since it allows to compute the variance in any region (sphere or ball) around any
arbitrary solution x. The derivation of the elementary landscape decomposition
of f2 is based again in the Walsh analysis of the function. Combining the Walsh
decomposition in (22) with the one of (30) and the definition of f in (20), the
function f2 can be written as:

f2(x) =

⎡
⎣(k − cn

2

)
−

k∑
i=1

⎛
⎝ 1

2|Vi|
∑

w ∈ B
n ∧ Ti

ψw(x)

⎞
⎠ +

c

2

n∑
j=1

ψj(x)

⎤
⎦

2

We need to expand the expression in order to find the elementary landscape
decomposition. Due to space constraints we omit the intermediate steps and
present the final expressions of the elementary components of f2:

(
f2

)(0)
(x) = β2 +

c2

4
n−

k∑
i=1

c|Vi|+ 2β

2|Vi| +
k∑

i,i′=1

1
2|Vi∪Vi′ | (35)

(
f2

)(1)
(x) = cβ(n− 2ones(x))−

k∑
i=1

(
(c|Vi|+ 2β)(−1)n

(i)
1

2|Vi| K|Vi|
|Vi|−1,n

(i)
1

)

+
k∑

i,i′=1

(
(−1)n

(i∨i′)
1

2|Vi∪Vi′ | K
|Vi∪Vi′ |
|Vi∪Vi′ |−1,n

(i∨i′)
1

)

− c

k∑
i=1

n− 2ones(x)− |Vi|+ 2n
(i)
1

2|Vi| (36)

(
f2

)(2)
(x) =

c2

2
(−1)ones(x)Kn

n−2,ones(x) −
k∑

i=1

(
(c|Vi|+ 2β)(−1)n

(i)
1

2|Vi| K|Vi|
|Vi|−2,n

(i)
1

)

+
k∑

i,i′=1

(
(−1)n

(i∨i′)
1

2|Vi∪Vi′ | K
|Vi∪Vi′ |
|Vi∪Vi′ |−2,n

(i∨i′)
1

)

− c

k∑
i=1

(−1)n
(i)
1

2|Vi| K
|Vi|
|Vi|−1,n

(i)
1

(
n− 2ones(x)− |Vi|+ 2n

(i)
1

)
(37)
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(
f2

)(p)
(x) = −

k∑
i=1

(
(c|Vi|+ 2β)(−1)n

(i)
1

2|Vi| K|Vi|
|Vi|−p,n

(i)
1

)

+
k∑

i,i′=1

(
(−1)n

(i∨i′)
1

2|Vi∪Vi′ | K
|Vi∪Vi′ |
|Vi∪Vi′ |−p,n

(i∨i′)
1

)

− c

k∑
i=1

(−1)n
(i)
1

2|Vi| K
|Vi|
|Vi|−p+1,n

(i)
1

(
n− 2ones(x)− |Vi|+ 2n

(i)
1
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where β = k − cn/2, n
(i∨i′)
1 are the number of ones in the positions xj of the

solution with j ∈ Vi ∪ Vi′ and p > 2. The elementary components (36), (37) and
(38) can be computed in O(nk2). Furthermore, we found an algorithm which
computes all (not only one) the components in O(nk2).

5 Application of the Decomposition

In Section 4 we have derived closed-form formulas for each elementary component
of f and f2. Using this decompositions we can compute the average μ1 and
the standard deviation σ of the fitness distribution in the spheres and balls of
arbitrary radius around a given solution x. Once we have the evaluation of the
elementary components, the first and second order moments of f , μ1 and μ2, can
be computed from Eqs. (32)-(34) and (35)-(38) in O(n) for any ball or sphere
around the solution using (15). The standard deviation can be computed from
the two first moments using the equation σ =

√
μ2 − μ2

1.
How can we use this information? We propose here the following operator.

Given a solution x compute the μ1 and σ of the fitness distribution around the
solution in all the spheres and balls up to a maximum radius r. We can do this in
O(nk2), assuming that r is fixed. Using the averages and the standard deviations
computed, we check if there is a high probability of finding a solution in a region
around x that is better than the best so far solution. This check is based on the
expression μ1+d·σ−best, where d is parameter and best is the fitness value of the
best so far solution. The higher the value of the previous expression, the higher
the probability of finding a solution in the corresponding region that is better
than the best solution. The previous expression is based on the idea that most
of the samples of a distribution can be found around the average at a distance
that is a few times the standard deviation. For example, at least 75% of the
samples can be found in the interval [μ1−2σ, μ1 +2σ]. In the case of the normal
distribution, the percentage is 95%. In our operator, if μ1 + d · σ > best, then it
is likely that a solution better than the best found can be inside the considered
region. If that happens, then a local search is performed in the region. This local
search evaluates all the solutions in that region and replaces the current one by
the best solution found. The pseudocode of the operator is in Algorithm 1.

We call this operator Guarded Local Search (GLS) because it applies the
local search only in the case that there exists some evidence for the success. In
addition, the local search is performed in the region in which most probably a
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Algorithm 1. Pseudocode of the GLS operator
1: best = best so far solution;
2: bestRegion = none;
3: quality = −∞;
4: for r ∈ all the considered regions do
5: (μ1,σ) = computeAvgStdDev(x,r);
6: if μ1 + d · σ − best > quality then
7: quality = μ1 + d · σ − best;
8: bestRegion = r;
9: end if

10: end for
11: y=x;
12: if quality > 0 then
13: y = applyLocalSearchInRegion (x,bestRegion)
14: end if
15: return y

better solution would be found, thus minimizing the computation cost of a local
search in a larger region. We expect our proposed operator to have an important
intensification component. Thus, a population-based metaheuristic would be a
good complement to increase the diversification of the combined algorithm. The
operator can improve the quality of solutions of the algorithm it is included in,
but it also will increase the runtime. However, this runtime should be quite lower
than the one obtained if the local search would be applied at every step of the
algorithm.

5.1 Experimental Study

As a proof of concept, we analyze the performance of the proposed operator in
this section. For this experimental study we use a steady-state Genetic Algo-
rithm (GA) with 10 individuals in the population, binary tournament selection,
bit-flip mutation with probability p = 0.01 of flipping a bit, one-point crossover
and elitist replacement. The stopping condition is to create 100 individuals (110
fitness evaluations). We compare three variants of the GA that differ in how the
local search is applied. The first variant does not include any local search opera-
tor. In the second variant, denoted with GLSr, the GLS operator of Algorithm 1
is applied to the offspring after the mutation. The regions considered are all the
spheres and balls up to radius r. The third variant, LSr, always applies the local
search after the mutation in a ball of radius r.

For the experiments we selected six programs from the Siemens suite. The
programs are printtokens, printtokens2, schedule, schedule2, totinfo and
replace. They are available from the Software-artifact Infrastructure Reposi-
tory [2]. Each program has a large number of available test suites, from which
we select the first 100 tests covering different nodes. Thus, in our experiments
n = 100. The constant tuning the oracle cost was set to c = 1. We used three
values for the radius r: from 2 to 4. In the GLS the parameter d was set to d = 2.
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Since we are dealing with stochastic algorithms we performed 30 independent
executions and we show in Table 1 the average values obtained for the fitness of
the best solution found and the execution time of the algorithms, respectively.

Table 1. Fitness of the best solution found and computation time (in seconds) of the
algorithms (averages over 30 independent runs)

Alg.
printtokens printtokens2 schedule schedule2 totinfo replace
Fit. Secs. Fit. Secs. Fit. Secs. Fit. Secs. Fit. Secs. Fit. Secs.

GA 89.20 0.03 103.13 0.10 84.57 0.07 78.70 0.10 86.87 0.03 71.90 0.03
GLS2 105.17 37.93 119.63 69.73 101.60 21.10 93.60 52.63 102.30 39.07 88.13 37.30
LS2 113.27 10.67 129.00 20.73 111.07 3.80 103.10 3.17 110.00 3.03 97.67 5.53
GLS3 106.33 136.97 120.87 84.10 103.40 31.80 95.30 29.90 103.03 33.40 90.73 60.73
LS3 113.63 159.30 129.80 141.33 111.80 298.07 103.97 90.67 110.00 88.13 98.00 141.37
GLS4 105.27 390.03 121.47 363.53 103.40 237.17 96.37 212.70 104.33 206.50 91.13 368.97
LS4 114.00 3107.47 129.97 2943.03 112.00 2098.00 104.00 1875.67 110.00 1823.80 98.00 3602.47

We can observe in Table 1 that the ordering of the algorithms according to
the solutions quality is LSr > GLSr > GA. This is the expected result, since
LSr always applies a depth local search while GLSr applies the local search only
in some favorable circumstances. An analysis of the evolution of the best fitness
value reveals that this ordering is kept during the search process.

If we focus on the computation time required by the algorithms, we observe
that GA is always the fastest algorithm. When r ≥ 3, GLSr is faster than LSr.
However, if r = 2 then LSr is faster than GLSr. This means that the complete
exploration of a ball of radius r = 2 is faster than determining if a local search
should be applied in the GLS operator. Although we show here the computa-
tion times, it should be noted that this depends on the implementation details
and the machines used. For this reason the stopping condition is the number of
evaluations. The great amount of time required to compute the elementary com-
ponents is the main drawback of the GLS operator. However, this computation
can be parallelized, as well as the application of the local search. In particu-
lar, Graphic Processing Units (GPUs) can be used to compute the elementary
components in parallel.

6 Conclusion

We have applied landscape theory to find the elementary landscape decomposi-
tion of the Test Suite Minimization problem in regression testing. We have also
decomposed the squared objective function. Using the closed-form formulas of
the decomposition we can compute the average and the standard deviation of
the fitness values around a given solution x in an efficient way. With these tools
we proposed an operator to improve the quality of the solutions. This operator
applies a local search around the solution only if the probability of finding a best
solution is high. The results of an experimental study confirms that the operator
improves the solutions requiring a moderate amount of computation. A blind lo-
cal search outperforms the results of our proposed operator but requires a large
amount of computation as the size of the explored region increases.
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The future work should focus on new applications of the theory but also on
new theoretical implications of the elementary landscape decomposition, such
as determining the difficulty of a problem instance by observing its elementary
components or predicting the behaviour of a search algorithm when applied to
a problem.
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Abstract. One of the most important issues in a software development project 
is the requirements prioritization. This task is used to indicate an order for the 
implementation of the requirements. This problem has uncertain aspects, 
therefore Fuzzy Logic concepts can be used to properly represent and tackle the 
task. The objective of this work is to present a formal framework to aid the 
decision making in prioritizing requirements in a software development 
process, including ambiguous and vague data.  

Keywords: Requirements Prioritization, SBSE Applications, Fuzzy Logic. 

1   Introduction 

Search Based Software Engineering (SBSE) is a field that proposes to modeling and 
solve complex software engineering problems by using search techniques, such as 
metaheuristics. Among the problems already tackled, the requirements prioritization 
problem has received special attention recently. 

In [1], approaches to deal with the requirement prioritization problem are 
presented, where genetic algorithm is employed. Such optimization approach does not 
consider the fuzzy and vagueness human goals, such as linguistics evaluations of 
stakeholders. 

Examples of goals that may be measured in a fuzzy linguist approach are 
stakeholders’ satisfaction, deliver on time, deliver on budget, deliver all planned 
scope, meet quality requirements, team satisfaction, and deliver all high-priority 
functionalities in the first release. 

An approach to prioritize requirements using fuzzy decision making was proposed 
in [2]. The proposed algorithm assists stakeholders in analyzing conflicting 
requirements in terms of goals and constraints of reaching to a crisp optimal decision 
value against which an appropriate priority can be assigned to the conflicting 
requirement. The influence of requirements prioritization on goals was not 
considered.  

Therefore, the objective of this work is to present a formal framework guided by 
fuzzy goals to be used in the requirements prioritization task. 

Section 2 presents the proposed formal framework. Section 3 shows some initial 
results with the requirement prioritization problem. Section 4 outlines conclusions and 
future works. 
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2   Formal Framework 

In this framework, capital letters denote sets, fuzzy sets and fuzzy relations, U = 0.0 + 
0.1 + ...+ 1.0 is the discourse universe for the definition of fuzzy sets and L = [0,1] is 
the interval for defining the participation values, F(U) denotes the family of fuzzy sets 
defined in U. Section 2.1 formalizes the information regarding the Software Fuzzy 
Goals. Section 2.2 formalizes an evaluation function for this approach.  

2.1   Definitions 

This first part of the framework allows the representation of fuzzy software goals, 
fuzzy desired situations and fuzzy requirements for the stakeholder. Each attribute of 
a goal is represented by a linguistic variable (X) [3] [4]. The values of these variables 
are sentences in the language formed by terms that are aspiration level values, e. g., 
T(“Aspiration”) = ... + low + medium + ... + high + .... The meaning of these levels 
corresponds to fuzzy subsets of U, e. g., low = [1.0, 1.0, 0.9, 0.7, 0.5, 0.2, 0.0, 0.0, 
0.0, 0.0, 0.0] and high = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.5, 1.0, 1.0, 1.0]). Where the 
"+" sign represents the union of the elements of set. 

A pair (variable, aspiration level) defines a fuzzy software goal. In general, more 
than one fuzzy software goal is used in the specifications of a desired fuzzy situation. 
Each goal contributes to a different degree to the meaning of the situation. The next 
three definitions formalize software goal, desired situation and requirement. 

Definition 1. A software goal Gm is fuzzy if the aspiration level Am, assigned to 
attribute Xm of a desired situation, is described in terms of a fuzzy subset of U: 

 ,, ⁄ , (1)

where Xm is the name of the m-th linguistic variable that represents the m-th attribute 
of a desired situation; L is the limit of elements in U; Am is a particular linguistic value 
of Xm belonging to T(“Aspiration”) and represents the aspiration level assigned to Xm; 
and Am(ui) is the participation degree of ui ∈ U in the fuzzy set that defines Am ∈ 
F(U). 

Definition 2. A situation is denominated fuzzy if its concept is a fuzzy set described 
in terms of fuzzy goals Gm and the degrees of participation μm (m = 1, ..., M), 
subjectively indicating how much these goals are important in a fuzzy desired 
situation DS, 

/1  

 

(2)

Definition 3. A requirement Rer is denominated fuzzy if its concept is a fuzzy set 
described in terms of pairs (Xm, Rmr) and degrees of participation μm (m = 1, ..., M), 
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/1 ,  (3)

where Xm is the name of the m-th linguistic variable employed for the representation 
of the m-th attribute in a desired fuzzy situation; and Rmr ∈ F(U) are particular 
linguistic values of Xm belonging to T(“Aspiration”) and represents the achieved  
level assigned to the attribute Xm due the implementation of the requirement r. 

2.2   Evaluation Function 

The evaluation function for fuzzy requirements considers similarity measurements 
between the fuzzy sets that express the achieved and the aspired levels in each one of 
the attributes, and their respective values of importance within the context of the 
fuzzy requirements and fuzzy desired situations [5]: 

,  μ , μ  (4)

Where α is a similarity measurement between fuzzy sets and assumes, in this article, 
the form: 

, 1  | | / /  (5)

where ui ∈ U and L is the limit of elements in U. 
The second term of the difference in (5) is the Euclidean distance between fuzzy 

sets [6]. It is worth noting that: α: F(U)xF(U) → [0, 1]. Therefore, as the similarity 
values between the levels in Rer and DS increase, f_eval increases. In this case, for 
each m = 1, ..., M, if Rmr = Am then f_eval is 1 maximum and equal to 1. As the 
similarity values decrease, f_eval decreases, reaching a minimum equal to 0. These 
properties allow the stakeholder to obtain measurements as promising as the fuzzy 
requirements are in the design of a satisfactory prioritization. 

3   Evaluation 

This section presents some tests performed with the prioritization mechanism, 
programmed from the formal framework proposed in the last section. It was divided 
into two subsections. Section 3.1 presents information on the evaluation instance. 
Section 3.2 presents a specific prioritization problem, the solution produced by the 
proposed prioritization mechanism, and a brief analysis of these initial results. 

3.1   Evaluation Instance 

The evaluation instance used for testing the framework for requirements prioritization 
in a fuzzy linguistic approach is composed of seven goals and nine requirements. 
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These goals are frequently used in [7] to help stakeholders to reflect the dimensions of 
the success of a software development project. The objective is to verify the 
capability of the proposed framework over the prioritization task and its level of 
responsiveness in requirements evaluation changes. 

Table 1 describes some aspired levels and their representation in terms of fuzzy sets. 
Table 2, according to Definition 1, describes the scenario with seven attributes (Xm) that 
define seven fuzzy software goals (Gm). According to Definition 2, it presents a 
description of the fuzzy aspired level and the importance degree (μm) of the goals that 
define the fuzzy desired situation (DS). According to Definition 3, it also presents the 
achieved fuzzy levels (Rmr) of the fuzzy requirements (Remr) in the attributes that define 
the desired situation. Fuzzy aspired levels in the seven fuzzy software goals that define 
the desired situation were represented by [m, h, l, h, l, h, m]. 

Consider, as an example, the development of an ATM system. The attribute X1.may 
represent "Deliver all high-priority functionalities in the first release" and has an 
aspired level medium (m) in the software goal G1, that defines the fuzzy desired 
situation. The requirements Re4 and Re7 are, for example, “Withdrawal Transaction" 
and "Show Welcome Message" respectively. In this example, the first transaction 
contributes in high degree (h) to the level of attribute X1, while the second influences 
at low level (l) to X1, as can be seen in table 2. 

Table 1. Description of each priority in linguistic terms and their representation in terms of 
fuzzy sets 

Linguistic Term Fuzzy Set Representation 
low (l) [1.0, 1.0, 0.9, 0.7, 0.5, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0]  
medium (m) [0.0, 0.0, 0.0, 0.8, 0.9, 1.0, 0.7, 0.0, 0.0, 0.0, 0.0] 
high (h) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.5, 1.0, 1.0, 1.0] 

Table 2. Description of each fuzzy requirement, contribution level to achievement of goals and 
desired state of each goal 

Attributes (Xm) 
Importance (μm) 
Desired Situation (DS) 

X1 
0.6 
m 

X2 
1.0 
h 

X3 
0.4 
l 

X4 
0.2 
h 

X5 
0.4 
l 

X6 
0.8 
h 

X7 
0.6 
m 

Re1 m h l h l h m 
Re2 h m h m h l l 
Re3 h h m h l m h 
Re4 h l m h l l h 
Re5 m l l m h h m 
Re6 h l m h l m h 
Re7 l m m h l h h 
Re8 m m m h l h h 
Re9 h m m h l h h 

3.2   Prioritization Results 

Table 3 describes the results of the execution of three tests. At each column, there is a 
requirement description and a real number representing the level of similarity of that 
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requirement to goals. For each test, one variable was changed to alter the generated 
prioritized list obtained with the application of the evaluation function in Expressions 
(4) and (5). Test 1 was the control test where requirement Re1 was left purposely 
equal to the desired state. In Test 2, the desired fuzzy situation DS was changed to [m, 
l, l, h, l, h, m], where just the aspired level in X2 was changed from high to low. In 
Test 3 the importance of G4 was changed from 0.2 to 0.8. In the fourth test the values 
of representation of linguistic variables "low", "medium" and "high" were all changed 
to 0.1. 

Table 3. Prioritized lists generated form each test. First value is the requirement number and 
second is the level of importance to goals 

Test 1 Test 2 Test 3 Test 4 
Re1,1.00 Re5,0.88 Re1,1.00 Re1,1.00 
Re5,0.68 Re1,0.80 Re8,0.69 Re2,1.00 
Re8,0.64 Re8,0.67 Re5,0.63 Re3,1.00 
Re3,0.57 Re7,0.58 Re3,0.62 Re4,1.00 
Re7,0.55 Re6,0.57 Re7,0.61 Re5,1.00 
Re9,0.53 Re9,0.56 Re9,0.59 Re6,1.00 
Re6,0.37 Re4,0.56 Re6,0.45 Re7,1.00 
Re4,0.36 Re3,0.37 Re4,0.44 Re8,1.00 
Re2,0.26 Re2,0.29 Re2,0.26 Re9,1.00 

 
As expected, in Test 1 Re1  achieved 100% of similarity with goals since it has 

exactly the same definition of the desired fuzzy situation [m, h, l, h, l, h, m], this is 
also seen in Test 3. There was a reordering in Tests 2 an 3 influenced by the changes 
in the aspiration and importance levels. For Test 2, for example, there is no 
requirement whit 100% of similarity, since all of them are different from the desired 
situation. For Test 3, as expected, Re1 was still at the top of the list, and the reduction 
on importance of G4 motived the new requirements’ order. For Test 4, we find that by 
using the same value to represent the linguistic variables, there is no improvement 
proved unexpectedly strong, given that all requirements are evaluated the same way. 

4   Conclusion and Future Works 

Requirements prioritization is a hard task to be performed. Previous works tackled the 
problem without bearing in mind the uncertainty present in a software development 
process. This paper proposed a formal framework guided by fuzzy goals to be applied 
to solve the requirements prioritization problem. 

Besides presenting the formal framework, a sample application to evaluate the 
effectiveness of the proposed approach was described. The results demonstrated  
the ability of the approach in relation to the flexibility that may occurs in the task. For 
the tests, the variation of a configuration leads to a new solution by the proposed 
framework.  

Future studies include interdependency between goals, also included the 
prioritization taking into account the evaluation of the stakeholders involved and 
changing the value of the contribution of goals for the use of fuzzy terms instead of 
real numbers, and application of the framework to a real world project. 
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Abstract. In the past few years, there has been a growing interest in
automating refactoring activities using metaheuristic approaches. These
current refactoring approaches involve source-to-source transformation.
However, detailed information at source-code level makes precondition
checking and source-level refactorings hard to perform. It also severely
limits how extensively a program can be refactored. While design im-
provement tools can be used for a deep and fast design exploration, it
is left to the programmer to manually apply the required refactorings to
the source code, which is a burdensome task.

To tackle the above problems, our proposal is based on a multi-level
refactoring approach that involves both design and source code in the
refactoring process. Initially, the program design is extracted from the
source code. Then, in a design exploration phase, using a metaheuristic
approach, the design is transformed to a better one in terms of a metrics
suite as well as the user perspective. The source code is then refactored
based on both the improved design and the metrics suite. Using this
approach, we expect a deeper and faster exploration of the program
design space, that may result more opportunities for design improvement.

Keywords: Multi-level refactoring, search-based refactoring, design
exploration.

1 Introduction and Problem Description

A software system must constantly change to cope with new requirements or to
adjust to a new environment. As it evolves, very often, its design erodes unless it
is regularly refactored to ensure that it is kept appropriate for its functionality. In
fact, the design should be simultaneously updated to accommodate new require-
ments. However, manual refactoring is a tedious, complicated, and error-prone
activity [11], so it is natural to automate this process as much as possible.

Over the past few years, there has been a growing interest in automating
refactoring activities based on metaheuristic approaches. These approaches are
attractive because they propose a simple solution to the complex process of
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refactoring, which is usually characterized by several competing and conflicting
objectives [4].

A search-based refactoring approach uses metaheuristic approaches to guide
the refactoring process, and software metrics to direct the process towards higher
quality designs. In this approach, a refactoring is acceptable if it, apart from
preserving the behavior of the system, improves the merit of the design based
on a metrics suite.

Using a search-based refactoring approach, it is possible to apply many refac-
torings without programmer intervention and hence improve automatically the
design to an acceptable level of quality. However, it may cause difficulties in pre-
serving programmer understandability. In fact, in this process, the programmer
only sees the end result of the refactoring process and is liable to find it hard
to understand especially when a large number of refactorings are applied to the
system.

The current code improvement approaches, including metaheuristic ones, in-
volve source-to-source transformation that leads to another drawback. The source
code contains low-level detailed information and this makes computing precon-
ditions on source code and performing source-level refactorings complicated and
time-consuming. Furthermore, strong static code dependence between source
code entities such as relationships between methods and attributes disallow
many refactorings. It limits how fundamentally the design of a program can
be changed.

Metaheuristic approaches have been used to perform design-level refactoring
to UML-like design models [2], [10], [13]. While these approaches can indeed
be used for deep design exploration, it is left to the programmer to manually
apply the refactorings to the source code, which can be a burdensome task.
Furthermore, in an agile context where source code is the only documentation of
the system and UML models are not maintained, this approach cannot be used.

The research described in this paper presents a new approach to cope with
the above-mentioned problems, one that also provides the benefits of both code
and design improvement approaches. It is based on a combination of code and
design improvement tools and addresses existing problems with programmer
comprehension of the refactored program. It also enables a deeper exploration
of the program design space than has been possible up until now.

The remainder of this article is structured as follows: The key idea of this
research project is described in Section 2. Our progress to date is presented in
Section 3. In Section 4, we survey related work and conclude in Section 5.

2 Proposed Solution

The main goal of this research project is to investigate how a refactoring ap-
proach can be extended to perform radical, rather than surface, design explo-
ration, and to address the problem of comprehension of the refactored program.
To achieve these goals, our proposal is to involve design and source code as well
as the user in the refactoring process.
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The proposed solution is based on a multi-level refactoring approach as il-
lustrated in Fig. 1. In this approach the refactoring process is divided into two
steps namely Design Exploration and Full Refactoring as follows:

1. Design Exploration: Initially, a UML-like design model is extracted from
the source code using extract model process. Then, in a design exploration
phase, using metaheuristic approaches, the design is transformed to a better
design in terms of a metrics suite. As most of the program detail, especially in
method bodies, has been abstracted away, precondition checking and refac-
toring execution become much faster. This will also enable a more extensive
search of the design space than has been hitherto possible. At the end of
the design exploration phase, a number of possible best (Pareto optimal)
designs are presented to the user who selects one design as desirable design
they wish to use.

2. Full Refactoring: In this detailed refactoring phase, the source code is
refactored under the general guidance of the metrics suite, but crucially
using the design selected in stage (1) as the ultimate goal. When this process
completes, the resulting program will have the same functional behaviour as
the original, and a design close to the one chosen by the user in stage (1).

Fig. 1. Multi-level refactoring using a search-based refactoring approach

2.1 Key Research Questions

The main research questions involved in this research project are as follows:

RQ 1: Does the proposed approach produce programs of higher quality than
a source-to-source refactoring approach in terms of metrics values?

RQ 2: Does the approach lead to a better understanding of refactoring process
as well as the refactored program in terms of the user perspective?

RQ 3: Does the approach produce programs that are a greater design dis-
tance from the original than those produced by the source-to-source refactoring
approach?

RQ 4: The refactoring process is informed not only by the metrics suite, but
also by the user-selected design and the series of transformations that led to this
program design. How this combination is best used to guide the search is an
open question.
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RQ 5: The refactoring process is guided by a metrics suite. Which met-
rics should be in this suite to achieve the best design improvement is an open
question. While a number of “off-the-shelf” suites are available (QMOOD [3],
MOOD [1], etc.), we expect the answer to lie in a tailored metrics suite.

RQ 6: Can the same (or similar) metrics suite be used for the design explo-
ration process as for the refactoring process?

2.2 Plan for Evaluation

The value of multi-level automated refactoring will be assessed by building a
search-based refactoring tool that implements the concept and then evaluates it.

Concerning RQ1, empirical experiments will be carried out where a software
system that has some design problems will be refactored using both the multi-
level refactoring approach as well as the non-interactive source-to-source refac-
toring approach. The two refactored programs will then be compared. The hy-
pothesis that multi-level refactoring is valuable will be proven if the proposed
approach can produce better programs in terms of metrics values including in
metrics suite.

Regarding RQ2, a user study will be conducted with experienced, industry-
based software engineers to ascertain whether the proposed approach can im-
prove the user understandability of refactoring process as well as the refactored
program. Experiments will be conducted, similar to those used to evaluate RQ1,
where the effectiveness of proposed approach is measured based on user perspec-
tive which is evaluated using questionnaires. In this experiment, it is assumed
that the users are familiar with the systems under investigation and know the
existing design problems in these systems.

3 Progress to Date

To validate the proposed approach, an automated refactoring tool called Code-
Imp1 has been implemented [6]. It takes Java 6 source code as input, extracts
design metric information, calculates quality values according to an evaluation
function, and applies refactorings to the source code. Its output consists of the
refactored input code as well as detailed refactorings and metrics information.

Code-Imp supports different combinations (weighted-sum and Pareto opti-
mality) of over 30 software quality metrics and uses various search techniques
including different hill climbing techniques to guide the refactoring process. The
tool focuses on design-level refactorings that have a significant impact on pro-
gram design. Currently, it supports 14 refactorings such as moving methods and
fields around the class hierarchy, splitting and merging classes, and also changing
inheritance relationship to delegation relationship and vice versa.

Currently, we are extending Code-Imp to direct the process of refactoring not
only using the metrics suite, but also based on the user-selected design. The de-
sign is expressed as a UML model and we are investigating how this combination
can achieve the best trade-off between metrics and the desired design.
1 Combinatorial Optimisation for Design Improvement.
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4 Related Work

Related work is discussed along two dimensions: search-based refactoring tools
and search-based design tools. They differ from each other in that search-based
design happens during the design of a software system (before implementing it
in source code), while search-based refactoring occurs after a software system is
designed and implemented [13].

Search-based refactoring: The idea of considering object-oriented design im-
provement as a combinatorial optimization problem was initially investigated by
O’Keeffe and Ó Cinnéide [8], [9]. They showed how a search-based refactoring
approach can be used to improve the quality of a program in terms of Flexibility,
Understandability, and Reusability based on the QMOOD metrics suite. Seng et
al. [12] proposed a similar approach based on a genetic algorithm to optimize
the program by moving methods between classes in program. Similar work was
done by Harman and Tratt [5] except that they introduced the idea of using a
Pareto optimal approach to make the combination of metrics easier. Jensen and
Cheng [7] used genetic programming to drive a search-based refactoring process
that aims to introduce design patterns.

Search-based design: Simons et. al [13] showed how an interactive, evolution-
ary search technique can improve activities in upstream software design. They
used a multi-objective GA to design a class structure from a design problem
derived from use cases. In this approach, a designer and software agents cooper-
ate together to guide the search towards a better class design. Raiha et. al [10]
extracted initial design from a responsibility dependence graph and proposed a
GA-based approach to automatically produce software architectures containing
some design patterns. Amoui et al. [2] investigated how introducing architecture
design patterns to a UML design model using GA can improve reusability of
software architecture.

5 Conclusion

In recent years, there has been an amount of work done in using search-based
techniques to improve the design of existing code by means of refactoring. How-
ever, attention to the source code alone during the refactoring process has made
previous approaches not as effective as they could be. To improve the approach,
what really is needed is a design-level search that is unhindered by source code
detail and can therefore traverse the design space fluidly.

As a solution, we proposed a multi-level refactoring approach as a combination
of code and design improvement tools to refactor a program based on both
its design and source code. We anticipate the proposed approach, apart from
improving the quality of the design with respect to metrics and user perspective,
is capable of expanding the search space that were not previously possible. To
validate the approach, we presented Code-Imp as an infrastructure that has been
implemented to facilitate experiments based on this proposed solution.
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Abstract. Automatically generated state machines are constrained by
their complexity, which can be reduced via hierarchy generation. A tech-
nique has been demonstrated for hierarchy generation, although evalua-
tion of this technique has proved difficult.

There are a variety of metrics that can be used to provide indicators
of how complicated a state machine or statechart is, one such example
is cyclomatic complexity (the number of edges - the number of states
+ 2). Despite this, the existing complexity metric for statecharts does
not operate on the hierarchy, instead providing an equivalent cyclomatic
complexity for statecharts by ignoring it.

This paper defines two new metrics; Top Level Cyclomatic Complex-
ity and Hierarchical Cyclomatic Complexity. These metrics assess the
complexity of a hierarchical machine directly, as well as allowing for
comparison between the original, flat state machine and its hierarchical
counterpart.

1 Introduction

One of the problems that precludes the widespread use of state machines is their
inefficient growth of complexity with size; as the number of states increase, the
likelihood of duplication of parts of the machine increases. Complexity impacts
understandability [1], meaning state machines get less understandable as they
grow, jeopardising their utility in reverse engineering scenarios.

Adding a hierarchy to a machine reduces its complexity by providing ab-
straction, breaking the machine into multiple levels of behavioural detail. State
hierarchies were originally proposed by Harel in statecharts [4] which add “super-
states”, which contain more superstates or simple states to represent a hierarchy.

Search-based hierarchy generation has been used to generate groupings for
software module dependency graphs based on the number of edges between
groups of modules [9]. An information-theoretic method has also been used [6]
to accomplish the same goal. The former method has also been used to produce
hierarchies for state machines [3].

Published results of these techniques both exhibit a common flaw; in the
absence of an expert, evaluation of results is difficult. Metrics allow results to
� Supported by EPSRC grant EP/F065825/1 REGI: Reverse Engineering State Ma-

chine Hierarchies by Grammar Inference.
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be compared and ranked without the requirement of a pre-determined solution
to compare them to (or human participation to provide ranking). Structural
properties affect the cognitive complexity of software [10]; therefore metrics that
express these properties numerically express the complexity of the artefact under
investigation.

Statechart specific metrics have been defined, although none take into account
the hierarchy of the states, but simply the connectivity between them. This
work proposes two metrics for this purpose; principally to facilitate evaluation
of automatic hierarchy generation techniques. In addition to these metrics, this
work also formally defines a hierarchical state machine as an extension of a
labeled transition system.

2 Background

One oft-used metric is McCabe Cyclomatic Complexity (CC) [8]. Defined as E−
N+2, where E is the number of edges in a graph, and N is the number of nodes, it
offers an estimate of how complex an artefact is. Originally applied to software
systems (where the graph is the control-flow graph) it gives an approximate
indicator of the difficulty developers will have when maintaining a module.

CC has been applied to statecharts in two ways. One such way is to calculate
the sum of the CC of the code that implements each state [11]. Another is
to perform the normal CC calculation, ignoring superstates, operating only on
simple states, known as structural cyclomatic complexity (SCC) [2].

The value of the latter, if applied in the context of reverse engineering hi-
erarchies would rarely change, as the number of simple states is constant. The
number of transitions, however may reduce complexity [5]. The transition count
is reduced whenever every state in a superstate has one or more transitions in
common. These common transitions are replaced by a single transition from the
superstate, resulting in fewer overall edges.

Despite this reduction of cyclomatic complexity, this metric is reduced to
counting the number of edges in the machine when comparing results; rather
than analysing the abstraction in the form of redistribution of complexity.

This work is applied to hierarchical state machines (HSMs). These can be
viewed as an extension of a labeled transition system (LTS), a generalisation
of a state machine, consisting of only states and transitions with an associated
label. These extensions are defined below.

3 Hierarchical State Machines

A hierarchical machine adds a structure to the states, encoded in sets, to the ma-
chine. States represent superstates, which may contain superstates themselves,
as well as zero or more simple states (a superstate must never be empty).

The standard used in this work also takes superstate transitions from the
similar statechart formalism. It is possible for a transition to occur from not
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Fig. 1. The example state machine L

only a single state, but also a superstate. These transitions are shorthand for a
transition occurring from every state in a superstate.

An example LTS L, given by L = (Q, T ) = ({s1, s2, s3}, T }) where T =
{(s1, a, s2), (s1, b, s3), (s2, b, s3), (s3, a, s3), (s3, b, s3)} is shown in figure 1. Q
encodes the states in the machine, while T encodes the transitions. T is a set of
transitions, each t ∈ T is a tuple - (s, l, d) where s is the source of the transition
(any element of Q), l is the label for the transition and d is the destination
(again, d ∈ Q).

Fig. 2. One possible HSM for L

An HSM is defined as (H, T ); figure 2 gives an example hierarchy for L. In an
HFSM the set of states is expanded to the set of superstates and basic states,
which encodes the hierarchy in nested sets. In the example H = {{s1, s2}, {s3}}.

The set of transitions T is also modified, such that the source of any transition
s may be any element of one of the sets in H , although the destination d must
still be a basic state (i.e. any element of Q).

Not shown in this example, there is a common transition that could be re-
placed by a single superstate transition,({s1, s2}, b, s3).

4 Metrics for HFSMs

Two metrics are defined, TLCC, which provides an overview of the abstracted
machine, and HCC which conveys the complexity of the whole hierarchy. These
metrics are defined for HSMs as defined in section 3.

4.1 Top-Level Cyclomatic Complexity

Top-level cyclomatic complexity is the result of viewing the HFSM at the maxi-
mum level of abstraction. It is equivalent to the CC of the result of transforming
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every top-level superstate into a single state, its edges being those that left the
superstate it is made from.

Abstracting this to an HSM, E is taken to be the size of the number of inter-
edges of a machine and N is taken to be the number of top-level superstates of
the machine, |H |. As will be shown in section 4.2, it can also be used to operate
on superstates themselves; in this case the immediate superstates become the
top-level states used in the calculation.

This results in the definition:

TLCC(H) =
∑
c∈H

|inter(c)| − |H |+ 2

Where:
inter(c) = {(s, l, d) ∈ edges(c) :!in(c, d)}

inter(c) gives all the edges that leave a given state or superstate, that is, their
destination is not within c or its substates. Conversely, the edges that do not
leave a superstate can be obtained by edges(c) \ inter(c).

edges(c) is all the edges of a superstate or state c, as well as the edges of the
states that make up a superstate (and so on). It is given by

edges(c) = {(s, l, d) ∈ T : in(c, s)}

in is a recursive predicate that indicates membership of a state or superstate in
another superstate:

in(c, s) =

⎧⎪⎨
⎪⎩

true, if c = s

true, if ∃a.(in(a, s)) : a ∈ c

false, otherwise

Figure 4 shows the effective graph TLCC operates on when calculating for
figure 3. In this example TLCC = 20 − 3 + 2 = 19. This illustrates the loss of

Fig. 3. An example HSM Fig. 4. The effective HSM TLCC oper-
ates on
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abstraction and also highlights a possible source of complexity; repeated edges.
It may be that the overall CC for a machine is less than the TLCC for it purely
because the number of nodes (states) to be considered is reduced, but the number
of edges only reduces when a transition can be formed from a superstate, which
may not arise in some cases.

This metric effectively quantifies the cyclomatic complexity of the top level
of abstraction; capturing the “first look” complexity a human perceives when
starting to work with the hierarchical machine. This metric still does not attain
the goal of quantifying the overall complexity, however.

4.2 Hierarchical Complexity

To combat the shortcomings of TLCC as well as the lack of hierarchy consider-
ation of SCC a metric is proposed; this metric captures the complexity of the
whole hierarchy, applying a reduced weight to nodes appearing lower in the hi-
erarchy. Although they contribute less to the complexity, they are still counted;
additionally, different lower-level hierarchy arrangements result in different val-
ues, which is not the case for the metrics discussed in sections 2 and 4.1

This metric is given by:

HCC(S, T, d) =
TLCC(H, T )

d
+

∑
c∈H

HCC(c, T, d + 1)

As it is recursive, HCC is calculated with an initial depth 1, to apply it to a
HSM X = (H, T ) the calculation starts with HCC(H, T, 1). The final parameter
is the depth of the current superstate. The example given in figure 4 has a HCC
of 19 + (2 + 1 + 0)/2 + (0 + 1 + 1)/3 + (0 + 0 + 0)/3 + (1 + 0)/3 + 1/4 = 21.75.
This contrasts to its lower SCC of 14.

5 Conclusions and Future Work

This paper presents two novel metrics designed specifically for statecharts. The
first, TLCC provides an estimate of the complexity the abstraction at its most
simple level. The second, HCC, allows a single metric to capture the quality of
abstraction offered by a particular hierarchy for a state machine.

Bothmetricsproducehighervalues thanSCC,althoughthis isbecause theycom-
pare different things. SCC is lower as the number of states is always higher,whereas
for TLCC the number of nodes often drops, resulting in a higher overall value.

Although the metrics are now defined, they still need to undergo validation;
a method for validation of similar metrics exists proposed [7], this could easily
be applied to these metrics.

This work is similar to fitness functions for search-based clustering algorithms
(as mentioned in section 2); where the goal is to provide an objective value of a
candidate solution to direct a search. The difference between the two techniques
is the goal; fitness functions seek to approximate an absolute measure of quality,
whereas metrics are often used for relative comparison. These goals are similar,
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however and these proposed metrics could also be used to optimise a clustering,
or the fitness functions used as metrics.
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Abstract. Model checking is a fully automatic technique for checking
concurrent software properties in which the states of a concurrent system
are explored in an explicit or implicit way. The main drawback of this
technique is the high memory consumption, which limits the size of the
programs that can be checked. In the last years, some researchers have
focused on the application of guided non-complete stochastic techniques
to the search of the state space of such concurrent programs. In this
paper, we compare five metaheuristic algorithms for this problem. The
algorithms are Simulated Annealing, Ant Colony Optimization, Particle
Swarm Optimization and two variants of Genetic Algorithm. To the best
of our knowledge, it is the first time that Simulated Annealing has been
applied to the problem. We use in the comparison a benchmark composed
of 17 Java concurrent programs. We also compare the results of these
algorithms with the ones of deterministic algorithms.

Keywords: Model checking, Java PathFinder, simulated annealing, par-
ticle swarm optimization, ant colony optimization, genetic algorithm.

1 Introduction

Software is becoming more and more complex. That complexity is growing for
a variety of reasons, not the least of them is the need of concurrent and dis-
tributed systems. Recent programming languages and frameworks, such as Java
and .NET, directly support concurrency mechanisms, making them an usual
choice when developing concurrent and/or distributed systems. However, since
these systems introduce interactions between a large number of components,
they also introduce a larger number of points of failure. And this possible errors
are not discoverable by the common testing mechanisms that are used in soft-
ware testing. This creates a new need: to find software errors that may arise from
the components communication, resource access and process interleaving. These
are subtle errors that are very difficult to detect as they may depend on the
order the environment chooses to execute the different threads, or components
of the system. Some examples of this kind of errors are deadlocks, livelocks and
starvation.
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One technique used to validate and verify programs against several properties
like the ones mentioned is model checking [1]. Basically, a model checker uses a
simplified implementation of the program, that is, a model, creating and travers-
ing the graph of all the possible states of that model to find a path starting in
the initial state that violates the given properties. If such a path is found it is a
counterexample of the property that can be used to correct the program. Oth-
erwise, if the algorithm used for the search of the counterexample is complete,
the model is proven to be correct regarding the given properties.

The amount of states of a given concurrent system is very high even in the
case of small systems, and it usually increases in a exponential way with the size
of the model. This fact is known as the state explosion problem and limits the
size of the model that a model checker can verify. Several techniques exist to al-
leviate this problem, such as partial order reduction [2], symmetry reduction [3],
bitstate hashing [4] and symbolic model checking [5]. However, exhaustive search
techniques are always handicapped in real concurrent programs because most of
these programs are too complex even for the most advanced techniques.

When, even after state or memory reduction is somehow performed, the num-
ber of states becomes too big, two problems appear: the memory required to
search for all states is too large and/or the time required to process those states is
extremely long for practical purposes. That means that either the model checker
will not be able to find an error nor prove the correctness of the model or, if it
does find an error or prove the correctness of the model, it will not be in a prac-
tical run time. In those cases, the classical search algorithms like Depth First
Search (DFS) or Breadth First Search (BFS), which are the most commonly
used in model checking, are not suited.

However, using the old software engineering adage: “a test is only successful
if it finds an error”, we can think of model checking not as a way to prove
correctness, but rather as a technique to locate errors and help in the testing
phase of the software life cycle [6]. In this situation, we can stop thinking in
complete search algorithms and start to think in not complete, but possibly
guided search algorithms that lead to an error (if it exists) faster. That way,
at least one of the objectives of model checking is accomplished. Therefore,
techniques of bounded (low) complexity as those based on heuristics will be
needed for medium/large size programs working in real world scenarios.

In this article we will study the behavior of several algorithms, including
deterministic complete, deterministic non-complete, and stochastic non-complete
search algorithms. In particular, the contributions of this work are:

– We analyze, compare and discuss the results of applying ten algorithms for
searching errors in 17 Java programs.

– We include in the comparison algorithms from four different families of meta-
heuristics: evolutionary algorithms (two variants), particle swarm optimiza-
tion, simulated annealing, and ant colony optimization.

– We use a simulated annealing algorithm (SA) for the first time in the domain
of model checking.
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– We use large Java models that actually pose a challenge for traditional model
checking techniques and thus expand the spectrum of checkable programs.

The paper is organized as follows. In the next section we introduce some back-
ground information on heuristic model checking and Java PathFinder, which is
the model checker used in this work. Section 3 presents a formal definition of
the problem at hands. In Section 4 we briefly present the algorithms used in the
experimental study and their parameters. Then, we describe the experiments
performed and discuss the obtained results in Section 5. We conclude the paper
in Section 6.

2 Heuristic Model Checking

The search for errors in a model can be transformed in the search for one ob-
jective node (a program state that violates a given condition) in a graph, the
transition graph of the program, which contains all the possible states of the
program. For example, if we want to check the absence of deadlocks in a Java
program we have to search for states with no successors that are not end states.

Once we have transformed the search for errors in a search in a graph, we can
use classical algorithms for graph exploration to find the errors. Some classical
algorithms used in the literature with this aim are depth first search (DFS)
or breadth first search (BFS). It is also possible to apply graph exploration
algorithms that takes into account heuristic information, like A∗, Weighted A∗,
Iterative Deeping A∗, and Best First Search. When heuristic information is used
in the search, we need a map from the states to the heuristic values. In the
general case, this maps depends on the property to check and the heuristic value
represents a preference to explore the corresponding state. The map is usually
called heuristic function, that we denote here with h. The lower the value of h
the higher the preference to explore the state, since it can be near an objective
node.

The utilization of heuristic information to guide the search for errors in model
checking is called heuristic (or guided) model checking. The heuristic functions
are designed to guide the search first to the regions of the transition graph in
which the probability of finding an error state is higher. This way, the time
and memory required to search an error in a program is decreased on average.
However, the utilization of heuristic information has no advantage when the
program has no error. In this case, the whole transition graph must be explored.

A well-known class of non-exhaustive algorithms for solving complex problems
is the class of metaheuristic algorithms [7]. They are search algorithms used in
optimization problems that can find good quality solutions in a reasonable time.
Metaheuristic algorithms have been previously applied to the search of errors in
concurrent programs. In [8], Godefroid and Khurshid applied Genetic Algorithms
in one of the first work on this topic. More recently, Alba and Chicano used
Ant Colony Optimization [9] and Staunton and Clark applied Estimation of
Distribution Algorithms [10].
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2.1 Verification in Java PathFinder

There are different ways of specifying the model and the desired properties.
Each model checker has its own way of doing it. For example, in SPIN [4] the
model is specified in the Promela language and the properties are specified using
Linear Temporal Logic (LTL). It is usual to provide the model checker with the
properties specified using temporal logic formulas, either in LTL or CTL. It
is also usual to find specific modelling languages for different model checkers.
Promela, DVE, and SMV are just some examples. However, model checkers
exist that deal with models written in popular programming languages, like C
or Java. This is the case of Java PathFinder (JPF) [11], which is able to verify
models implemented in JVM1 bytecodes (the source code of the models is not
required). The properties are also specified in a different way in JPF. Instead
of using temporal logic formulas, the JPF user has to implement a class that
tells the verifier algorithm if the property holds or not after querying the JVM
internal state. Out of the box, JPF is able to check the absence of deadlocks and
unhandled exceptions (this includes assertion violations). Both kind of properties
belong to the class of safety properties [12].

In order to search for errors, JPF takes the .class files (containing the JVM
bytecodes) and use its own Java virtual machine implementation (JPF-JVM in
the following) to advance the program instruction by instruction. When two or
more instructions can be executed, one of them is selected by the search algo-
rithm and the other ones are saved for future exploration. The search algorithm
can query the JVM internal state at any moment of the search as well as store
a given state of the JVM and restore a previously stored state. From the point
of view of the Java model being verified, the JPF-JVM is not different from
any other JVM: the execution of the instructions have the same behaviour. The
JPF-JVM is controlled by the search algorithm, which is an instance of a sub-
class of the Search class. In order to include a new search algorithm in JPF, the
developer has to create a new class and implement the corresponding methods.
This way, JPF can be easily extended; one aspect that is missing in other model
checkers like SPIN. The role of the search algorithm is to control the order in
which the states are explored according to the search strategy and to detect the
presence of property violations in the explored states.

In JPF, it is possible to use search algorithms guided by heuristic information.
To this aim, JPF provides some classes that ease the implementation of heuristic
functions and heuristically-guided search algorithms.

3 Problem Formalization

In this paper we tackle the problem of searching for safety property violations in
concurrent systems. As we previously mentioned, this problem can be translated
into the search of a walk in a graph (the transition graph of the program) starting

1 JVM stands for Java Virtual Machine.
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in the initial state and ending in an objective node (error state). We formalize
here the problem as follows.

Let G = (S, T ) be a directed graph where S is the set of nodes and T ⊆ S×S
is the set of arcs. Let q ∈ S be the initial node of the graph, F ⊆ S a set
of distinguished nodes that we call objective nodes. We denote with T (s) the
set of successors of node s. A finite walk over the graph is a sequence of nodes
π = π1π2 . . . πn where πi ∈ S for i = 1, 2, . . . , n and πi ∈ T (πi−1) for i = 2, . . . , n.
We denote with πi the ith node of the sequence and we use |π| to refer to the
length of the walk, that is, the number of nodes of π. We say that a walk π is a
starting walk if the first node of the walk is the initial node of the graph, that
is, π1 = q.

Given a directed graph G, the problem at hand consists in finding a starting
walk π (π1 = q) that ends in an objective node, that is, π∗ ∈ F . The graph G
used in the problem is the transition graph of the program. The set of nodes S
in G is the set of states in of the program, the set of arcs T in G is the set of
transitions between states in the program, the initial node q in G is the initial
state of the program, the set of objective nodes F in G is the set of error states
in the program. In the following, we will also use the words state, transition and
error state to refer to the elements in S, T and F , respectively. The transition
graph of the program is usually so large that it cannot be completely stored in
the memory of a computer. Thus, the graph is build as the search progresses.
When we compute the states that are successors in the transition graph of a
given state s we say that we have expanded the state.

4 Algorithms

In this section we will present the details and configurations of the ten algorithms
we use in the experimental section. In Table 1 we show the ten algorithms clas-
sified according two three criteria: completeness, determinism and guidance. We
say that an algorithm is complete if the algorithm ensures the exploration of
the whole transition graph when no error exists. For example, DFS and BFS
are complete algorithms, but Beam Search and all the metaheuristic algorithms
used here are non-complete algorithms. One algorithm is deterministic if the
states are explored in the same order each time the algorithms is run. DFS and
Beam Search are examples of deterministic algorithms, while Random Search
and all the metaheuristics are non-deterministic algorithms. Guidance refers to
the use of heuristic information. We say that an algorithm is guided when it uses
heuristic information. A∗ and Beam Search are guided algorithms while Random
Search and BFS are unguided algorithms.

For the evaluation of the tentative solutions (walks in the transition graph) we
use the same objective function (also called fitness function) in all the algorithms.
Our objective is to find deadlocks in the programs and we prefer short walks.
As such, our fitness function f is defined as follows:

f(x) = deadlock + numblocked +
1

1 + pathlen
(1)



Comparing Metaheuristic Algorithms for Error Detection in Java Programs 87

Table 1. Algorithms used in the experimental section

Algorihm Acronym Complete? Deterministic? Guided?

Depth First Search [11] DFS yes yes no
Breadth First Search [11] BFS yes yes no
A∗ [11] A∗ yes yes yes
Genetic Algorithm [13] GA no no yes
Genetic Algorithm [13]

GAMO no no yes
with Memory Operator

Particle Swarm Optimization [14] PSO no no yes
Ant Colony Optimization [9] ACOhg no no yes
Simulated Annealing SA no no yes
Random Search RS no no no
Beam Search [11] BS no yes yes

where numblocked is the number of blocked threads generated by the walk while
pathlen represents the number of transitions in the walk and deadlock is a con-
stant which takes a high value if a deadlock was found and 0 otherwise. The
high value that deadlock can take should be larger than the maximum number
of threads in the program. This way we can ensure that any walk leading to a
deadlock has better fitness than any walk without deadlock. All the metaheuris-
tic algorithms try to maximize f .

