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Preface

The 9th International Workshop on Fuzzy Logic and Applications, WILF 2011,
held in Trani (Italy), during August 29–31, 2011, covered topics related to the-
oretical and experimental areas of fuzzy sets and systems with emphasis on
different applications.

This event represents the pursuance of an established tradition of biannual in-
terdisciplinary meetings. The previous editions of WILF have been held, with an
increasing number of participants, in Naples (1995), Bari (1997), Genoa (1999),
Milan (2001), Naples (2003), Crema (2005), Camogli (2007), and Palermo (2009).
Each event aimed to highlight connections and to stress synergies of fuzzy sets
theory with soft computing and cognitive science, in order to reach a better un-
derstanding of both natural and artificial complex systems as well as computing
systems, inspired by nature, which are able to solve complex problems. From this
perspective, one of the main goals of the WILF workshops is to bring together
researchers and developers from both academia and high-tech companies and
foster multidisciplinary research.

WILF 2011 received more than 50 paper submissions from all over the world.
A rigorous peer-review selection process was applied to ultimately select about
30 high-quality manuscripts to be published in this volume. In addition to regular
papers, WILF 2011 included two tutorials:

- Francesco Marcelloni (University of Pisa, Italy), “Multi-Objective Evolu-
tionary Fuzzy Systems”

- Javier Montero (Complutense University, Madrid, Spain), “Uncertainty and
Ignorance in Decision Modelling”

There were also three keynote talks:

- Janusz Kacprzyk (Polish Academy of Sciences), “Towards Human/Social-
Inspired Computation: The Role of Computing with Words and Fuzzy Logic”

- Witold Pedrycz (University of Alberta, Edmonton, Canada), “From Fuzzy
Models to Granular Fuzzy Models”

- Luis Magdalena (European Centre for Soft Computing, Mieres, Spain), “Some
Open Questions in Fuzzy Rule-Based Systems Design”

Among them, the present volume includes contributions by Witold Pedrycz
(University of Alberta, Canada) and Francesco Marcelloni (University of Pisa,
Italy).

The success of this workshop is to be credited to the effort of many people,
in particular to the Program Committee members for their commitment to pro-
viding high quality, constructive reviews, to the local Organizing Committee for
the support in the organization of all the workshop events and to all the authors
for their valuable presentations.
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Finally, and mainly, we would like to express our deepest gratitude to Gio-
vanna Castellano for her truly superb contributions to the organization of this
very special workshop.

June 2011 Anna Maria Fanelli
Witold Pedrycz

Alfredo Petrosino
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Solutions of Equation I(x, y) = I(x, I(x, y)) for

Implications Derived from Uninorms

Sebastia Massanet and Joan Torrens

Department of Mathematics and Computer Science
University of the Balearic Islands
07122 Palma de Mallorca, Spain
{s.massanet,dmijts0}@uib.es

Abstract. Uninorms are one of the most studied classes of aggregation
functions and with more applications in the field of the aggregation of
information. Their conjunctive or disjunctive behaviour is essential for
their use as logical connectives and for obtaining fuzzy implications de-
rived from uninorms. In this communication, we want to analyse which
fuzzy implications derived from uninorms satisfy the iterative equation
I(x, y) = I(x, I(x, y)). This equation comes from p → q ≡ p → (p → q),
a tautology in classical logic, and it is related with the law of importation
respect to the minimum I(min{x, y}, z) = I(x, I(y, z)).

Keywords: Fuzzy implication, uninorm, functional equation.

1 Introduction

In fuzzy logic, the fuzzy implication is one of the most important operations as
the classical implication is in the classical logic. These operators are essential
in fuzzy control and approximate reasoning, as well as in many the fields where
these theories are applied. This is because they are used not only to model fuzzy
conditionals, but also to make inferences in any fuzzy rule based system ([6])
through the Modus Ponens and Modus Tollens. However, the fact that many
authors have focused their interest in the theoretical study of fuzzy implications
as highlight the survey [10] and also the recent book [2], exclusively devoted to
fuzzy implications is based on a wider range of applications.

There exist many equations with fuzzy implications involved, often derived
from equivalences in classical logic, that has been studied deeply (see [2] and
[10]), to obtain fuzzy implications with concrete properties. One of these equa-
tions is the following one

I(x, y) = I(x, I(x, y)) for all x, y ∈ [0, 1], (1)

where I denotes a fuzzy implication. This equation comes from the tautology in
classical logic

p → (p → q) ≡ p → q,

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 1–8, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 S. Massanet and J. Torrens

and it has been already studied for R, (S, N)-implications and QL-operators in
[15] and for D-operators in [16]. In the case of D-operators, some remarks and
clarifications on the results has been made in [11]. Although fuzzy implications
are usually built from the basic logical connectives, i.e., t-norms, t-conorms and
negations, more recently after the introduction of the uninorms in [17] as gener-
alizations of t-norms and t-conorms, these ones have become a rich source from
which to build fuzzy implications ([2], [4], [9], [14]). In addition, uninorms have
applications in many fields like information aggregation, neural networks, math-
ematical morphology, logical connectives and fuzzy logic ([3,4,5], [7], [9],[13,14],
[17]). The goal of this communication is to make a similar study about the
satisfaction of Equation (1), similar to the one made until now, for implications
derived from uninorms. This study will allow to investigate more in this equation
that is related to the law of importation with respect to the minimum

I(min{x, y}, z) = I(x, I(y, z)).

It is obvious that this law of importation implies the satisfaction of the equa-
tion we want to study. Recall that the law of importation is stronger than the
exchange principle in general and equal to when it holds I(x, 0) = N(x), with N
a continuous negation ([12]). These properties on fuzzy implications are among
the most important ones in fuzzy logic.

The communication is organized as follows. After some preliminaries intro-
ducing the necessary notation, Equation (1) is studied in Section 3, structured
depending on the class of implications derived from uninorms considered. Finally,
in Section 4 there are some conclusions and future work we want to share.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms and t-
conorms (all necessary results and notations can be found in [7]) and uninorms
(see [5] and Chapter 5 in [2]). Some classes of uninorms have been characterized
like uninorms of Umin and Umax ([5]), idempotent uninorms ([3], [8]) and repre-
sentable ones ([5]). Let us recall this last class that will be used more extensively
in this paper.

Definition 1. A uninorm U with neutral element e ∈ (0, 1) is representable if
there exists a continuous and strictly increasing function h : [0, 1] → [−∞, +∞]
(called additive generator of U), with h(0) = −∞, h(e) = 0 and h(1) = +∞
such that U is given by

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and or U(0, 1) = U(1, 0) = 0 or U(0, 1) =
U(1, 0) = 1.

The most accepted definition of fuzzy implication is the following one.
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Definition 2. A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication if
satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from it. Some specially interesting properties of implications are:

– The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), for all x, y, z ∈ [0, 1]. (EP)

– The ordering property for uninorms,

x ≤ y ⇐⇒ I(x, y) ≥ e, for all x, y ∈ [0, 1], where e ∈ (0, 1). (OPU)

Fuzzy implications can be derived of several classes of aggregation functions. In
the following sections, we will use those most used derived from uninorms:

– (U, N)-implications derived from a disjunctive uninorm U and a negation N ,

IU,N (x, y) = U(N(x), y), for all x, y ∈ [0, 1].

– RU -implications derived from a uninorm U such that U(x, 0) = 0 for all
x < 1,

IU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y}, for all x, y ∈ [0, 1].

– QL-operators derived from a conjunctive uninorm U with neutral element e,
a disjunctive uninorm U

′
with neutral element e′ and a negation N (usually

strong),
IQ(x, y) = U

′
(N(x), U(x, y)), for all x, y ∈ [0, 1].

(U, N) and RU -implications are always implications in the sense of Definition 2,
while QL-operators are not implications in general. Finally recall the character-
ization of RU -implications and their structure when the uninorm is idempotent.

Theorem 1. ([1]) Let I : [0, 1]2 → [0, 1] be a function. Then I is a RU -
implication derived from a left-continuous uninorm U with neutral element e ∈
(0, 1), if and only if, I satisfies (I2), (OPU), (EP) and I right-continuous on the
second variable.

Moreover, in this case the uninorm U must be conjunctive and is given by

U(x, y) = inf{z ∈ [0, 1]|I(x, z) ≥ y}.

Theorem 2. ([13]) Let U = (e, g) be any idempotent uninorm with neutral el-
ement e and g its associated decreasing function with g(0) = 1. The residual
implication IU is given by:

IU (x, y) =
{

min(g(x), y) if y < x,
max(g(x), y) if y ≥ x.
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3 Main Results

In this section, we want to characterize which implications I derived from uni-
norms from the classes introduced in Section 2 satisfy Equation (1).

3.1 (U, N) and RU-Implications

Theorem 3. A (U, N)-implication I generated from a disjunctive uninorm U
and a negation N satisfies Equation (1) if and only if the range of N is a subset
of the idempotent elements of U .

Proof. It is similar to the case of (S, N)-implications (see Theorem 10 in [15])
taking into account that in this case, I(x, e) = N(x) holds. 
�

The following result is an immediate consequence.

Corollary 1. A (U, N)-implication I generated from a disjunctive uninorm U
and a continuous negation N satisfies Equation (1) if and only if U is an idem-
potent uninorm.

From the study of Equation (1) for this class of implications, a new characteri-
zation of RU -implications derived from left-continuous idempotent uninorms is
obtained.

Theorem 4. A binary function I : [0, 1]2 → [0, 1] satisfies (I2), (EP), (OPU),
right-continuity on the second argument and Equation (1) if and only if I is a
RU -implication derived from a left-continuous idempotent uninorm.

Proof. Let I be a binary function satisfying (I2), (EP), (OPU ), right-continuity
on the second argument and Equation (1). By Theorem 1, the first four properties
ensure that a conjunctive left-continuous uninorm can be generated trough:

U(x, y) = inf{t ∈ [0, 1]|I(x, t) ≥ y},

for all x, y ∈ [0, 1], and if we denote IU (x, y) = sup{t ∈ [0, 1]|U(x, t) ≤ y}, then
I = IU .

We will prove that U must be idempotent. For all x ∈ [0, 1], U(x, x) =
inf{t ∈ [0, 1]|I(x, t) ≥ x}. Let us suppose that there exists t0 ∈ [0, x) such
that I(x, t0) ≥ x. Then by (OPU ), I(x, I(x, t0)) ≥ e. Since we know that I satis-
fies Equation (1), I(x, t0) = I(x, I(x, t0)) ≥ e and by (OPU ), x ≤ t0 and we have
a contradiction. This proves U(x, x) ≥ x. Now, using Equation (1) and (OPU ),
we have I(x, I(x, x)) = I(x, x) ≥ e ⇒ x ≤ I(x, x) and therefore,

U(x, x) = inf{t ∈ [0, 1]|I(x, t) ≥ x} ≤ x

for all x ∈ [0, 1]. Thus, U is an idempotent uninorm.
Reciprocally, if I is a RU -implication derived from a left-continuous idempo-

tent uninorm, it satisfies the first four properties by Theorem 1. We need only
prove Equation (1). By Theorem 2, we obtain two cases:
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– If I(x, y) = y then Equation (1) holds trivially.
– Otherwise, I(x, y) = g(x) and Equation (1) also holds since in this case, we

have I(x, I(x, y)) = I(x, g(x)) = g(x). 
�

Corollary 2. A RU -implication I generated from a left-continuous uninorm U
satisfies Equation (1) if and only if U is idempotent.

Proof. Let I be a RU -implication generated from a left-continuous idempotent
uninorm U . Then by the previous theorem, I satisfies Equation (1). Reciprocally,
a RU -implication I satisfies (I2), (EP), (OPU ) and is right-continuous on the
second variable, therefore if Equation (1) holds, by the previous theorem, U must
be idempotent. 
�

3.2 QL-Operators

In this case, we will start with a general result for this type of operators. After
that, the QL-implications satisfying Equation (1) are studied and finally, some
particular cases depending on the class of uninorm chosen to generate the QL-
operator are analysed. From now on, e and e′ denote the neutral elements of U
and U ′ respectively.

Proposition 1. Let I be a QL-operator derived from a disjunctive uninorm U ′,
a conjunctive uninorm U and a negation N , that satisfies Equation (1). Then
U ′(N(e), N(e)) = N(e). Moreover, if N is strong, then U(N(e′), N(e′)) = N(e′).

Proof. Taking x = e and y = e′ in Equation (1), we obtain that N(e) must be
an idempotent element of U ′ and now taking x = N(e′) and y = e and applying
N(N(e′)) = e′ since N is strong, we obtain the same property with N(e′). 
�

QL-implications. In this case, we will conclude that the only solutions of Equa-
tion (1) are QL-implications derived from t-norms and t-conorms and among
them, there is only one.

Proposition 2. Let I be a QL-implication derived from a disjunctive uninorm
U ′ with continuous associated t-norm and t-conorm, a conjunctive uninorm U
and a negation N , satisfying Equation (1). Then U ′ must be an Archimedean
t-conorm and U a t-norm.

Proof. In [9] it is proved that if I(x, y) = U ′(N(x), U(x, y)) is an implication
then U ′ must be an Archimedean t-conorm. Now, taking x = e and y = 0 in
Equation (1) we have S(N(e), N(e)) = N(e) and consequently, N(e) = 0. Since
N ≥ NS and NS is a strong negation, e = 1. Thus, U is a t-norm. 
�

Thus, this case reduces to the case of QL-operators derived from Archimedean
t-conorms and t-norms studied in [15], see Theorem 15. However, the concrete
case of QL-implications is not studied separately and as the following theorem
proves, there is only one QL-implication that satisfies Equation (1).
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Theorem 5. Let S = (SL)ϕ be a nilpotent t-conorm, T = (TL)φ a nilpotent
t-norm and N a strong negation such that the corresponding QL-operator I
satisfies Equation (1). Then the following statements are equivalent:

1. I is an implication.
2. (NC)ϕ = N = (NC)φ.
3. I is the Kleene-Dienes implication.

Proof. First we prove 1. ⇒ 2.. Let I be an implication. Then, by Theorem 15 in
[15], we have (NC)ϕ ≤ N ≤ (NC)φ. In addition,

T (x, y) = 0 ⇐⇒ x ≤ (NC)φ(y). (2)

Now, let us suppose that there exists some N(x0) such that (NC)ϕ(N(x0)) <
N(N(x0)). Since T is continuous there exists y0 > 0 such that T (x0, y0) =
(NC)ϕ(N(x0)) and then, by Theorem 15 in [15], I(x0, y0) = 1. Meanwhile, by
the same theorem and Equation (2), I(x, y0) = N(x) for all x ≤ (NC)φ(y0)
violating condition (I1). This is, N = (NC)ϕ.

Now, let us suppose that there exists x0 such that (NC)φ(x0) > N(x0). Let
y0 be such that N(x0) < y0 ≤ (NC)φ(x0). Then I(x0, y0) = N(x0) since y0 ≤
(NC)φ(x0) (see again Theorem 15 in [15]), but I(1, y0) = y0, violating condition
(I1). This is, N = (NC)φ.

After that 2. ⇒ 3. is a straightforward calculation from the expression of the
QL-operator in Theorem 15 in [15] and 3. ⇒ 1. is trivial. 
�

Case of QL-operators with U ′ representable. Now, we return to the gen-
eral case of QL-operators depending on the uninorm chosen to generate them
we want to solve Equation (1). In this paper we reduce our study to the case of
U ′ a representable uninorm. We will start when U ′ is representable.

Proposition 3. Let I be a QL-operator derived from a disjunctive representable
uninorm U ′, a conjunctive uninorm U and a strong negation N . If I satisfies
Equation (1), then necessarily e = N(e′).

Proof. If U ′ is representable, it does not have non-trivial idempotent elements
and by Proposition 1, we obtain N(e) = 0, 1, e′, i.e., e = 0, 1, N(e′). Since U is
conjunctive, e �= 0 and therefore, two cases are possible: e = 1 or e = N(e′).
Let us prove that U cannot be a continuous t-norm T . Let h′ be the additive
generator of U ′ and let us suppose that I satisfies Equation (1). So,

h′−1(h′(N(x)) + h′(T (x, U ′(N(x), T (x, y))))) = h′−1(h′(N(x)) + h′(T (x, y)))

must hold and consequently, when T (x, y) �= 0, 1 and x �= 0, 1,

T (x, U ′(N(x), T (x, y))) = T (x, y) (3)

must hold. Taking x, y such that 0 < y < N(e′) < x < 1 by Proposition 1,
T (x, y) = min{x, y} = y and since x > N(e′) we have N(x) < e′ and h′(N(x)) <
0, therefore

U ′(N(x), y) = h′−1(h′(N(x)) + h′(y)) < y.
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On the other hand, from Equation (3), we obtain U ′(N(x), y) = y, a contradic-
tion. So, necessarily e = N(e′). 
�

Consequently, we will analyse the case e = N(e′). Thus, cases are considered
depending on the class of uninorm to which the conjunctive uninorm belongs.
The proof of the following result is not included due to lack of space.

Proposition 4. Let U ′ be a disjunctive representable uninorm with additive
generator h′, U a conjunctive uninorm and N a strong negation such that e =
N(e′). Then the corresponding QL-operator satisfies Equation (1) if and only if
U is representable with additive generator h such that f = h′ ◦ h−1 is given by

f(x) = cx + h′(e)

with c ∈ R+ constant. In this case, the resulting QL-operator is given by

I(x, y) =
{

1 if (x = 0) or (x = 1, y > 0),
y otherwise.

Remark 1. Note that the previous result ensures that, when we consider the
disjunctive uninorm U ′ representable, there are only solutions if the conjunctive
one U is also representable. There are no solutions when U belongs to Umin or
is idempotent. However, all the conjunctive representable uninorms satisfying
the conditions of the previous proposition generate the same implication. So, we
only obtain one solution in this case.

4 Conclusions and Future Work

In this work, the iterative equation I(x, y) = I(x, I(x, y)) has been studied for
the major classes of implications derived from uninorms. Thus, the (U, N) and
RU -implications satisfying the studied equation have been completely charac-
terized, obtaining a new axiomatic characterization based on Equation (1) of
RU -implications derived from left-continuous idempotent uninorms. In addition,
it has been proved that the only QL-implication satisfying the studied equation
is the Kleene-Dienes implication. In the case of QL-operators in general, the
study when the disjunctive uninorm is representable has been completed, de-
termining that we only obtain solutions when the conjunctive uninorm is also
representable.

It remains to study the cases when the disjunctive uninorm is idempotent
or belongs to Umax. Finally, it would be interesting to study the relationship
between the obtained solutions for this equation and the ones of the law of
importation with T = min.

Acknowledgements. This paper has been partially supported by the Spanish
Grant MTM2009-10320 with FEDER support.
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Abstract. In this paper we analyze the behavior of WOWA operators,
a class of functions that simultaneously generalize weighted means and
OWA operators. Moreover, we introduce functions that also generalize
both operators and characterize those satisfying a condition imposed to
maintain the relationship among the weights.

Keywords: WOWA operators, OWA operators, weighted means.

1 Introduction

Weighted means and ordered weighted averaging (OWA) operators (Yager [8])
are aggregation functions widely used in the literature. Weighted means allow
to weight each information source in relation to their reliability while OWA
operators allow to weight the values according to their ordering. The need to
combine both functions has been reported by several authors (see, among others,
Torra [4] and Torra and Narukawa [6]). In [4], Torra introduces the weighted
OWA (WOWA) operator, a new aggregation function that allows to combine
both weights.

The aim of this paper is to analyze the behavior of WOWA operators. More-
over, since, in some cases, the results provided by these operators may be ques-
tionable, we propose to use functions that maintain the relationship among the
weights of a weighting vector when the non-zero components of the other weight-
ing vector are equal. In this way, we obtain a class of functions that have been
previously introduced by Engemann et al. [1] in a different framework.

The paper is organized as follows. In Section 2 we introduce weighted means,
OWA operators and WOWA operators. Section 3 shows some questionable be-
haviors of WOWA operators. In Section 4 we propose a condition to maintain
the relationship among the weights and characterize the functions that satisfy
this condition. The paper concludes in Section 5.

2 Preliminaries

Throughout the paper we will use the following notation: vectors will be denoted
in bold; η will denote the vector (1/n, . . . , 1/n); x ≥ y will mean xi ≥ yi for all
i ∈ {1, . . . , n}; given σ a permutation of {1, . . . , n}, xσ will denote the vector
(xσ(1), . . . , xσ(n)).

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 9–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In the following definition we present some well-known properties usually
demanded to the functions used in the aggregation processes.

Definition 1. Let F : �n −→ � be a function.

1. F is symmetric if F (xσ) = F (x) for all x ∈ �n and for all permutation σ
of {1, . . . , n}.

2. F is monotonic if F (x) ≥ F (y) for all x, y ∈ �n such that x ≥ y.
3. F is idempotent if F (x, . . . , x) = x for all x ∈ �.
4. F is compensative if min(x) ≤ F (x) ≤ max(x) for all x ∈ �n.
5. F is homogeneous of degree 1 if F (λx) = λF (x) for all x ∈ �n and for all

λ > 0.

2.1 Weighted Means and OWA Operators

Weighted means and OWA operators are defined by vectors with non-negative
components whose sum is 1.

Definition 2. A vector μ ∈�n is a weighting vector if μ ∈ [0, 1]n and
n∑

i=1

μi = 1.

Definition 3. Let p be a weighting vector. The weighted mean associated with
p is the function Fp : �n −→ � given by

Fp(x1, . . . , xn) =
n∑

i=1

pixi.

The weighted means are monotonic, idempotent, compensative and homoge-
neous of degree 1 functions.

In [8], Yager introduced OWA operators as a tool for aggregation procedures
in multicriteria decision making.

Definition 4. Let w be a weighting vector. The OWA operator associated with
w is the function Fw : �n −→ � given by

Fw(x1, . . . , xn) =
n∑

i=1

wixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n).

OWA operators are symmetric, monotonic, idempotent, compensative and ho-
mogeneous of degree 1 functions.

One of the most important issues in the theory of OWA operators is the
determination of associated weights (see, for instance, Xu [7] and Fullér [2]). In
[9], Yager relates the OWA operators weights to quantifiers.

Definition 5. A quantifier is a non-decreasing function Q : [0, 1] −→ [0, 1] that
satisfies Q(0) = 0 and Q(1) = 1.
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Given a quantifier Q, the OWA operator weights can be obtained from the
expression wi = Q (i/n) − Q ((i − 1)/n) , i = 1, . . . , n, (Yager [9]). From this
relation follows:

Q

(
i

n

)
=

i∑
j=1

wj , i = 1, . . . , n;

i.e., the same weighting vector can be obtained through any quantifier interpo-

lating the points
(

i/n,
i∑

j=1

wj

)
, i = 1, . . . , n.

2.2 WOWA Operators

WOWA operators were introduced by Torra [4] in order to consider situations
where both the importance of information sources and the importance of values
had to be taken into account.

Definition 6. Let p and w be two weighting vectors. The WOWA operator
associated with p and w is the function Ww

p : �n −→ � given by

Ww
p (x1, . . . , xn) =

n∑
i=1

μixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n) and the
weight μi is defined as

μi = f

⎛⎝ i∑
j=1

pσ(j)

⎞⎠− f

⎛⎝i−1∑
j=1

pσ(j)

⎞⎠ ,

where f is a non-decreasing function that interpolates the points
(

i/n,
i∑

j=1

wj

)
together with the point (0, 0). Moreover, f is the identity when the points can be
interpolated in this way.

Any quantifier generating the weighting vector w satisfies the required properties
of the function f in the previous definition (under the assumption that the
quantifier is the identity when w = η). For this reason, it is possible to give an
alternative definition of WOWA operators using quantifiers (Torra and Godo [5]).

Definition 7. Let p be a weighting vector and let Q be a quantifier. The WOWA
operator associated with p and Q is the function WQ

p : �n −→ � given by

WQ
p (x1, . . . , xn) =

n∑
i=1

μixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n) and the
weight μi is defined as

μi = Q

⎛⎝ i∑
j=1

pσ(j)

⎞⎠− Q

⎛⎝i−1∑
j=1

pσ(j)

⎞⎠ .
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WOWA operators are monotonic, idempotent, compensative and homogeneous
of degree 1 functions. Moreover, Wη

p = Fp and Ww
η = Fw (Torra [4]).

3 Analysis of WOWA Operators

In this section we show with examples some questionable behaviors of WOWA
operators.

Example 1. Suppose we have five sensors to measure a certain physical prop-
erty. The sensors are of different quality and precision, so they are weighted
according to the weighting vector p = (0.3, 0.2, 0.2, 0.2, 0.1). Moreover, to pre-
vent a faulty sensor alter the measurement, we take the weighting vector w =
(0, 1/3, 1/3, 1/3, 0); thus, the maximum and minimum values are not considered.

Given w = (0, 1/3, 1/3, 1/3, 0), we have to choose a quantifier interpolating
the points (0, 0), (0.2, 0), (0.4, 1/3), (0.6, 2/3), (0.8, 1) and (1, 1). We consider
the quantifier depicted in Figure 1, which is given by

Q(x) =

⎧⎨⎩
0 if x ≤ 0.2,
5
3x − 1

3 if 0.2 < x < 0.8,

1 if x ≥ 0.8.

0.2 0.4 0.6 0.8 1

1
3

2
3

1
Q(x)

Fig. 1. Quantifier associated to the weighting vector w = (0, 1/3, 1/3, 1/3, 0)

Suppose the values obtained by the sensors are x = (10, 4, 5, 6, 3). If σ is a
permutation ordering these values in a decrease way, then, in this case, pσ =
p = (0.3, 0.2, 0.2, 0.2, 0.1). The weighting vector μ is

μ1 = Q(0.3) − Q(0) = 1/6, μ2 = Q(0.5) − Q(0.3) = 1/3,
μ3 = Q(0.7) − Q(0.5) = 1/3, μ4 = Q(0.9) − Q(0.7) = 1/6,
μ5 = Q(1) − Q(0.8) = 0,

and Ww
p (10, 4, 5, 6, 3) = 10/6 + 2 + 5/3 + 4/6 = 6.
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However, our intention is not to consider the maximum and minimum values
and only take into account the values 4, 5 and 6; which have been provided by
sensors with the same weight. Therefore, it seems logical to make the average of
these values, in which case we would get 5 as final value.

Example 2. Consider again the situation of the previous example and suppose
now that p = (0.4, 0.2, 0.2, 0.1, 0.1) and x = (10, 3, 5, 6, 7). If σ is a permu-
tation ordering these values from the largest to the smallest element, then
pσ = (0.4, 0.1, 0.1, 0.2, 0.2). The weighting vector μ is

μ1 = Q(0.4) − Q(0) = 1/3, μ2 = Q(0.5) − Q(0.4) = 1/6,
μ3 = Q(0.6) − Q(0.5) = 1/6, μ4 = Q(0.8) − Q(0.6) = 1/3,
μ5 = Q(1) − Q(0.8) = 0,

and Ww
p (10, 3, 5, 6, 7) = 10/3 + 7/6 + 1 + 5/3 = 43/6.

As in the previous example, we do not want to consider the maximum and
minimum values and to aggregate the remaining ones, in this case the values 5,
6, and 7. However, the WOWA operator returns a value greater than the three
aggregate values because it weights the maximum (10 in this case) with 1/3. On
the other hand, there are other interesting properties that the WOWA operator
does not satisfy:

1. The value returned by the WOWA operator does not always lie between the
values returned by the weighted mean and the OWA operator:

Fw(10, 3, 5, 6, 7) = 7/3 + 2 + 5/3 = 6,
Fp(10, 3, 5, 6, 7) = 4 + 0.6 + 1 + 0.6 + 0.7 = 6.9,

but Ww
p (10, 3, 5, 6, 7) = 43/6.

2. The value returned by the WOWA operator does not always coincide with
the values of the weighted mean and the OWA operator when both are equal:

Fw(8, 2.5, 5, 6, 7) = 7/3 + 2 + 5/3 = 6,
Fp(8, 2.5, 5, 6, 7) = 3.2 + 0.5 + 1 + 0.6 + 0.7 = 6,

but Ww
p (8, 2.5, 5, 6, 7) = 8/3 + 7/6 + 1 + 5/3 = 6.5.

4 Choosing Functions to Maintain the Relationship
among the Weights

As we have seen in the previous section, the results provided by WOWA opera-
tors may be questionable. If we consider again Example 2, we want to aggregate
the values 5, 6, and 7, which are the values given by the sensors with weights
0.2, 0.1, and 0.1, respectively. One possibility is to weight these values by means
of the weighting vector (0.5, 0.25, 0.25). In this way, it is possible to maintain the
relationship among the initial weights. The returned value in this case is 23/4.
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According to the above remarks, we look for a function Fw
p : �n −→ � given

by

Fw
p (x1, . . . , xn) =

n∑
i=1

ρixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n) and the
weight ρi is defined as

ρi =
f(wi, pσ(i))

n∑
j=1

f(wj , pσ(j))

,

where f : [0, 1]2 −→ [0, 1]. In this way the weights ρi depend on the weights wi

and pσ(i).
In order to maintaining the relationship among the weights of a vector (p or

w) when the non-zero components of the other vector are equal, it is necessary
that f satisfies the following condition:

f(tx, y) = f(x, ty) = tf(x, y),

for all x, y ∈ [0, 1] and t ∈ [0,∞) such that tx, ty ∈ [0, 1]. In the next proposition
we characterize the functions that satisfy this condition.

Proposition 1. Let f : [0, 1]2 −→ [0, 1] be a function such that f(tx, y) =
f(x, ty) = tf(x, y) for all x, y ∈ [0, 1] and t ∈ [0,∞) such that tx, ty ∈ [0, 1].
Then f(x, y) = cxy, where c ∈ [0, 1].

Proof. Given x, y ∈ [0, 1], f(x, y) = f(x · 1, y · 1) = xf(1, y · 1) = xyf(1, 1). 
�

If f(x, y) = cxy, with c ∈ [0, 1], then ρi =
wipσ(i)

n∑
j=1

wjpσ(j)

; that is,

Fw
p (x1, . . . , xn) =

n∑
i=1

wipσ(i)xσ(i)

n∑
j=1

wjpσ(j)

.

It is worth noting that this function has been used by Engemann et al. [1] in
a framework of decision making under risk and uncertainty (in this case, p is
the vector of probabilities of the states of nature).

In order to ensure that Fw
p is well defined, we need that wjpσ(j) be non-zero

for some j ∈ {1, . . . , n}. This requirement is guaranteed by any of the following
conditions:

1. The number of non-zero weights in each vector p and w is greater than n/2.
2. All the components of p are non-zero.
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In addition to this, Fw
p has another problem in your definition: sometimes, the

vector pσ is not unique and Fw
p may return different values according to the

vector pσ used. This fact is illustrated in the following example.

Example 3. Consider p = (0.5, 0.2, 0.3), w = (0.3, 0.4, 0.3), and x = (7, 5, 7).
When x is ordered from greatest to least, then we have the vector (7, 7, 5). In
this vector, the first component can be associated to the weight 0.5 or 0.3. In
the first case, the weighting vector ρ is (5/11, 4/11, 2/11) and

Fw
p (7, 5, 7) =

35
11

+
28
11

+
10
11

=
73
11

.

In the second case, the weighting vector ρ is (9/35, 4/7, 6/35) and

Fw
p (7, 5, 7) =

9
5

+ 4 +
6
7

=
233
35

.

A similar problem arises in the IOWA operators, introduced by Yager and
Filev [10]. The solution proposed by these authors, applied to our framework, is
to replace the weights associated to equal values by the average of them. In the
previous example we replace the weights p1 = 0.5 and p3 = 0.3 by 0.4. In this
case the weighting vector ρ is (6/17, 8/17, 3/17) and

Fw
p (7, 5, 7) =

42
17

+
56
17

+
15
17

=
113
17

.

With regard to the properties satisfied by Fw
p , it is easy to check that Fw

p is
idempotent, compensative, homogeneous of degree 1, and that satisfies Fη

p = Fp

(Engemann et al. [1]) and Fw
η = Fw.

Nevertheless, as noted by Liu [3], Fw
p is not monotonic. Moreover, similar to

WOWA operators, it does not satisfy other interesting properties as we show in
the next example.

Example 4. Consider again the weighting vectors p = (0.4, 0.2, 0.2, 0.1, 0.1) and
w = (0, 1/3, 1/3, 1/3, 0). Then, we have:

1. The value returned by Fw
p does not always lie between the values returned

by the weighted mean and the OWA operator:

Fw(10, 3, 5, 6, 7) = 6, Fp(10, 3, 5, 6, 7) = 6.9, but Fw
p (10, 3, 5, 6, 7) = 23/4.

2. The value returned by Fw
p does not always coincide with the value returned

by the weighted mean and the OWA operator when both values are the
same:

Fw(8, 2.5, 5, 6, 7) = 6, Fp(8, 2.5, 5, 6, 7) = 6, but Fw
p (8, 2.5, 5, 6, 7) = 23/4.
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5 Concluding Remarks

In this paper we have analyzed WOWA operators and we have shown that, in
some applications, these operators do not always provide the expected result.
Due to the questionable behavior of these operators, we have imposed a condition
to maintain the relationship among the weights and we have characterized the
functions that satisfy this condition. However, the obtained functions are not
monotonic. So, we can conclude that none of the analyzed functions is fully
convincing.
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Abstract. We address the problem of how to measure amount of knowledge con-
veyed by an Atanassov’s intuitionistic fuzzy set (A-IFS for short). The problem
is useful from the point of view of a specific purpose, notably related to deci-
sion making. An amount of knowledge is strongly linked to its related amount of
information. We pay particular attention to the relationship between the positive
and negative information and a lack of information expressed by the hesitation
margin.

1 Introduction

In case of data represented by a fuzzy set information on them is expressed by a mem-
bership function. Knowledge is basically related to information considered in a partic-
ular context under consideration. The transformation of information into knowledge is
critical from the practical point of view (cf. Stewart [9]) - a notable example may here
be the omnipresent problem of decision making.

Here we consider information conveyed by a piece of data represented by an A-IFS
and its related knowledge that is placed in a context considered. Information that is con-
veyed by an A-IFS, may be considered just as some generalization of information con-
veyed by a fuzzy set, and consists from the two terms present in the definition of an A-
IFS, i.e., the membership and non-membership functions (“responsible” for the positive
and negative information, respectively). But for practical purposes it seems necessary
to also take into account a so called hesitation margin (cf. Szmidt and Kacprzyk [13],
[14], [17], [15], [20]), [21], Bustince et al. [4], [5], Szmidt and Kukier [19], [25], [26],
etc.).

Entropy is often viewed as a dual measure of the amount of knowledge. In this paper
we show that the entropy alone (cf. Szmidt and Kacprzyk [15], [20]) may not be a sat-
isfactory dual measure of knowledge useful from the point of view of decision making
in the A-IFS context. The reason is that an entropy measure answers the question about
the fuzziness but does not consider reasons for the fuzziness. So, the two situations,
one with the maximal entropy for a membership function equal to a non-membership
function (e.g. both equal to 0.5), and another when we know absolutely nothing (i.e.
both equal to 0), are equal from the point of view of the entropy measure (in terms of
the A-IFSs). However, from the point of view of decision making the two situations are
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clearly different. This is the motivation of this paper as we propose here a new measure
of knowledge for the A-IFSs which is meant to complement the entropy measure to be
able to capture additional features which may be relevant when making decisions. The
new measure of the amount of knowledge is tested on a simple example taken from
the source Quinlan’s paper but solved using different tools than therein. This example,
which is simple judging by appearances, is a challenge to many classification and ma-
chine learning methods, and its solution which we have proposed can be an inspiration
to the solution of many real world problems.

2 Brief Introduction to the A-IFSs

One of the possible generalization of a fuzzy set in X (Zadeh [27]), given by

A
′

= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1], [2]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that

0<μA(x) + νA(x)<1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. (Two approaches to the assigning memberships
and non-memberships for A-IFSs are proposed by Szmidt and Baldwin [12]).

An additional concept for each A-IFS in X , that is not only an obvious result of (2)
and (3) but which is also relevant for applications, we will call (Atanassov [2])

πA(x) = 1 − μA(x) − νA(x) (4)

a hesitation margin of x ∈ A which expresses a lack of information of whether x
belongs to A or not (cf. Atanassov [2]). It is obvious that 0<πA(x)<1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [13], [14], [17], entropy (Szmidt and Kacprzyk [15], [16], [20]),
similarity (Szmidt and Kacprzyk [21]) for the A-IFSs, ranking (Szmidt and Kacprzyk
[22], [23]) etc. i.e., the measures that play a crucial role in virtually all information
processing tasks. Hesitation margins turn out to be relevant for applications - in image
processing (cf. Bustince et al. [4], [5]) and classification of imbalanced and overlapping
classes (cf. Szmidt and Kukier [19], [25], [26]), group decision making, negotiations,
voting and other situations (cf. Szmidt and Kacprzyk papers).

As we will use three term representation of A-IFSs, each element x will be described
via a triplet: (μ, ν, π), i.e., by the membership μ, non-membership ν, and hesitation
margin π.

In our further considerations we will use the notion of distances. In Szmidt and
Kacprzyk [14], [17], Szmidt and Baldwin [10], [11], it is shown why in the calcula-
tion of distances between A-IFSs one should use all three terms describing A-IFSs. In
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this paper we use the normalized Hamming distance between any two A-IFSs A and B
in X = {x1,x2, . . . , xn}, namely:

lIFS(A, B) =
1

2n

n∑
i=1

(|μA(xi) − μB(xi)|+ |νA(xi) − νB(xi)|+ |πA(xi) − πB(xi)|)

(5)
The distance is from the interval [0,1] and fulfills all the conditions of a metric.

Also the notation of a complement set AC will be used

AC = {〈x, νA(x), μA(x), πA(x)〉|x ∈ X} (6)

2.1 Entropy of the A-IFSs

We will verify here if entropy of the A-IFSs may be a reliable measure of the amount of
knowledge from the point of view of decision making. Entropy examined here is a non-
probabilistic-type entropy measure for the A-IFSs in the sense of De Luca and Termini’s
[6] axioms which are intuitive and have been widely employed in the fuzzy literature.
The axioms were properly reformulated for the A-IFSs (see Szmidt and Kacprzyk [15])
and are discussed in length by Szmidt and Kacprzyk in [15], [16] and [20]. Here we
remind only the basic idea.

Entropy, as is considered here, answers the question: how fuzzy is a fuzzy set? In
other words, entropy E(x) measures the missing information which may be necessary
to say if an element x described by (μ, ν, π) fully belongs or fully does not belong to
our set.

Definition 1. A ratio-based measure of fuzziness i.e., entropy of an (intuitionistic fuzzy)
element x is given in the following way [15]:

E(x) =
a

b
(7)

where: a is a distance(x, xnear) from x to the nearer element xnear among the ele-
ments: M(1, 0, 0) and N(0, 1, 0), and b is the distance(x, xfar) from x to the farer
element xfar among the elements: M(1, 0, 0) and N(0, 1, 0).

Different ways of expressing entropy E(x) (7) are presented in Szmidt and Kacprzyk in
[15], [16] and [20]. Formula (7) describes the degree of fuzziness for a single element
belonging to an A-IFS. For n elements belonging to an A-IFS we have

E =
1
n

n∑
i=1

E(xi) (8)

A typical shape of a properly defined entropy measure is given in Figure 1. The same
shape as in Figure 1 is obtained from (7) for each fixed value of a hesitation margin.
In Figure 2 we have the values of entropy E(x) (7) and its contour plot as a function
of membership values and non-membership values. It is worth noticing (Figure 2) that
for all the values of the hesitation margin, entropy reaches its maximum (equal to 1)
for μ = ν. It is a proper feature of an entropy measure but a question arises if such an
entropy measure conveys all knowledge important from the point of view of decision
making.



20 E. Szmidt, J. Kacprzyk, and P. Bujnowski

Fig. 1. A typical shape of a properly defined entropy measure

Fig. 2. a) – Entropy E(x) (7); b) – its contour plot

3 Desirable Features of a Measure of Information, and Measure of
Knowledge for the A-IFSs

Information concerning a separate element x belonging to an A-IFS is equal to μ(x) +
ν(x), or [cf. (4)]: 1 − π(x). But it is one aspect of information only. For each fixed
π there are different possibilities of combination between μ and ν. The combination
between them influences strongly the amount of knowledge from the point of view
of decision making. The knowledge (for a fixed π) is different for the distant values
between μ and ν, and for the close values between μ and ν. For example, if π = 0.1,
the knowledge from a point of view of decision making for μ = 0.85 and ν = 0.05 is
bigger than for the case: μ = 0.45 and ν = 0.45 (although in both cases μ + ν = 0.9).
Entropy proposed by Szmidt and Kacprzyk ([15], [16]) takes this aspect into account,
and is a good measure answering the question how fuzzy is an A-IFS (when considering
entropy one is not interested in the reasons of fuzziness). But when decision making,
one is also interested in making differences between the following situations (Szmidt
and Kreinovich [18]):

– we have no information at all, and
– we have a large number of arguments in favor but an equally large number of argu-
ments in favor of the opposite statement.
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Fig. 3. a) - measure K(x); b) - its contourplot

In other words, we would like to have a measure making a difference between (0.5,
0.5, 0), and (0, 0, 1).

To distinguish between these two types of situations, we should take into account,
beside entropy measure, also the hesitation margin π.

It seems that a good measure of the amount of knowledge (useful from the point of
view of decision making) connected to a separate element x ∈ A − IFS is:

K(x) = 1 − 0.5(E(x) + π(x)) (9)

where E(x) is an entropy measure given by (7) (Szmidt and Kacprzyk [15]), π(x) is
the hesitation margin.

Measure K(x) (9) makes it possible to meaningfully represent what, in our context,
is meant by the amount of knowledge, is simple – both conceptually and numerically,
which will certainly be a big asset while solving complex real world problems which
will be the subject of our next papers.

The properties of (9) are:

1. 0 ≤ K(x) ≤ 1
2. K(x) = K(xC)
3. For a fixed E(x), K(x) increases while π decreases,
4. For a fixed value of π, K(x) behaves dually to an entropy measure (i.e., as 1 −

E(x)).

In Figure 3 we can see the shape of K(x), and its contour plot. We may easily notice
the desirable differences of the shapes of K(x) and entropy E(x) (Figure 2) from the
point of view of decision making.

In a case of n elements, the total amount of knowledge K is:

K =
1
n

n∑
i=1

(1 − 0.5(E(xi) + π(xi))) (10)

Now we will evaluate the proposed measure of knowledge K on the problem formulated
by Quinlan [8] – verifying if we obtain similar results.
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Table 1. Evaluation of the attributes of the “Saturday Morning” data

Attribute K Entropy π

1 2 3 4
Outlook 0.49 0.56 0.453

Temperature 0.23 0.813 0.72
Humidity 0.47 0.535 0.535

Windy 0.26 0.744 0.735

The Quinlan’s example, the so-called “Saturday Morning” example, considers clas-
sification with nominal data. The example is small enough and illustrative, yet is a chal-
lenge to many classification and machine learning methods. The main idea of solving
the example by Quinlan was to select the best attribute to split the training set (Quinlan
used a so called Information Gain which was a dual measure to Shannon’s entropy).
Quinlan obtained 100% accuracy, and the optimal solution (the minimal possible tree).
In other words, the ranking of the attributes as pointed out by Quinlan [8] is the best as
far as the amount of knowledge is concerned.

The limitation of space does not let us discuss the Quinlan example [8] and its A-IFS
counterpart (see Szmidt and Kacprzyk [24]) in details. We present here only the final
results, i.e. effects of evaluation of the attributes by the proposed measure of knowledge
K (9) from the point of view of conveying the most knowledge. In Table 1 there are
results for each attribute accessed from the point of view of the measure of the amount
of knowledge K (9), entropy E, (7)–(8), and an average hesitation margin π.

Let us remind that in the original solution given by Quinlan [8] (leading to the min-
imal tree), the order from the point of view of the most informative attributes was the
following:

Outlook, Humidity, Windy, Temperature

If we order the attributes taking into account entropy (7)–(8), the most informative
attributes are indicated by the smallest values in the 3rd column of Table 1:

Humidity, Outlook, Windy, Temperature

i.e., the order of the attributes is different (Humidity replaced Outlook – this order would
not result in the smallest tree).

On the other hand, if we order the attributes taking into account the minimal average
values of the hesitation margin only, the most informative attributes are (Table 1, 4th
column):

Outlook, Humidity, Temperature, Windy

i.e., again, the order of the attributes is changed (Temperature replaced Windy).
But when we apply the knowledge measure (9), the results are the same as Quinlan’s

ones, (leading to the minimal tree, i.e., the most valuable from the point of view of
decision making – 2nd column in Table 1), i.e.:

Outlook, Humidity, Windy, Temperature

.
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4 Conclusions

A new measure of the amount of knowledge for the A-IFSs was proposed to be use-
ful from the point of view of decision making. The new measure maintains advantages
of the entropy measure (reflecting the relationship between the positive and negative
information) and additionally emphasizes the influence of the lacking information (ex-
pressed by the hesitation margins).
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Abstract. Recently, in [3], we have discussed the distributive equation
of implications I(x, T1(y, z)) = T2(I(x, y),I(x, z)) over t-representable
t-norms generated from strict t-norms in interval-valued fuzzy sets the-
ory. In this work we continue these investigations, but for t-representable
t-norms generated from nilpotent t-norms. As a byproduct result we show
all solutions of some functional equation related to this case.

Keywords: Interval-valued fuzzy sets, Intuitionistic fuzzy sets, Fuzzy
implication, Triangular norm, Distributivity, Functional equations.

1 Introduction

Distributivity of fuzzy implications over different fuzzy logic connectives has
been studied in the recent past by many authors (see [1], [17], [5], [15], [16], [4],
[2]). These equations have a very important role to play in efficient inferencing
in approximate reasoning, especially fuzzy control systems (see [7]).

Recently, in [3], we have discussed the distributive equation of implications
I(x, T1(y, z)) = T2(I(x, y), I(x, z)), over t-representable t-norms generated from
strict t-norms in interval-valued fuzzy sets theory. In this work we continue
these investigations, but for t-norms generated from nilpotent t-norms. In [3], as
a byproduct, we have obtained the solutions of the following functional equation:

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (u1, u2), (v1, v2) ∈ L∞, (B1)

where L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2} and f : L∞ → [0,∞] is an unknown
function. In this article we will present all solutions of the following equation:

f(min(u1 + v1, a), min(u2 + v2, a)) = min(f(u1, u2) + f(v1, v2), b), (B2)

where a, b > 0 are fixed real numbers, f : La → [0, b] is an unknown function
and La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}. This equation is related to the case
with nilpotent t-norms. Such theoretical developments connected with solutions
of different functional equations can be also useful in other topics like fuzzy
mathematical morphology (see [8]) or similarity measures (cf. [6]).
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We assume that the reader is familiar with the notion of intuitionistic (by
Atanassov) fuzzy sets theory and interval-valued fuzzy sets theory (in [9] it is
shown that both theories are equivalent from the mathematical point of view).
Since we are limited in number of pages, in this article we discuss main results
in the language of interval-valued fuzzy sets, but they can be easily transformed
to the intuitionistic fuzzy case. Let us define

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2},
(x1, x2) ≤LI (y1, y2) ⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2]. One can easily observe
that LI = (LI ,≤LI ) is a complete lattice with units 0LI = [0, 0] and 1LI = [1, 1].
An interval-valued fuzzy set on X is a mapping A : X → LI .

2 Basic Fuzzy Connectives

We assume that the reader is familiar with the classical results concerning basic
fuzzy logic connectives, but we briefly mention some of the results employed in
the rest of the work.

Definition 2.1. Let L = (L,≤L) be a complete lattice. An associative, commu-
tative operation T : L2 → L is called a t-norm if it is increasing and 1L is the
neutral element of T .

Definition 2.2. A t-norm T on ([0, 1],≤) is said to be nilpotent, if it is contin-
uous and if each x ∈ (0, 1) is a nilpotent element of T , i.e., if there exists n ∈ N

such that x
[n]
T = 0, where x

[n]
T :=

{
x, if n = 1,

T (x, x
[n−1]
T ), if n > 1.

The following characterization of nilpotent t-norms is well-known.

Theorem 2.3 ([13]). A function T : [0, 1]2 → [0, 1] is a nilpotent t-norm if and
only if there exists a continuous, strictly decreasing function t : [0, 1] → [0,∞]
with t(1) = 0 and t(0) < ∞, which is uniquely determined up to a positive
multiplicative constant, such that T (x, y) = t−1(min(t(x) + t(y), t(0))), for all
x, y ∈ [0, 1].

In our article we shall consider the following special class of t-norms.

Definition 2.4 (see [10]). A t-norm T on LI is called t-representable if there
exist t-norms T1 and T2 on ([0, 1],≤) such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)], [x1, x2], [y1, y2] ∈ LI .

It should be noted that not all t-norms on LI are t-representable (see [10]).
One possible definition of an implication on LI is based on the well-accepted

notation introduced by Fodor and Roubens [12] (see also [11] and [14]).

Definition 2.5. Let L = (L,≤L) be a complete lattice. A function I : L2 → L is
called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the following conditions:
I(0L, 0L) = I(1L, 1L) = I(0L, 1L) = 1L and I(1L, 0L) = 0L.
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3 Some New Results Pertaining to Functional Equations

In this section we show one new result related to functional equations, which
will be crucial in obtaining main results.

Proposition 3.1 ([4, Proposition 3]). Fix real a, b > 0. For a function
f : [0, a] → [0, b] the following statements are equivalent:

(i) f satisfies the functional equation

f(min(x + y, a)) = min(f(x) + f(y), b), x, y ∈ [0, a].

(ii) Either f = 0, or f = b, or f(x) =

{
0, if x = 0,

b, if x > 0,
, or there exists a unique

constant c ∈
[

b
a ,∞

)
such that f(x) = min(cx, b), for all x ∈ [0, a].

Proposition 3.2. Fix real a, b > 0. Let La = {(u1, u2) ∈ [0, a]2 : u1 ≥ u2}.
For a function f : La → [0, b] the following statements are equivalent:

(i) f satisfies the functional equation (B2) for all (u1, u2), (v1, v2) ∈ La.
(ii) Either

f = 0, (S1)

or
f = b, (S2)

or

f(u1, u2) =

{
0, if u2 = 0,

b, if u2 > 0,
(S3)

or

f(u1, u2) =

{
0, if u1 = 0,

b, if u1 > 0,
(S4)

or there exists unique c ∈
[

b
a ,∞

)
such that

f(u1, u2) = min(cu2, b), (S5)

or

f(u1, u2) =

{
min(cu1, b), if u1 = u2,

b, if u1 > u2,
(S6)

or

f(u1, u2) =

{
min(cu1, b), if u2 = 0,

b, if u2 > 0,
(S7)

or
f(u1, u2) = min(cu1, b), (S8)

or there exist unique c1, c2 ∈
[

b
a ,∞

)
, c1 �= c2 such that

f(u1, u2) =

{
min(c1(u1 − u2) + c2u2, b), if u2 < a,

b, if u2 = a,
(S9)

for all (u1, u2) ∈ La.
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Proof. (ii) =⇒ (i) It is a direct calculation that the above functions satisfy (B2).
(i) =⇒ (ii) Let a function f : La → [0, b] satisfy equation (B2) for all (u1, u2),

(v1, v2) ∈ La. Setting u1 = v1 = a in (B2) we get

f(min(a + a, a), min(u2 + v2, a)) = min(f(a, u2) + f(a, v2), b), u2, v2 ∈ [0, a].

Let us denote fa(x) := f(a, x), for x ∈ [0, a]. Therefore, we get

fa(min(u2 + v2, a)) = min(fa(u2) + fa(v2), b), u2, v2 ∈ [0, a].

For this equation we can use solutions from Proposition 3.1. We have 4 possible
cases for the function fa.

1. If fa = 0, then putting u1 = u2 = a in (B2) we have

f(min(a+v1, a), min(a+v2, a)) = min(f(a, a)+f(v1, v2), b), (v1, v2) ∈ La,

so f(a, a) = min(f(a, a) + f(v1, v2), b), thus 0 = min(f(v1, v2), b), hence
f(v1, v2) = 0 for all (v1, v2) ∈ La and we get first solution f = 0, i.e., (S1).

2. If fa(x) =

{
0, if x = 0
b, if x > 0

, then putting u1 = a in (B2) we have

f(a, min(u2 + v2, a)) = min(f(a, u2) + f(v1, v2), b), (v1, v2) ∈ La.

If we take u2 = v2 = 0 above, then we get

f(a, 0) = min(f(a, 0) + f(v1, 0), b), v1 ∈ [0, a],

thus 0 = min(f(v1, 0), b), i.e., f(v1, 0) = 0 for all v1 ∈ [0, a]. If we take u2 = 0
and v2 > 0 above, then we get f(a, v2) = min(f(v1, v2), b), for v1 ∈ [0, a],
therefore b = min(f(v1, v2), b), i.e., f(v1, v2) = b. In summary, we get the
solution (S3).

3. If fa(x) = min(cx, b) with some real c ∈
[

b
a ,∞

)
, then putting u1 = a and

u2 = 0 in (B2) we have

fa(v2) = min(fa(0) + f(v1, v2), b), (v1, v2) ∈ La,

thus fa(v2) = min(f(v1, v2), b), so min(cv2, b) = f(v1, v2) and we get the
solution (S5) in this case.

Therefore, we need to solve our equation with the last possible assumption that
fa = b. Setting now u2 = v2 = 0 in (B2) we get

f(min(u1 + v1, a), 0) = min(f(u1, 0) + f(v1, 0), b), u1, v1 ∈ [0, a].

Let us denote f0(x) := f(x, 0), for x ∈ [0, a]. Hence, we obtain

f0(min(u1 + v1, a)) = min(f0(u1) + f0(v1), b), u1, v1 ∈ [0, a].

For this equation we again can use solutions described in Proposition 3.1. We
have 4 possible cases for the function f0.
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1. If f0 = 0, then f(a, 0) = 0, which contradicts our assumption fa = b.
2. If f0 = b, then putting u1 = u2 = 0 in (B2) we have

f(v1, v2) = min(b + f(v1, v2), b), (v1, v2) ∈ La,

thus f(v1, v2) = b, hence we get next possible solution f = b, i.e., (S2).

3. If f0(x) =

{
0, if x = 0
b, if x > 0

, then putting u2 = 0 in (B2) we have

f(min(u1 + v1, a), v2) = min(f(u1, 0) + f(v1, v2), b).

Let us assume that u1 > 0 and v1 = v2 above. Then we get

f(min(u1 + v2, a), v2) = min(b + f(v2, v2), b), u1 ∈ (0, a], v2 ∈ [0, a].

hence
f(min(u1 + v2, a), v2) = b, u1 ∈ (0, a], v2 ∈ [0, a].

Since min(u1 + v2, a) ∈ (v2, a] and v2 ∈ [0, a], we have obtained the result
that f(x1, x2) = b for any (x1, x2) ∈ La such that x1 > x2.
Let us take now u2 = u1 and v2 = v1 in (B2). Then we have

f(min(u1 + v1, a), min(u1 + v1, a)) = min(f(u1, u1) + f(v1, v1), b),

for u1, v1 ∈ [0, a]. Let us denote g(x) := f(x, x), for x ∈ [0, a]. Therefore,

g(min(u1 + v1, a)) = min(g(u1) + g(v1), b), u1, v1 ∈ [0, a].

For this equation we again can use solutions described in Proposition 3.1.
We have 4 possible cases for the function g.
(a) If g = 0, then f(a, a) = 0, which contradicts our assumption fa = b.
(b) If g = b, then f(0, 0) = b, which contradicts our assumption 3. on func-

tion f0.

(c) If g(x) =

{
0, if x = 0
b, if x > 0

, then we get the solution (S4) in this case.

(d) If g(x) = min(cx, b) with some c ∈
[

b
a ,∞

)
, then we get the solution (S6)

in this case.
4. Let f0(x) = min(c1x, b), with some real c1 ∈

[
b
a ,∞

)
for x ∈ [0, a]. Putting

u2 = u1 and v2 = v1 in (B2) we have

f(min(u1 + v1, a), min(u1 + v1, a)) = min(f(u1, u1) + f(v1, v1), b),

for u1, v1 ∈ [0, a]. Let us denote g(x) := f(x, x), for x ∈ [0, a]. Then we get

g(min(u1 + v1, a)) = min(g(u1) + g(v1), b), u1, v1 ∈ [0, a].

For this equation we again can use solutions described in Proposition 3.1.
We have 4 possible cases for the function g.
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(a) If g = 0, then f(a, a) = 0, which contradicts our assumption fa = b.
(b) If g = b, then f(0, 0) = b, which contradicts assumption on function f0.

(c) If g(x) =

{
0, if x = 0
b, if x > 0

, then putting u2 = 0 and v1 = v2 in (B2) we get

f(min(u1 + v2, a), v2) = min(f(u1, 0) + f(v2, v2), b), u1, v2 ∈ [0, a],

thus

f(min(u1 + v2, a), v2) = min

(
min(c1u1, b) +

{
0, if v2 = 0,

b, if v2 > 0,
, b

)

=

{
min(c1u1, b), if v2 = 0
b, if v2 > 0

,

for any u1, v2 ∈ [0, a]. Since min(u1 + v2, a) ∈ [v2, a], this solution can be
written as (S7).

(d) If g(x) = min(c2x, b), with some real c2 ∈
[

b
a ,∞

)
for x ∈ [0, a], then

similarly as earlier, putting u2 = 0 and v1 = v2 in (B2), we get

f(min(u1 + v2, a), v2) = min(f(u1, 0) + f(v2, v2), b), u1, v2 ∈ [0, a],

therefore

f(min(u1 + v2, a), v2) = min(min(c1u1, b) + min(c2v2, b), b),

thus
f(min(u1 + v2, a), v2) = min(c1u1 + c2v2, b).

If c1 = c2, then f(min(u1 + v2, a), v2) = min(c1(u1 + v2), b), so this solu-
tion can be written as (S8). If c1 �= c2, then we get the last solution (S9).


�

4 Distributive Equation for t-Representable T-Norms

In this section we will show how we can use solutions presented in Proposition 3.2
to obtain all solutions, in particular fuzzy implications, of our main distributive
equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z)), x, y, z ∈ LI , (D1)

where I is an unknown function and t-norms T1 and T2 on LI are t-representable
and generated from nilpotent t-norms T1, T2 and T3, T4, respectively.

Assume that projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2, for [x1, x2] ∈ LI .

In [3] we have shown that if T1 and T2 on LI are t-representable, then

g1
[x1,x2]

([T1(y1, z1), T2(y2, z2)]) = T3(g1
[x1,x2]

([y1, y2]), g1
[x1,x2]

([z1, z2])),

g2
[x1,x2]

([T1(y1, z1), T2(y2, z2)]) = T4(g2
[x1,x2]

([y1, y2]), g2
[x1,x2]

([z1, z2])),
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where [x1, x2] ∈ LI is arbitrarily fixed and functions g1
[x1,x2]

, g2
[x1,x2]

: LI → LI

are defined by

g1
[x1,x2]

(·) := pr1 ◦ I([x1, x2], ·), g2
[x1,x2]

(·) := pr2 ◦ I([x1, x2], ·).

Let us assume that T1 = T2 and T3 = T4 are nilpotent t-norms generated from
additive generators t1 and t3, respectively. Using the representation theorem of
nilpotent t-norms (Theorem 2.3) we can transform our problem to the following
equation (for a simplicity we deal only with g1 now):

g1
[x1,x2]

([t−1
1 (min(t1(y1) + t1(z1), t1(0))), t−1

1 (min(t1(y2) + t1(z2), t1(0)))])

= t−1
3 (min(t3(g1

[x1,x2]
([y1, y2])) + t3(g1

[x1,x2]
([z1, z2])), t3(0))).

Hence

t3 ◦ g1
[x1,x2]

([t−1
1 (min(t1(y1) + t1(z1), t1(0))), t−1

1 (min(t1(y2) + t1(z2), t1(0)))])

= min(t3 ◦ g1
[x1,x2]

([y1, y2]) + t3 ◦ g1
[x1,x2]

([z1, z2]), t3(0)).

Let us put t1(y1) = u1, t1(y2) = u2, t1(z1) = v1 and t1(z2) = v2. Of course
u1, u2, v1, v2 ∈ [0, t1(0)]. Moreover [y1, y2], [z1, z2] ∈ LI , thus y1 ≤ y2 and z1 ≤ z2.
The generator t1 is strictly decreasing, so u1 ≥ u2 and v1 ≥ v2. If we put

f[x1,x2](a, b) := t3 ◦ pr1 ◦ I([x1, x2], [t−1
1 (a), t−1

1 (b)]), a, b ∈ [0, t1(0)], a ≥ b,

then we get the following functional equation

f[x1,x2](min(u1 + v1, t1(0)), min(u2 + v2, t1(0)))
= min(f[x1,x2](u1, u2) + f[x1,x2](v1, v2), t3(0)), (1)

where (u1, u2), (v1, v2) ∈ Lt1(0) and f[x1,x2] : Lt1(0) → [0, t3(0)] is an unknown
function. In a same way we can repeat all the above calculations, but for the
function g2, to obtain the following functional equation

f [x1,x2](min(u1 + v1, t1(0)), min(u2 + v2, t1(0)))

= min(f [x1,x2](u1, u2) + f [x1,x2](v1, v2), t3(0)), (2)

where
f [x1,x2](a, b) := t3 ◦ pr2 ◦ I([x1, x2], [t−1

1 (a), t−1
1 (b)]).

Observe that (1) and (2) are exactly our functional equation (B2). Therefore,
using solutions of Proposition 3.2, we are able to obtain the description of the
vertical section I([x1, x2], ·) for a fixed [x1, x2] ∈ LI . Since in this proposition we
have 9 possible solutions, we should have 81 different solutions of (D1). Observe
now that some of these solutions are not good, since the range of I is LI . Finally,
we need to notice that not all obtained vertical solutions in LI can be used for
obtaining fuzzy implication on LI in the sense of Definition 2.5. We will describe
solutions which are fuzzy implications in our future works.
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Abstract. Intuitionistic fuzzy sets (IF-sets) are a suitable tool to de-
scribe cases where it is useful to account not only the grade of mem-
bership to a collection, but also the grade of its non-membership. We
consider the α-cuts of an IF-set A as crisp sets consisting of those ele-
ments x for which the truth value (in fuzzy logic) of the statement ”x
belongs to A and it is not true that x does not belong to A” is at least
α. We describe properties of such cuts depending on the chosen type of
conjunction and negation.

1 Introduction

There are cases where it is possible to estimate not only the grade of membership
to a certain collection of objects but also the grade of non-membership. In case
the sum of these grades on a normed scale is 1, then a fuzzy set is an appropriate
tool to describe such a collection. However, there might be cases when the sum of
these quantities is smaller, what means that there is ambiguity in the decision of
membership or non-membership. For such cases the IF-sets (intuitionistic fuzzy
sets) introduced by Atanassov in [1] and thoroughly studied in [3] are a suitable
structure.

In various applications the IF-sets are used to model natural language state-
ments and therefore it is very often impossible to avoid ambiguity. For example,
a patient’s temperature or blood pressure can be more or less exactly measured,
but the symptoms like headache or insomnia can only be described in terms of
a natural language. Operations with such statements are studied by the fuzzy
logic.

In this work we focus our attention to the cuts (level sets) of IF-sets, which
are crisp sets that can represent the chosen IF-set. We show that for IF-sets it
is very natural to account the rules of the fuzzy logic even for the definition of
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a cut. We study the relations between the chosen triangular norm as well as the
negation and the resulting cuts.

2 Basic Concepts

By an IF-set we will understand an object described by a pair of real functions
in the following sense:

Definition 1. Let X be a universe of discourse. A pair A = 〈μA, νA〉 where
μA, νA : X → [0, 1] are functions fulfilling μA(x) + νA(x) ≤ 1 for all x ∈ X is
called an intuitionistic fuzzy set (IF-set for short). The functions μA, νA are
its membership and non-membership functions.

Clearly each fuzzy set with a membership function μ can be understood as an
IF-set 〈μ, 1 − μ〉. Hence IF-sets are a generalization of fuzzy sets.

The support of an IF-set A is the crisp set

supp(A) = {x ∈ X |μA(x) > 0 and νA(x) < 1}.

By a triangular norm (t-norm) we understand a mapping T : [0, 1]2 → [0, 1]
that is associative, commutative, monotone in both variables and has 1 as the
neutral element.

The most frequently used t-norms are:

1. Minimum t-norm: TM (x, y) = min(x, y) for all x, y ∈ [0, 1].
2. Product t-norm: TP (x, y) = x · y, for all x, y ∈ [0, 1].
3. �Lukasiewicz t-norm: TL(x, y) = max(x + y − 1, 0), for allx, y ∈ [0, 1].

It is well-known that they are ordered in the following sense: TL ≤ TP ≤ TM .
Recall that a zero divisor for a t-norm T is a number x > 0, for which there

exists y > 0 such that T (x, y) = 0.
A triangular conorm (t-conorm) is a mapping S : [0, 1]2 → [0, 1] that is

associative, commutative, monotone, with neutral element 0.
By a fuzzy negation we understand a non-increasing mapping N : [0, 1] →

[0, 1] such that N(0) = 1, N(1) = 0. If moreover N is continuous and decreas-
ing, it is called strict. Fuzzy negations satisfying the involutive property, i.e.
N(N(x)) = x, for all x ∈ [0, 1], are called strong fuzzy negations. Notice that
each strong fuzzy negation is strict but the reverse is not true. The most classical
example of fuzzy negation is the standard negation defined by Ns(x) = 1−x,
for all x ∈ X .

