

Lecture Notes in Computer Science 6887
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Eran Yahav (Ed.)

Static Analysis

18th International Symposium, SAS 2011
Venice, Italy, September 14-16, 2011
Proceedings

13

Volume Editor

Eran Yahav
Technion
Computer Science Department
Technion City
Haifa 32000, Israel
E-mail: yahave@cs.technion.ac.il

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23701-0 e-ISBN 978-3-642-23702-7
DOI 10.1007/978-3-642-23702-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935065

CR Subject Classification (1998): D.2, F.3, D.3, D.2.4, F.4.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Static analysis is increasingly recognized as a fundamental tool for program
verification, bug detection, compiler optimization, program understanding, and
software maintenance. The series of Static Analysis Symposia has served as the
primary venue for presentation of theoretical, practical, and application advances
in the area.

This volume contains the proceedings of the 18th International Static Anal-
ysis Symposium (SAS 2011), which was held September 14–16, 2011, in Venice,
Italy. Previous symposia were held in Perpignan, France (2010); Los Angeles,
USA (2009); Valencia, Spain (2008); Kongens Lyngby, Denmark (2007); Seoul,
South Korea (2006); London, UK (2005); Verona, Italy (2004); San Diego, USA
(2003); Madrid, Spain (2002); Paris, France (2001); Santa Barbara, USA (2000);
Venice, Italy (1999); Pisa, Italy (1998); Paris, France (1997); Aachen, Germany
(1996); Glasgow, UK (1995); and Namur, Belgium (1994).

The 18th International Static Analysis Symposium (SAS 2011), was held
together with three affiliated Workshops: NSAD 2011 (The Third Workshop on
Numerical and Symbolic Abstract Domains), SASB (Second Workshop on Static
Analysis and Systems Biology) on September 13, 2011, and TAPAS 2010 (Tools
for Automatic Program AnalysiS) on September 17, 2011.

There were 67 submissions. Each submission was reviewed by at least four
Program Committee members. The committee decided to accept 22 papers.

In addition to the 22 contributed papers, the program included five invited
talks by Jérôme Feret (Ecole Normale Superieure, France), Daniel Kaestner (Ab-
sInt, Germany), Ken McMillan (Microsoft Research, USA), John Mitchell (Stan-
ford, USA), and Sriram Rajamani (Microsoft Research, India).

On behalf of the Program Committee, I would like to thank all the external
referees for their participation in the reviewing process. We are grateful to our
generous sponsors, to all the members of the Organizing Committee in Venice
for their hard work, and to the EasyChair team for the use of their system.

September 2011 Eran Yahav

Conference Organization

General Chairs

Gilberto Filè University of Padova, Italy
Mooly Sagiv Tel Aviv University, Israel

Program Chair

Eran Yahav Technion, Israel

Program Committee

Anindya Banerjee IMDEA Software Institute, Spain
Michele Bugliesi Università Cà Foscari, Italy
Byron Cook Microsoft Research, UK
Radhia Cousot École Normale Supérieure and CNRS, France
Roberto Giacobazzi University of Verona, Italy
Sumit Gulwani Microsoft Research, USA
Chris Hankin Imperial College London, UK
Naoki Kobayashi Tohoku University, Japan
Viktor Kuncak EPFL, Switzerland
Ondrej Lhotak University of Waterloo, Canada
Matthieu Martel Université de Perpignan, France
Antoine Miné École Normale Supérieure and CNRS, France
George Necula UC Berkeley, USA
Ganesan Ramalingam Microsoft Research, India
Francesco Ranzato University of Padova, Italy
Thomas Reps University of Wisconsin, USA
Noam Rinetzky Queen Mary University of London, UK
Helmut Seidl University of Munich, Germany
Zhendong Su University of California, Davis, USA
Hongseok Yang University of Oxford, UK

Organizing Committee

Alberto Carraro Università Cà Foscari
Nicoletta Cocco Università Cà Foscari
Sabina Rossi Università Cà Foscari, Chair
Silvia Crafa University of Padova

VIII Conference Organization

Steering Committee

Patrick Cousot École Normale Supérieure, France and
New York University, USA

Radhia Cousot École Normale Supérieure and CNRS, France
Roberto Giacobazzi University of Verona, Italy
Gilberto Filè University of Padova, Italy
Manuel Hermenegildo IMDEA Software Institute, Spain
David Schmidt Kansas State University, USA

External Reviewers

Reynald Affeldt
Xavier Allamigeon
Gianluca Amato
Saswat Anand
Tycho Andersen
Domagoj Babic
Earl Barr
Matko Botincan
Olivier Bouissou
Jacob Burnim
Stefano Calzavara
Bor-Yuh Evan Chang
Alexandre Chapoutot
Swarat Chaudhuri
Hana Chockler
Patrick Cousot
Silvia Crafa
Ferruccio Damiani
Eva Darulova
Giorgio Delzanno
Alessandra Di Pierro
Dino Distefano
Mike Dodds
Matt Elder
Tayfun Elmas
Michael Emmi
Karine Even
Jérôme Feret
Pietro Ferrara
Mark Gabel
Pierre Ganty
Pierre-Loic Garoche
Denis Gopan

Nikos Gorogiannis
Alexey Gotsman
Radu Grigore
Guy Gueta
Tihomir Gvero
Christoph Haase
Raju Halder
Emmanuel Haucourt
Hossein Hojjat
Kazuhiro Inaba
Arnault Ioualalen
Swen Jacobs
Pierre Jouvelot
Andy King
Etienne Kneuss
Eric Koskinen
Joerg Kreiker
Sava Krstic
Michael Kuperstein
Taeho Kwon
Ali Sinan Köksal
Vincent Laviron
Matt Lewis
David Lo
Giuseppe Maggiore
Stephen Magill
Roman Manevich
Mark Marron
Damien Massé
Isabella Mastroeni
Laurent Mauborgne
Michael Monerau
David Monniaux

Conference Organization IX

Mayur Naik
Do Thi Bich Ngoc
Durica Nikolic
Pavel Parizek
Nimrod Partush
Rasmus Lerchedahl Petersen
Carla Piazza
Ruzica Piskac
Sebastian Pop
Prathmesh Prabhu
Mohammad Raza
Guillaume Revy
Xavier Rival
Philipp Ruemmer
Sriram Sankaranarayanan
Hamadou Sardaouna
Francesca Scozzari
Ohad Shacham
Tushar Sharma
Rishabh Singh

Harald Søndergaard
Fausto Spoto
Manu Sridharan
Saurabh Srivastava
Christos Stergiou
Kohei Suenaga
Philippe Suter
Aditya Thakur
Hiroshi Unno
Martin Vechev
Jules Villard
Dimitrios Vytiniotis
Björn Wachter
Thomas Wies
Herbert Wiklicky
Liang Xu
Greta Yorsh
Enea Zaffanella
Florian Zuleger
Cameron Zwarich

Table of Contents

Widening and Interpolation . 1
Kenneth L. McMillan

Program Analysis and Machine Learning: A Win-Win Deal 2
Aditya V. Nori and Sriram K. Rajamani

Program Analysis for Web Security . 4
John C. Mitchell

Astrée: Design and Experience . 5
Daniel Kästner

Formal Model Reduction . 6
Jérôme Feret

Purity Analysis: An Abstract Interpretation Formulation 7
Ravichandhran Madhavan, Ganesan Ramalingam, and
Kapil Vaswani

The Complexity of Abduction for Separated Heap Abstractions 25
Nikos Gorogiannis, Max Kanovich, and Peter W. O’Hearn

Efficient Decision Procedures for Heaps Using STRAND 43
P. Madhusudan and Xiaokang Qiu

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 60
Sam Blackshear, Bor-Yuh Evan Chang,
Sriram Sankaranarayanan, and Manu Sridharan

Side-Effect Analysis of Assembly Code . 77
Andrea Flexeder, Michael Petter, and Helmut Seidl

Directed Symbolic Execution . 95
Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and
Michael Hicks

Statically Validating Must Summaries for Incremental Compositional
Dynamic Test Generation . 112

Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González

On Sequentializing Concurrent Programs . 129
Ahmed Bouajjani, Michael Emmi, and Gennaro Parlato

XII Table of Contents

Verifying Fence Elimination Optimisations . 146
Viktor Vafeiadis and Francesco Zappa Nardelli

An Efficient Static Trace Simplification Technique for Debugging
Concurrent Programs . 163

Jeff Huang and Charles Zhang

A Family of Abstract Interpretations for Static Analysis of Concurrent
Higher-Order Programs . 180

Matthew Might and David Van Horn

Abstract Domains of Affine Relations . 198
Matt Elder, Junghee Lim, Tushar Sharma, Tycho Andersen, and
Thomas Reps

Transitive Closures of Affine Integer Tuple Relations and Their
Overapproximations . 216

Sven Verdoolaege, Albert Cohen, and Anna Beletska

Logico-Numerical Abstract Acceleration and Application to the
Verification of Data-Flow Programs . 233

Peter Schrammel and Bertrand Jeannet

Invisible Invariants and Abstract Interpretation . 249
Kenneth L. McMillan and Lenore D. Zuck

An Abstraction-Refinement Framework for Trigger Querying 263
Guy Avni and Orna Kupferman

Bound Analysis of Imperative Programs with the Size-Change
Abstraction . 280

Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith

Satisfiability Modulo Recursive Programs . 298
Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

Probabilistically Accurate Program Transformations 316
Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard

Probabilistic Abstractions with Arbitrary Domains 334
Javier Esparza and Andreas Gaiser

Software Verification Using k -Induction . 351
Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and
Philipp Rümmer

Using Bounded Model Checking to Focus Fixpoint Iterations 369
David Monniaux and Laure Gonnord

Author Index . 387

Widening and Interpolation

Kenneth L. McMillan

Microsoft Research

Abstract. Widening/narrowing and interpolation are two techniques
for deriving a generalization about unbounded behaviors from an analysis
of bounded behaviors. The purpose of both methods is to produce an
inductive invariant that proves some property of a program or other
discrete dynamic system. In the case of widening, we obtain a guess at
an inductive invariant by extrapolating a sequence of approximations
of the program behavior, either forward or backward. In the case of
interpolation, we use the intermediate assertions in proofs of correctness
of bounded behaviors.

To contrast these approaches, we will view widening/narrowing opera-
tors as deduction systems that have been weakened in some way in order
to force generalization. From this point of view, we observe some impor-
tant similarities and differences between the methods. Both methods are
seen to derive candidate inductive invariants from proofs about bounded
execution sequences. In the case of widening/narrowing, we produce the
strongest k-step post-condition (or weakest k-step pre-condition) deriv-
able in the weakened proof system. By contrast, using interpolation,
we derive candidate inductive invariants from a simple proof of safety
a k-step sequence. The intermediate assertions we infer are neither the
strongest nor the weakest possible, but are merely sufficient to prove
correctness of the bounded sequence. In widening/narrowing there is an
asymmetry in the treatment of the initial and final conditions, since we
widen either forward or backward. In interpolation, there is no preferred
direction. The initial and final conditions of the sequence are dual.

The most salient distinction between the two approaches is in their
inductive bias. Any kind of generalization requires some a priori pref-
erence for one form of statement over another. In the case of widening,
this bias is explicit, and given as an a priori weakening of the deduction
system. In interpolation, we do not weaken the deduction system, but
rather bias in favor of parsimonious proofs in the given system. This can
be viewed as an application of Occam’s razor: proofs using fewer con-
cepts are more likely to generalize. The inductive bias in interpolation is
thus less direct than in widening/narrowing as it derives from the chosen
logic, and some notion of cost associated to proofs.

E. Yahav (Ed.): SAS 2011, LNCS 6887, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Program Analysis and Machine Learning:

A Win-Win Deal

Aditya V. Nori and Sriram K. Rajamani

Microsoft Research India
{adityan,sriram}@microsoft.com

We give an account of our experiences working at the intersection of two fields:
program analysis and machine learning. In particular, we show that machine
learning can be used to infer annotations for program analysis tools, and that
program analysis techniques can be used to improve the efficiency of machine
learning tools.

Every program analysis tool needs annotations. Type systems need users to
specify types. Program verification tools need users to specify preconditions,
postconditions and invariants in some form. Information flow analyzers require
users to specify sources and sinks for taint, and sanitizers, which cleanse taint.
We show how such annotations can be derived from high level intuitions using
Bayesian inference. In this approach, annotations are thought of as random vari-
ables, and intuitions of the programmer are stated as probabilistic constraints
over these random variables. The Bayesian framework models and tolerates un-
certainty in programmer intuitions, and Bayesian inference is used to infer most
likely annotations, given the program structure and programmer intuitions. We
give specific examples of such annotation inference for information flow [5] and
ownership types [1]. We also describe a generic scheme to infer annotations for
any safety property.

Machine learning algorithms perform statistical inference by analyzing volu-
minous data. Program analysis techniques can be used to greatly optimize these
algorithms. In particular, statistical inference tools [3,6] perform inference from
data and first-order logic specifications. We show how Counterexample Guided
Abstraction Refinement (CEGAR) techniques, commonly used in verification
tools and theorem provers can be used to lazily instantiate axioms and improve
the efficiency of inference [2]. This approach also enables users of these tools to
express their models with rich theories such as linear arithmetic and uninter-
preted functions. There is a recent trend in the machine learning community to
specify machine learning models as programs [4]. Inspired by this view of models
as programs, we show how program analysis techniques such as backward analy-
sis and weakest preconditions can be used to improve the efficiency of algorithms
for learning tasks such as the computation of posterior probabilities given some
observed data.

In summary, we believe that these cross fertilization of ideas from program
analysis and machine learning have the potential to improve both fields, resulting
in a mutual win-win deal. We speculate on further opportunities for mutually
beneficial exchange of ideas between the two fields.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 2–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Program Analysis and Machine Learning: A Win-Win Deal 3

References

1. Beckman, N., Nori, A.V.: Probabilistic, modular and scalable inference of typestate
specifications. In: Programming Languages Design and Implementation (PLDI), pp.
211–221 (2011)

2. Chaganty, A., Lal, A., Nori, A.V., Rajamani, S.K.: Statistical inference modulo
theories. Technical report, Microsoft Research (2011)

3. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos,
P.: The Alchemy system for statistical relational AI. Technical report, University of
Washington, Seattle (2007), http://alchemy.cs.washington.edu

4. Koller, D., McAllester, D.A., Pfeffer, A.: Effective Bayesian inference for stochastic
programs. In: Fifteenth National Conference on Artificial Intelligence (AAAI), pp.
740–747 (1997)

5. Livshits, V.B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: Specification in-
ference for explicit information flow problems. In: Programming Languages Design
and Implementation (PLDI), pp. 75–86 (2009)

6. Niu, F., Re, C., Doan, A., Shavlik, J.: Tuffy: Scaling up statistical inference in
Markov logic networks using an RDBMS. In: International Conference on Very Large
Data Bases, VLDB (2011)

http://alchemy.cs.washington.edu

Program Analysis for Web Security

John C. Mitchell

Stanford University

Abstract. The evolving nature of web applications and the languages
they are written in continually present new challenges and new research
opportunities. For example, web sites that present trusted and untrusted
code to web users aim to provide isolation and secure mediation across
a defined interface. Older versions of JavaScript make it difficult for one
section of code to provide limited access to another, while improvements
in standardized ECMAScript bring the problem closer to traditional
language-based encapsulation. As a result, rigorous language semantics
and acceptable limitations on the language constructs used in trusted
code make provable solutions possible.

We have developed sound program analysis tools for specific versions
of ECMAScript 5, providing security guarantees against threats from
untrusted code in a larger language. However, many security problems
remain and there are many ways that future language tools may improve
web security and developer productivity.

E. Yahav (Ed.): SAS 2011, LNCS 6887, p. 4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Astrée: Design and Experience

Daniel Kästner

AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbrücken, Germany

Abstract. Safety-critical embedded software has to satisfy stringent
quality requirements. Testing and validation consumes a large and grow-
ing fraction of development cost. One class of errors which are hard to
find by testing are runtime errors, e.g., arithmetic overflows, array bound
violations, or invalid pointer accesses. The consequences of runtime er-
rors range from erroneous program behavior to crashes. Since they are
non-functional errors, it is usually not possible to achieve reasonable
coverage by writing a set of specific test cases.

Unsound static analysis tools can find some bugs, but there is no
guarantee that all bugs have been detected. Sound static runtime error
analyzers provide full control and data coverage so that every potential
runtime error is discovered. When the analyzer reports zero alarms, the
absence of runtime errors has been proven. However they can produce
false alarms: any alarm which is not reported as a definite error might
be a true error, or a false alarm. In the past, usually there were so
many false alarms that manually inspecting each alarm was too time-
consuming. Therefore not all alarms could be removed and no proof of
the absence of runtime errors could be given.

Astrée is a sound static analyzer designed to find all potential runtime
errors in C programs while achieving zero false alarms. It has successfully
been used to analyze large-scale safety-critical avionics software with zero
false alarms. This talk gives an overview of the history and the design
of Astrée, discusses important industry requirements, and illustrates the
industrialization process from an academical research tool to a commer-
cial product. It also outlines ongoing development and future research
issues.

E. Yahav (Ed.): SAS 2011, LNCS 6887, p. 5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Model Reduction

Jérôme Feret

Laboratoire d’informatique de l’École normale supérieure
(INRIA/ÉNS/CNRS)
www.di.ens.fr/~feret

Modelers of molecular signaling networks must cope with the combinatorial ex-
plosion of protein states generated by post-translational modifications and com-
plex formations. Rule-based models provide a powerful alternative to approaches
that require an explicit enumeration of all possible molecular species of a system
[1,2]. Such models consist of formal rules stipulating the (partial) contexts for
specific protein-protein interactions to occur. The behavior of the models can be
formally described by stochastic or differential semantics. Yet, the naive com-
putation of these semantics does not scale to large systems, because it does not
exploit the lower resolution at which rules specify interactions.

We present a formal framework for constructing coarse-grained systems. We
instantiate this framework with two abstract domains. The first one tracks the
flow of information between the different regions of chemical species, so as to
detect and abstract away some useless correlations between the state of sites
of molecular species. The second one detects pairs of sites having the same
capabilities of interactions, and abstract away any distinction between them.

The result of our abstraction is a set of molecular patterns, called fragments,
and a system which describes exactly the concentration (or population) evolution
of these fragments. The method never requires the execution of the concrete
rule-based model and the soundness of the approach is described and proved
by abstract interpretation [3]. Unlike our previous analysis [4], our fragments
are heterogeneous. The cutting of a protein into portions may depend on its
position within the molecular species. This matches more closely with the flow
of information. Indeed, within a molecular species, the behavior of a protein may
be driven by the state of a site without being driven by the state of the same
site in other instances of the protein. Our new analysis exploits this efficiently.

(Joint work with F. Camporesi, V. Danos, W. Fontana, R. Harmer, and
J. Krivine.)

References

1. Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1) (2004)
2. Blinov, M.L., Faeder, J.R., Hlavacek, W.S.: BioNetGen: software for rule-based

modeling of signal transduction based on the interactions of molecular domains.
Bioinformatics 20 (2004)

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL (1977)

4. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. PNAS (2009)

E. Yahav (Ed.): SAS 2011, LNCS 6887, p. 6, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.di.ens.fr/~feret

Purity Analysis:

An Abstract Interpretation Formulation

Ravichandhran Madhavan, Ganesan Ramalingam, and Kapil Vaswani

Microsoft Research, India
{t-rakand,grama,kapilv}@microsoft.com

Abstract. Salcianu and Rinard present a compositional purity analysis
that computes a summary for every procedure describing its side-effects.
In this paper, we formalize a generalization of this analysis as an abstract
interpretation, present several optimizations and an empirical evaluation
showing the value of these optimizations. The Salcianu-Rinard analysis
makes use of abstract heap graphs, similar to various heap analyses and
computes a shape graph at every program point of an analyzed proce-
dure. The key to our formalization is to view the shape graphs of the
analysis as an abstract state transformer rather than as a set of abstract
states: the concretization of a shape graph is a function that maps a
concrete state to a set of concrete states. The abstract interpretation
formulation leads to a better understanding of the algorithm. More im-
portantly, it makes it easier to change and extend the basic algorithm,
while guaranteeing correctness, as illustrated by our optimizations.

1 Introduction

Compositional or modular analysis [6] is a key technique for scaling static anal-
ysis to large programs. Our interest is in techniques that analyze a procedure
in isolation, using pre-computed summaries for called procedures, computing a
summary for the analyzed procedure. Such analyses are widely used and have
been found to scale well. In this paper we consider an analysis presented by
Salcianu and Rinard [17], based on a pointer analysis due to Whaley and Ri-
nard [19], which we will refer to the WSR analysis. Though referred to as a
purity analysis, it is a more general-purpose analysis that computes a summary
for every procedure, in the presence of dynamic memory allocation, describing
its side-effects. This is one of the few heap analyses that is capable of treating
procedures in a compositional fashion.

WSR analysis is interesting for several reasons. Salcianu and Rinard present
an application of the analysis to classify a procedure as pure or impure, where
a procedure is impure if its execution can potentially modify pre-existing state.
Increasingly, new language constructs (such as iterators, parallel looping con-
structs and SQL-like query operators) are realized as higher-order library pro-
cedures with procedural parameters that are expected to be side-effect free.
Purity checkers can serve as verification/bug-finding tools to check usage of
these constructs. Our interest in this analysis stems from our use of an extension

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 7–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

8 R. Madhavan, G. Ramalingam, and K. Vaswani

of this analysis to statically verify the correctness of the use of speculative par-
allelism [13]. WSR analysis can also help more sophisticated verification tools,
such as [8], which use simpler analyses to identify procedure calls that do not
affect properties of interest to the verifier and can be abstracted away.

However, we felt the need for various extensions of the WSR analysis. A key
motivation was efficiency. Real-world applications make use of large libraries
such as the base class libraries in .NET. While the WSR analysis is reasonably
efficient, we find that it still does not scale to such libraries. Another motivation
is increased functionality: our checker for speculative parallelism [13] needs some
extra information (must-write sets) beyond that computed by the analysis. A
final motivating factor is better precision: the WSR analysis declares “pure”
procedures that use idioms like lazy initialization and caching as impure.

The desire for these extensions leads us to formulate, in this paper, the WSR
analysis as an abstract interpretation, to simplify reasoning about the sound-
ness of these extensions. The formulation of the WSR analysis as an abstract
interpretation is, in fact, mentioned as an open problem by Salcianu ([16], page
128).

The WSR analysis makes use of abstract heap graphs, similar to various heap
analyses and computes a shape graph gu at every program point u of an ana-
lyzed procedure. The key to our abstract interpretation formulation, however, is
to view a shape graph utilized by the analysis as an abstract state transformer
rather than as a set of abstract states: thus, the concretization of a shape graph
is a function that maps a concrete state to a set of concrete states. Specifically,
if the graph computed at program point u is gu, then for any concrete state σ,
γ(gu)(σ) conservatively approximates the set of states that can arise at program
point u in the execution of the procedure on an initial state σ. In our formal-
ization, we present a concrete semantics in the style of the functional approach
to interprocedural analysis presented by Sharir and Pnueli. The WSR analysis
can then be seen as a natural abstract interpretation of this concrete semantics.

We then present three optimizations viz. duplicate node merging, summary
merging, and safe node elimination, that improve the efficiency of WSR analysis.
We use the abstract interpretation formulation to show that these optimizations
are sound. Our experiments show that these optimizations significantly reduce
both analysis time (sometimes by two orders of magnitude or more) and memory
consumption, allowing the analysis to scale to large programs.

2 The Language, Concrete Semantics, and the Problem

Syntax. A program consists of a set of procedures. A procedure P consists of
a control-flow graph, with an entry vertex entry(P) and an exit vertex exit(P).
The entry vertex has no predecessor and the exit vertex has no successor. Every
edge of the control-flow graph is labelled by a primitive statement. The set of
primitive statements are shown in Fig. 1. We use u S→ v to indicate an edge in
the control-flow graph from vertex u to vertex v labelled by statement S.

Purity Analysis: An Abstract Interpretation Formulation 9

Statement S Concrete semantics [[S]]c(V,E, σ)

v1 = v2 {(V,E, σ[v1 �→ σ(v2)]}
v = new C {(V ∪ {n}, E ∪ {n} × Fields × {null}, σ[v �→ n]) | n ∈ Nc \ V}
v1.f = v2 {(V, {〈u, l, v〉 ∈ E | u �= σ(v1) ∨ l �= f} ∪ {〈σ(v1), f, σ(v2)〉}, σ)}
v1 = v2.f {(V,E, σ[v1 �→ n]) | 〈σ(v2), f, n〉 ∈ E}
Call P (v1, · · · , vk) Semantics defined below

Fig. 1. Primitive statements and their concrete semantics

Concrete Semantics Domain. Let Vars denote the set of variable names
used in the program, partitioned into the following disjoint sets: the set of global
variables Globals , the set of local variables Locals (assumed to be the same for
every procedure), and the set of formal parameter variables Params (assumed
to be the same for every procedure). Let Fields denote the set of field names
used in the program. We use a simple language in which all variables and fields
are of pointer type. We use a fairly common representation of the concrete state
as a concrete (points-to or shape) graph.

Let Nc be an unbounded set of locations used for dynamically allocated ob-
jects. A concrete state or points-to graph g ∈ Gc is a triple (V,E, σ), where
V ⊆ Nc represents the set of objects in the heap, E ⊆ V × Fields × V (a
set of labelled edges) represents values of pointer fields in heap objects, and
σ ∈ Σc = Vars �→ V represents the values of program variables. In particular,
(u, f, v) ∈ E iff the f field of the object u points to object v. We assume Nc in-
cludes a special element null . Variables and fields of new objects are initialized
to null .

Let Fc = Gc �→ 2Gc be the set of functions that map a concrete state to
a set of concrete states. We define a partial order �c on Fc as follows: fa �c
fb iff ∀g ∈ Gc.fa(g) ⊆ fb(g). Let �c denote the corresponding least upper bound
(join) operation defined by: fa �c fb = λg.fa(g) ∪ fb(g). For any f ∈ Fc, we
define f : 2Gc �→ 2Gc by: f(G) = ∪g∈Gf(g). We define the “composition” of two
functions in Fc as follows: fa ◦ fb = λg.fb(fa(g)).

Concrete Semantics. Every primitive statement S has a semantics [[S]]c ∈ Fc,
as shown in Fig. 1. Every primitive statement has a label � which is not used in
the concrete semantics and is, hence, omitted from the figure. The execution of
most statements transforms a concrete state to another concrete state, but the
signature allows us to model non-determinism (e.g., dynamic memory allocation
can return any unallocated object). The signature also allows us to model ex-
ecution errors such as null-pointer dereference, though the semantics presented
simplifies error handling by treating null as just a special object.

We now define a concrete summary semantics [[P]]c ∈ Fc for every procedure
P . The semantic function [[P]]c maps every concrete state gc to the set of concrete
states that the execution of P with initial state gc can produce.

We introduce a new variable ϕu for every vertex in the control-flow graph (of
any procedure) and a new variable ϕu,v for every edge u→ v in the control-flow
graph. The semantics is defined as the least fixed point of the following set of

10 R. Madhavan, G. Ramalingam, and K. Vaswani

equations. The value of ϕu in the least fixed point is a function that maps any
concrete state g to the set of concrete states that arise at program point u when
the procedure containing u is executed with an initial state g. Similarly, ϕu,v
captures the states after the execution of the statement labelling edge u→ v.

ϕv = λg.{g} v is an entry vertex (1)
ϕv =

⊔
c{ϕu,v | u→ v} v is not an entry vertex (2)

ϕu,v = ϕu ◦ [[S]]c where u S→ v and S is not a call-stmt (3)

ϕu,v = ϕu ◦ CallReturnS(ϕexit(Q)) where u S→ v, S is a call to proc Q (4)

The first three equations are straightforward. Consider Eq. 4, corresponding to a
call to a procedure Q. The value of ϕexit(Q) summarizes the effect of the execution
of the whole procedure Q. In the absence of local variables and parameters, we
can define the right-hand-side of the equation to be simply ϕu ◦ ϕexit(Q).

The function CallReturnS(f), defined below, first initializes values of all local
variables (to null) and formal parameters (to the values of corresponding actual
parameters), using an auxiliary function pushS . It then applies f , capturing the
procedure call’s effect. Finally, the original values of local variables and param-
eters (of the calling procedure) are restored from the state preceding the call,
using a function popS . For simplicity, we omit return values from our language.

Let Param(i) denote the i-the formal parameter. Let S be a procedure call
statement “Call Q(a1,...,ak)”. We define the functions pushS ∈ Σc �→ Σc,
popS ∈ Σc ×Σc �→ Σc, and CallReturnS as follows:

pushS(σ) = λv. v ∈ Globals → σ(v) | v ∈ Locals → null | v = Param(i)→ σ(ai)

popS(σ, σ′) = λv. v ∈ Globals → σ′(v) | v ∈ Locals ∪ Params → σ(v)

CallReturnS(f) = λ(V,E, σ).{(V′,E′, popS(σ, σ′)) | (V′,E′, σ′) ∈ f(V,E, pushS(σ))}

We define [[P]]c to be the value of ϕexit(P) in the least fixed point of equations
(1)-(4), which exists by Tarski’s fixed point theorem. Specifically, let VE denote
the set of vertices and edges in the given program. The above equations can be
expressed as a single equation ϕ = F �(ϕ), where F � is a monotonic function
from the complete lattice VE �→ Fc to itself. Hence, F � has a least fixed point.

We note that the above collection of equations is similar to those used in Sharir
and Pnueli’s functional approach to interprocedural analysis [18] (extended by
Knoop and Steffen [10]), with the difference that we are defining a concrete
semantics here, while [18] is focused on abstract analyses. The equations are
a simple functional version of the standard equations for defining a collecting
semantics, with the difference that we are simultaneously computing a collecting
semantics for every possible initial states of the procedure’s execution.

The goal of the analysis is to compute an approximation of the set of quantities
[[P]]c using abstract interpretation.

Purity Analysis: An Abstract Interpretation Formulation 11

3 The WSR Analysis as an Abstract Interpretation

3.1 Transformer Graphs: An Informal Overview

The WSR analysis uses a single abstract graph to represent a set of concrete
states, similar to several shape and pointer analyses. The distinguishing aspect
of the WSR analysis, however, is its extension of the graph based representation
to represent (abstractions of) elements belonging to the functional domain Fc.
We now illustrate, using an example, how the graph representation is extended
to represent an element of Fc = Gc �→ 2Gc . Consider the example procedure P
shown in Fig. 2(a).

P (x, y) {
[1] t = new ();

[2] x.next = t;

[3] t.next = y;

[4] retval = y.next;

}
(a) Example procedure P (c) An input graph g1 (e) Input graph g2

(b) Summary graph τ (d) Output graph g′1 = τ 〈g1〉 (f) Output graph g′2 = τ 〈g2〉

Fig. 2. Illustration of transformer graphs

The summary graph τ computed for this procedure is shown in Fig. 2(b). (We
omit the null node from the figures to keep them simple.) Vertices in a summary
graph are of two types: internal (shown as circles with a solid outline) and
external nodes (shown as circles with a dashed outline). Internal nodes represent
new heap objects created during the execution of the procedure. E.g., vertex n0

is an internal node and represents the object allocated in line 1. External nodes,
in many cases, represent objects that exist in the heap when the procedure is
invoked. In our example, n1, n2, and n3 are external nodes.

Edges in the graph are also classified into internal and external edges, shown
as solid and dashed edges respectively. The edges n1 → n0 and n0 → n2 are
internal edges. They represent updates performed by the procedure (i.e., new
points-to edges added by the procedure’s execution) in lines 2 and 3. Edge n2 →
n3 is an external edge created by the dereference “y.next” in line 4. This edge
helps identify the node(s) that the external node n3 represents: namely, the
objects obtained by dereferencing the next field of objects represented by n2.

The summary graph τ indicates how the execution of procedure P transforms
an initial concrete state. Specifically, consider an invocation of procedure P in
an initial state given by graph g1 shown in Fig. 2(c). The summary graph helps

12 R. Madhavan, G. Ramalingam, and K. Vaswani

construct a transformed graph g′1 = τ〈g1〉, corresponding to the state after the
procedure’s execution (shown in Fig. 2(d)) by identifying a set of new nodes and
edges that must be added to g1. (The underlying analysis performs no strong
updates on the heap and, hence, never removes nodes or edges from the graph).
We add a new vertex to g1 for every internal node n in the summary graph.
Every external node n in the summary graph represents a set of vertices η(n) in
g′1. (We will explain later how the function η is determined by τ .) Every internal
edge u h→ v in the summary graph identifies a set of edges {u′ h→ v′ | u′ ∈
η(u), v′ ∈ η(v)} that must be added to the graph g′1. In our example, n1, n2 and
n3 represent, respectively, {o1}, {o2} and {o3}. This produces the graph shown
in Fig. 2(d), which is an abstract graph representing a set of concrete states. The
primed variables in the summary graph represent the (final) values of variables,
and are used to determine the values of variables in the output graph.

An important aspect of the summary computed by the WSR analysis is that
it can be used even in the presence of potential aliases in the input (or cut-
points [14]). Consider the input state g2 shown in Fig. 2(e), in which parameters
x and y point to the same object u1. Our earlier description of how to construct
the output graph still applies in this context. The main tricky aspect here is in
correctly dealing with aliasing in the input. In the concrete execution, the update
to x.next in line 2 updates the next field of object u1. The aliasing between x
and y means that y.next will evaluate to n0 in line 4. Thus, in the concrete exe-
cution retval will point to the newly created object n0 at the end of procedure
execution, rather than u2. This complication is dealt with in the definition of
the mapping function η. For the example input g2, the external node n3 of the
summary graph represents the set of nodes {u2, n0}. (This is an imprecise, but
sound, treatment of the aliasing situation.) The rest of the construction applies
just as before. This yields the abstract graph shown in Fig. 2(f).

More generally, an external node in the summary graph acts as a proxy for
a set of vertices in the final output graph to be constructed, which may include
nodes that exist in the input graph as well as new nodes added to the input
graph (which themselves correspond to internal nodes of the summary graph).

We now define the transformer graph domain formally.

3.2 The Abstract Domain

The Abstract Graph Domain. We utilize a fairly standard abstract shape
(or points-to) graph to represent a set of concrete states. Our formulation is
parameterized by a given set Na, the universal set of all abstract graph nodes.
An abstract shape graph g ∈ Ga is a triple (V,E, σ), where V ⊆ Na represents
the set of abstract heap objects, E ⊆ V × Fields × V (a set of labelled edges)
represents possible values of pointer fields in the abstract heap objects, and
σ ∈ Vars �→ 2V is a map representing the possible values of program variables.

Given a concrete graph g1 = 〈V1,E1, σ1〉 and an abstract graph g2 = 〈V2,E2, σ2〉
we say that g1 can be embedded into g2, denoted g1 g2, if there exists a
function h : V1 �→ V2 such that 〈x, f, y〉 ∈ E1 ⇒ 〈h(x), f, h(y)〉 ∈ E2 and

Purity Analysis: An Abstract Interpretation Formulation 13

∀v ∈ Vars. σ2(v) ⊇ {h(σ1(v))}. The concretization γG(ga) of an abstract graph
ga is defined to be the set of all concrete graphs that can be embedded into ga:

γG(ga) = {gc ∈ Gc | gc ga}

The Abstract Functional Domain. We now define the domain of graphs
used to represent summary functions. A transformer graph τ ∈ Fa is a tuple
(EV,EE, π, IV, IE, σ), where EV ⊆ Na is the set of external vertices, IV ⊆ Na
is the set of internal vertices, EE ⊆ V × Fields × V is the set of external
edges, where V = EV ∪ IV, IE ⊆ V × Fields × V is the set of internal edges,
π ∈ (Params ∪ Globals) �→ 2V is a map representing the values of parameters
and global variables in the initial state, and σ ∈ Vars �→ 2V is a map representing
the possible values of program variables in the transformed state. Furthermore,
a transformer graph τ is required to satisfy the following constraints:

〈x, f, y〉 ∈ EE =⇒ ∃u ∈ range(π).x is reachable from u via (IE ∪ EE) edges
y ∈ EV =⇒ y ∈ range(π) ∨ ∃〈x, f, y〉 ∈ EE

Given a transformer graph τ = (EV,EE, π, IV, IE, σ), a node u is said to be a
parameter node if u ∈ range(π). A node u is said to be an escaping node if it
is reachable from some parameter node via a path of zero or more edges (either
internal or external). Let Escaping(τ) denote the set of escaping nodes in τ .

We now define the concretization function γT : Fa → Fc. Given a transformer
graph τ = (EV,EE, π, IV, IE, σ) and a concrete graph gc = (Vc,Ec, σc), we need
to construct a graph representing the transformation of gc by τ . As explained
earlier, every external node n ∈ EV in the transformer graph represents a set
of vertices in the transformed graph. We now define a function η : (IV ∪ EV) �→
2(IV∪Vc) that maps each node in the transformer graph to a set of concrete nodes
(in gc) as well as internal nodes (in τ) as the least solution to the following set
of constraints over variable μ.

v ∈ IV ⇒ v ∈ μ(v) (5)
v ∈ π(X) ⇒ σc(X) ∈ μ(v) (6)

〈u, f, v〉 ∈ EE, u′ ∈ μ(u), 〈u′, f, v′〉 ∈ Ec ⇒ v′ ∈ μ(v) (7)
〈u, f, v〉 ∈ EE, μ(u) ∩ μ(u′) �= ∅, 〈u′, f, v′〉 ∈ IE ⇒ μ(v′) ⊆ μ(v) (8)

Explanation of the constraints : An internal node represents itself (Eq. 5). An
external node labelled by a parameter X represents the node pointed to by X in
the input state gc (Eq. 6). An external edge 〈u, f, v〉 indicates that v represents
any f -successor v′ of any node u′ represented by u in the input state (Eq. 7).
However, with an external edge 〈u, f, v〉, we must also account for updates to
the f field of the objects represented by u during the procedure execution, ie,
the transformation represented by τ , via aliases (as illustrated by the example
in Fig. 2(e)). Eq. 8 handles this. The precondition identifies u′ as a potential
alias for u (for the given input graph), and identifies updates performed on the
f field of (nodes represented by) u′.

14 R. Madhavan, G. Ramalingam, and K. Vaswani

Given mapping function η, we define the transformed abstract graph τ〈gc〉 as
〈V′,E′, σ′〉, where V′ = Vc∪IV, E′ = Ec∪{〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE, v1 ∈ η(u), v2 ∈
η(v)} and σ′ = λx.

⋃
u∈σ(x) η(u). The transformed graph is an abstract graph

that represents all concrete graphs that can be embedded in the abstract graph.
Thus, we define the concretization function as below:

γT (τa) = λgc.γG(τa〈gc〉).

Our abstract interpretation formulation uses only a concretization function.
There is no abstraction function αT . While this form is less common, it is suffi-
cient to establish the soundness of the analysis, as explained in [5]. Specifically,
a concrete value f ∈ Fc is correctly represented by an abstract value τ ∈ Fa, de-
noted f ∼ τ , iff f �c γT (τ). We seek to compute an abstract value that correctly
represents the least fixed point of the concrete semantic equations.

Containment Ordering. A natural “precision ordering” exists on Fa, where τ1
is said to be more precise than τ2 iff γT (τ1) �c γT (τ2). However, this ordering is
not of immediate interest to us. (It is not even a partial order, and is hard to work
with computationally.) We utilize a stricter ordering in our abstract fixed point
computation. We define a relation �co on Fa by: (EV1,EE1, π1, IV1, IE1, σ1) �co
(EV2,EE2, π2, IV2, IE2, σ2) iff EV1 ⊆ EV2, EE1 ⊆ EE2, ∀x.π1(x) ⊆ π2(x), IV1 ⊆
IV2, IE1 ⊆ IE2, and ∀x.σ1(x) ⊆ σ2(x).

Lemma 1. �co is a partial-order on Fa with a join operation, denoted �co.
Further, γT is monotonic with respect to �co: τ1 �co τ2 ⇒ γT (τ1) �c γT (τ2).

3.3 The Abstract Semantics

Our goal is to approximate the least fixed point computation of the concrete
semantics equations 1-4. We do this by utilizing an analogous set of abstract
semantics equations shown below. First, we fix the set Na of abstract nodes.
Recall that the domain Fa defined earlier is parameterized by this set. The WSR
algorithm relies on an “allocation site” based merging strategy for bounding the
size of the transformer graphs. We utilize the labels attached to statements as
allocation-site identifiers. Let Labels denote the set of statement labels in the
given program. We define Na to be {nx | x ∈ Labels ∪ Params ∪ Globals}.

We first introduce a variable ϑu for every vertex u in the control-flow graph
(denoting the abstract value at a program point u), and a variable ϑu,v for every
edge u → v in the control-flow graph (denoting the abstract value after the
execution of the statement in edge u→ v).

ϑv = ID v is an entry vertex (9)

ϑv = �co{ϑu,v | u S→ v} v is not an entry vertex (10)

ϑu,v = [[S]]a(ϑu) where u S→ v, S is not a call-stmt (11)

ϑu,v = ϑexit(Q)〈〈ϑu〉〉Sa where u S→ v, S is a call to Q (12)

Purity Analysis: An Abstract Interpretation Formulation 15

Statement S Abstract semantics [[S]]aτ where τ = (EV,EE, π, IV, IE, σ)

v1 = v2 (EV,EE, π, IV, IE, σ[v1 �→ σ(v2)])

� : v = new C (EV,EE, π, IV ∪ {n�}, IE ∪ {n�} × Fields × {null}, σ[v �→ {n�}])
v1.f = v2 (EV,EE, π, IV, IE ∪ σ(v1)× {f} × σ(v2), σ)

� : v1 = v2.f let A = {n | ∃n1 ∈ σ(v2), 〈n1 , f ,n〉 ∈ IE} in
let B = σ(v2) ∩ Escaping(τ) in
if (B = ∅)
then (EV,EE, π, IV, IE, σ[v1 �→ A])
else (EV ∪ {n�},EE ∪B × {f} × {n�}, π, IV, IE, σ[v �→ A ∪ {n�}])

Fig. 3. Abstract semantics of primitive instructions

Here, ID is a transformer graph consisting of a external vertex for each global
variable and each parameter (representing the identity function). Formally, ID =
(EV, ∅, π, ∅, ∅, π), where EV = {nx | x ∈ Params ∪ Globals} and π = λv. v ∈
Params ∪ Globals → nv | v ∈ Locals → null . The abstract semantics [[S]]a of
any primitive statement S, other than a procedure call, is shown in Figure 3.
The abstract semantics of a procedure call is captured by an operator τ1〈〈τ2〉〉Sa ,
which we will define soon.

The abstract semantics of the first three statements are straightforward. The
treatment of the dereference v2.f in the last statement is more involved. Here,
the simpler case is where the dereferenced object is a non-escaping object: in this
case, we can directly determine the possible values of v2.f from the information
computed by the local analysis of the procedure. This is handled by the true
branch of the conditional statement. The case of escaping objects is handled by
the false branch. In this case, in addition to the possible values of v2.f identified
by the local analysis, we must account for two sources of values unknown to
the local analysis. The first possibility is that the dereferenced object is a pre-
existing object (in the input state) with a pre-existing value for the f field. The
second possibility is that the dereferenced object may have aliases unknown to
the local analysis via which its f field may have been updated during the proce-
dure’s execution. We create an appropriate external node (with a corresponding
incoming external edge) that serves as a proxy for these unknown values.

We now consider the abstract semantics of a procedure call statement. Let
τr = (EVr,EEr, πr, IVr, IEr, σr) be the transformer graph in the caller before a
call statement S to Q and let τe = (EVe,EEe, πe, IVe, IEe, σe) be the abstract
summary of Q. We now show how to construct the graph τe〈〈τr〉〉Sa representing
the abstract graph at the point after the method call. This operation is an
extension of the operation τ〈gc〉 used earlier to show how τ transforms a concrete
state gc into one of several concrete states.

We first utilize an auxiliary transformer τe〈〈τr, η〉〉 that takes an extra param-
eter η that maps nodes of τe to a set of nodes in τe and τr. (As explained above,
a node u in τe acts as a proxy for a set of vertices in a particular callsite and η(u)
identifies this set.) Given η, define η̂ as λX.

⋃
u∈X η(u). We then define τe〈〈τr , η〉〉

to be (EV′,EE′, π′, IV′, IE′, σ′) where

16 R. Madhavan, G. Ramalingam, and K. Vaswani

V′ = (IVr ∪ EVr) ∪ η̂(IVe ∪ EVe)
IV′ = V′ ∩ (IVr ∪ IVe)
EV′ = V′ ∩ (EVr ∪ EVe)
IE′ = IEr ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IEe, v1 ∈ η(u), v2 ∈ η(v)}
EE′ = EEr ∪ {〈u′, f, v〉 | 〈u, f, v〉 ∈ EEe, u

′ ∈ η(u), escapes(u′)}
π′ = πr

σ′ = λx. x ∈ Globals → η̂(σe(x)) | x ∈ Locals ∪ Params → σr(x)
escapes(v) ≡ ∃u ∈ range(π′).v is reachable from u via IE′ ∪ EE′ edges

The predicate “escapes(u′)” used in the above definition is recursively dependent
on the graph τ ′ being constructed: it checks if u′ is reachable from any of the
parameter nodes in the graph being constructed. Thus, this leads to an iterative
process for adding edges to the graph being constructed, as more escaping nodes
are identified.

We now show how the node mapping function η is determined, given the
transformers τe and τr. The function η is defined to be the least fixed point
of the set of following constraints over the variable μ. (Here, μ1 is said to be
less than μ2 iff μ1(u) ⊆ μ2(u) for all u.) Let ai denote the actual argument
corresponding to the formal argument Param(i).

x ∈ IVe ⇒ x ∈ μ(x) (13)
x ∈ πe(Param(i)) ⇒ σr(ai) ⊆ μ(x) (14)

x ∈ πe(v) ∧ v ∈ Globals ⇒ σr(v) ⊆ μ(x) (15)
〈u, f, v〉 ∈ EEe, u

′ ∈ μ(u), 〈u′, f, v′〉 ∈ IEr ⇒ v′ ∈ μ(v) (16)
〈u, f, v〉 ∈ EEe, μ(u) ∩ μ(u′) �= ∅, 〈u′, f, v′〉 ∈ IEe ⇒ μ(v′) ⊆ μ(v) (17)
〈u, f, v〉 ∈ EEe, μ(u) ∩ Escaping(τe〈〈τr , μ〉〉) �= ∅ ⇒ v ∈ μ(v) (18)

In WSR analysis, rule (17) has one more pre-condition, namely (u �= u′ ∨ u ∈
EVe). This extra condition may result in a more precise node mapping function
but requires a similar change to the definition of the concretization function γT .

Abstract Fixed Point Computation. The collection of equations 9-12 can
be viewed as a single equation ϑ = F �(ϑ), where F � is a function from VE �→ Fa
to itself. Let ⊥ denote λx.({}, {}, λv.{}, {}, {}, λv.{}). The analysis iteratively
computes the sequence of values F �i(⊥) and terminates when F �i(⊥) = F �

i+1(⊥
). We define [[P]]a (the summary for a procedure P) to be the value of ϕexit(P)

in the final solution.

Correctness and Termination. With this formulation, correctness and termi-
nation of the analysis follow in the standard way. Correctness follows by estab-
lishing that F � is a sound approximation of F �, which follows from the following

Purity Analysis: An Abstract Interpretation Formulation 17

lemma that the corresponding components of F � are sound approximations of
the corresponding components of F �. As usual, we say that a concrete value
f ∈ Fc is correctly represented by an abstract value τ ∈ Fa, denoted f ∼ τ , iff
f �c γT (τ).

Lemma 2. (a) λg.{g} ∼ ID
(b) For every primitive statement S (other than a procedure call), [[S]]a is a sound
approximation of [[S]]c: if f ∼ τ , then f ◦ [[S]]c ∼ [[S]]a(τ).
(c) �co is a sound approximation of �c: if f1 ∼ τ1 and f2 ∼ τ2, then (f1�c f2) ∼
(τ1 �co τ2).
(d) if f1 ∼ τ1 and f2 ∼ τ2, then f2 ◦ CallReturnS(f1) ∼ τ1〈〈τ2〉〉Sa .

Lemma 2 implies the following soundness theorem in the standard way (e.g., see
Proposition 4.3 of [5]).

Theorem 1. The computed procedure summaries are correct. (For every proce-
dure P, [[P]]c ∼ [[P]]a.)

Termination follows by establishing that F � is monotonic with respect to �∗
co,

since Fa has only finite height �co-chains. Proofs of all results appear in [11].

4 Optimizations

We have implemented the WSR analysis for .NET binaries. More details about
the implementation and how we deal with language features absent in the core
language used in our formalization appear in [11]. In this section we describe
three optimizations for the analysis that were motivated by our implementation
experience. We do not describe optimizations already discussed by WSR in [19]
and [17]. We present an empirical evaluation of the impact of these optimizations
on the scalability and the precision of the purity analysis in the experimental
evaluation section.

Optimization 1: Node Merging. Informally, we define node merging as an
operation that replaces a set of nodes {n1, n2 . . . nm} by a single node nrep
such that any predecessor or successor of the nodes n1, n2, . . . , nm becomes,
respectively, a predecessor or successor of nrep. While merging nodes seems like
a natural heuristic for improving efficiency, it does introduce some subtle issues
and challenges. The intuition for merging nodes arises from their use in the
context of heap analyses where graphs represent sets of concrete states. However,
in our context, graphs represent state transformers. We now present some results
that help establish the correctness of this optimization.

We now extend the notion of graph embedding to transformer graphs. Given
τ1 = (EV1,EE1, π1, IV1, IE1, σ1) and τ2 = (EV2,EE2, π2, IV2, IE2, σ2), we say that
τ1 τ2 iff there exists a function h : (IV1∪EV1) �→ (IV2∪EV2) such that: for every
internal (respectively, external) node x in τ1 , h(x) is an internal (respectively,
external) node; for every internal (respectively, external) edge 〈x, f, y〉 in τ1,

18 R. Madhavan, G. Ramalingam, and K. Vaswani

〈h(x), f, h(y)〉 is an internal (respectively, external) edge in τ2, for every variable
x, ĥ(σ1(x)) ⊆ σ2(x) and ĥ(π1(x)) ⊆ π2(x) where ĥ(Z) = {h(u) | u ∈ Z}.

Node merging produces an embedding. Assume that we are given an equiv-
alence relation � on the nodes of a transformer graph τ (such that no internal
nodes are equivalent to external nodes). We define the transformer graph τ/ �
to be the transformer graph obtained by replacing every node u by a unique
representative of its �-equivalence class in every component of τ .

Lemma 3. (a) is a pre-order. (b) γT is monotonic with respect to : i.e.,
∀τa, τb ∈ Fa.τa τb ⇒ γT (τa) �c γT (τb). (c) τ (τ/ �).

Assume that we wish to replace a transformer graph τ by a graph τ/ � at
some point during the analysis (perhaps by incorporating this into one of the
abstract operations). Our earlier correctness argument still remains valid (since
if f ∼ τ1 τ2, then f ∼ τ2).

However, this optimization impacts the termination argument because we do
not have τ �co (τ/ �). Indeed, our initial implementation of the optimization
did not terminate for one program because the computation ended up with a
cycle of equivalent, but different, transformers (in the sense of having the same
concretization). Refining the implementation to ensure that once two nodes are
chosen to be merged together, they are always merged together in all subsequent
steps, guarantees termination. Technically, we enhance the domain to include an
equivalence relation on nodes (representing the nodes currently merged together)
and update the transformers accordingly. A suitably modified ordering relation
ensures termination. Details are omitted due to space constraints, but this illus-
trated to us the value of the abstract interpretation formalism (see [11] for more
details).

The main advantage of the node merging optimization is that it reduces the
size of the transformer graph while every other transfer function increases the
size of the transformer graphs. However, when used injudiciously, node merging
can result in loss of precision. In our implementation we use a couple of heuristics
to identify the set of nodes to be merged.

Given τ ∈ Fa and v1, v2 ∈ V(τ), we merge v1, v2 iff one of the two conditions
hold (a) v1, v2 ∈ EV(τ) and ∃u ∈ V(τ) s.t. 〈u, f, v1〉 ∈ EE(τ) and 〈u, f, v2〉 ∈
EE(τ) for some field f or (b) v1, v2 ∈ IV(τ) and ∃u ∈ V(τ) s.t. 〈u, f, v1〉 ∈ IE(τ)
and 〈u, f, v2〉 ∈ IE(τ) for some field f .

In the WSR analysis, an external edge 〈u, f, v〉 on an escaping node u is often
used to identify objects that u.f may point-to in the state before the call to
the method (i.e, pre-state). However, having two external edges with the same
source and same field serves no additional purpose. Our first heuristic eliminates
such duplicate external edges, which may be produced, e.g., by multiple reads
“x.f”, where x is a formal parameter, of the same field of a pre-state object
inside a method or its transitive callees. Our second heuristic addresses a similar
problem that might arise due to multiple writes to the same field of an internal
object inside a method or its transitive callees. Although, theoretically, the above
two heuristics can result in loss of precision, it was not the case on most of the

Purity Analysis: An Abstract Interpretation Formulation 19

(a)Linked-List insert method (b)WSR Summary

1 insert(List l, Data y) {

2 x = l.head;

3 while(x.next != null)

4 x = x.next;

5 if(!y.lifetime.HasExpired) {

6 x.next = new ListNode();

7 x.next.data = y;

8 }

9 }

(c)After merging nodes n3, n4, n7 (d)After eliminating safe node n5

Fig. 4. Illustrative example for the optimizations

programs on which we ran our analysis (see experimental results section). We
apply this node-merging optimization only at procedure exit (to the summary
graph produced for the procedure).

Figure 4 shows an illustration of this optimization. Figure 4(a) shows a sim-
ple procedure that appends an element to a linked list. Figure 4(b) shows the
WSR summary graph that would result by the straight forward application of
the transfer functions presented in the paper. Figure 4(c) shows the impact of
applying the node-merging optimization on the WSR summary shown in Fig-
ure 4(b). In the WSR summary, it can be seen that the external node n2 has
three outgoing external edges on the field next that end at nodes n3, n4 and n7.
This is due to the reads of the field next in the line numbers 3, 4 and 7. As
shown in Figure 4(b) the blow-up due to these redundant edges is substantial
(even in this small example). Figure 4(c) shows the transformer graph that re-
sults after merging the nodes n3, n4 and n7 that are identified as equivalent by
our heuristics. Let the transformer graphs shown in Figure 4(b) and Figure 4(c)
be τa and τb respectively. It can be verified that γ(τa) = γ(τb).

