
Chapter 5
Implementation of Traditional Techniques

5.1 Introduction

The inherent aim here is to implement the traditional and common methodologies
which have been employed to illustrate land use change, and thereafter to simulate
its forthcoming status. In this chapter, the cellular automata model, the Markov
chain model, the CA-Markov model and the logistic regression model will be
designed and executed. Each single model will be evaluated to verify its outcomes.
This will allow us to validate their results and acquire enough assurance of
their performance. Thus, verified models will be chosen in order to integrate
in the ABM.

5.2 Selected Techniques for Implementation

In this part of the chapter, it is intended to review and also execute preferable and
useful methodologies such as cellular automata, Markov chain, cellular automata
Markov, and logistic regression models. The outcomes of these models will be
evaluated and the different results will enable us to compare them to each other.
The strategy of creating different results by means of different techniques will
enable this research to represent various methods upon a specific area. Therefore, a
general flowchart for this section can be presented as in Fig. 5.1.

In Sect. 5.3, we will describe the theoretical background of the aforementioned
models, as well as their implementation, starting with the cellular automata model.
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5.3 Cellular Automata Model Scenario

In recent decades, investigations for developing geographical cellular automata in
order to simulate complex systems have been raised. Cellular automata have been
employed to simulate wildfire propagation (Goodchild et al. 1996), population
dynamics (Couclelis 1985), and land use change (Batty and Xie 1994; White and
Engelen 1993).

The cellular automata model is known as CA which is a dynamic model
originally conceived by Ulam and Von Neumann in the 1940s to afford a formal
framework for investigating the behaviour of complex systems (Moreno et al.
2009). CA is also the main framework of agent-based modelling scenarios. Land
use changes simulation using CA is a complicated process, whereas various spatial
variables and factors have to be employed (Li 2008). A critical matter in CA
modelling is defining appropriate transition rules based on training data. In fact,
these transition rules conduct this model. Linear boundaries have been used to

Fig. 5.1 Flowchart of the general strategy for the implementation of the models

70 5 Implementation of Traditional Techniques



define the rules (see Fig. 5.2). However, land use dynamics or changes, and
many other geographical phenomena, are vastly complex and require nonlinear
boundaries for the rules definition (Moreno et al. 2009). Figure 5.3 demonstrates
the flowchart of implementing the CA Model.

5.3.1 CA Transition Rules

Land use changes on the fringe of cities (i.e. urban sprawl) is the consequence of
both internal and external forces; the internal impact means an area tends to continue
its development if it has begun to develop from a rural to an urban status, particularly
if this natural tendency is supported by development from within the neighbourhood.
The external impact means factors such as the geographical conditions of the area,
socio-economic circumstances and institutional controls, also impact on the process
of development. Physical constraints (e.g. water bodies and steep terrain, etc.)
restrict or slow down the development of urban areas (Fig. 5.4).

Socio-economic factors, such as land availability and demands on available
lands, accessibility to nodes of employment, accessibility to public services and
facilities, such as schools, shops, public transport, and contiguity to existing urban
areas also play key roles in urban development; therefore, they are able to define

Fig. 5.2 Cellular Automata, state transition rules and the Moore neighbourhood notion (Huang
et al. 2004)
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appropriate conditions (Liu 2008). The transition rules are the major inputs in a
CA model. Basically, the aforementioned rules have been defined in linear forms,
using methods such as multi-criteria evaluation (MCE) (Yang et al. 2008).
Transition rules can be defined through a filter file at a variety of kernel sizes, and
various decision rules can make that CA model completely different from other
existing CA models. Whereas these simulated maps are on hand, a training phase
can be utilised by means of these preliminary results and the map of reality. This
training phase helps to realise the appropriate kernel size and transition rules.

5.3.2 Training Process and Calibration of the CA Model

The training process consists of choosing a certain time step for the simulation
through the CA model. Different transition rules and neighbourhood distances can
result in various outcomes; thus, a preliminary evaluation of the obtained results
was carried out to pick the optimum settings. The optimum settings will lead us to
implement this model by coordination of time step and results. Accordingly, after

Fig. 5.3 Flowchart of the implementation procedure of the CA scenario
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implementing the training phase and retrieving calibrated factors, a simulated map
of development of forthcoming years was prepared.