For every t-norm T and strong negation N , the operation S defined by
S(x, y) = N(T (N(x), N(y))), for all (x, y) ∈ [0, 1]2 is a t-conorm. Moreover,
T (x, y) = N(S(N(x), N(y))), for all (x, y) ∈ [0, 1]2. Then S is called the N -
dual t-conorm to T . A triplet (T, S, N) is called a De Morgan triplet if and
only if T is a t-norm, S is a t-conorm, N is a strong negation and S(x, y) =
N(T (N(x), N(y))), for all (x, y) ∈ [0, 1]2.
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In order to generalize the definitions of set operations, Deschrijver and Kerre
presented in 2002 [6] the following definitions: for every triplet (T, S, N) of t-
norm, t-conorm and negation and for every pair of IF-sets A and B in IFSs(X)
(from now on, IFSs(X) denotes the set of all intuitionistic fuzzy sets in a set
X):

1. Intersection: A∩B = 〈μA∩B, νA∩B〉 where μA∩B(x) = T (μA(x), μB(x)) and
νA∩B(x) = S(νA(x), νB(x)), for all x ∈ X ;

2. Union: A ∪ B = 〈μA∪B, νA∪B〉 where μA∪B(x) = S(μA(x), μB(x))
and νA∪B(x) = T (νA(x), νB(x)), for all x ∈ X ;

3. Complement: if A = 〈μA, νA〉, then A = 〈νA, μA〉;
4. Inclusion: A ⊆ B iff μA(x) ≤ μB(x) and νA(x) ≥ νB(x), for all x ∈ X .

3 Cuts of IF-sets

In applications it is useful for a given IF-set to deal with those sets of elements for
which the grade of our assigning to a given collection is at least some prescribed
value α ∈ [0, 1], i.e. α-cuts. For a fuzzy set B, its α-cut is the set Bα = {x ∈
X ; B(x) ≥ α}. For an IF-set the α-cut has been defined in [3] as the set (all the
symbols have the same meaning as in Definition 1).

Aα = {x ∈ X ; μA(x) ≥ α, νA(x) ≤ 1 − α}.

The logic of this choice of is obvious. However, we can understand the statement
on the elements belonging to Aα as a conjunction of the expressions: (x belongs
to A) and (it is not true that x does not belong to A).

If we understand these sentences as fuzzy logic statements, it is natural to
replace the conjunction by a triangular norm and the negation in the second one
by a fuzzy negation. Some results (but only using the standard negation Ns) have
been shown in [7]. Here we deal with the general form of the cuts. Moreover, we
obtain a deeper study of the properties of the most possible general definition
of cut of a IF-set. In particular they could be used in the case N = Ns.

Definition 2. Let A = 〈μA, νA〉 be an IF-set on X, T and N a triangular norm
and a fuzzy negation, respectively. Then, for all α ∈ [0, 1], define the α-cut of A
as the crisp set

(A)T,N,α = {x ∈ X |T (μA(x), N(νA(x))) ≥ α}.

Example 1. Let A be an IF-set on [0,∞) with the following membership and
non-membership functions:

μA(x) = 1 − x for 0 ≤ x ≤ 1, μA(x) = 0 for x > 1,
νA(x) = x/2 for 0 ≤ x ≤ 2, μA(x) = 1 for x > 2.

Both membership and non-membership functions are represented in the left part
of the Fig. 1, where it is immediate to see that A is an IF-set.
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Fig. 1. Membership (dotted line) and non-membership (solid line) functions of A and
B

We are going to consider the most frequently used t-norms, different values
of α and we will obtain the corresponding α-cuts:

A

N(x) = 1 − x TL TP TM

α = 0.375 [0, 0.417] [0, 0.5] [0, 0.625]
α = 0.5 [0, 0.333] [0, 0.382] [0, 0.5]

N∗(x) = 1 − x2 TL TP TM

α = 0.375 [0, 0.550] [0, 0.589] [0, 0.625]
α = 0.5 [0, 0.449] [0, 0.471] [0, 0.5]

On the other hand, if we consider the IF-set B defined by μB(x) = 1− νA(x)
and νB(x) = νA(x), for all x ∈ X , it is clear that A ⊆ B (see Fig. 1). Moreover,
the corresponding cuts B are the following:

B

N(x) = 1 − x TL TP TM

α = 0.375 [0, 0.625] [0, 0.775] [0, 1.25]
α = 0.5 [0, 0.5] [0, 0.586] [0, 1]

N∗(x) = 1 − x2 TL TP TM

α = 0.375 [0, 0.871] [0, 1] [0, 1.25]
α = 0.5 [0, 0.732] [0, 0.806] [0, 1]

We can notice in the previous example the behavior of cuts in relation with
the order between the t-norms (TL ≤ TP ≤ TM ), between the values of α
(0.375 ≤ 0.5), between the negations (N ≤ N∗) and between the IF-sets (A ⊆
B). Although this is only an example, general results can be proven, as it is
showed in the next proposition, that uses the new Definition 2 and some basic
properties of t-norms and negation operators to generalize the results of the
preceding example.
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Proposition 1. Let A and B be two IF-sets on X and let α be any element in
the interval (0, 1]. The following statements are true:

1. if α < β ≤ 1, then (A)T,N,α ⊇ (A)T,N,β;
2. if T1 ≤ T2, then (A)T1,N,α ⊆ (A)T2,N,α;
3. if N1 ≤ N2, then (A)T,N1,α ⊆ (A)T,N2,α;
4. if A ⊆ B, then (A)T,N,α ⊆ (B)T,N,α.

The cuts of an IF-set characterize the support of this set. Thus,

Proposition 2. Let A be an IF-set on X, T a t-norm without zero divisors and
N a negation function such that N(x) > 0 for every x < 1. Then supp(A) =
∪α>0{(A)T,N,α}.

The condition imposed in the previous proposition for the fuzzy negation N is
not too restrictive. In fact, let us notice that any strict negation N fulfills it
(N(x) > 0 for every x < 1).

In general, for any fuzzy negation and a particular class of t-norms (left con-
tinuous t-norms), we can describe the behavior of the cuts w.r.t. the intersection
of sets, by using just the first part of Proposition 1 and the left continuity of the
t-norm.

Proposition 3. Let A be an IF-set on X, let α ∈ (0, 1] and let T be a left
continuous t-norm. Then (A)T,N,α = ∩β<α(A)T,N,β .

This property enables us to formulate a kind of a representation theorem for
IF-sets (see [9]). The equivalence of the next proposition is proved using the
results of Proposition 3, while the necessary part involves the construction of a
particular IF set A such that μA(x) = sup{γ ∈ (0, 1]|x ∈ Bγ} that it will be
showed to satisfy the desired property.

Proposition 4. Let {Bα}α∈(0,1] be a class of subsets in X. There is an IF-set
A on X for which (A)T,N,α = Bα if and only if Bα = ∩β<αBβ for all α ∈ (0, 1].

Note that the correspondence between an IF-set A and the family of crisp sets
{Bα}α∈(0,1] from the Proposition 4 is not one-to-one, as it is shown in the fol-
lowing example.

Example 2. Let T = TM and let N be an arbitrary negation. Let A = (μA, νA)
be an IF-set for which N(νA(x)) ≥ μA(x) (note that for the standard negation
this inequality holds trivially), let νA be not identically zero.

Take B = (μB , νB) where μB = μA, νB ≤ νA and for at least one x ∈ X it
holds νB(x) < νA(x). As N is nonincreasing, we have N(νB(x)) ≥ N(νA(x))
and so

T (μA(x), N(νA(x))) = T (μB(x), N(νB(x))) = μA(x)

and hence A and B have the same cuts, although A �= B.
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4 Operations with IF-sets and Cuts

We will show some properties for different operations with IF-sets. In particular,
we will work on the behaviour of the cuts w.r.t. the set operations. In all the
cases we will be able to prove a first relationship (content) for an De Morgan
triplet, but the equality will only be obtained in particular cases.

Theorem 1. Let (T, S, N) be a De Morgan triplet and N a strong negation
function. Then, for every pair of IF-sets A and B and for every α ∈ (0, 1], it
holds that

(A)T,N,α ∩ (B)T,N,α ⊇ (A ∩T B)T,N,α.

(A)T,N,α ∩ (B)T,N,α = (A ∩T B)T,N,α holds iff T (x, y) = min(x, y).

The first part of Theorem 1 has been proved using our new Definition 2 and basic
properties of the De Morgan triplet, while the second part is more complex and
thus will not be presented here.

An analogous result is obtained for the union, although in this case the condi-
tions for the equality are stronger, since it is not fulfilled for any fuzzy negation.
As for the preceding Theorem 1, the first part of the next result can be easily
proved using Definition 2 and De Morgan triplet’s properties, while the second
part is more extended and not reported here.

Theorem 2. If (T, S, N) is a De Morgan triplet, then, for all α ∈ (0, 1], it holds
that (A)T,N,α ∪ (B)T,N,α ⊆ (A ∪S B)T,N,α. The equality (A)T,N,α ∪ (B)T,N,α =
(A ∪S B)T,N,α holds iff T = TM and N ≥ Ns.

Once we have characterized the behaviour of cuts with respect to the union and
intersection, we will continue with the complementary. In this case, it is not
possible to obtain a general result for any α ∈ (0, 1].

Proposition 5. If (T, S, N) is a De Morgan triplet, then, for all α ∈ (0, 1], it
holds that (A)T,N,α ⊆ (AT,N,α) for any α > e, where e is the equilibrium point,
that is, the value e ∈ (0, 1) such that N(e) = e.

A more general result (A)T,N,α = (AT,N,α) does not hold.
Thus, let us consider the minimum t-norm, the standard negation (N(x) =

1 − x) and the IF-set A defined by μA(x) = 0.7, νA(x) = 0.2 for every x ∈ X .
For α = 0.1, then min(μA(x), 1 − νA(x)) = min(0.7, 0.8) = 0.7 ≥ 0.1 = α so

x /∈ (AT,N,α), while min(νA(x), 1 − μA(x)) = min(0.2, 0.3) = 0.2 ≥ 0.1 and so
x ∈ (A)T,N,α. Hence, (A)T,N,α �⊆ (AT,N,α). Thus, for α ≤ e the inclusion proven
in the previous proposition is not true in general.

For α = 0.9, then min(μA(x), 1 − νA(x)) = 0.7 < 0.9 = α, so x ∈ (AT,N,α),
while min(νA(x), 1−μA(x)) = 0.2 < 0.9 and so x /∈ (A)T,N,α. Hence, (AT,N,α) �⊆
(A)T,N,α. In this case α = 0.9 > e = 0.5, so we have a counterexample that the
equality is not fulfilled in general.
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5 Cuts of Fuzzy Sets

It is well-known that the α-cut of an ordinary fuzzy set A with membership
function μA is defined as the crisp set Aα such that Aα = {x ∈ X |μA(x) ≥ α}.

On the other hand, we know that any fuzzy set A can be seen as an IF-set,
defined by A = 〈μA, 1 − μA〉 and therefore, we could obtain its cut as an IF-set,
that is,

AT,N,α = {x ∈ X |T (μA(x), N(1 − μA(x))) ≥ α}.

Theorem 3. Let (T, S, N) be a De Morgan triplet, let α be any element in the
interval (0, 1] and let A be a fuzzy set. If Aα represents its α-cut as fuzzy set and
(A)T,N,α its α-cut if we consider A as an IF-set, then it holds that

(A)T,N,α ⊆ Aα.

The equality (A)T,N,α = Aα holds iff T = TM and N ≥ Ns.

Both the inclusion (A)T,N,α ⊆ Aα and the equality (A)T,N,α = Aα under con-
ditions T = TM and N ≥ Ns can be easily proved using Definition 2 and
De Morgan triplet’s properties, while the necessity of conditions T = TM and
N ≥ Ns for the equality needs more complex reasonings that are not reported
here.

It is interesting to notice that the conditions obtained in this case for fuzzy
sets are exactly the same that the ones obtained in Theorem 2 for the union. In
both cases, let us notice that only the classical cut defined by Atanassov in [3]
fulfills the equality. However, the conditions for the intersection (Theorem 1) are
less restrictive and they can be fulfilled for a more general class of cuts, when
the fuzzy negation is not necessary the standard one.

6 Conclusion

A new method for computing α-cuts has been proposed representing both state-
ments x is in A and is not true that x is not in A through a unique expression
that depends on a parameter α. The result is a more general definition of α-cut
for IF-sets, that respects usual fuzzy logic connectives. The properties of this new
definition with respect to usual sets operations has been investigated. It results
that stronger properties are verified when the classical t-norm and negation are
considered, while in the general case only some properties can be proved.

As in practical application the results of the statements evaluation need not
always be comparable, it is reasonable to study similar questions also for lattice
(or, more generally, poset) valued fuzzy sets and IF sets. As a starting point for
this research direction it is possible to use the results for triangular norms on
more general spaces (see [4] or [5]).
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Abstract. This paper introduces the interval-valued fuzzy implications gener-
ated from fuzzy implications and from Kα operators showing that such construc-
tion generalizes the canonical representation of fuzzy implications. In addition,
we also analyzed their conjugate construction preserving their main properties.

Keywords: Interval-valued fuzzy logic, interval-valued implications, interval
automorphisms.

1 Introduction

Considering interval-valued fuzzy implications (IV-implications in short), this paper
extends the work introduced by Bustince et al. [7], in which to construct IV-connectives
(such as t-norms, t-conorms and fuzzy negations) it makes use of K-operators. Such
structure enables an interval approach for the fuzzy connectives based on the concept
of interval amplitudes. Starting with preliminar definitions of interval representations
and fuzzy negations, we recall the Kα−operator in Section 3, in order to study the
conditions in which IV-implications satisfy the main properties of fuzzy implications.
Section 4 considers the conjugate functions based on the action of an automorphism on
IV-implications, followed by the Conclusion.

2 Preliminaries

2.1 Interval Representations

Consider the real unit interval U = [0, 1] ⊆ � and let U be the set of all subintervals
of U , that is, U = {[a, b] | 0 ≤ a ≤ b ≤ 1}. The projection-functions l, r : U → U ,
defined as l([a, b]) = a and r([a, b]) = b. For an arbitrary X ∈ U, l(X) and r(X) will
be denoted by X and X , respectively. For each x ∈ U , the interval [x, x] is called a
degenerate interval and will be denoted by xU. Among different relations on interval-
valued fuzzy sets, the partial orders that are considered in this paper are the following:
(i) inclusion relation, defined by:

∀X, Y ∈ U : X �U Y ⇔ X ≤ Y ∧ Y ≤ X. (1)

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 41–49, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(ii) the component-wise Kulisch-Miranker order (also called product order), given by:
∀X, Y ∈ U : X ≤U Y ⇔ X ≤ Y ∧ X ≤ Y . (2)

A function F : Un −→ U is an interval representation of a function f : Un −→ U if,
for each X ∈ Un and x ∈ X , f(x) ∈ F (X) [22]. An interval function may be seen
as a representation of a subset of real numbers. An interval function F : Un −→ U
is a better interval representation of f : Un −→ U than G : Un −→ U, denoted
by G � F , if, for each X ∈ Un, F (X) ⊆ G(X). According to [22], the canonical
representation of a real function f : Un −→ U , is the interval function f̂ : Un −→ U
defined by

f̂(X) = [inf{f(x) : x ∈ X}, sup{f(x) : x ∈ X}]. (3)

The interval function f̂ is well defined and for any other interval representation F of f ,
F � f̂ . It also returns a narrower interval than any other interval representation of f .
Thus, f̂ has the optimality property of interval algorithms [13].

2.2 Kα Operators

Definition 1. [7, Definition 2] Let MA : X → U be a membership function on the
universe X �= ∅. An interval-valued fuzzy set A (IVFS A in short) on X is defined by

A = {(x, MA(x)) : x ∈ X}. (4)

According to [7], an IVFS A described by Eq. (4) can be viewed as a fuzzy L−Goguen’s
sense. In addition, (U,≤U) is a complete lattice when, for all X ∈ U, 0U ≤U X ≤U 1U.

Definition 2. [7, Def. 3]For α∈U , a functionKα:U−→U is a K−operator if:

K1 Kα(xU) = x, for all x ∈ U ;
K2 K0(X) = X , K1(X) = X , for all X ∈ U;
K3 If X ≤ Y then Kα(X) ≤ Kα(Y ), for all X, Y ∈ U and α ∈ U ;
K4 α ≤ β iff Kα(X) ≤ Kβ(X), for all X ∈ U.

Proposition 1. Let α ∈ U . Then Kα(Kα) : U −→ U is a K−operator defined by
Kα(X) = K0(X) + αWX (or Kα(X) = K1(X) − αWX). (5)

where WX denotes the amplitude of the interval X , i.e. WX = X − X .

Proof. Based on Def. 2, for all X, Y ∈ U and α ∈ U , it follows that: (i) K0(xU) =
K0(xU)+α ·0 = K0(xU) = x; (ii) firstly, if α = 0 then K0(X) = K0(X)+0 ·WX =
X; and, if β = 1 it holds that K1(X) = K0(X) + 1 · WX = X ; (iii) if X ≤ Y then
Kα(X) = K0(X) + αWX ≤ K0(Y ) + αWY = Kα(Y ); (iv) α ≤ β ↔ K0(X) +
αWX ≤ K0(X) + βWX , and so, α ≤ β iff Kα(X) ≤ Kβ(X).

The role of WX in Eq. (5) is to guarantee that Kα(X) ∈ X and Kα(X) ∈ X .

Remark 1. When Kα and Kα are both K−operators, then KNS(α) = Kα. In this
paper, we consider the generation of IV-implications from Kα operators, but it can also
be done based on Kα operators.

Remark 2. Let X ∈ U, n ∈ N ∗ and let Kα be the K−operator of equation (5):

(i) If X ≤ α = 1
n and X = 1 − (n − 1)X , then Kα(X) ≤ α;

(ii) When X ≤ 1 + (1 − α−1)X then Kα ≤ α;
(iii) In addition, if α = 0.5, K0.5(X) returns the middle-point of X .
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2.3 Interval-Valued Fuzzy Negation

A function N : U → U is a fuzzy negation if

N1 : N(0) = 1 and N(1) = 0.
N2 : If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ I .
In addition, fuzzy negations satisfying the involutive property are called strong fuzzy
negations (SFN in short),see [15] and [6]:

N3 : N(N(x)) = x, ∀x ∈ U .

NS(x) = 1 − x, called the standard negation, is an involutive function on U .
An interval function N : U −→ U is an interval fuzzy negation if, for any X , Y in

U, the following properties hold:

N1 : N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0].
N2a : If X ≥ Y then N(X) ≤ N(Y ); and N2b: If X ⊆ Y then N(X) ⊇ N(Y ).

If N meets the involutive property, it is a strong interval fuzzy negation (SIFN in short):

N3 : N(N(X)) = X , ∀X ∈ U.

NS(X) = [1 − X, 1 − X] is a SIFN. Notice that NS = N̂S .
Let N :U−→U be a negation. From Def. 2, a characterization of N̂ is given by:

N̂(X) = [N(X), N(X)] = [N(K1(X)), N(K0(X))]. (6)

Theorem 1. [4, Theorem 4.2] Let N : U −→ U be a (strong) fuzzy negation. Then N̂
is an (strong) interval fuzzy negation.

Based on [7, Theorem 4,Corollary 2] when N : U → U is a strict fuzzy negation and
N1, N2 : U → U are defined by,

N1(X)= [N(K1(X)),N(K0(X))] and N2(X)= [N−1(K1(X)),N−1(K0(X))], (7)

then, both, N1 and N2 are strict IV-negations. Moreover, N1 = N2 iff N is involutive.
Concluding this section, an N−dual Kα−operator is introduced.

Proposition 2. If N = NS then WX = WN(X).

Proof. WN(X) = NS(K0(X))−NS(K1(X)) = (1−K0(X))− (1−K1(X)) = WX .

3 Interval-Valued Fuzzy Implications
Several definitions for implications together with related properties have been given
(see [1,2,6,10,14,17,19] and [23]). The agreement over these definitions is that the fuzzy
implication should have the same behavior as the classical implication for the crisp case.
Thus,I :U2−→U is a fuzzy implication if I meets the boundary conditions:

I1 : I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.

The properties of implications can be naturally extended from interval fuzzy degrees,
when the respective degenerate intervals are considered. A function I : U2 −→ U is an
IV-implication, if the following conditions hold:
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I1: I(1U, 1U)= I(0U, 0U)= I(0U, 1U)=1U and I(1U, 0U)=0U.
Among several other properties which may be required for fuzzy implications, the fol-
lowing ones are considered in this paper:

I2 : if x≤z thenI(x, y)≥ I(z, y); I2 : if X ≤U Z thenI(X, Y )≥U I(Z, Y );
I3 : if y≤ t thenI(x, y)≥ I(x, t); I3 : if Y ≤U T thenI(X, Y )≥U I(X, T );
I4 : I(0, y) = 1; I4 : I(0U, Y ) = 1U;
I5 : I(x, 1) = 1; I5 : I(X,1U) = 1U;
I6 : I(1, y) = y; I6 : I(1, Y )=Y ;
I7 : I(x, I(y, z)= I(y, I(x, z); I7 : I(X, I(Y, Z)= I(Y, I(X, Z);
I8 : I(x, y) = 1 iff x ≤ y; I8 : I(X, Y ) = 1 iff X ≤U Y ;
I9 : I(x, y) ≥ y; I9 : I(X, Y ) ≥U Y ;
I10 : I(x, x) = 1; I10 : I(X, X) = 1U;
I11 : I(x, y) = I(N(y), N(x)); I11 : I(X, Y ) = I(N(Y ), N(X);
I12 : x > 0 → I(x, 0) < 1; I12 : X >U 0 → I(X,0U) < 1U;
I13 : y < 1 → I(1, y) < 1. I13 : Y <U 1U → I(1U,Y) <U 1U.

Proposition 3. [5, Proposition 21] A fuzzy implication I : U2 −→ U satisfies I2 and
I3 iff the IV-implication Î , called canonical representation of I , can be expressed as

Î(X, Y ) = [I(X, Y ), I(X, Y )]. (8)

Proposition 4. Let Kα, Kβ : U −→ U be K−operators such that α ≤ β and Ia, Ib :
U2 → U be fuzzy implications satisfying I2 and I3 and such that Ia ≤ Ib. The mapping
IIa,Ib

: U2 −→ U is an IV-implication given by:

IIa,Ib
(X, Y ) = [Ia(Kβ(X), Kα(Y )), Ib(Kα(X), Kβ(Y ))]. (9)

Proof. From K4, I2 and I3 follows that Ia(Kβ(X), Kα(Y )) ≤ Ib(Kα(X), Kβ(Y ))
and so IIa,Ib

is well defined. Following from Properties K1 and I1, IIa,Ib
verifies I1.

Remark 3. Connectives and Amplitudes: Let NS and SM be the standard negation and
the maximum t-conorm. According to [7, Prop. 5 and Lemma 11], taking their corre-
sponding N -representable IV negation NS(X) = [N(X), N(X)] and S-representable
IV t-conorm S(X, Y ) = [max{X, Y }, max{X, Y ], if WX = WY then WN = WX and
WS = WX . Now, taking the Klenne-Dienes implication obtained by ISM ,NS (x, y) =
SM (NS(x), y), which means ISM ,NS (x, y) = max{N(x), y}, then it also holds that
WISM ,NS

=WX if its corresponding ISM ,NS-representable IV-implication is given by:
ISM ,NS (X, Y ) = [max{N(X), Y }, max{N(X), Y }].

In this case, a = b, α = 0 and β = 1, in Eq.( 9).

Proposition 5. Let I : U2 → U be fuzzy implications satisfying I2 and I3 and Kα, Kβ :
U −→ U be K−operators according to Def. 2. When α = 0 and β = 1, then

IIa,Ib
= Î . (10)

Proof. It follows from Eq. (9) in Proposition 5 and from Proposition 3.

Theorem 2. Let Ia,Ib : U2 → U be fuzzy implications satisfying I2 and I3 and such
that Ia ≤ Ib. Let Kα,Kβ : U −→ U be K−operators such that α ≤ β. The function
IIa,Ib

satisfies the property Ik iff Ia, Ib satisfy the property Ik, for k ∈ {1, . . . , 5, 12, 13}.
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Proof. I2 : Suppose that both Ia, Ib satisfy I2. If X ≤U Z then, by K3 and I2, for all
X, Z ∈ U and β, α ∈ U , it follows that:

( i )Kβ(X) ≤ Kβ(Z) ⇔ Ia(Kβ(X), Kα(Y )) ≥ Ia(Kβ(Z), Kα(Y ))
(ii)Kα(X) ≤ Kα(Z) ⇔ Ib(Kα(X), Kβ(Y )) ≥ Ib(Kα(Z), Kβ(Y ))

From (i) and (ii), it is immediate that IIa,Ib
(X, Y ) ≥U IIa,Ib

(X, Z).
I3 : Suppose that Ia, Ib satisfy I3. If Y ≤U Z , then it follows that:

(i)Kα(Y ) ≤ Kα(Z) ⇔ Ia(Kβ(X), Kα(Y )) ≤ Ia(Kβ(X), Kα(Z));
(ii)Kβ(Y ) ≤ Kβ(Z) ⇔ Ib(Kα(X), Kβ(Y )) ≤ Ib(Kα(X), Kβ(Z)).

Therefore, from (i) and (ii), IIa,Ib
(X, Y ) ≤U IIa,Ib

(X, Z).
I4 : Suppose that Ia, Ib satisfy I4. Then, by Eq.( 9) and K1, for all Y , one can obtain:

IIa,Ib
(0U, Y ) = [Ia(Kβ(0U), Kα(Y )), Ib(Kα(0U), Kβ(Y ))]

= [Ia(0, Kα(Y )), Ib(0, Kβ(Y ))] = [1, 1] = 1U

I5 : If Ia, Ib satisfy I5, by Eq.( 9) and K1, for all X , one can obtain:

IIa,Ib
(X,1U) = [Ia(Kβ(X), Kα(1U)), Ib(Kα(X), Kβ(1U))]

= [Ia(Kβ(X), 1), Ib(Kα(X), 1)] = [1, 1] = 1U.

I12 : Suppose Ia, Ib satisfy I12 and for X ∈ U, X > 0, which means, by K3,
Kα(X) ≥ 0 and Kβ(X) > 0. Then, by Eq.( 9) and K1, one can obtain:

IIa,Ib
(X,0U) = [Ia(Kβ(X), Kα(0U)), Ib(Kα(X), Kβ(0U))]

= [Ia(Kβ(X), 0), Ib(Kα(X), 0)] < 1U.

I13 : Suppose Ia, Ib satisfy I13 and for Y ∈ U, Y < 1, which means, by K3,
Kα(Y ) < 1 and Kβ(Y ) < 1. Then, by Eq.( 9) and K1, one can also obtain:

IIa,Ib
(1U, Y ) = [Ia(Kβ(1U), Kα(Y )), Ib(Kα(1U), Kβ(Y ))]

= [Ia(1, Kα(Y )), Ib(1, Kβ(Y ))] < 1U.

Hereinafter, in order to analise other properties, from the two next propositions, neces-
sary conditions are also presented, in addition to the constrain stated in Proposition 5.

Proposition 6. Let Ia and Ib be implications verifying I6 (I7,I9, I10). If β = 1 and
α = 0 then function IIa,Ib

satisfies the property I6 (I7, I9, I10), respectively.

Proof. I6 : When Ia and Ib are implications verifying I6 then:

IIa,Ib
(1U, Y )=[Ia(K1(1U), K0(Y )), Ib(K0(1U), K1(Y )]= [K0(Y ), K1(Y )]=Y .

I7 : Let Ia and Ib be implications verifying I7. then:
IIa,Ib

(X, IIa,Ib
(Y, Z))

= [Ia(K1(X), Ia(K1(Y ), K0(Z)), Ib(K0(X), Ib(K0(Y ), K1(Z)))]by Eq (9)

= [Ia(K1(Y ), Ia(K1(X), K0(Z)), Ib(K0(Y ), Ib(K0(X), K1(Z)))]by I7

= IIa,Ib
(Y, IIa,Ib

(X, Z))
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I9 : When Ia and Ib are implications verifying I9 then:

IIa,Ib
(X, Y )=[Ia(K1(X), K0(Y )), Ib(K0(X), K1(Y )]≤U [K0(Y ), K1(Y )]=Y .

So, IIa,Ib
, for α = 0, β = 1, satisfies I6, I7 and I9 if Ia, Ib satisfy I6, I7 and I9.

Proposition 7. Let Ia and Ib be implications verifying I8 (I10) . If β = α and Kα(X)
≤ Kα(Y ) implies that X ≤U Y for all X, Y ∈ U, then IIa,Ib

satisfies I8 (I10).

Proof. (⇒) If β = α then for all X, Y ∈ U, whenever X ≤U Y , by K3, Kα(X) ≤
Kβ(Y ) and Kβ(X) ≤ Kα(Y ). So, by I8, it holds that:

IIa,Ib
(X, Y ) = [Ia(Kβ(X), Kα(Y )), Ib(Kα(X), Kβ(Y ))] = 1U.

(⇐) If IIa,Ib
(X, Y ) = 1U, then Ia(Kβ(X), Kα(Y )) = 1 and Ib(Kα(X), Kβ(Y )) = 1.

Again, since both Ia and Ib satisfy I8, it follows that Kβ(X) ≤ Kα(Y ) and Kα(X) ≤
Kβ(Y ). Since α = β then Kα(X) ≤ Kα(Y ). So, by hypothesis, a K−operator verifies
K4 X ≥ Y .

For the case of I10, when α = β:

IIa,Ib
(X, X) = [Ia(Kα(X), Kα(X)), Ib(Kα(X), Kα(X))] = 1U.

4 Interval Automorphism

A mapping ρ : U −→ U is an automorphism if it is bijective and monotonic: x ≤
y ⇒ ρ(x) ≤ ρ(y) [16]. An equivalent definition is given in [6], where ρ : U −→
U is an automorphism if it is a continuous and strictly increasing function such that
ρ(0) = 0 and ρ(1) = 1. The set of all automorphisms on U is denoted by Aut(U).
Automorphisms are closed under composition and inversion operators: if ρ and ρ′ are
automorphisms then ρ ◦ ρ′(x) = ρ ◦ ρ′(x)) an ρ−1 ◦ ρ(x) = x.

The action of ρ on I , denoted by Iρ, is also a fuzzy implication defined as follows

Iρ(x, y) = ρ−1(I(ρ(x), ρ(y))) (11)

A mapping 
 : U −→ U is an interval automorphism if it is bijective and satisfies
the equivalence: X ≤U Y ⇔ 
(X) ≤U 
(Y ) [11,12].

The set of all interval automorphisms 
 : U −→ U is denoted by Aut(U). In what
follows, Eq.(12) provides a canonical construction of interval automorphisms from au-
tomorphisms and, therefore a bijection between the sets Aut(U) and Aut(U).

Theorem 3. [11, Theorem 3] Let 
 : U −→ U be an interval automorphism. Then
there exists an automorphism ρ : U −→ U such that


(X) = [ρ(X), ρ(X)]. (12)

Interval automorphisms can be generated from the point of view of an automorphism
representation. Based on automorphism representation theorem proved in[3], ρ̂ : U →
U is an interval automorphism characterized as:

ρ̂(X) = [ρ(X), ρ(X)]. (13)
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In the following, an interval automorphism 
 acts on an IV-implication I generating
new IV-implication I	 named conjugate function of I.

Let 
 : U −→ U be an interval automorphism and I : U2 −→ U be an IV-
implication. Then the mapping I	 : U2 −→ U is an IV-implication given by

I	(X, Y ) = 
−1(I(
(X), 
(Y ))) (14)

The results in the last subsection are concerned with the generation of new IV-implications
and Kα-operators based on the action of interval automorphisms.

Proposition 8. The action of an automorphism ρ on a K−operator Kα is also a
K−operator, defined as follows:

Kρ
α(X) = ρ−1(Kα(ρ̂(X))). (15)

Proof. Based on Def. 2, it follows the next four properties:

K1 By Eq.( 11), Kρ
α(xU) = ρ−1(Kα([ρ(x), ρ(x)])) = x.

K2 By Eq. (12), it follows: (i) Kρ
0 (X) = ρ−1(K0([ρ(X), ρ(X)])) = ρ−1(ρ(X)) =

X; and (ii) Kρ
1 (X) = ρ−1(K1([ρ(X), ρ(X)]) = ρ−1(ρ(X)). Then, Kρ

α(X) = X .
K3 If X≤Y , since Kα, ρ−1 and ρ̂ are nondecreasing functions, it holds that:

Kρ
α(X) = ρ−1(Kα(ρ̂(X)) ≤ ρ−1(Kα(ρ̂(Y )) =≤ Kρ

α(Y ).
K4 Firstly, if α≤β, then by K4, Kα(ρ̂(X))≤Kβ(ρ̂(Y )). So, for all X ∈U it holds that

Kρ
α(X)=ρ−1(Kα(ρ̂(X)))≤ρ−1(Kβ(ρ̂(Y )))=Kρ

β(Y ). And, if Kρ
α(X)≤Kρ

β(X)
then, by K4, ρ̂(X)≤Uρ̂(Y ) which means X≤UY . Thus, the converse also is held.

Therefore, one can conclude that Kρ
α is a K−operator, in the sense of Def. 2.

Theorem 4. Let Ia, Ib : U2 → U be fuzzy implications, Kα, Kβ : U −→ U be
K−operators according to Def. 2 and 
 : U → U be an interval automorphism. Then

I	
Ia,Ib

(X, Y ) = IIρ
a ,Iρ

b
(X, Y ) (16)

Proof. Firstly, I	
Ia,Ib

is well defined. By Theorem 3, there exists an automorphism

ρ : U −→ U such that 
(X) = [ρ(X), ρ(X)]. By Theorem 8, it follows that :

I	
Ia,Ib

(X, Y ) = IIa,Ib
(
(X), 
(Y ))By Eq.(14)

= 
−1[Ia(Kβ(
(X)), Kα(
(Y )), Ib(Kα(
(X)), Kβ(
(Y )))]By Eq.(15)

= 
−1[Ia(ρ(Kρ
β(X), ρ(Kρ

α(X)), Ib(ρ(Kρ
α(X), ρ(Kρ

β(Y ))]By Eq.(11)

= [Iρ
a(Kρ

β(X), Kρ
α(Y ), Iρ

b (Kρ
α(X), Kρ

β(Y )]By Eq.(11)

= IIρ
a ,Iρ

b
(X, Y ), By Eq.(9).

Theorem 5. The conjugate function I	
Ia,Ib

satisfies the property Ik iff IIa,Ib
satisfies the

property Ik, for k ∈ {1, 2, . . . , 5, 13, . . .15}.

Proof. It can be obtained based on Theorem 4, analogously to Theorem 5.
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5 Conclusion and Final Remarks

We mainly discussed under which conditions the generation of IV-implications from
fuzzy implications and from Kα operators preserve the main properties of implica-
tions. The conjugate of an IV-implication IIa,Ib

is studied, based on the action of an
automorphism ρ on their underlying implications Ia and Ib and on K-operators. Ongo-
ing work is focussed on the extension of such approach in order to study the S-, QL-
and R-implication interval classes including interval-valued t-norms and t-conorms [8].
IV-implications could be used to extend the use of fuzzy implications in, for example,
neuro-fuzzy systems [20], fuzzy systems control [18] and making-decision [21].

Acknowledgments. Thanks for the anonymous referees for their valuable comments
and suggestions.
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22. Santiago, R., Bedregal, B., Acióly, B.: Formal Aspects of Correctness and Optimality in
Interval Computations. Formal Asp. of Comput. 18(2), 231–243 (2006)

23. Yager, R.R.: On Some New Classes of Implication Operators and Their Role in Approximate
Reasoning. Inf. Sci. 167(1–4), 193–216 (2004)



An Approach to General Quantification Using

Representation by Levels�

Daniel Sánchez1,2, Miguel Delgado2, and Maŕıa-Amparo Vila2
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Abstract. In this paper we propose an extension of generalized quan-
tification to the fuzzy case using a recently proposed level representation
of fuzziness. The level representation allows the extension of crisp quan-
tification to the fuzzy case in a simple way, keeping all its properties. The
expressive power of this extension to the theory of generalized quanti-
fiers goes far beyond the usual fuzzy quantification framework based on
absolute and relative fuzzy quantifiers. The proposal offer many poten-
tially interesting possibilities for developing applications inspired in the
Computing with Words and Perceptions paradigm, remarkably linguistic
summarization of data.
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1 Introduction

In the framework of Computing with Words and Perceptions [22], the linguis-
tic summarization of data requires the evaluation of the accomplishment degree
of linguistic expressions about data, where linguistic terms are represented as
fuzzy subsets of data domains [19,11]. Linguistic expressions involving quanti-
fiers, called quantified sentences, are among the most employed for this purpose.
Zadeh’s framework for quantification [21], considers expressions of the form “Q
of X are A” or “Q of D are A”, called type I and type II sentences, respectively.
Here, Q is a linguistic quantifier, X is a (finite) crisp set, and A,D are fuzzy
subsets of X. There are many different approaches for evaluating the accom-
plishment of this type of sentences, see among others [21,6,18,5,4,9,20,3,13,16].
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Linguistic quantifiers in Zadeh’s framework are normal, convex fuzzy subsets
of Z (absolute quantifiers) or [0, 1] (relative quantifiers), that generalize the or-
dinary quantifiers ∃ and ∀ of first order logic [21]. However, some very common
types of quantified statements in natural language cannot be modeled using this
kind of quantifiers. In order to fill this gap, Glöckner [7] proposed an approach
to generalize fuzzy quantification to any quantifier in the Theory of Generalized
Quantifiers (TGQ) [12]. Generalized quantifiers include both absolute and rel-
ative quantifiers as particular cases, providing a way to represent many other
quantifiers with richer semantics and expressive power. A number of important
proposals along this line can be found in the literature [7,1,2,8,4,9,10].

In this paper we propose an alternative way for extending the TGQ to the
fuzzy case along this line. Our approach is based on the representation of fuzzi-
ness by means of levels proposed in [15,17]. This representation fits perfectly
the requirements of this problem, since concepts and schemes can be extended
to the fuzzy case in a direct and straightforward way, keeping all the properties
of the crisp case. We already showed the suitability of this model in modeling
quantified sentences in Zadeh’s framework [16].

2 Extending Generalized Quantifiers to the Fuzzy Case

In this section we briefly introduce the notion of generalized quantifier and
Glöckner’s approach for extending it to the fuzzy case.

2.1 Generalized Quantifiers

In TGQ, a generalized quantifier is a second-order predicate whose arguments are
taken from the power set of a reference set X . For instance, the usual quantifiers
∃ and ∀ can be defined by two binary predicates P∃ : P(X) × P(X) → {0, 1}
and P∀ : P(X) × P(X) → {0, 1} as follows:

P∃(X1, X2) = 1 iff X1 ∩ X2 �= ∅ (1)
P∀(X1, X2) = 1 iff X1 ⊆ X2 (2)

Eq. (1) corresponds to the quantified sentence At least one X1 are X2 whilst Eq.
(2) corresponds to All X1 are X2. Another example is the quantifier at least 4
and less than 80%, that can be defined respectively as:

P≥4(X1, X2) = 1 iff |X1 ∩ X2| ≥ 4 (3)

P<80%(X1, X2) = 1 iff
|X1 ∩ X2|

|X1|
< 0.8 (4)

However, generalized quantifiers are much more general. For example, quantifiers
of arity greater than 2 are possible, like for instance More X1 than X2 are X3.
This is a ternary quantifier P that can be defined as:

Pmore(X1, X2, X3) = 1 iff |X1 ∩ X3| > |X2 ∩ X3| (5)
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2.2 Fuzzy Extension: Semi-fuzzy Quantifiers

Generalized quantifiers as introduced in the previous section are crisp predicates.
However, in practice it is necessary to evaluate the accomplishment degree of
statements involving fuzzy sets. For the classical quantifiers and following Eqs.
(1) and (2), it is enough to consider fuzzy degrees of intersection and inclusion of
fuzzy sets, respectively, a topic that has been extensively studied in the literature.
However, the situation is not so simple with other quantifiers.

As a first step towards generalizing quantifiers to the fuzzy case, Glöckner
introduces the notion of semi-fuzzy quantifier [7]. A semi-fuzzy quantifier is a
fuzzy second-order predicate that takes as arguments crisp subsets of X . Hence,
a binary semi-fuzzy quantifier has the form P : P(X) × P(X) → [0, 1]. Abso-
lute and relative fuzzy quantifiers are particular cases of quantifiers that can
be represented as semi-fuzzy quantifiers. For instance, given an absolute fuzzy
quantifier Q, it can be represented by the semi-fuzzy quantifier PQ defined as
PQ(X1, X2) = Q(|X1 ∩ X2|). Similarly, the relative fuzzy quantifier Q′ can be
represented by PQ′ defined as PQ′ (X1, X2) = Q′(|X1 ∩ X2|/|X1|).

In order to be able to evaluate quantified statements involving fuzzy sub-
sets of X , it is necessary to provide what Glöckner calls quantifier fuzzification
mechanisms (QFMs). Different QFMs have been proposed in [7,1,2,8,4,9,10].

3 Representation by Levels

The representation by levels (called restriction-level representation in previous
works) of a fuzzy concept is an assignment from [0, 1] to P(X). As a particular
case, a fuzzy set is a representation by levels following the usual representation
as a collection of nested alpha-cuts. However, there are two main differences
between representation by levels and fuzzy set theory:

– Contrary to the alpha-cut representation, the sets are not necessarily nested.
– All the operations, definitions, and properties are applied in each level inde-

pendently.

3.1 Representation

In [15,17] we assume that for each concept there is a finite set of relevant levels
Λ = {α1, . . . , αm} verifying that 1 = α1 > α2 > · · · > αm > αm+1 = 0, m ≥ 1.
The consideration that a RL-set is finite is not a practical limitation since humans
are able to distinguish a limited number of restriction or precision levels and, in
practice, the limit in precision and storage of computers allows us to work with
a finite number of degrees (and consequently, of levels) only.

Definition 1. A level representation is a pair (Λ, ρ) where Λ is a set of levels
and ρ is a function

ρ : Λ → P(X) (6)
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The function ρ indicates the crisp realization that represents the fuzzy concept
in each level. Given a fuzzy concept F represented by (ΛF , ρF ), we define the
set of crisp representatives of F , ΩF , as

ΩF = {ρF (α) | α ∈ ΛF } (7)

In order to define properties by operations, it is convenient to extend the function
ρ to any α ∈ (0, 1]. Let (Λ, ρ) with Λ = {α1, . . . , αm} and 1 = α1 > α2 > · · · >
αm > αm+1 = 0. Let α ∈ (0, 1] and αi, αi+1 ∈ Λ such that αi ≥ α > αi+1. Then

ρ(α) = ρ(αi) (8)

Obviously, (Λ, ρ) on X is a crisp set A ⊆ X iff ∀α ∈ Λ, ρ(α) = A.

3.2 Random-Set View

Given (ΛA, ρA), the values of ΛA can be interpreted as values of possibility of a
possibility measure defined ∀ρA(αi) ∈ ΩA as

Pos(ρA(αi)) = αi. (9)

Following this interpretation we define a basic probability assignment in the
usual way:

Definition 2. Let (Λ, ρ) with crisp representatives Ω. The associated probability
distribution m : Ω → [0, 1] is

m(Y ) =
∑

αi | Y =ρ(αi)

αi − αi+1. (10)

The basic probability assignment mF gives us information about how represen-
tative of the property F is each crisp set in ΩF . For each Y ∈ ΩF , the value
mF (Y ) represents the proportion to which the available evidence supports the
claim that the property F is represented by Y . From this point of view, a level
representation can be seen as a random set plus a structure indicating dependen-
cies between the possible representations of different properties.

3.3 Advantages

The main advantages of this representation are:

– The extension of crisp definitions and operations to the fuzzy case is straight-
forward. In a sense, a fuzzy concept is transformed into a collection of crisp
concepts that are operated independently (levelwise) using the available crisp
operations.

– All the properties of the crisp case are kept.
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4 Our Approach to Fuzzy Generalized Quantification

The aforementioned advantages of the level representation make it highly suit-
able for the purposes of providing a QFM. Since semi-fuzzy quantifiers operate
on crisp sets, they can be applied to each level in the representation of fuzzy
concepts in order to obtain a level representation of the accomplishment degree,
as follows:

4.1 Levelwise Evaluation

Definition 3. Let P be a n-ary semi-fuzzy quantifier on X. Let A1, . . . , An be
fuzzy concepts represented by levels as (ΛA1 , ρA1), . . . , (ΛAn , ρAn). The evaluation
of E ≡ P (A1, . . . , An) is a level representation (ΛE , ρE), where

ΛE =
n⋃

i=1

ΛAi (11)

and, ∀α ∈ ΛE,
ρE(α) = P (ρA1(α), . . . , ρAn(α)) (12)

As an example, consider the atomic concepts A1, A2, A3 defined by the following
fuzzy sets:

A1 = 1/x1 + 0.8/x2 + 0.5/x3 + 0.4/x5

A2 = 0.9/x1 + 0.6/x3 + 0.5/x4

A3 = 0.4/x1 + 1/x3 + 1/x4

Then we have ΛA1 = Λ¬A1 = {1, 0.8, 0.5, 0.4}, ΛA2 = Λ¬A2 = {1, 0.9, 0.6, 0.5},
and ΛA3 = Λ¬A3 = {1, 0.4}. In Table 1 we can see several properties derived from
these using ∧, ∨, and negation. It is easy to see that the result is not always a
fuzzy set, specifically when negation is involved (conjunction and disjunction of
fuzzy sets via levels is equivalent to minimum and maximum, respectively, but
not for any level representation in general). Notice that since level operations
verify the classical properties, the representation of A ∧ ¬A is ∅ in every level,
i.e., a classical, crisp contradiction.

Table 2 shows a set of quantified sentences involving concepts derived from
the Ai, using the ternary generalized quantifier Pmore defined in Eq. (5) and the

Table 1. Level representation of several concepts

α ρA1(α) ρ¬A1(α) ρA2(α) ρ¬A2(α) ρA1∧¬A2(α) ρA3(α)

1 {x1} {x2, x3, x4, x5} ∅ X {x1} {x3, x4}
0.9 {x1} {x2, x3, x4, x5} {x1} {x2, x3, x4, x5} ∅ {x3, x4}
0.8 {x1, x2} {x3, x4, x5} {x1} {x2, x3, x4, x5} {x2} {x3, x4}
0.6 {x1, x2, x3} {x4, x5} {x1, x3} {x2, x4, x5} {x2} {x3, x4}
0.5 {x1, x2, x3} {x4, x5} {x1, x3, x4} {x2, x5} {x2} {x3, x4}
0.4 {x1, x2, x3, x5} {x4} {x1, x3, x4} {x2, x5} {x2, x5} {x1, x3, x4}
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Table 2. Some quantified sentences involving Ai

E1 More A1 than A2 are A3 E3 QM of A2 are A3 E5 ∃ of A are ¬ A

E2 More A2 than A3 are A1 E4 QM of ¬A1 are ¬A2 E6 ∀ of (A1 ∧ ¬A2) are ¬A3

Table 3. Evaluation of sentences in Table 2

α E1 E2 E3 E4 E5 E6

1 0 0 0 1 0 1

0.9 0 1 0 1 0 0

0.8 0 1 0 1 0 1

0.6 0 1 1/2 1 0 1

0.5 0 1 2/3 1/2 0 1

0.4 0 0 1 0 0 1

quantifiers QM (x) = x, ∃, and ∀. Table 3 shows the corresponding evaluation of
the sentences in table 2.

All the properties of evaluation with semi-fuzzy quantifiers are kept since we
are calculating levelwise. This is important since a collection of properties that
any suitable method should satisfy have been proposed [7,5,9], but it is not easy
to show that a certain QFM satisfy them. The existing QFM are in general
sound but sophisticated proposals in which a hard work has been devoted to
study the fulfilment of these properties.

Another problem of some existing QFM that is solved with our approach
is that computational complexity is quadratic or even more. In our case, the
evaluation is efficient in time, since it is a crisp evaluation (O(1)) in each level,
the number of levels depending on either the amount of data (if we do not
fix a precision for the degrees) or the precision considered. In the worst case,
corresponding to the Ai being the alpha-cut representation of fuzzy sets, the
complexity is O(nlogn), as shown in [5].

Our proposal has as a particular case the evaluation method proposed in [16],
in which absolute and relative quantifiers only are considered. In the same work
we showed that properties involving the negation are verified by our scheme. In
particular, there is an intuitive property that, to the best of our knowledge, is
not verified by any other existing method: the evaluation of sentences of the kind
∃ A are ¬A is definitely 0. This goes beyond the development of QFMs, as it is
related to the very nature of the fuzziness representation. This property comes
from the fact that in level representation, the representation of A ∧ ¬A = ∅.

4.2 Numerical Evaluation

The evaluation of quantified sentences yields usually a number in [0, 1]. We can
obtain such summary of the evaluation when that is the final, expected result of
our system; otherwise, following the ideas of representation by levels, we would
proceed operating in each level independently. In [16] we proposed to summarize
the information as follows:
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Definition 4. The numerical summary S(E) of an evaluation (ΛE , ρE) is given
by

S(E) =
∑

β∈ΩE

mE(β) · β (13)

Table 4 shows the evaluation of E1 - E6 following definition 4.

Table 4. Numerical evaluation of sentences in Table 2

S(E1) S(E2) S(E3) S(E4) S(E5) S(E6)

0 0.5 7/60 0.35 0 0.9

Let us remark that since this is a summary of the evaluation by levels, again
the required properties for the evaluation are kept. In particular, as the intuition
suggests, the final evaluation of sentence E5 is 0, though any existing method
would give a greater value. This is because when representing imprecision by
means of fuzzy sets, A∩A �= ∅ in general. Using level representations, we obtain
a coherent result whilst representing properly the fuzziness of the properties.

In the particular case when A,D are fuzzy sets, we have again that the eval-
uation of E = “Q of D are A” is S(E) = GDQ(D/A), where GDQ(D/A) is the
evaluation of E as given by the method GD proposed in [5]. This is the case in
sentences E3 to E6.

5 Conclusions

The representation by levels and the corresponding operations are, by their prop-
erties, specially well suited for the extension to the fuzzy case of generalized
quantification. As future work, we shall study the relation of our approach to
those proposed in [7,1,2,8,4,9,10]. Furthermore, the representation by levels offer
a direct way to extend syllogisms and reasoning with generalized quantifiers to
the fuzzy case with many potential applications [14], that we shall explore. In
addition, we will apply these results in linguistic summarization of data, data
mining, and quantification in fuzzy description logics.
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1 Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy
lisi@di.uniba.it

2 ISTI - CNR, Pisa, Italy
straccia@isti.cnr.it

Abstract. Fuzzy Description Logics (DLs) are logics that allow to deal
with vague structured knowledge. Although a relatively important amount
of work has been carried out in the last years concerning the use of fuzzy
DLs as ontology languages, the problem of automatically managing fuzzy
ontologies has received no attention so far. We report here our preliminary
investigation on this issue by describing a method for inducing inclusion
axioms in a fuzzy DL-Lite like DL.

1 Introduction

Description Logics (DLs) [1] play a key role in the design of ontologies. An on-
tology consists of a hierarchical description of important concepts in a particular
domain, along with the description of the properties (of the instances) of each
concept. In this context, DLs are important as they are essentially the theoret-
ical counterpart of the Web Ontology Language OWL 2 1, the current standard
language to represent ontologies, and its profiles.2 E.g., DL-Lite [2] is the DL
behind the OWL 2 QL profile.

It is well-known that “classical” ontology languages are not appropriate to
deal with vague knowledge, which is inherent to several real world domains [13].
So far, several fuzzy extensions of DLs can be found in the literature (see the
survey in [8]). Although a relatively important amount of work has been carried
out in the last years concerning the use of fuzzy DLs as ontology languages, the
problem of automatically managing fuzzy ontologies has received no attention
so far. In this work, we report our preliminary investigation on this issue by
describing a method for inducing inclusion axioms in a fuzzy DL-Lite like DL.
The method follows the machine learning approach known as Inductive Logic
Programming (ILP) by adapting known results in ILP concerning crisp rules to
the novel case of fuzzy DL inclusion axioms.

The paper is structured as follows. Section 2 is devoted to preliminaries on ILP
and fuzzy DLs. Section 3 describes our preliminary contribution to the problem
in hand, also by means of an illustrative example. Section 4 concludes the paper
with final remarks and comparison with related work.

1 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
2 http://www.w3.org/TR/owl2-profiles/

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 58–66, 2011.
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2 Preliminaries

2.1 Learning Rules with ILP

Inductive Logic Programming (ILP) was born at the intersection between Con-
cept Learning and Logic Programming [9].

From Logic Programming it has borrowed the Knowledge Representation
(KR) framework, i.e. the possibility of expressing facts and rules in the form
of Horn clauses. In the following, rules are denoted by A(x) → H(x) where x is
the vector of the n variables that appear in the rule, A(x) = A0(x)∧ . . .∧Aq(x)
represents the antecedent (called the body) of the rule, and H(x) is the conse-
quent (called head) of the rule. The predicate H pertains to the concept to be
learnt (called target). Given an attribute domain D and a vector t ∈ Dn of n
values of the domain, we denote the ground substitution of the variable x with
t by H(t) = σ[x/t]H(x). Then H(t) is true or false in a given interpretation.

From Concept Learning it has inherited the inferential mechanisms for induc-
tion, the most prominent of which is generalisation. A distinguishing feature of
ILP is the use of prior domain knowledge during the induction process. The clas-
sical ILP problem is described by means of two logic programs: (i) the background
theory B which is a set of ground facts and rules; (ii) the training set E which
is a set of ground facts, called examples, pertaining to the target predicate. It is
often split in E+ and E−, which correspond respectively to positive and negative
examples. If only E+ is given, E− can be deduced by using the Closed World
Assumption (CWA)3. The task of induction is to find, given B and E , a set of
rules H such that: (i) ∀e ∈ E+,B ∪ H |= e and (ii) ∀e ∈ E−,B ∪ H �|= e. Two
further restrictions hold naturally. One is that B �|= E+ since, in such a case, H
would not be necessary to explain E+. The other is B ∪ H �|= ⊥, which means
that B ∪ H is a consistent theory. Usually, rule induction fits with the idea of
providing a compression of the information contained in E . A rule r covers an
example e ∈ E wrt B iff B ∪ {r} |= e.

A popular ILP algorithm for learning sets of rules from relational data is
FOIL [10]. It performs a greedy search in order to maximise a gain function.
The rules are induced until all positive examples are covered or no more rules
are found that overcome the threshold. When a rule is induced, the positive
examples covered by the rule are removed from E . The function FOIL-Learn-

One-Rule reported in Figure 1 starts with the most general clause (� → H(x))
and specialises it step by step by adding literals in the antecedent. The rule r
is accepted when its confidence degree cf(r) (see later on) overcomes a fixed
threshold θ and it does not cover any negative example. The Gain function is
computed by the formula:

Gain(cf(r1), cf(r2)) = p ∗ (log2(cf(r1)) − log2(cf(r2))) , (1)

where p is the number of distinct examples covered by the rule r1, i.e. p = |{e |
B ∪ {r1} |= e}|. Thus, the gain is positive iff the new rule is more informative

3 Anything that is not stated as true is assumed to be false.
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function FOIL-Learn-One-Rule(h, E+, E−, B): r
begin
1. A(x) ← ;
2. r ← {A(x) → H(x)};
3. E−

r ← E−;

4. while cf(r) < θ and E−
r �= ∅ do

5. Abest(x) ← A(x);
6. maxgain ← 0;
7. foreach l ∈ B do
8. gain ← Gain(cf(A(x) ∧ l(x) → H(x)), cf(A(x) → H(x));
9. if gain � maxgain then
10. maxgain ← gain;
11. Abest(x) ← A(x) ∧ l(x);
12. endif
13. endforeach
14. r ← {Abest(x) → H(x)};
15. E−

r ← E−
r \ {e ∈ E−|B ∪ r |= e};

16. endwhile
17. return r
end

Fig. 1. Algorithm for learning one rule in FOIL

in the sense of Shannon’s information theory (i.e. iff the confidence degree in-
creases). If there are some literals to add which increase the confidence degree,
the gain tends to favor the literals that offer the best compromise between the
confidence degree and the number of examples covered.

Given a Horn clause A(x) → H(x), its confidence degree is given by: cf(A(x) →
H(x)) = P (A(x)∧H(x))/P (A(x)). Confidence degrees are computed in the spirit
of domain probabilities. Input data in ILP problems are supposed to describe one
interpretation under CWA. We call IILP this interpretation. So, given a fact f ,
we define

IILP |= f iff B ∪ E |= f . (2)

The domain D is the Herbrand domain described by B and E . We take P as a
uniform probability on D. So the confidence degree in a clause A(x) → H(x) is:

cf(A(x) → H(x)) =
|t ∈ Dn | IILP |= (A(t) ∧ H(t)) and H(t) ∈ E+|

|t ∈ Dn | IILP |= A(t) and H(t) ∈ E| (3)

where | · | denotes set cardinality. Testing all possible t ∈ Dn is not tractable
in practice. However, we can equivalently restrict the computation to the sub-
stitutions that map variables to constants in their specific domains. In fact,
this computation is equivalent to a database query and thus, we can also use
some optimization strategy such as indexing or query ordering. This makes the
computation tractable although it remains costly.

2.2 A DL-Lite Like Description Logic and Its Fuzzy Extensions

The logic we adopt is based on a fuzzy extension of the DL-Lite [2] DL without
negation, and is supported by the SoftFacts system [15]4. DL-Lite supports unary
predicates (called concepts) and binary predicates (called roles).

4 See, http://www.straccia.info/software/SoftFacts/SoftFacts.html

http://www.straccia.info/software/SoftFacts/SoftFacts.html
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A knowledge base K = 〈F ,O,A〉 consists of a facts component F , an ontology
component O and an abstraction component A, which are defined as follows (for
a detailed account of the semantics, see [14]).

Facts Component. F is a finite set of expressions of the form

R(c1, . . . , cn)[s] , (4)

where R is an n-ary relation, every ci is a constant, and s is a degree of truth
(or score) in [0, 1] indicating to which extent the tuple 〈c1, . . . , cn〉 is an instance
of relation R.5 Facts are stored in a relational database. We may omit the score
component and in such case the value 1 is assumed.

Ontology Component. The ontology component is used to define the relevant
abstract concepts and relations of the application domain by means of inclusion
axioms. Specifically, O is a finite set of inclusion axioms having the form

Rl1 � . . . � Rlm  Rr , (5)

where m � 1, all Rli and Rr have the same arity and each Rli is a so-called left
hand relation and Rr is a right hand relation. We assume that relations occurring
in F do not occur in inclusion axioms (so, we do not allow that database relation
names occur in O). The intuitive semantics is that if a tuple c is instance of each
relation Rli to degree si then c is instance of Rr to degree min(s1, . . . , sm).

The exact syntax of the relations appearing on the left-hand and right hand
side of inclusion axioms is specified below:

Rl −→ A | R[i1, i2]
Rr −→ A | R[i1, i2] | ∃R.A

(6)

where A is an atomic concept and R is a role with 1 � i1, i2 � 2. Here R[i1, i2]
is the projection of the relation R on the columns i1, i2 (the order of the indexes
matters). Hence, R[i1, i2] has arity 2. Additionally, ∃R.A is a so-called quali-
fied existential quantification on roles which corresponds to the FOL formula
∃y.R(x, y) ∧ A(y) where ∧ is interpreted as the min t-norm.

Abstraction Component. A is a set of statements that allow to connect atomic
concepts and relations to physical relational tables. Essentially, it is used as a
wrapper to the underlying database and, thus, prevents that relational table
names occur in the ontology. Formally, an abstraction statement is of the form

R �→ (c1, . . . , cn)[cscore].sql , (7)

where sql is a SQL statement returning n-ary tuples 〈c1, . . . , cn〉 (n � 2) with
score determined by the cscore column. The tuples have to be ranked in decreas-
ing order of score and, as for the fact component, we assume that there cannot
be two records 〈c, s1〉 and 〈c, s2〉 in the result set of sql with s1 �= s2 (if there are,
then we remove the one with the lower score). The score cscore may be omitted

5 The score s may have been computed by some external tool, such as a classifier, etc.
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and in that case the score 1 is assumed for the tuples. We assume that R occurs
in O, while all of the relational tables occurring in the SQL statement occur in
F . Finally, we assume that there is at most one abstraction statement for each
abstract relational symbol R.

Query Language. A query consists of a “conjunctive query”, with a scoring
function to rank the answers. A ranking query [7] is of the form

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl, p1(z′

1), . . . , ph(z′
h))

(8)

where
1. q is an n-ary relation, every Ri is a binary relation. Ri(zi) may also be of the form

(z � v), (z < v), (z � v), (z > v), (z = v), (z �= v), where z is a variable, v is a
value of the appropriate concrete domain;

2. x are the distinguished variables.
3. y are existentially quantified variables called the non-distinguished variables. We

omit to write ∃y when y is clear from the context;
4. zi, z

′
j are tuples of constants or variables in x or y;

5. s, s1, . . . , sl are distinct variables and different from those in x and y;
6. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score pj(cj) ∈

[0, 1]. We require that an n-ary fuzzy predicate p is safe, that is, there is not an
m-ary fuzzy predicate p′ such that m < n and p = p′. Informally, all parameters
are needed in the definition of p.

7. f is a scoring function f : ([0, 1])l+h → [0, 1], which combines the scores of the
l relations Ri(c

′
i) and the n fuzzy predicates pj(c′′

j ) into an overall score to be
assigned to the rule head R(c). We assume that f is monotone, that is, for each
v,v′ ∈ ([0, 1])l+h such that v � v′, it holds f(v) � f(v′), where (v1, . . . , vl+h) �
(v′

1, . . . , v
′
l+h) iff vi � v′

i for all i. We also assume that the computational cost of f
and all fuzzy predicates pi is bounded by a constant.

We call q(x)[s] its head, ∃y.R1(z1)[s1], . . . , Rl(zl)[sl] its body and OrderBy(s =
f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)) the scoring atom. We also allow the scores [s], [s1],
. . . , [sl] and the scoring atom to be omitted. In this case we assume the value 1
for si and s instead. The informal meaning of such a query is: if zi is an instance
of Ri to degree at least or equal to si, then x is an instance of q to degree at least
or equal to s, where s has been determined by the scoring atom. The answer set
ansK(q) over K of a query q is the set of tuples 〈t, s〉 such that K |= q(t)[s] with
s > 0 (informally, t satisfies the query to non-zero degree s).

3 Towards Fuzzy DL-Lite Like Inclusion Axioms Learning

We now show how we may learn DL-Lite like inclusion axioms. We consider a
learning problem where:

– the background theory B is a DL-Lite like knowledge base 〈F ,O,A〉;
– the training set E is a collection of fuzzy DL-Lite like facts of the form Eq. 4

and labeled as either positive or negative examples for the target atomic
concept H . We assume that F ∩ E = ∅;
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– the target theory H is a set of inclusion axioms of the form

C1 � . . . � Cn  H (9)

where H is an atomic concept and each Ci has syntax

C −→ A | ∃R.A | ∃R.� . (10)

Now, we adapt Eq. 2 to our case and define

IILP |= C(t) iff B ∪ E |= C(t)[s] and s > 0 . (11)

That is, we write IILP |= C(t) iff t can be inferred being instance of concept C
to a non-zero degree.

Now, in order to account for multiple fuzzy instantiations of fuzzy predicates
occurring in inclusion axioms, we customise Eq. 3 into the following formula for
computing the confidence degree:

cf(RL  H) =

∑
t∈P RL(t) ⇒ H(t)

|D| , where (12)

– P = {t | IILP |= Ci(t),IILP |= H(t) and H(t)[s] ∈ E+};
– D = {t | IILP |= Ci(t) and H(t)[s] ∈ E};
– RL = C1 � . . . � Cn;
– ⇒ is an implication function (see, e.g. [6]);
– RL(t) = min(s1, . . . sn), with B ∪ E |= Ci(t)[si];
– H(t) = s with H(t)[s] ∈ E .

Essentially, the numerator sums over all positive instances making the left hand
and right hand side true, where RL(t) ⇒ H(t) denotes the degree to which
the implication holds. Clearly, the more positive instances supporting the in-
clusion axiom there are, the higher is the confidence degree of it. Note that
the confidence score can be determined easily by submitting appropriate queries
via our query language. From an algorithm point of view, it suffices to change
the FOIL-Learn-One-Rule at step 7., where now l may be either an atomic
concept A, or of the form ∃R.A or ∃R.�.