The random search is a really simple algorithm that works by building limited-
length random paths from the initial node of the graph. Then, it checks if an
error was found in the path.

In the following we describe the SA algorithm, since it is the first time that
this algorithm is applied to this problem (up to the best of our knowledge).
We omit the details of the remaining algorithms due to space constraints. The
interested reader should refer to the corresponding reference (shown in Table 1).

4.1 Simulated Annealing

Simulated annealing (SA) is a trajectory-based metaheuristic introduced by
Kirkpatrick et al. in 1983 [15]. It is based on the statistical mechanics of an-
nealing in solids. Just like in the physical annealing, SA allows the solution to
vary significantly while the virtual temperature is high and stabilizes the changes
as the temperature lows, freezing it when the temperature reaches 0. We show
the pseudocode of SA in Algorithm 1.

SA works by generating an initial solution S, usually in some random form,
and setting the temperature T to an initial (high) temperature. Then, while
some stopping criteria is not met, SA randomly selects a neighbor solution N
of S and compares its energy (or fitness) against the current solution’s energy,
getting the difference ΔE in temperature between them. The neighbor solution
is accepted as the new solution if it is better than the current one or, in case it
is worse, with a probability that is dependent on both ΔE and temperature T .
SA then updates the temperature using some sort of decaying method. When
the stopping criteria is met, the algorithm returns the current solution S.
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Algorithm 1. Pseudo code of Simulated Annealing
1: S = generateInitialSolution();
2: T = initialTemperature;
3: while not stoppingCondition() do
4: N = getRandomNeighbor(S);
5: ΔE = energy(N) - energy(S);
6: if ΔE > 0 OR random(0,1) < probabilityAcceptance(ΔE, T ) then
7: S = N
8: end if
9: T = updateTemperature(T );

10: end while
11: return S

The energy function in this case is the objective function f defined in Equation
(1). Since we want to maximize this function (the energy), given an energy
increase ΔE and a temperature T , the probability of acceptance is computed
using the following expression:

probabilityAcceptance(ΔE, T ) = e
ΔE
T (2)

One critical function of the Simulated Annealing is the updateTemperature
function. There are several different ways to implement this method. In our
implementation we used a simple, yet commonly used technique: multiplying
the temperature by a number α between 0 and 1 (exclusive). The smaller that
number is, the faster the temperature will drop. However, if we detect a local
maxima (if the solution isn’t improved for a number of iterations) we reset the
temperature to its initial value to explore new regions.

4.2 Parameter Settings

In a comparison of different kinds of algorithms one problem always poses: how
to compare them in a fair way? This problem is aggravated by the fact that the
algorithms work in fundamentally different ways: some algorithms search only
one state at a time, some search for paths. Some check only one state per itera-
tion, others check many more states per iteration, etc. This large diversification
makes it very hard to select the parameters that make the comparison fair. The
fairest comparison criterion seems to be the computational time available to each
algorithm. However, this criterion would make it impossible to use the results in
a future comparison because the execution environment can, and probably will,
change. Furthermore, the implementation details also affect the execution time
and we cannot guarantee that the implementations used in the experiments are
the most effective ones. For this reason, we decided to established a common
limit for the number of states each algorithm may expand. After a defined num-
ber of states have been expanded the search is stopped and the results can be
compared.

In order to maintain the parameterization simple, we used the same maximum
number of expanded states for every model even though the size of each model is
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considerably different. We defined that maximum number of states to be 200 000,
as it was empirically verified to be large enough to allow the algorithms to find
errors even on the largest models. Having established a common value for the
effort each algorithm may use, the parameterization of each individual algorithm
can be substantially different from each other. For instance, we don’t have to
define the same number of individuals in the GA as the same number of particles
in the PSO or as the same number of ants in the ACO. This gives us the freedom
to choose the best set of parameters for each algorithm. However, in the case of
the stochastic algorithms, and since this is a parameter that largely affects their
execution, we have used the same heuristic function for all of them.

DFS, BFS and A* do not require any parameter to be set as they are generic,
complete and deterministic search algorithms. For the metaheuristic algorithms,
on the other hand, there are a variety of parameters to be set and although they
could be optimized for each individual experiment, we have opted to use the same
set of parameters for every experiment. These parameters were obtained after
some preliminary experiments trying to get the best results for each particular
algorithm. The parameters are summarized, together with the ones of RS and
BS, in Table 2.

5 Experimental Section

In our experiments we want to verify the applicability of metaheuristic algo-
rithms to model checking. We performed several experiments using the algo-
rithms of the previous section and different Java implemented models. In order
to determine the behavior of each search algorithm we have selected several types
of models, including the classical Dining Philosophers toy model (both in a cyclic
and a non-cyclic version), the more complex Stable Marriage Problem and two
different communication protocols: GIOP and GARP. The Dining Philosopher
models illustrate the common deadlock that can appear on multi-threaded algo-
rithms. The difference of the cyclic and non-cyclic version is that while in the
first one, called phi, each philosopher cycles through the pick forks, eat, drop
forks and think states, in the non-cyclic version, called din, each philosopher
only picks the forks, eats and drops the forks once, thus limiting the number of
possible deadlocks. The Stable Marriage Problem (mar) has more interactions
between threads and its implementation leads to a dynamic number of threads
during executions. It contains both a deadlock and an assertion violation. Both
the Dining Philosophers problem and the Stable Marriage Problem can be in-
stantiated in any size (scalable), which makes them good choices to study the
behavior of the search algorithms as the model grows. Finally, the communi-
cation protocols represent another typical class of distributed systems prone
to errors. Both of these protocol implementations have known deadlocks which
makes them suitable for non-complete search algorithms, because although they
cannot prove correctness of a model, they can be used to prove the incorrectness
and help the programmer to understand and fix the properties violations.

The results obtained from the experiments can be analyzed in several ways.
We will discuss the results on the success of each algorithm in finding the errors,
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Table 2. Parameters of the algorithms

Beam Search Random Search
Parameter Value Parameter Value

Queue limit (k) 10 Path length 350
GeGA algorithm

Parameter Value
Minimum path size 10
Maximum path size 350
Population size 50
Selection operator Tournament (5 individuals)
Crossover probability 0.7
Mutation probability 0.01
Elitism true (5 individuals)
Respawn after 5 generations with same population average fitness

or 50 generations without improvement in best fitness
GeGAMO algorithm

Parameter Value
Minimum path size 10
Maximum path size 50
Population size 50
Selection operator Tournament (3 individuals)
Crossover probability 0.7
Mutation probability 0.01
Elitism true (3 individuals)
Memory operator frequency 10
Memory operator size 25
Respawn after 5 generations with same population average fitness

or 60 generations without improvement in best fitness
PSO algorithm ACOhg algorithm

Parameter Value Parameter Value
Number of Particles 10 Length of ant paths 300
Minimum path size 10 Colony size 5
Maximum path size 350 Pheromone power (α) 1
Iterations Until Perturbation 5 Heuristic power (β) 2
Initial inertia 1.2 Evaporation rate (ρ) 0.2
Final inertia 0.6 Stored solutions (ι) 10
Inertia change factor 0.99 Stage length (σs) 3

SA algorithm
Parameter Value

Path size 350
Initial temperature 10
Temperature decay rate (α) 0.9
Iterations without improvement 50

measured as the hit rate, and the length of the error trail leading to the error.
Deterministic algorithms always explore the states in the same order, which
means that only one execution per problem instance is needed. The results of
stochastic search algorithms, however, could change at each execution. For this
reason, each stochastic algorithm was executed 100 times per problem instance.

5.1 Hit Rate

We show the results of hit rate in Table 3. Regarding the Dining Philosophers
cyclic problem (phi), we can observe that none of the exact search algorithms
could find an error in the larger instances. In fact, all of them (DFS, BFS and A*)
exhausted the available memory starting with 12 philosophers, while all of the
stochastic search algorithms (GA, GAMO, PSO, SA, ACOhg and even RS) and
BS had a high hit rate in all of the instances. To better understand the reason for
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this, Figure 1(a) shows the distribution of the explored states after 200 000 states
had been observed by two exact algorithms (DFS and BFS) and two stochastic
algorithms (GA and RS). The remaining search algorithms were removed from
the figure in order to have an uncluttered graphic. Figure 1(a) shows that DFS
searched only one state per depth level (states explored in depths superior to 350
are not shown to maintain the graphic readability). That is coherent with the
search algorithm which searches first in depth. However, this makes it difficult to
find the error if it is not on the first transitions of each state. BFS, on the other
hand, tried to fully explore each depth level before advancing to the next one.
However, since the phi problem is a very wide problem (meaning that at each
state there is a large number of possible outgoing transitions), the 200 000 states
limit was reached quite fast. We can see a large difference in the behavior of the
stochastic search algorithms. Both explore the search space both widely and in
depth, simultaneously. This means that they avoid using all the resources in the
few first depth levels, but also do not try to search too deep. Although they only
visit the same number of states as their exact counterparts, they are spreader
than the exact algorithms, which helps them find the error state. Considering
that there are paths leading to errors in depths around 60, it is easy to see in
Figure 1(a) why the stochastic algorithms found at least one of them while the
exact algorithms missed them.

On the non-cyclic version of Dining Philosophers (din), DFS was able to
detect errors in larger instances than the other exact algorithms. Figure 1(b)
shows the reason why: since this problem is not cyclic, it ends after all the
philosophers have had their dinner. Considering 12 philosophers, this happens,
invariably, after 50 transitions. Since DFS has no more states to follow it starts to
backtrack and check other transitions at the previous states. DFS concentrates
its search at the end of the search space, and since the error state is at depth 36
(which is near the end), it is able to backtrack and explore other states at that
depth level before consuming all the available memory. Figure 1(b) shows how
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Fig. 1. Search behavior of algorithms. The X axis is the depth in the graph and the
Y axis is the number of expanded states.
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Table 3. Hit rate of the algorithms

Problem DFS BFS A* GA GAMO PSO SA ACOhg RS BS

phi 4 100 100 100 100 100 100 100 100 100 100
phi 12 0 0 0 100 100 100 100 100 100 100
phi 20 0 0 0 100 100 100 100 100 100 100
phi 28 0 0 0 100 100 100 100 100 100 100
phi 36 0 0 0 82 100 53 79 100 100 100

din 4 100 100 100 100 100 100 100 100 100 100
din 8 100 0 0 100 100 100 76 100 96 100
din 12 100 0 0 100 96 85 13 68 0 100
din 16 0 0 0 91 58 20 0 2 0 100
din 20 0 0 0 52 24 0 0 0 0 100

mar 2 100 100 100 100 100 100 100 100 100 100
mar 4 100 100 100 100 100 100 96 100 100 100
mar 6 100 0 0 100 100 100 100 100 100 100
mar 8 100 0 0 100 95 100 100 100 100 100
mar 10 100 0 0 100 25 100 100 100 100 100

giop 100 0 0 100 68 100 100 100 100 100
garp 0 0 0 100 2 80 87 87 100 0

many different states per depth level the DFS and BFS algorithms had checked
after 200 000 expanded states. Although 200 000 were not enough for BFS to
find the error, we can see that DFS was already exploring in the error state
neighborhood. BFS, on the other hand, concentrates the search in the beginning
of the search space and, after visiting 200 000 states, it is still far from the
neighborhood of the error state. The din problem is much less forgiving than
phi. There is only one error state, and one chance to find it. This creates an
interesting problem: the probability that a random walk through the search space
would find the error decreases substantially. In fact, our results show exactly that:
RS starts to miss the error as the number of philosophers grow (and search space
increases, therefore). All the metaheuristic search algorithms found the error in
larger instances, but they too started to struggle to find it. Only the genetic
algorithms found the error in all instances. Since these are the only algorithms
in the set that mixes paths from different individuals to create new ones, it
seems that they were able to find a pattern to reach the error, while the other
stochastic algorithms have not. Finally, BS finds the error in all the cases.

Like the din problem, mar is also finite. This means that there is a (relatively
small) limit on the maximum depth the search algorithm may look into. This
knowledge, and the fact that DFS successfully found an error in all the problem
instances may lead us to think that the problem is small and, therefore, simple.
That is not, however, the case: the size of the search space grows exponentially
with the size of couples. An interesting observation is that shape of the search
space remains mainly unaffected with the growth of the number of couples, as
seen in Figure 2. Considering the size of the search space, the good results of RS
and the observations we made on the Dining Philosophers problems, it seems
that the mar problem have many different paths leading to an error state. To
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Fig. 2. Search space for the mar problem as seen by DFS for instances of 2, 3 and 4
couples. Note that the Y axis is logarithmic.

check this hypothesis we have checked all of the search space for the mar problem
with 3 couples and found that with only 5156 different states in the search space,
there are 30 error states and 216 different paths leading to those error states.
This is indeed a large number of paths for the search space size and supports
our hypothesis.

In general, when searching for errors, we have observed that non-complete al-
gorithms have a higher success rate than the tested complete algorithms. From
figures 1(b) and 2 we can observe that one reason seems to be the concentration
of the search in either the beginning of it (BFS) or the end of it (DFS). Pure
stochastic algorithms, like random search, explores a wider portion of the space
at all the allowed depths (our random implementation is depth bounded). The
metaheuristic algorithms tend to explore more through the search space and ex-
ploit areas that seem interesting, which typically are neither at the beginning or
at the end of the search space. Complete search algorithms start to fail to search
the whole search space very soon. Are they really applicable for software model
checking? If some form of abstraction can be used, then maybe. However they
still require large amount of memory and they are not checking the final imple-
mentation, so specific implementation details could still violate the properties
checked before. However, failing to prove the model correctness does not mean
they cannot be used to find errors. The mar problem is a good example of that.
The search space could not be completely verified after using only 4 couples,
but DFS was able to find errors even with 10 couples. The ability of DFS and
BFS to find errors in large search spaces depends not so much on the size of the
search space but more on its shape, as shown in the din and mar tests.

5.2 Length of the Error Trails

The length of the error trail for each algorithm is also an important result that
must be compared. Since the error trail is the information the developers have
to debug the application, the more concise it is, the better. So, shorter error
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trails means that less irrelevant states exists in the trail, making it easier for
the developer to focus on what leads to the errors As with the hit rate, exact
algorithms always return the same error trail for each problem. Stochastic al-
gorithms do not, so we present in Table 4 both the averages of the length of
the first error trail found and of the shortest error trail length found in the 100
executions. We include both of these values because the stochastic algorithms
do not stop after an error has been found, but only after 200 000 states have
been expanded, which means that more than one path to an error may be found
during the search.

Table 4. Length of the error trails (first/shortest)

Prob. DFS BFS A* GA GAMO PSO SA ACOhg RS BS

phi 4 169 16 16 48/16 28/16 52/16 47/16 71/16 50/16 22
phi 12 – – – 149/52 78/58 173/55 178/70 175/72 193/62 74
phi 20 – – – 220/116 131/114 248/126 251/140 244/163 319/135 224
phi 28 – – – 267/192 188/174 275/210 278/216 351/268 504/227 393
phi 36 – – – 283/269 248/232 282/278 290/274 495/381 616/324 753

din 4 12 12 12 12/12 12/12 12/12 12/12 12/12 12/12 12
din 8 24 – – 24/24 24/24 24/24 24/24 24/24 24/24 24
din 12 36 – – 36/36 36/36 36/36 36/36 36/36 – 36
din 16 – – – 48/48 48/48 48/48 – 48/48 – 48
din 20 – – – 60/60 60/60 – – – – 60

mar 2 14 12 12 13/12 13/12 13/12 12/12 13/12 12
mar 4 63 26 28 42/27 39/27 43/27 45/29 42/28 44/29 36
mar 6 140 – – 91/48 75/56 94/51 93/57 93/56 92/55 59
mar 8 245 – – 148/77 108/94 154/79 149/91 152/92 151/88 172
mar 10 378 – – 199/109 154/142 215/114 207/127 214/130 223/125 260

giop 232 – – 251/238 252/247 263/236 264/243 256/242 284/239 355
garp – – – 184/115 123/121 184/128 204/147 305/278 245/111 –

In all the problems, BFS shows the shortest possible error trail. However,
as we have seen in the previous section, it starts to fail to find the error very
quickly, so it cannot be used as a base comparison value for all the problem
instances. DFS, on the other hand, finds the error in larger instances but the
error trails provided by this algorithm are the largest of all the algorithms,
with one exception: the giop problem. In this problem, the shortest error trail
consists on always choosing the left-most transition available in each state, which
is exactly the behavior DFS always present. The A* behaves mostly like BFS,
again with one strange exception: in the mar4 problem, the error trail is not the
smallest one possible. This means that the heuristic we used is not very good
for this problem, as it slightly misleads A*. This is also the reason for the low
hit rate of A*. BS is very effective at finding the error but the length of the tail
is usually far from the optimum, except for some small instances.

Among the stochastic algorithms, the genetic algorithms seem to be the ones
that provide the shortest error trails. There is a difference in behavior between
the GA using the memory operator (GAMO) and not using it. While the GA
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usually finds the shortest error trail, the length of the error trail for the first error
found is usually smaller using the memory operator, and is not too far from the
shortest error trail. This means that if we change the stopping criteria of the
algorithms in order to stop as soon as an error is found, then using the memory
operator seems to be a better choice. All the guided stochastic algorithms show
good results both on the first error trail and the shortest error trail. RS, which
is not guided, also shows good results in these problems when we consider the
shortest error trails only. However, the length of the first error trail found by RS
is usually much larger than the ones found by the other algorithms.

6 Conclusion and Future Work

In this work we presented a comparison of five metaheuristic algorithms and
five other classical search algorithms to solve the problem of finding property
violations in concurrent Java programs using a model checking approach. We
used a benchmark of 17 Java programs composed of three scalable programs
with different sizes and two non-scalable programs. We analyzed the results of
the algorithms in terms of efficacy: the ability of a search algorithm to find the
property violation and the length of the error trail. The experiments suggests
that metaheuristic algorithms are more effective to find safety property violations
than classical deterministic and complete search algorithms that are commonly
used in the explicit-state model checking domain. They also suggest that non-
complete guided search algorithms, such as Beam Search, have some advantages
against both guided and non-guided complete search algorithms such as A* and
DFS. Finally, these experiments also suggest that distributing the search effort
in different depths of the search space tends to raise the efficacy of the search
algorithm.

As future work we can explore the possibility of designing hybrid algorithms
that can more efficiently explore the search space by combining the best ideas
of the state-of-the-art algorithms. We can also design stochastic complete algo-
rithms that are able to find short error trails in case error exist in the software
and can also verify the program in case no error exists.
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Abstract. Previous work has shown the efficacy of using Estimation
of Distribution Algorithms (EDAs) to detect faults in concurrent soft-
ware/systems. A promising feature of EDAs is the ability to analyse
the information or model learned from any particular execution. The
analysis performed can yield insights into the target problem allowing
practitioners to adjust parameters of the algorithm or indeed the algo-
rithm itself. This can lead to a saving in the effort required to perform
future executions, which is particularly important when targeting expen-
sive fitness functions such as searching concurrent software state spaces.
In this work, we describe practical scenarios related to detecting con-
current faults in which reusing information discovered in EDA runs can
save effort in future runs, and prove the potential of such reuse using an
example scenario. The example scenario consists of examining problem
families, and we provide empirical evidence showing real effort saving
properties for three such families.

1 Introduction

Estimation of Distribution Algorithms (EDAs) have been established as a strong
competitor to Evolutionary Algorithms (EAs) and other bio-inspired techniques
for solving complex combinatorial problems [8]. EDAs are similar to Genetic
Algorithms (GAs), but replace the combination and mutation phases with a
probabilistic model building and sampling phase. It has been shown that EDAs
can outperform GAs on a range of problems. In addition to strong performance,
another advantage of EDAs is the potential for the analysis of the probabilistic
models constructed at each generation. Model analysis can yield insights into a
target problem allowing for tuning of EDA parameters, or indeed the algorithm
itself, potentially saving computation effort in future instances.

Recently, we have shown the potential for EDAs, combined with aspects of
model checking, to detect faults in concurrent software by sampling the state-
space of the program intelligently [11,12]. Using a customised version of N-gram
GP [9], we have achieved greater performance than a number of traditional
algorithms, GAs and Ant Colony Optimisation (ACO) on a wide range of prob-
lems, including programs expressed in industrial languages such as Java. For
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large problems, exploring the state-space can become expensive, leading to a
longer runtime and the potential exhaustion of resources. In order to combat
this effect, we propose using information, specifically information from the mod-
els constructed, from earlier executions of the EDA in future executions in an
attempt to save computational effort. We term this approach “model reuse”.

In this work, we outline practical scenarios related to detecting faults in con-
current software in which model reuse could potentially save computation effort.
These scenarios could potentially be extended to scenarios involving sequen-
tial software, and even hardware systems. We then provide empirical evidence
showing the potential of model reuse with regards to detecting faults in problem
families. A problem family is a program or system that can be scaled up or down
with respect to some parameter, typically the number of processes within the
system. Our system is implemented using the ECJ evolutionary framework [7]
and the HSF-SPIN model checker [5]. To our knowledge, this is the first instance
of model analysis being used to save computational effort, and therefore lower
cost, in the Search-Based Software Engineering (SBSE) domain.

This paper is structured as follows: Section 2 gives a brief overview of how
EDAs and the EDA-based model checking technique work. Section 3 describes
the concept of model reuse, along with a number of practical scenarios in which
model reuse could reduce computational effort. Section 4 describes empirical
work showing the potential for model reuse in practical scenarios. We conclude
the paper with a summary and outline future work in Section 5.

2 EDA-Based Model Checking

2.1 EDAs

Estimation of Distribution Algorithms (EDAs) are population-based probabilis-
tic search techniques that search solution spaces by learning and sampling proba-
bilistic models [8]. EDAs iterate over successive populations or bags of candidate
solutions to a problem. Each population is sometimes referred to as a genera-
tion. To construct a successor population, EDAs build a probabilistic model of
promising solutions from the current population and then sample that model to
generate new individuals. The newly generated individuals replace individuals in
the current population to create the new population according to some replace-
ment policy. An example replacement policy is to replace half of the old popula-
tion with new individuals. The initial population can be generated randomly, or
seeded with previously best known solutions. The algorithm terminates when a
termination criterion is met, typically when a certain number of generations are
reached or a good enough solution has been found.

The pseudocode of a basic EDA algorithm is shown in Algorithm 1. Readers
who are familiar with Genetic Algorithm (GA) literature can view EDAs as
similar to a GA with the crossover and mutation operators replaced with the
model building and sampling steps. EDAs can be seen as strategically sampling
the solution space in an attempt to find a “good” solution whilst learning a
model of “good” solutions along the way. EDAs are sometimes referred to as
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Algorithm 1. Pseudocode for basic EDA
P = InitialPopulation();
evaluate(P);
while not(termination criterion) do

S = SelectPromisingSolutions(P);
M = UpdateModelUsingSolutions(S);
N = SampleFromModel(M);
P = ReplaceIndividuals(N);
evaluate(P);

end while

Probabilistic Model-Building Genetic Algorithms (PMBGAs), a full overview of
which can be found in [8].

2.2 Searching State-Spaces with EDAs

To search for concurrent faults using EDAs, we use aspects of model checking.
Model Checking is a technique for analysing reactive concurrent systems [4]. A
model checking tool can automatically verify that a given specification is satisfied
by a model of a system. A model checking tool achieves this by taking a descrip-
tion of a system and a specification, and then exhaustively checks all possible be-
haviours of that system to determine if the specification is violated. The descrip-
tion of the system can be in a number of formats, including being expressed in
industrial languages such as Java. Specifications are given as a set of properties
and are typically expressed in a formal language such as Linear Temporal Logic
(LTL). Example specifications include “The system must not deadlock” and “The
server must respond once a request has been made by a client”.

A possible behaviour of a system is typically referred to as a path. A path p
is a sequence of states which begins in an initial state of the system/program,
and ends in either a terminal state (a state from which no transition can occur)
or a state previously encountered on p. A path can also be seen as a sequence
of actions causing transitions between states. A transition system/state space is
shown in Figure 1, showing all of the main features pertinent to this work. The
goal of a model checking tool is to find a path that violates a given specification,
known as a “counterexample”. This goal is typically achieved using a Depth-first
Search. If no such path exists in the system after an exhaustive check, then the
system is said to satisfy the specification. For large systems, however, it is often
impossible to check all possible paths due to a lack of time and memory. This
is known as the state-space explosion problem [4]. In these situations, it may
suffice to detect a counterexample rather than check the system exhaustively.
For this purpose, a number of heuristic mechanisms exist. Best-first Search for
instance expands states during the search in an order determined by a heuristic
[5]. Heuristics exist for searching for a variety of faults [6,5], including deadlock
and violations of LTL formulae. Counterexamples with fewer states are often pre-
ferred for debugging purposes, as superfluous transitions are eliminated. To this
end techniques including A* search can be used that penalise longer paths [10].
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(T, T)

(L, T) (T, L)

(LR, T) (L, L) (T, LR)

Pickup Left Fork

Pickup Left Fork

Pickup Right Fork

Pickup Right Fork

Pickup Left Fork

Pickup Left Fork

Initial State

Error State

Counterexample/Path

Put down both forks

Put down both forks

Fig. 1. Figure of a Dining Philosopher transition system/state space visualised as a
digraph. States are shown as circles, with edges between them labelled with actions on
the left. The path highlighted is a counterexample that leads to a deadlock state.

Metaheuristic mechanisms have been shown to be promising when used to de-
tect faults in concurrent software/systems. Genetic Algorithms have been shown
to be effective at detecting deadlock in Java programs [3]. Ant Colony Optimisa-
tion has also been shown to be effective at detecting a variety of different errors
types, including deadlock and LTL formulae violations [1,2], in Promela models.
Recently, we have shown how an EDA-based model checking algorithm based
upon N-gram GP can be used to discover short errors in concurrent systems
[11,12]. Using this work, we show how the algorithm described in [11,12] can be
modified to allow for information in previous runs to save computational effort
in later runs. Our system is implemented using ECJ [7] and HSF-SPIN [5]. HSF-
SPIN is a model checking framework that analyses Promela specifications, and
implements a variety of heuristics for checking a range of properties.
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2.3 Brief Overview of EDA-Based Model Checking

Before a description of the technique is given, it helps to summarise the overall
theme. The goal of the EDA is to detect a path in the transition system which
leads to a fault. To this end, the EDA samples a set of paths from the transition
system (referred to as a population) and selects a subset of “fit” paths determined
by a fitness function. Using the individuals in the fit subset, a probabilistic model
is constructed. The model is then sampled in order to construct new paths which
replace current members of the population. In order to generate new paths, the
model is built so that it can answer the following the question. Given the n most
recent actions that have occurred on the path currently under construction, by
what distribution should the next action be selected? The model can be thought
of as a strategy for navigating a transition system.

Solution Space. In order to encode paths in the transition system, we use a
simple string representation. Paths in a transition system can be seen as a se-
quence of actions causing transitions between states. The alphabet of the strings
used in this work is the set of all actions possible in the transition system. In
this work, the alphabet consists of information gathered by HSF-SPIN whilst
constructing the transition system. Examples of the alphabet members used in
this work can be found in Figure 2, which shows a typical path through a Dining
Philosophers transition system. The alphabet members do not refer to specific
philosophers, but instead refer to actions that can be performed by any one of
the philosophers in the system. By modelling paths through a transition sys-
tem without referring to specific processes, sequences of actions regardless of
which processes executed them are modelled. This represents a minor abstrac-
tion from modelling actions performed by specific processes, reducing the size of
the alphabet and therefore reducing the solution space searched by the EDA.

1 . (NULL TRANSITION)
2 . ( models/ deadlock . ph i l o s oph e r s . noloop . prm : 3 2 ) ( break )
3 . ( models/ deadlock . ph i l o s oph e r s . noloop . prm : 1 2 ) ( l e f t ? fo rk )
4 . ( models/ deadlock . ph i l o s oph e r s . noloop . prm : 1 2 ) ( l e f t ? fo rk )

Fig. 2. A typical trace/string/path from HSF-SPIN on the Dining Philosopher problem
with 2 philosophers. This trace ends in a deadlocked state, because all the philosophers
have picked up their left fork.

Modelling Paths. In order to model paths in the transition system, we use
a customised version of N-gram GP [9]. An n-gram is a subsequence of length
n from a longer sequence. N-gram GP learns the joint probabilities of fit string
subsequences of length n. The rationale is that N-gram GP is modelling a strat-
egy to use whilst exploring a transition system. The n-grams are seen as a recent
history of actions on a particular path. The distribution associated with the n-
gram in the probabilistic model describes the actions that are most likely to
minimise a fitness function, hopefully leading to a counterexample. The model



102 J. Staunton and J.A. Clark

is “queried” with n-grams during the sampling phase in order to probabilistically
choose actions that are more likely to lead to a fault.

For each generation a set of “fit” paths is selected using truncation selection
and the fitness function described later in this work. In order the learn the model
or strategy from a set of fit paths, a simple sliding window frequency count algo-
rithm is used. Once the paths are selected, a frequency count of actions occurring
after each unique n-gram in the paths is performed. The frequency count is then
normalised to obtain distributions for each n-gram observed. A simple illustra-
tion of this process can be seen in Figure 3. In addition to learning n-gram
distributions, in this work the distributions for (n-1)-grams and (n-2)-grams etc.
down to 1-grams are also constructed and these additional distributions are used
during the sampling phase.

Fig. 3. Illustration of the N-gram learning process (2-grams in this case). A frequency
count is performed for each unique N-gram in the selected set of strings (only one
string is shown). The boxes represent a basic sliding window algorithm, with frequency
counts display on the right.

Sampling the Model. Once a set of individuals are selected and a model
created, the model is then sampled to create the next generation. A number
of paths are generated from the model to replace individuals in the current
generation according to some policy. In this work, we generate the entire new
generation using newly sampled individuals. To generate a path in the transition
system, the algorithm starts with the initial state of the transition system and
an empty path. Then, the algorithm must choose an action to execute from
the available actions in the current state. To do this, the model is queried with
the most recent n moves from the path, in this case an empty string, and a
distribution is returned. From the initial state, a set of actions are possible,
each of which leads to a potentially new state. Using the distribution obtained
from the model for the current n-gram, an action is probabilistically chosen and
executed. If more than one process is in a position to execute the chosen action,
then a single process is selected at random from those that can execute the chosen
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action at random to progress. This leads to a new state s. The action chosen is
appended to the current path, and the process is repeated using the new state
and the new path. This process repeats until either an error is found, a terminal
state is reached or a state is reached that has been previously encountered on
the current path.

N-gram GP was initially used to evolve programs, allowing any sequence of
alphabet members to constitute a program. However, in this work we must gen-
erate valid paths in the transition system. If we used the process described above
without modification, it is entirely possible to generate invalid paths in the tran-
sition system. There are a number of special cases when generating a path, and
these are described and handled in [11]. Mutation is implemented by taking an
arbitrary choice every m transitions according to some parameter.

3 Model Reuse

A typical GA run will produce a sequence of bags of solutions to a target problem.
In the case of detecting concurrent faults, this will amount to sets of paths within
the transition system which may or may not lead to an error. Whilst it is possible
to use some of these solutions to seed future runs, even a small change to the
target problem could destroy the applicability of these solutions. Similarly, Ant
Colony Optimisation constructs pheromone trails that may lose relevance once
the target problem has been changed. The EDA-based model checking technique,
on the other hand, produces a strategy for navigating a transition system in
addition to structures that represent solutions. We believe that with some simple
steps the models can be used to reduce computational effort on future instances
of similar problems. Outlined below are a number of potential practical scenarios
for model reuse that could greatly reduce computational effort.

3.1 Reuse during Debugging

The first proposed scenario for model reuse is during the testing/debugging
phases of the development life cycle. It is plausible that during any execution
of the EDA a constructed model can represent a strategy for finding not just a
single error but multiple errors, as well as “problem areas” of the state space.
If a single error has been found in an execution e on the ith revision of the
system, e could be halted in order to fix the bug. This would create the i + 1th
revision. Once the error has been corrected, execution can continue using the
model constructed in the last generation of e, labelled m. It is also plausible
that erroneous actions from the ith revision of the system in m can be mapped
to the corrected actions in the revised system, allowing for the EDA to focus on
these areas initially. This may potentially eliminate computation if errors still
exist in the area of the state space where the initial error was found. Equally, if a
practitioner is confident that the error has been corrected, the area of the state
space can be added to a tabu list, allowing the EDA to focus effort elsewhere.
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3.2 Reuse during Refinement

Another potential scenario for reusing models is during refinement. During im-
plementation, versions of the system are refined to meet various ends, including
performance improvements and bug fixing. Refinements may increase the size of
the transition system enormously. In order to combat this, it is plausible that
the EDA can be executed on the more abstract version of the system/software
in order to determine potential problem areas that rank highly with the fit-
ness function. The models constructed during these initial explorations can then
potentially be used to explore future refinements of the system. If refining the
system increases the state space size significantly, then significant computational
effort could be spared. There is also the potential to map actions from the ab-
stract system to actions in the refined system, potentially increasing the saving
of computational effort.

3.3 Reuse When Tackling Problem Families

We have speculated in previous papers [11,12] that the EDA-based technique is
learning effective strategies for navigating the state spaces of problem families,
rather than just the problem instance itself. A problem family is simply a sys-
tem which can be scaled up and down respective to some parameter, typically
the number of processes/threads in the system/software. This opens up the pos-
sibility of models learned whilst tackling small instances of a problem family
can be used to save effort whilst finding errors in larger instances. Finding the
same error in a number of instances of a problem family can provide additional
debugging information, potentially shortening the debugging life cycle. Problem
families arise frequently in practical situations [4], in both hardware and software
systems.

In this work, we provide empirical evidence showing how computational effort
can be saved when detecting errors in problem families. Extra information can
be gained from detecting faults in varying instances of a problem family, and this
can save time and ultimately lower costs when building and debugging practical
systems.

4 Experimentation with Problem Families

4.1 Sample Models

In order to demonstrate the ability for model reuse, we aim to show that the EDA
can learn structures in three problem families. The three test cases used in this
work are listed in Table 1. The test cases are diverse in the system description
as well as the property under test. The dining philosophers model is a classic
problem in which n philosophers contend over forks in order to eat from a shared
meal in the middle. n philosophers are sat around a circular table with n forks,
one between each adjacent pair of philosophers. Each philosopher requires two
forks in order to eat. Each philosopher picks up the fork to the left of them,
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then the fork to the right, eats some food, then releases the right and left fork
in that order. With this behaviour, there is the possibility of deadlock as all
philosophers can pick up the left fork denying access to the right fork for every
philosopher. The EDA will be aiming to find deadlocked states within the dining
philosopher model.

Table 1. Models and the respective properties violated

Model Processes LoC Property

Dining Philosopher No Loopn n + 1 35 Deadlock

Leader n n + 1 117 Assertion

GIOP n n + 6 740 �(p → ♦q)

For the second test case, a leader election system is modelled by the Leader
model. In this model, n processes must agree on a common leader process in a
unidirectional ring configuration. The faulty protocol used to establish a leader
allows members of the ring to disagree on a leader. An assertion represents this
specification, and the EDA algorithm will be aiming to find violations of this
assertion. The final test case implements the CORBA Global Inter-ORB protocol
(GIOP) with n clients using a single server configuration. The system violates
a property specified in LTL. This model is particularly large, and is reported as
difficult to find errors in for large n (large n being n >= 10) [2,12].

In this set of examples, we have a deadlock, an assertion and an LTL violation
in order to show the applicability of the technique to errors other than deadlock.
Whilst the Dining Philosophers problem is a well studied toy problem, the GIOP
model is derived from an industrial source, adding credibility to using this ap-
proach in industrial scenarios. Finally, whilst the Dining Philosophers model is
symmetrical in nature (all the processes have the same description), the GIOP
model is asymmetric, adding further weight to the empirical argument that the
technique could be effective in industrial scenarios.

4.2 Heuristics

The fitness function detailed in Algorithm 2 is used to rank solutions and makes
use of heuristic information implemented in the HSF-SPIN framework [5]. The
heuristics implemented in HSF-SPIN give information about a single state only.
Algorithm 3 combines the information from the individual states in a path to
give a heuristic measure for the entire path. This is done by simply summing
the heuristic information of all the states along the path. The algorithm aims to
minimise this cumulative total, whilst favouring shorter paths and paths with
errors. The same heuristic is used on all of the runs in this work.

HSF-SPIN implements a variety of heuristics which can be used on various
types of properties. In Algorithm 3, the s.HSFSPINMetric is calculated using
the following heuristics. We use the active processes heuristic for finding dead-
lock in the Dining Philosophers model [6,5]. The active processes heuristic, when
given a state, returns the number of processes that can progress in that state.
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Algorithm 2. Fitness function used to rank individuals. Individuals that are
“closer” to violating a property are favoured.
Require: A, B are Individuals;

if A.error found �= B.error found then
return IndividualWithErrorFound(A,B);

else if A.error found andB.error found then
return IndividualWithShortestPath(A,B);

else
return IndividualWithLowestHSFSPINMetric(A,B);

end if

Algorithm 3. HSF-SPIN heuristic metric algorithm.
Require: I is an Individual;

aggregateMetric = 0;
for all States s ∈ I.Path do

aggregateMetric += s.HSFSPINMetric;
end for
return aggregateMetric;

When looking for assertion violations in the Leader model, the formula-based
heuristic is used [6,5]. The formula-based heuristic estimates how close a state is
to violating a formula by examining the satisfaction of constituent sub-formulae
in that state. And finally, when searching for LTL formulae violations, we use the
HSF-SPIN distance-to-endstate heuristic [6,5]. The distance-to-endstate heuris-
tic estimates how many transitions a state is away from the end state of a product
Büchi automaton, a structure used when verifying LTL properties and imple-
mented in HSF-SPIN. Put simply, the distance-to-endstate heuristic estimates
how far a state is away from violating the LTL specification.

4.3 Parameters

The parameters for all of the executions are derived from small scale empirical
work, as well as experimental results from our previous publications [11,12]. We
expect that these parameters may work well on a wide variety of problems, but
some problems may need extra tuning. An n-gram length of 3 was used, meaning
models for 3-grams, 2-grams and 1-grams are constructed from each generation.
The model is completely destroyed and rebuilt from the selected individuals at
each generation. This also means that the reused model is essentially a seed
model for the runs on larger instances. The population size for each genera-
tion was set to 150. This means that 150 paths are sampled from the model to
build each generation. The mutation parameter for these experiments is set to
0.001, meaning that on average 1 in 1000 transition choices are made randomly,
disregarding the model. The elitism parameter was set to 1, meaning that the
top individual from the population is copied to the next generation. In order to
build the model from which the next generation is sampled, truncation selection
selects the top 20% of individuals from the population. This means that the top
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30 individuals from the current population are used to build the EDA/N-gram
model. All individuals in the population are replaced at each generation with
individuals sampled from the model. The algorithm terminates once it reaches
200 generations, allowing for the potential optimisation of counterexamples. Ini-
tially, the model is a blank model meaning that all the paths evaluated during
the first generation are completely random.

4.4 Smaller Instances

In order to learn strategies that can be used on any instance of a particular
problem family, we ran the EDA algorithm on a small instance of each problem
family. For the Dining Philosophers problem family, a small instance is a system
with 32 philosophers. For the Leader model, we use a unidirectional ring with
3 members. And finally, for the GIOP model, we use a single server 2 client
configuration. For each model, we allow the algorithm to run for a fixed number
of generations, allowing execution to continue if an error is found in order to
optimise the model and find shorter counterexamples. The model constructed
from the final generation of a single execution is the model used in the subsequent
executions on the larger instances. The model is simply serialised out to a file
to be used as input to a future run. At this stage, there is the possibility of
inspecting the model in order to make improvements. In this work however, the
model is used verbatim in the execution on the larger model. Models from various
runs can potentially be archived for use in future work. Some measurements from
these initial runs can be found in Table 2. We have proven empirically in earlier
papers [11,12] that the EDA is capable of consistently finding good strategies in
the time scales shown in Table 2. The numbers below the First Error header are
numbers relating to the first error found during the execution. The best error
table shows the numbers related to the shortest error found.

Table 2. Measurements from the initial runs

Measurement Dining Philosophers Leader GIOP

First error:

Generations 3 0 0
Path Length 34 35 59

States 73,058 35 729
Time 27.45s 0.3s 0.3s

Best error:

Generations 3 0 17
Path Length 34 32 21

States 73,058 2,080 80,478
Time 27.45s 0.63s 3m8s

Total for run:

Generations 50 200 200
States 1,150,400 1,040,495 931,691
Time 13m30s 19m47s 37m33s
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4.5 Larger Instances

The larger instances of the problem families consist of the following. For the
Dining Philosopher problem family, we used a 128 philosopher system. For the
Leader system, we used a unidirectional ring with 10 voters. Unfortunately it
is not possible to scale this model further due to implementation limitations
on the part of the system, not the EDA. And finally, for the GIOP system, an
instance with a single server and 20 clients is used. The sizes of both the Dining
Philosopher system and the GIOP system were chosen due to the availability of
measurements on those systems without model reuse. We are confident that the
technique will scale beyond these numbers, but due to time contraints we could
not explore larger instances.

The statistics shown in Tables 3, 4 and 5 are taken from 100 executions on
the Dining Philosopher, Leader and GIOP systems respectively. Each of the
100 runs used the single model constructed in the initial run stage described in
Section 4.4. Any statistics in the “n/m” format are stating the “median/mean”.
In order to compare total amounts of computation, the “With Model Reuse”
column in the tables includes the computation up to the best error found in the
initial runs. We argue that this is a fair definition of the computation involved in
building a model initially because practitioners are likely to limit the number of
generations to find a good enough error, especially if the EDA-based technique
is used regularly during a development life cycle. The “Without Initial Run”
column shows the numbers of the reuse run only, without the computation of
the strategy on the smaller instance. Statistical comparisons with the results
obtained without model reuse are indicated with plus (significant difference)
and minus (insignificant difference) symbols. In order to compare the model
reuse runs against the non-reuse runs, we use the Wilcoxon rank-sum test with
a significance level of α = 0.05.

Table 3. Measurements from the model reuse runs on the Dining Philosophers 128
system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 19/19.4(+) 3/3 0/0
Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1
Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

Best error:
Generations 19/19.4(+) 3/3 0/0
Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1
Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

The results in Table 3 show statistics for the Dining Philosopher problem
family. In the Dining Philosopher system, there is a single error. The error can
be reached in multiple ways but is always at the same depth/path length. This
explains the similarity between the first and best results. From the numbers
achieved, it is clear that model reuse can have a huge impact on the amount of
computational effort required to find errors in the larger instance. The mean time
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Table 4. Measurements from the model reuse runs on the Leader 10 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0(-) 0/0 0/0
Path Length 84/82.75(+) 71/71.21 71/71.21

States 84/82.75(+) 2,151/2,151.21 71/71.21
Time 0.239s/0.622s(+) 1.127s/1.606s 0.497s/0.976s

Best error:
Generations 17/20.26(-) 15/19.23 15/19.23
Path Length 36/35.45(-) 36/35.47 36/35.47

States 193,616/225,050.01(-) 163,429/209,150.82 161,349/207,070.82
Time 22m51s/25m57s(+) 4m7s/5m19s 4m6s/5m18s

Table 5. Measurements from the model reuse runs on the GIOP 20 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0.01(+) 17/17 0/0
Path Length 132/150.09(+) 61/73.37 61/73.37

States 40,421/60,681.01(+) 90,773/98,194.14 10,295/17,716.14
Time 1m26s/2m1s(+) 3m28s/3m46s 19.56s/38.017s

Best error:
Generations 30/28.71(+) 20/28.21 3/11.21
Path Length 31/31.21+) 26/25.6 26/25.6

States 13,068,139/12,337,306(+) 1,495,644/4,942,260.07 1,415,166/4,861,782.07
Time 6h47m16s/8h13m24s(+) 57m34s/3h12m14s 54m26s/3h9m6s

to discover an error is reduced by over 99%. This means that rather than wait an
hour for additional information regarding the error, information can be obtained
in a mere 30 seconds, potentially reducing time spent in the debugging cycle
substantially in this case. We expected a large gain on the Dining Philosopher
family as it is a symmetrical problem. The strategy to finding an error in the
Dining Philosopher is trivial, “Always choose the action that is Pickup the Left
Fork”.

The results in Table 4 show statistics for the Leader election problem family.
In this problem family, the results are less impressive than that of the Dining
Philosopher family. We attribute this to the fact that the EDA can find a short
counterexample with little computation, often in the first generation before any
strategy building has taken place. This suggests that the model is trivial and
does not require mechanisms to reduce computational effort. However, we still
obtain a significant speed increase in terms of time spent searching the transition
system. We attribute this to the EDA exploring a narrower area of the state space
on the larger instance due to the initial strategy constructed from the smaller
instance. This may avoid expanding useless parts of the search space, resulting
in a reduction in CPU and memory usage.

The most impressive results are listed in Table 5 for the GIOP problem family.
We expected poorer results on this model due to the description of the system
being asymmetric. However, not only is a 62% reduction of mean time in finding
a best error achieved (86% reduction in the median time), the quality of the
solutions discovered are also improved. The improvement in the path length of
the solutions found allow a practitioner to instantly assess the properties of the
error. In this instance, the paths are of a similar length meaning it is highly
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likely that only a subset of the processes in the system are required to cause
the error. If all 20 clients were involved, you can expect a substantial increase
in the path length over the 2 client model. The Dining Philosopher system,
for instance, requires that all processes perform actions to cause a deadlock,
and this is reflected by the increase in path length from the 32 philosopher
system to the 128 philosopher system. Model reuse and the ability of the EDA
to find and optimise counterexamples efficiently [11,12] could make the EDA-
based technique a valuable tool for practitioners, as useful information such as
this could be revealed along with other insights. Furthermore, the practitioner
could gain this information with zero effort, as there is the potential for this
approach to be automated.

5 Conclusion

To summarise, we have presented an approach for saving computational and
manual effort when building and debugging concurrent systems using the EDA-
based technique described in [11,12]. This is achieved by reusing information,
specifically information from the models constructed, from an earlier execution
to aid the search in a future execution. The analysis and reuse of modelling
information learned by EDAs is an often cited advantage [8], and we have used
this advantage in a practical scenario. Using this new approach, we have shown
that it is possible to save computational effort when analysing problem fami-
lies, and described other scenarios where effort could potentially be saved. Our
results show that information can been gained using an insignificant amount of
additional computational resources. This information can yield insights that can
save time in the debugging phase, which could ultimately lower development
costs. The scenario we have tested in this paper could potentially be automated,
meaning no manual effort would be required to gain additional information. At
the time of writing, we believe that this is the first application of EDA model
analysis/reuse in the SBSE domain.

We believe that there is ample scope for further work in this area. The sce-
narios for model reuse described and tested in this work are likely a subset of
what is possible. There may well be other scenarios in which this work could be
beneficial, and not just in the concurrent software testing domain. N-gram GP
is essentially a sequence modelling algorithm, and approaches like this could be
used wherever the solution space can be represented as a sequence. This could
include problems that can be couched as graph search. We feel that the EDA de-
scribed in [11,12] can be applied to stress testing. In this application domain, the
EDA could be used to learn problematic sequences that cause the performance
of systems to degrade or indeed completely fail. Augmenting the sequence mod-
elling used in our work is another potential avenue of future research. We have
previously outlined a number of ways in which N-gram GP can be improved to
further increase efficiency when tackling large problems [11]. Using an entirely
different sequence modelling approach may also increase the efficacy of the EDA
in the concurrent software testing domain.
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A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 206–217. Springer,
Heidelberg (2008)

10. Russell, S.J., Norvig, P., Canny, J.F., Malik, J., Edwards, D.D.: Artificial intelli-
gence: a modern approach. Prentice hall, Englewood Cliffs (1995)

11. Staunton, J., Clark, J.A.: Searching for safety violations using estimation of distri-
bution algorithms. In: IEEE International Conference on Software Testing, Verifi-
cation, and Validation Workshop, pp. 212–221 (2010)

12. Staunton, S., Clark, J.A.: Finding short counterexamples in promela models using
estimation of distribution algorithms. To appear: Search-based Software Engineer-
ing Track, Genetic and Evolutionary Computation Conference (2011)



Identifying Desirable Game Character

Behaviours through the Application of
Evolutionary Algorithms to Model-Driven

Engineering Metamodels

James R. Williams, Simon Poulding,
Louis M. Rose, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science,
University of York, UK

{jw,smp,louis,paige,fiona}@cs.york.ac.uk

Abstract. This paper describes a novel approach to the derivation of
model-driven engineering (MDE) models using metaheuristic search, and
illustrates it using a specific engineering problem: that of deriving com-
puter game characters with desirable properties. The character behaviour
is defined using a human-readable domain-specific language (DSL) that
is interpreted using MDE techniques. We apply the search to the under-
lying MDE metamodels, rather than the DSL directly, and as a result
our approach is applicable to a wide range of MDE models. An imple-
mentation developed using the Eclipse Modeling Framework, the most
widely-used toolset for MDE, is evaluated. The results demonstrate not
only the derivation of characters with the desired properties, but also
the identification of unexpected features of the behavioural description
language and the game itself.

1 Introduction

The search-based approach to deriving Model Driven Engineering (MDE) models
described in this paper is generic, but was motivated by a specific engineering
challenge encountered by the authors: that of deriving suitable game player
characters in a computer game called ‘Super Awesome Fighter’ (SAF).

The SAF game was developed to illustrate MDE concepts to high-school stu-
dents and is played between two human-specified fighters, or a human-specified
fighter and a pre-defined (or ‘non-player’) opponent. A human player specifies
their fighter’s behaviour using a bespoke Fighter Description Language (FDL)
which covers aspects such as the power of the fighter’s kick, the reach of its
punch, and whether the fighter punches, kicks, walks towards its opponent, or
runs away in particular situations. The description of both fighters is provided
to the game engine at the beginning of the game and interpreted using MDE
tools. Play then proceeds automatically, and at each stage of the game, the game
engine decides on the appropriate action for the fighters according to their FDL

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 112–126, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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descriptions. The winner is the fighter with the best ‘health’ at the end of the
game.

For the game to be interesting, it should be challenging – but not impossi-
ble – for a human player to specify a winning fighter. For example, it should
not be too easy for a human player to describe a fighter that beats all other
opponents, both human and non-player. Similarly, the pre-defined non-player
fighter should consistently win against the poorest human-specified fighters, but
nonetheless should be beatable by the best fighters. We found that checking these
requirements for the game play was difficult and time-consuming when fighters
descriptions were investigated manually, and so were motivated to consider an
automated search-based approach.

The paper makes two major contributions. Firstly, we demonstrate the use
of Search-Based Software Engineering techniques in deriving fighters with par-
ticular properties, such as consistently beating all opponents. The search al-
gorithm is a form of Grammatical Evolution (GE), which is a natural choice
for this application since the FDL is an example of a context-free grammar to
which GE is normally applied. The fighters derived by the search algorithm pro-
vide useful information for the software engineer in modifying the game play
or the Fighter Description Language to ensure a suitable challenge for human
players.

The second contribution is an implementation of the genotype-to-phenotype
mapping process that is central to GE using the Eclipse Modeling Framework
(EMF), a widely-used MDE toolset. Since the fighter description is implemented
as a model using EMF, and the FDL is a concrete syntax for this model, the
use of EMF model transformation technologies is a very convenient method of
performing the mapping for this particular application. Moreover, we have im-
plemented the mapping process in an automated and generic manner, enabling
its use with other optimisation problems where solutions are expressed in terms
of MDE models.

Related work that applies metaheuristic search to MDE models includes the
use of particle swarm optimisation and simulated annealing in model transforma-
tion [7]; the evolutionary generation of behavioural models [4]; and the analysis
of non-functional properties of architectures described using MDE [11]. How-
ever, such combinations of Search-Based Software Engineering and MDE are
relatively rare, and our intention is that our generic implementation of GE using
an appropriate toolset will facilitate further research in this area1.