The other key issue to implement a CA model is to estimate an appropriate
iteration number. This enables users to stop the modelling process at accurate
times. Therefore, a training process is applied to the model in order to control the
predefined transition rules. This helps to stop our model at a certain time and
reach a certain amount of change, to better estimate the locations of changes.
A code was written in the Python environment and imported into the ArcGIS
Toolbox. This script has the typical characteristics of a CA model. The code
comprises all cellular automata components, i.e. neighbourhood size and transition
rules. This CA code performs according to a predefined iteration number, and it
stops at a certain time. At each time step, a filter is applied to the entire image
then the output image is reclassified according to the reclassification file, and the
produced output image is then used as an input for the next iteration. The process
goes on until the predefined iteration number is reached.

Results from different settings can be evaluated and compared with the actual
map. This model was implemented to the land use maps of 1986 and 1996 to
achieve the simulated maps of 1996 and 2006, respectively. The simulated maps of
built-up areas at different iteration numbers of 1986, 1996 and 2006 are shown
through Figs. 5.5 and 5.6.

Fig. 5.4 Schematic explanation of automata and different neighbourhood layouts
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The simulated maps of 1996 and 2006 were compared with the maps of reality
of 1996 and 2006; therefore, the optimum transition rules and settings can be
determined. In Table 5.1, the number of iterations and resulted ROC values are
cross compared to pick the optimum iteration number. The determined transition
rules will be chosen as the optimum designed CA model. This model will be
implemented on the map of 2006 in order to simulate built-up map of 2016.

Table 5.1 shows that the maximum ROC value yielded at iteration number
nine, therefore, this amount of iteration and associated transition rules were
employed for the prediction process. The model validation process and resulted
map will be presented in Chap. 7 (see Sect. 7.5.1).

Fig. 5.5 Simulated maps of built-up areas at different iteration numbers from 1986 to 1996
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5.4 The Markov Chain Model Scenario

Markov chain theory is a stochastic process theory that describes how likely one
state is to change to another state. The Markov chain has a key-descriptive
tool which is its transition probability matrix (TPM). Markov chain theory has
been used generally to study water resource systems and simulate precipitation
sequences, particularly to describe and predict lithological transition, plant
succession, and land utilisation change (Li et al. 1999).

Stochastic processes generate sequences of random variablesfXn; n 2 Tg by
probabilistic laws. In Eq. 5.1, index n stands for time. This process is measured
discrete in time and T ¼ f0; 5; 10; . . .g years approximately. This time step is a
reasonable time unit for land use change studies. Therefore, if the stochastic
process considered a Markov process then the sequence of random variables will
be produced by the Markov property, formally (Cabral and Zamyatin 2009):

P Xn þ 1 ¼ ain þ 1jX0 ¼ ai0; . . .;Xin ¼ ain½ � ¼ P Xin þ 1 ¼ ain þ 1jXin ¼ ain½ � ð5:1Þ

Fig. 5.6 Simulated maps of built-up areas at different iteration numbers from 1996 to 2006
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5.4.1 Markovian Property Test

Land use change in the study area needs to be proved as a Markovian process.
In fact, it must have statistical dependence between Xn ? 1 and Xn; and that
statistical dependence is a first-order Markov process.

PðXn ¼ anjXn�1 ¼ an�1Þ 6¼ PðXn ¼ anÞ � PðXn�1 ¼ an�1Þ ð5:2Þ

P Xn ¼ anjXn�1 ¼ an�1½ � ¼ P Xn ¼ an;Xn�1 ¼ an�1½ �=P Xn�1 ¼ an�1½ � ð5:3Þ

A first-order Markov process is defined as a Markov process that the transition
from one category to any other categories does not necessitate intermediate
transitions to other states. The statistical dependence can be tested in any con-
tingency table demonstrating the land cover changes between Xn and Xn-1.
In this research, this test was performed for land cover changes between
1986–1996 and 1996–2006. To deduce from the association or independence
between the land cover categories within the years from the contingency table, the
random variable, with the chi-square distribution is defined by:

x2 ¼
X

i

X

i

Nij �Mij

� �2
=Mij

� �
ð5:4Þ

Here, N is the contingency matrix showing the land cover change between two
assumed time scales; for instance, either 1986–1996 or 1996–2006 or 1986–2006,
and also, M the contingency matrix with the expected values of change, assuming
the independence hypotheses.