We illustrate our proposal via an example. For illustrative purposes consider
the following case involving hotels. So, assume we have a background theory B
with a relational database F storing facts such as

HotelTable
id rank noRooms hasRoomID

h1 3 21 r1
h2 5 123 r2
h3 4 95 r3

RoomTable
id price roomType

r1 60 single
r1 90 double
r2 80 single
r2 120 double
r3 70 single
r3 90 double

Tower
id

t1

Park
id

p1
p2

DistanceTable
id from to time

d1 h1 t1 10
d2 h2 p1 15
d3 h3 p2 5

an ontology O6 encompassing the following inclusion axioms

Park  Attraction , Tower  Attraction , Attraction  Site

6 http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html

http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html


64 F.A. Lisi and U. Straccia

(a) (b) (c) (d)

Fig. 2. (a) Trapezoidal function trz (x; a, b, c, d), (b) triangular function tri(x; a, b, c),
(c) left shoulder function ls(x; a, b), and (d) right shoulder function rs(x; a, b)

and abstraction statements:
Hotel �→ (h.id). SELECT h.id

FROM HotelTable h

hasRank �→ (h.id, h.rank). SELECT h.id, h.rank
FROM HotelTable h

cheapPrice �→ (h.id, r.price)[score]. SELECT h.id, r.price, cheap(r.price) AS score
FROM HotelTable h, RoomTable r
WHERE h.hasRoomID = r.id
ORDER BY score

closeTo �→ (from, to)[score]. SELECT d.from, d.to closedistance(d.time) AS score
FROM DistanceTable d
ORDER BY score

where cheap(p) is a function determining how cheap a hotel room is given its
price, modelled as e.g. a so-called left-shoulder function cheap(p) = ls(p; 50, 100),
while closedistance(d) = ls(d; 5, 25). (see Figure 2 for typical fuzzy membership
functions). Assume now that our target concept H is GoodHotel. As illustrative
example, we compute the confidence score, according to Eq. 12, of

r : Hotel � ∃cheapPrice.�� ∃closeTo.Attraction  GoodHotel

i.e., a good hotel is one having a cheap price and close to an attraction. We
assume that

– the implication function is Gödel (i.e., it returns 1 if x � y, y if x > y);
– E+ = {GoodHotel+(h1)[0.6], GoodHotel+(h2)[0.8]}, while E− =

{GoodHotel−(h3)[0.4]};
– GoodHotel+  GoodHotel and GoodHotel−  GoodHotel occur in B.

Now, it can be verified that for T = B ∪ E
1. The query

q(h)[s] ← GoodHotel+(h), cheapPrice(h, p)[s1], closeTo(h, a)[s2], Attraction(a), s=min(s1, s2)

has answer set over T , ansT = {(h1, 0.75), (h2, 0.4)};
2. The query

q(h)[s] ← GoodHotel(h), cheapPrice(h, p)[s1], closeTo(h, a)[s2], Attraction(a), s=min(s1, s2)

has answer set over T , ansT = {(h1, 0.75), (h2, 0.4), (h3, 0.6)};
3. Therefore, according to Eq. 12, P = {h1, h2}, while D = {h1, h2, h3};
4. As a consequence,

cf(r) =
0.75 ⇒ 0.6 + 0.4 ⇒ 0.8

3
=

0.6 + 1.0

3
= 0.5333 .
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4 Final Remarks

In this paper we have proposed a method for inducing ontology inclusion axioms
within the KR framework of a fuzzy DL-Lite like DL. The method extends FOIL,
a popular ILP algorithm for learning sets of crisp rules, in a twofold direction:
from crisp to fuzzy and from rules to inclusion axioms. Indeed, related FOIL-like
algorithms are reported in the literature [12,3,11] but they can only learn fuzzy
rules. Another relevant work is the formal study of fuzzy ILP contributed by [5].
Yet, it is less promising than our proposal from the practical side. Last, close to
our application domain, [4] faces the problem of inducing equivalence axioms in
a fragment of OWL corresponding to the ALC DL.

For the future we intend to define appropriate specialization operators for the
fuzzy DL being considered. Also we would like to investigate in depth the impact
of Open World Assumption (holding in DLs) on the proposed ILP setting, and
implement and experiment our method. Finally, it can be interesting to analyze
the effect of the different implication functions on the learning process.
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Abstract. Detecting outliers which are grossly different from or incon-
sistent with the remaining spatio-temporal dataset is a major challenge
in real-world knowledge discovery and data mining applications. In this
paper, we deal with the outlier detection problem in spatio-temporal data
and we describe a rough set approach that finds the top outliers in an
unlabeled spatio-temporal dataset. The proposed method, called Rough
Outlier Set Extraction (ROSE), relies on a rough set theoretic represen-
tation of the outlier set using the rough set approximations, i.e. lower
and upper approximations. It is also introduced a new set, called Kernel
set, a representative subset of the original dataset, significative to outlier
detection. Experimental results on real world datasets demonstrate its
superiority over results obtained by various clustering algorithms. It is
also shown that the kernel set is able to detect the same outliers set but
with such less computational time.

1 Introduction

Spatio-temporal data mining is a growing research area dedicated to the disclo-
sure of hidden knowledge in large spatio-temporal databases, mainly through
detecting periodic patterns and outliers detection. This paper addresses the
problem of outlier detection in spatio-temporal data using rough set theory, pro-
posed by Pawlak [6]. Only a few methods for outlier detection, in general and
in spatio-temporal context, exploit rough set theory in order to define degrees
of outlierness based on rough set concepts. Nguyen in [3] discusses a method
for the detection/evaluation of outliers, as well as how to elicit background do-
main knowledge from outliers using multi-level approximate reasoning schemes.
Y. Chen, D. Miao, and R. Wang in [4] demonstrate the application of granular
computing model using information tables for outlier detection. F. Jiang, Y. Sui
and C. Cao in [5] propose a new definition of outliers that exploits the rough
membership function. In contrast to those approaches that interpret the rough
set theory from the operator-oriented point of view [2], our method exploits the
set-oriented view of rough set theory in order to define the concept of outlier in
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terms of its lower and upper approximations, keeping into account those objects
that can neither be ruled in nor ruled out as members of the target concept.

We also introduce a new set, named Kernel Set. This is a selected subset of
elements able to describe the original dataset both in terms of data structure
and obtained results. We have shown the advantages of considering the Kernel
Set in term of computation time by comparing the Rough Outlier Sets extracted
by the original dataset with those extracted by the Kernel Set.

At this aim, the paper is organized as follows. Section 2 defines the problem.
Section 3 reports the new rough set approach ROSE (Rough Outlier Set Ex-
traction) to detect Spatio-Temporal (ST) Rough Outlier Set. Section 4 defines
the Kernel Set and explains its significance to outlier detection. Sections 5 and
6 present executed tests on a real world dataset and the performance evaluation
of the algorithm. Finally, conclusion remarks are given in Section 7.

2 Spatio-temporal Outlier Detection Problem

Let S =< U, A > be an information system with U a normalized dataset and A
its set of attributes. U can be written as follows:

U = {pi ≡ (zi1, zi2, ..., zim) ∈ [0, 1]m, i = 1, ..., N}

where pi, i = 1, ..., N is a m-dimensional feature vector and A={a1, a2, a3, ..., am}
is its attribute set.

The proposed definition of the Outlier Detection Problem is as following:

Definition 1. Given U , an integer n > 0 and a measure dpi(U), defined over
every pi ∈ U , the Outlier Detection Problem consists of finding n ≥ n objects
p1, p2, ..., pn, pn+1, ..., pn ∈ U such that

dp1(U) ≥ dp2(U) ≥ ... ≥ dpn(U) = dpn+1(U)... = dpn
(U) > dpj (U),

∀j = n + 1, ..., N

The concept of measure is used to determine the degree of dissimilarity of each
object with respect to others. Then, the n-Outlier Set can be formally defined:

Definition 2. A n-Outlier Set O ⊆ U is the set of n ≥ n objects:

O = {p1, ..., pn, pn+1, ..., pn ∈ U / dp1(U) ≥ ... ≥ dpn(U) = dpn+1(U)... =
dpn

(U) > dpj (U) ∀j = n + 1, ..., N}

where dpi(U), ∀i = 1, ..., N is a measure defined and computed on U .

From definition 2 it follows that τ = dpn(U) is the outlierness threshold, i.e.

τ = inf{max1(dp(U), dq(U)), ..., maxn(dp(U), dq(U))}, ∀p, q ∈ U (1)

Starting from the definition of spatial and temporal outlier due to Birant and
Alp [8], we propose the following definitions applied to ST data. In this case U
is a ST normalized dataset in which, at least, three attributes must be present,
i.e. : the two spatial attributes and the temporal one.
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Definition 3. Given U , an integer n > 0 and a measure on spatial and temporal
components ds,t

pi
(U), defined over every pi ∈ U , an object p ∈ U is a ST -Outlier

iff ds,t
p (U) ≥ τ where τ is defined as in (1).

In a ST–context, a feasible measure to be associated to each object is based on
the distances from its spatial and its temporal k-nearest neighbors [10]. Precisely:

ds,t
p (U) = α · ds

p(U) + β · dt
p(U) (2)

where:

ds
p(U) =

k∑
j=1

ds(p, Ns(p, pj)) and dt
p(U) =

k∑
j=1

dt(p, N t(p, pj)), ∀p ∈ U (3)

k > 0 is nearest neighbors number, Ns(p, pj) and N t(p, pj) are the j-th spatial
and temporal nearest neighbor of p, respectively and α, β are such that α+β = 1.
Definition 1 defines ST-Outlier Detection Problem, selecting a measure as
in (2).

3 Rough Outlier Set Extraction (ROSE)

The goal of the proposed approach is to exploit the rough set theory to define
the Outlier Set such as a Rough Outlier Set (ROS). Let S =< U, A > be an
information system with U a ST normalized dataset and A its attribute set.

Given n > 0 (outlier number), we want to describe O ⊆ U (n–Outlier Set) as

< B(O), B(O) > (Rough n − Outlier Set) (4)

where B(O) is the B–Lower approximation and B(O) is theB–Upper approxi-
mation of n–Outlier Set with respect to an attribute subset B ⊆ A.

The B–Lower approximation B(O) is defined as the set of objects that can
be certainly classified as members of the set O on the basis of the knowledge in
B, while the objects in the B–Upper approximation B(O) as possible members
of O on the basis of the knowledge in B.

At this aim, let IB be the B–indiscernibility relation on the universe U :

IB = {(pi, pj) ∈ U × U : a(pi) = a(pj), ∀a ∈ B}

The equivalence classes [pj]B or granules Gj of the partition induced by IB on
U are such that:

U =
⋃N

j=1 Gj and Gj ∩ Gj = ∅, i �= j.

The measure in (2) is used as a spatio-temporal weight ωGj (s, t, i), to be assigned
to every granule Gj , depending on space, indicated by s, and/or on time, by t,
and on iteration, by i and then the considered attribute subsets B are spatio-
temporal attributes, only spatial and only temporal attribute. In our framework,
the B–Lower and B–Upper approximation, at iteration i, can be defined as fol-
lows:
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Definition 4. The B–Lower approximation Bi(O) of n-Outlier Set O, at itera-
tion i, is: Bi(O) = {Gj ⊆ U : ωGj > τi}

where τi = inf {maxi
1 (ωGj , ωGk

), ..., maxi
n (ωGj , ωGk

)}, ∀ Gj , Gk ⊆ U (5)

Definition 5. The B–Upper approximation Bi(O) of n–Outlier Set O, at iter-
ation i, is:

Bi(O) = {Gj ⊆ U : ωGj > τ i} where : τ i = τi−1, ∀ i >= 2 (6)

The threshold τ1 is computed as the minimum value among the n higher values
of weights assigned to the granules at first iteration.

The iterative procedure will stop when the thresholds does not vary anymore
then the best Lower and Upper approximations in (4) have been reached.

ROSE Algorithm. The Rough Outlier Set Extraction Algorithm is designed
to receive as input the universe U , k the nearest neighbors number and n the
number of outliers to detect. The output of the procedure is the ROS (Upper,
Lower, Boundary and Negative Region). At each iteration, the procedure ran-
domly selects a subset of objects and computes their weights considering spatial
and/or temporal components depending on the attribute subset B, with respect
to, the ROS has been calculating. UpdateUpperApprox and UpdateLowerApprox
functions compute the lower and upper approximation of ROS, using the current
τ and previous τ prev thresholds as defined in (5) and (6) respectively. A prun-
ing strategy identifies objects from U having their weight under the threshold in
order to build the Negative Region.

4 Kernel Set and Relevance to Outlier Detection

Let us now define Kernel Set K ⊆ U that is a representative subset of the
universe U that characterizes the overall dataset. Intuitively, this subset of U is
able to maintain the structure of the universe U .

Definition 6. Given U and two integers n > 0, k > 0 (number of nearest
neighbors), d(U) a measure defined on U , the Kernel Set K is built by adding
each object p ∈ U such that one of the following properties holds:

1. dp(U) ≥ τ
2. if dp(U) < τ , then ∃q ∈ U such that p ∈ NNk(q) and dq(U) < τ and dq(K−

{p}) ≥ τ

where NNk(q) is the set of k-nearest neighbors of q and d(K) is the restriction
of d(U) on K ⊆ U .

The Definition 6 states that the objects that belong to the Kernel Set are:

1. object p for which dp(U) ≥ τ and hence belongs to n–Outlier Set.
2. object p that, even if dp(U) < τ , is one of the nearest neighbors of an object

q for which hold dq(U) < τ and dq(K − {p}) ≥ τ .
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The second property states that, once these objects p have been added to K, the
measure of the object q become less than τ also in K as it is in U . Otherwise,
the global structure of the dataset should be altered. The procedure allows to
build also the Kernel Set, following the definition (6).
Some properties of Kernel Set have been proved:

1. a Kernel Set K contains the n–Outlier Set : K ⊇ O.
2. The Outlier Set OK , computed from Kernel Set K is a superset of O com-

puted from U : OK ⊇ O.

The motivation of Kernel Set is that it is significative to outlier detection.
Indeed, outlier detection is a time consuming task, the use of Kernel Set,

instead of U , as input of the ROSE procedure, have two major advantages:

– same results in terms of rough outlier set is obtained
– computational time is reduced due to the lower cardinality of Kernel Set

respect to U .

5 Experimental Results and Discussion

The validation results are reported on the real-world dataset, named School
Buses [7], consisting of 145 trajectories of two school buses collecting and de-
livering students around Athens metropolitan area in Greece for 108 distinct
days.

Let < U, A > be the information system. U is the ST School Buses dataset,
normalized and with some injected only temporal outliers (Figure 1(a)):

U = {pi ≡ (zi,1, zi,2, zi,3) ∈ [0, 1]3, i = 1, ..., N}

where (zi,1, zi,2) are cartesian coordinates of the i-th object, zi,3 its time-stamp.
In this case, A = {x, y, t} is the attribute set.

Spatial Rough Outlier Set Extraction from U
We want to describe O ⊆ U as: < B(O), B(O) > where, in this case, B =
{x, y} ⊆ A, constituted by the spatial attributes. Specifically, the lower approx-
imation and boundary at last step of spatial-ROS are represented and shown
in Figure 2(a), where boundaries are reported in gray color. Many interesting
objects should be missed without keeping into account the boundary.

Spatio-temporal Rough Outlier Set Extraction from U
We want to describe O ⊆ U as: < B(O), B(O) > where, in this case, B =
{x, y, t} = A, so we are describing the ST-ROS. The ST-outliers will be the more
relevant spatial and temporal outliers (see injected temporal outliers marked as
gray stars in Figure 1(a)). The lower approximation includes the most part of
the spatial and temporal outliers, while the upper includes the remaining part
of the temporal outliers and some other spatial outliers. Figure 3(a) shows
the lower approximation, while Figure 3(b) shows the lower approximation with
boundaries in gray color.
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(a) (b)

Fig. 1. School Buses Testing Subset: (a) Injected Temporal Outliers (b) Kernel Set

(a) (b)

Fig. 2. Last Step of S-Rough Outlier Set: (a) Lower Approximation U Boundary from
Dataset (b) Lower Approximation U Boundary from Kernel Set

(a) (b)

Fig. 3. Last Step of ST-Rough Outlier Set: (a) Lower Approximation (b) Lower Ap-
proximation U Boundary
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Spatial Rough Outlier Set Extraction from Kernel Set
Figure 1(b) shows the Kernel Set of School Buses testing subset. Now, we want
to show benefits of considering this set, comparing S-ROS extracted by the
universe U with one extracted by the Kernel Set.

Starting from the Kernel Set and selecting only spatial components, the ROS
is built by our approach ROSE. At this aim, let < U, A > be the information
system, with U = K. Then B = {x, y}. Figure 2(b) shows the lower approxima-
tion with boundaries in gray color at the last iteration. Comparing these results
with the last iteration of ROSE for the extraction of the Spatial Rough Outlier
Set from the entire universe U , shown in Figure 2(a), we can appreciate that the
results are the same with a considerable computational time benefit.

Table 1. (a) Spatial and (b) Spatio-Temporal Outlier Detection - Quantitative Eval-
uation of Algorithms - Chosen Initial Centroids

Methods α Index ρ Index γ Index DB Index

ROSE 0.9836 0.0164 0.9987 N.A.
RFCM 0.5448 0.4551 0.9250 0.0736
RPCM 0.4725 0.5274 0.7919 1.1077

RFPCM 0.5645 0.4354 0.9007 0.8983

Methods α Index ρ Index γ Index DB Index

ROSE 0.8941 0.1059 0.9514 N.A.
RFCM 0.3549 0.6450 0.6444 1.8066
RPCM 0.3283 0.6716 0.5914 1.1077

RFPCM 0.3651 0.6348 0.6618 1.3299

6 Quantitative Measures and Indices

In this section, we use performance indices as introduced by Maji and Pal in
[9] such as α, ρ and γ indices, as well as the DaviesBouldin (DB) measure
as introduced in [1], to evaluate the performance of ROSE compared with some
other rough–fuzzy clustering algorithms [9], i.e.: RFCM - Rough Fuzzy C-Means,
RPCM - Rough Possibilistic C-Means, RFPCM - Rough Fuzzy Possibilistic C-
Means. Parameter setting: c = 2 (cluster number, i.e. inlier cluster and outlier
cluster), ω and ω̃ (importance of lower and boundary) both equal to 0.5. We
report only the final prototypes of the best solution, obtained for a particular
choice of initial centroids. Table 1(a) and Table 1(b) report the best results
obtained for RFCM, RPCM and RFPCM. Table 1(a) and Table 1(b) compare the
performance of these algorithms with respect to α, ρ, γ and DBindex in Spatial
and ST-Outlier Detection respectively. Although the hybridization versions of c-
means algorithm were not designed as outlier detectors, generate good prototypes
for c = 2. In Spatial Outlier Detection, the RFPCM provides the best results
and the results of other two are quite similar to that of the RFPCM; while in ST-
Outlier Detection, the RPCM outperform them. The proposed ROSE algorithm
performs better than RFCM, RPCM and RFPCM algorithms, both in terms of
qualitative measures and of outliers detected, as shown in figures 3(b) and 2(a).
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7 Conclusions

The paper reports a new rough set based outlier detection method, called ROSE,
that has been theoretically grounded based on a definition of Outlier Set as
Rough Set. The results of the proposed method have been shown and have been
also compared with some other rough–fuzzy clustering algorithms, incorporating
the concepts of rough sets, producing reasonable results both from quantitative
and qualitative standpoints. A definition of a new set, called Kernel Set, has been
also provided. The Kernel Set is a subset of U , significative to outlier detection.
It has been shown that this set is able to detect the same outliers with less
computational time.
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Abstract. Fuzzy models occupy one of the dominant positions on the
research agenda of fuzzy sets exhibiting a wealth of conceptual devel-
opments and algorithmic pursuits as well as a plethora of applications.
Granular fuzzy modeling dwelling on the principles of fuzzy modeling
opens new horizons of investigations and augments the existing design
methodology exploited in fuzzy modeling. In a nutshell, granular fuzzy
models are constructs built upon fuzzy models or a family of fuzzy mod-
els. We elaborate on a number of compelling reasons behind the emer-
gence of granular fuzzy modelling, and granular modeling, in general.
Information granularity present in such models plays an important role.
Given a fuzzy model M, the associated granular model incorporates gran-
ular information to quantify a performance of the original model, facil-
itate collaborative pursuits of knowledge management and knowledge
transfer. We discuss several main categories of granular fuzzy models
where such categories depend upon the formalism of information gran-
ularity giving rise to interval-valued fuzzy models, fuzzy fuzzy model
(fuzzy2 models, for short), and rough -fuzzy models. The design of gran-
ular fuzzy models builds upon two fundamental concepts of Granular
Computing: the principle of justifiable granularity and an optimal allo-
cation (distribution) of information granularity. The first one supports a
construction of information granules of a granular fuzzy model. The sec-
ond one emphasizes the role of information granularity being treated as
an important design asset. The underlying performance indexes guiding
the design of granular fuzzy models are discussed and a multiobjective
nature of the construction of these models is stressed.

Keywords: information granularity, granular fuzzy models, principle of
justifiable granularity, knowledge management, granularity allocation.

1 Introduction

In system modeling, knowledge management comes vividly into the picture when
dealing with a collection of individual models. Such models being considered as
sources of knowledge, are engaged in some collective pursuits of a collaborative
development to arrive at modeling outcomes of a global nature. The result comes
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in the form of a so-called granular fuzzy model, which directly reflects upon
and quantifies the diversity of the available sources of knowledge (local models)
involved in knowledge management.

Let us consider a system for which constructed is a family of models. The
system can be perceived from different points of view, observed over some time
periods and analyzed at different levels of detail. Subsequently, the resulting
models are built with different objectives in mind. They offer some particular,
albeit useful views at the system. We are interested in forming a holistic model of
the system by taking advantage of the individual sources of knowledge - models,
which have been constructed so far. When doing this, we are obviously aware
that the sources of knowledge exhibit diversity and hence this diversity has to
be taken into consideration and carefully quantified. No matter what the local
models look like, it is legitimate to anticipate that the global model (say, the
one at the higher level of hierarchy) is more general, abstract. Granularity of
information [1] [7] becomes of paramount importance, both from the conceptual
as well as algorithmic perspective, in the realization of granular fuzzy models.
Subsequently, processing realized at the level of information granules gives rise to
the discipline of Granular Computing [2] [3]. From the algorithmic perspective,
fuzzy clustering [4] and clustering are regarded as fundamental development
frameworks in which information granules are constructed.

The objective of this study is to introduce a concept of granular fuzzy mod-
els, offer several convincing arguments behind their emergence and provide with
taxonomy of categories of tasks in which information granularity arises as an im-
portant design asset facilitating constructive pursuits in knowledge management.
We start with a discussion of the two conceptual and algorithmic underpinnings
of Granular Computing, namely a principle of justifiable granularity and an opti-
mal allocation of information granularity (Section 2 and 3). These two ideas are
essential to the realization of granular fuzzy models. Four fundamental modes
of knowledge management are identified (Section 4). Conclusions are covered in
Section 5.

2 The Principle of Justifiable Granularity

Here we are concerned with the formation of a single information granule based
on some experimental evidence being a set of a single-dimensional numeric data
D = {x1, x2, ..., xN}. The principle of justifiable granularity [5] is concerned with
a formation of a meaningful information granule. Such construct has to adhere
to the two intuitively requirements:

(i) the numeric evidence accumulated within the bounds of Ω has to be
as high as possible. By doing so, we anticipate that the existence of the
information granule is well motivated (justified) as being reflective of the
existing experimental data.
(ii) at the same time, the information granule should be as specific as possible
meaning that it comes with a well-defined semantics. In other words, we would
like to have Ω as detailed (specific) as possible.
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While these two requirements are appealing, they have to be translated into
some operational framework where the formation of the information granule
can be realized. This framework depends upon the formalism of information
granulation, viz. a way in which information granules are described as sets, fuzzy
sets, shadowed sets, rough sets, probabilistic granules and alike. To start with a
simple and convincing constructs, let us treat Ω as an interval to be constructed.
The first requirement is quantified by counting the number of data falling within
the bounds of Ω. In the simplest scenario, we can look at the cardinality of Ω,
namely card{xk ∈ Ω}. More generally, we can consider an increasing functional
of the cardinality, say f1(card{xk ∈ Ω}). The simplest case concerns an identity
functional, f1(u) = u. The specificity of the information granule can be quantified
by looking at its size. The length of the interval Ω or a decreasing functional
of the length, f2, can serve as a sound measure of specificity. The lower the
value of f2(length(Ω)), the higher the specificity is. It is apparent that the two
requirements discussed above are in conflict.

Let us proceed with the detailed construct of interval information granules.
We start with a determination of the numeric representative of the set of data
D. A sound representative is its median, med(D) as it is robust estimator of the
sample and is one of the elements of D. An information granule Ω is formed by
forming its lower and upper bound, denoted by a and b, respectively; refer also
to Figure 1.

Fig. 1. Optimization of interval information granule Ω

The determination of the bounds is realized independently. In this sense, we
can concentrate on the optimization of the upper bound (b). The calculations
of the lower bound (a) are carried out in an analogous fashion. The length of
Ω, which quantifies the specificity of the information granule is given now as
|med(D) − b|. More generally, we have f2(|med(D) − b|). The cardinality of the
information granule takes into account the elements of D positioned to the right
from the median, card{xk ∈ Ω, xk >med(D)}. Again in general, we compute
f1(card{xk ∈ Ω, xk >med(D)}). As the requirements of experimental evidence
and specificity are in conflict, we can either resort ourselves to multiobjective
optimization or consider a maximization of the product V = f1 ∗ f2 whose op-
timization is to be realized with respect to the upper bound of the information
granule, that is V (bopt) = maxb>med(D) V (b). One among possible design alter-
natives, we can consider the functionals f1 and f2 assuming the following form

f1(u) = u (1)

and
f2(u) = exp(−αu) (2)
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where α is a positive parameter offering some flexibility in the produced infor-
mation granule A. Its role is to calibrate an impact of the specificity criterion
on the constructed information granule.

3 Optimal Allocation of Information Granularity

Information granularity is an important design asset. Information granularity
allocated to the original numeric construct elevates a level of abstraction (gener-
alizes) of the original construct developed at the numeric level. A way in which
such an asset is going to be distributed throughout the construct or a collection
of constructs to make the abstraction more efficient, is a subject to optimization.

Consider a certain mapping y = f(x,a) with a being a vector of parameters.
The mapping can be sought in a general way. One may think of a fuzzy model,
neural network, polynomial, differential equation, linear regression, etc. The
granulation mechanism G is applied to a giving rise to its granular counterpart,
A= G(a) and subsequently producing a granular mapping, Y = G(f(x ,a)) =
f(x ,G(a)) = f(x ,A). Given the diversity of the underlying constructs as well
as a variety of ways information granules can be formalized, we arrive at a suite
of interesting constructs: granular neural networks, say interval neural networks,
fuzzy neural networks, probabilistic neural networks, etc.

There are a number of well-justified and convincing arguments behind elevat-
ing the level of abstraction of the existing constructs. Those include: an ability
to realize various mechanisms of collaboration, quantification of variability of
sources of knowledge considered, better modelling rapport with systems when
dealing with nonstationary environments. In what follows, we will elaborate on
the general categories of problems in which information granularity plays a piv-
otal role.

Information granularity provided to form a granular construct is a design asset
whose allocation throughout the mapping can be guided by certain optimization
criteria. Let us discuss the underlying optimization problem in more detail. In
addition to the mapping itself, we are provided with some experimental evidence
in the form of input-output pairs (x k, tk), k = 1, 2, , M . Given is a level of
information granularity ε , ε ∈ [0, 1]. We allocate the available level ε to the
parameters of the mapping, dim(a) = h, so that the some optimization criteria
are satisfied while the allocation of granularity satisfies the following balance
ε =

∑h
i=1 εi where εi is a level of information granularity associated with the

i-th parameter of the mapping. All of the individual allocations are organized in
a vector format [ε1ε2...εh]T .

There are two optimization criteria to be considered in the optimization. The
first one is concerned with the coverage of data tk. For xk we compute Yk =
f(xk,G(a)) and determine a degree of inclusion of tk in information granule
Yk, incl(tk, Yk) = tk ⊂ Yk. Then we compute an average sum of the degrees of
inclusion taken over all data, that is 1

M

∑M
k=1 incl(tk, Yk). Depending upon the

formalism of information granulation, the inclusion returns a Boolean value in
case of intervals (sets) or a certain degree of inclusion in case of fuzzy sets.
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The second criterion is focused on the specificity of Yk- we want it to be as high
as possible. The specificity could be viewed as a decreasing function of the length
of the interval in case of set -based information granulation. For instance, one
can consider the inverse of the length of Yk, say 1/length(Yk), exp(−length(Yk)),
etc. In case of fuzzy sets, one consider the specificity involving the membership
grades. The length of the fuzzy set Yk is computed by integrating the lengths of
the β-cuts,

∫ 1

0 lenght(Y β
k )βdβ.

More formally, the two-objective optimization problem is formulated as fol-
lows. Distribute (allocate) a given level of information granularity ε so that the
following two criteria are maximized.

Maxε1,ε2,...,εh
Q1, Q1 =

1
M

M∑
k=1

incl(tk, Yk)

Maxε1,ε2,...,εh
Q2, Q2 = g(length(Yk))

(where g is a decreasing function of its argument)

subject to ε =
h∑

i=1

εi (3)

A simpler, single-objective optimization scenario involves a coverage criterion
regarded as a single most essential criterion considered in the problem

Maxε1,ε2,...,εh
Q, Q =

1
M

M∑
k=1

incl(tk, Yk) subject to ε =
h∑

i=1

εi (4)

We can arrive at some global view at the relationship that is independent
from a specific value of ε by taking an area under curve (AUC) computed as
AUC=

∫ 1

0
Q(ε)dε. The higher the value of the AUC, the higher the performance

of the granular version of the mapping.
Information granularity can be realized in the setting of a certain information

allocation protocol. Several main categories of such protocols can be envisioned:

P1: uniform allocation of information granularity. This process is the simplest
one and in essence does not call for any optimization mechanism. The nu-
meric parameter a of the mapping is replaced by the information granule
G(a), which is the same in terms of the size and the distribution around a.
If the formal setup of G concerns intervals then the numeric parameters of
the mapping are replaced by intervals of the same length (ε) and distributed
symmetrically around the parameters of the mapping.

P2: uniform allocation of information granularity with asymmetric position of
intervals.

P3: non-uniform allocation of information granularity with symmetrically dis-
tributed intervals of information granules.

P4: non-uniform allocation of information granularity with asymmetrically dis-
tributed intervals of information granules.
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P5: An interesting point of reference, which is helpful in assessing a relative
performance of the above methods, is to consider a random allocation of
granularity. By doing this, one can quantify how the optimized and carefully
thought out process of granularity allocation is superior over a purely random
allocation process.

Depending upon the formalism of information granularity, the protocols can be
made more specific. For instance, Figure 2 illustrates a collection of scenarios
where information granules are represented as intervals.

Fig. 2. Protocols P1 − P4 of information granularity allocation - a case of interval
information granulation

4 Fundamental Modes of Knowledge Management

Fuzzy models are sought as sources of knowledge. They interact in a variety of
ways. It is advantageous to introduce a certain taxonomy, in which we identify
four modes of interaction as shown in Figure 3:

Aggregation of sources of knowledge. The focal point concerns the formation of
a global view about the system based upon the results (outcomes) produced by
the individual models.

Granular compression. A source of knowledge is compressed by forming a more
compact model based on the original model. The compression brings about a
concept of granularity- the compressed counterpart is more compact but inher-
ently granular.

Building consensus. The sources of knowledge (models) are actively engaged in
the realization of a holistic view however in contrast to the previous category,
there is an active involvement of the individual sources in the overall process
in the sense they can constructively react to the global view created based on
the individual and make some adjustments to themselves to increase a level of
consensus.

Knowledge transfer. A source of knowledge has been formed on some experi-
mental evidence present in the past. New limited data originating from the sim-
ilar process (which could evolve over time) stipulate that the existing source of
knowledge could be used effectively by generalizing originally available model by
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making its granular. The granular model takes into account an effect of a partial
relevance of the knowledge (model) acquired so far and through the allocation
of information granules makes provisions with this regard.

In all these situations, the concept of information granules plays a pivotal
role in several meaningful ways. First this concept facilitates or becomes a nec-
essary prerequisite to the realization of knowledge management. Second, which
is equally important, it quantifies the quality of the resulting constructs in the
language of information granularity meaning that they become inherently made
more abstract by incorporating information granules. Thus the specificity of the
results is fully reflective of the diversity of the sources of knowledge and this helps
assess the feasibility of interaction processes as well as undertake some necessary
steps in cases the lack of specificity becomes too substantial (which speaks to
the high level of diversity among sources knowledge being overly detrimental
to the interaction there). Furthermore Figure 3 identifies a location of infor-
mation granules as they emerge in the processes described above (the granular
constructs are depicted by the shaded rectangular shapes).

In the first case, Fig.3 (a), granularity of information is reflective of the exist-
ing diversity of the sources of knowledge. In granular compression, the factor of
granularity of information quantifies a trade-off between achieved level of com-
pression and the associated level of abstraction of the resulting construct. In the
two other cases, Fig.3 (c) - (d) information granularity is regarded as an im-
portant design asset which helps establish the underlying processes of consensus
formation or quantifying knowledge transfer. The level of information granular-
ity is introduced into the process externally and this design asset can be further

Fig. 3. Four modes of knowledge management: (a) aggregation, (b) consensus building,
(c) granular compression, and (d) knowledge transfer
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optimized in terms of its allocation to the corresponding models involved in the
scheme.

The granular models obtained as a result the interaction establish themselves
at the higher level of abstraction in comparison with the available sources of
knowledge. The term of granular fuzzy model is conceptually quite general as
the realization depends upon a way in which information granules are expressed.
Depending on this, we may talk about fuzzy fuzzy (fuzzy2) models, interval fuzzy
models, rough fuzzy models, etc.

5 Concluding Comments

Granular fuzzy models arise as a new conceptually sound alternative of system
modeling. It has been demonstrated that knowledge management involving a
number of sources of knowledge is directly associated with the design of infor-
mation granules. It needs to be stressed that the level of information granularity
is essential to the realization of knowledge management either supporting a for-
mation of information granules or facilitating collaboration through endowing
the individual sources of knowledge by some additional flexibility associated
with the constructed information granules. The study offers a general taxonomy
of the key scenarios. It has to be noted, however, that only several representative
design problems were sketched that deserve detailed algorithmic investigations.
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Abstract. Several methods have been proposed to automatically gen-
erate fuzzy rule-based systems (FRBSs) from data. At the beginning,
the unique objective of these methods was to maximize the accuracy
with the result of often neglecting the most distinctive feature of the
FRBSs, namely their interpretability. Thus, in the last years, the au-
tomatic generation of FRBSs from data has been handled as a multi-
objective optimization problem, with accuracy and interpretability as
objectives. Multi-objective evolutionary algorithms (MOEAs) have been
so often used in this context that the FRBSs generated by exploiting
MOEAs have been denoted as multi-objective evolutionary fuzzy sys-
tems. In this paper, we introduce a taxonomy of the different approaches
which have been proposed in this framework. For each node of the tax-
onomy, we describe the relevant works pointing out the most interesting
features. Finally, we highlight current trends and future directions.

Keywords: Multi-objective evolutionary fuzzy systems, Fuzzy rule-
based systems, Interpretability in fuzzy rule-based systems, Multi-
objective evolutionary algorithms.

1 Introduction

Fuzzy rule-based systems (FRBSs) have been successfully applied to different
engineering fields such as control, pattern recognition, system identification and
signal analysis. FRBSs consist of a linguistic rule base (RB), a data base (DB)
containing the fuzzy sets associated with the linguistic terms used in the RB
and a fuzzy logic inference engine. The most natural approach to FRBS design
is to elicit the knowledge from a human expert and to codify this knowledge
in the RB and DB of the FRBS. In some application domains, this knowledge
can be limited, due, for instance, to the complexity of the domain, thus making
this natural approach not practicable. To overcome this problem, methods have
been proposed in the literature to generate the RB and DB by extracting this
knowledge from available information (typically, input-output samples). At the
beginning, such generation was generally performed with the unique objective of
maximizing the accuracy, but soon the researchers realized that these accuracy-
driven approaches typically produce FRBSs characterized by a high number of
rules and by linguistic fuzzy partitions with a low level of comprehensibility,
thus loosing that feature which has made FRBSs preferable to other approaches

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 83–90, 2011.
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in real applications, namely interpretability [1]. To overcome this problem, in
the last decade, new methods have been proposed to generate FRBSs taking not
only accuracy, but also interpretability of rule and data bases into consideration.
Hence, the generation of FRBSs requires to solve a multi-objective optimization
problem.

Multi-Objective Evolutionary Algorithms (MOEAs) have been so extensively
used in this framework that the term “Multi-Objective Evolutionary Fuzzy Sys-
tems” (MOEFSs) has been coined to identify the hybridization of FRBSs with
MOEAs [2]. MOEAs are employed to generate FRBSs with different trade-offs
between accuracy and interpretability by learning the overall RB or by select-
ing subsets of rules from heuristically determined initial RBs, and by learning
the overall DB or by tuning a DB proposed by the experts. Since accuracy and
interpretability are conflicting objectives, MOEFSs do not generate a unique
optimal FRBS, but a set of FRBSs, denoted Pareto optimal set, characterized
by different optimal trade-offs among the objectives.

In the paper, first of all, we will discuss how interpretability of an FRBS
has been evaluated in the MOEFSs proposed so far. Second, we will introduce
a taxonomy of MOEFSs based on how RB and DB are processed during the
evolutionary process. For each node of the taxonomy, we will describe the most
relevant features of the approaches proposed in the literature. Finally, we will
discuss hot topics and new challenges.

2 Interpretability in Fuzzy Rule-Based Systems

Interpretability of FRBSs has been widely discussed in the last years, especially
in the framework of MOEFSs. FRBSs can be considered intrinsically “transpar-
ent” because their behavior can be explained in terms of their components and
their relations [3]. On the other hand, the concept of “transparency” is quite
far from system interpretability. Among the different types of FRBSs, Mamdani
FRBSs have had a predominant role in MOEFSs, thanks to their feature of being
completely defined in linguistic terms and therefore particularly comprehensible
to the users. In the following, we will focus on this type of FRBSs.

Since interpretability is a subjective concept, it is hard to propose a world-
wide agreed definition and consequently a universal measure of interpretability.
Thus, researchers have focused their attention on discussing some factors which
characterize interpretability and on proposing some constraints which have to
be satisfied for these factors. Considerations on the main factors that influence
interpretability can be found in [1] [4]. A homogeneous description of semantic
and syntactic interpretability issues regarding both the RB and the DB has been
recently published in a survey on interpretability constraints [3].

In [5], a taxonomy of fuzzy model interpretability has been proposed in terms
of both low-level and high-level interpretability. Low-level interpretability is re-
lated to the semantic constraints that ensure fuzzy partition interpretability
while high-level interpretability is associated with a set of criteria defined on
the RB. Furthermore, a conceptual framework for characterizing interpretability
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of fuzzy systems has been introduced in [6]: this framework includes a global
description of the FRBS structure, on the basis of the taxonomy and constraints
discussed in [3] and [5], respectively, and a local explanation for understanding
the system behavior. This local explanation considers a number of factors such
as inference mechanisms, aggregation, conjunction and disjunction operators,
defuzzification and rule type, which affect the system behavior.

Recently, the most relevant measures and strategies exploited to design inter-
pretable FRBSs have been reviewed in [7]. Here, a taxonomy of the interpretabil-
ity measures has been proposed by considering two different dimensions, namely
semantic and complexity, at RB and DB levels. As shown in Fig. 1, this taxon-
omy is therefore organized into four quadrants. In the following sections, we will
discuss how most of these measures, especially the ones in the complexity-RB
and semantic-DB quadrants, have been used in MOEFSs.

Fig. 1. Taxonomy of interpretability measures proposed in the literature

3 A Taxonomy of Multi-objective Evolutionary Fuzzy
Systems

In [2], F. Herrera introduced a taxonomy of genetic fuzzy systems based on
how FRBS components are processed during the evolution. In Fig. 2, we adapt
this taxonomy to MOEFSs. At the first level, MOEFSs can be divided into two
macro-classes, namely multi-objective evolutionary (MOE) tuning and learning,
according to the type of process used to design the FRBS components. Although
it is difficult to make a clear distinction between tuning and learning, we can
adopt the following definition proposed in [2]: in the former, we tune the compo-
nents, typically the membership functions, of a pre-existing KB so as to increase
the accuracy of the FRBSs, whereas in the latter, we learn the FRBS compo-
nents possibly without any pre-existing KB or at most with a partially defined
KB. The MOE learning approaches are, in their turns, split into four classes
according to the specific components which are learned during the evolutionary
process. MOE tuning and learning have been also combined in some recent ap-
proaches. In the following, we will briefly describe the classes of approaches by
referring to the most important techniques proposed per each class.
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Fig. 2. MOEFS taxonomy

3.1 MOE Tuning

Given a KB, optimization is performed by adjusting the DB definition, without
changing the existing RB. Typically, the RB is provided by an expert or is gen-
erated by exploiting some heuristic approach, commonly Wang and Mendel [8],
and the initial DB is obtained by uniformly partitioning the universes of the
linguistic variables used in the rules. MOE tuning exploits chromosomes that
define the operations used to tune the membership functions.

In [9], for each linguistic variable, the chromosome codifies the parameters of
5 operators, namely one non-linear scaling function and four linguistic modifiers,
used to adapt the DB: the first five bits, one for each operator, control whether
the corresponding operator is applied, and the remaining 72 bits are organized
in sub-strings of 8 bits, where each sub-string determines the value of a different
parameter, via Gray decoding and quantization. The well-known NSGA-II [10]
is used to generate an approximated Pareto front of DBs by optimizing accuracy
and a novel index based on fuzzy ordering relations.

Some recent tuning approaches are performed together with RB selection and
will be discussed in Section 3.3.

3.2 MOE DB Learning

In MOE DB learning, the DB generation process wraps an RB heuristic-based
learning process. Chromosomes consist generally of two parts: an integer part
which codifies the granularity of the partitions and a real part which defines the
parameters of the membership functions. At each iteration of the MOEA, an
RB is generated for each DB by using some heuristic approach such as Wang
and Mendel [8], and then the accuracy and the interpretability of the overall
KB are computed. One of the most recent approaches of DB learning has been
proposed in [11], where granularity is chosen in [1..7] and [2..7] for, respectively,
the input and output variables, and a real gene in [-0.1,0.1] for each linguistic
variable determines the lateral displacement of each partition.

3.3 MOE RB Selection

In MOE RB selection, the evolutionary process generates RBs by selecting rules
from an initial RB produced by some heuristic. Binary chromosomes of length
equal to the number of rules in the initial RB are generally used where each bit
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determines whether the corresponding rule of the initial RB is selected or not.
Accuracy and complexity are computed by using a pre-defined DB, typically
obtained by uniformly partitioning the input and output linguistic variables.
The pioneer work [12] in MOEFSs belongs to this class. Here, accuracy and
interpretability are measured in terms of number of correctly classified training
patterns and number of rules, respectively. This work has been enriched in [13]
by proposing a novel heuristic to generate the initial RB, by introducing a multi-
objective genetic local search algorithm where a local search procedure adjusts
the selection of each candidate rule and by combining this algorithm with a
learning algorithm of rule weights.

In [14], the RB selection has been extended with a second level of selection
performed on the antecedent conditions of each selected rule. The chromosome
is composed by a vector of pairs pm = (km, vm), where km is an integer which
identifies a rule in the initial RB and vm is a vector of bits. Each bit in vm

determines whether the corresponding condition of rule km has to be included
or not in the RB.

MOE RB selection is often performed together with DB tuning. In these cases,
both RB complexity and DB integrity are taken into account during the evolu-
tionary process. In [15] [16] [17], chromosomes consist of two parts, which adopt
binary and real coding, respectively. The former selects rules from the initial RB
and the latter tunes the membership functions parameters. Triangular member-
ship functions are identified by the classical three-point representation and each
gene codifies the lateral displacement of each point with respect to the initial
value. Appropriate constraints on the variation intervals of the genes ensure the
partition integrity in [15] [16], while in [17] a new semantic interpretability index,
which aggregates three different metrics aimed at preserving as much as possible
the original meaning of the membership functions, is used as objective during
the evolutionary process.

In [18], the initial KB is generated in two steps: first, the heuristic proposed
in [13] is used to generate a set of candidate rules with multiple granularities.
Then, a single granularity is specified for each input variable according to the
frequency of employed partitions and the importance of the multiple granularity-
based extracted rules. The MF parameters tuning is performed by using the
2-tuple representation [19], while the number of rules, the total number of con-
ditions in each rule and the percentage of corrected classified patterns are con-
currently optimized by using NSGA-II.

3.4 MOE RB Learning

Unlike MOE RB selection, which starts from an initial RB, MOE RB learning
generates the RB from scratch. In [20], each gene in the chromosome identifies
the integer index jm,f of the linguistic value which has been selected for variable
Xf in rule Rm. Accuracy and interpretability are computed in terms of root
mean square error and total number of conditions in the rules. In [21], the RB
learning approach has been extended for generating fuzzy rule based classifiers, in
the context of imbalanced and cost sensitive datasets. In order to deal with such
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datasets, the accuracy has been calculated in terms of sensitivity and specificity
associated with the classifiers, while the interpretability has been assessed in
terms of RB complexity. The three-objective evolutionary optimization has been
carried out by using NSGA-II. Finally, in order to select the best classifiers, the
ROC convex hull technique has been exploited.

In [22], since conditions can be formed by disjunctions of linguistic values,
each rule is encoded by a binary string for the antecedent and an integer for
the consequent. For each linguistic variable, the binary string indicates which
linguistic value is used in the antecedent.

3.5 MOE KB Learning

The objective of MOE KB learning is to learn both the RB and the DB during
the evolutionary process. The chromosome is typically formed by different parts
which codify the RB and some parameters of the DB.

The technique proposed in [23] represents an approximation of the ideal ap-
proach to learn simultaneously the RB and the DB of a set of fuzzy rule-based
classifiers. Indeed, a hybrid version between Michigan and Pittsburgh learning
methods has been employed to generate sets of rules with multiple granulari-
ties as in [13]. The number of rules, the total number of conditions in each rule
and the percentage of corrected classified patterns are concurrently optimized
by using NSGA-II.

In [24], an integer part codifies the RB as described in [20] and a real part
determines the position of the cores of triangular membership functions obtained
by uniformly partitioning the universes of each linguistic variable with a pre-fixed
number of fuzzy sets. Accuracy and interpretability are computed in terms of
mean square error and total number of conditions in the rules. Further, DB
integrity is preserved by allowing cores to be positioned in specific intervals.

In [25] [26], an integer part is added to the chromosome to determine the
granularity of the partitions. Further, in [26] the MOE DB learning is performed
by applying piecewise linear transformations to the uniformly partitioned lin-
guistic variables. To preserve the shapes of the membership functions, only the
extremes of the supports and the cores of the fuzzy sets are transformed. Further,
the piecewise linear transformation is defined for each linguistic variable by using
a number of changes of slopes equal to the maximum possible granularity minus
1. Thus, the length of the chromosome is fixed. The rule learning is performed
by using the approach proposed in [20] to rules defined on virtual partitions,
that is, partitions generated with the maximum granularity. The actual granu-
larity determined by the evolutionary process is used only in the computation
of the fitness: an appropriate mapping strategy maps the virtual partitions into
concrete partitions and updates accordingly the rules.

In [27], as regards RB, integer and real genes are used to codify the antecedent
conditions and the consequent singleton fuzzy sets, respectively. As regards DB,
both the parameters of the membership functions and the positions of the sin-
gletons are codified by real genes. Semantic partition interpretability is ensured
by dynamic constraints.
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4 Current Trends and Future Directions

One of the most critical aspects in applying MOEFSs is the computation of
the fitness, especially when the dataset is large. To reduce the computational
cost, some solutions have been investigated such as employing parallel evolu-
tionary algorithms, exploiting fitness approximation and adopting instance se-
lection techniques [28]. Another critical aspect is to manage high-dimensional
datasets since the search space increases with the number of features. To limit
this drawback, feature selection during the evolutionary process and ad-hoc mod-
ified multi-objective evolutionary algorithms have being explored [11]. Finally,
interpretability is now evaluated by using a number of indexes. Classical multi-
objective evolutionary algorithms, which have been used so far in MOEFSs,
do not result to be too suitable for handling more than 3-4 objectives. Thus,
appropriate algorithms recently proposed in the multi-objective evolutionary
framework will have to be experimented.
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Abstract. Linguistic fuzzy modeling that is usually implemented using Mam-
dani type of fuzzy systems suffers from the lack of accuracy and high com-
putational costs. The paper shows that product-sum inference is an immediate
remedy to both problems and that in this case it is sufficient to consider sym-
metrical output membership functions. For the identification of the latter, a nu-
merically efficient method is suggested and arising interpretational aspects are
discussed. Additionally, it is shown that various rule weighting schemes brought
into the game to improve accuracy in linguistic modeling only increase computa-
tional overhead and can be reduced to the proposed model configuration with no
loss of information.

1 Introduction

It is generally acknowledged that of the two prevailing types of fuzzy systems, Mam-
dani systems are more interpretable than Takagi-Sugeno (TS) systems. Mamdani sys-
tems provide a better (more intuitive) mechanism for integration of expert’s knowledge
into the system (and vice versa) as fuzzy rules in Mamdani systems closely follow the
format of natural languages and deal with fuzzy sets exclusively. On the other hand, it
is generally observed that Mamdani systems suffer heavily from the curse of dimen-
sionality because these easily interpretable rules yield less representative power than
TS rules and thus more rules are needed to maintain even approximately same level
of accuracy (according to many researchers [1,2], complexity is an important aspect of
interpretability, therefore it may be stated that interpretability of Mamdani systems is
undermined by exponentially increasing complexity requirements).

The representative power of fuzzy rules depends on how many adjustable parameters
(of membership functions) are available for the consequent part of a rule. Extended rep-
resentative power of fuzzy rules also makes the way the inference operators influence
rule interpolation more pronounced. For somewhat uncertain reasons there are many in-
ference operators developed for Mamdani systems (a thorough study [3] counts over 40
different operators for fuzzy implication alone) even though in practice only a handful
of them (and perhaps rightfully so) have found wider use.
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In this paper we show that application of product implication and sum aggregation
for the inference function of Mamdani systems provides an analytical expression for its
input/output relationship and is useful for several reasons. First, it decreases the com-
putational overhead in computing the numerical relationship between system variables.
Secondly, it permits to apply computationally efficient methods for the identification
of the extended consequent parameter set. From interpretational aspect, however, we
argue that some parameters in this extended set do not lend themselves to universally
unambiguous interpretation. Moreover, it must be noted that in order to fully exploit
the increased adaptation potential we need support from the method used for input par-
tition determination. To conclude the paper, the role of rule weights in linguistic fuzzy
modeling is discussed.

2 Preliminaries

Generally, fuzzy rules in Mamdani-type fuzzy systems are based on the disjunctive rule
format

IF x1 is A1r AND x2 is A2r AND ... ... AND xN is ANr THEN y is Br

OR ...,
(1)

where Air denote the linguistic labels of the i-th input variable associated with the r-th
rule (i = 1, ...,N), and Br is the linguistic label of the output variable, associated with
the same rule.

Each Air has its representation in the numerical domain - the membership function
μir (the same applies to Br that is represented by γr) and in general case the inference
function that computes the fuzzy output F(y) of the system (1) has the following form

F(y) =
R⋃

r=1

((
N⋂

i=1

μir(xi)

)
∩ γr

)
, (2)

where ∪R
r denotes the aggregation operator (corresponds to OR in (1), ∩ is the impli-

cation operator (THEN) and ∩N
i is the conjunction operator (AND). In order to obtain

crisp output, (2) is generally defuzzified with center-of-gravity method

y = Ycog(F(y)) =
∫

Y yF(y)dy∫
Y F(y)dy

. (3)

In the following, the activation degree of r-th rule - the result of the conjunction opera-
tion in (2) - is denoted as

τr =
N⋂

i=1

μir(xi). (4)

In a normal fuzzy system the number of membership functions (MFs) per i-th variable
(Si) is relatively small - this number is rarely equal to R as the notation style in (1)
implies, moreover, it is often desired that all possible unique combinations of input MFs
are represented (R = ∏N

i=1 Si). MFs of the system are thus shared between the rules and a
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separate R×N dimensional matrix that accommodates the identifiers mri ∈ {1,2, ...,Si}
maps the existing input MFs μs

i to the rule slots. Unless unique output MFs are assigned
to all rules, they also need some external allocation mechanism (below it will be shown
that there is an alternative to it).

In linguistic modeling context, Mamdani systems are subject to transparency con-
straints to ensure valid interpretation of fuzzy rules [4].

The most convenient way to satisfy transparency constraint (∑Si
s=1 μ s

i (xi) = 1) for
input MFs μ s

i (s = 1, ...,Si) is to use the following definition:

μ s
i (xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi−as−1

i

as
i−as−1

i
, as−1

i < xi ≤ as
i

as+1
i −xi

as+1
i −as

i
, as

i < xi < as+1
i

0, otherwise

. (5)

For output MFs γr(y) the respective constraint requires that

Ycog(γr(y)) =

∫ ymax
ymin

yγr(y)dy∫ ymax
ymin

γr(y)dy
= core(γr(y)), (6)

meaning that γr must be symmetrical. The latter property is satisfied by default by sym-
metrical triangular MFs given by

γr(y) = max(min(
2y−2br + sr

2
,

2br + sr −2y
2

),0), (7)

where sr is the width of γr and br = core(γr(y)) is its center.

3 Product-Sum Fuzzy Systems

It is easy to show that if we fix product implication and sum aggregation then (3) will
be significantly reduced

y =

∫ ymax
ymin

∑R
r=1 τrγr(y)ydy∫ ymax

ymin
∑R

r=1 τrγr(y)dy
=

∑R
r=1 τr

∫ ymax
ymin

γr(y)ydy

∑R
r=1 τr

∫ ymax
ymin

γr(y)dy
= ∑R

r=1 τrCrSr

∑R
r=1 τrSr

, (8)

where

Cr =

∫ ymax
ymin

γr(y)ydy∫ ymax
ymin

γr(y)dy
, (9)

is the center of gravity of given γr and

Sr =
∫ ymax

ymin

γr(y)dy, (10)

is its area.
(8) implies that with given inference operators it is sufficient consider only the area

and center of gravity of γr. For example, with (7), Cr = br and Sr = sr/2 and (8) can
thus be rewritten as

y = ∑R
r=1 τrbrsr

∑R
r=1 τrsr

. (11)
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Note that if γr are of equal width (∀r,sr = ξ , where ξ is an arbitrary positive constant)
(11) reduces to

y = ∑R
r=1 τrbr

∑R
r=1 τr

, (12)

which is the inference function for well-known 0-th order Takagi-Sugeno systems,
meaning, of course that if the output MFs of the fuzzy system (11) are of equal width,
these can be with no loss of generalization reduced to scalars1.

Furthermore, as ∑Si
s=1 μ s

i (xi) = 1 (input transparency constraint), (12) would further
reduce to

y =
R

∑
r=1

τrbr, (13)

which is as basic as it can get.
Not only are (11) and (13) computationally less expensive than (3) they also permit

us to use more efficient methods for the identification of sr and br than derivative-free
but computationally greedy population based guided search methods such as evolution-
ary algorithms that are the only viable option for the identification of Mamdani systems
in general case [6].

To include the situations where the number of unique output MFs (T ) is or is to be
expected smaller than R (meaning that they are shared among the rules) let us introduce
a R×T allocation matrix M [7] that maps t-th output MF (t ∈ 1,2, ...,T ) to the r-th rule
if the element in r-th row and t-th column of M is equal to one (only one element of
this value is permitted per row). If there is no sharing of output MFs (T = R), M is the
identity matrix and can be neglected.

Using the notations

Γ =

⎡⎢⎢⎣
τ1(1) τ2(1) ... τR(1)
τ1(2) τ2(2) ... τR(2)
... ... ... ...

τ1(K) τ2(K) ... τR(K)

⎤⎥⎥⎦ , (14)

s′ = [s1,s2, ...,sT ]T ,b′ = [b1,b2, ...,bT ]T , (15)

and
y = [y(1),y(2), ...,y(K)]T , (16)

we can show that if M, Γ , s′ and y′ are known, a least squares solution to (11) that lacks
an exact solution in terms of b′ is given by.

b′ = pinv(Γ ·M ·diag(s′)) ·diag(Γ ·M · s′) ·y, (17)

where diag() denotes the operation which transforms a column vector (its argument)
into a diagonal matrix and where pinv() is the Moore-Penrose pseudoinverse [8] that is
applied for matrix inversion.

1 An early attempt to improve tractability and computational properties of Mamdani systems [5]
reduces (3) to (12) via the application of “weighted average” defuzzification - an approximate
substitute of the center-of-gravity method with accounted information loss.
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If M, Γ , b′ and y are known and s′ is unknown, we face the homogeneous matrix
equation

(diag(y) ·Γ ·M−Γ ·M ·diag(b′)) · s′ = 0. (18)

To find a non-trivial solution to (18), we can apply singular value decomposition [9],
i.e. find matrices U , Σ and V so that

U ·Σ ·V T = diag(y) ·Γ ·M−Γ ·M ·diag(b′), (19)

where Σ is a diagonal matrix and U and V are orthogonal matrices. The least-squares
solution is given by the column of V , which corresponds to the smallest diagonal entry
of Σ .

For the parameter identification of (11) we can start with (17)2 and apply (19) and
(17) then repeatedly until the solution converges (less than 10 iterations are needed) or
until all elements of s′ maintain the same sign (to preserve the physical meaning of sr).

Example: consider a simple function3

y = sin(2x−0.7), with x = [0,1]. (20)

For the identification of (20) we assume that a three-rule Mamdani system would be
sufficient. We fix two input MFs at the extremes of input domain (to satisfy coverage
property) and let a2

1 take values from [0,1]. For each position the set of output param-
eters is identifed using (17) and (19). We also identify corresponding 0-th order TS
models. The curves of modeling root mean square error (ε) in respect to the position of
a2

1 for both types of models are depicted in Fig. 1, left.
We can see that as expected, modeling error is dependent on how a2

1 was positioned,
however, a Mamdani model appears to be both more accurate and more robust than a
0-th order TS model. It is quite obvious that one additional parameter per rule offers
increased adaptation potential. To exploit this potential fully, however, we need a sup-
port from the method that is used for the determination of input partition. The otherwise
efficient semi-heuristic approach [10] suggests the value of a2

1 that is denoted by a2∗
1 in

Fig. 1 and the latter seems to be more suitable for 0-th order TS systems.
Interpretation of br in a fuzzy system follows naturally from the definition of trans-

parency of Mamdani systems [4] - each br is the value of y when τr = 1. Interpretation
of sr, however, becomes ambiguous. As can be seen from Fig. 1, right, a larger sr acts
like a magnet that pulls the data samples between ar−1

1 and ar+1
1 toward br - and the

value of sr could be therefore interpreted as the “magnetic” value of a rule.
There are two reasons, though, why this (or any other) interpretation of sr cannot

be exploited very well. First, unlike br, the absolute value of a given sr is meaningless,
what counts is its difference from widths of output MFs of its neighboring rules (and
do not forget that all sr can be scaled up and down proportionally without any effect to

2 For the first iteration, b′ is identified with s′ that is a T × 1 vector of ones. If our goal is to
obtain consequent parameters for a 0-th order TS system (12) then one-time application of
(17) concludes the identification procedure.

3 The goal is not to provide exhaustive demonstration of the performance of the algorithm but
to illustrate some of its basic characteristics.
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Fig. 1. Left: Dependence between the position of a2
1 and modeling error for (20). Mamdani mod-

els (solid line), 0-th order TS models (dashed line). Right: Interpolation between neighboring
rules in Mamdani systems (dashed line depicts the linear interpolation when sr−1 = sr = sr+1).

the inferred y). Secondly, each rule interacts with up to 3N −1 neighboring rules (where
N is the number of inputs) so we have to deal with an exponentially growing set of
parameters in this comparison as the number of inputs increases and the whole effort
quickly becomes impractical.

It can be also argued that if M is not the identity matrix, the increased adaptation
potential of (11) will be cancelled out by possible contradictory requirements that derive
from extensive sharing of consequent parameters (this no doubt influences br as well
but to a lesser degree).

4 Weighted Fuzzy Systems

Using rule weights in fuzzy systems has been often considered as a big improvement to
the way in which the rules interact [11,12,13]. Rule weights can be applied to complete
rules or only to the consequent part of the rules [14]. In first case, the corresponding
weigth wr is used to modulate the activation degree of a rule and in second case it is
used to modulate the rule conclusion. Consider a weighted fuzzy system (r = 1, ...,R)

IF x1 is A1r AND ... ... AND xN is ANr THEN y is Pr with wr, (21)

where Pr labels the output fuzzy set associated with r-th rule (having the parameters pr

and zr) and wr is the rule weight.
Interpretation of rule weights has long been a controversial issue [14] with many pos-

sible interpretations being tossed around (credibility, importance, influence, reliability
etc.). With product-sum inference, however, the inference functions corresponding to
(21) appear as

y =
∑R

r=1 τrwr przr

∑R
r=1 τrwrzr

, (22)
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(if weights are applied to complete rules) or

y = ∑R
r=1 τrwr przr

∑R
r=1 τrzr

, (23)

(if applied only to rule consequents). It is easy to see that both (22) and (23) are equiv-
alents of (11), as sr = wrzr,br = pr in first and br = wr pr,zr = sr in second case. The
only principal difference between (11) and (21) is that even if the original MFs in (21)
may have been shared between the rules, the modulated MFs are now unique to each
rule (as were the weights wr, for that matter).

Similar reduction is obtained if the weights are used in multiple-consequent rules
[15] in which a rule appears as

IF x1 is A1r AND ... ... AND xN is ANr THEN
y is P1 with w1r AND P2 with w2r, AND ... AND PT with wTr.

(24)

The inference functions corresponding to (24) and transformation formulas that reduce
(24) to (11) are given in Table 1. There is no clearer way to demonstrate redundancy of
rule weights.

Table 1. Transformation of multiple-consequent weighted fuzzy systems into (11)

weights applied to inference function br sr

rule conclusion y = ∑R
r=1 τr ∑T

j=1 w jr p j z j

∑R
r=1 τr ∑T

j=1 z j
∑T

j=1 w jr p jz j/∑T
j=1 z j ∑T

j=1 z j

complete rules y = ∑R
r=1 τr ∑T

j=1 w jr p j z j

∑R
r=1 τr ∑T

j=1 w jrz j
∑T

j=1 w jr p jz j/∑T
j=1 w jrz j ∑T

j=1 w jrz j

5 Conclusions

At first glance, expansion of expressive power of fuzzy rules in linguistic modeling
seems like a good idea, in particular, when we have an efficient identification mecha-
nism for those extra parameters in (11) readily available. Moreover, various rule weight-
ing schemes can be reduced to the very same configuration.

Closer look, however, reveals problems of inherent nature. For example, interpre-
tation of those extra parameters is not intuitive at all. It is possible to ignore the in-
terpretational aspect and treat the problematic parameters as purely computational pa-
rameters, however, in order to fully exploit increased adaptation potential we need to
match the output MF identification procedure with an adequate input partition determi-
nation method. As has been suggested in the paper, finding a suitable method for that is
presently a matter of further research and therefore the fuzzy system configuration (12)
(0-th order TS system) still remains a very reasonable choice in linguistic modeling
despite its other shortcomings.

Note that these conclusions are valid for applications of linguistic fuzzy systems in
identification and control. In classification, the situation is altogether different because
the output MFs of a fuzzy classifier are labels and the inference algorithm is generally
different from (3). Investigation of similar issues (adaptability, rule weights etc.) in the
context of classification is therefore a whole separate line of research.
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Abstract. In this paper, we present a simple classification of the pa-
pers devoted to interpretability of Linguistic Fuzzy Rule-Based Systems
attending to the type of interpretability measures and the part of the
system for which they are applied, i.e., a double axis classification. A
taxonomy considering this double axis is used to easily categorize the
proposals in the existing literature. In this way, this work also represents
a simple summary of the current state-of-the-art to assess the inter-
pretability of Linguistic Fuzzy Rule-Based Systems.

1 Introduction

Linguistic fuzzy modelling, developed by linguistic Fuzzy Rule-Based Systems
(FRBSs), allows us to deal with the modelling of systems by building a linguis-
tic model which could become interpretable by human beings. Linguistic fuzzy
modelling comes with two contradictory requirements [10,11]:

– Interpretability: This is the capability to express the behavior of the real
system in an understandable way. This is a subjective property depending
on a large amount of factors and still represents an open problem.

– Accuracy: This is the capability to faithfully represent the real system. This
property represents the similarity between the responses of the real system
and the fuzzy model.

In recent years the interest of researchers in obtaining more interpretable lin-
guistic fuzzy models has grown [8,35,47], since this is still an open problem. In
this paper, we present a categorization of the interpretability of fuzzy systems
focused on the framework of linguistic FRBSs attending to the type of inter-
pretability measures and the part of the system for which they are applied, i.e.,
a double axis classification. To this end, we will show a taxonomy with four
quadrant (complexity or semantic interpretability at the level of Rule Base or
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fuzzy partitions) with the main aim of helping readers have a good global vi-
sion of interpretability measures for linguistic FRBSs in the existing literature.
This work constitutes a short version of the paper presented in [21], which in-
cludes additional complementary references in some quadrants and the detailed
descriptions of the measures and approaches proposed or used in all the referred
contributions.