The paper is structured as follows. Section 2 describes relevant background
material: Grammatical Evolution, MDE concepts and terminology, and details of
the Fighter Description Language. The generic genotype-to-phenotype mapping
process using EMF model transformation is explained in section 3. An empirical
evaluation of the approach is described in section 4. Section 5 concludes the
paper and outlines future work.

1 The code for the GE implementation, the SAF game, and the results of the empirical
work, are available from: http://www-users.cs.york.ac.uk/jw/saf

http://www-users.cs.york.ac.uk/jw/saf
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2 Background

This section explains the main features of Grammatical Evolution, relevant
Model-Driven Engineering concepts and terminology, and the Fighter Descrip-
tion Language.

2.1 Grammatical Evolution

The technique of Grammatical Evolution (GE) was first described Ryan and
O’Neill [15,14] as a mechanism for automatically deriving ‘programs’ in lan-
guages defined by a context-free grammar where the definition is expressed using
Backus-Naur form (BNF). Applications of GE include symbolic regression [15],
deriving rules for foreign exchange trading [1], and the interactive composition
of music [17].

The central process in GE is the mapping from a linear genotype, such as a
bit or integer string, to a phenotype that is an instance of a valid program in
the language according to the BNF definition. Figure 1 illustrates the process
using a simple grammar for naming pubs (bars).

The pub naming grammar is defined in BNF at the top of figure 1 and consists
a series of production rules that specify how non-terminal symbols (the left-hand
sides of the rule, such as <noun-phrase>) may be constructed from other
non-terminals symbols and from terminal symbols (constant values that have no

28718 11 2

BNF Definition

<pub-name> ::= "the" <noun-phrase> | "the" <noun> "and" <noun>

<noun-phrase> ::= <noun> | <adjective> <noun-phrase> 

<adjective> ::= "red" | "royal" | "golden"

<noun> ::= "lion" | "anchor" | "oak" | "slipper" | "horse"

28718 11 2

28718 11 2

28718 11 2

<pub-name> 

"the" <noun-phrase>

"the" <adjective> <noun-phrase>

"the" "golden" <noun-phrase>

28718 11 2

"the" "golden" <noun>

"the" "golden" "slipper"

Fig. 1. An example of genotype-to-phenotype mapping in Grammatical Evolution
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production rule, such as "red"). Vertical bars separate a series of choices as to
how to construct the non-terminal symbols.

At the left of figure is the genotype that will be mapped to the phenotype,
in this case, a pub name valid according to the naming grammar. The genotype
consists of a sequence of integer values, each of which is termed a codon. The
mapping process starts with the first production rule in the grammar, that for
the non-terminal <pub-name>. There are three options as to how to produce
this non-terminal, and the value of the first codon determines which choice to
use by taking the value modulo the number of choices. In this case the codon
value is 18, there are 2 choices, 18 mod 2 = 0, and so the first choice of the two,
"the" <noun-phrase>, is used. The next construction decision is for the non-
terminal <noun-phrase> and it uses the value of the second codon. The codon
has a value of 7, there are 2 choices, 7 mod 2 = 1, and so the second choice is
used. Production continues in this way until there are no more non-terminals to
produce.

Should the mapping process require more codon values than are present in
the genotype, codon values are re-used starting at the first codon. This process
is known as wrapping. It is possible for the mapping process to enter an endless
loop as a result of wrapping. Therefore, a sensible upper limit is placed on the
number of wrappings that may occur, and any genotype which causes this limit
to be reached is assigned the worst possible fitness.

Ryan and O’Neill’s original work on Grammatical Evolution used a specific
genetic algorithm, with a variable length genotype and specialist genetic opera-
tors. More recent work makes a distinction between the genotype-to-phenotype
mapping process, and the underlying search algorithm, using, for example, differ-
ential evolution [12] and particle swarm optimisation [13], in place of the genetic
algorithm. We take a similar approach in the work described in this paper by
designing a genotype-to-phenotype mapping process that is independent of the
underlying search algorithm.

2.2 Model-Driven Engineering

A model can be thought of as an abstraction of a problem under scrutiny; the
abstraction is typically created for a specific purpose. Models have been used
in many engineering disciplines for years, yet in software engineering models
have often played a secondary role – as documentation or a means of problem
exploration [16]. Model-driven engineering (MDE) is a software development
practice that treats models as first-class artefacts in the development process.
MDE focuses on modelling the system at the level of the application domain,
and via a series of automatic transformations, generating code.

Models in MDE are defined and constrained by their metamodel – another
model that establishes the form a model can take; a metamodel can be thought
of as the abstract syntax of the model [8]. A model that adheres to the concepts
and rules specified in a metamodel is said to conform to that metamodel.
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An important concept in MDE is model transformation [2]. Examples of com-
mon transformations are generating code from a model (a model-to-text trans-
formation), generating a model from code (a text-to-model transformation), and
transforming a model into one that conforms to a different metamodel (a model-
to-model transformation). Other model management activities include validating
models, migrating models to newer versions of their metamodel, merging models,
and comparing models.

One of the most widely used modelling frameworks is the Eclipse Modeling
Framework (EMF) [18], part of the Eclipse IDE2. EMF provides mechanisms for
creating, editing and validating models and metamodels, as well as for generating
code from models. EMF generates a Java implementation of metamodels where
each of the metamodel’s classes (called meta-classes) corresponds to a single
Java class. This means that these classes can be instantiated to create models
conforming to the metamodel. EMF can also create (tree-based or graphical)
editors for models conforming to metamodels [18].

2.3 The Fighter Description Language

The fighting game, SAF, introduced in section 1 allows the behaviour of fighter
characters to be defined in a bespoke domain-specific language, the fighter de-
scription language (FDL). Fighters in SAF are MDE models, which are described
by the FDL. Figure 2 shows a simplified version of the metamodel for a SAF
fighter.

A fighter (Bot) in SAF has two features - a Personality and a Behaviour.
A fighter’s Personality is defined by a set of Characteristics – defining
the power and reach of the fighter (values range between 0 and 9). These charac-
teristics represent trade-offs: a more powerful strength characteristic limits the
speed with which the fighter can move. If one of the characteristics is not speci-
fied by the user, its value defaults to 5. The Behaviour of a fighter is made up
of a set of BehaviourRules. BehaviourRules specify how the fighter should
behave in certain Conditions. A rule is composed of a MoveAction and a
FightAction. FDL offers the ability to specify a choice of move and fight ac-
tions using the keyword choose. For example, a rule can define that they want
to either block high or block low, and the game will pick one of these at random.

We have defined FDL using Xtext [3], a tool and language that enables the
creation of custom languages based upon metamodels. Xtext generates a text-
to-model parser for languages, meaning that the concrete syntax of FDL can
automatically be parsed into a model and used with the SAF game. Furthermore,
the Xtext grammar definition language also conforms to a metamodel and it is
this metamodel that allows us to perform grammatical evolution over FDL (and
other languages defined using Xtext). Listing 1 illustrates the syntax of FDL
using an example fighter3.

2 Eclipse website: http://www.eclipse.org
3 The FDL grammar is available from: http://www-users.cs.york.ac.uk/jw/
saf.

http://www.eclipse.org
http://www-users.cs.york.ac.uk/jw/saf
http://www-users.cs.york.ac.uk/jw/saf
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name : String
Bot

 
Personality

 
Behaviour

punchReach : Int
punchPower : Int
kickReach : Int
kickPower : Int

Characteristic
 

Rule

type : MoveActionType
MoveAction

type : FightActionType
FightAction

type : ConditionType 
Condition

walk_towards
walk_away
run_towards
run_away
jump
crouch
stand

<<enum>>
MoveActionType

block_low
block_high
punch_low
punch_high
kick_low
kick_high

<<enum>>
FightActionType

always
near
far
much_stronger
stronger
even
weaker
much_weaker

<<enum>>
ConditionType

* *

0..1 0..1 0..1

1 1

Fig. 2. The simplified metamodel for the character behaviour language used in SAF

1 JackieChan{
2 kickPower = 7
3 punchPower = 5
4 kickReach = 3
5 punchReach = 9
6 far[run_towards punch_high]
7 near[choose(stand crouch) kick_high]
8 much_stronger[walk_towards punch_low]
9 weaker[run_away choose(block_high block_low)]

10 always[walk_towards block_high]
11 }

Listing 1. An example character defined using FDL

Our choice of using Xtext was due to our familiarity with it, and our approach
can be implemented for any equivalent grammar definition language that has a
metamodel, such as EMFText [5].

The next section shows how the Xtext grammar defined for FDL can be used
with metaheuristic search in order to discover the set of behaviours that define
a good fighter.

3 Genotype to Phenotype Transformation

In this section we explain the process of mapping the genotype (integer string)
to the phenotype (fighter) using model transformations. The inputs to the pro-
cess are the genotype and the definition of the Fighter Description Language
grammar. The latter is initially defined as a text file, but the mapping utilises
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a more convenient form of the grammar expressed as a model that conforms to
the Xtext metamodel.

3.1 Creating the Genotype Model

The first step in the process is to turn the genotype into a model representation
in order to perform the model transformation. Figure 3 illustrates the metamodel
of our genotype. A Genotype is composed on a number of Codons. A Codon
has one attribute – its value, and one reference – a pointer to the next codon
in the chromosome.

 
Genotype

value : Int
Codon

*

next

codons

Fig. 3. The metamodel for a Genotype

The integer string from the search
algorithm is used to create a model
that conforms to this metamodel. A
Codon class is created for each codon,
and its value attribute is set to the
value of the codon. Each Codon’s
next reference is set to the succes-
sive codon, with the final codon in
the chromosome pointing back to the
first. This creates a cycle, meaning
that genotype wrapping is handled automatically by traversing the references.
An example model that conforms to this metamodel is shown as part of figure 4.

3.2 Transliterating the Phenotype

The next step is to transform this model of the genotype into a model of the
phenotype (the Fighter Description Language). The transformation is written in
the Epsilon Object Language (EOL) [10], a general purpose model management
language that is part of the Epsilon model management platform [9]. Figure 4
is an overview of this transformation process.

As grammar definitions written in Xtext conform to a metamodel, we can
define the transformation at the metamodel level, enabling the mapping process
to be applied to any Xtext grammar. The Xtext metamodel contains metaclasses
for all aspects of the grammar, including production rules, choices, and terminals.
Each production rule in a grammar model is represented as an object conforming
to a class in the Xtext metamodel and contains references to other objects in
the model that represent its non-terminals and terminals. This representation
facilitates the mapping process: where there is a choice in a production rule,
codons from the genotype model are used to select which reference to use and
therefore which path to travel through the model. When the path reaches a
terminal string, it is added to the output string.

To illustrate this approach, consider the rule in the fragment of the FDL
grammar shown in listing 2. This rule specifies the characteristics of a fighter,
and contains four choices. When parsed into a model conforming to the Xtext
metamodel, it takes the shape of figure 5.
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Integer string

212142 45 56

Genotype Model

2

12

142

45

56

Xtext FDL Definition

grammar saf.fdl 
with org.eclipse.xtext.common.Terminals

generate fdl "saf.fdl"

Bot:
'Sample' '{' '\n'

personality=Personality
behaviour=Behaviour

'}';

...

EOL Genotype to 
Phenotype Model 
Transformation

1. Integer string is translated into a 
    Genotype model

2a. Genotype model passed 
      to transformation

2b. Xtext definition of the FDL grammar 
      parsed into a model and passed to 
      transformation

Sample {
   kickPower=6
   punchReach=4
   near[stand punch_low]
   stronger[run_towards block_high]
   always[jump kick_high]
}

3. Script outputs the fighter as a string

next

next

next

next

next

Fig. 4. The process followed in order to transform the genotype into the phenotype

When this rule is reached during the transformation, the current codon’s value
identifies which alternative to execute by taking the codon’s value modulo the
number of choices. If the first alternative is chosen, the keywords punchReach
and = will be added to the output string, and the next codon in the genotype
model will select the NUMBER to assign to the selected characteristic. The exe-
cution can then traverse back up the reference chain and execute the next pro-
duction rule in sequence, or terminate. If the user-defined number of genotype
wrappings is reached during the execution, the transformation aborts. Other-
wise, the transformation results in a string that conforms to the grammar of
interest – in our case, a fighter.
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1 Characteristic:
2 ’punchReach’ ’=’ value=NUMBER ’\n’ | ’punchPower’ ’=’ value=
3 NUMBER ’\n’ |
4 ’kickReach’ ’=’ value=NUMBER ’\n’ |’kickPower’ ’=’ value=
5 NUMBER ’\n’ ;

Listing 2. The Xtext grammar rule for defining characteristics of a fighter

 
Characteristic: Rule

 
:Choice

 
:Choice

 
:Choice

 
:Choice

value : "punchReach" 
:Keyword

value : "=" 
:Keyword

 
:TerminalRule

value : "0"
:NUMBER

value : "1"
:NUMBER

value : "9"
:NUMBER

... 
:Choice

 
:Choice

 
:Choice

Fig. 5. A section of the FDL grammar model demonstrating how choices are made
during the transformation process

4 Evaluation and Results

The previous section described a generic process for mapping an integer string
genotype to a phenotype using EMF model transformation technologies. To illus-
trate and evaluate the approach, we return to the specific application described
in the introduction where the phenotype is the SAF game Fighter Description
Language (FDL), a concrete syntax for model of the fighter’s capabilities and
behaviour.

The objective of this evaluation is to understand the feasibility of the proposed
search-based approach in the context of the original motivating problem: that of
investigating the requirements for interesting and challenging SAF game play.
These requirements are expressed as two experimental questions:

EQ1. Is it possible to specify unbeatable fighters? If so, it may be necessary to
amend either the game play or restrict the fighter description language to
limit the possibility of a human player specifying such a fighter.

EQ2. Is it possible to derive a fighter that wins 80% of its fights against a range
of other fighters? Such a fighter could be used as the pre-defined non-player
opponent since it would provide an interesting, but not impossible, challenge
for human players. The figure of 80% is an arbitrary choice that we believe
represents a reasonably challenging opponent for human players.
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Since this is an initial evaluation of feasibility, no explicit consideration of effi-
ciency (speed and resource usage) of the approach is made. We plan to make a
detailed evaluation of efficiency as part of our future work.

4.1 Empirical Method

To answer these two questions, our GE implementation is applied to the problem
by pairing the genotype-to-phenotype mapping described above with a suitable
metaheuristic search algorithm. The primary experiments use a genetic algo-
rithm as the search algorithm, and in addition we perform secondary experi-
ments using random search in order to assess whether the problem is sufficiently
trivial that solutions can be found by random sampling of the search space.

Fitness Metric. An assessment of the properties of “unbeatable” (EQ1) and
“wins 80% of its fights” (EQ2) requires a set of opponents to be defined. It is
not practical to test how the a candidate fighter performs against all possible
opponents, and so we created a ‘panel’ of representative opponents by asking our
colleagues to specify what they believed would be winning fighters. (Note that
our colleagues are acting simply as examples of typical human game players:
they are not attempting to perform manually the equivalent of our proposed
automated search-based approach in exploring the capabilities of the FDL.) The
fitness of a candidate fighter is then assessed by having it play the SAF game
against each opponent in the panel. The game play is stochastic owing to the
choose construct in the DSL, and so each candidate fighter fights each opponent
a number of times so that a more accurate fitness can be estimated.

The fitness of a candidate fighter is based on the difference between the num-
ber of fights won by the candidate fighter against the panel, and a target number
of winning fights. It is calculated as:

f =
∣∣∣ρ nopps nfights −

nopps∑
o=1

nfights∑
i=1

wo,i

∣∣∣ (1)

where nopps is the number of opponents in the panel; nfights the number of fights
with each opponent; ρ the proportion of fights that the fighter should win, and
wo,i an indicator variable set to 1 if the fighter wins the ith fight against the
oth opponent, and 0 otherwise. The proportion of fights to win, ρ, is set to 1 for
experiments on EQ1, indicating an optimal fighter must win all fights against all
opponents in the panel, and is set to 0.8 for experiments on EQ2. Fighters with
lower fitnesses are therefore better since they are closer to winning the desired
proportion of fights.

Algorithm Settings and Implementation. The algorithm settings, includ-
ing the parameters used in the genotype-to-phenotype mapping and in the fitness
calculation, are listed in table 1. Since the efficiency of the algorithms is not be-
ing explicitly evaluated in this work, no substantial effort was made to tune
the parameters to this particular problem, and the choice of some parameter
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Table 1. Parameter settings for the genetic algorithm, genotype-to-phenotype map-
ping, and fitness metric

parameter setting

number of codons 20
codon value range 0–32767
population size 20

maximum number of generations 50
initialisation method random codon values

selection method (for reproduction) tournament, size 2
reproduction method single point crossover

mutation method integer mutation (random value)
mutation probability (per codon) 0.1

number of elite individuals 2

maximum wrappings (during mapping) 10

number of opponents (nopps) 7
number of fights (nfights) 5

settings, for example the use of integer mutation, was made with reference to
existing GE studies, such as [6].

The genetic algorithm was a bespoke implementation in Java since this is
the language used in the interface to the genotype-and-phenotype mapping. A
bespoke implementation was chosen as this was throught to provide a more
flexible basis for proposed future work on co-evolutionary strategies. However,
other evolutionary computation libraries written in Java, such as ECJ4, could
have been used in conjunction with our genotype-to-phenotype mapping process.

For random search, the bespoke genetic algorithm implementation was used
but with the mutation probability set to 1.0. This has the effect of selecting a
entirely new random population at each generation (apart from the elite indi-
viduals which are retained unchanged in the next generation).

Response. Four experiments were performed: one for each combination of ques-
tion (EQ1 or EQ2) and algorithm (genetic algorithm or random search). Within
each experiment, the algorithm was run 30 times, each run with a different seed
to the pseudo-random number generator. Our chosen response metric is a mea-
sure of the effectiveness of the approach: the proportion of runs resulting in an
‘optimal’ (as defined by EQ1 or EQ2) fighter. Since the fitness metric is noisy
as a result of the stochastic choose construct in the FDL, the condition for
optimality is slightly relaxed to allow candidate fighters with a fitness of 1.0
or less; in other words, an optimal fighter may differ by at most one from the
desired number of winning fights rather than requiring an exact match. This con-
dition also accommodates the situation where the choice of ρ causes the term
ρ nopps nfights in the fitness function to be non-integer.

4 ECJ website: http://cs.gmu.edu/eclab/projects/ecj/

http://cs.gmu.edu/∼eclab/projects/ecj/
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Table 2. The proportion of successful runs (those that find an ‘optimal’ fighter) for the
four experiments. The ranges in parentheses are the 95% confidence intervals. Values
are rounded to 2 significant figures.

experimental question search algorithm proportion successful

EQ1 (ρ = 1.0) genetic algorithm 0.67 (0.50 – 0.83)
EQ1 (ρ = 1.0) random search 0 (0 – 0.12)
EQ2 (ρ = 0.8) genetic algorithm 0.97 (0.88 – 1.0)
EQ2 (ρ = 0.8) random search 0.47 (0.31 – 0.66)

1 fighter{
2 punchReach=9
3 even[choose(crouch walk_towards) choose(block_high

punch_low)]
4 always[crouch block_low]
5 }

Listing 3. Example of an ‘unbeatable’ fighter description found by the genetic
algorithm

4.2 Results and Analysis

Table 2 summarises the results of the four experiments5. The ‘proportion suc-
cessful’ column is the fraction of algorithm runs in which an ‘optimal’ fighter was
found. The 95% confidence intervals are shown in parentheses after the observed
value, and are calculated using the Clopper-Pearson method (chosen since it is
typically a conservative estimate of the interval).

For EQ1, the objective was to derive unbeatable fighters. The results show that
unbeatable fighters can be derived: the genetic algorithm found such examples in
approximately 67% of the algorithm runs. Listing 3 shows a particularly simple
example of an optimal ‘unbeatable’ fighter derived during one algorithm run.
The ease of derivation using a genetic algorithm is not necessarily an indication
of the ease with which a human player may construct an unbeatable fighter.
Nevertheless, it is plausible that a human player could derive unbeatable fighters
with descriptions as simple as that in listing 3, and therefore the game play or
the FDL may need to be re-engineered to avoid such fighters.

For EQ2, the objective was to derive challenging fighters that won approxi-
mately 80% of the fights against the panel of opponents. The results show that
it was easy for the genetic algorithm and possible, but not as easy, for random
search to derive descriptions for such fighters, such as the example shown in
listing 4.

5 Detailed results are available from: http://www-users.cs.york.ac.uk/jw/
saf.

http://www-users.cs.york.ac.uk/jw/saf
http://www-users.cs.york.ac.uk/jw/saf
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1 fighter{
2 kickReach=9
3 stronger[choose(jump run_away) choose(kick_low block_low)]
4 far or much_weaker[choose(crouch run_towards) choose(

punch_low punch_high)]
5 always[crouch kick_low]
6 }

Listing 4. Example of an ‘challenging’ fighter description found by the genetic
algorithm

An unintended, but very useful, outcome of these experiments was that search
process exposed some shortcomings in the Fighter Description Language that
were not discovered by human players. One example was that the game en-
gine requires that the fighter description specify a behaviour for every situation
(whether weaker or stronger than the opponent fighter, or near or far from it),
but the language grammar does not enforce this requirement. This was resolved
by ensuring that all descriptions contained an always clause.

1 fighter{
2 punchPower=9
3 punchPower=7
4 punchPower=2
5 kickPower=7
6 punchPower=2
7 kickPower=2
8 near[crouch punch_low]
9 stronger or far[choose(run_towards run_towards) kick_high]

10 much_weaker and weaker[walk_away block_low]
11 always[crouch kick_high]
12 }

Listing 5. Example of an ‘unbeatable’ fighter description that illustrates language
shortcomings

Further examples of language shortcomings are illustrated in the description
shown in listing 5: characteristics of punchPower and kickPower are specified
multiple times (lines 2 to 7); the condition much_weaker and weaker can
never be satisfied (line 10); and both choices in the choose clause are the
same (line 9). Although none of these issues prevent game play – only one of
the repeated characteristics is used; the condition is never considered; and the
choose clause is equivalent to simply run_towards – they are not intended
(and, moreover, unnecessarily increase the size of the search space). The language
might be modified to avoid these shortcomings.

Finally, we compare the efficacy of the genetic algorithm and random search
on the two experimental questions. The results for EQ1 in table 2 suggest that
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random search cannot find an ‘unbeatable’ fighter (at least in the same upper
limit on the number of fitness evaluations as the genetic algorithm), and that the
problem is non-trivial. For EQ2, random search does succeed in the easier prob-
lem of finding ‘challenging’ fighters, but with less consistency than the genetic
algorithm. The non-overlapping confidence intervals indicate that the differences
between random search and the genetic algorithm are statistically significant for
both questions.

5 Conclusions and Future Work

In this paper we have presented a novel application of Grammatical Evolution to
the derivation of fighting game characters that possess desirable properties. The
genotype-to-phenotype mapping process uses model transformation technologies
from the Eclipse Modeling Framework, facilitating the implementation for this
specific application, as well as enabling the same approach to be used on other
optimisation problems where the solutions are expressed as MDE models. The
range of potential applications include not only other domain specific languages
that conform to a metamodel, but also more general models.

We intend to continue this work in a number of directions. Firstly, in the
context of this specific application, the opponents against which the fighter’s
fitness metric is assessed could be derived using co-evolutionary methods rather
than a human-derived panel. We speculate that currently the fighter properties
of ‘unbeatable’ and ‘challenging’ may not be applicable beyond the panel of
human-derived opponents, and that by co-evolving a larger, diverse panel of
opponents, fighters with more robust properties may be derived. Secondly, non-
player fighters could be dynamically evolved during the game play: each time a
human player finds a winning fighter, a more challenging non-player opponent
could be evolved, thus ensuring the human player’s continued interest.

More generally, we aim to improve the generality of the genotype-to-phenotype
mapping process. A first step is to accommodate cross-referencing, whereby mul-
tiple parts of the phenotype must refer to the same instantiated element; this
feature was not required for the SAF Fighter Definition Language. This en-
hancement would permit the mapping to be used with any Xtext grammar def-
inition to generate concrete instances. We also intend to investigate the use of
bi-directional model transformation, enabling a reverse phenotype-to-genotype
mapping in addition to current genotype-to-phenotype: this would be useful for
search problems in which an additional local search is performed on the pheno-
type as part of a hybrid search algorithm, or an invalid phenotype is repaired,
and such changes need to be brought back in to the genotype.
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Abstract. This paper presents an approach to Search Based Software Project
Management based on Cooperative Co-evolution. Our approach aims to opti-
mize both developers’ team staffing and work package scheduling through co-
operative co-evolution to achieve early overall completion time. To evaluate our
approach, we conducted an empirical study, using data from four real-world soft-
ware projects. Results indicate that the Co-evolutionary approach significantly
outperforms a single population evolutionary algorithm. Cooperative co-evolution
has not previously been applied to any problem in Search Based Software En-
gineering (SBSE), so this paper reports the first application of cooperative co-
evolution in the SBSE literature. We believe that co-evolutionary optimization
may fit many applications in other SBSE problem domains, since software sys-
tems often have complex inter-related subsystems and are typically characterized
by problems that need to be co-evolved to improve results.

Keywords: Cooperative Co-Evolutionary Algorithm, Staff Assignments, Work
Package Scheduling, Software Project Planning, Search Based Software
Engineering.

1 Introduction

Software project management has been the subject of much recent work in the SBSE
literature. Previous work has investigated the project staffing and planning problem
either as a single-objective problem, or as a multi-objective problem in which the mul-
tiple objectives are, to some degree, conflicting objectives [3,4,13]. In this paper we
introduce an alternative approach based on the use of a Cooperative Co-Evolutionary
Algorithm (CCEA). We believe that a Cooperative Co-Evolutionary approach to project
management is attractive because it allows us to model a problem in terms of sub prob-
lems (e.g., in project scheduling and staffing, the allocation of work packages to teams
and allocation of staff to teams). These sub problems can be inter-related, but sepa-
rate problems, for which the overall solution depends on the identification of suitable
sympathetic sub-solutions to each of the subproblems.

We show how the two primary features of a project plan—i.e., the allocation of staff
to teams and the allocation of teams to work packages—can be formulated as two popu-
lations in a Cooperative Co-evolutionary search. Co-evolution has been previously used
in SBSE work [1,6,7], but all previous approaches have used competing subpopulations;
the so-called predator–prey model of Co-evolution. In this paper, we adopt the alterna-
tive approach to co-evolution; Cooperative Co-evolution, in which the subpopulations
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work symbiotically rather than in conflict with one another. We believe that this form
of co-evolution may also find many other applications in SBSE work, since many Soft-
ware Engineering problems are characterized by a need to find cooperating subsystems
that are evolved specifically to work together symbiotically.

We implemented our approach and evaluated it on data from four real world software
projects from four different companies, ranging in size form 60 to 253 individual work
packages. We report the results on the efficiency and effectiveness of our approach,
compared to a random search and to a single population approach. Our results indicate
that the co-evolutionary approach has great promise; over 30 runs for each approach,
co-evolution significantly outperforms both random and single population approaches
for the effectiveness of the project plans found, while it also appears to be at least as
efficient as a single population approach.

The paper makes two primary contributions: (1) The paper introduces a novel for-
mulation of the Software Project Planning Problem using Cooperative Co-evolution
and, to the best of our knowledge, this is the first paper in the SBSE literature to use
cooperative co-evolution. (2) The paper reports the results of an empirical study with
an implementation of our co-evolutionary approach, compared to random and single
population evolution. The obtained results provide evince to support the claim that co-
operative co-evolution is more efficient and effective than single population evolution
and random search.

2 Problem Statement and Definitions

This section describes the problem model for the work packages scheduling and staff
assignment problem in detail and addresses the use of the CCEA.

Finding an optimal work package scheduling for a large project is difficult due to the
large search space and many different considerations that need to be balanced. Also,
finding an optimal way to construct its project teams is crucial as well. In this paper, we
focus on team construction with regard to team size.

In order to formulate this problem into a model, we make the following assumptions
to simplify the problem: (1) staff members are identical in terms of skills and expertise,
and staff only work on one team during the whole project, (2) WPs are sequentially
distributed to teams, but they may still be processed at the same time, and (3) only
one kind of dependency is considered: Finish-to-Start (FS). All three assumptions were
found to be applicable to the four projects studied in this paper, all of which are real
world software projects and therefore, though limiting, our assumptions do not preclude
real world application.

2.1 Ordering/Sequence of Work Packages

To model the work needed to complete a project, we decompose the project according
to its Work Breakdown Structure (WBS). WBS is widely used as a method of project
decomposition. In a given WBS, the whole project is divided into a number of l small
Work Packages (WPs): WP = {wp1, wp2, · · · , wpl}. Two attributes of a WP, wpi,
are considered in this paper: (1) the estimated effort, ei, required to complete wpi,
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and (2) the WP predecessor(s), depi, which need to be completed before wpi can start
to be processed. The estimated efforts for all WPs are represented as a vector: E =
{e1, e2, · · · , el}, e.g.: wpi requires ei person-days to complete; and dependence infor-
mation is represented as a two-dimensional vector as: Dep = {dep1, dep2, · · · , depl}
where depi = {wpj , · · · , wpk} if the predecessors of wpi are wpj , · · ·, and wpk.

The order in which the WPs are considered is represented as a string, shown in Fig-
ure 1, where the WP ordering in the string indicates a specific sequence for distributing
the WPs to project teams. Constraints of precedence relationships are satisfied as each
is processed, with the effect that a project cannot start until its dependent WPs have
been completed.

Distributing Order: 1st 2nd 3rd · · · (l − 1)th l-th
Work Package ID: 3 2 6 · · · l l − 4

Fig. 1. WPO Chromosome: The gray area is the representation of the solutions for the ordering
for distributing a set of l work packages. A solution is represented by a string of length l, each
gene corresponding to the distributing order of the WPs and the alleles, drawn from {1, ..., l},
representing an individual WP.

2.2 Staff Assignments to Teams

A total of n staff are assigned to m teams to execute the WPs. The size of each team
(their ‘capacity’) is denoted by a sequence C = {c1, c2, · · · , cm}.

Staff: S1 S2 S3 · · · Sn−1 Sn

Assigned To Team No.: 2 4 3 · · · m 3

Fig. 2. TC Chromosome: The gray area is the representation of the solutions for Team Construc-
tion or the assignments of a set of n staff to a set of m teams. A solution is represented by a
string of length n, with each gene corresponding to a staff and the alleles, drawn from {1, ..., m},
representing assignment of the staff.

2.3 Scheduling Simulation

We use a single objective fitness evaluation for both populations in our co-evolutionary
approach, i.e., the project completion time. The processing of the WPs by the teams is
simulated by a simple queuing simulation as described in previous work [13,20]. In this
approach, the WP dependence constraints are satisfied by arranging the order in which
WPs are assigned to teams. However, we want to avoid the order in which the successor
wpi is right after its predecessor wpj . In such a case, wpi has to wait until wpj is
finished before it can be distributed to an available team. There are two ways for the
managers to minimize the team’s unused available time: 1) interlacing: managers can
choose to insert one or more WPs between wpi and wpj so when wpi is waiting for wpj

those inserted WPs can keep all the teams functioning, or 2) using mitigation: distribute
the predecessor wpj to a team with the highest possible capacity, so that the completion
time of the predecessor is the shortest, and therefore, the wait time of wpi is mitigated
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to be the shortest one. In our case, we simply rely on the search based algorithm that,
by producing different WP orderings, can enact both interlacing or mitigation. Further
details about the simulation of WP scheduling can be found in a previous work [13].

3 Optimization Method: Cooperative Co-evolutionary Algorithm

The Cooperative Co-Evolution Algorithm (CCEA) [21] was proposed to solve large and
complex problems by implementing a divide-and-conquer strategy. CCEA was origi-
nally designed to decompose a high-dimensional problem into smaller sub-problems
that could be handled by conventional evolutionary algorithms [24]. Using CCEA, the
individuals from each population represent a sub-solution to the given problem. To
search for a solution, the members of each population are evolved independently, and
interactions between populations only occur to obtain fitness.

TC Parent A: 3 m 1 · · · 4 2
TC Parent B: 2 4 3 · · · m 3

Single-Point Crossover

TC Child a: 3 m 3 · · · m 3
TC Child b: 2 4 1 · · · 4 2

(a)

Before: 3 2 6 · · · l l − 4
Randomly Swap Positions

After: 6 2 3 · · · l − 4 l
(b)

Fig. 3. (a) TC Single Point Crossover and (b) WPO Mutation

3.1 Solution Representations and Genetic Operators

There are two species of solutions in this evolutionary process: One (WPO) contains
solutions representing the ordering in which WPs are distributed to teams, and the other
(TC) represents the Team Constructions, i.e., the number of staffing persons for each
team.

For solutions representing staff assignments or TC, as shown in Figure 2, we encoded
the solutions in the following format. The assignment of a set of n staff to a set of m
teams is represented as a string of length n. Each gene of the chromosome corresponds
to a staff member. The alleles ranging from 1 to m represent the team that the staff
is assigned to. A single-point crossover is performed for the TC specie. Basically, the
child takes half of chromosome from each of both parents. The mutation operator is
thus set to assign each staff randomly to another team.

To achieve a fair comparison between projects, we chose the number of staff n = 50
and the number of working teams m = 5. Also, we verify every new generated solution
of TCs before evaluating it with the fitness function, to ensure in each solutions every
team has at least one staff member. This “no empty team” check is required because
a team can be empty during the evolutionary process if all staff members are assigned
to other teams. The representation of WP ordering is shown in Figure 1. The crossover
operator for such a representation is explained in [13], while the mutation operator
randomly swaps a WP to another position in the queue, with a mutation rate of 0.2 per
gene, calibrated after trying other (higher and lower) rates.

To satisfy the dependency constraints among WPs, a dependency check is required.
Solutions that violate the dependency constraints are “repaired” as explained in
Section 2.3.
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3.2 Initial Populations

The initial populations are randomly generated and subject to satisfy the of “no empty
team” rule and dependency constraints among WPs. The population size is set to 50 for
both species.

3.3 Termination Condition

We experimented with 3 sets of configurations formed of the Internal (I) and External
(E) number of generations for CCEA. The number of internal generations relates to
the evolution of each sub-population, while the number of external generations repre-
sents how many times each population provides an updated reference to help the other
population co-evolve. As shown in Table 1, these 3 configurations are all allowed the
same budget of fitness evaluations. Although all these three configurations evolve solu-
tions in both TC and WPO populations for the same number of generations, the level of
communication between the two populations varies.

Table 1. Three sets of configurations for CCEA each of which requires the same total number of
evaluations before it is terminated

Config. Int Gen Ext Gen
I 1 100
II 10 10
III 100 1

For instance, with Config. I, CCEA evolves solutions in both populations for a sin-
gle generation only (internal generation) and then provides the updated individuals for
fitness evaluations of the other population. Finally, before the evolution process ter-
minates, the TC population provides an updated reference for the WPO population
for a total of 100 iterations (external generation), and vice versa. Config. III is not a
CCEA by definition because during the whole period of the cooperative co-evolutionary
process, the communication only happens only once. Therefore Config. III is a ‘non-
co-evolutionary’ approach, against which we compare the other (co-evolutionary) ap-
proaches. By implementing the non co-evolutionary approach as a ‘special case’ (by
suitable choice of parameters) we remove one source of possible bias that would oth-
erwise result from experimenting with two totally different implementations: one co-
evolutionary and the other not.

4 Empirical Study

The goal of this empirical study is to compare our new CCEA approach with a non-
co-evolutionary genetic algorithm and a random search. We study the effectiveness and
efficiency of our approach, alternatives and (for purely ‘sanity check’ purposes) random
search on four industrial projects, named Projects A, B, C and D, described below and
for which quantitative data are summarized in Table 2.
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Table 2. Characteristics of the four industrial projects

Projects #WPs #Dependencies Total Effort
A 84 0 4287 (person-hours1)
B 120 102 594 (person-days)
C 253 226 833 (person-days)
D 60 57 68 (person-days)

Project A is a massive maintenance project for fixing the Y2K problem in a large
financial computing system from a European organization. According to its WBS, the
application was decomposed into WPs, i.e., loosely coupled, elementary units subject
to maintenance activities. Each WP was managed by a WP leader and assigned to a
maintenance team. No WP dependency was documented, and thus, no constraint had
to be satisfied in Project A scheduling. Project A can be considered as representative
of massive maintenance projects related to highly-standardized tasks such as currency
conversion, change of social security numbering, etc. Project B aimed at delivering the
next release of a large data-intensive, multi-platform software system, written in sev-
eral languages, including DB II, SQL, and .NET. Project C aimed at delivering an online
selling system to provide North American businesses of all sizes with a fast and flexible
way to select, acquire and manage all their hardware and software needs. The system
includes the development and testing of website, search engine, and order management,
etc. Project D is a medium-sized project implemented in a large Canadian sales com-
pany. This project aims to add new enhancement to the supply chain of the company by
allowing instant and on-demand conversion of quotes to orders. This change is both in-
ternal and customer facing and ultimately affects every level of the organization (Web,
internal development, database, sales, and customers).

The empirical study addresses the following research questions:

RQ1: (Sanity Check) Do the CCEA approach and the single population alternative
significantly outperform random search?
RQ1.1: Does the single population GA outperform random search?
RQ1.2: Do the CCEAs outperform random search?

RQ2: (Effectiveness) How effective is the CCEA approach compared to the alterna-
tives in terms of finding an earlier completion time?

RQ3: (Efficiency) Given the same number of evaluations, which algorithm finds the
best-so-far solution soonest?

The population size in our implementation was set to 100 and the number of generations
is listed in Table 1 for the three different configurations. For the CCEA, the fitness of
an individual in either species depends on the results of its simulations with 6 individ-
uals from the other species. Children compete with their parents, and, to select parents
for reproduction, the algorithm randomly picks a number of parents and performs a
tournament selection to identify parents for breeding. The pool of children is half the
population size, i.e., 25. That is, the best 25 children had the chance to compete with
their parents.

1 The raw information of required effort for Project A was documented in ‘person-hours’ by the
team that produced it. Since we do not know their mapping from hours to days, we leave the
data in its raw form.
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5 Empirical Study Results

In this section, we report results of the study described in Section 4.

5.1 Analysis of the Cooperative Co-evolutionary Progress

Results for all four projects and for the 3 CCEA configurations are plotted on Figures 4
and 5. In each sub-figure, the tick labels on the horizontal axis indicate the total number
of internal generations that have been carried out, and also indicates the point at which
the algorithm updated the population used for fitness computation. At each point on the
horizontal axis, the entire population is depicted using a boxplot to give both a sense of
the values obtained for completion time as the evolution progresses and the distribution
of the fitness values in the population.

The fitness values of the entire population during the whole CCEA process are rep-
resented as boxplots. We can observe that the number of internal generations is the
same for both populations within a specific sub-figure, as they fill equally spread ver-
tical bands on the sub-figures. As can be seen from the sub-figures in the top rows
in Figures 4 and 5, Config. I tends to find better solutions sooner than the other two
configurations. On the second rows we can observe an noticeable interlacing of the
co-evolutions between the two populations. For instance, as in Figure 4(c), the evolu-
tionary process on each population takes 10 internal generations. The first 10 internal
generations—plotted within the interval [1, 10] on the horizontal axis—record the evo-
lutionary progress of TC. After the first round of evolution on TC, the solutions on WPO
start evolving during the interval [11, 20]. On the third row of the sub-figures, it can be
seen that the optimization of WPO produced more benefit—in terms of project com-
pletion time—than what done for TC. This can be noticed in Figure 4(e), where both
species evolved for only one round (i.e., one external generation) and, in each round,
they evolved for 100 generations (i.e., 100 internal generations). As indicated by the
generation number on the horizontal axis, results from the TC species are plotted on the
interval [1, 100], while results from the WPO species are plotted on the interval [101,
200]. As we can see from the completion time (vertical axis) the optimization of WPO
leads to a noticeable improvement in the fitness function values obtained.

5.2 Results on Effectiveness

In this section we report the comparison of the effectiveness of three sets of CCEA
configuration and the random search. Each algorithm was run 30 times on each of the 4
sets of project data to allow for statistical evaluation and comparison of the results.

Figure 6 reports—for the various configurations—fitness values for the best individ-
ual solutions found by CCEA in the 30 runs.

As shown in the figures for Projects B, C, and D, in terms of the ability to effectively
find the best solutions, CCEA performs better with Config. I and worse with Config. III.
As explained in Section 3.3, Config. III is the single population evolutionary algorithm,
while Config. I and II are bona fidè CCEAs. Therefore, our results provide evidence to
support the claim that CCEAs outperform the single population evolutionary algorithm.

The random search generates twice the number of solutions of the CCEAs during the
evolutionary process, and despite that, is clearly outperformed by the CCEAs in terms
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(f) Project B, Config. III

Fig. 4. Projects A and B: Boxplots of completion times for all solutions found by different CCEAs
configurations
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Fig. 5. Projects C and D: Boxplots of completion times for all solutions found by different CCEAs
configurations
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Fig. 6. Boxplots of all the best solutions found in 30 runs of the three CCEA configurations, and
in random search runs

of fitness function quality. This observation is supported by a Wilcoxon Rank Sum Test
(WRST) performed to calculate the statistical significance of the difference between
the solutions produced by the different CCEAs configurations and Random. Since we
are performing multiple comparisons on the same data set, p-values are corrected using
the Holm’s correction. The Wilcoxon Rank Sum Test (WRST) p-values reported in
Table 3, as well as boxplots shown in Figure 6, indicate that all evolutionary algorithms
perform significantly better than a random search, and that the best solutions found by
the CCEAs (Config. I and II) perform significantly better than the single population
evolutionary algorithm (Config. III).

For Project A, while all CCEAs perform significantly better than random search, the
practical benefit in terms of lower project completion time achieved is not as evident as
for the other projects. This is because in Project A there are no dependencies between
WPs; the project is a conceptually simple, multiple application of a massive mainte-
nance task (fixing Y2K problem repeatedly using a windowing approach). Since there
are no dependencies, there is no delay introduced by the need for waiting on dependent
WPs. For this reason, the WP scheduling and team construction have little impact on
the overall completion time.
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Table 3. Wilcoxon Rank Sum Test (unpaired) test adjusted p-values for the pairwise comparison
of the three configurations

p-values for WRST
Projects

A B C D
Config. I vs II 0.7229 0.1885 0.4481 0.2449
Config. I vs III 5.04E-08 3.00E-11 2.78E-07 2.19E-07
Config. II vs III 1.47E-07 8.86E-10 2.08E-06 1.28E-06
Config. I vs Random 3.97E-40 3.82E-40 3.83E-40 3.83E-40
Config. II vs Random 3.97E-40 3.82E-40 3.83E-40 3.83E-40
Config. III vs Random 2.70E-30 6.04E-37 3.13E-36 3.66E-36

In conclusion, the obtained results support the following two claims: (1) all three
CCEAs were found to perform better than the random search, which means the CCEAs
passed the ‘sanity check’ set by RQ1, and (2) RQ2 is answered as the result of the
WRST test that indicated the best solutions found by Config. I and II are significantly
better than those found by Config. III. We conclude that there is evidence to suggest
that co-evolution is effective to deal with software project staffing and scheduling.

5.3 Results on Efficiency

To answer RQ3, we extended the experiments with 30 runs of 3 CCEAs configurations
until the solutions produced by all algorithms became stable, and, to allow a fair com-
parison, the random search was set to have the same number of fitness evaluations. The
progress of the CCEAs and the random search in finding better solutions are plotted in
Figure 7. The fitness values are averaged over 30 runs for CCEAs, while for the random
search, the figure shows the best solutions found for the number of evaluations indicated
on the horizontal axis.

As shown in Figures 7(b), 7(c), and 7(d), respectively for Projects B, C and D, in most
cases, the CCEAs find better solutions than the non-cooperative algorithm. However,
there is an exception found for Project A as shown in Figure 7(a), for which the CCEA
does not outperform its rivals. We believe that this is due to the dependence-free nature
of Project A (as mentioned before, it has no dependencies).

In conclusion, with regard to the efficiency of finding better solutions (RQ3), we
find evidence that CCEAs outperform random search in general, and that the CCEA
with more frequent communication between two populations (Config. I) performs better
than the others (Config. II, III, and Random).

5.4 Threats to Validity

Construct validity threats may be due to the simplifications made when modeling the
development/maintenance process through a simulation. In particular (i) we assumed
communication overhead negligible and (ii) we did not consider developers’ expertise.
However, accounting for these variables was out of scope for this paper, as here the
intent was to compare CCEA with non-co-evolutionary genetic algorithms.
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Fig. 7. Efficiency Comparison of the Random Search and CCEAs

Threats to internal validity can be due, in this study, to the bias introduced in our
results by the intrinsic randomness of GA and, of course, of the random approach. We
mitigate such a threat by performing statistical tests on the results.

Threats to conclusion validity concern the relationship between treatment and out-
come. Wherever possible, we use appropriate statistics—Wilcoxon test with Holm’s
correction in particular—to robustly test our conclusions.

Threats to external validity concern the generalization of our findings. We performed
experiments on data from four industrial projects having different characteristics in
terms of size, domain, and relationships among WPs. However, further studies are de-
sirable to corroborate the obtained results.

6 Related Work

This section provides a brief overview of related work on search-based project planning.
Chang et al. were the first to publish on search-based project planning [10], with

their introduction of the Software Project Management Net (SPMNet) approach for
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project scheduling and resource allocation, which was evaluated on simulated project
data. Aguilar-Ruiz et al. [2] also presented early results on evolutionary optimization for
search-based project planning, once again evaluated on synthetically created software
project data. Chicano and Alba [3,4] applied search algorithms to software projects to
seek to find allocations that achieve earliest completion time. Alvarez-Valdes et al. [5]
applied a scatter search approach to the problem of minimizing project completion du-
ration.

Project management has recently [12] been the subject of a study of the human-
competitiveness of SBSE, which found that optimization techniques are able to produce
effective results in a shorter time than human decision makers. This work demonstrates
that SBSE is a suitable approach to consider for project planning activities since it can
find solutions that the human decision maker may otherwise miss. While the ultimate
decision is likely to rest with the human decision maker, it is therefore important to find
suitable SBSE techniques that can support this decision making activity.

Other authors have also worked on SBSE as a means of decision support for software
engineering managers and decision makers in the planning stages of software engineer-
ing projects focusing on early lifecycle planning [8,11,18,19,23] as we do in the present
paper, but also reaching forward to subsequent aspects of the software engineering life-
cycle that also require planning, such as scheduling of bug fixing tasks [14,22]. Like our
present work, some of this work has considered multiple objectives [4,15]. This is very
natural in software project planning which is typified by many different concerns, each
of which must be balanced against the others; and issue that is reported to be inherently
as part of much work on SBSE [16]. However, no previous work has used co-evolution
for project planning to blanch these different objectives.

SBSE can also be used as a way to analyze and understand Software Project Plan-
ning, yielding insight into planning issues, rather than seeking to necessarily provide a
specific ‘best’ project plan [17]. For example SBSE has been used to study the effect of
Brooks law [9] on project planning [20]. It has also been used to balance the competing
concerns of risk and completion time [15]. Our work may be used in this way, since we
can study the way the two populations evolve with respect to one another and the ways
in which they are symbiotic. A thorough exploration of this possibility remains a topic
for future work.

Di Penta et al. [13] compared the performance of different search-based optimiza-
tion techniques, namely Genetic Algorithms, Simulated Annealing, and Hill Climbing
to perform project planning on data from two industrial projects (Projects A and B
also used in this study). The present paper can be thought of as an extension of the
previous work of Di Penta et al., because it uses the same representation and fitness
function, while proposing and evaluating the use of completely unexplored optimiza-
tion approach: co-evolutionary optimization.

7 Conclusions and Future Work

This paper proposes the use of Cooperative Co-Evolutionary Algorithms (CCEA) to
solve software project planning and staffing problems. The co-evolutionary algorithm
evolves two populations, one representing WP ordering in a queue (which determines
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their assignment to teams), and the other representing developers distribution among
teams.

We conducted an empirical study using data from four industrial software projects,
aimed at comparing CCEA project planning and staffing with (i) random search and (ii)
single population optimization using genetic algorithms, as previously proposed by Di
Penta et al. [13]. Results of the empirical study show that CCEA is able to outperform
random search and single population GA, in terms of effectiveness (i.e., best solutions
proposed in terms of project completion time) and efficiency (i.e., a smaller number of
evaluations required).

Future work aims at extending the study reported in this paper with further data sets
and, above all, at considering a more sophisticated project model, which accounts for
further factors not considered in this study, such as developers’ skills and expertise,
communication overhead models, and schedule robustness.
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Abstract. Ant Colony Optimization (ACO) has been successfully employed to 
tackle a variety of hard combinatorial optimization problems, including the 
traveling salesman problem, vehicle routing, sequential ordering and 
timetabling. ACO, as a swarm intelligence framework, mimics the indirect 
communication strategy employed by real ants mediated by pheromone trails. 
Among the several algorithms following the ACO general framework, the Ant 
Colony System (ACS) has obtained convincing results in a range of problems. 
In Software Engineering, the effective application of ACO has been very 
narrow, being restricted to a few sparse problems. This paper expands this 
applicability, by adapting the ACS algorithm to solve the well-known Software 
Release Planning problem in the presence of dependent requirements. The 
evaluation of the proposed approach is performed over 72 synthetic datasets and 
considered, besides ACO, the Genetic Algorithm and Simulated Annealing. 
Results are consistent to show the ability of the proposed ACO algorithm to 
generate more accurate solutions to the Software Release Planning problem 
when compared to Genetic Algorithm and Simulated Annealing. 

Keywords: Ant Colony Optimization, Search Based Software Engineering, 
Software Release Planning. 

1   Introduction 

The Search Based Software Engineering (SBSE) field [1] has been benefiting from a 
number of general search methods, including, but not limited to, Genetic Algorithms, 
Simulated Annealing, Greedy Search, GRASP and Tabu Search. Surprisingly, even with 
the large applicability and the significant results obtained by the Ant Colony Optimization 
(ACO) metaheuristic, very little has been done regarding the employment of this strategy 
to tackle software engineering problems modeled as optimization problems.  

Ant Colony Optimization [2] is a swarm intelligence framework, inspired by the 
behavior of ants during food search in nature. ACO mimics the indirect communication 
strategy employed by real ants mediated by pheromone trails, allowing individual ants to 
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adapt their behavior to reflect the colony´s search experience. Ant System (AS) [3] was 
the first algorithm to follow the ACO general framework. First applied to tackle small 
instances of the Traveling Salesman Problem (TSP), AS was not able to compete with 
state-of-the-art algorithms specifically designed for this traditional optimization problem, 
which stimulated the development of significant extensions to this algorithm. In particular, 
the Ant Colony System (ACS) algorithm [4] improved AS by incorporating an elitist 
strategy to update pheromone trails and by changing the rule used by ants to select the next 
movement. These enhancements considerably increased the ability of the algorithm to 
generate precise solutions to hard and different combinatorial problems, including the TSP 
[4], vehicle routing [5], sequential ordering [6] and timetabling [7].   

The application of ACO to address software engineering problems has been very 
narrow, but relevant. To this date, as detailed in the next section of this paper, the 
literature has reported works using ACO on software testing [8], model checking [9] 
and requirement engineering [10,11]. Thus, it seems that the full potential of the ACO 
algorithm is far from being completely explored by the SBSE research community.  

In Requirement Engineering, some important problems have been shaped and 
addressed as optimization problems, including the Software Requirement 
Prioritization problem [12], the Next Release problem (NRP) [13] and a multi-
objective version of the NRP [14], to mention some. Finally, a search based 
representation of the Software Release Planning problem (SRP) was formulated in 
[15], dealing with the allocation of requirements to software releases, or increments, 
by considering the importance of the requirements as specified by the stockholders, 
and respecting dependency and effort constraints.  