Table 5.1 Comparison of different accuracy assessment indices arising from diverse CA rules

Input file Iteration number Kappa index for
built-up cells

Overall kappa ROC value

1986 (predicted 1996) 2 0.6684 0.6953 0.837
3 0.6684 0.6953 0.837
4 0.7156 0.7000 0.846
5 0.7546 0.6984 0.851
6 0.7877 0.6925 0.854
7 0.8151 0.6830 0.857
8 0.8379 0.6705 0.86
9 0.8562 0.6553 0.861
10 0.8709 0.6382 0.859

1996 (predicted 2006) 3 0.6977 0.6912 0.825
4 0.7475 0.6909 0.834
5 0.7869 0.6838 0.84
6 0.8201 0.6729 0.843
7 0.8488 0.6598 0.847
8 0.8736 0.6447 0.851
9 0.8944 0.6280 0.854
10 0.9116 0.6099 0.852
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x2 basically measures the distance between the actual values of land cover
change and the projected ones, assuming independence hypothesis and accordingly
must be high enough to verify. The same non-parametric test was performed to
assess the Markovian property. Thus, the values have to be compared with the
observed values computed with the Chapman–Kolmogorov equation, supposing
that these variables are generated by a first-order Markov process:

PðXn ¼ anjXm ¼ amÞ ¼ PðX1 ¼ a1jXm ¼ amÞ � PðXn ¼ anjX1 ¼ a1Þ;
m � 1 � n ð5:5Þ

The Chapman–Kolmogorov equation expresses that the probability of transition
between 1986 and 2006 can be projected by multiplying the transition probabilities
matrix 1986–1996 by the transition probabilities matrix 1996–2006.

x2 ¼
X

i

X

j

Nij � oij

� �2
=oij

� �
ð5:6Þ

5.4.2 Execution of the Markov Chain Module

The transition probabilities matrix is calculated by the contingency matrix
displaying the relative frequencies of land change at a certain time period (Cabral
and Zamyatin 2009). The IDRISI MARKOV module inputs a pair of land-cover
images and outputs a transition probability matrix, a matrix of transition areas, as
well as a set of conditional change probability images. A text file records the
probability matrix that each land cover category will change to other categories
under a certain probability value.

Fig. 5.7 Schematic view of the Markov chain model approach
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The transition area matrix is a table which records the amount of pixels that are
anticipated to change from one land cover category to other category according to
a number of time units. The produced results (i.e. matrices) arising from this
implementation were stored for use in further change analyses. This output
determines the estimated quantity of change that can be used for the process of
change allocation. Figure 5.7 presents a schematic view of the implementation of
the Markov chain scenario.

In effect the Markov chain is not a spatially explicit model; therefore the
Markov chain is not an appropriate model to estimate the location of change,
which is the aim of GIS projects. Nevertheless, it is an excellent quantity estimator
(Kamusoko et al. 2009) such that its outcomes can be allocated by means of other
approaches. As is shown in Table 5.2, the probability of converting each land
category to the others can be determined by the Markov chain model.

5.5 Cellular Automata Markov Scenario

This section of the chapter aims, in particular, to depict the cellular automata
Markov model and how this module was executed. The cellular automata Markov
model that has been designed into the IDRISI software (Andes Version) is an
extension of multi criteria evaluation procedure which combines CA and Markov
chain modules. By using the quantity of change which is calculated through the

Table 5.2 Markov transition probabilities matrix between 1986–1996, 1996–2006 and 1986–2006

Agricultural
field

Built-up Open
land

Public
park

Water
body

Probability value of 2006
based on transition
matrix of 1986–1996

Agricultural
field

0.8835 0.0487 0.0615 0.0062 0.0001

Built-up 0.0007 0.9907 0.0054 0.0031 0.0001
Open land 0.0133 0.0689 0.9124 0.0052 0.0001
Public park 0 0.0335 0.0232 0.9428 0.0005
Water body 0.0105 0 0 0 0.9895

Probability value of 2016
based on transition
matrix of 1996–2006

Agricultural
field

0.9361 0.0402 0.0218 0.0017 0.0002

Built-up 0.0036 0.9873 0.0055 0.0035 0
Open land 0.0144 0.0576 0.9223 0.0055 0.0003
Public park 0.0018 0.0088 0.0064 0.9816 0.0013
Water body 0.0211 0.0102 0 0.0066 0.9621

Probability value of 2026
based on transition
matrix of 1986–2006

Agricultural
field

0.8469 0.0936 0.0493 0.0096 0.0005

Built-up 0.0003 0.9885 0.0059 0.0052 0.0001
Open land 0.0188 0.1131 0.8579 0.0099 0.0003
Public park 0 0.0434 0.0198 0.9362 0.0005
Water body 0.0105 0.0009 0 0 0.9886
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Markov chain analysis (i.e. transition area matrix) the cellular automata Markov
model applies a contiguity kernel to ‘grow out’ a land use map to a later time
period; hence, this approach converts the outcomes of the Markov chain model to a
spatially explicit model by integration of CA functionality. The certainty and
accuracy of this module will be examined and demonstrated (see Fig. 5.8).