This paper is arranged as follows. The next section presents the used tax-
onomy for categorizing interpretability in the linguistic FRBSs area. Section 3
summarizes the current state-of-the-art to assess the interpretability of linguistic
FRBSs highlighting some facts on the different quadrants. Finally, in section 4
we draw some conclusions.

2 A Double Axis Classification of Interpretability
Measures for Linguistic FRBSs

In this section, we present a specific classification that can help us better un-
derstand how the interpretability aspect has been taken into account in the
particular framework of linguistic FRBSs. Different works [8,35,47] have pro-
posed interesting taxonomies as a way to study interpretability aspects within
the more general area of fuzzy systems.

In this particular case of linguistic FRBSs, the two main kinds of approaches
to take into account the interpretability of linguistic FRBSs are:

1. Complexity-based Interpretability: These approaches are devoted to decreas-
ing the complexity of the obtained model (usually measured as number of
rules, variables, labels per rule, etc.).

2. Semantics-based Interpretability: These approaches are devoted to preserv-
ing the semantics associated with the Membership Functions (MFs). We can
find approaches trying to ensure semantic integrity by imposing constraints
on the MFs or approaches considering measures such as distinguishability,
coverage, etc.

Since both kinds of measures, complexity-based interpretability and semantic-
based interpretability, should be considered in both Knowledge Base (KB) com-
ponents, linguistic fuzzy partition and Rule Base (RB), we will follow a taxonomy
based on a double axis:

– Complexity versus Semantic interpretability.
– Rule Base versus Fuzzy Partition.

In this way, the said taxonomy comes from combining both axes. This leads to the
appearance of the following quadrants devoted to analyzing the interpretability
of linguistic FRBSs (see Table 1):

– Q1: Complexity at the RB level.
– Q2: Complexity at the fuzzy partition level.
– Q3: Semantics at the RB level.
– Q4: Semantics at the fuzzy partition level.
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Table 1. A taxonomy to analyze the interpretability of linguistic FRBSs

Rule Base level Fuzzy Partition level

Complexity-based
Interpretability

Q1

Number of rules
Number of conditions

Q2

Number of Membership Functions
Number of Features

Semantic-based
Interpretability

Q3

Consistency of rules
Rules fired at the same time
Transparency of rule structure
Cointension

Q4

Completeness or Coverage
Normalization
Distinguishability
Complementarity
Relative measures

Most of the works in the literature consider measures included inside quadrants
Q1 and Q2 which are considered as the classic interpretability measures. These
measures are widely well-known as the number of rules, number of conditions,
number of features and number of MFs. This is not the case of semantic inter-
pretability measures: there are still no widely accepted measures, because many
of them appear as new measures in the literature. In the following, we present
a short description of these less known measures included in the quadrants Q3

and Q4. Some of the more commonly used measures included in the quadrant
Q3 are the following:

– Consistency of the RB, is the absence of contradictory rules in RB, i.e., rules
with similar premise parts should have similar consequent parts.

– Number of rules fired at the same time, which consists of minimizing the
number of rules firing that are activated for a given input.

– Cointension, is a proximity of the input/output relations of the object of
modeling and the model. A model is cointensive if its proximity is high.

The most common constraints or absolute measures in the quadrant Q4 are:

1. Completeness or Coverage: The universe of discourse of a variable should be
covered by the MFs, and every data point should belong to at least one of
the fuzzy sets and have a linguistic representation, i.e., it is required that
membership values should not be zero for all the linguistic variable domains.

2. Normalization: MFs are normal if there is at least one data point in the
universe of discourse with a membership value equal to one, in respect to
the maximum membership degree.

3. Distinguishability: An MF should represent a linguistic term with a clear
semantic meaning and should be easily distinguishable from the remaining
MFs of the corresponding variable.

4. Complementarity: For each element of the universe of discourse, the sum of
all its membership values should be near to one. This guarantees a uniform
distribution of the meanings among the elements.

There is an additional possibility for Q4 which is considering relative measures, i.e.,
using a measure that takes into account the user MF definitions if they are available.
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3 Categorizing the Current State-of-the-Art to Assess
the Interpretability of Linguistic FRBSs

In order to show the existent works chronologically, Table 2 shows a summary
of the works that consider the interpretability for Linguistic FRBSs grouped by
quadrants and by publication date: by years and within each year by alphabetical
order. This table represents a categorization of the current state-of-the art to
assess the interpretability of linguistic FRBSs.

Taking into account the situation depicted in Table 2, most of the works
consider measures included inside the quadrants Q1 and Q2 which are considered

Table 2. Summary of the current state-of-the-art to assess the interpretability of
linguistic FRBSs by years and by quadrants

Using Q1 Q2 Q3 Q4

Authors Ref. Year Type MOEAs NR NC Nmf Nfeat. Cons. Rfired. Coin. Ctr. Meas.

Ishibuchi et al. [24,27] 1997, 1995 Clas.

√
, X

√

Pedrycz et al. [41] 1996 Reg. Am

Oliveira et al. [39,40] 1999 Ctl.

√
Am

Jin et al. [30] 1999 Ctl.

√ √

Cheong et al. [13] 2000 Ctl.

√ √

Espinosa et al. [17] 2000 Reg.

√ √

Jin [31] 2000 Ctl.

√ √ √ √

Cordón et al. [15,16] 2001 Reg.

√ √

Ishibuchi et al. [25] 2001 Clas.

√ √ √

Suzuki et al. [46] 2001 Reg.

√
Am

Guillaume et al. [22] 2003 Clas.

√ √

Ishibuchi et al. [28] 2003 Reg.

√ √

Nauck et al. [38] 2003 Clas.

√ √
Am

Pedrycz et al. [42] 2003 Reg.

√

Guillaume et al. [23] 2004 Clas.

√ √ √
Am

Ishibuchi et al. [29] 2004 Clas.

√ √ √

Casillas et al. [12] 2005 Clas.

√

Mikut et al. [37] 2005 Clas.

√ √

Alcalá et al. [2] 2007 Reg.

√ √

Alcalá et al. [1] 2007 Reg. & Ctl.

√

Alcalá et al. [4] 2007 Reg.

√ √

Cococcioni et al. [14] 2007 Reg.

√ √

Fazendeiro et al. [18] 2007 Ctl.

√
Am

Ishibuchi et al. [26] 2007 Clas.

√ √ √

Liu et al. [32] 2007 Clas.

√ √

Mencar et al. [36] 2007 Clas.

√

Alonso et al. [7] 2008 Clas.

√ √ √

Pulkkinen et al. [43] 2008 Clas.

√ √ √ √ √
Am

Pulkkinen et al. [44] 2008 Clas.

√ √ √ √

Alcalá et al. [3] 2009 Reg.

√ √

Alonso et al. [8] 2009 Clas.

√ √ √

Botta et al. [9] 2009 Reg.

√
Am

Gacto et al. [19] 2009 Reg.

√ √

Alonso et al. [5] 2010 Clas.

√ √ √

Alonso et al. [6] in press Clas.

√ √ √ √

Gacto et al. [20] 2010 Reg.

√ √
Rm

Márquez et al. [33] 2010 Reg.

√ √ √

Mencar et al. [34] in press Clas.

√ √

Pulkkinen et al. [45] 2010 Reg.

√ √ √

NR = Number of Rules, NC = Number of Conditions, Nmf = Number of membership functions,
Nfeat. = Number of Features, Cons. = Consistency, Rfired. = Number of Rules fired at the same
time, Coin. = Cointension, Ctr. = Constraints, Meas. = Measures; Clas. = Classification, Reg. =
Regression, Ctl. = Control, Am = Absolute Measures, Rm = Relative Measures.
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as the classic interpretability measures. The number of rules in the quadrant Q1

is one of the more used measures in the literature, for which reason it is possible
to consider it as a good measure of complexity at the rule base level. However
the total number of conditions seems to be a more complete way since it can
consider both the length of the rules and the number of rules, in an simple
measure. In the quadrant Q2 most of the works simply impose restrictions on
the maximum number of MFs allowed, even though, depending on the problem
(particularly in high dimensional problems) decreasing the number of features
should be preferred. The large quantity of works published in 2003 was motivated
by the following two books [10,11] on the interpretability-accuracy trade-off in
the field of FRBSs. However, apart from this, the interest of researchers has
increased particularly from 2007, giving rise to the appearance of many works
from this year to the present.

Inside quadrant Q3 there are a few measures but some works propose promis-
ing measures such as the consistency of the rules and the more recent number of
rules fired at the same time and cointension. In quadrant Q4 there are a lot of
works imposing constraints. However, recently new absolute or relative semantic
interpretability measures have arisen, which are more suitable to be taken into
account for optimization processes. For Q3 and Q4 quadrants, there are still
no widely accepted measures, which will arise with their use as happened with
the number of rules for Q1. Additionally, the use of Multi-Objective Evolution-
ary Algorithms (MOEAs) has emerged as a good way to handle interpretability
since they allow both complexity and semantic interpretability measures to be
optimized together by also taking into account the accuracy of the model.

4 Conclusions

In this work, we have presented a categorization of the interpretability of fuzzy
systems focused on the framework of linguistic FRBSs. To this end, we have
shown a taxonomy with four quadrants (complexity or semantic interpretability
at the level of RB or fuzzy partitions) as a way of organizing the different mea-
sures or constraints that we can find in the literature to control interpretability
of linguistic FRBSs.

The interpretability of linguistic FRBSs is still an open problem and our aim
by presenting this categorization of the works in the existing literature is to help
researchers in this field to propose the most appropriate measure depending on
the part of the KB in which they want to maintain/improve interpretability.
Additionally, this work represents exhaustive list of papers devoted to assess the
interpretability of linguistic FRBSs.
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8. Alonso, J.M., Magdalena, L., Rodŕıguez, G.G.: Looking for a good fuzzy system
interpretability index: An experimental approach. International Journal of Approx-
imate Reasoning 51, 115–134 (2009)

9. Botta, A., Lazzerini, B., Marcelloni, F., Stefanescu, D.C.: Context adaptation of
fuzzy systems through a multi-objective evolutionary approach based on a novel
interpretability index. Soft Computing 13(5), 437–449 (2009)

10. Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Accuracy improvements
in linguistic fuzzy modeling. Studies in Fuzziness and Soft Computing, vol. 129.
Springer, Heidelberg (2003)

11. Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Interpretability issues
in fuzzy modeling. Studies in Fuzziness and Soft Computing, vol. 128. Springer,
Heidelberg (2003)

12. Casillas, J., Cordón, O., del Jesus, M.J., Herrera, F.: Genetic tuning of fuzzy rule
deep structures preserving interpretability and its interaction with fuzzy rule set
reduction. IEEE Trans. Fuzzy Syst. 13(1), 13–29 (2005)

13. Cheong, F., Lai, R.: Constraining the optimization of a fuzzy logic controller us-
ing an enhanced genetic algorithm. IEEE Trans. Syst., Man, Cybern. - Part B:
Cybernetics 30(1), 31–46 (2000)

14. Cococcioni, M., Ducange, P., Lazzerini, B., Marcelloni, F.: A pareto-based multi-
objective evolutionary approach to the identification of Mamdani fuzzy systems.
Soft Computing 11, 1013–1031 (2007)

15. Cordón, O., Herrera, F., Magdalena, L., Villar, P.: A genetic learning process for
the scaling factors, granularity and contexts of the fuzzy rule-based system data
base. Information Science 136, 85–107 (2001)

16. Cordón, O., Herrera, F., Villar, P.: Generating the knowledge base of a fuzzy rule-
based system by the genetic learning of data base. IEEE Transactions on Fuzzy
Systems 9(4), 667–674 (2001)

17. Espinosa, J., Vandewalle, J.: Constructing fuzzy models with linguistic integrity
from numerical data-AFRELI algorithm. IEEE Trans. Fuzzy Syst. 8(5), 591–600
(2000)



A Double Axis Classification of Interpretability Measures 105

18. Fazendeiro, P., de Oliveira, J.V., Pedrycz, W.: A multiobjective design of a pa-
tient and anaesthetist-friendly neuromuscular blockade controller. IEEE Trans. on
Biomedical Engineering 54(9), 1667–1678 (2007)
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Abstract. The use of WordNet Domains is confined in the present days to Text
Mining field. Moreover, the tagging of WordNet synsets with WordNet Domain
labels is a crisp one. This paper introduces an approach for automatically tagging
both ontologies and their concepts with WordNet domains in a fuzzy fashion, for
topic classification purposes. Our fuzzy WordNet Domains model is presented
as well as our domain disambiguation procedure. Experiments show promising
results and are introduced in this paper as well as a final discussion on envisioned
scenarios for our approach.

1 Introduction

When dealing with short texts ontologies are the only viable solution to extract machine
readable semantics, whereas statistical and other structural approaches are unfeasible if
a massive amount of information is not available.

The number of ontologies available online is facing a swift growth thanks to the
advent of the Semantic Web, Semantic Web Services and Multi Agent Systems era.
Universities, domain experts communities, research groups all endeavour to make their
conceptualisation efforts available online. Ontology Repositories and libraries, general
purpose semantic search engines as well as specific-purpose networks of ontologies
aim at fostering the reuse of widely shared, well formalised and maintained knowledge
representation standards and resources. It is well known that ontologies may formalise
the world knowledge from different granularities and perspectives. Conceptualisations
spread across upper-domains layers, specific-domains descriptions as well as parts of
them, with the purpose of keeping things as simple and well focused as possible.

Projects for providing ontologies with metadata for easy description, maintenance,
storage and retrieval [4] are based on human experts supervision1. Some efforts have
already been made in the direction of annotating ontological content with lexical knowl-
edge (see for example the mapping provided between the SUMO ontology and WordNet
synsets [7]) and of investigating the interplay between lexical semantics and formal con-
ceptualisations as a means to harness linguistic models and powerful reasoning services
coming from both computational linguistics and ontological theories [8].

In this paper we report a preliminary work on automatically tagging ontologies with
WordNet Domains in a fuzzy fashion, in order to determine the linguistic domains of
one ontology and of its concepts. Stemming from an assignment of domain labels to
each concept of an ontology and applying our fuzzy computational model, we were able
to assign membership values to domain labels and propagate it to the whole ontology.

1 http://www.semanticdesktop.org/ontologies/nao/
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The paper is organised as follows: Section 2 introduces WordNet Domains and its
use in the Computational Linguistic field. Section 3 depicts our approach in details
while Section 4 reports the experiments and results of our procedure. A final discussion
on application scenarios in reported in Section 5.

2 Background

WordNet Domains2 is a project developed by the Fondazione Bruno Kessler (FBK),
Trento [5,2]. The project has the goal of better characterising a word meaning within its
use in the language and in texts, hence reducing ambiguity.

The operation of tagging WordNet synsets with domain labels has been conducted
by the FBK team partially by hand (by annotating a subset of synsets) and by automat-
ically extending such labels to related synsets through the WordNet hierarchy, fixing
the automatic procedure with corrections where necessary. The domain labels assigned
to WordNet synsets are those of the Dewey Decimal Classification system3, a standard
largely adopted by library systems.

Gliozzo and Strapparava [1,3] propose to use a Domain Model based on Word-
Net Domains and exploit such model for a Word Sense Disambiguation methodology
named “Domain Driven Disambiguation (DDD)” [6].

2.1 Create the WordNet Domains Ontology

As a first step of our approach we take the WordNet Domains taxonomy4 and encode
it in OWL using the Protégé tool. The WNDO ontology result in 160 domain labels
concepts divided as follows:

– 11 top level concepts which represent the upper layer of domains classification.
They are: applied science, doctrines, factotum, free time, metrology, number, per-
son, pure science, quality, social science, time period;

– 42 mid level concepts that are used to tag synsets representing concepts used at the
more general level of a super domain (e.g. medicine, economy, sport, and so on);

– 107 low level concepts that are subclasses of one of the 42 mid level concepts or
belong to a further level of specialisation and are also used to tag synsets, which
are relative to concepts used in more specialised domains (e.g. psychiatry, banking,
athletics and so on);

The factotum label applies for all those WordNet synsets whose usage in the language
spread over different linguistic domains and hence we exclude it from our domain dis-
ambiguation results (see Sect. 3.3 for details).

2.2 Amend Discrepancies

While comparing results from the computation of all WordNet 3.0 synsets domain la-
bels with the official WordNet taxonomy we have noticed that there are differences

2 http://wndomains.fbk.eu/index.html
3 http://www.oclc.org/dewey/versions/default.htm
4 Available at http://wndomains.fbk.eu/hierarchy.html, Last accessed on 3rd

January 2010.

http://wndomains.fbk.eu/index.html
http://www.oclc.org/dewey/versions/default.htm
http://wndomains.fbk.eu/hierarchy.html
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between them. To avoid inconsistencies we have translated, where possible, those do-
main labels not available in WNDO into the labels available in it (for example the label
psychological features could be easily reconducted to psychology and graphics arts to
the super domain of arts) and where not possible we simply deleted the label itself
(for example, we are not aware of the exact position in the hierarchy of the new label
animal husbandry - is it just under animal label? Or is it at the same level?).

3 Tagging Ontologies with Fuzzy WordNet Domains Labels

3.1 Motivations

WordNet Domains labels are assigned to a WordNet synset according to a crisp ap-
proach. This prevents from capturing the underlying degree of membership of a word
to a domain of discourse, especially in case a word is tagged with more than one do-
main label. WordNet Domains are structured in a taxonomy and membership values of
a word should also reflect its relations to a grouped set of domains under a more general
one. Moreover, a classification model should express the fact that a membership value
can dinamically change as the contexts (e.g. ontologies) in which words appear change.
A fuzzy domain model like the one we propose tries to explicit all of these aspects of
instrinsic vagueness that are characterising the problem at hand.

3.2 A Fuzzy WordNet Domains Model for Ontology Tagging and Classification

A tagging activity consists in associating WordNet domains labels with words in a doc-
ument. This process results in the creation of a list of domains labels for each document
of the form:

Lr = [d1, d2, d2, ..., dn] . (1)

The list may contain duplicate entries, as more words in the document may be tagged
with the same domain label, as exemplified by the repeated d2 entry in Lr.

According to Zadeh’s theory on fuzzy sets [9], in our model we create the fuzzy set
Dr from the list Lr, by avoiding duplicate entries in the list, defined as

Dr = {d1, d2, ..., dn} (2)

with membership function

μDR : Dr #→ [0, 1], ∀di ∈ D, i = 1, ..., n (3)

defined as follows

μDR(di) =
countLr(di)

| Lr | . (4)

The membership value for each di is computed as the ratio between the number of
occurrences of label di in the list Lr and the total number of labels in the whole list Lr.

As a specialisation of the procedure above we define the activity of tagging con-
cepts from an ontology O with the concepts of the ontology WNDO (that represents
the WordNet domain labels in a hierarchical fashion, as depicted in Sect. 2.1) as the



110 A. Locoro

creation of a list LO of domain labels and of the fuzzy set DO obtained as in (2), with
membership function:

μDO : DO #→ [0, 1], ∀dox ∈ LO, x = 1, ..., m (5)

calculated as in (4) over the list LO of domains labels associated with concepts in on-
tology O.
Our tagging procedure includes an inference-assignment step from domain label dox ∈
WNDO assigned to a concept in ontology O to its direct super-class domain label
doxsuper ∈ WNDO, which is also assigned to the concept (see next Section for de-
tails). The list LO will hence contain not only the list of domain labels analogous to the
one resulting from (1), but also as many occurrences of doxsuper as dox ones.

The membership value of doxsuper is then constrained by the following condition
that holds for the membership function of (5):

∀dox � doxsuper :
∑

μDO (dox) ≤ μDO (doxsuper ) . (6)

The results of our tagging procedure allow the fuzzy classification of ontology O at
concept level as well as at ontology level. Moreover, the hierarchical model of domain
labels in the WNDO ontology and the property stated in (6) enables to extract the most
relevant domain according to its level in the hierarchy.

Let conc(WNDO) be the set of concepts representing the domain labels in WNDO,
and let topLevC(WNDO), midLevC(WNDO) and lowLevC(WNDO) be the set of
top level, mid level and bottom level concepts respectively, representing a partition of
conc(WNDO), such that

topLevC(WNDO) ∩ midLevC(WNDO) ∩ lowLevC(WNDO) = ∅ (7)

conc(WNDO) = topLevC(WNDO)∪midLevC(WNDO)∪lowLevC(WNDO) . (8)

In order to extract the most relevant top level domain label d for any ontology O we use
the formula:

winnerTopLevO = maxd∈topLevC(WNDO)(μDO (d)) (9)

whereas to extract the most relevant mid level domain label d for any ontology O we
use the formula:

winnerMidLevO = maxd∈midLevC(WNDO)(μDO (d)) . (10)

To extract the most relevant top and mid level domain labels dcz for any ontology con-
cept cz ∈ O we may use the fuzzy subset of DO that contains all the domain labels
associated with cz , and the following formulas:

winnerTopLevOcz
= maxdcz∈topLevC(WNDO)(μDO (dcz )) (11)

and
winnerMidLevOcz

= maxdcz∈midLevC(WNDO)(μDO (dcz )) . (12)
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3.3 Automatic Domain Disambiguation of Ontologies

For each concept from one ontology we perform the following pre-processing operation:

– tokenise, eliminate stop words and lemmatise the concepts in order to obtain canon-
ical word forms either from composite concepts or derivationally formed ones. To
obtain the lemma (or the set of lemmas if the concept is composite) from one con-
cept we use WordNet 3.0;

– look into “WordNet Domains - WordNet 3.0 synsets” mappings files (WnToWnD)5

and assign to each ontology concept lemma (or the resulting sets of lemmas if the
concept is composite) its domain labels as they result from the mappings file;

– if one lemma does not have any domain labels, we tag it with the domain labels
of its super-concepts, if they exist. Figure 1 shows the inference procedure starting
from the ontology hierarchy and producing a domain label for the sub-class of a
tagged super-class;

Fig. 1. Inferring a domain tag for class Forecast from the super-class Weather

– we do the necessary domain labels translations (see Sect. 2.2);
– we add the super-domain labels of domain labels assigned, looking at the WordNet

Domains ontology hierarchy (through an inference procedure on the whole domain
hierarchy space). Figure 2 exemplifies the procedure for the two concepts Weather
and Forecast;

Fig. 2. Inferring super domain tags for class Forecast from the super-class Weather

5 We recall that the WordNet Domain version we used is 3.1. For conversion from WordNet 2.0
to WordNet 3.0 synsets we use mappings files available at
http://www.lsi.upc.es/˜nlp/tools/mapping.html

http://www.lsi.upc.es/~nlp/tools/mapping.html
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– we instantiate our computational fuzzy model on the whole set of labels assigned as
above and obtain the fuzzy domain tagging for each concept and for each ontology.

– we extract classification results. If the maximum membership value is assigned to
the factotum domain, we pick up the second higher membership value. If we want
to visit the sub-domains and take the best of them with highest membership value
we can again combine our fuzzy WordNet Domains model with WNDO hierarchy
and obtain the most specific winner domains for each ci (and for the whole ontology
respectively).

4 Experiments and Results

We conducted our tests by running the pre-processing procedure for 17 ontologies cod-
ified in OWL and randomly chosen from the Swoogle portal6. It is worth noting that
each class of each ontology turned out to have a label or a super-class with a label cor-
rectly assigned. The total number of classes that missed a domain tag is 71 over the 17
ontologies, namely the 3,7% of the total number of concepts. They were all success-
fully tagged through their super-classes. The number of concepts for each ontologies
goes from a minimum of 19 concepts (the Vertebrate ontology) to a maximum of 349
(MPEG7 ontology).

Table 1 shows, for each ontology, the results of the automatic domain disambiguation
procedure. In particular we report the winner top level domain and its direct subdomains
(mid level), according to the WNDO hierarchy and to our fuzzy computational model
applied for each ontology. If the highest membership value for one ontology results to
be assigned to the factotum label we have considered the second higher membership
value.

A general consideration that holds for the results is that the top level domain labels
correctly reflect the topic description7 of the most part of the ontologies. With very few
exceptions, mid level domain labels were able to better reflect the ontology description
by identifying its more specialistic domains. From our experiments we notice that low
level domains are less meaningful for our classification purpose. Most results show that
mid level domain labels with highest membership value are related to their top level
labels (except for two cases, MPEG7 and Space ontologies, whose mid level labels are
indicated in italic in the table, that are characterised by concepts belonging to disparate
domains and or whose concepts are associated with the factotum domain, respectively).
As a result of our experiments we may state that mid level domain labels of WNDO are
the best candidate to properly classify ontologies in a domain disambiguation task such
as the one we presented.

6 Experiments are conducted on a notebook Toshiba, with Windows 7 64-bit OS, Processor Intel
Core i5 2.27 GHz, 4 GB RAM. The time complexity of the approach has been estimated for
the ontology with the fewest number of concepts (15) as well as for the ontology with the
greatest number of concepts (349) and is of 3 seconds and 7 seconds respectively.

7 Ontologies and their manual topic descriptions are available at
http://www.disi.unige.it/people/LocoroA/
download/wilfontologies/

http://www.disi.unige.it/people/LocoroA/download/wilfontologies/
http://www.disi.unige.it/people/LocoroA/download/wilfontologies/
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Table 1. Domain labels automatically assigned for each ontology with highest membership values

Ontology Automatic Domain Classification
top level domain labels mid level domain labels

Agent social science pedagogy
Bibtex social science publishing
Biosphere pure science biology
Ecology pure science biology
Food applied science alimentation
Geofile social science politics
HL7 RBAC social science commerce
Ka social science pedagogy
MPEG7 social science sport
Restaurant applied science alimentation
Resume social science economy
Space social science earth
Subject doctrines literature
Top-bio pure science chemistry
Travel social science transport
Vacation social science economy
Vertebrate pure science biology

5 Discussion on Scenarios

In this paper we have provided a procedure for the automatic domain disambiguation of
one ontology and its concepts by means of Fuzzy WordNet Domains tagging. Promis-
ing results enable us to draw some application scenarios of our approach in the next
paragraphs.

Ontology Classification and Retrieval. The Semantic Web relies on ontologies that
describe contents and resources from different perspectives and with different granular-
ities. Knowing the domain of ontologies in advance may provide agents and systems, in
charge of storing and retrieving such knowledge, with search and classification hints for
identifying domain-related ontologies hence giving an idea of what exist for a particular
topic of discourse and at which levels of detail it may be provided.

Ontology Matching. During the phase of meaning negotiation, organising and manag-
ing semantic interoperability through schema translation, matching or query expansion
may rely on domain knowledge. For example if two ontologies have the same domain
labels a system may decide that they can be matched or otherwise it may decide that
matching them would result in a useless time consuming effort. The domains assigned
at a concept level may provide an information to be used for disambiguating concepts
in combination with other semantic features in order to refine matching algorithms.

Ontology Analysis for Engineering and Evolution. In some real scenarios ontologies
are used to properly classify users’ contents. In such realms knowledge evolves and
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domain ontologies have to be maintained and constantly fed with unstructured knowl-
edge. A linguistic analysis of the entities chosen to conceptualise a domain may help
in verifying if a linguistic domain balance has been reached by terms used for defining
concepts and hence it may empower the ontology expressivity, from the point of view
of the language use, as well as reducing the ambiguities towards correct and complete
domains description.

Acknowledgments. I would like to thank my colleagues Viviana Mascardi and Stefano
Rovetta for their precious advice on the modelling phase of WordNet domains and for
their careful reading of my work. This work was partly supported by the Italian research
project Iniziativa Software CINI-FinMeccanica.
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Abstract. Different notions of coherence and consistence have been pro-
posed in the literature on fuzzy systems. In this work we focus on the
relationship between some of the approaches developed, on the one hand,
based on residuated lattices and, on the other hand, based on the theory
of bilattices.

1 Introduction

Although inconsistency is essentially considered as an undesirable feature, it
arises naturally when considering databases and, in many cases, seems to be
unavoidable. As a result, some efforts have been made in order to develop some
mechanism to tolerate inconsistent information.

Paraconsistent logics were introduced several decades ago as an inconsistency-
tolerant approach which allows for efficiently handling inconsistent information.
Among the different approaches in the literature, we emphasize the approaches
related to consistence restoring [2,3], fix-point semantics [9,16] and inconsistent
information measuring [11,15].

It is noticeable that there is not a consensus on the notion of inconsistency in
the fuzzy logic framework: one approach, given in [7], considers that a knowledge
base is potentially inconsistent, or incoherent, if there exists a piece of input
data that respects integrity constraints and leads to logical inconsistency when
added to the knowledge base; in [16] the authors consider the problem of revising
extended programs, and base their approach on the coherence theory initially
advocated by Gardenfors for belief revision.

Our contribution in this work is based on two additional approaches, previ-
ously developed separately by the authors, the notion of coherence [14] in resid-
uated logic programming [5] and the notions of consistence on a paraconsistent
extension of logic programming [1].

2 Preliminary Definitions

In order to make this paper self-contained, the notions of residuated-based co-
herence and of bilattice-based consistence are recalled here.
� Partially supported by Spanish Ministry of Science project TIN09-14562-C05-01 and
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2.1 L-Interpretations and Coherence

Definition 1. A residuated lattice with negation is a tuple L = (L,≤, ∗,←, n)
such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
2. (L, ∗, 1) is a commutative monoid with unit element 1.
3. (∗,←) forms an adjoint pair, i.e. z ≤ (x ← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.
4. n is an antitonic mapping n : L → L satisfying n(0) = 1 and n(1) = 0.

The operator n in a residuated lattice with negation L = (L,≤, ∗,←, n), is called
the negation operator of L. Let us define now the syntax of our logic. Let Π be
a set of propositional symbols, then the set of well-formed formulas is defined
inductively as follows:

– every propositional symbol is a well-formed formula (wff).
– if p is a propositional symbol, then ∼ p is a wff.
– if φ and ψ are wffs then ¬φ, φ ∗ ψ and φ ← ψ are wffs.

Note that we use four propositional connectives; ∗ to represent the conjunction,
← to represent the implication, ∼ to represent the strong negation and ¬ to
represent the default negation. The use of these two different negations is highly
motivated by the fuzzy answer set semantics [13].

Definition 2. A literal � is either a propositional symbol p or a propositional
symbol negated by the strong negation ∼ p. The set of literals is denoted by Lit.

Let us describe the semantics for the syntax introduced previously.

Definition 3. Let L = (L,≤, ∗,←, n) be a residuated lattice with negation, an
L-interpretation is a mapping I : Lit → L. The domain of each L-interpretation
can be inductively extended to non-literal wffs as follows:

– if φ and ψ are wff then
• I(¬φ) = n(φ)
• I(φ ∗ ψ) = I(φ) ∗ I(ψ)
• I(φ ← ψ) = I(φ) ← I(ψ)

It is important to point out the semantical difference between strong and default
negation in this logic framework. The semantics is compositional (i.e the truth
value of ¬p depends univocally of the truth value of p) with respect to default
negation but not necessarily with respect to the strong negation (i.e the truth
values of p and ∼ p are, a priori, independent). As a result, it might happen that
the truth-value of two opposite literals, which are assigned directly by one L-
interpretation, represent contradictory information and consider the possibility
of rejecting those cases; for instance, in classical logic programming inconsistent
interpretations are rejected. In [13,14], we introduced the notion of coherence as
a suitable generalization of consistence in the residuated framework.

Definition 4. Let L = (L,≤, ∗,←, n) be a residuated lattice with negation, an
L-interpretation is coherent if I(∼ p) ≤ n(I(p)) holds for every propositional
symbol p ∈ Π.
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It is remarkable that the formula ¬p ← ∼ p has the value 1 as truth-value with
respect to every coherent L-interpretation; since I(p ← q) = 1 if and only if
I(p) ≥ I(q) holds in every residuated lattice [12]. The formula above states a
relationship between the two types of negation, specifically, it states that strong
negation implies default negation.

2.2 Bilattices and Consistence

Other approaches to deal with default negation and consistency are based on
the notion of bilattice, instead of on a residuated lattice with negation as in the
previous section. This is due to the fact that bilattices provide a natural frame-
work in which one can define the notions of consistence and default negation.
For instance, [1] proposed a framework which extends a previous approach to
generalized logic programming to an arbitrary complete bilattice of truth-values,
where belief and doubt are explicitly represented, as well as a precise definition of
important operators found in logic programming. Furthermore, bilattices have
been widely used as useful tools to deal with incomplete and/or inconsistent
information [4,6].

Definition 5. A bilattice is a tuple B = (B,≤t,≤k) where B is a nonempty
set, and (B,≤t) and (B,≤k) are both bounded lattices.

Note that the subscript in the ordering relations occurring in the definition
stands for truth and for knowledge as this will be their underlying meaning.

Example 1. A typical example of bilattice is FOUR, which is commonly used
in many paraconsistent logics. This bilattice is defined over the set {⊥, t, f ,�}
by considering the ordering ≤k and ≤t defined below. These four values are
interpreted frequently as follows: ⊥ by unknown; f by false; t by true; and � by
inconsistent. FOUR is usually represented by the following diagram:

x ≤k y ⇐⇒

⎧⎨⎩
x = ⊥
y = �
x = y

x ≤t y ⇐⇒

⎧⎨⎩x = f
y = t
x = y

Given a bounded lattice (L,≤), two standard orderings can be defined in order
to provide a bilattice structure on L × L:

〈a, b〉 ≤1 〈c, d〉 if and only if a ≤ c and d ≤ b (1)
〈a, b〉 ≤2 〈c, d〉 if and only if a ≤ c and b ≤ d (2)

With the orderings above, two different bilattices can be considered, depending
on the choice of truth and knowledge, which have been used in the literature:
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the bilattice G(L) = (L × L,≤1,≤2) was used by Ginsberg in [10], who proved
that it was able to represent both the standard notion of inference and that
of assumption-based truth maintenance systems; the underlying idea in this
bilattice consists in constructing pairs of the form 〈a, b〉 where a is interpreted
as the degree of truth and b as the degree of falsity. The second bilattice F(L) =
(L×L,≤2,≤1) can be seen in [10] again, as well as in [8] and the idea here is to
represent intervals.

In order to introduce the notions of consistence and default negation in a
bilattice, the operators of negation and conflation will be required.

Definition 6. Let B be a bilattice (B,≤t,≤k)

1. A negation operator over B is a mapping n : B → B such that:
(a) a ≤k b implies n(a) ≤k n(b);
(b) a ≤t b implies n(b) ≤t n(a);
(c) n(n(a)) = a

2. A conflation operator over B is a mapping − : B → B such that:
(a) a ≤k b implies −b ≤k −a;
(b) a ≤t b implies −a ≤t −b;
(c) −− a = a
If − satisfies just items (2a)-(2b) above, it is called a weak-conflation.

Notice that a negation (resp. conflation) operator reverses the truth (resp. knowl-
edge) ordering, but preserves the knowledge (resp. truth) ordering. Once the
notion of bilattice, conflation and negation operator have been introduced, we
can provide the bilattice-based semantics for strong and default negated propo-
sitional symbols.

Definition 7. Let B = (B,≤t,≤k) be a bilattice, a B-interpretation is a map-
ping I : Π → B.

Note that each B-interpretation is defined on the set of propositional symbols Π
while the domain of L-interpretations is the set of literals Lit.

Now, we can give the definition of consistence and default negation in the
framework of bilattices.

Definition 8. Let B = (B,≤t,≤k) be a bilattice

1. The default negation operator is defined as not(x) = −(n(x)), where n and −
are a negation and a weak-conflation operator defined on B.

2. Given a conflation operator −, a B-interpretation I is said to be consistent
if and only if I(p) ≤k −I(p) for every propositional symbol p.

Given a B-interpretation I, the truth-values assigned to propositional symbols
negated by the strong and default negation are defined as follows:

1. I(∼ p) = n(I(p))
2. I(¬p) = not(I(p)) = −n(I(p))

Note that under this semantics the truth-value assigned to both strong and
default negation, is given compositionally in contrast to the residuated semantics.
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3 Default Negation, Consistence and Coherence

We start this section by showing how we can link the residuated-based semantics
(given in Section 2.1) to the bilattice-based semantics (given in Section 2.2).

Let L = (L,≤, ∗,←, n) be a residuated lattice with negation, every
L-interpretation can be considered as a G(L)-interpretation, and vice versa, via
the following (reversible) transformation:

Ω : L-interpretations → G(L)-interpretations (3)
p #→ I(p)

∼ p #→ I(∼ p)

}
⇒ p #→ (I(p), I(∼ p))

Once the relationship between L-interpretations and G(L)-interpretations has
been fixed, the underlying mathematical structures in both frameworks can be
easily related by the following result.

Proposition 1. Let (L,≤, ∗,←, n) be a residuated lattice, then (L×L,≤1, ∗,←
, n) and (L×L,≤2, ∗,←, n) are residuated lattices, where the operators ∗,← and
n of L are extended componentwise to L × L and the orderings ≤1 and ≤2 are
those defined in (1) and (2).

As a result of the proposition above, we have a residuated structure on (L×L,≤i

, ∗,←, n) for i = 1, 2, as well as the bilattice one presented above. The natural
step now would be to compare both semantics for strong and default negated
propositional symbols; however, in principle, the bilattice structure does not
have suitable operators for negation and conflation.

Note that n does not define a negation operator on G(L), since it is anti-
tonic with respect to both orderings; this is not really a problem, for we can
always define in G(L) a “natural” negation operator by n(〈a, b〉) = 〈b, a〉. On the
other hand, given the negation operator n from (L,≤, ∗,←, n), we can define the
following weak-conflation in G(L):

−〈a, b〉 = 〈n(b), n(a)〉

With these definitions we obtain the following interesting result.

Proposition 2. The default negation in G(L), defined as not(x) = −(n(x)),
coincides with the componentwise extension of the negation operator from L.

In order to establish consistence in G(L), a non-weak conflation is needed. Thus,
to ensure that the operator − defined above is actually a conflation, we have to
assume that the negation operator n defined on L is involutive. In that case the
notions of coherence and consistence are equivalent, that is:

Proposition 3. Let (L,≤, ∗,←, n) be a residuated lattice where n is an invo-
lutive operator. Then I a coherent interpretation in L if and only if Ω(I), as
defined by (3), is a consistent interpretation in G(L) with respect to the conflation
operator −.
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Note that, at first sight, the definition of consistence in a G(L)-interpretation
Ω(I) implies two different inequalities in I, namely:

I(∼ p) ≤ n(I(p)) (coherence) (4)
I(p) ≤ n(I(∼ p)) (dual-coherence) (5)

but under the hypothesis of Proposition 3, that is when n is involutive, coher-
ence implies dual-coherence. So, the second inequality imposed by the definition
of consistence in G(L) is unnecessary in that case. The following question con-
cerning the previous proposition arises now: what is the relationship between
coherence and consistence when the negation operator in L is not involutive?

The answer is not straightforward, as there is not a natural conflation in
G(L), in the sense of the negation n, which is independent of the negation in L.
Obviously, defining a conflation on G(L) by using a negation operator different
from n seems inadequate. We have chosen to use a bilattice structure which
admits a natural conflation, namely, F(L). The problem here is that we cannot
identify L-interpretations one-to-one with F(L)-interpretations, as in the case
of G(L). But, by using the negation operator defined on L, we can identify every
element in F(L) with another in G(L) by preserving both orderings. In other
words, we can define the following operator:

Λ : F(L) → G(L)
〈a, b〉 #→ 〈a, n(b)〉

Note that Λ is not necessarily a one-to-one mapping, since n need not be
injective. Note as well that, by using the mapping Ω, we can assign to each F(L)-
interpretation an L-interpretation. Pictorially, we have the following mappings
among F(L)-interpretations, G(L)-interpretations and L-interpretations:

The advantage of using F(L) is that we can define a natural conflation operator
without using the operator n:

−(〈a, b〉) = 〈b, a〉

As a result, the definition of consistence in this structure is the following: a pair
〈a, b〉 is consistent in the bilattice of intervals if and only if a ≤ b (that is, if and
only if 〈a, b〉 actually defines a interval).

The following proposition shows the relationship between coherence in L and
consistence in F(L):



On the Notions of Residuated-Based Coherence 121

Proposition 4.

1. If J is a consistent F(L)-interpretation, then there exists a coherent L-
interpretation I such that Ω(I) = Λ(J).

2. If I is a coherent L-interpretation, then there exists a consistent F(L)-
interpretation J such that Ω(I) ≤k Λ(J).

Proof. (Sketch)

1. Assuming that J(p) = 〈a, b〉, we define I(p) = a and I(∼ p) = n(b).
2. Given I, the F(L)-interpretation J is defined as J(p) = 〈I(p), I(p)〉. �

It is important to recall that inconsistency is linked to the knowledge ordering
in the following sense: let I1 and I2 be two B-interpretations such that I1 ≤k I2

and I2 is consistent, then I1 is consistent as well. Thus, we have the following:

Corollary 1. Assume that we have a conflation in G(L) such that Λ assigns
consistent F(L)-interpretations to consistent G(L)-interpretations, then I is a
coherent L-interpretation if and only if Ω(I) is a consistent G(L)-interpretation.

This corollary allows to further justify why the definition of coherence given
in [13,14] was given in terms of inequality (4) above, and not using inequal-
ity (5) as an alternative. Even when the negation in the residuated lattice is
not involutive, the following example shows that none of the implications of
Proposition 4 hold under the sole hypothesis of inequality of dual-coherence (5).

Example 2. Consider the negation operator n(x) = 1−√
x on [0, 1]. The F([0, 1])-

interpretation defined by J(p) = 〈0.64, 0.64〉 is consistent but does not satisfy
in Proposition 4(1): the only [0, 1]-interpretation I satisfying Ω(I) = Λ(J) is
the [0, 1]-interpretation given by I(p) = 0.64 and I(∼ p) = 0.2, but the dual-
coherence inequality does not hold, since I(p) = 0.64 � 1 −

√
I(∼ p) ≈ 0.55.

For the other item, consider the negation operator n(x) = 1 − x2, again
on [0, 1], and the L-interpretation given by I(p) = 0.75 and I(∼ p) = 0.46. In
order to check that Proposition 4(2) does not hold, it suffices to exhibit an incon-
sistent F(L)-interpretation satisfying Ω(I) ≥k Λ(J), since all the upper bounds
of Λ(J) would be inconsistent as well. Simply define J(p) = 〈0.75, 0.74〉, it is
straightforward to check that J is inconsistent and, furthermore, the inequality
Ω(I) ≥k Λ(J) holds.

4 Conclusions

The relationship between some of the approaches developed, on the one hand,
based of residuated lattices and, on the other hand, based on the theory of bi-
lattices has been investigated. Specifically, we have established links between
the notions of coherence in the residuated-based approach and consistence in
the bilattice-based approaches (those based on Ginsberg’s G(L) and on Fit-
ting’s F(L)), and proved the equivalence of both approaches under certain rea-
sonable conditions.
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3. Barceló, P., Bertossi, L.: Logic programs for querying inconsistent databases. In:
Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 208–222. Springer, Heidelberg
(2002)

4. Cornelis, C., Arieli, O., Deschrijver, G., Kerre, E.E.: Uncertainty modeling by
bilattice-based squares and triangles. IEEE T. Fuzzy Systems 15(2), 161–175 (2007)

5. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Ben-
ferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–
759. Springer, Heidelberg (2001)

6. Deschrijver, G., Arieli, O., Cornelis, C., Kerre, E.E.: A bilattice-based framework
for handling graded truth and imprecision. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 15(1), 13–41 (2007)

7. Dubois, D., Prade, H., Ughetto, L.: Checking the coherence and redundancy of
fuzzy knowledge bases. IEEE T. Fuzzy Systems 5(3), 398–417 (2002)

8. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic
Programming 11, 91–116 (1991)

9. Fitting, M.: Fixpoint semantics for logic programming - a survey. Theoretical Com-
puter Science 278, 25–51 (1999)

10. Ginsberg, M.: Multivalued logics: A uniform approach to inference in artificial
intelligence. Computational Intelligence 4, 265–316 (1988)

11. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of In-
telligent Information Systems 27(2), 159–184 (2006)
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Abstract. In this paper, we investigate on-line fuzzy modeling for pre-
dicting the prices of residential premises using the concept of evolving
fuzzy models. These combine the aspects of incrementally updating the
parameters and expanding the inner structure on demand with the con-
cepts of uncertainty modeling in a possibilistic and linguistic manner (via
fuzzy sets and fuzzy rule bases). The FLEXFIS and eTS approaches are
evolving fuzzy models used to compare with an expert-based property
valuating method as well as with a classic genetic fuzzy system. We use
a real-world dataset taken from a cadastral system for that comparison.

1 Introduction

Nowadays, the professional real estate appraisers are more and more supported
by computer systems called Automated Valuation Models (AVM) and Computer
Assisted Mass Appraisal (CAMA), which incorporate statistical multiple regres-
sion models [20], neural networks [21], and the combination of soft computing
and spatial analysis methods using data provided by geographic information
systems (GIS) [8]. Other intelligent methods have been also developed to as-
sist professional valuers including: case-based reasoning [4], rough set theory [6],
and hybrid approaches [13]. However, the need to provide meaningful and in-
terpretable models resulted in the proposals of fuzzy and neuro-fuzzy systems
[10,11] as alternative solutions. The application of evolving fuzzy models could
be especially useful because each day one cadastral information centre in a big
city register dozens of real estate sales transactions which are the base of sales
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comparison valuation methods, the most commonly used by the appraisers. If
all the data would be ordered by the transaction date, they would constitute
some form of a data stream which in turn could reflect the changes of real estate
market in the course of time. This motivated us also to use evolving models,
which are able to process streams of data and to learn, update, expand their
memory on-line on demand. So far we have studied genetic and evolving fuzzy
real estate appraisal models [15,16]. In this paper we make one step forward, we
compare two evolving fuzzy techniques FLEXFIS and eTS with one of the most
common state-of-the-art valuation approaches of professional appraisers based
on sliding windows, nearest neighbors elicitation and averaging of past prices to
estimate a new price. As the second reference method we employed also a classic
genetic fuzzy rule-based system trained in off-line mode.

We conduct our experiments by using data-driven fuzzy rule-based systems
(FRBS) as a specific model architecture to build reliable models in the field of
residential premises. Data-driven fuzzy systems have are characterized by three
important features. 1.) They are able of approximating any real continuous func-
tion on a compact set with an arbitrary accuracy [5,14]. 2.) FRBSs have the
capability of knowledge extraction and representation when modeling complex
systems in a way that they could be understood by a human being called Inter-
pretability [1]. 3.) Data-driven fuzzy systems can be permanently updated on
demand based on new incoming samples as is the case for on-line measurements
or data streams. Technologies for providing such updates with high performance
(both in computational times and predictive accuracy) are called evolving fuzzy
systems approaches or simply evolving fuzzy systems [19].

In this work, we exploit two evolving fuzzy systems approaches dealing with in-
cremental on-line modeling demands. The first approach, the so-called FLEXFIS
method [20] incrementally evolves clusters (associated with rules) and performs a
recursive adaptation of consequent parameters by using local learning approach.
The second approach, the so-called eTS approach [2] is also an incremental evolv-
ing approach based on recursive potential estimation in order to extract the most
dense regions in the feature space as cluster centers (rule representatives). In [3],
both are compared in terms of methodological and empirical aspects.

2 Fuzzy Modeling in On-line Mode with Evolving Fuzzy
Systems

In the following, we present FLEXFIS and eTS approaches as the two most
widely used EFS approaches, which are based on the so-called Takagi-Sugeno
(TS) fuzzy systems [22] (in a specific form called fuzzy basis function networks
[23]), in order to cope with the dynamics of (on-line) streaming data over time
and applied to the prediction of residential premises in the evaluation section.

2.1 The FLEXFIS Approach

The FLEXFIS approach, short for FLEXible Fuzzy Inference Systems was first
introduced in [19] and significantly extended version in [17], and designed for
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the purpose of incremental learning of TS fuzzy systems from data streams in
a sample-wise single-pass manner. This means that always one sample can be
loaded, sent into the FLEXFIS learning engine where the model is updated and
immediately discarded, afterwards. In this sense, the method needs low resources
1.) with respect to computational complexity and 2.) with respect to virtual
memory and hence is feasible for on-line modeling applications, where models
should be kept-up-to-date as early as possible in order to account for new operat-
ing conditions, systems states etc. and to prevent extrapolation situations when
performing predictions on new samples. The basic steps in FLEXFIS approach
can be summarized as follows:

1. Rule evolution and updating of antecedent parameters in the cluster space
with the help of an incremental evolving clustering variant.

2. Recursive adaptation of consequent parameters exploiting the local learning
approach (parameters are updated for each rule separately).

3. Balancing out a non-optimal situation by adding a correction vector to the
vector of consequent parameters.

4. In the extended version: Detecting redundant rules with the help of specific
overlap measures (two variants: one-dimensional intersection points of fuzzy
sets and inclusion metric) and performing on-line rule merging/pruning after
each incremental update cycle.

To get a deep insight of FLEXFIS we recommend the reader to look into [17]
and for pruning rules on demand into [18].

2.2 The eTS Approach

The basic difference to the FLEXFIS approach lies in the way in which the an-
tecedent parameters in the fuzzy sets are modified respectively new rules are
added and evolved during the on-line mode based on new incoming samples.
In doing so, a product-space clustering approach is also exploited, using a re-
cursive calculation of potentials of data samples respectively cluster prototypes.
Subtractive clustering is extended to the incremental on-line case (called eClus-
tering) by associating the first data sample with the center of the first cluster
and calculating the potential P of new incoming data samples recursively. Those
data samples having higher potentials than all already existing clusters are can-
didates for new cluster centers. Two different situations can be distinguished: 1.)
the new sample having highest potential is close to an existing cluster, then the
existing cluster center is replaced to the new data sample; 2.) the new sample
having highest potential is far away from all existing clusters, then a new rule is
born with center coordinates equal to the coordinates of the new sample (rule
evolution step).

The consequent parameters in TS fuzzy models are either estimated by recur-
sive fuzzily weighted least squares (local learning) or recursive least squares with
integration of dynamic merging of the inverse Hessian matrix (global learning).
To get a deep insight of eTS we recommend the reader to look into [2].
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3 Experimental Setup

The main goal of experiment was to compare evolving data driven fuzzy modeling
techniques, i.e. conventional FLEXFIS(c), FLEXFIS(p) with pruning, and eTS
with genetic fuzzy systems. The techniques were applied to real-world regression
problem of predicting the prices of residential premises based on historical data
of sales transactions obtained from a cadastral system and registry of real estate
transactions. Moreover, we aimed to compare the soft computing algorithms with
a property valuating method employed by professional appraisers in reality.

Real-world dataset used in experiments was drawn from the registry of real
estate transactions accomplished in one Polish big city within 11 years from 1998
to 2008. After cleansing, the final dataset selected by the experts counted 5213
records. Five following features were pointed out as the main drivers of premises
prices: usable area of premises, age of a building, number of rooms in a flat,
number of storeys in a building, and distance from the city centre. As target
values total prices of premises were used.

Table 1. Training/test data portions used for validation of evolved fuzzy models

Dataset Training portions # train. Test # test
01 199802-200002 1008 200101 228
02 199901-200101 1034 200102 235
03 199902-200102 1056 200201 267
04 200001-200201 1059 200202 263
05 200002-200202 1160 200301 267
06 200101-200301 1260 200302 386
07 200102-200302 1418 200401 278
08 200201-200401 1461 200402 268
09 200202-200402 1462 200501 244
10 200301-200501 1443 200502 336
11 200302-200502 1512 200601 300
12 200401-200601 1426 200602 377
13 200402-200602 1525 200701 289
14 200501-200701 1546 200702 286
15 200502-200702 1588 200801 181

The comparative experiments were based on a streaming data context which
was simulated by the data of consecutive half-years joined together as they were
recorded. This means that in the incremental learning context the same order
of the data samples is supported as the temporal order in which the samples
were stored onto hard-disc, yielding a one-to-one simulation of the real on-line
case. In order to achieve a data stream with a significant length, we joined five
consecutive half-years to form one training data set (e.g. half-years 199802 to
200002 to form a data set of 1008 samples) and used the subsequent half-year
(e.g. half-year 200101 with 228 samples) as separate test data set in order to
verify the predictive power of the models. Training and test data portions used for
on-line testing of evolved fuzzy models are shown in Table 1. The normalization
of data was accomplished using the min-max approach, as performance functions
the root mean square error (RMSE) was applied.
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To each actual transactional price, we had the corresponding value of premises
estimated by the experts at our disposal. In this sense, we are able to conduct a
performance comparison among three evolving fuzzy modeling and the expert-
based estimations, which can be seen as the main focus in this paper.

In order to compare evolutionary machine learning algorithms with techniques
applied to property valuation we asked experts to evaluate premises using their
pairwise comparison method to historical data of sales/purchase transactions
recorded in a cadastral system. The expert’s method is based on sliding windows,
nearest neighbors elicitation and averaging of past prices to estimate a new price.
The experts worked out a computer program which simulated their routine work
and was able to estimate the experts’ prices of a great number of premises
automatically.

Moreover, we wanted to obtain a clue how good evolving fuzzy modeling
approaches perform compared with alternative data-driven modeling techniques
with similar interpretation capabilities, but operating in the off-line mode. There-
fore, we also applied genetic fuzzy systems (GFS) [12] in two experimental proce-
dures. The first provided the apparent error that is GFS was learned and tested
employing the whole half-year dataset, it was denoted as GFS(a). The second, in
turn, used the random splits of each half-year dataset into training and test sets
in the proportion 70% to 30%. In order to avoid the effect of lucky or unfortunate
division, all learning/testing cycles were repeated 50 times on different holdout
splits and the final outcome was averaged. This procedure was named GFS(h).
Both GFSs were Mamdani type with the same inputs and outputs as evolving
techniques, 3 triangular membership functions in each input and 5 in the out-
put. The other main parameters were as follows: number of rules, population
size, and number of generations were equal to 15, 50, and 100, respectively.

For verifying statistical significance of differences among all modeling meth-
ods and the expert-based technique, we conducted the pairwise non-parametric
Wilcoxon test. We applied also advanced non-parametric approaches which con-
trol the error propagation of making multiple comparisons. They included the
rank-based non-parametric Friedman test and its Iman-Davenport correction fol-
lowed by Nemenyi’s, Holm’s, Shaffer’s, and Bergmann-Hommel’s post-hoc pro-
cedures which are recommended for n × n comparisons [7,9].

4 Results of Experiment

The performance of compared techniques is shown in Table 2. Comparing FLEX-
FIS(c) against eTS the former outperforms the latter in 5 out of 15 cases (+ 5
ties), whereas comparing FLEXFIS(p) against eTS the latter outperforms the
former in 7 out of 15 cases (+5 ties) in terms of accuracy. Considering a number
of rules, both FLEXFIS variants obtained lower value than eTS. Conventional
FLEXFIS did so in 9 out of 15 times (+1 tie) and FLEXFIS with pruning did
so in 9 out of 15 times (+2 ties). The Expert and GFS methods provided ap-
parently greater predictive errors. Execution times of individual algorithms are
not presented because they were incomparable: evolving fuzzy completed their
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Table 2. Performance of tested techniques by predicting the premises prices (#r stands
for the number of rules)

Dataset Flexfis(c) Flexfis(p) eTS Expert GFS(a) GFS(h)
RMSE #r RMSE #r RMSE #r RMSE RMSE RMSE

01 0.0332 12 0.0332 12 0.0300 6 0.1485 0.0725 0.0966
02 0.0224 2 0.0224 2 0.0283 8 0.1010 0.0948 0.1136
03 0.0265 1 0.0265 1 0.0265 3 0.1019 0.0969 0.1148
04 0.0265 1 0.0265 1 0.0265 6 0.1504 0.0681 0.0871
05 0.0245 3 0.0245 2 0.0245 4 0.0936 0.0948 0.1118
06 0.0300 6 0.0300 4 0.0300 8 0.0933 0.0936 0.0937
07 0.0436 4 0.0500 4 0.0447 8 0.1118 0.1003 0.1210
08 0.0374 3 0.0374 2 0.0374 4 0.1128 0.1018 0.1166
09 0.0490 3 0.0490 3 0.0374 4 0.1270 0.0951 0.1091
10 0.0400 2 0.0400 2 0.0387 5 0.1053 0.0966 0.1093
11 0.0794 9 0.0800 7 0.0819 4 0.1012 0.1083 0.1222
12 0.1030 8 0.1010 5 0.1049 5 0.1043 0.1017 0.1114
13 0.1300 4 0.1425 4 0.1327 4 0.0858 0.0674 0.0853
14 0.1170 8 0.1292 6 0.1114 5 0.0968 0.0822 0.1008
15 0.1000 16 0.0911 7 0.0693 6 0.1458 0.0824 0.1072

Table 3. Adjusted p-values for n×n comparisons of fuzzy models

Alg vs Alg pWilcox pNeme pHolm pShaf pBerg
eTS vs GFS(h) 0.0026 0.0004 0.0004 0.0004 0.0004

FLEXFIS(c) vs GFS(h) 0.0031 0.0006 0.0006 0.0004 0.0004
FLEXFIS(p) vs GFS(h) 0.0031 0.0021 0.0018 0.0014 0.0010

eTS vs Expert 0.0026 0.0136 0.0109 0.0091 0.0091
FLEXFIS(c) vs Expert 0.0022 0.0192 0.0141 0.0128 0.0091
FLEXFIS(p) vs Expert 0.0031 0.0512 0.0341 0.0341 0.0137

GFS(a) vs GFS(h) 0.0007 0.1675 0.1005 0.0782 0.0670
Expert vs GFS(a) 0.0038 1.0000 0.7769 0.6798 0.3884
eTS vs GFS(a) 0.0146 1.0000 0.7769 0.6798 0.6798

FLEXFIS(c) vs GFS(a) 0.0146 1.0000 0.7769 0.7105 0.6798
FLEXFIS(p) vs GFS(a) 0.0409 1.0000 1.0000 0.8182 0.6798

Expert vs GFS(h) 0.7333 1.0000 1.0000 1.0000 1.0000
FLEXFIS(p) vs eTS 0.1141 1.0000 1.0000 1.0000 1.0000

FLEXFIS(c) vs FLEXFIS(p) 0.3454 1.0000 1.0000 1.0000 1.0000
FLEXFIS(c) vs eTS 0.5076 1.0000 1.0000 1.0000 1.0000

calculations within several seconds whereas the genetic fuzzy systems needed a
few hours to produce results. For Friedman and Iman-Davenport tests, the cal-
culated values of χ2 and F statistics were 31.95 and 10.39, respectively, whereas
the critical values at α = 0.05 are χ2(5) = 12.83 and F (5, 140) = 2.28, so that
the null-hypotheses were rejected showing that there were statistically significant
differences among modeling methods in respect of their predictive accuracy. Av-
erage ranks of individual methods placed algorithms in the following order: eTS
(2.40), FLEXFIS(c) (2.47), FLEXFIS(p) (2.67), GFS(a) (3.53), Expert (4.67),
GFS(h) (5.27), where the lower rank value the better model. It could be seen
there are minor differences among all evolving fuzzy algorithms and these take
clearly lower positions than genetic fuzzy systems and the Expert’s method. In
Table 3 p-values for Wilcoxon test and adjusted p-values for Nemenyi, Holm,
Shaffer, and Bergmann-Hommel tests are placed for n × n comparisons for all
possible 15 pairs of modeling methods. The p-values below 0.05 indicate that
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respective algorithms differ significantly in prediction errors (italic font). Ac-
cording to the Wilcoxon tests all three evolving fuzzy techniques revealed sig-
nificantly better performance than others. In any case statistically significant
differences among eTS, FLEXFIS(c), and FLEXFIS(p) methods could not be
observed. However, the post-hoc procedures showed that evolving fuzzy model-
ing techniques provided significantly better price estimations than GFS(h) and
Expert’s methods.

5 Conclusions and Future Work

In this paper, we investigated the usage of incremental data-driven fuzzy mod-
elling techniques (FLEXFIS and eTS) for the purpose to estimate the future
prices of residential premises based on the past recordings. A comprehensive
data set including over 5200 samples and recorded during the time span 1998
to 2008 served as basis for benchmarking FLEXFIS and eTS. Our investigation
showed that evolving fuzzy methods produce models with prediction accuracy
greater than the experts’ valuation method routinely employed in reality and a
classic genetic fuzzy rule-based system. Moreover, they allow for linguistic inter-
pretation of the modeled dependencies as could be verified when using FLEXFIS
in connection with rule merging/pruning techniques. Thus, we can conclude that
evolving fuzzy modeling methods are a reliable and powerful alternative for val-
uation of residential premises.
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15. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary
optimization methods of tsk fuzzy model for real estate appraisal. Int. J. Hybrid
Intell. Syst. 5(3), 111–128 (2008)
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Abstract. In the realm of fuzzy systems, interpretability is really ap-
preciated in most applications, but it becomes essential in those cases
in which an intensive human-machine interaction is necessary. Accu-
racy and interpretability are often conflicting goals, thus we used multi-
objective fuzzy modeling strategies to look for a good trade-off between
them. For assessing interpretability, two different interpretability indexes
have been taken into account: Average Fired Rules (AFR), which esti-
mates how simple the comprehension of a specific rule base is, and Logical
View Index (LVI), which estimates how much a rule base satisfies logical
properties. With the aim of finding possible relationships between AFR
and LVI, they have been used in two independent experimental sessions
against the classification error. Experimental results have shown that the
AFR minimization implies the LVI minimization, while the opposite is
not verified.

Keywords: interpretability, fuzzy modeling, multi-objective evolution-
ary algorithm, interpretability indexes.

1 Introduction

In the realm of fuzzy systems, interpretability is well-appreciated in most ap-
plications, but it becomes essential in those cases in which an intensive human-
machine interaction is necessary. For example, decision support systems in me-
dicine must be interpretable, indeed each suggestion provided by the system
must be comprehensible for both physicians and patients with the aim of being
accepted.

Recently, a complete taxonomy on the existing interpretability measures has
been proposed in [5]. In a nutshell, authors identify four groups of indexes by
combining two different criteria, i.e. the nature of the interpretability index (com-
plexity vs. semantic) and the elements of the fuzzy knowledge base taken into
account (partitions vs. rule base).

The four groups are: (1) Complexity at rule base level; (2) complexity at
partition level; (3) semantic interpretability at rule base level; and (4) seman-
tic interpretability at partition level. Most well-known existing interpretability
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indexes correspond to groups (1) and (2) as they only focus on complexity, e.g.
counting the number of membership functions, rules, etc. In group (4), indexes
usually measure the degree of fulfillment of semantic constraints. Few indexes
proposed in literature belong to group (3) and are mainly devoted to evaluat-
ing the rule base consistency. Moreover, the effectiveness of such indexes is still
not proved in experimental trials. As far as we know, this is the first empirical
study aimed to evaluate the goodness of existent indexes for assessing semantic
interpretability at rule base level, following a comparative approach.

Accuracy and interpretability are often conflicting goals, thus looking for a
good trade-off between them is one of the most difficult and challenging tasks
in fuzzy system modeling. The use of multi-objective fuzzy modeling strategies
perfectly fits with this problem and it has become a very fruitful research field [7].

This paper is focused on analyzing two different interpretability indexes be-
longing to group (3): Average Fired Rules (AFR), which estimates how simple
(or difficult) the comprehension of a specific rule base is by counting the mean
number of rules fired at the same time [2] and Logical View Index (LVI), which
estimates how much a rule base satisfies logical properties [8]. The objective of
this analysis is to evaluate possible relationships between the two indexes. If the
two indexes are unrelated then they are both required for assessing the inter-
pretability of a fuzzy system. The underlying idea is to exploit a Multi-Objective
Evolutionary Algorithm (MOEA) for producing several rule bases with different
accuracy-interpretability trade-offs. Integration of Multi-Objective Evolutionary
Algorithms and Fuzzy Systems is a recent and growing research area [1,7]. We
restrict our study on fuzzy rule-based classifiers (FRBCs) since current imple-
mentation of LVI only can be applied to these models.

Our contribution is organized as follows. Section 2 presents both AFR and
LVI. Section 3 introduces the proposed evolutionary framework. Section 4 sum-
marizes the experiments carried out along with the achieved results. Finally,
some conclusions and future works are sketched in Section 5.

2 Indexes for Assessing Semantic Interpretability

Semantic interpretability assessment estimates how much the user is able to
understand the knowledge embedded into a system. Considering fuzzy systems,
it is known that the most effective way to express and communicate knowledge
is by means of composition of linguistic terms, i.e. fuzzy rules. Hence, the rule
base can be considered as the main communication interface to users. In this
section we consider two indexes for evaluating semantic interpretability at rule
base level.

2.1 Average Fired Rules

Average Fired Rules (AFR) is an index for estimating how difficult (or easy) the
comprehension of a rule base could be by counting the mean value of rules fired
at the same time [2].
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The evaluation is made as follows: for each sample in the dataset, the in-
ference system is used for carrying out the strength of each rule. Rules with
strength greater than a threshold “delta” (0.1) are considered as “fired”. The
mean number of “fired” rules is finally computed.

When AFR is small on the average the number of fired rules is small. As a
consequence, the rule base provides for specific knowledge on each sample, hence
the user understanding of the inferred result is facilitated. On the other hand,
a high AFR indicates that a high number of rules is required for inferring the
output for a given input. This makes difficult for the user to understand the
system behavior from a local point of view.