As an important Requirement Engineering problem, several strategies have been 
applied in the attempt to solve the Software Release Planning problem, including 
Genetic Algorithms and Simulated Annealing. However, no attempt has been made, 
thus far, to adapt and apply the Ant Colony Optimization metaheuristic to this 
problem, even though such an application seems reasonably justified, given the nature 
of the Software Release Planning problem which can be interpreted as a Multiple 
Knapsack Problem and the fact that ACO has been reported to perform significantly 
well in solving such problem [18,19,20]. 

Therefore, this paper will report the results of a work aimed at answering the 
following research questions: 

RQ1. – ACO for the Software Release Planning problem: how can the ACO 
algorithm be adapted to solve the Software Release Planning problem in the 
presence of dependent requirements? 
RQ2. – ACO versus Other Metaheuristics: how does the proposed ACO 
adaptation compare to other metaheuristics in solving the Software Release 
Planning problem in the presence of dependent requirements?  

The remaining of the paper is organized as follows: Section 2 summarizes prior works 
on the application of ACO to solve software engineering problems. Section 3 formally 
defines the Software Release Planning problem. Next, in Section 4, the proposed 
ACO algorithm for the Software Release Planning problem is presented, starting with 
the encoding of the problem, followed by a detailed description of the algorithm. 
Section 5 discusses, initially, the design of the experiments aimed at answering our 
second research question, presents the results from the experiments and describes the 



144 J.T. de Souza et al. 

analyses of these results. Finally, Section 6 concludes the work and points out some 
future directions to this research. 

2   Previous Works 

As mentioned earlier, very few works have been performed on the application of ACO to 
solve software engineering problems. Next, some of these researches are summarized. 

An ACO-based algorithm for error tracing and model checking is designed and 
implemented in [8]. In [9], the ACOhg metaheuristic, an ACO algorithm proposed to 
deal with large construction graphs, is combined with partial order reduction to reduce 
memory consumption. This combination is employed to find safety property 
violations in concurrent models.  

The first proposal for the application of ACO in requirement engineering, more 
specifically to tackle the NRP, appeared in [10]. This proposal was later fully 
developed in [11], where an ACS algorithm is established to search for a subset of 
requirements with maximum satisfaction and subject to a certain effort bound. When 
compared to the Simulated Annealing and the Genetic Algorithm metaheuristics, over 
a real software problem with 20 requirements, ACO was the only algorithm which 
found the known best solution to the problem every time.    

3   The Software Release Planning Problem Definition 

This section formally defines the Software Release Planning problem (SRP) as it will 
be considered on this paper.  

Let , , … ,  be the set of requirements to be implemented and allocated 
to some software release, with  representing the number of requirements. The 
implementation of each requirement  demands certain implementation cost, denoted 
by . In addition, each requirement  has an associated risk, given by . 
Let , , … ,   be the set of clients, whose requirements should be delivered. 
Each client  has a given importance to the organization, defined as .  

Consider, yet, , , … ,  to be the set of software releases to be planned, 
with  representing the number of releases. Each release  has an available budget 
(  which should be respected. Additionally, different clients have 
different interests in the implementation of each requirement. Therefore, ,  defines the importance, or business value, client  attributes to 
requirement .   

Therefore, the Software Release Planning problem can be mathematically 
formulated with the following objective and restriction functions: 

 

                       ∑ . 1 . .  
subject to  

                  ∑ . ,   ,    1, … ,     ,    ,  ,  

where the boolean variable  indicates whether requirement  will be implemented 
in some release, variable  indicates the number of the release where requirement  
is to be implemented, and the boolean value ,  indicates whether requirement  will 
be implemented in release .  
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The first component of the objective function expresses the weighted overall 
satisfaction of the stakeholders, where  

                                        ∑ . ,  

represents the aggregated business value for requirement . The other component 
deals with risk management, expressing those requirements with higher risk should be 
implemented earlier. Finally, the two restrictions will, respectively, limit the 
implementation cost of requirements in each release and guarantee that the 
precedence among requirements will be respected. In this second restriction,    
represents that requirement  is a precedent of requirement , indicating that  
should be implemented earlier or at the same release as .  

4   An ACO Algorithm for Software Release Planning  

This section describes the main contribution of this work, the proposed ACO 
algorithm for the Software Release Planning problem. First, however, it outlines the 
problem encoding which will allow the application of such algorithm.   

4.1   Problem Encoding  

To be able to apply an Ant Colony Optimization strategy to the Software Release 
Planning problem, a proper encoding is required. For that purpose, a graph will be 
generated with the Release Planning problem instance information, as follows. Two 
types of edges will be created, representing mandatory and optional moves for a 
particular ant. Mandatory moves will be created to ensure that precedence constraints 
are respected.  

This way, the problem will be encoded as a directed graph, , , where 
, with  representing  mandatory moves, and  representing optional ones. 

i. each vertex in  represents a requirement ; 
ii. a directed mandatory edge , , if ;  

iii. a directed optional edge , , if ,  and . 

Consider _  to represent the cost of implementing requirement , that is, 
, in addition to the cost of implementing all unvisited precedent requirements of 

requirement . That means, _  if requirement  has no precedent 
requirements and _  ∑ _ , for all unvisited 
requirements  where , i.e, requirement  is a precedent of . 

When visiting a node , an ant , which will select requirements do release , will 
define two sets, _  and _ , representing, respectively, 
mandatory and optional moves. These two sets are defined as follows: _ | ,  and } 

That is, the set of mandatory moves for an ant  visiting node  will contain the 
requirements  in the graph which respect the two conditions below: 

1.  can be reached from  using a mandatory edge, that is, , ; 
2. node  has not been previously visited, i.e., . 



146 J.T. de Souza et al. 

Additionally, _  can be defined as: _ | , , _  
and } 

Similarly, set _  is defined with the same rules above, except, in rule 1., 
node  can be reached from  using an optional edge, in other words, , , 
and by the addition of a third rule, which verifies whether a new requirement can be 
added to the release without breaking the budget constraint, in a way that the added 
effort for implementing , does not exceed the defined budget for release , that is, _ .  

The heuristic information of a particular node, represented by a productivity 
measure for the respective software requirement, is defined as: ·  

where  is a normalization constant.  
At each step, in case the random value  (where  is a parameter), an ant  

visiting a node   will have the probability of moving to the node   given by: ·∑ ·_  

where  is the amount of pheromone in edge ,  and  and  are parameters 
controlling the relative importance of pheromone and requirement information.  When 

, ant  visiting a node   will move to  with higher value given by · . 
Pheromone will be initially distributed, equally, only on optional edges. When 

crossing a particular optional edge , , ant  will update the pheromone as follows: 1 · ·  

with 0,1  representing the pheromone decay coefficient.  
This encoding will allow us to generate an ACO adaptation to the Software 

Release Planning problem, as proposed in the next section.  

4.2   The ACO Algorithm  

The overall structure of the ACO Algorithm for the Software Release Planning 
problem is: each ant will be responsible for iteratively constructing a single release. 
At an iteration of the algorithm,  ants will be deployed, one at a time and in order, 
which will produce a complete release planning. A roulette procedure, considering the 
heuristic information measure of a node will be employed to select the initial node of 
each ant. Here, an ant can only be placed in a requirement that can fit, along with its 
precedent nodes, in that particular release. The first ant will travel through the 
generated graph, adding requirements to the first release until no more additions are 
allowed, due to budget constraints. Next, a second ant will be placed in an unvisited 
node, using the roulette procedure, and will start its traversal through the graph, 
constructing the second release. The process is repeated until all  ants have been 
delivered and produced their respective releases. At this point, a solution to the 
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Software Release Planning problem has been constructed. The process is repeated a 
number of times. At the end, the best found solution is returned.  

Next, in Fig. 1, the general ACO algorithm for the Software Release Planning 
problem is presented. 

  

Fig. 1. ACO Algorithm for the Software Release Planning problem 

1 

 

OVERALL INITIALIZATION 

 
MAIN LOOP 

REPEAT 
 
MAIN LOOP INITIALIZATION 
FOR ALL optional edges , ,    
FOR ALL vertices ,  
FOR ALL vertices , _ 0 

 
SINGLE RELEASE PLANNING LOOP 
FOR EACH Release,  

Place, using a roulette procedure, ant  in a vertex ,  
where  and _  

ADDS ( , ) 
WHILE _  DO 

Move ant  to a vertex _  with probability  or 

  considering · ). 

  Update pheromone in edge , , with 1 · ·  
ADDS ( , ) 

   
 
MAIN LOOP FINALIZATION 

 _  _   
 

UNTIL  _  
 

RETURN _   
 
 
// Besides , adds to release  all of its dependent requirements, and, repeatedly, 
their dependent requirements 
ADDS ( , ) 

ENQUEUE ( , ) 
WHILE  DO 

   DEQUEUE ( ) 
  FOR EACH _  DO 
   ENQUEUE ( , ) 

  
 _    
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This algorithm can, this way, be applied to solve the Software Release Planning 
problem. Such algorithm shows one way the ACO framework can be adapted to such 
a problem, thus answering our research question RQ1., as discussed earlier. 

5   Experimental Evaluation  

This section describes all aspects related to the design of the experiments aimed at 
evaluating the performance of the proposed ACO algorithm. It first presents the data 
employed in the experiments, followed by a description of the other metaheuristics 
employed in the experiments and the metrics used in the comparison.  

5.1   The Data  

For the experiments, synthetic instances were generated with different values, - 
indicated in the parentheses -, of number of requirements (50, 200, 500), number of 
releases (5, 20, 50), number of clients (5, 20), density of the precedence table (0%, 
20%) and overall budget available (80%, 120%). The density of the precedence table 
indicates the percentage of requirements which will have precedence. In that case, the 
requirement will have, as precedents, between 1 and 5% of other requirements, which 
is established randomly. The value of the overall budget available is computed by 
adding the overall cost of all requirements in that particular instance and calculating 
the indicated percentage of this cost. With that overall budget value, each release 
budget is determined by dividing this value by the number of releases in that instance.  

All combinations of values for all aspects were considered, generating a total of 72 
instances. Table 1 below describes a small subset of the synthetically generated 
instances used in the experiments. Each instance is indicated with a label 
“I_A.B.C.D.E”, where A represents the number of requirements, B represents the 
number of releases, C, the number of clients, D, the density of the precedence table 
and E represents the overall budget available.  

Table 1. Sample of the 72 Synthetically Generated Evaluation Instances 

Instance 
Name 

 Instance Features  

Number of  
Requirements  

Number of 
Releases 

Number of 
Clients 

Precedenc
e Density 

Overall 
Budget 

I_50.5.5.80 50 5 5 0% 80% 

I_50.5.5.120 50 5 5 0% 120% 

… … … … … … 

I_200.50.20.20.80 200 50 20 20% 80% 

… … … … … … 

I_500.50.20.20.120 500 50 20 20% 120% 

 
The values of ,  and , for each requirement, were randomly generated 

using scales from 10 to 20, 1 to 10 and 1 to 5, respectively. In addition, the 
importance that each costumer set to each requirement was randomly generated from 
0 to 5.  
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In order to facilitate replication, all instances used in the experiments were 
described and made publicly available for download at the paper supporting material 
webpage - published at http://www.larces.uece.br/~goes/rp/aco/ -, which contains, 
additionally, several extra results that could not be presented here due to space 
constraints. 

5.2   The Algorithms, Their Configurations and Comparison Metrics 

In order to compare the performance of the proposed ACO approach to the Software 
Release Planning problem, the metaheuristics Genetic Algorithm and Simulated 
Annealing were considered, as described next.  

A. Genetic Algorithm (GA): it is a widely applied evolutionary algorithm, 
inspired by Darwin´s theory of natural selection, which simulates biological 
processes such as inheritance, mutation, crossover, and selection [16].  

B. Simulated Annealing (SA): it is a procedure for solving arbitrary 
optimization problems based on an analogy with the annealing process in 
solids [17].  

The particular configurations for each metaheuristic were empirically obtained 
through a comprehensive experimentation process. First, 10 of the 72 instances were 
randomly selected to participate in the configuration process. For each algorithm, 
different configurations were considered, varying the values of each algorithm´s 
parameters, as shown in the Tables 2, 3 and 4.  For ACO, different values of  (1, 3, 
10) and  (1, 3, 10) were analyzed. Since all combinations were considered, a total of 
9 configuration instances were created for ACO (see Table 2). For the Simulated 
Annealing, initial temperature (20, 50, 200) and cooling rate (0,1%, 1%, 5%) were 
examined. Once again, 9 instances were generated (Table 3). Finally, for the Genetic 
Algorithm, a total of 27 configuration instances were produced, varying the values for 
the population size (20, 50, 100), crossover (60%, 80%, 95%) and mutation (0,1%, 
1%, 5%) rates (Table 4).        

Table 2.  ACO Configuration Instances                Table 3.  SA Configuration Instances 

Configuration 
Instance 
 

Parameters  Configuration 
Instance 

 

Parameters 
α β Initial 

Temperature 
Cooling  

Rate 
C_ACO:1.1 1 1 C_SA:20.01 20 0.1% 

C_ACO:1.3 1 3  C_SA:20.1 20 1% 

… …. …  … .. … 

C_ACO:1.10 10 10  C_SA:200.5 200 5% 

 

With those configuration instances, the configuration process was performed as 
follows: each algorithm was executed over all 10 problem instances considering, one 
at a time, each configuration instance in order to determine which configuration was 
more suitable to that particular instance. Next, the number of times each configuration 
instance performed the best was counted. 
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Table 4.  GA Configuration Instances 

Configuration 
Instance 

 

Parameters 
Population 

Size 
Crossover 

 Rate 
Mutation  

Rate 
C_GA:20.60.01 20 60% 0.01% 

C_GA:20.60.1 20 60% 0.1% 

… … … … 

C_GA:100.95.5 100 95% 5% 

 

The selected configuration, for each algorithm, was the one which generated more 
frequently the best results over the 10 sample instances. Table 5 shows the selected 
configuration instances of each algorithm, which will be used in the comparison 
experiments described later on.     

Table 5. Algorithms´ Configuration Instances 

ACO SA GA  

C_ACO:3.10 C_SA:50.01 C_GA:20.80.1  

 

The paper supporting material webpage presents, with details, all results of this 
configuration process, showing, for each algorithm, which configuration instance 
performed best for each sample problem instance. 

Additionally, for the Genetic Algorithm, a simple heuristic procedure was 
implemented to generate valid solutions to the initial population, and a single-point 
crossover and mutation operators were implemented, also producing only valid 
solutions. Here, binary tournament was used as selection method. Similarly, for the 
Simulated Annealing, a valid neighborhood operator was employed. For ACO, the 
normalization constant  was set to 1,  to 10 and  to 0.01. 

In the experiments, this paper considers the following metrics to allow the 
comparison of the results generated by the different approaches: A) Quality: it relates 
to the quality of each generated solution, measured by the value of the objective 
function;  B) Execution Time: it measures the required execution time of each strategy.  

5.3   Experimental Results and Analyses 

This section describes and discusses the results of the experiments carried out to 
compare the performance of the algorithms. 

ACO (1k) x GA (1k) x SA (1k) (General Results) 

The first set of experiments relates to the comparison of the algorithms using as 
stopping criterion the number of evaluated solutions. For that initial comparison, all 
algorithms were allowed to perform 1000 evaluations.  
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Table 6 below presents the results of a selected number of instances - 10 of 72 -, 
including the averages and standard deviations, over 10 executions, for the proposed 
ACO Algorithm - ACO (1k) -, Genetic Algorithm (GA) and Simulated Annealing 
(SA), regarding the quality of the generated solutions. 

Table 6. Sample of the results, regarding the quality of the generated solutions and execution 
time (in milliseconds), for all algorithms executing 1000 evaluations, showing averages and 
standard deviations over 10 executions. 

Instance  ACO (1k) GA (1k) SA (1k) 
I_50.5.5.20.120 quality 11146.1±39.67 10869.8±182.51 9907.5±182.22 
 exec. Time (ms) 1936.1±45.34 79.1±0.87 34.4±6.39 
I_50.5.20.0.120  46161.4±253.83 44110.8±864.41 43777.9±751.19 
  2194.1±14.68 123.2±0.78 46.8±0.42 
I_50.20.20.20.80  93124±956.68 91606.7±5911.03 77506.7±3325.29 
  1210±7.07 107.3±1.88 104.6±7.56 
I_200.5.5.20.80  41953.8±101.28 37366.6±3455.83 29527.5±1139.68 
  14723.5±277.3 623.1±57.44 447.7±7.39 
I_200.5.5.20.120  43868.2±64.35 33205.7±2857.03 29718.1±765.27 
  13579±181.42 626.9±28.17 400.9±10.49 
I_200.5.20.20.120  147873.5±247.95 121931.6±4782.33 103197.6±4923.95 
  13046.6±517.64 695.5±53.92 451±8.81 
I_200.20.5.0.120  209290.1±396.24 157792.4±23691.97 158245.3±3364.83 
  23665.6±301.9 919.2±38.9 460.2±13.33 
I_200.20.20.0.120  501178.8±1682.89 442525±65014.99 428164.1±2801.25 
  23012±33.43 1063.3±70.73 515.1±16.33 
I_500.5.5.0.80  101377.6±317.28 95966±6044.53 83741.7±979.48 
  136875±497.07 5376.9±274.98 2364.7±49.02 
I_500.5.20.0.120  387081.6±157.18 342013.3±37472.1 331882.1±4308.78 
  141801.3±1078.02 5551±314.3 2051.3±13.4 

 
The complete description of all results, over all 72 instances, can be found in the 

paper supporting material webpage. 
Overall, regarding the quality of the generated solutions, ACO performed better 

than GA and SA in all cases. Percentagewise, ACO generated solutions, in average, 
78.27% better than those produced by GA and 96.77% than SA. Additionally, the 
expressively low standard deviations produced by the proposed approach 
demonstrates its stability, especially when compared to the results of the other 
algorithms.     

However, in terms of execution time, ACO operated substantially slower than the 
other two metaheuristics when evaluation the same number of solutions. This may be 
attributed to the more complex constructive process performed by ACO in the 
building of each candidate solution. In average, for this metric, ACO required almost 
60 times more than GA and more than 90 times more than SA.       

ACO (1k) x GA (1k) x SA (1k) (Statistical Analyses) 

In order to properly select the most appropriate statistical test, a normality test was 
performed over 20 samples - randomly chosen - generated throughout the whole 
experimentation process presented in this paper. The Shapiro-Wilk Normality Test 
was used for that purpose. The results suggest that normality should be accepted on 
17 samples and rejected in the other 3 (the complete presentation of these tests can be 
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found in the paper supporting material webpage). Therefore, since normality can be 
assumed to all generated samples, the nonparametric Wilcoxon Rank Sum Test was 
used to evaluate statistical significance.    

Thus, the statistical significance of the differences between the results generated by 
each pair of algorithms was calculated using the Wilcoxon Rank Sum Test, 
considering the significance levels of 90%, 95% and 99%. Under these conditions, for 
all instances, the results generated by ACO were significantly better than those 
generated by GA and SA, in all three significance levels, except for the instances 
shown in Tables 7. 

Table 7. Instances in which statistical confidence cannot be assured when comparing the 
quality of the solutions generated by ACO with GA and SA, with all algorithms executing 1000 
evaluations, calculated with the Wilcoxon Ranked Sum Test. 

 90% confidence level 95% confidence level 99% confidence level 

GA 

I_50.5.5.20.80, I_50.5.20.0.80, 
I_50.20.20.0.120, I_50.20.20.20.80, 
I_200.5.20.0.80,I_200.5.20.0.120,, 
I_500.5.5.0.80,I_500.5.20.0.80 

I_50.5.5.20.80, I_50.5.20.0.80 
I_50.20.20.0.120,I_50.20.20.20.80,
I_200.5.20.0.80,I_200.5.20.0.120, 
I_500.5.5.0.80,I_500.5.20.0.80 

I_50.5.5.20.80, I_50.5.20.0.80, 
I_50.20.20.0.120,I_50.20.20.20.80, 
I_200.5.20.0.80,I_200.5.20.0.120, 
I_200.50.20.0.80,I_500.5.5.0.80, 
I_500.5.20.0.80,I_500.5.20.0.120, 
I_500.20.20.0.80 

SA 
 
- 
 

- - 

 
As can be seen, only for 8 instances - out of 72 -, statistical significance could be 

assured under the 95% confidence level when comparing ACO with GA. For SA, 
even within the 99% level, ACO performed significantly better in all cases.     

The complete set of results, with all measures generated by the Wilcoxon Rank 
Sum Test can be found in the paper supporting material webpage, for this, and all 
other statistical significance evaluations.  

ACO (1k) x GA (10k) x SA (10k) (General Results) 

To evaluate whether the better performance of the proposed ACO algorithm can be 
attributed to the relatively small number of evaluations performed by GA and SA, a new 
set of experiments where performed, this time by allowing both GA and SA to evaluate 
10000 solution. A sample of the results for these experiments can be found in Table 7.    

On these experiments, the ACO algorithm did better than GA in 69 out of the 72 
instances. Only for instances I_50.5.5.20.80, I_50.5.20.0.80 and I_200.5.20.0.80, the 
Genetic Algorithm produced solutions with higher fitness value in average. The exact 
same behavior occurred with SA, which outperformed ACO over the same 3 instances. 

Regarding execution time, ACO was still substantially slower than GA and SA. 
This time, however, ACO performed around 9 times slower than both GA and SA.   

ACO (1k) x GA (10k) x SA (10k) (Statistical Analyses) 

Considering initially only the 3 instances where both GA and SA performed better 
than ACO, the Wilcoxon Rank Sum Test produced the following p-values when 
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comparing ACO with GA: 0.1230000 for instance I_50.5.5.20.80, 0.0232300 for 
I_50.5.20.0.80 and 0.0015050 for I_200.5.20.0.80, and with SA: 0.0020890 for 
I_50.5.5.20.80, 0.0000217 for I_50.5.20.0.80 and 0.0000108 for I_200.5.20.0.80. 

Table 8. Sample of the results, regarding the quality of the generated solutions and execution 
time (in milliseconds), with ACO executing 1000 evaluations, and GA and SA executing 10000 
evaluations, showing averages and standard deviations over 10 executions.  

Instance  ACO (1k) GA (10k) SA (10k) 
I_50.5.5.20.120 Quality 11146.1±39.67 11038.7±197.86 10560.6±177.9 
 exec. Time (ms) 1936.1±45.34 603.5±89.74 348.4±17.01 
I_50.5.20.0.120  46161.4±253.83 45451.2±750.84 45605.4±352.43 
  2194.1±14.68 1192±16.85 460.4±7.93 
I_50.20.20.20.80  93124±956.68 91888.8±8920.19 83924.6±1604.32 
  1210±7.07 1134.3±10.36 1028.4±71.77 
I_200.5.5.20.80  41953.8±101.28 38398.7±3607.22 33473.9±895.87 
  14723.5±277.3 7664.5±357.54 4978.5±88.11 
I_200.5.5.20.120  43868.2±64.35 33471.4±1390.99 33951.4±2514.54 
  13579±181.42 5514.5±225.92 4210±73.25 
I_200.5.20.20.120  147873.5±247.95 134656.7±5846.67 124129.8±5285.18 
  13046.6±517.64 7887.7±537.4 4841±131.76 
I_200.20.5.0.120  209290.1±396.24 174431.4±8076.1 169316.3±2779.69 
  23665.6±301.9 9760.1±65.68 6137.3±132.75 
I_200.20.20.0.120  501178.8±1682.89 445685.5±15383.84 447483.6±6166.36 
  23012±33.43 11255±89.76 7402.7±138.89 
I_500.5.5.0.80  101377.6±317.28 100026.3±1221.57 95707±819.69 
  136875±497.07 57316.1±284.37 31427.3±848.28 
I_500.5.20.0.120  387081.6±157.18 367935±4991.23 375352.8±1660.25 
  141801.3±1078.02 61106.9±1122.9 27498.4±315.2 

 
Therefore, considering a confidence level of 95%, GA and SA had, respectively, 

two and three cases where they were able to produce significantly better solutions. In 
all other cases, ACO did significantly better, except for the instances presented below 
in Table 9.  

Table 9. Instances in which statistical confidence cannot be assured when comparing the 
quality of the solutions generated by ACO with GA and SA, with ACO executing 1000 
evaluations, and GA and SA executing 10000 evaluations, when ACO performed better, 
calculated with the Wilcoxon Ranked Sum Test.   

 90% confidence level 95% confidence level 99% confidence level 

GA 

I_50.20.5.0.120,I_50.20.20.0.80, 
I_50.20.20.20.80,I_50.50.20.0.120, 
I_50.50.20.20.120,I_200.5.20.0.120
,I_200.5.20.20.80,I_200.50.20.0.80, 
I_500.5.5.0.120, I_500.5.20.0.80 
 

 
I_50.5.5.20.120,I_50.20.5.0.120, 
I_50.20.20.0.80,I_50.20.20.20.80, 
I_50.50.20.0.120,I_50.50.20.20.120
,I_200.5.20.0.120,I_200.5.20.20.80,
I_200.50.20.0.80,I_500.5.5.0.120, 
I_500.5.20.0.80 
 
 

I_50.5.5.20.80,I_50.5.5.20.120, 
I_50.5.20.20.80,I_50.20.5.0.120, 
I_50.20.5.20.120,I_50.20.20.0.80, 
I_50.20.20.20.80,I_50.50.5.20.120, 
I_50.50.20.0.120,I_50.50.20.20.120, 
I_200.5.20.0.120,I_200.5.20.20.80, 
I_200.50.20.0.80,I_500.5.5.0.80, 
I_500.5.5.0.120,I_500.5.20.0.80 

SA I_50.5.20.20.120, I_500.5.20.0.80 

 
 

I_50.5.20.20.120, I_500.5.20.0.80 
 
 

 
I_50.5.20.20.80,I_50.5.20.20.120 
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As can be seen, under the 95% confidence level, ACO did significantly better than 
GA and SA in all 69 cases, expect for 11 and 1 instances, respectively.  

ACO (Restricted Time) x GA (1k) x SA (1k) (General Results) 

Even with the increased number of evaluation, both GA and SA performed much 
more time efficiently then ACO. In order to evaluate whether the increased 
performance of the proposed ACO approach can be attributed to the considerably 
high computations cost, a new set of experiments were designed. Here, the amount of 
time available to ACO was limited, to meet exactly the times required by GA and SA 
when evaluating 1000 solutions. The performance of ACO under this time restriction 
is sampled in Table 10.   

Table 10. Sample of the results, regarding the quality of the generated solutions, with ACO 
with a time restriction, and GA and SA executing 1000 evaluations, showing averages and 
standard deviations over 10 executions.  

Instance 
ACO w/ 

Time  GA (1k) 
GA (1k) 

ACO w/ 
Time  SA (1k)

SA (1k) 

I_50.5.5.20.120 11038.8±27.62 10869.8±182.51 11007.8±17.14 9907.5±182.22 
I_50.5.20.0.120 45633.9±140.17 44110.8±864.41 45637±188.55 43777.9±751.19 
I_50.20.20.20.80 91271.7±736.73 91606.7±5911.03 91469±951.19 77506.7±3325.29 
I_200.5.5.20.80 41604.4±109.05 37366.6±3455.83 41525.4±93.41 29527.5±1139.68 
I_200.5.5.20.120 43715.7±36.64 33205.7±2857.03 43681.8±34.35 29718.1±765.27 
I_200.5.20.20.120 147478±351.54 121931.6±4782.33 147404.3±350.34 103197.6±4923.95 

I_200.20.5.0.120 208845.6±290.21 
157792.4±23691.9

7 
209149.9±486.96 158245.3±3364.83 

I_200.20.20.0.120 498434.1±1061.48 442525±65014.99 497747.4±1092.87 428164.1±2801.25 
I_500.5.5.0.80 100880.4±216.46 95966±6044.53 100747±100.92 83741.7±979.48 
I_500.5.20.0.120 386919.9±205.62 342013.3±37472.1 386785.2±135.83 331882.1±4308.78 

 
Even with the time restriction, ACO continues to outperform both GA and SA, 

respectively, in 70 and 72 out of 72 cases. These results confirm the ability of the 
proposed ACO algorithm to find good solutions in little computational time.   

ACO (Restricted Time) x GA (1k) x SA (1k) (Statistical Analyses) 

When performing better, GA, over instances I_50.5.20.0.80 and I_50.20.20.20.80, 
could not obtain solutions significantly better than ACO (95% confidence level). 
However, over all other cases, under the 95% level, ACO did significantly better 63 
times. Considering SA, ACO significantly outperformed this algorithm all but one 
case.  

Since the ACO seemed to degrade very little with the time restrictions, a statistical 
analysis was performed to evaluate, with precision, this level of degradation. For that 
purposed, three correlation metrics (Pearson, Kendall and Spearman) where employed 
to estimate the correlation between the results generated by ACO before and after the 
time restriction. The results of these tests are shown in Table 11. 
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Table 11. Correlation metrics (Pearson, Kendall and Spearman) over the results generated by 
ACO  before and after the time restriction 

 
Pearson

Correlation
Kendall

Correlation
Spearman 

Correlation 

ACO (1k) vs ACO  - Time GA (1k) 0.9999907 0.9929577 0.9993890 
ACO (1k) vs ACO  - Time SA (1k) 0.9999879 0.9866980 0.9987137 

 
Therefore, these measurements demonstrate that those samples are highly 

correlated, indicating that ACO lost very little of its capacity when subjected to such 
time constraints. Additionally, using the fitness averages generated by the two 
versions (with and without time restriction) of ACO, the Wilcoxon Rank Sum Test 
was applied to measure the significance in the difference of these samples. The p-
value 0.8183 was obtained when comparing ACO with its versions restricted by the 
time required by GA, and 0.7966, using the time used by SA. Those measurements 
confirm that there are no significant differences in the results produced by ACO 
before and after the time restrictions were employed.       

Final Remarks  

Therefore, all experimental results presented and discussed above indicate the ability of 
the proposed ACO approach for the Software Release Planning problem to generate 
precise solutions with very little computational effort relative to the results produced by 
Genetic Algorithm and Simulated Annealing. Thus, our research question RQ2., as 
described earlier, can be answered, pointing out to the competitive performance of the 
proposed approach, both in terms of accuracy as well as for time performance. 

The main treat to the validity of the reported results is the fact that only 
synthetically generated data was considered, since no real-world data was available. 
Therefore, there is the possibility that some peculiarities of such real-world scenarios 
are not being considered. 

6   Conclusion and Future Works  

Very little has been done regarding the employment of the Ant Colony Optimization 
(ACO) framework to tackle software engineering problems modeled as optimization 
problems, which seems surprising given the large applicability and the significant 
results obtained by such approach.  

This paper proposed a novel ACO-based approach for the Software Release 
Planning problem with the presence of dependent requirement. Experiments were 
designed to evaluate the effectiveness of the proposed approach compared to both the 
Genetic Algorithm and Simulated Annealing. All experimental results pointed out to 
the ability of the proposed ACO approach to generate precise solutions with very little 
computational effort. 

As future works, the experiments could be extended to cover real-world instances, 
which should evoke other interesting insights as to the applicability of the proposed 
ACO algorithm to the Software Release Planning problem. Additionally, other types 
of dependencies among requirements (value-related, cost-related, and, or) could be 
considered.  
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Abstract. While models are recognized to be crucial for business pro-
cess management, often no model is available at all or available models
are not aligned with the actual process implementation. In these con-
texts, an appealing possibility is recovering the process model from the
existing system. Several process recovery techniques have been proposed
in the literature. However, the recovered processes are often complex,
intricate and thus difficult to understand for business analysts.

In this paper, we propose a process reduction technique based on
multi-objective optimization, which at the same time minimizes the pro-
cess complexity and its non-conformances. This allows us to improve the
process model understandability, while preserving its completeness with
respect to the core business properties of the domain. We conducted a
case study based on a real-life e-commerce system. Results indicate that
by balancing complexity and conformance our technique produces un-
derstandable and meaningful reduced process models.

Keywords: Business Process Recovery, and Multi-Objective
Optimization.

1 Introduction

Managing a business process and evolving the associated software system can
be difficult without an accurate and faithful documentation (e.g., a model) of
the underlying process. When such documentation is missing or inaccurate, it is
possible to attempt to reconstruct it through process model recovery and mining.

Several works [1,2] in the literature propose techniques to recover process
models starting from the analysis of different artifacts, such as the source code
or execution logs. In our previous work [3], we used dynamic analysis to recover
processes realized through Web systems.

The typical problems that are faced when process models are recovered from
logs include: (i) the process size and complexity; (ii) under-generalization: mod-
els may describe only a subset of the actual system behaviors; and (iii) over-
generalization: recovery algorithms may generalize the actual observations
beyond the possible behaviors. The use of a large set of traces and of an ap-
propriate algorithm can limit the impact of problems (ii) and (iii), but state of
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the art techniques have still a hard time with problem (i). In fact, process recov-
ery and mining tools tend to produce process models that are quite difficult to
understand, because they are overly complex and intricate (they are also called
“spaghetti” processes [4]).

Existing approaches dealing with the process model size and complexity prob-
lem belong to two groups: clustering and frequency based filtering. Clustering
takes advantage of the possibility of modularization offered by sub-processes [3].
Frequency-based process filtering removes process elements that are rarely exe-
cuted [5]. Empirical evidence [6] shows that modularity affects positively process
understandability, but its effect may be negligible due to factors such as the pro-
cess domain, structure and complexity. Pruning processes according to the exe-
cution frequency [5] is useful to remove noise, but may lead to overly simplified
processes, that do not capture the core business properties and activities. No
existing process reduction technique treats process reduction as an intrinsically
multi-objective optimization problem. Rather, they focus on a single dimension
(e.g., process size) and take the others into account only implicitly. However,
the problem is multi-dimensional: reduced processes are expected to be simpler
to understand and manage (having lower size and complexity), but at the same
time they should maximize their capability to represent all possible process flows,
in a way that is meaningful and expressive for the business analysts.

In this work, we propose a process reduction technique which considers the
multiple dimensions involved in this problem explicitly. We use multi-objective
optimization to minimize at the same time the process model complexity and
its non-conformances (i.e., inability to represent some execution traces). The
proposed technique has been implemented in a tool and has been applied to
a real-life e-commerce process implemented by a software system with a Web
interface. Results indicate that by balancing both complexity and conformance
we improve existing process reduction techniques.

2 Business Process Reduction

Recovered process models are reduced by removing some process elements (e.g.,
sequence flows and activities), with the aim of limiting process size and com-
plexity, while preserving a reasonable level of conformance, i.e., ability to fully
describe the observed behaviors, enacted by the process under analysis.

By business process reduction we mean a sequence of atomic reduction opera-
tions, each basically consisting of the removal of a direct connection between a
pair of process activities, possibly followed by a cascade of further process ele-
ment removals, occurring whenever an entire sub-process becomes unreachable
from the start due to the initial removal. To perform business process reduction,
we rely upon an intermediate process representation, called activity graph. The
mapping between the original process model P and the activity graph AGP must
be invertible, since we want to be able to convert the reduced activity graph back
to the original process.
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Under the assumption that the initial BPMN process has only exclusive gate-
ways1 (as in case of processes recovered by our tool, see Section 5), we can safely
remove them in the activity graph and reintroduce only those actually needed
in the reduced process. Specifically, in the activity graph AGP there will be a
node na for each process activity a and an edge (na, nb) for each pair of activ-
ities (a, b) such that there exists a path connecting them not traversing other
activities. AGP can be easily converted back to the original process P , since the
exclusive gateways to be reintroduced are associated with nodes having fanout
or fanin greater than 1. Though the number of gateways of the inverted and
original process may differ, the semantics is however preserved and the original
structure is sometimes obtainable by applying some gateway simplification rules.
If the original BPMN process contains other types of gateways, in addition to the
exclusive ones, it will not be possible to remove them from the activity graph.
They will be explicitly represented by typed activity graph nodes, with the type
used to distinguish different kinds of BPMN elements.

The example in Figure 1 represents the process for an on-line submission sys-
tem. The corresponding activity graph contains a node for each activity/gateway
of the process and two nodes (named GS and GE) representing the start and
end event of the process.

(a) BPMN process model

(b) Activity graph

Fig. 1. Paper submission system: BPMN process and activity graph

Atomic Reduction. An atomic reduction consists of the removal of an edge
from AGP , followed by the removal of the subgraph unreachable from the start
event. When the removed edge (na, nb) dominates its target nb (i.e., it belongs
to all the paths from the start node GS to nb), nb becomes unreachable from
the start event. We hence perform a reachability analysis from the start node
GS to determine the subgraph of AGP that is no longer reachable from GS
due to the removal of (na, nb). Such subgraph is also removed from the activity

1 Gateways are used for managing control flow branching (both splitting and merging)
in BPMN. According to their type (exclusive, inclusive, parallel and complex), they
enable a different control flow behaviour.
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graph, in order to ensure that the graph obtained from the atomic reduction is
still a meaningful process representation. This means that the impact of a single
atomic reduction may range from an individual edge removal to the removal
of a (possibly large) subgraph of AGP . It can be easily shown that the atomic
reduction operation is commutative, i.e., the same activity graph is obtained by
applying the atomic reduction for e1 and for e2 or in the opposite order.

In the activity graph in Figure 1, the removal of the edge (S, C) does not
leave any subgraph unreachable from GS ((S, C) is not a dominator of C).
In the BPMN process corresponding to the reduced activity graph, the only
sequence flow that is removed is (g2, g4). On the contrary, the removal of the
edge (S, SA), a dominator of SA, makes node SA unreachable from the start
node. By reachability analysis, we can easily determine that node SA as well
as its outgoing edge (SA, C) must be also removed, since unreachable from GS.
The corresponding BPMN process is shown in Figure 2. Not only the sequence
flow (g2, SA) has been removed, but also the process activity Submit Abstract
as well as its outgoing sequence flow (SA, g4).

Fig. 2. Reduced process resulting after removing the edge (S, SA)

3 Process Complexity and Non-conformance

Three quality factors are dominant [7,8] concerning how to measure and evaluate
the quality of (recovered) process models: complexity, conformance and accuracy.
This work is focused on finding an optimal trade-off between the first two qual-
ity factors. Accuracy, which captures the ability of a process model to describe
only feasible behaviors (i.e., executions admitted by the model should be also
possible in reality), is not considered in this work for two reasons: (1) we apply
process reduction to improve a single process mining technique, which has its
own intrinsic accuracy level; (2) it is hard to get a precise and meaningful quan-
tification of accuracy, since it is not possible to determine in an automated way
which paths in the model are not possible in the real process implementation.

3.1 Process Complexity

The existing literature [7] proposes to measure the process complexity by resort-
ing to the cyclomatic complexity, commonly used with software, and adapting
it for processes. Hence, given a process model P , we measure its control-flow
complexity CFC(P ) as follows:

CFC(P ) =
∑

g∈G(P )∧FOUT (g)>1

FOUT (g) (1)
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where G(P ) is the set of all process control-flow elements (gateways, in BPMN)
and FOUT (g) is the number of the sequence flows outgoing from g (fanout).
We take into account only decision points of the process, i.e., elements with
fanout greater than one. A high value of CFC indicates a high number of alter-
native execution flows, thus denoting a process potentially difficult to read and
understand for the analyst.

For example, the online submission process in Figure 1 contains five gateways,
one with fanout 3, two with fanout 2 and two with fanout 1. The resulting process
CFC is hence 7. For the reduced process in Figure 2, the CFC is 6.

3.2 Process Conformance

The conformance of a process model is its ability to reproduce the execution
traces (i.e., the traces should be admitted by the process model) [8]. A trace is a
sequence of events executed during the run of a process and stored in a log file.
Table 1 shows some examples of execution traces for the submission process in
Figure 1. For instance, trace t3 represents an execution in which the user logs
into the submission system (activity LI ), submits the information about the
paper (S ), confirms the submission (C ) and logs out (LO).

Since we aim for an optimal trade-off which minimizes complexity, we take the
complement of conformance, i.e., non-conformance, as the metrics to be mini-
mized. To compute the non-conformance NConf(P ) for process P , we interpret
the model as a parser that can either accept or refuse a trace, regarded as its
input string. A process model parses a trace if there is an execution flow in the
process model that complies with the process model semantics and consists of
the sequence of events in the trace. We assume that the parser associated with
a process model is a robust parser, i.e., it has a parsing resume strategy which
allows the parser to skip an input subsequence that cannot be accepted and to
resume parsing from a successive input symbol. Specifically, if the trace consists
of three parts t =< p, m, s >, such that the prefix p can be parsed and brings the
process model execution to state S while the subsequence m cannot be accepted
from state S, a resume strategy is a rule that transforms the process state S into
S′, such that the suffix s can be parsed from S′. Usually, the resume strategies
implemented by parsers are heuristic rules to modify the state S by performing
minimal changes to it, until an accepting state S′ is reached.

Given a process model P and a trace t ∈ T (the set of traces), we start parsing
t with P in the start state. When event e ∈ t is provided as input to process
P (in the execution state S), if there does not exist any transition S �−→e S′

in P and there does not exist any resume rule R such that S �−→R S′ �−→e S′′,
we recognize a non conformance 〈S, e〉, which is added to the non-conformance

Table 1. Example of execution traces

Trace Event sequence Trace Event sequence
t1 < LI, S, SP, UP, C, LO > t2 < LI, S, SA, C, LO >
t3 < LI, S, C, LO > t4 < LI, S, SP, UP, VP, C, S, SP, UP, C, LO >
t5 < LI, S, SP, UP, C, S, SA, C, LO >
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set. The size of the non-conformance set after trying to reproduce all the traces
in T is our non-conformance metrics NConf . It should be noticed that if the
same non-conformance 〈S, e〉 occurs multiple times (it appears in many traces)
it contributes only as a +1 to NConf .

Under the assumption that the process model being considered contains only
exclusive gateways (which is the case of the process mining tool used in our case
study), the state of the process model execution when event e is provided as input
consists of the last accepted activity. Only one parsing resume rule is needed for
this class of process models. When the input activity b cannot be accepted by
P , the preceding input activity a in the trace is considered. If the process model
P contains the edge (a, b), parsing is resumed from state a. Computation of the
NConf metrics is also simplified for this class of process models. Specifically,
the following formula can be used:

NConf(P ) =

∣∣∣∣∣
⋃
t∈T

{(a, b)|(a, b) ∈ t ∧ dc(a, b) /∈ P}
∣∣∣∣∣ (2)

where dc(a, b) indicates the existence of a direct connection (i.e., an edge or a
path containing only gateways as intermediate elements) between a and b in the
process model P . Hence, we measure the number of unique transitions in the
traces that are not reproducible in the process model. Let us consider the trace
t2 = 〈LI, S, SA, C, LO〉 from Table 1. The reduced process model in Figure 2
accepts the first two events, but then SA is not even present in the reduced
process model. Thus, (S, SA), (SA, C) are non-conformances. However, when
LO is considered as input, parsing can restart from C according to the resume
rule given above, such that (C, LO) is accepted. The final value of NConf is
2 for this reduced process. It should be clear from this example that instead of
parsing the string 〈LI, S, SA, C, LO〉, we can more easily obtain NConf by just
counting the number of consecutive pairs of events in the trace that do not have
a direct connection in the reduced process model. NConf(P ) is 0 if the process
model reproduces all traces, while a high value of NConf(P ) indicates that the
process model is not able to reproduce many transitions in the traces.

If the considered process model P contains other types of gateways, in addition
to the exclusive ones, we need to resort to a more general definition of NConf(P )
and, in particular, to a more complex parser strategy which implements the
resume rules such as the one proposed by Rozinat et al. [8].

4 Multi-objective Optimization

We use multi-objective optimization to produce a reduced process model that
minimizes both process complexity and non-conformance. Specifically, we rely
on the Non-dominated Sorting Genetic Algorithm II (NSGA-II, Deb et al. [9]).

NSGA-II uses a set of genetic operators (i.e., crossover, mutation, selection)
to iteratively evolve an initial population of candidate solutions (i.e., processes).
The evolution is guided by an objective function (called fitness function) that
evaluates the quality of each candidate solution along the considered dimensions
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(i.e., complexity and non-conformance). In each iteration, the Pareto front of the
best alternative solutions is generated from the evolved population. The front
contains the set of non-dominated solutions, i.e., those solutions that are not
inferior to any other solution in all considered dimensions. Population evolution
is iterated until a (predefined) maximum number of iterations is reached.

The obtained Pareto front represents the optimal trade-off between complexity
and non-conformance determined by the algorithm. The business analyst can
inspect the Pareto front to find the best compromise between having a model
that conforms to the observed traces, but is quite complex vs. having a simpler,
probably more understandable, but less adherent to reality, model.

Solution Encoding: In our instantiation of the algorithm, a candidate solution
is an activity graph in which some edges are kept and some are removed. We
represent such a solution by means of a standard binary encoding, i.e., a binary
vector. The length of the vector is the number of edges in the activity graph
extracted from the unreduced process model. While the binary vector for the
unreduced process is entirely set to 1, for a reduced process each binary vector
element is set to 1 when the associated activity graph edge is kept; it is set
to 0 otherwise. For instance, the encoding of the unreduced submission process
(Figure 1) consists of a vector of 13 elements (i.e., all the edges of the activity
graph), all set to 1. In the vector encoding the reduced process in Figure 2, three
bits (representing the edges (S, C), (S, SA) and (SA, C)) are zero.

Initialization: We initialize the starting population in two ways, either ran-
domly or resorting to the frequency-based edge-filtering heuristics. Random ini-
tialization consists of the generation of random binary vectors for the individuals
in the initial population. The frequency based edge-filtering heuristics consists of
removing (i.e., flipping from 1 to 0) the edges that have a frequency of occurrence
in the traces below a given, user-defined threshold [5]. An initial set population
has been obtained by assigning the frequency threshold (used to decide which
edges to filter) all possible values between minimum and maximum frequencies
of edges in the initial process.

Genetic Operators: NSGA-II resorts to three genetic operators for the evolu-
tion of the population: mutation, crossover and selection. As mutation operator,
we used the bit-flip mutation: one randomly chosen bit of the solution is swapped.
The adopted crossover operator is the one-point crossover: a pair of solutions is
recombined by cutting the two binary vectors at a randomly chosen (intermedi-
ate) point and swapping the tails of the two cut vectors. The selection operator
we used is binary tournament: two solutions are randomly chosen and the fitter
of the two is the one that survives in the next population.

Fitness Functions: Our objective functions are the two metrics CFC and
NConf , measuring the complexity and non-conformance of the reduced pro-
cesses. For each candidate solution in the population, the reduced activity graph
is obtained by applying the atomic reduction operations encoded as bits set to 0
in the corresponding binary vector. Then, the resulting reduced activity graph
is converted back to a reduced process, evaluated in terms of CFC and NConf .
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5 Case Study

We implemented our process recovery algorithm in a set of tools2: JWebTracer [3]
traces the run of a Web application; JBPRecovery [3] infers a BPMN model;
JBPFreqReducer implements the frequency-based heuristics Fbr to reduce pro-
cesses by removing their rarely executed elements [5]; and JBPEvo implements
the multi-objective genetic algorithm (MGA) presented in Section 4. In JBPEvo,
the initial population can be randomly generated or it can be generated by ap-
plying the frequency-based heuristics Fbr.

We have applied our tools to the process model recovered from execution
traces of the Web application Softslate Commerce3. Softslate is a Java shopping
cart application that allows companies to manage their on-line stores. It imple-
ments functionalities to support the online retail of products (e.g., cart, order
and payment) and to handle customer accounts, product shipping and adminis-
trative issues. The application consists of more than 200k lines of code written
in Java/JSP. It uses several frameworks (e.g., Struts, Wsdl4j, Asm, SaaJ) and
it can be interfaced with several database managers (e.g., MySql, Postgresql).

The aim of the case study was answering the following research questions
investigating effectiveness and viability of the process reduction techniques in
making the recovered processes more understandable and manageable.

- RQ1 : Does the shape of the Pareto fronts offer a set of solutions which in-
cludes a wide range of tunable trade-offs between complexity and conformance?
It addresses the variety of different, alternative solutions produced by JBPEvo.
In particular, the shape of the Pareto front and the density of the solutions in
the front determine the possibility to choose among a wide range of interesting
alternatives vs. the availability of a restricted number of choices. The Pareto
front, in fact, might consist of points spread uniformly in the interesting re-
gion of the CFC, NConf -plane, or it may be concentrated in limited, possibly
uninteresting regions of the plane (e.g., near the unreduced process).
- RQ2 : Does the genetic algorithm improve the initial solutions (both random
and edge-filtered)? It deals with the margin of optimization left by the initial
population, generated randomly or by Fbr. We want to understand if the im-
provements achieved through MGA are substantial.
- RQ3 : Are the reduced processes in the Pareto front understandable and mean-
ingful for business analysts? It deals with the quality of the solutions produced
by MGA, as perceived by the business analysts. We want to understand the
quality of the processes produced by MGA in terms of their understandability
and meaningfulness.
- RQ4 : Do the processes obtained by applying multi-objective optimization of-
fer qualitative improvements over those obtained by applying the edge-filtering
heuristics? It deals with the quality of the solutions produced by MGA com-
pared to those obtainable by means of the Fbr heuristics.

2 The tools are available at http://selab.fbk.eu/marchetto/tools/rebpmn
3 http://www.softslate.com/

http://selab.fbk.eu/marchetto/tools/rebpmn
http://www.softslate.com/
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The procedure followed in the experimentation consists of: (1) JWebTracer
has been used to trace 50 executions of Softslate Commerce (involving, on
average, 12 user actions per execution). These executions exercise each appli-
cation functionality at least once. (2) JBPRecovery has been used to analyze
the recorded traces and build the unreduced BPMN process model. (3) JBPFre-
qReducer has been used to reduce the initial process model by applying the Fbr
heuristics. A set of solutions has been obtained by varying the frequency thresh-
old. The maximum population size considered is 100 processes. (4) JBPEvo has
been run with two different types of initial populations, one randomly generated
(MGAR) and the other generated by JBPFreqReducer (MGAF ).

The dataset and recovered processes are available online4. Note that we ad-
dress the research questions by resorting to a quantitative analysis when possible
(specifically, for RQ1 and RQ2 ). Other questions (RQ3 and RQ4 ) involve more
subjective evaluations, hence a qualitative analysis is more appropriate for them.

5.1 Quantitative Results

Figures 3, 4 and 5 show the Pareto fronts at different iterations of MGAR,
MGAF and with the best solutions found by MGAR, MGAF and Fbr (high-
lighting the 9 processes selected for the qualitative analysis).
- RQ1. While for a small number of iterations MGAR and MGAF produce a
Pareto front with few solutions (as shown by the shape of the fronts in Figures 3
and 4), after a large enough number of iterations (at least 10,000), the Pareto
fronts present a smooth shape covering uniformly the CFC and NConf ranges.
After 1,000,000 iterations, the Pareto front of MGAR has several solutions in
the regions CFC > 50 and NConf > 180, while a smaller number of alterna-
tive trade-offs is offered (compared to MGAF ) in the region CFC < 50 and
NConf < 180. In the region CFC < 50 and NConf < 100 MGAF offers a
lot of alternative solutions, while Fbr finds no solution at all. We conclude that
MGA can produce a Pareto front which includes a wide range of tunable solu-
tions. However, this requires a high enough number of iterations and a carefully
initialized starting population (via Fbr). Otherwise, the choices offered to the
user are potentially limited and sub-optimal.
- RQ2. The Pareto fronts obtained by iterating MGAR show substantial im-
provements with respect to the initial population. The improvement is particu-
larly impressive in the first 10,000 iterations, when the initial random solutions
start to converge to a front, but major improvements are achieved when moving
from 100,000 to 1,000,000 iterations. Some improvements with respect to the
initial Fbr population have been observed also for MGAF , but the margin for
improvement left by Fbr (line for iteration 0) is lower than that left by the ran-
dom initial population. Hence, convergence to the final Pareto front is achieved
more quickly than MGAR as confirmed by the time values5 (in minutes) re-
quired by MGA to perform a given number of iterations reported in Table 2
4 http://selab.fbk.eu/marchetto/tools/rebpmn/opt_ext.zip
5 Running times for all the algorithms have been computed on a desktop PC with an

Intel(R) Core(TM) 2 Duo CPU working at 2.66GHz and with 3GB of RAM memory.

http://selab.fbk.eu/marchetto/tools/rebpmn/opt_ext.zip
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(last column). After 10,000 iterations, in fact, only minor improvements can be
obtained by further increasing the iteration number (e.g., 1,000,000). However,
the most notable difference between Fbr and MGAF is the density of the so-
lutions in the Pareto front. In fact, such density is extremely increased in the
front produced by MGAF compared to Fbr, the former offering more alternative
trade-offs. Hence, we can conclude that MGA improves both random and Fbr
solutions, the latter to a lower degree, but with a substantially higher density of
solutions available.