Some efforts were performed to construct high-resolution regional models by
integration of the Markov and CA approaches (Clark 1990), and investigations in
this area have been growing extensively (Wegener 2001). The Markov cellular
automata model is a robust approach in terms of quantity estimation as well as
spatial and temporal dynamic modelling of land use/cover changes, because GIS
and remote sensing data can be capably incorporated. Biophysical and socioeco-
nomic data could be used, firstly, to define preliminary conditions; secondly, to
parameterise the Markov cellular automata model; thirdly, to analyse transition
probabilities and, finally, to determine the neighbourhood rules with transition
potential maps (Kamusoko et al. 2009). In the cellular automata Markov model,
the Markov chain process manages temporal dynamics among the land use/cover
categories based on transition probabilities, while the spatial dynamics are
controlled by local rules determined either by the cellular automata spatial filter or
transition potential maps (Maguire et al. 2005). In fact, the cellular automata
Markov model begins allocating changes from the nearest cells to each land use
type (Pontius and Malanson 2005).

In this section, the future land use/cover changes (up to 2026) in the study area
were simulated based on the cellular automata Markov model, which combines
Markov chain analysis and cellular automata models in order to change the
essence of the Markov chain to a spatially explicit model.

The spatial resolution of output maps was defined at 30 m in accordance with
Landsat imagery spatial resolution. The original cell size could avoid further
uncertainty by employing reclassification functions. Hence, the quantity and per-
centage of each type of land use maps was calculated for the period of 1986–2006
in accordance with cross tabulation analysis.

5.5.1 Execution of the Cellular Automata Markov Model

Markov chain models have been broadly used to model land use changes including
both urban and rural areas at coarse spatial scales. After preparing land use maps,
transition probability matrices for both time periods were calculated as well as
Markovian conditional probability images in IDRISI software (See Table 5.1).

The first record of Table 5.1 identifies the next 10-year step (i.e. 2006) as a
description of transition probability matrix, where the agricultural areas category
will remain at the same category at 88.35% probability and 4.87% will be
converted to built-up area category. Furthermore, the value of the fourth row
which identifies the probability of converting public parks category to agricultural
land category is zero; in other words, it is not expected to observe any public park

5.5 Cellular Automata Markov Scenario 79



cell that has been converted to agricultural field cells. Figure 5.9 demonstrates
simulated maps arising from the implementation of the cellular automata Markov
model at different iteration numbers.

The next step requires the need to set up the cellular automata Markov model
for predicting the land use map. Since this module has Markovian property and
CA behaviour, the cellular automata Markov model must be defined for both
properties. Hence, by inputting the land use map of 1986, Markov transition areas
parameters and transition suitability image parameters for Markovian property of
the model were employed, as well as filter contiguity definition and number of
iterations in support of cellular automata behaviour.

As shown in Fig. 5.8, it is aimed to simulate multiple land use maps for
one-time step (e.g. 2006) by defining different transition rules. The simulated maps
will be compared with the actual map, which allows us to evaluate the validity of
this approach. Therefore, the verified model can be used to simulate future years.

Fig. 5.8 Flowchart of the cellular automata Markov simulation process
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Fig. 5.9 Simulated land use map of 2006 from land use map of 1996 at different iteration
numbers
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The land use maps of 1986 and 1996 were input to the cellular automata Markov
model to produce a simulated map of 2006. This implementation requires a
Markovian conditional probability image of 2006 and, also, a transition area matrix
of 2006 to be input. Several types of filter contiguity and a number of iterations were
examined to achieve the optimal kernel size and number of iterations. With the aim of
reaching the optimal parameters, the simulated and actual land use maps of 2006
were crossed to validate the results. One of the setting parameters was to define the
iteration number that will reproduce different maps. This model evaluation process
needs to verify all the simulated maps to compare them with the actual map;
consequently, the most statistically similar map will be selected. The predefined
parameters will be chosen as the proper settings for the next runs.

The produced maps under different transition rules were assessed with different
indices. A diagram of correlation between those maps and the number of iterations
was accordingly drawn (see Fig. 5.10). The kappa indices of location and quantity
for the simulated maps were calculated, and subsequently the most appropriate
iteration number at iteration of 300 was determined with a Kappa standard index
of 0.91. The input transition rules were considered in order to run this approach
and predict future land use maps. This was done based on the transition proba-
bilities matrices of land change (1996–2006) and land change (1986–2006).
Markovian conditional probability images have to be input to derive the simulated
land use maps of 2016 and 2026. Eventually, the simulation process of predicting
the land use maps of 2016 and 2026 was implemented to output the respective
maps. These maps are represented in Chap. 7 (Figs. 7.3, 7.4).