2.2 Logical View Index

A new technique for semantic interpretability evaluation, called Logical View
(LV), has been recently introduced in [8]. LV identifies two different semantics
associated to a FRBC: explicit semantics, which is defined by fuzzy sets and op-
erators used in the fuzzy system, and implicit semantics, which is the knowledge
gathered by the user in his/her mind while reading and interpreting the rule
base.

Interpretability evaluation is made by comparing explicit and implicit seman-
tics through the cointesion concept. In few words, both implicit and explicit
semantics are cointensive if they almost refer to the same entities. Since implicit
semantics is encoded into the user’s mind, LV is based on logical properties,
which are assumed to hold for user’s knowledge. The general approach for LV
evaluation is to apply truth-preserving operators, and to assess the eventual
change in classification ability.

To sum up, the LV approach for interpretability assessment is composed of
the following steps: the rule base is transformed into several truth tables with-
out any change of semantics, then the truth tables are minimized by applying
truth-preserving operators. The reduced truth tables are then transformed into
propositions constituting a new rule base, which is compared with the original
one on the basis of their classification performance. If they do not differ too
much, we recognize that the logical view of the original FRBC is in agreement
with the explicit semantics exhibited by the fuzzy rules, so the cointension with
the user’s knowledge is verified and the FRBC can be deemed as interpretable.
On the other hand, if the two rule bases are characterized by notably differ-
ent classification behavior, then the logical view of the FRBC is not compatible
with the explicit semantics of fuzzy rules, therefore the knowledge base is not
cointensive with user’s knowledge and it can be deemed as not interpretable.

3 Evolutionary Framework

This section describes thoroughly all the components of the proposed evolution-
ary framework. The starting point is the HILK (Highly Interpretable Linguistic
Knowledge) fuzzy modeling methodology [3] which focuses on making easier the
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design process of interpretable FRBCs. As described in [2], embedding HILK
into a multi-objective evolutionary algorithm yields a set of non-dominate FR-
BCs which are exhibiting a wide range of interpretability-accuracy trade-offs.

Each chromosome consists of a fixed-length string with a number of genes
equal to the number of input variables. Each gene represents the number of
linguistic terms defined for the related input. It can take integer values between
one and nine, where one means Don’t Care, i.e., the input is filtered and not
taken into account during the rule base generation.

Given a chromosome, HILK is able to generate a whole FRBC in three main
steps: (1) partition design, (2) rule base learning, and (3) knowledge base im-
provement. Uniformly distributed strong fuzzy partitions (SFPs) with fuzzy sets
of triangular shape are generated considering the number of terms codified by
each gene. Such partitions, by definition, satisfy most properties demanded to
be interpretable (distinguishability, coverage, etc).

Then, the Fast Prototyping Algorithm (FPA) [6] is run to generate a set of
linguistic rules, taking as inputs both the previously defined fuzzy partitions and
the training data set. Firstly, a grid with all possible combinations of input labels
is generated, then, outputs are defined removing redundancies and inconsisten-
cies in an iterative process. The last step consists of reducing the set of rules by
means of the logical minimization process carried out as part of the semantic
cointension analysis.

At the end, the generated FRBCs are made up of linguistic variables and
linguistic rules with the usual fuzzy classification rule structure. For crisp classi-
fication, the class attached to the rule with highest activation strength is consid-
ered. In this work we consider Mamdani FRBCs with “min” function for t-norm,
“max” for s-norm and “maximum criteria” for defuzzification.

3.1 Multi-objective Optimization

With the aim of yielding a high quality Pareto set of solutions characterized by
good interpretability-accuracy trade-offs, we have chosen the well-known NSGA-
II algorithm [4], which represents a generational approach with a multi-objective
elitist replacement strategy. Among the possible options, we have chosen a two-
point crossover and Thrift mutation.

For both crossover and mutation operations we check that resultant chromo-
somes have always at least one gene with value greater than one, because at
least one input partition must be considered for generating rules.

Our goal is minimizing the following three indexes:

1. Error. We minimize the rate of classification error (ERR) which is computed
as the percentage of examples that are wrongly classified:

ERR =
∑#DS

i=1 (1 − χ(INFRB(DSi), Ci))
#DS

(1)

where #DS is the cardinality of the dataset, DSi is the i-th sample, Ci is the
observed output value for DSi, χ(a, b) returns one if a = b, zero otherwise.
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INFRB(DSi) represents the inferred class for the sample DSi and the rule
base RB.

2. Average Fired Rules. We minimize AFR which is measured as follows:

AFR =
∑#DS

i=1 FRRB(DSi)
#DS − #NOFR

(2)

where FRRB(DSi) is the number of fired rules of the rule base RB for
the sample DSi, and #NOFR is the number of samples DSi such that
FRRB(DSi) = 0.

3. Logical View Index. We minimize LVI which is computed as follows:

LV I = 1 −
∑#DS

i=1 χ(INFBM (DSi), INFAM (DSi))
#DS

(3)

where BM and AM represents the rule base before and after logical mini-
mization. Hence, we are counting the percentage of cases in which both rule
bases are exhibiting a different classification behavior, i.e. they are inferring
different output classes (no matter if they are inferring the right class or
not).

4 Experimental Analysis

The proposed evolutionary framework has been used for setting up two indepen-
dent experimental sessions with two objectives: ERR vs. AFR, ERR vs. LVI. For
each experiment, we have run NSGA-II 1 with a population of 50 individuals
and a stopping condition of 17,000 evaluations. Crossover probability was set to
0.6 while mutation probability was set to 0.1. Notice that, the latter has been
set to 0.01 when a gene takes the value one because we want to maximize the
number of Don’t Care conditions with the aim of reducing the number of inputs,
and as a side effect, the size of the generated rule bases. Notice that, maximizing
DC is likely to increase AFR.

Our experiments deal with the well-known PIMA benchmark classification
problem whose data set is freely available at the KEEL2 machine-learning repos-
itory. It contains 768 instances determining if a subject shows signs of diabetes
according to the criteria of World Health Organization. Eight numerical input
variables have been considered. The output class determines if the diabetes test
is negative or positive.

One evaluation means that a FRBC is built for a chromosome and then eval-
uated according to all defined objectives. FRBC generation is made as described
in the previous section using the free software tool GUAJE3. First, SFPs are de-
fined for all inputs. Then, rule generation is made using FPA. Afterwards, logical
1 We used the free software jMetal (Metaheuristic Algorithms in Java)

[http://jmetal.sourceforge.net/].
2 A free software tool available online at [http://sci2s.ugr.es/keel/].
3 A free software tool available at [http://www.softcomputing.es/guaje].
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Table 1. Experimental Results

ERR vs. AFR ERR vs. LVI
Mean SD Mean SD

train

ERR (min range) 0.191 0.006 0.195 0.006
ERR (max range) 0.261 0.043 0.237 0.025
AFR (min range) 7.8 3.8 28.6 14.8
AFR (max range) 44.9 15.4 94.9 21.7
LVI (min range) 0.011 0.010 0.001 0.001
LVI (max range) 0.040 0.012 0.021 0.012

test

ERR (min range) 0.233 0.033 0.240 0.043
ERR (max range) 0.348 0.046 0.333 0.040
AFR (min range) 5.1 2.5 28.3 15.2
AFR (max range) 21.3 6.2 94.8 24.3
LVI (min range) 0.013 0.017 0.001 0.002
LVI (max range) 0.072 0.027 0.038 0.032

Number of solutions 12.7 4.4 7.0 2.0

Execution time (min.) 64.3 13.5 71.9 15.7
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Fig. 1. Relation between AFR and LVI in ERR vs. AFR

minimization is carried out with ESPRESSO4. As evaluation methodology we
have selected 10-fold cross-validation, executed three times (3x10CV).

Experimental results are shown in table 1. They were carried out by an Intel
Xeon E5420 (2.5GHz, four cores) with 8GB of RAM and two hard disks in RAID
1. For each objective the minimum (min range) and the maximum (max range)
values have been considered for estimating the objective range. As previously
mentioned, we performed a 3x10CV producing 30 Pareto fronts, so mean and
standard deviation (SD) values have been provided. For each session, the results
for all the three indexes are reported. If an index is not included in a session
(i.e. it is not minimized), its values have been computed using the solutions in
the Pareto fronts.

In comparing the two experimental sessions, we found quite similar error
(ERR) values, both on train and test set. It should be noticed that in ERR
vs. AFR a larger number of solutions is found in a shorter time.
4 Available at [http://www.cs.columbia.edu/˜cs4861/s07-sis/]
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Fig. 2. Relation between AFR and LVI in ERR vs. LVI

Concerning the comparison between AFR and LVI, which is the goal of this
work, we found that for all the solutions in the Pareto fronts of the session ERR
vs. AFR, LVI values appear to be similar to LVI values in ERR vs. LVI. Hence,
it appears that the AFR minimization implies somehow the LVI minimization.
On the other hand, for all the solutions in the Pareto fronts of the session ERR
vs. LVI, AFR values appear to be large compared to the AFR values in ERR
vs. AFR. In this case, minimizing LVI does not imply AFR minimization.

Since this relationship has been observed only on few KBs (solutions in the
Pareto fronts), and with the aim of providing more evidence, we computed the
three indexes on all the KBs produced through MOEA. In this way, it is possible
to compare all the generated solutions with those that are not dominated.

In fig. 1 (a) (ERR vs. AFR) it is shown that all the KBs have wide ranged LVI
values, while in fig. 1 (b) the Pareto fronts solutions have remarkable smaller
LVI values. As a consequence, the relation holds, i.e. AFR minimization implies
LVI minimization. Similarly, figure 2 (ERR vs. LVI) displays that the gener-
ated KBs and those in the Pareto fronts share very similar AFR ranges. It is
immediate to notice that LVI minimization does not imply AFR minimization.

In our opinion, the empirical relationship we found between AFR and LVI can
be partially explained by observing that KBs with small AFR are characterized
by quite specialized rules, which are therefore activated only in very limited
conditions. This makes logical minimization very limited, thus reducing the LVI
value. On the other hand, the minimization of LVI does not depend on the degree
of specificity of rules in a KB, hence AFR values are not minimized consequently.

From the point of view of designing highly interpretable rule bases, AFR
objective should be used because results have shown a consequent LVI reduc-
tion surrounded by shorter execution time, and a larger set of non-dominated
solutions.

5 Conclusions

In this work, an empirical study on interpretability indexes through multi-
objective evolutionary algorithms has been carried out. A relation between two
interpretability indexes, namely AFR and LVI, has been observed. We found
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that the AFR minimization implies the LVI minimization, while the opposite is
not verified. In our opinion, it could depend on the intrinsic characteristics of
the rule bases which have small values of AFR.

This relation should be verified by increasing the number of datasets used in
the experimental sessions. As a future work, other interpretability indexes could
be taken into account for finding other possible hidden relations.

From the designing perspective, we suggest to adopt the AFR objective in a
in a two-objective evolutionary algorithm (ERR vs. AFR) because experimental
results have shown that it implies the LVI reduction. Moreover, AFR appears
to be less expensive than LVI in terms of computational time, providing at the
same time a larger set of non-dominated solutions.
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ernment (CICYT) under project TIN2008-06890-C02-01.
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1. Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F.: A multiobjective
evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-
rule-based systems. Trans. Fuz. Sys. 17, 1106–1122 (2009),
http://dx.doi.org/10.1109/TFUZZ.2009.2023113

2. Alonso, J.M., Magdalena, L., Cordón, O.: Embedding hilk in a three-objective evo-
lutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based
classifiers. In: Fourth Int. Workshop on Genetic and Evolutionary Fuzzy Systems
(GEFS), pp. 15–20 (2010)

3. Alonso, J.M., Magdalena, L., Guillaume, S.: HILK: A new methodology for designing
highly interpretable linguistic knowledge bases using the fuzzy logic formalism. Int.
Journal of Intelligent Systems 23(7), 761–794 (2008)

4. Deb, K., Pratap, A., Agarwal, S., Meyarevian, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–
197 (2002)
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tions Hermès, Paris (1999)

7. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects.
Evolutionary Intelligence 1, 27–46 (2008),
http://dx.doi.org/10.1007/s12065-007-0001-5, 10.1007/s12065-007-0001-5

8. Mencar, C., Castiello, C., Cannone, R., Fanelli, A.: Interpretability assessment of
fuzzy knowledge bases: A cointension based approach. International Journal of Ap-
proximate Reasoning 52(4), 501–518 (2010)

http://dx.doi.org/10.1109/TFUZZ.2009.2023113
http://dx.doi.org/10.1007/s12065-007-0001-5


Team Performance Evaluation Using Fuzzy Logic

Mauro Nunes and Henrique O’Neill

Instituto Universitário de Lisboa (ISCTE-IUL), ADETTI-IUL,
Ava das Forças Armadas, 1649-026 Lisboa, Portugal

{mauro.nunes,henrique.oneill}@iscte.pt

Abstract. In this paper we describe an experiment where team per-
formance is evaluated by intelligent agents with fuzzy logic reasoning.
Although not paramount to the study, which seeks to formally define
where and how can intelligent agents help assessing team performance,
fuzzy logic was implemented using a set of performance evaluation rules.
Results show that the intelligent agents are able to perceive and critically
evaluate a team’s performance.

Keywords: virtual teams, team performance, intelligent agents, fuzzy
logic.

1 Introduction

Researchers have applied agent technology to different areas of teamwork, such
as teamwork simulation, team communication and team selection/formation.

Based on a comprehensive review of research about human performance in
team settings, Paris et al. [1] maintains that there is still a need to “develop
more dynamic measurement systems that allow for on-line assessment of team-
work,” particularly because the long-established observational methods (i.e., be-
havioural checklists or videotaped observation, etc.) have been insufficient to
measure teamwork processes [2]. These methods are labour intensive and time
consuming, which decreases the speed of analysis and reporting of team perfor-
mance, becoming unsuitable for large-scale team settings and to fully capture
the dynamic nature of teamwork. We believe that agents may offer a value-added
contribution to such a measurement system and even extend it, with proactive
performance assessment, intelligent analysis and feedback.

It should be noted that our approach is focused on the synergistic relationship
between intelligent agents and teams composed by humans. This relationship is
established with the purpose of assessing the team’s performance. Agents will
primarily support teamwork, rather than aiding on individual tasks, following
findings from Lenox et al. [3], which suggest that the direct support of teamwork
is more beneficial than aiding individual tasks.

To critically assess a team’s performance, agents require a set of team per-
formance measures. However, these measures must be adequate and, preferably,
linked with a team performance model. Building on research that examined dy-
namic modelling of team functioning, Marks et al. [4] proposed a time-based
conceptual framework of team processes, which can help measure team perfor-
mance. Agents should use performance measures based on process and outcome

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 139–146, 2011.
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variables, which have to be introduced into the reasoning mechanism. This rea-
soning must take into account not only previously established standard measure
values, but also values from existing performance data (history), which will act
as a dynamic reference value.

Our study seeks to establish where and how can intelligent agents help assess-
ing a virtual team’s performance. We have formalized a possible answer to this
question by purposing an agent mediated team performance model – aTeam [5].
We have also implemented the Promus agent system [6], a test bed for evalu-
ating the aTeam model. This paper describes the results obtained when fuzzy
logic was used as the reasoning mechanism for evaluating team performance. It
should be considered as a by-product of a broader study on team performance
and it is not intended as a comparison study between reasoning systems.

1.1 Related Work

From the literature, it is possible to identify work related to this research. The
work from Lenox et al. [3] has some similarities to the proposed, notably, the use
of agents to support team performance. However, in their study, no geograph-
ically dispersed teams are considered, which decreases the communication and
coordination effort. The agents also work as specialized facilitators rather than
representing each member working as a team, circumscribing the work of the in-
telligent agents to support and promote teamwork dimensions (Team situation
awareness, Support behaviour, Communication and Team initiative/leadership)
in a target identification task.

The approach from Chung et al.[2] towards the development of a real-time
measurement system for teamwork skills is also related to our approach. They
focus their work on assessing team processes used by a group of individuals
responsible for jointly constructing a knowledge map. Team processes were mea-
sured according to a taxonomy developed from previous work [see 7]; likewise, we
also measure team processes according to a similar taxonomy [see 4]. However,
their system was not proactive towards team performance, rather just an auto-
matic measurement system. Although a team member identity was anonymous,
they were all collocated at the same time, whereas in our study we are imposing
team member time dispersion, as it is a key characteristic in a Virtual Team.

The work from Miller and Volz [8] also relates to our study, in the sense that
they use a model of teamwork to identify weaknesses in team interaction skills
in a human trainee within a team of agents. Although their study’s subject is
focused on training mixed teams of agents and humans, they state that it could
also be used as a tracking or monitoring tool for human teams.

2 Promus Agent System, Beer Game and Fuzzy Logic
Application

The agent platform was built based on the generic requirements gathered from
past experience and the specific requirements for a team assessment tool from
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Paris et al. [1]. It presents a unique set of team-oriented features (based on the
aTeam model) like capturing team performance metrics and proactive analysis of
team performance. It measures both processes and outcomes in order to ensure
consistently effective performance [9].

The Promus agent system is organized in two major components, the Promus
Server and Promus Client. The Promus Server design follows an object-oriented
approach based on software design patterns.

The Beer Game was selected as a test case, inspired by the approach from
Rafaeli and Ravid [10]. The game simulates a distribution system where the
team’s objective is maximizing net profit by managing inventories appropriately
in the face of uncertain demand. Players are linked in a distribution chain, de-
pending on each other for the right flow of orders and goods. Each team mem-
ber takes a position (Retailer, Wholesaler, Distributor or Factory) in the supply
chain. This role-playing simulation of an industrial production and distribution
system was originally created as a board game and used to introduce students
of management to the concepts of economic dynamics and computer simulation.

Promus agents evaluate performance using relative concepts between the stan-
dard high, average and low concepts. Specifically, the agent reasoning is based
on fuzzy logic1 with linguistic variables to evaluate the performance measures.
Zadeh [11, 12] was the author of the first publication on fuzzy logic. Since that
time, fuzzy logic has been used extensively on a variety of applications. These in-
clude, for instance, supply chain management or credit evaluation. In this study,
it enabled the agents to show some intelligent behaviour by critically assess-
ing performance within a broad spectrum of concepts to which they were not
programmed.

2.1 Team Performance Analysis with Fuzzy Logic

The individual level analysis is conducted through the weighed sum of the perfor-
mance measure values. This is to differentiate the influence of each performance
measure. Formally it can be defined as:

A team (tpx) in a collaborative environment ≡ a set of persons that are
working together on a task.

Individual Performance Value (IPVt) ≡ the weighed (cf) sum of the perfor-
mance values of a team member (tm), at a particular moment t.

Individual Performance Measure Value (IPMVt) ≡ a value for a particular
Performance Measure (PM) from a team member, at a particular moment t.

The following equation (1) shows how IPVt was calculated. Please consider
#PM as the total number of performance measures.

IPV t(tm) =
#PM∑
i=1

cf ∗ IPMV t(i). (1)

1 Fuzzy logic was implemented with an Open Source Fuzzy Engine available at:
http://people.clarkson.edu/ esazonov/FuzzyEngine.htm
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A team member is underperforming within his team (locally) when his IPV is
considered lower in comparison with the remaining team members, at a partic-
ular moment in time. Because the concept of “how low” is hard to quantify it is
specified as a fuzzy function.

Local Underperforming Team Members (LUPTMt) ≡ ∀tm ∈ tpx : is low(
IPVt(tm)).

Likewise, global underperforming team members are identified when the re-
spective individual performance values (IPVs) are compared with a reference
global performance value (GIPV) from all remaining teams belonging to the
team group (TG) being analyzed. For the purpose of this experiment, the GIPV
is the average value of all the IPVt (2). Please consider #tm as the total number
of team members.

GIPV t(tmx) =
∑#tm

i=1 IPMV t(tm)
#tm

, ∀tpx ∈ TG, ∀tm ∈ tpx\tmx. (2)

Instead of trying to combine all the relevant factors into one large fuzzy rule
base, the evaluation is decomposed into smaller segments. The decomposition
makes the system development manageable and allows evaluation of smaller
subcomponents. The following sub-set of fuzzy rules was used for the evaluation
of the individual performance data:

if performance_value is low then warning is on
if performance_value is avg then warning is off
if performance_value is high then warning is off

These rules evaluate the proportional difference between the performance value
and a reference performance value. The fuzzy functions low(), avg() and high()
are shown in the next graph (Fig. 1).

Fig. 1. Performance value fuzzy evaluation functions

The fuzzy functions represented above attempt to provide a reasonable re-
sponse on the evaluation of the performance measure values, in particular, when
these values are at the borderline of each function. For instance, when the per-
formance value is between 0,5 and 1 it will be considered a low and average
value. Defuzzification follows the centroid method.
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3 Experiment Results

The Promus Beer Game implementation was used in four trials. The first three
trials consisted of a challenge for undergraduate (Management) students, where
in each trial, 20 participants in five teams played the game at the same time
(60 participants in total). These trials were run on the same network of the
Promus Server. The last trial consisted of a challenge for postgraduate (Logistics)
students and had 12 participants in three teams. This trial was run on a remote
location outside the Promus Server network.

Each trial was expected to take on average 1h10m (36 game days), and al-
though the players were in the same room they were not allowed to engage in
oral communication. Teams were randomly assembled for the duration of the
trial. It was not possible to control if team members already knew each other or
had previously worked together as a team. It was the first time that participants
played the Beer Game.

3.1 Analysis

Promus Server successfully supported the trials, processing more than 22,500
system messages, generating 12,825 performance data records and 2,192 game
plays. Table 1 sums up the performance evaluation of each game for the different
trials. Trial t1 was used for platform training and fine-tuning. The number of
performance warnings is shown at day 18 (halfway through the game) and day
36 in order to perceive performance evolution.

For trial t2 and t4 the fuzzy evaluation was able to reflect the team’s perfor-
mance by having a higher number of warnings on the games that had the highest
total cost.

However, for trial t3 game 80 gets the highest number of warnings instead
of game 84. If the outliers (games 80 and 84) were not considered then the
performance evaluation would be correct. Looking closer at the performance
measures from both games, this may be an example where flawed processes
occasionally result in successful outcomes. Meaning that despite having better
team processes in game 84, the followed game strategy did not achieve the best
results. On the other hand, we also believe that the reasoning and the metrics
capturing process can be improved.

3.2 Evaluation

The Promus agents are able to evaluate a team’s performance based on the
captured performance data. The performance evaluation process, using fuzzy
logic, was able to reflect some of the team’s performance traces, particularly in
the form of performance warnings. While this was acceptable on a simple task
like the Beer Game, it is not necessarily the behaviour in a real life situation.
Even so, there is some evidence to show that agents are able to evaluate team
performance as formalized in the aTeam model.

The Promus agent’s performance feedback, based on the aTeam model using a
drill-down approach, successfully helped break down a team’s performance into
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Table 1. Performance warnings per game

a set of individual performances and specific performance measures. This has
helped not only to identify potentially underperforming teams but also to trace
back to the performance of team members, giving some evidence that the agent’s
performance feedback can help in determining potential underperforming teams.
It also reveals that the quality of the performance feedback is very important,
i.e., although a consolidated view of the results is necessary, it must also be
possible to disaggregate the results into the respective contributing parts.

Limitations. This experiment has some limitations that must be considered
before generalising the results. First, the experiment domain and test case do
not take into account all the variables and constraints that are present in real
life virtual team settings. This simplification however, enables the analysis to
focus on the key aspects required by this study.

Having only students as participants can also be considered a limitation, in
the sense that they do not fully represent the target population. However, for
the purpose of this study, this sample provided enough data for the analysis of
team performance within the experiment settings and scope.

4 Conclusions

Even though technology has been used extensively within virtual team settings,
it still remains passive towards team performance. Hence, there is a need to
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adapt automation to team settings, not only automating the synthesis and inter-
pretation of performance data, but also better measurement tools that can cope
with high levels of complexity. This is where the application of the emerging
agent technology may help.

Intelligent agent technology has been very helpful in different fields. However,
it was unclear where and how this technology could be applied to the problem
of managing team performance. This was the motivation for this study.

Unlike normal performance evaluation tools, the Promus agent platform con-
ducts performance evaluation, using fuzzy logic, in real time, providing perfor-
mance warnings while the task is being carried out. This potentially provides
a higher degree of control to a team manager (a target client for this type of
application), who can perceive how a team is currently performing and likely to
perform in the future, hence acting almost as an early warning system.

Practical applications of this research can be used, for instance, in the evalua-
tion of the performance of operators in a Call Center, where agents monitor the
performance of each team of operators and provide real-time feedback to team
managers, not only with potentially underperforming operators, but also with
the work patterns of those that are better performing.
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Abstract. The aim of the work is to show the potential usefulness of
interpretable fuzzy modeling for decision support in medical applica-
tions. For this pursuit, we present an approach for designing interpretable
fuzzy systems concerning the prognosis prediction in Immunoglobulin A
Nephropathy (IgAN). To deal with such a hard problem, prognosis has
been granulated into three classes; then, a number of fuzzy rule based
classifiers have been designed so that several interpretability constraints
are satisfied. The resulting classifiers have been evaluated in terms of
classification accuracy (also compared with a standard neural network),
some of interpretability indexes, and in terms of unclassified samples.
Experimental results show that such models are capable to provide both
a first estimation of prognosis and a readable knowledge base that can
be inspected by physicians for further analyses.

1 Introduction

Immunoglobulin A Nephropathy (IgAN) is a renal disease: it represents the most
frequent primitive glomerulonephritis in the world and one of the main causes
of the terminal chronic renal failure[5]. Within about 20 years, 25-30% of sub-
jects with IgAN diagnosis evolve in an End-Stage Renal Disease (ESRD), thus
requiring renal transplantation or dialysis replacement. On the one hand, such
circumstances imply a number of issues negatively interfering with the patient’s
living standards; on the other hand, the ESRD treatments represent a consid-
erable cost for National Health Systems in the world. Therefore, prognosis of
IgAN is crucial and, even when it cannot be precisely asserted (which is the
most frequent case), its prediction is of greatest importance. As a consequence,
several research efforts reported in literature have been addressed to the iden-
tification of the features useful for predicting the decline of the renal function,
thus providing information about the subsequent ESRD (see e.g. [6]).

The need for a predictive model, which is capable to predict the expected
time to reach the ESRD, is straightforward. Such a model should rely both on
clinical data and other specific measurements for evaluating the disease risk of a
subject, so as to make a diagnosis and, more importantly, to propose a prognosis.
Commonly, it is not easy to manage this kind of data which is characterized by
non-linear distributions and models very complex interactions. Furthermore, the
nature of data itself is not precise, so that predictive models, as long as they are
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based on either classical statistical methods or classical data mining approaches,
are likely to fail. Therefore, a somewhat dedicated intelligent analysis is needed.

The complexity of the prediction problem requires the acquisition of knowl-
edge from available data, possibly with a refinement intervention by domain
experts. Also, the acquired knowledge must be interpretable, so as to be ac-
cessible by physicians for further considerations. Natural language description
of acquired knowledge represents for sure a valid mean for interpretability and
therefore it should be pursued. Such a requirement becomes more stringent when
complexity of the knowledge to be communicated is increasing.

The semantics underlying natural language terms embodies the property of
fuzziness, hence it can be modeled through fuzzy information granules. In order
to process this type of information, the fuzzy set theory provides the necessary
machinery to realize information processing. Indeed, fuzzy information granules
are represented as fuzzy relations and fuzzy set operators are used to elaborate
information.

Interpretability is not a trivial requirement for a model and a number of is-
sues must be addressed to achieve it. Most of the issues are context dependent,
therefore it is quite impractical to define once and for all a single approach to
obtain an interpretable model. The adoption of a methodology which is bound
to a number of interpretability constraints can facilitate the design of an inter-
pretable model. In this paper we propose a new approach aimed at predicting the
evolution time of the ESRD in subjects affected by IgAN. The intent is to set up
a process of knowledge discovery from data in order to produce an interpretable
linguistic knowledge base providing ESRD-related information. To this aim, we
employed the GUAJE tool, a free open-source software which is able to ensure a
number of interpretability requirements while producing fuzzy models [1]. As a
result, we derive fuzzy rule-based classifiers predicting the ESRD evolution time
for each patient in an interpretable way. In perspective, this may represent a
relevant achievement since the obtained information could enable the discovery
of new patterns underlying data, useful for the physicians to propose targeted
therapies.

The rest of the paper is structured as follows. Section 2 describes the proposed
methodology descending into the details related to the dataset settings, the
strategies and the design choices. Section 3 reports the performed experimental
session and the obtained results. Finally, in section 4 some conclusive remarks
and future proposals are discussed.

2 Methodology

The problem we are dealing with is the prediction of the time elapsing between
the renal biopsy and the occurrence of the ESRD for a given subject. We move
from the assumption that the disease actually manifested itself (the subject is af-
fected by IgAN). In tackling the predictive problem we put as a central tenet the
interpretability requirement, so that the derived fuzzy classifiers can be easily
understood and adopted by nephrologists. Hence, the models must respect some
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kind of interpretability constraints and must be designed by taking in account
the knowledge held by the renal specialists.

In the following sections we are going to detail the successive steps we followed
in our research activity: first the pre-processing of the available data, then the
data partition phase which is preparatory for the next rule-base learning step,
finally the improvement of the derived knowledge base.

2.1 Data Pre-processing

The dataset we analyzed has been provided by the Department of Nephrology
of the University of Bari and it is composed of 660 entries related to patients
affected by IgAN. For each patient, the reported data refer to clinical information
collected at different moments: partly during the Renal Biopsy (RB), that is the
moment when the pathology is verified, and others during one or more follow-ups
(FU), corresponding to subsequent check-up visits. The medical dataset has been
subjected to a pre-processing phase in order to arrange the experimentation.

Firstly, it should be recalled that the predictive models are supposed to pro-
vide for the evolution time of the ESRD. Therefore, only a subset of data has
been involved in our analysis: 98 out of 660 instances of the dataset have been
considered, corresponding to the subjects who actually reached the ESRD. Such
a drastic reduction was inevitable, since for all the other entries in the dataset
no relevant information about ESRD was available.

Pre-processing of data affected also the number of involved features. Studies
on the progression of IgAN provide some predictive factors which can be consid-
ered as a significant feature subset [4,9]. Accordingly, the initial total number of
43 features has been reduced. Furthermore, special attention has been paid on
the RB/FU distinction of clinical data. Data deriving from FU observations are
surely relevant for refining ESRD prediction; however, at least in a preliminary
stage, we are much more interested in deriving a predictive model which could
prove to be useful during the first contacts with the patients, i.e. when only
RB information has been collected. This may assist physicians in formulating a
very first diagnosis (which could be later adjusted by monitoring the patients
during the check-up visits). Therefore, we resolved to exclude FU features from
our analysis.

Some other interventions of ours concerned a better specification of the infor-
mation reported in the dataset. That is the case of a couple of features, namely
RB date and ESRD date, that can be more conveniently integrated into a
new feature representing the numbers of years between the RB and the ESRD.
Such a piece of information is very significant since, apart from releasing the
dataset from unnecessary timing constraints, it embodies the actual object of
the prediction to be performed. Therefore, we decided to combine RB date and
ESRD date into the Prognosis feature, representing the expected output of
the predictive model. The set of features retained for experimentation is com-
posed by nine elements. Among them, eight are intended as input features for
the predictive problem to be tackled (Gender, Age at RB, Age at Onset,
Onset Type, Grade, RB sCr, RB uPr, Hyp) and one is intended as the
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Table 1. Description of the involved features

Name Type Description

Gender Categorical Patient gender (male/female)
Age at RB Numerical Patient age at the RB time
Age at Onset Numerical Patient age when the disease manifested
Onset Type Categorical Type of the disease onset (micro/macro hematuria)
Grade Categorical Histological grade of the RB (G1/G2/G3)
RB sCr Numerical Creatinina measure at the RB time
RB uPr Numerical Proteinuria measure at the RB time
Hyp Categorical Patient affected by hypertension (yes/no)
Prognosis Categorical Evolution time of the ESRD (short/medium/long)

single output feature to be predicted (Prognosis). All the features are briefly
described in Table 1.

Since prediction problems can be translated into classification tasks (by par-
titioning the features that must be predicted), the feature Prognosis has been
processed in order to obtain temporal intervals (information granules). Both the
number of intervals and their amplitude have been preliminarily discussed with
the experts to maximize the semantic underlying each of them. Once verified
that no medical purposeful subdivision of the Prognosis feature is traceable,
the number of intervals and their amplitude have been automatically evaluated
by a clustering process. It has been used the K-Means clustering algorithm to
identify three temporal clusters. For each of them, a linguistic label has been
proposed which represents the information underlying the granule, and whose
semantic is strictly co-intensive with the physicians’ knowledge. The resulting lin-
guistic granules defined for the Prognosis feature are: short, identifying sub-
jects whose renal survive is ranging between zero and (about) 5 years; medium,
ranging between (about) 5 and 13 years; long, ranging between (about) 13 and
25 years.

In the following sections we are going to describe the successive steps we
followed to design the interpretable predictive model, in according with the
HILK++ approach proposed in [2]. In each of them, both the interpretability
constraints and the experts’ knowledge have been considered, so that a highly
interpretable model can be obtained.

2.2 Data Partition and Rule-Base Learning

To carry on the experimentation, we employed a tool named GUAJE (Generating
Understandable and Accurate fuzzy models in a Java Environment). It is a free
open-source software1 implementing the HILK++ methodology, which is able to
ensure a number of interpretability requirements while producing fuzzy models
[3]. GUAJE enables the user to follow a step-by-step procedure starting from
the design of fuzzy partitions, going through the rule-based learning and ending
up with knowledge base improvement. For each step, GUAJE offers a number

1 GUAJE is avaible at http://www.softcomputing.es/guaje
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of alternative methods so that the user can make his best choice depending on
the problem and the data at hand.

As concerning our session of experiments, we resolved to generate partitions
of the pre-processed data by means of centroids deriving from the well-known
K-Means algorithm. As reported in Table 1, the input features involved in the
classification task are both numerical and categorical. The latter ones have been
modeled by defining a fuzzy singleton for each category. The numerical features
underwent the partitioning process: each numerical feature has been partitioned
by five fuzzy sets obtained with the K-Means algorithm. Both the fuzzy sin-
gletons and the fuzzy partitions have been labeled by linguistic terms whose
semantic is strictly co-intensive with the experts knowledge, in order to maxi-
mize the interpretability of the resulting model.

Once obtained the fuzzy partitions, a fuzzy rule base must be automatically
derived from data. Among the different methods for rule-based learning available
in GUAJE, we adopted the Fuzzy Decision Tree (FDT) algorithm, which proved
to produce best results both in terms of interpretability and accuracy of the
derived models. FDT generates a neuro-fuzzy decision tree from data, firstly
obtaining the fuzzy rules by the fuzzy ID3 algorithm (an information-based
method) and then applying an algebraic learning method (analogous to artificial
neural learning) to facilitate the tuning of fuzzy rules [8].

2.3 Knowledge Base Improvement

During the phase of knowledge base improvement, an iterative refinement pro-
cess is applied both on partitions and rules. Such an activity can be performed
by following a twofold strategy. On the one hand, this is the time for the domain
expert to review the knowledge base, in order to apply real world experience to
confirm or modify the discovered data relationships. On the other hand, some
kind of automatic procedures can be applied for the sake of model refinement.
Of course, in this phase accuracy and interpretability of the classifier must be
steadily inspected so as to implement the best trade-off between them. The
automatic procedures available in GUAJE distinguish between two kinds of im-
provement: linguistic simplification and partition optimization. In the first case
the aim is to produce a global rule base simplification by reducing the number of
rules and linguistic variables. An iterative process looks for redundant elements
(labels, inputs, rules, etc.) that can be removed without altering the system
accuracy (whose worsening should not exceed a predefined threshold). At each
iteration the process operates first on rules, then on partitions and stops when
no more interpretability improvement is feasible without penalizing the accuracy
of the model. Partition optimization is devoted to increase the system accuracy
while preserving the previously achieved interpretability. The process realizes
a membership function tuning, constrained to keep the strong fuzzy partition
property. The strategy for partition optimization is the Genetic Tuning algo-
rithm, which is an all-in-one optimization procedure based on a global search
strategy which draws inspiration from the evolutionary processes that take place
in nature [7].
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Table 2. Confusion Matrix obtained by leave-one-out cross-validation

Inferred

Observed short medium long Unclassified cases Total cases

short 36.8% 7.1% 1% 4.1% 49%
medium 13.3% 13.3% 7.1% 4.1% 37.8%

long 2% 7.1% 4.1% 0% 13.3%

52% 27.6% 12.2% 8.2% 100%

Both the linguistic simplification and the partition optimization have been
applied to derive the predictive models in our experimentation.

3 Experimental Evaluation

The methodology illustrated in the previous section has been applied to derive
interpretable fuzzy classifiers starting from the analysis of data. Due to the lim-
ited amount of instances inside the reduced dataset, the models have been tested
through a leave-one-out cross-validation. The results of the cross-validation are
reported in Table 2, under the guise of a confusion matrix.

It should be observed that the obtained models may not be able to provide
a class for each input instance. This happens whenever the classifier response
lies on the borderline of different classes (i.e. the fuzzy inference produces two
outcomes whose numerical difference is below a certain threshold). Such a cir-
cumstance is reported in Table 3 (“Unclassified cases”), amounting to 8.2% of
cases. The overall value of classification accuracy is 54.1% and the values in
the table show how the most critical situations are well managed by the classi-
fiers. In fact, some particular cases, such as a kind of “false positive” (when a
short prognosis value is predicted in front of a long observed value), and —
most importantly — a kind of “false negative” (when a long prognosis value is
predicted in front of a short observed value) are reported with the reduced per-
centage values of 2% and 1%, respectively. As concerning the interpretability of
the obtained fuzzy models, Table 3 depicts the representation of a sample rule-
base, corresponding to one of those obtained during the cross-validation session.
The reported fuzzy rules, expressed by means of natural language terms, lend
themselves to be read by physicians in order to assist their prognosis formula-
tion. Additionally, in Table 4 some indexes are shown to provide information
about the interpretability of the models. In particular, the table reports the val-
ues (averaged over all the models obtained during the cross-validation session)
concerning: the number of rules composing the knowledge bases, the total rule
length (i.e. the total number of atoms composing all the rules inside a knowl-
edge base), the averaged number of rules firing at each inference, the Logical
View index. The latter represents an original non-structural parameter adopted
to evaluate interpretability of a knowledge base by considering cointension with
the semantics embedded into the fuzzy rules [10].



Interpretable Fuzzy Modeling for Decision Support in IgA Nephropathy 153

Table 3. A sample base of rules

Gender Age at RB Age at Onset Onset Type Grade RB sCr RB uPr Hyp Prognosis

G1 very low long
very low G2 very low long
average mH G2 very low long

low G2 very low medium
high G2 very low medium

G3 very low very low OR low medium
low OR average low very low medium
low OR average low low low medium

very high low low medium
average low average medium

low very high medium
average MH average medium

high average mH average medium
G3 very low average OR high short

high OR very high low very low short
very low low OR average low low short

male low average low low short
average OR high average low low short

high low low short
very low OR low OR average average mH average short

high OR very high average short
high OR very high short

Table 4. Interpretability indexes

Rules Total rule length Avg. fired rules Logical View Index

28.4 93.9 3.6 0.9

The implementation of an Artificial Neural Network (ANN) has been adopted
as a tool of comparison: we aimed at comparing the obtained interpretable fuzzy
results with those deriving from a black-box model supplied with the same input
instances. In particular, the ANN is organized in two feed-forward connection
layers, with eight input nodes (corresponding to the input features), one output
node (yielding a crisp number of years concerning the evolution time of the
ESRD) and 24 hidden nodes. In order to set up a fair comparison, a granulation
process has been applied over the output values of the network (so that outcomes
are comparable with those provided by the fuzzy inferences). Moreover, the fuzzy
inference models have been forced to provide an output for the unclassified cases
too (thus yielding an accuracy value equal to 56.12%). In this way, all the data are
considered for evaluation, similarly to the evaluation of the network performed
on the basis of a 10-fold cross-validation. The ANN accuracy value is 53%: it
is slightly lower than the value produced by the fuzzy classifying models which
provide physicians with the interpretability added value.

4 Conclusions

The application of a peculiar methodology for deriving interpretable predictive
models to a medical prognostic problem has been described in this paper. The
problem concerns the prediction of the evolution time of the ESRD for IgAN,
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i.e. the progress of a renal disease which leads the patient to undergo renal
transplantation or dialysis replacement. The task is not easy and a number of
factors are involved in the prognosis, but the availability of real data (supplied by
a medical institution) let us set up an experimentation. The data were subjected
to a thorough analysis and a pre-processing phase was performed to construct
a significant dataset. In order to build an interpretable fuzzy model from it, we
followed the steps of the HILK++ methodology which allows to derive fuzzy
partitions from data and to learn a rule-based knowledge which can be finally
refined to improve readability. In practice, we employed GUAJE, a tool which
implements the HILK methodology and offers the possibility to choose among a
number of methods to derive the predictive models by following the previously
mentioned steps.

The fuzzy classifiers obtained at the end of the experimental session proved to be
quite interpretable and their performance is comparable with the accuracy value
exhibited by a well established classifier model — an artificial neural network act-
ing as a black box — constructed and evaluated on the basis of the same dataset.
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Abstract. Graphical models are important tools for representing and
analyzing uncertain information. Diverse inference methods were devel-
oped for efficient computations in these models. In particular,
compilation-based inference has recently triggered much research, espe-
cially in the probabilistic and the possibilistic frameworks. Even though
the inference process follows the same principle in the two frameworks,
it depends strongly on the specificity of each of them, namely in the
interpretation of handled values (probability\possibility) and appropri-
ate operators (*\min and +\max). This paper emphasizes on common
points and unveils differences between the compilation-based inference
process in the probabilistic and the possibilistic setting from a spatial
viewpoint.

Keywords: Bayesian networks, Qualitative graphical models, Possibil-
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1 Introduction

Graphical models are a powerful family of models for representing and ana-
lyzing uncertain information. They are characterized by their explicitness and
clarity. Bayesian networks are studied under the broader class of probabilistic
graphical models. However, the probability theory in such models is only ap-
propriate when all numerical data are available, which is not always possible.
Several non-classical theories of uncertainty have been proposed in order to deal
with uncertain and imprecise data. We are in particular interested in possibil-
ity theory [8,9]. The last decade has seen a virtual explosion of applications of
propositional logic. One emerging application is knowledge compilation. It con-
sists in preprocessing the propositional theory only once in an off-line phase,
with the goal of making frequent on-line queries efficient [2]. One of the most
prominent successful applications of knowledge compilation is in the context of
graphical models. In fact, in [3], authors focused on compiling Bayesian networks
using DNNFs. In [1], we studied the possibilistic adaptation of some compilation-
based inference methods using Π-DNNFs. The objective behind these methods
is to ensure an efficient computation of a-posteriori probability or possibility
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degrees given some evidence on some variables. We intend that is considerable
to accomplish a comparison study in which we unveil the most compact frame-
work in this context. In this paper, we investigate the extent to which possibility
theory can be used to reduce sizes of compiled bases. In fact, we will compare
the probabilistic and the possibilistic approaches and prove the importance of
the possibilistic setting versus the probabilistic setting. The remaining paper
is organized as follows: Section 2 presents a brief refresher on possibility the-
ory and compilation. Section 3 describes both the probabilistic and the possi-
bilistic approaches by focusing on similarities and differences between the two
settings. Experimental study is presented in Section 4. Section 5 concludes the
paper.

2 Basic Concepts

Let V = {X1, X2, ..., XN} be a set of variables. We denote by DXi the domain
associated with the variable Xi. By xi (resp. xij), we denote any of the instances
of Xi (resp. the jth instance of Xi). When there is no confusion we use xi to
mean any instance of Xi. In the n-ary case, DXi = {xi1, xi2, . . . , xin} where n
is the number of instances of Xi. By v we denote instantiations of all variables
Xi ∈ V . Ω denotes the universe of discourse, which is the cartesian product of
all variable domains in V . Each element ω ∈ Ω is called an interpretation, a
possible world or a state of Ω. ω[Xi] = xi denotes an instantiation of Xi in ω.

In this paper, we are interested in two uncertainty frameworks, namely the
standard one, i.e., the probabilistic setting and the non-standard possibility the-
ory [8,9]. The basic building block in this theory is the concept of possibility
distribution π, which is a mapping from the universe of discourse Ω to the unit
interval [0, 1] such that π(ω) = 1 means that the realization of ω is totally possi-
ble and π(ω) = 0 means that ω is an impossible state. In the extreme case of total
ignorance, π(ω) = 1, ∀ω ∈ Ω. It is generally assumed that there exists at least a
state ω which is totally possible. In this case, π is said to be normalized. From π,
we can compute two dual measures Π(φ) = maxω∈φπ(ω) and N(φ) = 1−Π(¬φ)
evaluating respectively to which extent φ is consistent with the knowledge repre-
sented by π and to which level φ is certainly implied by this knowledge. Contrar-
ily to the probabilistic case where P (¬φ) = 1 − P (φ), possibility and necessity
measures are weakly linked. In possibility theory, conditioning is defined by the
following counterpart of the Bayesian rule: ∀ω, π(ω) = min(π(ω | ψ), Π(ψ)).
π(ω | ψ) and Π(ψ) are combined using a min operation, according to the ordi-
nal interpretation of the possibilistic scale1. In what follows, we will use some
generic notations, i.e., the conjunctive operator ⊗ corresponding to

∏
and min,

the disjunctive operator ⊕ corresponding to
∑

and max, in the probabilistic
and the possibilistic case, resp. ∝ denotes the probability or the possibility de-
gree depending on the setting. + = {B, Π}, i.e., if we use + = B we mean the
probabilistic setting and if use + = Π we mean the possibilistic case.
1 The numerical interpretation of possibility theory uses the product instead of the

min, but this is out the scope of the present study.
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2.1 Bayesian and Possibilistic Networks

Bayesian and min-based graphical models (denoted by GB and GΠ , resp.) share
the same graphical component, i.e., a DAG where nodes represent variables in
V and edges encode different (in)dependence relationships. The major difference
resides in their numerical component since in GB different links are quantified via
probability distributions while in GΠ , we use possibility distributions. Formally,
each node Xi in a GB (resp. GΠ) is represented by a local normalized probability
(resp. possibility) distribution in the context of its parents, denoted by Ui =
{Ui1, Ui2, ..., Uim} where m is the number of parents of Xi. In what follows, we
use xi, ui, uij to denote, resp. possible instances of Xi, Ui and Uij .

The set of a priori and conditional probability (resp. possibility) distributions
induces a unique joint distribution via a chain rule based on the product in the
probabilistic setting and min in the possibilistic setting [11].

2.2 Compilation

A logical form qualifies as a target compilation language if it supports some set
of nontrivial transformations and queries in polynomial time with respect to
the size of compiled bases [7]. We will review in this section the target com-
pilation languages relevant to the present paper. The Decomposable Negation
Normal Form (DNNF) is a universal language presenting a number of proper-
ties that makes it tractable and of a great interest. DNNF, which is qualified
as succinct, is an Negation Normal Form (NNF) language satisfying the de-
composability property stating that: conjuncts of any conjunction do not share
variables [4]. A set of important properties may be imposed to DNNF, for in-
stance, determinism and smoothness giving rise to the sd-DNNF. The DNNF
compilation language (or one of its variants) supports a rich set of polynomial-
time logical operations [7]. For queries, within the most common queries, we cite
model counting. For transformations, we focus on conditioning, forgetting and
minimization:

– Conditioning : Let α be a propositional formula. Let ρ be a consistent term, then
conditioning α on ρ, denoted by α|ρ generates a new formula where each variable
Pi of α is replaced by � if Pi is consistent with ρ, and by ⊥ otherwise.

– Forgetting : Let α be a propositional formula, let P be a finite set of propositional
variables Pi, then the forgetting of P from α, denoted by ∃P.α is a formula that
does not mention any variable Pi from P .

– Minimization: Let α be a propositional formula, then the minimization of α is
a formula β such that the cardinality of all β’s models is equal to the minimum
cardinality models of α [4]. Recall that the cardinality of a model corresponds to
the number of variables set to True (�) or False (⊥).

Π-DNNF [1] is a possibilistic version of DNNF in which conjunctions and dis-
junctions are substituted by minimum and maximum operators, respectively. It
is considered as a special case of VNNFs [10].
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3 DNNF vs Π-DNNF

It was shown recently that compiling Bayesian networks corresponds to factoring
multi-linear functions [5]. In the possibilistic framework, we have shown that
compiling possibilistic networks corresponds to factoring possibilistic functions
[1]. In this section, we will propose a generic approach handling both probabilistic
and possibilistic settings to raise awareness about these approaches and reveal
the differences between them.

3.1 From Encoding to Inference

The multi-linear (resp. possibilistic) function f� of a network G� contains two
types of propositional variables. An indicator variable λxi is associated for each
value xi of each Xi in G�. Furthermore, a parameter variable θxi|ui

is associ-
ated for each network parameter ∝ (xi|ui) in G�. Equation (1) expresses the
generic function f� s.t. ⊕ denotes maximum or probabilistic sum and ⊗ denotes
minimum or product depending on the setting.

f� =
⊕

v

⊗
(xi,ui)∼v

λxiθxi|ui
(1)

To compute the probability or the possibility of an evidence e, f� should be
evaluated after setting appropriate values to indicator variables depending on e.
In both settings, f� has an exponential size, so it should be interesting to encode
such function using a propositional theory to represent it more compactly. The
CNF propositional language is chosen since it is often convenient for compactly
encoding knowledge bases [7].

Definition 1. Let G� be a network (+ = {B, Π}), λxij , (i = 1, . . . , N),(j =
{1, . . . , n}) be the set of evidence indicators and θxi|ui

be the set of parameter
variables, then C� should contain the following clauses:

– ∀ Xi ∈ V , C� contains the following two clauses (named indicator clauses):

λxi1 ∨ λxi2 ∨ · · ·λxin (2)

¬λxij ∨ ¬λxik
, j �= k (3)

– ∀ θxi|ui
s.t ui = {ui1, ui2, ..., uim}, C� contains the following clauses:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui
(4)

θxi|ui
→ λxi (5)

θxi|ui
→ λui1 , · · · , θxi|ui

→ λuim (6)

Clauses (2) and (3) state that indicator variables are exclusive, while clauses
(4)-(6) encode network’s structure. Once f� is represented as C�, a compilation
step is required to prepare for answering efficiently a large number of inference
queries. This process depends on the uncertainty framework. Let C�

c be the
compilation result of C�. Let x be an instantiation of some variables X ⊆ V ,
then computing ∝ (x) using C�

c is ensured as follows:



Hamiltonian Mechanics 159

1. Conditioning C�
c on x by setting each λxi to ⊥ if ∃ xj ∈ x s.t. xj and xi

disagree on values (i.e., xi � x), and to � if xi ∼ x.
2. Decoding C�

c to have a valued expression, denoted by +-circuit (Definition
2),

3. Computing ∝ (x) using +-circuit.

Definition 2. A +-circuit is a DAG with internal nodes are labeled with ⊕/⊗
and leaves are labeled with propositional variables.

The first step allows us to exclude terms incompatible with x. The second step
decodes the compiled base +-circuit depending on the framework. The third step
ensures an efficient computation of ∝ (x) by applying some query or transforma-
tion supported by some target compilation language. In the probabilistic case,
inference problems have been effectively translated into model counting prob-
lems. According to the knowledge map of [7], the appropriate language is the
sd-DNNF, which is less succinct than DNNF [7]. In the possibilistic case, infer-
ence corresponds to max-variable elimination (forgetting using the max), hence
the language should support both max-variable elimination and conditioning.
The honored language is Π-DNNF [1].

3.2 Which is the Most Compact Method?

In the previous subsection, we have only focused on network’s structure and
variable’s domains and we have not explored parameters values, i.e., the so-
called local structure which refers to a structure that can be inferred from the
specific values of network parameters. Encoding local structure into logic has
been under investigation in both probabilistic [3] and possibilistic settings [1].
We are in particular interested in parameters 0, 1 and equal parameters within
CPTs. Incorporating local structure into C� differs depending on the framework.
In what follows, we will study in depth each case for both frameworks and reveal
the differences between the two settings.

– Parameters equal to 0 : Consider the parameter θb1|a2 = 0 which generates
the three clauses of Definition 1. Given that this parameter is known to be
0, all terms that contain this parameter must vanish using either

∏
or min.

Therefore, we can drop it from the encoding and replace its clauses by a
shorter clause involving only indicator variables as follows: ¬λxi ∨ ¬λui1 ∨
· · · ∨ ¬λuim .

– Equal parameters : Parameter equality is exploited to reduce at least the
number of propositional variables. Due to the fact that no two parameters
in the same CPT can ever appear in the same f�’s term, the same propo-
sitional variable can be used to represent multiple parameters within the
same CPT. However, such simplification cannot be applied directly since an
inconsistent family instantiations will be evoked at the level of clause (5) and
clause (6). The idea is to drop these clauses from the encoding, which intro-
duces additional models into the CNF, allowing multiple parameters from
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the same CPT in f�’s terms. These unintended models, having a cardinality
higher than the cardinality of original models (i.e., 2N : N evidence indicators
and N network parameters), can be filtered by applying the minimization
transformation that can be ensured in polytime by DNNF [4].

– Parameters equal to 1 : Let θxi|ui
be a parameter equal to 1. In the proba-

bilistic case, we can omit this parameter and its associated clauses from CB

[5], while in the possibilistic case, this is not the case since the parameter 1,
used to satisfy the normalization constraint, is not qualified as a particular
value. Indeed, it is a fundamental parameter as it appears several times in
each CPT. Hence, in the possibilistic case, parameters equal to 1 should be
considered as a set of equal parameters within CPTs.

By exploiting local structure, the CNF encoding C� and its corresponding cir-
cuit +-circuit should be smaller, especially in the possibilistic case. In fact, the
normalization constraint relative to the possibilistic network offers the oppor-
tunity to incorporate less propositional variables, encode less CNF clauses, and
consequently construct more compact Π-circuits w.r.t. B-circuits, which proves
the importance of the possibilistic setting versus the probabilistic setting.

Proposition 1. Let Nbposs and Nbproba be the number of variables/clauses in
the possibilistic and probabilistic cases, respectively. Then Nbposs ≺ Nbproba.

Example 1. Let us consider the bayesian and the possibilistic networks of Fig. 1.

Fig. 1. A bayesian and a possibilistic network

We stress that the number of propositional variables and clauses in CΠ is less
than than those of CB . In fact, there are 13 propositional variables and 28 clauses
in CB, while in CΠ there are only 11 variables and 22 clauses. The compilation
of CB and CΠ give us the following B-circuit and Π-circuit represented by
figures 2 and 3, respectively s.t. θ1 encodes the probability degree 0.1 and θ1

(resp. θ2) encode the possibility degree 0.6 (resp. 1). It is prominent that the
number of nodes/edges of the Π-circuit is less than those of the B-circuit. Indeed,
the number of nodes/edges in the probabilistic (resp. possibilistic) case is equal
to 46/66 (resp. 41/60). These numbers include negated propositional variables.
After evacuation of such parameters, the resulting compiled bases, which are
represented by figures 2 and 3, contain 30/34 (resp. 25/31) nodes/edges in the
probabilistic (resp. possibilistic) framework.



Hamiltonian Mechanics 161

Fig. 2. The B-circuit Fig. 3. The Π-circuit

4 Experimental Study

In this section, we will compare the probabilistic DNNF and the possibilistic Π-
DNNF approaches. The objective behind this study is to highlight the extent to
which possibility theory can reduce sizes of compiled bases. Our experimentation
is performed on random bayesian and possibilistic networks generated as follows:

– Graphical component : DAGs are generated randomly, by just varying two pa-
rameters: the number of nodes and the maximum number of parents per node.

– Numerical component : Once the DAG structure is fixed for both bayesian
and possibilistic networks, we generate random conditional probability and
possibility distributions of each node in the context of its parents, with taking
into consideration equal parameters and parameters equal to 0/1. These
parameters will be stated as %EP the percent of equal parameters within
the same CPT and %ExP the percent of extreme parameters within the
same CPT. These two values give an idea on the amount of local structure
within CPTs.

For each experimentation, we set %ExP to three values which are 10%, 50% and
90%. For each instantiation of %ExP , we set %EP to 10%, 30%, 50% and 70%.
For each instantiation of these parameters, we generate 100 random bayesian
and possibilistic networks having a number of nodes equal to 50 and a maxi-
mum number of parents per node equal to 4. For each method, we will compare
sizes of CNF encodings in terms of both number of variables and clauses and
sizes of compiled bases in terms of both number of nodes and edges. Note that
we have used the c2d compiler [6] developed by Darwiche. Each pair of the fol-
lowing figures show the behavior of DNNF and Π-DNNF for each instantiation
of %EP and %ExP . From figures 4, 6 and 8, we can deduce that the number of
variables and clauses fall down in both DNNF and Π-DNNF for each instantia-
tion of %EP . Furthermore, it is prominent that Π-DNNF uses less variables and
clauses comparing to DNNF. This is due to the normalization constraint offered
by the possibilistic setting. Hence, the higher the value of %EP and %ExP ,
the better the quality of results (i.e., the lower number of CNF variables and
CNF clauses). By just taking a careful look at the scale of figures 4, 6 and 8
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Fig. 4. Variables and clauses for
ExP = 10%

Fig. 5. Nodes and edges for ExP = 10%

Fig. 6. Variables and clauses for
ExP = 50%

Fig. 7. Nodes and edges for ExP = 50%

Fig. 8. Variables and clauses for
ExP = 90%

Fig. 9. Nodes and edges for ExP = 90%

which decreases from 1200 to 700 through 1000, we can confirm this key result.
Regarding compiled bases parameters, we can notice from figures 5,7 and 9 that
Π-DNNF is characterized by a lower number of nodes and edges comparing to
those of DNNF. Indeed, the higher the value of %EP , the lower number of nodes
and edges for both methods, especially for Π-DNNF. We should also pinpoint
that compiled bases parameters and CNF parameters follow the same behavior
since by increasing %EP or %ExP , compiled bases parameters fall down, which
is also the case for CNF parameters. Hence, we can conclude that Π-DNNF
performs better than DNNF in terms of both CNF parameters and compiled
bases parameters, which allows us to make up some extra space.
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5 Conclusion

This paper proposed a generic compilation-based inference approach handling
both probabilistic and possibilistic settings. We focused on theoretical in common
points between the two approaches and unveil the differences between them.
Furthermore, we studied the so-called local structure in both approaches. We
theoretically show that Π-DNNF is more compact than DNNF, in terms of
both number of CNF variables/clauses and nodes/edges of compiled bases, which
proves the importance of the possibilistic setting versus the probabilistic setting.
These results were confirmed by experimental results.
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Abstract. When compared to crisp clustering, fuzzy clustering provides more
flexible and powerful data representation. However, most fuzzy methods require
setting some parameters, as is the case for our Graded Possibilistic c-Means clus-
tering method, which has two parameters in addition to number of centroids.
However, for this model selection task there is no well established criterion avail-
able. Building on our own previous work on fuzzy clustering similarity indexes,
we introduce a technique to evaluate the stability of clusterings by using the fuzzy
Jaccard index, and use this procedure to select the most suitable values of param-
eters. The experiments indicate that the procedure is effective.

Keywords: Possibilistic clustering, Clustering methods, Fuzzy clustering, Fuzzy
statistics and data analysis.

1 Introduction

When compared to standard (crisp) clustering, fuzzy clustering provides a more flexible
and powerful data representation paradigm. However, most fuzzy clustering methods
require setting some parameters, in addition to the number of centroids, which often
play the role of degrees of fuzziness. For instance, Bezdek’s fuzzy c-means [1] requires
to set an exponent m to control fuzziness, and Krishnapuram and Keller’s possibilistic
c-means [12] needs a set of width parameters βj , one per cluster. In [14], we have pro-
posed a graded possibilistic c-means clustering technique (GPCM) that provides control
over the degree of possibility, thus allowing a soft transition between the standard prob-
abilistic and the possibilistic models. This is done through an additional parameter α.
No criterion was provided in the original work for setting its value.

In the context of clustering, stability is an important quality criterion, for lack of
supervised information allowing objective evaluation. Robust clustering has been the
subject of many studies [17]. Intuitively, clusters that are less sensitive to perturbations
in the data (e.g., adding/removing data points, outliers, and adding noise to point coordi-
nates) or to variations in the clustering parameters (number of centroids, initialization,
other model parameters) are more likely to reflect properties of the data themselves,
while clusters subject to greater variability may be due to finite sample effects. The

� Corresponding author.

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 164–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Tuning Graded Possibilistic Clustering by Visual Stability Analysis 165

purpose of the present work is to introduce a technique to evaluate the stability of clus-
terings by using the fuzzy Jaccard index, and to use this procedure to select the most
suitable values of parameters in a specific clustering method.

To assess and possibly improve the stability of a clustering, several approaches have
been proposed. The topic has a long history; the first methods were developed directly in
the realm of cluster analysis [18], whereas more recently concepts from robust statistics
like breakdown analysis and influence functions [10] have been introduced in specific
clustering methods [8,4,7]. However these approaches are specific to a given method,
and are not generally applicable.

In contrast, methods exploiting direct comparison between clusterings, e.g., [5], al-
low an application to more general classes of methods. In [20] we have proposed the
generalization of several indexes of similarity between partitions to the fuzzy case. Most
fuzzy similarity indexes have the additional property that the level of fuzziness in the
partitions being compared is reflected in the maximum attainable value of the index.
This is true also for possibilistic clusters, where an added feature is that the “best” clus-
terings are not only the stablest, but also those with the highest degree of self-similarity.
The approach proposed by Hennig in [9] compares crisp clusters using the Jaccard in-
dex. This method is related to our proposal, with two important differences: first, we
build on previous work [20,3] and use a method for comparing fuzzy clusterings, while
Hennig’s approach is strictly tied to the availability of crisp memberships; second, on
the other hand, our method cannot directly compare individual clusters, because these
are not clearly defined in the fuzzy case, and compares whole clusterings instead.

In the remainder of this paper, Section 2 introduces the clustering method and Section
3 the clustering similarity measure; then in Section 4 we present the method and in
Section 5 the experimental verification.

2 The Graded Possibilistic c-Means Clustering Method

The fuzzy central clustering paradigm is implemented in several, diverse algorithms.
In this work we focus on methods based on the following definition of the c cluster
centroids Y :

yj =
∑c

k=1 ujkxk∑n
k=1 ujk

, (1)

as in the c-Means methods, with ujk membership of data point xk to the cluster having
centroid yj . Since the memberships will be computed in different ways, the resulting
centroids are not the same for all methods. One taxonomy is based on the value of the
sum of all membership for any given data point. When this sum is constrained to 1, we
are in the standard (“probabilistic”) case; when it is essentialy unconstrained, we are in
the possibilistic case.

The graded possibilistic membership model presented in [14] takes an in-between
approach by constraining the memberships to obey an interval equality, so that when
the equality holds the model is effectively possibilistic, whereas, for other combinations
of values, a compensation is introduced to constrain the memberships to each other.



166 S. Rovetta, F. Masulli, and T. Adel

We start from a membership function expressed as:

ujk =
edjk/β

Zk
, (2)

where Zk =
∑c

l=1 eulk/β is called the partition function.
We define the free membership as:

vjk = e−djk/βj , (3)

as in the ME and PCM-II algorithms. Then we define the partition function Zk as:

Zk =
∑c

j=1 vjk if
∑c

j=1 vjk > 1

Zk =
(∑c

j=1 vα
jk

)1/α

if
∑c

j=1 vα
jk < 1

Zk = 1 else.

(4)

For α = 1, the representation properties of the method reduce to those of ME, whereas
in the limit case for α = 0, the representation properties are equivalent to those of
PCM-II for low membership values, and to those of ME for higher values. In [14] this
particular model has been shown to possess robustness properties, with applicability
to stable clustering and outlier analysis. However, no criterion was given to assess the
values of parameters α and β.

3 Fuzzy Similarity Indexes

3.1 An Approach to the Comparison of Fuzzy Clusterings

Measuring the agreement between two clusterings amounts to measuring the similarity
between two partitions. There are several partition similarities available in the literature.
The two main approaches include comparing matching clusters, and comparing co-
association information. The first one is not reliable when the partitions are not very
similar, and require some criterion for matching subsets. In [20] we focused on the
second, defining a set of fuzzy pairwise indexes based on co-association matrices [6].

We are given a data set X and two fuzzy partitions A and B of X . Fuzzy partitions
means that ∀x ∈ X there is a membership μ(x, ai) ∈ [0, 1] for each subset ai ∈ A (sim-
ilarly for B). Normal memberships are obtained from the majority of fuzzy clustering
methods, so we make this reasonable assumption.

Each data point is thus represented by a coordinate vector, whose dimension is the
number of clusters in the partition, and whose components are the membership values.
Each data pair is described by the degree of similarity between the two objects x and y
under the partition A.

For membership strings, crisp similarity can be measured by Hamming distance,
based on a bitwise-AND. The fuzzy generalization of this operation is defined once we
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appropriately define the conjunction connective [23]. We adopt the product t-norm [16],
which provides uniformity with respect to other models; in particular, it yields a formal
equivalence with the scalar product operation between vectors, which in turn can be
used to define popular distance measures. This allows some generality in the indexes
studied, which would be lost with other, more specific conjunction choices.