Fig. 3. Softslate: MGAR Pareto fronts Fig. 4. Softslate: MGAF Pareto fronts

Fig. 5. Softslate: best Pareto fronts

Table 2. Unique processes and times in
the Pareto fronts

Algo Iter Proc. Unique Time
Proc. (min.)

MGAR 100 9 8 1.18
MGAR 10000 100 43 39.3
MGAR 100000 100 68 294.2
MGAR 1000000 100 67 2097.9
MGAF 0 75 12 <0.2
MGAF 100 83 14 1.24
MGAF 10000 100 65 12.1
MGAF 1000000 100 65 1077.2
Fbr - 12 12 -

5.2 Qualitative Results

The points highlighted in Figure 5 represent the reduced processes randomly
selected to be considered in the qualitative evaluation: p4 and p15 generated
by Fbr; p24, p25, p66 generated by MGAR; and p23 (Figure 6), p27, p67, p41
generated by MGAF . Table 3 provides some structural metrics (number of activ-
ities, gateways and sequence flows), as well as complexity and non-conformance
metrics, for the unreduced process model and for the 9 selected processes.

In terms of difficulty of understanding, a big difference can be observed be-
tween reduced and unreduced processes, confirmed by the metrics shown in Ta-
ble 3: the 9 selected processes have substantially lower values of structural and
complexity metrics. However, this is paid in terms of non-conformance, as ap-
parent also from Table 3. The point is whether such non-conformances affect
minor aspects of the process (noise), or core activities and properties.
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Table 3. Metrics for the 9 selected
processes

Pr. id #Act #G #SF CFC NConf
unreduced

- 213 105 581 502 0
MGAR

p24 31 25 104 46 74
p25 39 37 125 62 40
p66 48 50 168 102 7

MGAF

p23 21 8 52 11 148
p27 23 15 60 20 97
p67 36 25 97 43 44
p41 46 38 142 77 6

Fbr
p4 19 16 51 22 122
p15 46 44 188 128 6

Table 4. Some core business activities and
properties

Business activities
... a3.Add To Cart; ... a7.Clear This Cart; a8. Check-
out; ... a10.Delete Item; a11.Log In; a12. Create New
Account; ... a14.Confirm Order; ... a19.Reorder
Business properties
pr2 Remove has to follow Add To Cart, Pick Up or Re-

order
pr3 After Edit it has to be possible to Edit Item or to

Delete Item
pr5 Delete Item has to follow Add To Cart, Pick Up or

Reorder
pr15 After Pick Up it has to be possible to choose among

Edit, Remove, Continue Shopping, Save This Cart,
Clear This Cart and Checkout

pr19 Confirm Order has to follow Checkout
pr21 Checkout has to be executed after the Log In or

the Creation of a New Account; otherwise it has to
be possible to Log In or to Create a New Account
immediately after the Checkout

. . .

Fig. 6. Softslate: recovered reduced process

In order to assess the quality of the 9 selected processes from the point of
view of the business analyst, we have identified 19 core business activities and
28 core business properties that pertain to the domain being modeled (Table 4
shows some examples). We assume that a good process model should represent
explicitly all core business activities and should encode a process dynamics that
complies with the core business properties. Core activities and properties have
been defined by one of the authors not involved in the process recovery phase and
without any knowledge about the recovered models (see Table 5). For instance,
Login and Checkout (activities a11 and a8 ) are core business activities, i.e.,
activities that any analyst would expect to be modeled explicitly. While an
example of a core business property is: the user must be logged-in in order to be
allowed to complete the Checkout operation (property pr21 ).

Table 5. Activities and properties modeled in the reduced processes

unreduced MGAR Fbr MGAF

p24 p25 p66 p4 p15 p23 p27 p41 p67
Business Activities

19 17 18 19 15 19 15 16 19 18
Business Properties

19 19 21 25 18 24 19 22 25 25
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- RQ3. Most of the 19 core activities are modeled in all 9 reduced processes (see
Table 5). The highest number of missing core activities is 4 and is associated
with the two processes (p4 and p23 ) having among the lowest CFC values (22
and 11, respectively). The process p27 has also low complexity (CFC = 20) and
it misses 3 core activities (a2, a16 and a19 ), missing in p4 and p23 too.

With regards to the business properties, something unexpected happened.
Reduced processes tend to enforce the same number or more business proper-
ties than the initial, unreduced process recovered from the traces (note that the
unreduced process covers 19 out of 28 identified properties). As shown in Ta-
ble 5, there is only one exception: process p4, which enforces 1 property less
than the unreduced process. Processes p66, p41 and p67 generated by MGA
enforce 6 more core business properties than the unreduced process. Process
p15, generated by Fbr, enforces 5 more properties. The explanation for this
unexpected improvement is that the unreduced process was obtained by gener-
alizing the behaviors observed in the execution traces, which contain noise and
irrelevant details. This resulted in over-generalization of the possible execution
paths, giving raise to extra behaviors, incompatible with the business domain.
For instance, in the unreduced process we can find the following path: “〈Add
To Cart, ..., Continue Shopping, Create New Account, ..., Confirm Order〉”,
which has never been traced in the logs and is forbidden by the Web application
(core property pr19 : “Confirm Order has to follow Checkout”). It appears as a
consequence of the many complex paths combined together in a single model.

Moreover, it is possible to observe that even when properties do hold in the
unreduced process, the process is so complex and intricate, that they can be
hardly verified by humans, thus potentially becoming not much meaningful for
the analysts. For example, while it is feasible for an analyst to check the failure
of property pr2 for process p23 (see Figure 6), it is practically impossible for
him to verify that the same property is true in the unreduced process.

We investigated also the reasons why none of the considered reduced processes
realizes all 28 core business properties. We discovered three main problems: (1)
one or more business activities involved in the property have been removed by
the reduction algorithm (e.g., removal of activity a10 from p23 causes the fail-
ure of pr3 and pr5 ); (2) a sequence flow that would allow to verify the business
property has been removed by the reduction algorithm (e.g., removal of the se-
quence flow between the activities Add To Cart and Clear This Cart causes the
failure of pr15 ); (3) over-generalization, which, as explained above, makes the
unreduced process capable of enforcing only 19 out of 28 core business properties
(e.g., the sequence of activities 〈Add To Cart, Continue Shopping, Continue, ...〉,
possible in p41, is non-allowed by Softslate, as indicated also by property pr18 ).
Cases 1 and 2 are instances of under-generalization, while 3 is the case of an
over-generalized model. We analyzed the trend of under and over-generalization
problems for the 9 selected processes, at decreasing complexity and increas-
ing non-conformance (see Table 3). In these 9 cases, under-generalization prob-
lems grow at decreasing complexity (they are strictly related with the level of
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non-conformance), while over-generalization problems grow at increasing com-
plexity, due to the excessive number of paths in the model.

Summarizing, a small number of business activities and properties are missing
in the reduced processes, which make them meaningful to business analysts,
especially in comparison to the unreduced process. Moreover, process reduction
is almost always beneficial to the modeling of the core business properties, thanks
to its implicit capability of reducing over-generalization.
- RQ4. To qualitatively compare the results achieved by Fbr and MGAF , we
consider the processes generated by the two algorithms that are within similar
ranges of CFC and NConf : p4 vs. p23 and p27 ; p15 vs. p67 and p41. At lower
complexity, the processes produced by MGAF (p23 and p27 ) include the same
or more business activities. They always comply with more business properties
(p23 enforces 1 property more than p4 ; p27 4 properties more). While process
p23 produced by MGAF is comparable to (actually, slightly better than) p4 in
terms of modeled core business activities and properties, it has half the CFC
complexity of p4. This clearly indicates that the multi-objective optimization
performed by MGA is extremely effective in determining a trade-off able to
keep complexity low (11 vs. 22), while at the same time minimizing the non-
conformances, which allows the process model to be comparatively similar to
the more complex process p4, obtained by means of frequency-based reduction.
The benefits of multi-objective optimization are apparent when p4 and p27 are
compared. In this case, the CFC complexity is similar (22 vs. 20, respectively),
but process p27 has much less non-conformances (97 vs. 122), as a result of
the multi-objective optimization. This can be appreciated in terms of properties
that are meaningful for the business analyst. In fact, p27 models 4 core business
properties more than p4 (22 vs. 18) and 1 more business activity.

When comparing p15 vs. p67 and p41, the number of business activities and
properties is similar (differing by at most ±1). However, the process models
produced by MGA are far less complex, with CFC respectively equal to 43 and
77, vs. p15 having CFC equal to 128. In the first case (process p67 ), multi-
objective optimization is able to reduce the complexity of the model by a factor
of around 1/3 at almost unchanged core business activities and properties. In the
second case (process p15 ), the exact same amount of non-conformance (namely,
6) is achieved by a process model having almost half complexity (77 vs. 128).

In conclusion, multi-objective optimization is overall effective in optimizing
the trade-off reducing the complexity of the model while leaving unchanged
the business properties captured by the model and its non-conformance, hence
representing a substantial improvement over the models obtainable by means of
Fbr. As remarked above, MGA offers also a wider range of alternative solutions.

5.3 Threats to Validity

It is always hard to generalize the results obtained on a single case study. The
selected application, however, seems to be representative of the e-commerce do-
main, where Web applications are used to implement the trading processes.
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Two threats to validity impact the procedure of the case study. The first
concerns the used executions traces. Since different models can be recovered
considering different sets of traces, we applied the functional coverage criterion
for the selection of application executions to be used. The second threat concerns
the stochastic nature of the MGA algorithm. We considered different runs of the
algorithm and obtaining comparable results, we detailed only one of them.

Finally, the qualitative analysis could have been influenced by the limited
number of processes analyzed and the strong subjectivity characterizing the
analysis. To limit this latter threat, the person in charge of identifying the busi-
ness information was not involved in the process recovery phase.

6 Related Works

Process recovery deals with the analysis of a process implementation to extract
models of the underlying process. For instance, Zou et al. [2] presented a two-step
approach to recover business processes from Web applications. Process mining
techniques (e.g., [10], [5]) try to infer processes by analyzing the workflow logs,
containing information about organizations and process executions. In this area,
most of the effort has been devoted to control flow mining (e.g., see the α algo-
rithm proposed by van der Aalst et al. [5]).

Mining techniques often produce large and intricate processes. Assuming that
this is due to spurious information contained in the traces, some works prune the
model by removing process elements having low execution frequencies [5]. In our
case study, we made a direct comparison with the frequency-based process reduc-
tion, showing the superiority of our approach in reducing process complexity and
non-conformance. Other works cluster segments of traces and mine a number of
smaller process models, one for each different cluster [10]. We used clustering [3]
to modularize the processes into sub-processes for improving their understand-
ability. However, the effects of modularity can be limited by the process domain,
structure and complexity [6]. Process reduction, hence, is applied after process
recovery and after the application of existing techniques for reducing process
complexity (e.g., noise pruning, modularization).

Some works propose the use of evolutionary algorithms to balance under and
over-generalization when mining a process model. For instance, Alves de Medeiro
et al. [11] apply a genetic algorithm to mine a process balancing the ability of
reproducing behaviors traced in logs and extra-behaviors. Their algorithm opti-
mizes a single-objective function which combines under and over-generalization.
On the contrary, we aim at two objectives at the same time, complexity and
non-conformance. The former (absent in [11]) descends from the analysts’ un-
derstandability needs, while our notion of non-conformance corresponds to their
of under-generalization.

7 Conclusion

We have presented a multi-objective process reduction technique for reducing
large processes by balancing complexity and conformance. We conducted a case
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study involving a real-life process exposed as a Web application. Results indicate
that: (1) MGA produces a rich, fine grained, evenly distributed set of alterna-
tives; (2) MGA improves state of the art reduction techniques; (3) convergence
of MGA depends on the choice of the initial population; (4) though reduced,
processes produced by MGA include relevant business activities and properties
(i.e., we deem them as meaningful for analysts); (5) MGA produces solutions
that are optimal along multiple dimensions at the same time. Future works will
be devoted to perform further experiments, involving additional case studies and
including other process mining tools.
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Abstract. As the majority of today’s software applications employ a
graphical user interface (GUI), it is an important though challenging
task to thoroughly test those interfaces. Unfortunately few tools exist
to help automating the process of testing. Despite of their well-known
deficits, scripting- and capture and replay applications remain among
the most common tools in the industry. In this paper we will present
an approach where we treat the problem of generating test sequences
to GUIs as an optimization problem. We employ ant colony optimiza-
tion and a relatively new metric called MCT (Maximum Call Tree) to
search fault-sensitive test cases. We therefore implemented a test envi-
ronment for Java SWT applications and will present first results of our
experiments with a graphical editor as our main application under test.

Keywords: gui testing, search-based software testing, ant colony
optimization.

1 Introduction

One reason why the test of applications with GUIs is often neglected, might be
that this kind of testing is labour and resource intensive [14]. Capture and replay
tools help the tester with recording input sequences that consist of mouse move-
ments, clicks on widgets and keystrokes. These sequences can then be replayed
on the software under test (SUT) to serve as regression tests. Unfortunately
there are a few limitations to this approach:

1. It is difficult to find input sequences that are likely to expose errors of the
SUT. The actions often need to be in a specific order, or have to appear in
the context of certain other actions to provoke faults.

2. This kind of testing is laborious and takes a lot of time. One often needs
several testers to compile an entire test suite.

3. Slight changes to the GUI of the SUT will break tests. For example removing
a button that appears in a sequence as part of a click action, will cause this
sequence to not be replayed properly on the updated application.

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 173–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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clickMenu (” F i l e ” ) , clickMenu ( ”Pr int ” ) , pressKey (Tab ) ,
type ( ”22” ) , pressKey (Tab ) , type ( ”44” ) , c l i ckBut ton ( ”OK” )

Fig. 1. Input sequence that causes Microsoft Word to print pages 22 to 44 of the
current document

Considering these difficulties, techniques for automatic test case generation
are quite desirable. One way to deal with the task of finding test data, is to treat
it as an optimization problem. This means that one tries to find solutions with
the highest quality with respect to the chosen criteria. Since the input space
is large and has a complex structure, one could try to exploit metaheuristic
techniques. There has been a lot of research about this in a field commonly
known as Search-based Software Engineering [12,17,1]. Recently, some of these
techniques have also been applied to GUI testing [7,6,16,9]. The problem of
finding input sequences or test suites is difficult. Some of the challenges are:

GUI Model. Throughout the optimization process it is necessary to generate new
sequences which have to be assessed. An input sequence of length n is a tuple s =
(a1, a2, . . . , an) ∈ An where A denotes the set of all actions that are executable
on the SUT. Some actions are only available in certain states, so not all input
sequences are feasible. Since many sequences are infeasible, it can be helpful to
employ a model of the GUI. Many of the current approaches use an Event Flow
Graph (EFG) which is a directed graph whose nodes are the actions that a user
can perform. A transition between action x and action y means: y is available
after execution of x. By traversing the edges of this graph one can generate
sequences offline, i.e. without starting the SUT. It is possible to automatically
obtain an EFG by employing a GUI-Ripper [13]. Unfortunately the generated
EFG is not guaranteed to be complete and needs manual verification.

Since the model is only an approximation, it is still possible to generate infea-
sible sequences. E.g. in Figure 2 we could generate s = (Edit, Paste). However,
since in most applications the Paste menu entry is disabled or invisible until a
Copy action has occurred, the execution of s is likely to fail.

Appropriate Adequacy Criteria. Before one can apply optimization techniques,
it has to be defined what constitutes a good test sequence. Several criteria have
been proposed for GUI testing. In addition to classic ones like code coverage,
covering arrays [3] and criteria based on the EFG (e.g. all nodes / all edges) [15]
have been employed. Choosing the right criteria is criticial to finding faults.

Exercising the GUI. Modern GUIs are quite complex, have lots of different kinds
of widgets and allow various types of actions to be performed by the user. It takes
a lot of effort to implement a tool that is able to obtain the state of the GUI
and can derive a set of sensible actions. One first has to determine the position
of all visible widgets and the state they are in. E.g. if a button is disabled, it
would not make sense to perform a click, since the event handler would not be
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File

Open Save

Edit

Help

AboutContents

Cut CopyPaste

Fig. 2. Part of an Event Flow Graph of a typical GUI based application. The nodes
correspond to clicks on menu items.

invoked. Likewise if a message box is on top of all windows and blocks input to
them, it would not be effective to perform actions on controls other than the
ones within the message box.

This paper proposes a new approach to input sequence generation for GUI
testing, based on ant colony optimization. Our work differs from the existing
approaches in that we use a relatively new criterion to direct our optimization
process. We try to generate sequences that induce a large call tree within the
SUT. The maximum call tree criterion (MCT) has been used by McMaster et al.
[11] to minimize existing test suites. Similar to Kasik et al. [7] we generate our
sequences online, i.e. by executing the SUT. Thus we do not need a model and do
not have to deal with infeasibility. We developed a test execution environment,
which allows a rich set of action types to be performed (clicks, drag and drop
operations, input via keyboard). This way we can exercise even very complex
SUTs like graphical editors.

In the following section we will look at related work. Section 3 discusses the
adequacy criterion, presents our test execution environment and the search al-
gorithm. In section 4 we present first results by comparing our technique to
random sequence generation. Section 5 concludes the paper and reviews the
approach.
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2 Related Work

Kasik et al.[7] try to find novice user sequences by employing genetic algorithms.
Their implementation captures the widget tree of the GUI at any given time.
They consider only actions that are executable on the current widget tree and
can thus generate arbitrary feasible input sequences. They reward actions that
cause the GUI to stay on the same dialog based on the observation that novice
users learn the behaviour of a GUI’s functions through experimentation with
different parameters within the same dialog. Their program usually starts with
an existing input sequence, where the tester may insert a DEVIATE command. It
then deviates this part of the sequence and tries to make it look like it was created
by a novice user. By supplying just a single DEVIATE command, the program
generates an entire sequence from scratch. However, according to the authors
this gives quite random results which do not resemble novice user sequences.
There are two possible modes: meander and pullback. Meander mode simply
turns over control to the genetic algorithm whenever it encounters a DEVIATE
command. It does not return to the remainder of the sequence, that follows the
DEVIATE command. In Pullback mode the authors give reward for returning
to the rest of the sequence, e.g. when an action reaches the same window of the
action that the program tries to return to (the first action of the rest of the
sequence). It is not mentioned how the crossover and mutation operators work
and what type of subject applications have been used. Thus it is hard to say
how well their implementation will perform on real world subject applications.

Memon et al. [6] use genetic algorithms to fix broken test suites. They create
an EFG for the GUI and try to find a covering array to sample from the sequence
space. A covering array CA(N, t, k, v) is an N × k array (N sequences of length
k over v symbols). In such an array all t-tuples over the v symbols are contained
within every N × t sub-array. A covering array makes it possible to sample
from the sequence space. Instead of trying all permuations of actions (which are
exponentially many) only the set of sequences that contains all t-length tuples
in every position are considered. The parameter t determines the strength of the
sampling process.

Their array is constrained by the EFG (certain combinations of actions are
not permitted). Since it is hard to find such a constrained covering array, they
employ a special metaheuristic based on simulated annealing [5]. This way they
get their initial test suite which, due to the fact that the EFG is only an ap-
proximation of the GUI, contains infeasible input sequences. Their next step is
to identify these sequences and drop them. By doing that, they lose coverage
regarding the coverage array. Thus they use a genetic algorithm which utilizes
the EFG to generate new sequences offline, which will then be executed and
rewarded depending on how many of their actions are executable and on how
much coverage they restore. Infeasible sequences are penalized by adding a large
static value. They pair the individuals in descending order to process a one-
point-crossover, mutate them and use elitism selection. Their stopping criteria
are: maximum number of generations and maximum number of bad moves (if the
best individual of the current population is worse than the best of the last one,
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it is considered a bad move). The algorithm also stops if the best individual of
the population already contains the maximum number of t-tuples. The authors
tested their approach on small subject applications with 3 to 5 different “button
click” actions.

Rauf et al. [16] use a similar technique, also employing an EFG. They have
a set of short handcrafted input sequences, from which they want to generate a
longer one that contains the short ones as subsequences. A possible use case for
this approach is not mentioned within the paper.

Yongzhong et al. [9] seem to take a similar approach, except that they use ant
colony optimization instead. Their work is hard to evaluate since they do not
provide information on their fitness function.

3 Our Approach

In this section we will first explain the employed MCT metric and the motivation
behind it. We will proceed with a quick insight into our execution environment
and conclude with a pseudocode listing of our optimization algorithm. This
listing will also present our fitness function.

3.1 Adequacy Criterion

For this work, we adopt a relatively new criterion that McMaster et al. [11] used
to reduce the size of existing test suites. They instrumented the Java virtual
machine of an application to obtain method call trees (see Figure 4) for runs
of their SUT. They started with an existing test suite which they executed, to
obtain the method call tree for each sequence. They merged all these trees into a
single large tree and determined the number of its leaves. Then they went on to
remove those test cases which did not cause the tree to shrink significantly. This
means that they kept only the sequences which contributed the majority of the
leaves. After this process, the reduced versions of the test suites still revealed
most of the known faults. Thus we think that this strategy could be suitable for
sequence generation. Our goal will be to find sequences that generate a call tree
with a maximal number of leaves upon execution on the SUT. Throughout the
rest of this paper, we will refer to this metric as MCT.

Figures 3 and 4 show a Java program and its corresponding method call
tree. The tree is just a simplification of the much larger original version, which
would also contain the methods of classloaders and Java library code. In fact
there would be several thread call trees for the given program, since different
threads are used for virtual machine initialization, cleanup, the garbage collector
etc. In order to obtain the MCT metric, we merge all these thread trees into a
single program call tree and count its leaves. Figure 5 illustrates this process.
We introduce a new root node and merge threads with the same run() method
into the same subtrees.

The idea behind the MCT metric is as follows: The larger the program call
tree, the more contexts the methods of the SUT are tested in. For example: If
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public class CT{
public static void main (
S t r i ng [ ] args ){
CT ct = new CT( ) ;
c t .m2( ) ;
c t .m3( ) ;

}
public CT(){

System . out . p r i n t l n ( ” c to r ” ) ;
}
public void m1(){}
public void m2(){ m1( ) ; }
public void m3(){

m1( ) ;
for ( int i = 0 ; i < 100 ; i++)

m2( ) ;
}

}

Fig. 3. Java program

main()

CT.m2() CT.m3() CT.CT()

CT.m1()CT.m1() CT.m2()

CT.m1()

println()

.

.

.

Fig. 4. Simplified call tree for the
main thread of the program in Figure
3 (library code partly omitted)

run1()

f1() f2()

f3()

run1()

f1() f2()

f3()

run2()

f3()

f4()

f5() f6()

run1()

f1() f2()

f3()

root

++

Thread 1 Thread 2 Thread 3

run2()

f3()

f4()

f5() f6()

f2() f2()

Fig. 5. Merging thread call trees into a single program call tree
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we look at Figure 4 we can see that the method m1() appears in three different
contexts. The ancestor methods, namely m2(), m3() and main() establish the
context that m1() is invoked in, because they potentially modify variables that
m1() might depend on directly or indirectly and thus affect its behaviour. So
the premise is: The larger the call tree, the more aspects of the SUT are tested.
The experiment of McMaster et al. gave first evidence of this.

One of the advantages of the MCT metric is, that no source code is required
to obtain it. In addition the metric tracks activities within third-party modules
and thus is suitable for testing the SUT as a whole. McMaster et al. [11] provide
an implementation that is able to obtain the call tree generated by an input
sequence. They developed solutions for Java- and C- based applications1. Their
Java version employs the Java Virtual Machine Tool Interface (JVMTI), which
provides callbacks for various events, like Thread-Start / -End, Method-Entry
/ -Exit. This way a call tree can be generated for every thread. Table 1 shows
the results of applying their implementation to three simple programs. We can
see that the MCT metric captures activities within third-party modules (here
the Java library). Depending on the parameters supplied to println(), different
methods are invoked and hence different call trees are generated.

Unfortunately the JVMTI prevents the virtual machine from doing impor-
tant optimizations [8]. This not only degrades runtime performance, but might
destabilize the SUT and thus introduce artificial faults. Since we encountered
slowdowns of up to factor 30 and crashes with our main SUT, we developed our
own solution using byte code instrumentation. We insert static method calls at
the beginning and end of each method to obtain the call tree. This technique is
frequently used by Java profilers [2].

Table 1. Three simple programs (main class and main method omitted) and the
corresponding MCT metric. The programs have been executed on a Sun JVM on
Windows XP.

Code # Call Tree Leaves

System.out.println(""); 716
System.out.println("Hello World!"); 748
System.out.println("Hello\nWorld!"); 750

3.2 Test Environment

This section gives a short introduction to our test environment, which enables
us to operate the SUT, i.e. click on controls, type in text and perform drag and
drop operations. In order to do this, it needs to be able to

1. scan the GUI of the SUT to obtain all visible widgets and their properties
(size, position, focus etc.),

2. derive a set of interesting actions (e.g. a visible, enabled button on a fore-
ground window, is clickable),

1 http://sourceforge.net/projects/javacctagent/

http://sourceforge.net/projects/javacctagent/
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3. give these actions unique names, so that we can refer to them in subsequent
runs of the SUT,

4. execute sequences of these actions.

One could try to take advantage of the various commercial and open-source
scripting and capture and replay tools. We tested TestComplete2, SWT-Bot3 and
WindowTester4. Unfortunately all of these tools lack the capabilities outlined
in 2. and 3.5 They are good at recording and replaying, but expect the user to
supply the right actions. Thus we implemented our own tool, which is able to
exercise nearly all types of SWT widgets.

Figure 6 outlines the process of generating a feasible input sequence. 1. We
start the SUT and 2. perform the byte code instrumentation, which is necessary
to obtain the method call tree at the end of the execution cycle. 3. Then we scan
the GUI to obtain all widgets and their properties. That means we determine the
bounding rectangles of buttons, menus and other widgets and detect whether
they are enabled, have the focus etc. From this information we are able to 4.
compile a set of possible actions. In Figure 8 we can see a selection of actions
that can be performed within our main SUT, the Classification Tree Editor6.
We only consider “interesting actions”. For example: A click on a greyed out,
i.e. disabled, menu item would not make sense since no event handler would be
invoked. 5. Our optimization algorithm then selects an appropriate action and
6. executes it. We repeat steps 3 to 6 until we generated a sequence of a specified
length. 7. Then we stop the SUT and count the number of leaves of our call tree.

Figure 7 shows the components of our test environment. All of the above
functionality is packaged in a so called JavaAgent, which is attached to the
virtual machine of the SUT. Thus it has access to each loaded class and object,
including the widget objects. It obtains the necessary information and sends it to
the optimization component which selects the actions that are to be performed.
At the end of a sequence the optimization component retrieves the MCT metric
from the agent.

Our implementation is also able to obtain the thrown exceptions during a run.
If these exceptions are “suspicious” or caused the SUT to crash, the correspond-
ing sequence will be stored in a special file for later inspection.

3.3 The Algorithm

We will now describe our search-algorithm. We consider fixed-length input se-
quences of the form s = (a1, a2, a3, . . . , an) ∈ An where A denotes the set of all
actions within the SUT. We are trying to find a sequence s∗ ∈ An such that

2 http://smartbear.com/products/qa-tools/automated-testing/
3 http://www.eclipse.org/swtbot/
4 http://code.google.com/javadevtools/wintester/html/index.html
5 TestComplete has a naming scheme, but it doesn’t work for all SWT widgets.
6 http://www.berner-mattner.com/en/berner-mattner-home/products/cte/

index-cte-ueberblick.html

http://smartbear.com/products/qa-tools/automated-testing/
http://www.eclipse.org/swtbot/
http://code.google.com/javadevtools/wintester/html/index.html
http://www.berner-mattner.com/en/berner-mattner-home/products/cte/index-cte-ueberblick.html
http://www.berner-mattner.com/en/berner-mattner-home/products/cte/index-cte-ueberblick.html
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Fig. 8. Possible actions that can be performed on our SUT (green circles: left clicks,
yellow triangles: right clicks, blue arrows: drag and drop operations, green stars: double
clicks). These are not all possible actions, but only a selection, to preserve clarity.

q∗ = fitness(s∗) = max{fitness(s)|s ∈ An}, where fitness(s) returns the size
of the method call tree generated by s, i.e. the MCT metric.

Due to the fact that not every action a is available at all states of the SUT,
we cannot arbitrarily combine actions, but have to make sure that our algorithm
produces feasible permutations. Classical metaheuristics like simulated anneal-
ing or genetic algorithms make use of a mutation operator which, depending on
certain parameters, makes small or large changes to candidate solutions. The
first issue here is, that in our case the operator has to maintain closure, i.e. its
application should not affect the feasibility of sequences. Due to the unknown
dependencies among the actions, it is hard to implement such an operator. Fur-
thermore it is unclear what constitutes a small or large change of a sequence.
If we substitute an action at position i, the rest of the sequence might have to
undergo a complete change too, in order to maintain feasibility.

Thus we would like to bypass the implementation of such an operator and
rather use metaheuristics where it is not necessary. This led us to consider ant
colony optimization (ACO), which is an approach to combinatorial optimiza-
tion [10]. Since ACO does not make use of a mutation operator, we think it is
more suitable for the generation of input sequences than for example genetic
algorithms.

ACO is a population-oriented metaheuristic, that means in contrast to meth-
ods such as hill climbing or simulated annealing, which constantly tweak a single
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candidate solution, ACO maintains an entire pool of so called ant trails which
correspond to our input sequences. Each generation it builds several trails by
selecting components from a set C (in our case C = A). The likelihood of a
component c ∈ C being chosen, is determined by its pheromone value pc. After
assessing the fitness of each trail, the pheromones of the components contained
within that trail are updated according to the fitness value. Thus the pheromones
tell us about the history of a component and how often it participated in high-
quality solutions.

Algorithm 1. maximizeSeq(popsize, seqlength)
Output: Sequence that generates a large call tree upon execution.
begin

p ← 〈p1, . . . , pl〉 ; /* initialize pheromones */

best ← � ; /* best trail discovered so far */

bestV alue ← 0 ; /* fitness of best trail */

while ¬stoppingCriteria() do
for i = 1 to popsize do

startSUT()
for j = 1 to seqlength do

E ← scanGuiForActions()
tij ← pseudoProportionateActionSelection(p, E)

shutdownSUT()
qi ← fitness(ti)
if bestV alue < qi then

bestV alue ← qi

best ← ti

p ← adjustPheromones(t, q, p)
return best

end

Algorithm 2. fitness(seq)
Input: sequence seq to evaluate
Output: fitness value of the sequence seq.
begin

return number of leaves of the call tree generated by seq
end

Algorithm 1 outlines our overall strategy. It does the optimization work and
tries to find a sequence that generates a large call tree. At the end of each
generation we pick the k best rated trails and use them to update the pheromones
of the contained actions. Our pheromone update rule for an action ai is as follows:
pi = (1−α)·pi+α·ri, where ri is the average fitness of all trails that ai appeared
in and α the evaporation rate, as described in [4].

During the construction of a trail, we select the components (the available
actions) according to the pseudo random proportional rule described by Dorigo
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et al.[4]. With probability ρ we select the action with the highest pheromone
value, with probability 1− ρ we perform a random proportionate selection.

At the moment our stopping criterion is a fixed limit on the number of gener-
ations. In the future we will employ more sophisticated criteria like for example
the number of bad moves.

4 Experiment

To get a first impression of how well the optimization algorithm performs, we
compared it to a random generation strategy. The Classification Tree Editor, a
graphical editor for classification trees, served as our SUT. Table 2 shows the
parameters and results of the random and ACO runs. k is the number of top-k
sequences in every generation, which were used for the pheromone update. ρ
is the probability parameter for the pseudo proportional random selection rule,
and α is the pheromone evaporation rate. Both runs generated 6000 sequences.
Figures 9 and 10 show the course of the optimization processes. The ACO algo-
rithm eventually found a sequence with MCTACO = 144082, whereas the best
sequence found by the random algorithm has MCTRandom = 91587. Although
the quality of the candidate solutions significantly improved towards the end of

Table 2. Parameters and results of the runs

desc k α ρ popsize generations seqlength pheromone
default

best
MCT

duration

ACO 15 0.3 0.7 20 300 10 30000 144082 12.5 h
Random all 0.0 0.0 20 300 10 30000 91587 12.5 h
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the ACO run, the algorithm might have performed better, but due to our rather
simple stopping criterion (fixed number of generations) the optimization process
probably terminated prematurely. In future experiments we will employ more
sophisticated criteria to determine when to stop.

5 Conclusion

In this paper we proposed an approach to automatic generation of input se-
quences for applications with a GUI. Our approach differs from earlier works
in the way we tackle the optimization problem. We use dynamic feedback from
the SUT in the form of the MCT metric to direct the search process. Since we
forgo the application of a GUI model, we do not have the problem of generating
infeasible sequences. We implemented a test environment which enables us to
generate arbitrary input sequences for Java SWT applications. Our optimization
algorithm employs ant colony optimization with the pseudo proportional ran-
dom selection rule. A first experiment showed that the implementation worked,
that the algorithm continuously improved the candidate solutions and eventually
found a better sequence than the random strategy. In future works we will carry
out additional experiments to analyze the fault revealing capabilities of the gen-
erated sequences. Our goal is to take a set of different applications with known
faults and generate test suites for them. We will then determine the amount of
faults discovered by these test suites.
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Abstract. The integration test of aspect-oriented systems involves the
determination of an order to integrate and test classes and aspects, which
should be associated to a minimal possible stubbing cost. To deter-
mine such order is not trivial because different factors influence on the
stubbing process. Many times these factors are in conflict and diverse
good solutions are possible. Due to this, promising results have been
obtained with multi-objective and evolutionary algorithms that gener-
ally optimize two coupling measures: number of attributes and methods.
However, the problem can be more effectively addressed considering as
many as coupling measures could be associated to the stubbing pro-
cess. Therefore, this paper introduces MECBA, a Multi-Evolutionary
and Coupling-Based Approach to the test and integration order prob-
lem, which includes the definition of models to represent the dependency
between modules and to quantify the stubbing costs. The approach is
instantiated and evaluated considering four AspectJ programs and four
coupling measures. The results represent a good trade-off between the
objectives and an example of use of the obtained results shows how they
can be used to reduce test effort and costs.

Keywords: Integration testing, aspect-oriented software, multi-
objective evolutionary algorithms.

1 Introduction

Similarly to object-oriented (OO) software test, the test of aspect-oriented (AO)
programs comprises different phases [19,29]. A first phase includes the test of
each class, by testing its methods and crosscutting concerns. After this, in the
integration test phase, the interactions among classes and aspects are tested,
and to do this, different strategies have been proposed in the last years [6,19,29].
These strategies are derived from the knowledge acquired from the OO context
and due to this, as it happens with other activities in AOSD (Aspect-Oriented
Software Development), we find similar integration problems in both contexts.
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An example of an inherited problem is known as CITO (Class Integration and
Test Order) problem [1], which involves to determine an optimal order to inte-
grate and test classes that minimizes stub creation costs. In the AO context, it
is called CAITO (Class and Aspect Integration and Test Order) problem [12].
To determine such sequences different factors that influence on the stubbing
process should be considered and this is not always a trivial task, mainly due
to the existence of dependency cycles among modules (either a class or aspect).
A recent study shows that is very common to find complex dependency cycles
in Java programs [20]. In the AO context many researches [25] found crosscut-
ting concerns that are dependent of other crosscutting concerns, which imply in
dependency between aspects, and between classes and aspects. Hence, this fact
motivated studies to solve the problem in both contexts.

Most existing strategies are graph-based and consider characteristics of OO
software [1,4,18,26,27]. These strategies have been recently extended to the AO
context [24,25], however, graph-based strategies are not satisfactory because in
many cases sub-optimal solutions are found. Furthermore, they need some adap-
tation to consider different possible factors and measures that affect the stub
construction. To reduce such limitations, in the OO context, bio-inspired strate-
gies are very promising [3,5], particularly that one based on Multi-Objective
Evolutionary Algorithms (MOEAs), which presented the best results [2,22].

The use of evolutionary algorithms in the AO context is recent. Galvan et
al [12] introduced a Genetic Algorithm (GA) to solve the CAITO problem. The
algorithm obtained better results than the traditional graph-based strategies.
The GA allows the use of different factors to establish the test orders by using
a fitness function based on an aggregation of objectives to be minimized (a
weighted average of number of operations and number of attributes). However,
this fitness function requires the tester adjusts the weight of each objective, and
the choice of the more adequate weights for the GA is a labor intensive task for
complex cases and makes difficult the use of the GA-based strategy in practice.
To overcome this limitation, in a previous work [9] we explored the use of two
MOEAs to the CAITO problem: NSGA-II and SPEA2. These algorithms have
achieved solutions of minimal effort to test, considering two objectives: number
of attributes and methods to be handled by the created stubs.

Motivated by the results obtained in previous works from the OO context [2,22]
and AO context with two objectives [9], this work introduces an approach, named
MECBA (Multi-Evolutionary and Coupling-Based Approach) to solve the inte-
gration order problem. The approach consists of some generic steps that include
the definition of models to represent the dependency between modules and to
quantify the stubbing costs, and the optimization through multi-objective algo-
rithms. At the end, a set of good solutions is produced and used by the tester
according to test goals and resources.

The approach is instantiated and evaluated considering specific dependency
relations of the AO context, with four real AspectJ programs and four coupling
measures. Nevertheless, it is important to know the MOEAs behavior for the
CAITO problem with several objectives. It is known that they are efficient to
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solve this problem with two objectives [9], but in some cases the performance of
MOEAs significantly deteriorates with more than two objectives. So, this is also
a research question to be evaluated in the present work.

The paper is organized as follows. Section 2 reviews related works. Section 3
introduces the MECBA approach and shows how it was applied in our study.
Section 4 describes an empirical evaluation. Section 4.3 contains some examples
of how to use the achieved solutions. Finally, Section 5 concludes the paper and
points out future research works.

2 The Class and Aspect Integration Test Order Problem

The CAITO problem has been solved from adaptations of existing strategies
proposed to the similar problem in OO context. In general, they are based on
directed graphs, named Object Relation Diagrams (ORDs) [18]. In such graphs
the vertexes represent the classes, and their relations are edges. When there
are no dependency cycles in the graph, the solution is found with a simple
reverse topological ordering of classes considering their dependency. However,
in most cases, when dependency cycles are present, this ordering can not be
applied. Hence, strategies were proposed to break the cycles and produce an
order that minimizes stubbing costs [1,4,18,26,27]. A disadvantage of all the
graph-based solutions is that they are very hard to be adapted to consider many
factors that are involved in the stub creation, such as number of calls or distinct
methods, constraints related to organizational or contractual reasons, etc [3].
Other limitation is that they work to reduce broken cycles, but, there are cases
where breaking two dependencies has a lower cost than breaking only one, and
the solutions can be sub-optimal.

To overcome these limitations, Briand et al [3] explore the use of a GA and use
fitness functions based on two coupling measures besides the dependency factor:
the number of methods and attributes necessary for the stubbing process. Cabral
et al [5] investigated a solution based on the Ant Colony algorithm by using
Pareto concepts [21] to treat the CITO problem as multi-objective. In multi-
objective problems, the objectives to be optimized are usually in conflict, which
means that they do not have a single solution. The goal is to find a good trade-
off of solutions representing a possible compromise among the objectives. These
solutions are named non-dominated and form the Pareto front [21]. Given a set
of possible solutions to the problem, the solution A dominates a solution B if A
is better than B at least in one objective, and A is not worse than B in any other
remaining objectives. In most applications, the search for the Pareto optimal is
NP-hard [16], then the optimization focuses on finding an approximation set
to the Pareto front. Multi-objective optimization algorithms are being widely
applied in several areas, such as Search Based Software Engineering [13,14,15],
to solve problems with many interdependent interests (objectives).

The multi-objective approach presents better solutions than the function
based on aggregation of Briand et al. Furthermore, this approach does not need
weights adjustments and generates a set of good solutions to be used by the
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tester. In [22] the authors evaluate the multi-objective approach with three dif-
ferent algorithms, and NSGA-II, the evolutionary one, obtained the best results.
This algorithm was also used with different coupling measures [2].

In the AO context, these strategies have been extended for integration of
classes and aspects. In such context, other relations and ways to combine the
aspects are necessary. The work of Ceccato et al [6] uses a strategy in which the
classes are first tested without integrating aspects. After this, the aspects are
integrated and tested with the classes, and, at the end, the classes are tested
in the presence of the aspects. Solutions based on graphs were investigated by
Ré et al [24,25]. The authors propose an extended ORD to consider dependency
relations between classes and aspects, and different graph-based strategies to
perform the integration and test of AO software. They are: i) Combined: aspects
and classes are integrated and tested together; ii) Incremental+: first only classes
are integrated and tested, and after only aspects are integrated and tested; iii)
Reverse: applies the reverse combined order; and iv) Random: applies a ran-
dom selected order. As a result of the study, the Combined and Incremental+
strategies performed better than the others, producing a lower number of stubs.

The use of evolutionary algorithms in the AO context is recent. Galvan et
al [12] introduced a simple and mono-objective GA that uses an aggregation
of functions to the CAITO problem. This algorithm presented better solutions
than the strategies based on graphs proposed by Ré et al. We did not find works
exploring the use of multi-objective algorithms in the AO context, despite of
its promising use in the OO context [2,5,22]. Because of this, we explored in a
previous work [9] the use of MOEAs to establish integration test orders for AO
programs. However, we used only two objectives, traditionally used in the related
works. To investigate the use of other measures and the MOEAs performance
in such situation, in the next section, we describe an approach based on multi-
objective optimization and Pareto’s concepts to solve the CAITO problem.

3 The MECBA Approach

As mentioned before, in a previous work [9], we explored the use of two MOEAs
to establish integration test orders of aspects and classes considering two objec-
tives: number of attributes and methods. The ideas explored in that work serve
as basis for the approach, named here Multi-Evolutionary and Coupling-Based
Approach (MECBA). MECBA includes a set of steps that produce artifacts that
can be used in a generic way, and allows the use of different coupling measures for
solving the integration order problem. Next, these steps are described and possi-
ble entries and artifacts produced in each step are illustrated. This instantiation
example for MECBA is used in its evaluation presented in Section 4.

3.1 Construction of the Dependency Model

This step produces a representation of the dependency relations to be considered;
they can be between classes, between aspects and between classes and aspects.
Different restrictions to some kind of dependency can also be represented. The
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dependency model used in our evaluation is the extended ORD proposed by
Ré et al [24,25] with the Combined strategy. This strategy seems to be more
practical and realistic than the other ones, since classes and aspects probably
are tested together if both are under development. An example of extended ORD
is presented in Figure 1. To a better visualization, classes are on the left side of
the figure and aspects are on the right.

Fig. 1. Extended ORD (extracted from [25])

Considering the aspects mechanisms, the following new relationships between
vertexes are possible:

– Crosscutting Association (C) represents the association generated by a point-
cut with a class method or other advice. In Figure 1 it is illustrated between
the aspect Billing and class Call;

– Use Dependency (U) is generated by a relation between advices and point-
cuts, and between pointcuts;

– Association Dependency (As) occurs between objects involved in pointcuts.
This is shown in Figure 1 by the relationship between Timing and Customer;

– Inter-type Declaration Dependency (It) occurs when there are inter-type re-
lationships between aspects and the base class. For example an aspect Aa
declares that class A extends B. In the example there is this kind of depen-
dency between Billing and Local; and among MyPersistentEntities,
PersistentRoot and Connection;

– Inheritance Dependency (I) represents inheritance relationships among as-
pects or among classes and aspects. An example in Figure 1 is the aspects
PersistentEntities and MyPersistentEntities.

3.2 Definition of the Cost Model

This step defines a cost model. Different coupling measures that qualify a de-
pendency can be used, such as coupling, cohesion and time constraints. They are
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in fact the objectives to be minimized that contribute to increase costs. In this
work, we use four coupling measures, adapted from related works [1,2,3,9,12,25].
Considering that: (i) mi and mj are two coupled modules and mi depends on mj ,
(ii) modules are either classes or aspects, and (iii) the operation term represents
class methods, aspect methods and aspect advices. The measures are defined as:

Attribute Coupling (A): number of attributes locally declared in mj when
references or pointers to instances of mj appear in the argument list of some
operations in mi, as the type of their return value, in the list of attributes
(data members) of mi, or as local parameters of operations of mi. It counts the
(maximum) number of attributes that would have to be handled in the stub if
the dependency were broken. In the case of inheritance, we do not count the
number of attributes inherited from the ancestor classes, as in [3].

Operation Coupling (O): number of operations (including constructors) lo-
cally declared in mj which are invoked by operations of mi. It counts the number
of operations that would have to be emulated in the stub if the dependency were
broken. In the case of inheritance, we count the number of operations declared
in the ancestor modules.

Number of distinct return types (R): number of distinct return types of the
operations locally declared in mj that are called by operations of mi. Returns
of type void are not counted as return type, since they represent the absence of
return. In the case of inheritance, we count the number of operations declared
in the ancestor modules.

Number of distinct parameter types (P): number of distinct parameters of
operations locally declared in mj and called by operations of mi. When there is
overloading operations, the number of parameters is equals to the sum of all dis-
tinct parameter types among all implementations of each overloaded operation.
The worst case is considered, represented by situations in which the coupling
consists of calls to all implementation of a given operation. Again, we count the
number of operations declared in the ancestor modules.

The measures A and O are commonly used in the related works. In the other
hand, the measures R and P allow to consider different factors related directly
to the stub complexity. Furthermore, O, R and P are interdependents.

3.3 Multi-Objective Evolutionary Algorithm

This step is the application of a MOEA to solve the problem. The use of any
metaheuristics includes some points. The first one is the representation chosen
for the problem, which influences on the implementation of all MOEA stages.
Since the CAITO problem is related to permutations of modules (classes and
aspects), which form testing orders, the chromosome is represented by a vector
of integers where each vector position corresponds to a module. The size of the
chromosome is equal to the number of modules of each system. Thus, being each
module represented by a number, an example of a valid solution for a problem
with 5 modules is (2, 4, 3, 1, 5). In this example, the first module to be tested and
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integrated would be the module represented by number 2. This representation
is the same one used in our previous work [9].

The second point is related to the fitness function (objectives). It is calculated
from five matrices that are inputs to the algorithms, associated to (i) dependen-
cies between modules; (ii) measure A; (iii) measure O; (iv) measure R; and (v)
measure P. Based on the dependency matrices, the precedence constraints are
defined. In this work, Inheritance and Inter-types declarations dependencies can-
not be broken. This means that base modules must precede child modules in any
test order t. The sum of the dependencies between the modules for each measure
corresponds to an objective, and the goal is to minimize all objectives.

Another point is the selection of an algorithm. In this work we use two variants
of GAs adapted to multi-objective optimization that adopt different evolution
and diversification strategies. They are: NSGA-II (Non-dominated Sorting Ge-
netic Algorithm) [10] and SPEA2 (Strength Pareto Evolutionary Algorithm) [30].
This choice is supported by the results found in the OO context [2,22]. For each
generation NSGA-II sorts the individuals, from parent and offspring popula-
tions, considering the non-dominance relation, creating several fronts and, after
the sorting, solutions with lower dominance are discarded. These fronts char-
acterize the elitism strategy adopted by NSGA-II. This algorithm also uses a
diversity operator (crowding distance) that sorts the individuals according to
their distance from the neighbors of the border for each objective, in order to
ensure greater spread of solutions. SPEA2 maintains an external archive that
stores non-dominated solutions in addition to its regular population. Some of
them are selected for the evolutionary process. For each solution in the archive
and in the population, a strength value is calculated, which is used as fitness of
the individuals. The strength value of a solution i corresponds to the number j
of individuals, belonging to the archive and to the population, dominated by i.
The archive size s is fixed, then, when the number n of solutions exceeds s, a
clustering algorithm is used to reduce n [8].

3.4 Order Selection

In this step, illustrated in Section 4.3, the tester selects an order from the Pareto
front of non-dominated solutions produced by the algorithms. This selection
should be based on restrictions and priorities related to the software develop-
ment, such as test goals, available resources, contractual restrictions, etc.

4 MECBA Empirical Evaluation

4.1 Empirical Study Description

The methodology of our empirical study is similar to that one adopted in [9]; we
use the same systems and parameters to configure the MOEAs. Differently, we
adopted four quality indicators to compare the algorithms: Coverage [17] and
the Euclidean Distance (ED) from an ideal solution [7], Generational Distance
(GD) [28] and Inverted Generational Distance (IGD) [23]. Considering that the
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MOEAs deteriorate their performance with more than two objectives, we decided
to add two other quality indicators: GD and IGD, because they allow to analyze
the convergence and diversity of the algorithms regarding to the Pareto front.

Four real AO systems developed in AspectJ were used in the study1. Table 1
presents some information about these systems, such as number of classes, as-
pects and dependencies. They are larger and more complex than the programs
used in related works. The used objective functions consist in minimize four
objectives related to the coupling measures. These measures are generally cal-
culated during the software design, however it is difficult to obtain architectural
design documentation of complex systems in order to execute empirical studies.
So, reverse engineering was performed to identify the existing dependencies be-
tween modules from programs code. A parser based on AJATO2 (AspectJ and
Java Assessment Tool) was developed to do this. It uses the Java/AspectJ code
as entry and returns the syntactic tree code. From this tree, all dependencies
were identified. The dependency and complexity matrices were obtained after
combining classes and aspects. So, the parser generated as output the five input
matrices for the MOEAs.

Table 1. Used Systems

System LOC
# # # Dependencies

Classes Aspects I U As It PointCuts Advices Total

AJHotDraw 18586 290 31 234 1177 140 40 0 1 1592

AJHSQLDB 68550 276 25 107 960 271 0 0 0 1338

HealthWatcher 5479 95 22 64 290 34 3 1 7 399

Toll System 2496 53 24 24 109 46 4 0 5 188

We use the NSGA-II and SPEA2 versions available at JMetal [11] with the
same parameters values adopted in our previous work [9]. Such values are: pop-
ulation size = 300; number of fitness evaluation = 20000; mutation rate = 0.02;
crossover rate = 0.95; and archive size = 250 (required only by SPEA2). Both
MOEAs executed the same number of fitness evaluation in order to analyze
whether they can produce similar solutions when they are restricted to the same
resources (number of fitness evaluations). Furthermore, they were executed in
the same computer. Each algorithm was executed 30 runs for each AO system. In
each run, each MOEA found an approximation set of solutions named PF approx.
Furthermore, for each MOEA it is obtained a set, called PFknown, formed by
all non-dominated solutions achieved in all runs. Considering that PF true is
not known, in our study, it was obtained by the union of the non-dominated
solutions from all PF approx found by NSGA-II and SPEA2 [31]. PF true and
PF known were used for quality indicators GD, IGD and ED.
1 Available at: AJHotDraw (version 0.4): http://sourceforge.net/projects/

ajhotdraw/; AJHSQLDB (version 18): http://sourceforge.net/projects/

ajhsqldb/files/; TollSystem (version 9): http://www.comp.lancs.ac.uk/

~greenwop/tao/; HealthWatcher(version 9): http://www.aosd-europe.net/
2 http://www.teccomm.les.inf.puc-rio.br/emagno/ajato/

http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhsqldb/files/
http://sourceforge.net/projects/ajhsqldb/files/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.aosd-europe.net/
http://www.teccomm.les.inf.puc-rio.br/emagno/ajato/
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The Generational Distance (GD) indicator [28] is used to calculate the dis-
tance from PF known to PF true. So, GD is an error measure used to examine
the convergence of an algorithm to the PF true. Inverted Generational Distance
(IGD) [23] is an indicator based on GD, but with goal of evaluating the dis-
tance from PF true to PF known, i.e., the inverse of GD. Figure 2(a) presents an
example of GD and IGD indicators. For these indicators, values closer to 0 are
desired, since 0 indicates that all points of PF known are points on PF true for
GD or PF known found all the points on PF true for the IGD indicator.