Optimization 2: Summary Merging. Though the analysis described earlier
does not consider virtual method calls, our implementation does handle them
(explained in [11]). Briefly, a virtual method call is modelled as a conditional
call to one of the various possible implementation methods. Let the transformer
graph before and after the virtual method call statement be τin and τout respec-
tively. Let the summaries of the possible targets of the call be τ1, τ2, . . . τn. In
the unoptimized approach, τout = τ1〈〈τin〉〉�co . . .�co τn〈〈τin〉〉. This optimization
constructs a single summary that over-approximates all the callee summaries,
as τmerge = τ1 �co . . . �co τn and computes τout as τmerge〈〈τin〉〉. Since each

20 R. Madhavan, G. Ramalingam, and K. Vaswani

τi τmerge (in fact, τi �co τmerge), τmerge is a safe over-approximation of the
summaries of all callees. Once the graph τmerge is constructed it is cached and
reused when the virtual method call instruction is re-encountered during the
fix-point computation (provided the targets of the virtual method call do not
change across iterations and their summaries do not change). We further apply
node merging to τmerge to obtain τmo which is used instead of τmerge.

Optimization 3: Safe Node Elimination. This optimization identifies certain
external nodes that can be discarded from a method’s summary without affect-
ing correctness. As motivation, consider a method Set::Contains. This method
does not mutate the caller’s state, but its summary includes several external
nodes that capture the “reads” of the method. These extraneous nodes make
subsequent operations more expensive. Let m be a method with a summary τ .
An external vertex ev is safe in τ iff it satisfies the following conditions for every
vertex v transitively reachable from ev: (a) v is not modified by the procedure,
and (b) No internal edge in τ ends at v and there exists no variable t such that
v ∈ σ(t). (We track modifications of nodes with an extra boolean attached to
nodes.) Let removeSafeNodes(τ) denote transformer obtained by deleting all
safe nodes in τ . We can show that γT (removeSafeNodes(τ)) = γT (τ). Like
node merging we perform this optimization only at method exits. Figure 4(d)
shows the transformer graph that would result after eliminating safe nodes from
the transformer graph shown in Figure 4(c).

5 Empirical Evaluation

We implemented the purity analysis along with the optimizations using Phoenix
analysis framework for .NET binaries [12]. In our implementation, summary
computation is performed using an intra-procedural flow-insensitive analysis
using the transfer functions described in Figure 3. We chose a flow-insensitive
analysis due to the prohibitively large memory requirements of a flow-sensitive
analysis when run on large libraries. We believe that the optimizations that we
propose will have a bigger impact on the scalability of a flow-sensitive analysis.

Fig. 5 shows the benchmarks used in our evaluation. All benchmarks (except
mscorlib.dll and System.dll) are open source C# libraries[4]. We carried out our
experiments on a 2.83 GHz, 4 core, 64 bit Intel Xeon CPU running Windows
Server 2008 with 16GB RAM.

We ran our implementation on all benchmarks in six different configurations
(except QuickGraph which was run on three configurations only) to evaluate our
optimizations: (a) base WSR analysis without any optimizations (base) (b) base
analysis with summary merging (base+sm) (c) base analysis with node merging
(base+nm) (d) base analysis with summary and node merging (base+nsm) (e)
base analysis with safe node elimination (base+sf) (f) base analysis with all
optimizations (base+all). We impose a time limit of 3 hours for the analysis of
each program (except QuickGraph where we used a time limit of 8 hours).

Purity Analysis: An Abstract Interpretation Formulation 21

Benchmark LOC Description

DocX (dx) 10K library for manipulating Word 2007 files

Facebook APIs (fb) 21K library for integrating with Facebook.

Dynamic data display (ddd) 25K real-time data visualization tool

SharpMap (sm) 26K Geospatial application framework

Quickgraph (qg) 34K Graph Data structures and Algorithms

PDfsharp (pdf) 96K library for processing PDF documents

DotSpatial (ds) 220K libraries for manipulating Geospatial data

mscorlib (ms) Unknown Core C# library

System (sys) Unknown Core C# library

Fig. 5. benchmark programs

Benchmarks dx fb ddd pdf sm ds ms sys qg

of methods 612 4112 2266 3883 1466 10810 2963 698 3380

Pure methods 340 1924 1370 1515 934 5699 1979 411 2152

time(s)

base 21 52 4696 5088 ∞ ∞ 108 17 ∞
base+sf 19 46 3972 2914 ∞ ∞ 56 16 −
base+sm 6 14 3244 4637 7009 ∞ 54 5 ∞
base+nm 20 46 58 125 615 963 21 16 −
base+nsm 5 9 26 79 181 251 13 4 −
base+all 5 8 23 76 179 232 12 4 21718

memory(MB)

base 313 478 1937 1502 ∞ ∞ 608 387 ∞
base+sf 313 460 1836 1136 ∞ ∞ 545 390 −
base+sm 313 478 1937 1508 369 ∞ 589 390 ∞
base+nm 296 460 427 535 356 568 515 387 −
base+nsm 296 461 411 569 369 568 514 390 −
base+all 296 446 410 550 356 568 497 390 703

Fig. 6. Results of analysing the benchmarks in six configurations

Fig. 6 shows the execution time and memory consumption of our implementa-
tion. Runs that exceed the time limit were terminated and their times are listed
as ∞. The number of methods classified as pure were same for all configurations
(that terminated) for all benchmarks.

The results show that for several benchmarks, node merging drastically re-
duces analysis time. The other optimizations also reduce the analysis time,
though not as dramatically as node merging. Fig. 7 provides insights into the
reasons for this improvement by illustrating the correlation between analysis
time and number of duplicate edges in the summary. A point (x, y) in the graph
indicates that y percentage of analysis time was spent on procedures whose sum-
maries had, on average, at least x outgoing edges per vertex that are labelled by
the same field. The benchmarks that benefited from the node merging optimiza-
tion (viz. SharpMap, PDFSharp, Dynamic Data Display, DotSpatial) spend a

22 R. Madhavan, G. Ramalingam, and K. Vaswani

Base analysis Base analysis + node merging

Fig. 7. Number duplicate edges in the summary graph Vs percentage time taken to
compute the summary

large fraction of the analysis time (approx. 90% of the time) on summaries that
have average number of duplicate edges per vertex above 4. The graph on the
right hand side plots the same metrics when node merging is enabled. It can
be seen that node merging is quite effective in reducing the duplicate edges and
hence also reduces analysis time.

6 Related Work

Modular Pointer Analyses. The Whaley-Rinard analysis [19], which is the core of
Salcianu-Rinard’s purity analysis [17], is one of several modular pointer analyses
that have been proposed, such as [2] and [3]. Modular pointer analyses offer the
promise of scalability to large applications, but are quite complex to understand
and implement. We believe that an abstract interpretation formulation of such
modular analyses are valuable as they make them accessible to a larger audience
and simplify reasoning about variations and modifications of the algorithm. We
are not aware of any previous abstract interpretation formulation of a modular
pointer analysis. Our formulation also connects the WSR approach to Sharir-
Pnueli’s functional approach to interprocedural analysis [18].

Compositional Shape Analyses. Calcagno et al. [1] and Gulavani et al. [7]
present separation-logic based compositional approaches to shape analysis. They
perform more precise analysis but compute Hoare triples, which correspond to
conditional summaries: summaries which are valid only in states that satisfy the
precondition of the Hoare triple. These summaries typically incorporate signif-
icant “non-aliasing” conditions in the precondition. Modular pointer analyses
such as WSR have somewhat different goals. They are less precise, but more
scalable and produce summaries that can be used in any input state.

Parametric Shape Analyses. TVLA [15] is a parametric abstract interpretation
that has been used to formalize a number of heap and shape analyses. The WSR
analysis and our formalization seem closely related to the relational approach to

Purity Analysis: An Abstract Interpretation Formulation 23

interprocedural shape analysis presented by Jeannet et al. [9]. The Jeannet et
al.approach shows how the abstract shape graphs of TVLA can be used to repre-
sent abstract graph transformers (using a double vocabulary), which is used for
modular interprocedural analysis. Rinetzky et al. [14] present a tabulation-based
approach to interprocedural heap analysis of cutpoint-free programs (which im-
poses certain restrictions on aliasing). (While the WSR analysis computes a
procedure summary that can be reused at any callsite, the tabulation approach
may analyze a procedure multiple times, but reuses analysis results at different
callsites if the “input heap” is the same.) However, there are interesting sim-
ilarities and connections between the WSR approach and the Rinetzky et al.
approach to merging “graphs” from the callee and the caller.

Modularity In Interprocedural Analysis. While the WSR analysis is modular
in the absence of recursion, recursive procedures must be analyzed together. Our
experience has shown that large strongly connected components of procedures
in the call-graph can be a bottleneck in analyzing large libraries. An interesting
direction for future work is to explore techniques that can be used to achieve
modularity even in the presence of recursion, e.g., see [6].

References

1. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL, pp. 289–300 (2009)

2. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL,
pp. 133–146 (1999)

3. Cheng, B.C., Hwu, W.M.W.: Modular interprocedural pointer analysis using access
paths: design, implementation, and evaluation. In: PLDI, pp. 57–69 (2000)

4. Codeplex (March 2011), http://www.codeplex.com
5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),

511–547 (1992)
6. Cousot, P., Cousot, R.: Modular static program analysis. In: CC 2002. LNCS,

vol. 2304, pp. 159–178. Springer, Heidelberg (2002)
7. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape

analysis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188–204.
Springer, Heidelberg (2009)

8. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: Robshaw, M.J.B. (ed.) FSE
2006. LNCS, vol. 4047, pp. 117–127. Springer, Heidelberg (2006)

9. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interpro-
cedural shape analysis. ACM Trans. Program. Lang. Syst. 32, 5:1–5:52 (2010),
http://doi.acm.org/10.1145/1667048.1667050

10. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Pfahler, P.,
Kastens, U. (eds.) CC 1992. LNCS, vol. 641, pp. 125–140. Springer, Heidelberg
(1992)

11. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity analysis: An abstract inter-
pretation formulation. Tech. rep., Microsoft Research, India (forthcoming)

12. Phoenix (March 2011), https://connect.microsoft.com/Phoenix
13. Prabhu, P., Ramalingam, G., Vaswani, K.: Safe programmable speculative paral-

lelism. In: PLDI, pp. 50–61 (2010)

http://www.codeplex.com
http://doi.acm.org/10.1145/1667048.1667050
https://connect.microsoft.com/Phoenix

24 R. Madhavan, G. Ramalingam, and K. Vaswani

14. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-
free programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
284–302. Springer, Heidelberg (2005)

15. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL, pp. 105–118 (1999)

16. Salcianu, A.D.: Pointer Analysis and its Applications for Java Programs. Master’s
thesis, Massachusetts institute of technology (2001)

17. Salcianu, A.D., Rinard, M.C.: Purity and side effect analysis for java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

18. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)

19. Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java pro-
grams. In: OOPSLA, pp. 187–206 (1999)

The Complexity of Abduction for
Separated Heap Abstractions

Nikos Gorogiannis, Max Kanovich, and Peter W. O’Hearn

Queen Mary University of London

Abstract. Abduction, the problem of discovering hypotheses that sup-
port a conclusion, has mainly been studied in the context of philosoph-
ical logic and Artificial Intelligence. Recently, it was used in a compo-
sitional program analysis based on separation logic that discovers (par-
tial) pre/post specifications for un-annotated code which approximates
memory requirements. Although promising practical results have been
obtained, completeness issues and the computational hardness of the
problem have not been studied. We consider a fragment of separation
logic that is representative of applications in program analysis, and we
study the complexity of searching for feasible solutions to abduction. We
show that standard entailment is decidable in polynomial time, while
abduction ranges from NP-complete to polynomial time for different
sub-problems.

1 Introduction

Abductive inference is a mode of reasoning that concerns generation of new hy-
potheses [25]. Abduction has attracted attention in Artificial Intelligence (e.g.,
[24]), based on the idea that humans perform abduction when reasoning about
the world, such as when a doctor looking at a collection of symptoms hypothe-
sizes a cause which explains them.

Similarly, when a programmer tries to understand a piece of code, he or she
makes hypotheses as well as deductions. If you look at the C code for traversing
a cyclic linked list, you might hypothesize that an assertion describing a cyclic
list should be part of the precondition, else one would obtain a memory error,
and you might even discover this from the code itself rather than by communi-
cation from the program’s designer. In separation logic, a specialized logic for
computer memory, the abduction problem – given A and B, find X where the
separating conjunction A ∗ X is consistent and A ∗ X entails B – takes on a
spatial connotation where X describes “new” or “missing” memory, not avail-
able in the part of memory described by A. Recent work has used abductive
inference for separation logic to construct an automatic program analysis which
partly mimics, for a restricted collection of assertions describing memory-usage
requirements of procedures, the combined abductive-deductive-inductive reason-
ing that programmers employ when approaching bare code [6]. Abduction is used
in the generation of preconditions, after which forwards analysis can be used to
obtain a postcondition and, hence, a true Hoare triple for the procedure, without
consulting the procedure’s calling context, resulting in a compositional analysis.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 25–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

Compositionality – that the analysis result of a whole is computed from the
analysis results of its parts – has well-known benefits in program analysis [9],
including the ability to analyze incomplete programs (e.g., programs as they are
being written) and increased potential to scale. Abductive inference has enabled
a boost in the level of automation in shape analysis (e.g., [26,13]) – an expensive
“deep memory” analysis which involves discovering data structures of unbounded
depth in the heap. The Abductor academic prototype tool has been applied
to several open-source projects in the hundreds of thousands of LOC [11], and
Infer is an industrial tool which incorporates these and other ideas [5].

Other applications of abduction for separation logic include the analysis of
concurrent programs [7], memory leaks [12], abduction for functional correctness
rather than just memory safety [17], and discovering specifications of unknown
procedures [22]. The latter is somewhat reminiscent of the (to our knowledge)
first use of abduction in program analysis, a top-down method that infers con-
straints on literals in a logic program starting from a specification of a top-level
program [16]. In contrast, Abductor works bottom-up, obtaining specs for pro-
cedures from specs of their callees (it would evidently be valuable to mix the
two approaches). A seemingly unrelated use of abduction in program analysis is
in under-approximation of logical operators such as conjunction and disjunction
in abstract domains with quantification [18].

While the potential applications are perhaps encouraging, the abduction prob-
lem for separated heap abstractions has not been investigated thoroughly from a
theoretical point of view. The proof procedures used are pragmatically motivated
and sound but demonstrably incomplete, and questions concerning complexity
or the existence of complete procedures have not been addressed. Our purpose
in this paper is to consider complexity questions (taking completeness as a re-
quirement) for the abduction problem for a fragment of logic representative of
that used in program analysis.

In the context of classical logic, abduction has been studied extensively and
there are several results about its algorithmic properties when using, for ex-
ample, different fragments of propositional logic as the base language [14,10].
However, the results do not carry over to our problem because the special ab-
stract domains used in shape analyzers are different in flavour from propositional
logic. For example, the use of variables and equalities and disequalities in sepa-
rated heap abstractions raise particular problems. Furthermore, understanding
the interaction between heap-reachability and separation is subtle but essential.

The contents of the paper are as follows. In Section 2 we define the restricted
separation logic formulae we use, called ‘symbolic heaps’ [2,13], which include a
basic ‘points-to’ predicate, and an inductive predicate for describing linked-list
segments. The separated abduction problem is defined in Section 3 along with
a ‘relaxed’ version of the problem, often used in program analysis. Section 4
shows that entailment is in PTIME and contains an interpolation-like result which
bounds the sizes of solutions that must be considered in abduction. Section 5
establishes that when lists are present both the general and relaxed problems

The Complexity of Abduction for Separated Heap Abstractions 27

are NP-complete. Section 6 shows that the abduction problem is NP-complete
when the formulae have only points-to predicates, and that the ‘relaxed’ version
of the problem can be solved in polynomial time.

2 Preliminaries

This section records background material on separated heap abstractions [2,13].

2.1 Syntax of Separated Heap Abstractions
Let Var be a countable set of variables. The set of terms is simply Terms =
Var∪{nil} where nil �∈ Var. Spatial predicates P , pure formulae Π and spatial
formulae Σ are defined as follows, where x, y are terms.

P (x, y) ::= x �→ y | ls(x, y)
Π ::= Π ∧Π | x = y | x �= y
Σ ::= Σ ∗Σ | P (x, y) | emp | true

A formula in one of the forms: Π ∧Σ, Π , or Σ is called a symbolic heap. We
employ ≡ to denote syntactic equality of two expressions modulo commutativity
of ∧, ∗, and symmetry of = and �=. We will say that the term x is an L-value in
a formula A if there is a term y such that the spatial predicate P (x, y) is in A.

The separating conjunction of two symbolic heaps is defined as follows.

(ΠA ∧ΣA) ∗ (ΠB ∧ΣB) = (ΠA ∧ΠB) ∧ (ΣA ∗ΣB)

This definition is, in fact, an equivalence in general separation logic.
The formula ls(y, z) expresses that the heap consists of a non-empty acyclic

path from y to z, and that z is not an allocated cell in the heap. The formula x �→
y describes a singleton heap in which x is allocated and has contents y. Cycles can
be expressed with compound formulae. For instance, ls(y, x) ∗ ls(x, y) describes
two acyclic non-empty linked lists which together form a cycle: this is the kind
of structure sometimes used in cyclic buffer programs.

As always in program analysis, what cannot be said is important for allowing
efficient algorithms for consistency and entailment checking. General separation
logic, which allows ∗ and its adjoint −∗ to be combined with all boolean connec-
tives, is undecidable even at the propositional level [4]. In the fragment here we
cannot express, e.g., that there are not two separate lists in the heap, or that the
data elements held in a list are sorted. We can describe memory safety properties
of linked-list programs (that data structures are well formed) but not functional
correctness (e.g., that a list insertion procedure actually inserts). As we will
see, we obtain a polynomial-time algorithm for entailment (hence, consistency).
In more expressive decidable heap logics (e.g., [23,27,21,3]) these problems can
range from PSPACE to even non-elementary complexity.

2.2 Semantics
The logic is based on a model of heap partitioning.

28 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

Definition 2.1. Stack-and-heap models are defined as pairs (s, h), where s (the
stack) is a mapping from variables Var to values Val, and h (the heap) is a finite
partial function from an infinite L to RV (L-values to R-values in Strachey’s
terminology). Here we take RV to be L∪{nil} where nil �∈ L. The composition
h1 ◦ h2 is the union of h1 and h2 if dom(h1) ∩ dom(h2) = ∅, else undefined.

The value nil plays the role of a special never-to-be allocated pointer which
is useful, e.g., for terminating linked lists. The heaps here have at most one
successor for any node, reflecting our focus on linked lists rather than trees
or graphs in the symbolic heaps that we study. (Eventually, we would like to
consider general inductive definitions; they are easy to consider semantically, but
extremely challenging, and beyond our scope, for decidability of entailment.)

We will use stacks as functions and write s(x) for the value of a variable x.
We extend this notation to include nil: s(nil) = nil. Whenever s(x)=a and
s(y)=b, the spatial predicate x �→ y is true in the one-cell heap of the form
a� b , or a•−→b• , which depicts that the ‘location’ a contains the value b.

The formal definition of the semantics is as follows.

Definition 2.2. Given any (s, h) and formula A, we define the forcing relation
(s, h) � A by induction on A (see [2]):

(s, h) � emp iff h = [] is the empty heap
(s, h) � A ∗ B iff ∃h1, h2. h = h1 ◦ h2 and (s, h1) � A and (s, h2) � B,
(s, h) � A ∧B iff (s, h) � A and (s, h) � B,
(s, h) � true always,
(s, h) � (x = y) iff s(x)= s(y),
(s, h) � (x �= y) iff s(x) �= s(y),
(s, h) � x �→ y iff dom(h) = {s(x)} and h(s(x)) = s(y),
(s, h) � ls(x, y) iff for some n ≥ 1, (s, h) � ls(n)(x, y),
(s, h) � ls(n)(x, y) iff |dom(h)| = n, and there is a chain a0, . . . , an,

with no repetitions, such that h(a0) = a1, . . . , h(an−1) = an,
where a0 =s(x), an=s(y) and an �= a0 (notice that s(y) /∈ dom(h)).

Remark 2.3. A precise formula [8] cuts out a unique piece of heap, making
the non-deterministic ∃-selection in the semantics of ∗ become deterministic.
For instance, if (s, h) � ls(x, y) ∗B, then h is uniquely split into h1, h2 so that
(s, h1) � ls(x, y) and (s, h2) � B, where h1 is defined as an acyclic path from
s(x) to s(y). In this fragment, any formula not containing true is precise.

As usual, we say that a formula A is consistent if (s, h) � A for some (s, h).
A sequent A � B is called valid if for any model (s, h) such that (s, h) � A we
have (s, h) � B. Finally, we call a formula explicit if it syntactically contains all
equalities and disequalities it entails.
We shall use the inference rules below [2].

A � B =⇒ A ∗ C � B ∗ C (∗-Intr)
x = y ∧A � B ⇐⇒ A[x/y] � B[x/y] (Subst)

The Complexity of Abduction for Separated Heap Abstractions 29

�•s(x) �•τ �•s(y) •s(z)
(a)

�•s(x) �• •s(y)s(z)�
(b)

Fig. 1. (a) The fully acyclic heap. (b) The scorpion-like heap which destroys the validity
of (z �=x)∧ (z �=y)∧ ls(x, y) ∗ y �→ z � ls(x, z).

Rule ∗-Intr expresses the monotonicity of ∗ w.r.t �. Rule Subst is a standard
substitution principle.

Sample True and False Entailments
x �→ x′ ∗ y �→ y′ � x �= y x �→ x′ ∗ ls(x′, y) �� ls(x, y)
x �→ x′ ∗ x �→ y′ � x �= x x �→ x′ ∗ ls(x′, y) ∗ y �→ z � ls(x, y) ∗ y �→ z

ls(x, x′) ∗ ls(y, y′) � x �= y
The three examples on the left illustrate the anti-aliasing or separating properties
of ∗, where the two on the right illustrate issues to be taken into account in
rules for appending onto the end of list segments (a point which is essential in
completeness considerations [2]). Appending a cell to the head of a list is always
valid, as long as we make sure the end-points are distinct:

(z �=x) ∧ x �→ y ∗ ls(y, z) � ls(x, z),
whereas appending a cell to the tail of a list generally is not valid. Although
s(z) �=s(x) and s(z) �=s(y) in Fig 1(b), the dangling z stings an intermediate
point τ in ls(x, y), so that

(z �=x) ∧ (z �=y) ∧ ls(x, y) ∗ y �→ z � ls(x, z).

To provide validity, we have to ‘freeze’ the dangling z, for instance, with ls(z, v):

ls(x, y) ∗ ls(y, z) ∗ ls(z, v) � ls(x, z) ∗ ls(z, v)

3 Separated Abduction Problems

Before giving the main definitions, it will be helpful to provide some context by
a brief discussion of how abduction can be used in program analysis.

We consider a situation where each program operation has preconditions that
must be met for the operation to succeed. A pointer dereferencing statement
x→ next = y might have the assertion x �→ x′ as a precondition. A larger pro-
cedure might have preconditions tabulated as part of a ‘procedure summary’.
Abduction is used during a forwards-running analysis to find out what is miss-
ing from the current abstract state at a program point, compared to what is
required by the operation, and this abduced information is used to build up an
overall precondition for a body of code.

For example, suppose that the assertion
ls(x, nil) ∗ ls(y, nil) is the precondition for a procedure (it might be a

procedure to merge lists) and assume that we have the assertion x �→ nil at the
call site of the procedure. Then solving

30 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

x �→ nil ∗ Y ? � ls(x, nil) ∗ ls(y, nil)
would tell us information we could add to the current state, in order to abstractly
execute the procedure. An evident answer is Y = ls(y, nil) in this case.

Sometimes, there is additional material in the current state, not needed by
the procedure; this unused portion of state is called the frame ([20], after the
frame problem from Artificial Intelligence). Suppose x �→ nil∗ z �→ w ∗w �→ z is
the current state and ls(x, nil)∗ls(y, nil) is again the procedure precondition,
then z �→ w∗w �→ z is the leftover part. In order to cater for leftovers, abduction
is performed with true as a ∗-conjunct on the right. To see why, consider that

x �→ nil ∗ z �→ w ∗ w �→ z ∗ Y ? � ls(x, nil) ∗ ls(y, nil).

has no consistent solution, since the cycle between z and w cannot form a part
of a list from y to nil. However, Y = ls(y, nil) is indeed a solution for

x �→ nil ∗ z �→ w ∗ w �→ z ∗ Y ? � ls(x, nil) ∗ ls(y, nil) ∗ true.

In the approach of [6] a separate mechanism, frame inference, is used after ab-
duction, to percolate the frame from the precondition to the postcondition of an
operation. We will refer to this special case of the abduction problem, with true
on the right, as the relaxed abduction problem.

With this as background, we now give the definition of the main problems
studied in the paper.

Definition 3.1. (1) We say that X is a solution to the abduction problem
A ∗X? � B if A ∗X is consistent and the sequent A ∗X � B is valid.

(2) We use SAP(�→) to refer to the abduction problem restricted to formulae
that have no ls predicate, and SAP(�→, ls) for the general problem. The inputs
are two symbolic heaps A and B. The output is ‘yes’ if there is a solution to the
problem A ∗X? � B, ‘no’ otherwise. rSAP(�→) and rSAP(�→, ls) refer to the
specializations of these problems when B is required to include ∗true.

We have formulated SAP as a decision problem, a yes/no problem. For appli-
cations to program analysis the analogous problem is a search problem: find a
particular solution to the abduction problem A ∗X? � B, or say that no solu-
tion exists. Clearly, the decision problem provides a lower bound for the search
problem and as such, when considering NP-hardness we will focus on the deci-
sion problem. When considering upper bounds, we give algorithms for the search
problem, and show membership of the decision problem in the appropriate class.

In general when defining abduction problems, the solutions are restricted to
‘abducible’ facts, which in classical logic are often conjunctions of literals. Here,
the symbolic heaps are already in restricted form, which give us a separation
logic analogue of the notion of abducible: ∗-conjunctions of points-to and list seg-
ment predicates, and ∧-conjunctions of equalities and disequalities. Also, when
studying abduction, one often makes a requirement that solutions be minimal
in some sense. At least two criteria have been offered in the literature for min-
imality of SAP [6,22]. We do not study minimality here. Our principal results

The Complexity of Abduction for Separated Heap Abstractions 31

on NP-hardness apply as well to algorithms searching for minimal solutions as
lower bounds, and we believe that our ‘easiness’ results concerning cases when
polytime is achievable could carry over to minimality questions. We have con-
centrated on the more basic case of consistent solutions here, leaving minimality
for the future.

4 Membership in NP

The main result of this section is the following, covering both SAP(�→, ls) and
rSAP(�→, ls).

Theorem 4.1 (NP upper bound). There is an algorithm, running in nonde-
terministic polynomial time, such that for any formulae A and B, it outputs a
solution X to the abduction problem A ∗X? � B, or says that no solution exists.

Proof. Given A and B, let Z = {z1, z2, .., zn} be the set of all variables and
constants occurring in A and B. We define a set of candidates X in the following
way. The spatial part ΣX of X is defined as

x1 �→ zi1 ∗ x2 �→ zi2 ∗ · · · ∗ xm �→ zim
where distinct x1, x2,.., xm are taken from Z and {zi1 , zi2 , .., zim} ⊆ Z (for the
sake of consistency we take x1, x2,.., xm that are not L-values in A).

The pure part ΠX of X is defined as an ∧-conjunction of formula of the form
(zi=zj)εij , where (zi=zj)1 stands for (zi=zj), and (zi=zj)0 stands for (zi �=zj).

The size of any candidate X is O(n2) is quadratic in the size of A and B. Since
consistency and entailment are in PTIME (Theorem 4.3 below), each candidate X
can be checked in polynomial time as to whether it is a solution or not.

The Interpolation Theorem (Theorem 4.4 below) guarantees the completeness
of our procedure.

The gist of this argument is that we can check a candidate solution in poly-
nomial time, and only polynomial-sized solutions need be considered (by Inter-
polation). The entailment procedure we use to check solutions relies essentially
on our use of necessarily non-empty list segments (as in [13]). For formulae with
possibly-empty list segments, which are sometimes used (e.g., [19]), we do not
know if entailment can be decided in polynomial time; indeed, this has been an
open question since symbolic heaps were introduced [2].

However, we can still find an NP upper bound for abduction, even if we con-
sider possibly empty list segment predicates. The key idea is to consider saturated
solutions only, i.e., solutions which, for any two variables contain either an equal-
ity or disequality between them. For candidate saturated solutions there is no
empty/non-empty ambiguity, and we can fall back on the polytime entailment
procedure below. Furthermore, a saturation can be guessed by an NP algorithm.

This remark is fleshed out in the following theorem.

Theorem 4.2 (NP upper bound).. There is an algorithm, running in nonde-
terministic polynomial time, such that for any formulae A and B in the language
extended with possibly-empty list segments, it outputs a particular solution X to
the abduction problem A ∗X? � B, or says that no solution exists.

32 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

We now turn to the two results used in the proof of the above theorems.

Theorem 4.3 (Entailment/Consistency). There is a sound and complete
algorithm that decides A � B in polynomial time. As a consequence, consistency
of symbolic heaps can also be decided in polynomial time.

Proof Sketch. The main idea behind the algorithm is to turn the sequent
A � B into an equi-valid sequent A′ � B where all ls predicates in A have
been converted to �→ predicates in A′. A sequent of this form can be decided
using “subtraction” rules, i.e., rules that produce new equi-valid sequents whose
antecedent and consequent have shorter spatial parts. E.g., it is the case that

C ∗ x �→ y � D ∗ x �→ y ⇐⇒ C � D.
The procedure terminates when an axiomatically valid sequent is produced, e.g.,
emp � emp or C � true.

The completeness of the algorithm rests on the fact that for a valid sequent
A � ls(x1, y1) ∗ . . . ∗ ls(xn, yn) ∗ T (where T is emp or true) we can uniquely
partition A into n sets Ai that form non-empty paths from xi to yi.
Next we establish that the solutions to abduction can be obtained using vari-
ables only appearing in the antecedent and consequent. This, together with the
fact that in consistent formulae there are no repetitions of L-values in differ-
ent ∗-conjuncts (thus the formula x �→ y ∗ x �→ y′ is inconsistent), allows us to
conclude that only polynomial-sized candidate solutions need be considered.

Theorem 4.4 (Interpolation Theorem). Let X be a solution to the abduc-
tion problem: A ∗X � B. Then there is an ̂X, a solution to the same abduction
problem, such that ̂X uses only variables and constants mentioned in A or in B,
and the spatial part of ̂X consists only of ‘points-to’ subformulae.

Proof Sketch. We sketch the main ideas with an example X .
First, note that we can get rid of all ls-subformulae in X , since X will be

still a solution to the problem, even if we replace each ls(x, y) occurring in X
with the formula (x �=y) ∧ x �→ y.

Suppose X of the form X ′ ∗ x1 �→ z ∗ · · · ∗ xk �→ z ∗ z �→ y is a solution to
the abduction problem A ∗X � B, and z does not occur in A, or B, or X ′.
In order to eliminate such an extra z, we replace X with ̂X

̂X = X ′ ∗ x1 �→ y ∗ · · · ∗ xk �→ y.
To check that such an ̂X is a solution - that is, (s, h) � A ∗ ̂X implies (s, h) � B,
we construct a specific model (s′, hz) so that (s′, hz) � A ∗X with the originalX .

Here we take advantage of the fact that z does not participate in h, and
modify s with s′(z)=c where c is fresh. To make hz from h, we substitute the c
for all occurrences of s(y) in h related to s(xi) and then add the cell c� s(y) .

Being a solution, the original X provides that (s′, hz) � B.
To complete the proof, it suffices to show that, because of our specific choice

of the modified (s′, hz), the poorer (s, h) is a model for B as well.

The Complexity of Abduction for Separated Heap Abstractions 33

5 NP-completeness

We now show that the general separated abduction problem is NP-complete by
reducing from 3-SAT.

The obstruction to a direct reduction from 3-SAT is that the Boolean dis-
junction ∨, which is a core ingredient of NP-hardness of the problem, is not
expressible in our language. However, the following example illustrates how dis-
junctions over equalities and disequalities can be emulated through abduction.

Example 5.1. Define a formula A as follows, presented graphically to the right.

A ≡ x �→ w ∗ y �→ w ∗ w �→ z
•z
�•w

��•
x

��•
y

Now, let X be an arbitrary solution to the abduction problem:

A ∗ z �→ z′ ∗X? � u �= v ∧ z �→ z′ ∗ ls(x, u) ∗ ls(y, v) ∗ true
Then we can prove the following disjunction:

A ∗ z �→ z′ ∗X � ((u=z) ∧ (v=w)) ∨ ((v=z) ∧ (u=w)).

Thus any solution X provides either ls(x, z) ∗ ls(y, w), i.e. the path from x to z
and the path from y to w, or ls(y, z) ∗ ls(x,w), i.e. the path from the leaf y to
the root z and the path from the leaf x to the non-terminal vertex w.

This mechanism, which utilizes the semantics of lists and separation in tandem,
achieves emulation of disjunction over pure formulae. We generalize this in the
combinatorial lemma 5.2 and then put it to use in our reduction from 3-SAT.

Lemma 5.2. The tree in Fig. 2(a) has exactly eight non-overlapping (having
no common edges) paths from its leaves to distinct non-terminal vertices. The
disjunction we will emulate is provided by the fact that each path leading from a
leaf to the root is realizable within such a partition into non-overlapping paths.

•y
�•x̃
i

				

•xi0 �����

•xi1
�•xi00 ��� •xi11��� •xi01 �•xi10

��•
xi000

��•
xi111

��•
xi001

��•
xi110

��•
xi010

��•
xi101

��•
xi011

��•
xi100

(a)

•y′
�•y

					

•x̃1 �• x̃2 ������

• x̃m
�� ��
“A1”

�� ��
“A2”

�� ��
“Am”

. . .

(b)

Fig. 2. (a) The graph presents Ai associated with a given clause Ci. (b) The graph
presents the “whole” A0 ∗A1 ∗A2 ∗ · · ·Am.

Now we can state our reduction. In essence, for each clause Ci we use a tree such
as the one in Fig. 2a, and add appropriate disequalities so that any solution to
the abduction problem selects a propositional valuation that satisfies all clauses.

34 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

Definition 5.3 (reduction). Given a set of 3-SAT clauses C1,C2,. . . ,Cm, the
problem we consider is to find an X , a solution to the abduction problem

A0 ∗A1 ∗ · · · ∗Am ∗X � Π ∧A0 ∗B1 ∗ · · · ∗Bm ∗ true (P1)

where A0 is y �→ y′, and each Ai is defined as a ∗-conjunction of all formulae of
the form (see Fig. 2(a)):

xiε1ε2ε3 �→ xiε1ε2 , x
i
ε1ε2 �→ xiε1 , x

i
ε1 �→ x̃i, x̃i �→ y

where ε1, ε2, ε3 range over zeros and ones, and Bi is defined as a ∗-conjunction
of the form:

ls(xi000, z
i
000) ∗ · · · ∗ ls(xiε1ε2ε3 , z

i
ε1ε2ε3) ∗ · · · ∗ ls(xi111, z

i
111)

For each i, the non-spatial part Π includes disequalities:

(ziε1ε2ε3 �= xiε1ε2ε3),
(ziε1ε2ε3 �= ziδ1δ2δ3), for (ε1, ε2, ε3) �= (δ1, δ2, δ3),
(ziε1ε2ε3 �= y), if Ci(ε1, ε2, ε3) is false.

(1)

For distinct i and j, Π also includes disequalities of the form

(ziε1ε2ε3 �= zjδ1δ2δ3) (2)

whenever (ε1, ε2, ε3) and (δ1, δ2, δ3) are incompatible - that is, they assign con-
tradictory Boolean values to a common variable u from Ci and Cj .

5.1 From 3-SAT to the Abduction Problem (P1)

Let (α1, α2, . . . , αn) be an assignment of a value 0(false) or 1(true) to each of
the Boolean variables such that it makes all clauses C1,. . . ,Cm true. Then we
can find a solution ˜X to our abduction problem in the following way.

By (βi1, βi2, βi3) we denote the part of the assignment related to the variables
used in Ci, so that Ci(βi1, βi2, βi3) is true, and for all i and j, (βi1, βi2, βi3) and
(βj1, β

j
2 , β
j
3) are compatible.

Let vi1, vi2, vi3, vi4, vi5, vi6, vi7, vi8 denote y, x̃i, xi0, xi1, xi00, xi01, xi10, xi11, the non-
terminal vertices in Fig. 2. As in Lemma 5.2, we construct eight non-overlapping
paths leading from xi000, xi001,. . . , xi111 to distinct vik1

, vik2
,. . . , vik8

, respectively,
so that one path leads from xi

βi1β
i
2β
i
3

to vi1, where (βi1, βi2, βi3) is specified above.
The part Xi is defined as a set of the following equalities

(zi000 =vik1
), (zi001 =vik2

), (zi010 =vik3
), (zi011 =vik4

),
(zi100 =vik5

), (zi101 =vik6
), (zi110 =vik7

), (zi111 =vik8
)

which contains, in particular, the equality (zi
βi1β

i
2β
i
3
=y).

Example 5.4. Fig. 3 yields the following Xi:

(zi000 =xi00), (zi001 =xi0), (zi010 =xi01), (zi011 =y),
(zi100 =xi10), (zi101 =xi1), (zi110 =xi11), (zi111 = x̃i)

The Complexity of Abduction for Separated Heap Abstractions 35

•s(y
′)

�•s(y)
					

•s(x̃1) �•s(x̃

2) ������
•s(x̃

m)
�� ��
“B1”

�� ��
“B2”

�� ��
“Bm”

. . .

(a)

•ei011
�•ei111

				

•ei001 �����

•ei101
�•ei000 ��� •ei110��� •ei010 �•ei100

��•
ai000

��•
ai111

��•
ai001

��•
ai110

��•
ai010

��•
ai101

��•
ai011

��•
ai100

(b)

Fig. 3. (a) The graph depicts (s, h), a model for A0 ∗B1 ∗ B2 ∗ · · ·Bm. (b) The graph
depicts the part (s, hi) such that (s, hi) � Bi. Here, the following properties hold,
aiε1ε2ε3 =s(xiε1ε2ε3), and eiε1ε2ε3 =s(ziε1ε2ε3), and s(zi011) = s(y).

Lemma 5.5. With ˜X = Π ∧X1 ∧X2 ∧ · · · ∧Xm we get a solution to (the
non-relaxed version of) the abduction problem (P1):

˜X? ∧A0 ∗A1 ∗A2 ∗ · · ·Am � Π ∧A0 ∗B1 ∗B2 ∗ · · ·Bm
Proof. It suffices to show that Xi ∧Ai � Bi is valid for each i.

5.2 From the Abduction Problem (P1) to 3-SAT

Here we prove that our encoding is faithful.
Lemma 5.6. Given an X, a solution to the abduction problem (P1), we can
construct an assignment (α1, α2, . . . , αn) that makes all clauses C1,. . . ,Cm true.
Proof. Assume (s, h′) � A0 ∗A1 ∗A2 ∗ · · ·Am ∗X.
Then (s, h) � A0 ∗B1 ∗B2 ∗ · · ·Bm for a ‘sub-heap’ h, and h can be split in
heaps ̂h and h1, h2,. . . , hm, so that (s,̂h) � y �→ y′, and

(s, h1) � B1, (s, h2) � B2, . . . , (s, hm) � Bm,

respectively. The non-overlapping conditions provide that any path in each of
the hi is blocked by the ‘bottleneck’ A0 and hence cannot go beyond s(y). There-
fore, the whole h must be of the form shown in Fig. 3(a), and each of the hi
must be of the form shown in Fig. 3(b).

For every Bi, to comply with Π , these eight values s(ziε1ε2ε3) must be one-
to-one assigned to the eight non-terminal vertices in the tree in Fig. 3(b) (see
Lemma 5.2).

Hence for each of the “non-terminal” variables vi1, vi2,. . . , vi8 in Fig. 2(a),
X must impose equalities of the form

s(ziε1ε2ε3) = s(vik�).

In particular, s(zi
δi1δ

i
2δ
i
3
) = s(y) for some (δi1, δi2, δi3). To be consistent with the

third line of (1), Ci(δi1, δi2, δi3) must be true. In addition to that, for distinct i
and j, we get

s(ziδi1δi2δi3) = s(y) = s(zj
δj1δ

j
2δ
j
3
),

which makes these (δi1, δi2, δi3) and (δj1, δ
j
2, δ
j
3) compatible, in accordance with (2).

36 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

We assemble the desired assignment (α1, α2, . . . , αn) in the following way.
For any Boolean variable u occurring in some clause Ci we take the triple

(δi1, δi2, δi3) specified above and assign the corresponding δi� to u. The fact that all
(δi1, δi2, δi3) and (δj1, δ

j
2, δ
j
3) are compatible provides that our assignment procedure

is well-defined.

Theorem 5.7. The following problems are NP-complete, given formulae A, B:
(a) Determine if there is a solution X to the problem A ∗X? � B.
(b) Determine if there is a solution X to the problem A ∗X? � B ∗ true.
(c) Determine if there is a solution X to the problem A ∗X? � B ∗ true

in the case where the spatial part of A uses only �→-subformulae, and the models
are confined to the heaps the length of any acyclic path in which is bounded by 5
(even if the spatial part of X is supposed to be the trivial emp).

Proof. It follows from Lemmas 5.5 and 5.6, Theorem 4.1, and the fact that the
tree height in Fig. 3(a) is bounded by 5.

Remark 5.8. It might seem that NP-hardness for rSAP(�→, ls) should neces-
sarily use lists of unbounded length. But, our encoding exploits only list segments
of length no more than 5.

Remark 5.9. By Theorem 5.7, any solving algorithm running in polynomial
time is likely to be incomplete. Consider, for instance, the abduction problem

x �→ y ∗ y �→ z ∗ w �→ y ∗X? � ls(x, a) ∗ ls(w, a) ∗ true.
There is a solution, namely, y = a ∧ emp. However, the polynomial-time algo-
rithm presented in [6] would stop without producing a solution, hence the in-
completeness of that algorithm.

6 NP-completeness and PTIME Results for �→ Fragments

We have seen that the abduction problem for symbolic heaps is NP-complete
in general. In this section we consider a restricted collection of formulae, which
contain �→ but not ls. Such formulae occur often in program analysis, and form
an important sub-case of the general problem. Here we find a perhaps surprising
phenomenon: the general problem SAP(�→) is NP-complete, but the ‘relaxed’
problem rSAP(�→) can be solved in polynomial time. The relaxed problem,
which has ∗true in the consequent, is relevant to program analysis (and is used
in the Abductor tool), and thus the polynomial case is of practical importance.

6.1 SAP(�→) is NP-complete

Here, we show NP-hardness of SAP(�→) by reducing from the 3-partition prob-
lem [15]. The intuitions behind this reduction are as follows. (a) We coerce the
abduction solution, if it exists, to be a conjunction of equalities, with emp as
the spatial part; here the absence of true in the consequent is crucial. (b) The
separating conjunction enables us to specify that distinct parts of the antecedent
must be matched, via equalities, to distinct parts of the consequent.

The Complexity of Abduction for Separated Heap Abstractions 37

Aj
y

x̃j

x
j
1

x
j
b

· · ·

Bi

ũi

ui
1

ui
si

· · ·

Ck
y

wk

Fig. 4. The formulae used in Definition 6.1

Definition 6.1 (reduction). Given the 3-partition problem:
Given an integer bound b and a set of 3m integers s1, s2,. . . , s3m, strictly
between b/4 and b/2, decide if these numbers can be partitioned into
triples (si1 , si2 , si3) so that si1 +si2 +si3 = b.

the problem we consider is to find an X , a solution to the abduction problem

A1 ∗ · · · ∗Am ∗X? � Π ∧B1 ∗ · · · ∗B3m ∗ C1 ∗ · · · ∗ Cm (P2)

where Aj , Bi, Ck, and Π are defined as follows, here j and k range from 1 to m,
and i ranges from 1 to 3m (cf. Fig. 6.1):
Aj = xj1 �→ x̃j ∗ xj2 �→ x̃j ∗ · · · ∗ xjb �→ x̃j ∗ x̃j �→ y
Bi = ui1 �→ ũi ∗ ui2 �→ ũi ∗ · · · ∗ uisi �→ ũi
Ck = wk �→ y, and Π consists of all disequalities of the form y �=xj� , y �= x̃j ,
ũi �=xj� , ũi �=y, and wk �=xj� .

6.1.1 From 3-partition to the Abduction Problem (P2)
Here we transform any solution to the 3-partition problem into a solution ˜X to
the abduction problem (P2).

Suppose that for any j, s3j−2 +s3j−1+s3j = b.
First, we take Π as ˜X and add to it all equalities of the form

ũ3j−2 = ũ3j−1 = ũ3j= x̃j=wj .

For each j, we include in ˜X all equalities of the form

(xj1 =u3j−2
1), . . . , (xj�= tj(x

j
�)), . . . , (xjb=u

3j
s3j)

where tj is a bijection tj between the sets {xj1, .., xjb}
and {u3j−2

1 , .., u3j−2
s3j−2 , u

3j−1
1 , .., u3j−1

s3j−1 , u
3j
1 , .., u

3j
s3j}.

Lemma 6.2. ˜X ∧Aj � B3j−2 ∗B3j−1 ∗B3j ∗ Cj is valid for every j. Hence ˜X
is a solution to the problem (P2).

6.1.2 From the Abduction Problem (P2) to 3-partition
Here we prove that our encoding is faithful.

Lemma 6.3. Given an X, a solution to (P2), we can construct a solution to
the related 3-partition problem.

38 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

Proof. We suppose that
∑3m
i=1 si = mb.

Assume (s, h) � A1 ∗A2 ∗ · · ·Am ∗X .
Then h can be split in heaps h1, h2,. . . , hm, and h′, so that (s, h1) � A1,

(s, h2) � A2,. . . , (s, hm) � Am, and (s, h′) � X , respectively.
More precisely, each hj is of the form

bj bj · · · bj s(y)
� � ��� � �

s(xj1) s(xj2) · · · s(xjb) bj

where bj=s(x̃j). Notice that hj can be uniquely identified by bj.
Because of (P2), (s, h) � B1 ∗ · · · ∗B3m ∗ C1 ∗ · · ·Cm.
The left-hand side of (P2) indicates the size of h asm(b+1) plus the size of h′.

The right-hand side of (P2) shows that the size of h is exactly m(b+1). Bringing
all together, we conclude that h′ is the empty heap.

Let fi be a part of h such that (s, fi) � Ci, and gi be a part of h such that
(s, gi) � Bi. To comply with Π , every s(wk) must be one-to-one assigned to one
of these m points b1,. . . , bm, and every s(ũi) must be assigned to one of these
b1,. . . , bm, as well. The effect is that each hj is the exact composition of a one-
cell heap fi′ and heaps gj1 , gj2 ,. . . , gj� , whose domains are disjoint, and hence
1+sj1 +sj2 +· · ·+sj� = b+1, which provides that 	=3 and thereby the desired
instance of the 3-partition problem.

Theorem 6.4. The following problems are NP-complete:
(a) Given formulae A and B whose spatial parts use only �→-subformulae,

determine if there is a solution X to the abduction problem A ∗X? � B.
(b) Given formulae A and B whose spatial parts use only �→-subformulae,

determine if there is a solution X to the abduction problem A ∗X? � B in the
case where the models are confined to the heaps the length of any acyclic path in
which is bounded by 2 (even if the spatial part of X is supposed to be emp).

Proof. It follows from Lemmas 6.2 and 6.3 and Theorem 4.1, and the fact that
the longest path in hj is of length 2.

6.2 rSAP(�→) Is in PTIME

We will assume that all formulae in this subsection contain no list predicates,
and make no more mention of this fact. We will also use the notation alloc(A) to
denote the set of variables x such that there is an L-value y in A and A � x = y.

An algorithm which constructs a solution for A ∗X? � B ∗ true if one exists
or fails if there is no solution, is as follows. We check the consistency of the
pure consequences of A and B and return false if they are not consistent. Then
we transform the problem into one of the form A′ ∗ X? � Σ ∗ true, i.e., the
consequent has no pure part, while guaranteeing that the two problem are in a
precise sense equivalent. Next we subtract �→-predicates from A′ and Σ that have
the same L-value. This step may also generate requirements (equalities) that the
solution must entail. Finally we show that if this step cannot be repeated any

The Complexity of Abduction for Separated Heap Abstractions 39

more, then A′ ∗Σ is consistent and therefore Σ is a solution. We then transform
this solution back to one for the original abduction problem.

Lemma 6.5. The abduction problem A ∗ X? � Π ∧ Σ has a solution if and
only if (Π ∧ A) ∗ X? � Σ has a solution. Moreover, if X is a solution for
(Π ∧A) ∗X? � Σ, then Π ∧X is a solution for A ∗X? � Π ∧Σ.

Thus we can concentrate on instances where the consequent has no pure part.

Lemma 6.6. The following conjunctions are equivalent:
⎧

⎨

⎩

A consistent
A � x = y ∧ w = z ∧B
x /∈ alloc(A)

⎫

⎬

⎭

⇐⇒
⎧

⎨

⎩

A � x = y
A ∗ x �→ w consistent
A ∗ x �→ w � B ∗ y �→ z

⎫

⎬

⎭

Proof. Left-to-right: The entailment A ∗ x �→ w � B ∗ y �→ z follows by
∗-introduction. The consistency of A∗x �→ w follows easily by an argument that
whenever x /∈ alloc(C) for some consistent C, there exists a model (s, h) of C
that does not include s(x) in the domain of h.

Right-to-left: since A ∗ x �→ w is consistent then so is A. It is also easy to see
that if A � w = z then A ∧w �= z is consistent, thus there exist a countermodel
for A∗x �→ w � B∗y �→ z where the cell at address s(x) contains a value c �= s(z).
Also, from the assumption of consistency trivially follows that x /∈ alloc(A).

Let A ≡ E ∧A′ where E are the equalities appearing in A. Then,

A ∗ x �→ w � B ∗ y �→ z =⇒ A′[E] ∗ (x �→ w)[E] � B[E] ∗ (y �→ z)[E]

where the [E] notation indicates substitution through the equalities in E. Let
a ≡ x[E] and b ≡ w[E]. Then, we can derive

A′[E] ∗ a �→ b � B[E] ∗ a �→ b.
Let A′′ ∗ a �→ b be the explicit, equivalent, version of A′[E] ∗ a �→ b. Then it
can be shown that A′′ ∗ a �→ b � B[E] ∗ a �→ b implies A′′ � B[E]. Thus,
E ∧A′′ � E ∧B[E] and, by the substitution rule, A � B.

Lemma 6.7. Suppose A and Σ are such that (a) there are variables x,y such
than x ∈ alloc(A), y ∈ alloc(Σ) and A � x = w, and (b) there are no distinct
predicates x �→ y, w �→ z in Σ for which A � x = w. Then A ∗Σ is consistent.

Theorem 6.8 (rSAP(�→) is in PTIME). There is a polytime algorithm that
finds a solution for A ∗X? � B ∗ true, or answers no otherwise.

Proof. Let B ≡ Π∧Σ. If Π∧A is inconsistent then clearly there is no solution,
and we can check this in polynomial time.

The abduction problem (Π ∧A)∗X? � Σ ∗true has a solution iff the original
one has and we know how to transform a solution of the former to one of the
latter through Lemma 6.5. Thus from now on we solve (Π ∧A) ∗X? � Σ ∗ true.

We repeatedly subtract the �→ predicates from antecedent and consequent for
which the rule in Lemma 6.6 applies, to obtain an abduction problem with the
side condition that certain variables may not appear as L-values in the solution.

40 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

When this is no longer possible we check the antecedent for consistency, as
it is possible that the equalities introduced through this step contradict some
disequality. For example, y �= w ∧ x �→ y ∗X? � x �→ w ∗ true.

Ultimately, we will arrive at an abduction problem (Π ′∧Σ′)∗X? � Σ′′ ∗true
which satisfies the conditions of Lemma 6.7. In this case, Σ′′ is a solution as
(Π ′ ∧Σ′) ∗Σ′′ is consistent, and trivially, (Π ′ ∧Σ′) ∗Σ′′ � Σ′′ ∗ true.

Thus we return Π ′ ∧Σ′′ as the solution for the original problem.

Remark 6.9. This result may seem surprising as rSAP(�→, ls) and SAP(�→)
are both NP-complete.

To illustrate the differences between rSAP(�→) and rSAP(�→, ls) that allow
this divergence, we consider the two abduction problems.

A ∗ x �→ a1 ∗ a1 �→ a2 ∗ · · · ∗ ak−1 �→ ak ∗X? � x �→ y ∗B ∗ true (3)
A ∗ x �→ a1 ∗ a1 �→ a2 ∗ · · · ∗ ak−1 �→ ak ∗X? � ls(x, y) ∗B ∗ true (4)

One of the ingredients that makes the algorithm in Theorem 6.8 polynomial-
time is the fact that for any solution X to the abduction problem (3), there is
no other choice but to take y as a1. On the other hand, in problem (4), y can
be made equal to a1, to a2,. . . , to ak, or something else. It is this phenomenon
we exploit (even with k≤5) to achieve NP-hardness in Theorem 5.7.

In the case of rSAP(�→) and SAP(�→) another factor is at play. Consider,
e.g., the two abduction problems, where x1,. . . ,xk are not L-values in the LHS:

A ∗ a1 �→ b1 ∗ . . . ∗ ak �→ bk ∗X? � B ∗ x1 �→ y1 ∗ . . . ∗ xk �→ yk (5)
A ∗ a1 �→ b1 ∗ . . . ∗ ak �→ bk ∗X? � B ∗ x1 �→ y1 ∗ . . . ∗ xk �→ yk ∗ true (6)

To find a solution to (5), because of precision (Remark 2.3), x1,. . . ,xk must
be assigned to L-values in the left-hand side. We have at least k! possibilities
and each may need to be checked (this point lies behind the NP-hardness in
Theorem 6.4).