Given two fuzzy memberships/truth values μ and ν, the conjunction logical connec-
tive is defined as μ AND ν = μν. The co-association of a given pair of data points to
a given cluster ai is the conjunction of the respective point memberships to ai, and the
degree of similarity of two points is the average of these values. The co-association
matrix sA (also termed bonding relationship in [3]) under partition A is:

sA
ij = sA(xi, xj) =

|A|∑
l=1

μ(xi, al)μ(xj , al) (5)

As in [20], we serialize sA and sB and use the single-index equivalent σA
h and σB

h where
h runs over the |A|(|A| + 1)/2 unique pairs ij.

3.2 The Fuzzy Jaccard Index

Some indexes of partition similarity based on the co-association matrix are reviewed in
[15] and some are experimentally compared in [13]. See also [20] for more background.
Here we focus only on the fuzzy version of Jaccard’s index [11], a classic measure of
set similarity, and one of the most general. It is defined as the ratio of the size of the
intersection of two sets to the size of their union: J(A, B) = |A ∩ B|/|A ∪ B|. In the
crisp case, this pairwise index can be practically computed by counting N11 = |A∩B|,
number of points put in the same cluster by both partitions, and N10 and N01, number
of points assigned to the same cluster only by partition A or B respectively. so that
N10 + N01 + N11 = |A ∪ B| and J(A, B) = N11

N10+N01+N11
..

In the fuzzy case, we have a degree of coincidence. If De Morgan’s law holds, as it is
reasonable to assume, for the product t-norm we can define the associated disjunction
operator as the probabilistic sum t-conorm, μ OR ν = μ + ν − μν. Therefore:

A ∩ B =
∑

h

σA
h σB

h and A ∪ B =
∑

h

(
σA

h + σB
h − σA

h σB
h

)
(6)

The choice of the Jaccard index over other possible measures is suggested by the con-
clusions drawn in [21] after analyzing a set of 39 different measures. The Jaccard dis-
tance is a metric; the value 0 is attained only for disjoint sets; and the value 1 only
for equal sets. For the fuzzy Jaccard index, the latter property holds only for crisp sets.
Possibilistic memberships are unconstrained, and can have small values, so that self-co-
associations can take on any value from 0 to 1; the asymmetric model chosen avoids the
case of values larger than 1. In the fuzzy case, self-co-association gives an indication
about the degree of fuzziness of a clustering.



168 S. Rovetta, F. Masulli, and T. Adel

4 Visual Stability Analysis Based on Comparing Fuzzy Clusterings

This section introduces our proposed clustering stability method, which, unlike other
proposals [22,2] does not address comparison of points in a clustering, but builds on our
previous work on fuzzy partition similarity indexes [20] to compare whole clusterings.

Hennig [9] proposed a method to exploit cluster-based comparisons to analyze the
robustness of clusters, as measured by the “dissolution point” criterion. In our case this
approach is not directly applicable. Our aim is to provide a tool to make a decision
which is to some extent arbitrary, namely, model selection. The proposed approach is
visual and interactive, allowing the user to perceive the effect of the variation of one or
few parameters, in our case α and β in GPCM. The degree of possibility α has a clear
theoretical interpretation, but its effect is difficult to perceive in practice. In addition,
its effect combines with that of the width parameter β, as exemplified by an image
segmentation application presented in [14]. Our proposal addresses these issues.

The procedure, exemplified for α, is as follows:

1. Perform repeated clustering by sweeping values of α
2. Build a similarity matrix by evaluating the pairwise fuzzy Jaccard similarity of

clusterings obtained by each pair of values of α.
3. Visualize the similarity matrix and analyze it (see below)
4. Select the column or row index corresponding to maximum stability and confidence

Step 3 of the procedure is as follows. The similarity matrix compares every possible
pair of clusterings. The matrix is symmetric, but in our possibilistic case the diagonal
does not necessarily contain all ones: as noted earlier, fuzzy similarity indexes may have
a low self-co-association value. In possibilistic clustering, this usually indicates that the
cluster centers are not significant, i.e., that the local minimum found during training is
quite bad. Therefore, we are searching for values for which the diagonal is brighter.

Stable clusterings correspond therefore to values with many nearby bright elements.
These correspond to clusterings which are similar for a whole range of values of α. The
optimal value corresponds to the largest, brightest square patch around the diagonal.
To maximize the robustness margin, the central value of the patch should be selected.
Due to the inherent ambiguity in clustering, there may be more than one possible op-
timal value. Especially when varying β, we may witness the phenomenon of “phase
transition” [19], e.g., with splitting or collapsing clusters. This is also visible in the
experimental results presented in the following section.

As a final remark, we note that this procedure is completely general and may be
applied to any clustering method, being most useful in fuzzy cases. To increase confi-
dence, multiple initializations may be used.

5 Experiments

5.1 Data and Experimental Setup

To experimentally verify the proposed method, we have chosen a dataset with a good
degree of structure, but at the same time is not clearly clustered. This results in a visible
instability, for instance when starting from different initialization points.
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Fig. 1. Visual representation of the similarity index. Each inner square is 30 experiments with α
ranging from 0.1 to 1. Across the 9 sub-squares (left to right, top to bottom): (left) single random
initialization, β ranging from 0.0039 to 0.032; (right) different random initializations, β = 0.011.

The problem is provided in the base dataset package of the R language and envi-
ronment (www.R-project.org) as “quakes”. It consists of a subset of 1000 observations
of quakes (seismic events with magnitude MB > 4.0) from a larger database of 5000
observations. These quakes occurred around Fiji, starting in 1964, and are described by
three-dimensional coordinates (latitude, longitude and depth of event), plus the Richter
magnitude and the number of stations that reported it, for a total of 5 variables.

Since setting a large number of cluster centroids reduces instability, we kept this
number relatively small, fixing it at 7; this is a little higher than the value of 5 used by
Hennig in his robustness measurement experiments.

To set the width parameter β, in the robust fuzzy clustering literature [17], various
criteria are available that provide a first estimate. We only need a criterion to set a range
of values, and the method itself allow us to select the optimal value. We proceed as
follows: compute the average distance d̂ between pairs of data points in the training
set; fix a range by setting a minimum and a maximum, expressed as fractions of d̂, and
vary β across this range. The actual value of the β is therefore free for attribution on
the user’s part, but with this procedure its magnitude is related to the specific data set
used and there is a search range to find the most suitable value. With the dataset used
and β ∈ [ 0.2d̂, 1.8d̂ ], a 9-step sequence was obtained with the following values of β:
0.0039, 0.0074, 0.011, 0.014, 0.018, 0.021, 0.025, 0.028, 0.032. In this work the number
of steps is set to 9 because an odd number provides a well-defined middle value, and
also for aesthetic reasons. The training was performed by 9 individual runs, each with
a fixed value of β.

Each individual run consisted of one random initialization, and 30 complete opti-
mizations, each one initialized with the output of the previous one, and α ranging from
0.1 to 1 geometrically. Another parameter is varied across the 9 individual runs of each
experiment. α, starting at 0.1 and progressing up to 1, so that we obtain 30×30 similar-
ity matrices. The stopping criterion was 100 iterations, or root-mean-square variation
of centroids less than 0.001 with respect to the previous step.
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5.2 Results and Comments

The visual output of the method is shown in Figure 1. These are plots of the value of
the fuzzy Jaccard index. The value of the index is mapped as a lightness of each matrix
entry, with black = 0 and white = 1. The experiments, as described above, are ordered
from left to right and from top to bottom: in the left experiments there is a single random
initialization, and β ranges from 0.0039 to 0.032; on the right, there are different random
initializations with fixed β = 0.011. Lighter parts of the image correspond to pairs of
similar clusterings, as already explained in Sect. 4.

The first figure shows the variation as a function of β. As we can see, the most stable,
significant patch is attained in the seventh step (β = 0.011). The large, blurred patches
in the last steps are due to the excessive value of the width parameter, so that all points
were attributed essentially to a single, large cluster. When the width is too small, even
the diagonal has low values, and only for the extreme values of α (lower right corner)
data points are attributed to clusters with some confidence.

From this analysis it turns out that, in this particular instance, the best value for α
is not at the possibilistic or probabilistic extremes, but settles around an intermediate
value, between 0.17 and 0.24. If we now consider the experiments with fixed β =
0.011 and different random initializations (Figure 1), we can see that, despite random
variations in the results, the stable patch recurs in most experiments in about the same
location, confirming the selected values of β = 0.011 and α = 0.21 as significant.

6 Remarks and Future Work

The proposed method is notably flexible, since it is agnostic with respect to cluster
structure and representation. Here we have focused on centroid-based clusterings; how-
ever, other models may be treated similarly, although this might require additional clus-
ter significance assessment. We also restricted the analysis to the Jaccard index, but a
comparison between the possible choices from [20] could be performed.

Incidentally, the obtained value for α indicates that our method, using a localized
representation for membership functions, provides better results than either probabilis-
tic or possibilistic models.

For completely automated operation, it is possible to replace the visual analysis with
a metaclustering step, based on the cluster similarity matrix. This would certainly sac-
rifice part of the flexibility and potentiality of the method, but would allow to use it in
an embedded fashion, as part of a more complex system.
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4. Davé, R.N., Krishnapuram, R.: Robust clustering methods: a unified view. IEEE Transactions
on Fuzzy Systems 5(2), 270–293 (1997)

5. Filippone, M., Masulli, F., Rovetta, S.: Stability and performances in biclustering algorithms.
In: Masulli, F., Tagliaferri, R., Verkhivker, G. (eds.) CIBB 2008. LNCS, vol. 5488, pp. 91–
101. Springer, Heidelberg (2009)

6. Fred, A.L.N., Jain, A.K.: Data clustering using evidence accumulation. In: International Con-
ference on Pattern Recognition, 4 (2002),
http://dx.doi.org/10.1109/ICPR.2002.1047450

7. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications
in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5),
450–465 (1999)

8. Frigui, H., Krishnapuram, R.: A robust clustering algorithm based on m-estimator. In: Pro-
ceedings of the 1st International Conference on Neural, Parallel and Scientific Computations,
Atlanta, USA, vol. 1, pp. 163–166 (May 1995)

9. Hennig, C.: Cluster-wise assessment of cluster stability. Computational Statistics & Data
Analysis 52(1), 258–271 (2007)

10. Huber, P.J.: Robust Statistics. John Wiley and Sons, New York (1981)
11. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura.
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Abstract. Granular data offer an interesting vehicle of representing
the available information in problems where uncertainty, inaccuracy,
variability or, in general, subjectivity have to be taken into account.
In this paper, we deal with a particular type of information granules,
namely interval-valued data. We propose a multilayer perceptron (MLP)
to model interval-valued input-output mappings. The proposed MLP
comes with interval-valued weights and biases, and is trained using a
genetic algorithm designed to fit data with different levels of granularity.
The modeling capabilities of the proposed MLP are illustrated by means
of its application to both synthetic and real world datasets.

Keywords: Granular computing, Information granules, Neurocomput-
ing, Interval analysis, Symbolic data analysis, Function approximation.

1 Introduction

Human capabilities are based on the ability of processing non-numeric informa-
tion clumps (granules) rather than individual numeric values [1]. Information
granules can be regarded as collections of objects that exhibit some similarity
in terms of their properties of functional appearance [2]. There are a number of
formal models of information granules including sets, rough sets, fuzzy sets, and
shadowed sets to name a few options. In [3] the authors claim that the implemen-
tation of granules in terms of interval-valued data is the easiest to comprehend
and express by a domain expert, and the simplest to process when there is a
great variability of granule sizes.

The objective of this study is to propose a neural architecture to process in-
formation granules consisting of interval-valued data. Interval-valued data arise
in several practical situations, such as recording monthly interval temperatures
at meteorological stations, daily interval stock prices, inaccuracy of the measure-
ment instruments, range of variation of a variable through time. In the proposed
model, each operation performed in the network is based on interval arithmetic
and this allows creating mappings at different levels of granularity. Since the
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level of granularity is problem-oriented and user-dependent, it is a parameter of
our neural architecture.

The first conceptualization of neural networks for processing granular data
was introduced by Pedrycz and Vukovich in [3]. Here, several design approaches
are discussed, together with a number of architectures of granular neural net-
works and associated training methods. Also, the authors tackle a number of
fundamental issues of these networks, such as specificity of information gran-
ules, learning complexity, and generalization capabilities. Neural architectures
based on interval arithmetic have been proposed in [2,4,5,8,9,10]. In particu-
lar, the model developed in [4] uses a standard multilayer perceptron (MLP)
with numeric weights and biases, and a neuron transfer function able to operate
with interval-valued inputs and outputs. Here, the training process uses an error
function based on a weighted Euclidean distance between intervals, and a Quasi
Newton method for the minimization of the error function. More robust mini-
mization methods such as genetic algorithms and evolutionary strategies have
been also proposed [5].

In its most general architecture proposed in the literature, an MLP that pro-
cesses interval-valued data is characterized by weights and biases expressed in
terms of intervals, and maps an interval-valued input vector to an interval-valued
output. However, very often, in the design of the training methods some simplify-
ing assumptions are made, e.g. input, weights and biases may be real numbers,
or the error function between intervals is not compliant with the rules of the
interval arithmetic.

This paper proposes a new genetic-based learning method for a general interval-
valued neural architecture. We also show the effectiveness of this method by using
three interval-valued datasets.

2 Interval Arithmetic: Some Definitions

We employ a basic implementation of granules in terms of conventional interval-
valued data. An interval-valued variable Ẍ is defined as:

Ẍ = [x, x] ∈ IR, x, x ∈ R . (1)

where IR is the set of all closed intervals in the real line, and x and x are the
boundaries of the intervals. An F -dimensional granule is then represented by a
vector of interval-valued variables as follows:

Ẍ = [Ẍ1, ..., ẌF ] ∈ IRF , Ẍi ∈ IR . (2)

Sometimes an interval variable is expressed in terms of its midpoint ẋ and half-
width x̂, as follows [5]:̂̇X = 〈ẋ, x̂〉 ∈ IR, ẋ, x̂ ∈ R, ẋ = (x + x)/2, x̂ = (x − x)/2 . (3)

Table 1 summarizes some basic operations of interval arithmetic that have been
used in this study. The interested reader can find a detailed discussion in [6,7].
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3 The Adopted Interval-Valued Neural Architecture

Let f : IRF → IR be an F -dimensional interval-valued regression model:

f(Ẍ) = f(Ẍ1, ..., ẌF ) = Ÿ . (4)

Table 1. Some basic interval arithmetic operations used in interval-valued MLP

Operation Implementation

Addition [x, x] + [y, y] = [x + y, x + y]

Multiplication [x, x] × [y, y] = [min{xy; xy; xy; xy, max{xy; xy; xy; xy]

Function evaluation F ([x, x]) = [F (x), F (x)], F monotonically increasing
Real distance dist([x, x], [y, y]) = max{|x − y|, |x − y|}
Absolute value |[x, x]| = dist([x, x], [0, 0]]) = max{|x|, |x|}

Fig. 1 shows the MLP we adopt to deal with the regression problem modeled
by (4). This architecture has been already proposed by some authors (for in-
stance, in [5]). The novelty of our approach concerns the training process, which
allows an effective and efficient sensitivity analysis (i.e., to quantify the effect of
input variability on the outputs). The hidden layer comprises N nonlinear hid-
den units and the output layer consists of one linear output unit. The activation
of each hidden unit j is obtained as sum between the weighted linear combi-
nation, with weights Ω̈i,j , i = 1, ..., F , j = 1, ..., N , of the F interval-valued
inputs Ẍ and the bias Ω̈0,j . Since both weights and biases are intervals, this
linear combination results in a new interval. The output of each hidden unit is
then obtained by transforming its activation interval using a hyperbolic tangent
(sigmoid) function. Since the function is monotonic, this transformation yields
a new interval [5]. Finally, the output of the network, Ÿ , is obtained as the sum
between the weighted linear combination, with weights Ω̈j , j = 1, ..., N , of the
outputs of the hidden layer, and the bias Ω̈0. The overall processing method is
based on the fundamental arithmetic operations on IR shown in Table 1. The
resulting model can be used in two ways [4]: (i) as a granular function approxima-
tion model, whose granular weights can be adjusted through supervised learning
by minimizing an error function; (ii) as an instrument to evaluate the prediction

Fig. 1. The proposed architecture of MLP for interval-valued data
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of a pre-adjusted MLP model subject to variable uncertainty associated with
its input variables. Such input uncertainty can be characterized using interval
inputs of different lengths.

4 The Training of the Interval-Valued MLP

As pointed out in [5], the width of the predicted output regions for an interval
MLP is affected by the width of the weight intervals. Wide widths cause the
propagation of large ranges of intermediate values through the network, thus
generating wide output intervals. This is known as “bound explosion” effect. To
control this effect, we adopt the following procedure. Let {Ẍ, Ÿ } ∈ IRF+1 be
a set of T input-output interval-valued samples, represented as midpoint and
half-width. First, we use the midpoints of T to train a conventional MLP which
has the same structure as the interval-valued MLP to be developed. We adopt
the Levenberg-Marquadt method. In this way, we form a reference model, which
solves the regression problem for reference points of the interval-valued data.
When we tackle the regression problem for the interval-valued data, we expect
that the interval weights and biases contain the numerical weights and biases
(ω̇(init)

i,j and ω̇
(init)
j ) of the reference model, respectively. Further, we expect that

the widths of these intervals are constrained by the level of granularity of the
mapping that is determined by the problem and by the desired resolution with
which the user is interested in observing the data.

The first requirement is satisfied by enforcing the following relationship:

ω̇
(init)
i,j ∈ Ω̈i,j and ω̇

(init)
j ∈ Ω̈j ∀i, j . (5)

As regards the second requirement, we enforce that the half-widths of weights
and biases are bounded by an interval-valued percentage of the initial values:

ω̂i,j ∈ |ω̇(init)
i,j | · G̈ and ω̂j ∈ |ω̇(init)

j | · G̈ ∀i, j . (6)

where G̈ = [g, g] ∈ IR+, with g, g ∈ R+, is a granularity interval expressed
in percentages which allows to adapt the granularity of the mapping to the
granularity level of the information. The choice of G̈ depends on the specific
performance index used to assess the quality of the model. For instance, in our
case we used the network error.

To learn the interval-valued weights and biases, standard error back prop-
agation is likely to give poor results [5]. Indeed, the network prediction error
surface is expected to be very nonlinear with several local minima. A global
search method is much more desirable. Genetic algorithms (GAs) and evolu-
tionary strategies are, in general, effective examples of such methods. Thus, we
decided to adopt a GA. Fig. 2 shows the chromosome coding used in the GA.
The initial population is randomly generated by satisfying the constraints in
formulas (5) and (6). Chromosomes are selected for mating by a fitness pro-
portional strategy. We apply the classical two-point crossover operator, with a
user-defined crossover probability Pc. The mutation operator is controlled by a
mutation probability defined as γm/L, where γm is a user-defined mutation co-
efficient and L = 2N(F + 2) + 2 is the chromosome length. We randomly choose



176 M.G.C.A. Cimino et al.

Fig. 2. The chromosome coding

a user specified percentage PR of the genes that undergo mutation. Then, we
replace the current values of each selected gene by randomly extracting two val-
ues in the intervals [|ω̇(init)

i,j | · g, |ω̇(init)
i,j | · g] and [ω̇(init)

i,j − ω̂i,j , ω̇
(init)
i,j + ω̂i,j ],

respectively. The first interval is directly related to the definition of G̈. Once
provided ω̂i,j , from formulas given by (6) we derive that the maximum distance
from ω̇

(init)
i,j can be ω̇

(init)
i,j ± ω̂i,j .

As regards the fitness function, unlike the network error functions proposed
in the literature that implicitly assume an isomorphism between IR and R2, we
adopt the following error function directly derived from the interval arithmetic
operations shown in Table 1:

E =
1
T

T∑
i=1

Ei , Ei = dist(Ÿi, Ÿ
′
i ) ∈ R+ . (7)

where Ÿi and Ÿ ′
i are the desired and network outputs. The algorithm stops if

a maximum number NG of generations is reached or if the best fitness of the
population is lower than a prefixed fitness threshold τ .

5 Experimental Results

A variety of works have been developed in the field of interval-valued data. Unfor-
tunately there is still a lack of significant benchmark datasets for interval-valued
data regression. In this section, we discuss the application of our interval-valued
neural architecture to one real world and two synthetic datasets. In all experi-
ments, the data are normalized between 0 and 1 (by subtracting the minimum
value and dividing the data by the difference between the maximum and the
minimum values). The population of the GA consists of 20 chromosomes. The
parameters Pc, γm, PR, and τ have been set to 0.4, 0.7, 10%, and 0.001, respec-
tively. We used a value of NG equals to 500 except for the experiment in section
5.3 where we adopted a value equals to 1000.

5.1 The Salary Dataset

The Salary dataset [10] shown in Fig. 3.a consists of 30 interval-valued samples
which represent the range of salaries by years of experience for American males
with degree in 1989. The original data samples are not granular, and subject to
significant sampling error. First, fuzzy information granules have been generated
via FCM clustering. Hence, an alpha-cut of 0.05 has been applied to the resulting
fuzzy partition. Finally, interval-valued data have been derived considering, for
each alpha-cut, the smallest containing rectangle. We adopted a 10-fold cross-
validation: for each trial, the training and the test sets consist of the randomly
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Fig. 3. (a) The Salary dataset. (b) Training error versus generations in a trial.

extracted 90% and 10% of the original data, respectively. The granularity interval
used to observe the mapping is G̈ = [0, 4]%. The network has been equipped with
15 hidden neurons. The mean values ± the standard deviations of the error on
training and test set are, respectively, 0.007 ± 0.0051 and 0.018 ± 0.028. We
can observe a good balance between the values of errors for the training and test
sets. This confirms sound generalization capabilities of the network.

Fig. 3.b shows the error of the best chromosome of each generation versus the
number of generations in a sample trial. We observe that the error gets stable
around 100 generations.

5.2 The Peak Dataset

The Peak dataset shown in Fig. 4.a consists of 189 synthetic interval-valued
samples. Again, we adopted a 10-fold cross-validation. The granularity interval
used to observe the mapping is G̈ = [0.4, 4]%. The network has been equipped
with 30 hidden neurons. The mean values ± the standard deviations of the

Fig. 4. (a) The Peak dataset. (b) Training error versus generations in a trial.
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error on training and test set are, respectively, 0.0064 ± 0.0014 and 0.0085 ±
0.0043. We can observe that the error in the test set is very close to the error
in the training set, thus pointing out the good generalization capabilities of the
network. Fig. 4.b shows the error of the best chromosome of each generation
versus the number of generations in a sample trial. We observe that the error
gets stable around 500 generations.

5.3 The Wave Dataset

The Wave dataset shown in Fig. 5.a consists of 400 synthetic interval-valued
samples in the three-dimensional space. The network has been equipped with
15 hidden neurons. We use this dataset for analyzing the differences between
the mappings with different granularity intervals. Fig. 5.b shows the error of
the best chromosome of each generation versus the number of generations when

Fig. 5. (a) The Wave dataset. (b) Training error versus generations with G̈1 =
[0.2, 10]% and G̈2 = [10, 50]%.

Fig. 6. Models generated by the network. (a) G̈1 = [0.2, 10]%. (b) G̈2 = [10, 50]%.
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the network is trained with the granularity intervals G̈1 = [0.2, 10]% and G̈2 =
[10, 50]%.

Fig. 6.a and Fig. 6.b show the models generated by the network in the two
cases, respectively. We can observe how the model generated by using G̈2 is
coarser than the model generated using G̈1. Further, in the former, the error
gets stable around 500 generations against the 300 of the latter.

6 Conclusions

We have proposed a new genetic-based learning method for a general interval-
valued neural architecture. The originality of the approach concerns the training
process which allows a valuable sensitivity analysis. We have quantified the ef-
fectiveness of the approach in terms of generalization capabilities and sensitivity
by using three interval-valued datasets.
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Abstract. The classic approach to text categorisation is based on a
learning process that requires a large number of labelled training texts
to achieve an accurate performance. The most notable problem is that
labelled texts are difficult to generate because categorising shorts texts
as snippets or messages must be done by human developers, although
unlabelled short texts could be easily collected. In this paper, we present
an approach to categorising unlabelled short texts which only require,
as user input, the category names defined by means of an ontology of
terms modelled by a set of proximity equations. The proposed classifica-
tion process is based on the ability of a fuzzy extension of the standard
Prolog language named Bousi∼Prolog for flexible matching and know-
ledge representation. This declarative approach provides a text classifier
which is fast and easy to build, as well as a classification process that is
easy for the user to understand. The results of the experiment showed
that the proposed method achieved a reasonably good performance.

Keywords: Text Categorization, Thesauri, Fuzzy Declarative Languages.

1 Introduction

Text categorisation (also known as text classification) is the task of automatically
sorting a set of documents into categories from a predefined set [9]. In automatic
text categorisation, the decision criterion of the text classifier is usually learned
from a set of training documents, labelled for each class. One of the problems with
this method is related with the exponential growth of the number of training set
documents required as the precision degree of the method increases. This way,
the time and effort required for collecting and preparing an adequate training
set could be a restriction, and probably, prohibitive. This is an important issue
when classifying short texts because although there are a lot of available short
texts, the majority of them are unlabelled. Moreover, short text categorisation
cannot be carried out by relying only on statistical methods; it is also necessary
to exploit the semantic relationships between words.
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This work tackles the problem of classifying short texts without using training
data; that is, a collection of short texts which has been previously classified. In-
stead, a method that only uses prior domain knowledge is developed. Hence, the
one single input of this method is the list of category names. These names are
transformed into a set of concept descriptions extracted from thesauri and on-
tologies like WordNet [2] or ConceptNet [7] by measuring the semantic closeness
between the concepts involved with each one of the categories. These descrip-
tions are the basis of the classification method. Furthermore, in our method,
the classification process is based on the ability of an extension of the standard
Prolog language, named Bousi∼Prolog fto carry out flexible matching and know-
ledge representation. This extension offers a fuzzy unification mechanism based
on closeness relations which allows a flexible search for concepts in texts. Hence,
our method implements a clean separation between knowledge knowledge (re-
fined by an ontology), logic (expressed by rules) and control (let automatic to
the abstract machine supporting the underlying programming language).

The combination of these components provides a declarative approach to text
classification, in which a text classifier is easier to build than it usually is. At
the same time, the classification process becomes more understandable for the
user, since it mainly relies on an ontology description. While most of the work
in classification nowadays is founded on statistical methods, this paper takes
a Semantic Web and Soft-Computing approach using thesauri as a source of
domain knowledge.

The paper is organized as follows: Section 2 includes a concise summary about
proximity relations between concepts and the Bousi∼Prolog language which of-
fers the required mechanisms to implement a text categorization method using
a declarative approach. Section 3 describes our method in detail including an
explanatory example. Section 4 explains the experiment and the results obtained
in order to verify the goodness of the solution. Finally, our conclusions and future
work lines are given in Section 5.

2 Background

2.1 Proximity Relations between Concepts

Binary fuzzy relations were introduced by Zadeh in [10]. Formally, a binary fuzzy
relation on a set U is a fuzzy subset on U×U (that is, a mapping U×U −→ [0, 1]).
Given a and b two elements in U , an entry of a fuzzy relation will be denoted as
R(a, b) = α, being α its relationship degree.

A binary fuzzy relation R is said to be a proximity relation if it fulfills the
reflexive property (i.e. R(x, x) = 1 for any x ∈ U) and the symmetric property
(i.e. R(x, y) = R(y, x) for any x, y ∈ U). A proximity relation which in addition
fulfills the transitive property (i.e., R(x, z) ≥ R(x, y)-R(y, z), for any x, y, z ∈
U) is said to be a similarity relation. The operator ‘-’ is an arbitrary t-norm.
The notion of transitivity above is --transitive. If the operator - = ∧ (that is,
it is the minimum of two elements), we speak of mim-transitive or ∧-transitive.
This is the standard notion of transitivity used in this paper.
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According to the approach introduced in this paper, concepts with a positive
closeness relation to a category name should be identified, including the degree
of the relationship (a real value ranging from 0 to 1) and formalised into a fuzzy
relation. For this purpose, different conceptual relations included in Concept
Net and WordNet have been used to estimate the relationship degree between
two concepts, i.e. to estimate how semantically similar or close they are. In
the following paragraphs, we summarise the main sources for determining the
conceptual relations used in this paper.

ConceptNet [7], is a freely available common sense knowledge base and natural
language processing toolkit. ConceptNet provides utilities for computing the
degree of conceptual neighborhood between some elements (concepts). Then, for
each element b in the list of contextual neigbour concepts of a source concept
a and their degree of relationship α, an entry R(a, b) = α of a fuzzy relation is
built. This degree is found by performing spreading activation from that source
concept, radiating outwardly to include other concepts. The relatedness of any
particular concept with some other concept is a function of the number of links
and the number of paths between them, and the directionality of the edges.

WordNet [2] has been another source of knowledge used in this work. Word-
Net::Similarity [8] has been used here to obtain several measures of semantic
relatedness between pairs of concepts (or word senses) which are based on the
WordNet lexical database. For this purpose, definitions of each one of the cate-
gories in WordNet and Wikipedia has been used to estimate a proximity degree
by means of the measures included in WordNet::Similarity.

Before ending this subsection, it is important to mention that all of the above
detailed methods build just a partial view of a fuzzy relation (certainly, only the
entries connecting a category with a set of related terms are produced). There-
fore, some post-processing of that partial relation may be needed, depending
on what features of the semantic relationship are required. It is necessary to
build the reflexive, symmetrical closure of the partial relation to work with a
proximity relation. On the other hand, if the desired relation is a similarity one,
the reflexive, symmetrical and transitive closure of the partial relation should
be built. Fortunately, Bousi∼Prolog gives automatic support for the generation of
these kinds of closures.

2.2 Bousi∼Prolog and Flexible Search

Bousi∼Prolog [4] is a fuzzy logic programming language whose main objective
is to make the query answering process flexible, and to manage the vagueness
which occurs in the real world by using declarative techniques. Its design has
been conceived to make a clean separation between Logic, Vague Knowledge and
Control. In a Bousi∼Prolog program Logic is specified by a set of Prolog facts and
rules, Vague Knowledge is mainly specified by a set of, what we call, proximity
equations , defining a fuzzy binary relation (expressing how close two concepts
are), and Control is let automatic to the system, through a “weak” SLD reso-
lution operational mechanism. Weak SLD resolution is an enhancement of the
SLD resolution principle where the classical syntactic unification procedure is
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replaced by a fuzzy unification algorithm based on proximity relations defined
on a syntactic domain. Informally, this weak unification algorithm states that
two terms f(t1, ..., tn) and g(s1, ..., sn) weakly unify if the root symbols f and
g are close, with a certain degree, and each of their arguments ti and si weakly
unify. Therefore, the weak unification algorithm does not produce a failure if
there is a clash of two syntactical distinct symbols, whenever they are appro-
ximate, but a success with a certain approximation degree. Hence, Bousi∼Prolog

computes substitutions as well as approximation degrees.
Bousi∼Prolog is implemented as an extension of the standard Prolog language.

The Bousi∼Prolog syntax is mainly the Prolog syntax but enriched with a built-in
symbol “∼” used for describing proximity relations 1 by means of what we call a
“proximity equation”. Although, a proximity equation represents an entry of an
arbitrary fuzzy binary relation, its intuitive reading is that two constants, n-ary
function symbols or n-ary predicate symbols are approximate or similar with a
certain degree. That is, a proximity equation a ∼ b = α can be understood in
both directions: a is approximate/similar to b and b is approximate/similar to
a with degree α. Therefore, a Bousi∼Prolog program is a sequence of Prolog facts
and rules followed by a sequence of proximity equations.

On the other hand, Bousi∼Prolog implements a number of remarkable features,
such as the inclusion of fuzzy sets in the core of the language [6] or the automatic
support for generating reflexive, symmetric and transitive closures of a fuzzy
relation [5]. The last one is intensively used in our proposal of categorization
through the internal operational mechanism of Bousi∼Prolog.

3 Text Classification Proposal

Bousi∼Prolog allows us to implement a declarative approach to text categorisation
using flexible matching and knowledge representation by means of an ontology of
terms modelled by a set of proximity equations. The following sections show how
proximity equations can be used as a fuzzy model for text categorisation when
the knowledge base is selected from an ontology; that is, a structured collection
of terms that formally defines the relations among them [3] inside a semantic
context rather than a purely syntactic one.

The objective of any process of text categorisation is to classify each one of
the documents by assigning them to one or more predetermined categories. In
our approach, the availability of a set of labelled texts or a training process is
not necessary; only background knowledge is used to classify the documents.

In order to describe our classification method effectively and to detail the
different phases enumerated, let us consider a running example that we shall
develop throughout this section. Firstly, the problem of classifying a short text
(160 characters) with regard to a set of categories will be considered. Then, the
results produced by the proposed method will be described.

1 Actually, fuzzy binary relations which are automatically converted into proximity
or similarity relations.
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Example 1. Consider a set with tree categories wheat, grain and ship jointly
with the following short text extracted from the Reuters Test collection2.
Israel will tender overnight for 33,000 long tons of U.S. sorghum and/or 22,000 long
tons of U.S. corn for April grain shipment, private export sources said.

First we want to link one o several categories with the document, since this is
the essence of a classification process. On the other hand, note that the “Reuters
expert” classified the text with the category grain. A category like ship is also
possible but the expert didn’t choose them. Therefore, we would like to identify
what is the knowledge that the expert used to classify the document in these
categories.

The proposed method consists of the following steps or phases:

1. Knowledge Base Building: The first step is to define each of these cate-
gories as accurately as possible. The starting point of this definition is the
concept related to the category name. Therefore, concepts like “wheat” or
“ship” (which are defined as categories in the Reuters Collection), will be
the source of the background knowledge. The definition of a concept is built
from the set of concepts that are semantically close to it. These semantic
relationships are built according to the techniques described at the end of
Section 2.1 to construct a (partial) fuzzy relation. Once the fuzzy relation
is established, it is represented through a set of proximity equations and
then these equations are loaded into the Bousi∼Prolog system. Bousi∼Prolog
automatically generates the reflexive and symmetric closures of the original
(partial) relation, starting from the set of proximity equations. Optionally,
a transitive closure could also be generated, producing a similarity relation.
For our running example (Example 1), the knowledge is extracted from a
thesaurus. More precisely, the sources are Wordnet related terms and one
of the WordNet::Similarity measures, in this case, the Vector measure (the
relatedness of two terms is computed as the cosine of their representative
gloss vectors), leading to the following set of proximity equations:

wheat~bulghur=0.25 wheat~cereal=0.89 wheat~durum=0.96 wheat~grain=0.27
grain~cereal=1 grain~seed=0.32 grain~corn=0.35 grain~sorghum=0.33
ship~watercraft=0.19 ship~shipment=0.5 ship~travel=0.18 ship~transport=0.8

2. Document Processing: The input documents are processed using classical
techniques of natural language processing: removing stop words, performing
a stemming process based on WordNet and grouping meaningful couples of
words. For our running example, the text obtained after this process is the
following:

israel tender overnight long tons sorghum long tons corn april grain shipment
private export sources

3. Flexible Search: Bousi∼Prolog is used to search for the terms which are
close to a category in the content of each text to classify, obtaining their
degrees of occurrence. The Bousi∼Prolog predicate inspect/3 reads a text,
word by word, looking for words that are close (according to the proximity
equations) to one of the pre-established categories. As a result, the predicate

2 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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inspect/3 returns a sequence of triples t(Xi, Ni, Di), where Xi is a term
close or similar to the category, with degree Di, occurring Ni times in a
text i. In order to search for words close or similar to a given one, this
predicate relies on the fuzzy unification mechanism implemented in the core
of the Bousi∼Prolog language. More specifically, it uses a weak unification
operator, also denoted by ∼, which is the fuzzy counterpart of the syntactic
unification operator present in the standard Prolog language. Coming back
to our running example, after inspecting the text of the example for the
category ship, by using the predicate inspect/3, the result would show the
number of times that the word “shipment” occurs within the text (i.e. just
only once) and the degree of relation between this word and the category
ship (a degree of 0.5).

4. Computing Document Compatibility Degrees: The compatibility de-
grees of the text with regard to a category are computed using a certain
compatibility measure. A compatibility measure is an operation which uses
the occurrence degrees Di of the terms close to a category c to calculate a
text compatibility degree CDc

i , that is, an index of how compatible is the
document with regard to the analyzed category. The predicate compDegree/4

process the information provided by the predicate inspect/3. For each triple
t(Ti1 , Ni1 , Di1), ..., t(Tin , Nin , Din), the compatibility degree of one category
c with the text i, (CDc

i ) is computed. The use of several formulae to ob-
tain these compatibility degrees is possible. For our running example, using
the compatibility measure operator sum (weighted sum of the occurrence de-
grees), defined in Equation 1, we obtain a 0.5 compatibility degree with the
category ship for the corresponding document. At the end of this process,
each category reaches a compatibility degree within each document.

CDc
i =

n∑
k=1

(Nik
∗ Dik

) (1)

5. Classification Process: The text classification procedure is very simple:
the categories with the highest compatibility degree are selected as the
“winners”. A predicate classify/2 takes the document compatibility list,
obtained in the previous phase. This list may contain one or several cate-
gories or it may be empty. In the last case, the document is not classiffied.
For our running example, the categories wheat, grain and ship have a posi-
tive compatibility degree, 1.57, 1.68 and 0.5 respectively. The category grain

is the winner. The word “grain” occurs in the text and the semantic prox-
imity between the words “sorghum” and “corn” and grain provides a high
compatibility degree between the document and this category. The category
wheat has a positive degree because the word “wheat” is indirectly related to
“sorghum” and “corn” (through grain). The word “shipment” is also directly
related to ship. This reasoning scheme would be, more or less, the procedure
that the expert could have followed to classify the document based on the
ontological/semantic knowledge represented by the proximity equations.
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4 Experimental Results

Our experiment consists of classifying a set of short texts (news limited up to 160
characters long) selected from Reuters-21578, the most widely used test collec-
tion for text categorisation research. The test data set contains 173 pre-classified
articles corresponding to 6 overlapped categories (Table 1). The classification
accuracy, defined as the percentage of samples correctly classified, was used to
determine the performance of our technique.

Table 1. Categories

Category Documents Category Documents

earn 81 acq 58
grain 16 money 17
wheat 7 ship 7

During the analysis of the experimental results, while comparing the per-
centage of correct classifications with the “incorrect ones”, it is important to
distinguish between those produced by wrong classifications and those from un-
done classifications. The first case, wrong classifications, implies a contradiction
with the knowledge used by the expert for classifying the texts. The undone
classifications is the worst case as it means that one or more definitions are ab-
sent from the knowledge base, although they should (or could) be completed in
a subsequent phase.

The classification process was carried out with each one of the semantic rela-
tions previously defined in Section 2.1, i.e., the Context Neighborhood extracted
from Concept Net, and WordNet::Similarity combined with Wikipedia a Word-
Net. The baseline is represented by the use of the syntatic equality, a category
is represented only by its name. Classification results are shown in Table 2.
The number of elements not classified by the contextual proximity is not ac-
ceptable. The best results were obtained by using the combination of Wikipedia
and Wordnet::Similarity, which brings a more complete concept definition of
the categories. The approach proposed here is a classification method with a
limited complexity and a high dependency on the knowledge base used. Despite
of this, our preliminary results could be considered very encouraging because
they are better than those results obtained by [1], which also used WordNet and
Wikipedia in combination.

Table 2. Accuracy Results

Proximity Relation Corrects Wrongs Unclass.

Wikipedia/Vector 81% 13% 6%
WordNet/Vector 73% 9% 17%
ConceptNet/Context Neighborhood 65% 3% 32%
Baseline 10% 2% 88%
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5 Conclusions and Future Work

This paper proposes a fuzzy declarative text categorisation approach which does
not need previously labelled documents for training. This method of categori-
sing short texts is based exclusively on domain knowledge instead of training
examples. The knowledge used for the classification process could be obtained
from generic thesauri and is expressed in a way that is understandable for any
non-expert user. The experiment results show that the approach is satisfactory
according to the semantic relations used. Thus, the proposed approach could be
considered a reasonable methodology for classifying short texts if there is good
domain knowledge that allows building up the fuzzy knowledge base. Therefore,
the main problem of the approach is that its performance depends on the quality
of the category definitions (represented by the proximity equations). In order to
solve this problem, in our future work it is necessary to define how closeness
relations could be combined and whether such a combination would be helpful,
or how to find the appropriate sources of background knowledge. It is also re-
commendable to carry out new experiments with more specific short text data
collections.

Acknowledgments. This research was partially supported by the MICINN
(Spain) under TIN2010-20395 and TIN2007-65749 projects and by the JCCM
(Spain) under PEIC09-0196-3018, POII10-0133-3516 and PII1I09-0117-4481
projects.

References

1. Barak, L., Dagan, I., Shnarch, E.: Text categorization from category name via
lexical reference. In: Proc. of the NAACL 2009, pp. 33–36. Association for Com-
putational Linguistics, Morristown (2009)

2. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

3. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43(5-6), 907–928 (1995)

4. Julián, P., Rubio, C.: A Declarative Semantics for Bousi∼Prolog. In: Proc. of the
PPDP 2009, pp. 149–160. ACM, New York (2009)

5. Julián, P.: A procedure for the construction of a similarity relation. In: Proc. of
the IPMU 2008, pp. 489–496. U. Málaga (2008)

6. Julián, P., Rubio, C.: An efficient fuzzy unification method and its implementation
into the Bousi∼Prolog system. In: Proc. of the FUZZ-IEEE 2010, pp. 658–665
(2010)

7. Liu, H., Singh, P.: Commonsense reasoning in and over natural language. In: Ne-
goita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215,
pp. 293–306. Springer, Heidelberg (2004)

8. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet:similarity: measuring the
relatedness of concepts. In: HLT-NAACL 2004. pp. 38–41 (2004)

9. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

10. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)



Subtractive Initialization of Nonnegative Matrix

Factorizations for Document Clustering

Gabriella Casalino1, Nicoletta Del Buono2, and Corrado Mencar1

1 Dipartimento di Informatica,
2 Dipartimento di Matematica,
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Abstract. Nonnegative matrix factorizations (NMF) have recently as-
sumed an important role in several fields, such as pattern recognition,
automated image exploitation, data clustering and so on. They represent
a peculiar tool adopted to obtain a reduced representation of multivariate
data by using additive components only, in order to learn parts-based rep-
resentations of data. All algorithms for computing the NMF are iterative,
therefore particular emphasis must be placed on a proper initialization
of NMF because of its local convergence. The problem of selecting appro-
priate starting initialization matrices becomes more complex when data
possess special meaning, and this is the case of document clustering. In
this paper, we present a new initialization method which is based on the
fuzzy subtractive scheme and used to generate initial matrices for NMF
algorithms. A preliminary comparison of the proposed initialization with
other commonly adopted initializations is presented by considering the
application of NMF algorithms in the context of document clustering.

1 Introduction

Several applications store pertinent information in a huge matrix which is often
non-negative. Examples are documents in document collections, which are stored
as columns of term-by-document matrix, whose elements count the number of
times (possibly weighted) a corresponding term appears in a selected document.
Similarly, in image collections, each image is represented by a vector whose
elements correspond to the intensity and/or the color of the image pixels. In
recommender systems, the information for a purchase history of customers or
ratings on a subset of items is stored in a non-negative sparse matrix.

Three common goals can be identified when mining information from non-
negative matrices: to automatically cluster similar items into groups, to retrieve
items most similar to a user query, to identify interpretable critical dimensions
within the collection.

Taking into account the non-negativity constraint, benefits in terms of mean-
ingful interpretations of the obtained model can be added to any data analysis
process. Nevertheless, classical tools are not able to guarantee the conservation
of the non-negativity.
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Recently, non-negative matrix factorization (NMF) received an increasing at-
tention from the data analysis community due to its capabilities of obtaining
a reduced representation of data only using positive restrictions [9]. These con-
straints led to a part-based representation, because they allow nonnegative lin-
ear combination of a set of nonnegative “bases” that represent realistic “building
blocks” for the original data. More formally, given an initial set of data expressed
by a n × m matrix X , whereas each entries Xij represents in a broad sense the
score obtained by the entity j on the variable i, a NMF consists in approximating
(generally, in terms of Frobenius norm) the matrix X with the product of two
reduced rank nonnegative matrices, the n × r basis matrix W , and the r × m
encoding matrix H (with rank factor r < min(m, n)), so that X ≈ WH .

In this way, the perception of the whole, being it an image or a document
in a collection, becomes a combination of its parts represented by basis vectors.
Particularly, in the standard vector space model context, when X represents a
term-by-document matrix, the basis vectors identify a set of words denoting a
particular concept or topic and each column of H contains an encoding of the
linear combination of basis vectors approximating the corresponding column of
X . Hence, each document is viewed as combination of basis vector and it can
be categorized as belonging to a specific topic. So, nonnegative factors of NMF
can be directly applied to perform partitional clustering that identifies semantic
features in a document collection and groups the documents into clusters on the
basis of shared semantic features [8,10,11]. Moreover, this factorization can be
used to compute a low rank approximation of a large sparse matrix along with
preservation of natural data non-negativity.

All algorithms for computing the NMF are iterative and require initializa-
tion of the basis and encoding matrices. Therefore, the efficiency of many NMF
algorithms is affected by the selection of the starting matrices: poor initializa-
tion often results in slow convergence or lower error reduction. Furthermore,
the problem of selecting appropriate initializations becomes more complicated
when certain structures or constraints are imposed on the factorized matrices or
when the data possess special meaning as in the context of document clustering.
Different initialization mechanisms have been proposed in literature: some of
them lead to rapid error reduction and faster convergence of the adopted NMF
algorithm, others lead to better overall error accuracy at convergence. However,
there does not exist a definitive suggestion about the best initialization strategy
to be adopted for different NMF algorithms [6].

In this paper, we propose the use of the subtractive clustering [3], a fast
method for estimating clusters in the data, as a basis scheme to generate the
initial matrices W (0) and H(0) for any NMF algorithm. Each obtained cluster
center can be directly translated into columns of the initial basis matrix W (0),
while elements in the encoding matrix can be obtained as fuzzy membership
degree of each data to each cluster. With respect to other cluster methods, such
as k-means, widely used for NMF initialization, subtractive clustering could
also be used to suggest the proper rank factor, when average distance between
document data is estimated.
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The rest of the paper is organized as follows. In the next section, we briefly
review some of the NMF algorithms commonly used for document clustering
together with some initialization strategies. Then, we illustrate the subtractive
clustering and how it can be adopted to generate W (0) and H(0). In section
4, we report the results obtained from different NMF algorithms initialized by
the proposed approach in clustering a subset of the Reuters data corpus. Com-
parisons with some usually adopted initialization techniques and evaluations of
the obtained clusters are also reported. Finally, some conclusive remarks and
guidelines for future work are sketched in section 5.

2 NMF Algorithms and Classical Initializations

A NMF of a given data matrix X can be obtained by finding a solution of
a non-linear optimization problem over a specified error function. The most
frequently adopted error function is the squared Euclidean distance which leads
to the minimization of the functional ‖X−WH‖2

F subject to the non-negativity
constraints over the elements Wij and Hij .

The most popular approach to numerically solve the NMF optimization prob-
lem is the multiplicative update algorithm (NMFLS) proposed in [9]. It can
be shown that, starting from some nonnegative initial matrices, the square Eu-
clidean distance is non-increasing under the following iterative update rules:

Hij ← Hij
(WX)ij

(WWH)ij + ε
Wij ← Wij

(XH)ij

(WHH)ij + ε
(1)

where ε is a small positive parameter used to avoid division by zero.
Algorithms following an alternating process, approximating (in the sense of

mean squared error) firstly W , then H , and so on, can be also adopted to obtain
a NMF of X . Particularly, starting from some nonnegative initialization of W ,
an elementary Alternate Least Square algorithm (ALS) [2] for minimizing the
square Euclidean distance measure is:

−Solve matrix equation : WWH = WX w.r.t H
−Set to 0 negative elements in H (projection step)
−Solve matrix equation : HHW = HXw.r.t W
−Set to 0 negative elements in W (projection step)

(2)

Different modifications of the standard cost functions have been proposed to
include further constraints on the factors W and/or H , such as sparsity or or-
thogonality. A nonnegative sparse encoding scheme (NMFSC), proposed in [7],
has the peculiarity of controlling the statistical sparsity of the H matrix in order
to discover parts-based representations that are qualitatively better than those
given by standard NMF. Orthogonal nonnegative matrix algorithms (ONMF)
attempt instead, to obtain the basis or the encoding matrix with columns as
orthogonal as possible, to minimize the number of basis components required to
represent the data and the redundancy between different bases [4].
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2.1 Initialization Mechanisms

All algorithms for NMF are iterative and require the computation of initial
matrices W (0) and/or H(0) by some numerical mechanism and then alternately
update W and H until there is no further appreciable change in the objective
function, yielding locally optimal solutions. The initial pair (W (0), H(0)) plays a
crucial role for the convergence speed of the iterative algorithm and to improve
algorithm performance. Moreover, when NMF is applied to document clustering,
initial matrices should also posses meaningful interpretations.

Initialization schemes can be classified in simple mechanisms, based on some
kind of randomization, and complex schemes based on some alternative low rank
factorization or clustering algorithms. The former class includes: (i) the random
initialization which produces dense matrices W (0) and H(0) of dimension n × r
and r × m, respectively, with elements randomly generated in [0,1], (ii) several
variants of random choices of columns in X used to build W (0) together with
random or zeros initialization of H(0). Complex initialization strategies exploit
clustering algorithms or some alternative low rank factorization scheme to con-
struct the initial pair (W (0), H(0)). Among this class, we can enumerate spherical
k-means initialization (kmeans) [12], Fuzzy C-Means (FCM) initialization [13],
and Nonnegative Double Singular Value Decomposition (NNDSVD) based on
two SVD processes [1]. Generally speaking, complex initialization strategies, re-
quire a higher computational costs, but they produce a fast error reduction, a
high convergence rate in NMF algorithms and reduce to the minimum or defi-
nitely do not require the use of any randomization step.

3 Initialization by Subtractive Clustering

In this section, we briefly describe the initialization scheme based on the subtrac-
tive clustering (SC) ([3]) and we illustrate how to generate the initial (W (0), H(0))
for any NMF iterative algorithm. It should be pointed out that, all clustering
methods adopted to initialize NMF algorithms need to fix the number of clusters
corresponding to the rank factor r, defining the dimensionality of the subspace
approximating the data. The SC, instead, is able to automatically discover the
most appropriate value of r, when an estimation of distance among data is pro-
vided.

Consider the data matrix X = [X1, X2, . . . , Xn], where without loss of gener-
ality each column vector Xj ∈ Rm is assumed to be normalized to have unit l2
norm.

The SC assumes each data point is a potential cluster center and calculates a
measure of the likelihood that each data point would define the cluster center,
based on the potential of surrounding data points as follows:

Pj =
n∑

k=1

exp
(
− 4

r2
a

‖Xj − Xk‖2

)
, (3)

being ra a positive constant representing a normalized radius defining a neigh-
borhood. According to (3), high potential values correspond to a data point with
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many neighborhood data points. Hence, we compute the potential of each data
point and then we select the point with the highest potential as the first clus-
ter center. Then, in order to avoid that points near to the first cluster center
could be selected as another center cluster, we subtract from each data point an
amount of potential proportional to its distance from the first cluster center. Af-
ter the potential reduction, we select the data point with the highest remaining
potential as the second cluster and we further reduce the potential of each data
point according to their distance to the second cluster center. Generally, after
the k-th center cluster X̃k has been obtained with potential P̃k, we reduce the
potential of each data point by:

Pj ← Pj − P̃k exp
(
− 4

r2
b

‖Xj − X̃k‖2

)
, j = . . . , n, (4)

where rb is a positive constant (typically chosen as rb = 1.25ra). The process
of finding new cluster center and reducing potential of all data iterates until
the remaining potential of all data points is bounded by some fraction of the
potential P̃1 of the first center cluster. The stopping criterion usually adopted is
P̃k < 0.15P̃1.

After the stopping criterion is satisfied, the SC applied to a term-by-document
matrix provides: the number r of clusters, the cluster centroids and their poten-
tial value P̃k, k = 1, . . . , r.

The initial matrices W (0) and H(0) are constructed as follows. The basis ma-
trix collects the cluster centroid vectors X̃k ordered by decreasing values of their
potential P̃k, i.e., W (0) = [X̃1, X̃2, . . . , X̃r]. The encoding matrix H(0) provides
the degree to which each document is assigned to each cluster. Particularly, the
elements H

(0)
kj , k = 1, . . . , r and j = 1, . . . , m, provide the fuzzy membership

value for the j-th document in the k-th cluster and are computed by

H
(0)
kj =

exp
(
− 1

2
‖Xj−W 0

∗k‖2

σ2

)
∑r

i=1 exp
(
− 1

2

‖Xj−W 0
∗i‖2

σ2

) (5)

being r the total number of clusters and σ2 = ra
2

8 . The denominator inside the
previous formula represents a normalization which is needed since the recon-
struction of a column Xi can be regarded as a weighted average of the centroids
W

(0)
∗i with respect to membership values in H(0) (which act as weights). The sum

of membership values must be equal to 1 in order to obtain a convex average
value.

4 Numerical Experiments

In this section, we illustrate the performance of some NMF algorithms applied
on a document clustering problem and we aim to compare the SC initializa-
tion with other complex initialization schemes. The initialization strategies have
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Table 1. Performance of the NMF algorithms initialized with different strategies ap-
plied to cluster data with k = 10

Effectiveness of init. NMFLS ALS ONMF NMFSC

Initial. Time Init. Err. Err. n iter Err. n iter Err. n iter Err. n iter

SC 0.6977 159.73 169.51 160 162.13 59 169.86 34 165.43 500
FCM 2.5053 190.74 163.92 406 164.10 270 165.50 309 167.22 500
NNSVD 0.7167 190.74 165.49 205 164.12 68 166.54 500 167.33 280
Rand - 39.51e6 164.40 500 164.48 122 165.58 500 167.73 500
K-Means 9.8546 168.73 167.25 81 164.34 170 169.55 66 169.32 156

been compared in terms of both the effectiveness of the starting pair (W (0), H(0))
(evaluated by ‖X−W (0)H(0)‖F ) and the run-time required to compute the initial
factors (evaluated in seconds). The NMF algorithms with different initializations
are compared in terms of error reduction and number of iterations. All the nu-
merical results have been obtained by Matlab 7.7 codes implemented on an Intel
Core Quad CPU Q6600 2.40 GHz.

The clustering problem is related to a subset of the Reuters data, consisting in
201 documents belonging to 10 categories. The dataset has been pre-processed to
remove the stop words by means of a common words dictionary and by applying
a stemming algorithm. The term-by-document matrix has been composed using
the standards TF-IDF weights, and possesses the 97% of sparsity degree.

Table 1 reports the effectiveness of initialization strategies, together with their
run-time values and the results obtained for each NMF algorithm (combined
with different initializations) at the end of the learning phase over the Reuters
dataset. For a fair comparison among all the algorithms, we adopted the same
stopping criteria: a maximum number of iterations (maxiter=500) and a fixed
tolerance (toll = 10−6) for the difference between two subsequent values of
the objective function. It should be pointed out that SC shows a good trade-
off between run-time values and effectiveness of the initial pair (W (0), H(0)),
when compared with other complex initialization schemes. The run-time value
for the random initialization has been omitted (being negligible), however this
initialization produces full initial matrices with poor accuracy. Moreover, SC
determines a higher convergence rate for some NMF algorithms.

The effectiveness of the clusters provided by NMF algorithms, with different
initializations, has been evaluated by the Davies-Bouldin index (DBI) [5], given
by 1

r

∑r
i=1 maxj:j �=i

Si+Sj

Mij
, where Si and Sj are the inter cluster similarity of the

ith and jth cluster and Mij is their intra-cluster separability. Figure 1 illustrates
the behavior of the DBI, when the cluster number increases. Small values of DB
correspond to clusters that are compact and whose centers are far away from
each other. The graphs also suggest that, for almost all initializations, the most
appropriate cluster number is 13. It should be also pointed out that SC is able
to automatically discover the proper number of clusters when the ra parameter
is set to the mean distance among documents.
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(a) (b)

(c) (d)

Fig. 1. DBI behavior related to the increasing number of clusters for (a) NMFLS , (b)
ALS, (c) ONMF and (d) NMFSC, with different initializations

Table 2. Cluster accuracy and mutual information results for the NMF algorithms
initialized with different strategies

NMFLS ALS ONMF NMFSC

Initial. Accuracy MI Accuracy MI Accuracy MI Accuracy MI

SC 0.45 1.20 0.48 1.27 0.44 1.17 0.48 1.49
FCM 0.45 1.35 0.50 1.54 0.44 1.27 0.45 1.36

NNDSVD 0.48 1.48 0.46 1.38 0.48 1.48 0.50 1.60
Rand 0.41 1.19 0.42 1.25 0.43 1.32 0.47 1.42

kmeans 0.41 1.33 0.45 1.31 0.41 1.33 0.41 1.33

Table 2 reports a further evaluation of the obtained clusters with respect to the
set of clusters defined by the original categorized documents in terms of cluster
accuracy and mutual information measures. As it can be observed from the table,
even if there are no appreciable differences among different initializations, SC
and FCM provide the better results for almost all NMF algorithms.
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5 Conclusive Remarks

In this paper, we proposed the fuzzy subtractive scheme as initialization for
NMF algorithms in the context of document clustering. The proposed method
is very fast in constructing initial pairs for NMF algorithms; in some cases it is
able to increase the performance of NMF methods both in terms of number of
iterations and accuracy of the final approximation. Moreover, differently from
other clustering initialization strategies (such as K-Means), the SC method is
able to predict the proper number of clusters, and consequently the rank factor
for the low rank factorization, when mean distance among documents is provided.
Future work can be addressed to assess the performance of NMF algorithms
with SC initialization on different datasets as well as to further investigate its
capability of predicting the most appropriate factor rank for data.
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Abstract. Many critical application domains present issues related to
imbalanced learning - classification from imbalanced data. Using conven-
tional techniques produces biased results, as the over-represented class
dominates the learning process and tend to naturally attract predictions.
As a consequence, the false negative rate may result unacceptable and the
chosen classifier unusable. We propose a classification procedure based
on Support Vector Machine able to effectively cope with data imbalance.
Using a first step approximate solution and then a suitable kernel trans-
formation, we enlarge asymmetrically space around the class boundary,
compensating data skewness. Results show that while in case of moderate
imbalance the performances are comparable to standard SVM, in case of
heavily skewed data the proposed approach outperforms its competitors.

1 Introduction

Data imbalance is a well known problem in the data mining community that
severely biases the learning process and badly affects the performances of the
mining algorithms. While both class imbalance and instance imbalance share
many common aspects - and affect both the supervised than the unsupervised
framework - the focus of our work is in instance imbalanced classification. Such
problem is crucial in many critical application domains, for example: intrusion
detection, fire alarm systems, gene selection, satellite data analysis, medical di-
agnosis and in all situations in which available instances of one class vastly
outnumber instances of other classes. A good survey of the general problem
framework may be found in [10]. The lack of data in minority class may be due
to extremely expensive or impossibly uniform data gathering process, natural
rarity, biased and/or partial information sources, errors, uneven sensor position-
ing etc. Nonetheless, rare cases are often the most interesting and valuable for the
data analyst. In most real world critical applications the cost of misclassification
of negative instances far exceeds the positive ones. For example in all aspects
of security, the system designer surely prefers to have a reasonable amount of
false alarms instead of just one undetected violation; in diagnosis of severe dis-
eases, the doctor surely prefers to have a reasonable amount of patients wrongly
alerted instead of some of them infected and undiagnosed. Leaving a classifier
learn on an imbalanced dataset without corrections will produce a classification
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biased towards the over-represented class and, as a side-effect, will skew the class
boundary towards the under-represented class.

The aim of our paper is to propose a modification of the SVM algorithm able to
balance the skewed data distribution. Nonlinear SVM are soft margin classifiers
and hence our approach can be classified in the broad area of soft computing.
For sake of simplicity, we consider a two class problem, but the approach is
easily extensible to n classes through the classics One-Versus-One/One-Versus-
All rules, or preferably through one of the more recent SVM aggregation methods
proposed in literature (for example the multi class tree structured SVM proposed
in [8], that seems to help by itself with unequal data distribution). Differently
from many others (see related work), our approach is not based on preprocessing
the data through a more or less “smart”resampling strategy: we propose an a
posteriori kernel transformation that unevenly expands distances in the feature
space in proximity of the boundary region. Based on real data testing with
different percentages of imbalance - once parameters are well setted - the method
has shown to be very effective, especially in extreme cases.

The paper is organized as follows: the most common variations of the SVM
algorithm for imbalanced learning are outlined in next section, where related
work is discussed; in section 3 the solution of the SVM algorithm is briefly
presented and the proposed variations described in detail; in section 4 used data
and experiments setup are described, results summarized; in section 5 main
conclusions are drawn and future work is outlined.

2 Related Work

Many approaches have been proposed in literature to allow SVM to better cope
with imbalanced data. From a general perspective, preprocessing strategies aim
to mask data imbalance to the classifier and are essentially based on oversampling
the minority class, undersampling the majority class or a combination of both.
Strategies varies by author, some are “smarter”than others, but all share the
same problem: oversampling increases artificially computational cost as adds
phantom data, while undersampling may discard useful information. A popular
method is Synthetic Minority Oversampling Technique [6], which rooted many
variations (i.e. [1,5]).

Algorithm modifications on their side aim to bias the learning process in
order to reduce majority class domination. They act on the boundary position:
dynamically during learning, changing or adding some parameters or weights, or
statically after learning, following proportionality criteria.

In literature the label “asymmetric Support Vector Machine”is often used to
indicate Cost Sensitive Learning strategies acting on slack variables, but may
broadly (and loosely) refer to any combination of the approaches previously
presented. In our method, we focus on kernel modification strategies on a two
class problem. We will not use data preprocessing, nor to generate, nor to dis-
card any data. Our purpose is to modify the Kernel K in a way equivalent to
asymmetrically changing the spatial resolution around the boundary.
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We will not consider here the recent family of one-class classifiers, as while
learning with only one target class (or only samples from one class) may be seen
as an extreme case of imbalancing, data gathering and processing is actually
different from learning two or more classes with heavily skewed sample distri-
bution. In our opinion, one class classifiers should not be used when multi class
labels are available.

3 Method

The classical solution of the SVM optimization problem for binary classification
is the hyperplane given in following equation (see [9]):

f(x) =
∑

s∈SV

αsys K(xs, x) + b (1)

Instance class depends on the side of the hyperplane in which each point is
located, formally by the sign of f(x). Support vectors are by definition the xi

such that αi > 0. If the points are linearly separable each support vector satisfies:

f(xs) = ys = ±1

When data are not linearly separable the solution may be found bounding mu-
tipliers αi with the condition αi ≤ C for - usually big - values of a positive
constant C.

It has been observed that the kernel K(x, x′) induces a riemannian metric in
the input space S through mapping φ [4]. The metric tensor induced by K on
x ∈ S is

gij(x) =
∂

∂xi

∂

∂x′
j

K(x, x′) |x′=x (2)

where K is the internal product K(x, x′) = Φ(x) Φ(x′) in some higher dimensional
feature space H , where φ is a mapping from S to H .

The volume element with respect to this metric is:

dV =
√

g(x)dx1...dxn (3)

where g(x) is the determinant of the matrix whose i, j element is gij . The mag-
nification factor

√
g(x), expresses a local volume expansion under mapping φ.

Many kernels have been studied in literature [7] and the optimal choice of
kernel is an active area of research. In the following we will consider the gaussian
RBF kernel.

3.1 Conformal Kernel Transformations

A conformal transformation is a transformation that preserves local angles. To
improve SVM discrimination power, authors in [2] proposed a (quasi) conformal
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transformation on the kernel, with the purpose of increasing the separation be-
tween the two classes close to the boundary, so to enlarge resolution in this area.
The general transformation form is:

K ′(x, x′) = D(x)K(x, x′)D(x′) (4)

for a suitable definite positive function D(x). If D(x) and K are gaussian, then
K ′ will also be gaussian. In this case K ′ satisfies Mercer condition. The specific
transformation function considered in [2] follows:

D(x) =
∑

xi∈SV

e−k||x−xi||2 (5)

where k is a positive constant. Support Vectors are by definition close to the
boundary, so enlargement is applied in proximity of them, indirectly involving
the boundary. The main problem is that they are not known in advance and
so a two step approach is needed: first a standard SVM is needed to find an
approximate solution (set of SV), then a second SVM is executed using the
new transformed kernel. Such a choice can be very sensitive to SV distribution,
enlarging more areas with high density of SV. Cited work does not explicitly
address the data imbalance issue.

The paper [12] tries to overcome the problem of support vector distribution
using a different adaptive (quasi) conformal transformation:

D(x) =
∑

xi∈SV

e−ki||x−xi||2 (6)

In this case each support vector has a different weight ki that can be used to
control its influence on space dilation. Considering a variable radius neighbor-
hood for each SV and averaging the distance in feature space between the given
xi and all neighbor SV that have different labels, authors claim it is possible to
calculate ki so to compensate for irregular spatial distribution of SV. They also
suggest that ki can be used to compensate for class imbalance, assigning bigger
values to the SV of the majority class.