The Coverage (C) indicator [17] is used to measure the dominance between two
sets of solutions. C(PF a, PF b) represents a value between 0 e 1 according to how
much the set PF b is dominated by set PF a. Similarly, we compare C(PF b, PF a)
to obtain how much PF a is dominated by PF b. Figure 2(b) presents an example
of C indicator involving the analysis of two sets, for a minimization problem with
two objectives. For instance, C(P a, P b) corresponds to 0.5 because the P b set
has two of its four elements dominated by P a set. Value 0 for C indicates that
the solutions of the former set do not dominate any element of the latter set; on
the other hand, value 1 indicates that all elements of the latter set are dominated
by elements of the former set.

Euclidean Distance from the Ideal Solution (ED) is used to find the closest
solution to the best objectives. An ideal solution has the minimum value of each
objective, considering a minimization problem [7]. These minimum values are
obtained from all PF true’s solutions. Figure 2(c) shows an example of calculating
the ED for a minimization problem with two objectives. The purpose of this
quality indicator is to find the closest solution to the ideal solution.

The results of GD, IGD and C were analyzed through Wilcoxon test in order
to verify if the MOEAs are considered statistically different (p−value <= 0.05).

(a) GD and IGD (b) Coverage (c) ED

Fig. 2. Quality Indicators

4.2 Results and Analysis

Table 2 presents the number of solutions found by each MOEA and the runtime
for all systems: at Column 2, the cardinality of the PF true found after running all
algorithms 30 times; and at Column 4, the total of different solutions of PF approx

returned by each algorithm. From these results, it is possible to estimate the
complexity of solving the CAITO problem for each system.
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Table 2. Number of solutions found and runtime

Software
PF true

MOEA
PF approx Runtime

Cardinality Cardinality Average Standard Deviation

AJHotDraw 95
NSGA-II 120 35781.83 344.71
SPEA2 51 54605.90 958.26

AJHSQLDB 105
NSGA-II 153 28209.90 200.06
SPEA2 40 40874.07 553.38

HealthWatcher 1
NSGA-II 1 5599.70 99.18
SPEA2 1 190734.60 47541.36

TollSystem 1
NSGA-II 1 2971.40 102.52
SPEA2 1 223473.43 59979.78

For HealthWatcher and TollSystem both algorithms found a single and equal
solution. Maybe the objectives in question are not interdependent and conflicting
for these cases. The MOEAs achieved the optimal solution for HealthWatcher,
i.e., an order of modules that does not need any stub. This system has only
8 cycles. Regarding to TollSystem, with only one cycle, the value achieved for
the measures are A=12, O=2, R=0 and P=1. However, considering that this
system has 53 classes and 24 aspects, to find the best order is not trivial for any
tester. Sure, the use of a MOEA in this activity contributes to reduce efforts.
In both cases, the initial solutions generated by the MOEAs were not optimal.
Initially the fitness values were high and, over generations, they decreased until
the discovery of the optimal solutions.

In the case of AJHotDraw and AJHSQLDB the PF true has larger cardinal-
ity. For both systems, NSGA-II found more different solutions than SPEA2.
Furthermore, it is notable that SPEA2 requires a higher runtime with a greater
standard deviation than NSGA-II. However, it seems that there is not a direct
relationship between the number of modules/dependencies and the size of so-
lution sets found by the algorithms, since AJHotDraw has more modules and
more dependencies than AJHSQLDB but the algorithms found a lower number
of solutions to the former.

Regarding to the similarity of the solutions found, NSGA-II and SPEA2
achieved solutions that are located in the same area of the solution space for
AJHSQLDB. In the case of AJHotDraw, the solutions are a little more spread
in the solution space as it can be observed in Figures 3(a) and 3(b). Despite the
algorithms minimize four objectives, the representation in graph form is possible
only for two or three dimensions. Figure 3(a) represents the measures A and O,
and Figure 3(b) represents measures O, R and P.

NSGA-II and SPEA2 are effective even when four objectives are used, since,
they achieved similar results despite the use of different evolution strategies. Both
produced a variety of good solutions that represent a good trade-off between the
used coupling measures, even for complex cases.

Considering the quality indicators, it is possible to realize in Table 3 that
SPEA2 dominates NSGA-II for the AJHotDraw and AJHSQLDB systems. Only
values above 0.5 point out dominance and are significant. However, Wilcoxon
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Fig. 3. Solution Space for AJHotDraw

Table 3. NSGA-II and SPEA2 coverages

System C(NSGA-II,SPEA2) C(SPEA2,NSGAII)

AJHotDraw 0.137255 0.575

AJHSQLDB 0.25 0.509804

test point out that there is not significant difference between these MOEAs when
observed the Coverage indicator because the p−values returned for AJHotDraw
and AJHSQLDB were 0.9407 and 0.964, respectively.

For GD and IGD, the algorithms produced very similar values of average
among the 30 runs (Table 4) but NSGA-II reached better average for AJHotDraw
and AJHSQLDB systems. For the systems with only one solution, the values of
GD and IGD are 0 because in all runs the two MOEAs achieved the same
solution. The p − values returned by the Wilcoxon for GD are: AJHotDraw =
0.0008203 and AJHSQLDB = 8.315e-10. For IGD the p−values are: AJHotDraw
= 6.264e-05 and AJHSQLDB = 1.875e-06. This indicates that there is significant
difference between the algorithms for these two systems.

The costs of the ideal solutions achieved by the algorithms are presented in
the second column of the Table 5. This table also presents, for each system, the
lowest ED and the fitness of the associated solution. The MOEA that achieved

Table 4. Average and Standard Deviation for GD and IGD

Indicator System
NSGA-II SPEA2

Average
Standard

Average
Standard

Deviation Deviation

GD
AJHotDraw 0.043509 0.019905 0.056029 0.017677
AJHSQLDB 0.042257 0.019723 0.107550 0.061781

IGD
AJHotDraw 0.049335 0.025848 0.075230 0.038058
AJHSQLDB 0.035771 0.014831 0.072917 0.064175
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Table 5. Costs of Ideal Solution and the shortest distances found

Software
Cost of Ideal

MOEA
Lowest Fitness of the

Solution Achieved ED Solution

AJHotDraw (80,24,0,31)
NSGA-II 24.617 (94,37,4,46)
SPEA2 18.385 (93,28,3,43)

AJHSQLDB
(1877,446, NSGA-II 205.842 (2008,569,273,363)
189,308) SPEA2 189.365 (1960,562,256,413)

HealthWatcher (0,0,0,0)
NSGA-II 0 (0,0,0,0)
SPEA2 0 (0,0,0,0)

Toll System (12,2,0,1)
NSGA-II 0 (12,2,0,1)
SPEA2 0 (12,2,0,1)

the lowest ED is typed in boldface. We can note that SPEA2 achieved the
solutions with the lowest ED for AJHotDraw and AJHSQLDB. In the case of
HealthWatcher and TollSystem both MOEAs achieved the ideal solution since
they found a single solution.

Figure 4 shows ED from ideal solution of each solution found by MOEAs.
For AJHotDraw, SPEA2 found a greater number of solutions with lower ED.
For AJHSQLDB, both MOEAs have similar results, although SPEA2 has a
higher number of solutions located in the left region of the graph. Thus, despite
NSGA-II and SPEA2 explore the solution space in different ways, they achieve
feasible solutions. Due to the great diversity of solutions, NSGA-II has the best
distribution of solutions in the search space related to PF true. Thus it has better
performance than SPEA2 for GD and IGD indicators. In the other hand, in
spite of SPEA2 has a smaller diversity of solutions, it has a good concentration
of solutions near to the ideal solution, as the ED indicator shows. So, these
solutions with lower ED cover some NSGA-II solutions improving the coverage
rate of SPEA2 on NSGA-II. These informations can be also corroborated by
analyzing Figure 3. Often, decision makers prefer solutions near to the ideal
solution. So, in this case the SPEA2 should be chosen.

(a) AJHotDraw (b) AJHSQLDB

Fig. 4. Number of Solutions X Euclidean Distance
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4.3 Selecting Orders

To illustrate an use of the solutions found by the MOEAs and the influence of
the coupling measures, consider two solutions a and b, generated by NSGA-II
for AJHotDraw, and the cost of each measure being c(a) = (A=84; O=47; R=7;
P=59) and c(b) = (A=85; O=47; R=3; P=53). We can observe that, for the
traditional measures (A and O), the solution a is better than solution b because
it needs one attribute less, but considering the other measures we verify that a
requires the emulation of four distinct return types and six distinct parameter
types more than b. So, the cost of stub construction for the solution a is greater
than for the solution b considering R and P.

The selection of a solution should be based on the measure that the tester
needs to prioritize, the characteristics of the system, or other factors associated to
the development process. To illustrate this, consider some SPEA2 solutions with
the lowest cost for each measure for AJHotDraw and AJHSQLDB, presented in
Table 6. The column Ranking corresponds to the solution position according to
the ED from the ideal solution.

Table 6. Costs of Solutions achieved by SPEA2

AJHotDraw AJHSQLDB
A O R P Ranking Costs A O R P Ranking Costs

a 87 49 11 52 18o

(80,24,0,31)

a 1932 675 302 424 23o

(80,24,0,31)
b 111 24 1 43 14o b 2436 470 225 335 27o

c 102 29 0 44 7o c 2596 493 212 345 36o

d 184 43 14 31 51o d 3235 522 253 311 40o

e 93 28 3 43 1o e 1960 562 256 413 1o

If AJHotDraw and AJHSQLDB have complex attributes to be emulated, the
solutions a from Table 6 should be selected because they have the lowest com-
plexity of attributes. If the greater complexity of the system is emulation of
operations, solutions b should be selected. Likewise solutions c and d prioritize
R and P, respectively. If the tester does not want to prioritize a specific mea-
sure, the best option is to use the solutions e, that are the closest solutions to
the ideal solution and present the best compromise between the four objectives.
It is important to note that due to the interdependence between the measures,
to decrease the cost related to an objective involves to increase another one.

5 Conclusions

This paper presented MECBA, a multi-evolutionary and coupling-based ap-
proach for the integration test order problem. This approach was used for integra-
tion of classes and aspects by using a dependency model that considers specific
characteristics of aspect-oriented programs, and a cost model that uses besides
the traditional measures, attribute and operation coupling, two other measures:
number of distinct return types and distinct parameter types. Furthermore two
multi-objective algorithms, NSGA-II and SPEA were evaluated.
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The empirical results point out that the MECBA approach can be efficiently
used to solve the CAITO problem with more than two objectives, without requir-
ing any priori information on the problem or weights to combine the objectives.
The MOEAs achieved solutions of minimal effort to test, for instance, test orders
that do not require stub creation were found for HealthWatcher system. For the
AJHotDraw and AJHSQLDB, the algorithms find a set of different solutions con-
taining different alternatives of compromise relation among the objectives. From
this set, the tester can select the best solution according to the test priorities.

From all the presented results, it is possible to affirm that the two MOEAs
have similar performance for the CAITO problem, but it seems that SPEA2 is
more appropriated to generate solutions that are closer to the ideal solution and
present the best compromise between all the objectives.

In our study, the Combined strategy was used with our approach to solve
the CAITO problem. So, all solutions contain test orders to integrate classes
and aspects together. However, another strategy could be used, for instance, the
integration of only classes and, after this, aspects. Then the tester could use
the solutions in a different way. As future work we intend to perform empirical
studies with other AO systems and/or considering other strategies for integrating
classes and aspects to confirm the evidences found in the present work. It is
also interesting to analyze the efficiency of other MOEAs to solve the same
problem.
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Abstract. In this paper, we discuss how a search-based branch cover-
age approach can be used to design an effective test data generation ap-
proach, specifically targeting divide-by-zero exceptions. We first propose
a novel testability transformation combining approach level and branch
distance. We then use different search strategies, i.e., hill climbing, sim-
ulated annealing, and genetic algorithm, to evaluate the performance of
the novel testability transformation on a small synthetic example as well
as on methods known to throw divide-by-zero exceptions, extracted from
real world systems, namely Eclipse and Android. Finally, we also describe
how the test data generation for divide-by-zero exceptions can be formu-
lated as a constraint programming problem and compare the resolution
of this problem with a genetic algorithm in terms of execution time. We
thus report evidence that genetic algorithm using our novel testability
transformation out-performs hill climbing and simulated annealing and
a previous approach (in terms of numbers of fitness evaluation) but is
out-performed by constraint programming (in terms of execution time).

Keywords: Exception raising, test input data generation, evolutionary
testing.

1 Introduction

Consequences of uncaught or poorly-managed exception may be dire: program
crashes and/or security breaches. For embedded systems, an exception can be
caused by, for example, unexpected values read from a sensor and can cause
catastrophic effects. Indeed, poorly-managed exceptions are at the root of the
1996 Arianne 5 incident during which an uncaught floating-point conversion ex-
ception led to the rocket self-destruction 40 seconds after launch. In aerospace, as
in other domains requiring highly-dependable systems such as medical systems,
poorly-managed exceptions may have severe consequences to human beings or
lead to great economic losses.

In software engineering, testing have traditionally been one of the main ac-
tivities to obtain highly-dependable systems. Testing activities consume about
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50% of software development resources [14] and any technique reducing testing
costs is likely to reduce the software development costs as a whole. Although,
exhaustive and thorough testing is often infeasible because of the possibly infi-
nite execution-space and its high costs with respect to tight budget limitations,
other techniques, such as code inspection are even costlier, though more effec-
tive. Therefore, testing activities should focus on the kinds of defects that, if
were to slip into some deployed safety or mission-critical systems, may lead the
systems to crash with possibly catastrophic consequences.

Consequently, we follow the work by Tracey et al. [19] on the generation of
test data to raise exceptions and by others [13,20,2] on branch coverage criteria
to propose a novel approach to generate test data for raising divide-by-zero
exceptions for integers. In [19], the authors proposed to transform a target system
so that the problem of generating test data to raise some exceptions becomes
equivalent to a problem of branch coverage. They transform statements possibly
leading to exceptions into branches with sufficient guard conditions. They then
applied evolutionary testing to the transformed system to generate test data by
traversing the branches and firing the exceptions. However, in their proposal, the
search was solely guided by its branch distance [11], i.e., the number of traversed
control nodes, which may lead the search to behave like a random search.

In this paper, we propose to apply both branch distance as well as approach
level [11] to generate test data to raise divide-by-zero exceptions for integers.
The use of both guiding criteria, i.e., branch distance and approach level, in
an additive fitness function similar to previous work [20], to fire divide-by-zero
exceptions yields to a reduction of the number of fitness evaluations needed to
reach a given target statement [13,11]. To the best of our knowledge, this paper
presents the first use of such a fitness function to generate test data to raise
divide-by-zero exceptions.

We apply the novel testability transformation to generate test input data
leading to divide-by-zero exceptions on the exemplary code presented in [19] and
on two methods extracted from Eclipse and Android. We report the comparison
of several meta-heuristic search techniques, i.e., hill climbing (HC), simulated
annealing (SA), and genetic algorithm (GA), with a random search (RND) and
with constraint programming (CSP) on the three exemplary code samples. We
thus show that the GA technique out-performs the other techniques but performs
worse than the CSP technique.

Thus, the contributions of this paper are as follows:

– We propose to adopt both branch distance and approach level to generate
test input data to fire divide-by-zero exceptions.

– We report the performance of HC (in three variants), SA, GA, and CSP on
three systems, one synthetic and two real-world, from which we extracted
three and two divide-by-zero exception-prone methods respectively.

The remainder of the paper is organized as follows: Section 2 describes the novel
testability transformation. Section 3 describes the empirical study along with its
settings. Sections 4 and 5 describe and discuss the results of the study. Section
6 summarizes related work. Section 7 concludes with some future work.
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2 The Approach

We now present our approach, the novel testability transformation and the dif-
ferent techniques that we will use to generate test input data.

2.1 Example and Fitness Function

We follow previous work [19] to transform the problem of generating test input
data to raise divide-by-zero exceptions into a branch coverage problem. This
transformation essentially consists of wrapping divide-by-zero prone statements
with a branch statement (an if ), whose condition corresponds to the expression
containing the possible division by zero. Consequently, satisfying the if through
some branch coverage is equivalent to raising the divide-by-zero exception. For
example, let us consider the following fragment of code:

1 int z, x=4;
2 if (Z>1 AND Z<=5)
3 return z;
4 else
5 return (x*4)/(z-1);

a divide-by-zero exception would be raised when z equals to 1 at line 5.
It is usually difficult to generate test data targeting a specific condition by

obtaining appropriate variable values. We transform the code fragment above
into a semantically-equivalent fragment in which the expression possibly leading
to an exception becomes a condition. Then, it is sufficient to satisfy the new
condition to obtain test input data raising the exception, as in the following
fragment:

1 int z, x=4;
2 if (Z>1 AND Z<=5)
3 return z;
4 else
5.1 if (Z == 1)
5.2 print “Exception raised”;
5.3 else
5.4 return (x*4)/(z-1);

where we transform the divide-by-zero prone statement at line 5 into the lines
5.1 to 5.4.

In general, such a transformation may not be trivial and different types of
exceptions may require different types of transformations. Defining the types
of transformations for various types of exceptions similarly to a Harman et al.
framework [6] is future work.

To efficiently generate test data to expose the exception, it is not sufficient
to reach line 5.1 using the approach level because between two test input data,
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both reaching line 5.1, we would prefer the data making the condition at line 5.1
true and thus reaching line 5.2.

Consequently, our fitness function is an additive function using both the ap-
proach level and the normalized branch distance [1,8], where the normalized
branch distance is defined by Equation 1 and used in the fitness function defined
by Equation 2.

Normalized branch distance = 1− 1.001−branch distance (1)
Fitness function = Approach level +

Normalized branch distance (2)

2.2 Search Techniques to Generate Test Input Data

Once the code fragments under test are transformed and instrumented to collect
run-time variable values needed to compute the approach level and normalized
branch distance, we can generate test input data using several techniques, such
as hill climbing (HC), simulated annealing (SA), and genetic algorithms (GA),
or simply by a random search (RND). In the following section, we briefly de-
scribe the settings of the various techniques as well as the use of constraint
programming for structural software testing (CP-SST)[16].

We assume that the input values are integers. Other more structured data
types will be investigated as part of our future works, following the strategy
proposed in [5].

Hill Climbing. Hill climbing (HC) is the simplest, widely-used, and probably
best-known search technique. HC is a local search method, where the search
proceeds from a randomly chosen point (solution) in the search space by consid-
ering the neighbours (new solutions obtained by mutating the previous solution)
of the point. Once a fitter neighbour is found, this becomes the current point
in the search space and the process is repeated. If, after mutating a given x
number of times no fitter neighbour is found, then the search terminates and a
maximum has been found (by definition). Often, to avoid local optima, the hill
climbing algorithm is restarted multiple times from a random point (also called
stochastic hill climbing). We have drawn inspiration from this idea and proposed
three strategies.

Strategy 1: The HC1 strategy generates, for any input variable involved in the
denominator of the exceptions raising statements, an immediate neighbour of the
input data as the sum of the the current value of the variable with a randomly-
generated value drawn from a Gaussian distribution with zero mean and an
initial standard deviation (SD) of ten, which we choose after several trials to
have neighbourhoods that are not too small or large.

If after a given number of moves in the neighbourhoods, the fitness values of
the neighbours are always worse than the current fitness value, then we change
the value of the SD to a larger value to expand the neighbourhood and give the
algorithm an opportunity to get out of the, possible local optimum.
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Strategy 2: In the HC1 strategy, the values of the SD may change at run-time.
We observed that HC1 does not always improve the search and may lead to
a slow search-space exploration. Thus, to avoid getting “trapped” in a specific
region of the space, we define the HC2 strategy that forces the search to take a
jump away from unsuccessful neighbourhood in an attempt to move into a more
favourable neighbourhood, similarly to HC with random restarts.

For a given SD value, if the search does not improve for a given number of
iterations, instead of changing SD, we force a jump to another neighbourhood
using a large value and HC reiterates its process. The “length” of a jump and
the number of jumps depend on the search space. For example, a search space
of [−10, 000; +10, 000] would be likely covered with 40 jumps of lengths 500. As
with the previous strategy, this strategy goes on until it reaches a maximum
number of iterations or generates test data firing the targeted exception.

Strategy 3: The HC3 strategy is a combination of HC1 and HC2. With HC3, we
store the fitness values of the best neighbour of all previously-visited neighbour-
hoods before jumping to another neighbourhood. After having visited a given
number of neighbourhoods as in HC2, HC3 returns to the “best” one, i.e., the
neighbourhood with the best fitness value among all recorded values, and then
increases the SD by 25 (making the SD 35), as in HC1, to visit more of this
neighbourhood. As with the previous strategies, this strategy goes on until it
reaches a maximum number of iterations or generates test data firing the tar-
geted exception.

Simulated Annealing. SA like hill climbing, is a local search method. However,
simulated annealing has a ‘cooling mechanism’ that initially allows moves to less
fit solutions if p < m, where p is a random number in the range [0 . . . 1] and
m, acceptance probability, is a value that decays (‘cools’) at each iteration of
the algorithm. The effect of ‘cooling’ on the simulation of annealing is that the
probability of following an unfavourable move is reduced. This (initially) allows
the search to move away from local optima in which the search might be trapped.
As the simulation ‘cools’ the search becomes more and more like a simple hill
climb. The choice of the parameters of SA are guided by two equations [21]:

Final temperature = Initial temperature× αNumber of iterations

Acceptance probability = e
−Normalized fitness function

F inal temperature

where Acceptance probability if the probability that the algorithm decides to
accept solution or not: if the current neighbour is “worse” than previous ones,
it can still be accepted (in contrary to hill climbing) if the probability is greater
than a randomly-selected value; α and Number of iterations are chosen
constants.

Genetic Algorithms. A GA starts by creating an initial population of n sets of
test input data, chosen randomly from the domain D of the program being tested.
Each chromosome represents a test set; genes are values of the input variables. In
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an iterative process, the GA tries to improve the population from one generation
to another using the fitness of each chromosome to perform reproduction, i.e.,
cross-over and–or mutation. The GA creates a new generation with the l fittest
test sets of the previous generation and the offspring obtained from cross-overs
and mutations. It keeps the population size constant by retaining only the n
best test sets in each new generation. It stops if either some test set satisfies the
condition or after a given number of generations.

We implemented our GA algorithm using JMetal1. We use the binary tourna-
ment selection operator. Once parents are selected, they undergo a single point
cross-over. To diversify the population, the off-springs (after cross-overs) may be
mutated. We use bit-flip mutation, in which, based on a probability, the variable
values are replaced with values selected randomly.

Random Search. Not using any heuristics to guide the search, this technique
relies on generating initial input variable data randomly to execute the trans-
formed program and to try firing the targeted exception. It stops if either the
generated test data fires the exception or after a given number of iterations.

Constraint Programming. Constraint programming for software structural
testing (CP-SST) is a generic technique for test-data generation to reach a spe-
cific target or to satisfy a test coverage criteria, for proof post-condition, or for
counter-example generation.

The main idea of CP-SST is to convert the program under test and the test
target into a constraint solving problem (CSP) and to solve the resulting CSP
to obtain test input data. The first step of CP-SST consists of transforming the
program under test into the static single assignment (SSA) form. The second
step consists of modelling the program control flow graph (CFG) as a preliminary
CSP. CP-SST begins by generating the CFG that features an independent node
for each parameter and global variable, each control statement, each block of
statements, and each join point. CP-SST labels edges among nodes depending
on the origin node: an edge outgoing from a statement node is labelled by 1, an
edge outgoing from a condition node is labelled by 1 if the decision is positive
and -1 if the decision is negative. Then, CP-SST generates the preliminary CSP
by translating each node into a CSP variable whose domain is the set of labels of
its outgoing edges, except for join nodes that take their domains from the joint
nodes.

In the third step, CP-SST uses the preliminary CSP, the SSA form, and the
relationships among nodes and their statements to create a new global CSP,
which it then solves to generate test input data or return a failure if no solution
can be reached.

3 Empirical Study

The goal of our empirical study is to compare our novel testability transfor-
mation against previous work and identify the best technique among the five
1 http://jmetal.sourceforge.net/

http://jmetal.sourceforge.net/
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Table 1. Details of the systems under test and tested units

Systems Versions Class Names LOCs Numbers of Exceptions Bug Tracking Numbers
Tracey’s code N/A F 13 2 N/A

Eclipse 2.0.1 GridCanvas 10 2 205772
Android 2.0 ProcessStats 41 3 Unavailable

presented in Section 2 using synthetic as well as real systems to generate in-
teger test input data to fire divide-by-zero exceptions. The quality focus is the
performance of the proposed hill climbing strategies and other meta-heuristics
and constraint programming techniques to raise divide-by-zero exceptions. The
perspective includes researchers and software engineers working in search-based
software testing looking to generate test data for firing exceptions in the code.
The context of our research includes three case studies: one synthetic program
and two real software systems, namely, Eclipse and Android. Table 1 summa-
rizes the three software systems and the selected methods/functions for testing
and the corresponding class names having two, two, and three divide-by-zero
exception statements, respectively.

We seek answers to four research questions:

RQ1: Based on the fitness function we use, which of the three proposed hill
climbing strategies is best suited to raise a divide-by-zero exception and
what is the measure of its effectiveness?

RQ2: Which of all the meta-heuristic techniques is best suited to raise a divide-
by-zero exception and what is the measure of its effectiveness? (Retaining
the best-suited hill climbing strategy from RQ1.)

RQ3: Which of Tracey’s fitness function and the fitness function we used, is
best suited to raise a divide-by-zero exception and what is the measure of
its effectiveness? (Retaining the best-suited meta-heuristic from RQ2.)

RQ4: Which of the best-suited meta-heuristic technique and of the CP-SST is
best suited to raise a divide-by-zero exception and what is the measure of
its effectiveness? (Retaining the best-suited meta-heuristic from RQ2.)

3.1 Choice of the Comparison Measure

HC (in the three variants), SA, GA, and RND can be compared with one another
using their numbers of fitness evaluations to fire some divide-by-zero exception.
CP-SST is based on a completely different paradigm than the meta-heuristic
techniques. Thus, CP-SST cannot be compared with the other techniques using
the numbers of fitness evaluations and we use execution times of the different
techniques for comparison. We consider the approach requiring less execution
time to reach a target to be “better” to generate test data for firing divide-by-
zero exceptions.

3.2 Choice of the Targeted Exceptions

We selected three methods in three classes of three different systems, for a total
of seven possible target exceptions. For the sake of space, we only report in the
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following the results of our empirical study for three target exceptions, chosen to
lead to the worst performance for all the techniques, among the seven possible
targeted exceptions and called in the following units-under-test, UUT. All results
and data for replication are available on-line2.

3.3 General Parameters of the Techniques

We chose different ranges of values for each input variable to analyse the perfor-
mance of all the techniques to deal with values ranging from very small to very
large. The domains have been varied from [−100; +100] to [−50, 000; +50, 000]
for all the input variables. Reaching a success, i.e., raising the targeted divide-
by-zero exception in the UUT, is the stopping criterion as well as a number of
evaluations of 1000000. We repeated each computations 20 times to analyse the
diversity in the observed values and conduct statistical tests. Table 2(a) details
the values used.

Table 2. Parameters

(a) General Parameters

Input Domain [−100; +100] - [−50, 000; +50, 000]

Max # iterations 1000000

# Computations 20

(b) Hill Climbing

Strategies CS SD

S1 100 -

S2 100 -

S3 100 35

(c) Simulated Annealing

Params. Inspected Values (Chosen)

Temper. 0.5-50 (20)

α 0.8-0.995 (0.99)

# Iter. 10-500 (100)

(d) Genetic Algorithm

Operators Type Prob.

Crossover Single Point 0.9

Mutation Bit Flip 0.09

Selection Binary Tournament -

3.4 Specific Parameters of the Techniques

We use the following parameters for the techniques (we do not report techniques
which do not use any particular parameters):

Hill Climbing: For the first strategy, we use a parameter checkStagnation to
control the number of iterations before changing neighbourhood. We use 100,
i.e., if no improvement occurs in a neighbourhood after 100 iterations, HC1
changes neighbourhood. We use 100 as SD because it led to better performance
than other values.

In the second strategy, we also use checkStagnation parameter. We use two
other important parameters: gaussianJumpLength and numberOfJumps depict-
ing the length of the “jump” and the number of jumps, respectively. We found
the values of these two parameters by trial-and-error runs.

In the third strategy, we also use deviationValue, the value of SD when the
technique returns to the best neighbourhood. Table 2(b) depicts the parameter
values.
2 http://web.soccerlab.polymtl.ca/ser-repos/public/div_by_zero.tar.gz

http://web.soccerlab.polymtl.ca/ser-repos/public/div_by_zero.tar.gz
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Simulated Annealing: We base our choice of the initial temperature, α, and
the number of iterations on several experiments in which we varied the initial
temperature. Table 2(c) shows the values used.

Genetic Algorithm: We used single-point cross-over, bit-flip mutation, and
binary-tournament selection. We choose the binary-tournament selection be-
cause its complexity is lower than that of any other selections and provides
more population diversity to the cross-over operator than others [23]. Table 2(d)
shows the various values.

4 Study Results

Figure 1, 2, and 3 reports the box plots of the number of fitness evaluation needed
to raise a divide-by-zero exception for the Tracey exemplary code, Eclipse, and
Android UTTs, respectively. We did not include results for RND as it performs
always substantially worse then even the slowest HC1 strategy.

We observe that HC3 is, in all cases, better then the other two hill climbing
strategies but in all cases is also performing substantially worse than SA and
GA. Overall, Figure 1, 2, and 3 support the observation that GA is the most
effective meta-heuristic technique as far as these UTTs are concerned.

Table 3, 4, and 5 reports the t-test values comparing the numbers of fitness
evaluations needed by the different search techniques as well as the Cohen d
effect size [4]. The effect size is defined as the difference between the means of
two groups, divided by the pooled standard deviation of both groups. The effect
size is considered small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8, and large
for d ≥ 0.8 [4]. We chose the Cohen d effect size because it is appropriate for our
variables (ratio scales) and given its different levels (small, medium, large) easy
to interpret.

Fig. 1. Comparison on Tracey [19]
UUT of the different search techniques
(input domain [−50, 000; +50, 000])

Fig. 2. Comparison on Eclipse UUT of
the different search techniques (input
domain [−50, 000; +50, 000])
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Fig. 3. Comparison on Android UUT of
the different search techniques (input do-
main [−50, 000; +50, 000])

Fig. 4. GA comparison against Tracey’s
original fitness [19] versus the fit-
ness function we used (input domain
[−50, 000; +50, 000])

Table 3. Results of t-test and Co-
hen d effect size for Tracey [19]
UUT

Comparisons p-values Cohen d values
HC1-HC2 9.261e-10 2.55246
HC1-HC3 6.376e-16 5.951003
HC2-HC3 6.868e-08 2.428475

HC3-SA 7.049e-14 4.147889

HC3-GA 2.2e-16 8.223645

SA-GA 8.763e-15 6.254793

Table 4. Results of t-test and Co-
hen d effect size for Eclipse UUT

Comparisons p-values Cohen d values
HC1-HC2 3.245e-10 2.682195
HC1-HC3 7.167e-13 4.111778
HC2-HC3 0.003998 0.9912142

HC3-SA 2.387e-11 3.239916

HC3-GA 1.933e-13 5.258295

SA-GA 9.989e-09 2.694495

Table 5. Results of t-test and Co-
hen d effect size for Android UUT

Comparisons p-values Cohen d values
HC1-HC2 1.438e-06 1.894204
HC1-HC3 2.981e-12 3.345377
HC2-HC3 7.438e-08 2.12037

HC3-SA 0.0003169 1.266088

HC3-GA 1.283e-10 3.481401

SA-GA 4.531e-09 2.696728

Table 6. Comparison of GA
against CP-SST in terms of aver-
age execution times (ms) and stan-
dard deviations for all UUTs

Tracey’s Code Eclipse Android
GA 8.067/1.439 2.129/1.149 1.926/1.177
CP 1.035/0.0135 0.01/0 0.01/0

As expected from Figures 1, 2, and 3, the t-test and Cohen d effect size results
support with very strong statistical evidence the superiority of HC3 over HC1
and HC2 as well as the superiority of GA over SA and HC3.

Box-plots as well as tables clearly support the superiority of GA over the
other techniques. Overall, we answer RQ1 by stating that HC3 performs
better than HC1 and HC2 with a large effect size. Furthermore, we
answer RQ2 by stating, with a large effect size also, that GA out-
performs the other techniques.
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We compare our fitness function with that proposed by Tracey et al. [19] by
using two GA implementations, one using Tracey’s fitness function and another
using the fitness function explained before. We compare the two fitness func-
tions in terms of the required numbers of fitness evaluations for all the UUTs in
Figure 4 to reach the targeted exceptions. Figure 4 shows that our novel testa-
bility transformation allows the GA to reach the targeted exceptions in much
less numbers of evaluations. Consequently, we answer RQ3 by stating that,
in comparison to Tracey’s fitness function, our novel testability trans-
formation dramatically improves the performance of a GA technique.

Finally, Table 6 reports average and standard deviations of the execution
times for twenty experiments on the three UUTs for both GA and CP. For the
given UUTs, it is clear that CP out-performs GA in term of execution times.
This result may be due to the size of the UUTs, which are relatively small, and
to the structure of the condition to satisfy. More evidence is needed to verify if
the averages in Table 6 represent a general trend. Yet, on the selected UUTs,
we answer RQ4 by claiming that the CP-SST technique out-performs
the best of the meta-heuristic techniques, GA.

5 Study Discussions

5.1 Discussions

We presented the results of three UUTs to answer the four research questions.
The other four UUTs from the same systems exhibit the same trends as the ones
reported in this paper, thus adding more evidence to our answers.

We also evaluated the performance of our novel testability transformation with
respect to the one proposed by Tracey et al. [19] in terms of required numbers of
fitness evaluations. The results showed the importance of having both approach
level and branch distance in the fitness function, as opposed to the one proposed
by Tracey et al. [19] which uses only the approach level.

5.2 Threats to the Validity

We now discuss the threats to the validity of our study.
Threats to construct validity concern the relationship between theory and

observation. In our study, these threats can be due to the fact that one of the
UUT is a synthetic code, even though previously-used to exemplify and study
the divide-by-zero exception [19], and thus might represent real code. However,
we extracted the two other UUTs from real-world systems (Eclipse and Android)
and the method containing the divide-by-zero exceptions has been documented
in the Eclipse issue tracking system. Finally, the code excerpt [19] as well as the
Eclipse and Android studied methods contain multiple possible divide-by-zero
statements and, in all cases, we focused on the statements leading to the worst
performances, i.e., the most deeply-nested statements.

Threats to internal validity concern external factors that may affect an in-
dependent variable. We limited the bias of intrinsic randomness of our results
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by repeating each experiment 20 times and using proper statistics to compare
the results. We have calibrated the HC (i.e., HC1, HC2, and HC3), SA, and GA
settings using a trial-and-error procedure. We chose the values of the parameters
of the techniques, such as checkStagnation, gaussianJumpLength and so on, af-
ter executing the techniques several times and evaluating their performance on
a toy program. We also chose the cross-over and mutation operators by doing a
small study on the same toy program: although we found evidence of the superi-
ority of specific operators, it could happen that (1) studies on different systems
would lead to a different choice of cross-over and mutation operators and (2) the
obtained calibration may not be the most suitable for our subject systems.

Threats to conclusion validity involve the relationship between the treatment
and the outcome. To overcome this threat, we inspected box-plots, performed
t-tests, and evaluated the Cohen d effect sizes.

Threats to external validity involve the generalization of our results. We eval-
uated the novel testability transformation on UUTs from the work of Tracey et
al. [19] and two different Java systems. The sample size is small and, although
for Eclipse code it corresponds to a documented bug, a larger evaluation is be
highly desirable.

Finally, for all divide-by-zero conditions listed in Table 1 and all applied search
techniques, including random search, a replication package is available on-line3

to promote replication.

6 Related Work

Our approach stems from the work of Tracey et al. [19]. They proposed an ap-
proach to automatically generate test data for exceptions by (1) transforming
the statements containing exceptions into a branch with guard conditions de-
rived from the possible exception and the statement structure and (2) generating
test data to traverse the added branch and thus fire the exception. The fitness
function used in [19] is in essence oriented to structural coverage and uses only
the branch distance.

Automation of structural coverage criteria and structural testing have been
the most-widely investigated subjects. Local search was first used by Miller and
Spooner [12] with the goal of generating input data to cover particular paths in a
system. This work was later extended by Korel [10]. In brief, to cover a particular
path, the system is initially executed with some arbitrary input. If an undesired
branch is taken, an objective function derived from the predicate of the desired
branch is used to guide the search. The objective function value, referred to as
branch distance [8], measures how close the predicate is to being true. Baresel et
al. [1] proposed a normalization of the branch distance between in [0, 1] to better
guide the search avoiding branch distance making approximation level useless.
The idea of minimizing such an objective function was refined and extended
by several researchers to satisfy coverage criteria of certain given procedural-
program structures like branches, statements, paths, or conditions.
3 http://web.soccerlab.polymtl.ca/ser-repos/public/div_by_zero.tar.gz

http://web.soccerlab.polymtl.ca/ser-repos/public/div_by_zero.tar.gz
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To overcome the limitations associated with local search techniques, Tracey
et al. [?] applied simulated annealing and defined a more sophisticated objective
function for relational predicates. The genetic algorithm was first used by Xan-
thakis [22] to generate input data satisfying the all branch predicate criterion.
Evolutionary approaches, where search algorithms, in particular genetic algo-
rithm, are tailored to automate and support testing activities, i.e., to generate
test input data [9,18,20] are often referred to as evolutionary-based software test-
ing or simply evolutionary testing. A survey of evolutionary testing and related
techniques is beyond the scope of this paper; the interested reader may refer to
the survey published by McMinn [11].

In the last few years, researchers have focused on static, dynamic and hybrid
approaches to identify and handle various types of exceptions in object-oriented
systems. Sinha et al. [17] proposed an approach to reduce the complexity of a
program in the presence of implicit control flow. The approach, based on static
and dynamic analysis of constructs, provides information to developers in an
IDE. Ryder et al. [15] studied the tool JESP and evaluated the frequency with
which exception-handling constructs are used in Java programs. Their analysis
found that exception-handling constructs were used in 16% of the methods that
they examined. Chatterjee et al. [3] proposed an approach for data-flow testing.
They identified the definition–use associations arising along with the exceptional
control-flow paths. Jang et al. [7] proposed an exception analysis approach for
Java, both at the expression and method level, to overcome the dependence of
JDK Java compiler on developers’ declarations for checking against uncaught
exceptions.

Our work shares many commonalities with previous work, as we apply struc-
tural evolutionary testing developed for branch coverage to generate test input
data exposing divide-by-zero exceptions in a unit under test transformed as pro-
posed by Tracey et al. [19].

7 Conclusion

In this paper, we presented a novel testability transformation to generate test
input data to raise divide-by-zero exceptions in software systems. We compared
the performance of hill climbing, simulated annealing, genetic algorithm, ran-
dom search, and constraint programming when using this fitness function. The
novel testability transformation used by hill climbing, simulated annealing, and
genetic algorithm is based on both approach level and branch distance. Further,
we also proposed three hill climbing strategies to improve basic hill climbing
search. Finally, we chose the best meta-heuristic technique (genetic algorithm)
and compared its performance with that of constraint programming in terms of
execution time.

We validated our novel testability transformation and compared the search
technique on three software units: one synthetic code fragment taken from [19]
and two methods extracted from Eclipse and Android, respectively. While com-
paring the meta-heuristic techniques, genetic algorithm performed best in terms
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of the number of required fitness evaluations to reach the desired target for all
the three units under test. Then, constraint programming out-performed the
genetic algorithm in terms of execution times for all the three case studies.

In the future, we will validate our fitness function and choice of search tech-
nique with more complex input data types and different types of exceptions. We
will also extend the validation part to other software systems. We would also
like to integrate a chaining approach to better deal with data dependencies and
study the testability transformations required to simplify and make it efficient
to generate test input data to raise exceptions.
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Abstract. Despite claims of “embarrassing parallelism” for many opti-
misation algorithms, there has been very little work on exploiting par-
allelism as a route for SBSE scalability. This is an important oversight
because scalability is so often a critical success factor for Software Engi-
neering work. This paper shows how relatively inexpensive General Pur-
pose computing on Graphical Processing Units (GPGPU) can be used to
run suitably adapted optimisation algorithms, opening up the possibility
of cheap scalability. The paper develops a search based optimisation ap-
proach for multi objective regression test optimisation, evaluating it on
benchmark problems as well as larger real world problems. The results
indicate that speed–ups of over 25x are possible using widely available
standard GPUs. It is also encouraging that the results reveal a statisti-
cally strong correlation between larger problem instances and the degree
of speed up achieved. This is the first time that GPGPU has been used
for SBSE scalability.

1 Introduction

There is a pressing need for scalable solutions to Software Engineering problems.
This applies to SBSE work just as much as it does to other aspects of Software
Engineering. Scalability is widely regarded as one of the key problems for Soft-
ware Engineering research and development [1, 2]. Furthermore, throughout its
history, lack of scalability has been cited as an important barrier to wider uptake
of Software Engineering research [3–5]. Without scalable solutions, potentially
valuable Software Engineering innovations may not be fully exploited.

Many search based optimisation techniques, such as evolutionary algorithms
are classified as ‘embarrassingly parallel’ because of their potential for scalability
through parallel execution of fitness computations [6]. However, this possibility
for significant speed–up (and consequent scalability) has been largely overlooked
in the SBSE literature. The first authors to suggest the exploitation of parallel ex-
ecution were Mitchell et al. [7] who used a distributed architecture to parallelise
modularisation through the application of search-based clustering. Subsequently,
Mahdavi et al. [8] used a cluster of standard PCs to implement a parallel hill
climbing algorithm. More recently, Asadi et al. [9] used a distributed architecture
to parallelise a genetic algorithm for the concept location problem.

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 219–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



220 S. Yoo, M. Harman, and S. Ur

Of 763 papers on SBSE[10] only these three present results for parallel ex-
ecution of SBSE. Given the ‘embarrassingly parallel’ nature of the underlying
approach and the need for scalability, it is perhaps surprising that there has not
been more work on SBSE parallelisation. One possible historical barrier to wider
application of parallel execution has been the high cost of parallel execution ar-
chitectures and infrastructure. All three previous results cited in the previous
paragraph used a cluster of machines to achieve parallelism. While commodity
PCs have significantly reduced the cost of such clusters, their management can
still be a non-trivial task, restricting the potential availability for developers.

Fortunately, recent work [11] has shown how a newly emerging parallelism,
originally designed for graphics, can be exploited for non–graphical tasks using
General Purpose computing on Graphical Processing Unit (GPGPU) [12]. Mod-
ern graphics hardware provides an affordable means of parallelism: not only the
hardware is more affordable than multiple PCs but also the management cost
is much smaller than that required for a cluster of PCs because it depends on
a single hardware component. GPGPU has been successfully applied to various
scientific computations [13, 14]. However, these techniques have never been ap-
plied to Search-Based Software Engineering problems and so it remains open as
to whether large-scale, affordable speed–up is possible for Software Engineering
optimisations using GPGPU to parallelise SBSE.

Fast regression test minimisation is an important problem for practical soft-
ware testers, particularly where large volumes of testing are required on a tight
build schedule. For instance, the IBM middleware product used as one of the
systems in the empirical study in this paper is a case in point. While it takes
over four hours to execute the entire test suite for this system, the typical smoke
test scenario performed after each code submit is assigned only an hour or less of
testing time, forcing the tester to select a subset of tests from the available pool.
If the computation involved in test suite minimisation requires more than one
hour itself, then the tester cannot benefit from such a technique; the smoke test
will be highly suboptimal as a result. Using the GPGPU approach introduced
in this paper, this time was reduced from over an hour to just under 3 minutes,
thereby allowing sophisticated minimisation to be used on standard machines
without compromising the overall build cycle.

The paper presents a modified evolutionary algorithm for the multi-objective
regression test minimisation problem. The algorithm is modified to support im-
plementation on a GPU by transforming the fitness evaluation of the population
of individual solutions into a matrix-multiplication problem, which is inherently
parallel and renders itself very favourably to the GPGPU approach. This trans-
formation to matrix-multiplication is entirely straightforward and may well be
applicable to other SBSE problems, allowing them to benefit from similar scale-
ups to those reported in this paper.

This algorithm has been implemented using OpenCL technology, a framework
for GPGPU. The paper reports the results of the application of the parallelised
GPGPU algorithm on 13 real world programs, including widely studied, but
relatively small examples from the Siemens’ suite [15], through larger more
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realistic real world examples from the Software-Infrastructure Repository (SIR)
for testing [16], and on a very large IBM middleware regression testing problem.

The primary contributions of the paper are as follows:

1. The paper is the first to develop SBSE algorithms for GPGPU as a mecha-
nism for affordable massive parallelism.

2. The paper presents results for real world instances of the multi objective
test suite minimisation problem. The results indicate that dramatic speed–
up is achievable. For the systems used in the empirical study, speed–ups
over 20x were observed. The empirical evidence suggests that, for larger
problems where the scale up is the most needed, the degree of speed–up is
the most dramatic; a problem that takes over an hour using conventional
techniques, can be solved in minutes using the GPGPU approach. This has
important practical ramifications because regression testing cycles are often
compressed: overnight build cycles are not uncommon.

3. The paper studies multiple evolutionary algorithms and both GPU- and
CPU-based parallelisation methods in order to provide robust empirical ev-
idence for the scalability conferred by the use of GPGPU. The GPGPU
parallelisation technique maintained the same level of speed–up across all al-
gorithms studied. The empirical evidence highlights the limitations of CPU-
based parallelisation: with smaller problems, multi-threading overheads erode
the speed–up, whereas with larger problems it fails to scale as well as GPU-
based parallelisation.

4. The paper explores the factors that influence the degree of speed–up achieved,
revealing that both program size and test suite size are closely correlated to
the degree of speed–up achieved. The data have a good fit to a model for
which increases in the degree of scale up achieved are logarithmic in both
program and test suite size.

The rest of the paper is organised as follows. Section 2 presents background
and related work in test suite minimisation and GPGPU-based evolutionary
computation. Section 3 describes how the test suite minimisation problem is
re-formulated for a parallel algorithm, which is described in detail in Section 4.
Section 5 describes the details of the empirical study, the results of which are
analysed in Section 6. Section 7 discusses the related work and Section 8 con-
cludes.

2 Background

Multi-Objective Test Suite Minimisation: The need for test suite minimi-
sation arises when the regression test suite of an existing software system grows
to such an extent that it may no longer be feasible to execute the entire test
suite [17]. In order to reduce the size of the test suite, any redundant test cases
in the test suite need to be identified and removed. More formally, test suite
minimisation problem can be defined as follows [18]:
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Test Suite Minimisation Problem

Given: A test suite of m tests, T , a set of l test goals R = {r1, . . . , rl}, that
must be satisfied to provide the desired ‘adequate’ testing of the program, and
subsets of T , Tis, one associated with each of the ris such that any one of the
test cases tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies R.

The testing criterion is satisfied when every test-case requirement in R is
satisfied. A test-case requirement, ri, is satisfied by any test case, tj , that belongs
to Ti, a subset of T . Therefore, the representative set of test cases is the hitting
set of Tis. Furthermore, in order to maximise the effect of minimisation, T ′ should
be the minimal hitting set of Tis. The minimal hitting-set problem is an NP-
complete problem as is the dual problem of the minimal set cover problem [19].

The NP-hardness of the problem encouraged the use of heuristics and meta-
heuristics. The greedy approach [20] as well as other heuristics for minimal hit-
ting set and set cover problem [21, 22] have been applied to test suite minimisa-
tion but these approaches were not cost-cognisant and only dealt with a single
objective (test coverage). With the single-objective problem formulation, the so-
lution to the test suite minimisation problem is one subset of test cases that
maximises the test coverage with minimum redundancy.

Since the greedy algorithm does not cope with multiple objectives very well,
Multi-ObjectiveEvolutionaryAlgorithmshave been applied to themulti-objective
formulation of the test suite minimisation [23, 24]. While this paper studies three
selected MOEAs, the principle of parallelising fitness evaluation of multiple solu-
tions in the population of an MOEA applies universally to any MOEA.

GPGPU and Evolutionary Algorithms: Graphics cards have become a
compelling platform for intensive computation, with a set of resource-hungry
graphic manipulation problems that have driven the rapid advances in their per-
formance and programmability [12]. As a result, consumer-level graphics cards
boast tremendous memory bandwidth and computational power. For example,
ATI Radeon HD4850 (the graphics card used in the empirical study in the paper),
costing about $150 as of April 2010, provides 1000GFlops processing rate and
63.6GB/s memory bandwidth. Graphics cards are also becoming faster more
quickly compared to CPUs. In general, it has been reported that the compu-
tational capabilities of graphics cards, measured by metrics of graphics perfor-
mance, have compounded at the average yearly rate of 1.7x (rendered pixels/s) to
2.3x (rendered vertices/s) [12]. This significantly outperforms the growth in tra-
ditional microprocessors; using the SPEC benchmark, the yearly rate of growth
for CPU performance has been measured at 1.4x by a recent survey [25].

The disparity between two platforms is caused by the different architecture.
CPUs are optimised for executing sequential code, whereas GPUs are optimised
for executing the same instruction (the graphics shader) with data parallelism
(different objects on the screen). This Single-Instruction/Multiple-Data (SIMD)
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architecture facilitates hardware-controlled massive data parallelism, which re-
sults in the higher performance.

It is precisely this massive data-parallelism of General-Purpose computing on
Graphics Processing Units (GPGPU) that presents GPGPU as an ideal plat-
form for parallel evolutionary algorithms. Many of these algorithms require the
calculation of fitness (single instruction) for multiple individual solutions in the
population pool (multiple data). Early work has exploited this potential for par-
allelism with both single- and multi-objective evolutionary algorithms [26–28].
However, most existing evaluation has been performed on benchmark problems
rather than practical applications.

3 Parallel Formulation of MOEA Test Suite Minimisation

Parallel Fitness Evaluation: The paper considers, for parallelisation, a multi
objective test suite minimisation problem from existing work [24]. In order to
parallelise test suite minimisation, the fitness evaluation of a generation of in-
dividual solutions for the test suite minimisation problem is re-formulated as a
matrix multiplication problem. Instead of computing the two objectives (i.e. cov-
erage of test goals and execution cost) for each individual solution, the solutions
in the entire population are represented as a matrix, which in turn is multi-
plied by another matrix that represents the trace data of the entire test suite.
The result is a matrix that contains information for both test goal coverage and
execution cost. While the paper considers structural coverage as test goal, the
proposed approach is equally applicable to other testing criteria, such as data-
flow coverage and functional coverage provided that there is a clear mapping
between tests and the test objectives they achieve.

More formally, let matrix A contain the trace data that capture the test goals
achieved by each test; the number of rows of A equals the number of test goals
to be covered, l, and the number of columns of A equals the number of test cases
in the test suite, m. Entry ai,j of A stores 1 if the test goal fi was executed (i.e.
covered) by test case tj , 0 otherwise.