In contrast, to find a solution to (6) we can opt for the most “conservative”
candidate solution leaving x1,. . . ,xk unassigned, or in other words, we can in-
clude x1 �→ y1 ∗ . . . ∗ xk �→ yk as a part of a candidate solution X , since

a1 �→ b1 ∗ . . . ∗ ak �→ bk ∗X � x1 �→ y1 ∗ . . . ∗ xk �→ yk ∗ true.

If such an X is not a solution then problem (6) has no solution at all.
These two observations are among the crucial points behind the design of the

polynomial-time algorithm in Theorem 6.8.

7 Conclusion

Our results are summarized in the table below.

SAP rSAP
{�→} NP-complete in PTIME
{�→, ls} NP-complete NP-complete

The Complexity of Abduction for Separated Heap Abstractions 41

We have studied the complexity of abduction for certain logical formulae rep-
resentative of those used in program analysis for the heap. Naturally, practical
program analysis tools (e.g., Abductor, SLAyer, Infer, Xisa) use more com-
plicated predicates in order to be able to deal with examples arising in practice.
For example, to analyze a particular device driver a formula was needed corre-
sponding to ‘five cyclic linked lists sharing a common header node, where three
of the cyclic lists have nested acyclic sublists’ [1].

The fragment we consider is a basic core used in program analysis. All of
the separation logic-based analyses use at least a points-to and a list segment
predicate. So our lower bounds likely carry over to richer languages used in tools.

Furthermore, the work here could have practical applications. The tools use
abduction procedures that are incomplete but the ideas here can be used to im-
mediately obtain procedures that are less incomplete (even when the fragment of
logic they are using is not known to be decidable). Further, the polynomial-time
sub-cases we identified correspond to cases that do frequently arise in practice.
For example, when the Abductor tool was run on an IMAP server of around
230k LOC [11], it found consistent pre/post specs for 1150 out of 1654 pro-
cedures, and only 37 (or around 3%) of the successfully analyzed procedures
had specifications involving list segments. The remainder (97% of the success-
fully analyzed procedures, or 67% of all procedures) had specs lying within the
�→-fragment which has a polynomial-time relaxed abduction problem (and the
tool uses the relaxed problem). Furthermore, the 37 specifications involving list
segments did not include any assertions with more than one list predicate. In-
deed, we might hypothesize that in real-world programs one would only rarely
encounter a single procedure that traverses a large number of distinct data struc-
tures, and having a variable number of list segment predicates was crucial in our
NP-hardness argument. Because of these considerations, we expect that the worst
cases of the separated abduction problem can often be avoided in practice.

Acknowledgements. This research was suppored by funding from the EPSRC.
O’Hearn also acknowledges the support of a Royal Society Wolfson Research
Merit award and a gift from Microsoft Research.

References
1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,

H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

3. Bjørner, N., Hendrix, J.: Linear functional fixed-points. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 124–139. Springer, Heidelberg (2009)

4. Brotherston, J., Kanovich, M.I.: Undecidability of propositional separation logic
and its neighbours. In: LICS, pp. 130–139. IEEE Computer Society, Los Alamitos
(2010)

5. Calcagno, C., Distefano, D.: Infer: an automatic program veriifier for memory safety
of C programs. In: To appear in 3rd NASA Formal Methods Symposium (2011)

42 N. Gorogiannis, M. Kanovich, and P.W. O’Hearn

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: 36th POPL, pp. 289–300 (2009)

7. Calcagno, C., Distefano, D., Vafeiadis, V.: Bi-abductive resource invariant syn-
thesis. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 259–274. Springer,
Heidelberg (2009)

8. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS (2007)

9. Cousot, P., Cousot, R.: Modular static program analysis. In: CC 2002. LNCS,
vol. 2304, pp. 159–178. Springer, Heidelberg (2002)

10. Creignou, N., Zanuttini, B.: A complete classification of the complexity of propo-
sitional abduction. SIAM J. Comput. 36(1), 207–229 (2006)

11. Distefano, D.: Attacking large industrial code with bi-abductive inference. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
1–8. Springer, Heidelberg (2009)

12. Distefano, D., Filipović, I.: Memory leaks detection in java by bi-abductive infer-
ence. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
278–292. Springer, Heidelberg (2010)

13. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

14. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1),
3–42 (1995)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

16. Giacobazzi, R.: Abductive analysis of modular logic programs. In: Proc. of the 1994
International Logic Prog. Symp., pp. 377–392. The MIT Press, Cambridge (1994)

17. Gulavani, B., Chakraborty, S., Ramalingam, G., Nori, A.: Bottom-up shape analy-
sis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188–204. Springer,
Heidelberg (2009)

18. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: 35th POPL, pp. 235–246 (2008)

19. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

20. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: Proceedings of the 28th POPL, pp. 14–26 (2001)

21. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. In: 35th POPL, pp. 171–182 (2008)

22. Luo, C., Craciun, F., Qin, S., He, G., Chin, W.-N.: Verifying pointer safety for
programs with unknown calls. Journal of Symbolic Computation 45(11), 1163–
1183 (2010)

23. Möller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: 22nd PLDI,
pp. 221–231 (2001)

24. Paul, G.: Approaches to abductive reasoning: an overview. Artif. Intell. Rev. 7(2),
109–152 (1993)

25. Peirce, C.S.: The collected papers of Charles Sanders Peirce. Harvard University
Press, Cambridge (1958)

26. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS 20(1), 1–50 (1998)

27. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable
patterns in linked data-structures. J. Log. Algebr. Program. 73(1-2), 111–142 (2007)

Efficient Decision Procedures for Heaps Using

STRAND

P. Madhusudan and Xiaokang Qiu

University of Illinois at Urbana-Champaign, USA
{madhu,qiu2}@illinois.edu

Abstract. The Strand [10] logic allows expressing structural proper-
ties of heaps combined with the data stored in the nodes of the heap. A
semantic fragment of Strand as well as a syntactically defined subfrag-
ment of it are known to be decidable [10]. The known decision procedure
works by combining a decision procedure for MSO on trees (implemented
by the tool Mona) and a decision procedure for the quantifier-free frag-
ment of the data-theory (say, integers, and implemented using a solver
like Z3).

The known algorithm for deciding the syntactically defined decid-
able fragment (which is the same as the one for the semantically de-
fined decidable fragment) involves solving large MSO formulas over trees,
whose solution is the main bottleneck in obtaining efficient algorithms.
In this paper, we focus on the syntactically defined decidable fragment of
Strand, and obtain a new and more efficient algorithm. Using a set of
experiments obtained from verification conditions of heap-manipulating
programs, we show the practical benefits of the new algorithm.

1 Introduction

Several approaches to program analysis, like deductive verification, generating
tests using constraint solving, abstraction, etc. have greatly benefited from the
engineering of efficient SMT solvers, which currently provide automated decision
procedures for a variety of quantifier-free theories, including integers, bit-vectors,
arrays, uninterpreted functions, as well as combinations of these theories using
the Nelson-Oppen method [15]. One of the most important kinds of reasoning in
program verification that has evaded tractable decidable fragments is reasoning
with dynamic heaps and the data contained in them.

Reasoning with heaps and data seems to call for decidable combinations of
logics on graphs that model the heap structure (with heap nodes modeled as
vertices, and field pointers as edges) with a logic on the data contained in them
(like the quantifier-free theory of integers already supported by current SMT
solvers). The primary challenge in building such decidable combinations stems
from the unbounded number of nodes in the heap structures. This mandates the
need for universal quantification in any reasonable logic in order to be able to
refer to all the elements of the heap (e.g. to say a list is sorted, we need some form
of universal quantification). However, the presence of quantifiers immediately

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 43–59, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

44 P. Madhusudan and X. Qiu

annuls the use of Nelson-Oppen combinations, and requires a new theory for
combining unbounded graph theories with data.

Recently, we have introduced, along with Gennaro Parlato, a new logic called
Strand that combines heap structures and data [10]. We also identified a se-
mantically defined decidable fragment of Strand, called Strandsem

dec , as well as
a syntactic decidable fragment, called Stranddec. The decision procedures for
satisfiability for both the semantic and syntactic fragments were the same, and
were based on (a) abstracting the data-predicates in the formula with Boolean
variables to obtain a formula purely on graphs, (b) extracting the set of mini-
mal graphs according to a satisfiability-preserving embedding relation that was
completely agnostic to the data-logic, and is guaranteed to be minimal for the
two fragments, and (c) checking whether any of the minimal models admits
a data-extension that satisfies the formula, using a data-logic solver. We also
showed that the decidable fragments can be used in the verification of pointer-
manipulating programs. We implemented the decision procedure using Mona
on tree-like data-structures for the graph logic and Z3 for quantifier-free arith-
metic, and reported experimental results in Hoare-style deductive verification of
certain programs manipulating data-structures.

In this paper, we concentrate on the syntactic decidable fragment of Strand
identified in the previous work [10], and develop new efficient decision proce-
dures for it. The bottleneck in the decision procedure of the current methods
for deciding Strand is the phase that computes the set of all minimal models.
This is done using monadic second-order logic (MSO) on trees, and is achieved
by a complex MSO formula that has quantifier alternations and also includes
adaptations of the Strand formula twice within it. In experiments, this phase
is clearly the bottleneck (for example, a verification condition for binary search
trees takes about 30s while the time spent by Z3 on the minimal models is less
than 0.5s).

We propose in this paper a new method to solve satisfiability for Stranddec

using a notion called small models, which are not the precise set of minimal mod-
els but a slightly larger class of models. We show that the set of small models is
always bounded, and also equisatisfiable (i.e. if there is any model that satisfies
the Stranddec formula, then there is a data-extension of a small model that
satisfies it). The salient feature of small models is that it can be expressed by
a much simpler MSO formula that is completely independent of the Stranddec

formula! The definition of small models depends only on the signature of the for-
mula (in particular, the set of variables existentially quantified). Consequently, it
does not mention any structural abstractions of the formula, and is much simpler
to solve. This formulation of decidability is also a theoretical contribution, as it
gives a much simpler alternative proof that the logic Stranddec is decidable.

We implement the new decision procedure, and show, using the same set of
experiments as in [10], that the new procedure’s performance is at least an order-
of magnitude faster than the known one (in some examples, the new algorithm
works even 1000 times faster).

Efficient Decision Procedures for Heaps Using STRAND 45

In summary, this paper builds a new decision procedure for Stranddec that is
based on new theoretical insights, and that is considerably faster than the known
decision procedure. We emphasize that the new decision procedure, though
faster, is sound and complete in deciding the logic Stranddec. In developing
Strand, we have often been worried on the reliance of automata-theoretic deci-
sion procedures (like Mona), which tend to perform badly in practice for large
examples. However, the decision procedure for Strand crucially uses the mini-
mal model property that seems to require solving MSO formulas, which in turn
are currently handled most efficiently by automata-theoretic tools. This paper
shows how the automata-theoretic decision procedures can be used on much
more simplified formulas in building fast decision procedures for heaps using
Strand.

The paper is structured as follows. In Section 2, we give a high-level overview
of Strand followed by definitions that we need in this paper, including the
notions of recursively defined data-structures, the notion of submodels, the def-
inition of elastic relations, and the decidable fragment of Strand. We do not
describe the known decision procedure for the syntactic decidable fragment of
Strand— we refer the reader to [10]. Section 3 describes the new theoretical
decision procedure for Stranddec and compares it, theoretically, with the pre-
viously known decision procedure. Section 4 describes experimental comparisons
of the new decision procedure with the old.

A brief note on notation: In the sequel, we will refer to the general Strand
logic [10] as Strand∗, and refer to the syntactic decidable fragment as Strand
(which is called Stranddec in [10]).

2 Data-Structures, Submodels, Elasticity and Strand

In this section, we first give an informal overview of Strand that will help under-
stand the formal definitions. We then proceed to formally define the concepts of
recursively defined data-structures, the notion of valid subsets of a tree, which
in turn define submodels, define formulas that allow us to interpret an MSO
formula on a submodel, and define the logic Strand using elastic relations.

We refer the reader to [10] for more details, including the motivations for the
design of the logic, how verification conditions can be formally extracted from
code with pre- and post-conditions, as well as motivating examples.

2.1 An Overview of Strand

We give first an informal overview of the logic Strand∗, the syntactic decidable
fragment Strand, and how they can be used for verifying heap-manipulating
programs, as set forth in [10].

We model heap structures as labeled directed graphs: the nodes of the graph
correspond to heap locations, and an edge from n to n′ labeled f represents
the fact that the field pointer f of node n points to n′. The nodes in addition

46 P. Madhusudan and X. Qiu

have labels associated to them; labels are used to signify special nodes (like NIL
nodes) as well as to denote the program’s pointer variables that point to them.

Strand formulas are expressed over a particular class of heaps, called re-
cursively defined data-structures. A (possibly infinite) set of recursively-defined
data-structures is given by a tuple (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le). Here, ψTr is
an MSO formula on trees that defines a regular set of trees R, which forms the
backbone skeletons of the structures, ψU (x) is a monadic predicate expressed in
MSO over trees that defines, for each tree, the subset of nodes that correspond
to heap nodes, and the unary predicates αa and binary predicates βb, written in
MSO over trees, identify the nodes labeled a and edges labeled b, respectively.
The graphs that belong to the recursive data-structure are hence obtained by
taking some tree T satisfying ψTr, taking the subset of tree nodes of T that sat-
isfy ψU as the nodes of the graph, and taking the a-labeled edges in the graph
as those defined by Ea, for each a ∈ Σ.

The above way of defining graph-structures has many nice properties. First,
it allows defining graphs in a way so that the MSO-theory on the graphs is
decidable (by interpreting formulas on the underlying tree). Second, several nat-
urally defined recursive data-structures in programs can be easily embedded in
the above notation automatically. Intuitively, a recursive data-structure, such as
a list of nodes pointing to trees or structs, has a natural skeleton which follows
from the recursive data-type definition itself. In fact, graph types (introduced
in [7]) are a simple textual description of recursive data-structures that are
automatically translatable to our notation. Several structures including linked
lists, doubly linked lists, cyclic and acyclic lists, trees, hierarchical combinations
of these structures, etc., are definable using the above mechanism.

A Strand∗ formula is defined over a set of recursively-defined data-structures,
and is of the form ∃�x∀�yϕ(�x, �y), where ϕ is a formula that combines MSO over
graphs defined by a recursively-defined data structure, as well as logical con-
straints over the data stored in the heap nodes.

A decidable fragment of Strand∗, called Strand (and called Stranddec

in [10]), is defined over a signature consisting of elastic relations and non-elastic
relations, and allows formulas of the kind ∃�x∀�yϕ(�x, �y) where ϕ has no further
quantification, and where all non-elastic relations are restricted to the existen-
tially quantified variables �x (see below for formal definitions and see Fig. 2 for
the syntax of the logic). Elastic relations have a technical definition: they are
those that hold on any properly defined sub-model iff they hold in a model (see
below for precise details). For example, on a tree, the descendent relation is an
elastic relation, while the child relation is not.

In verifying programs, we require the user to give proof annotations that
include pre-conditions and post-conditions and loop-invariants in Strand∗

∃,∀,
the fragment of Strand∗ with a pure existential or universal prefix. The basic
paths in the program hence become assignments and assume statements, and
the invalidity of the Hoare-triple associated with the path can be reduced to the
satisfiability of a trail formula in Strand∗. This formula, when it falls within

Efficient Decision Procedures for Heaps Using STRAND 47

the syntactic fragment Strand, can be decided using the decision procedure set
forth in this paper (see [10] for details on this construction).

It turns out that many annotations for heap-based programs actually fall in
the syntactically defined fragment, and so do the verification conditions gener-
ated (in fact, all the conditions generated in the experiments in [10] fall into
Strand). The annotations fall into Strand as several key properties, such as
sortedness, the binary search-tree property, etc., can be stated in this restricted
logic with a pure universal prefix. Furthermore, the verification condition itself
often turns out to be expressible in Strand, as the trail formula introduces
variables for the footprint the basic path touches, but these variables are exis-
tentially quantified, and hence can be related using non-elastic relations (such
as the next-node relation). Consequently, Strand is a powerful logic to prove
properties of heap manipulating programs.

We now formally define recursively defined data-structures, the notion of valid
subsets of a tree (which allows us to define submodels), define elastic relations,
and define the syntactic fragment Strand.

2.2 Recursively Defined Data-Structures

For any k ∈ N, let [k] denote the set {1, . . . , k}. A k-ary tree is a set V ⊆ [k]∗,
where V is non-empty and prefix-closed. We call u.i the i’th child of u, for every
u, u.i ∈ V , where u ∈ [k]∗ and i ∈ [k]. Let us fix a countable set of first-order
variables FV (denoted by s, t, etc.), a countable set of set-variables SV (denoted
by S, T , etc.), and a countable set of Boolean-variables BV (denoted by p, q,
etc.). The syntax of the Monadic second-order (MSO) [20] formulas on k-ary
trees is defined:

δ ::= p | succi(s, t) | s = t | s ∈ S | ϕ ∨ ϕ | ¬ϕ | ∃s.ϕ | ∃S.ϕ | ∃p.ϕ
where i ∈ [k]. The atomic formula succi(s, t) holds iff t is the i’th child of s.
Other logical symbols are interpreted in the traditional way.

Definition 1 (Recursively defined data-structures). A class of recursively
defined data-structures over a graph signature Σ = (Lv, Le) (where Lv and Le
are finite sets of labels) is specified by a tuple R = (ψTr , ψU , {αa}a∈Lv , {βb}b∈Le)
where ψTr is an MSO sentence, ψU is a unary predicate defined in MSO, and
each αa and βb are monadic and binary predicates defined using MSO, respec-
tively, where all MSO formulas are over k-ary trees, for some k ∈ N. ��
Let R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le) be a recursively defined data-structure
and T be a k-ary Σ-labeled tree that satisfies ψTr. Then T = (V, {Ei}i∈[k])
defines a graph Graph(T) = (N,E, μ, ν, Lv, Le) as follows:

– N = {s ∈ V | ψU (s) holds in T }
– E = {(s, s′) | ψU (s) and ψU (s′) hold, and βb(s, s′) holds in T for some b ∈
Le}

– μ(s) = {a ∈ Lv | ψU (s) holds and αa(s) holds in T }
– ν(s, s′) = {b ∈ Le | ψU (s) and ψU (s′) hold and βb(s, s′) holds in T }.

48 P. Madhusudan and X. Qiu

In the above, N denotes the nodes of the graph, E the set of edges, μ the labels
on nodes, and ν the labels on edges. The class of graphs defined by R is the
set Graph(R) = {Graph(T) | T |= ψTr}. These graphs are interpreted as heap
structures.

We give an examples of modeling heap structures as recursively defined data-
structures below.

Example 1. Binary trees are common data-structures. Two field pointers, l and
r, point to the left and right children, respectively. If a node does not have a
left (right) child, then the l (r) field points to the unique NIL node in the heap.
Moreover, there is a node rt which is the root of the tree. Binary trees can be
modeled as a recursively defined data-structure. For example, we can model the
unique NIL node as the root of the tree, and model the actual nodes of the
binary tree at the left subtree of the root (i.e. the tree under the left child of
the root models rt). The right subtree of the root is empty. Binary trees can be
modeled as Rbt = (ψTr, ψU , {αrt, αnil}, {βl, βr}) where

ψTr ≡ ∃y1.
(
root(y1)∧ � ∃y2.

(
succr(y1, y2)

))
ψU (x) ≡ true
αrt(x) ≡ ∃y.

(
root(y) ∧ succ l(y, x)

)
αNIL(x) ≡ root(x)
βl(x1, x2) ≡ ∃y.

(
root(y) ∧ leftsubtree(y, x1) ∧ succl(x1, x2)

) ∨(
root(x2) ∧ � ∃z.succl(x1, z)

)
βr(x1, x2) ≡ ∃y.

(
root(y) ∧ leftsubtree(y, x1) ∧ succr(x1, x2)

) ∨(
root(x2) ∧ � ∃z.succr(x1, z)

)
where the predicate root(x) indicates whether x is the root of the backbone tree,
and the relation leftsubtree(y, x) (rightsubtree(y, x)) indicates whether x belongs
to the subtree of the left (right) child of y. They can all be defined easily in
MSO. As an example, Figure 1a shows a binary tree represented in Rbt.

NIL

rt

(a) T : a binary tree

NIL

rt

(b) S: a valid subset of T
(shaded nodes)

Fig. 1. A binary tree example represented in Rbt

Efficient Decision Procedures for Heaps Using STRAND 49

2.3 Submodels

We first define valid subsets of a tree, with respect to a recursive data-structure.

Definition 2 (Valid subsets). Let R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le) and
T = (V, λ) be a Σ-labeled tree that satisfies ψTr, and let S ⊆ V . Then we say S
is a valid subset of V if the following hold:

– S is non-empty, and least-common-ancestor closed (i.e. for any s, s′ ∈ S,
the least common ancestor of s and s′ wrt T also belongs to S);

– The subtree defined by S, denoted by Subtree(T, S), is the tree with nodes S,
and where the i’th child of a node u ∈ S is the (unique) node u′ ∈ S closest to
u that is in the subtree rooted at the i’th child of u. (This is uniquely defined
since S is least-common-ancestor closed.) We require that Subtree(T, S) also
satisfy ψTr;

– for every s ∈ S, if ψU (s) holds in Subtree(T, S), then ψU (s) holds in T as
well;

– for every s ∈ S, for every a ∈ Lv, αa(s) holds in Subtree(T, S) iff αa(s)
holds in T . ��

Figure 1b shows a valid subset S of the binary tree representation T in Exam-
ple 1. A tree T ′ = (V ′, λ′) is said to be a submodel of T = (V, λ) if there is a valid
subset S of V such that T ′ is isomorphic to Subtree(T, S). Note that while unary
predicates (αa) are preserved in the submodel, the edge-relations (βb) may be
very different than its interpretation in the larger model.

Interpreting Formulas on Submodels. We define a transformation tailorX
from an MSO formula on trees to another MSO formula on trees, such that for
any MSO sentence δ on k-ary trees, for any tree T = (V, λ) and any valid subset
X ⊆ V , Subtree(T,X) satisfies δ iff T satisfies tailorX(δ). The transformation is
given below, where we let x ≤ y mean that y is a descendent of x in the tree.
The crucial transformations are the edge-formulas, which are interpreted as the
edges of the subtree defined by X .

– tailorX(succi(s, t)) = ∃s′.
(
Ei (s, s′) ∧ s′≤ t ∧

∀t′.((t′ ∈ X ∧ s′ ≤ t′)⇒ t ≤ t′
))

, for every i ∈ [k].

– tailorX(s = t) = (s = t)
– tailorX(s ∈W) = s ∈W
– tailorX(δ1 ∨ δ2) = tailor(δ1) ∨ tailorX(δ2)
– tailorX(¬δ) = ¬tailorX(δ)
– tailorX(∃s.δ) = ∃s.(s ∈ X ∧ tailorX(δ)

)
– tailorX(∃W.δ) = ∃W.(W ⊆ X ∧ tailorX(δ)

)
Now by the definition of valid subsets, we define a predicate ValidSubset(X)
using MSO, where X is a free set variable, such that ValidSubset(X) holds in a

50 P. Madhusudan and X. Qiu

tree T = (V, λ) iff X is a valid subset of V (below, lca(x,y,z) stands for an MSO
formula says that z is the least common ancestor of x and y in the tree).

ValidSubset(X) ≡ ∀s, t, u.
((
s ∈ X ∧ t ∈ X ∧ lca(s, t, u))⇒ u ∈ X

)
∧ tailorX(ψTr) ∧

(
∀s.
(
s ∈ X ∧ tailorX

(
ψU (s)

))⇒ ψU (s)
)

∧
∧
a∈Lv

[
∀s.
(
s ∈ X ⇒

(
tailorX

(
αa(s)

)⇔ αa(s)
))]

2.4 Elasticity and Strand

Elastic relations are relations of the recursive data-structure that satisfy the
property that a pair of nodes satisfy the relation in a tree iff they also satisfy
the relation in any valid subtree. Formally,

Definition 3 (Elastic relations). Let R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le),
and let b ∈ Le be an edge label. Then the relation Eb (defined by βb) is elas-
tic if for every tree T = {V, λ} satisfying ψTr, for every valid subset S of V , and
for every pair of nodes u, v in the model M ′ = Graph(Subtree(T, S)), Eb(u, v)
holds in M ′ iff Eb(u, v) holds in Graph(T). ��
For example, let R be the class of binary trees, the left-descendent relation
relating a node with any of the nodes in the tree subtended from the left child,
is elastic, because for any binary tree T and any valid subset of S containing
nodes x and y, if y is in the left branch of x in T , y is also in the left branch of
x in the subtree defined by S, and vise versa. However, the left-child relation is
non-elastic. Consider a binary tree T in which y is in the left branch of x but
not the left child of x, then S = {x, y} is a valid subset, and y is the left child
of x in Subtree(T, S).

It turns out that elasticity of Eb can also be expressed by the following MSO
formula

ψTr ⇒ ∀X ∀u ∀v.
[(

ValidSubset(X) ∧ u∈X ∧ v∈X∧

tailorX
(
ψU (u)

) ∧ tailorX
(
ψU (v)

))
⇒
(
βb(u, v)⇔ tailorX

(
βb(u, v)

))]
Eb is elastic iff the above formula is valid over all trees. Hence, we can decide
whether a relation is elastic or not, by checking the validity of the above formula
over k-ary Σ-labeled trees.

For the rest of this paper, let us fix a class of recursively defined data-
structures R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le), with LEe ⊆ Le the set of elastic
edge relations, and let LNE

e = Le\LEe the non-elastic edge relations. All notations
used are with respect to R.

Efficient Decision Procedures for Heaps Using STRAND 51

Formula ψ ::= ∃x.ψ | ω
∀Formula ω ::= ∀y.ω | ϕ
QFFormula ϕ ::= γ(e1, . . . , en) | Qa(v) | Eb(v, v

′) | Eb′(x, x
′)

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

Expression e ::= data(x) | data(y) | c | g(e1, . . . , en)

∃DVar x ∈ Loc
∀DVar y ∈ Loc
DVar v ::= x | y
Constant c ∈ Sig(D)
Function g ∈ Sig(D)
D−Relation γ ∈ Sig(D)

E− Relation b ∈ LE
e

NE−Relation b′ ∈ LNE
e

Predicate a ∈ Lv

Fig. 2. Syntax of Strand

Strand∗ (called Strand in [10]) is a two-sorted logic interpreted on program
heaps with both locations and the data stored in them. Strand formulas are
of the form ∃�x∀�yϕ(�x, �y), where �x and �y are ∃DVar and ∀DVar, respectively, (we
also refer to both as DVar), ϕ is a formula that combines structural constraints
as well as data-constraints, but their data-constraints are only allowed to refer
to �x and �y. Strand∗ is an expressive logic, allowing complex combinations of
structural and data constraints. This paper focuses on a decidable fragment
Strand. Given a recursively defined data-structure R and a first-order theory
D, the syntax of Strand is presented in Figure 2.

Intuitively, Strand formulas are of the kind ∃�x∀�yϕ(�x, �y), where ϕ is quantifier-
free and combines both data-constraints and structural constraints, with the
important restriction that the atomic relations involving universally quantified
variables be only elastic relations.

3 The New Decision Procedure for Strand

The decision procedure for Strand presented in [10] worked as follows. Given
a Strand formula ψ over a class of recursively defined data-structures R, we
first construct a pure MSO formula on k-ary trees MinModelψ that captures the
subset of trees that are minimal with respect to an equi-satisfiability preserving
embedding relation. This assures that if the formula ψ is satisfiable, then it is
satisfiable by a data-extension of a minimal model (a minimal model is a model
satisfying MinModelψ). Furthermore, this set of minimal models was guaranteed
to be finite. The decision procedure is then to do a simple analysis on the tree

52 P. Madhusudan and X. Qiu

automaton accepting all minimal models, to determine the maximum height h
of all minimal trees, and then query the data-solver as to whether any tree of
height bounded by h satisfies the Strand formula.

In this paper, we follow a similar approach, but we replace the notion of
minimal models with a new notion called small models. Given a Strand for-
mula ψ = ∃�x∀�yϕ(�x, �y) over a class of recursively defined data-structures R =
(ψTr, ψU , {αa}a∈Lv , {βb}b∈Le), the MSO formula SmallModel(�x) is defined on k-
ary trees, with free variables �x. Intuitively, SmallModel(�x) says that there does
not exist a nontrivial valid subset X such that X contains �x, and further sat-
isfies the following: for every non-elastic relation possibly appearing in ϕ(�x, �y),
it holds in Graph(T) iff it holds in Graph(Subtree(T,X)). Since the evaluations
of other atomic formulas, including elastic relations and data-logic relations, are
all preserved, we can prove that SmallModel(�x) is equisatisfiable to the struc-
tural constraints in ψ, but has only a finite number of models. The formula
SmallModel(�x) is defined as follows:

SmallModel(�x) ≡ ψTr ∧
∧
x∈�x

ψU (x) (ζ)

∧ ¬∃X.
(

ValidSubset(X) ∧
∧
x∈�x

(x ∈ X) ∧

∃s.(s ∈ X) ∧ ∃s.(s �∈ X) ∧ (η)∧
b∈LNE

e ,x,x′∈�x

(
βb(x, x′) ⇔ tailorX

(
βb(x, x′)

)))
Note that the above formula does not depend on the Strand formula ψ at

all, except for the set of existentially quantified variables �x.
Our proof strategy is now as follows. We show two technical results:

(a) For any �x, SmallModel(�x) has only finitely many models (Theorem 1 below).
This result is independent of the fact that we are dealing with Strand
formulas.

(b) A Strand formula ψ with existentially quantified variables �x has a model
iff there is some data-extension of a model satisfying SmallModel(�x) that
satisfies ψ (Theorem 2 below).

The above two establish the correctness of the decision procedure. Given a
Strand formula ψ, with existential quantification over �x, we can compute a tree-
automaton accepting the set of all small models (i.e. the models of SmallModel(�x)),
compute the maximum height h of the small models, and then query the data-
solver as to whether there is a model of height at most h with data that satisfies
ψ.

We now prove the two technical results.

Theorem 1. For any recursively defined data-structure R and any finite set of
variables �x, the number of models of SmallModel(�x) is finite.

Efficient Decision Procedures for Heaps Using STRAND 53

Proof. Fix a recursively defined data-structure R and a finite set of variables �x.
It is sufficient to show that for any model T of SmallModel(�x), the size of T is
bounded.

We first split SmallModel(�x) into two parts: let ζ be the first two conjuncts,
i.e., ψTr ∧

∧
x∈�x ψU (x), and η be the last conjunct.

Recall the classic logic-automata connection: for any MSO formula θ(�y, �Y)
with free first-order variables �y and free set-variables �Y , we can construct a tree-
automaton that precisely accepts those trees with encodings of the valuation of
�y and �Y as extra labels that satisfy the formula θ [20].

Construct a deterministic (bottom-up) tree automaton Aζ that accepts pre-
cisely the models satisfying ζ(�x), using this classic logic-automata connection [20].
Also, for each non-elastic edge label b ∈ LNE

r , and each pair of variables x, x′ ∈ �x,
let Ab,x,x′ be a deterministic (bottom-up) tree automaton that accepts the
models of the formula βb(x, x′).

p1

p2

(a) T with the valid subset X
(shaded dark)

p1

(b) Subtree(T, X)

Fig. 3. A valid subset X that falsifies β

It is clear that T is accepted byAζ , while Ab,x,x′ , for each b, x, x′, either accepts
or rejects T . Construct the product of the automatonAζ and all automataAb,x,x′ ,
for each b, x, x′, with the acceptance condition derived solely from Aζ ; call this
automaton B; then B accepts T .

If the accepted run of B on T is r, then we claim that r is loop-free (a run of
a tree automaton is loop-free if for any path of the tree, there are no two nodes
in the path labeled by the same state). Assume not. Then there must be two
different nodes p1, p2 such that p2 is in the subtree of p1, and both p1 and p2

are labeled by the same state q in r. Then we can pump down T by merging
p1 and p2. The resulting tree is accepted by AT as well. Consider the subset
X of T that consists of those remaining nodes, as shown in Figure 3. It is not
hard to see X is a nontrivial valid subset of T . Also for each b ∈ LNE

r and each
x, x′ ∈ �x, since the run of Ab,x,x′ ends up in the same state on reading the subtree
corresponding to X , βb(x, x′) holds in T iff βb(x, x′) holds in Subtree(T,X). Thus

54 P. Madhusudan and X. Qiu

X is a valid subset of T that acts to falsify η, which contradicts our assumption
that T satisfies ζ ∧ η.

Since r is loop-free, the height of T is bounded by the number of states in
B. ��
We now show that the small models define an adequate set of models to check
for satisfiability.

Theorem 2. Let R be a recursively defined data-structure and let ψ = ∃�x∀�y
ϕ(�x, �y) be a Strand formula. If ψ is satisfiable, then there is a model M of ψ
and a model T of SmallModel(�x) such that Graph(T) is isomorphic to the graph
structure of M.

Proof. Let ψ be satisfiable and let M satisfy ψ. Then there is an assignment I
of �x over the nodes of M under which ∀�yϕ(�x, �y) is satisfied.

Let T be the backbone tree of the graph model of M, and further let us add
an extra label over T to denote the assignment I to �x.

Let us, without loss of generality, assume that T is a minimal tree; i.e. T has
the least number of nodes among all models satisfying ψ.

We claim that T satisfies SmallModel(�x) under the interpretation I.
Assume not, i.e., T does not satisfy SmallModel(�x) under I. Since T under I

satisfies ζ, it must not satisfy η. Hence there exists a strict valid subset of nodes,
X , such that every non-elastic relation holds over every pair of variables in �x
the same way in T as it does on the subtree defined by X .

Let M′ be the model obtained by taking the graph of the subtree defined by
X as the underlying graph, with data at each obtained node inherited from the
corresponding node in M. We claim that M′ satisfies ψ as well, and since the
tree corresponding toM′ is a strict subtree of T , this contradicts our assumption
on T .

We now show that the graph of the subtree defined by X has a data-extension
that satisfies ψ.

In order to satisfy ψ, we take the interpretation of each x ∈ �x to be the node
in M′ corresponding to I(x). Now consider any valuation of �y. We will show
that every atomic relation in ϕ holds in M in precisely the same way as it does
on M′; this will show that ϕ holds in M iff ϕ holds in M′, and hence that ϕ
holds in M′.

By definition, an atomic relation τ could be a unary predicate, an elastic
binary relation, a non-elastic binary relation, or an atomic data-relation. If τ
is a unary predicate Qa(v) (where v ∈ �x ∪ �y), then by definition of submodels
(and valid subsets), τ holds in M′ iff τ holds in M. If τ is an elastic relation
Eb(v1, v2), by definition of elasticity, τ holds in M iff βb(v1, v2) holds in T iff
βb(v1, v2) holds in Subtree(T,X) iff τ(v1, v2) holds in M′. If τ is a non-elastic
relation, it must be of form Eb(x, x′) where x, x′ ∈ �x. By the properties of X
established above, it follows that Eb(x, x′) holds in M′ iff Eb(x, x′) holds in
M. Finally, if τ is an atomic data-relation, since the data-extension of M′ is
inherited from M, the data-relation holds in M′ iff it holds in M.

The contradiction shows that M is a small model. ��

Efficient Decision Procedures for Heaps Using STRAND 55

The above results can be used to even pre-compute the bounds on sizes of the
structural models for a fixed recursive data-structure and for various numbers
of existentially quantified variables, and completely avoid the structural phase
altogether. We can even establish these bounds analytically (and manually),
without the use of a solver, for some data-structures. For instance, over trees,
with non-elastic relations left-child and right-child, and other elastic relations, it
is not hard to see that a Strand formula is satisfiable iff it is satisfiable by a tree
of size at most 2n, where n is the number of existentially quantified variables in
the formula.

3.1 Comparison with Earlier Known Decision Procedure

We now compare the new decision procedure, technically, with the earlier known
decision procedure for Strand [10], which was also the decision procedure for
the semantic decidable fragment Strandsem

dec .
The known decision procedure for Strand [10] worked as follows. Given a

Strand formula, we first eliminate the leading existential quantification, by
absorbing it into the signature, using new constants. Then, for the formula ∀�yϕ,
we define a structural abstraction of ϕ, named ϕ̂, where all data-predicates are
replaced uniformly by a set of Boolean variables �p. A model that satisfies ϕ̂, for
every valuation of �y, using some valuation of �p is said to be a minimal model if
it has no proper submodel that satisfies ϕ̂ under the same valuation �p, for every
valuation of �y. Intuitively, this ensures that if the model can be populated with
data in some way so that ∀�yϕ is satisfied, then the submodel satisfy the formula
∀�yϕ as well, by inheriting the same data-values from the model.

It turns out that for any Strand formula, the number of minimal models
(with respect to the submodel relation) is finite [10]. Moreover, we can capture
the class of all minimal models using an MSO formula of the following form:

MinModel = ¬∃X.
[

ValidSubset(X) ∧ ∃s.(s ∈ X) ∧ ∃s.(s �∈ X) ∧

∀�y ∀�p
((
∧y∈�y

(
y ∈ X ∧ ψU (y)

) ∧ interpret(ϕ̂(�y, �p))
)

⇒ tailorX
(
interpret(ϕ̂(�y, �p))

))]
The above formula intuitively says that a model is minimal if there is no valid

non-trivial submodel such that for all possible valuations of �y in the submodel,
and all possible valuations of �p, the model satisfies the structural abstraction
ϕ̂(�y, �p), then so does the submodel.

We can enumerate all the minimal models (all models satisfying the above
formula), and using a data-constraint solver, ask whether any of them can be
extended with data to satisfy the Strand formula. Most importantly, if none
of them can, we know that the formula is unsatisfiable (for if there was a model
that satisfies the formula, then one of the minimal models will be a submodel
that can inherit the data values and satisfy the formula).

56 P. Madhusudan and X. Qiu

Comparing the above formula to the formula for SmallModel, notice that the
latter is incredibly simpler as it does not refer to the Strand formula (i.e. ϕ) at
all! The SmallModel formula just depends on the set of existentially quantified
variables and the non-elastic relations in the signature. In contrast, the formula
above for MinModel uses adaptations of the Strand formula ϕ twice within it.
In practice, this results in a very complex formula, as the verification conditions
get long and involved, and this results in poor performance by the MSO solver.
In contrast, as we show in the next section, the new procedure results in simpler
formulas that get evaluated significantly faster in practice.

4 Experiments

In this section, we demonstrate the efficiency of the new decision procedure
for Strand by checking verification conditions of several heap-manipulating
programs, and comparing them to the decision procedure in [10]. These examples
include list-manipulating and tree-manipulating programs, including searching
a sorted list, inserting into a sorted list, in-place reversal of a sorted list, the
bubble-sort algorithm, searching for a key in a binary search tree, inserting into
a binary search tree, and doing a left- or right-rotate on a binary search tree.

For all these examples, a set of partial correctness properties including both
structural and data requirements is checked. For example, assuming a node with
value k exists, we check if both sorted-list-search and bst-search return a
node with value k. For sorted-list-insert, we assume that the inserted value
does not exist, and check if the resulting list contains the inserted node, and the
sortedness property continues to hold. In the program bst-insert, assuming
the tree does not contain the inserted node in the beginning, we check whether
the final tree contains the inserted node, and the binary-search-tree property
continues to hold. In sorted-list-reverse, we check if the output list is a
valid list that is reverse-sorted. The code for bubblesort is checked to see if
it results in a sorted list. And the left-rotate and right-rotate codes are
checked to see whether they maintain the binary search-tree property.

In the structural solving phase using Mona, when a Strand formula ψ is
given, we further optimize the formula SmallModel(�x) with respect to ψ for bet-
ter performance, as follows. First, a sub-formula βb(x, x′) ⇔ tailorX(βb(x, x′))
appears in the formula only if the atomic formula Eb(x, x′) appears in ψ. More-
over, if Eb(x, x′) only appears positively, we use βb(x, x′) ⇒ tailorX(βb(x, x′))
instead; similarly if Eb(x, x′) occurs only negatively, then we use βb(x, x′) ⇐
tailorX(βb(x, x′)) instead. This is clearly sound.

Figure 4 shows the comparison of the two decision procedures on checking the
verification conditions. The results for both procedures were conducted on the
same 2.2GHz, 4GB machine running Windows 7. We also report the size of the
largest intermediate BDD and the time spent by Mona.

The experimental results show a magnitude of speed-up, with some examples
(like sorted-list-insert/after-loop) giving even a 1000X speedup. The peak
BDD sizes are also considerably smaller, in general, using the new algorithm.

Efficient Decision Procedures for Heaps Using STRAND 57

Program
Verification

Minimal Model Small Model Data-constraint

condition

computation computation solving
(old Alg. [10]) (new Alg.) (Z3, QF-LIA)

Max. BDD
Time(s)

Max. BDD
Time(s)

Old/New
size size Time (s)

sorted-
before-loop 10009 0.34 540 0.01 -

list-search
in-loop 17803 0.59 12291 0.14 -

after-loop 3787 0.18 540 0.01 -

sorted-
before-head 59020 1.66 242 0.01 0.02/0.02

list-insert
before-loop 15286 0.38 595 0.01 -

in-loop 135904 4.46 3003 0.03 -
after-loop 475972 13.93 1250 0.01 0.02/0.03

sorted-list-
before-loop 14464 0.34 595 0.01 0.02/0.02

insert-error

sorted-
before-loop 2717 0.24 1155 0.01 -

list-reverse
in-loop 89342 2.79 12291 0.14 -

after-loop 3135 0.35 1155 0.01 -

loop-if-if 179488 7.70 73771 1.31 -
bubblesort loop-if-else 155480 6.83 34317 0.48 -

loop-else 95181 2.73 7017 0.07 0.02/0.04

bst-search
before-loop 9023 5.03 1262 0.31 -

in-loop 26163 32.80 3594 2.43 0.02/0.11
after-loop 6066 3.27 1262 0.34 -

bst-insert
before-loop 3485 1.34 1262 0.34 -

in-loop 17234 9.84 1908 1.38 -
after-loop 2336 1.76 1807 0.46 -

left-/right-
bst-preserving 1086 1.59 1510 0.48 0.05/0.14

rotate

Total 98.15 7.99 0.15/0.36

Fig. 4. Results of program verification (details at www.cs.uiuc.edu/∼qiu2/strand)

Turning to the bounds computed on the minimal/small models, the two pro-
cedures generate the same bounds (i.e. the same lengths for lists and the same
heights for trees) on all examples, except bst-search-in-loopand left-rotate.
The condition bst-search-in-loop gave a maximal height of 5 with the old pro-
cedure and maximal height 6 in the new, while left-rotate generates maximal
height 5 in the old procedure and 6 in the new. However, the larger bounds did
not affect the data solving phase by any significant degree (at most by 0.1s)

The experiments show that the new algorithm is considerably more efficient
than the earlier known algorithm on this set of examples.

5 Related Work

Apart from [10], the work closest to ours is Pale [13], which is a logic on heaps
structures but not data, and uses MSO and Mona [6] to decide properties of
heaps. Tasc [5] is similar but generalizes to reason balancedness in the cases of

58 P. Madhusudan and X. Qiu

AVL and red-black trees. First-order logics with axiomatizations of the reacha-
bility relation (which cannot be expressed in FOL) have been proposed: axioms
capturing local properties [12], a logic on regular patterns that is decidable [21],
among others.

The logic in Havoc, called Lisbq [9], offers reasoning with generic heaps com-
bined with an arbitrary data-logic. The logic has restricted reachability predi-
cates and universal quantification, but is syntactically severely curtailed to ob-
tain decidability. Though the logic is not very expressive, it is extremely efficient,
as it uses no structural solver, but translates the structure-solving also to the
(Boolean aspect) of the SMT solver. The logic Csl [4] is defined in a similar
vein as Havoc, with similar sort-restrictions on the syntax, but generalizes to
handle doubly-linked lists, and allows size constraints on structures. As far as we
know, neither Havoc nor Csl can express the verification conditions of search-
ing a binary search tree. The work reported in [3] gives a logic that extends an
LTL-like syntax to define certain decidable logic fragments on heaps.

The inference rule system proposed in [16] for reasoning with restricted reach-
ability does not support universal quantification and cannot express disjointness
constraints, but has an SMT solver based implementation [17]. Restricted forms
of reachability were first axiomatized in early work by Nelson [14]. Several mech-
anisms without quantification exist, including the work reported in [18,1]. Kun-
cak’s thesis describes automatic decision procedures that approximate higher-
order logic using first-order logic, through approximate logics over sets and their
cardinalities [8].

Finally, separation logic [19] is a convenient logic to express heap properties
of programs, and a decidable fragment (without data) on lists is known [2]. How-
ever, not many extensions of separation logics support data constraints (see [11]
for one that does).

6 Conclusions

The decision procedures for Strand use a structural phase that computes a set
of minimal structural models in a completely data-logic agnostic manner [10].
The new decision procedure set forth in this paper gives a way of computing an
equisatisfiable finite set of structural models that is even agnostic to the Strand
formula. This yields a much simpler decision procedure, in theory, and a much
faster decision procedure, in practice.

We are emboldened by the very minimal reliance on the structural solver
(Mona) and we believe that the approach described in this paper is ready to be
used for generating unit test inputs for heap-manipulating methods using sym-
bolic constraint solving. Implementing such a procedure, as well as implementing
a fully-fledged solver for Strand, are interesting future directions to pursue.

Acknowledgements. This work is partially funded by NSF CAREER award
#0747041.

Efficient Decision Procedures for Heaps Using STRAND 59

References

1. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105. Springer, Hei-
delberg (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

3. Bjørner, N., Hendrix, J.: Linear functional fixed-points. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 124–139. Springer, Heidelberg (2009)

4. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A logic-based framework for
reasoning about composite data structures. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009. LNCS, vol. 5710, pp. 178–195. Springer, Heidelberg (2009)

5. Habermehl, P., Iosif, R., Vojnar, T.: Automata-based verification of programs with
tree updates. Acta Informatica 47(1), 1–31 (2010)

6. Klarlund, N., Møller, A.: MONA. BRICS, Department of Computer Science,
Aarhus University (January 2001), http://www.brics.dk/mona/

7. Klarlund, N., Schwartzbach, M.I.: Graph types. In: POPL 1993, pp. 196–205. ACM,
New York (1993)

8. Kuncak, V.: Modular Data Structure Verification. Ph.D. thesis, Massachusetts In-
stitute of Technology (2007)

9. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. In: POPL 2008, pp. 171–182. ACM, New York (2008)

10. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL 2011, pp. 611–622. ACM, New York (2011)

11. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: THOR: A tool for reasoning about
shape and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 428–432. Springer, Heidelberg (2008)

12. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490.
Springer, Heidelberg (2005)

13. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: PLDI 2001,
pp. 221–231. ACM, New York (2001)

14. Nelson, G.: Verifying reachability invariants of linked structures. In: POPL 1983,
pp. 38–47. ACM, New York (1983)

15. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1, 245–257 (1979)

16. Rakamarić, Z., Bingham, J.D., Hu, A.J.: An inference-rule-based decision proce-
dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 106–121. Springer, Heidelberg (2007)

17. Rakamarić, Z., Bruttomesso, R., Hu, A.J., Cimatti, A.: Verifying heap-manipulating
programs in an SMT framework. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Oka-
mura,Y.(eds.)ATVA2007.LNCS,vol.4762,pp.237–252.Springer,Heidelberg(2007)

18. Ranise, S., Zarba, C.: A theory of singly-linked lists and its extensible decision
procedure. In: SEFM 2006, pp. 206–215. IEEE-CS, Los Alamitos (2006)

19. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS
2002, pp. 55–74. IEEE-CS, Los Alamitos (2002)

20. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,
pp. 389–456. Springer, Heidelberg (1997)

21. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reach-
able patterns in linked data-structures. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoS-
SaCS 2006. LNCS, vol. 3921, pp. 94–110. Springer, Heidelberg (2006)

http://www.brics.dk/mona/

The Flow-Insensitive Precision of Andersen’s

Analysis in Practice

Sam Blackshear1, Bor-Yuh Evan Chang1,
Sriram Sankaranarayanan1, and Manu Sridharan2

1 University of Colorado Boulder
{samuel.blackshear,evan.chang,sriram.sankaranarayanan}@colorado.edu

2 IBM T.J. Watson Research Center
msridhar@us.ibm.com

Abstract. We present techniques for determining the precision gap be-
tween Andersen’s points-to analysis and precise flow-insensitive points-to
analysis in practice. While previous work has shown that such a gap may
exist, no efficient algorithm for precise flow-insensitive analysis is known,
making measurement of the gap on real-world programs difficult. We give
an algorithm for precise flow-insensitive analysis of programs with finite
memory, based on a novel technique for refining any points-to analysis
with a search for flow-insensitive witnesses. We give a compact sym-
bolic encoding of the technique that enables computing the search using
a tuned SAT solver. We also present extensions of the algorithm that
enable computing lower and upper bounds on the precision gap in the
presence of dynamic memory allocation. In our experimental evaluation
over a suite of small- to medium-sized C programs, we never observed
a precision gap between Andersen’s analysis and the precise analysis.
In other words, Andersen’s analysis computed a precise flow-insensitive
result for all of our benchmarks. Hence, we conclude that while better
algorithms for the precise flow-insensitive analysis are still of theoretical
interest, their practical impact for C programs is likely to be negligible.

1 Introduction

Programming languages such as C and Java make extensive use of pointers. As
a result, many program analysis questions over these languages require pointer
analysis as a primitive to find the set of all memory locations that a given
pointer may address. This problem is of fundamental importance and has been
widely studied using numerous approaches [8]. Recently, Andersen’s analysis [1]
has been increasingly employed to analyze large programs [7, 19]. However, it
is also well known that Andersen’s analysis falls short of being a precise flow-
insensitive analysis [5, 9, 17]. A precise flow-insensitive analysis reports only
the points-to relationships that are realizable via executing some sequence of
program statements, assuming arbitrary control flow between statements. There
are two key reasons for the precision gap between Andersen’s analysis and a
precise flow-insensitive analysis (discussed further in Sect. 2):

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 60–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 61

– Andersen’s analysis assumes that any set of points-to edges can occur simul-
taneously, whereas program variables must point to a single location at any
program state. This discrepancy may cause Andersen’s to generate spurious
points-to edges.

– Andersen’s analysis transforms pointer assignments to contain at most one
dereference by rewriting complex statements using fresh temporary variables.
However, temporary variables can introduce spurious points-to edges [9].

These observations lead to two tantalizing and long-standing questions:

1. Is there an efficient algorithm for precise flow-insensitive pointer analysis?
2. Does a precision gap exist, in practice, for real-world programs?

Regarding the first question, precise flow-insensitive analysis is NP-hard for ar-
bitrary finite-memory programs [9], and no polynomial-time algorithm is known
even for programs with only Andersen-style statements [5]. In the presence of
dynamic memory, the decidability of the problem remains unknown [5].

This paper addresses the second question by presenting techniques for comput-
ing the precision gap between Andersen’s and precise flow-insensitive points-to
analysis in practice. We introduce an algorithm for computing the precise flow-
insensitive analysis for programs with finite memory. This algorithm refines An-
dersen’s analysis results by searching for an appropriate sequence of statements
to witness each edge in the points-to graph obtained from Andersen’s analysis.
The search is encoded symbolically and carried out using efficient modern SAT
solvers. Although the worst-case performance of our algorithm is exponential,
our SAT encoding enables analysis of medium-sized C programs within reason-
able time/memory bounds. We then extend our techniques to investigate the
precision gap in the presence of dynamic memory.

We performed an experimental evaluation to measure the precision gap be-
tween Andersen’s and precise flow-insensitive analysis on a suite of C programs.
Perhaps surprisingly, we found the results of the two analyses to be identical over
our benchmarks: a precision gap seems to be non-existent, in practice. Thus, we
conclude that better algorithms for precise flow-insensitive points-to analysis,
while retaining theoretical interest, are unlikely to have a large impact on the
analysis of C programs. Instead, our conclusions suggest efforts spent on refin-
ing Andersen’s analysis with flow or context sensitivity may be more fruitful.
Interestingly, our witness search algorithm may offer a basis for such efforts.

This paper makes the following contributions:

– We present an algorithm for precise flow-insensitive analysis for programs
with finite memory based on refining Andersen’s analysis with a witness
search for each computed points-to fact (Sect. 3.1).

– We describe extensions for handling dynamic memory over- and under-ap-
proximately in order to evaluate the precision gap resulting from the lack of
a fully precise treatment of dynamic memory (Sect. 3.2).

– We also give a compact symbolic encoding of the witness search algorithm,
enabling the use of highly-tuned SAT solvers for the search (Sect. 3.3).

62 S. Blackshear et al.

– We implemented our algorithms and performed an experimental evaluation,
showing that the precision gap seems non-existent for small- to medium-sized
C programs (Sect. 4).

2 Flow-Insensitive Imprecision in Andersen’s Analysis

In this section, we examine the sources of imprecision in Andersen’s analysis
compared to a precise flow-insensitive points-to analysis. Most of this discussion
is a reformulation of known concepts.

We first define the notion of a precise flow-insensitive points-to analysis. A
(flow-insensitive) points-to analysis problem consists of a finite set of variables
X along with a set of assignments A. The simplest variant considers only finite
memory, that is, each assignment has one of the following forms: ∗dp := &q
or ∗d1p := ∗d2q where p and q are variables. The expression ∗dp denotes the
application of d ≥ 0 dereferences to pointer p, while &q takes the address of
q. Note that ∗0p is the same as p. The dynamic memory points-to analysis
problem adds a statement ∗dp := malloc() for allocation. The goal of a precise
flow-insensitive points-to analysis is to answer queries of the form p �� q: is
there a sequence of assignments from A that causes p to point to q (i.e., that
causes variable p to contain the address of q)? The problem is flow-insensitive,
as program control flow is ignored to produce a set of assignments as input.