From the same authors, an extension to non vector and non fixed dimension
data is presented in [13]. The proposed transformation is:

D(x) =
1

|χ∗
b |

∑
xb∈χ∗

b

e−kb||φ(x)−φ(xb)||2 (7)

where χ∗
b is the set of interpolated boundary instances and φ is the implicit trans-

formation from input space S to feature space H . The first notable difference is
in the way data imbalance is treated: observing that imbalanced data produce a
separating hyperplane that is skewed towards the minority class, authors suggest
as boundary an hyperplane found by interpolation between the center hyperplane
and the majority SV hyperplane. To estimate boundary hyperplane shifting from
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the center, a cost function balancing losses of false positives and false negatives
is proposed. The second notable difference is that distances are computed in the
feature space, instead of the input space, allowing comparison of data of different
lengths and even non vectorial. The main problem of both methods [12,13] is
their huge computational cost.

A similar, but more straightforward and efficient approach, called Kernel Scal-
ing (KS) is proposed in [11]. After a preliminary standard SVM, a second one is
executed with a transformed kernel based on the plain distance from the sepa-
rating hyperplane, instead of support vectors. In this way points that are further
from the boundary are shifted minimally, while points close to the boundary are
subject to maximum shifting. The concentration of support vectors in an area
is irrelevant. The proposed transformation function is:

D(x) = e−kf(x)2 (8)

where f(x) is given by 1 and k is a positive constant independent from data.
D(x) reaches it maximum on the boundary surface, where f(x) = 0, and decays
smoothly to e−k on the margins, where f(x) = ±1. Data imbalance is not
explicitly addressed.

3.2 Asymmetric Kernel Scaling (AKS)

The method proposed in [11] proved to be robust and efficient, but does not
account for imbalanced data. We propose an extension of it that can effectively
manage a markedly different number of training instances in the two classes.
The basic idea is to enlarge differently areas on the two sides of the boundary
surface, so to compensate for its skewness towards minority instances.

We first perform a standard SVM to compute an approximate boundary po-
sition, then we split the points in two sets, the negatives χ− and the positives
χ+, according to first step prediction. In the second step, the applied kernel
transformation function is:

D(x) =

{
e−k1f(x)2 , if x ∈ χ+

e−k2f(x)2 , if x ∈ χ− (9)

where k1 > k2 considering the positives as the majority class. In this way space
enlargement is different on the two sides of the boundary surface, allowing actu-
ally to compensate the bias due to data imbalance. Classification is performed
using the transformed kernel and a suitable value for k1 and k2. Concerning the
problem of estimation of parameters, while it may seem reasonable to connect
their value to the size of input data of each class, no evidence of an explicit
relation emerged in the experiments. We used grid search and cross validation
to find optimal values. The proposed solution is more flexible with respect to
[11], includes it as a special case (k1 = k2), and proved to be effective, especially
in extreme cases.
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4 Data, Experiments and Results

Data used in the experiments are from a dataset downloadable from the UCI
Machine Learning repository1. This dataset is composed of a range of biomedical
voice measurements from 31 people, 23 of which are affected by Parkinson’s
disease (PD) [3]. Each column in the table is a voice measurement, and each
row corresponds to one of 195 voice recording from these individuals. The most
common learning task on these data is to discriminate healthy people from those
with PD, according to “status”column, which is set to 0 for healthy and 1 for PD.
To test method robustness, artificially varying percentages of skewness have been
obtained, further removing minority class instances from the already imbalanced
PD data. 4 block of tests have been performed: the first one considering the
whole dataset; the second one removing 24 instances; the third one removing 36
instances; the fourth one removing 42 instances (extreme imbalancing), always
and only from minority class. Effects of parameters is shown in figure 1.

a) b)

c) d)

Fig. 1. Average accuracy on test sets for different sizes of the minority class a) whole
dataset; b) minority class less 24 instances; c) minority class less 36 instances; d)
minority class less 42 instances

1 http://archive.ics.uci.edu/ml/datasets/Parkinsons
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In the first step we perform a standard SVM classification, for which we used
a gaussian kernel with base 0.5 and C = 10. In the second step we performed
the classification with the transformed kernels. Best accuracy has been obtained
with k1 = 2.04 × 10−6 and k2 = 2 × 10−5. These values were obtained through
grid search and 5-fold cross validation.

Fig. 2. X axis corresponds to the number of samples of the under-represented class,
while Y axis represents the global accuracy. Classic SVM: dashed line; [11] SVM:
dashed-dotted line; our algorithm: solid line.

Comparing performances with both standard SVM and the method proposed
in [11], we have seen that If the data are not heavily imbalanced, there is not a
remarkable advantage in using our approach, but when very few instances remain
in the minority class, then our method markedly outperforms its competitors
(see figure 2). We point out that the accuracy showed to be very sensitive to
a good choice of parameters. Out of a narrow interval of k1 and k2 of effective
improvement, performance tends to drop to standard SVM.

5 Conclusions

In many challenging emerging applications, like fraud detection, genetic data
analysis or video classification, data are often imbalanced, and so is misclassifi-
cation cost. Using conventional techniques produces biased results, as the over-
represented class dominates the learning process and tend to always prevail. We
presented a classification procedure based on Support Vector Machine able to
effectively cope with data imbalance that is a generalization of [11]. On the basis
of real medical diagnosis data, we have shown that the more the distribution is
skewed, the more the proposed compensation is effective in improving the per-
formance of the Support Vector Machine. The method has two free parameters
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- whose choice critically affects performances - that have been empirically es-
timated. Future work is in studying a more effective estimation procedure for
parameters and different kernels.
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Abstract. Grid computing is an emerging framework which has proved
its effectiveness to solve large-scale computational problems in science,
engineering and technology. It is founded on the sharing of distributed
and heterogeneous resources capabilities of diverse domains to achieve a
common goal. Given the high dynamism and uncertainty of these sys-
tems, a major issue is the workload allocation or scheduling problem
which is known to be NP-hard. In this sense, recent works suggest the
consideration of expert schedulers based on Fuzzy Rule-Based Systems
(FRBSs) able to cope with the imprecise and changing nature of the
grid system. However, the dependence of these systems with the qual-
ity of their expert knowledge makes it relevant to incorporate efficient
learning strategies offering the highest accuracy. In this work, fuzzy rule-
based schedulers are proposed to consider two learning stages where good
quality IF-THEN rule bases acquired with a successful and well-known
strategy rule learning approach, i.e., Pittsburgh, are subject to a second
learning stage where the evolution of rule weights is entailed through
Particle Swarm Optimization. Simulations results show that evolution
of rule weights through this swarm intelligence -based strategy allows
the improvement of the expert system schedules in terms of workload
completion and increase the accuracy of the classical genetic learning
strategy in FRBSs.

Keywords: Bio-inspired Algorithms, Knowledge Acquisition, Fuzzy Rule-
Based Systems, Grid Computing.

1 Introduction

Grid computing is increasingly emerging as a promising distributed platform to
solve large-scale computational problems in diverse areas of science and tech-
nology which cannot be faced by organizations local resources capabilities as
independent entities [1]. A grid consists of a wide set of heterogeneous and geo-
graphically distributed resources from several administrative domains that share
capabilities and cooperate to overcome current limitations of single machines.
Moreover, grids are defined as “fully dynamic environments with uncertainties”
[2] where resources actively become available, fall down or reduce its capabili-
ties according to diverse administrative policies with time. A critical problem of
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these systems is how to cope with the uncertainty of resources state to achieve
an efficient workload allocation in the NP-hard scheduling problem [3].

Classical scheduling approaches in grid computing such as First Come First
Served (FCFS) or EASY-Backfilling (EASY-BF) [4] are based on the manage-
ment of jobs regarding diverse queue-based algorithms. Nevertheless, new trends
are focused on adaptive scheduling approaches which propose the consideration
of the grid state in order to prevent or avoid the scheduling strategy performance.
In this sense, schedule-based strategies such as Earliest Suitable Gap (ESG) [4],
try to provide efficient schedules according to a certain state of the system. How-
ever, as pointed out before, the grid state is inherently dynamic and uncertain
and thus, a precise characterization of resources current situation is not feasi-
ble with the consequent deterioration of traditional schedule-based strategies.
Hence, alternative strategies able to tolerate imprecision in systems information
and dynamism are pursued. In this regard, the role of Fuzzy Rule-Based Systems
(FRBSs) is to be underlined [5]. FRBSs are expert systems that consider the ap-
plication of fuzzy logic in the description of environment information through
fuzzy sets and that incorporate knowledge in the form of IF-THEN rules. These
systems have been extensively applied to a wide range of areas such as control
of elevator systems [6] or classification in the discrimination of speech and mu-
sic [7]. Furthermore, FRBSs are increasingly used for the design of scheduling
systems for grid computing [8,9] mainly due to their ability to provide a good
characterization of resources state and adaptability to system dynamism. How-
ever, the scheduler performance highly depends on the quality of its knowledge
base and this way, with the learning process, which arises as one of the striking
aspects of these systems.

In the learning of FRBSs, the importance of Genetic Algorithms (GAs) must
be underlined [5]. Genetic Fuzzy Rule-Based Systems (GFRBSs) [5] suggest the
encoding of whole rule bases (RBs) or rules as individuals of a population to be
evolved through the application of genetic operators such as selection, crossover
or mutation. One of the more successful genetic strategy for rules evolution is
Pittsburgh approach [10] where a population of RBs is evolved through a com-
petitive process. Nevertheless, once the expert scheduler has been provided with
a good quality knowledge, it could be interesting to entail a fine tuning of the
expert system through small modifications in the fuzzy sets that define the uni-
verse of discourse of each system feature describing a given state. However, as
found in literature [11], a rule weight adjusting process is equivalent to the mod-
ification of the membership functions of both antecedent and consequent fuzzy
sets. Moreover, this process requires a smaller computational effort when dealing
with a relative reduced number of fuzzy rules. In this work, the performance of
FRBSs used as meta-schedulers for grid computing is to be improved through
the adjusting of fuzzy rule weights learned for the expert system with a suc-
cessful strategy such as Pittsburgh approach. Furthermore, the utilization of the
well-known bio-inspired strategy based on swarm intelligence, Particle Swarm
Optimization (PSO) [12], is proposed.
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The rest of the paper can be summarized as follows. Section 2 provides an
overview of the scheduling problem in grids and the structure of experts systems
used as fuzzy meta-schedulers. In Section 3, the learning strategy for the expert
system with the utilization of PSO for rules weight optimization is introduced.
Section 4 presents simulation results of the proposed fuzzy strategy in both
training and validation scenarios. Finally, Section 5 concludes the paper.

2 Background

A computational grid can be defined as a collection of heterogeneous computa-
tional resources r which are allocated within several sites or resources domains
RD, i.e., RDj =

{
rj,1, rj,2, . . . , rj,Hj

}
, where Hj and rj,k represent the number of

resources in site j and resource k of site j, respectively. A RD is an independent
entity that contemplates its own access and sharing policies [3] and that is asso-
ciated to other RD in order to cooperate and make up a global computational
entity or Virtual Organization, V O = {RD1, RD2, . . . , RDG}. Furthermore, the
scheduling in grid computing can be considered as a hierarchical problem of two
levels. On the one hand, grid meta-schedulers are responsible for the allocation
of L users jobs J = {J1, J2, . . . , JL} to participating RDs in the V O, whereas
on the other hand, local schedulers have to distribute jobs within their own
RDs. FRBSs schedulers are characterized by their flexibility and tolerance of
uncertainty of resources and they are increasingly emerging for scheduling in
large-scale infrastructures as grids. Fig. 1 illustrates the general organization of
a fuzzy meta-scheduler in a grid. Three main components can be differentiated
corresponding to the structure of Mamdani fuzzy logic systems [5], i.e., fuzzifica-
tion, inference and defuzzification systems.Also, the associated knowledge base

Fig. 1. Fuzzy Rule-Based Meta-scheduler structure
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of the expert system can be observed. The performance of the scheduler can
be summarized as follows. Initially, a RD state, given by a set of predefined
features, is collected from the grid environment. Next, in the fuzzification stage,
every feature value is associated a linguistic label corresponding to a fuzzy set
and thus, the uncertainty in the grid resources description is born in mind. Then,
the inference system is responsible for the application of the system knowledge
in the form of rules to obtain a the fuzzy output of the expert system. This
output represents the suitability of the RD to be selected in the next schedule.
Finally, the defuzzification system transforms this fuzzy output into a crisp value
that provides a quantifiable index or RD selector yo. This process is repeated
for every RD and the one presenting a higher suitability is selected for the next
schedule. It must be highlighted that the scheduling strategy is founded on the
application of fuzzy rules to a given system state and thus, the quality of this
base is critical for the whole system performance.

3 Acquisition of Knowledge Bases for Meta-schedulers

As introduced before, the expert meta-scheduler is to be learned through a two
step learning process. On the one hand, the acquisition of high quality RBs
is entailed through the application of a success full strategy in FRBSs. On the
other hand, the accuracy of the RBs is increased considering the evolution of the
obtained rule weights through a bio-inspired process. First, the encoding of the
fuzzy rules is presented. The expert meta-scheduler knowledge is presented in the
form of Mamdani type rules [5]. Rules consists of antecedents and a consequent,
that represent the activation condition and output, respectively. Thus, rules are
encoded as

Ri = IF x1is A1l and/or . . . xnis Anl THEN xo isBl (1)

where (x1, . . . , xn) represents the RDs input features, Anl and Bl indicate the
associated fuzzy sets for feature xn and output for rule i, respectively, and l is
bounded to the number of fuzzy sets for input and output, NFin and NFout.

3.1 Rule Base Acquisition with Pittsburgh Approach

Pittsburgh approach considers a complete RB as an individual of the popula-
tion to be evolved through a genetic process [10]. Two main systems drive the
evaluative process following a prototype organization:

1. Performance system. This system evaluates the performance of every indi-
vidual of the population within the grid environment. Hence, it is responsible
of associating a fitness value to every RB in a way that its quality can be
distinguished and so, the population can be evolved towards the best suited
set of rules.

2. Rule-Base discovery system. Three genetic operators are applied at the level
of RBs to allow the learning process in every generation:
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– Selection. In every generation, a collection of RBs of the population is
selected in order to conform a new population for the following genera-
tion. These RBs are chosen considering the obtained fitness value in the
Performance System showing the suitability of every individual.

– Crossover. This genetic operator is considered in order to modify the
genetic code of RBs or individuals through generations by the mixing of
the genome of the selected individuals. Thus, this operator considers the
combination of RBs in the same way that reproduction in biological is
addressed.

– Mutation. Mutation is generally introduced in GAs with the aim of keep-
ing and introducing diversity in the population between generations and
to prevent local minima.

3.2 Evolution of Weighted Fuzzy Rules

Once a RB is obtained through the classical learning process, the incorporation
of rule weights is considered in a way that the encoding of rules is reformulated
as

Ri = IF x1is A1l and/or . . . xnis Anl THEN xo is Bl with wi (2)

where wi represents the associated weight to rule i varying between 0 and 1.
In order to obtain an efficient weight for every rule, an optimization strategy
based on PSO is considered [12]. With this aim, a set of particles x is born in
mind where a particle consists of a real number vector ranging from 0 to 1 that
concerns as many components as the number of rules in the RB. In this way,
particles are moved within the search space following the classical process in
PSO, i.e., velocity updating of particles considering particles own inertia, the
best position found by the particle and the swarm global best result. To be
precise, particles x and velocity v for particle j in iteration k is formulated as

v
(k+1)
j = c1 · vk

j + c2 · r1 ·
(
Pbk

j − xk
j

)
+ c3 · r2 ·

(
Gbk − xk

j

)
(3)

x
(k+1)
j = xk

j + vk+1
j (4)

where r1 and r2 represent random variables following a normal distribution in
the interval (0,1), c1 is a scalar factor denoting the inertia weight and c2 y c3

indicate real factors. Also, Pbk
j represents the best position reached by particle

j until the iteration k and Gbk is the best location found by the whole swarm.
As a result, the particle or rule weight vector achieving the greater accuracy of
the RB in the bio-inspired process is selected at the end of the process.

4 Simulations Results and Discussion

Simulations with Alea software [13] are conducted to evaluate the proposed two-
stages learning approach and the fuzzy meta-scheduler performance. Alea is a
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GridSim -based toolkit for the simulation of scheduling techniques within grid en-
vironments which allows the usage of real scenarios setting and workload traces.
Particularly, in this work, the proposed scenario is based on the Czech National
Grid Infrastructure Metacentrum [14], a computational infrastructure that co-
operates in the achievement of a high performance platform by the coordination
of diverse institutions resources all around the world. The Metacentrum scenario
integrates a set of 210 machines, an overall collection of 806 CPUs running Linux
geographically distributed among 14 RDs. On the other hand, workload charac-
terization is retrieved from real traces corresponding to January 2009 which can
be found at [14]. To be precise, 2000 jobs are considered for the training of the
fuzzy meta-scheduler where makespan [3] is proposed as performance indicator.
In addition, workload is increased by 16.84% for validation. On the other hand,
RDs state is characterized by seven variables as shown in Table 1. Furthermore,
these features are described by three gaussian-shaped fuzzy sets, NFin = 3. Also,
rules consequent is represented by five gaussian-shaped fuzzy sets, NFout = 5.

Table 1. Grid system input features

Feature Description

Number of free processing elements (FPE) Number of free processing element within RDi.

Previous Tardiness (PT) Sum of tardiness of all finished jobs in RDi.

Resource Makespan (RM) Current makespan for RDi.

Resource Tardiness (RT) Current tardiness of jobs within RDi.

Previous Score (PS) Previous deadline score of already finished jobs in RDi.

Resource Score (RS) Number of non delayed jobs so far in RDi.

Resources In Execution (RE) Number of Resources currently executing jobs within RDi.

The first learning stage based on Pittsburgh approach is configured with two-
point crossover (i.e., two random cut points born in mind for the mixing of
individuals genome [5]), decreasing exponential mutation factor (i.e., in a way
that diversity is reduced at the final stage of the process), elitist selection λ = 0.9
(i.e., those individuals presenting the highest accuracy form part of the next gen-
eration population with rate λ), population size of 20 RBs and initial maximum
size for RBs set to 20 rules. Simulations are conducted for 100 generations and
30 experiments. On the other hand, the second learning stage considers a swarm
of 20 particles with c1 = 0.7, c2 = 3, c3 = 3 and rule weights ranging from 0 to
1 in a set of 200 iterations. Moreover, 30 simulations are born in mind for every
stage.

Simulations results concerning both training and validation scenarios and the
different stages are presented. Table 2 shows simulations results in terms of
makespan of the proposed learning strategy when the second stage is faced con-
sidering an average quality RB obtained by Pittsburgh approach. As expected,
it can be observed the evolution of rule weights with PSO improve the final
accuracy of the first stage. Furthermore, this improvement is kept in validation
scenario. To be precise, the evolution of rule weights lets the system increases its
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Table 2. Learning and validation results with average Pittsburgh RB

Fitness: Makespan(s). Starting point in second learning stage: Average Pittsburgh RB
Scenario Training Validation

Pittsburgh 1654505.400 2420275.128

Pittsburgh+PSO-Weighted Rules (average) 1648315.715 2369031.237

Standard Deviation 97.568 408.674

Pittsburgh+PSO-Weighted Rules (best result) 1627948.1 2416116.088

Table 3. Learning and validation results with best Pittsburgh RB

Fitness: Makespan(s). Starting point in second learning stage: Best Pittsburgh RB
Scenario Training Validation

Pittsburgh 1628982.096 2415910.136

Pittsburgh+PSO-Weighted Rules (average) 1627962.711 2382142.421
Standard Deviation 38.246 371.883

Pittsburgh+PSO-Weighted Rules (best result) 1625559.100 2415424.136

final result by 2.11% on average. Also, the performance of the strategy is eval-
uated when the best RB in the genetic strategy is considered as starting point
of the second stage. Table 3 illustrates that the fuzzy meta-scheduler is able to
outperform makespan results of the best RB by 1.29% on average in validation
tests through the adjusting of rule weights. Furthermore, is must be pointed out
that the best acquired knowledge with the proposed strategy improves the best
RB achieved with the classical learning approach in the first stage.

5 Conclusions and Future Work

Fuzzy rule-based meta-schedulers have proved their effectiveness for schedul-
ing in grid computing. However, given the high dependence of these systems
with their associated knowledge, the learning process arises as a major chal-
lenge of these strategies. In this work, the improvement of fuzzy rule-based
meta-schedulers performance is entailed through the consideration of a two-stage
learning process. To be precise, the proposed learning strategy suggests the evo-
lution of RBs with a well-known genetic learning strategy, Pittsburgh approach,
as to then increase the obtained RBs accuracy with a PSO-based optimization
process that evolves and adjusts rule weights. Simulation results show that the
suggested learning strategy improves the genetic learning strategy in terms of
final result by 2.11% on average considering an average quality RB as starting
point of the swarm-based strategy and 1.29% on average regarding the best RB
acquired by the genetic approach in the first stage. Hence, both accuracy in fi-
nal result of the learning process and simplicity of the evolution of rule weights
support the use of this strategy for knowledge acquisition in fuzzy rule-based
meta-schedulers. In future work, new learning strategies will be analyzed as to
increase expert schedulers accuracy for grid computing.
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Abstract. Looking for a good interpretability-accuracy trade-off is one
of the most challenging tasks on fuzzy modelling. Indeed, interpretability
is acknowledged as a distinguishing capability of linguistic fuzzy systems
since the proposal of Zadeh and Mamdani’s seminal ideas. Anyway, ob-
taining interpretable fuzzy systems is not straightforward. It becomes
a matter of careful design which must cover several abstraction levels.
Namely, from the design of each individual linguistic term (and its re-
lated fuzzy set) to the analysis of the cooperation among several rules,
what depends on the fuzzy inference mechanism. This work gives an
overview on existing tools for fuzzy system modelling. Moreover, it in-
troduces GUAJE which is an open-source free-software java environment
for building understandable and accurate fuzzy rule-based systems by
means of combining several pre-existing tools.

Keywords: interpretability, fuzzy modeling, free open source software.

1 Introduction

The term Soft Computing (SC) is usually defined by its essential properties, as
a family of techniques, as a complement of hard computing, and/or as a tool for
coping with imprecision and uncertainty [22]. One of the main issues regarding
SC techniques is their cooperative nature. Each individual technique (Fuzzy
Logic, Neuro-computing, Probabilistic Reasoning, Evolutionary Computation,
etc.), even each individual algorithm, has its own advantages and drawbacks.
A family of several pre-existing techniques is able to work in a cooperative way
yielding hybrid systems, taking profit from the main advantages of each of them,
in order to solve lots of complex real-world problems for which other techniques
are not well suited.

Since this work deals with modelling understandable and accurate systems,
it is mainly focused on those SC techniques more suitable for dealing with the
so-called humanistic systems, defined by Zadeh [30] as “those systems whose
behaviour is strongly influenced by human judgment, perception or emotions”.
We will concentrate on Fuzzy Logic (FL) [28] because of its semantic expressivity
close to natural language is well-known for linguistic concept modelling.

The use of linguistic variables and rules [29] favours the interpretability of
fuzzy systems. Unfortunately, FL is not enough for building interpretable sys-
tems, i.e., fuzzy systems are not interpretable per se. Thus, the whole modelling

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 212–219, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Generating Understandable and Accurate Fuzzy Rule-Based Systems 213

process must be carried out carefully, paying special attention to interpretability
from the beginning to the end and imposing several constraints [25]. Notwith-
standing, interpretability requirements strongly depend not only on each specific
problem but also on the background (experience, preferences, knowledge, etc.)
of the end-user who will interact with the designed system. Notice that, looking
for a good interpretability-accuracy trade-off is one of the most complex tasks
on system modelling. It demands the aid of powerful software tools.

The objective of this paper is twofold. First, giving an overview on existing
software tools for fuzzy system modelling. Second, introducing GUAJE. It is
a java environment for building understandable and accurate fuzzy rule-based
systems. Notice that, GUAJE is an enhanced version of a previous open source
software (KBCT) and it integrates several algorithms provided by different open
source software tools. It is worth noting that GUAJE is not merely an aggrega-
tion of different tools but there exists the possibility of automatically writing a
configuration file to select the different algorithms during the modelling process,
no matter the specific tool they are provided by.

The structure of this paper is as follows. The next section makes a global re-
view on available software that implements SC techniques for system modelling.
Then, section 3 presents GUAJE. Section 4 enumerates some applications. Fi-
nally, section 5 draws some conclusions and points out future works.

2 An Overview on Software for System Modelling

Most software for SC system modelling is available on the Web in the form of
libraries and/or small tools which often come from academics and small research
groups. In order to get wider visibility and cooperation with other researchers
those tools are usually downloadable as free open source software, at least for
research and education purposes. As a result, there is a huge amount of avail-
able free software what makes really easy creating new small prototypes for lots
of applications without the effort of starting from scratch. However, the main
drawback of such developments is their maintenance cost. Keeping a flexible and
well-documented source code is a mandatory requirement in order to make feasi-
ble the cooperation of several researchers in a common development. In addition,
the coordination and control of subversions is a really difficult task when several
researchers, sometimes located at different parts of the world, are only working
on the software development during their own free time. Of course, as alternative
it is possible to resort to professional commercial tools like the Matlab toolboxes
which include the well-known Fuzzy Toolbox and ANFIS (Adaptive Neuro-Fuzzy
System). Nevertheless, we advocate for the use of open source software because
it offers the richness of quickly incorporating new developments made by the
active research community which is always working in emerging fields.

In short, some of the most famous free-software SC packages and tools are the
following. In the field of evolutionary computation, JCLEC1 (Java Class Library

1 http://jclec.sourceforge.net/
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for Evolutionary Computation) and JMetal2 (Metaheuristic Algorithms in Java)
provide two nice frameworks for both evolutionary and multi-objective optimiza-
tion. JavaNNS3 (Java version of Stuttgart Neural Network Simulator) is proba-
bly the best free suite for neural networks. Regarding fuzzy modelling, Xfuzzy4 (a
development environment for fuzzy-inference-based systems), FisPro5 (Fuzzy In-
ference System Professional) and KBCT6 (Knowledge Base Configuration Tool)
represent three useful tools. In addition, regarding neuro-fuzzy algorithms we
can point out, among others, to NEFCLASS7 (Neuro-Fuzzy Classification).

There are also some interesting and successful attempts for going beyond spe-
cialized tools. For instance, FrIDA [12] is free and open source software in the
form of a java-based graphical user interface (GUI) that joins several individual
tools for data analysis and visualization. In this case all small programs were
developed by the same researchers over the years. KEEL (Knowledge Extraction
based on Evolutionary Learning) [1] is another more ambitious software tool cre-
ated as part of a research project with several goals. To start with it includes
a huge repository made up of hundreds of evolutionary learning algorithms de-
veloped by several authors (belonging to different research groups) as part of
their own research works. Furthermore, new algorithms can be easily added. In
addition, KEEL offers a user-friendly java GUI for designing experiments where
different algorithms can be fairly compared with exactly the same datasets un-
der a complete statistical analysis. Another quite famous tool putting together
several machine-learning algorithms under the same interface is Weka8 (Data
Mining Software in Java) [27]. It is also developed following the open source phi-
losophy and it counts with a lot of related projects and contributors. To do so, it
applies the Linux model of releases. It focuses on automatic extraction of knowl-
edge from data but, unfortunately, it does not take care of the interpretability
of the generated models and it does not include any algorithms for fuzzy mod-
elling. Lastly, KNIME9 is a user-friendly and comprehensive open-source data
integration, processing, analysis, and exploration platform for both industry and
academia.

3 Description of the GUAJE Environment

GUAJE10 stands for Generating Understandable and Accurate fuzzy rule-based
systems in a Java Environment. GUAJE implements the Highly Interpretable
Linguistic Knowledge (HILK) fuzzy modelling methodology [3,6].

2 http://jmetal.sourceforge.net/
3 http://www.ra.cs.uni-tuebingen.de/SNNS/
4 https://forja.rediris.es/projects/xfuzzy/
5 http://www.inra.fr/internet/Departements/MIA/M/fispro/
6 http://www.mat.upm.es/projects/advocate/kbct.htm
7 http://fuzzy.cs.uni-magdeburg.de/nefclass/
8 http://www.cs.waikato.ac.nz/ml/weka/
9 http://knime.org/

10 http://www.softcomputing.es/guaje
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Fig. 1. Scheme of the proposed GUAJE environment

The main building blocks are sketched in Fig. 1. The core of GUAJE is the
last downloadable version of KBCT [5] (version 3.0) which has been upgraded
with new functionalities. It is an open source software for knowledge extraction
and representation which combines expert knowledge and induced knowledge
(knowledge automatically extracted from experimental data).

The whole modelling process is made up of the next steps. First of all, available
experimental data must be pre-processed and translated into the format handled
by GUAJE. Secondly, a feature selection process is needed in the case of dealing
with complex problems involving many inputs. Thirdly, the partition design
stage is based on the definition of linguistic variables characterized by strong
fuzzy partitions. Both expert partitions and partitions automatically generated
from experimental data are compared. The best partitions according to data
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distribution and expert knowledge are selected for each input variable. Then, two
sets of linguistic rules (expert and induced rules) describe the system behaviour
by means of combining the previously generated linguistic variables. They are
rules of form If Premise Then Conclusion where both premises and conclusions
are expressed by linguistic propositions. Then, both sets of rules are integrated in
a unique one after checking integrity, consistency, and so on. Then, the resultant
knowledge base can be improved regarding both interpretability (minimization
and simplification) and/or accuracy (optimization). Finally, after validating the
final fuzzy system (knowledge base + inference mechanism) it is possible to
generate native code with the aim of running the designed system in a stand-
alone application.

Following the cooperative spirit of SC applications, GUAJE not only promotes
the combination of several SC techniques but also the combination of several
available system modelling tools with the aim of building interpretable fuzzy
systems:

– FisPro. An open source tool for creating fuzzy inference systems (FIS) to
be used for reasoning purposes, especially for simulating a physical or bio-
logical system [19]. It includes many algorithms (most of them implemented
as C programs) for generating fuzzy partitions and rules directly from ex-
perimental data. In addition, it offers data and FIS visualization methods
with a java-based user-friendly interface. GUAJE makes use of the following
algorithms provided by FisPro: K-means [20]; Hierarchical Fuzzy Partition-
ing (HFP) [18]; Wang and Mendel (WM) [26]; Fast Prototyping Algorithm
(FPA) [19]; and Fuzzy Decision Trees (FDT) [21].

– ORE11 (Ontology Rule Editor). A java-based open source platform-indepen-
dent application for defining, managing and testing inference rules on a
model represented by a specific ontology [23]. GUAJE calls to libraries pro-
vided by ORE for visualizing domain ontologies with the aim of making
easier the process of expert knowledge extraction [8].

– Espresso. Free software designed for logical minimization which implements
the algorithm developed by R. Brayton [13]. GUAJE calls to Espresso as part
of the module in charge of running the interpretability assessment approach
based on semantic co-intension proposed by [24].

– Graphviz12. A collection of free software for viewing and manipulating ab-
stract graphs [16]. It is used by the module of GUAJE responsible for a novel
interpretability analysis at fuzzy inference level (fingrams analysis) [2].

– JMetal. Free software that comprises a set of Metaheuristic algorithms im-
plemented in Java by Durillo et al. [15]. We have combined GUAJE with
JMetal looking for embedding HILK into a multi-objective evolutionary
framework [4,14].

– Weka. Open source tool for data mining. It includes the implementation of
many classical algorithms like for example J48 which corresponds to the

11 http://sourceforge.net/projects/ore/
12 http://www.graphviz.org/
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well-known C4.5 algorithm. GUAJE offers a feature selection procedure
based on such algorithm.

Fuzzy knowledge bases generated with GUAJE can be exported to the format
recognized by FisPro, Xfuzzy and Matlab Fuzzy Toolbox. Thus, those tools
can be used just at the final modelling stages. Notwithstanding, the inverse
translation is not allowed, i.e., knowledge bases modified with FisPro, Matlab, or
Xfuzzy can not be imported and opened again with GUAJE. This is a restriction
to preserve the interpretability of the final model because FisPro, Matlab, or
Xfuzzy may violate the interpretability constraints imposed and satisfied by
GUAJE. We recommend the use of Xfuzzy to generate code for stand-alone
applications. On the other hand, Matlab may be useful for system simulations.
Finally, KEEL offers many learning algorithms that may be incorporated to
GUAJE in the near future. Anyway, they can also be used for the first data
pre-processing stage.

4 Applications

KBCT, the ancestor of GUAJE, has been successfully used with the aim of
designing interpretable fuzzy systems for many applications: detecting the inat-
tentiveness level of a driver [11]; making intelligent diagnosis in robotics [7];
classifying glucose measurements in a telemedicine system [17]; localization of au-
tonomous robots in indoor environments [9]; and human activity recognition [10].

Thanks to its new functionalities (feature selection, visual analysis and simpli-
fication by fingrams, interpretability indexes, etc.), GUAJE is expected to over-
come results reported by KBCT in previous applications. Moreover, GUAJE is
supposed to yield good results even in complex large-size problems where KBCT
suffered from scalability problems.

5 Conclusions and Future Works

This paper has presented a new system modelling suite mainly focused on design-
ing FRBSs with a good interpretability-accuracy trade-off by means of combining
several pre-existing tools. This approach lets us saving a lot of time because we
reuse many algorithms already freely available on the Web as part of other tools
which are distributed as open source software. New algorithms can be added
in the future with the aim of complementing the existing ones or adding new
functionalities.

GUAJE is freely available (under GPL license) as open source software at:

http://www.softcomputing.es/guaje
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Abstract. In this paper an approach to serendipitous item recommen-
dation is outlined. The model used for this task is an extension of Pro-
fileMatcher, which is based on fuzzy metadata describing both user and
items to be recommended. To address the task of recommending serendip-
itous resources, a priori knowledge on the relations occurring among
metadata values is injected in the recommendation process. This is a-
chieved using fuzzy graphs to model similarity relations among the el-
ements of the fuzzy sets describing the metadata. An experimentation
has been carried out on the MovieLens data set to show the impact of
serendipity injection in the item recommendation process.

1 Introduction

Nowadays users are facing the availability of enormous quantities of information.
This makes the selection of interesting information from a user side exceedingly
difficult without any searching and filtering capability.

Recommender Systems (RSs) are capable of filtering information according to
user interests and preferences [1,6,7]. Their main feature consists in suggesting
information that is esteemed as appropriate according to user needs. In this way,
users are not compelled to search information in the whole set of data, but only
in a small fraction that is easier to manage.

RSs can use user profiles tailored so that recommended information is in-
teresting for the user; a correct implementation of this requirement is strictly
dependent on the aims of the information system and on the nature of the stored
information.

An approach that uses fuzzy sets for profile representation and graduated
recommendation is given by ProfileMatcher [2]. In ProfileMatcher, each profile
represents the complex preferences of a user in terms of profile components,
which model elementary preferences. Each profile component is defined through
a set of attributes and each attribute is quantified through a fuzzy set of values.

ProfileMatcher can be used when information stored in an information sys-
tem describe external resources, such as buyable items, learning objects, etc.
Such type of information is often called “metadata” and is represented in terms
of attribute-value couples. ProfileMatcher establishes a degree of compatibility

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 220–227, 2011.
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between a resource and a profile by a fuzzy matching of its components with the
resource metadata. In this way, resources can be ranked on the basis of the quan-
tified compatibility, which can be directly related to their interestingness for the
user. Like other RSs, ProfileMatcher learns user profiles from past interactions.

In some applicative contexts, a “serendipitous” recommendation could be a
desirable feature. Serendipity is a propensity for making fortunate discoveries
while looking for something unrelated. Serendipity occurs everywhere (even in
scientific research), but it is reasonably more frequent in contexts where users
are not always looking for precise resources (e.g. books, movies, papers, etc.)

Any RS capable of serendipitous recommendation will certainly give added
value in all information systems where serendipitous discovers are frequent. How-
ever, the simple recommendation of random resources may not be an effective so-
lution, because the frequency of really uninteresting yet recommended resources
will annoy the user, who eventually would no more rely on the recommendation
service.

In this paper we introduce an extension of ProfileMatcher for serendipitous
recommendation. A fuzzy graph is defined for each attribute used for calculating
the degree of compatibility between a resource and a profile. The fuzzy graph
establishes a semantic similarity between attribute values, so as to increase the
compatibility of resources whose description does not completely match the user
profile. As a result of this knowledge injection, ProfileMatcher is capable of rec-
ommending resources that are only loosely related to resources already accessed
by the user, thus favouring serendipitous discovers.

In the next section ProfileMatcher is briefly outlined and the proposed ap-
proach for serendipity injection is described along with an illustrative example.
Section 3 is focused on the description of an application of the proposed model
for serendipitous recommendation using the MovieLens data set. Section 4 con-
cludes the paper with some discussions on the achieved results.

2 Profile Matcher with Serendipity

In this paper we focus on ProfileMatcher as a tool for recommending resources
on the basis of fuzzy metadata. It computes the degree of compatibility between
a user u and a resource r as a value

K (u, r) ∈ [0, 1]

To compute the compatibility degree, ProfileMatcher uses profiles to describe
users. Then, for each user u, a profile P (u) is defined. Profiles can either be
designed manually or automatically acquired from data [2]. A user profile de-
scribes the (possibly complex) preference structure of a user. This structure is
composed of one or more profile components, i.e.

P (u) = {p1 (u) , p2 (u) , . . . , pn (u)}
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where each component pi (u) represents an elementary preference. A resource r
is compatible with u if it is compatible with at least one profile component, i.e.

K (u, r) =
n

max
i=1

K (pi (u) , r) .

Both profile components and resources are described through fuzzy metadata.
Each metadatum describes a specific attribute of a resource through a fuzzy
set. More formally, an attribute is a domain of values A = {v1, v2, . . .} and is
denoted by an attribute label A, while a metadatum is a couple 〈A, μA〉 where
μA : A → [0, 1] is a fuzzy set on the values of the attribute. A resource r is
described through a collection of metadata, i.e.

D (r) =
{
〈A1, μA1〉 , 〈A2, μA2〉 , . . . ,

〈
Am(r), μAm(r)

〉}
being m (r) the number of attributes used to describe the resource r.

A constraint on the attributes is defined: for each couple 〈Ai, μAi〉 composing
the resource descriptions, the attribute Ai is unique. In other words it is im-
possible that the same attribute occurs more than once in different couples of a
resource description D(r).

Also profile components are expressed in terms of metadata. This enables an
easy computation of the compatibility degree and the transparency of the profile
description. We denote a profile component as

pi (u) =
{
〈B1, μB1〉 , 〈B2, μB2〉 , . . . ,

〈
Bm(i), μBm(i)

〉}
being m (i) the number of attributes used to describe the profile component pi.
On attributes Bj is defined the same constraint given for attributes in D(r): it
is impossible that the same attribute occurs more than once in different couples
of a profile component pi(u).

With such a representation, the compatibility degree between a profile compo-
nent and a resource is computed in terms of metadata sharing the same attribute
label as follows:

K (pi (u) , r) = avgAj=Bk
K
(
μAj , μBk

)
Averaging is more suitable for preference computation since it is less stringent
than t-norms. We use standard arithmentic mean for averaging compatibility
values, however weighted average could also be used if some attributes are more
relevant than others.

The last point required to complete the definition of compatibility degree
concerns the compatibility between two fuzzy sets defined on the same attribute.
In the current version of ProfileMatcher, this compatibility is computed in terms
of possibility measure between fuzzy sets. This definition is a consequence of the
assumption that two fuzzy sets are compatible if they share at least one element,
i.e.

K
(
μAj , μBk

)
= max

v∈Aj

min
{
μAj (v) , μBk

(v)
}

(1)

Eq. (1) is relevant in this work because it is at the basis of serendipity injection
in ProfileMatcher.
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Fig. 1. An example of fuzzy graph for an attribute describing the genre of a movie

2.1 Serendipity Injection

A good serendipity module in a recommender system should be able to rec-
ommend unexpected yet potentially interesting resources exploiting some loose
relationships between known preferred resources and new resources.

The task of providing non-obvious recommendations has been addressed by
various authors in the recent years ([3,4,5]). In this work we use fuzzy graphs to
define such relationships. A fuzzy graph is a pair 〈A, E〉 where A is an attribute
and

E : A × A → [0, 1]

defines a fuzzy similarity relationship between attribute values. Given a pair of
attribute values a′, a′′, E (a′, a′′) = 1 means that values a′, a′′ are equivalent (or
indistinguishable), E (a′, a′′) = 0 refers to completely distinct attributes, while
any intermediate value of E (a′, a′′) represents partial similarity. It is assumed
that E(a, a) = 1 for each a ∈ A.

Once a fuzzy graph is defined for an attribute, it can be used to inject serendip-
ity in ProfileMatcher by extending eq. (1) with a formalization of the following
property: two fuzzy sets are compatible if there exist two similar values, one be-
longing to the first fuzzy set and the other belonging to the second one. Formally,
this translates into:

K ′ (μAj , μBk

)
= max

v′,v′′∈Aj

min
{
μAj (v′) , μBk

(v′′) , E (v′, v′′)
}

(2)

By using eq. (2) in place of eq. (1) in ProfileMatcher, it is possible to recom-
mend a resource even if the latter is described by metadata that do not share
values with any profile component, provided that a similarity relationship exists
between the values of the resource metadata and those of a profile component.

The definition of a fuzzy graph on an attribute is essential for serendipitous
recommendations. It can be defined manually if the cardinality of an attribute
domain is limited or if there exists a priori knowledge on the similarity of at-
tribute values. Otherwise, it could be more convenient to derive the similarity
degrees automatically from available data.
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2.2 Illustrative Example

To provide a better explanation of the proposed methodology, the following
illustrative example is considered, concerning a user interacting with a collection
of movies, each of them described by its genre attribute.

A user and three resources described with the formalism of ProfileMatcher
are considered:

P (u) = {{〈Genre, {1/War, 0.6/Drama, 0.1/Comedy}〉}}
D(r1) = {〈Genre, {0.4/War, 1/Drama, 0.6/Comedy}〉}
D(r2) = {〈Genre, {0.7/War, 0.2/Drama, 1/Comedy}〉}
D(r3) = {〈Genre, {1/Sci− fi, 0.5/Animation}〉}

This models the fact that the user u, described by means of a single profile
component, is highly interested in war movies, partially in dramatic movies and
only a little in comedy movies. The genre of the considered resources is mainly
drama (r1), comedy (r2) and science fiction (r3).

If there is no injection of serendipity in the model, the compatibility values
obtained applying (1) are K(u, r1) = 0.6 , K(u, r2) = 0.7 and K(u, r3) = 0,
due to the high membership degrees that both the profile and the component
description have for the common element “drama” in the first case and “war” in
the second case, while in the third case there are no common elements.

If the knowledge described in the fuzzy graph shown in fig. 1 is injected in
the model,1 by means of (2), there is now a different compatibility estimation,
that is K(u, r1) = 0.8, K(u, r2) = 0.7 and K(u, r3) = 0.5.

The use of the fuzzy similarity relation allows to obtain a matching at a seman-
tic level that the previous model was unable to detect, thus leading to serendip-
itous recommendations. The order of the recommended resources changes, since
r2 appears to be more compatible than r1. Besides r3 has an increased com-
patibility value because of the similarity between science fiction and war. The
latter result is extremely important since it shows that a resource description,
not sharing any value for the attribute “genre” with the user profile, is evaluated
as compatible. Thus, the proposed extension allows the user to make unexpected
discoveries on new movies genres.

3 Experimental Results

3.1 The Dataset

To evaluate the effectiveness of the proposed approach the MovieLens data set
has been used. It stores the ratings of 943 users for 1682 movies, both of them
1 The network models the fact that reasonably a user interested in “war” movies pos-

sibly is also highly interested in movies whose genre is “drama” and less in “comedy”
movies.
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identified with a numerical ID. The data set also stores the genre, the release
date, the title of the movie and its IMDB2 url. To describe the user some basic
information are provided, such as the age, the gender, the occupation and the
ZIP code. In this contribution we are interested only in the “genre” attribute of
the resources, which is described by a binary array of 19 elements, each of them
having a 1 value if the movie belongs to that genre and a 0 value otherwise.

3.2 Definition of the Fuzzy Graph

In our experimentation, we used only the attribute “genre” since we were inter-
ested in analyzing the effects of serendipity injection in a simplified setting. A
more complex experimental context would have made the understanding of the
effects of the proposed extension more difficult.

The fuzzy graph used for defining the similarity between genres has been ac-
quired from the available dataset, in two steps. In the first step, we represented
each genre as a crisp set defined on the domain of movies, i.e. a genre is repre-
sented by all the movies of that genre. Specifically, given a movie m in the set
M of movies, the genre set of m is defined as G (m) = {g1, g2, . . .} ⊆ G, being
G the set of all genres. In a dual viewpoint, given a genre g ∈ G, we considered
all the movies of that genre as M (g) = {m ∈ M : g ∈ G (m)}. We assumed that
if two genres share the same movies, and the set of movies is considerably high,
then they are similar. Thus we used the Jaccard index to evaluate the similarity
between genres:

S (g′, g′′) =
|M (g′) ∩ M (g′′)|
|M (g′) ∪ M (g′′)|

The values of the Jaccard index could be very small in a real experimental
setting. However we did not desire the serendipity injection to be too weak,
since we would not appreciate its effect. As a consequence, in the second step
we used a linguistic hedge to define the fuzzy graph, by defining the edge set E
as the fuzzy set of the genres “somewhat similar”. This led to the definition of
the edge set as

E (g′, g′′) = S (g′, g′′)
1
3

whose values suit better to the application, even preserving their own semantics.

3.3 Experimental Setting

The experimentation was aimed to show how the use of the fuzzy graph influences
the rating of the resources to be recommended.

A set of 30 user profiles has been learnt using N = 9 resources. Subse-
quently the sequence TSH(u) of the following H = 10 resources accessed af-
ter the learning phase has been considered, in order to evaluate the ability of
the model to provide good recommendations in the short term. The average
K

(u)

mode = meanm∈TSH(u)K(u, m) is an indicator of this goodness and mode is

2 Internet Movies Data Base, available at http://www.imdb.com

http://www.imdb.com
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a placeholder indicating the mode used to calculate the compatibility by Pro-
fileMatcher. Specifically, mode = NoSN refers to the previous version of Pro-
fileMatcher, i.e. without serendipity injection, and mode = SN refers to the
proposed approach, i.e. with serendipity injection.

3.4 Experimental Results

The results obtained for the first phase described in the previous section are
shown in fig. 2.
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Fig. 2. Compatibility with hidden resources, with and without any serendipity injection

According to the expectations, the newly available knowledge conveyed by the
fuzzy graph causes a slight increase in the median value of K

(u)

SN w.r.t. K
(u)

NoSN .
This can be explained by considering that in the previous stage only the syn-
tactical matching was considered, whilst by using the fuzzy graph a non-zero
compatibility value can be now obtained between elements not matching at a
syntactical level. At a higher level this can be explained by the larger amount
of knowledge available to the system, leading to an increase in the average com-
patibility between users and resources.

4 Conclusions

In this paper we have outlined an approach to serendipitous item recommenda-
tion. This has been achieved using fuzzy graphs to model the fuzzy similarity
relation among the elements in fuzzy sets describing metadata in ProfileMatcher.
The main motivation was to achieve unexpected recommendations in order to
give to ProfileMatcher the ability of recommending non-obvious yet interesting
resources. A strategy to derive such a fuzzy similarity relation from data has
also been described.
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The use of the fuzzy graphs has proved to be helpful, since it provides the
model with the ability to match elements not only syntactically. This leads to the
recommendation of resources even though their description does not share ele-
ments with the user profile, as depicted in Section 2.2, thus introducing serendip-
ity in the recommendation process.

The experimental results are promising, since there is an increase of the aver-
age compatibility value of the resources with users and this is mainly due to the
larger amount of avalaible knowledge. Nonetheless a deeper investigation on ex-
perimental results will be needed. In fact one of the major issues is the difficulty
in the off-line evaluation of the serendipity in RSs. This is mainly due to the lack
of any metric that allows to quantify how serendipitous a recommendation is.
It is reasonable to suppose that an on-line evaluation, involving a user feedback
on the goodness of the recommendation, will fix this issue and this problem will
be addressed as a future work. In fact a direct investigation on the user satisfac-
tion about a serendipitous recommendation would allow a direct evaluation of
the goodness of the serendipity module, without the need to create any ad hoc
metric.

Another further step will be the extension of the present study to a case
involving all the attributes in the data set, to better evaluate the influence of
the serendipity injection for the item recommendation in a real context.
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Abstract. Fuzzy models, traditionally used in the control field to model
controllers or plants behavior, are used in this work to describe finger-
print images. The textures, in this case the directions of the fingerprint
ridges, are described for the whole image by fuzzy if-then rules whose
antecedents consider a part of the image and the consequent is the asso-
ciated dominant texture. This low-level fuzzy model allows extracting
higher-level information about the fingerprint, such as the existence of
singular points and their fuzzy position within the image. This is ex-
ploited in two applications: to provide comprehensive information for
users of unattended automatic recognition systems and to extract lin-
guistic patterns to classify fingerprints.

Keywords: Fuzzy modeling, automatic fingerprint identification sys-
tems, fingerprint classification, linguistic interpretability.

1 Introduction

A fingerprint image (Figure 1(a)) is a grayscale representation based on the
reproduction of ridges (dark) and valleys (bright). Ridges and valleys are struc-
tural features originated by the exterior appearance of the epidermis [2]. Since
fingerprints of a person are unique (even for twins), they have been widely used
for recognition purposes. The first stage of an automatic fingerprint recognition
system is to acquire a digital image from the finger through a sensor. Then, the
image is processed to extract several features. Those features are stored as the
template of that fingerprint in the enrollment stage, or are compared (matched)
with the template in the recognition stage. The features extracted from the fin-
gerprint can be global (if they provide information of the whole fingerprint) or
local. An example of global features is the directional image (also called orienta-
tion image, field, or map, or directional field or map). It gives the local directions
of ridges for each pixel or each block of pixels. Figure 1(b) shows the block direc-
tional image corresponding to the fingerprint in Figure 1(a). Examples of local
features are minutiae. While local features are employed for final identification or
authentication applications, global features are used as an aid at different stages
such as enhancement and segmentation of fingerprint images, singular points

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 228–235, 2011.
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(a) (b) (c) (d) (e)

Fig. 1. (a) Fingerprint from FVC database [1] with singular points depicted (core as a
circle and delta as a triangle). (b) Directional image associated. Outputs provided by
xfplot for fuzzy models with: (c) 625 rules, (d) 61 rules, and (e) 16 rules.

extraction (core and delta, as shown in Figure 1(a)), alignment, matching, and
fingerprint classification.

Fuzzy logic has been used for different purposes in fingerprint recognition sys-
tems such as fingerprint image enhancement [3], minutiae extraction and verifica-
tion [4]-[5], matching [6]-[7], and classification [8]. The capability of fuzzy logic to
cope with vagueness and uncertainty is typically exploited in these applications,
mainly considering local features. This paper explores two other characteris-
tics of fuzzy logic: capability of modeling and linguistic interpretability. These
characteristics are employed to describe fingerprints as a whole. Hence, global
features such as directional images are considered.

The paper is structured as follows. Section 2 introduces how to describe a
fingerprint image by a fuzzy model. This process can be automated by using
Matlab and the CAD tools of the design environment Xfuzzy 3 [9]. The model
can be coarser or finer depending on the application. Section 3 illustrates the use
of a coarse model to provide linguistically comprehensive feedback to the user
of the fingerprint-based recognition system. Section 4 shows the applicability
of fuzzy modeling to facilitate fingerprint classification. Finally, Section 5 gives
some conclusions and summarizes future work.

2 Fuzzy Modeling

Since fuzzy systems are universal approximators, they have been used to model
the behavior of systems from a set of representative numerical data that con-
tain outputs associated to inputs. Fuzzy modeling has been typically applied to
model controllers or plants to control, whose inputs and outputs take numerical
values [10]. In this sense, the first step to model an image is to select which are
the inputs and the outputs considered by the model. Recently, there is a wide re-
search on applying fuzzy logic to images, because images contain imprecise and
ambiguous information [11]. In particular, fuzzy models of images have been
done considering low-level information, such as textures or grey or color values
[12]. This is the approach taken herein: the directional image will provide the
texture information about the image to be modeled. The fuzzy models pursued
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will have two inputs: the horizontal and vertical coordinates of the pixel, and
one output: the local direction of ridges at that pixel. The advantage of the fuzzy
model will be its capability to approximate the pixel directional image with a
low number of linguistically interpretable ’if-then’ rules, that is, its capability of
summarizing a large number of numerical data (directions of many pixels) into
a small number of rules.

The design flow to obtain these fuzzy models has been automated by using
several CAD tools. Firstly, an algorithm developed by [13] in Matlab creates
gradient-based directional images from fingerprints. The pixel directional image
has as many directions as pixels in the fingerprint image. For example, the fin-
gerprint in Figure 1(a) has 374x276 pixels, which means a complete directional
image with 374x276 directions (Figure 1(b) shows directional image sampled in
blocks of 9x9 directions). All or a subset of these directions and their horizontal
and vertical positions are analyzed by the tool xfdm of Xfuzzy 3 to extract fuzzy
rules with two inputs (x and y positions) and one output (direction between 0◦

and 180◦). This tool allows users to choose a grid- or clustering-based algorithm
to extract fuzzy rules, the number and types of membership functions to cover
inputs, and the conjunction and defuzzification operators used in the generated
rule base. Since our objective are rule bases with linguistic interpretability, the
grid-based Wang-Mendel algorithm has been selected with product as conjunc-
tion operator, and Max Label for defuzzification (which selects the consequent
of the most activated rule as the output of the system) [12]. Initially, the model
is finer, for example using 25 Gaussian membership functions for each input. In
this case, the generated system is composed by 625 rules (25x25 combinations of
antecedents), each one with its corresponding consequent. Since the membership
functions cover the inputs uniformly, a group of 15x11 pixels is approximately
described by a rule, which is something similar to compact the pixel directional
image (with 374x276 directions) by a block directional image (with 625 blocks of
15x11 directions). The resulting model is shown in Figure 1(c) by the tool xfplot
of Xfuzzy 3, which displays the output of the system (direction) depending on
x and y positions. Although the model with 25x25 rules reduces information by
more than two orders of magnitude, the number of rules can be further reduced
if non relevant information is eliminated. This can be done if the values of the
directions (the 625 consequents of the rules) are described by a given set of repre-
sentative directions (let us say 3, 4, etc., depending on the coarseness desired for
the model: finer models as more prototypes selected). A way to find prototypes
among a set of values is to apply clustering algorithms on those values. The tool
xfsp of Xfuzzy 3 allows applying Hard C-means clustering on the consequents,
with the number of clusters chosen by the user. Fuzzy models that use such
clustering produce a segmented directional image, for example, the 4 clusters of
directions employed in the models shown in Figures 1(d) and 1(e) correspond to
the following fuzzy sets: almost horizontal if rotating clockwise, almost horizon-
tal if rotating counter-clockwise, almost vertical if rotating clockwise, and almost
vertical if rotating counter-clockwise.

The rules whose consequents are the same and antecedents are represented
by neighbor membership functions can be merged into a rule covering more
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situations. This merging can be also automated by the tool xfsp [14]. For exam-
ple, when consequents are clustered into 4 groups, the 625 rules (Figure 1(c))
can be merged into 61 rules (Figure 1(d)). If the model is intended to be linguis-
tically interpretable by a human, the number of rules should be small. A way to
achieve this objective is to take the most significant rules for each consequent
prototype (or exclude the least significant ones) as proposed in [12]. The idea is
to select those rules obtained from merging the highest number of atomic rules.
Such simplification allows reducing also the number of fuzzy sets employed to
describe the x and y positions. For example, considering the model with 61 rules
(Figure 1(d)), a new model with 16 rules could be achieved (Figure 1(e)). The
16 rectangles depicted in Figure 1(d) show the portions of the image that are
merged to be described by 16 rules. The model with 16 rules contains an in-
complete rule base, because there are combinations of input fuzzy sets that are
not considered by any rule. Anyway, the pixels placed at those positions will
have the directions assigned by the closest defined rule with higher activation
degree, as a result of using fuzzy sets that describe the pixel positions. The re-
sulting model illustrated in Figure 1(e) provides a simple and intuitive linguistic
description because the fuzzy sets considered for antecedents and consequents
are only a few and have clear linguistic meaning. An example of a rule in this
model is: IF the pixels are placed ’at the bottom’ AND ’on the right’ THEN

direction is ’almost horizontal if rotating counter-clockwise’.
Finally, another issue to be considered when modeling is the approximation

achieved. The different models provide the following Root Mean Square Errors
(RMSE): 0.060 (625 rules), 0.067 (61 rules), and 0.112 (16 rules).

3 Fuzzy Feedback to Users of Recognition Systems

Many fails of automatic fingerprint-based recognition systems are due to a poor
acquisition of user fingerprints. For example, the user may apply too few or too
high pressure with the finger on the sensor, or the finger may not be correctly
placed for the sensor to capture a good image. This issue is already considered by
many sensors that inform the user with a red led if acquisition goes bad or a green
led if everything goes well. Such feedback is too crisp and does not guide the user
to improve acquisition. Fuzzy feedback with more linguistically interpretable in-
formation would be very useful for fully automatic unattended fingerprint-based
recognition systems. If fingerprint acquisition is improved, complexity of the au-
tomatic recognition system can be reduced drastically. For example, fingerprint
classification can be done with a simple fuzzy inference system, as described in
the following section.

Our proposal for fuzzy feedback is based on detection or not of singular points
(convex core, concave core and delta) and their location within the fingerprint
acquired. Depending on this, users have to move horizontally or vertically their
fingers. The fuzzy models extracted as commented above have been employed
for this purpose. The number of clusters for the rules’ consequents and the parti-
tion of antecedents are fixed so as to obtain models which allow detecting fuzzy
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. (a) Tended arch, (b) left loop, (c) right loop, (d) and (e) whorl, and (f) arch. (g)
to (l) Models based on 5 clusters for the fingerprints in (a) to (f) with fuzzy singular
points detected: (g)-(i) one convex core and one delta, (j) one convex-concave core and
two deltas, (k) one convex core and one concave core, and (l) one core-delta

singular points in different groups of fingerprints. Fuzzy singular points are the
points in these models where the regions of clustered directions intersect with
certain order. They may be convex core, concave core, delta, convex-concave core
or core-delta. Let us consider the fingerprint classification proposed by Henry
[2] that discriminates five fingerprints: tended arch, left loop, right loop, whorl
and arch. Figures 2(a)-(f) display examples of fingerprints from FVC database
[1] and Figures 2(g)-(l) are fuzzy models with 5 clusters and a 25x25 partition
(this selection offers a good trade-off between coarseness of the models and sim-
plicity of the results). The corresponding fuzzy singular points in the models
can be viewed in Figures 2(g)-(l). The fuzzy singular points convex-concave core
(in Figure 2(j)) and core-delta (in Figure 2(l)) are the result of fuzzy merging
a convex core and a concave core, and a convex core and a delta, respectively.
Detection of these fuzzy singular points is carried out by analyzing the direc-
tion values (consequents) of neighbor rules of the model, as shown in Figure 3.
Since fingerprints can be acquired with a certain inclination, the detection of
fuzzy singular points considers possible rotations (to a certain extent so as to
distinguish, for example, between convex and concave core).

Location of these fuzzy singular points within the image gives information to
know how acquired fingerprint is. Let us consider, for example, the fingerprints
depicted in Figures 4(a)-(f) and their fuzzy models in Figures 4(g)-(l). These
fingerprints are not well captured because fuzzy singular points are too shifted
or they do not appear. Fuzzy feedback consists in communicating to the user
what type of movement should be applied to introduce the finger in a correct
way. The detection of fuzzy singular points is followed by a fuzzy inference engine
based on rules that generates a message for the user. This fuzzy inference engine
employs the following fuzzy sets for the positions: very much on the left and very
much on the right for the horizontal position within the image (Figure 5(a)),
and very much at the bottom and very much at the top for the vertical position
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Fig. 3. Patterns for detection of fuzzy singular points based on directions: (a) concave
core, (b) convex core, (c) delta, (d) convex-concave core, and (e) core-delta

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 4. Fingerprints captured with faults: (a) core-delta is very much on the left, (b)
core-delta is very much at the bottom, (c) convex core is very much at the top, (d) delta
is very much on the right, (e) there is not any fuzzy singular point, and (f) there is not
delta. (g) - (l) Fuzzy models associated with 5 clusters

(a) (b) (c)

Fig. 5. Fuzzy sets employed in: (a)-(b) feedback, and (c) classification inference engines

(Figure 5(b)). The rules included in this fuzzy inference engine apply that ’if
any of the fuzzy singular points is placed in one or two of these fuzzy positions,
the user is required to move the finger in the opposite direction’. For example,
in Figure 4(g) the core-delta is placed very much on the left, hence the system
requires that the user moves the finger on the right. In Figure 4(e) there is not
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any fuzzy singular point, therefore the fuzzy inference engine requires ’the user
puts the finger on the sensor again’. In any other case, the engine decides that
’the finger is well placed’.

4 Fuzzy Models for Fingerprint Classification

Fuzzy models can be also exploited for classification purposes. Automated fin-
gerprint identification systems have to match a capture with all the fingerprints
stored in a database. A large number of comparisons are necessary. To accelerate
this process, fingerprint classification gives information to split databases and
search only in the selected group of fingerprints. Classification of fingerprints
has been done using several techniques such as crisp (non-fuzzy) rule-based,
syntactic, structural, statistical, neural network, and combined techniques [2].
The technique proposed herein is to employ fuzzy inference using fuzzy singular
points (as commented in the previous sections) to distinguish groups of finger-
prints by applying again a subsequent fuzzy inference engine. Each group is
characterized by the types, locations and number of fuzzy singular points. For
example, in Figures 2(a)-(c) and 2(g)-(i), tended arch, left loop and right loop
have one convex core and one delta. However, they are distinguished by delta
position with respect to convex core: aligned, on the right and on the left, re-
spectively. The whorl group has two deltas, one convex core and one concave
core (Figures 2(d) and 2(j)). The detection of such cores is enough to classify a
fingerprint as a whorl (Figures 2(e) and 2(k)). Finally, arch case only needs to
detect the core-delta point. Rule base for this fingerprint classification system is
shown in Table 1. Figure 5(c) illustrates the fuzzy sets for describing the position
of delta with respect to convex core in tended arch, left or right loop fingerprints.
If the fingerprint is acquired correctly (following the feedback commented in the
previous section) the percentages of right classification can be 100%, as has been
proven with fingerprints from FVC 2002 [1].

Table 1. Rule base for the fingerprint classification system

IF Fuzzy singular points
Delta position with
respect to convex

THEN

1) (core-delta) - arch

2) (convex AND concave) OR (convex -concave) - whorl

3) (convex AND delta) aligned tended arch

4) (convex AND delta) right left loop

5) (convex AND delta) left right loop

5 Conclusions

Coarse fuzzy models of fingerprints can be analyzed by subsequent fuzzy inference
engines to provide useful feedback information for users of automatic recognition
systems and to understand classification results. A future work is to analyze if
finer models could be exploited for identification or authentication purposes.
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Abstract. In this paper, we present a shape labeling approach for auto-
matic image annotation. A fuzzy clustering process is applied to shapes
represented by Fourier descriptors in order to derive a set of shape proto-
types. Then, prototypes are manually annotated by textual labels corre-
sponding to semantic categories. Based on the labeled prototypes, a new
shape is automatically labeled by associating a fuzzy set that provides
membership degrees of the shape to all semantic classes. Preliminary re-
sults show the suitability of the proposed approach to image annotation
by encouraging its application in wider application contexts.

Keywords: Fuzzy image annotation, semantic annotation, shape clus-
tering, shape labeling, shape representation.

1 Introduction

The rapid diffusion of large-scale digital image collections has brought about the
need for efficient Content-Based Image Retrieval (CBIR) systems that enable
users to find relevant images by exploiting automatically-derived low-level fea-
tures related to the visual content of images, such as color, texture or shapes [11],
[8]. The extraction of low-level features from images is a quite easy and fairly
direct task. However, people mainly recognize images and express their content
on the basis of high-level concepts. To formulate search queries, users typically
employ concepts strictly related to the semantic content of images. This has led
to the well-known “semantic gap” problem in CBIR that refers to the lack of
concordance that often occurs between low-level information automatically ex-
tracted from images and high-level information [16]. One of the main remedies
proposed in literature to bridge the semantic gap is represented by automatic
image annotation that focuses on automatically assigning metadata in the form
of textual labels to digital images that can be useful in retrieval systems in order
to efficiently organize and retrieve images in large collections. Thus, a general
annotation process requires the extraction of low-level features from images and
the association of such features to text labels.
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Among low-level features commonly employed to index images, shape is one
of the most attractive due to its strict link to human perception. Users tend to
perceive images as composed of individual objects identified by their shapes and
they typically search for images based on shapes of objects contained in images.
In this case, image annotation requires the association of labels to shapes.