5.5.2 Validation of the Cellular Automata Markov Model

A cross comparison between the simulated maps at different iterations and actual
maps was employed to verify the certainty of the model. The highest value of
accuracy among the resultant maps was chosen, which is approximately 91% for the
kappa index, and 97% for K-Location (Fig. 5.11). Investigation of this model shows
that the cellular automata Markov model is a good estimator for the quantification of
change and continuous-space change modelling. Based on visual analysis, this model

Fig. 5.10 Kappa indices at
different iteration numbers
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produces some diffused-speckle developed cells which do not correspond with the
reality. Besides, this model needs a lot of time to run the simulation process and,
also, to be replicated for a huge number of iterations (e.g. 300, 400). Although the
simulated maps have high Kappa indices the edges of land categories appear wavy
and circular in shape, which do not match with the reality, i.e. they seem unreal.

5.6 The Logistic Regression Model Scenario

The logistic regression analysis has been the most frequently used approach during
the past two decades for predictive modelling by means of variation of inductive
modelling (Verhagen 2007). Empirical estimation and dynamic simulation models
have been used to simulate land use/cover changes. Various types of rule-based
modelling (e.g. cellular automata model) are the most suitable models for incor-
porating spatial interaction effects and handling temporal dynamics. CA models,
however, focus primarily on the simulation of spatial patterns rather than the
interpretation of spatio-temporal processes of urban sprawl. There is a lack of
incorporation between most dynamic simulation models over socioeconomic
variables (Hu and Lo 2007). In this section, another approach by means of the
logistic regression model on urban sprawl will be explained. The aim of executing
this technique was to observe the presumed relationship and interactions
between social, economic and environmental parameters which could drive urban
expansion. As far as it has been realised, this technique has never been published
or even employed upon the study area. Hence, this implementation and its

Fig. 5.11 Dependent variable Y; change to built-up area between 1986 and 1996 (no change:
Y = 0; change Y = 1)
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outcomes could lead to more accurate results in this area of research, and achieve a
better understanding of the interaction between those variables.

5.6.1 An Overview of the Logistic Regression Technique

Regression is a method to discover the coefficients of the empirical relationships
from observations. Linear regression, log-linear regression and logistic regression
are the most used regression approaches (Hu and Lo 2007). In logistic regression,
the dependent variable can be either binary or categorical, and the independent
variables could be a set of categorical and continuous variables. Routine
assumption is not required for the logistic regression model. Hence, logistic
regression is advantageous in comparison with the linear regression or log-linear
regression. It is fundamental to extract the coefficients of independent variables
from the observation of land use conversion, since urbanisation does not frequently
follow typical supposition, and its prominent factors are usually a combination of
continuous and categorical variables (Xie et al. 2005). The general form of logistic
regression is as follows:

y ¼ aþ b1x1 þ b2x2 þ � � � þ bmxm ð5:7Þ

y ¼ loge
P

1� P

� �
¼ log it ðpÞ ð5:8Þ

P ¼ ey

1þ ey
ð5:9Þ

Where x1, x2, …, xm are independent variables, y defines a linear combination
function of the independent variables representing a linear relationship. Moreover,
the b1, b2, …, bm parameters are the regression coefficients to be retrieved.
Function y is known aslog it (P) i.e. the logarithm (base-e) of the odds or likeli-
hood ratio that the dependent variable Z is 1. Probability value (P) strictly
increases while y value goes up. Regression coefficients b1 to bm imply the con-
tribution of each independent variable on the probability value. A positive value
implies that the independent variable helps to increase the probability of land
change and a negative value implies the reverse effect. The statistical method is a
multivariate estimation process which examines the relative significance and
strength of the factors. While employing logistic regression to simulate rural–
urban land transformation, it is crucial to consider the spatial heterogeneity of
spatial data. Spatial statistics such as spatial dependence and spatial sampling
also have to be taken into account to eliminate spatial autocorrelation (Hu and
Lo 2007). Otherwise, unreliable factor estimation or unproductive estimates
(i.e. wrong results) of the hypothesis test will be produced.