The result of a points-to analysis can be captured as a points-to graph. A
points-to graph G : (V,E) consists of a set of vertices V and directed edges
E. The set of vertices represents memory cells and thus includes the program
variables (i.e., V ⊇ X). To conservatively model constructs like aggregates (e.g.,
arrays or structures), dynamically allocated memory, and local variables in a
recursive context, a vertex may model more than one concrete memory cell
(which is referred to as a summary location). An edge v1 �� v2 says that v1 may
point to v2 (i.e., a concrete cell represented by v1 may contain an address from
v2) under some execution of assignments drawn from A. For convenience, we use
the notation V (G) or E(G) to indicate the vertices and edges of G.

r q b

p a

r q b

p a

∗r := q

An exact abstraction of a concrete
memory configuration can be modeled
by a points-to graph where each vertex
represents a single memory cell and thus
each vertex can have at most one outgoing points-to edge. We call such graphs
exact points-to graphs. A points-to graph obtained as a result of some may points-
to analysis may be viewed as the join of some number of exact points-to graphs.
With exact point-to graphs, we can define the operational semantics of pointer
assignments from a points-to analysis problem. We write G a−→ G′ for the one-
step transition relation that says assignment a transforms exact graph G to
exact graph G′. A formal definition is provided in our companion technical re-
port [3]. The inset figure illustrates the transformation of an exact points-to
graph through an assignment. We can now define realizability of points-to edges.

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 63

Definition 1 (Realizable Graphs, Edges, and Subgraphs). A graph G is
realizable iff there exists a sequence of assignments a1, . . . , aN such that G0

a1−→
G1 → · · · aN−−→ GN ≡ G where G0 : (X, ∅) is the initial graph of the points-to-
analysis problem with variables X. An edge v1 �� v2 ∈ V × V is realizable iff
there exists a realizable graph G such that v1 �� v2 ∈ E(G). A subset of edges
E ⊆ V ×V is (simultaneously) realizable if there exists a realizable graph G such
that E ⊆ E(G).

A precise flow-insensitive points-to analysis derives all edges that are realiz-
able and no other edges.

Andersen’s analysis [1], well studied in the literature, is an over-approximate
flow-insensitive points-to analysis computable in polynomial time. In essence,
Andersen’s analysis works by deriving a graph with all points-to relations using
the inference rules shown below:

p := &q

p �� q

p := q q �� r

p �� r

p := ∗q q �� r r �� s

p �� s

∗p := q p �� r q �� s

r �� s

where an assignment a (e.g., p := &q) in the rule states that a is in the set of
program assignments A and a points-to edge e (e.g., p �� q) states that e is in
the derived points-to graph G (i.e., e ∈ E(G)). Observe that Andersen’s analysis
requires that an input problem be transformed so that all statements contain
at most one dereference. This transformation itself may introduce imprecision,
as we shall discuss shortly. Finally, Andersen’s analysis handles dynamic mem-
ory over-approximately by essentially translating each statement p := malloc()
into p := &mi, where mi is a fresh summary location representing all memory
allocated by the statement.

Imprecision: Simultaneous Points-To. Previous work has pointed out that An-
dersen’s is not a precise flow-insensitive points-to analysis [5, 9]. One source of
imprecision in Andersen’s analysis is a lack of reasoning about what points-to
relationships can hold simultaneously in possible statement sequences.

Example 1. Consider the following set of pointer assignments:

{p := ∗r, r := &q, r := ∗x, x := &g1, y := x, ∗x := r, ∗x := y} .

r q x

p g1 y

The inset figure shows the Andersen’s analysis result for
this example (for clarity, graphs with outlined blue nodes
are used for analysis results). Notice that while r �� g1 and
g1 �� q are individually realizable, they cannot be realized
simultaneously in any statement sequence, as this would
require either: (1) pointer r to point to g1 and q simultaneously; or (2) pointer g1
to point to g1 and q simultaneously (further illustration in Sect. 3.1). Andersen’s
does not consider simultaneous realizability, so with given the statement p := ∗r
and the aforementioned points-to edges, the analysis concludes that p may point
to q (shown dashed in red), when in fact this edge is not realizable. The finite
heap abstraction employed by Andersen’s analysis may lead to conflation of
multiple heap pointers, possibly worsening the simultaneous realizability issue.

64 S. Blackshear et al.

Imprecision: Program Transformation. Imprecision may also be introduced due
to the requisite decomposition of statements with multiple dereferences:

Example 2. Consider the following set of pointer assignments: {a := &b, a :=
&c, p := &a, q := &a, ∗∗p := ∗q}. The statement ∗∗p := ∗q may make either
b or c point to itself, but in no statement sequence can it make b point to c (as
shown in the inset below). However, when decomposed for Andersen’s analysis,
the statement is transformed into statements introducing fresh variables t1 and
t2: t1 := ∗p, t2 := ∗q, ∗t1 := t2. Then, the following sequence causes b �� c:

a := &b; p := &a; t1 := ∗p; a := &c; q := &a; t2 := ∗q; ∗t1 := t2;

p b
a

q c

Hence, the transformation to Andersen’s-style statements
may create additional realizable points-to relationships
among the original variables (i.e., the transformation adds
imprecision even for precise flow-insensitive analysis). The
goal of this work is to determine whether simultaneous realizability or program
transformation issues cause a precision gap, in practice.

3 Precise Analysis via Witness Search

In this section, we present a witness search algorithm that yields a precise flow-
insensitive points-to analysis for the finite-memory problem (Sect. 3.1). Then,
we discuss two extensions to the algorithm that respectively provide over- and
under-approximate handling of dynamic memory allocation and other summa-
rized locations (Sect. 3.2). Finally, we describe a SAT-encoding of the search al-
gorithm that yields a reasonably efficient implementation in practice (Sect. 3.3).

3.1 A Precise Algorithm for Finite Memory

Here, we describe our witness search algorithm, which computes a precise flow-
insensitive analysis for programs with finite memory. Given the result of a conser-
vative flow-insensitive points-to analysis, such as Andersen’s [1], we first create
edge dependency rules that capture ways a points-to edge may arise. These edge
dependency rules are effectively instantiations of the Andersen inference rules.
Next, we search for witness sequences for a given edge, on demand, using the
edge dependency rules while taking into account constraints on simultaneous
realizability. We may find no witness for an edge, in which case we have a refuta-
tion for the realizability of that points-to fact. Essentially, the dependency rules
leverage the Andersen result to constrain a goal-directed search for realizability.

p r s q
Generating Edge Dependency Rules. We first il-
lustrate edge dependency rule construction through an
example. Let G be a points-to graph derived as the re-
sult of a conservative points-to analysis. Consider the assignment a : ∗p := q,
wherein edges p �� r, q �� s, and r �� s exist in G (as illustrated inset). In terms
of realizability, the following claim can be made in this situation:

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 65

Edge r ��s is realizable (using assignment a) if the edge set {p �� r, q �� s}
is simultaneously realizable.

Note that the converse of this statement need not be true—the edge r �� s may
be realizable using another set of edges and/or a different pointer assignment.
In our framework, this assertion is represented by a dependency rule:

r �� s
a: ∗p:=q←−−−−− {p �� r, q �� s}

This dependency rule indicates that the edge r �� s can be produced as a re-
sult of the assignment a whenever the edges p �� r and q �� s can be realized
simultaneously.

The dependency rules can be created by examining a points-to graph G that
results from a conservative analysis. Let us first consider assignments of the form
∗mp := ∗nq. For each such assignment, we generate a set of rules as follows:

– Let paths(p,m) denote the set of all paths of length m starting from p in G,
and let paths(q, n+1) be the set of all paths of length n+1 starting from q.

– Consider each pair of paths π1 : p �m p′ ∈ paths(p,m) and π2 : q �n+1 q
′ ∈

paths(q, n+ 1).

– We generate the dependency rule:
(
p′ �� q′

∗mp:=∗nq←−−−−−− E(π1) ∪ E(π2)
)

where
E(πi) denotes the edges in the path πi for i ∈ {1, 2}.

The case for assignments of the form ∗mp := &q is essentially the same, so we
elide it here. Overall, we obtain the set of rules for a finite-memory problem by
taking all such rules generated from all assignments a ∈ A.

Note that the time taken for rule generation and the number of rules generated
can be shown to be a polynomial in the size of the problem and the number of
edges in the points-to graph (which is in turn at most quadratic in the number
of variables) [3]. The time taken is exponential in the number of dereferences in
the pointer assignments, but usually this number is very small in practice (it is
at most one for Andersen-style statements).

This rule generation can be done offline as described above to take advantage
of an optimized, off-the-shelf points-to analysis, but it can also be performed
online during the execution of Andersen’s analysis. Consider a points-to edge e
discovered in the course of Andersen’s analysis while processing an assignment a.
The edges traversed at this step to produce e are exactly the dependence edges
needed to create an edge dependency rule (as in the rule construction algorithm
described above).

Example 3. Figure 1 shows the edge dependency rules derived from the result
of Andersen’s Analysis for the problem in Example 1.

Witness Enumeration. Once edge dependency rules are generated, witness
search is performed via witness enumeration, which constructs possible partial
witnesses. Consider a rule r : e a←− E. Rule r states that we can realize edge e

66 S. Blackshear et al.

r �� q
r:=&q←−−−− ∅ x �� g1

x:=&g1←−−−−− ∅ y �� g1
y:=x←−−− x �� g1

g1 �� q
∗x:=r←−−−− x �� g1, r �� q g1 �� g1

∗x:=r←−−−− x �� g1, r �� g1

g1 �� g1
∗x:=y←−−−− x �� g1, y �� g1 r �� g1

r:=∗x←−−−− x �� g1, g1 �� g1

r �� q
r:=∗x←−−−− x ��g1, g1 ��q p ��g1

p:=∗r←−−−− r ��g1, g1 ��g1 p ��q
p:=∗r←−−−− r ��g1, g1 ��q

Fig. 1. The edge dependency rules for the problem in Example 1

via assignment a if we can realize the set of edges E simultaneously (i.e., in a
state satisfying E, executing a creates the points-to edge e). Intuitively, we can
realize the set E if we can find a chain of rules realizing each edge in E. Thus,
enumeration proceeds by repeatedly rewriting edge sets based on dependency
rules until reaching the empty set; the statements associated with the rules
employed become the candidate witness (see [3] for a detailed definition).

Example 4. We describe a witness enumeration step for Example 1. Starting
from the set E : {r �� g1, g1 �� g1} and using the rule r : g1 �� g1

∗x:=y←−−−− {x ��
g1, y �� g1}, we can rewrite set E to a set E′ as follows:

E : {r �� g1, g1 �� g1} r−⇀ E′ : {x �� g1, y �� g1, r �� g1} .
Often, we will write such transitions using the same format as the rule itself:

E : {r �� g1, g1 �� g1} ∗x:=y←−−−− E′ : {x �� g1, y �� g1, r �� g1} .
Not all rewriting steps lead to valid witnesses. In essence, we need to ensure

that the witness search respects the concrete semantics of the statements. Recall
the definition of realizability (Definition 1), which states that a set of edges E is
realizable if it is a subset of edges in a realizable graph. A realizable graph must
be an exact points-to graph. Therefore, we simply detect when the exactness
constraint is violated, which we call a conflict set.

Definition 2 (Conflict Set). A set of edges E is a conflict set iff there exist
two or more outgoing edges v �� v1, v �� v2 ∈ E for some vertex v.

In addition to conflict detection, we guarantee termination in the finite-memory
problem by stopping cyclic rewriting of edge sets. Intuitively, if we have E1

r1−⇀
E2

r2−⇀ . . .
rn−⇀ En, wherein En ⊇ E1, the corresponding statements have simply

restored the points-to edges in E1. Hence no progress has been made toward a
complete witness. Since all cyclic rewriting is truncated, and we have a finite
number of possible edge sets (since memory is finite), termination follows.

Performing witness enumeration with conflict set detection for each points-
to fact derived by an initial analysis yields a precise flow-insensitive points-to
analysis as captured by the theorem below. Proofs of all theorems are given in
the appendix of our companion technical report [3].

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 67

Theorem 1 (Realizability). (A) An edge e is realizable iff there exists a se-
quence of rewrites w : E0 : {e} r1−⇀ E1

r2−⇀ · · · rN−−⇀ EN : ∅ , such that none of the
sets E0, . . . , EN are conflicting. (B) Furthermore, it is also possible to find w
such that Ei �⊇ Ej for all i > j.

Example 5. Considering the problem from Example 1, the following sequence of
rule applications demonstrates the realizability of the edge r �� g1:

{r �� g1} r:=∗x←−−−− {x �� g1, g1 �� g1} ∗x:=y←−−−− {x �� g1, y �� g1}
y:=x←−−− {x �� g1} x:=&g1←−−−−− ∅ .

The sequence of assignments corresponding to the set of rule applications pro-
vides the witness sequence: x := &g1; y := x; ∗x := y; r := ∗x; .

p �� q r �� g1, g1 �� q x �� g1,g1 �� g1,g1 �� q

r �� g1, x �� g1, r �� q

p := ∗r r := ∗x
∗x := r

X

X

The converse of The-
orem 1 can be applied to
show that a given edge is
not realizable. To do so,
we search over the sequence of applicable rules, stopping our search when a con-
flicting set or a superset of a previously encountered set of edges is encountered.
A refutation tree for the non-realizability of edge p ��q from Example 1 is shown
inset. In one path, the search terminates with a conflict on g1, and in the other,
the conflict is on r.

Possible Extensions. Looking beyond precise flow-insensitive points-to anal-
ysis, our algorithm can be extended to provide greater precision by introducing
additional validation of the produced witnesses. For example, context sensitiv-
ity could be added by ensuring that each witness respects call-return semantics.
One could add flow or even path sensitivity in a similar manner. This additional
checking could be performed on partial witnesses during the search, possibly
improving performance by reducing the size of the search space. Further study
of these extensions is promising future work.

3.2 Handling Summarized Locations

In practice, problems arising from programming languages such as C will contain
complications such as union types, structure types handled field insensitively, lo-
cal variables in a recursive function, thread local variables, and dynamic memory
allocations. Such constructs are often handled conservatively through summary
locations, which model a (possibly unbounded) collection of concrete memory lo-
cations. As noted in Sect. 2, to conservatively model the potentially unbounded
number of allocated cells with dynamic memory, Andersen’s analysis uses one
summary location per allocation site in the program.

The decidability of the precise flow-insensitive analysis in the presence of dy-
namic memory is unknown [5]. Here, we present two extensions to our algorithm
that respectively handle summary locations in an over- and under-approximate

68 S. Blackshear et al.

manner, thereby yielding lower and upper bounds on the precision gap with a
fully precise treatment of dynamic memory and other summarized locations.

Over-Approximating Summaries. To handle summary variables over-approxi-
mately, we can simply augment the search algorithm with weak update semantics
for summaries. In particular, on application of a rule r : e a←− E, if the source
of edge e is a summary location, then e is not replaced in the rewriting (i.e.,
E0

r−⇀ E0∪E for initial edge set E0). Additionally, the definition of a conflict set
(Definition 2) is modified to exclude the case when the conflict is on a summary
location (i.e., two edges v �� v1 and v �� v2 where v is a summary location), as a
summary may abstract an unbounded number of concrete cells. This handling
clearly yields an over-approximate handling of summaries, as it is possible for the
algorithm to generate witnesses that are not realizable by Definition 1. Hence,
comparing Andersen’s analysis and this algorithm yields a lower bound on the
precision gap with a fully precise analysis.

Under-Approximating Summaries. To obtain an upper bound on the precision
gap between Andersen’s and the fully precise analysis, we define a straight-
forward under-approximating algorithm—during witness search, we treat sum-
maries as if they were concrete memory locations. In essence, this approximation
looks for witnesses that require only one instance of a summary (e.g., only one
cell from a dynamic memory allocation site). This algorithm is unsound, as a
points-to relation may be realizable even when this algorithm does not find a
witness. However, if this algorithm finds a witness for a points-to relation, that
relation is indeed realizable, and thus this algorithm yields an upper bound on
the precision gap.

3.3 A Symbolic Encoding

In this section, we discuss a symbolic encoding for witness search and proving
unrealizability. The idea is to encode the search for witnesses whose depths are
bounded by some constant k using a Boolean formula ϕ(e, k) such that any
solution leads to a witness for edge e. We then adapt this search to infer the
absence of witnesses by encoding subsumption checks. Crucially, our encoding
allows parallel updates of unrelated pointer edges during witness search so that
longer witnesses can be found at much smaller depths.

Propositions. For each edge e ∈ E and depth i ∈ [1, k+1], the Boolean variable
Edg(e, i) denotes the presence of edge e in the set obtained at depth i. Similarly,
for depths i ∈ [1, k], the Boolean variable Rl(r, i) will be used to denote the
application of the rule r at depth i (to obtain the set at depth i+ 1). Note that
there is no rule application at the last step.

Boolean Encoding. Some of the key assertions involved in the Boolean encoding
are summarized in Table 1. The assertion init(e) describes the edge set at depth
1, which is required to be the singleton {e}. Recall that a pair of edges conflict
if they have the same source location (which is not a summary location). The
assertion edgeConflict(eA, eB, i) is used for such conflicting edges. Similarly, we

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 69

Table 1. Overview of the boolean encoding for witness search

Name Definition Remarks

init(e) Edg(e, 1) ∧
∧

e′ �=e ¬Edg(e′, 1) Start from edge set {e}
edgeConflict(eA, eB, i) ¬Edg(eA, i) ∨ ¬Edg(eB, i) Edges eA, eB cannot both be

edges at depth i

ruleConflict(r1, r2, i) ¬Rl(r1, i) ∨ ¬Rl(r2, i) Rules r1, r2 cannot both be si-
multaneously applied at depth i

someRule(i)
∨

r∈R Rl(r, i) Some rule applies at depth i

ruleApplicability(r, i) Rl(r, i) ⇒ Edg(e, i) Applying rule r : e ←− E at
depth i creates edge e

notSubsumes(i, j) ¬(
∧

e∈E Edg(e, i)⇒
Edg(e, j))

Edge set at depth i does not
contain set at depth j

define a notion of a conflict on the rules that enables parallel application of
non-conflicting rules. Rules r1 : e1

a1←− E1 and r2 : e2
a2←− E2 are conflicting

iff one of the following conditions holds: (a) e1 = e2, or (b) e1 conflicts with
some edge in E2, or (c) e2 conflicts with some edge in E1. If two rules r1, r2
are not conflicting, then they may be applied in “parallel” at the same step
and “serialized” arbitrarily, enabling the solver to find much longer witnesses at
shallower depths. The corresponding assertion is ruleConflict(r1, r2, i). Assertion
someRule(i) says some rule applies at depth i, and ruleApplicability(r, i) expresses
the application of a rule r at depth i.

The assertion ruleToEdge(e, i) enforces that a rule r : e ←− E is applicable at
depth i only if the corresponding edge e is present at that depth, which we define
as follows (and is not shown in Table 1:

Edg(e, i+ 1)⇔
(

(Edg(e, i) ∧
(∧

(r : e←E)∈R ¬ Rl(r, i)
)
) /e existed previously/

∨
∨

(r′ : e′←E)∈R s.t. e∈E Rl(r′, i) /or rule r′ creates e/

)
During the witness search, if we encounter an edge set Ei at depth i, such that
Ei ⊇ Ej for a smaller depth j < i, then the search can be stopped along that
branch and a different set of rule applications should be explored. This aspect is
captured by notSubsumes(i, j), and in the overall encoding below, we have such
a clause for all depths i > j.

Overall Encoding. The overall encoding for an edge equery is the conjunction:

ϕ(equery, k) :
∧

i∈[1,k]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

init(equery)∧
e1,e2 conflicting edgeConflict(e1, e2, i)∧
r1,r2 conflicting ruleConflict(r1, r2, i)

∧ someRule(i)
∧∧r∈R ruleApplicability(r, i)
∧∧e∈E ruleToEdge(e, i)
∧∧j∈[1,i−1] notSubsumes(i, j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

70 S. Blackshear et al.

The overall witness search for edge equery, consists of increasing the depth bound
k incrementally until either (A) ϕ(equery, k) is unsatisfiable indicating a proof
of unrealizability of the edge equery, or (B) ϕ(equery, k) ∧ emptySet(k + 1) is
satisfiable yielding a witness, wherein, the clause emptySet(i) :

∧
e∈E ¬Edg(e, i)

encodes an empty set of edges.

Lemma 1. (A) If ϕ(e, k) is unsatisfiable then there cannot exist a witness for
e for any depth l ≥ k; and (B) If ϕ(e, k) ∧ emptySet(k + 1) is satisfiable then
there is a witness for the realizability of the edge e.

4 Is There a Precision Gap in Practice?

We now describe our implementation of the ideas described thus far and the
evaluation of these ideas to determine the size of the precision gap between
Andersen’s analysis and precise flow-insensitive analysis.

Implementation. Our implementation uses the C language front-end CIL [13] to
generate a set of pointer analysis constraints for a given program. The constraint
generator is currently field insensitive. Unions, structures, and dynamic memory
allocation are handled with summary locations. To resolve function pointers,
our constraint generator uses CIL’s built-in Steensgaard analysis [18]. The con-
straints are then analyzed using our own implementation of Andersen’s analysis.
Our implementation uses a semi-naive iteration strategy to handle changes in the
pointer graphs incrementally [14]. Other optimizations such as cycle detection
have not been implemented, since our implementation of Andersen’s analysis is
not the scalability bottleneck for our experiments.

Our implementation of witness generation uses the symbolic witness search
algorithm outlined in Sect. 3.3. Currently, our implementation uses the SMT
solver Yices [6]. Note that the witness search directly handles statements with
multiple dereferences from the original program, so the additional temporaries
generated to run Andersen’s analysis do not introduce imprecision in the search.

Evaluation Methodology. We performed our experiments over a benchmark suite
consisting of 12 small- to medium-sized C benchmarks representing various Linux
system utilities including network utilities, device drivers, a terminal application,
and a system daemon. All measurements were taken on an 2.93 GHz Intel Xeon
X7350 using 3 GB of memory.

To measure the precision gap for points-to analysis, we ran our witness search
for all of the Andersen’s points-to results for the benchmarks, both with over-
and under-approximate handling of summary locations (yielding a lower and
upper bound on the precision gap respectively, as described in Sect. 3.2). The
primary result of this paper is that we found no precision gap between Andersen’s
analysis and the precise flow-insensitive analysis in either of these experimental
configurations. In other words, our witness search never produced a refutation
over our 12 benchmarks, no matter if summary locations were handled over-
or under-approximately, and with precise handling of statements with multiple
dereferences.

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 71

Following our observation that no precision gap exists for points-to queries,
it is natural to consider if there is a precision gap between using Andersen’s
analysis to resolve alias queries and a precise flow-insensitive alias analysis. We
say that p aliases q if there is a common location r such that both p and q may
simultaneously point to r. We adapted the witness search encoding to search
for witnesses for aliasing between pairs of variables that Andersen’s analysis
indicated were may-aliased. For aliasing experimental configurations, we ran the
alias witness search for 1000 randomly chosen pairs of variables for each of our
benchmarks (whereas for points-to configurations, we exhaustively performed
witness search on all edges reported by Andersen’s). Even though realizability
of alias relations is more constrained than that of points-to relations, the search
still produced a witness for all alias queries. This observation provides evidence
that there is also likely no precision gap for alias analysis.

Results. As stated above, we found a flow-insensitive witness for every points-to
relation and every alias query for our benchmarks in each experimental configu-
ration. We found refutations for small hand-crafted examples that demonstrate
the precision gap (like Examples 1 and 2), but not in real programs.

Table 2 gives details about the benchmarks and the execution of our witness-
generating analyses. We show the statistics for two experimental configurations:
the over- and under-approximating analyses for points-to queries with search
over the original program statements.

Witness Search with Weak-Update Witnesses (Weak). For each points-
to edge computed by Andersen’s analysis, we performed a symbolic wit-
ness search using edge dependency rules derived with the original program
statements until either a witness or a refutation for the edge was found.
Weak-update semantics were used for summaries (see Sect. 3.2), yielding an
over-approximate analysis and a lower bound on the precision gap.

Witness Search with Concretization (Conc). Here, we performed an un-
der-approximate witness search that treated summaries as concrete loca-
tions, as described in Sect. 3.2. As refutations produced in this configuration
may be invalid (due to the under-approximation), the configuration gives an
upper bound on the precision gap.

The benchmarks are organized by function and sorted by number of lines of code
in ascending order. The first set of columns gives statistics on the problem size,
while the second set shows number of rules, analysis times, and search depths for
each configuration. We note that running time depends primarily on the number
of rules available to the witness search.

In Fig. 2, we show the per-benchmark distribution of discovered witness
lengths for both the Weak configuration (left) and Conc configuration (right).
Comparing each benchmark across the two configurations, we see relatively lit-
tle change in the distribution. This result is a bit surprising, as one may expect
that the more constraining Conc configuration would be forced to find longer
witnesses. We hypothesize that the flow-insensitive abstraction allows so much
flexibility in witness generation that there are always many possible witnesses

72 S. Blackshear et al.

Table 2. Data from experiments using the Weak and Conc configurations. The “Pro-
gram Size” columns give the number of thousands of lines of code (kloc), variables
(vars), and pointer constraints (cons). Note that the number of variables includes all
program variables (pointer type or non-pointer type), as any type may be used a
pointer in C. The “Problem Size” columns give the number of rules generated (rules)
and number of points-to edges found by Andersen’s (edges). For the Weak and Conc
experiments, we give the average search depth required and total running time.

Program Size Problem Size Weak Conc

Benchmark kloc vars cons rules edges depth time (s) depth time (s)

-network utilities-
aget (ag) 1.1 198 86 21 21 1.4 0.0 1.4 0.0
arp (ar) 3.1 1052 144 31 30 1.5 0.1 1.5 0.0
slattach (sl) 3.4 1046 164 31 31 1.5 0.1 1.5 0.0
netstat (ne) 4.5 1333 205 85 80 1.5 0.1 1.5 0.1
ifconfig (if) 8.8 1334 702 224 195 1.9 0.4 1.9 0.5
plip (pl) 18.4 4298 1556 167 146 2.5 1.0 2.7 1.2

-device drivers-
knot (kn) 1.3 243 125 22 21 1.7 0.0 1.7 0.0
esp (es) 10.9 3805 1475 6979 413 3.9 12937.0 4.2 734.0
ide-disk (id) 12.6 4684 1290 422 274 5.0 42.1 5.1 53.4
synclink (sy) 23.6 5221 2687 164 157 1.2 0.2 1.2 0.2

-terminal applications-
bc (bc) 6.2 658 615 1098 244 3.6 129.7 3.6 124.0

-daemons-
watchdog (wa) 9.4 1189 760 196 163 2.7 1.1 2.7 1.1

for each points-to relation regardless of whether we use the Weak or Conc
configuration. The median witness length for Weak and Conc was 4, while
the mean lengths were 8.41 and 8.58, respectively. Note that the mean lengths
significantly exceeded the mean search depth for the benchmarks, indicating the
effectiveness of parallel rule application in the search (see Sect. 3.3). The longest
witness found in either configuration was of length 54.

4.1 Discussion: Why Is There No Precision Gap in Practice?

We note that the phenomena reported here as such defy a straightforward expla-
nation that reflects directly on the way pointers are typically used in C programs.

From our experiments, we observe that not only does every edge discovered
by Andersen’s analysis have a witness, but it potentially has a large number of
witnesses. This hypothesis is evidenced by the fact that we can (a) deploy non-
conflicting rules in parallel and (b) discover long witnesses at a much smaller
search depth. As a result, each witness consists of parallel threads of unrelated
pointer assignments that contribute towards the final goal but can themselves
be interleaved in numerous ways.

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 73

0
10

20
30

40
50

ag ar sl ne if pl kn es id sy bc wa

● ● ● ● ● ● ●

● ●

●

●

●

Witness Lengths for Weak Configuration

Benchmark

W
itn

es
s

Le
ng

th

0
5

10
15

20
25

30
35

40
45

50

0
10

20
30

40
50

ag ar sl ne if pl kn es id sy bc wa

● ● ● ● ● ● ●

● ●

●

●

●

Witness Lengths for Conc Configuration

Benchmark
W

itn
es

s
Le

ng
th

0
5

10
15

20
25

30
35

40
45

50
55

Fig. 2. Distribution of witness lengths for the Weak and Conc configurations. The
white dot shows the median length, the endpoints of the thick line give the first and
last quartiles, and the thin line indicates the first and last deciles. The width of the
plot indicates the (relative) density of witnesses for a given length.

Recall that the rules obtained from Andersen’s analysis are of the form e
a←−

{e1, e2}, stating that if e1, e2 are simultaneously realizable then e is realizable
by application of assignment a. Therefore, unrealizability of e means that for
every such rule that can realize e, the corresponding RHS set {e1, e2} are simul-
taneously unrealizable. In turn, this indicates that any sequence of assignments
that realizes e1 destroys e2 and vice versa. Such “mutually-destructive” pairs of
points-to relations are easy to create and maintain in programs. However, these
examples depend on sequential control flow to produce the desired behavior.
When analyzed under flow-insensitive semantics wherein statements can occur
multiple times under varying contexts, the behavior changes drastically.

Other examples of imprecisions in points-to analysis depend on the proper
modeling of function calls and returns. For example, the following code may be
used to initialize a linked list:
void initList(List* l) { l->header->next = l->header->prev = l->header; }

If this function were invoked at multiple contexts with different arguments, An-
dersen’s analysis could conflate the internal list pointers while a precise flow-
insensitive analysis would not (assuming a context-insensitive treatment of the
function). However, note that this precision gain would require the ability to
distinguish the list nodes themselves, for which flow-insensitive analysis is often
insufficient. Furthermore, the precision gain would be quite fragile; if the above
source is rewritten to store l->header in a temporary variable, the gain dis-
appears. Stepping out of pure flow-insensitive analysis, a partially-flow-sensitive
analysis [17] would be more robust to such changes and may be worth future
investigation.

74 S. Blackshear et al.

4.2 Threats to Validity

One threat to the validity of our results is that they may be sensitive to how
various C language constructs are modeled by our constraint generator. It is
possible that field sensitivity, (partial) context sensitivity, or a more precise
treatment of function pointers would expose a precision gap. However, given the
exacting conditions required for a gap to arise, we believe it is unlikely that these
other axes of precision would affect our results in any significant way.

It is also possible that our benchmarks are not representative of small- to
medium-sized C programs. To mitigate this concern, we chose benchmarks from
several domains: network utilities, device drivers, a command-line application,
and a system daemon. We also attempted to select programs of different sizes
within the spectrum of small- to medium sized programs. Although no bench-
mark suite can be representative of all programs, our intent was to choose a
reasonable number of programs with diverse sizes and uses to comprise a set
that adequately represents small- to medium-sized C programs.

Finally, it may be that the precision gap only manifests itself on larger pro-
grams than the ones we considered. We have tried to perform measurements on
examples in the 25 to 200 kloc range, but such examples are presently beyond
the reach of our implementation. We are currently investigating implementing
ideas along the lines of bootstrapping [10], wherein the witness search may focus
on a smaller subset of edges in the points-to graph and allow our experiments to
scale to larger programs. Despite our inability to scale to programs beyond 25k
lines, we hypothesize that our conclusion generalizes to larger programs based
on the intuitions outlined in Sect. 4.1.

5 Related Work

Our work was partially inspired by previous work on the complexity of pre-
cise points-to analysis variants. Horwitz [9] discussed the precision gap between
Andersen’s analysis and precise flow-insensitive analysis and proved the NP-
hardness of the precise problem. Chakaravarthy [5] gave a polynomial-time algo-
rithm for precise flow-insensitive analysis for programs with well-defined types.

Muth and Debray [12] provide an algorithm for a variant of precise flow-
sensitive points-to analysis (for programs without dynamic memory) that can be
viewed as producing witnesses by enumerating all possible assignment sequences
and storing the exact points-to graph, yielding a proof of PSPACE-completeness.
Others have studied the complexity and decidability of precise flow-sensitive and
partially-flow-sensitive points-to analysis [11, 15, 17].

The edge reduction rules derived in our approach are similar, in spirit, to
the reduction from pointer analysis problems to graph reachability as proposed
by Reps [16]. However, a derivation in this CFL for a points-to edge need not
always yield a witness. In analogy with Andersen’s analysis, the derivation may
ignore conflicts in the intermediate configurations. Finding a derivation in a
CFL without conflicting intermediate configurations reduces to temporal model

The Flow-Insensitive Precision of Andersen’s Analysis in Practice 75

checking of push-down systems. This observation, however, does not seem to
yield a better complexity bound [4].

Our work employs SAT solvers to perform a symbolic search for witnesses
to points-to edges. Symbolic pointer analysis using BDDs have been shown to
outperform explicit techniques in some cases by promoting better sharing of
information [2, 19].

6 Conclusion

We have presented techniques for measuring the precision gap between Ander-
sen’s analysis and precise flow-insensitive points-to analysis in practice. Our ap-
proach is based on refinement of points-to analysis results with a witness search
and a symbolic encoding to perform the search with a tuned SAT solver. Our
experimental evaluation showed that for medium-sized C programs, the preci-
sion gap between Andersen’s and precise flow-insensitive analysis is (as far as
we can observe) non-existent. Future work includes improving the scalability of
our witness search algorithm and applying our techniques to other languages.
We also plan to extend the witness search algorithm to incorporate higher levels
of precision, including context sensitivity and some form of flow sensitivity.

Acknowledgments. We thank Jeffrey S. Foster for fruitful discussions on an
earlier draft of this paper, as well as the anonymous reviewers for their helpful
comments. The authors are also grateful to Gogul Balakrishnan, Franjo Ivancic,
and Aarti Gupta at NEC Laboratories America in Princeton, NJ for helping
us with the Linux device driver benchmarks used in our experiments. We also
thank Jan Wen Voung, Ranjit Jhala, and Sorin Lerner for including a large set
of C benchmarks in their publicly available Relay/Radar tool. This research was
supported in part by NSF under grants CCF-0939991 and CCF-1055066.

References

[1] Andersen, L.O.: Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, DIKU (1994)

[2] Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. In: Programming Language Design and Implementation (PLDI), pp.
103–114 (2003)

[3] Blackshear, S., Chang, B.-Y.E., Sankaranarayanan, S., Sridharan, M.: The flow-
insensitive precision of Andersen’s analysis in practice (extended version). Techni-
cal Report CU-CS-1083-11, Department of Computer Science, University of Col-
orado Boulder (2011)

[4] Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

[5] Chakaravarthy, V.T.: New results on the computability and complexity of points-
to analysis. In: Principles of Programming Languages (POPL), pp. 115–125 (2003)

76 S. Blackshear et al.

[6] Dutertre, B., de Moura, L.: The YICES SMT solver,
http://yices.csl.sri.com/tool-paper.pdf

[7] Hardekopf, B., Lin, C.: The ant and the grasshopper: Fast and accurate pointer
analysis for millions of lines of code. In: Programming Language Design and Im-
plementation (PLDI), pp. 290–299 (2007)

[8] Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: Program
Analysis for Software Tools and Engineering (PASTE), pp. 54–61 (2001)

[9] Horwitz, S.: Precise flow-insensitive alias analysis is NP-hard. ACM Trans. Pro-
gram. Lang. Syst. 19(1) (1997)

[10] Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In: Programming Language Design and Implementation
(PLDI), pp. 249–259 (2008)

[11] Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4),
323–337 (1992)

[12] Muth, R., Debray, S.: On the complexity of flow-sensitive dataflow analyses. In:
Principles of Programming Languages (POPL), pp. 67–80 (2000)

[13] Necula, G., McPeak, S., Rahul, S., Weimer, W.: CIL: Intermediate language and
tools for analysis and transformation of C programs. In: CC 2002. LNCS, vol. 2304,
pp. 213–228. Springer, Heidelberg (2002)

[14] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

[15] Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang.
Syst. 16(5), 1467–1471 (1994)

[16] Reps, T.: Program analysis via graph reachability. Information and Software Tech-
nology 40, 5–19 (1998)

[17] Rinetzky, N., Ramalingam, G., Sagiv, M., Yahav, E.: On the complexity of
partially-flow-sensitive alias analysis. ACM Trans. Program. Lang. Syst. 30(3)
(2008)

[18] Steensgaard, B.: Points-to analysis in almost linear time. In: Principles of Pro-
gramming Languages (POPL), pp. 32–41 (1996)

[19] Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Programming Language Design and Implementation
(PLDI), pp. 131–144 (2004)

http://yices.csl.sri.com/tool-paper.pdf

Side-Effect Analysis of Assembly Code

Andrea Flexeder, Michael Petter, and Helmut Seidl

Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
{flexeder,seidl,petter}@cs.tum.edu

http://www2.cs.tum.edu/˜{flexeder,seidl,petter}

Abstract. In this paper we present a light-weight interprocedural side-effect
analysis on assembly code. We represent the modifying potential of a procedure
f by classifying all write accesses, occurring within f , relative to the parame-
ter registers. In particular our approach is the first to accurately handle reference
parameters. We demonstrate the usefulness of this approach by integrating this
analysis into our assembly analyser and provide an evaluation of the precision
of our approach. Approximately 50 per cent of all procedures can be statically
shown to have side-effects.

1 Introduction

The prevalent binary analysis frameworks, e.g. CodeSurfer/x86 [23], BitBlaze [28] or
Jakstab [16] reach their limits when analysing large assemblies. All of these approaches
rely on the (approximate) call-string approach [27] and thus suffer from imprecision
when limiting call-string length. Analysing binaries consisting of more than 700, 000
assembler instructions with these call-string based approaches will be prohibitively ex-
pensive to be applied in practise. On the one hand, analyses can treat procedure calls
conservatively, i.e. a procedure call invalidates the values of all the local variables when-
ever a pointer to its stack frame escapes to another execution context. On the other hand,
analyses can make standard assumptions about a procedure call, e.g. that a procedure
does only write to its own stack frame or to the heap. While these assumptions hold for
restricted program classes, e.g. safety-critical software, this is not the case for general-
purpose software as our experiments show. Therefore, we propose a side-effect analysis
which computes a tight approximation of write accesses of procedures to the stack. In
contrast to the existing binary analysis frameworks, we propose a light-weight form of
functional approach [27] to interprocedural analysis which still produces useful results.
In our framework, the effect of a procedure is represented by all possible parameter
register relative write accesses. The following example illustrates the side-effect of a
procedure which is passed a local address.

Example 1. In the following C code fragment, a pointer to array c is passed as pa-
rameter to procedure f. Within f, the first four elements of the array are set to zero.
The corresponding PPC [14] assembly is given to the right. In PPC assembler the stack
pointer is given by register r1. The array access is realised by passing a stack address,
i.e., address r1+12, in register r3 to procedure f (cf. instruction 0x5C). After the call
to f within main, a conservative analysis of main therefore must assume that all local

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 77–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

mailto:flexeder@cs.tum.edu
mailto:petter@cs.tum.edu
mailto:seidl@cs.tum.edu
http://www2.cs.tum.edu

78 A. Flexeder, M. Petter, and H. Seidl

variables of main may have been modified by the procedure call. Thus, all information
about the values of local variables after the procedure call f() is lost.

f(int a[]){
int j;
for(j=0;j<4;j++)
a[j] = 0;

}

main(){
int c[4];
int b = 13;
f(c);

}

//main(){...
//int b = 13;
50: li r2,13
54: stw r2,8(r1)
//f(c);
58: addi r2,r1,12
5C: mr r3,r2
60: bl 0x00
//}...

//f(int a[]){
00: stwu r1,-32(r1)
04: stw r3,24(r1)
//...

//a[j] = 0;
14: lwz r2,8(r1)
18: mulli r2,r2,4
1C: mr r9,r2
20: lwz r2,24(r1)
24: add r9,r9,r2
28: li r2,0
2C: stw r2,0(r9)
//...

In order to retain the value of the local variable b in main, we have to determine
the side-effect of f. The side-effect identifies all stack locations whose value may
be modified through the procedure call and thus must be invalidated after instruction
0x60. Accordingly, we inspect the memory write accesses occurring in procedure f.
The only memory write access in f happens at instruction 0x2C and modifies the
memory cells addressed by the expressions {r3,r3+4,r3+8,r3+12}. This set de-
scribes the modifying potential of procedure f. By matching actual to formal param-
eters, we conclude that within procedure main after the call to f, the memory loca-
tions {r1+12,r1+16,r1+20,r1+24} of main are modified, while local b (i.e.,
the memory cell with address r1+8) remains untouched by f(). �

Related Work. Side-effect analysis has intensively been studied for high-level lan-
guages, e.g., the purity analysis for Java programs [25], the side-effect analysis for
C/C++ programs [4,18], or the context-sensitive pointer analysis for C programs [31,11].
The approach of Cooper et al. [5] relies on graph algorithms for solving the alias-free
side-effect analysis problem introduced by Banning [3] in a flow-insensitive manner.
All these techniques, however, are not directly applicable to low-level code where there
is no clear distinction between an integer and an address.

For the analysis of low-level code, Debray et al. present an interprocedural, flow-
sensitive pointer alias analysis of x86 executables, which, however, is context-insensitive
[8]. They abstract the value of each register by an address descriptor, i.e., a set of possi-
ble congruence values with respect to a program instruction. They make no distinction
between two addresses which have the same lower-order k bits. Since they do not track
any memory content they suffer from information loss, whenever a register is assigned
a value from memory. Moreover if different definitions of the same register reach the
same join point, then this register is assumed to take any value. A context-sensitive
low-level points-to analysis is presented in [15]. This approach is only partially flow-
sensitive: the values of registers are handled flow-sensitively using SSA form, while
memory locations are treated flow-insensitively (tracking only a single points-to set for

Side-Effect Analysis of Assembly Code 79

each memory location). The notion of UIVs (unknown initial values) is introduced in
order to represent all those memory locations that are accessible by the procedure but
do not belong to the current stack frame of the procedure or to the stack frames of its
callees. Their aim is to improve on compiler optimisations, such as e.g. load and store
reorderings, and thus a crude treatment of local memory is sufficient. In contrast, we
track local memory locations context-sensitively as well. The most advanced approach
in the area of analysis of assembly code is provided by Reps et al. [23]. They propose a
flow-sensitive framework for analysing memory accesses in x86 executables. For deal-
ing with procedures, they rely on the call-string approach (CSA)[27]. In order overcome
the context-insensitivity of CSA-0 and the impracticability of increasing the length of
call-strings they apply techniques from Cooper et al. [5] in order to determine the set of
memory locations that may be modified by each procedure. This information is used in
order to improve on the precision when combining the information from different call
sites. In contrast, our algorithm adheres to the functional approach of program analysis
and thus does not suffer from the limitations of call-strings of bounded length.

A stack analysis for x86 executables is addressed in [19]. There, the authors aim at
verifying that a function leaves the stack in its original state after the function returns.
In order to identify such well-behaving functions, use-depth and kill-depth analyses are
introduced. By means of use-depth information they estimate the maximal stack height
from which a function may read a value, while kill-depth information tells the maximal
height of the runtime stack to which the function may write a value. While addressing
a related problem, the applied techniques are different. In particular, our approach does
not suffer from a loss of precision when dealing with recursive procedures.

Contributions. We propose a light-weight side-effect analysis based on the functional
approach to interprocedural analysis which
• provides context-sensitive side-effects by computing an overapproximation of the

set of register-relative memory locations which are modified by a procedure call.
• allows analysing large binaries with more than 700, 000 assembler instructions rea-

sonably fast and also provides significant side-effects.
• can be used to lose less information after procedure calls in sound intraprocedural

analyses.

Overview. In the next Section 2 we present the concrete semantics for our side-effect
analysis. In Section 3 we first describe how to embed the side-effect of a procedure
into an intraprocedural analysis, then present how to compute the modifying potential
of a procedure and finally provide a correctness proof of our approach. Additionally we
describe the implementation of the side-effect analysis in our assembly analyser and
evaluate its results in Section 4, before we conclude in Section 5.

2 The Concrete Semantics

For the analysis, we assume that programs are given as a collection of procedures q
where each q is represented by a finite control flow graphGq . The control flow graph of
a given assembly can be extracted via methods provided by, e.g., the program analysis
frameworks [12,24,17]. Every control flow graphGq consists of:

80 A. Flexeder, M. Petter, and H. Seidl

• a finite set Nq of program points of the procedure q,
• a finite set Eq ⊆ (Nq × Label × Nq) of edges, where Label denotes a program

instruction,
• a unique entry point sq ∈ Nq for procedure q,
• a unique exit point rq ∈ Nq for procedure q and
• a designated procedure main where program execution always starts.

Let X = {x1, . . . ,xk} denote the set of registers the assembly operates on, with k the
number of registers. We assume that all the registers X are global and thus possibly
serve for passing parameters.

The concrete effect of every processor instruction within our analysis is modelled by
a sequence of the following constructs:

• stm: assignment statements and memory access instructions,
• guards and
• q(): procedure calls.

Each edge in the control flow graph therefore is annotated by one of these constructs.
For the analysis, we consider assignments of the form xi := t (xi a register, t an expres-
sion) and guards providing comparisons of the values of two registers, i.e.,xj �� xk,
and the value of a register with a constant, i.e. xj �� c, for every comparison operator
��. Furthermore, we use non-deterministic assignments of the form xi :=? to repre-
sent instructions possibly modifying register xi in an unknown way. Non-deterministic
assignments represent a safe description of those instructions which are not handled
precisely, but have an impact on the values of registers, as for instance bit operations.
Memory access instructions are of the form xi := M [t] or M [t] := xi (xi a reg-
ister, t an expression). For simplicity, here we only consider memory access instruc-
tions applied to words, i.e., 4 bytes of memory simultaneously. That means that we
exclude instructions operating on multiple registers simultaneously. The formalism can
be extended, though, to deal with variable-length memory access instructions and multi-
register arithmetic as well. This format subsumes assembler programs in three-address
form as is provided by some processors, e.g., PowerPC[14], or by a transformation into
a low-level intermediate representation, e.g., REIL [10].

When dealing with procedure calls, we distinguish procedure-global from procedure-
local memory locations. A dedicated register of the processor serves as stack pointer,
i.e., holds the top-of-stack for the current procedure. In our formalisation, this register is
given by x1. Accordingly, the single edge starting at the entry point of the control flow
graph for a procedure q is assumed to be annotated with an instruction x1 := x1 − cq
for some constant cq. This instruction allocates the local stack space for the current
invocation of q. Likewise, the single edge reaching the exit point of the control flow
graph for q is annotated with the instruction x1 := x1+cq for the same constant cq . This
instruction deallocates the local stack space. For simplicity, we rule out intermediate
increments or decrements of the stack pointer, and thus do not consider dynamic stack
allocation here. An approach to deal with dynamic stack allocation is sketched in [13].
Figure 1 illustrates our control flow representation of Example 1.

For the concrete semantics, the memory S of the program is divided into the disjoint
addresses spaces SL for the stack or local memory, and SG for global memory. The set

Side-Effect Analysis of Assembly Code 81

2

23

0

1

3

4

5

6

8

9

7

13

10

12

11

14

2215

19

20

21

16

17

18
. . .

. . .

main :

x1 := x1 − 40

x2 := 13

M [x1 + 8] := x2

x2 := x1 + 12

x1 := x1 + 40

x3 := x2

f()

M [x1 + 8] := 0

x2 := M [x1 + 8]

x1 := x1 − 32

f :

M [x1 + 24] := x3

x9 := x2 · 4

x2 := M [x1 + 24]

x9 := x9 + x2

M [x9] := 0

x2 := x9 + 1

x9 := M [x1 + 8]

x2 ≤ 3 x2 > 3

x1 := x1 + 32

M [x1 + 8] := x2

Fig. 1. Control flow representation of Example 1

of global addresses is given by SG = {(G, z) | z ∈ Z}, and the set of stack addresses
is given by SL = {(L, z) | z ∈ Z}. A program state γ then is given by a triple
γ = 〈ρ, f, λ〉 where

• ρ : X→ S provides the contents of registers.
• f = (xr , xr−1, . . . , x0) for xr < xr−1 < . . . < x0 is the frame structure of the

current stack where x0 = Max + 1 and xr equals the least address on the current
stack. Here Max is the maximal height the stack can grow. Thus in particular, xr =
ρ(x1). Note that here the stack grows downward from numerically higher addresses
towards zero.

• λ provides the contents of memory locations. Thus, λ assigns values to the set SG
of global addresses as well as to the current set of local addresses. The values of
global addresses are restricted to be global addresses only. The set of allowed local
addresses is restricted to the set SL(xr) = {(L, z) | xr ≤ z < x0}. Their values
are restricted to elements from the set SG ∪ SL(xr) only.

In order to obtain a uniform representation, concrete integer values are embedded into
the global address space, i.e., the plain value 5 as well as the global address 5 are

82 A. Flexeder, M. Petter, and H. Seidl

represented by the pair (G, 5). Remark that the labels L and G allow to inherently
distinguish between local and global address space.

We consider address arithmetic w.r.t. a given frame structure f = (xr , xr−1, . . . , x0).
We restrict the arithmetic operations on local addresses such that starting from a local
address from a stack frame [xi, xi−1 − 1], arithmetic is only legal if it produces a local
address within the range [xi, x0]. The interval [xi, x0] represents the set of all currently
valid local addresses. Accordingly, the arithmetic operations of addition, subtraction,
multiplication and boolean comparisons on elements from {L,G} × Z w.r.t. a given
frame structure f = (xr, xr−1, . . . , x0) are defined by:

(L, c1) +f (L, c2) = undefined
(G, c1) +f (G, c2) = (G, c1 + c2)

(L, c1) +f (G, c2) = (G, c2)+f (L, c1)=

{
(L, c1+c2) if xr≤ c1 ⇒ xr≤ c1+c2
undefined otherwise

(L, c1) −f (L, c2) = (G, c1 − c2)
(G, c1) −f (G, c2) = (G, c1 − c2)
(L, c1) −f (G, c2) =

{
(L, c1 − c2) if xr ≤ c1 =⇒ xr ≤ c1 − c2
undefined otherwise

(G, c1) −f (L, c2) = undefined

(G, c1) ·f (G, c2) = (G, c1 · c2)
(L, c1) ·f (G, c2) = (G, c2) ·f (L, c1) = undefined
(L, c1) ·f (L, c2) = undefined

(L, c1) �� (L, c2)

{
true if c1 �� c2
false otherwise

(G, c1) �� (G, c2)

{
true if c1 �� c2
false otherwise

(G, c1) �� (L, c2) = undefined
(L, c2) �� (G, c1) = undefined

for every comparison operator ��. If an undefined value occurs, we assume that an
exception is thrown and the program execution is aborted. For the analysis, we only
consider non-aborting program executions and flag warnings if an abortion cannot be
excluded. Statements and guards induce transformations of (sets of) states. A single
processor instruction s on a given program state 〈ρ, f, λ〉 returns a set of program states
which is defined by:

[[xi := t]]〈ρ, f, λ〉 = {〈ρ⊕ {xi �→ [[t]](ρ, f)}, f, λ〉}
[[xi :=?]]〈ρ, f, λ〉 = {〈ρ⊕ {xi �→ a}, f, λ〉 | a ∈ SG}
[[xi := M [t]]]〈ρ, f, λ〉 = {〈ρ⊕ {xi �→ λ([[t]](ρ, f))}, f, λ〉}
[[M [t] := xi]]〈ρ, f, λ〉 = {〈ρ, f, λ⊕ {λ([[t]](ρ, f)) �→ ρ(xi)}〉}
[[xj �� xk]]〈ρ, f, λ〉 = {〈ρ, f, λ〉 | ρ(xj) �� ρ(xk) = true}
[[xj �� c]]〈ρ, f, λ〉 = {〈ρ, f, λ〉 | ρ(xj) �� (G, c) = true}

Side-Effect Analysis of Assembly Code 83

with xi,xj ,xk ∈ X where i �= 1, t an expression and arbitrary c ∈ Z. Here, the oper-
ator ⊕ adds new argument/value pairs to a function. Moreover, the evaluation function
[[t]](ρ, f) takes an expression t and returns the value of t in the context of register as-
signment ρ w.r.t. a given frame structure f .

[[t]](ρ, f) =

⎧⎪⎨⎪⎩
[[t1]](ρ, f)�f [[t2]](ρ, f) if t = t1 � t2

ρ(xi) if t = xi
(G, c) if t = c

with � = {+,−, ·} and �f = {+f ,−f , ·f}, respectively. Consider, e.g., a memory
access xi := M [t]. Then for every state 〈ρ, f, λ〉 the value a of expression t is deter-
mined. Given that a is a valid memory address of λ, the content λ(a) of the memory
location a is assigned to register xi.

Next, we describe the effect of a procedure call q(). According to our convention, a
stack pointer decrement instruction reserves a stack region for the local variables of the
procedure. For the concrete semantics, this means that for a procedure call q() the stack
is extended by the stack frame of q. According to our assumptions, the only assignments
to variable x1 are of the form x1 := x1 + c for some c ∈ Z at the first and last control
flow edge of control flow graphs only. There, these assignments allocate or deallocate
the local stack frame for the current instance of the procedure. The newly allocated
memory cells are uninitialised and therefore have arbitrary values. Accordingly, we
define for c > 0 and f = (xr, . . . , x0):

[[x1 := x1 − c]]〈ρ, f, λ〉 ={〈ρ⊕ {x1 �→ ρ(x1)−f (G, c)}, (xr − c, xr, . . . , x0),
λ⊕ {(L, z) �→ a | z ∈ [xr − c, xr); a ∈ SG}〉 | xr ≥ c}

After execution of the body of the procedure, the current stack frame is deallocated.
Assume that f = (xr+1, xr, . . . , x0) and c > 0. Then the effect of the last instruction
of the procedure epilogue which increments the stack pointer again, for state 〈ρ, f, λ〉
is given by:

[[x1 := x1 + c]]〈ρ, f, λ〉 ={〈ρ⊕ {x1 �→ ρ(x1) +f (G, c)}, (xr, . . . , x0), λ|SG∪SL(xr)
〉

| xr = xr+1 + c}
After executing the last instruction of procedure q, the stack frame of q has been popped.
In particular, the stack pointer again points to the top of the stack. With λ|M we denote
the restriction of λ to the domain M .