The multiplier matrix, B, is a representation of the current population of
individual solutions that are being considered by a given MOEA. Let B be an
m-by-n matrix, where n is the size of population for the given MOEA. Entry
bj,k of B stores 1 if test case tj is selected by the individual pk, 0 otherwise.

The fitness evaluation of the entire generation is performed by the matrix
multiplication of C = A × B. Matrix C is a l-by-n matrix; entry ci,k of C
denotes the number of times test goal fi was covered by different test cases that
had been selected by the individual pk.

Cost and Coverage. In order to incorporate the execution cost as an additional
objective to the MOEA, the basic reformulation is extended with an extra row
in matrix A. The new matrix, A′, is an l + 1 by m matrix that contains the cost
of each individual test case in the last row. The extra row in A′ results in an
additional row in C′ which equals to A′ ×B as follows:
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A′ =

⎛
⎜⎜⎜⎜⎝

a1,1 . . . a1,m

a2,1 . . . a2,m

. . .
al,1 . . . al,m

cost(t1) . . . cost(tm)

⎞
⎟⎟⎟⎟⎠ C′ =

⎛
⎜⎜⎜⎜⎝

c1,1 . . . c1,n

c2,1 . . . c2,n

. . .
cl,1 . . . cl,n

cost(p1) . . . cost(pn)

⎞
⎟⎟⎟⎟⎠

By definition, an entry cl+1,k in the last row in C′ is defined as cl+1,k =∑m
j=1 al+1,j · bj,k =

∑m
j=1 cost(tj) · bj,k. That is, cl+1,k equals the sum of costs

of all test cases selected by individual solution pk, i.e. cost(pk). Similarly, af-
ter the multiplication, the k-th column of matrix C′ contains the coverage of
test goals achieved by individual solution pk. However, this information needs
to be summarised into a percentage coverage, using a step function f as follows:
coverage(pk) =

∑m
i=1 f(ci,k)

m , f(x) = 1 (x > 0) or 0 (otherwise).
While the cost objective is calculated as a part of the matrix multiplication,

the coverage of test goals requires a separate step to be performed. Each column
of C′ contains the number of times individual testing goals were covered by the
corresponding solution; in order to calculate the coverage metric for a solution,
it is required to iterate over the corresponding column of C′. However, the cov-
erage calculation is also of highly parallel nature because each column can be
independently iterated over and, therefore, can take the advantage of GPGPU
architecture by running n threads.

4 Algorithms

This section presents the parallel fitness evaluation components for CPU and
GPU and introduces the MOEAs that are used in the paper.

Parallel Matrix Multiplication Algorithm: Matrix multiplication is inher-
ently parallelisable as the calculation for an individual entry of the product ma-
trix does not depend on the calculation of any other entry. Algorithm 1 shows
the pseudo-code of the parallel matrix multiplication algorithm using the matrix
notation in Section 3.

Algorithm 1 uses one thread per element of matrix C′, resulting in a total of
(l + 1) · n threads. Each thread is identified with unique thread id, tid. Given
a thread id, Algorithm 1 calculates the corresponding element of the resulting
matrix, C′

y,x given the width of matrix A, wA, i.e., y = tid
wA

and x = tid mod wA.

Coverage Collection Algorithm: After matrix-multiplication using Algo-
rithm 1, coverage information is collected using a separate algorithm whose
pseudo-code is shown in Algorithm 2. Unlike Algorithm 1, the coverage col-
lection algorithm only requires n threads, i.e. one thread per column in C′.

The loop in Line (3) and (4) counts the number of structural elements that
have been executed by the individual solution ptid. The coverage is calculated
by dividing this number by the total number of structural elements that need to
be covered.
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While coverage information requires a separate collection phase, the sum of
costs for each individual solution has been calculated by Algorithm 1 as a part
of the matrix multiplication following the extension in Section 3.

Algorithm 1. Matrix Multiplication

Input: The thread id, tid, arrays
containing l + 1 by m and m by n
matrices, A and B, the width of ma-
trix A and B, wA and wB

Output: An array to store an l + 1
by n matrix, C
MatMult(tid, A, B, wA, wB)
(1) x← tid mod wA

(2) y ← tid
wA

(3) v ← 0
(4) for k = 0 to wA − 1
(5) v ← v + A[y · wA + k] ·B[k ·

wB + x]
(6) C′[y ∗ wB + x]← v

Algorithm 2. Coverage Collection

Input: The thread id, tid, an array
containing the result of matrix-
multiplication, C′, the width of ma-
trix A, wA and the height of matrix
A, hA

Output: An array containing the
coverage achieved by each individual
solution, coverage
CollectCoverage(tid, C′, wA,
hA)
(1) e← 0
(2) for k = 0 to wA − 1
(3) if C′[k · wA + tid] > 0 then

e← e + 1
(4) coverage[tid]← e/hA

5 Experimental Setup

5.1 Research Questions

This section presents the research questions studied in the paper. RQ1 and RQ2
concern the scalability achieved by the speed-up through the use of GPGPU:

RQ1. Speed–up: what is the speed–up factor of GPU- and CPU-based parallel
versions of MOEAs over the untreated CPU-based version of the same algorithms
for multi-objective test suite minimisation problem?

RQ2. Correlation: what are the factors that have the highest correlation to
the speed–up achieved, and what is the correlation between these factors and
the resulting speed–up?

RQ1 is answered by observing the dynamic execution time of the parallel
versions of the studied algorithms as well as the untreated single-threaded al-
gorithms. For RQ2, two factors constitute the size of test suite minimisation
problem: the number of test cases in the test suite and the number of test goals
in System Under Test (SUT) that need to be covered. The speed–up values mea-
sured for RQ1 are statistically analysed to investigate the correlation between
the speed–up and these two size factors.

RQ3. Insight: what are the realistic benefits of the scalability that is achieved
by the GPGPU approach to software engineers?

RQ3 concerns the practical implications of the speed-up and the consequent
scalability to the practitioners. This is answered by analysing the result of test
suite minimisation obtained for a real-world testing problem.
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5.2 Subjects

Table 1 shows the subject programs for the empirical study. 12 of the programs
and test suites are from the Software Infrastructure Repository (SIR) [16]. In
order to obtain test suites with varying sizes ranging from a few hundred to a
few thousand test cases, the study includes multiple test suites for some subject
programs. For printtokens and schedule, smaller test suites are coverage-
adequate test suites, whereas larger test suites include all the available test
cases. To avoid selection bias, four small test suites were randomly selected
from the pool of available tests for each program. In the case of space, SIR
contains multiple coverage-adequate test suites of similar sizes; fout test suites
were selected randomly.

The subjects also include a large system-level test suite from IBM. For this
subject, the coverage information was maintained at the function level. The test
suite contains only 181 test cases, but these test cases are used to cover 61,770
functions in the system.

Each test suite has an associated execution cost dataset. For the subject
programs from SIR, the execution costs were measured by observing the number
of instructions required by the execution of tests. This was performed using a
well-known profiling tool, valgrind [29], which executes the given program on
a virtual processor. For ibm, physical wall-clock time data, measured in seconds,
were provided by IBM. The entire test suite for ibm takes more than 4 hours to
execute.

Table 1. Subject programs used for the empirical study

Subject Description Program Size Test Suite Size

printtokens Lexical analyser 188 315-3192

4,130
printtokens2 Lexical analyser 199 4,115
schedule Priority scheduler 142 224-2272

2,650
schedule2 Priority scheduler 142 2,710
tcas Aircraft collision avoidance system 65 1,608
totinfo Statistics computation utility 124 1,052
replace Pattern matching & substitution tool 242 5,545

space Array Definition Language (ADL) interpreter 3,268 154-1603

flex Lexical analyser 3,965 103
gzip Compression utility 2,007 213
sed Stream text editor 1,789 370
bash Unix shell 6,167 1,061

ibm An IBM middleware system 61,7701 181
1 For the IBM middleware system, the program size represents the number of functions

that need to be covered. Others are measured in LOC.
2 For schedule and printtokens, four randomly selected, coverage-adequate test suites

were used as well as the complete test suite in SIR.
3 For space, four randomly selected, coverage-adequate test suites were used.
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5.3 Implementation and Hardware

Implementation: The paper uses NSGA-II implementation from the open
source Java MOEA library, jMetal [30, 31] as the untreated version of MOEA.
The GPGPU-based parallel version of NSGA-II is implemented in the OpenCL
GPGPU framework using a Java wrapper called JavaCL [32]. The CPU-based
parallel version of NSGA-II uses a parallel programming library for Java called
JOMP [33]. JOMP allows parameterised configuration of the number of threads to
use. In both cases, the parallelisation is only applied to the fitness evaluation
step of the basic jMetal implementation of NSGA-II, because it is not clear
whether certain steps in NSGA-II, such as sorting, may yield sufficient efficiency
when performed in parallel.

NSGA-II is configured with population size of 256 following the standard
recommendation to set the number of threads to multiples of 32 or 64 [34]. The
stopping criterion is to reach the maximum number of fitness evaluations, which
is set to 64,000, allowing 250 generations to be evaluated. Individual solutions
are represented by binary strings that form columns in matrix B in Section 3.
The initial population is generated by randomly setting the individual bits of
these binary strings so that the initial solutions are randomly distributed in the
phenotype space.

NSGA-II uses the binary tournament selection operator and the single-point
crossover operator with probability of crossover set to 0.9 and the single bit-flip
mutation operator with the mutation rate of 1

n where n is the length of the
bit-string (i.e. the number of test goals).

Hardware: All configurations of NSGA-II have been evaluated on a machine
with a quad-core Intel Core i7 CPU (2.8GHz clock speed) and 4GB memory,
running Mac OS X 10.6.5 with Darwin Kernel 10.6.0 for x86 64 architecture.
The Java Virtual Machine used to execute the algorithms is Java SE Runtime
with version 1.6.0 22. The GPGPU-based version of NSGA-II has been evaluated
on an ATI Radeon HD4850 graphics card with 800 stream processors running
at 625MHz clock speed and 512MB GDDR3 onboard memory.

5.4 Evaluation

The paper compares five different configurations of NSGA-II: the untreated
configuration (hereafter refered to CPU), the GPGPU configuration (GPU) and
the JOMP-based parallel configurations with 1, 2, and 4 threads (JOMP1/2/4).
The configuration with one thread (JOMP1) is included to observe the speed-up
achieved by evaluating the fitness of the entire population using matrix multipli-
cation, instead of evaluating the solutions one by one as in the untreated version.
Any speed–up achieved by JOMP1 over CPU is, therefore, primarily achieved by
the optimisation that removes the method invocation overheads. On the other
hand, JOMP1 does incur an additional thread management overhead.

For each subject test suite, the five configurations were executed 30 times
in order to cater for the inherent randomness in dynamic execution time. The



228 S. Yoo, M. Harman, and S. Ur

observation of algorithm execution time (T imetotal) is composed of the following
three parts:

– Initialisation (T imeinit): the time it takes for the algorithm to initialise the
test suite data in a usable form; for example, GPU configurations of MOEAs
need to transfer the test suite data onto the graphics card.

– Fitness Evaluation (T imefitness): the time it takes for the algorithm to eval-
uate the fitness values of different generations during its runtime.

– Remaining (T imeremaining): the remaining parts of the execution time, most
of which is used for archive management, genetic operations, etc.

Execution time is measured using the system clock. The speed-up is calculated
by dividing the amount of the time that the CPU configuration required by the
amount of the time parallel configurations required.

6 Results

Speed–up: Table 2 contains the speed–up data in more detail, whereas the
statistical analysis of the raw information can be obtained from the appendix.1

Overall, the observed paired mean speed–up ranges from 1.43x to 25.09x. The
speed–up values below 1.0 show that the overhead of thread management and the
additional data structure manipulation can be detrimental for the problems of
sufficiently small size. However, as the problem size grows, JOMP1 becomes faster
than CPU with all algorithms, indicating that the amount of reduced method call
overhead eventually becomes greater that the thread management overhead.
With the largest dataset, ibm, the GPU configuration of NSGA-II reduces the av-
erage execution time of CPU, 4,347 seconds (1 hour 12 minutes and 27 seconds),
into the average of 174 seconds (2 minutes and 54 seconds). The speed–up re-
mains consistently above 5.0x if the problem size is larger than that of flex, i.e.
about 400,000 (103 tests × 3,965 test goals).

To provide more detailed analysis, the observed execution time data have
been compared using The Mann-Whitney ‘U’ test. The Mann-Whitney ‘U’ test
is a non-parametric statistical hypothesis test, i.e. it allows the comparison of
two samples with unknown distributions. The execution time data observed with
JOMP1/2/4 and GPU configurations were compared to those from CPU configura-
tion. The null hypothesis is that there is no difference between the parallel config-
urations and CPU configuration; the alternative hypothesis is that the execution
time of the parallel configurations is smaller than that of CPU configuration.

Table 3 contains the resulting p-values. With JOMP1 configuration, the alter-
native hypothesis is rejected for 15 cases at the confidence level of 95%, providing
evidence that the parallel configurations required more time than the untreated
configuration(CPU). With all other configurations, the null hypothesis is univer-
sally rejected for all subjects, providing strong evidence that the parallel configu-
rations required less time than the untreated configuration(CPU). The particular
1 The detailed statistical data can be viewed at
http://www.cs.ucl.ac.uk/staff/s.yoo/gpgpu
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Table 2. Speed–up results

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.83 1.21 1.54 2.14
printtokens-2 0.83 1.23 1.56 2.20
printtokens-3 0.82 1.21 1.53 2.13
printtokens-4 0.84 1.22 1.54 2.19
schedule-1 0.97 1.22 1.40 1.56
schedule-2 0.96 1.22 1.41 1.46
schedule-3 0.96 1.22 1.39 1.45
schedule-4 0.95 1.20 1.37 1.43
printtokens 0.76 1.24 1.44 4.52
schedule 0.69 1.08 1.26 3.38
printtokens2 0.72 1.18 1.37 4.38
schedule2 0.71 1.09 1.27 3.09
tcas 0.84 1.10 1.30 1.94
totinfo 0.90 1.28 1.61 2.50
flex 1.58 2.76 4.19 6.82
gzip 1.19 2.15 3.31 8.00
sed 1.02 1.87 3.04 10.28
space-1 1.77 3.22 5.10 10.51
space-2 1.86 3.34 5.19 10.88
space-3 1.80 3.27 5.16 10.63
space-4 1.76 3.25 5.12 10.54
replace 0.73 1.23 1.44 5.26
bash 1.54 2.90 4.87 25.09
ibm 3.01 5.55 9.04 24.85

Table 3. Mann-Whitney U test

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 1.00e+00 1.51e-11 8.46e-18 1.51e-11
printtokens-2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
printtokens-3 1.00e+00 1.51e-11 8.46e-18 8.46e-18
printtokens-4 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-1 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
schedule-3 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-4 1.00e+00 1.51e-11 1.51e-11 1.51e-11
printtokens 1.00e+00 8.46e-18 8.46e-18 8.46e-18
schedule 1.00e+00 1.51e-11 1.51e-11 8.46e-18
printtokens2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
schedule2 1.00e+00 1.51e-11 8.46e-18 8.46e-18
tcas 1.00e+00 8.46e-18 8.46e-18 8.46e-18
totinfo 1.00e+00 1.51e-11 8.46e-18 8.46e-18
flex 8.46e-18 8.46e-18 1.51e-11 1.51e-11
gzip 1.51e-11 1.51e-11 1.51e-11 1.51e-11
sed 2.56e-07 8.46e-18 8.46e-18 1.51e-11
space-1 8.46e-18 8.46e-18 1.51e-11 1.51e-11
space-2 8.46e-18 8.46e-18 1.51e-11 1.51e-11
space-3 8.46e-18 8.46e-18 8.46e-18 1.51e-11
space-4 8.46e-18 8.46e-18 8.46e-18 1.51e-11
replace 1.00e+00 8.46e-18 1.51e-11 8.46e-18
bash 8.46e-18 8.46e-18 8.46e-18 8.46e-18
ibm 1.51e-11 8.46e-18 8.46e-18 1.51e-11

results are naturally dependent on the choice of the graphics card that has been
used for the experiment. However, these results, taken together, provide strong
evidence that, for test suite minimisation problems of realistic sizes, the GPGPU
approach can provide a speed–up of at least 5.0x. This finding answers RQ1.
Correlation: Regarding RQ2, one important factor that contributes to the level
of speed–up is the speed of each individual computational unit in the graphics
card. The HD4850 graphics card used in the experiment contains 800 stream
processor units that are normally used for the computation of geometric shading.
Each of these stream processors execute a single thread of Algorithm 1, of which
there exist more than 800. Therefore, if the individual stream processor is as
powerful as a single core of the CPU, the absolute upper bound of speed–up
would be 800. In practice, the individual stream processors run with the clock
speed of 625MHz, which makes them much slower and, therefore, less powerful
than a CPU core. This results in speed–up values lower than 800.

In order to answer RQ2, statistical regression analysis was performed on the
correlation between the observed speed–up and the factors that characterise the
size of problems.

Three size factors have been analysed for the statistical regression: the number
of test goals and the number of test cases are denoted by l and m respectively,
following the matrix notation in Section 3: l denotes the number of threads the
GPGPU-version of the algorithm has to execute (as the size of the matrix C′ is
l-by-n and n is fixed); m denotes the amount of computation that needs to be
performed by a single thread (as each matrix-multiplication kernel computes a
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Table 4. Spearman’s rank correla-
tion coefficients between three size
factors and speed–ups

Config ρz ρl ρm

JOMP1 0.2257 0.6399 -0.8338
JOMP2 0.4908 0.7800 -0.6423
JOMP4 0.4788 0.8227 -0.6378
GPGPU 0.8760 0.8617 -0.2299

Table 5. Regression Analysis for NSGA-II

Config Model α β γ R2

JOMP1

Sp ∼ z 1.56e-07 N/A 1.00e+00 0.4894
Sp ∼ log z 2.01e-01 N/A -1.34e+00 0.3423
Sp ∼ l + m 3.27e-05 -1.13e-04 1.17e+00 0.7060
Sp ∼ log l + m 2.69e-01 -4.83e-05 -4.79e-01 0.8487
Sp ∼ l + log m 3.12e-05 -1.78e-01 2.15e+00 0.7600
Sp ∼ log l + log m 2.62e-01 -6.83e-02 -6.15e-02 0.8509

JOMP2

Sp ∼ z 3.24e-07 N/A 1.58e+00 0.5009
Sp ∼ log z 4.78e-01 N/A -4.05e+00 0.4606
Sp ∼ l + m 6.64e-05 -1.82e-04 1.87e+00 0.6367
Sp ∼ log l + m 6.00e-01 -2.84e-05 -1.83e+00 0.9084
Sp ∼ l + log m 6.35e-05 -3.07e-01 3.58e+00 0.6836
Sp ∼ log l + log m 5.96e-01 -4.04e-02 -1.59e+00 0.9086

JOMP4

Sp ∼ z 5.80e-07 N/A 2.15e+00 0.5045
Sp ∼ log z 8.72e-01 N/A -8.13e+00 0.4814
Sp ∼ l + m 1.16e-04 -3.42e-04 2.70e+00 0.6199
Sp ∼ log l + m 1.08e+00 -5.93e-05 -4.00e+00 0.9322
Sp ∼ l + log m 1.11e-04 -5.49e-01 5.74e+00 0.6611
Sp ∼ log l + log m 1.08e+00 -5.50e-02 -3.72e+00 0.9313

GPU

Sp ∼ z 2.25e-06 N/A 4.13e+00 0.7261
Sp ∼ log z 3.45e+00 N/A -3.66e+01 0.7178
Sp ∼ l + m 3.62e-04 -1.63e-04 5.33e+00 0.4685
Sp ∼ log l + m 3.53e+00 7.79e-04 -1.66e+01 0.8219
Sp ∼ l + log m 3.62e-04 -1.34e-01 5.98e+00 0.4676
Sp ∼ log l + log m 3.85e+00 1.69e+00 -2.82e+01 0.8713

loop with m iterations). In addition to these measurement, another size factor
z = l·m is considered to represent the perceived size of the minimisation problem.
Table 4 shows the results of Spearman’s rank correlation analysis between size
factors and observed speed–ups.

Spearman’s rank correlation is a non-parametric measure of how well the
relationship between two variables can be described using a monotonic function.
As one variable increases, the other variable will tend to increase monotonically
if the coefficient is close to 1, whereas it would decrease monotonically if the
coefficient is close to -1.

Size factor l shows the strongest overall positive correlation with speed–ups in
all configurations. The correlation coefficients for z are weaker than those for l,
whereas correlation for m remains negative for all algorithms and configurations.

To gain further insights into the correlation between size factors and speed–
ups, a regression analysis was performed. Factor z is considered in isolation,
whereas l and m are considered together; each variable has been considered in
its linear form (z, l and m) and logarithmic form (log z, log l and log m). This
results in 6 different combinations of regression models. Table 5 presents the
results of regression analysis for four configurations respectively.

With a few exceptions of very small margins (JOMP4), the model with the
highest r2 correlation for all configurations is Sp = α log l+β log m+γ. Figure 1
shows the 3D plot of this model for the GPU and JOMP4 configurations.
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Fig. 1. 3D-plot of regression model Sp =
α log l+β log m+γ for GPU(solid line) and
JOMP4(dotted line) configurations.
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Fig. 2. Comparison of smoke test scenar-
ios for IBM System (ibm). The solid line
shows the trade-offs between time and test
coverage when GPU configuration of NSGA-
II is used, whereas the dotted line shows
that of CPU. The grey area shows the inter-
esting trade-off that the CPU configuration
fails to exploit within 60 minutes.

The observed trend is that the inclusion of log l results in higher correlation,
whereas models that use l in its linear form tend to result in lowest correlation.
This confirms the results of Spearman’s rank correlation analysis in Table 4. The
coefficients for the best-fit regression model for GPU, Sp = α log l + β log m + γ,
can explain why the speed–up results for space test suites are higher than those
for test suites with similar z values such as tcas, gzip and replace. Apart from
bash and ibm, space has the highest l value. Since α is more than twice larger
than β, a higher value of l has more impact to Sp than m.

Based on the analysis, RQ2 is answered as follows: the observed speed–up
shows a strong linear correlation to the log of the number of test goals to cover
and the log of the number of test cases in the test suite. The positive correlation
provides a strong evidence that GPU-based parallelisation scales up.

Furthermore, within the observed data, the speed–up continues to increase
as the problem size grows, which suggests that the graphics card did not reach
its full computational capacity. It may be that for larger problems, if studied,
the speed–up would be even greater than those observed in this paper; certainly
the correlation observed indicates that this can be expected. The finding that
the scalability factor increases with overall problem size is a very encouraging
finding; as the problem gets harder, the solutions are obtained faster.
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Insights: This section discusses a possible real-world scenario in which the par-
allelisation of multi-objective test suite minimisation can have a high impact. A
smoke test is a testing activity that is usually performed in a very short window
of time to detect the most obvious faults, such as system crashes. IBM’s smoke
test practice is to allow from 30 to 60 minutes of time to execute a subset of
tests from a large test suite that would require more than 4 hours to execute in
its entirity.

Figure 2 shows two possible smoke test scenarios based on the results of CPU
and GPU configurations of NSGA-II. The solid line represents the scenario based
on the GPU configuration of the algorithm, whereas the dotted line represents the
scenario based on the CPU configuration. The flat segment shows the time each
configuration spends on the optimisation process; the curved segment shows the
trade-off between time and test coverage achieved by the optimised test suite.
Since the CPU configuration of NSGA-II takes longer than 60 minutes to termi-
nate, it cannot contribute to any smoke test scenario that must be completed
within 60 minutes. On the other hand, the GPU configuration allows the tester
to consider a subset of tests that can be executed under 30 minutes. If the grey
region was wider than Figure 2, the difference between two configurations would
have been even more dramatic.

This answers RQ3 as follows: a faster execution of optimisation algorithms
enables the tester not only to use the algorithms but also to exploit their results
more effectively. This real world smoke test example from IBM demonstrates
that scale–ups accrued from the use of GPU are not only sources of efficiency
improvement, they can also make possible test activities that are simply impos-
sible without this scalability.

The ability to execute a sophisticated optimisation algorithm within a rel-
atively short time also allows the tester to consider state-of-the-art regression
testing techniques with greater flexibility. The greater flexibility is obtained be-
cause the cost of the optimisation does not have to be amortised across multiple
iterations. Many state-of-the-art regression testing techniques require the use of
continuously changing sets of testing data, such as recent fault history [24] or the
last time a specific test case has been executed [35, 36]. In addition to the use of
dynamic testing data, the previous work also showed that repeatedly using the
same subset of a large test suite may impair the fault detection capability of the
regression testing [37].

7 Related Work

Test suite minimisation aims to reduce the number of tests to be executed by
calculating the minimum set of tests that are required to satisfy the given test
requirements. The problem has been formulated as the minimal hitting set prob-
lem [21], which is NP-hard [19].

Various heuristics for the minimal hitting set problem, or the minimal set
cover problem (the duality of the former), have been suggested for the test suite
minimisation [20, 38]. However, empirical evaluations of these techniques have
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reported conflicting views on the impact on fault detection capability: some
reported no impact [39, 40] while others reported compromised fault detection
capability [17, 41].

One potential reason why test suite minimisation has negative impact on
the fault detection capability is the fact that the criterion for minimisation is
structural coverage; achieving coverage alone may not be sufficient for revealing
faults. This paper uses the multi-objective approach based on Multi-Objective
Evolutionary Algorithm (MOEA) introduced by Yoo and Harman [24]; the pa-
per also presents the first attempt to parallelise test suite minimisation with
sophisticated criteria for scalability.

Population-based evolutionary algorithms are ideal candidates for parallelisa-
tion on graphics cards [12] and existing work has shown successful implementa-
tions for classical problems. Tsutsui and Fujimoto implemented a single-objective
parallel Genetic Algorithm (GA) using GPU for the Quadratic Assignment Prob-
lem (QAP) [26]. Wilson and Banzaf implemented a linear Genetic Programming
(GP) algorithm on XBox360 game consoles [27]. Langdon and Banzaf imple-
mented GP for GPU using an SIMD interpreter for fitness evaluation [11]. Wong
implemented an MOEA on GPU and evaluated the implementation using a suite
of benchmark problems [28]. Wong’s implementation parallelised not only the fit-
ness evaluation step but also the parent selection, crossover & mutation operator
as well as the dominance checking.

Despite the highly parallelisable nature of many techniques used in SBSE, few
parallel algorithms have been used. Mitchell et al. used a distributed architecture
for their clustering tool Bunch [7]. Asadi et al. also used a distributed Server-
Client architecture for Concept Location problem [9]. However, both approaches
use a distributed architecture that requires multiple machines; this paper is the
first work on SBSE that presents highly affordable parallelism based on GPGPU.

8 Conclusion

This paper presents the first use of GPGPU-based massive parallelism for im-
proving scalability of regression testing, based on Search-Based Software En-
gineering (SBSE). The advances in GPGPU architecture and the consequent
availability of parallelism provides an ideal platform for improving SBSE scala-
bility.

The paper presents an evaluation of the GPGPU-based test suite minimisation
for real-world examples that include an industry-scale test suite. The results show
that the GPGPU-based optimisation can achieve a speed–up of up to 25.09x
compared to a single-threaded version of the same algorithm executed on a CPU.
The highest speed–up achieved by the CPU-based parallel optimisation was
9.04x. Statistical analysis shows that the speed–up correlates to the logarithmic
of the problem size, i.e. the size of the program under test and the size of the test
suite. This finding indicates that as the problem becomes larger, the scalability
of the proposed approach increases; a very attractive finding.
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Abstract. Bytecode as produced by modern programming languages is well
suited for search-based testing: Different languages compile to the same byte-
code, bytecode is available also for third party libraries, all predicates are atomic
and side-effect free, and instrumentation can be performed without recompilation.
However, bytecode is also susceptible to the flag problem; in fact, regular source
code statements such as floating point operations might create unexpected flag
problems on the bytecode level. We present an implementation of state-of-the-art
testability transformation for Java bytecode, such that all Boolean values are re-
placed by integers that preserve information about branch distances, even across
method boundaries. The transformation preserves both the original semantics and
structure, allowing it to be transparently plugged into any bytecode-based test-
ing tool. Experiments on flag problem benchmarks show the effectiveness of the
transformation, while experiments on open source libraries show that although
this type of problem can be handled efficiently it is less frequent than expected.

1 Introduction

Search-based testing can efficiently generate test inputs that trigger almost any desired
path through a program. At the core of these techniques is the fitness function, which
estimates how close a candidate solution comes to satisfying its objective. Traditionally,
this fitness is based on distances in the control flow and distance estimates for predicate
evaluation. The latter are sensitive to Boolean flags, in which the distance information
is lost on the way to the target predicate, thus giving no guidance during the search.

Traditionally, search-based testing requires that the source code of the program un-
der test (PUT) is instrumented to collect information required for the distance estima-
tion during execution. The instrumented program is compiled and repeatedly executed
as part of fitness evaluations. The fitness evaluation is hindered by problems such as
Boolean flags, in which information that could be used for fitness guidance is lost. Testa-
bility transformation [8] has been introduced as a solution to overcome this problem,
by changing the source code such that information lost at flag creation is propagated to
the predicates where flags are used.

If Boolean flags are created outside the scope of the PUT, the source code for these
might not be available (e.g., third party libraries), traditional testability transformation
is not possible. In contrast, languages based on bytecode interpretation such as Java or
C# have the advantage that the bytecode is mostly available even for third party libraries
(except for some cases of calls to native code). Bytecode is well suited for search based
testing: Complex predicates in the source code are compiled to atomic predicates based

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 237–251, 2011.
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on integers in the bytecode. These atomic predicates are always side-effect free, and
instrumenting the bytecode to measure branch distances at these predicates is straight
forward. In addition, bytecode instrumentation can be done during class loading or even
in memory, thus removing the need to recompile instrumented code.

In this paper, we present a bytecode testability transformation which allows us to
retain the information traditionally lost when Booleans are defined, thus improving the
guidance during search-based testing. In detail, the contributions of this paper are:

Bytecode Instrumentation: Based on previous work in testability transformation [15],
we present a semantics preserving transformation of bytecode, which improves the
search landscape with respect to traditional Boolean flags as well as those intro-
duced during the compilation to bytecode.

Testability Transformation for Object Oriented Code: The transformation is inter-
procedural, preserving the information across method calls and interfaces. In addi-
tion, the transformation applies to object-oriented constructs, transforming all class
members, while preserving validity with respect to references to and inheritance
from non-transformable classes (e.g., java.lang.Object).

Evaluation: We apply the transformation to a set of open source libraries, thus allow-
ing us to measure the effects of the flag problem in real world software.

This paper is organized as follows: First, we give all the necessary details of search-
based testing based on bytecode (Section 2). Then, we describe the details of our trans-
formation in Section 3. Finally, we present the results of evaluating the transformation
on a set of case study examples and open source libraries in Section 4.

2 Background

2.1 Search-Based Testing

Search-based testing applies efficient meta-heuristic search techniques to the task of
test data generation [10]. For example, in a genetic algorithm a population of candidate
solutions (i.e., potential test cases) is evolved towards satisfying a chosen coverage
criterion. The search is guided by a fitness function that estimates how close a candidate
solution is to satisfying a coverage goal.

The initial population is usually generated randomly, i.e., a fixed number of ran-
dom numbers for the input values is generated. The operators used in the evolution of
this initial population depend on the chosen representation. For example, in a bitvector
representation, crossover between two individuals would split the parent bitvectors at
random positions and merge them together, and mutation would flip bits.

A fitness function guides the search in choosing individuals for reproduction, grad-
ually improving the fitness values with each generation until a solution is found. For
example, to generate tests for branch coverage a common fitness function [10] inte-
grates the approach-level (number of unsatisfied control dependencies) and the branch
distance (estimation of how close the deviating condition is to evaluating as desired).

In this paper we consider object oriented software, for which test cases are essentially
small programs exercising the classes under test. Search-based techniques have been
applied to test object oriented software using method sequences [3, 7, 13] and strongly
typed genetic programming [12, 16].
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2.2 Bytecode and Bytecode Instrumentation

Modern programming languages such as Java or those of the .NET framework do not
follow the traditional process of compilation to machine code, but are compiled to an
intermediate format (bytecode) which is interpreted by virtual machines. The main ad-
vantage of such an approach is that the same bytecode can be executed on any platform
for which there is a virtual machine available. In addition, it is possible to compile
source code of different languages to the same bytecode: For example, all .NET lan-
guages (e.g., C# or VB) compile to the same bytecode, and many languages such as
Ada, Groovy or Scala can be compiled to Java bytecode. Although machine indepen-
dent, bytecode is traditionally very close to machine code while retaining some of the
information traditionally only available in the source code. As such, it is well suited for
different types of analyses even when source code is not available.

An important feature of languages that are based on interpreting bytecode is that
they conveniently allow manipulation of the bytecode during class loading, such that
instrumentation can be performed without recompilation. In addition, bytecode is at a
lower level of abstraction, where the choice of different bytecode instructions is usually
smaller than the possible syntactic constructs at source code level, thus making analysis
much simpler.

In this paper, we focus on the Java language and bytecode. A detailed description
of Java bytecode is out of the scope of this paper; we give the details necessary to
understand the transformation, and refer the interested reader to the specification of
the Java virtual machine [9]. Java bytecode is based on a stack machine architecture,
which retains the information about classes and methods. Each method is represented
as a sequence of bytecode instructions, where dedicated registers represent the method
parameters and the special value this.

The most interesting aspect for search-based testing is that all predicates in source
code are translated to simple but potentially nested jump conditions in the bytecode.
These conditions operate only integer values, and are free of side effects. Each jump
condition consists of an op-code that denotes the type of condition, and a target
label. If the condition evaluates to true, then execution jumps to the position in the
instruction sequence labelled with the target label, else it proceeds with the next byte-
code instruction in sequence. There are different categories of jump conditions; for
example, Table 1 lists the conditional jump instructions that compare integer values.
Each of the operations in the left half of the table pops a value from the stack and
compares it to 0. Similar operations are available to compare identity of object refer-
ences (IF ACMPEQ, IF ACMPNE) and comparison of an object reference to the spe-
cial value null (IF NULL, IF NONNULL). Finally, there is also an unconditional jump
operation (GOTO), which always jumps to the target label.

The Java API provides an instrumentation interface, where each class is passed on
to different instrumentation classes when loaded. There are several libraries available
which allow this instrumentation to be done very conveniently. In our experiments, we
used the library ASM1.

A straight forward approach to search-based testing is to instrument the target
program with additional calls that track information about the control flow and branch

1 http://asm.ow2.org/

http://asm.ow2.org/
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Table 1. Branch instructions in Java bytecode based on integer operators; top denotes the top
value on the stack, top′ denotes the value below top

Operator Description Operator Description

IFEQ top = 0 IF ICMPEQ top′ = top
IFNE top �= 0 IF ICMPNE top′ �= top
IFLT top < 0 IF ICMPLT top′ < top
IFLE top ≤ 0 IF ICMPLE top′ ≤ top
IFGT top > 0 IF ICMPGT top′ > top
IFGE top ≥ 0 IF ICMPGE top′ ≥ top

distances — such instrumentation can easily be done at the bytecode level. For example,
our recent EVOSUITE [6] prototype adds a method call before each conditional branch
in the bytecode, which keeps track of the top elements on the stack and the op-code of
the branch instruction, thus allowing the calculation of precise fitness values.

2.3 Testability Transformation

The success of search-based testing depends on the availability of appropriate fitness
functions that guide towards an optimal solution. In practice, the search landscape de-
scribed by these fitness functions often contains problematic areas such as local optima,
i.e., candidate solutions may have better fitness than their neighbors but are not globally
optimal, thus inhibiting exploration. Another problem are plateaux in the search land-
scape, where individuals have the same fitness as their neighborhood, which lets the
search degrade to random search. A typical source of such problems are Boolean flags
or nested predicates, and a common solution is testability transformation [8], which
tries to avoid the problem by altering the source code in a way that improves the search
landscape before applying the search.

Harman et al. [8] categorize different instances of the flag problem and present trans-
formations to lift instances to easier levels, until the flag problem disappears at level 0.
For example, a flag problem of level 1 defines a Boolean flag (boolean flag = x
> 0;) and then uses the flag (if(flag) ...) without any computation on the flag
in between definition and use. In its original form, this transformation only works in an
intraprocedural setting, and the structure of the program may be changed.

Recently, Wappler et al. [15, 17] presented a solution for function assigned flags. This
technique consists of three different tactics: branch completion, data type substitution,
and local instrumentation. Data type substitution replaces Boolean values with floating
point variables, where positive values represent true and negative values represent false,
and these values are calculated by the local instrumentation. Our approach applies these
tactics, and extends the approach to apply to bytecode instrumentation.

In this paper, we are mainly focusing on the problem of Boolean flags. Testability
transformation has been successfully applied to solve other related problems. For ex-
ample, a special case of the flag problem is when Boolean flags are assigned within
loops [4, 5] and nested predicates [11] can cause local optima even when there are no
Boolean flags.
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3 Bytecode Testability Transformation

The idea of bytecode testability transformation is to transform bytecode during load-
time, such that the information loss due to Booleans is reduced. Ideally, we want this
transformation to be transparent to the user, such that the transformation can be plugged
into any search-based testing tool without requiring any modifications. In particular, this
means that the transformation should not introduce new branches in the source code.
While testability transformation as it was defined originally [8] explicitly allows that
the semantics of the program are changed by the transformation, as long as the result-
ing test cases apply to the original program, we want our transformation to preserve the
original semantics.

3.1 Boolean Flags In Bytecode

In general, a flag variable is a Boolean variable that results from some computation such
that information is necessarily lost. In Java bytecode, there is no dedicated Boolean
datatype, but Booleans are compiled to integers that are only assigned the values 0
(ICONST 0 for false) and 1 (ICONST 1 for true). The typical pattern producing such a
flag looks as follows:

boolean flag = x <= 0;

L0:
IFLE L1
ICONST 0
GOTO L2

L1:
ICONST 1

L2:
// ...

boolean flag = x > 0;

L0:
IFLE L1
ICONST 1
GOTO L2

L1:
ICONST 0

L2:
// ...

It is interesting to note that even though there is no branch here in the source code, at
bytecode level we do have a branching instruction when defining a Boolean flag. When
such a flag is used in a predicate, this predicate checks whether the flag equals to 0
(IFEQ) or does not equal to 0 (IFNE):

if(flag)
// some code

L0:
IFEQ L1
// some code
GOTO L2

L1:
// flag is false

L2:
// ...

if(!flag)
// some code

L0:
IFNE L1
// some code
GOTO L2

L1:
// flag is true

L2:
// ...
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These examples show how flags are defined and used, but much of the difficulty
of Boolean flags at bytecode level arises from how the Booleans are propagated from
their definition to their usage. In the simplest case, the Boolean flag would be stored
in a register for a local variable (ISTORE), and then loaded immediately before usage
(ILOAD). However, Boolean values may also be passed via method calls (e.g., IN-
VOKEVIRTUAL, INVOKESTATIC) or via fields (e.g., SETSTATIC, SETFIELD), or
they may not be stored explicitly at all but simply exist on the operand stack.

3.2 Testability Transformation

The general principle of our transformation is similar to that presented by Wappler et
al. [17]: We replace Boolean variables with values that represent “how” true or false a
particular value is. In Java bytecode, all (interesting) branching operations act on inte-
gers, and we therefore replace all Boolean values with integers. Positive values denote
true, and the larger the value is, the “truer” it is. Negative values, on the other hand,
denote different grades of false. We further define a maximum value K , such that a
transformed Boolean is always in the range [−K,K].

When a flag is defined, we need to keep track of the distance value that the condition
creating the flag represents, such that this value is used instead of the Boolean value for
assignment to a local variable, class variable, as a parameter, or anonymously (e.g., if
the flag usage immediately follows the definition). To achieve this, the transformation
consists of two parts: First, we have to keep track of distance values at the predicates
where Boolean flags are created, and second we need to replace Boolean assignments
with integer values based on these distance values.

To keep track of distance values, we insert method calls before predicate evaluation
as follows:

L0:
IFLE L1
// false branch
GOTO L2

L1:
// true branch

L2:
// ...

L0:
DUP
INVOKESTATIC push
IFLE L1
// false branch
GOTO L2

L1:
// true branch

L2:
// ...

The special method push keeps a stack of the absolute values of the distance values
observed, as predicates can be nested in the bytecode. This way, the top of the stack
will always contain the most recently evaluated predicate, and will also tell us how
many predicates were evaluated on the way to this predicate. The distance of a predi-
cate essentially equals the distance between the two elements of the comparison. In the
case of comparisons to 0, we therefore have to duplicate the top element on the stack
(DUP), and this value already represents top−0. For comparisons of two integer values,
we have to duplicate the top two elements (DUP2) and then calculate their difference
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(ISUB), which is then passed to the method (push). Another reason why we need the
value stack is that all conditions in bytecode are atomic – even simple conjunctions or
disjunctions in bytecode are compiled to nested predicates.

As a method may call other methods after which execution returns to the first method,
each method has its own such stack. This essentially means there is a stack of stacks:
Each time a method is called, a new value stack is put on this stack, and when the
method is left via a return or throw statement, the value stack is removed again.

To complete the transformation, the distance values need to be checked when a
Boolean value is assigned. To achieve this, we insert a call to the GETDISTANCE func-
tion (see Algorithm 1), which is a variant of the method used by Wappler et al. [15],
before an assignment to a Boolean variable, i.e., whenever a Boolean value is assigned
to a local variable (ISTORE), a Boolean field value (PUTSTATIC, PUTFIELD), used
as a Boolean parameter of a method call (INVOKEVIRTUAL, INVOKESTATIC), or
used as return value of a method. This function takes the Boolean value resulting from
the flag definition, and replaces it with an integer value based on the distance of the
last predicate evaluation. GETDISTANCE creates a normalized value in the range [0,1],
and scales it across the range [0,K]. If the original value was false, then the value is
multiplied with −1. The call is inserted at the end of a nested predicate evaluation, and
the stack depth represents how far evaluation in the predicate has evaluated.

L0:
// Flag definition
IFNE L1
ICONST_1
GOTO L2

L1:
ICONST_0

L2:
// Store flag
ISTORE 1

L0:
// Flag definition
IFNE L1
ICONST_1
GOTO L2

L1:
ICONST_0

L2:
INVOKESTATIC getDistance
ISTORE 1

Whenever a Boolean flag is used in a branch condition (IFNE or IFEQ), we have to
replace the comparison operators acting on transformed values to check whether the
value is greater than 0 or not (IFGT/IFLE).

// load flag
ILOAD 0
IFEQ L1
// flag is true
// ...
GOTO L2

L1:
// flag is false
// ...

L2:
// ...

// load transformed flag
ILOAD 0
IFLE L1
// flag is true
// ...
GOTO L2

L1:
// flag is false
// ...

L2:
// ...
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Algorithm 1. Get distance value

Require: Boolean value orig
Require: Predicate distance stack stack
Ensure: Transformed Boolean value d
1: procedure GETDISTANCE(orig)
2: if stack is empty then
3: distance ← K
4: else
5: distance ← stack.pop()
6: end if
7: d ← K × (1.0 + normalize(distance))/2size of stack

8: if orig ≤ 0 then
9: d ← −d

10: end if
11: stack.clear()
12: return d;
13: end procedure

When a Boolean value is negated, in bytecode this amounts to a branching structure
assigning true or false depending on the value of the original Boolean. This case is
automatically handled by the already described transformations.

There are some branch conditions that do not operate on integers (see Table 2). While
these operators themselves do not need to be transformed, they are part of the branching
structure and we therefore add their representative truth values on to the value stack. In
principle, this amounts to adding either +K or −K , depending on the outcome of the
comparison.

Table 2. Non-integer comparisons

Operator Description

IF ACMPEQ Top two references on the stack are identical
IF ACMPNE Top two references on the stack are not identical
IF NULL Top value on stack equals null reference
IF NONNULL Top value on stack does not equal null

Furthermore, there is the instanceof operation that checks whether an object is
an instance of a given class, and returns the result of this comparison as a Boolean. We
simply replace any instanceof operations with calls to a custom made call that returns
+K or −K depending on the truth value of instanceof.

Another type of operator that needs special treatment as an effect of the transfor-
mation are bitwise operators (arithmetic operations on Booleans are not allowed by
the compiler): For example, a bitwise and of Boolean true (1) and false (0) is false (0),
whereas a bitwise and of a negative and a positive integer might very well return a num-
ber that is not equal to 0. We therefore have to replace bitwise operations performed on
transformed Booleans using replacement functions as follows: A binary AND (IAND)
of two transformed Booleans returns the minimum of the two values; A binary XOR
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(IXOR) of two transformed values a, b returns−|a− b| if both a and b are greater than
0 or both are smaller than 0, else it returns maximum of a and b (i.e., the positive num-
ber). Finally, a binary OR (IOR) returns the largest positive number if there is at least
one, or the smallest negative number in case both values are negative.

3.3 Instrumenting Non-integer Comparisons

Except for those listed in Table 2, branch instructions in Java bytecode are exclusively
defined on integers. Non-integer variables (long, float, double) are first compared with
each other (using the operators LCMP, DCMPL, DCMPG, FCMPL, FCMPG) and the
result is stored as an integer -1, 0, or 1 representing that the first value is smaller, equal,
or larger than the second value of the comparison. This integer is then compared with
0 using standard operators such as IFLE. This is also an instance of a flag problem, as
the branch distance on the branching predicate gives no guidance at all to the search.

To avoid this kind of flag problem, we replace the non-integer comparison operator
with an operator to calculate the difference (DSUB, LSUB, FSUB), and then pass the
difference of the operators on to a function (fromDouble) that derives an integer
representation of the value:

DLOAD 1
DLOAD 2
DCMPL
IFLE L1
// ...

DLOAD 1
DLOAD 2
DSUB
INVOKESTATIC fromDouble
IFLE L1
// ...

When calculating the integer representation one has to take care that longs and dou-
bles can be larger than the largest number representable as an integer (usually, an in-
teger is a 32 bit number, while longs and doubles are 64 bit numbers). In addition,
for floats and doubles guidance on the decimal places is less important the larger the
distance value is, but gets more important the smaller the distance value is. Therefore,
we normalize the distance values in the range [0,1] using the normalization function
x = x/(x+1), which does precisely this (cf. Arcuri [1]), and then multiply the resulting
floating point number x with the possible range of integer values. This means that the
fromDouble function returns (int)round(K ∗ signum(d)∗abs(d)/(1.0+abs(d))) for
the difference d.

3.4 Instrumenting Interfaces

Object oriented programs generally follow a style of many short methods rather than
large monolithic code blocks. This means that very often, flags do not only exist within
a single method but across method boundaries. As we are replacing Boolean flags with
integer values, we also have to adapt method interfaces such that the transformation
applies not only in an intra-method scenario, but also in an inter-method scenario.

To adapt the interfaces, we have to change both field declarations and method and
constructor signatures. There is a possibility that changing the signature of a method
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results in a conflict with another existing method in the case of method overloading. If
such a conflict occurs, then in addition to the signature the method name is also changed.
Furthermore, in addition to the interface declarations every single call to a transformed
method or access to a transformed field in the bytecode has to be updated to reflect the
change in the signature or name.

It is important to ensure that the transformation is also consistent across inheritance
hierarchies, such that overriding works as expected. However, there are limits to the
classes and interfaces that can be transformed: Some base classes are already loaded
in order to execute the code that performs the bytecode transformation. In addition, it
might not be desirable to instrument the code of the test generator itself. Therefore we
only instrument classes that are in the package that contains the unit under test, or any
other user specified packages.

This, however, potentially creates two problems: First, some essential interfaces de-
fine Boolean return values and are used by all Java classes. For example, the Object.
equals class cannot be changed, but is a potential source of Boolean flags. Second, a
called method might receive a transformed Boolean value as parameter, but expects a
real Boolean value. In these cases, a transformed Boolean is transformed back to a nor-
mal Boolean value representing whether the transformed value is greater than 0 or not,
such that the normal Boolean comparisons to 0 and 1 work as expected. Similarly, we
have to transform Boolean values received from non-transformed methods and fields
back to the integer values +K or−K .

3.5 Instrumenting Implicit Else Branches

Often, a Boolean value is only assigned a new value if a predicate evaluates in one way,
but not if it evaluates the other way. In this case, if the value is not assigned, we have
no guidance on how to reach the case that the condition evaluates to the other value.
To overcome this problem, we add implicit else branches; this technique is referred to
as branch completion by Wappler et al. [17], who introduced it to ensure that a guiding
distance value can always be calculated.

ILOAD 0
IFLE L1
ICONST_0
ISTORE 1

L1:
// ...

ILOAD 0
IFLE L1
ICONST_0
ISTORE 1
GOTO L2

L1:
ILOAD 1
INVOKESTATIC GetDistance
ISTORE 1

L2:
// ...

We add such an implicit else branch whenever a Boolean value is assigned to a field or
a local variable (PUTSTATIC, PUTFIELD, ISTORE), such that we can easily add the
else branch. In the example, the value is assigned to local variable 1, therefore in the
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implicit else branch we first load this variable (ILOAD 1) and then store a transformed
Boolean value based on the current predicate (GetDistance) again (ISTORE 1).

4 Evaluation

We have implemented the described bytecode transformation as part of our evolutionary
test generation tool EVOSUITE [6]. To measure the effects of the transformation with
as little as possible side-effects, we ignored collateral coverage in our experiments, i.e.,
we only count a branch as covered if EVOSUITE was able to create a test case with this
branch as optimization target. We deactivated optimizations such as reusing constants in
the source code, and limited the range of numbers to±2,048,000. EVOSUITE was con-
figured to use a (1+1)EA search algorithm, for details of the mutation probabilities and
operators please refer to [6]. EVOSUITE was further configured to derive test cases for
individual branches, such that individuals of the search equal to sequences of method
calls. The length of these sequences is dynamic, but was limited to 40 statements. Each
experiment was repeated 30 times with different random seeds; to allow a fair compar-
ison despite the variable length of individuals we restricted the search budget in terms
of the number of executed statements.

4.1 Flag Problem Examples

To study the effects of the transformation, we first use a set of handwoven examples that
illustrate the effectiveness of the transformation, and run test generation with a search
limit of 300,000 statements2:

// Intra-method flags
class FlagTest1 {

boolean flag1 = false;

boolean flagMe(int x) {
return x == 762;

}

void coverMeFirst(int x) {
if(flagMe(x))

flag1 = true;
}

void coverMe() {
if(flag1)
// target branch

}
}

// Nested predicates
class FlagTest2 {
void coverMe(int x,

int y) {
boolean flag1 =

x == 2904;
boolean flag2 = false;
if(flag1) {
if(y == 23598)
flag2 = true;

}
else {
if(y == 223558)
flag2 = true;

}
if(flag2)
// target branch

}
}

// Example for doubles
// and conjunction
class FlagTest3 {

void coverMe(double x) {
if(x > 251.63 &&

x < 251.69)
// target branch

}
}

In addition to these three examples, we also use the Stack example previously used
by Wappler et al. [15] to evaluate their testability transformation approach. The target
branch in this example is in the method add, which throws an exception if flag method
isFull returns true. The other examples used by Wappler et al. [15] are in principle
also covered by our other examples.

2 As individuals in EVOSUITE are method sequences and can have variable length we count the
number of executed statements rather than fitness evaluations.
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Table 3. Results of the transformation on case study examples

Example Without transformation With transformation

Success Rate Statements Time/Test Success Rate Statements Time/Test

FlagTest1 0/30 300,001.07 0.06ms 30/30 154,562.40 0.09ms
FlagTest2 0/30 300,001.53 0.06ms 30/30 154,142.37 0.08ms
FlagTest3 0/30 300,000.93 0.07ms 30/30 99,789.53 0.13ms
Stack 0/30 300,001.00 0.07ms 30/30 4,960.40 1.40ms

The first question we want to analyze is whether the transformation has the potential
to increase coverage. The four examples clearly show that this is the case (see Table 3):
Out of 30 runs, the target branches could not be covered a single time for any of the
examples without transformation. With the transformation applied, on the other hand,
every single run succeeded, with convergence between 100,000-200,000 executed state-
ments, except for the Stack example which converges already around 5,000 executed
statements. This improvement comes at a cost, as can be seen in the average test execu-
tion time: The average execution time increases by 34%, 25%, 44%, and 95% for each
of the examples, respectively. An average increase of 50% in the execution time can
be significant, as every single test case has to be executed as part of the search. Note
that our implementation is not optimized in any way, so the 50% increase could likely
be reduced by optimizations. However, the question is whether flag problems occur
frequently in real software, such that the overhead of the transformation is justified.