There are two basic approaches to assess spatial dependence: firstly, building a
more complex model incorporating an autoregressive structure and, secondly,
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designing a spatial sampling plot to enlarge the distance interval between sampled
points. Spatial sampling creates a smaller sample size that loses certain information
and conflicts with the large sample of asymptotic normality of maximum likelihood
method, upon which logistic regression is based on. Nonetheless, it is a reasonable
approach to eliminate spatial auto-correlation, and a reasonable design of spatial
sampling scheme will make an ideal balance between the two sides (Xie et al. 2005).

The logistic regression model is employed to predict a categorical variable from
a set of predictor variables. A discriminated function analysis is generally
employed if all of the predictors are continuous and properly distributed; Logit
analysis is generally utilised if every predictor is categorical. In fact, logistic
regression is often preferred if the predictor variables are a set of categorical and
continuous variables. Besides, they should be properly distributed. The predicted
dependent variable in a Logistic Regression Model is a function of the probability
that a particular theme will be in one of the categories; for instance, the probability
of change upon a specific land use based on a set of scores on the predictor
variables such as proximity to interchange network, and so on (Huang et al. 2009).

LOGISTICREG module in IDRISI Andes performs binomial logistic regression,
in which the input dependent variable must be binary in nature and can have only two
possible values (0, 1). Such regression analysis is usually employed in the estimation
of a model that depicts the relationship between continuous independent variables to
a binary dependent variable. The basic assumption is that the probability of a
dependent variable takes the value of 1 (positive response). The logistic curve and its
value can be calculated with the following formula: (Mahiny and Turner 2003)

Pðy ¼ 1jXÞ ¼ exp
P

BXð Þ
1þ exp

P
BXð Þ ð5:10Þ

Where:
P is the probability of the dependent variable occurrence
X is the independent variables, X ¼ ðx0; x1; x2. . .xkÞ; x0 ¼ 1;
B is the estimated parameters, B ¼ ðb0; b1; b2. . .bkÞ

In order to linearize the above model, as well as remove the 0/1 boundaries for
the original dependent variable which is probability, the following transformation
is usually applied:

P
0

= In p= 1� pð Þð Þ ð5:11Þ

This transformation is referred to as the Logit or logistic transformation. Thus,
after the transformation P0 can theoretically assume any value between plus and
minus infinity (Hill and Lewicki 2007). By performing the Logit transformation on
both sides of the above Logit regression model, we obtain the standard linear
regression model:

In p= 1� pð Þð Þ ¼ b0 þ b1 � x1 þ b2 � x2 þ . . .þ bk � xk þ error term ð5:12Þ
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In fact the Logit transformation of binary data ensures that the dependent
variable will be continuous, and the new dependent variable (Logit transformation
of the probability) is boundless. Furthermore, it ensures that the probability surface
will be continuous within the range from 0 to 1. In general, systematic sampling
and random sampling are two approved sampling methods in logistic regression.
Systematic sampling reduces spatial dependence. On the other hand, random
sampling is capable of representing population, but does not efficiently reduce
spatial dependence, especially local spatial dependence (Huang et al. 2009).

5.6.2 Implementation of the Spatially Explicit Logistic
Regression Model

In this section of this chapter, it is intended to clarify the assumed independent
and dependent variables and the interactions between these variables. Also, a
description over model validation and outputs will be presented and simulated
maps of future years will be demonstrated. Accordingly, we start with the
identification of dependent and independent variables, and then the effective
factors upon the dependent variable will be depicted.

Fig. 5.12 Dependent variable Y; change to built-up area between 1996 and 2006 (no change:
Y = 0; change Y = 0
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5.6.2.1 Identification of the Dependent Variable

The dependent variable in this implementation is the quantity of change from
no-built-up area to built-up area presented as a binary raster lattice where value 1

Fig. 5.13 Dependent variable Y; change to built-up area between 1986 and 2006 (no change:
Y = 0; change Y = 1)

Table 5.3 ROC and adjusted odd ration values for 18 sets of variables

ROC Adjusted odd ratio

Variables set 1 0.8441 20.102
Variables set 2 0.7831 7.6964
Variables set 3 0.844 21.7224
Variables set 4 0.7766 5.2355
Variables set 5 0.6635 3.0513
Variables set 6 0.9223 26.2327
Variables set 7 0.9352 50.3255
Variables set 8 0.9218 26.0128
Variables set 9 0.7167 3.2804
Variables set 10 0.7187 3.4114
Variables set 11 0.8906 16.052
Variables set 12 0.8915 16.5333
Variables set 13 0.8945 15.942
Variables set 14 0.7531 4.7522
Variables set 15 0.8031 11.586
Variables set 16 0.8053 12.0991
Variables set 17 0.8039 11.4385
Variables set 18 0.7392 5.7809
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introduces change on the specific pixels and zero indicates no-change pixels.
Figures 5.11, 5.12, and 5.13 represent the structure of the dependent variable files.