Any procedure q transforms the set of program states before the procedure call to
the set of program states after the procedure call to q. Following the approach, e.g., of
[21,22], we characterise the effect of a procedure p by means of a constraint system E
over transformers operating on program states Γ :

E(sp) ⊇ Id sp start point of procedure p
E(v) ⊇ E(rq) ◦ E(u) (u, q(), v) a call edge
E(v) ⊇ [[s]] ◦ E(u) (u, s, v) with s ∈ stm ∪ guards

with rq the return point of procedure q. Here, Id denotes the singleton mapping defined
by Id(y) = {y} and ◦ denotes the composition of transformations of type Γ → 2Γ .

84 A. Flexeder, M. Petter, and H. Seidl

This composition is defined by:

(f ◦ g)(y) =
⋃
{f(y′) | y′ ∈ g(y)}.

The effect of a procedure q is given by the effect accumulated at its return point E(rq).
The set of attained program states when reaching program point u is given by the

least solution of the following system of inequationsR. The effect of a call to procedure
q is given by the application of E(rq) to the set of program states, valid immediately
before the procedure call.

R(smain) ⊇ Γ0

R(v) ⊇ [[s]] (R(u)) (u, s, v) with s ∈ stm ∪ guards
R(v) ⊇ E(rq)(R(u)) (u, q(), v) a call edge

Here, Γ0 denotes the set of start states of the program. At program start, the stack is
empty. This means that the stack pointer x1 has the value (L,Max + 1). Thus,

Γ0 = {〈ρ, (Max + 1), λ〉 | ρ : X→ SG | ρ(x1) = (L,Max + 1), λ : SG → SG}
Moreover, application of a function T : Γ → 2Γ to a set Y ⊆ Γ is defined by:

T (Y) =
⋃
{T (y) | y ∈ Y }

Since the right-hand sides in both constraint system E and constraint system R denote
monotonic functions, these systems of inequations have unique least solutions.

3 Analysis of Side-Effects

This section consists of three parts: Firstly, we describe how to embed the side-effect in-
formation of a procedure into any intraprocedural value analysis. Secondly, we present
an interprocedural analysis which computes the modifying potential of each procedure.
And, thirdly, we prove the correctness of our side-effect analysis.

3.1 Effect Integration

Our goal is to determine for every procedure q its modifying potential, i.e., the set of
local memory cells whose contents are possibly modified during an invocation of q.
For that, we consider the register values at a procedure call as the arguments of the
procedure. The modifying potential [[q]]� therefore, is represented by two components
(X,M) where:

• X ⊆ X is a subset of registers whose values after the call are equal to their values
before the call. This set should always contain x1.

• M : X → 2Z is a mapping which for each register xi provides a (super)set of all
xi-relative write accesses to the local memory. In a concrete implementation, the
analysis may compute with particular sets of offsets only, such as intervals [20,6]
or strided intervals [1].

Side-Effect Analysis of Assembly Code 85

Given the modifying potential [[q]]� of all procedures q in the program, a value analysis
can be constructed which determines for every program point, for all registers and local
memory locations a superset of their respective values. For that, we are interested in
two kinds of values:

• absolute values, i.e., potential addresses in the global memory. These are repre-
sented as (x0, z). Register x0 is used for accessing the segment of global memory.
In our framework, we assume x0 to be hard-wired to the value (G, 0).

• stack pointer offsets, i.e., local memory locations which are addressed relative to
x1. These are represented as (x1, z).

Thus, we consider the value domain V = 2{x1,x0}×Z where the greatest element � is
given by the set {x1,x0} × Z.

Let S�q := [0, cq] denote the set of all procedure-local memory cells of procedure q
where the constant cq is provided by the initial control flow edge of procedure q.

An abstract program state w.r.t. procedure q is then given by the triple 〈ρ�, cq, λ�〉,
with:

• ρ� : X→ V which assigns the value {(x1, 0)} to the stack pointer x1, and to each
register xi ∈ X different from x1 a set of its possible values.

• cq denotes the size of the stack frame of procedure q. This constant is provided by
the single edge starting at the entry point of q.

• λ� : S�q → V which assigns every local memory location from the stack frame of
q a set of its possible values.

Thus, our analysis determines for every program point u of a procedure q a set of pro-
gram states Γ � of the form 〈ρ�, cq, λ�〉. Again, R�(u) is defined as the least solution of
the following constraint system:

[R�0] R�(sq) � Γ �0 sq start point of procedure q

[R�1] R�(v) � [[s]]�(R�(u)) (u, s, v) with s ∈ stm ∪ guards

[R�2] R�(v) � [[p]]� @� (R�(u)) (u, p(), v)

where Γ �0 sets x1 to the set {(x1, 0)} and all other registers and local memory locations
to the full set {x0,x1} × Z of values. Thus:

Γ �0 = {γ� : 〈X→ �, 0,⊥〉 | γ�(x1) = {(x1, 0)}}

where ⊥ denotes the empty mapping. The transformers [[s]]� are the abstract effects of
edge labels, [[p]]� represents the modifying potential of procedure p, and @� is the appli-
cation of a modifying potential to a given assignment of registers and local addresses to
sets of values. For registers xi, we have:

((X,M) @� 〈ρ�, cq, λ�〉)(xi) =

{
� if xi �∈ X
ρ�(xi) if xi ∈ X

For a local offset a,
((X,M) @� 〈ρ�, cq, λ�〉)(a) = �

86 A. Flexeder, M. Petter, and H. Seidl

if there exists some xi ∈ X, d ∈M(xi), (x1, b) ∈ ρ�(xi) such that a = b+ d.
Otherwise,

((X,M) @� 〈ρ�, cq, λ�〉)(a) = λ�(a)

i.e., remains unchanged. In case that for xi ∈ X, d ∈ M(xi) and (x1, b) ∈ ρ�(xi),
b < d, i.e., the offset b + d is negative, a potential access to a local memory location
outside the stack is detected. In this case, we again flag a warning and abort the analysis.

The abstract transformers [[s]]� are identical to the abstract transformers which we use
for an auxiliary intraprocedural value analysis when computing the modifying potential
of procedures.

Example 2. Recall the program from Example 1 and its corresponding control flow rep-
resentation in Figure 1. According to our effect description the modifying potential of
procedure f is given by [[f]]� = ({x1}, {(x3, 0), (x3, 4), (x3, 8), (x3, 12)}) at program
point 23. At program point 6, directly before the procedure call, we have the following
register assignment: (x1, 8) �→ {(x0, 13)};x2 �→ {(x1, 12)};x3 �→ {(x1, 12)}. Em-
bedding the side-effect information of f into the intraprocedural analysis of procedure
main, then directly after the procedure call f() the value of the stack location (x1, 8)
remains unchanged. Thus we arrive at the following register assignment for program
point 7: (x1, 8) �→ {(x0, 13)}. �

Next we describe how to compute the modifying potential of a procedure.

3.2 Effect Computation

Assume that we are given a mapping μ which assigns to each procedure g an ap-
proximation of its modifying potential, i.e., μ(g) = (Xg,Mg) where Xg ⊆ X and
Mg : X → 2Z. Relative to μ, we perform for a given procedure g, an intraprocedural
value analysis which determines for every program point u of g and all registers xi ∈ X
as well as all g-local memory cells a ∈ [0, cg], sets ρ�(u)(xi), λ�(u)(a) ⊆ 2(X∪{x0})×Z

of values relative to the values of registers at procedure entry. Again cg denotes the stack
frame size of procedure g. Relative to the mappings 〈ρ�(u), λ�(u)〉, u a program point
of g, the modifying potential of g is given by effg(μ) = (X ′,M ′) where

X ′ = {xi ∈ X | ρ�(rg)(xi) = {(xi, 0)}}
M ′ = (X× 2Z) ∩ (⋃{[[t]]�(ρ� | (u,M [t] := xj , _) ∈ Eg)}∪

{(xk, z + z′) | (u, f(), _) ∈ Eg, (xk, z) ∈ ρ�(u)(xk′), (xk′ , z′) ∈Mf}
)

Note that (X ′,M ′) monotonicly depends on μ, only if the mappings ρ�(u) as well
as λ�(u) monotonicly depend on μ. Thus, given such a monotonic value analysis of
the functions ρ�, λ�, the modifying potential can be determined as the least (or some)
solution of the constraint system:

[[g]]� � effg((∅, ∅)), for all procedures g

It remains to construct the constraint system whose least solution characterises the map-
pings ρ�(u) : X → V̄ and λ� : [0, cg] → V̄ w.r.t. procedure g with stack frame size cg .

Side-Effect Analysis of Assembly Code 87

Now, V̄ is the complete lattice 2(X∪{x0})×Z. Note that the greatest element � of V̄ is
given by � = (X ∪ {x0})× Z.

The abstract arithmetic operations are obtained by first considering single elements
(xi, c). We define:

(xi, c1) (x0, c2) = {(xi, c1 c2)}
(x0, c2) (xi, c1) = {(xi, c1 c2)}
(xi, c1) (xj , c2) = �

for ∈ {+, ·}, while for subtraction we define:

(xi, c1)− (xi, c2) = {(x0, c1 − c2)}
(xi, c1)− (x0, c2) = {(xi, c1 − c2)}
(xi, c1)− (xj , c2) = �

for i �= j. These definitions then are lifted to abstract operators � on sets of such
elements, i.e., to V̄ by:

S1 � S2 =
⋃
{s1 s2 | s1 ∈ S1, s2 ∈ S2}

The definition of these abstract operators gives rise to an abstract evaluation [[t]]� of
expressions t w.r.t. to a given register assignment ρ�.

[[t]]�(ρ�) =

⎧⎪⎨⎪⎩
[[t1]]�(ρ�) � [[t2]]�(ρ�) if t = t1 t2
ρ�(xi) if t = xi
{(x0, c)} if t = c

The mappings ρ�(u), λ�(u) for a procedure g then can be characterised by the least
solution of the following constraint system:

[R�μ0] R�μ(sg) � 〈{xi �→ {(xi, 0)} | xi ∈ X ∪ {x0}}, 0,⊥〉
[R�μ1] R�μ(v) � [[s]]�(R�μ(u)) (u, s, v) with s ∈ stm ∪ guards

[R�2] R�μ(v) � (R�μ(rf))@
�(R�μ(u)) (u, f(), v) a call edge

At procedure start, all registers xi ∈ X are mapped to their symbolic values {(xi, 0)}
(constraint [R�0]).

The effect of the instruction decrementing the stack pointer is that a new stack frame
S�g , i.e., the local memory locations S�g , for procedure g is allocated. Thus, we have:

[[x1 := x1 − c]]�(〈ρ�, c′, λ�〉) = 〈ρ�, c, {a �→ � | a ∈ [0, c]}〉
The effect of the instruction incrementing the stack pointer is that the stack frame S�g
for procedure g is deallocated. Thus, the set of variables is restricted to registers only:

[[x1 := x1 + c]]�(〈ρ�, c, λ�〉) = 〈ρ�, 0,⊥〉
The second constraint [R�1] handles assignments to other registers, memory accesses
and guards. For assignments, we have:

[[xi :=?]]�(〈ρ�, c, λ�〉) = 〈ρ� ⊕ {xi �→ �}, c, λ�〉
[[xi := t]]�(〈ρ�, c, λ�〉) = 〈ρ� ⊕ {xi �→ [[t]]�(ρ�)}, c, λ�〉

88 A. Flexeder, M. Petter, and H. Seidl

with i �= 1. The effect of a memory read access instruction in procedure g on a state
〈ρ�, c, λ�〉 is given by:

[[xi := M [t]]]�(〈ρ�, c, λ�〉) =⎧⎪⎨⎪⎩
〈ρ� ⊕ {xi �→ �G}, c, λ�〉 if [[t]]�(ρ�) ⊆ {x0}× Z

〈ρ� ⊕ {xi �→
⋃{λ�(c′) | (x1, c

′) ∈ [[t]]�(ρ�)}}, c, λ�〉 if [[t]]�(ρ�) ⊆ {x1}× [0, c]
〈ρ� ⊕ {xi �→ �}, c, λ�〉 otherwise

with i �= 1. The global top �G describes the set of all possible global addresses: �G =
x0 × Z.

Since we do not track the values of global variables, in case of a memory access
to a global memory location, variable xi may be assigned every possible global value.
If the evaluation of a memory access expression yields that a local variable (x1, c)
is addressed which belongs to the stack frame of the current procedure, its value is
assigned to register xi. For all other cases the value of xi is overapproximated by the
top element.

For a memory write instruction the abstract effect function is defined by:

[[M [t] := xj]]�(〈ρ�, c, λ�〉) ={
〈ρ�, c, λ� ⊕ {c′ �→ ρ�(xj)}〉 if {(x1, c

′)} = [[t]]�(ρ�) ∧ c′ ∈ [0, c]
〈ρ�, c, λ� ⊕ {c′ �→ (λ�(c′) ∪ ρ�(xj)) | (x1, c

′) ∈ [[t]]�(ρ�), c′ ∈ [0, c]} otherwise

with j �= 1. If the accessed memory location denotes a single local variable of the cur-
rent stack frame the value of variable xj is assigned to the corresponding local memory
location. If the evaluation of a memory access expression yields a set of possibly ac-
cessed local memory locations, all their values are extended by the value of variable xj .
In all the other cases, none of the local memory locations may receive new values. If an
element (x1, c

′) is found in [[t]]�(ρ�) with c′ �∈ [0, c], we issue a warning and abort the
analysis.

Guards are used for restricting the sets of possible values of registers. Sets of possible
values, however, can only be compared if they refer to the same base register. First let us
consider the guard xi �� c. If ρ�(xi) = {x0}×S and c ∈ Z, let S′ = {s ∈ S | s �� c} .
Then we set:

[[xi �� c]]�(〈ρ�, c′, λ�〉) = 〈ρ� ⊕ {xi �→ {x0} × S′}, c′, λ�〉

Likewise, for a guard xi �� xj , if ρ�(xi) = {xk} × S1 and ρ�(xj) = {xk} × S2, then
we set

S′
1 = {s ∈ S1 | ∃s2 ∈ S2 : s �� s2}
S′

2 = {s ∈ S2 | ∃s1 ∈ S1 : s1 �� s}
and define

[[xi �� xj]]�(〈ρ�, c′, λ�〉) = 〈ρ� ⊕ {xi �→ {xk} × S′
1,xj �→ {xk} × S′

2}, c′, λ�〉

In all other cases, guards have no effect on the register assignment.

Side-Effect Analysis of Assembly Code 89

3.3 Correctness

The correctness proof is based on a description relationΔ ⊆ Γ × Γ � between concrete
and abstract states. A description relation is a relation with the following property:
sΔ s�1 ∧ s�1 ! s�2 ⇒ sΔs�2 for s ∈ Γ and s�1, s

�
2 ∈ s�.

Here, the concrete state 〈ρ, f, λ〉 is described by the abstract state 〈ρ�, c, λ�〉 ∈ Γ � if

• f = (xr , xr−1, . . . , x0) with xr−1 − xr = c;
• ρ(xi) ∈ γxr(ρ�(xi)) for all xi;
• λ(L, a) ∈ γxr(λ�(a− xr)).

Here, the concretisation γx replaces the tagging register x0 with G, while symbolic
local addresses (x1, b) are translated into (L, x− b).

Additionally, we require a description relation between the transformations induced
by same-level concrete computations and abstract states from R�μ. Assume that T :
Γ → 2Γ is a transformation which preserves frame structures, i.e., f = f ′ for all
〈ρ′, f ′, λ′〉 ∈ T (〈ρ, f, λ〉). Then T is described by 〈ρ�, c, λ�, X,M〉 if for all 〈ρ′,
f ′, λ′〉 ∈ T (〈ρ, f, λ〉),
• f = (xr , xr−1, . . . , x0) where xr−1 − xr = c;
• ρ′(xi) ∈ {ρ(xj) + (G, a) | (xj , a) ∈ ρ�(xi)} for all xi;
• λ′(L, a) ∈ {ρ(xj) + (G, a) | (xj , a) ∈ λ�(a− xr)} for all a ∈ [xr , xr−1);
• ρ(xi) = ρ′(xi) for all xi ∈ X ;
• If λ(L, b) �= λ′(L, b) for b ≥ xr−1, then (L, b) = ρ(xi)+(G, a) for some (xi, a) ∈
M .

Here, we have assumed that ρ(x0) always returns (G, 0). The description relation for
transformers is preserved by function composition, execution of individual statements
as well as least upper bounds. Therefore, we obtain by induction on the fixpoint iterates:

Theorem 1. Correctness

1. Assume that E,R�μ denote the least solutions of the constraint systems for the con-
crete effects of procedures and their side effects, respectively. Then for every pro-
gram point u, the transformer E(u) is frame preserving, and E(u) Δ R�μ(u).

2. Let R,R� denote the least solutions of the constraint systems for the collecting
semantics and abstract reachability, respectively. Then for every program point u,
R(u) Δ R�(u).

Local Addresses Escaping to the Heap

Although the description of the collecting semantics excludes those programs, where
e.g. local addresses may be written into global memory, our abstract approach is able
to detect such situations. Therefore, the modifying potential (X,M) of a procedure can
be enriched by an additional component η, where

η : (X ∪ {x0})→ 2X

90 A. Flexeder, M. Petter, and H. Seidl

η is a mapping which assigns to each register xi the subset of registers xj such that xj-
relative addresses may escape to the global memory if xi is a global address. Provided
an abstract value analysis which maps registers to some abstract values (ρ�) and local
memory locations to some abstract values (λ�), the effect computation for η is given by:

η′(xi) = {xk ∈ X | ∃(u,M [t] := xj , _) ∈ Eg, ∃z, z′ ∈ Z.(xk, z) ∈ Vμ(u)(xj)
∧(xi, z′) ∈ [[t]]�(Vμ(u))}∪
{xj ∈ X | (u, f(), _) ∈ Eg, (xi, z) ∈ Vμ(u)(xk),xk′ ∈ ηf (xk),
(xj , z′) ∈ Vμ(u)(xk′)}

Now the modifying potential of a procedure g, i.e. the triple (X,M, η), can be deter-
mined as the least solution of the constraint system:

[[g]]� � effg((∅,⊥, ∅)), for all procedures g

The component η serves as another soundness check. If a register xi may hold a
global address, i.e., ρ�(xi) contains an element (x0, z), and xj ∈ η(xi) is found such
that ρ�(xj) contains a stack address, i.e., an element (x1, z

′), then some reference to
the stack may have escaped to the global memory. In this case, we flag a warning and
again abort the analysis.

4 Experimental Results

We have implemented the side-effect analysis in our assembly analyser VoTUM [30].
Our benchmark suite consists of statically linked PowerPC assemblies of publicly
available programs such as the cryptography library openSSL, and the HTTP server
thttpd. Moreover, we experimented with the four larger programsbasename, vdir,
chmod, chgrp from the Unix GNU Coreutils package, and also ran the prototype on
gzip from SPECint. The vehicle control control[29] is generated from SCADE and
thus is very restrictive in the use of pointers and does not use dynamic memory [9]. The
binaries of these programs have sizes between 0.6 and 3.8 MB and have been compiled
with gcc version 4.4.3 at optimisation levels O0 and O2 and are statically linked with
glibc. We conducted our experiments on a 2.2 GHz quad-core machine equipped
with 16 GB of physical memory where the algorithm occupies just a single core. We
have implemented our side-effect analysis with the enhancement of Section 3.3. Addi-
tionally, we track the values of global memory locations with static addresses. We have
evaluated the significance of our side-effect analysis by means of:

• The percentage of side-effect free procedures, i.e. those procedures that have no
effect to the stack frame of other procedures, in the binary (Column SE_free).

• The absolute number of procedures where locals may escape to the heap (Column
Esc).

• The percentage of locals that have to be invalidated after a procedure call and in
parentheses the absolute number of call sites with side-effects (Column Inv).

• The absolute number of procedures where a safe handling of the link register and
the stack pointer could not be verified (Columns LR and SP).

Side-Effect Analysis of Assembly Code 91

• The percentage of procedures where our analysis infers unbounded side-effects
(Column Top). In contrast to our theoretical conception from Section 3 we follow a
less restrictive approach in our implementation: in case of an unbounded side-effect
our analyser reports a warning and proceeds by setting all the values of the registers
of the caller to unknown values except for the stack pointer and the link register.

Evaluating our experimental results, we have: Column SE_free reveals that 20%−50%
of all the procedures in the binary have side-effects. However, side-effect information
concerns only the local variables of up to 2% of all call sites (Column Inv). Embedding
the side-effects into the caller invalidates a third of the caller‘s locals in average. Col-
umn Esc illustrates that stack addresses rarely escape to global memory. This is the case
for approximately 0.5% of all procedures in our benchmark suite. For at most 2% of
all the procedures our analysis could not verify the integrity of the organisational stack
cells, cf. Columns LR and SP. These procedures are either related to error handling or
require relational domains to be analysed precisely. For instance when the bound for
iterating over an array is provided as the parameter of a procedure, domains like poly-
hedra [7] or symbolic intervals [26] have to be used. For at most 9% of all procedures
our analysis inferred an unbounded side-effect (Column Top). In order to achieve more
precision in these cases, we have to instantiate our side-effect analysis with more so-
phisticated domains [26,7] and better widening strategies (for sets of values). For our
benchmark programs, the analyser consumes between 3 and 15 GB memory and anal-
ysis time is between 20 minutes up to 1.5 hours. In order to rate the light-weightness of
our approach, we want to mention that the control flow reconstruction analysis of that
large binaries has approximately the same running time.

Program Size Instr Procs Calls SE_free Esc Inv LR SP Top M T

openSSL_O0 3.8MB 769511 6710 38188 78% 27 22%(549) 152 21 4% 15168 2298
thttpd_O0 0.8MB 196493 1200 7947 48% 2 27% (115) 28 17 9% 6157 1189
basename_O0 0.7MB 168232 916 5303 53% 5 33% (89) 8 5 8% 3387 1417
chgrp_O0 0.8MB 197260 1119 6338 51% 5 22% (192) 11 5 8% 4264 2052
chmod_O0 0.7MB 179415 1027 5767 52% 1 38% (96) 24 12 7% 3609 1739
vdir_O0 0.9MB 221665 1307 6988 56% 3 25% (165) 45 15 7% 5329 1060
gzip_O0 0.8MB 166213 1078 5954 53% 2 30%(112) 30 10 7% 3924 1858
control_O0 0.6MB 162530 819 4948 49% 5 31%(112) 9 8 9% 3284 2197
openSSL_O2 2.9MB 613882 6234 43407 72% 6 30%(486) 464 20 4% 15396 5594
thttpd_O2 0.8MB 189034 1150 5706 48% 1 19%(348) 44 13 9% 5149 1906
basename_O2 0.7MB 139271 907 5386 51% 1 30%(61) 23 6 8% 3326 1555
chgrp_O2 0.7MB 164420 1083 6522 49% 5 23%(199) 7 7 7% 4086 1234
chmod_O2 0.7MB 148702 989 6005 50% 5 29%(123) 8 7 7% 3749 1629
vdir_O2 0.8MB 177022 1200 7106 51% 2 35%(80) 40 7 7% 5152 1304
gzip_O2 0.7MB 162380 1028 6323 52% 1 33%(113) 28 6 8% 3960 1841
control_O2 0.6MB 161184 819 4989 49% 5 33%(81) 8 5 9% 3286 2380

Size: the binary file size; Instr: the number of assembler instructions;
Procs: the number of procedures; Calls: the number of procedure calls;

T: the absolute running time in seconds; M: the peak memory consumption in MB.

92 A. Flexeder, M. Petter, and H. Seidl

Summarising, for most of the procedures our side-effect analysis provides tight
bounds for parameter relative write accesses even with the simplistic instantiation of
our value analysis with sets of values. Since approximately 50% of all procedures have
side-effects, for a sound and precise analysis it is mandatory to consider side-effect
information.

5 Conclusion

We have presented a reasonably fast interprocedural analysis of assembly code for in-
ferring the side-effects of procedure calls onto the runtime stack. Such an analysis con-
tributes in refining arbitrary analyses by identifying possible modifications in the stack
frame of the caller through a procedure call. Our analysis allows to verify in how far
basic assumptions for the analysis of the assembly code are met. Still, precision could
be significantly enhanced, if the analysis tracked relational invariants for values. Our
approach can be extended to a purity analysis which not only tracks modifications to
the stack but also to the heap. In order to deal with assembly code generated from, e.g.
object-oriented programs, it also seems inevitable to combine our methods with simple
forms of heap analysis such as [2].

References

1. Balakrishnan, G., Reps, T.: Recovery of Variables and Heap Structure in x86 Executables.
Technical report, University of Wisconsin, Madison (2005)

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

3. Banning, J.P.: An efficient way to find the side effects of procedure calls and the aliases of
variables. In: POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 29–41. ACM, New York (1979)

4. Choi, J.-D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In: POPL 1993: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 232–245.
ACM, New York (1993)

5. Cooper, K.D., Kennedy, K.: Interprocedural side-effect analysis in linear time. In: PLDI
1988: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language De-
sign and Implementation, pp. 57–66. ACM, New York (1988)

6. Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrowing Ap-
proaches to Abstract Interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992.
LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

7. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Variables of a
Program. In: 5th Ann. ACM Symposium on Principles of Programming Languages (POPL),
pp. 84–97 (1978)

8. Debray, S., Muth, R., Weippert, M.: Alias analysis of executable code. In: POPL 1998: Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 12–24. ACM, New York (1998)

9. Dormoy, F.-X., Technologies, E.: SCADE 6 A Model Based Solution For Safety Critical
Software Development (2008),
http://www.esterel-technologies.com/technology/WhitePapers/

http://www.esterel-technologies.com/technology/WhitePapers/

Side-Effect Analysis of Assembly Code 93

10. Dullien, T., Porst, S.: REIL: A platform-independent intermediate representation of disas-
sembled code for static code analysis (2009),
http://www.zynamics.com/downloads/csw09.pdf

11. Emami, M., Ghiya, R., Hendren, L.J.: Context-Sensitive Interprocedural Points-to Analysis
in the Presence of Function Pointers. In: Proceedings of the ACM SIGPLAN 1994 Con-
ference on Programming Language Design and Implementation, PLDI 1994, pp. 242–256.
ACM, New York (1994)

12. Flexeder, A., Mihaila, B., Petter, M., Seidl, H.: Interprocedural control flow reconstruction.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 188–203. Springer, Heidelberg (2010)

13. Flexeder, A., Petter, M., Seidl, H.: Analysis of executables for WCET concerns. Technical
Report, Institutfür Informatik (2008),
http://www2.in.tum.de/flexeder/report38.pdf

14. Frey, B.: PowerPC Architecture Book, Version 2.02 (November 2005),
http://www.ibm.com/developerworks/systems
/library/es-archguide-v2.html

15. Guo, B., Bridges, M.J., Triantafyllis, S., Ottoni, G., Raman, E., August, D.I.: Practical and
Accurate Low-Level Pointer Analysis. In: CGO 2005: Proceedings of the International Sym-
posium on Code Generation and Optimization, pp. 291–302. IEEE Computer Society, Wash-
ington, DC, USA (2005)

16. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: Gupta, A., Malik, S.
(eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg (2008)

17. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for control flow
reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 214–228. Springer, Heidelberg (2009)

18. Landi, W., Ryder, B.G., Zhang, S.: Interprocedural Modification Side Effect Analysis With
Pointer Aliasing. In: Proceedings of the SIGPLAN 1993 Conference on Programming Lan-
guage Design and Implementation, pp. 56–67 (1993)

19. Linn, C., Debray, S., Andrews, G., Schwarz, B.: Stack Analysis of x86 Executables (2004),
http://www.cs.arizona.edu/ debray/Publications
/stack-analysis.pdf

20. Moore, R.E., Bierbaum, F.: Methods and Applications of Interval Analysis (SIAM Studies
in Applied and Numerical Mathematics) (Siam Studies in Applied Mathematics, 2). Soc. for
Industrial & Applied Math., Philadelphia (1979)

21. Müller-Olm, M., Seidl, H.: Precise Interprocedural Analysis through Linear Algebra. In: 31st
ACM Symp. on Principles of Programming Languages (POPL), pp. 330–341 (2004)

22. Müller-Olm, M., Seidl, H.: Upper adjoints for fast inter-procedural variable equalities. In:
Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 178–192. Springer, Heidelberg (2008)

23. Reps, T., Balakrishnan, G.: Improved memory-access analysis for x86 executables. In: Hen-
dren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 16–35. Springer, Heidelberg (2008)

24. Reps, T., Balakrishnan, G., Lim, J.: Intermediate-representation recovery from low-level
code. In: PEPM 2006: Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, pp. 100–111. ACM, New York (2006)

25. Sălcianu, A., Rinard, M.C.: Purity and side effect analysis for java programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)

26. Sankaranarayanan, S., Ivancic, F., Gupta, A.: Program analysis using symbolic ranges. In:
Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 366–383. Springer, Heidel-
berg (2007)

27. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data Flow Analysis. In: Program
Flow Analysis: Theory and Application, pp. 189–234 (1981)

http://www.zynamics.com/downloads/csw09.pdf
http://www2.in.tum.de/flexeder/report38.pdf
http://www.ibm.com/developerworks/systems/library/es-archguide-v2.html
http://www.ibm.com/developerworks/systems/library/es-archguide-v2.html
http://www.cs.arizona.edu/~debray/Publications/stack-analysis.pdf
http://www.cs.arizona.edu/~debray/Publications/stack-analysis.pdf

94 A. Flexeder, M. Petter, and H. Seidl

28. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome,
J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer security via binary
analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008)

29. Sicherheitsgarantien Unter REALzeitanforderungen (2010),
http://www.sureal-projekt.org/

30. VoTUM (2010), http://www2.in.tum.de/votum
31. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C programs. In:

PLDI 1995: Proceedings of the ACM SIGPLAN 1995 Conference on Programming Lan-
guage Design and Implementation, pp. 1–12. ACM, New York (1995)

http://www.sureal-projekt.org/
http://www2.in.tum.de/votum

Directed Symbolic Execution

Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks

Computer Science Department, University of Maryland, College Park
{kkma,khooyp,jfoster,mwh}@cs.umd.edu

Abstract. In this paper, we study the problem of automatically find-
ing program executions that reach a particular target line. This prob-
lem arises in many debugging scenarios; for example, a developer may
want to confirm that a bug reported by a static analysis tool on a par-
ticular line is a true positive. We propose two new directed symbolic
execution strategies that aim to solve this problem: shortest-distance
symbolic execution (SDSE) uses a distance metric in an interprocedu-
ral control flow graph to guide symbolic execution toward a particular
target; and call-chain-backward symbolic execution (CCBSE) iteratively
runs forward symbolic execution, starting in the function containing the
target line, and then jumping backward up the call chain until it finds
a feasible path from the start of the program. We also propose a hybrid
strategy, Mix-CCBSE, which alternates CCBSE with another (forward)
search strategy. We compare these three with several existing strategies
from the literature on a suite of six GNU Coreutils programs. We find
that SDSE performs extremely well in many cases but may fail badly.
CCBSE also performs quite well, but imposes additional overhead that
sometimes makes it slower than SDSE. Considering all our benchmarks
together, Mix-CCBSE performed best on average, combining to good
effect the features of its constituent components.

1 Introduction

In this paper, we study the line reachability problem: given a target line in the
program, can we find a realizable path to that line? Since program lines can
be guarded by conditionals that check arbitrary properties of the current pro-
gram state, this problem is equivalent to the very general problem of finding a
path that causes the program to enter a particular state [12]. The line reacha-
bility problem arises naturally in several scenarios. For example, users of static-
analysis-based bug finding tools need to triage the tools’ bug reports—determine
whether they correspond to actual errors—and this task often involves checking
line reachability. As another example, a developer might receive a report of an
error at some particular line (e.g., an assertion failure that resulted in an error
message at that line) without an accompanying test case. To reproduce the er-
ror, the developer needs to find a realizable path to the appropriate line. Finally,
when trying to understand an unfamiliar code base, it is often useful to discover
under what circumstances particular lines of code are executed.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 95–111, 2011.
© Springer-Verlag Berlin Heidelberg 2011

96 K.-K. Ma et al.

Symbolic execution is an attractive approach to solving line reachability: by
design, symbolic executors are complete, meaning any path they find is realizable.
Symbolic executors work by running the program, computing over both concrete
values and expressions that include symbolic values, which are unknowns that
range over various sets of values, e.g., integers, strings, etc. [17,2,15,29]. When a
symbolic executor encounters a conditional whose guard depends on a symbolic
value, it invokes a theorem prover (our implementation uses the SMT solver
STP [10]) to determine which branches are feasible. If both are, the symbolic
execution conceptually forks, exploring both branches.

However, symbolic executors cannot explore all program paths, and hence
must make heuristic choices to prioritize path exploration. Our work focuses on
finding paths that reach certain lines in particular, whereas most prior work has
focused on finding paths to increase code coverage [11,5,4,24,3,34]. We are aware
of one previously proposed approach, execution synthesis (ESD) [36], for using
symbolic execution to solve the line reachability problem; we compare ESD to
our work in Section 3.

We propose two new directed symbolic execution search strategies for line
reachability. First, we propose shortest-distance symbolic execution (SDSE),
which prioritizes the path with the shortest distance to the target line as com-
puted over an interprocedural control-flow graph (ICFG). Variations of this
heuristic can be found in existing symbolic executors—in fact, SDSE is inspired
by the heuristic used in the coverage-based search strategy from KLEE [4]—but,
as far as we are aware, the strategy we present has not been specifically described
nor has it been applied to directed symbolic execution. In Section 2.2 we describe
how distance can be computed context-sensitively using PN grammars [32,9,30].

Second, we propose call-chain-backward symbolic execution (CCBSE), which
starts at the target line and works backward until it finds a realizable path
from the start of the program, using standard forward (interprocedural) sym-
bolic execution as a subroutine. More specifically, suppose the target line � is
inside function f . CCBSE begins forward symbolic execution from the start of
f , yielding a set of partial interprocedural paths pf that start at f , possibly call
other functions, and lead to �; in a sense, these partial paths summarize selected
behavior of f . Next, CCBSE runs forward symbolic execution from the start
of each function g that calls f , searching for paths that end at calls to f . For
each such path p, it attempts to continue down paths p′ in pf until reaching �,
adding all feasible extended paths p+ p′ to pg. The process continues backward
up the call chain until CCBSE finds a path from the start of the program to
�. Notice that by using partial paths to summarize function behavior, CCBSE
can reuse the machinery of symbolic execution to concatenate paths together.
This is technically far simpler than more standard approaches that use some for-
mal language to explicitly summarize function behavior in terms of parameters,
return value, global variables, and the heap (including pointers and aliasing).

The key insight motivating CCBSE is that the closer forward symbolic execu-
tion starts relative to the target line, the better the chance it finds paths to that
line. If we are searching for a line that is only reachable on a few paths along

Directed Symbolic Execution 97

which many branches are possible, then combinatorially there is a very small
chance that a standard symbolic executor will make the right choices and find
that line. By starting closer to the line we are searching for, CCBSE explores
shorter paths with fewer branches, and so is more likely to reach that line.

CCBSE imposes some additional overhead, and so it does not always perform
as well as a forward execution strategy. Thus, we also introduce mixed-strategy
CCBSE (Mix-CCBSE), which combines CCBSE with another forward search.
In Mix-CCBSE, we alternate CCBSE with some forward search strategy S. If S
encounters a path p that was constructed in CCBSE, we try to follow p to see if
we can reach the target line, in addition to continuing S normally. In this way,
Mix-CCBSE can perform better than CCBSE and S run separately—compared
to CCBSE, it can jump over many function calls from the program start to reach
the paths being constructed; and compared to S, it can short-circuit the search
once it encounters a path built up by CCBSE.

We implemented SDSE, CCBSE, and Mix-CCBSE in Otter, a C source code
symbolic executor we previously developed [31]. We also extended Otter with
two popular forward search strategies from KLEE [4] and SAGE [13], and for a
baseline, we implemented a random path search that flips a coin at each branch.
We evaluated the effectiveness of our directed search strategies on the line reach-
ability problem, comparing against the existing search strategies. We ran each
strategy on 6 different GNU Coreutils programs [6], looking in each program for
one line that contains a previously identified fault. We also compared the strate-
gies on synthetic examples intended to illustrate the strengths of SDSE and
CCBSE. We found that SDSE performs extremely well on many programs, but
it can fail completely under certain program patterns. CCBSE has performance
comparable to standard search strategies but is often somewhat slower due to
the overhead of checking path feasibility. Mix-CCBSE performs best of all across
all benchmarks, particularly when using KLEE as its forward search strategy,
since it exploits the best features of CCBSE and forward search. These results
suggest that directed symbolic execution is a practical and effective approach to
solving the line reachability problem.

2 Directed Symbolic Execution

In this section we present SDSE, CCBSE, and Mix-CCBSE. We will explain them
in terms of their implementation in Otter, our symbolic execution framework,
to make our explanations concrete (and to save space), but the ideas apply to
any symbolic execution tool [17,11,4,16].

Figure 1 diagrams the architecture of Otter and gives pseudocode for its main
scheduling loop. Otter uses CIL [27] to produce a control-flow graph from the
input C program. Then it calls a state initializer to construct an initial symbolic
execution state, which it stores in worklist, used by the scheduler. A state includes
the stack, heap, program counter, and path taken to reach the current position.
In traditional symbolic execution, which we call forward symbolic execution,
the initial state begins execution at the start of main. The scheduler extracts a

98 K.-K. Ma et al.

program

state

symbolic
executor

CIL

states/errors

STPscheduler
state

initializer

state

1 scheduler()

2 while (worklist nonempty)

3 s0 = pick(worklist)

4 for s ∈ step(s0) do
5 if (s is incomplete)

6 put(worklist,s)

7 manage targets(s)

Fig. 1. The architecture of the Otter symbolic execution engine

state from the worklist via pick and symbolically executes the next instruction by
calling step. As Otter executes instructions, it may encounter conditionals whose
guards depend on symbolic values. At these points, Otter queries STP [10],
an SMT solver, to see if legal, concrete representations of the symbolic values
could make either or both branches possible, and whether an error such as an
assertion failure may occur. The symbolic executor will return these states to
the scheduler, and those that are incomplete (i.e., non-terminal) are added back
to the worklist. The call to manage targets is just for guiding CCBSE’s backward
search (it is a no-op for other strategies), and is discussed further below.

2.1 Forward Symbolic Execution

Different forward symbolic execution strategies are distinguished by their imple-
mentation of the pick function. In Otter we have implemented, among others,
three search strategies described in the literature:

Random Path (RP) [3,4] is a probabilistic version of breadth-first search. RP
randomly chooses from the worklist states, weighing a state with a path of length
n by 2−n. Thus, this approach favors shorter paths, but treats all paths of the
same length equally.

KLEE [4] uses a round-robin of RP and what we call closest-to-uncovered,
which computes the distance between the end of each state’s path and the closest
uncovered node in the interprocedural control-flow graph and then randomly
chooses from the set of states weighed inversely by distance. To our knowledge,
KLEE’s algorithm has not been described in detail in the literature; we studied
it by examining KLEE’s source code [18].

SAGE [13] uses a coverage-guided generational search to explore states in
the execution tree. At first, SAGE runs the initial state until the program termi-
nates by randomly choosing a state to run whenever the symbolic execution core
returns multiple states. It stores the remaining states into the worklist as the
first generation children. Next, SAGE runs each of the first generation children
to completion, in the same manner as the initial state, but separately grouping
the grandchildren by their first generation parent. After exploring the first gen-
eration, SAGE explores subsequent generations (children of the first generation,
grandchildren of the first generation, etc.) in a more intermixed fashion, using a
block coverage heuristic to determine which generations to explore first.

Directed Symbolic Execution 99

1 int main(void) {
2 int argc; char argv[MAX ARGC][1];

3 symbolic(&argc); symbolic(&argv);

4 int i, n = 0, b[4] = { 0, 0, 0, 0 };

5 for (i = 0; i < argc; i++) {
6 if (∗argv[i] == ’b’) {
7 assert(n < 4);

8 b[n++] = 1; /∗ potential buf. overflow ∗/

9 } else

10 foo(); /∗ some expensive function ∗/

11 }
12 while (1) {
13 if (getchar()) /∗ get symbolic input ∗/

14 /∗ ...do something... ∗/;

15 }
16 return 0;

17 }

entry

argc=0 argv[0]='b' argv[0]≠'b'

argc=1 argv[1]='b' argv[1]≠'b'

argc=4 argv[4]='b' argv[4]≠'b'

buffer overflow!

Fig. 2. Example illustrating SDSE’s potential benefit

2.2 Shortest-Distance Symbolic Execution

The basic idea of SDSE is to prioritize program branches that correspond to the
shortest path-to-target in the ICFG. To illustrate how SDSE works, consider the
code in Figure 2, which performs command-line argument processing followed
by some program logic, a pattern common to many programs. This program
first enters a loop that iterates up to argc times, processing the ith command-
line argument in argv during iteration i. If the argument is ’b’, the program sets
b[n] to 1 and increments n (line 8); otherwise, the program calls foo. A potential
buffer overflow could occur at line 8 when more than four arguments are ’b’; we
add an assertion on line 7 to identify when this overflow would occur. After the
arguments are processed, the program enters a loop that reads and processes
character inputs (lines 12 onward).

Suppose we would like to reason about a possible failure of the assertion.
Then we can run this program with symbolic inputs, which we identify with
the calls on line 3 to the special built-in function symbolic. The right half of the
figure illustrates the possible program paths the symbolic executor can explore
on the first five iterations of the argument-processing loop. Notice that for five
loop iterations there is only one path that reaches the failing assertion out of∑4

n=0 3 × 2n = 93 total paths. Moreover, the assertion is not reachable once
exploration has advanced past the argument-processing loop.

In this example, RP would have only a small chance of finding the overflow,
spending most of its time exploring paths shorter than the one that leads to
the buffer overflow. A symbolic executor using KLEE or SAGE would focus on
increasing coverage to all lines, wasting significant time exploring paths through
the loop at the end of the program, which does not influence this buffer overflow.

In contrast, SDSE works very well in this example, with line 7 set as the tar-
get. Consider the first iteration of the loop. The symbolic executor will branch
upon reaching the loop guard, and will choose to execute the first instruction of

100 K.-K. Ma et al.

main

x = 1

)foo1)foo0(foo0 (foo1

entry call foo0 return foo0 exitcall foo1 return foo1

entry exit

foo

(a) Example PN -path in an interprocedural CFG.

PN → P N
P → S P

|)i P
| ε

N → S N
| (i N
| ε

S → (i S)i

| S S
| ε

(b) Grammar of PN paths.

Fig. 3. SDSE distance computation

the loop, which is two lines away from the assertion, rather than the first instruc-
tion after the loop, which can no longer reach the assertion. Next, on line 6, the
symbolic executor takes the true branch, since that reaches the assertion itself
immediately. Then, determining that the assertion is true, it will run the next
line, since it is only three lines away from the assertion and hence closer than
paths that go through foo (which were deferred by the choice to go to the asser-
tion). Then the symbolic executor will return to the loop entry, repeating the
same process for subsequent iterations. As a result, SDSE explores the central
path shown in bold in the figure, and thereby quickly find the assertion failure.
Implementation. SDSE is implemented as a pick function from Figure 1. As
mentioned, SDSE chooses the state on the worklist with the shortest distance
to target. Within a function, the distance is just the number of edges between
statements in the control flow graph (CFG). To measure distances across function
calls we count edges in an interprocedural control-flow graph (ICFG) [21], in
which function call sites are split into call nodes and return nodes, with call edges
connecting call nodes to function entries and return edges connecting function
exits to return nodes. For each call site i, we label call and return edges by
(i and)i, respectively. Figure 3(a) shows an example ICFG for a program in
which main calls foo twice; here call i to foo is labeled fooi.

We define the distance-to-target metric to be the length of the shortest path
in the ICFG from an instruction to the target, such that the path contains
no mismatched calls and returns. Formally, we can define such paths as those
whose sequence of edge labels form a string produced from the PN nonterminal
in the grammar shown in Figure 3(b). In this grammar, developed by Reps [32]
and later named by Fähndrich et al [9,30], S-paths correspond to those that
exactly match calls and returns; N -paths correspond to entering functions only;
and P -paths correspond to exiting functions only. For example, the dotted path
in Figure 3(a) is a PN -path: it traverses the matching (foo0 and)foo0 edges,
and then traverses (foo1 to the target. Notice that we avoid conflating edges
of different call sites by matching (i and)i edges, and thus we can statically
compute a context-sensitive distance-to-target metric.

PN -reachability was previously used for conservative static analysis [9,30,19].
However, in SDSE, we are always asking about PN -reachability from the current
instruction. Hence, rather than solve reachability for an arbitrary initial P -path
segment (which would correspond to asking about distances from the current

Directed Symbolic Execution 101

1 void main() {
2 int m, n, i;

3 symbolic(&m, sizeof(m), ”m”);

4 symbolic(&n, sizeof(n), ”n”);

5

6 for (i=0;i<1000;i++)

7 if (m == i) f(m, n);

8 }

10 void f(int m, int n) {
11 int i, a, sum=0;

12 for (i=0;i<6;i++) {
13 a = n%2;

14 if (a) sum += a+1;

15 n/=2;

16 }
17 while(1) {
18 if (sum==0 && m==7)

19 assert(0);

20 }
21 }

entry

m==0 m==1 m==999

f(m, n)

sum==0 && m==7

a0

sum+=a0+1

a1

sum+=a1+1

a5

sum+=a5+1

assert(0)

Fig. 4. Example illustrating CCBSE’s potential benefit

instruction in all calling contexts of that instruction), we restrict the initial P -
path segment to the functions on the current call stack. For performance, we
statically pre-compute N -path and S-path distances for all instructions to the
target and combine them with P -path distances on demand.

2.3 Call-Chain-Backward Symbolic Execution

SDSE is often very effective, but there are cases on which it does not do well—in
particular, SDSE is less effective when there are many potential paths to the
target line, but there are only a few, long paths that are realizable. In these
situations, CCBSE can sometimes work dramatically better.

To see why, consider the code in Figure 4. This program initializes m and
n to be symbolic and then loops, calling f(m, n) when m == i for i ∈ [0, 1000).
For non-negative values of n, the loop in lines 12–16 iterates through n’s least
significant bits (stored in a during iteration), incrementing sum by a+1 for each
non-zero a. Finally, if sum == 0 and m == 7, the failing assertion on line 19 is
reached. Otherwise, the program falls into an infinite loop, as sum and m are
never updated in the loop.

RP, KLEE, SAGE, and SDSE all perform poorly on this example. SDSE gets
stuck at the very beginning: in main’s for-loop, it immediately steps into f when
m == 0, as this is the “fastest” way to reach the assertion inside f according to
the ICFG. Unfortunately, the guard of the assertion is never satisfied when m is
0, and therefore SDSE gets stuck in the infinite loop. SAGE is very likely to get
stuck, because the chance of SAGE’s first generation entering f with the right
argument (m == 7) is extremely low, and SAGE always runs its first generation
to completion, and hence will execute the infinite loop forever. RP and KLEE
will also reach the assertion very slowly, since they waste time executing f where
m �= 7; none of these paths lead to the assertion failure.

In contrast, CCBSE begins by running f with both parameters m and n set
to symbolic, as CCBSE does not know what values might be passed to f. Hence,
CCBSE will potentially explore all 26 paths induced by the for loop, and one of
them, say p, will reach the assertion. When p is found, CCBSE will jump to main

102 K.-K. Ma et al.

8 manage targets (s)

9 (sf,p) = path(s)

10 if pc(p) ∈ targets

11 update paths(sf, p)

12 else if pc(p) = callto(f) and has paths(f)

13 for p′ ∈ get paths(f)

14 if (p+ p′ feasible)

15 update paths(sf, p+ p′)

16 update paths (sf, p)

17 if not(has paths(sf))

18 add callers(sf,worklist)

19 add path(sf, p);

Fig. 5. Target management for CCBSE

and explore various paths that reach the call to f. At the call to f, CCBSE will
follow p to short-circuit the evaluation through f (in particular, the 26 branches
induced by the for-loop), and thus quickly find a realizable path to the failure.

Implementation. CCBSE is implemented in the manage targets and pick functions
from Figure 1. Otter states s, returned by pick, include the function f in which
symbolic execution started, which we call the origin function. Thus, traditional
symbolic execution states always have main as their origin function, while CCBSE
allows different origin functions. In particular, CCBSE begins by initializing
states for functions containing target lines.

To start symbolic execution at an arbitrary function Otter must initialize sym-
bolic values for the function’s inputs (parameters and global variables). Integer-
valued inputs are initialized to symbolic words, and pointers are represented us-
ing conditional pointers, manipulated using Morris’s general axiom of assignment
[1,26]. To support recursive data structures, Otter initializes pointers lazily—we
do not actually create conditional pointers until a pointer is used, and we only
initialize as much of the memory map as is required. When initialized, pointers
are set up as follows: for inputs p of type pointer to type T , we construct a con-
ditional pointer such that p may be null or p may point to a fresh symbolic value
of type T . If T is a primitive type, we also add a disjunct in which p may point
to any element of an array of 4 fresh values of type T . This last case models pa-
rameters that are pointers to arrays, and we restrict its use to primitive types for
performance reasons. In our experiments, we have not found this restriction to
be problematic. This strategy for initializing pointers is unsound in that CCBSE
could miss some targets, but final paths CCBSE produces are always feasible
since they ultimately connect back to main.

The pick function works in two steps. First, it selects the origin function to
execute and then it selects a state with that origin. For the former, it picks the
function f with the shortest-length call chain from main. For non-CCBSE the
origin will always be main. At the start of CCBSE with a single target, the origin
will be the one containing the target; as execution continues there will be more
choices—picking the “shortest to main” ensures that we move backward from
target functions toward main. After selecting the origin function f , pick chooses

Directed Symbolic Execution 103

1 void main() {
2 int m, n;

3 symbolic(&m, sizeof(m), ”m”);

4 symbolic(&n, sizeof(n), ”n”);

5 foo(); // Some work

6 if (m >= 30) g(m, n);

7 }
8 void g(int m, int n) {
9 int i;

10 for (i=0;i<1000;i++) {
11 if (m == i) f(m, n);

12 }
13 }

14 void f(int m, int n) {
15 int i, a, sum=0;

16 for (i=0;i<6;i++) {
17 a = n%2;

18 if (a) sum += a+1;

19 n/=2;

20 }
21 while (1) {
22 if (sum==0 && m==37)

23 assert(0);

24 }
25 }

entry

m==0 m==1 m==30

f(m, n)

m>=30 exit

m==999

sum==0 && m==37

a0

sum+=a0+1

a1

sum+=a1+1

a5

sum+=a5+1

assert(0)

Fig. 6. Example illustrating Mix-CCBSE’s potential benefit

one of f ’s states according to some forward search strategy. We write CCBSE(S)
to denote CCBSE using forward search strategy S.

The manage targets(s) function is given in Figure 5. Recall from Figure 1 that
s has already been added to the worklist for additional, standard forward search;
the job of manage targets is to record which paths reach the target line and to
try to connect s with path suffixes previously found to reach the target. The
manage targets function extracts from s both the origin function sf and the (inter-
procedural) path p that has been explored from sf to the current point. This path
contains all the decisions made by the symbolic executor at condition points. If
path p’s end (denoted pc(p)) has reached a target (line 10), we associate p with sf

by calling update paths; for the moment one can think of this function as adding
p to a list of paths that start at sf and reach targets. Otherwise, if the path’s
end is at a call to some function f, and f itself has paths to targets, then we may
possibly extend p with one or more of those paths. So we retrieve f’s paths, and
for each one p′ we see whether concatenating p to p′ (written p+ p′) produces a
feasible path. If so, we add it to sf’s paths. Feasibility is checked by attempting
to symbolically execute p′ starting in p’s state s.

Now we turn to the implementation of update paths. This function simply adds
p to sf’s paths (line 19), and if sf did not previously have any paths, it will create
initial states for each of sf’s callers (pre-computed from the call graph) and add
these to the worklist (line 17). Because these callers will be closer to main, they
will be subsequently favored by pick when it chooses states.

2.4 Mixing CCBSE with Forward Search

While CCBSE may find a path more quickly, it comes with a cost: its queries
tend to be more complex than in forward search, and it can spend significant
time trying paths that start in the middle of the program but are ultimately
infeasible. Consider Figure 6, a modified version of the code in Figure 4. Here,
main calls function g, which acts as main did in Figure 4, with some m >= 30

(line 6), and the assertion in f is reachable only when m == 37 (line 22). All
other strategies fail in the same manner as they do in Figure 4.

104 K.-K. Ma et al.

However, CCBSE also fails to perform well here, as it does not realize that m is
at least 30, and therefore considers ultimately infeasible conditions 0 ≤ m ≤ 36 in
f. With Mix-CCBSE, however, we conceptually start forward symbolic execution
from main at the same time that CCBSE (“backward search”) is run. As before,
the backward search will gets stuck in finding a path from g’s entry to the
assertion. However, in the forward search, g is called with m ≥ 30, and therefore
f is always called with m ≥ 30, making it hit the right condition m == 37 very
soon thereafter. Notice that, in this example, the backward search must find
the path from f’s entry to the assertion before f is called with m == 37 in the
forward search in order for the two searches to match up (e.g., there are enough
instructions to run in line 5). Should this not happen, Mix-CCBSE degenerates
to its constituents running independently in parallel, which is the worst case.

Implementation. We implement Mix-CCBSE with a slight alteration to pick. At
each step, we decide whether to use regular forward search or CCBSE next,
splitting the strategies 50/50 by time spent. We compute time heuristically as
50×(no. of solver calls)+(no. of instructions executed), taking into account the
higher cost of solver queries over instruction executions.1

3 Experiments

We evaluated our directed search strategies by comparing their performance on
the small example programs from Section 2 and on bugs reported in six programs
from GNU Coreutils version 6.10. These bugs were previously discovered by
KLEE [4]. All experiments were run on a machine with six 2.4Ghz quad-core
Xeon E7450 processors and 48GB of memory, running 64-bit Linux 2.6.26. We
ran 16 tests in parallel, observing minimal resource contention. The tests required
less than 2 days of elapsed time. Total memory usage was below 1GB per test.