4.2 Open Source Libraries

To study whether the potential improvement as observed on the case study subjects also
holds on “real” software, we applied EVOSUITE and the transformation to a set of open
source libraries. We chose four different libraries with the intent to select a wide range
of different applications: First, we selected the non-abstract container classes of the
java.util library. Furthermore, we selected the non-abstract top level classes of the JDom
XML library, and all classes of the Apache Commons Codec and Command Line Inter-
face libraries. We used a search limit of 100,000 executed statements for each branch.
Statistical difference has been measured with the Mann-Whitney U test, following the
guidelines on statistical analysis described by Arcuri and Briand [2]. To quantify the
improvement in a standardized way, we used the Vargha-Delaney Â12 effect size [14].
In our context, the Â12 is an estimation of the probability that EVOSUITE with testabil-
ity transformation can cover more branches than without. When the two types of tests
are equivalent, then Â12 = 0.5. A high value Â12 = 1 would mean that the testability
transformation satisfied more coverage goals in all cases.

The results of the analysis are summarized in Table 4. In total, we obtained p-values
lower than 0.05 in 36 out of 43 comparisons in which Â12 
= 0.5. In all four libraries,
we observed classes where sometimes the transformation seems to decrease the cover-
age slightly. In particular, this happens when a method takes a Boolean parameter and
is therefore transformed to take an integer as input. When mutating a Boolean value,
EVOSUITE replaces the value with a new random Boolean value. For integers, however,
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Table 4. Results of the Â12 effect size on open source libraries. Â12 > 0.5 denotes the probability
that the transformation leads to higher coverage.

Case Study Classes #Â12 < 0.5 #Â12 = 0.5 #Â12 > 0.5 �Â12

Commons Codec 21 4 11 6 0.53
Commons CLI 14 2 7 5 0.51
Java Collections 16 4 1 11 0.59
JDom 18 5 7 6 0.52

Σ 69 15 26 28 0.53

EVOSUITE only replaces the value with a low probability (0.2 in our experiments), but
else adds a small (random) delta in the range [-20,20]. It can therefore happen that such
a transformed Boolean parameter only sees positive values during the evaluation, while
a negative value (i.e., false) would be needed to take a certain branch. We expect that
this behavior would disappear for example if the number of generations were increased,
or if an algorithm with larger population sizes than the single individual of the (1+1)EA
would be used.

In 28 out of 69 cases, the transformation resulted in higher coverage, which is a
good result. However, on average over all classes and case study subjects, the Â12

value is 0.53, which looks like only a small improvement. To understand this effect
better, we take a closer look at the details of the results. In the Commons Codec li-
brary, the coverage with and without the transformation has identical results on 11/21
classes, and only very small variation on the remaining classes except one particular
class: language.DoubleMetaphone has 502 branches on bytecode, and is the
most complex class of the library. With testability transformation, on average 402,5
of these branches are covered; without transformation, the average is 386,8. Testability
transformation clearly has an important effect on this class. In the Commons CLI library
the picture is similar: On most classes, the coverage is identical or comparable. How-
ever, in the CommandLine (39.0 out of 45 branches with transformation, 37.6 without)
and Option (86.3 out of 94 branches with transformation, 85.3 without) classes there
seems to be an instance of the flag problem. The Java container classes have several
classes where the transformation increases coverage slightly by 1–2 branches each (sev-
eral HashMap, Hashtable, and HashSet variants. Interestingly, the Stack class
in the java.util library has no flag problem). Finally, JDom also has mainly compa-
rable coverage, with the main exception being the Attribute class, which has a clear
coverage improvement (50.9 out of 65 branches with transformation, 49.8 without).

In summary, this evaluation shows that the transformation can effectively overcome
the flag problem in real-world software — however, the flag problem seems to be less
frequent than expected, so when performance is critical, testability transformation might
only be activated on-demand when analysis or problems in the search show that there is
a flag problem in a class. Potentially, static analysis could be used to identify sections
in the bytecode where transformation is necessary, such that the transformation would
only need to be applied selectively, thus reducing the overhead of the instrumentation.
In general, the increase in the effort may be acceptable as it leads to higher coverage.
Furthermore, our evaluation on the open source subjects only considers whether the
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coverage has increased or not; the testability transformation might also achieve that
branches are covered faster than without the transformation, i.e., with fewer iterations
of the search algorithm. We plan to investigate this as future work.

5 Threats to Validity

Threats to construct validity are on how the performance of a testing technique is de-
fined. Our focus is on the achieved coverage of the test generation. However, our exper-
iments show a clear disadvantage with respect to performance, and we did not evaluate
any effects on secondary objectives such as the size of results.

Threats to internal validity might come from how the empirical study was carried
out. To reduce the probability of defects in our testing framework, it has been carefully
tested. In addition, to validate the correctness of our transformation, we used the test
suites provided by the open source projects we tested and checked whether the test
results were identical before and after the transformation. As in any empirical analysis,
there is the threat to external validity regarding the generalization to other types of
software. We tried to analyze a diverse range of different types of software, but more
experiments are definitely desirable.

6 Conclusions

Bytecode as produced by modern languages is well suited for search-based testing, as
bytecode is simple, instrumentation is easy and can be done on-the-fly, and predicates
are atomic and use mainly integers. However, bytecode is just as susceptible to the flag
problem as source code is. In fact, the compilation to bytecode even adds new sources
of flags that need to be countered in a transformation. In this paper, we presented such
a transformation, and showed that it can overcome the flag problem.

Experiments showed that the transformation is effective on the types of problems it is
conceived for, but it also adds a non-negligible performance overhead. Our experiments
on open source software revealed that the flag problem is also less frequent than one
would expect, although it can be efficiently handled by the transformation if it occurs.
Clearly our experiments in this respect can only be seen as an initial investigation, and
further and larger experiments on real software will be necessary to allow any definite
conclusions about the frequency of the flag problem. Furthermore, we only analyzed the
basic case where the search tries to cover a single target; it is likely that new techniques
such as optimization with respect to all coverage goals at the same time, as is also
supported by EVOSUITE , can affect the flag problem. However, the conclusion we can
draw from our experiments is that the presented transformation does overcome the flag
problem as expected, but it probably makes most sense to use it on-demand rather than
by default, or to identify and focus the transformation only on problematic parts or the
program under test.

Acknowledgments. Gordon Fraser is funded by the Cluster of Excellence on Multi-
modal Computing and Interaction at Saarland University, Germany.
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Abstract. The identification of cohesive segments in execution traces
is an important step in concept location which, in turns, is of paramount
importance for many program-comprehension activities. In this paper,
we reformulate concept location as a trace segmentation problem solved
via dynamic programming. Differently to approaches based on genetic
algorithms, dynamic programming can compute an exact solution with
better performance than previous approaches, even on long traces. We
describe the new problem formulation and the algorithmic details of our
approach. We then compare the performances of dynamic programming
with those of a genetic algorithm, showing that dynamic programming
reduces dramatically the time required to segment traces, without sacri-
ficing precision and recall; even slightly improving them.

Keywords: Concept identification, dynamic analysis, information
retrieval, dynamic programming.

1 Introduction

Program comprehension is an important activity that may require half of the
effort devoted to software maintenance and evolution. An important task during
program comprehension is concept location, which aims at identifying concepts
(e.g., domain concepts, user-observable features) and locating them within code
regions or, more generally, into software artifact chunks [8,15]. The literature
reports concept location approaches built upon static [1] and dynamic [24,25]
analyses; information retrieval (IR) [20]; and hybrid (static and dynamic) [3,5,12]
techniques. Dynamic and hybrid approaches rely on execution traces.

A typical scenario in which concept location takes part is the following. Let us
suppose that (1) a failure has been observed in a software system under certain
execution conditions, (2) unfortunately, such execution conditions are hard to
reproduce, but (3) one execution trace was saved during such a failure. Main-
tainers then face the difficult and demanding task of analyzing the one execution
trace of the system to identify in the trace the set(s) of methods pertaining to
the failure, i.e., some unexpected sequence(s) of method invocations, and then
to relate the invoked methods to some features producing the failure.
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Inspired by the above scenario where a developer must identify methods likely
responsible for a system failure, a step of the (hybrid) concept location process
has been recently defined as the trace segmentation problem, where the textual
content of the methods contained in execution traces is used to split the traces
into segments that likely participate in the implementation of some concepts
related to some features [4,5]. The underlying assumption of this step is that,
if a specific feature is being executed within a complex scenario (e.g., “Open a
Web page from a browser” or “Save an image in a paint application”), then the
set of methods being invoked is likely to be conceptually cohesive, decoupled
from those of other features, and invoked in sequence. Going back to the system
crash scenario, we are interested in splitting a trace into segments one of which
may be implementing the unwanted feature i.e., is responsible for the system
failure. Unfortunately, despite the use of meta-heuristic techniques, e.g., genetic
algorithms [5] and their parallelization [4], segmenting a trace is a computation-
ally intensive step and published approaches do not scale up to thousands of
methods.

This paper extends our previous work [4,5] and reformulates the trace seg-
mentation problem as a dynamic programming (DP) problem. Differently to ap-
proaches based on meta-heuristic techniques, in particular Genetic Algorithms
(GA), the DP approach can compute an exact solution to the trace segmenta-
tion problem with better performance that previous approaches, which would
possibly make this approach more scalable. The DP approach relies on the same
representation and fitness function as proposed for a previous approach based
on a GA [4,5], however, the trace segmentation problem is reformulated as an
optimization problem taking advantage of (1) the order of the methods in the
trace, (2) the additive property of the fitness function, and (3) the Bellman’s
Principle of Optimality [7].

Thus, the contributions of this paper are as follows. First, we present a novel
formulation of the trace segmentation problem as a DP problem and its algorith-
mic details. Second, we report an empirical study comparing the DP approach
with a previous GA approach [4,5]. We show that the DP approach can seg-
ment traces in a few seconds, at most, while the GA approach takes several
minutes/hours. Despite such a drastic improvement of performances, precision
and recall do not decrease; they even slightly increase.

The remainder of the paper is organized as follows. Section 2 summarizes a
previous trace-segmentation approach for the sake of completeness [4,5]. Section
3 explains trace segmentation using GA and DP approaches. Section 4 describes
the empirical study and reports and discusses the obtained results. Section 5
recalls related work. Section 6 concludes the paper with future work.

2 The Trace Segmentation Problem

This section summarizes essential details of a previous trace segmentation ap-
proach [4,5], which problem we reformulate as a dynamic programming
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problem. Therefore, the five steps of the two approaches are identical, with the
only difference that the trace segmentation was previously performed using a
GA algorithm and that we describe the use of DP in Section 3.

2.1 Steps 1 and 2 – System Instrumentation and Trace Collection

First, a software system under study is instrumented using the instrumentor of
MoDeC to collect traces of its execution under some scenarios. MoDeC is an
external tool to extract and model sequence diagrams from Java systems [23],
implemented using the Apache BCEL bytecode transformation library1. The
tool also allows to manually label parts of the traces during executions of the
instrumented systems, which we did to produce our oracle. In this paper MoDeC
is simply used to collect and manually tag traces.

2.2 Step 3 – Pruning and Compressing Traces

Usually, execution traces contain methods invoked in most scenarios, e.g., meth-
ods related to logging or GUI events. Yet, it is unlikely that such invocations are
related to any particular concept, i.e., they are utility methods. We build the
distribution of method invocation frequency and prune out methods having an
invocation frequency greater than Q3 + 2× IQR, where Q3 is the third quartile
(75% percentile) of the invocation frequency distribution and IQR is the inter-
quartile range because these methods do not provide useful information when
segmenting traces and locating concepts.

Finally, we compress the traces using a Run Length Encoding (RLE) algo-
rithm to remove repetitions of method invocations. We introduced this compres-
sion to address scalability issues of the GA approach [4,5]. We still apply the
RLE compression to compare segments obtained with the DP approach with
those obtained using the GA approach when segmenting the same traces.

2.3 Step 4 – Textual Analysis of Method Source Code

Trace segmentation aims at grouping together subsequent method invocations
that form conceptually cohesive groups. The conceptual cohesion among method
is computed using the Conceptual Cohesion metric defined by Marcus et al. [16].

We first extract terms from source code, split compound identifiers sepa-
rated by camel case (e.g., getBook is split into get and book), remove pro-
gramming language keywords and English stop words, and perform stemming
[19]. We then index the obtained terms using the tf-idf indexing mechanisms
[6]. We obtain a term–document matrix, and finally, we apply Latent Seman-
tic Indexing (LSI) [11] to reduce the term–document matrix into a concept–
document2 matrix, choosing, as in previous work, a LSI subspace size equal
to 50.

1 http://jakarta.apache.org/bcel/
2 In LSI “concept” refers to orthonormal dimensions of the LSI space, while in the

rest of the paper “concept” means some abstraction relevant to developers.

http://jakarta.apache.org/bcel/
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2.4 Step 5 – Trace Splitting Through Optimization Techniques

The final step consists of applying some optimization techniques to segment the
obtained trace. Applying an optimization technique requires a representation of
the trace and of a trace segmentation and a means to evaluate the quality of a
trace segmentation, i.e., a fitness function. In the following paragraphs, we reuse
where possible previous notations and definitions [5] for the sake of simplicity.

We represent a problem solution, i.e., a trace segmentation, as a bit-string as
long as the execution trace in number of method invocations. Each method invo-
cation is represented as a “0”, except the last method invocation in a segment,
which is represented as a “1”. For example, the bit-string 00010010001︸ ︷︷ ︸

11

repre-

sents a trace containing 11 method invocations and split into three segments:
the first four method invocations, the next three, and the last four.

The fitness function drives the optimization technique to produce a (near) op-
timal segmentation of a trace into segments likely to relate to some concepts. It
relies on the software design principles of cohesion and coupling, already adopted
in the past to identify modules in software systems [18], although we use concep-
tual (i.e., textual) cohesion and coupling measures [16,21], rather than structural
cohesion and coupling measures.

Segment cohesion (COH) is the average (textual) similarity between the source
code any pair of methods invoked in a given segment l. It is computed using the
formulas in Equation 1 where begin(l) is the position of the first method invoca-
tion of the lth segment and end(l) the position of the last method invocation in
that segment. The similarity σ between methods mi and mj is computed using
the cosine similarity measure over the LSI matrix from the previous step. COH
is the average of the similarity [16,21] of all pairs of methods in a segment.

Segment coupling (COU) is the average similarity between a segment l and
all other segments in the trace, computed using Equation 2, where N is the
trace length. It represents, for a given segment, the average similarity between
methods in that segment and those in different ones.

Thus, we compute the quality of the segmentation of a trace split into K
segments using the fitness function (fit) defined in Equation 3, which balances
segment cohesion and their coupling with other segments in the split trace.

COHl =

∑end(l)−1
i=begin(l)

∑end(l)
j=i+1 σ(mi, mj)

(end(l)− begin(l) + 1) · (end(l)− begin(l))/2
(1)

COUl =

∑end(l)
i=begin(l)

∑l
j=1,j<begin(l) or j>end(l)σ(mi, mj)

(N − (end(l)− begin(l) + 1)) · (end(l)− begin(l) + 1)
(2)

fit(segmentation) =
1
K
·

K∑
i=1

COHi

COUi + 1
(3)
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3 Segmenting Traces Using a Genetic Algorithm
and Dynamic Programming

We now use previous notations and definitions to describe the use of a GA
algorithm to segment traces and the reformulation of the trace segmentation
problem as a dynamic programming problem.

3.1 Trace Segmentation Using a Genetic Algorithm

Section 2 described the representations of a trace and its segmentation and a
fitness function. We now define the mutation, crossover, and selection operators,
used by a GA to segment traces [4,5].

The mutation operator randomly chooses one bit in the trace representation
and flips it over. Flipping a “0” into a “1” means splitting an existing segment
into two segments, while flipping a “1” into a “0” means merging two consecutive
segments. The crossover operator is the standard 2-points crossover. Given two
individuals, two random positions x, y, with x < y, are chosen in one individual’s
bit-string and the bits from x to y are swapped between the two individuals to
create a new offspring. The selection operator is the roulette-wheel selection.
We use a simple GA with no elitism, i.e., it does not guarantee to retain best
individuals across subsequent generations.

3.2 Trace Segmentation Using Dynamic Programming

Dynamic Programming (DP) is a technique to solve search and optimization
problems with overlapping sub-problems and an optimal substructure. It is
based on the divide-and-conquer strategy where a problem is divided into sub-
problems, recursively solved, and where the solution of the original problem is
obtained by combining the solutions of the sub-problems [7,10].

Sub-problems are overlapping if the solving of a (sub-)problem depends on
the solutions of two or more other sub-problems, e.g., the computation of the
Fibonacci numbers. The original problem must have a particular structure. First,
it must be possible to recursively break it down into sub-problems up to some
elementary problem easily solved; second, it must be possible to express the
solution of the original problem in term of the solutions of the sub-problems;
and, third, the Bellman’s principle of optimality must be applicable. For our trace
segmentation problem, we interpret this principle as follows. When computing a
trace segmentation, at a given intermediate method invocation in the trace and
for a given number of segments ending with that invocation, only the best among
those possible partial splits, will be, possibly, part of the final optimal solution.
Thus, we must record only the best fitness for any segmentation and we must
expand only the corresponding best segment to include more method invocation,
possibly including the entire trace. In other words, when extending an existing
solution two things can happen: either a new segment is added or the method
is attached to the last solution segment. Given a trace of 1, . . . , N calls, suppose
we compute and store all possible optimal splits of a trace into two segments.
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For example, for the sub-trace of the first nine method invocations, we compute
its optimal (in terms of fitness function) split into two segments. Clearly there
are several ways to split the nine methods into two segments, however we only
consider the best in term of fitness function. The same can be done for a sub-
trace of length ten, eleven, twelve and so. When we reach N we will have the best
segmentation of N into two parts. When computing the segmentation into three
parts, there is no need to redo all computations. For example, three segments
ending at position eleven can be computed in terms of two segments ending at
any previous position (e.g., position nine), and forming a third segment with
the remaining methods. Thus, a possible solution consists of the two segments
ending at position nine, plus a segment of length two.

More formally, let A = {1, 2, . . . , n} be an alphabet of n symbols, i.e., method
invocations, and T [1 . . .N ] be an array of method invocations of A, i.e., an
execution trace. Given an interval T [p . . . q] (1 ≤ p ≤ q ≤ N) of T [1 . . .N ], as
explained Section 2, we compute COH as the average similarity between the
elements of T [p . . . q] and the interval coupling, COU , as the average similarity
between any element of T [p . . . q] (methods between p and q) and any element
of T [1 . . .N ]− T [p . . . q]. We compute the score of an interval as COH/COU .

A segmentation S of T [1 . . .L](L ≤ N) is a partition S of T [1 . . . L] in kS

intervals: S = {T [1 . . . a1], T [a1 + 1 . . . a2] . . . T [ak−1 + 1 . . . ak = N ]}. We de-
note such a segmentation by (a0 = 0, a1, . . . , akS = L). We then define the
segmentation score (e.g., fitness) of an array as the average score of its inter-
vals. Therefore, the trace segmentation problem consists to find a segmentation
of T [1 . . .N ] maximizing the score fit, as defined in 2.

We introduce the definitions D1–D4 to explain our DP approach:

(D1) A(p, q) = Σq−1
i=p Σq

j=i+1σ(i, j)
(D2) B(p, q) = Σq

i=pΣj=1...N(j /∈[p,q])σ(i, j)
(D3) f(p, q) = 2×(N−(q−p+1))

(q−p) × A(p,q)
B(p,q)

(D4) fit(k, L) = max{(ai)i=0..k:a0=0,ai<ai+1,ak=L}Σi=1..kf(ai−1 + 1, ai)

We notice that the COH and COU of an interval T [p . . . q] correspond to
2×A(p,q)

(q−p)×(q−p+1) and B(p,q)
(N−(q−p+1))×(q−p+1) , respectively. Thus f(p, q) represents the

score of the interval T [p . . . q]. It also represents the contribution of the inter-
val to a solution and fit(k, L) corresponds to the maximum score of a (k, L)-
segmentation, i.e., a segmentation of T [1 . . .L] in k intervals. Therefore, the
optimum segmentation score is max

N/2
k=1

fit(k,N)
k .

If we consider a solution ending at p (sub-trace T [1 . . . p]) and made up by
k segments, then its score is fit(k, p) and we have multiple optimum segmen-
tations: one for each possible k in 1 < k < p/2. When we extend the sub-trace
to q, T [1 . . . p . . . q] and given a solution made up of k segments ending in p,
we seek the solution fit(k + 1, q) into maxp=k...q(fit(k, p) + f(p + 1, q)), where
1 ≤ k < q ≤ N . If we pre-compute and store fit(k, p) in a table, we do not need
to recompute the expensive COH and COU every time to evaluate fit(k+1, q).
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However, we still must compute f(p + 1, q) for every sub-problems and we per-
form this computation efficiently using the following definitions:

(D5) Δ(p, q) = Σq−1
i=p σ(T [i], T [q])

(D6) Θ(p) = Σi=1..N(i�=p)σ(T [i], T [p])

It can be proved that Δ(p, q) = Δ(p + 1, q) + σ(T [p], T [q]) and, thus, A(p, q) =
A(p, q−1)+Δ(p, q) and B(p, q+1) = B(p, q)+Θ(q+1)−2×Δ(p, q+1) and thus
we can recursively update A(p, q) and B(p, q + 1). We choose q = p + 1, which
means that we extend the current solution one method at the time from left-to-
right and that A(p, q) becomes A(p, p + 1) and B(p, q + 1) becomes B(p, p + 2),
which we can pre-compute (from previous values) and stored into two arrays.

To conclude, we can compute fit(k + 1, p + 1) using fit(k, i) and the sum of
the values of f(i+1, p+1), which we can compute by dividing A(i+1, p+1) by
B(i+1, p+1), both already pre-computed. The DP approach is thus fast because
it goes left-to-right and reuses as much as possible of previous computation.

We show below the pseudo-code of (a basic version of) the algorithm at the
core of the DP approach.

Algorithm DP split
Input:
integers n and N , matrix of similarities Sim[1..n][1..n], array T [1..N ]
Output: matrix of fitness values fit[1..N ][1..N ]
1. For L=1..N do
2. Theta := comp theta(L)
3. Delta := 0
4. A[L] := 0
5. B[L] := Theta
6. For p=L-1..1 do
7. Delta := Delta + Sim[T[p]][T[L]]
8. A[p] := A[p-1] + Delta
9. B[p] := B[p-1] + Theta − 2 × Delta
10. For L=1..N do
11. fit[1][L] := comp f(1,L)
12. For k=2..L do
13. F max := 0
14. For p=k..L-1 do
15. F max:=max(F max, fit[k-1][p] + comp f(p+1))
16. fit[k][L] := F max
17. Return fit

where the input matrices Sim[1..n][1..n] and T [1..N ] contain the similarities
between methods and the trace encoding, respectively. The function comp f()
computes the value of f based on definition D3 and comp theta recursively
evaluates Θ(p). The most expensive part of the algorithm are the nested loops
at lines 10, 12, and 14. The algorithm, in this basic formulation, has a complexity
of O(N3), which is also the (worst case) complexity of the evaluation of the GA
fitness function as both COH and COU have worst case complexity of O(N2)
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Table 1. Data of the empirical study

(a) Statistics of the two systems.
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ArgoUML v0.18.1 1,267 203 30/04/05
JHotDraw v5.4b2 413 45 1/02/04

(b) Statistics of the collected traces.

Systems Scenarios O
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ArgoUML
Start, Create note, Stop 34,746 821 588
Start, Create class, Create
note, Stop

64,947 1,066 764

JHotDraw

Start, Draw rectangle, Stop 6,668 447 240
Start, Add text, Draw rect-
angle, Stop

13,841 753 361

Start, Draw rectangle, Cut
rectangle, Stop

11,215 1,206 414

Start, Spawn window,
Draw circle, Stop

16,366 670 433

and in the worst case must be evaluated for N/2 segments. Thus, a single step
of the GA approach equates the entire calculation of the DP approach.

4 Empirical Study

This section reports an empirical study comparing the GA approach proposed
by Asadi et al. [5] with our novel DP approach. The goal of this study is to
analyze the performances of the trace segmentation approaches based on GA
and DP with the purpose of evaluating their capability to identify meaningful
concepts in traces. The quality focus is the accuracy and completeness of the
identified concepts. The perspective is that of researchers who want to evaluate
which of the two techniques (GA or DP) better solves the trace segmentation
problem. The context consists of two trace segmentation approaches, one based
on GA and one on DP, and of the same execution traces used in previous work
[5] and extracted from two open-source systems, ArgoUML and JHotDraw.

ArgoUML3 is an open-source UML modelling tool with advanced features,
such as reverse engineering and code generation. The ArgoUML project started
in September 2000 and is still active. We analyzed release 0.19.8. JHotDraw4

is a Java framework for drawing 2D graphics. JHotDraw started in October
2000 with the main purpose of illustrating the use of design patterns in a real
context. We analyzed release 5.1. Table 1(a) summarizes the systems statistics.
We generated traces by exercising various scenarios in the two systems. Table
1(b) summarizes the scenarios and shows that the generated traces include from
6,000 to almost 65,000 method invocations. The compressed traces include from
240 up to more than 750 method invocations.

3 http://argouml.tigris.org
4 http://www.jhotdraw.org

http://argouml.tigris.org
http://www.jhotdraw.org
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This study aims at answering the three following research questions:

– RQ1. How do the performances of the GA and DP approaches compare in
terms of fitness values, convergence times, and number of segments?

– RQ2. How do the GA and DP approaches perform in terms of overlaps be-
tween the automatic segmentation and the manually-built oracle, i.e., recall?

– RQ3. How do the precision values of the GA and DP approaches compare
when splitting execution traces?

4.1 Study Settings and Analysis Method

The GA approach iss implemented using the Java GA Lib5 library. We use a
simple GA with no elitism, i.e., it does not guarantee to retain best individuals
across subsequent generations. We set the population size to 200 individuals
and a number of generations of 2,000 for shorter traces (those of JHotDraw) and
3,000 for longer ones (those of ArgoUML). The crossover probability is set to
70% and the mutation to 5%, which are values used in many GA applications.

The DP approach scans the trace from left-to-right building the exact solution
and in its current formulation does not have any configuration parameter.

In previous work, the results of the GA approach were reported for for mul-
tiple (10) runs of the algorithm to account for the nondeterministic nature of
the technique. We only report the results of the DP approach for one of its run
per traces because it is by nature deterministic and multiple runs would pro-
duce exactly the same results. Also, we compare DP results with the best result
achieved among the 10 GA runs.

To address RQ1, we compare the value of the fitness function reached by
the GA approach with the value of the segmentation score obtained by the DP
approach. The values of the fitness function and segmentation score per se do
not say anything about the quality of the obtained solutions. Yet, we compare
these values to assess, given a representation and a fitness function/segmentation
score, which of the GA or DP approach obtain the best value. We also compare
the execution times of the GA and DP approaches. We finally report the number
of segments that the two approaches create for each execution trace.

For RQ2, we compare the overlap between a manually-built oracle and seg-
ments identified by the GA and DP approaches. We build an oracle by manually
assigning a concept to trace segments—using the tagging feature of the instru-
mentor tool—while executing the instrumented systems. Given the segments
determined by the tags in the oracle and given the segments obtained by an exe-
cution of either of the approaches, we compute the Jaccard overlap [14] between
each manually-tagged segment in the oracle and the closest, most similar seg-
ment obtained automatically. Let us consider a (compressed) trace composed of
N method invocations T ≡ m1, . . .mN and partitioned in k segments s1 . . . sk.
For each segment sx, we compute the maximum overlap between sx and the
manually-tagged segments soy as max(Jaccard(sx, soy)), y ∈ {1 . . . k} where:

Jaccard(sx, soy) =
|sx ∩ soy|
|sx ∪ sy|

5 http://sourceforge.net/projects/java-galib/

http://sourceforge.net/projects/java-galib/
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and where union and intersection are computed considering method invocations
occurring at a given position in the trace.

For RQ3, we evaluate (and compare) the precision of both the GA and DP
approaches in terms of precision, which is defined as follows:

Precision(sx, soy) =
|sx ∩ soy|
|sy|

where sx is a segment obtained by an automatic approach (GA or DP) and soy

is a segment in the corresponding trace of the oracle.
For RQ1, RQ2, and RQ3, we statistically compare results obtained with the

GA and DP approaches using the non-parametric, paired Wilcoxon test. We also
compute the magnitude of the differences using the non-parametric effect-size
Cliff’s δ measure [13], which, for dependent samples, as in our study, is defined as
the probability that a randomly-selected member of one sample DP has a higher
response than a randomly-selected member of the second sample GA, minus the
reverse probability:

δ =

∣∣DPi > GAj
∣∣− ∣∣GAj > DPi

∣∣
|DP| |GA|

The effect size δ is considered small for 0.148 ≤ δ < 0.33, medium for 0.33 ≤
δ < 0.474 and large for δ ≥ 0.474 [13].

4.2 Results

This section reports the results of the empirical study. Data sets are available
for replication6.

Table 2. Number of segments, values of fitness function/segmentation score, and times
required by the GA and DP approaches

System Scenario
# of Segments Fitness Time (s)
GA DP GA DP GA DP

ArgoUML
(1) 24 13 0.54 0.58 7,080 2.13
(2) 73 19 0.52 0.60 10,800 4.33

JHotDraw

(1) 17 21 0.39 0.67 2,040 0.13
(2) 21 21 0.38 0.69 1,260 0.64
(3) 56 20 0.46 0.72 1,200 0.86
(4) 63 26 0.34 0.69 240 1.00

Regarding RQ1, Table 2 summarizes the obtained results using both the GA
and DP approaches, in terms of (1) number of segments in which the traces
were split, (2) achieved values of fitness function/segmentation score, and (3)
times needed to complete the segmentations (in seconds). The DP approach
tends to segment the trace in less segments than the GA one, with the exception
of Scenario (1) of JHotDraw, composed of one feature only and for which the
number of segments is 21 for both approaches, and of Scenario 3 of JHotDraw,
6 http://web.soccerlab.polymtl.ca/ser-repos/public/dp_sp.tar.gz

http://web.soccerlab.polymtl.ca/ser-repos/public/dp_sp.tar.gz
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for which the DP approach creates 21 segments whereas GA creates only 17
segments. The difference of the number of segments is not statistically significant
(p-value=0.10), although Cliff’s δ effect size is high (1.16) and in favor of the
GA approach.

Looking at the values of the fitness function/segmentation score, the DP ap-
proach always produces better values than the GA one. The Wilxocon test indi-
cates that the difference is statistically significant (p-value=0.03) and the Cliff’s
δ effect size is high (0.76): the DP approach performs significantly better than
the GA approach, given the representations described in Section 2. The better
convergence of the DP also explains the smaller number of segments obtained;
that is, DP is able to converge to better solutions that—according to the fitness
function of equation (3)—favor a smaller number of segments.

Finally, the convergence times of the GA approach are by far higher than
that of the DP one: from several minutes or hours (for ArgoUML) to seconds.
The difference between the GA and DP approaches is statistically significant
(p-value=0.03) and the effect size high (1.05). We thus answer RQ1 by stating
that in terms of fitness values, convergence time, and number of segments, the
DP approach out-performs the GA approach.

Table 3. Jaccard overlaps and precision values between segments identified by the GA
and DP approaches

System Scenario Feature
Jaccard Precision
GA DP GA DP

ArgoUML
(1) Create Note 0.33 0.87 1.00 0.99
(2) Create Class 0.26 0.53 1.00 1.00
(2) Create Note 0.34 0.56 1.00 1.00

JHotDraw

(1) Draw Rectangle 0.90 0.75 0.90 1.00
(2) Add Text 0.31 0.33 0.36 0.39
(2) Draw Rectangle 0.62 0.52 0.62 1.00
(3) Draw Rectangle 0.74 0.24 0.79 0.24
(3) Cut Rectangle 0.22 0.31 1.00 1.00
(4) Draw Circle 0.82 0.82 0.82 1.00
(4) Spawn window 0.42 0.44 1.00 1.00

To address RQ2, we evaluate the Jaccard overlap between the manually-
identified segments corresponding to each feature of the execution scenarios and
the segments obtained using the GA and DP approaches. Columns 4 and 5 of
Table 3 report the results. Jaccard scores are always higher for the GA approach
than for the DP one, with the only exception of the Draw Rectangle feature
in JHotDraw, for which the Wilcoxon paired test indicates that there is no
significant difference between Jaccard scores (p-value=0.56). The obtained Cliff’s
δ (0.11) is small, although slightly in favor of the DP approach. We thus answer
RQ2 by stating that in terms of overlap, segments obtained with the GA and
DP approaches do not significantly differ and the DP approach has thus a recall
similar to that of the GA one.

Regarding RQ3, Columns 6 and 7 of Table 3 compare the precision values
obtained using the GA and DP approaches. Consistently with results reported
in previous work [5], precision is almost always higher than 80%, with some
exceptions, in particular the Add Text and Draw Rectangle features of JHotDraw.
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There is only one case for which the DP approach exhibits a lower precision than
the GA one: for the Draw Rectangle feature of JHotDraw (Scenario 3) where
the DP approach has a precision of 0.24 whereas the GA one has a precision of
0.79. Yet, in general, the Wilcoxon paired test indicates no significant differences
between the GA and DP approaches (p-value=0.52) and the Cliff’s δ (0.04)
indicates a negligible difference between the two approaches. In conclusion, we
answer RQ3 by stating that the precision obtained using the DP approach does
not significantly differ from the one obtained using the GA approach.

4.3 Threats to Validity

We now discuss the threats to the validity of our empirical study.
Threats to construct validity concern the relation between theory and obser-

vation. In this study, they are mainly due to measurement errors. To compare
the GA and DP approaches, other than considering the achieved fitness function
values and the computation times, we used precision and Jaccard overlap, al-
ready used in a previous work [5] as well as in the past [22]. While in this paper,
due to the lack of space, we cannot report a qualitative analysis of the obtained
segments, previous work [5] already showed that a segmentation with high over-
lap and precision produces meaningful segments. Finally, we cannot compare
the times required by the GA and DP approaches to achieve the a same fitness
value/segmentation score because the DP approach always reaches, by construc-
tion, the global optimum while the GA approach does not. Moreover, even if the
achieved fitness values and segmentation scores are different, we showed that the
DP approach is able to reach a better score in a shorter time.

Threats to internal validity concern confounding factors that could affect our
results. These could be due to the presence, in the execution traces, of extra
method invocations related to GUI events or other system events. The frequency-
based pruning explained in Step 3 of Section 2 mitigates this threat.

Threats to conclusion validity concern the relationship between treatment
and outcome. We statistically compared the performances of the GA and DP
approaches using the non-parametric Wilcoxon paired test and used the non-
parametric Cliff’s δ effect size measure.

Threats to external validity concern the possibility to generalize our results.
Although we compared the GA and DP approaches on traces from two different
systems, further studies on larger traces and more complex systems are needed,
especially to better demonstrate the scalability of the DP approach. Indeed, we
showed that the DP approach out-performs the GA one in terms of computation
times to segment traces but did not show that, differently from the GA approach,
its computation time does not exponentially increase with trace size.

5 Related Work

As sketched in the introduction, concept location approaches can be divided into
static, dynamic, and hybrids approaches.
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Static approaches relies on information statically collected from the program
under analysis. Anquetil and Lethbridge [1] proposed techniques to extract con-
cepts from a very simple source of information, i.e., file names. Chen and Ra-
jilich [9] developed an approach to locate concepts using only Abstract System-
Dependency Graph (ASDG). The ASDG is constructed using a subset of the
information of a system-dependency graph (SDG). Finally, Marcus et al. [17]
performed concept location using an approach based on information retrieval.
As Marcus et al., our approach strongly relies on the textual content of the
program source code.

Dynamic approaches. use one or more execution traces to locate concepts in
the source code. In their seminal work, Wilde and Scully [25] used test cases to
produce execution traces; concepts location was performed by comparing differ-
ent traces: one in which the concept is executed and another without concept.
Similarly, Poshyvanyk et al. [20] used multiple traces from multiple scenarios.

Hybrid approaches. have been introduced to overcome the limitations of dynamic
and static approaches. Static approaches often fail to properly capture a system
behavior, while dynamic approaches are sensitive to the chosen execution traces.
Antoniol and Guéhéneuc [2] presented a hybrid approach to concept location and
reported results for real-life large object-oriented multi-threaded systems. They
used knowledge filtering and probabilistic ranking to overcome the difficulties of
collecting uninteresting events. This work was improved [3] by using the notion
of epidemiology of diseases in locating the concepts.

We share with previous works the general idea of concept location and with
hybrid approaches. This work extends our previous work [5,4] by reformulating
the trace segmentation problem as a DP problem and comparing the previous
results with the new ones.

6 Conclusions and Future Work

In this paper we reformulate the trace segmentation problem as a dynamic pro-
gramming (DP) problem and, specifically, as a particular case of the string split-
ting problem. We showed that we can benefit from the overlapping sub-problems
and an optimal substructure of the string splitting problem to reuse computed
scores of intervals and segmentation scores and, thus, to obtain dramatic gains
in performances without loss in precision and recall. Indeed, differently from
the GA approach, the DP approach reuses pre-computed cohesion and coupling
values among subsequent segments of an execution trace, which is not possi-
ble using genetic algorithms, due to their very nature. We believe that other
problems, such as segmenting composed identifiers into component terms, could
be modelled in a similar way and, thus, that we, as a community, should be
careful when analyzing a problem: a different, possibly non-orthodox, problem
formulation may lead to surprisingly good performances.

We empirically compared the DP and GA approaches, using the same data
set from previous work [4,5]. Our empirical study consisted in the execution



A Fast Algorithm to Locate Concepts in Execution Traces 265

traces from ArgoUML and JHotDraw, which were previously used to validate
the GA approach. Results indicated that the DP approach can achieve results
similar to the GA approach in terms of precision and recall when its segmen-
tation is compared with a manually-built oracle. They also show that the DP
approach has significantly better results in terms of the optimum segmentation
score vs. fitness function. More important, results showed that the DP approach
significantly out-performed the GA approach in terms of the times required to
produce the segmentations: where the GA approach would take several minutes,
even hours; the DP approach just takes a few seconds.

Work-in-progress aims at further validating the scalability of the DP trace
segmentation approach as well as at complementing the approach with seg-
ment labelling to make the produced segments better suitable for program-
comprehension activities. Finally, we would like to further explore sub-optimal
solutions of the DP problem with lower bound complexity, and evaluate their
impact on the solution accuracy.
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23. Ka-Yee Ng, J., Guéhéneuc, Y.G., Antoniol, G.: Identification of behavioral and cre-
ational design motifs through dynamic analysis. Journal of Software Maintenance
and Evolution: Research and Practice 22(8), 597–627 (2010)

24. Tonella, P., Ceccato, M.: Aspect mining through the formal concept analysis of
execution traces. In: Proceedings of Working Conference on Reverse Engineering,
pp. 112–121 (2004)

25. Wilde, N., Scully, M.C.: Software reconnaissance: Mapping program features to
code. Journal of Software Maintenance - Research and Practice 7(1), 49–62 (1995)



M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2001, LNCS 6956, p. 267, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Evaluating Modularization Quality as an Extra Objective 
in Multiobjective Software Module Clustering  

Márcio de Oliveira Barros 

Post-graduate Information Systems Program – PPGI/UNIRIO 
Av. Pasteur 458, Urca – Rio de Janeiro, RJ – Brazil 

marcio.barros@uniriotec.br 

Abstract. The application of multiobjective optimization to address Software 
Engineering problems is a growing trend. Multiobjective algorithms provide a 
balance between the ability of the computer to search a large solution space for 
valuable solutions and the capacity of the human decision-maker to select an 
alternative when two or more incomparable objectives are presented. However, 
when more than a single objective is available to be taken into account in a 
search process, the number of objectives to be considered becomes part of the 
decision. We have examined the effectiveness of using modularization quality 
(MQ) as an objective function in the context of the software module clustering 
problem. We designed and executed a set of experiments using both randomly-
generated and real-world instances of varying size and complexity and a fixed 
calculation budget set in a per instance basis. Results collected from these 
experiments show that using MQ as an extra objective can improve search 
results for small instances (few modules to be clustered), while it decreases 
search quality for larger instances (more than 100 modules to be clustered). 
Search quality was measure both in terms of the number of distinct solutions 
found and on their coverage of the solution space, according to the spread and 
hypervolume quality indicators. We correlated problem characteristics (number 
of modules, clusters, and dependencies), instance attributes (module 
dependency distribution patterns), and algorithmic measures (MQ conflict with 
cohesion and coupling) and found that these elements can only partially explain 
the effectiveness of using MQ as an extra objective. 

Keywords: multiobjective optimization, software clustering, coupling, 
cohesion, genetic algorithms. 
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Abstract. We present a survey based on papers published in the first two 
editions of the Symposium on Search-Based Software Engineering (2009 and 
2010). The survey addresses how empirical studies are being designed and used 
by researchers to support evidence on the effectiveness and efficiency of 
heuristic search techniques when applied to Software Engineering problems. 
The survey reuses the structure and research questions proposed by a systematic 
review published in the context of search-based software testing and covering 
research papers up to 2007. A list of validity threats for SBSE experiments is 
also proposed and the extent to which the selected research papers address these 
threats is evaluated. We have compared our results with those presented by the 
former systematic review and observed that the number of Search-based 
Software Engineering (SBSE) research papers supported by well-designed and 
well-reported empirical studies seems to be growing over the years. On the 
other hand, construct, internal, and external validity threats are still not properly 
addressed in the design of many SBSE experiments. 

Keywords: survey, empirical studies, meta-heuristic algorithms, search-based 
software engineering. 
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Although there is extensive literature in software defect prediction techniques,
machine learning approaches have yet to be fully explored and in particular,
Subgroup Discovery (SD) techniques. SD algorithms aim to find subgroups of
data that are statistically different given a property of interest [1,2]. SD lies
between predictive (finding rules given historical data and a property of interest)
and descriptive tasks (discovering interesting patterns in data). An important
difference with classification tasks is that the SD algorithms only focus on finding
subgroups (e.g., inducing rules) for the property of interest and do not necessarily
describe all instances in the dataset.

In this preliminary study, we have compared two well-known algorithms, the
Subgroup Discovery algorithm [3] and CN2-SD algorithm [4], by applying them
to several datasets from the publicly available PROMISE repository [5], as well
as the Bug Prediction Dataset created by D’Ambros et al. [6]. The comparison
is performed using quality measures adapted from classification measures. The
results show that generated models can be used to guide testing effort. The
parameters for the SD algorithms can be adjusted to balance the specificity and
generality of a rule so that the selected rules can be considered good enough for
software engineering standards. The induced rules are simple to use and easy
to understand. Further work with more datasets and other SD algorithms that
tackle the discovery of subgroups using different approaches (e.g., continuous
attributes, discretization, quality measures, etc.) is needed.
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4. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD.
The Journal of Machine Learning Research 5, 153–188 (2004)

5. Boetticher, G., Menzies, T., Ostrand, T.: Promise repository of empirical software
engineering data. West Virginia University, Department of Computer Science (2007)

6. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction
approaches. In: IEEE Mining Software Repositories (MSR), pp. 31–41 (2010)



 

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2001, LNCS 6956, pp. 271–272, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Search-Based Parallel Refactoring Using  
Population-Based Direct Approaches 

Hurevren Kilic1, Ekin Koc2, and Ibrahim Cereci2 

1 Computer Engineering Department, Gediz University, Menemen, Izmir, Turkey* 
Hurevren.kilic@gediz.edu.tr 

2 Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey 
antimon@gmail.com, icereci@atilim.edu.tr 

Abstract. Automated software refactoring is known to be one of the “hard” 
combinatorial optimization problems of the search-based software engineering 
field. The difficulty is mainly due to candidate solution representation, 
objective function description and necessity of functional behavior preservation 
of software. The problem is formulated as a combinatorial optimization 
problem whose objective function is characterized by an aggregate of object-
oriented metrics or pareto-front solution description. In our recent empirical 
study, we have reported the results of a comparison among alternative search 
algorithms applied for the same problem: pure random, steepest descent, 
multiple first descent, simulated annealing, multiple steepest descent and 
artificial bee colony searches. The main goal of the study was to investigate 
potential of alternative multiple and population-based search techniques. The 
results showed that multiple steepest descent and artificial bee colony 
algorithms were most suitable two approaches for an efficient solution of the 
problem. An important observation was either with depth-oriented multiple 
steepest descent or breadth-oriented population-based artficial bee colony 
searches, better results could be obtained through higher number of executions 
supported by a lightweight solution representation. On the other hand different 
from multiple steepest descent search, population-based, scalable and being 
suitable for parallel execution characteristics of artificial bee colony search 
made the population-based choices to be the topic of this empirical study. 1In 
this study, we report the search-based parallel refactoring results of an empirical 
comparative study among three population-based search techniques namely, 
artificial bee colony search, local beam search and stochastic beam search and a 
non-populated technique multiple steepest descent as the baseline. For our 
purpose, we used parallel features of our prototype automated refactoring tool 
A-CMA written in Java language. A-CMA accepts bytecode compiled Java 
codes as its input. It supports 20 different refactoring actions that realize 
searches on design landscape defined by an adhoc quality model being an 
aggregation of 24 object-oriented software metrics. We experimented 6 input 
programs written in Java where 5 of them being open source codes and one 
student project code. The empirical results showed that for almost all of the 
considered input programs with different run parameter settings, local beam 
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search is the most suitable population-based search technique for the efficient 
solution of the search-based parallel refactoring problem in terms of mean and 
maximum normalized quality gain. However, we observed that the 
computational time requirement for local beam search becomes rather high 
when the beam size exceeds 60. On the other hand, even though it is not able to 
identify high quality designs for less populated search setups, time-efficiency 
and scalability properties of artificial bee colony search makes it a good choice 
for population sizes ≥ 200.    
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Software testing is the process of evaluating the quality of the software under
test (SUT) by controlled execution, with the primary aim to reveal inadequate
behavior. Despite the automation offered by modern development environments,
the process of test data generation remains a largely manual task. In this paper
we present a model-based approach for the generation of test data, using search-
based software engineering technique.

Search-based software engineering (SBSE) is the use of search-based optimiza-
tion algorithms to software engineering problems. Software testing is probably
the most important domain of SBSE [1]. Most studies, however, have applied
SBSE for structural testing, while the use of such techniques for functional test-
ing is rarely addressed. The main reason is probably the implicit nature of the
software specifications and the complexity of their mapping to fitness functions.

The key ingredients for the application of search-based optimization to test
data generation is the choice of candidate representation and the definition of the
fitness function. In our proposed approach we utilize the metamodel constructed
to describe the context of the SUT. Parts of the program data, their relations and
the constraints among their values are represented by the metamodel. Candidate
test data are model instances conforming to this metamodel.

We focus on functional specifications that describe the expected behaviour of
the SUT in case of a certain context. In order to test the accomplishment of a
specification, we need test data that contain particular configuration of objects
as input described by the specification. We refer to these as context patterns,
and our goal is to generate test data that contain these patterns. The fitness
function formulated to guide the test data generation rewards model instances
that cover the model patterns.

The iterative manipulation of instances and pattern matching in order to
calculate the fitness are executed with popular model transformation frameworks,
which usually apply rule based manipulation of models [2].
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The idea of exploiting search-based methods to estimate development effort is based 
on the observation that the effort estimation problem can be formulated as an 
optimization problem. As a matter of fact, among possible estimation models, we 
have to identify the best one, i.e., the one providing the most accurate estimates. 
Nevertheless, in the context of effort estimation there does not exist a unique measure 
that allows us to compare different models and consistently derives the best one [1]. 
Rather, several evaluation criteria (e.g., MMRE and Pred(25)) covering different 
aspects of model performances (e.g., underestimating or overestimating) are used to 
assess and compare estimation models [1]. Thus, considering the effort estimation 
problem as an optimization problem we should search for the model that optimizes 
several measures. From this point of view, the effort estimation problem is inherently 
multi-objective. Nevertheless, all the studies that have been carried out so far on the 
use of search-based techniques for effort estimation exploited single objectives (e.g., 
[2][3]). Those studies have also revealed that the use of some measures as fitness 
function (e.g., MMRE) decreased a lot the accuracy in terms of other summary 
measures [2]. A first attempt to take into account different evaluation criteria has been 
reported by Ferrucci et al. [3], where Genetic Programming (GP) exploited a 
combination of two measures (e.g., Pred(25) and MMRE) in a single fitness function, 
providing encouraging results. Obviously, an approach based on combination of 
measures is the simplest way to deal with the multi-objective problem but this can 
determine biases since there is no defined way of aggregating different objectives. 
Thus, we investigated the use of a Multi-Objective Genetic Programming (MOGP) 
approach with the aim to verify its effectiveness. To the best of our knowledge this is 
the first attempt to apply a MOGP approach in this field. In particular, we designed 
and experimented an adaptation to GP of the Non dominated Sort Genetic Algorithm-
II (NSGA-II) exploiting multi-objective functions based on a different number and 
type of evaluation criteria. Moreover, we compared the performance of MOGP with 
GP using different fitness functions. The preliminary empirical analysis, carried out 
with some publicly available datasets included in the PROMISE repository [4], 
revealed that the choice of the evaluation criteria employed in the definition of the 
fitness function affects the overall accuracy of both MOPG and GP. Nevertheless, no 
significant statistical difference has been found between the best results achieved with 
MOGP and GP. Thus, the use of a more sophisticated technique, such as MOGP, 
seems to be not cost/effective in this context. However, this is a preliminary analysis 
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that needs to be deepen also using more data. Moreover, the use of other multi-
objective optimization approaches could be exploited to investigate whether there are 
improvements in the accuracy of the obtained estimation models. 
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Abstract. The Search Based Software Engineering (SBSE) field has emerged as 
an exciting and promising area by proposing the formulation of software 
engineering problems as optimization problems. Hitherto, metaheuristics have 
been widely employed for solving these problems, whilst little work has been 
done regarding the use of exact techniques in the area. This paper aims to fulfil 
this lack by presenting a comprehensive study on the theory and practice of the 
application of exact optimization in SBSE. A conceptual comparison of both 
optimization approaches in the software engineering context is presented. 
Problems' aspects are analysed regarding suitability for use of exact techniques. 
As illustration, comparison experiments with exact technique and metaheuristics 
are conducted over a well-known SBSE problem. The results reveal the overall 
behaviour of exact techniques, regarding efficacy and efficiency, in the SBSE 
context considered, indicating its potential use.  
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FINCH is a methodology for evolving Java bytecode, enabling the evolution of
extant, unrestricted Java programs, or programs in other languages that com-
pile to Java bytecode. The established approach in genetic programming (GP)
involves the definition of functions and terminals appropriate to the problem at
hand, after which evolution of expressions using these definitions takes place.
FINCH evolutionarily improves actual, extant software, which was not inten-
tionally written for the purpose of serving as a GP representation in particular,
nor for evolution in general. In this work we show how several game heuristics
that are taken as real-world Java programs are effortlessly and automatically
improved by FINCH.

We have developed a powerful tool [1,2,3] by which extant software, written in
the Java programming language, or in a language that compiles to Java bytecode,
can be evolved directly, without an intermediate genomic representation, and
with no restrictions on the constructs used. We provide an overview of this
system, some previous results, its usability, and the application of FINCH to
evolving Java-written game heuristics.
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