A set of independent variables was imported to the Logistic Regression Model
in order to become self-calibrated, with the support of IDRISI Andes GIS software
(see Table 5.3). A defined mask upon all input data was employed at 30 m
resolution to create equal dimension raster files; however, it was an intensive
computation for the computer hardware.

5.6.2.2 Predictor Variables (Independent Variables)

In this section, the prior produced land use maps for the years 1986, 1996 and 2006
were employed to specify the change over built-up areas between 1986–1996,
1996–2006 and 1986–2006. Logistic regression modelling executes a data-driven
rather than a knowledge-based approach in picking the predictor variables
(Hu and Lo 2007). A set of predictor variables was chosen based on preliminary
investigations over the case study as well as expert knowledge. A review of
effective variables, which was employed in previous similar studies, was a helpful
guide. Statistical evaluation, retrieving ROC values and adjusted odd ratios for
each set of variables were investigated to pick the optimum set (see Table 5.2).
Thus, a calibration process needed to be utilised in order to assure the effectiveness
of the assumed variables. These variables and process of data compilation will be
explained in the next section.

5.6.2.3 Data Compilation

The social variables correspond to the four affordable elements shaping Tehran’s
urban patterns (population density, distance to building blocks, single building
features, farming lands, categorical demography). Other social variables data
were not accessible to be utilised in this approach. Population density is a social
variable which determines per capita population per area unit and is expressed as
persons per hectare. The econometric and biophysical variables correspond to the
eleven affordable elements shaping Tehran’s metropolitan patterns (distance to
CBD; distance to nearby cities; distance to road networks and interchange; open
land features; easting and northing coordinate; digital elevation model; park
features; distance to stream; and slope) (Hu and Lo 2007). A set of independent
variables (X1–X17) was imported to a logistic regression model, supported by
IDRISI Andes software. An input dataset was designed at 30 m resolution due to
compatibility with other available data. Although, a set of other input data, such
as distance to education and administration areas, and distance to factories had
been evaluated as input to the model, because of weak results, this input data
were rejected; hence, these seventeen datasets were imported into the model
(see Table 5.4).

88 5 Implementation of Traditional Techniques



Spatial correlation may exist between each category of variables so that logistic
regression is able to drop the correlated variables according to the statistical cal-
ibration. This calibration basically checks for multi co-linearity. Model calibration
in this study was done in two steps, including initial calibration and refining,
respectively. All required data were converted to raster format at 30 m resolution.

5.6.3 Calibration of the Logistic Regression Model

The optimum set of variables was picked based on Table 5.2. Each set of variables
had different ROC and adjusted odd ratio, which verified the validity of the model,
and the approach was carried out numerous times. In order to select the optimum
set of variables, it had to reach the highest ROC value. In fact, ROC = 1 indicates
a perfect fit and ROC = 0.5 indicates a random fit. A higher adjusted odds ratio
is expected for a better fit and higher validity. Therefore, the optimum set of
variables is demonstrated in Fig. 5.14.

The logistic regression module was implemented 18 times for 18 sets of
variables in order to reach the highest possible ROC and adjusted odd ratio
values. The highest value of 0.9532 was obtained, which verifies the accuracy of
this model.

Table 5.4 Dependent and independent variables in the logistic regression approach

Variable Denotation Structure of variable

Dependent Y 0—No change to built-up Dichotomous
1—Change to built-up

Independent X1 1—Single building features Binary
0—Non single building features

X2 Proximity to nearby cities (m) Continuous
X3 Proximity to interchange (m) Continuous
X4 1—Farming land features Binary

0—Non farming land features
X5 1—Open land features Binary

0—Non open land features
X6 Proximity to building blocks (m) Continuous
X7 Easting coordinates (m) Continuous
X8 Northing coordinates (m) Continuous
X9 Proximity to CBD (m) Continuous
X10 Proximity to road network (m) Continuous
X11 Digital Elevation Model (m) Continuous
X12 Population density (person/ha) Continuous
X13 Park features Binary
X14 Proximity to stream (m) Continuous
X15 Slope (%) Continuous
X16 Categorical demography Categorical
X17 Proximity to residential districts Continuous
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Fig. 5.14 Raster layers of independent variables represented in binary and continuous values
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Furthermore, the optimum set of variables was incorporated in the model
refining phase in order to correct any spatial autocorrelation that might exist. Thus,
the selected combination had the minimum spatial autocorrelation. In Table 5.4, a
descriptive table of appropriate variables, as well as their structure, is shown.
The dependent variable (i.e. built-up change) and independent variables (X1–X17)
are separated by assigned units in the mentioned table.