The results are presented in Table 1. Part (a) of the table gives the results
for our directed search strategies. For comparison, we also implemented an in-
traprocedural variant of SDSE that ignores call-chains: if the target is not in
the current function, then the distance-to-target is ∞. We refer to the intrapro-
cedural variant as IntraSDSE, and to standard SDSE as InterSDSE. This table
lists three variants of CCBSE, using RP, InterSDSE, or IntraSDSE as the for-
ward strategy. In the last two cases, we modified Inter- and IntraSDSE slightly
to compute shortest distances to the target line or to the functions reached in
CCBSE’s backward search. This allows those strategies to take better advantage
of CCBSE (otherwise they would ignore CCBSE’s search in determining which
paths to take).

Part (b) of the table gives the results from running KLEE version r130848 [18],
and part (c) gives the results for forward search strategies implemented in Otter,
both by themselves and mixed with CCBSE(RP). We chose CCBSE(RP) because
it was the best overall of the three from part (a), and because RP is the fastest
1 We could also use wall-clock time, however, this leads to non-deterministic, non-

reproducible results. We opted to use our heuristic for reproducibility.

Directed Symbolic Execution 105

Table 1. Statistics from benchmark runs. For each Coreutils program and for the total,
the fastest two times are highlighted. Key: Median SIQR(Outliers) ∞ : time out

Inter- Intra- CCBSE(X) where X is
SDSE SDSE RP InterSDSE IntraSDSE

Figure 2 0.4 0.0(0) 0.4 0.0(5) 16.2 2.4(6) 0.5 0.0(1) 0.4 0.0(3)

Figure 4 ∞ ∞ 60.8 7.8(4) 7.3 1.2(3) 7.2 1.0(4)

Figure 6 ∞ ∞ ∞ ∞ ∞
mkdir 34.7 19.7(10) ∞ 163.0 42.5(0) 150.3 93.4(0) 150.7 93.9(0)

mkfifo 13.1 0.4(0) ∞ 70.2 17.3(0) 49.7 21.8(0) 49.3 23.2(1)

mknod ∞ ∞ 216.5 60.7(0) ∞ ∞
paste 12.6 0.5(0) 56.4 5.4(0) 26.0 0.5(1) 31.0 4.8(0) 32.1 4.0(0)

ptx 18.4 0.6(4) 103.5 19.7(1) 24.2 0.7(1) 24.5 0.9(3) 24.1 1.1(2)

seq 12.1 0.4(1) ∞ 30.9 1.4(0) 369.3 425.9(6) 391.8 411.1(6)

Total 1891.0 7360.0 530.9 2424.8 2448.0
(a) Directed search strategies

KLEE

2.6 0.0(7)

∞
∞
∞

274.2 315.6(9)

851.6 554.2(8)

30.6 9.7(8)

93.8 81.7(7)

38.2 14.5(8)

3088.55
(b) KLEE

Otter-KLEE Otter-SAGE Random Path
Pure w/CCBSE Pure w/CCBSE Pure w/CCBSE

Figure 2 101.1 57.5(4) 104.8 57.3(5) ∞ ∞ 15.3 2.2(6) 16.1 2.6(6)

Figure 4 579.7 ∞ 205.5 133.1(9) ∞ ∞ 160.1 6.4(11) 80.6 177.2(9)

Figure 6 587.8 ∞ 147.6 62.6(7) ∞ ∞ 169.8 9.1(8) 106.8 11.2(4)

mkdir 168.9 31.0(0) 124.7 12.1(2) 365.3 354.2(5) 1667.7 ∞ 143.5 5.3(0) 136.4 7.9(0)

mkfifo 41.7 5.2(1) 38.2 4.6(0) 77.6 101.1(2) 251.9 257.0(8) 59.4 3.7(0) 52.7 1.8(1)

mknod 174.8 24.1(0) 93.1 12.7(0) 108.5 158.7(5) 236.4 215.0(5) 196.7 3.9(2) 148.9 11.8(0)

paste 22.6 0.5(4) 28.6 0.9(3) 54.9 36.2(5) 60.4 52.1(3) 22.1 0.6(0) 27.3 1.0(1)

ptx 33.2 3.9(0) 27.1 2.7(0) ∞ ∞ 28.9 0.8(0) 28.1 1.1(2)

seq 354.8 94.3(1) 49.3 5.1(1) ∞ 288.8 ∞ 170.8 3.7(3) 35.9 1.4(1)

Total 795.8 360.9 4206.4 4305.3 621.3 429.4

(c) Undirected search strategies and their mixes with CCBSE(RP)

of the forward-only strategies in part (c). We write Mix-CCBSE(S) to denote
the mixed strategy where S is the forward search strategy and CCBSE(RP) is
the backward strategy. We did not directly compare against execution synthesis
(ESD) [36], a previously proposed directed search strategy; at the end of this
section we relate our results to those reported in the ESD paper.

We found that the randomness inherent in most search strategies and in the
STP theorem prover introduces tremendous variability in the results. Thus, we
ran each strategy/target condition 41 times, using integers 1 to 41 as random
seeds for Otter. (We were unable to find a similar option in KLEE, and so sim-
ply ran it 41 times.) The main numbers in Table 1 are the medians of these
runs, and the small numbers are the semi-interquartile range (SIQR). The num-
ber of outliers—which fall 3×SIQR below the lower quartile or above the upper
quartile, if non-zero—is given in parentheses. We ran each test for at most 600
seconds for the synthetic examples, and at most 1,800 seconds for the Coreutils

106 K.-K. Ma et al.

programs. The median is ∞ if more than half the runs timed out, while the
SIQR is ∞ if more than one quarter of the runs timed out. We highlight the
fastest two times in each row.

3.1 Synthetic Programs

The first three rows in Table 1 give the results from the examples in Figures 2,
4, and 6. In all cases the programs behaved as predicted.

For the program in Figure 2, both InterSDSE and IntraSDSE performed very
well. Since the target line is in main, CCBSE(*SDSE) is equivalent to *SDSE, so
those variants performed equally well. Otter-KLEE took much longer to find the
target, whereas Otter-SAGE timed out for more than half the runs. RP was able
to find the target, but it took much longer than *SDSE. Note that CCBSE(RP)
degenerates to RP in this example, and runs in about the same time as RP.
Lastly, KLEE performed very well also, although it was still slower than *SDSE
in this example.

For the program in Figure 4, CCBSE(InterSDSE) and CCBSE(IntraSDSE)
found the target line quickly, while CCBSE(RP) did so in reasonable amount of
time. CCBSE(*SDSE) were much more efficient, because with these strategies,
after each failing verification of f(m,n) (when 0 ≤ m < 7), the *SDSE strategies
chose to try f(m+1,n) rather than stepping into f, as f is a target added by CCBSE
and is closer from any point in main than the assertion in f is.

For the program in Figure 6, Mix-CCBSE(RP) and Mix-CCBSE(Otter-KLEE)
performed the best among all strategies, as expected. However, Mix-CCBSE
(Otter-SAGE) performed far worse. This is because its forward search (Otter-
SAGE) got stuck in one value of m in the very beginning, and therefore it and
the backward search did not match up.

3.2 GNU Coreutils

The lower rows of Table 1 give the results from the Coreutils programs. The six
programs we analyzed contain a total of 2.4 kloc and share a common library of
about 30 kloc. For each bug, we manually added a corresponding failing asser-
tion to the program, and set that as the target line. For example, the Coreutils
program seq has a buffer overflow in which an index i accesses outside the bounds
of a string fmt [25]. Thus, just before this array access, we added an assertion
assert(i<strlen(fmt)) to indicate the overflow. Each assertion has a call-chain dis-
tance from main ranging from two to seven. Note that Otter does have built-in
detection of buffer overflows and similar errors, but for our experiments we do
not use this feature to identify valid targets for line reachability.

The Coreutils programs receive input from the command line and from stan-
dard input. We initialized the command line as in KLEE [4]: given a sequence of
integers n1, n2, · · · , nk, Otter sets the program to have (excluding the program
name) at least 0 and at most k arguments, where the ith argument is a symbolic
string of length ni. All of the programs we analyzed used (10, 2, 2) as the input
sequence, except mknod, which used (10, 2, 2, 2). Standard input is modeled as
an unbounded stream of symbolic values.

Directed Symbolic Execution 107

1 int main(int argc, char∗∗ argv) {
2 while ((optc = getopt long (argc, argv, opts, longopts, NULL)) != −1) { ... } ...

3 if (/∗ some condition ∗/) quote(...);

4 ...

5 if (/∗ another condition ∗/) quote(...);

6 }
Fig. 7. Code pattern in mkdir, mkfifo and mknod

Coreutils programs make extensive use of the C standard library. To support
them, we implemented a partial model of POSIX system calls on top of an
in-memory file system, and combined this with the newlib C standard library
implementation [28]. All this code is written in C, so Otter executes it as it
would any other source code.

Analysis. We can see clearly from the shaded boxes in Table 1 that InterSDSE
performed extremely well, achieving the fastest running times on five of the six
programs. However, InterSDSE timed out on mknod. Examining this program,
we found it shares a similar structure with mkdir and mkfifo, sketched in Figure 7.
These programs parse their command line arguments with getopt long, and then
branch depending on those arguments; several of these branches call the same
function quote(). In mkdir and mkfifo, the target is reachable within the first call
to quote(), and thus SDSE can find it quickly. However, in mknod, the bug is
only reachable in a later call to quote()—but since the first call to quote() is a
shorter path to the target line, InterSDSE takes that call and then gets stuck
inside quote(), never returning to main() to find the path to the failing assertion.

The last row in Table 1 sums up the median times for the Coreutils pro-
grams, counting time-outs as 1,800s. These results show that mixing a forward
search with CCBSE can be a significant improvement—for Otter-KLEE and
Random Path, the total times are notably less when mixed with CCBSE. One
particularly interesting result is that Mix-CCBSE(Otter-KLEE) runs dramati-
cally faster on mknod than either of its constituents (93.1s for the combination
versus 174.8s for Otter-KLEE and 216.5s for CCBSE(RP)). This case demon-
strates the benefit of mixing forward and backward search: in the combination,
CCBSE(RP) found the failing path inside of quote() (recall Figure 7), and Otter-
KLEE found the path from the beginning of main() to the right call to quote().
We also observe that the SIQR for Mix-CCBSE(Otter-KLEE) is generally lower
than either of its constituents, which is a further benefit.

Overall, Mix-CCBSE(Otter-KLEE) has the fastest total running time across
all strategies, including InterSDSE (because of its time-out); and although it is
not always the fastest search strategy, it is subjectively fast enough on these ex-
amples. Thus, our results suggest that the best single strategy option for solving
line reachability is Mix-CCBSE(Otter-KLEE), or perhaps Mix-CCBSE(Otter-
KLEE) in round-robin with InterSDSE to combine the strengths of both.

Execution Synthesis. ESD [36] is a symbolic execution tool that also aims to
solve the line reachability problem. It uses a proximity-guided path search that is
similar to our IntraSDSE algorithm, and an interprocedural reaching definition

108 K.-K. Ma et al.

analysis to find intermediate goals for directing the search. The published results
show that ESD works very well on five Coreutils programs, four of which (mkdir,
mkfifo, mknod, and paste) we also analyzed. Since ESD is not publicly available,
we were unable to include it in our experiment directly, and we found it difficult
to replicate from the description in the paper. One thing we can say for certain
is that the interprocedural reaching definition analysis in ESD is clearly critical,
as our implementation of IntraSDSE by itself performed quite poorly.

Comparing published numbers, if we run InterSDSE and Mix-CCBSE(Otter-
KLEE) simultaneously on two machines and return whichever returns first, we
obtain a strategy which performs in the same ballpark as ESD, which took 15s for
mkdir, 15s for mkfifo, 20s for mknod, and 25s for paste. The ESD authors informed
us that they did not observe variability in their experiment, which consists of
5 runs per test program [35]. However, we find this somewhat surprising, since
ESD employs randomization in its search strategy, and is implemented on top
of KLEE whose performance we have found to be highly variable (Table 1).

Clearly this comparison should be taken with a grain of salt due to major
differences between Otter and ESD as well as in the experimental setups. These
include the version of KLEE evaluated (we used the latest version of KLEE as
of April 2011, whereas the ESD paper is based on a pre-release 2008 version of
KLEE), symbolic parameters, default search strategy, processor speed, memory,
Linux kernel version, whether tests are run in parallel or sequentially, the number
of runs per test program, and how random number generators are seeded. These
differences may also explain a discrepancy between our evaluations of KLEE:
the ESD paper reported that KLEE was not able to find the target bugs within
an hour, but in our experiments KLEE was able to find them (note that nearly
one-third of the runs for mkdir returned within half an hour, which is not reflected
by its median).

3.3 Threats to Validity

There are several threats to the validity of our results. First, we were surprised
by the wide variability in our running times: the SIQR can be very large—
in some cases for CCBSE(*SDSE), KLEE and Otter-SAGE, the SIQR exceeds
the median—and there are many outliers.2 This indicates the results are not
normally distributed, and suggests that randomness in symbolic execution can
greatly perturb the results. To our knowledge, this kind of significant variability
has not been reported well in the literature, and we recommend that future efforts
on symbolic execution carefully consider it in their analyses. That said, the vari-
ation in results for CCBSE(Otter-KLEE) and InterSDSE, the best-performing
strategies, was generally low.

Second, our implementation of KLEE and SAGE unavoidably differs from
the original versions. The original KLEE is based on LLVM [22], whereas Otter
is based on CIL, and therefore they compute distance metrics over different
control-flow graphs. Also, Otter uses newlib [28] as the standard C library, while
2 See the companion technical report, Appendix A for beeswarm distribution plots

for each cell in the table [23].

Directed Symbolic Execution 109

KLEE uses uclibc [33]. These may explain some of the difference between KLEE
and Otter-KLEE’s performance in Table 1.

Finally, the original SAGE is a concolic executor, which runs programs to
completion using the underlying operating system, while Otter-SAGE emulates
the run-to-completion behavior by not switching away from the currently exe-
cuting path. There are other differences between SAGE and Otter, e.g., SAGE
only invokes the theorem prover at the end of path exploration, whereas Otter
invokes the theorem prover at every conditional along the path. Also, SAGE suf-
fers from divergences, where a generated input may not follow a predicted path
(possibly repeating a previously explored path) due to mismatches between the
system model and the underlying system. Otter does not suffer from divergences
because it uses a purely symbolic system model. These differences may make the
SAGE strategy less suited to Otter.

4 Other Related Work

Several other researchers have proposed general symbolic execution search strate-
gies, in addition to the ones discussed in Section 2. Hybrid concolic testing mixes
random testing with symbolic execution [24]. Burnim and Sen propose several
such heuristics, including a control-flow graph based search strategy [3]. Xie et al
propose Fitnex, a strategy that uses fitness values to guide path exploration [34].
It would be interesting future work to compare against these strategies as well;
we conjecture that, as these are general rather than targeted search strategies,
they will not perform as well as our approach for targeted search.

Researchers have also used model checkers to solve the line reachability prob-
lem by specifying the target line as the target state in the model. Much like our
work, directed model checking [7] focuses on scheduling heuristics to quickly dis-
cover the target. Edelkamp et al proposed several heuristics based on minimizing
the number of transitions from the current program state to the target state in
the model defined by a finite-state automata [8] or Büchi automata [7]. Groce
et al suggested using structural heuristics such as maximizing code coverage or
thread interleavings [14]. Kupferschmid et al borrowed an AI technique based
on finding the shortest distance through a monotonic relaxation of the model
in which states are sets whose successors increase monotonically under set in-
clusion [20]. In contrast, SDSE prioritizes exploration based on distance in the
ICFG, and CCBSE explores backward from the target.

5 Conclusion

In this paper, we studied the problem of line reachability, which arises in au-
tomated debugging and in triaging static analysis results, among other applica-
tions. We introduced two new directed search strategies, SDSE and CCBSE, that
use two very different approaches to solve line reachability. We also discussed a
method for combining CCBSE with any forward search strategy, to get the best
of both worlds. We implemented these strategies and a range of state-of-the-
art forward search strategies (KLEE, SAGE, and Random Path) in Otter, and

110 K.-K. Ma et al.

studied their performance on six programs from GNU Coreutils and on three
synthetic programs. The results indicate that both SDSE and mixed CCBSE
and KLEE outperformed the other strategies. While SDSE performed extremely
well in many cases, it does perform badly sometimes, whereas mixing CCBSE
with KLEE achieves the best overall running time across all strategies, includ-
ing SDSE. In summary, our results suggest that directed symbolic execution is
a practical and effective approach to line reachability.

Acknowledgments. This research was supported in part by National Science
Foundation grants CCF-0346982, CCF-0541036, and CCF-0915978. We would
also like to thank Elnatan Reisner and Jonathan Turpie for their help developing
the POSIX library.

References

1. Bornat, R.: Proving pointer programs in Hoare logic. In: MPC, pp. 102–126 (2000)
2. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT–a formal system for testing and

debugging programs by symbolic execution. In: ICRS, pp. 234–245 (1975)
3. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE, pp.

443–446 (2008)
4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)
5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-

ically generating inputs of death. In: CCS, pp. 322–335 (2006)
6. Coreutils - GNU core utilities, http://www.gnu.org/software/coreutils/
7. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model check-

ing in the validation of communication protocols. Software Tools for Technology
Transfer 5(2), 247–267 (2004)

8. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Trail-directed model checking. Electri-
cal Notes Theoretical Computer Science 55(3), 343–356 (2001)

9. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using
instantiation constraints. In: PLDI, pp. 253–263 (2000)

10. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007)

11. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223 (2005)

12. Godefroid, P., Levin, M.Y., Molnar, D.A.: Active property checking. In: EMSOFT,
pp. 207–216 (2008)

13. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS (2008)

14. Groce, A., Visser, W.: Model checking Java programs using structural heuristics.
In: ISSTA, pp. 12–21 (2002)

15. Howden, W.E.: Symbolic testing and the DISSECT symbolic evaluation system.
IEEE Transactions on Software Engineering 3(4), 266–278 (1977)

16. Khoo, Y.P., Chang, B.-Y.E., Foster, J.S.: Mixing type checking and symbolic exe-
cution. In: PLDI, pp. 436–447 (2010)

17. King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)

http://www.gnu.org/software/coreutils/

Directed Symbolic Execution 111

18. The KLEE Symbolic Virtual Machine, http://klee.llvm.org
19. Kodumal, J., Aiken, A.: The set constraint/CFL reachability connection in prac-

tice. In: PLDI, pp. 207–218 (2004)
20. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI plan-

ning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 35–52. Springer, Heidelberg (2006)

21. Landi, W., Ryder, B.G.: Pointer-induced aliasing: a problem taxonomy. In: POPL,
pp. 93–103 (1991)

22. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis transformation. In: CGO, pp. 75–86 (2004)

23. Ma, K.-K., Khoo, Y.P., Foster, J.S., Hicks, M.: Directed symbolic execution. Tech-
nical Report CS-TR-4979, UMD-College Park (April 2011)

24. Majumdar, R., Sen, K.: Hybrid concolic testing. In: ICSE, pp. 416–426 (2007)
25. Meyering, J.: Seq: give a proper diagnostic for an invalid –format=% option (2008),

http://git.savannah.gnu.org/cgit/coreutils.git/commit/

?id=b8108fd2ddf77ae79cd014f4f37798a52be13fd1

26. Morris, J.M.: A general axiom of assignment. Assignment and linked data structure.
A proof of the Schorr-Waite algorithm. In: Broy, M., Schmidt, G. (eds.) Theoretical
Foundations of Programming Methodology, pp. 25–51 (1982)

27. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: CC 2002. LNCS,
vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

28. The Newlib Homepage, http://sourceware.org/newlib/
29. Osterweil, L.J., Fosdick, L.D.: Program testing techniques using simulated execu-

tion. In: ANSS, pp. 171–177 (1976)
30. Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic subtyping to

CFL-reachability. In: PLDI, pp. 54–66 (2001)
31. Reisner, E., Song, C., Ma, K.-K., Foster, J.S., Porter, A.: Using symbolic evaluation

to understand behavior in configurable software systems. In: ICSE, pp. 445–454
(2010)

32. Reps, T.W.: Program analysis via graph reachability. In: ILPS, pp. 5–19 (1997)
33. μClibc, http://www.uclibc.org/
34. Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Fitness-guided path exploration

in dynamic symbolic execution. In: DSN, pp. 359–368 (2009)
35. Zamfir, C.: Personal communication (May 2011)
36. Zamfir, C., Candea, G.: Execution synthesis: a technique for automated software

debugging. In: EuroSys, pp. 321–334 (2010)

http://klee.llvm.org
http://git.savannah.gnu.org/cgit/coreutils.git/commit/?id=b8108fd2ddf77ae79cd014f4f37798a52be13fd1
http://git.savannah.gnu.org/cgit/coreutils.git/commit/?id=b8108fd2ddf77ae79cd014f4f37798a52be13fd1
http://sourceware.org/newlib/
http://www.uclibc.org/

Statically Validating Must Summaries for
Incremental Compositional Dynamic Test Generation

Patrice Godefroid1, Shuvendu K. Lahiri1, and Cindy Rubio-González2

1 Microsoft Research, Redmond, WA, USA
2 University of Wisconsin, Madison, WI, USA

Abstract. Compositional dynamic test generation can achieve significant scal-
ability by memoizing symbolic execution sub-paths as test summaries. In this
paper, we formulate the problem of statically validating symbolic test summaries
against code changes. Summaries that can be proved still valid using a static anal-
ysis of a new program version do not need to be retested or recomputed dynam-
ically. In the presence of small code changes, incrementality can considerably
speed up regression testing since static checking is much cheaper than dynamic
checking and testing. We provide several checks ranging from simple syntactic
ones to ones that use a theorem prover. We present preliminary experimental re-
sults comparing these approaches on three large Windows applications.

1 Introduction

Whitebox fuzzing [15] is a promising new form of security testing based on dynamic
test generation [5, 14]. Dynamic test generation consists of running a program while
simultaneously executing the program symbolically in order to gather constraints on
inputs from conditional statements encountered along the execution. Those constraints
are then systematically negated and solved with a constraint solver, generating new
test inputs to exercise di�erent execution paths of the program. Over the last couple of
years, whitebox fuzzing has extended the scope of dynamic test generation from unit
testing to whole-program security testing, thanks to new techniques for handling very
long execution traces (with billions of instructions). In the process, whitebox fuzzers
have found many new security vulnerabilities (bu�er overflows) in Windows [15] and
Linux [21] applications, including codecs, image viewers and media players. Notably,
our whitebox fuzzer SAGE found roughly one third of all the bugs discovered by file
fuzzing during the development of Microsoft’s Windows 7 [12]. Since 2008, SAGE has
been continually running on average 100� machines automatically “fuzzing” hundreds
of applications in a dedicated security testing lab. This represents the largest computa-
tional usage ever for any Satisfiability Modulo Theories (SMT) solver [27], according
to the authors of the Z3 SMT solver [8].

Despite these successes, several challenges remain, such as increasing code cover-
age and bug finding, while reducing computational costs. A key promising idea is com-
positionality: the search process can be made compositional by memoizing symbolic
execution sub-paths as test summaries which are re-usable during the search, resulting
in a search algorithm that can be exponentially faster than a non-compositional one

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 112–128, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Statically Validating Must Summaries 113

[11]. By construction, symbolic test summaries are “must” summaries guaranteeing the
existence of some program executions and hence useful for proving existential reacha-
bility properties (such as the existence of an input leading to the execution of a specific
program branch or bug). They dualize traditional “may” summaries used in static pro-
gram analysis for proving universal properties (such as the absence of specific types of
bugs for all program paths). We are currently building a general infrastructure to gener-
ate, store and re-use symbolic test summaries for large parts of the Windows operating
system.

In this context, an important problem is the maintenance of test summaries as the
code under test slowly evolves. Recomputing test summaries dynamically from scratch
for every program version sounds wasteful, as new versions are frequent and much
of the code has typically not changed. Instead, whenever possible, it could be much
cheaper to statically check whether previously-computed symbolic test summaries are
still valid for the new version of the code. The formalization and study of this problem
is the motivation for this paper.

We introduce the must-summary checking problem:

Given a set S of symbolic test summaries for a program Prog and a new version
Prog� of Prog, which summaries in S are still valid must summaries for Prog�?

We also consider the more general problem of checking whether an arbitrary set S of
summaries are valid must summaries for an arbitrary program Prog.

We present three algorithms with di�erent precision to statically check which old test
summaries are still valid for a new program version. First, we present an algorithm (in
Section 3) based on a simple impact analysis of code changes on the static control-flow
and call graphs of the program; this algorithm can identify local code paths that have
not changed and for which old summaries are therefore still valid. Second, we present
(in Section 4) a more precise predicate-sensitive refined algorithm using verification-
condition generation and automated theorem proving. Third, we present an algorithm
(in Section 5) for checking the validity of a symbolic test summary against a program
regardless of program changes, by checking whether the pre�postconditions captured in
the old summary still hold on the new program. We discuss the strengths and weak-
nesses of each solution, and present preliminary experimental results with sample test
summaries generated for three large Windows applications. These experiments con-
firm that hundreds of summaries can be validated statically in minutes, while validating
those dynamically can require hours or days.

2 Background and Problem Definition

2.1 Background: Compositional Symbolic Execution

We assume we are given a sequential program Prog with input parameters I. Dy-
namic test generation [14] consists of running the program Prog both concretely and
symbolically, in order to collect symbolic constraints on inputs obtained from predi-
cates in branch statements along the execution. For each execution path w, i.e., a se-
quence of statements executed by the program, a path constraint �w is constructed that

114 P. Godefroid, S.K. Lahiri, and C. Rubio-González

characterizes the input values for which the program executes along w. Each variable
appearing in �w is thus a program input. Each constraint is expressed in some theory
T decided by a constraint solver (for instance, including linear arithmetic, bit-vector
operations, etc.). A constraint solver is an automated theorem prover which also returns
a satisfying assignment for all variables appearing in constraints it can prove satisfiable.
All program paths can be enumerated by a search algorithm that explores all possible
branches at conditional statements. The paths w for which �w is satisfiable are feasible
and are the only ones that can be executed by the actual program provided the solutions
to �w characterize exactly the inputs that drive the program through w. Assuming that
the constraint solver used to check the satisfiability of all formulas �w is sound and
complete, this use of symbolic execution for programs with finitely many paths amounts
to program verification.

Systematically testing and symbolically executing all feasible program paths does
not scale to large programs. Indeed, the number of feasible paths can be exponential in
the program size, or even infinite in the presence of loops with unbounded number of
iterations. This path explosion [11] can be alleviated by performing symbolic execution
compositionally [2, 11].

Let us assume the program Prog consists of a set of functions. In the rest of this
section, we use the generic term of function to denote any part of the program Prog
whose observed behaviors are summarized; any program fragments can be treated as
“functions” as will be discussed later. To simplify the presentation, we assume the
functions in Prog do not perform recursive calls, and that all the executions of Prog
terminate. These assumptions do not prevent Prog from having infinitely many execu-
tions paths if it contains a loop whose number of iterations depends on some unbounded
input.

In compositional symbolic execution, a function summary � f for a function f is de-
fined as a logic formula over constraints expressed in theory T . � f can be derived by
successive iterations and defined as a disjunction of formulas �w f of the form �w f �

prew f � postw f , where wf denotes an intraprocedural path inside f , prew f is a conjunc-
tion of constraints on the inputs of f , and postw f is a conjunction of constraints on the
outputs of f . An input to a function f is any value that can be read by f , while an out-
put of f is any value written by f . �w f can be computed automatically from the path
constraint for the intraprocedural path wf [2, 11].

For instance, given the function �� �������� in Figure 1, a summary � f for this
function can be

� f � (x � 0 � ret � 1) � (x � 0 � ret � 0)

where ret denotes the value returned by the function.
Symbolic variables are associated with function inputs (like x in the example) and

function outputs (like ret in the example), in addition to whole-program inputs. In order
to generate a new test to cover a new branch b in some function, all the previously
known summaries can be used to generate a formula �P representing symbolically all
the paths known so far during the search. By construction [11], symbolic variables
corresponding to function inputs and outputs are all bound in �P, and the remaining
free variables correspond exclusively to whole-program inputs (since only those can be
controlled for test generation).

Statically Validating Must Summaries 115

������� � �		

��� ���� ����� � �� � ������

��� �� ��� � 	�

��� � � 	� � � �� ����

��� � ��� � ���������
�������

�� ��� �� �� ������� �� ��

�������

�

��� �� ������
���� � �

�� ! 	� ������ ��

������ 	�

�

��� "��� � ��� #� �

�� ! 	�$$%&�%#� ! �	��

������ ��

������ 	�

�

Fig. 1. Example

For instance, for the program � in Figure 1, a formula �P to generate a test covering
the then branch (*) given the above summary � f for function �� �������� can be

(ret0 � ret1 � � � � � retN�1 � 3) �
�

0�i�N

((s[i] � 0 � reti � 1) � (s[i] � 0 � reti � 0))

where reti denotes the return value of the ith call to function �� ��������. Even
though program � has 2N�1 feasible whole-program paths, compositional test gener-
ation can cover “symbolically” all those paths in at most 4 test inputs: 2 tests to cover
both branches in function �� �������� plus 2 tests to cover both branches of the con-
ditional statement (*). Compositionality avoids an exponential number of tests and
calls to the constraint solver, at the cost of using more complex formulas with more
disjunctions.

2.2 Problem Definition: Must Summary Checking

In practice, symbolic execution of large programs is bound to be imprecise due to com-
plex program statements (pointer manipulations, floating-point operations, etc.) and
calls to operating-system and library functions that are hard to reason about symbol-
ically with good enough precision at a reasonable cost. Whenever precise symbolic
execution is not possible during dynamic test generation, concrete values can be used
to simplify constraints and carry on with a simplified, partial symbolic execution [14].
The resulting path constraints are then under-approximate, and summaries become must
summaries.

For example, consider the function 	 in Figure 1 and assume the function
��
��

is a complex or unknown function for which no constraint is generated. Assume we
observe at runtime that when 	 is invoked with y � 45, the value of
��
���� is 987.
The summary for this execution of function 	 can then be

(x � 0 � y � 45 � ret � 1)

Here, symbolic variable y is constrained to be equal to the concrete value 45 observed
along the run because the expression hash(y) cannot be symbolically represented. This
summary is a must summary since all value pairs (x� y) that satisfy its precondition
define executions of 	 that satisfy the postcondition ret � 1. However, this set is a subset

116 P. Godefroid, S.K. Lahiri, and C. Rubio-González

of all value pairs that satisfy this postcondition assuming there exists some other value
of y di�erent from 45 such that hash(y) � 10. For test generation purposes, we safely
under-approximate this perfect but unknown input set with the smaller precondition
x � 0 � y � 45. A must summary can thus be viewed as an abstract witness of some
execution. Must summaries are useful for bug finding and test generation, and dualize
may summaries for proving correctness, i.e., the absence of bugs.

We denote a must summary by a quadruple �lp, P, lq, Q� where lp and lq are arbitrary
program locations, P is a summary precondition holding in lp, and Q is a summary
postcondition holding in lq. lp and lq can be anywhere in the program: for instance, they
can be the entry and exit points of a function (as in the previous examples) or block,
or two program points where consecutive symbolic constraints are injected in the path
constraint during symbolic execution, possibly in di�erent functions. In what follows,
we call a summary intraprocedural if its locations (lp, lq) are in a same function f and
the function f did not return between lp to lq when the summary was generated (i.e., no
instruction from a function calling f higher in the call stack was executed from lp to lq
when the summary was generated). We will only consider intraprocedural summaries
in the remainder of this paper, unless otherwise specified.

Formally, must summaries are defined as follows.

Definition 1. A must summary �lp, P, lq, Q� for a program Prog implies that, for every
program state satisfying P at lp in Prog, there exists an execution that visits lq and
satisfies Q at lq.

A must summary is called valid for a program Prog if it satisfies Definition 1. We define
the must-summary checking problem as follows.

Definition 2. (Must-summary checking) Given a valid must summary �lp, P, lq, Q� for
a program Prog and a new version Prog� of Prog, is �lp, P, lq, Q� still valid for Prog�?

We also consider later in Section 5 the more general problem of checking whether
an arbitrary must summary is valid for an arbitrary program Prog. These problems
are di�erent from the must summary inference�generation problem discussed in prior
work [2, 11, 16].

We present three di�erent algorithms for statically checking which old must sum-
maries are still valid for a new program version. These algorithms can be used in isola-
tion or in a pipeline, one after another, in successive “phases” of analysis.

3 Phase 1: Static Change Impact Analysis

The first “Phase 1” algorithm is based on a simple impact analysis of code changes in
the static control-flow and call graphs of the program.

A suÆcient condition to prove that an old must summary �lp, P, lq, Q� generated as
described in Section 2.1 is still valid in a new program version is that all the instruc-
tions that were executed in the original program path taken between lp and lq when the
summary was generated remain unchanged in the new program. Recording all unique
instructions executed between each pair (lp, lq) would be expensive for large programs
as many instructions (possibly in other functions) can be executed.

Statically Validating Must Summaries 117

Instead, we can over-approximate this set by statically finding all program instruc-
tions that may be executed on all paths from lp to lq: this solution requires no additional
storage of runtime-executed instructions but is less precise. If no instruction in this
larger set has changed between the old and new programs, any summary for (lp, lq) can
then be safely reused for the new program version; otherwise, we have to conservatively
declare the summary as potentially invalid since a modified instruction might be on the
original path taken from lp to lq when the summary was generated.

To determine whether a specific instruction in the old program is unchanged in the
new program, we rely on an existing lightweight syntactic “di�”-like tool which can
(conservatively) identify instructions that have been modified, deleted or added between
two program versions by comparing their abstract syntax trees.

Precisely, an instruction i of a program Prog is defined as modified in another pro-
gram version Prog� if i is changed or deleted in Prog� or if its ordered set of immediate
successor instructions changed between Prog and Prog�. For instance, swapping the
then and else branches of a conditional jump instruction “modifies” the instruction.
However, the definition is local as it does not involve non-immediate successors.

Program instructions that are not modified can be mapped across program versions.
Conversely, if an instruction cannot be mapped across program versions, it is considered
as “deleted” and therefore modified. Similarly, a program function is defined as modified
if it contains either a modified instruction, or a call to a modified function, or a call to
an unknown function (e.g., a function outside the program or through a function pointer
which we conservatively assume may have been modified). Note that this definition is
transitive, unlike the definition of modified instruction.

Given those definitions, we can soundly infer valid summaries using the following
rule.

An intraprocedural summary from lp to lq inside a same function f is valid if,
in the control-flow graph for f , no instruction between lp and lq is modified or
is a call to a modified function.

The correctness of this rule is immediate for intraprocedural summaries (as defined in
Section 2.2) since, if the condition stated in the rule holds, we know that all instructions
between lp and lq are unchanged across program versions.

Implementing this rule requires building the control-flow graph of every function
containing an old intraprocedural summary and the call graph for the entire program in
order to transitively determine which functions are modified. Note that the precision of
the rule above could be improved by considering interprocedural control-flow graphs
(merging together multiple intraprocedural control-flow graphs), at the cost of building
larger graphs.

4 Phase 2: Predicate-Sensitive Change Impact Analysis

Consider the summary �lp, x � 0 � y � 10, lq, w � 0� for the code fragment shown on
the left of Figure 2. Assume the instructions marked with “MODIFIED” have been
modified in the new version. Since some instructions on some paths from lp to lq have
been modified, the Phase 1 analysis will invalidate the summary. However, notice that

118 P. Godefroid, S.K. Lahiri, and C. Rubio-González

'''

(�) �� ! 	� �

�� # �� �	�

*��� �� +,-./.0-

�(��

* � 	�

� �(�� �

* � �� �� +,-./.0-

�

(1) '''

'''

(�) �� � 	� �

�� # � 	�

� � ��

�(�� �

� � 	� ��+,-./.0- �� � � 2�

�

�

(1) '''

Fig. 2. Motivating examples for Phase 2 (left) and Phase 3 (right)

the set of executions that start from a state satisfying x � 0 � y � 10 at lp and reach lq
has not changed.

In this section, we present a second change impact analysis “Phase 2” that exploits
the predicates P and Q in a summary �lp, P, lq, Q� to perform a more refined analy-
sis. The basic idea is simple: instead of considering all the paths between lp and lq,
we only consider those that also satisfy P in lp and Q in lq. We now describe how
to perform such a predicate-sensitive change impact analysis using static verification-
condition generation and theorem proving. We start with a program transformation for
checking that all executions satisfying P in lp that reach lq and satisfy Q in lq are not
modified from lp to lq.

Given an intraprocedural summary �lp, P, lq, Q� for a function f , we modify the body
of f in the old code as follows. Let Entry denote the location at the beginning of f , i.e.,
just before the first instruction executed in f . We use an auxiliary Boolean variable
modified, and insert the following code at the labels Entry, lp, lq and at all labels �

corresponding to a modified instruction or a call to a modified function (just before the
instruction at that location).

Entry : goto lp;

lp : assume P; modified :� false;

lq : assert (Q �� �modified);

� : modified :� true;

The assume statement assume P at lp is a blocking instruction [4], which acts as a
no-op if control reaches the statement in a state satisfying the predicate P, and blocks
the execution otherwise. The assertion at lq checks that if an execution reaches lq where
it satisfies Q via lp where it satisfied P, it does not execute any modified instruction
between lp and lq.

Theorem 1. Given an intraprocedural must summary �lp, P, lq, Q� valid for a function
f in an old program Prog, if the assertion at lq holds in the instrumented old program
for all possible inputs for f , then �lp, P, lq, Q� is a valid must summary for the new
program Prog�.

Proof. The assertion at lq ensures that all executions in the old program Prog that
(1) reach lq and satisfy Q in lq and (2) satisfy P at lp do not execute any instruction

Statically Validating Must Summaries 119

that is marked as modified between lp and lq. This set of executions is possibly over-
approximated by considering all possible inputs for f , i.e., ignoring specific calling
contexts for f and lp in Prog. Since all the instructions executed from lp to lq during
those executions are preserved in the new program Prog�, all those executions W from
lp to lq are still possible in the new program. Moreover, since �lp, P, lq, Q� is a must
summary for the old program Prog, we know that for every state s satisfying P in
lp, there exists an execution w from s that reaches lq and satisfies Q in lq in Prog.
This execution w is included in the set W preserved from Prog to Prog�. Therefore, by
Definition 1, �lp, P, lq, Q� is a valid must summary for Prog�. �	

The reader might wonder the reason for performing the above instrumentation on the
old program Prog instead of on the new program Prog�. Consider the case of a state
that satisfies P at lp from which there is an execution that reaches lq in Prog, but from
which no execution reaches lq in Prog�. In this case, the must summary �lp, P, lq, Q� is
invalid for Prog�. Yet applying the above program transformation to Prog� would not
necessarily trigger an assertion violation at lq since lq may no longer be reachable in
Prog�.

To validate must summaries statically, one can use any static assertion checking tool
to check that the assertion in the instrumented program does not fail for all possible
function inputs. In this work, we use Boogie [3], a verification condition (VC) based
program verifier to check the absence of assertion failures. VC-based program verifiers
create a logic formula from a program with assertions with the following guarantee: if
the logic formula is valid, then the assertion does not fail in any execution. The validity
of the logic formula is checked using a theorem prover, typically a SMT solver. For
loop-free and call-free programs, the logic formula is generated by computing variants
of weakest liberal preconditions (wlp) [9]. Procedure calls can be handled by assigning
non-deterministic values to the return variable and all the globals that can be potentially
modified during the execution of the callee. Similarly, loops can be handled by assigning
non-deterministic values to all the variables that can be modified during the execution of
the loop. Although procedure postconditions and loop invariants can be used to recover
the loss of precision due to the use of non-determinism for over-approximating side
e�ects of function calls and loop iterations, we use the default postcondition and loop
invariant true for our analysis to keep the analysis automated and simple.

5 Phase 3: Must Summary Validity Checking

Consider the code fragment shown on the right of Figure 2 where the instruction marked
“MODIFIED” is modified in the new code. Consider the summary �lp, x � 0, lq, r
 0�.
Since the modified instruction is along a path between lp and lq, even when restricted
under the condition P at lp, neither Phase 1 nor Phase 2 will validate the summary.
However, note that the change does not a�ect the validity of the must summary: all
executions satisfying x � 0 at lp still reach lq and satisfy r
 0 in the new code, which
means the must summary is still valid. In this section, we describe a third algorithm
dubbed “Phase 3” for statically checking the validity of a must summary �lp, P, lq, Q�
against some code, independently of code changes.

120 P. Godefroid, S.K. Lahiri, and C. Rubio-González

In the rest of this section, we assume that the programs under consideration are (i)
terminating, i.e., every execution eventually terminates, and (ii) complete, i.e., every
state has a successor state.

Given an intraprocedural summary �lp, P, lq, Q� for a function f , we perform the
following instrumentation on the new code. We denote by Entry the location of the
first instruction in f , while Exit denotes any exit instruction in f . We use an auxiliary
Boolean variable reach lq, and insert the following code at the labels Entry, lp, lq and
Exit.

Entry : reach lq :� false; goto lp;

lp : assume P;

lq : assert (Q); reach lq :� true;

Exit : assert (reach lq);

The variable reach lq is set when lq is visited in an execution, and initialized to false
at the Entry node. The assume P blocks the executions that do not satisfy P at lp. The
assertion at lq checks that if an execution reaches lq via lp, it satisfies Q. Finally, the
assertion at Exit checks that all executions from lp have to go through lq.

Theorem 2. Given an intraprocedural must summary �lp, P, lq, Q� for a function f ,
if the assertions hold in the instrumented program for all possible inputs of f , then
�lp, P, lq, Q� is a valid must summary for the program.

Proof. The assertion at lq ensures that every execution that reaches lq from a state
satisfying P at lp, satisfies Q. This set of executions is possibly over-approximated by
considering all possible inputs for f , i.e., ignoring specific calling contexts for f and
lp. Since we consider programs that are terminating and complete, the assertion at Exit
is checked for every execution (except those blocked by assume P in lp which do not
satisfy P), and ensures that every execution that satisfies P at lp visits lq. The goto lp
ensures that lp is reached from Entry, otherwise the two assertions could vacuously hold
if lp was not reachable or through restricted calling contexts smaller than P. �	

The assertions in the instrumented function can be checked using any o�-the-shelf
assertion checker as described in Section 4. Our implementation uses VC generation
and a theorem prover to validate the summaries. Since loops and procedure calls are
treated conservatively by assigning non-deterministic values to modified variables, the
static validation is also approximate and may sometimes fail to validate valid must
summaries.

Note that Phase 3 is not an instance of the Phase 2 algorithm when every statement
is marked as “modified”: Phase 3 checks the new program while Phase 2 checks the old
program (see also the remark after Theorem 1).

Moreover, the precision of Phase 3 is incomparable to the precision of Phase 2 (which
refines Phase 1). Both Phase 1 and Phase 2 validate a must summary for the new pro-
gram assuming it was a must summary for the old program, whereas Phase 3 provides
an absolute guarantee on the new program. At the start of this section, we presented an
example of a valid must summary that can be validated by Phase 3 but not by Phase 2.

Statically Validating Must Summaries 121

Conversely, Phase 3 may fail to validate a summary due to the presence of complex code
between lp and lq and imprecision in static assertion checking, while Phase 1 or Phase 2
may be able to prove that the summary is still valid by detecting that the complex code
has not been modified.

6 Dealing with Partial Summaries

In practice, tracking all inputs and outputs of large program fragments can be prob-
lematic in the presence of large or complex heap-allocated data structures or when
dealing with library or operating-system calls with possibly unknown side e�ects. In
those cases, the constraints P and Q can be approximate, i.e., only partially defined: P
constraints only some inputs, while Q can capture only some outputs (side e�ects). The
must summary is then called partial, and may be wrong in some other unknown call-
ing context. Constraints containing partial must summaries may generate test cases that
will not cover the expected program paths and branches. Such divergences [14] can be
detected at runtime by comparing the expected program path with the actual program
path being taken. In practice, divergences are often observed in dynamic test genera-
tion, and partial summaries can still be useful to limit path explosion, even at the cost
of some divergences.

Consider the partial summary �lp, x � 0, lq, ret � 1� for the function

��� 3��� � �

(�) �� ! 	� $$
4(�5&(! �	�� ������ ��

������ 	�

(1) �

where the input value stored in the global variable ������� is not captured in the
summary, perhaps because it does not depend on a whole-program input. If the value of
������� is constant, the constraint �������� � ��� is always true and can safely be
skipped. Otherwise, the partial summary is imprecise: it may be wrong in some calling
contexts.

The validity of partial must summaries could be defined in a weaker manner to reflect
the fact that they capture only partial preconditions, for instance as follows:

Definition 3. A partial must summary �lp, P, lq, Q� is valid for a program Prog if there
exists a predicate R on program variables, such that (i) R does not imply false, (ii) the
support1 of R is disjoint from the support of P, and (iii) �lp, P � R, lq, Q� is a must
summary for Prog.

Since R is not false, the conditions (ii) and (iii) cannot be vacuously satisfied. More-
over, since the supports of P and R are disjoint, R does not constrain the variables in P
yet requires that the partial must summary tracks a subset of the inputs (namely those
appearing in P) precisely.

In practice, it can be hard and expensive to determine whether a must summary is
partial or not. Fortunately, any partial must summary can be soundly validated using the

1 The support of an expression refers to the variables in the expression.

122 P. Godefroid, S.K. Lahiri, and C. Rubio-González

stronger Definition 1, which is equivalent to setting R to true in Definition 3. Phases 1,
2 and 3 are thus all sound for validating partial must summaries.

Validating partial summaries with Definition 3 or full summaries for non-
deterministic programs with Definition 1 could be done more precisely with an as-
sertion checker that can reason about alternating existential and universal quantifiers,
which is non-standard. It would be interesting to develop such an assertion checker in
future work.

7 Recomputing Invalidated Summaries

All the summaries declared valid by Phase 1, 2 or 3 are mapped to the new code and
can be reused. In contrast, all invalid summaries need to be recomputed, for instance
using a breadth-first strategy in the graph formed by superposing path constraints.

Consider the graph G whose nodes are all the program locations lp and lq mentioned
in the old set of test summaries, and where there is an edge from lp to lq for each
summary. Note that, by construction [11], every node lq of a summary matches the
node lp of the next summary in the whole-program path constraint, unless lq is the last
conditional statement in the path constraint or lp is the first one, which we denote by r
for “root”. By construction, G is a directed acyclic graph.

Consider any invalid summary �lp, P, lq, Q� that is closest to the root r of G. Let
� denote the set of paths from r to lp. By construction with a breadth-first strategy,
all summaries along all the paths in � are still valid for the new program version. To
recompute the summary �lp, P, lq, Q� for the new program, we call the constraint solver
with the formula

P �
�

�i��

�i

in order to generate a test to exercise condition P at the program location lp (see
Section 2.1). Then, we run this test against the new program version and generate a
new summary from lp to wherever it leads to (possibly a new lq and Q). This process
can be repeated to recompute all invalidated summaries in a breadth-first manner in G.

8 Experimental Results

We now present preliminary results for validating intraprocedural must summaries gen-
erated by our tool SAGE [15] for several benchmarks, with a focus on understanding
the relative e�ectiveness of the di�erent approaches.

8.1 Implementation

We have developed a prototype implementation for analyzing x86 binaries, using two
existing tools: the Vulcan [10] library to statically analyze Windows binaries, and the
Boogie [3] program verifier. We briefly describe the implementation of the di�erent
phases in this section.

Our tool takes as input the old program (DLLs), the set of summaries generated by
SAGE for the old program, and the new version of the program. We use Vulcan to

Statically Validating Must Summaries 123

Functions with Changes Summaries
Benchmark Functions M % M IM % IM U % U IU % IU (Intraprocedural)
ANI 6978 703 10% 3130 45% 2340 34% 5174 74% 286
GIF 13897 712 5% 4370 31% 3814 27% 8827 64% 288
JPEG 20357 623 3% 6150 30% 7463 37% 12184 60% 517

Fig. 3. Benchmark characteristics

find di�erences between the two versions of the program, and propagate them inter-
procedurally. In this work, we focus on the validation of must summaries that are in-
traprocedural (SAGE classifies summaries as intraprocedural or not at generation time).
Intraprocedural summaries that cannot be validated by Phase 1 are further examined by
the more precise Phases 2 and 3. For each of those, we conservatively translate the x86
assembly code of the function containing the summary to a function in the Boogie input
language, and use the Boogie verifier (which uses the Z3 SMT solver) to validate the
summaries using the Phase 2 or Phase 3 checks. Finally, our tool maps the lp and lq
locations of every validated summary from the old program to the new program.

Unfortunately, Boogie currently does not generate a VC if the function under analysis
has an irreducible control-flow graph [1], although the theory handles it [3]. A function
has an irreducible control-flow graph if there is an unstructured loop with multiple
entry points into the loop. Such an unstructured loop can arise from two sources: (i)
x86 binaries often contain unstructured goto statements, and (ii) we add a 	��� lp
statement in Phases 2 and 3 that might jump inside a loop. Such irreducible graphs
appear in roughly 20% of the summaries considered in this section. To circumvent
this implementation issue, we report experimental results in those cases where such
loops are unrolled a constant number of times (four times). Although we have manually
checked that many of these examples will be provable if we had support for irreducible
graphs, we can treat those results to indicate the potential of Phase 2 or Phase 3: if their
e�ectiveness is poor after unrolling, it can only be worse without unrolling.

8.2 Benchmarks

Table 3 describes the benchmarks used for our experiments. We consider three image
parsers embedded in Windows: ANI, GIF and JPEG. For each of these, we ran SAGE
to generate a sample of summaries. The number of DLLs with summaries for the three
benchmarks were 3 for ANI, 4 for GIF, and 8 for JPEG. Then, we arbitrarily picked a
newer version of each of these DLLs; these were between one and three years newer
than the original DLLs. The column “Functions” in Table 3 denotes the total number
of functions present in the original DLLs. The columns marked “M”, ”IM”, ”U” and
”IU” denote the number of functions that are “Modified”, “Indirectly Modified” (i.e.,
calling a modified function), “Unknown” (i.e., calling a function in an unknown DLL
or through a function pointer) and “Indirectly Unknown”, respectively. The table also
contains the percentage of such functions over the total number of functions. Finally, the
“Summaries” column denotes the number of summaries classified as intraprocedural.
For all three benchmarks, most summaries generated by SAGE are intraprocedural.

124 P. Godefroid, S.K. Lahiri, and C. Rubio-González

Benchmark # Summ Phase 1 Phase 2 Phase 3 All
% time # % time # % time # % time

ANI 286 167 58% 8m (3m) 244 85% 37m 86 30% 42m 256 90% 87m
GIF 288 198 69% 12m (4m) 264 92% 23m 90 31% 35m 274 95% 70m

JPEG 517 317 61% 18m (6m) 487 94% 31m 173 33% 37m 501 97% 86m

Fig. 4. Di�erent phases on all the intraprocedural summaries

Although these benchmarks have a relatively small fraction of modified functions
(between 3% – 10%), the fraction of functions that can transitively call into these func-
tions can be fairly large (between 30% – 45%). The impact of unknown functions is
even more significant, with most functions being marked U or IU. Note that any call to
a M, IM, U or IU function would be marked as modified in Phase 1 of our validation
algorithm (Section 3). Although we picked two versions of each benchmark separated
by more than a year, we expect the most likely usage of our tool to be for program
versions separated only by a few weeks.

8.3 Results

The three tables (Fig. 4, Fig. 5 and Fig. 6) report the relative e�ectiveness of the di�er-
ent phases on the previous benchmarks. Each table contains the number of intraproce-
dural summaries for each benchmark (“# Summ”), the validation done by each of the
phases, and the overall validation. For each phase (and overall), we report the number of
summaries validated (“#”), the percentage of the total number of summaries validated
(“%”) and the time (in minutes) taken for the validation. The time reported for Phase 1
includes the time taken for generating the modified instructions interprocedurally, and
mapping the old summaries to the new code; the fraction of time spent solely on vali-
dating the summaries is shown in parenthesis. The failure to prove a summary valid in
Phase 2 or Phase 3 could be the result of a counterexample, timeout (100 seconds per
summary), or some internal analysis errors in Boogie.

Figure 4 reports the e�ect of passing all the intraprocedural summaries indepen-
dently to all the three phases. First, note that the total number of summaries validated is
quite significant, between 90% and 97%. Phase 1 can validate between 58%–69% of the
summaries, Phase 2 between 85%–94% and Phase 3 between 30%–33%. Since Phase 1
is simpler, it can validate the summaries the fastest among the three approaches. The
results also indicate that Phase 2 has the potential to validate significantly more sum-
maries than Phase 1 or Phase 3. After a preliminary analysis of the counterexamples
for Phase 3, its imprecision seems often due to the partiality of must summaries (see
Section 6): many must summaries do not capture enough constraints on states to enable
their validation using Phase 3.

To understand the overlap between the summaries validated by each phase, we report
the results of the three phases in a “pipeline” fashion, where the summaries validated by
an earlier phase are not considered in the later stages. In all the configurations, Phase 1
was allowed to go first because it generates information required for running Phase 2
and Phase 3, and because it is the most scalable as it does not involve a program verifier.

Statically Validating Must Summaries 125

Benchmark # Summ Phase 1 Phase 2 Phase 3 All
% time # % time # % time # % time

ANI 286 167 58% 8m 77 27% 29m 12 4% 6m 256 90% 43m
GIF 288 198 69% 12m 73 25% 15m 3 1% 1m 274 95% 28m

JPEG 517 317 61% 18m 179 35% 18m 5 1% 5m 501 97% 41m

Fig. 5. Pipeline with Phase 1, Phase 2 and Phase 3

Benchmark # Summ Phase 1 Phase 3 Phase 2 All
% time # % time # % time # % time

ANI 286 167 58% 8m 30 10% 12m 59 21% 27m 256 90% 47m
GIF 288 198 69% 12m 25 9% 7m 51 18% 12m 274 95% 31m

JPEG 517 317 61% 18m 52 10% 14m 132 26% 14m 501 97% 46m

Fig. 6. Pipeline with Phase 1, Phase 3, Phase 2

The invalid summaries from Phase 1 are passed either to Phase 2 first (Figure 5) or to
Phase 3 first (Figure 6).

The results indicate that the configuration of running Phase 1, followed by Phase 2
and then Phase 3 is the fastest. The overall runtime in Figure 5 is roughly half than the
overall runtime in Figure 4. Note that the number of additional summaries validated by
Phase 3 beyond Phases 1 and 2 is only 1%–4%.