Many approaches have been proposed in literature for shape annotation [5],
[15]. For most of them the process of attaching labels to shapes is crisp, i.e. a
shape is exactly classified into one semantic class [13], [18]. However, due to the
presence of noise and ambiguity in shape features, it is very difficult or even
impossible to classify shapes into precisely one class among the large variety of
classes. Labeling shapes with multiple labels rather than with a single one can
help to capture the uncertainty underlying the process of annotation. This leads
to a fuzzy annotation process that assigns multiple labels to a shape together
with values representing the membership degree of shapes to each semantic class
[7], [6], [2].

In this paper, we propose an approach to image annotation based on a fuzzy
labeling of shapes. Unlike other fuzzy labeling approaches that assume the ex-
istence of a number of semantic classes for a given image domain, in our work
we automatically define the classes by means of a fuzzy clustering process that
allows to derive a set of shape prototypes representative of several semantic cat-
egories. Specifically, the approach first creates a database of unlabeled object
shapes represented by Fourier descriptors. Then, the well-known FCM cluster-
ing is applied to group unlabeled objects according to shape similarity. For each
cluster a prototypical shape is derived. Finally, each shape prototype is man-
ually associated to a textual label corresponding to a semantic class. To label
a new shape, its visual descriptors are matched with visual descriptors of all
prototypes and the similarity values are used to create a fuzzy set expressing the
membership degrees of the shape to each semantic class.

2 The Proposed Approach

Three main tasks are carried out in our approach to annotate shapes, namely
representation, clustering and labeling. We suppose that a collection of shapes
expressed in the form of coordinates of boundaries is available. As a first step, all
the shape boundaries are represented by Fourier descriptors that, among the dif-
ferent approaches proposed for describing shape information, are well-recognized
nowadays to provide robustness and invariance, obtaining good effectiveness in
shape-based indexing and retrieval [3]. Fourier descriptors represent the outside
contour of a shape by means of a limited number of coefficients in the frequency
domain. Since such coefficients also carry information about the size, the orienta-
tion, and the position of the shape, they have to be properly normalized in order
to achieve invariance properties with respect to transformations. In addition, to
obtain a compact description of a shape, a common approach is to retain only
a subset of Fourier coefficients, corresponding to those with frequency closer to
zero [14], [20]. The choice of a suitable number M of coefficients to be used has to
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Fig. 1. Interface for manual annotation of prototypes

trade off the accuracy in representing the original boundary with the compact-
ness and simplicity of the representation. Readers can find main details about
this issue in [3]. In this work, we fixed empirically the suitable number of Fourier
coefficients (see Section 3). We indicate by s = (s1, s2, ..., sM ) the representation
of an object shape by means of its M Fourier descriptors.

Once all shapes have been represented by Fourier descriptors, a set of shape
prototypes is automatically defined by a clustering process so as to group similar
shapes into a number of classes and represent each class by means of a proto-
typical shape. In this work, we employ the well-known Fuzzy C-Means (FCM)
clustering algorithm [4] to group similar shapes into overlapping clusters repre-
senting several semantic classes.

Given a set of N shapes represented by Fourier descriptors S = {sj}N
j=1

and given a number of clusters K, the FCM provides a fuzzy partition matrix
U = [ujk]k=1...K

j=1...N representing membership degrees of shapes to clusters. These
are used to derive a prototypical shape for each cluster. Namely, for each cluster,
the shape with maximal membership degree is selected as prototype. We denote
by pk the prototypical shape of cluster k.

Once shape prototypes have been derived, these are manually annotated by
a domain expert according to a set of C semantic categories. Precisely, each
derived shape prototype is associated to a unique textual label corresponding to
a semantic class represented by the prototype. Fig. 1 shows the user interface
that we developed for prototype annotation. Of course, different prototypical
shapes may convey the same semantic content (i.e., several different shapes may
convey the same class of objects), i.e. K ≥ C. We consider such prototypes
to belong to the same semantic class: thus, such prototypes will have attached
the same class label. As a result, we may have different shape prototypes with
attached the same textual description.

Every time a new shape is added to the database, its Fourier descriptors
sj∗ are matched against Fourier descriptors of all prototypes pk by computing
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the Euclidean distance ‖sj∗ − pk‖. Then, membership degrees of the shape to
clusters are calculated according to a Gaussian membership function as follows:

μj∗k = e
−‖sj∗−pk‖

2σ (1)

where σ = ‖pk−ph‖
r is calculated by using the first-nearest-neighbor heuristic

where ph is the cluster prototype nearest to pk and r is an overlap parameter
ranging in [1.0, 2.0].

Thus, each object shape sj∗ is associated with a fuzzy set of labels Lj∗ defined
as follows:

Lj∗ = {μj∗1, μj∗2, . . . , μj∗C} (2)

where μj∗i represents the membership degree of the j∗-th shape to the i-th se-
mantic class that are obtained by computing the maximum value of membership
degrees of the shape with respect to all prototypes pk representative of the i-th
semantic class, namely:

μj∗i = maxpk∈Ci {μj∗k} (3)

As a result, an object shape usually belongs to multiple semantic classes with
different degrees of membership.

When the matching among a new shape and visual prototypes of all semantic
classes provides membership values lower than a given threshold, a new class
is added. Precisely, Fourier descriptors of the new shape are considered as the
visual prototype of the new semantic class (i.e. pK+1 = sj∗). Then, the newly
created prototype is manually labeled by the domain expert with a keyword that
describes the new added semantic class.

The use of shape prototypes, which represent an intermediate level of visual
signatures, facilitates the annotation process, since only a reduced number of
shapes (the prototypical ones) need to be manually annotated. Secondly, the use
of prototypes simplifies the search process in a retrieval system. Indeed, since
any single user query is likely to match with high degree only a small number
of objects, a large number of unnecessary comparisons is avoided during search
by performing matching with shape prototypes rather than with specific shapes.
In other words, prototypes act as a filter that reduces the search space quickly
while discriminating the objects.

3 Preliminary Results

To test the effectiveness of the proposed approach, we used the Surrey Fish data
set provided by [1], consisting of 1,100 text files. Each file contains the coordi-
nates of boundary points of an object representing a marine animal. According
to [3], images were manually classified into 10 semantic classes, as follows: “Sea-
horses” (5), “Seamoths” (6), “Sharks” (58), “Soles” (52), “Tonguefishes” (19),
“Crustaceans” (4), “Eels” (26), “U-Eels” (20), “Pipefishes” (16), and “Rays”
(41). Images not belonging to any category were assigned to a default class
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Fig. 2. Values obtained for the Xie-Beni index

(853). In these preliminary experiments, we employed a portion of the Surrey
Fish data set including only classes with an higher number of images. Thus,
classes such as “Crustaceans”, “Seahorses” and “Seamoths” were not considered
obtaining a data set composed of 232 images. Table 1 shows some images in the
considered data set portion, along with their respective class.

Table 1. Sample images of the considered data set portion

Shark U-Eel Eel Sole Ray Pipefish Tonguefish

The suitable number of Fourier coefficients to represent each shape was em-
pirically fixed to 32, according to [3].

The collection of the obtained 232 shape descriptors was divided into two
parts: the 90% of shape descriptors represented the training set and the re-
maining 10% represented the test set. A 10-fold cross-validation procedure was
executed in order to achieve more reliable results. The FCM was applied to the
training set in order to derive clusters of similar shapes. We performed several
runs by setting, in each trial, different cluster number (K = 20, 15, 10). More-
over, to establish the most suitable number of clusters, after each run of FCM,
we calculated the Xie-Beni index [19] being one of the most employed indexes
in literature to evaluate the goodness of the obtained partitions. Fig. 2 shows
the values obtained for the Xie-Beni index. Here, it can be seen that the best
partition of shapes (characterized by the smallest value of the cluster validity
index) was obtained in correspondence of K = 10. As a result of the shape
clustering task, for each cluster, a shape prototype was derived as explained in
section 2. Therefore, 10 different shape prototypes (one for each derived cluster)
were determined together with the matrix containing the membership degrees of
each shape to each derived cluster. Successively, shape prototypes were manually
annotated by associating to each of them a label related to the corresponding
semantic class. Table 2 shows some information about the obtained clusters in
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Table 2. The resulting clusters with the corresponding shape prototypes and the
associated class labels

Cluster number Cardinality Class label Prototype

1 22 Sharks

2 20 Soles

3 28 Sharks

4 10 U-Eels

5 34 Rays

6 26 Soles

7 8 U-Eels

8 25 Eels

9 14 Soles

10 24 Tonguefishes

one of the performed trials. In each row, the cardinality of each cluster with the
derived shape prototype and the associated label (corresponding to the seman-
tic class) are indicated. It can be observed that for some semantic classes, such
as “Soles” and “Sharks”, more than one prototype was derived. In effect, such
classes are formed by very dissimilar shapes that, therefore, were categorized in
different clusters. This shows that different shape prototypes can be representa-
tive of the same semantic class so that different shapes convey the same semantic
concept. Moreover, FCM has recognized pipefishes very similar to other shapes
such as sharks or eels. As a consequence, no prototype was derived for the se-
mantic class “Pipefishes”. Of course, this will strongly affect the effectiveness
of the annotation process for images including shapes of the unidentified cate-
gory. Another consideration concerns the choice of the label associated to the
last shape prototype. In effect, the last cluster includes tonguefishes with some
sharks that the algorithm recognized as very similar shapes. Consequently, al-
though the derived prototype is a shark, it was labeled as a tonguefish reflecting
the nature of the cluster. This has decreased the performance of the annotation
process for the class “Tonguefishes”, as it can be observed in table 3.

As a final step, the effective phase of shape annotation was performed. Specif-
ically, each shape included in the testing set was matched with the derived shape
prototypes and, then, it was annotated by assigning a fuzzy set derived by com-
puting the membership degrees according to the Eq. 1. In our test, the value for
the overlap parameter r was fixed to 1.50. The overall annotation process was
evaluated using Precision and Recall measures on the testing set. In particular,
first, we associated to each test shape the label corresponding to the semantic
class with the higher membership value. Then, for each label associated to se-
mantic classes, recall and precision were evaluated based on the true annotations
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(manual annotations made by the domain expert) and the automatic annota-
tions. More precisely, let sj be a test shape, tj its true annotation and aj its
automatic annotation. For each single class label w, precision and recall were
computed as follows:

P (w) = |{sj |w∈tj∧w∈aj}|
|{sj |w∈aj}| R(w) = |{sj |w∈tj∧w∈aj}|

|{sj |w∈tj}|

Table 3 shows the values for Precision and Recall measures related to the con-
sidered semantic classes. It can be observed that good results are obtained for
almost all classes. Only in correspondence of the class “Pipefishes”, we obtained
null values for Precision and Recall. This is because pipefishes actually appear
very similar to sharks or eels, thus FCM fails in recognizing them as a separate
class.

Table 3. Precision and Recall values for the annotation process

Class Precision Recall

U-Eels 0.50 1.00
Sharks 0.60 0.60

Tonguefishes 0.20 0.50
Rays 1.00 0.50
Soles 1.00 0.60
Eels 1.00 0.40

Pipefishes 0.00 0.00

4 Conclusions

In this paper, we proposed an approach to fuzzy labeling of object shapes for au-
tomatic image annotation. Preliminary results encourage the application of the
proposed approach to wider contexts. However, the effectiveness of the annota-
tion process could be improved by applying more suitable clustering methods
for automatic prototype derivation. A future development could concern the use
of fuzzy clustering techniques equipped with partial supervision mechanisms.
By applying this kind of techniques, a low number of labeled shapes given in
input to the algorithm together with unlabeled shapes allows to obtain better
clustering results in terms of more significant prototypes that better represent
the several semantic classes.
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Abstract. In this paper an automatic unsupervised method for the segmentation
of retinal vessels is proposed. Three features are extracted from the tested image.
The features are scaled down by a factor of 2 and mapped into a Self-Organizing
Map. A modified Fuzzy C-Means clustering algorithm is used to divide the neu-
ron units of the map in 2 classes. The entire image is again input for the Self-
Organizing Map and the class of each pixel will be the class of its best matching
unit in the Self-Organizing Map. Finally, the vessel network is post-processed
using a hill climbing strategy on the connected components of the segmented
image.

The experimental evaluation on the DRIVE database shows accurate extrac-
tion of vessels network and a good agreement between our segmentation and the
ground truth. The mean accuracy, 0.9482 with a standard deviation of 0.0075,
is outperforming the manual segmentation rates obtained by other widely used
unsupervised methods. A good kappa value of 0.6565 is comparable with state-
of-the-art supervised or unsupervised approaches.

Keywords: Retinal Vessels, Self-Organizing Map, Fuzzy C-Means.

1 Introduction

Automatically generated vessel maps are important in the diagnosis of many eye patholo-
gies. The vessel tree extracted from the retinal images is used to guide the identification
of retinal landmarks like optic disc or fovea. It is useful also in the registration of retinal
images. Branching and crossover points in the vasculature structure are used as land-
marks for image registration.

The development of an efficient computer based system for automatically segment
the blood vessels in retinal images allows eye care specialists to screen larger popula-
tions for vessel abnormalities.

1.1 Related Work

Many different approaches for automated vessel segmentation have been proposed and
they can be divided in two groups: supervised and unsupervised.

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 244–252, 2011.
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Supervised methods require a feature vector for each pixel and manually labeled
images for training. They use the neural networks [15], the K-nearest neighbor classi-
fier [14], primitive-based methods [18], a Gaussian mixture model classifier [16], or an
AdaBoost classifier [12] in order to distinguish vessel from non-vessel pixels. Unsu-
pervised methods in the literature comprise the matched filter responses [2], adaptive
thresholding [6], vessel tracking [3], morphology based methods [21] and neural net-
work learning techniques [10].

Supervised learning assumes that the training samples are classified by an expert as
either vessel or non-vessel and this is a tedious process. In the same time the supervised
training process is time consuming. The lack of experts and the time consuming pro-
cesses involved in the automatic supervised methods described in the literature deter-
mined us to search for an automatic unsupervised method for classification of the pixels
from a retinal image as vessel or non-vessel. We found that using Self-Organizing Maps
and a modified Fuzzy C-Means for clustering map units gives good results in clustering
pixels and it is also very fast as it is possible to notice from the analysis of the exper-
imental results and from the analysis of the execution time. This method is attractive
also because training is performed on resized features extracted from the same image
we want to segment, hence there is no need to develop a separate training set like in
other supervised or unsupervised methods.

2 Methodology

In [12] we described a new supervised method for retinal vessel segmentation called
FABC. The method was based on computing feature vectors for every pixel in the image
and training an AdaBoost classifier with manually labeled images.

2.1 Pixel Features

The feature vector consisted essentially of the output of filters plus vesselness and rid-
geness measures based on eigen-decomposition of the Hessian computed at each image
pixel and a two-dimensional Gabor wavelet transform response taken at multiple scales.
The components of the feature vector were: the Gaussian and its derivatives up to order
2, the green channel intensity of each pixel, a multiscale matched filter for vessels us-
ing a Gaussian vessel profile [17], Frangi’s vesselness measure [4], Lindeberg’s ridge
strengths [9], Staal’s ridges [18], a two-dimensional Gabor wavelet transform response
taken at multiple scales [16] and values of the principal curvatures, of the mean cur-
vature, of the principal directions and of the gradient of the image (the computation
method of each component is described better in [12]).

The scales used in order that vessels with various dimensions could be detected were
4:
√

2, 2, 2 ∗
√

2 and 4, hence the total number of features is 41.
In [11] we described five feature selection heuristics designed to evaluate the use-

fulness of features through feature subsets. Experiments showed that the features that
seemed to play the most important discriminatory role, i.e., the ones that were selected
by all the heuristics, were the 2nd-order derivative of the Gaussian in the y direction at
scale 2

√
2, the maximum response of a multiscale matched filter using a Gaussian ves-

sel profile, and the feature containing information about Staal’s ridges. Consequently,
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we used only these 3 features for the feature vectors used for clustering with the Self-
Organizing Map and the modified Fuzzy C-Means algorithm.

In [10] we presented an automatic unsupervised method for the segmentation of
retinal vessels based on a Self-Organizing Map (that was trained on a part of the same
tested image) and K-means clustering algorithm (used to divide the map units in 2
classes). The training sample was chosen as half of the FOV (field of view) pixels,
selected randomly. Randomness of the pixel samples gave us different results when
we run the algorithm several times, hence we were constrained to produce first a soft
classification by summing the segmented images resulted in various runs and secondly
a hard classification was obtained by thresholding at half of the maximum gray level.

In order to cope with the randomness of the pixel samples used for training the Self-
Organizing Map that gave different results when running several times, in this new
method we resized the pixel features by a scale factor of 2 and then we used all the
resized features for training the Self-Organizing Map.

2.2 Self-Organizing Maps

A Self-Organizing Map (SOM) is a neural network that is trained, using unsupervised
learning, to build a map of the input space of the training samples. A new input vector
will be automatically classified using the map built in the training phase. SOM was de-
veloped by Teuvo Kohonen in 1980 [7]. It consists of m neurons organized on a regular
low-dimensional grid. Each neuron i is a d-dimensional weight vector (w1i, ..., wdi)
called prototype vector or codebook vector, where d is equal to the dimension of the in-
put vectors. Usually, before the training phase, the prototype vectors are linearly initial-
ized. It has been suggested by Kohonen et al. [8] to use rectangular (but non quadratic)
maps and the number of neurons of the map is computed as 5 times the square root of
the number of training samples.

After the number of map units has been determined, the map size is determined by
setting the ratio between column number and row number of map units equal to the
ratio of two biggest eigenvalues of the training data. The product of the column and
row numbers must be as close to the number of map units as possible [19]. The size of
the images used for testing our method is 584x565, hence the number of pixels in the
image is 329960. The number of the FOV pixels in the image is 219848, hence scaling
down the features by a factor of 2 we get 54165 pixels. The number of map units is
about 5

√
54165 = 1164 neurons. Following the above rules, a 70 × 17 map has been

used for training.

Training the Self-Organizing Map. The SOM training algorithm is based on competi-
tive learning which is a particular case of neural network unsupervised learning. At each
training iteration, a sample vector x is randomly chosen from the training set. Euclidean
distances between x and all the prototype vectors are computed, in order to find the best
matching neuron unit (BMU). The BMU is selected as the unit that is the nearest to
the input vector at an iteration t, using ‖x(t) − wc(t)‖ = mini ‖x(t) − wi(t)‖, where
wc is the weight of the winner neuron. After finding the BMU, the prototype vectors
of the BMU and its neighbors are moved closer to the input vector using the follow-
ing update rule for a neuron i: wi(t + 1) = wi(t) + α(t)[x(t) − wi(t)], for i ∈ Nc,
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while wi(t + 1) = wi(t), for i /∈ Nc, where α(t) is the learning rate and Nc is the
neighborhood of the winning neuron.

Clustering the Self-Organizing Map using a modified Fuzzy C-Means. After training
the map, in order to cluster the SOM units in two classes, instead of using K-Means
like we have done in previous work, in this novel method we use a modified Fuzzy C-
Means with the aim to increase sensitivity. By applying Fuzzy C-Means one map unit
can belong to both classes at the same time but with different degrees.

The classical Fuzzy C-Means is based on minimization of the following objec-

tive function: Jm =
N∑

i=1

C∑
j=1

um
ij ||xi − cj ||2, 1 ≤ m < ∞ where m is the fuzzi-

ness factor, uij is the degree of membership of xi in the class j and cj is the cen-
ter of the cluster. Fuzzy partitioning is carried out through an iterative optimization
of the objective function shown above, with the update of the degree of membership

uij by uij = 1/

C∑
k=1

(
||xi − cj ||
||xi − ck||

) 2
m−1

and the update of the cluster centers cj by

cj =
( N∑

i=1

um
ij ·xi

)
/

( N∑
i=1

um
ij

)
, where C is the number of classes (in our case C = 2)

and N is the number of map units.
The iteration will stop when maxij ||u(k+1)

ij − u
(k)
ij || < ε, where ε is a termination

criterion between 0 and 1, whereas k are the iteration steps. This process converges to
a local minimum of Jm.

As the classical Fuzzy C-Means delivers different results when running several times,
we modify the classical Fuzzy C-Means by initializing the cluster centers at the first step
of the algorithm using C = 2 prototype vectors having the maximum Euclidean dis-
tance between them. In this way, at every run we will get the same C = 2 prototype
vectors as initial cluster centers, hence same results when running several times. More-
over, we choose the C = 2 prototype vectors having the maximum Euclidean distance
between them as we want to have the best discrimination between clusters [5].

After the neurons from the SOM were classified, the class of a new input pixel will
be the class of its BMU.

2.3 Post-processing the Segmented Images

We post-process the segmented images, trying to eliminate small connected compo-
nents in order to remove noisy pixels and to improve in this way the segmentation accu-
racy and the agreement between our segmentation and the ground truth. A hill climbing
strategy was used in order to determine the connected components to be removed from
the segmentation. If CC = {c1, ..., cn} is the set of the n image’s connected compo-
nents ordered in ascending order by the number of pixels in the connected component,
the algorithm starts with the set Toberemoved = {c1, c2}. The mean of the cardinali-
ties of the connected components included in the set Toberemoved is computed, as well
as their standard deviation. Connected component c3 is added to the set Toberemoved
if |c3| < mean(Toberemoved) + 3std(Toberemoved). The algorithm stops when a
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successive connected component from the set CC can not be added to the set of con-
nected components to be removed.

3 Experimental Results

3.1 Evaluation Measures

The method was tested on the DRIVE (Digital Retinal Images for Vessel Extraction)
publicly available database. The data set includes 40 584x565 fundus images. We use
only the 20 images from the test set for testing our methodology. All images are
available for download at http://www.isi.uu.nl/Research/Databases/
DRIVE/download.php (the web site of Image Sciences Institute).

Performance is given mainly as accuracy and kappa value.
The accuracy (ACC) for one image is the fraction of pixels correctly classified

ACC = TP+TN
P+N = TP+TN

TP+FN+FP+TN , where TP is the number of pixels correctly
classified as vessel pixels, TN the number of pixels correctly classified as non-vessel
pixels, FN the number of pixels incorrectly classified as non-vessel pixels and FP is the
number of pixels incorrectly classified as vessel pixels.

The sensitivity (SE) is computed by dividing TP by the total number of vessel pixels
in the gold standard segmentation: sensitivity = TP

P = TP
TP+FN .

The specificity (SP) is computed as TN divided by the total number of non-vessel
pixels in the gold standard: specificity = TN

N = TN
FP+TN .

We compute also the kappa value (a measure for observer agreement, where the two
observers are the gold standard and the segmentation method): kappa = P (A)−P (E)

1−P (E) ,

where P (A) = TP+TN
P+N is the proportion of times the 2 observers agree, while P (E) =

TP+FP
P+N ∗ TP+FN

P+N + (1 − TP+FP
P+N )(1 − TP+FN

P+N ) is the proportion of times the 2
observers are expected to agree by chance alone.

3.2 Results

In Table 1 we may see the segmentation results for the 20 test images from the DRIVE
database after post-processing.

Overall the 20 test images, after the post-processing, the mean accuracy is 0.9482 with
a standard deviation of 0.0075. The mean Kappa value is 0.6565. As shown in [20] and

Table 1. Results for the 20 test images from the DRIVE database, after post-processing. SE
indicates sensitivity, SP indicates specificity, ACC indicates the accuracy and Kappa indicates
the kappa value

Image 1 2 3 4 5 6 7 8 9 10
SE 74.44 54.78 60.83 51.42 61.09 58.46 49.81 55.61 55.00 67.62
SP 97.19 99.60 97.47 99.66 98.31 98.24 99.47 96.66 98.32 97.66

ACC 0.9517 0.9506 0.9383 0.9526 0.9484 0.9439 0.9496 0.9317 0.9482 0.9520
Kappa 0.7057 0.6672 0.6282 0.6410 0.6607 0.6388 0.6174 0.5436 0.6046 0.6715

Image 11 12 13 14 15 16 17 18 19 20
SE 53.80 76.08 64.07 80.56 65.52 77.74 71.34 80.54 78.21 65.55
SP 99.49 96.20 97.46 94.75 98.86 96.61 96.59 96.41 97.02 97.91

ACC 0.9541 0.9447 0.9421 0.9361 0.9648 0.9491 0.9446 0.9515 0.9547 0.9554
Kappa 0.6537 0.6731 0.6510 0.6347 0.7078 0.7053 0.6541 0.6978 0.7156 0.6592

http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
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Table 2. Overview of the performance of different methods. Kappa indicates the kappa value
and ACC indicates the accuracy.

Segmentation method Drive set

Kappa ACC

FABC (training and test confined to

the dedicated sets from the database)
[12] 0.7200 0.9597 (0.0054)

FABC (leave-one-out tests) [12] - 0.9575

Human observer 0.7589 0.9473 (0.0048)

Soares et al. [16] - 0.9466

SOM and modified Fuzzy C-Means 0.6565 0.9482(0.0075)

SOM and K-means [10] 0.6562 0.9459(0.0094)

Segmentation method Drive set

Kappa ACC

Staal et al. [18] 0.7345 0.9442 (0.0065)

Niemeijer et al. [14] 0.7145 0.9416 (0.0065)

Zana et al. [21] 0.6971 0.9377 (0.0077)

Al-Diri et al. [1] 0.6716 0.9258 (0.0126)

Jiang et al. [6] 0.6399 0.9212 (0.0076)

Martinez et al. [13] 0.6389 0.9181 (0.0240)

Chaudhuri et al. [2] 0.3357 0.8773 (0.0232)

All background 0 0.8727 (0.0123)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Best segmentation in terms of ACC (Image 15 test.tif from DRIVE database. a), d) our
segmentation before and after post-processing, g) ground truth). Worst segmentation in terms of
ACC and Kappa value (Image 08 test.tif from DRIVE database. b), e) our segmentation before
and after post-processing, h) ground truth). Best segmentation in terms of Kappa value (Image
19 test.tif from DRIVE database. c), f) our segmentation before and after post-processing, i)
ground truth).

in Table 2, the mean ACC of our proposed method outperforms the mean ACC of any of
unsupervised methods used for comparison. As in [20] the proposed method enhances
all region-of-interest, i.e. both vessel network and pathological findings in the soft clas-
sification (see Figure 1). This effect is desired in computer-aided diagnosis tools.
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4 Conclusions

We have presented an automatic unsupervised method for retinal vessel segmentation
based on Self-Organizing Maps and Fuzzy C-Means clustering. The choice to use Self-
Organizing Maps instead of a simple Fuzzy C-Means is based upon the fact that a SOM
provides a direct mean to visualize relations among different clusters (represented by
the prototype vectors in the input space and by the map’s neurons in the output space).

One important novelty of the method described in this paper is its stability. As the
classical Fuzzy C-Means delivers different results when running several times, we mod-
ified the classical Fuzzy C-Means by initializing the cluster centers at the first step of
the algorithm using C = 2 prototype vectors having the maximum Euclidean distance
between them and this implies same results when running several times, hence repro-
ducibility of the results which is very useful for practical purposes. In the same time,
resizing the pixel features by a scale factor of 2 and then using all the resized features
for training the Self-Organizing Map, leads also to stability of the segmentation results.

In a previous work [10], we have used K-means instead of the modified Fuzzy C-
Means for clustering the SOM units. In this paper, we propose a novel method based
on a revised version of Fuzzy C-Means for clustering the SOM units as it increases
the sensitivity apart from stabilizing the segmentation results. In fact, using a modified
K-Means, before post-processing, we get a mean sensitivity of 0.5030, while using a
modified Fuzzy C-Means, before post-processing, we get a mean sensitivity of 0.6965,
hence an improvement of 27.78%.

The method we proposed has the advantage that it uses knowledge about the vessel
network morphology like the most accurate supervised methods, but is completely un-
supervised as we do not have any a priori knowledge about the labels of the pixels we
want to classify as vessel or non-vessel. Another advantage of the proposed method is
its fast computational time, compared to supervised methods which are computationally
more expensive.

Although, in most cases, the vessel network produced before the post-processing was
acceptable, as we may see from Figure 1, post-processing methods removed efficiently
false positives and improved the mean accuracy from 0.9324 (see Table 3) to 0.9482
(see Table 1), hence an improvement of 1.69%.

Table 3. Segmentation results for the 20 test images from the DRIVE database, before post-
processing. ACC indicates the accuracy.

Image 1 2 3 4 5 6 7 8 9 10
ACC 0.9317 0.9511 0.9107 0.9526 0.9301 0.9282 0.9508 0.9120 0.9365 0.9284

Image 11 12 13 14 15 16 17 18 19 20
ACC 0.9542 0.9184 0.9229 0.9113 0.9625 0.9308 0.9257 0.9253 0.9293 0.9362

In the future we would like to study the influence on the results of the choice of
some parameters of the SOM map (like the number of iterations, the size of the initial
radius of the neighborhood and the choice of distance measure) and of the choice of the
post-processing technique. In the same time, we would like also to study which is the
best strategy for reducing the training samples (by scaling down the features as we are
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now doing, or by scaling down the image by different factors and computing each time
the features).
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Abstract. This work presents an approach based on image texture anal-
ysis to obtain a description of oocyte cytoplasm which could aid the clin-
icians in the selection of oocytes to be used in the assisted insemination
process. More specifically, we address the problem of providing a descrip-
tion of the oocyte cytoplasm in terms of regular patterns of granularity
which are related to oocyte quality. To this aim, we perform a texture
analysis on the cytoplasm region and apply a spatial fuzzy clustering to
segment the cytoplasm into different granular regions. Preliminary ex-
perimental results on a collection of light microscope images of oocytes
are reported to show the effectiveness of the proposed approach.

1 Introduction

Image segmentation is a fundamental step toward high level vision, necessary in
many medical applications based on image analysis and computer vision such
as object/pattern recognition and tracking, image retrieval, and so on. Image
segmentation is the process of partitioning an image into non-overlapped regions
which are homogeneous with respect to some characteristics such as intensity,
color or texture. In past years, many methods for the segmentation of medical
images have been presented [6,16].

Among these methods, clustering-based approaches received a great interest,
especially for image segmentation in medical domains. Both crisp and fuzzy clus-
tering schemes have been proposed, but fuzzy techniques have revealed more
robust than crisp algorithms in case of images characterized by some form of
ambiguity, such as poor contrast, noise and intensity inhomogeneities. Among
fuzzy clustering algorithms, the most used one is the well-known Fuzzy C-Means
(FCM) algorithm. Despite its widespread use, FCM does not always provide
good segmentation results, and this is mainly due to the fact that it does not
incorporate any information concerning the spatial context, which is fundamen-
tal because the obtained regions are likely to be disjoint, irregular and noisy.
In order to achieve more effective segmentation results, many works have been
proposed aiming at incorporating the local spatial information into clustering
schemes based on the conventional FCM algorithm [14], [1], [4], [15].

Here an approach based on a spatial FCM algorithm for the texture segmenta-
tion of the cytoplasm in oocyte images is presented. More specifically, we address

A. Petrosino et al. (Eds.): WILF 2011, LNAI 6857, pp. 253–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. A light microscope image of a human oocyte: the presence of a clear half-moon
like zone (also called halo effect) in one pole of the cytoplasm can be appreciated
(depicted in image on the right)

the problem of automatically analyzing the cytoplasm of human oocytes, in or-
der to evaluate their quality during an assisted fertilization process. The oocyte
quality assessment is a fundamental issue as, due to ethical and medical reasons,
only a restricted number of embryos can be transferred in woman’s uterus. How-
ever, in some countries law does not allow embryo selection, but only oocytes
or pronuclear stage oocytes (i.e. 1 day fertilized oocytes) selection. For these
reasons, a method able to support the clinicians in appropriately selecting the
most promising (pronuclear stage) oocytes would be desirable.

Generally, selection criteria are based on cell morphology and mostly on the
presence/absence of morphological irregular patterns in the cytoplasm that can
influence negatively/positively the assisted fertilization process. Indeed, it has
been suggested that regular patterns of granularity are related to oocyte qual-
ity [10,8,13,9] and in [7] a pronuclear stage oocyte score based on cytoplasmic
substructures has been addressed by considering abnormalities such as excessive
granularity or cytoplasmic inclusions. If present, granulation may be observed
within the cytoplasm and it may be either homogeneously or centrally localized.
Moreover, polarization seems to be an important factor for oocyte development
and implantation [12]. An example of such effect is given in fig.1.

The ultimate goal of our work is to support the clinicians in the oocyte scoring
by means of a system capable to derive a description of the oocyte cytoplasm in
terms of different granular regions located in the cytoplasm. In [2] we proposed
a multiresolution texture analysis approach that evaluates some texture descrip-
tors (statistical measures in the wavelet transform domain) of a region centred
inside the cytoplasmic area and employs the derived features in a clustering
phase in order to automatically find a classification of unseen oocytes accord-
ing to their level of central granularity. A further step forward in the quality
assessment of the oocyte maturity is represented by the analysis of the whole
cytoplasmic area in order to discover regions with different level of granular-
ity inside the cytoplasm of a single oocyte. This analysis might highlight the
presence or not of a particular zone known as polarization or halo effect that is
another important factor already studied in literature [12].

For this reason, while in [2] we cluster the texture of different oocytes in order
to categorize them, in the present work we use clustering to detect different
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granular regions inside the whole cytoplasmic area of each single oocyte. To
this aim, we segment the cytoplasm image into different regions according to
the texture features by using a spatial fuzzy clustering algorithm [5] that is
applied to texture feature vectors rather than to pixels. In details, it works on
the representation of a number of blocks in which the image is subdivided, where
each block is represented by first order statistics descriptors extracted from the
Haar wavelet representation of the block.

The paper is organized as follows. In Section 2 we report the preliminary step
of the whole process, i.e. the extraction of the cytoplasm region starting from
the oocyte image. Then, Section 3 gives a formalization of the adopted spatial
fuzzy clustering algorithm applied after texture analysis. Finally, in Section 4
some preliminary experimental results are provided to show the effectiveness of
the proposed approach and some conclusions are drawn in Section 5.

2 Detection of the Cytoplasm Region

This phase is devoted to extract the circular region that corresponds to the cyto-
plasm inside the oocyte to be used for the segmentation. Indeed, different parts
of the oocyte are visible in the image, such as the zona pellucida and the periv-
itelline space that enclose the cytoplasmic area. Hence, we need a pre-processing
step that aims at isolating the region of interest for further segmentation steps.
The problem can be solved by combining a priori knowledge about structure and
properties of objects with information contained in the image.

Following this approach, we process the oocyte image by considering that the
shape of the cytoplasm can be approximated by a circumference. Our method
consists of the following steps: (1) obtain the gradient image; (2) use the gradient
image to obtain points possibly belong to circumferences of different radius; (3)
select the circumference that better approximates the cytoplasm boundary.

In step (2) we use the Hough transform to obtain image points belonging
to different circles. The Hough transform [11] is a powerful technique which
can be used to isolate features of a particular shape in an image: it is most
commonly used for the detection of regular curves such as lines, circles, etc.
The main advantage of the Hough transform is that it is tolerant of gaps in
curve descriptions and is relatively unaffected by image noise. Its parameter
space is three-dimensional. Indeed, a circle with radius R and center (a, b) can
be described by the following parametric equations:

x = a + R cos(θ), y = b + R sin(θ)

When the angle θ sweeps through the full 360 degree range, the points (x, y)
trace a circle of fixed radius R. The three-dimensionality of the parameter space
makes a direct implementation of the Hough transform very expensive in terms
of computer memory and time. Anyway, if the radius of circles is known, then
the parameter space is reduced and thus the problem is reduced to search for the
coordinates (a, b) of the centres. Fig. 2(a) shows the result of applying the Hough
transform to the image in fig. 1, where the circle that best fits the cytoplasm
boundary is overlapped to the original image.
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a b c

Fig. 2. Result of the cytoplasm boundary detection process. (a) Hough transform of
an oocyte image: Best fitting circle - plotted in black - overlapped on the oocyte image.
(b) Extracted ROI (c) Square blocks partitioning of the extracted ROI.

Once the cytoplasm boundary is detected, we automatically select the region
of interest (ROI) by considering a bounding rectangular region centred in the
point of coordinates (a, b) (see fig. 2(b)). This ROI is successively partitioned into
square blocks as reported in fig. 2(c) and segmented by spatial fuzzy clustering,
as described in the next section.

3 Segmentation by Spatial Fuzzy Clustering

A common strategy of employing a clustering algorithm for image segmentation
is to divide the image into a number of blocks and to extract a number of features
for each block. Successively, the clustering algorithm is applied to these features
and a predefined number of clusters is obtained. Accordingly, in our approach
we divide the cytoplasm ROI image into blocks of wxw pixels. For each block j
we derive a feature vector xj by describing its texture using first order statistics
applied to a multiresolution decomposition of the block. More specifically, we
characterize the texture of each block with the following statistical properties of
its multiscale representation:

– mean and variance;
– a measure of relative smoothness;
– third moment, that is a measure of the symmetry of the histogram;
– a measure of uniformity, maximum for an image with all gray levels equal;
– a measure of average entropy, that equals to 0 for a constant image.

For each block of the ROI, we compute these features on the histograms of the
subbands obtained by the Haar wavelet decomposition. The derived features are
used for segmentation via a clustering process.

A common method to perform clustering is the Fuzzy C-Means (FCM) algo-
rithm [3]. FCM is a partitional clustering method based on the minimization of
the following objective function:

J =
N∑

j=1

K∑
i=1

(uij)m d (xj , ci)
2, 1 < m < ∞, (1)
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where d(x, c) is the distance between the observation x and the cluster centroid
c, m is the fuzziness parameter, K is the number of clusters, N is the number
of observations, uij is the membership degree of observation xj belonging to the
cluster i, calculated as following:

uij =
1

K∑
l=1

(
d(xj , ci)
d(xj , cl)

) 2
m−1

. (2)

Using the fuzzy membership matrix U = [uij ], a new position of the i-th centroid
is calculated as:

ci =

∑N
j=1 (uij)mxj∑N

j=1 (uij)m
. (3)

Given the initial parameters (number of clusters K and fuzziness parameter m),
FCM iteratively computes the matrix U according to eq. (2), and updates the
centroids positions, as in eq. (3). The algorithm terminates after a fixed number
of iterations, or if the improvement expressed by J is substantially small. From
eq. (1) it can be observed that FCM does not incorporate any spatial dependen-
cies between observations. This may degrade the overall clustering result in case
of image segmentation, because neighbouring regions may be highly correlated
and thus they should belong to the same cluster.

To take into account the spatial information in the segmentation, a variant
of the FCM known as spatial FCM (sFCM) has been proposed in [5]. It uses a
spatial function which is defined as:

hij =
∑

k∈NB(xj)

uik (4)

where NB(xj) represents a neighbor of the pixel xj in the spatial domain. Just
like the membership function, the spatial function hij represents the membership
degree of pixel xj belonging to ith cluster. The spatial function of a pixel for a
cluster is large if the majority of its neighbourhood belongs to the same clusters.
The spatial function modifies the membership function of a pixel according to
the membership statistics of its neighbourhood as follows:

uij =
up

ijh
q
ij∑K

k=1 up
kjh

q
kj

(5)

where p and q are parameters to control the relative importance of both functions.
Each iteration of the sFCM includes two steps. The first one is the same as that
in standard FCM to calculate the membership function in the feature domain. In
the second step, the membership information of each pixel is mapped to the spa-
tial domain, and the spatial function is computed from that. The FCM iteration
proceeds with the new membership that is incorporated with the spatial function.
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In our approach, to take into account both spatial and texture information of a
cytoplasm ROI, the sFCM is applied to texture feature vectors rather than to pix-
els. Namely, we firstly calculate the membership function in the feature domain as
in (2). Then, we update these values by computing the spatial function as follows:

hij =
∑

k∈NB(bj)

uik (6)

where NB(bj) is the set of neighbours of the j-th block that is made up of the
8x8 surrounding blocks. Thus, in our case, the spatial function hij represents
the membership degree of block bj belonging to ith cluster.

The algorithm terminates when the improvement expressed by J is substan-
tially small, namely the maximum difference between two cluster centres at two
successive iterations is less than a threshold. After the convergence, a defuzzifi-
cation is applied to assign each block to the cluster for which the membership
is maximal. As a result, our approach provides a segmented ROI, in which the
regions are made up of the clusters obtained in the feature space.

4 Experimental Results

The proposed approach was tested on 60 light microscope images of human
oocytes, provided by the Dipartimento di Endocrinologia ed Oncologia Moleco-
lare e Clinica of the University “Federico II” of Naples, Italy. For each image
the clinicians indicated the presence or not of the polarization in the oocytes.
Each image was large 1280 × 960 pixels.

Firstly, each image was processed using the Hough transform, so as to detect
the best circle fitting the real shape of the oocyte cytoplasm. This was done by
searching circles of known radius R ranging from 230 to 250 pixels. Once the
circular region of the cytoplasm was identified, a squared ROI surrounding the
circular region was extracted. All steps involved in this phase were implemented
using ImageJ, a public domain Java image processing tool.

Then, the extracted ROI was splitted into blocks and the texture analysis was
applied on each block in order to derive a feature vector as described in Section 3.
To implement texture analysis methods, some Java plugins were developed and
properly integrated into the ImageJ environment. Next, the sFCM algorithm
was applied on the feature vectors derived from the image blocks in order to
segment the ROI into three regions (clusters).

Several runs were carried out varying the block dimensionality in the splitting
step, namely 8× 8, 12× 12, 24× 24, 32× 32, and the p and q parameters in the
clustering step. As in [5], the Xie-Beni index was exploited in order to evaluate
the performance of the clustering algorithm. In most cases, the index was better
for 8×8 blocks and for the sFCM than the conventional FCM. Furthermore, the
sFCM1,1 (sFCM applied with p = 1, q = 1) showed the best results.

Figure 3 shows the segmentation of a sample ROI of two oocyte images ob-
tained by using the standard FCM algorithm and our variant of the sFCM
applied with parameters (p = 1, q = 1) and (p = 1, q = 2), respectively. The
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a b c d

e f g h

Fig. 3. Segmented images of the extracted cytoplasm (a-e) using FCM (b-f); sFCM1,1

(c-g); sFCM1,2 (d-h) in oocytes in which, according to the clinicians, polarization is
present (a) or not (e)

reported images are two instances of oocytes with and without polarization ac-
cording to the indication of the clinicians. It can be seen that, in case of oocytes
with polarization, the conventional FCM can segment the ROI image into three
clusters but spurious blobs of one cluster appear inside other clusters. At the
contrary, both sFCM techniques drastically reduce the number of spurious blobs,
and the resulting regions are more homogeneous and very quite to the clinicians
indication. On the other hand, in case of oocytes without polarization, the pro-
posed approach, differently form classical FCM, correctly fails in finding the
half-moon like zone in the cytoplasmic area.

5 Conclusions

An approach for segmenting human oocyte cytoplasm images using fuzzy clus-
tering with spatial information has been presented. Preliminary experimental
results on real oocyte images show the effectiveness of the approach and encour-
age its application in the process of assessing the quality of human oocytes. In
particular, the work presented in this paper is intended to provide an approach
useful to aid clinicians in making decision about evaluation and selection of the
best quality oocytes. The approach could provide a second opinion diagnostic
tool for the scoring of human oocytes by embedding it in a system able to an-
alyze microscope images of human oocytes and classify them according to their
quality during some kind of assisted fertilization cycles. Currently, further work
is in progress to complete the development of such diagnostic tool.
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Abstract. Soft computing is a term indicating a coalition of method-
ologies, and its basic dogma is that, in general, better results can be
obtained through the use of constituent methodologies in combination,
rather than in a stand alone mode. Evolutionary computing belongs to
this coalition, and thus memetic algorithms. Here, we present a combi-
nation of several instances of a recently proposed memetic algorithm for
discrete tomography reconstruction, based on the island model parallel
implementation. The combination is motivated by the fact that, even
though the results of the recently proposed approach are finally better
and more robust compared to other approaches, we advised that its ma-
jor drawback was the computational time. The underlying combination
strategy consists in separated populations of agents evolving by means of
different processes which share some individuals, from time to time. Ex-
periments were performed to test the benefits of this paradigm in terms
of computational time and correctness of the solutions.

1 Introduction

The goal of computerized tomography [1] is the recovery of three-dimensional ob-
jects from their projections. In the general case, in order to obtain high resolution
slices, several hundreds of projections are required. Discrete tomography [2] is the
particular reconstruction case of objects which have a few density values. Under
certain conditions it is possible to reduce the number of required projections.

For instance, it can be proved in polynomial time whether there exists any
object compatible with just a pair of projections [3,4]. Unfortunately, the re-
construction task is quite complex when many projections [5] or a small set of
them [6] are used. Anyhow, custom reconstruction algorithms were designed for
particular classes of images (e.g periodic images [7], which have repetitions of pix-
els along some directions, and hv-convex polyominoes, which are connected sets
with 4-connected rows and columns). Besides deterministic methods [4,8,9,10],
heuristic [11] and evolutionary approaches [12,13,14] shown their reconstruction
ability, too. Network flows were applied [9,13].

Genetic algorithms (GAs) are often considered as global optimization methods
and, since local optima can be reached in consideration of their random nature,
then their convergence to a global optimum is guaranteed in a weak probabilistic
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sense. Memetic algorithms [15] (MAs) belong to the same class of GAs as they
explore the solutions space through cooperative and competitive operators on
proper agents [16]. With respect to GAs, these latter algorithms induce the
evolution not only between consecutive generations, but also among the agents
within the same generation.

Parallel genetic algorithms (PGAs) are parallel implementations of their cor-
responding GAs and usually provide better performances [19]. Moreover, PGAs
fully respect the soft computing dogma since they can be described as combi-
nation of several instances of GA following some combination strategies. PGAs
simultaneously span different subspaces, thus avoiding traps due to low-quality
solutions, share the memory to solve the storage population problem and use
more than one processing unit to evaluate the fitness. A taxonomy of PGAs is
reported in [17]. In this paper, we present a faster parallel version of the memetic
reconstruction algorithm we already introduced in [18] based on multi-population
model.

2 Memetic Reconstruction

Let us represent a binary image I with n×m pixels by a matrix A={aij}, whose
entries are equal to 0 if the corresponding pixels in I are black (i.e. they belong to
the background), or equal to 1 if they are white (i.e. they belong to the object).
The projection line passing through aij with direction v≡(r, s), where r, s∈�
and |r|+|s| �= 0, is the subset of A:

�v(i, j)={ai′j′ ∈A : i′= i+zs, j′=j−zr with z∈�}.

Let t(v) be the number of distinct projection lines parallel to v and Lv
k (A) be

one of these lines that intersect A, with k = 1, ..., t(v). Denoting with pv
k the

number of 1’s on Lv
k (A) along v, the projection is:

Pv = (pv
1 , pv

2 , ..., pv
t(v)) where pv

k =
�

aij∈Lv
k
(A)

aij .

Actually, Pv and pv
k should be denoted by Pv(A) and pv

k(A), but we will use
this latter notation only in the case of ambiguity, when more than one matrix is
considered. Here, we considered v1≡(1, 0), v2≡(0, 1), v3≡(1, 1), v4≡(1,−1).

Recently, we described a memetic algorithm (indicated as serial memetic to-
mography reconstructor or SMTR) for discrete tomography reconstruction [18].
Given a small set of projections P̂v

i
, it creates an initial population of agents

by using their corresponding network flows, computed through v1 and v2. The
method is shown in figure 1 and the used operators are described in the following.

2.1 Initial Population

A convenient representation of I, introduced in [9], is given by the network flow
G with one source S, one sink T and two layers of nodes between S and T : the
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former, named row-nodes {R1, R2, ..., Rm}, are related to the row projections
while the latter, named column-nodes {C1, C2, ..., Cn}, are related to the column
projections. To compute G, we consider only v1 and v2 and it is noteworthy that
the maximal flow corresponds to a binary image that satisfies P̂v1

and P̂v2
. Each

arc �XY of G has capacity:

c�SRi
= p̂

v1
i , c�RiCj

= 1, c�CjT
= p̂

v2
j

and flow:
f�SRi

=p
v1
i , f�RiCj

=aij , f�CjT
=p

v2
j

where i= 1, ..., m and j = 1, ..., n. This population is created outside SMTR
and it is passed as input to the reconstruction algorithm.

2.2 Fitness Function

The fitness function of an agent, represented by the matrix A, is defined as:

F(A) =
4�

i=1

t(v
i
)�

k=1

��pv
i

k − p̂
v

i

k

��
where Pv

i
is the actual projection of A and P̂v

i
is the input projection, both taken

along direction v
i
. Starting from P̂v, the goal of the algorithm is to reconstruct a

binary image with projections Pv equal to P̂v. Therefore, F must be minimized.

2.3 Crossover Operator

We define here the vertical crossover, while the analogous horizontal version
just operates on the transposed matrix. By swapping homologous columns of
two parents A1 and A2, it creates two offspring B1 and B2. Formally, columns
A

(j)
1 and A

(j)
2 , with j =1, ..., n, are located by a mask M =(M1, M2, ..., Mn) of

random binary values:

B
(j)
1 =

��
�

A
(j)
1 if Mj =1

A
(j)
2 if Mj =0

B
(j)
2 =

��
�

A
(j)
2 if Mj =1

A
(j)
1 if Mj =0

2.4 Mutation Operator

Our mutation operator modifies no more than 5% of the pixels. This threshold
was set experimentally to obtain better fitness values. In particular, this genetic
operator swaps ρ=min{/0.05×m×n0, m×n−w, w} white and black pixels.
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2.5 Switch Operator

Images that satisfy the same set of two projections can be transformed among
themselves by a finite sequence of elementary switches [20]. This operator swaps
aij with aik and ahj with ahk, where:�

aij = ahk = 1
aik = ahj = 0 or

�
aij = ahk = 0
aik = ahj = 1

Usually, Pv3
and Pv4

change their values, while Pv1
and Pv2

are maintained.

2.6 Compactness Operator

Some isolated pixels (i.e. surrounded by 8 pixels with opposite color) are usually
present and worsen the final image. This operator eliminates as many as possible
isolated pixels. This approach does not guarantee a better fitness value, but
nonetheless tends to let the image satisfy the input projections.

3 Parallel Implementation

We call PMTR the combination of several instances of SMTR by following the
island model strategy [17]. This scheme requires the distribution of the entire
population of agents into sub-populations called demes. Demes are well separated
and their agents compete only within the same deme. Let us consider each deme
of equal size na/np, where na is the total population size and np is the total
number of processes. A deme di is assigned to the i − th process, which locally
evolves di by using the algorithm SMTR.

Every mi generations, some agents migrate into different demes. Such a mi-
gration is subjected to the migration rate (mr) that controls how many agents
actually move. This event is considered general since it involves all processes.
Each deme i broadcasts its mr fittest agents to all other demes dj (i.e. i �= j).
Subsequently, in order to maintain the size of each population, only mr best
agents among all received ones are mixed together with the retained agents. This
approach selects only the fittest agents during the whole process, since demes
coming from different initial populations share their best agents. A sketch of
PMTR is shown in figure 2.

Of course, this parallel implementation is faster than the corresponding serial
reconstruction algorithm, since it does not require too many communications
among processes and takes advantage of the internal structure of new multicore
CPUs, which further reduce the communication time. Indeed, we use a few is-
lands of agents (that is, just a few processing units) while these architectures do
not rely on custom communication hardware (e.g. InfiniBand) to connect their
cores in a very efficient fashion. According to our benchmarks, the computational
time decreases almost linearly when we increment the number of processes. Need-
less to say, no more than one real process should run within each core to avoid
excessive overload.
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program SMTR(P , ng)
repeat

choose pairs of random agents;
for all chosen pairs

apply both vertical crossover and horizontal crossover;
if the fitness was improved then

replace parents with fittest offspring;
for all agents

apply a random elementary switch;
if the fitness was improved then

replace the agent with its switched version;
for all agents

apply mutation;
if the fitness was improved then

replace the agent with its mutated version;
for all agents

apply a random elementary switch;
if the fitness was improved then

replace the agent with its switched version;
for all agents

apply compactness;
if the fitness was improved then

replace the agent with its compacted version;
for all agents

apply a random elementary switch;
if the fitness was improved then

replace the agent with its switched version;
until a solution was found or ng generations were considered;
return last population P .

Fig. 1. Our serial memetic method (SMTR)

program PMTR(P , ng, na, np, mr, mi)
split P into np sub-populations Pi with na/np elements;
repeat

for all Pi = SMTR(Pi, mi)
move mr fittest agents of Pi into Pj �=i;
mix mr best received agents with the retained ones;

until a solution was found or ng generations were considered;
return last population P =

	
Pi.

Fig. 2. Our new parallel memetic method (PMTR)

4 Results

In real cases only the projections of the input image I will be available. We tested
the algorithm on 50 hv-convex polyominoes and on 50 generic images that do not
present any particular geometric property [18], with 100×100 pixels in both cases
(examples are in figure 3). To evaluate the reconstruction quality of our algorithm
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Fig. 3. An hv-convex polyomino and a generic image (left) of our database. Their
reconstructed versions (right) have errors equal to ε=0.36% and ε=4.87%, respectively.

Fig. 4. Average reconstruction errors for SMTR and PMTR (np = 2, 4, 8) on hv-
convex polyominoes (left) and generic images (right)

Fig. 5. Average elapsed time (in seconds) for SMTR and PMTR (np = 2, 4, 8) on
hv-convex polyominoes (left) and generic images (right)

we computed the value ε defined as the L1 distance between I and its recon-
struction I ′, normalized by the size of I. The average error ε̄ was computed on
the overall database. In the experimental sessions we used mi={25, 50, 75, 100}
and mr = {na

np , 2·na
np }, and results show that the PMTR is invariant to such

parameters (see figure 6 for the case np = 4 and na = 1200). Figures 4–5 sum-
marize reconstruction results obtained by both SMTR (ng=500, na=1000) and
PMTR with mi = 25, mr = na

np , ng=500, np=2, 4, 8 and na=1024, 1200, 1600,
respectively. In the case of both hv-convex polyominoes and generic images, the
island strategy does not enhance the final reconstruction, since PMTR reports
an average reconstruction error similar to SMTR (see figure 4). Nevertheless,
the new approach is significantly faster than the serial version (see figure 5).
Note that reported computational times include also the process of generating
the initial population P (see section 2.1).
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Fig. 6. Average reconstruction errors for PMTR (np = 4, with different mr and mi
values) on hv-convex polyominoes (left) and generic images (right)

The algorithm was implemented in MATLAB R© and the parallelization em-
ploys the Parallel Computing Toolbox R©. Experiments were carried out on just
one blade of an high performance system, equipped with two quad-core Xeon
E5420 (2.5 GHz, 12 MB L2 cache), 16 GB of RAM and the Linux OS. We used
MATLAB co-distributed arrays to compute the min, max and average values of
the fitness on the distributed populations.

5 Conclusions and Further Works

Discrete tomography is a hard task to solve and requires a lot of time to recon-
struct images if no model is assumed a priori. We introduced here a combination
of several instances of a memetic algorithm for discrete tomography reconstruc-
tion, already presented by us in [18], which respects the so called island model
strategy. Experiments shown that PMTR is effective as well as SMTR but the
benefit of this combination paradigm is mainly in terms of computational time.
We developed the whole algorithm in the interpreted language MATLAB, but
faster implementations in low level languages (e.g. compiled languages MPI and
CUDA) should be able to exploit better the architectures of new common multi-
core CPUs. The underlying idea consists in confining all communications needed
by our method within a single die, due to the fact that a single core handles an
entire island of agents. Vice versa, a different MATLAB session is needed for
each island, thus taking up a significant amount of memory. We studied our
method on hv-convex polyominoes and generic images, but we aim to generalize
it to take into account also specific models of images.
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Abstract. This article presents a hybrid system for self-compensation
and self-validation of intelligent industrial instruments that combines a
Neuro-Fuzzy model, based on the ANFIS architecture, capable of com-
pensating errors caused by non-calibrated instruments, and a validation
model based on Fuzzy Logic that provides the level of confidence of
measurements. The proposed system indicates to the specialist when a
new calibration must be performed. The hybrid system is tested with
a differential pressure instrument, used in mining for level and pressure
controls.

Keywords: Sensors, Self-calibration, Self-validation, Fuzzy Inference Sys-
tem, Neuro-Fuzzy systems.

1 Introduction

In several industrial processes, measurements provided by sensors are continu-
ously monitored to obtain an adequate result. Therefore, verifying and validat-
ing the measuring process is essential for performance optimization and cost-
reduction.

Regardless of its quality, an instrument degrades with time, so that the sig-
nal provided for monitoring may present other values than the expected ones.
Wrong measurements in industrial processes produce economic losses and, in
many cases, accidents due to control based on inaccurate feedback signals. In
most cases, it is necessary to remove the measuring instrument from the field
and then perform the calibration in a laboratory.

Despite the growing demand for high precision, low cost, compact size sensors,
many investigations are yet to be made. The current trend towards intelligent
instruments [1] is to integrate: (1) a sensor element that can be developed in a
standard process; (2) electronic circuits that may periodically compensate the
signal obtained; and (3) circuits to generate compatibility with the data bus,
providing the status of the instrument.

The purpose of this study is to develop a model that is capable of monitoring
instruments in industrial processes and produce correct values whenever they
are assessed as decalibrated. The model presented here is easy to develop and
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provides results that are consistent with large data sets. It consists of a Self-
compensation model developed on an ANFIS (Adaptive Network based Fuzzy
Inference System) [2] architecture, to compensate values measured by decali-
brated sensors, and of a Self-validation model, implemented as Fuzzy Inference
System, to assess the degree of reliability of the results provided by the ANFIS
model and to indicate when a new calibration must be performed.

2 Self-compensation Model

Most applications for compensation of measurements are based on microproces-
sors incorporated to instruments, where compensation is usually performed by a
software implementation. In the model proposed here (Fig. 1), compensation is
performed by a neuro-fuzzy model (NFM). It is a nonlinear type of compensation
and aims at correcting measurements that change due to sensor wear.

Fig. 1. Self-compensation scheme

The use of this model allows the sensor to remain active in the process for a
longer period, avoiding its removal for maintenance. The NFM receives measure-
ments from a field sensor and an information on its time in operation, generating
an output that is equivalent to that of a calibrated sensor [3]. The ANFIS archi-
tecture was selected here because of its ease of implementation and fast training
time, as opposed to that of a Multilayer Perceptron used previously. There is no
pre or post scaling of the data, which is normally required for training a neural
network, and it also requires less data for parameter tuning. As shown in Fig. 2,
the neuro-fuzzy model adjusts its parameters in view of the error generated by
the difference between measurements obtained by a standard sensor and the
network compensated reading, aiming at producing a final output that is equal
to that of a calibrated sensor.

Fig. 2. Self-compensation: training
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3 Self-validation Model

The self-validation model is a generic one and can be used to improve monitoring
of different sensors in industrial processes. Here, the only information used to
establish reliability of data for a particular sensor is its behavior in time. Neural
net-based implementations, such as reported in [3], [4], [5], require a considerable
amount of data for correct training, which, in this particular case, is not always
possible.

The proposed model to establish reliability of data measured by the instru-
ment is based on a Fuzzy Inference System (FIS) of the Mamdani type. Self-
validation of data generated by the sensor is achieved through the difference
between the compensated signal and the signal measured by the sensor, thus
generating a final error that may vary in time. The error and the rate of error
change (change-in-error) are the inputs to the system, as shown in Fig. 3.

Fig. 3. Self-validation model

Three fuzzy sets, defined by the membership functions shown in Fig. 4, are
associated to the chosen variables.

Fig. 4. Membership functions for input and output fuzzy sets

Parameters P1, P2, P3, P4, R1, and R2 must be specified for each sensor.
Regarding the error, data that fall into the ideal region are highly reliable,
whereas data outside this region present low reliability. With respect to the
change-in-error, high rates (negative or positive) are considered undesirable.
The system’s final output, computed through Center of Gravity defuzzification,
estimates the degree of reliability of measurements. This output is classified in
the intervals low (LR), medium (MR), and high reliability (HR). The set of rules
is shown in Table 1.
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Table 1. Rules for the self-validation FIS

Change-in-error
Negative Low Positive

Low MR LR LR
Error Ideal MR HR MR

High LR MR MR

4 Experiments with a Differential Pressure Sensor

This sections considers the application of the proposed Self-compensation and
Self-validation models to a differential pressure sensor. Tests were conducted
upon a set of curves that model the variation in time of calibration curves [3]
of a Rosemount 3051S differential pressure sensor [6]. This sensor has a linear
behavior, to ensure damping and a stable signal, when the input approaches
zero. It may be scaled to various pressure ranges, according to the adjustment
of zero (offset) and gain (span). Its output is a direct current in the range [4, 20]
mA. In a real application, data bases with measurements for level and pressure
control have been used.

4.1 Self-compensation

The purpose of compensation is to anticipate the output value corresponding to
the measurement by a calibrated sensor. In order to represent the values of a
decalibrated sensor, 36 curves (three years of operation) based on the equations
for a standard curve were generated. Each curve represent a signal that is de-
compensated. Several simulations were made to obtain an adequate data base
for training an ANFIS model with five Gaussian membership functions. Even-
tually, it consisted of 50 samples for each curve and of the time corresponding
to the measurements presented to the ANFIS model, totaling 1,800 data. The
data base was divided into two sets: 80% for training (assuring coverage of the
whole sensor’s operation range) and 20% for testing. Both the training and the
evaluation vectors are of the form [t vd vp]T where t represents the time in oper-
ation, vd represents the measurements by the decalibrated sensor, and vp is the
desired output value of the measurements given by the standard sensor (Fig. 5).

The inputs to the Self-compensation model that presented decalibration were
compensated and became equal to the values that would have been returned by
a calibrated sensor. The mean square errors (MSE) for training and testing were
7.53 × 10−5 and 5.3 × 10−5, respectively.

The behavior of the model is shown in Fig. 6. The upper, smoother curve
corresponds to the calibrated sensor, whereas the lower one corresponds to the
response of the decalibrated sensor in six months. The circles on top of the upper
curve represent the compensated response.
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Fig. 5. Standard curve for Rosemount Sensor
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Fig. 6. Self-compensation curves for the Rosemount Sensor

To evaluate the model’s performance in a real application, two data bases
obtained by the SCADA (Supervisory Control and Data Acquisition) system for
the Barrick mine in Peru have been used. The first one refers to level control for
the Barren Tank, which stores gold, silver and a cyanide solution. The second
one refers to pressure control for the Prensa filter, which stores a gold and silver
solution. Both contain information on the number of samples, the operation time
in minutes, and the measurements during one week of operation. The number of
samples stored for both cases is 1009. Table 2 shows the parameters.

Table 2. Database parameters

Control Average Std.Dev. (%) Zero Span

Level 75.35 mBar 8.28 0 100mBar

Pressure 368.47 kPa 112.9 0 100 kPa
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The data were transformed into current values in the range of 4 to 20 mA.
Based on the curves simulated before, a data base for each month was created.
In the results for the Barren Tank (Figs. 7a and 7b) and for the Prensa filter
(Figs. 8a and 8b), the continuous upper curve represents the calibrated sensor
response for the original data base, the lower curve represents decalibrated sensor
data and the black circles represent the compensated values. In both cases, the
NFM responds very well, with an MSE in the magnitude of 10−6.
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Fig. 7. Self-compensation: Barren Tank – (b) enhanced version of (a)

4.2 Self-validation

In the generic self-validation system, based on [7], the fuzzy inference system is
expected to provide an appropriate output given the error and change-in-error
input values.
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Fig. 8. Self-compensation: Prensa Filter – (b) enhanced version of (a)

Fuzzy sets parameters for both cases were chosen as:

[P1 P2 P3 P4 R1 R2] = [-0.4 -0.1 0.1 0.4 0.3 0.6]

Values for P2 and P3, for example, were defined by assuming that an error
of 0.1 (mBar or kPa) would be acceptable. Values for R1 and R2 were chosen
to be greater than the standard deviation of the error. If they are smaller, the
self-validation model generates an oscillatory response (for reliability), which is
of difficult interpretation. For level control (Barren tank), the response after
defuzzification was a constant value of 0.8, indicating high reliability. From the
response for the Prensa filter (Fig. 9), it can be observed that sensor reliability
for pressure control is low at some instants, as a result of a large derivative.
However, the return of the signal to its right value after some time indicates
that the sensor maintains its initial degree of reliability.
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Fig. 9. Self-validation: Prensa filter

5 Conclusions

In this paper, a methodology was developed for self-compensation and self-
validation of sensor measurements. Self-compensation is performed by a Neuro-
Fuzzy model, which corrects measurements errors in a decalibrated sensor. Self-
validation is performed by a fuzzy inference system that gives as its output the
reliability of the measured signal. Although the tests were performed for a spe-
cific case study, the methodology is generic and can be used for any application.
The compensation and validation systems are applicable to data generated by
independent sensors. If a sensor presents a fault, it is possible to identify when
a new calibration must be performed. Future work involves developing a model
that is capable of self-compensating and self-validating measurements with errors
resulting from deviations, off-sets and noise.
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Lupaşcu, Carmen Alina 244

Madrid, Nicolás 115
Magdalena, L. 131, 212
Maratea, Antonio 196
Marcelloni, Francesco 83, 172
Martinetti, Davide 33
Massanet, Sebastia 1
Masulli, Francesco 164
Mencar, Corrado 188, 220
Millonzi, Filippo 261
Minervini, Massimo 220
Montes, Susana 33
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