The employed data and the input maps are shown in Fig. 5.14. These maps are
the ultimate variables which have been discussed previously.

The model produces an equation that shows the rate of effectiveness of each
particular variable. This equation is presented in the following Eq. 5.13.

Logit (Urban growth 86� 96Þ ¼ � 23:1033 (intercept)

þ 0:000165� Proximity to CBD

þ 0:597356� Categorical demography

� 0:00001� Proximity to nearby cities

� 0:000072� Northing coordinates

þ 0:000236� Population density

� 7:428991� Proximity to residential area

þ 1:367012� Proximity to single buildings

� 0:000061� Easting coordinates

þ 19:776172� Farming lands

� 0:003773� Proximity to building blocks

� 0:001391� DEM

� 0:000044� Proximity to interchange

þ 20:618511� Open lands

þ 18:393214� Proximity to parks

þ 0:000026� Proximityto roads

� 0:047149� Slope

� 0:000013� Proximity to streams

ð5:13Þ

According to Eq. 5.13, some variables which have positive values are more
favourable for development (e.g. proximity to the CBD, categorical demography,
population density, proximity to single buildings, farming lands, open lands,
proximity to parks, and proximity to roads). Where variables return negative
values the attraction for development falls significantly (e.g. proximity to nearby
cities, proximity to streams, northing coordinates, easting coordinates, proximity
to residential area, proximity to building blocks, elevation, slope, and proximity to
interchange). In other words, those pixels which are closer to the CBD area have
more probability of development, and those cells which are in steep slopes have
less probability of change. Importantly, the coefficients explain the intensity of
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influence in the occurrence of development, for example, proximity to parks is a
significant factor in such development.

The output product of the logistic regression model is a probability surface of
dependent variable occurrence, which is in this approach urban development (see
Figs. 5.15 and 5.16). The probability surface shows that each single cell will be
developed with a particular amount of probability. However, this approach is not
able to specify the amount and location of change, but can be integrated with other
techniques to quantify and allocate the quantity of change. Hence, this probability
map will be integrated with the Markov chain model to quantify the extent of the
changes. Thereafter, the obtained quantity of change will be allocated in the entire
map. The allocation process starts from the maximum value of probability working
downward. This process will be explained in Chap. 7.

5.6.4 Validation of the Logistic Regression Model

By means of the prepared probability surface, the quantity of change can be
specified through possible techniques, either the Markov chain model or by
population growth estimation. The Markov chain model has already been
explained in detail. The second method is to employ a footprint of inhabitants to
reach the quantity of change (see Sect. 4.10). In this approach, the amount of
change was determined based on the transition matrix of the Markov chain model
to quantify the changes. The obtained amount was input to the allocation phase. A
code was written in Python to subtract the existing built-up areas before beginning
the allocation of change from the highest probable cell to the lowest probable cell.

Hence, after executing the designed logistic regression approach, a predicted
transition probability surface map, and a residual map indicating the difference

Fig. 5.15 Transition surface maps of study area for 1996
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between the predicted and the observed probability, were achieved. Therefore, a
transition surface map was produced for 2006 onward. The mentioned prediction
surface maps are shown in Figs. 5.15 and 5.16, which can be used for change
specification for upcoming periods (2016, 2026). This task was carried out and is
demonstrated in Chap. 7.

5.6.5 Land Change Prediction

After the process of model validation was undertaken and the qualification of this
model was ensured, land use maps were predicted for 2016 and 2026. Logistic
regression requires updated data for the specific times to establish more accurate
prediction. In other words, the actual road network map for 2016 is required for the
creation of the probability surface at this juncture in time. Therefore, a multi
temporal data set of the study area was gathered.

5.7 Summary

Several traditional techniques were demonstrated within this chapter (e.g. CA,
Markov chain model, CA-Markov model, logistic regression model). Each model
was firstly evaluated and validated and then, once assured of its performance, a
land change map was predicted for two future time steps (i.e. 2016, 2026). Each
model had some advantages and disadvantages which were investigated, and will
be discussed in Chap. 7. The intention was to gather these results in order to
integrate them into the assumed ABM. In the next chapter, we start designing the
ABM model based on results emanating from traditional methodologies as well as
ABM characteristics.

Fig. 5.16 Transition surface maps of study area for 2006
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