On average from Figure 5, it takes about (43 min divided by 256 summaries) 10
secs to statically validate one summary for ANI, 6 secs for GIF and 5 secs for JPEG.
In contrast, the average time needed by SAGE to dynamically re-compute a summary
from scratch is about 10 secs for ANI, 70 secs for GIF and 100 secs for JPEG. Statically
validating summaries is thus up to 20 times faster for these benchmarks.

9 Related Work

Compositional may static program analysis has been amply discussed in the litera-
ture [25]. A compositional analysis always involves some form of summarization. In-
cremental program analysis is also an old idea [7, 24] that nicely complements com-
positionality. Any incremental analysis involves the use of some kind of “derivation
graph” capturing inference interdependencies between summaries during their compu-
tation, such as which lower-level summary was used to infer which higher-level sum-
mary. While compositional interprocedural analysis has now become mainstream in
industrial-strength static analysis tools (e.g., [19]) which otherwise would not scale to
large programs, incremental algorithms are much less widely used in practice. Indeed,
those algorithms are more complicated and often not really needed as well-engineered
compositional static analysis tools can process millions of lines of code in only hours
on standard modern computers.

The purpose of our general line of research is to replicate the success of compo-
sitional static program analysis to the testing space. In our context, the summaries we
memoize (cache) are symbolic test must summaries [2, 11] which are general

126 P. Godefroid, S.K. Lahiri, and C. Rubio-González

input-dependent pre�postconditions of a-priori arbitrary code fragments, and which are
represented as logic formulas that are used by an SMT solver to carry out the interpro-
cedural part of the analysis. Because test summaries need to be precise (compared to
those produced by standard static analysis) and are generated during an expensive dy-
namic symbolic execution of large whole programs, incrementality is more appealing
for cost-reduction in our context.

The algorithms presented in Sections 3 and 4 have the general flavor of incremental
algorithms [24], while the graph formed by superposing path constraints and used to
recompute invalidated summaries in Section 7 corresponds to the “derivation graph”
used in traditional incremental compositional static-analysis algorithms. However, the
details of our algorithms are new due to the specific nature of the type of summaries we
consider.

The closest related work in the testing space are probably techniques for regres-
sion test selection (e.g., see [17]) which typically analyze test coverage data and code
changes to determine which tests in a given test suite need to be re-executed to cover
newly modified code. The techniques we use in Phase 1 of our algorithm are similar,
except we do not record coverage data for each pair lp and lq as discussed at the begin-
ning of Section 3. There is a rich literature on techniques for static and dynamic change
impact analysis (see [26] for a summary). Our Phase 1 can be seen as a simple instance
of these techniques, aimed at validating a given must summary. Although more sophis-
ticated static-analysis techniques (based on dataflow analysis) have been proposed for
change impact analysis, we are not aware of any attempt to use verification-condition
generation and automated theorem proving techniques like those used in Phase 2 and
Phase 3 for precise checking of the impact of a change. The work on di�erential sym-
bolic execution (DSE) [22] is the closest to our Phase 3 algorithm. Unlike DSE, we do
not summarize paths in the new program to compare those with summaries of the old
program; instead, we want to avoid recomputing new summaries by reusing old ones as
much as possible. Whenever an old summary �lp, P, lq, Q� becomes invalid and needs to
be recomputed, a data-flow-based impact analysis like the one discussed in [23] could
refine the procedure described in Section 7 by identifying which specific program paths
from lp to lq need to be re-executed symbolically. In our experiments, every summary
covers one or very few paths (of the old program), and this optimization is not likely to
help much.

Must abstractions are program abstractions geared towards finding errors, which
dualize may abstractions geared towards proving correctness [13]. Reasoning about
must abstractions using logic constraint solvers has been proposed before [6, 13, 16,
18, 20], and are related to Phase 3 in our work.

10 Conclusions

In this work, we formulated the problem of statically validating must summaries to
make compositional dynamic test generation more incremental. We described three ap-
proaches for validating must summaries, that di�er in their strengths and weaknesses.
We outlined the subtleties involved in using an o�-the-shelf verification-condition-
based checker for validating must summaries, and the impact of partial predicates on

Statically Validating Must Summaries 127

precision. We presented a preliminary evaluation of these approaches on a set of
representative intraprocedural summaries generated from real-world applications, and
demonstrated the e�ectiveness of static must summary checking. We plan to evaluate
our tool on a larger set of summaries and benchmarks, investigate how to validate inter-
procedural summaries, and improve the precision of the path-sensitive analysis.

Acknowledgements. We thank the anonymous reviewers for their constructive com-
ments. The work of Cindy Rubio-González was done mostly while visiting Microsoft
Research. A preliminary version of this work appeared under the title “Incremental
Compositional Dynamic Test Generation” as MSR Technical Report MSR-TR-2010-
11, February 2010.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading (1986)

2. Anand, S., Godefroid, P., Tillmann, N.: Demand-Driven Compositional Symbolic Execu-
tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381.
Springer, Heidelberg (2008)

3. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2005)

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE
2005, pp. 82–87 (2005)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automatically Gen-
erating Inputs of Death. In: ACM CCS (2006)

6. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: A Powerful Approach to Weakest Pre-
conditions. In: PLDI 2009 (2009)

7. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms for inter-
procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005)

8. de Moura, L., Bjorner, N.: Z3: An EÆcient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18, 453–457 (1975)

10. Edwards, A., Srivastava, A., Vo, H.: Vulcan: Binary transformation in a distributed environ-
ment. Technical report, MSR-TR-2001-50, Microsoft Research (2001)

11. Godefroid, P.: Compositional Dynamic Test Generation. In: POPL 2007, pp. 47–54 (2007)
12. Godefroid, P.: Software Model Checking Improving Security of a Billion Computers. In:

Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 1–1. Springer, Hei-
delberg (2009)

13. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-Based Model Checking Using Modal
Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 426–440. Springer, Heidelberg (2001)

14. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: PLDI
2005, pp. 213–223 (2005)

15. Godefroid, P., Levin, M., Molnar, D.: Automated Whitebox Fuzz Testing. In: NDSS 2008,
pp. 151–166 (2008)

128 P. Godefroid, S.K. Lahiri, and C. Rubio-González

16. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: Compositional Must Program Analysis:
Unleashing The Power of Alternation. In: POPL 2010 (2010)

17. Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A., Rothermel, G.: An Empirical Study
of Regression Test Selection Techniques. ACM Transactions on Software Engineering and
Methodology (TOSEM) 10(2), 184–208 (2001)

18. Gurfinkel, A., Wei, O., Chechik, M.: Y���: A Software Model-Checker for Verification
and Refutation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 170–174.
Springer, Heidelberg (2006)

19. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A System and Language for Building System-
Specific Static Analyses. In: PLDI 2002, pp. 69–82 (2002)

20. Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: It’s doomed; we can prove
it. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 338–353. Springer,
Heidelberg (2009)

21. Molnar, D., Li, X.C., Wagner, D.: Dynamic test generation to find integer bugs in x86 binary
linux programs. In: Proc. of the 18th Usenix Security Symposium (2009)

22. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Di�erential symbolic execution. In:
SIGSOFT FSE, pp. 226–237 (2008)

23. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed Incremental Symbolic Execution.
In: PLDI 2011, pp. 504–515 (2011)

24. Ramalingam, G., Reps, T.: A Categorized Bibliography on Incremental Algorithms. In:
POPL 1993, pp. 502–510 (1993)

25. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph Reach-
ability. In: POPL 1995, pp. 49–61 (1995)

26. Santelices, R.A., Harrold, M.J., Orso, A.: Precisely detecting runtime change interactions for
evolving software. In: ICST, pp. 429–438 (2010)

27. Satisfiability Modulo Theories Library (SMT-LIB),
%���)��"����('��'���*&'�����6�(�5�

http://goedel.cs.uiowa.edu/smtlib/

On Sequentializing Concurrent Programs�

Ahmed Bouajjani1, Michael Emmi1,��, and Gennaro Parlato2

1 LIAFA, Université Paris Diderot, France
{abou,mje}@liafa.jussieu.fr

2 School of Electronics and Computer Science
University of Southampton, UK

gennaro@ecs.soton.ac.uk

Abstract. We propose a general framework for compositional under-
approximate concurrent program analyses by reduction to sequential
program analyses—so-called sequentializations. We notice the existing
sequentializations—based on bounding the number of execution contexts,
execution rounds, or delays from a deterministic task-schedule—rely on
three key features for scalable concurrent program analyses: (i) reduction
to the sequential program model, (ii) compositional reasoning to avoid ex-
pensive task-product constructions, and (iii) parameterized exploration
bounds. To understand how those sequentializations can be unified and
generalized, we define a general framework which preserves their key fea-
tures, and in which those sequentializations are particular instances. We
also identify a most general instance which considers more executions, by
composing the rounds of different tasks in any order, restricted only by
the unavoidable program and task-creation causality orders. In fact, we
show this general instance is fundamentally more powerful by identify-
ing an infinite family of state-reachability problems (to states g1, g2, . . .)
which can be answered precisely with a fixed exploration bound, whereas
the existing sequentializations require an increasing bound k to reach
each gk. Our framework applies to a general class of shared-memory con-
current programs, with dynamic task-creation and arbitrary preemption.

1 Introduction

Concurrent program analysis is difficult due to the high computational complex-
ity that arises when considering every intricate task interleaving. To avoid such
high computational complexity, bounded (underapproximating) exploration is
emerging as a general technique. In general, one characterizes a subset of the
concurrent program semantics by a bounding parameter k. As k is increased we
explore more behaviors, at the expense of more computational resources; in the
limit we explore every behavior. A bounded exploration technique is effective
when useful information (e.g., the presence of bugs) is obtained by spending a
relatively small amount of computational resources (i.e., using low values of k).

� Partially supported by the project ANR-09-SEGI-016 Veridyc.
�� Supported by a fellowship from the Fondation Sciences Mathématiques de Paris.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 129–145, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

130 A. Bouajjani, M. Emmi, and G. Parlato

By characterizing a subset of the concurrent program semantics by a bound-
ing parameter (e.g., bounded context-switch [22]), it is often possible to reduce
concurrent program exploration to sequential program exploration [23, 20, 15,
17, 8, 14]—essentially by constructing an equivalent program without concur-
rency primitives (e.g., task creation, preemption). Such sequentializations are
desirable, both practically and theoretically, for several reasons. First, they re-
duce the exploration problem of any concurrent program to the well-understood
model of sequential programs, and are not limited by finite-data programs, per se.
Here several practical verification algorithms exist by way of finite-data software
model checking [24, 5, 3, 16]), (infinite-state) fixed point computations [6, 25, 12],
and (e.g., SMT-based) bounded software verification algorithms [7, 18]. Second,
they compute the behavior of each concurrent task compositionally—i.e., with-
out considering the local-state valuations of other tasks. Third, they enable in-
cremental analysis, trading-off computing resources for the amount of explored
behaviors, by varying a bounding parameter k ∈ N. (The parameter k determines
the (asymptotic) budget of the sequential program exploration. In practice, the
reductions add O(k) variables to the resulting sequential program, resulting in
an increasingly-expensive (in k) sequential program exploration.) Indeed these
sequentialization-based analyses have been applied to discover (in some cases
previously-unknown) bugs in device drivers [20, 15, 17, 19, 8].

Our principal aim in this work is to develop a theory of parameterized, com-
positional, concurrent-to-sequential program analysis reductions. Specifically, we
make the following contributions:

• To identify the fundamental mechanisms enabling compositional sequential-
izations, thus formulating a framework in which to define them (Section 3).

• To formulate a most general sequentialization in our framework which ex-
presses as many concurrent behaviors as possible (Section 4), while maintain-
ing compositionality, and without extending the class of programs in which
tasks are originally written—e.g., by adding unbounded counters.

• To classify the existing sequentializations in our framework, and compare
them w.r.t. the behaviors explored for their bounding parameters (Section 5).

Besides enlightening the mechanisms which enable sequential reduction, we be-
lieve our gained insight can guide further advances, for instance by considering
other restrictions to our framework with efficient encodings.

Using the three features discussed above ((i) reduction to sequential programs,
(ii) compositionality, and (iii) parameterization), the existing sequentializations
work by characterizing each concurrent task by an interface of k global-state val-
uation pairs (where k is the bounding parameter). These k global-state valuation
pairs represent a computation of a task which is interrupted k − 1 times—the
valuations give the initial and final global-states per execution “round.” Each
task’s interface is then computed—in isolation from other tasks—by beginning
each round from the guessed global-state valuation, performing a sequence of
sequential program steps, then eventually moving to the next round, by updat-
ing the current global-state to the next-guessed valuation. Contiguous interfaces
(i.e., where the final global-state valuations of one matches the initial valuations

On Sequentializing Concurrent Programs 131

of the other) are then glued together to form larger computations. Intuitively,
this interface composition builds executions according to a round-robin schedule
of k rounds; a complete execution is formed when each ith final global-state of
the last task’s interface matches the (i + 1)st initial global-state of the first’s.
When there are a fixed number of statically-created tasks, interfaces are simply
composed in task-identifier order. In the more general case, with dynamically
created tasks, interfaces are composed in a depth-first preorder over the ordered
task-creation tree. (Note by viewing the task-identifier order as the task-creation
order, the dynamic case subsumes the static.)

Thus, besides features/constraints (i), (ii), and (iii)—which we feel are de-
sirable, and important to maintain for efficiency and scalability of the resulting
program analyses—the existing sequentializations are constrained by: (iv) round-
robin executions (in depth-first order on the ordered task-creation tree). Though
other schedules can be simulated by increasing the (round) bounding parameter
k when the number of tasks is bounded, for a fixed value of k, only k-round
round-robin schedules are explored.

The most general instance of the framework we propose in Section 4 subsumes
and extends the existing round-robin based (i.e., context- and delay-bounded)
sequentializations. As in these previous approaches, we restrict ourselves to ex-
plorations that are (i) sequential, (ii) compositional, and (iii) parameterized, in
order to compute task interfaces over k global-state valuation pairs. However,
for the same analysis budget1 (i.e., the bounding parameter k), the general in-
stance expresses many more concurrent behaviors, essentially by relaxing the
round-robin execution order, and decoupling each task from any global notion
of “rounds.” We consider that each task’s interface is constructed by composing
the rounds of tasks it has created in any order that respects program order,
and task-creation causality order—i.e., a task is not allowed to execute before
a subsequent preemption of the task that created it. Thus the simulated con-
current execution need not follow a round-robin schedule, despite the prescribed
task traversal order; the possible inter-task interleavings are restricted only by
the constraint that at most k sub-task round summaries can be kept at any
moment—indeed this constraint is necessary to encode the resulting sequential-
ization with a bounded number of additional (finite-domain) program variables.

In fact, the most general instance of our framework is fundamentally more
expressive than the existing sequentializations, since there are infinite sequences
of states (e.g., g1, g2, . . .) which can be reached with a fixed exploration bound,
whereas the existing sequentializations require an increasing bound k to reach
each gk. This gain in expressiveness may or may not be accompanied by an anal-
ysis overhead. For enumerative program analysis techniques (e.g., model check-
ing, systematic testing), one may argue that considering more interleavings will
have a negative impact on scalability. This argument is not so clear, however,
for symbolic techniques (e.g., SMT-based verification, infinite-state fixed-point
computations), which may be able to reduce reasoning over very many interleav-
ings to very few, in practice [20]. Although many device driver bugs have been

1 See Section 4 for complexity considerations.

132 A. Bouajjani, M. Emmi, and G. Parlato

discovered within few interleavings [21], reducing the number of interleavings
could indeed cause missed bugs in other settings. Furthermore, our hope is that
enlightening the mechanisms behind sequentialization will lead to the discovery
of other succinctly-encodable instances of compositional sequentialization.

2 Concurrent Programs

We consider a simple but general concurrent programming model in the style of
single-threaded event-driven programs. (The style is typically used as a
lightweight technique for adding reactivity to single-threaded applications by
breaking up long-running computations into a collection of tasks.2) In this model,
control begins with an initial task, which is essentially a sequential program that
can read from and write to global (i.e., shared) storage, and post additional tasks
(each post statement specifies a procedure name and argument) to an initially
empty task buffer of pending tasks. When control returns to the dispatcher,
either when a task yields control—in which case it is put back into the task
buffer—or completes its execution, the dispatcher picks some task from the task
buffer, and transfers control to it; when there are no pending tasks to pick,
the program terminates. This programming model is powerful enough to model
concurrent programs with arbitrary preemption and synchronization, e.g., by
inserting a yield statement before every shared variable access.

Let Procs be a set of procedure names, Vals a set of values containing true
and false, and T the sole type of values. The grammar of Fig. 1 describes our
language of asynchronous programs, where p ranges over procedure names. We
intentionally leave the syntax of expressions e unspecified, though we do insist
the set of expressions Exprs contains Vals and the (nullary) choice operator � .
The set of program statements s is denoted Stmts. A sequential program is an
asynchronous program which contains neither post nor yield statements.

A (procedure-stack) frame 〈�, s〉 is a valuation � ∈ Vals to the procedure-local
variable l, along with a statement s to be executed. (Here s describes the entire
body of a procedure p that remains to be executed, and is initially set to p’s top-
level statement sp.) A task w is a sequence of frames representing a procedure
stack, and the set (Vals × Stmts)∗ of tasks is denoted Tasks. An (asynchronous)
configuration c = 〈g, w,m〉 is a global-variable valuation g ∈ Vals along with a
task w ∈ Tasks, and a task buffer multiset m ∈ M[Tasks].

To define the transition relation between configurations, we assume the exis-
tence of an evaluation function �·�e : Exprs → ℘(Vals) for expressions without
program variables, such that ���e = Vals. For convenience, we define e(g, �) def=
�e[g/g, �/l]�e —since g and l are the only variables, the expression e[g/g, �/l] has
no free variables. To select the next-scheduled statement in a configuration, we
define a statement context S as a term derived from the grammar S ::=
 | S; s,
and write S[s] for the statement obtained by substituting a statement s for the
unique occurrence of
 in S.
2 As our development is independent from architectural particularities, “tasks” may

correspond to threads, processes, asynchronous methods, etc.

On Sequentializing Concurrent Programs 133

P ::= var g:T H∗

H ::= proc p (var l:T) s
s ::= s; s | x := e | skip | assume e

| if e then s else s | while e do s
| call x := p e | return e
| post p e | yield

x ::= g | l

Fig. 1. The grammar of asynchronous programs. Each program P declares a single
type-T global variable g, and a sequence of procedures named p1 . . . pn ∈ Procs∗. Each
procedure p has single type-T parameter l, and a top-level statement (i.e., the proce-
dure body) denoted sp. This program syntax is made simple only to simplify presenta-
tion; various extensions—e.g., to multiple global and local variables—can be encoded
by varying the type T ; see the full version of this paper [4].

Post
�′ ∈ e(g, �) w′ =

〈
�′, sp

〉
〈g, 〈�, S[post p e]〉w,m〉 →a

P

〈
g, 〈�, S[skip]〉w,m ∪ {w′}

〉 Dispatch
w ∈ m

〈g, ε,m〉 →a
P 〈g,w,m \ {w}〉

Complete

〈g, 〈�, S[return e]〉 ,m〉 →a
P 〈g, ε,m〉

Yield
w′ = 〈�, S[skip]〉w

〈g, 〈�, S[yield]〉w,m〉 →a
P

〈
g, ε,m ∪ {w′}

〉
Fig. 2. The transition relation →a

P for an asynchronous program P is given by com-
bining the transitions above with the sequential transition relation →s

P .

The transition relation →a
P of an asynchronous program P is defined in Fig. 2

as a set of operational steps on configurations. The transition relation →s
P for the

sequential program statements (see the full version of this paper [4]) is standard.
The Post rule gives a newly-created task to the task buffer, while the Yield
rule gives the currently-executing task to the task buffer. The Dispatch rule
chooses some task from the buffer to execute, and the Complete rule disposes
a completed task.

A configuration 〈g, 〈�, s〉 , ∅〉 is called initial, and is sequential when s does not
contain post (nor yield) statements. An (asynchronous) execution of a program
P (from c0 to cj) is a configuration sequence h = c0c1 . . . cj where

• c0 is initial, and
• ci →a

P ci+1 for 0 ≤ i < j.

We say a configuration c = 〈g, w,m〉 (alternatively, the global value g) is reach-
able in P (from c0) when there exists an execution of P from c0 to c. The asyn-
chronous semantics of P , written {|P |}a, maps initial configurations to reachable
global values, i.e., {|P |}a(c0) = g if and only if g is reachable in P from c0. When
P is a sequential program, the sequential semantics of P , written {|P |}s, maps
initial sequential configurations to reachable global values.

134 A. Bouajjani, M. Emmi, and G. Parlato

3 Compositional Semantics

Here we define a compositional semantics for asynchronous programs on which
to base our reduction to sequential programs. To do so, we characterize each
posted task by an interface exposing only global-state valuations to other tasks.
Each interface summarizes not only the computation of a single task, but also the
computations of all descendants of tasks it has posted. In particular, an interface
is a sequence 〈g1, g′1〉 . . . 〈gk, g′k〉 of global-state valuation pairs summarizing a
computation which is interrupted k − 1 times; the computation begins with
global state g1, is interrupted by an external task at global state g′1, is resumed
at g2, etc. We call the computation summarized by each pair 〈gi, g′i〉 the ith

round. A larger computation is then formed from a collection of task interfaces,
by gluing together contiguous rounds (e.g., summarized by 〈g1, g2〉 and 〈g2, g3〉),
while maintaining the order between rounds from the same interface.

We construct interfaces inside a data-structure called a summary bag. Besides
the sequence Bex of rounds which will be exported as the current task’s interface
(see Fig. 3a), the bag maintains a collection Bim of interfaces imported from
posted tasks (see Fig. 3c). At any yield-point, the current task can begin a new
round, by guessing3 the global-state valuation that will begin the next round
(see Fig. 3b), or, if the current global-state valuation matches the start of the
first unconsumed round from some imported interface (as does 〈a, b〉 in Fig. 3d),
the current task can consume that round and update the current global state;
this amounts to interleaving the round of a posted task at the current control
point.

With this view of recursive interface construction—interfaces are constructed
from interfaces of sub-tasks—the reduction to sequential programs is nearly
straightforward. To compute the imported summary of a posted task, we trans-
late the post statement into a procedure call which returns the computed inter-
face for the posted task. At yield points, we will repeatedly, nondeterministically
choose to begin a new round, consume a round from an imported interface, or
step past the yield statement. For the moment the only obstacle is how to store
the unbounded summary bag; we address this issue in Section 4.

To define the compositional semantics we formalize the summary-bag oper-
ations. A summary bag B = 〈Bex,Bim〉 pairs the round sequence Bex to be
exported from the current task, along with a collection Bim of round sequences
imported from sub-tasks. The empty bag B∅ = 〈ε, ∅〉 is an empty sequence paired
with an empty collection. The operations to add the current round (⊕), import
a sub-task interface (), and consume a sub-task round (�) are defined as

〈Bex,Bim〉 ⊕ 〈g, g′〉 def= 〈Bex · 〈g, g′〉 ,Bim〉 , add round

〈Bex,Bim〉 Bex
′ def=
〈Bex,Bim ∪ Bex

′〉 , import interface

〈Bex,Bim〉 � 〈g, g′〉 def=
〈Bex,Bim

′〉 consume round,

3 An enumerative analysis algorithm can handle “guessing” by attempting every
reached global valuation; a symbolic algorithm just creates a new symbol.

On Sequentializing Concurrent Programs 135

(a)

a
c
e

b
d
f

a c e
b d f

(b)

a
cb

c

(c)

a
c
e

b
d
f

a c e
b d f

(d)
a

b

a b

Fig. 3. The summary bag operations. Circles represent global valuations (double circles
equivalences), and are paired together in rounded rectangle round summaries. Interfaces
are drawn as stacked round summaries, and shading is used only to easily identify
summaries. (a) Export a constructed interface, (b) begin a round by finalizing the
current round 〈a, b〉, and guessing a valuation c to begin the next, (c) import sub-task
interface, (d) interleave the first unconsumed round 〈a, b〉 of a sub-task, updating the
current global state from a to b. The round-summaries Bex to be exported appear above
the dotted line, and the collection Bim of imported sub-task interfaces appears below.

where Bim
′ is obtained by removing 〈g, g′〉 from the head of a sequence in Bim,

and 〈Bex,Bim〉 � 〈g, g′〉 is undefined if 〈g, g′〉 is not at the head of Bim.
We define the compositional transition relation of asynchronous programs by

augmenting the sequential transitions →s
P with a new set of transitions for the

asynchronous control statements, over a slightly different notion of configuration.
In order to build interfaces, each configuration carries the global-state valuation
at the beginning of the current round (denoted g0 below), as well as the current
valuation. A (compositional) configuration c = 〈g0, g, w,B〉 is an initial valuation
g0 ∈ Vals of the global variable g, along with a current valuation g ∈ Vals, a task
w ∈ Tasks, and a summary bag B.

Fig. 4 lists the transitions →c
P for the asynchronous control statements. The

NextRound rule begins a new round with a guessed global-state valuation, and
the SubTask rule collects the posted task’s interface. The task-summarization
relation p �′ � Bex used in the SubTask rule holds when the task 〈�′, sp〉 can ex-
ecute to a yield, or return, point having constructed the interface Bex—i.e., when
there exists g, g0, g1 ∈ Vals, w ∈ Tasks, and Bim such that 〈g, g, 〈�′, sp〉 ,B∅〉 →c∗

P

〈g0, g1, w, 〈Bex,Bim〉〉, where w is of the form 〈�, S[yield]〉w′ or 〈�, S[return e]〉.
The Interleave rule executes a round imported from some posted task, and
finally, the Resume rule simply steps past the yield statement.

136 A. Bouajjani, M. Emmi, and G. Parlato

NextRound
B′ = B ⊕ 〈g0, g〉 g′ ∈ Vals

〈g0, g, 〈�, S[yield]〉w,B〉 →c
P

〈
g′, g′, 〈�, S[yield]〉w,B′〉

SubTask
�′ ∈ e(g, �) p �′ � Bex B′ = B � Bex

〈g0, g, 〈�, S[post p e]〉w,B〉 →c
P

〈
g0, g, 〈�, S[skip]〉w,B′〉

Interleave
B′ = B �

〈
g, g′
〉

〈g0, g, 〈�, S[yield]〉w,B〉 →c
P

〈
g0, g

′, 〈�, S[yield]〉w,B′〉 Resume

〈g0, g, 〈�, S[yield]〉w,B〉 →c
P 〈g0, g, 〈�, S[skip]〉w,B〉

Fig. 4. The compositional transition relation →c
P for an asynchronous program P is

given by combining the transitions above with the sequential transition relation →s
P

(a)
a

1
b

2
c

4
f

5
g

6
hed

3
A B A C B C

(b)
e

6

4
f

hg

b
5

2
c

gf

a
1

b d e
3

A

B C (c) a
1

b
2

c

e
4

f
5

g
6

hd
3

a
3,4,5,6

1,2
c

hd
A

Fig. 5. Simulating an asynchronous execution (a) as a compositional execution, where
task A posts B and C, then is interrupted by B, then is eventually re-dispatched, and
upon completion is followed directly by C, which is interrupted by B before completing.
(b) The bag used to reconstruct A’s interface, and (c) the constructed interface for A.

A configuration 〈g, g, 〈�, s〉 ,B∅〉 is called initial. A (compositional) execution
of a program P (from c0 to cj) is a configuration sequence h = c0c1 . . . cj where

• c0 is initial, and
• ci →c

P ci+1 for 0 ≤ i < j.

A compositional execution describes the progression of one task only; progres-
sions of sub-tasks are considered recursively as separate executions to compute
the task-summarization relation �. We say a configuration c = 〈g0, g, w,B〉 (al-
ternatively, the global value g) is reachable in P (from c0) when there exists an
execution from c0 to c, without using the NextRound rule.4 The compositional
semantics of P , written {|P |}c, maps initial configurations to reachable global
values, i.e., {|P |}c(c0) = g if and only if g is reachable in P from c0.

Although their definitions are wildly different, the compositional and asyn-
chronous semantics are equivalent. To see that every asynchronous execution h
has a corresponding compositional execution, consider, inductively, how to build
the interface summarizing the projection of h a given task’s sub-task segments.
Consider the task A of Fig. 5 which posts B and C. To simulate the asynchronous
4 Disallowing use of the NextRound rule in the top-level execution ensures that

unchecked guessed global-state valuations are not considered reachable.

On Sequentializing Concurrent Programs 137

(sub-) execution of Fig. 5a, A builds an interface with two uninterruptible rounds
(see Fig. 5c): the first sequencing segments 1 and 2, and the second sequencing
3, 4, 5, and 6. To build this interface, A must import two-round interfaces from
B and C each; note that each round of B and C may recursively contain many
interleaved segments of sub-tasks.

Theorem 1. The compositional semantics and asynchronous semantics are
identical, i.e., for all programs P we have {|P |}c = {|P |}a.

5

The proof to this theorem appears in the full version of this paper [4].

4 Bounded Semantics

As earlier sequentializations have done by constraining the number of rounds [20,
15], by constraining the size of the summary bag, we can encode the bag con-
tents with a fixed number of additional variables in the resulting sequential
program. Since we are interested in exploring as many behaviors as possible
with a limited-size bag, an obvious point of attention is bag compression. Thus
we define an additional operation to free a space in the bag by merging two
contiguous (w.r.t. the global valuation) summaries, essentially removing the pos-
sibility for future reordering between the selected segments. In doing so, we must
maintain causal order by ensuring the bag remains acyclic, and what was before
a collection Bim of summary sequences imported from sub-tasks now becomes a
directed acyclic graph (DAG) of summaries. To maintain program order in the
presence of merging, summaries are now consumed only from the roots of Bim.

The size |B| def= |Bex| + |Bim| of B is the sum of the length of the sequence
Bex and the number of nodes of the DAG Bim. The bag simplification operation
〈Bex,Bim〉 � 〈Bex,Bim

′〉 obtains Bim
′ from Bim by merging two nodes n and n′,

labelled, resp., by 〈g1, g2〉 and 〈g2, g3〉, such that either

(a) there is no directed path from n to n′ in Bim, or
(b) there is an edge from n to n′ in Bim

(see Fig. 6); in either case the merged node is labelled 〈g1, g3〉. Note that when
B � B′ we have |B′| = |B| − 1. Though we could simulate this merge operation
in the (unbounded) compositional semantics, by eventually consuming consec-
utively n and n′ into the exported summary list, the merge operation allows
to eagerly express the interleaving—though disallows any subsequent interleav-
ing between n and n′. Merging summaries eagerly fixes a sequence of inter-task
execution segments, trading the freedom for external interleaving (which may
have uncovered additional, potentially buggy, behaviors) for an extra space in
the bag.

We define the k-bounded compositional semantics of P, written {|P |}kc , by
restricting the compositional semantics {|P |}c to executions containing only con-
figurations 〈g0, g, w,B〉 such that |B| ≤ k, and adding the additional transition

5 We consider initial configurations 〈g, 〈�, s〉 , ∅〉 and 〈g, g, 〈�, s〉 ,B∅〉 as equal.

138 A. Bouajjani, M. Emmi, and G. Parlato

(a) a b

b c

(b) a

c

c d

Fig. 6. The bag simplification operations: (a) merging two disconnected but contiguous
round summaries 〈a, b〉 and 〈b, c〉 (resulting in (b)), and (b) merging two consecutive
and contiguous summaries 〈a, c〉 and 〈c, d〉 (resulting in the small adjacent bag).

Compress
B � B′

〈g0, g, w,B〉 →c
P 〈g0, g, w,B′〉 .

As we increase k, the set of k-bounded semantics grows monotonically, and in the
limit, the k-bounded semantics is the compositional semantics. For two functions
f, g : A→ ℘(B), we write f ⊆ g when for all a ∈ A, f(a) ⊆ g(a).

Theorem 2. The sequence of bounded compositional semantics forms a mono-
tonically increasing chain whose limit is identical to the compositional semantics,
i.e., {|P |}0

c ⊆ {|P |}1
c ⊆ . . . ⊆ ⋃k∈N

{|P |}kc = {|P |}c.

Remark For simplicity, we present a compositional semantics in which informa-
tion (i.e., the summary bags) only flows up from each sub-task to the task that
posted it. However, an even more compact semantics—in the sense that more
behaviors are expressed with the same bag-size bound—is possible when each
task not only returns summaries, but also receives summaries as a parameter.
For example, to interleave 2k summaries of two sub-tasks, one can pass the k
summaries of the first sub-task to the second, and merge them with the second’s
summaries, as they are created, keeping only k at a time. Otherwise, one must
interleave the two tasks’ summaries outside, which means keeping 2k summaries
for the enclosing task to interleave. Since the extension is purely technical, and
not so insightful, we omit its description here. However, the results stated in the
remainder of this paper are presented in terms of the bag-size bound w.r.t. this
extension.

Note on Complexity. For the case where variables have finite-data domains, de-
termining whether a global valuation is reachable is NP-complete6 (in k) for

6 Here the literature has assumed a fixed number of finite-state program variables in
order to ignore the effect of complexity resulting from data. Indeed the reachability
problem is EXPTIME-complete in the number of variables, due to the logarithmic
encoding of states in the corresponding pushdown system.

On Sequentializing Concurrent Programs 139

the bounded-task k-context bounded and unbounded-task k-delay bounded se-
quentializations [20, 8], and PSPACE-complete (in k) for the unbounded-task
k-context bounded sequentialization [17]. Since these cases are reducible to our
semantics (see Section 5), it follows that global-state reachability is PSPACE-
hard (in k) in the most general instance of our framework. Since the number of
bag configurations is (singly) exponential in k, membership in EXPTIME is not
hard to obtain. The practical difference between the NP/PSPACE-complete com-
plexities of other sequentialization-based analyses is unclear; as sub-exponential
time algorithms are not known for NP problems, exponential time is spent in the
worst case, either way. Note however, that these complexity considerations are of
limited significance, since we target an arbitrary class of sequential programs—
not only programs with finite-data.

5 Global-Round Explorations

To understand the relationship between our bounded compositional exploration
and the existing sequentializable analyses, we proceed in two steps. First we
describe a restriction of our bounded semantics in which every task agrees on a
global notion of execution “rounds,” i.e., where each task executes (at most) one
uninterrupted segment per global round. Second we show that this restriction
captures and unifies the existing sequentializable analyses based on bounded
context-switch and bounded delay.

A k global-round execution of a program P is an asynchronous execution
of P where (i) each task executes in (up to) k uninterrupted segments called
“rounds”—with the restriction that sub-tasks can only execute in, or after, the
round in which it is created—and (ii) the ith round of every task is executed
before the (i + 1)st round of any task, in the depth-first order over the task-
creation tree; see Fig. 7a. Thus we can view each task as executing across a
grid of k rounds, being interrupted k − 1 times by the other tasks. With this
view, each task can be characterized by an interface consisting of 2k global state
valuations: the k global-state valuations seen by the task at the beginning of
each round, and the k global-state valuations seen at the end (as in Fig. 7a).
A task’s interfaces are computed by guessing the initial global-state valuation
of each round, following some number of sequential transitions, then nondeter-
ministically advancing to the next round, keeping the computed local state, but
updating the global-state to the next-guessed valuation. Given the interfaces
for each task, sequentialization of the k global-round schedules is possible, by a
reduction that executes each task once, according to the linear task-order, over
a k-length vector of global-state valuations. The k global-round semantics of
P , written {|P |}kgr is the set of global valuations reachable in a k global-round
execution of P .

Though we have defined the global-round semantics w.r.t. the asynchronous
semantics, in fact we can restrict the k-bounded compositional semantics to
compute only k global-round interfaces. During construction of the jth round-
summary of the current task t, the export-list contains j − 1 summaries

140 A. Bouajjani, M. Emmi, and G. Parlato

(a)

A

E
B

C D

(b)

A

E
B

C D

Fig. 7. (a) 3 global-round exploration, and (b) 4-delay exploration, for a program
in which task A creates B and E, and task B creates C and D. Each task’s inter-
face (drawn with dashed-lines) summarizes 3 uninterrupted computations (drawn with
squiggly arrows) of the task and all of its sub-tasks. Bold arrows connect global-state
valuations, and dotted arrows connect local-state valuations. Note that the 3-round
exploration allows each task 2 interruptions, while the 4-delay exploration allows all
tasks combined only 4 interruptions.

(of rounds 1 . . . j − 1) for t and its current sub-tasks, i.e., all descendants of t’s
thus-far posted tasks. At the same time, the bag maintains a (k − j + 1)-length
list of summaries accumulating the rounds j . . . k of t’s current sub-tasks. Just
before t begins round j+1, the accumulated summary of round j for t’s current
sub-tasks is consumed, so that the exported summary of round j captures the
effect of one round of t, followed by one round of t’s current sub-tasks. When t
posts another task ti (in round j), the k− j+1 summaries exported by ti—note
ti and its descendants can only execute after round j of t—are combined with
the k − j + 1 accumulated summaries of t’s current sub-tasks.7 Thus when t
completes round k, each round i summarizes round i of t followed by round i of
each sub-task of t, in depth-first order, over the ordered task-creation tree of t.

Theorem 3. The k global-round semantics is subsumed by the k-bounded com-
positional semantics, i.e., for all programs P we have {|P |}kgr � {|P |}kc .

In fact, our compositional semantics captures many more behaviors than k global-
round analyses. For example, many behaviors cannot be expressed in k (global)
rounds, though can be expressed by decoupling the rounds of different tasks.
Intuitively, the additional power of our compositional semantics is in the ability
to reuse the given bounded resources locally, ensuring only that the number
of visible resources at any point is bounded. The full version of this paper [4]
illustrates an example demonstrating this added analysis power.

7 Using the extension described at the end of Section 4, this combination does not
require additional bag space.

On Sequentializing Concurrent Programs 141

Theorem 4. There exists a program P , k0 ∈ N, and a sequence g1, g2, . . . ∈
{|P |}k0c of global-state valuations such that for all k ∈ N, gk /∈ {|P |}kgr.

5.1 Context-Bounding

In its initial formulation, the so-called “context-bounded” (CB) analyses ex-
plored the asynchronous executions of a program with a fixed number of stat-
ically allocated tasks, with at most two context-switches between tasks [23].
Shortly thereafter, Qadeer and Rehof [22] extended CB to explore an arbitrary
bound k of context-switches.

Later, Lal and Reps [20] proposed a linear “round-robin” task-exploration
order, and instead of bounding the number of context-switches directly, bounded
the number of rounds in an explored round-robin schedule between n tasks.
(It is easy to see that every k-context bounded execution with an unrestricted
scheduler is also a k-round execution with a round-robin scheduler.) With this
scheduling restriction, it becomes possible to summarize each task i’s execution
by an interface of k global-state valuation pairs, describing a computation that
is interrupted by tasks (i+ 1), (i+ 2), . . . , n, 1, 2, . . . , (i− 1), k− 1 times. In fact,
this schedule is just a special case of the k global-round exploration, restricted
to programs with a fixed number of statically-created tasks. La Torre et al. [17]’s
subsequent extension of this k-round round-robin exploration to programs with
a parameterized amount of statically-created tasks is also a special case of k
global-round exploration, restricted to programs with an arbitrary number of
statically-created tasks.

To formalize this connection, let a static-task program be an asynchronous
program P which does not contain post statements, and an initial configuration
〈g, 〈�, s〉 , ∅〉 is (resp., parameterized) static-task initial when s is of the form

post p1 (); ...; post pn () (resp., while � do post p ()).

A k-round (resp., parameterized) CB execution of a static-task program P is
an asynchronous execution of P from a (resp., parameterized) static-task initial
configuration c0, where the initially posted tasks are dispatched in a round robin
fashion over k rounds. The k-round (resp., parameterized) CB semantics of P ,
written {|P |}kcb (resp., {|P |}kcb∗) is defined, as before, as the set of global valuations
reachable from c0 in a k-round (resp., parameterized) CB execution of P .

Theorem 5. The k-round (parameterized) CB semantics is equal to the k global-
round semantics, i.e., for all static-task programs P we have {|P |}k

cb(∗) = {|P |}kgr.

5.2 Delay-Bounding

Emmi et al. [8]’s recently introduced delay-bounded (DB) exploration8 expands
on the capabilities of Lal and Reps [20]’s k-round CB exploration with its ability
8 Since we are interested here in analyses amenable to sequentialization, we consider

only the depth-first delay-bounded task-scheduler [8].

142 A. Bouajjani, M. Emmi, and G. Parlato

to analyze programs with dynamic task-creation (i.e., with arbitrary use of the
post statement). Like CB, the DB exploration considers round-based executions
with a linear task-exploration order, though with dynamic task-creation the order
must be defined over the task-creation tree; DB traverses the tree depth-first.

In fact, Emmi et al. [8]’s delay-bounded semantics is a variation of the k
global-round semantics which, for the same bound k, expresses many fewer asyn-
chronous executions. In essence, instead of allowing each task k−1 interruptions,
the budget of interruptions is bounded globally, over the entire asynchronous ex-
ecution; see Fig. 7b. It follows immediately that each task executes across at
most k rounds, in the same sense as in the k global-round semantics. Since the
mechanism behind delay-bounding is not crucial to our presentation here, we
refer the reader to Emmi et al. [8]’s original work for the precise definition of k-
delay executions. The k-delay semantics of P , written {|P |}kdb is the set of global
valuations reachable in a k-delay execution of P .

Theorem 6. The k-delay semantics is subsumed by the k global-round seman-
tics, i.e., for all programs P we have {|P |}kdb ⊆ {|P |}kgr.
However, like the separation between k-global round semantics and k bounded
semantics, there are families of behaviors that can be expressed with a fixed
number of global rounds, though cannot be expressed with a fixed number of
delays: for instance, behaviors which requires an unbounded number of tasks be
interrupted (once) cannot be expressed with any finite number of delays.

Theorem 7. There exists a program P , k0 ∈ N, and a sequence g1, g2, . . . ∈
{|P |}k0gr of global-state valuations such that for all k ∈ N, gk /∈ {|P |}kdb.

5.3 Context-Bounding vs. Delay-Bounding

It follows from Theorems 5 and 6 that context-bounding simulates delay-bounding
on static-task programs. In fact, we can also show that delay-bounding simulates
context-bounding, for programs with a fixed number of tasks, by combining The-
orem 5 with the following theorem.

Theorem 8. For a fixed number n of tasks, the k global-round semantics is
subsumed by the nk-delay semantics, i.e., for all static-task programs P with
n-tasks we have {|P |}kgr ⊆ {|P |}nkdb .

However, by Theorems 5 and 7, delay-bounding cannot simulate k-round param-
eterized context-bounded executions, since no fixed number of delays can express
the unbounded number of potential context-switches.

6 Related Work

The technique of reducing a concurrent program behaviors to sequential pro-
gram behaviors has garnered much attention in recent years. Based on the

On Sequentializing Concurrent Programs 143

notion of context-bounding [23, 22, 21], Lal and Reps [20] showed how to en-
code the bounded-round round-robin schedules of a concurrent program with
statically-allocated tasks as a sequential program. La Torre et al. [15] gave a
more efficient encoding—in the sense that unreachable global-state valuations
are never explored—and later extended the approach to programs with an un-
bounded number of statically-allocated tasks [17]. Emmi et al. [8] have recently
extended the basic insight of round-based scheduling to sequentialize programs
with an unbounded number of dynamically-created tasks. Empirical evidence
suggests such techniques are indeed useful for bug-finding [21, 19, 11, 17]. For a
more thorough comparison of these sequentializations, see Section 5.

Recently Kidd et al. [14] have shown how to sequentialize priority preemptive
scheduled programs, and Garg and Madhusudan [10] have proposed an overap-
proximating sequentialization, albeit by exposing task-local state to other tasks.
Both reductions assume a finite number of statically-declared tasks.

More generally, sequentialization could be seen as any linear traversal of
the task-creation tree. The sequentializations we consider here are restricted
to depth-first traversal, since they target sequential recursive programs, whose
unbounded structure is, in general, contained to the procedure stack; the stack-
based data-structure used for the depth-first traversal can be combined with
the program’s procedure stack. However, if one is willing to target other pro-
gram models, one can consider other task-tree traversals, e.g., breadth-first using
queues, or a completely non-deterministic traversal respecting the task-creation
order, keeping, for instance, a multiset of horizon tasks. Atig et al. [1, 2]’s
bounded explorations of programs with dynamic task-creation, by reduction to
Petri-net reachability, are sequentializable in this sense.

Our characterization of sequentializability could also be relaxed to allow the
exchange of local-state valuations (or alternatively, unbounded sequences of
global-state valuations) between tasks. For instance, explorations based on
bounded languages [13, 9] take this approach, essentially restricting concurrent
exploration to inter-task interactions conforming to a regular pattern; then each
task is executed in isolation by taking its product with the pattern-automaton.
We simply note that the existing sequentializations avoid the (possibly expensive)
computation of such a product.

7 Conclusion

We have proposed a framework for parameterized and compositional concur-
rent program analysis based on reduction to sequential program analysis. Our
framework applies to a general class of shared-memory concurrent programs,
with arbitrary preemption and dynamic task-creation, and strictly captures the
known (round-based) sequentializations. It is our hope that this understand-
ing will lead to further advances in sequential reductions, e.g., by enlightening
efficiently-encodable instances of the general framework.

144 A. Bouajjani, M. Emmi, and G. Parlato

Though we have unified the existing sequentializations while maintaining their
desirable qualities (i.e., sequential program model, compositionality, parameteri-
zation) by relaxing the global round-robin schedule, we are aware of one remain-
ing restriction imposed by our framework. Besides the round-robin restriction
imposed by the existing sequentializations, there is an implicit restriction im-
posed by translating task-creation directly to procedure calls: the tasks created
by a single task are visited in the order they are created. Though further gener-
alization is possible (e.g., by adding unbounded counters to the target program),
such reductions will likely lead to much more complex analyses.

References

[1] Atig, M.F., Bouajjani, A., Touili, T.: Analyzing asynchronous programs with pre-
emption. In: FSTTCS 2008: Proc. IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science. LIPIcs, vol. 2, pp. 37–48.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2008)

[2] Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 107–123. Springer, Heidelberg (2009)

[3] Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: POPL 2002: Proc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 1–3. ACM, New York (2002)

[4] Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs
(2011), http://hal.archives-ouvertes.fr/hal-00597415/en/

[5] Chaudhuri, S.: Subcubic algorithms for recursive state machines. In: POPL 2008:
Proc. 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 159–169. ACM, New York (2008)

[6] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977:
Proc. 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM, New York (1977)

[7] DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research
(2005)

[8] Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. In: POPL 2011:
Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 411–422. ACM, New York (2011)

[9] Ganty, P., Majumdar, R., Monmege, B.: Bounded underapproximations. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 600–614. Springer,
Heidelberg (2010)

[10] Garg, P., Madhusudan, P.: Compositionality entails sequentializability. In: Ab-
dulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 26–40.
Springer, Heidelberg (2011)

[11] Ghafari, N., Hu, A.J., Rakamarić, Z.: Context-bounded translations for concurrent
software: An empirical evaluation. In: van de Pol, J., Weber, M. (eds.) Model
Checking Software. LNCS, vol. 6349, pp. 227–244. Springer, Heidelberg (2010)

[12] Jannet, B., Miné, A.: The Interproc analyzer, http://pop-art.inrialpes.fr/

interproc/interprocweb.cgi

http://hal.archives-ouvertes.fr/hal-00597415/en/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

On Sequentializing Concurrent Programs 145

[13] Kahlon, V.: Tractable dataflow analysis for concurrent programs via bounded
languages, Patent WO/2009/094439 (July 2009)

[14] Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all: Reducing con-
current analysis to sequential analysis under priority scheduling. In: van de Pol,
J., Weber, M. (eds.) Model Checking Software. LNCS, vol. 6349, pp. 245–261.
Springer, Heidelberg (2010)

[15] La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)

[16] La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. In: PLDI 2009: Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 211–222. ACM, New York
(2009)

[17] La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

[18] Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification
using smt solvers. In: POPL 2008: Proc. 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 171–182. ACM, New York
(2008)

[19] Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and precise detection of concurrency
errors in systems code using SMT solvers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

[20] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

[21] Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI 2007: Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 446–455. ACM, New
York (2007)

[22] Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

[23] Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI 2004: Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 14–24. ACM, New York (2004)

[24] Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995: Proc. 22th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 49–61. ACM, New York
(1995)

[25] Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-
2), 206–263 (2005)

Verifying Fence Elimination Optimisations

Viktor Vafeiadis1 and Francesco Zappa Nardelli2

1 MPI-SWS
2 INRIA

Abstract. We consider simple compiler optimisations for removing re-
dundant memory fences in programs running on top of the x86-TSO
relaxed memory model. While the optimisations are performed using
standard thread-local control flow analyses, their correctness is subtle
and relies on a non-standard global simulation argument. The imple-
mentation and the proof of correctness are programmed in Coq as part
of CompCertTSO, a fully-fledged certified compiler from a concurrent ex-
tension of a C-like language to x86 assembler. In this article, we describe
the soundness proof of the optimisations and evaluate their effectiveness.

1 Introduction

Contrary to a näıve programmer’s expectations, modern multicore architectures
do not implement a sequentially consistent (SC) shared memory, but rather ex-
hibit a relaxed consistency model. For instance, x86 provides a TSO-like memory
model [20,25] while Power exhibits much more relaxed behaviour [21].

Programming directly against such relaxed hardware can be difficult, espe-
cially if performance and portability are a concern. For this reason, programming
languages need their own higher-level memory model, and it is the role of the
compiler to guarantee that the language memory model is correctly implemented
on the target hardware architecture. Naturally, SC comes as an attractive choice
because it is intuitive to programmers, and SC behaviour for volatiles and SC
atomics is an important part of the Java and C++0x memory models, respec-
tively. However, implementing SC over relaxed hardware memory models re-
quires the insertion of potentially expensive memory fence instructions, and if
done näıvely results in a significant performance degradation. For instance, if
SC is recovered on x86 by systematically inserting an MFENCE instruction either
after every memory store instruction, or before every memory load (as in a pro-
totype implementation of C++0x atomics [28]), then on some benchmarks (e.g.
Fraser’s library of lock-free algorithms [12]) we could observe a 40% slowdown
with respect to a hand-optimised implementation.

Compiler optimisations to optimise barrier placement are thus essential, and
indeed there are many opportunities to perform fence removal optimisations.
For example, on x86, if there are no writes between two memory fence instruc-
tions, the second fence is unnecessary. Dually, if there are no reads between
the two fence instructions, then the first fence instruction is redundant. Fi-
nally, by a form of partial redundancy elimination [19], we can insert memory

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 146–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verifying Fence Elimination Optimisations 147

barriers at selected program points in order to make other fence instructions
redundant, with an overall effect of hoisting barriers out of loops and reducing
the number of fences along some execution paths without ever increasing it on
any path.

However, concurrency, especially relaxed-memory concurrency, is a notori-
ously subtle and error-prone domain [11,22], and so verifying such optimisations
is of great interest. Work in this area goes back at least to that of Shasha and
Snir [26] (and more recently [2,6,23]), but most of this is in terms of transfor-
mations of hypothetical program executions rather than the transformations of
code that are implemented (without proof) in actual compilers.

In this paper, we bridge this gap by implementing the aforementioned re-
dundant barrier removal optimisations in CompCertTSO [24], a fully fledged
verified compiler from ClightTSO (a C-like concurrent language with Total
Store Order semantics) to concurrent x86 assembly code with x86-TSO se-
mantics. We prove the correctness of our optimisations in Coq and integrate
this result into the overall semantic preservation proof of CompCertTSO, giv-
ing an end-to-end correctness result.1 The correctness result verifies that these
fence removal optimisations do not introduce any new TSO behaviour. They
are therefore sound in several different usages: for ClightTSO code with manu-
ally inserted fences; in a TSO implementation of a DRF-based memory model,
such as C++0x [3] or the Java memory model [18], where fences are used to
implement the language’s low-level atomic primitives; or if one implements SC
by starting with a placement of fences admitting only SC-behaviours (e.g., by
placing a fence after every memory write) and then optimises away as many as
possible.

The correctness of one of our optimisations turned out to be more much
interesting than we had anticipated and could not be verified using a standard
forward simulation [17] because it introduces unobservable non-determinism (see
§3 for an explanation). To verify this optimisation, we introduce weaktau simu-
lations (see §4), which in our experience were much easier to use than backward
simulations [17]. In contrast, the other two optimisations were straightforward
to verify, each taking us less than a day’s worth of work to prove correct in Coq.

Hence, we believe that developing mechanised formal proofs about concur-
rent optimising compilers offers a good benefit to effort ratio, once the right
foundations are laid out.

Outline. We begin, in §2, by recalling the relaxed-memory behaviour of our
target architecture, as captured by the x86-TSO model, and the structure and
correctness statement of the CompCertTSO verified compiler. Then, in §3, we
describe our optimisations and their implementation in CompCertTSO, and eval-
uate their performace. In §4, we describe our overall simulation proof strategy
for verifying compiler correctness, and in §5 the use of this strategy to verify the
optimisations in question. Finally, in §6, we reflect on our experience using Coq
and in §7 we discuss related work.

1 The proofs are available at http://www.cl.cam.ac.uk/~pes20/CompCertTSO/.

148 V. Vafeiadis and F. Zappa Nardelli

H/W thread

Lock

W
rite B

uffer

W
rite B

uffer
Shared Memory

H/W thread

Fig. 1. x86-TSO block diagram

2 The x86-TSO Memory Model and CompCertTSO

The x86-TSO model [20,25] is a rigorous memory model that captures the
memory behaviour of the x86 architecture visible to the programmer, for normal
code. Figure 1 depicts the x86-TSO block diagram: each hardware thread has a
FIFO buffer of pending memory writes (which can propagate to memory at any
later time, thereby avoiding the need to block while a write completes); memory
reads return the latest memory write pending in the thread write buffer, or, if
there are no pending writes, the value written in the shared memory. Memory
fences (MFENCE) flush the local write buffer: formally, they block until the buffer
is empty. ‘Locked’ x86 instructions (e.g. LOCK INC) involve multiple memory ac-
cesses performed atomically. Such atomic read-modify-write instructions first
block until the local write buffer is empty, and then atomically perform a read,
a write of the updated value, and a flush of the local write buffer.

The classic example showing a non-SC behaviour in TSO is the store buffer
program below (SB). Given two distinct memory locations x and y initially
holding 0, the memory writes of two hardware threads respectively writing 1

to x and y can be buffered, and the subsequent reads from y and x (into register
EAX on thread 0 and EBX on thread 1) are fulfilled by the memory (which still
holds 0 everywhere), and it is possible for both to read 0 in the same execution.
It is easy to check that this result cannot arise from any SC interleaving, but it
is observable on modern Intel or AMD x86 multiprocessors.

If MFENCE instructions are inserted after the memory writes, as in SB+mfences,
then at least one buffer must be flushed before any read is performed, and at
least one thread will observe the write performed by the other thread, as in all
SC executions.
SB

Thread 0 Thread 1

MOV [x]←1 MOV [y]←1

MOV EAX←[y] MOV EBX←[x]

Allowed final state: 0:EAX=0 ∧ 1:EBX=0

SB+mfences
Thread 0 Thread 1

MOV [x]←1 MOV [y]←1

MFENCE MFENCE

MOV EAX←[y] MOV EBX←[x]

Forbidden final state: 0:EAX=0 ∧ 1:EBX=0

Verifying Fence Elimination Optimisations 149

CompCertTSO [24,9] is a certified compiler that lifts the x86-TSO model of
the x86 assembly language to a C-like language. It builds on CompCert [16].
Its source language, ClightTSO, is a concurrent extension of CompCert Clight
language [4], adding thread creation and some atomic read-modify-write and
barrier primitives that are directly implementable by x86 locked instructions and
MFENCE. In addition, ClightTSO load and store operations have a TSO semantics.
The main syntactic difference between Clight and C is that expressions cannot
contain function calls and memory writes (these can occur only as statements).

The behaviour of the source and target languages (ClightTSO and x86-TSO)
is defined using labelled transition systems (LTS) with visible actions for call
and return of external functions (e.g. OS I/O primitives), program exit, semantic
failure, and out-of-memory error, together with internal τ actions.2

event , ev ::= call id vs | return typ v | exitn | fail | oom | τ
We take the observable behaviours of a program to be the set of finite and infinite
traces of events it generates, filtering out any finite sequences of internal τ ac-
tions. Broadly speaking, the correctness property of CompCertTSO states that
if the compiled program has some observable behaviours then those behaviours
are admitted by the source semantics; however compiled behaviour that arises
from an erroneous source program need not to be admitted in the source se-
mantics, and the compiled program should only diverge, indicated by an infinite
trace of τ labels, if the source program can. This is formalised in §4.

Adapted from CompCert 1.5 [8], the compilation from ClightTSO to x86-TSO
goes through 13 successive phases and 7 intermediate languages (Csharpminor,
Cminor, RTL, LTL, LTLin, Linear, Mach), which progressively transform C
features into assembly code and perform various standard optimisations such
as constant propagation, CSE (limited to arithmetic expressions), branch tun-
neling, and register allocation. In this paper, we need consider only the RTL
intermediate language, whose programs consist of a set of function definitions
each containing a control flow graph (CFG) of three-address-code instructions:

rtl instr ::= nop | op(op,�r, r) | load(κ, addr, �r, r) | store(κ, addr, �r, src)
| call(sig, ros, args, res) | cond(cond, args) | return(optarg)
| threadcreate(optarg) | atomic(aop, �r, r) | fence

Nodes with cond instructions have two successors (ifso, ifnot); nodes with return
instructions have no successors; all other nodes have exactly one successor.

3 The Optimisations

We detect and optimise away the following cases of redundant MFENCE

instructions:

– a fence is redundant if it always follows a previous fence or locked instruction
in program order, and no memory store instructions are in between (FE1);

2 Internal actions include local computations, memory accesses and TSO-unbufferings.

150 V. Vafeiadis and F. Zappa Nardelli

– a fence is redundant if it always precedes a later fence or locked instruction
in program order, and no memory read instructions are in between (FE2).

We also perform partial redundancy elimination (PRE) [19] to improve on the
second optimisation: we selectively insert memory fences in the program to make
fences that are redundant along some execution paths to be redundant along all
paths, which allows FE2 to eliminate them. The combined effect of PRE and
FE2 is quite powerful and can even hoist a fence instruction out of a loop, as we
shall see later in this section.

The correctness of FE1 is intuitive: since no memory writes have been per-
formed by the same thread since executing an atomic instruction, the thread’s
buffer must be empty and so the fence instruction is effectively a no-op and can
be optimised away.

The correctness of FE2 is more subtle. To see informally why it is correct,
first consider the simpler transformation that swaps a MFENCE instruction past
an adjacent store instructions (that is, MFENCE;store � store;MFENCE). To a first
approximation, we can think of FE2 as successively applying this transformation
to the earlier fence (and also commuting it over local non-memory operations)
until it reaches the later fence; then we have two successive fences and we can
remove one. Intuitively, the end-to-end behaviours of the transformed program,
store;MFENCE, are a subset of the end-to-end behaviours of the original program,
MFENCE;store: the transformed program leaves the buffer empty, whereas in the
original program there can be up to one outstanding write in the buffer. Notice
that there is an intermediate state in the transformed program that is not present
in the original program: if initially the buffer is non-empty, then after executing
the store instruction in store;MFENCE we end up in a state where the buffer
contains the store and some other elements. It is, however, impossible to reach
the same state in the original MFENCE;store program because the store always
goes into an empty buffer. What saves soundness is that this intermediate state
is not observable. Since threads can access only their own buffers, the only way
to distinguish an empty buffer from a non-empty buffer must involve the thread
performing a read instruction from that intermediate state.

Indeed, if there are any intervening reads between the two fences, the trans-
formation is unsound, as illustrated by the following variant of SB+mfences:

Thread 0 Thread 1

MOV [x]←1 MOV [y]←1

MFENCE (*) MFENCE

MOV EAX←[y] MOV EBX←[x]

MFENCE

If the MFENCE labelled with (*) is removed, then it is easy to find an x86-TSO
execution that terminates in a state where EAX and EBX are both 0, which was
impossible in the unoptimised program.

This ‘swapping’ argument works for finite executions, but does not account
for infinite executions, as it is possible that the later fence is never executed —
if, for example, the program is stuck in an infinite loop between the two fences.

Verifying Fence Elimination Optimisations 151

T1(nop, E) = E
T1(op(op,
r, r), E) = E
T1(load(κ, addr,
r, r),E) = E
T1(store(κ, addr,
r, src), E) = �
T1(call(sig, ros,args, res), E) = �
T1(cond(cond, args), E) = E
T1(return(optarg), E) = �
T1(threadcreate(optarg), E) = �
T1(atomic(aop,
r, r), E) = ⊥
T1(fence, E) = ⊥

T2(nop, E) = E
T2(op(op,
r, r), E) = E
T2(load(κ, addr,
r, r), E) = �
T2(store(κ, addr,
r, src), E) = E
T2(call(sig, ros, args, res), E) = �
T2(cond(cond, args), E) = E
T2(return(optarg), E) = �
T2(threadcreate(optarg), E) = �
T2(atomic(aop,
r, r), E) = ⊥
T2(fence, E) = ⊥

Fig. 2. Transfer functions for FE1 and FE2

The essential difficulty of the proof is that FE2 introduces non-observable non-
determinism. It is well-known that reasoning about such transformations cannot,
in general, be done solely by a standard forward simulation (e.g., [17]), but it
also requires a backward simulation [17] or, equivalently, prophecy variables [1].
We have tried using backward simulation to carry out the proof, but found the
backward reasoning painfully difficult. Instead, we came up with a new kind of
forward simulation, which we call a weaktau simulation in §4, that incorporates
a simple version of a boolean prophecy variable that is much easier to use and
suffices to verify FE2. The details are in §4 and §5.

We can observe that neither optimisation subsumes the other: in the program
below on the left the (*) barrier is removed by FE2 but not by FE1, while in
the program on the right the (†) barrier is removed by FE1 but not by FE2.

MOV [x]←1 MFENCE

MFENCE (*) MOV EAX←[x]

MOV [x]←2 MFENCE (†)
MFENCE MOV EBX←[y]

Implementation. The fence instructions eligible to be optimised away are eas-
ily computed by two intra-procedural dataflow analyses over the boolean do-
main, {⊥,�}, performed on RTL programs. Among the intermediate languages
of CompCertTSO, RTL is the most convenient to perform these optimisations,
and it is the intermediate language where most of the existing optimisations are
performed: namely, constant propagation, CSE, and register allocation.

The first is a forward dataflow problem that associates to each program point
the value ⊥ if along all execution paths there is an atomic instruction before the
current program point with no intervening writes, and � otherwise. The problem
can be formulated as the solution of the standard forward dataflow equation:

FE1(n) =

{
� if predecessors(n) = ∅⊔
p∈predecessors(n) T1(instr(p),FE1(p)) otherwise

where p and n are program points (i.e., nodes of the control-flow-graph), the join
operation is logical disjunction (returning � if at least one of the arguments is
�), and the transfer function T1 is defined in Fig. 2.

152 V. Vafeiadis and F. Zappa Nardelli

The second is a backward dataflow problem that associates to each program
point the value ⊥ if along all execution paths there is an atomic instruction
after the current program point with no intervening reads, and � otherwise.
This problem is solved by the standard backward dataflow equation:

FE2(n) =

{
� if successors(n) = ∅⊔
s∈successors(n) T2(instr(s),FE2(s)) otherwise

where the join operation is again logical disjunction and the transfer function
T2 is defined in Fig. 2.

To solve the dataflow equations we reuse the generic implemenation of Kil-
dall’s algorithm provided by the CompCert compiler. Armed with the results of
the dataflow analysis, a pass over the RTL source replaces the fence nodes whose
associated value in the corresponding analysis is ⊥ with nop (no-operation)
nodes, which are removed by a later pass of the compiler.

Partial Redundancy Elimination. In practice, it is common for MFENCE instruc-
tions to be redundant on some but not all paths through a program. To help
with these cases, we perform a partial redundancy elimination phase (PRE)
that inserts fence instructions so that partially redundant fences become fully
redundant. For instance, the RTL program on the left of Fig. 3 (from Fraser’s
lockfree-lib) cannot be optimised by FE2: PRE inserts a memory fence in
the ifnot branch, which in turn enables FE2 to rewrite the program so that all
execution paths go through at most one fence instruction.

The implementation of PRE runs two static analyses to identify the program
points where fence nodes should be introduced. First, the RTL generation phase
introduces a nop as the first node on each branch after a conditional; these nop
nodes will be used as placeholders to insert (or not) the redundant barriers. We
then run two static analyses:

– the first, called A, is a backward analysis returning � if along some path after
the current program point there is an atomic instruction with no intervening
reads;

– the second, called B, is a forward analysis returning ⊥ if along all paths to
the current program point there is a fence with no later reads or atomic
instructions.

The transformation inserts fences after conditional nodes on branches whenever:

– analysisB returns ⊥ (i.e., there exists a previous fence that will be eliminated
if we were to insert a fence at both branches of the conditional nodes); and

– analysis A returns ⊥ (i.e., the previous fence will not be removed by FE2);
and

– analysis A returns � on the other branch (the other branch of the conditional
already makes the previous fence partially redundant).

If all three conditions hold for a nop node following a branch instruction, then
that node is replaced by a fence node. A word to justify the some path (instead

Verifying Fence Elimination Optimisations 153

FENCE

nop

store

FENCE

return

if

ifso

nop

ifnot

nop

FENCE

nop

store

FENCE

return

if

ifso

FENCE

ifnot

nop

nop

nop

store

nop

return

if

ifso

FENCE

ifnot

nop

Fig. 3. Unoptimised RTL, RTL after PRE, and RTL after PRE and FE2

of for all paths) condition in analysis A: as long as there is a fence on some path,
then at all branch points PRE would insert a fence on all other paths, essentially
converting the program to one having fences on all paths.

The transfer functions TA and TB are detailed in Fig. 4. Note that TB defines
the same transfer function as T2, but here it is used in a forward, rather than
backward, dataflow problem.

Evaluation. We instructed the RTL generation phase of CompCertTSO to sys-
tematically introduce a MFENCE instruction before each memory read (strategy
br), or after each memory write (strategy aw). The table in Figure 5 considers
several well-known concurrent algorithms, including Dekker and Bakery mu-
tual exclusion algorithms, Treiber’s stack [29], the TL2 lock-based STM [10],
the already mentioned Fraser’s lockfree implementation of skiplists, and several
benchmarks from the STAMP benchmark [7], and reports the total numbers
of fences in the generated assembler files, following the br and aw strategies,
possibly enabling the FE1, PRE and FE2 optimisations.

A basic observation is that FE2 removes on average about 30% of the MFENCE

instructions, while PRE does not further reduce the static number of fences, but
rather reduces the dynamic number of fences executed, e.g. by hoisting fences out
of loops as in Figure 3. When it comes to execution times, then the gain is much
more limited than the number of fences removed. For example, we observe a 3%
speedup when PRE and FE2 are used on the skiplist code (running skiplist 2

154 V. Vafeiadis and F. Zappa Nardelli

TA(nop, E) = E
TA(op(op,
r, r), E) = E
TA(load(κ, addr,
r, r), E) = ⊥
TA(store(κ, addr,
r, src), E) = E
TA(call(sig, ros, args, res), E) = ⊥
TA(cond(cond, args), E) = E
TA(return(optarg), E) = ⊥
TA(threadcreate(optarg), E) = ⊥
TA(atomic(aop,
r, r), E) = �
TA(fence, E) = �

TB(nop, E) = E
TB(op(op,
r, r), E) = E
TB(load(κ, addr,
r, r), E) = �
TB(store(κ, addr,
r, src), E) = E
TB(call(sig, ros, args, res), E) = �
TB(cond(cond, args), E) = E
TB(return(optarg), E) = �
TB(threadcreate(optarg), E) = �
TB(atomic(aop,
r, r), E) = ⊥
TB(fence, E) = ⊥

Fig. 4. Transfer functions for analyses A and B of PRE

br br+FE1 aw aw+FE2 aw+PRE+FE2

Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber’s stack 5 2 3 1 1
Fraser’s skiplist 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367

Fig. 5. Experimental results

50 100 on a 2-core x86 machine): the hand-optimised (barrier free) version by
Fraser is about 45% faster than the code generated by the aw strategy.

For Lamport’s bakery algorithm we generate optimal code for lock, as barriers
are used to restore SC on accesses to the choosing array. However the particular
optimisations we consider are clearly not the last word on the subject. Looking
at the fences we do not remove in more detail, the Treiber stack is instructive, as
the only barrier left corresponds to an update to a newly allocated object, and
our analyses cannot guess that this newly allocated object is still local; a precise
escape analysis would be required. In general, about the half of the remaining
MFENCE instructions precede a function call or return; we believe that performing
an interprocedural analysis would remove most of these barriers. Our focus here
is on verified optimisations rather than performance alone, and the machine-
checked correctness proof of such sophisticated optimisations is a substantial
challenge for future work.

4 Formalisation of Traces and Simulations

In this section, we formalise the traces of a program, the correctness statement
for our compiler, as well as basic, measured, and weaktau simulations. This
section corresponds to the Coq file Traces.v in our distribution [9], and was

Verifying Fence Elimination Optimisations 155

not part of our original work on CompCertTSO [24], where we took measured
simulations to be our compiler correctness statement.

Language Semantics. Abstractly, the operational semantics of a language such
as ClightTSO, RTL, and x86-TSO consists of a type of programs, prg and a
type of states, states, together with a set of initial states for each program,
init ∈ prg → P(states), and a transition relation, →∈ P(states × event × states).
The states contain the program text, the memory, the buffers for each thread,
and each thread’s local state (for RTL, this is the program counter, the stack
pointer, and the values of the registers).

We employ the following notations: (i) s ev−→ s′ stands for (s, ev, s′) ∈→; (ii)
s �→ means ¬(∃ev s′. s ev−→ s′); and (iii) s τ−→∗ ev−→ s′ means ∃s′′. s τ−→∗ s′′ ∧ s′′ ev−→
s′. For a finite sequence � of non-τ , non-oom, non-fail events, we define s
=⇒ s′

to hold whenever s can do the sequence � of events, possibly interleaved with a
finite number of τ -events, and end in state s′. Further, we define the predicate
inftau(s) to hold whenever s can do an infinite sequence of τ -transitions.

Traces. Traces are either infinite sequences of non-τ events or finite sequences
of non-τ events ending with one of the following three placeholders: end (des-
ignating successful termination), inftau (designating an infinite execution that
eventually stops performing any visible events), or oom (designating an execu-
tion that ends because it runs out of memory). The traces of a program, p, are
given as follows:

traces(p) def= {� · end | ∃s ∈ init(p). ∃s′. s
=⇒ s′ ∧ s′ �→}
∪ {� · tr | ∃s ∈ init(p). ∃s′. s
·fail===⇒ s′}
∪ {� · inftau | ∃s ∈ init(p). ∃s′. s
=⇒ s′ ∧ inftau(s′)}
∪ {� · oom | ∃s ∈ init(p). ∃s′. s
=⇒ s′}
∪ {tr | ∃s ∈ init(p). s can do the infinite trace tr}

We treat failed computations as having arbitrary behaviour after their failure
point, whereas we allow the program to run out of memory at any point during
its execution. This perhaps counter-intuitive semantics of oom is needed to get
a correctness statement guaranteeing nothing about computations that run out
of memory.

Simulations. We proceed to the definition of simulations, which are techniques
for proving statements of the form ∀p. traces(compile(p)) ⊆ traces(p), which we
consider as compile’s correctness statement.

Definition 1 (Basic sim.). The relation pair ∼∈ P(src.states×tgt.states) and
>∈ P(tgt.states× tgt.states) is a basic simulation for the compilation function
compile : src.prg → tgt.prg, if and only if the following properties are satisfied:3

3 Our Coq definition in Traces.v exploits some particular properties common to all
our semantics (e.g., s �→ if and only if s contains no threads), and is therefore slightly
different than the one presented in the paper.

156 V. Vafeiadis and F. Zappa Nardelli

sim init : ∀p p′. compile(p) = p′ =⇒ ∀t ∈ init(p′). ∃s ∈ init(p). s ∼ t
sim end : ∀s t. s ∼ t ∧ t �→ =⇒ s �→
sim step : ∀s t t′ ev . s ∼ t ∧ t ev−→ t′ ∧ ev �= oom =⇒

(s τ−→∗ fail−−−→) — s reaches a failure
∨ (∃s′. s τ−→∗ ev−→ s′ ∧ s′ ∼ t′) — s does matching step sequence
∨ (ev = τ ∧ t > t′ ∧ s ∼ t′) . — s stutters (only allowed if t > t′)

In the definition above, > is used simply to control when stuttering can occur.
Later definitions will impose restrictions on >.

It is well-known (e.g., [17]) that exhibiting a basic simulation is sufficient to
verify that the finite traces of compile(p) are included in the traces of p. This is
captured by the following lemmata:

Lemma 1. If (∼, >) is a basic simulation, then for all s, t, t′, and ev, if s ∼ t

and t τ−→∗ ev−→ t′ and ev �= oom, then
(s τ−→∗ fail−−−→) ∨ (∃s′. s τ−→∗ ev−→ s′ ∧ s′ ∼ t′) ∨ (ev = τ ∧ s ∼ t′).

Lemma 2. If (∼, >) is a basic simulation, then for all s, t, t′, and tr, if s ∼ t

and t tr=⇒ t′, then (∃tr1 tr2. tr = tr1 · tr2 ∧ s tr1·fail=====⇒) ∨ (∃s′. s tr=⇒ s′ ∧ s′ ∼ t′).

The second lemma says that given a trace tr of external events starting from
a target state, t, then the related source state, s, can either fail after doing a
prefix of the trace or can do the same trace and end in a related state. (This is
proved by an induction on the length of the trace tr using Lemma 1.)

Using coinductive reasoning, we can extend this proof to cover infinite traces
of external events. However, we cannot show something similar for a trace ending
with infinite sequence of internal events, because the third disjunct of sim step
effectively allows us to stutter forever, thereby possibly removing the infinite
sequence of internal events.

So, while basic simulations do not imply full trace inclusion, they do so if we
can further show that for all s ∼ t, inftau(t) implies inftau(s).

Lemma 3. If there exists a basic simulation (∼, >) for the compilation function
compile, and if for all s ∼ t, inftau(t) implies inftau(s), then for all programs p,
traces(compile(p)) ⊆ traces(p).

This theorem follows easily from Lemma 2 and the corresponding lemma for
infinite traces of external events.

To ensure inclusion even for infinite traces of internal events, CompCertTSO
uses measured simulations, which additionally require that > is well-founded.

Definition 2 (Measured sim.). A measured simulation is any basic simula-
tion (∼, >) such that > is well-founded.

Existence of a measured simulation implies full trace inclusion, intuitively be-
cause we can no longer remove an infinite sequence of internal events.

Verifying Fence Elimination Optimisations 157

Theorem 1. If there exists a measured simulation for the compilation function
compile, then for all programs p, traces(compile(p)) ⊆ traces(p).

In this work, we introduce a new kind of simulation: the weaktau simulation,
which also implies trace inclusion.

Definition 3 (Weaktau sim.). A weaktau simulation consists of a basic sim-
ulation (∼, >) with an additional relation between source and target states, �∈
P(src.states× tgt.states) satisfying the following properties:

sim weaken : ∀s, t. s ∼ t =⇒ s � t

sim wstep : ∀s t t′. s � t ∧ t τ−→ t′ ∧ t > t′ =⇒
(s τ−→∗ fail−−−→) — s reaches a failure

∨ (∃s′. s τ−→∗ τ−→ s′ ∧ s′ � t′) — s does a matching step sequence.

One way of seeing weaktau simulations is as a forward simulation incorporating
a boolean prophecy variable [1] that can be used to delay execution only of
internal τ steps, but not of any visible steps. This will become more evident
from the proof that weaktau simulations imply trace inclusion.

Theorem 2. If there exists a weaktau-simulation (∼, >,�) for the compilation
function compile, then for all programs p, traces(compile(p)) ⊆ traces(p).

Proof (sketch). From Lemma 3, it suffices to prove that whenever s ∼ t and
there is an infinite sequence of internal events starting from t, then there is also
such a sequence starting from s. To construct such a trace, we do a case split:
Are the transitions eventually always in the > relation (i.e., does the sequence
satisfy the LTL-formula ♦� >) or not?

– If so, then use Lemma 1 to reach that point, say s′ ∼ t′, then apply
sim weaken to deduce that s′ � t′, and use the sim wstep to construct
the infinite trace.

– If they are not, tr contains infinitely many transitions that are not in the >
relation (�♦ �> in LTL), and so using sim step, we can produce an infinite
trace for the source. ��

5 Proofs of the Optimisations

This section gives brief outlines the formal Coq proofs of correctness for the
three optimisations that were presented in §3.

Fence Elimination 1. We verify this optimisation by measured simulation.
Take > to be empty relation (which is trivially well-founded) and s ∼ t the

relation requiring that (i) the control-flow-graph of t is the optimised version of
the CFG of s, (ii) s and t have identical program counters, local states, buffers
and memory, and (iii), for each thread i, if the analysis for i’s program counter
returned ⊥, then i’s buffer is empty.

158 V. Vafeiadis and F. Zappa Nardelli

It is straightforward to show that each target step is matched exactly by the
corresponding step of the source program. In the case of a nop instruction, this
could arise either because of a nop in the source or because of a removed fence.
In the latter case, the analysis will have returned ⊥ and so, according to ∼, the
thread’s buffer is empty and so the fence proceeds (i.e., it does not block). Note
that condition (iii) is straightforward to re-establish after each step, because
the transfer function, T1, returns ⊥ only after a fence or an atomic instruction
(when the buffer is necessarily empty) and � whenever something could have
been added to the buffer (i.e., at store instruction or a function call).

Fence Elimination 2. We verify this optimisation by exhibiting a weaktau sim-
ulation, for which we shall need the following two auxiliary definitions:

– Define s ≡i t to hold whenever thread i of s and t have identical program
counters, local states and buffers.

– Define s �i s
′ if thread i of s can execute a sequence of nop, op, store and

fence instructions and end in the state s′.

Take s ∼ t the relation requiring that (i) t’s CFG is the optimised version of s’s
CFG, (ii) s and t have identical memories, (iii), for each thread i, either s ≡i t
or the analysis for i’s program counter returned ⊥ (meaning that there is a later
fence in the CFG with no reads in between) and there exists a state s0 such that
s �i s0 and s0 ≡i t.

Take s � t to be the relation requiring that: (i) the CFG of t is the optimised
version of the CFG of s, and (ii), for each thread i, there exists s0 such that
s �i s0 and s0 ≡i t. It is easy to see that ∼ and � satisfy sim weaken: that is,
for all s and t, s ∼ t implies s � t.

Finally, let t > t′ be defined whenever t τ−→ t′ by a thread executing a nop, an
op, or a store instruction.

To prove sim step, we match every step of the target with the corresponding
step of the source whenever the analysis at the current program point of the
thread doing the step returns �. It is possible to do so, because by the simulation
relation (s ∼ t), we have s ≡i t.

Now, consider the case when the target thread i does a step and the analysis
at the current program point returns ⊥. According to the simulation relation
(∼), we have s �i s0 ≡i t. Because of the transfer function, T2, that step cannot
be a load or a call/return/threadcreate. We are left with the following cases:

– nop (either in the source program or because of a removed fence), op, or
store. In these cases, we stutter in the source, i.e. do s ∼ t′. This is possible
because we can perform the corresponding transition from s0 (i.e., there
exists an s′ such that s �i s0 �i s

′ ≡i t′).
– fence, atomic: This is matched by doing the sequence of transitions from
s to s0 followed by flushing the local store buffer and finally executing the
corresponding fence or atomic instruction from s0.

– Thread i unbuffering: If i’s buffer is non-empty in s, then unbuffering one
element from s preserves the simulation relation. Otherwise, if i’s buffer is

Verifying Fence Elimination Optimisations 159

empty, then there exists an s′ such that s �i s
′ �i s0 and i’s buffer in s′

has exactly one element. Then the transition from t
τ−→ t′ is simulated by

first doing s τ−→∗ τ−→ s′ followed by an unbuffering from s′, which preserves
the simulation relation.

To provewsim step, we simulate a target thread transition by doing the sequence
of transitions from s to s0 followed by executing the corresponding instruction
from s0.

Partial Redundancy Elimination. Even though this optimisation was the most
complex to implement, its proof was actually the easiest. What this optimisation
does is to replace some nop instructions by fence instructions depending on some
non-trivial analysis. However, as far as correctness is concerned, it is always safe
to insert a fence instruction irrespective of whatever analysis was used to used
to decide to perform the insertion. Informally, this is because inserting a memory
fence just restricts the set of behaviours of the program; it never adds any new
behaviour.

In the formal proof, we take the simulation relation to be equality except on
the programs themselves, where we require the target program to be the ‘opti-
mised’ version of the source program. Executing the inserted fence instruction
in the target is simulated by executing the corresponding nop in the source.

6 Coq Experience

Figure 6 presents the size of our development broken down in lines of extracted
code, lines of specifications (i.e., definitions and statements of lemmata and
theorems), and of proof script. Blank lines and comments are not counted. For
comparison, the whole of CompCertTSO is roughly 85 thousand lines.

Line counts do not accurately reflect the time taken to carry out those proofs.
The definitions of program traces, of the various kinds of simulations and their
properties (namely, that they imply trace inclusion) took about a month. The
main challenge was coming up with the definition of a weaktau simulation; the
proof that weaktau simulations imply trace inclusion took us less than a day
once we had come up with the definition. Prior to that we had spent two man-
months formalizing backward (prophecy) simulations [17] and trying to use them

Code Specs Proofs

Traces & simulations – 490 358
Auxiliary memory lemmata – 162 557
Fence elimination 1 68 213 319
Fence elimination 2 68 336 652
Fence introduction (PRE) 138 117 127

Total 274 1318 2013

Fig. 6. Size of formal development in lines as reported by coqwc

160 V. Vafeiadis and F. Zappa Nardelli

to verify our second fence elimination optimisation, albeit unsuccessfully. The
trace inclusion proofs were moderately tricky to formalize in Coq because of
coinductive reasoning and the use of the axiom of choice, for which we assumed
the classical epsilon operator.

Coding up the fence elimination optimisations took half a day, and so did the
soundness proof of the first one. Proving the correctness of the second optimi-
sation required in total about three man-months of effort, reduced to less than
a week once we defined the weaktau simulation, a significant part of which was
devoted to developing generic infrastructure to reason about executions resulting
in a memory error. Finally, PRE took a couple of days to implement and two
hours to prove correct. In total, we spent about 5 man-months on this project.

7 Related Work

The problem of inserting memory barriers so that a program admits only SC
executions has been, and still is, a central research topic since Sasha and Snir’s
seminal paper on delay set analysis [26]. Most studies of this problem [26,2,6]
have mostly been in terms of hypothetical program executions and, unlike our
work, have not been integrated in a working compiler.

There is also some compiler work. Lee and Padua [15] describe an algorithm
based on dominators for inserting memory fences, while Sura et al. [27] focus on
the more practical aspects, e.g., on how to approximate delay sets by performing
cheaper whole-program analyses coupled with an escape analysis. While these
works perform much more sophisticated analyses than the ones we implemented,
unfortunately none of them comes with a mechanised soundness proof.

Another line of research [5,13,14] uses model checking techniques to insert
fences to ensure SC. While these techniques may insert fewer fence instructions
for small intricate concurrent libraries, they often guarantee soundness only for
some clients of those libraries, and are too expensive to perform in a general-
purpose compiler.

8 Conclusion

We have reported on the implementation of three barrier elimination optimisa-
tions within CompCertTSO and on their mechanised correctness proof in Coq.
Our results suggest that reasoning about compiler optimisations for weak mem-
ory models are good candidates for mechanisation, and believe that this work
will facilitate the formal study of more advanced compiler optimisations for con-
current programs within verified compilers.

Acknowledgements. We thank Mark Batty for discussion about fence optimi-
sations, Suresh Jagannathan for pointing us at partial redundancy elimination,
and Jaroslav Ševč́ık and Peter Sewell for comments on an early draft. We ac-
knowledge funding from INRIA équipes associées MM.

Verifying Fence Elimination Optimisations 161

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci., 253–284 (1991)

2. Alglave, J.: A shared memory poetics. Ph.D. thesis, Université Paris 7 (2010)

3. Becker, P.: Working draft, standard for programming language C++, n3090=10-
0080 (March 2010)

4. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reasoning 43(3), 263–288 (2009)

5. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI (2007)

6. Burckhardt, S., Musuvathi, M., Singh, V.: Verifying local transformations on re-
laxed memory models. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 104–123.
Springer, Heidelberg (2010)

7. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IISWC (2008)

8. The Compcert verified compiler, v. 1.5 (August 2009),
http://compcert.inria.fr/release/compcert-1.5.tgz

9. CompCertTSO (2011), http://www.cl.cam.ac.uk/~pes20/CompCertTSO

10. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

11. Eide, E., Regehr, J.: Volatiles are miscompiled, and what to do about it. In: EM-
SOFT (2008)

12. Fraser, K.: Practical Lock Freedom. Ph.D. thesis, University of Cambridge, also
available as Tech. Report UCAM-CL-TR-639 (2003)

13. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification.
Form. Methods Syst. Des. 31, 281–305 (2007)

14. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:
FMCAD (2010)

15. Lee, J., Padua, D.A.: Hiding relaxed memory consistency with a compiler. IEEE
Trans. Comput. 50, 824–833 (2001)

16. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009),
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf

17. Lynch, N., Vaandrager, F.: Forward and backward simulations I: untimed systems.
Inf. Comput. 121, 214–233 (1995)

18. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: POPL (2005)

19. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Commun. ACM 22, 96–103 (1979)

20. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

21. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI (2011)

22. Ševč́ık, J., Aspinall, D.: On validity of program transformations in the java memory
model. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27–51. Springer,
Heidelberg (2008)

23. Ševčik, J.: Safe optimisations for shared-memory concurrent programs. In: PLDI
(2011)

http://compcert.inria.fr/release/compcert-1.5.tgz
http://www.cl.cam.ac.uk/~pes20/CompCertTSO
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf

162 V. Vafeiadis and F. Zappa Nardelli

24. Ševčik, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. In: POPL (2011)

25. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO:
a rigorous and usable programmer’s model for x86 multiprocessors. Commun.
ACM 53(7), 89–97 (2010)

26. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10, 282–312 (1988)

27. Sura, Z., Fang, X., Wong, C.-L., Midkiff, S.P., Lee, J., Padua, D.: Compiler tech-
niques for high performance sequentially consistent Java programs. In: PPoPP
(2005)

28. Terekhov, A.: Brief tentative example x86 implementation for C/C++ memory
model. cpp-threads mailing list (2008),
http://www.decadent.org.uk/pipermail/cpp-threads/

cpp-threads/2008-December/001933.html

29. Treiber, R.K.: Systems programming: Coping with parallelism. Tech. rep. (1986)

http://www.decadent.org.uk/pipermail/cpp-threads/2008-December/001933.html
http://www.decadent.org.uk/pipermail/cpp-threads/2008-December/001933.html

An Efficient Static Trace Simplification

Technique for Debugging Concurrent Programs

Jeff Huang and Charles Zhang

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

{smhuang,charlesz}@cse.ust.hk

Abstract. One of the major difficulties in debugging concurrent pro-
grams is that the programmer usually experiences frequent thread con-
text switches, which perplexes the reasoning process. This problem can
be alleviated by trace simplification techniques, which produce the same
computation process but with much fewer number of context switches.
The state of the art trace simplification technique takes a dynamic ap-
proach and does not scale well to large traces, hampering its practicality.
We present a static trace simplification approach, SimTrace, that dramat-
ically improves the efficiency of trace simplification through reasoning
about the computation equivalence of traces offline. By constructing a
dependence graph model of events, our trace simplification algorithm
scales linearly to the trace size and quadratic to the number of nodes
in the dependence graph. Underpinned by a trace equivalence theorem,
we guarantee that the results generated by SimTrace are sound and no
dynamic program re-execution is required to validate the trace equiv-
alence. Our experiments show that SimTrace scales well to traces with
more than 1M events, making it attractive to practical use.

Keywords: Trace simplification, Debugging, Concurrent program.

1 Introduction

Software is becoming increasingly concurrent due to the prevalence of multicore
hardware. Unfortunately, the unique non-deterministic nature of concurrency
makes debugging concurrent programs notoriously difficult. For instance, accord-
ing to a recent report [9], the average bug fixing time of concurrency bugs (137
days) is 2.58 times longer than that of sequential ones in the MySQL1 project. In
our experience, the challenge of debugging concurrent programs comes from two
main sources. First, concurrency bugs are hard to reproduce, as they may only
manifest under certain specific thread interleavings. Due to the non-deterministic
thread interleavings, a concurrency bug manifested in an earlier execution may
“disappear” when the programmer attempts to reproduce it [17]. Second, con-
currency bugs are hard to understand. A buggy concurrent program execution
often contains many thread context switches. Since most programmers are used
1 http://www.mysql.com/

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 163–179, 2011.
© Springer-Verlag Berlin Heidelberg 2011

164 J. Huang and C. Zhang

to thinking sequentially, they have to jump frequently from the context of one
thread to another for reasoning about a concurrent program execution trace.
These frequent context switches significantly impair the efficiency of debugging
concurrent programs [14].

Researchers have studied the first problem for several decades [5] and numer-
ous effective approaches [12,16,20,19,13] are proposed for reproducing concur-
rency bugs. For the second problem, Jalbert and Sen [14] have recently proposed
a dynamic trace simplification technique, Tinertia, for reducing the number of
thread interleavings in a buggy execution trace. From a high level perspective,
Tinertia iteratively transforms an input trace that satisfies a certain property
to another trace satisfying the same property but with fewer thread context
switches. Tinertia is valuable in improving the debugging efficiency of concur-
rent programs as it prolongs the sequential reasoning of concurrent program
executions and reduces frequent “context switches”. However, since Tinertia is
a dynamic approach, it faces serious efficiency problems when used in practice.
To reduce every single context switch, Tinertia has to re-execute the program at
least once to validate the equivalence of the transformed trace. It is very hard
for Tinertia to scale to large traces as the program re-execution typically requires
controlling the thread scheduler to follow the scheduling decisions in the trans-
formed trace, which is often 5x to 100x slower than the native execution [20].
From the time complexity point of view, the total running time of Tinertia is
cubic to the trace size [14].

In this paper, we present a static trace simplification technique, SimTrace, that
dramatically improves the efficiency of trace simplification through the offline
reasoning of the computation equivalence of traces. The key idea of SimTrace is
that we can statically guarantee the trace equivalence by leveraging the depen-
dence relations between events in the trace. By presenting a formal modeling of
dependence relation, we show a theorem of trace equivalence that any reschedul-
ing of the events in the trace respecting the dependence relation is equivalent
to the given trace. The trace equivalence is not limited to any specific property
but general to all properties that can be defined over the program state. Under-
pinned by the trace equivalence theorem, SimTrace is able to perform the trace
simplification completely offline, without any dynamic re-execution to validate
the intermediate simplification result, which significantly improves the efficiency
of the trace simplification.

In our analysis, we first build a dependence graph that encodes all the depen-
dence relations between events in the trace. The dependence graph is a direct
acyclic graph in which each node in the graph represents a corresponding event
or event sequence by the same thread in the trace, and each edge represents
a happens-before relation or a data dependence between two events or event
sequences. The dependence graph is sound in that it encodes a complete set
of dependence relations between the events. And the trace equivalence theo-
rem guarantees that any topological sort of the dependence graph produces an
equivalent trace to the original trace.

An Efficient Static Trace Simplification Technique 165

Taking the advantage of the dependence graph, we reduce the trace simplifi-
cation problem to a graph merging problem, of which the objective is minimizing
the size of the graph. To address this problem, we developed a graph merging
algorithm that performs a sequence of merging operations on the graph. Each
merging operation is applied on two consecutive nodes by the same thread in
the graph, and it consolidates the two nodes if a merging condition is satisfied.
The merging condition is that the edge connecting the two merged nodes is the
only path connecting them in the graph, which can be efficiently checked by
computing the reachability relation between the two nodes.

Finally, SimTrace performs a topological sort on the reduced dependence graph
and generates the simplified trace. The total running time of SimTrace is linear
in the size of the trace and quadratic in the number of the nodes in the initial de-
pendence graph. SimTrace is very efficient in practice, since the size of the initial
dependence graph is often much smaller than that of the original trace. More-
over, guaranteed by the sound dependence graph model, SimTrace is completely
offline and does not require any re-execution of the program for validating the
equivalence of the simplified trace.

For the general trace simplification problem of generating equivalent traces
with minimum context switches, Jalbert and Sen [14] have proved that this
problem is NP-hard. Like Tinertia, SimTrace does not guarantee the globally
optimal simplification but a local optimum. However, our evaluation results using
a set of multithreaded programs show that SimTrace has good performance that
is able to significantly reduce the context switches in the trace. For instance, for
the input trace of the Cache4j subject with 1,225,167 events, SimTrace is able
to reduce the number of context switches from 417 to 33 (with 92% reduction
percentage) in 592 seconds. The overall reduction percentage of SimTrace ranges
from 65% to 97% in our experiments.

Being an offline analysis technique, SimTrace is complementary to Tinertia.
For the sake of efficiency, our modeling of the dependence relation does not
consider the runtime value dependencies between events in the trace and hence
may be too strict in preventing further trace simplification. As Tinertia utilizes
the runtime verification regardless of the dependence relation, it might be able to
explore more simplification opportunities that are beyond the strict dependence
relation. A good match between SimTrace and Tinertia for the trace simplification
is to apply SimTrace as a front-end and use Tinertia as a back end. By working
together, we can achieve both the trace simplification efficiency and effectiveness
at the same time, i.e., to more efficiently generate a simplified trace with fewer
context switches.

To sum up, the key contributions of this paper are as follows:

– We present an efficient static trace simplification technique for reducing the
number of thread context switches in the trace.

– We show a theorem of trace equivalence that is general to all properties
defined over the program state. This theorem provides the correctness guar-
antee of the static trace simplification without any dynamic program re-
execution to validate the intermediate simplification result.

166 J. Huang and C. Zhang

– We present a sound graph modeling of the dependence relation between
events in the trace, which allows us to develop efficient graph merging algo-
rithms for the trace simplification problem.

– We evaluate our approach on a number of multithreaded applications and
the results demonstrate the efficiency and the effectiveness of our approach.

The rest of the paper is organized as follows: Section 2 describes the problem
of trace simplification; Section 3 presents our algorithm; Section 4 reports our
evaluation results; Section 5 discusses the related work and Section 6 concludes
this paper.

2 Preliminaries

In this section, we first describe a simple but general concurrent program execu-
tion model. Based on this model, we then formally introduce the general trace
simplification problem.

2.1 Concurrent Program Execution Model

To formally present the trace simplification problem and to prove the trace
equivalence theorem, we need to define a concurrent program execution model
with precise execution semantics. Previous work [8,7,24] has described the con-
current program execution models in several different ways for different analysis
purposes. To make our approach general, we define a model in a similar style to
[8].

A concurrent program in our language consists of a set of concurrently exe-
cuting threads T = {t1, t2, ...} that communicate through a global store σ. The
global store consists of a set of variables S = {s1, s2, ...} that are shared among
threads. Each thread has also its own local store π, consisting of the local vari-
ables and the program counter to the thread. We use σ[s] to denote the value
of the shared variable s on the global store. Each thread executes by performing
a sequence of actions on the global store or the thread’s own local store. Let α
refer to an action and var(α) the variable accessed by α. If var(α) is a shared
variable, we call α a global action, otherwise it is a local action. Note that for
any global action, it operates on only one variable on the global store. This is
also true for synchronization actions, though they are only enabled when certain
pre-conditions are met. For local actions, the number of accessed variables on
the local store is not important in our modeling. We next explain the execution
semantics.

The program execution is modeled as a sequence of transitions defined over
the program state Σ = (σ,Π), where σ is the global store and Π is a mapping
from thread identifiers ti to the local store πi of each thread. Since the program
counter is included in the local store, each thread is deterministic and the next
action of ti is determined by ti’s current local store πi. Let αk be the kth action
in the global order of the program execution and Σk−1 be the program state just

An Efficient Static Trace Simplification Technique 167

before αk is performed (Σ0 is the initial state), the state transition sequence is:

Σ0 α1
�→ Σ1 α2

�→ Σ2 α3
�→ . . .

Given a concurrent system described above, the execution semantics of actions
are defined as follows:

Local action When a local action is performed by a thread, only the local
store of that thread is changed to a new state determined by its current state.
The global store and the local stores of the other threads remain the same.

Global action When a global action is performed by a thread ti on the shared
variable s, only s and πi are changed to new states. The states of all the other
shared variables on the global store as well as the local stores of all the other
threads remain the same. To make the execution model general to different
programming languages, we consider the following types of global actions:

– READ - a thread reads the value of a shared variable in the global store into
its local store;

– WRITE - a thread assigns some value to a shared variable in the global
store;

– LOCK - a thread acquires a lock;
– UNLOCK - a thread releases a lock;
– FORK - a thread forks a new thread;
– JOIN - a thread joins the termination of another thread;
– START - a dummy action indicating that a thread is ready to run;
– EXIT - the last action of a thread;
– SIGNAL - a thread sets the value of a conditional variable to 1;
– WAIT - a thread waits for a conditional variable to become 1 and resets it

back to 0 after it becomes 1.

2.2 General Trace Simplification Problem

Definition 1. A trace is the action sequence ⟨αk⟩ of a program execution.

Definition 2. A context switch occurs when two consecutive actions in the
trace are performed by different threads.

Let Γ (α) denotes the owner thread of action α. Let δ denote a trace containing
N actions and δ[k] the kth action in δ, and let CS(δ) denote the number of
context switches in δ, we have CS(δ) = ΣN−1

k=1 uk where uk is a binary variable
s.t. uk = 1 if Γ (δ[k]) ≠ Γ (δ[k + 1]) and uk = 0 otherwise.

Definition 3. Two traces are equivalent if they drive the same initial program
state to the same final program state.

Given a trace as the input, the general trace simplification problem is to produce
an output trace that is equivalent to the input trace and has minimum number of
context switches among all the equivalent traces. To state more formally, suppose
an input trace δ drives the program state to ΣN , the general trace simplification

168 J. Huang and C. Zhang

problem is: given δ, output a δ′ s.t. ΣN
= Σ′N and CS(δ′) is minimized. Notice

that the program state here is not limited to any local store or the global store
but includes both the global store and the local stores of all the threads. In other
words, the trace simplification problem defined above is general to all properties
defined over the program state.

The basic idea for reducing the context switches in a trace is to reschedule
the actions in the trace such that more actions by the same thread are placed
next to each other. A näıve approach is to exhaustively generate all permuta-
tions of the events in the trace and pick an equivalent one with the smallest
number of context switches. However, this näıve approach requires checking N!
permutations which is highly inefficient. A better approach is to repeatedly move
the interleaving actions to some non-interleaving positions and then consolidate
the neighboring actions by the same thread. However, there are two major chal-
lenges in this approach. First, how to ensure the rescheduled trace is feasible
and also equivalent to the input trace? Second, how to make sure the output
trace is optimal, i.e., has the minimum number of context switches among all
the equivalent traces?

3 SimTrace: Efficient Static Trace Simplification

We address the trace simplification problem by leveraging the dependence re-
lationship between actions in the trace. For the first challenge, we show that
the trace equivalence can be guaranteed by respecting the dependence relation
during the rescheduling process. For the second challenge, since Jalbert and Sen
[14] have proved it is NP-hard, we present an efficient algorithm, SimTrace, that
guarantees to generate a locally optimal solution. In this section, we first describe
our modeling of the dependence relation. Based on the modeling, we describe a
theorem of trace equivalence and offer a detailed proof. After that, we present
the full SimTrace algorithm.

3.1 Modeling of the Dependence Relation

Previous work has proposed many causal models [21,3,15,18,26] that characterize
the dependence relationship between actions in the trace. Among them, most
models are developed for checking concurrency properties such as data race and
atomicity violations, and they are tailored for the specific property. Different
from these models, as we are dealing with all properties over the program state,
we have to consider a general model that works for all properties.

Moreover, to support efficient trace simplification, the model should be as
simple as possible. Although using a more precise dependence relation model,
such as the maximal causal model [21] or the guarded independence model [26],
may give us more freedom to simplify the trace (which can further reduce the
context switches), such a model is often very expensive to construct in practice,
because it requires to track all the value dependencies between events along the
program branches and all the correlated control flow decisions in the program
execution. We thus use a strict model defined as follows:

An Efficient Static Trace Simplification Technique 169

Definition 4. The dependence relation (→) for a trace δ is the smallest
transitive closure over the actions in δ, such that ai → aj holds whenever ai
occurs before aj and one of the following holds:
– Local dependence relation
● Program order - ai immediately precedes αj in the same thread.

– Remote dependence relation
● Synchronization order - ai and aj are consecutive synchronization ac-

tions by different threads on the same shared variable. There are four
types of synchronization orders:

∗ UNLOCK→LOCK: ai is the UNLOCK action that releases the lock
acquired by the LOCK action aj ;

∗ FORK→START: ai is the FORK action that forks the thread whose
START action is aj ;

∗ EXIT→JOIN: ai is the EXIT action of a thread that the JOIN action
aj joins;

∗ NOTIFY→WAIT: ai is the NOTIFY action that sets the conditional
variable the WAIT action aj waits for;

● Conflicting order - ai and aj are consecutive conflicting actions by dif-
ferent threads on the shared variable. There are three types of conflicting
orders:

∗ WRITE→READ: ai is a WRITE action and aj is a READ action;
∗ READ→WRITE: ai is a READ action and aj is a WRITE action;
∗ WRITE→WRITE: both ai and aj are WRITE actions.

Given a dependence relation ai → aj , If ai and aj are from different threads, we
say ai has a remote outgoing dependence to aj , and similarly, aj has a remote
incoming dependence to ai; Otherwise, we say ai has a local outgoing dependence
to aj and aj has a local incoming dependence to ai.

It is important to notice that the remote dependence relations in our model
are all between actions accessing the same shared variable. Therefore, context
switches between threads accessing different variables in the trace are allowed to
be reduced in our model. Nevertheless, also note that the remote dependence in
our modeling includes both the synchronization order and the conflicting order,
which may actually be unnecessary if we consider the value dependencies between
events. For example, two writes to the same variable with the same value can
be permuted without affecting the correctness of the trace. The main purpose
for using this strict model is that we want to efficiently and safely guarantee
the trace equivalence, towards which we must ensure that every action in the
simplified trace reads or writes the same value as its corresponding action in the
original trace.

3.2 A Theorem of Trace Equivalence

Based on our model of the dependence relation in Section 3.1, we have the
following theorem of trace equivalence:

Theorem 1. Any rescheduling of the actions in a trace respecting the depen-
dence relation defined in Definition 4 generates an equivalent trace.

170 J. Huang and C. Zhang

Proof. (Sketch) Let δ denote the input trace with size N and δ′ an arbitrary
rescheduling of δ respecting the dependence relation, and suppose δ and δ′ drive
the program state from the same initial state Σ0 and Σ′0 to ΣN and Σ′N ,
respectively. Our goal is to prove Σ′N = ΣN . The main insight of the proof is
that, by respecting the order defined by the dependence relation, every action in
the rescheduled trace reads or writes the same value on the program state as its
corresponding action in the input trace, and hence the rescheduled trace drives
the program to the same final state as that of the input trace. We provide the
full detailed proof in the Appendix A. Readers may skip it at this moment. ∎

Note that Theorem 1 is related to but different from the equivalence axiom of the
Mazurkiewicz traces [1] in the trace theory, which provides an abstract model
of reasoning about trace equivalence based on the partial order relation between
events. We prove Theorem 1 in the context of concurrent program execution
based on the concrete modeling of the action semantics and the computation
effect in the trace.

In spite of the intuitiveness, Theorem 1 forms the basis of static trace sim-
plification as it guarantees every rescheduling of the actions in the trace that
respects the dependence relation produces a valid simplification result, without
the need of any runtime verification. In other words, as long as we do not violate
the order defined by the dependence relation, we can safely reschedule the events
in the trace without worrying about correctness of the final result.

3.3 SimTrace Algorithm

Our algorithm starts by constructing from the input trace a dependence graph
(see Definition 5), which encodes all the actions in the trace as well as the
dependence relations between the actions. We then simplify the dependence
graph by ordinally performing a “merging” operation on two consecutive nodes
by the same thread in the graph. When the dependence graph cannot be further
simplified, our approach applies a simple topological sort on the graph to produce
the final simplified trace.

Definition 5. A dependence graph G = (V,E), built upon a trace, is a di-
rected acyclic graph in which each v ∈ V corresponds to a sequence of consecutive
actions by the same thread started by a unique action that has remote incoming
dependence. For each edge, there is a labeling relation L ∶ E →{local, remote}
such that each local edge connects neighboring nodes by the same thread, and
each remote edge connects nodes by different threads meaning that there are de-
pendence relations from some actions in one node to some actions in the other
node.

Note that the dependence graph is directed acyclic graph. Otherwise it indicates
there are cyclic dependences between events in the trace, which is impossible
according to our dependence relation model. We next describe our algorithms
for constructing and simplifying the dependence graph in detail.

An Efficient Static Trace Simplification Technique 171

Algorithm 1. ConstructDependenceGraph(δ)

1: input: δ (a trace)
2: output: graph (the dependence graph built from δ)
3: mapt2n ← empty map from a thread identifier to its current graph node
4: told ← null
5: for i ← 0 to ∣δ∣-1 do
6: tcur ← the thread identifier of the action δ[i]
7: nodecur ←mapt2n(tcur)

8: if nodecur is null then
9: nodecur ← new node(δ[i])

10: mapt2n(tcur) ← nodecur

11: add node nodecur to graph
12: else
13: if δ[i] has remote incoming dependence and tcur ≠ told then
14: nodeold ← nodecur

15: nodecur ← new node(δ[i])
16: add node nodecur to graph
17: add local edge nodeold ⇢ nodecur to graph
18: for each action a with remote outgoing dependence to δ[i] do
19: nodea ← the node to which a belongs
20: add remote edge nodea → nodecur to graph
21: end for
22: else
23: add action δ[i] to nodecur

24: end if
25: end if
26: told ← tcur

27: end for

Dependence Graph Construction. Algorithm 1 shows our algorithm for con-
structing the dependence graph. Given an input trace, we first conduct a linear
scan of all the actions in the trace to build the smallest dependence relation be-
tween actions, according to our model in Section 3.1. We then visit each action
in their appearing order in the trace once to construct the dependence graph
according to Definition 5. Our construction of the dependence graph leverages
the observation that most of the dependence relations in the trace are local
dependencies within the same thread, while the number of remote dependence
relations are comparatively much smaller. We can hence greatly reduce the size
of the initial dependence graph by shrinking consecutive actions with only local
dependence between them into a single node. The running time of Algorithm 1
is linear to the trace size.

Note that, in our dependence graph construction process, each node in the
initial dependence graph has exactly two incoming edges except the root node:
a local incoming edge and a remote incoming edge. The number of edges in the
graph is thus less than twice the number of nodes in the graph. Moreover, since
each node in the dependence graph may represent a sequence of actions in the
trace, the number of nodes in the graph is much smaller than the original trace

172 J. Huang and C. Zhang

size. As a result, performing a topological sort on the dependence graph is much
more efficient than that on the original trace.

Simplifying Dependence Graph. Following Theorem 1, it is easy to see that any
topological sort of the initial dependence graph produces a correct answer to
our problem, i.e., generates an equivalent trace to the input trace. However,
to make the resultant trace as simple as possible, i.e., to minimize the context
switches, we have to wisely choose the next node in each sorting step during the
topological sort, which is a difficult problem with no existing solution or even
good approximation algorithm, to our best knowledge.

We formulate this problem as an optimization problem on the number of
nodes in the dependence graph and use a graph merging algorithm to compute
a locally optimal solution to it. Before describing the formulation, let us first
introduce a dual notion of context switch:

Definition 6. A context continuation occurs when two consecutive actions
in the trace are performed by the same thread.

Let CC(δ) denote the number of context continuations in a trace δ, we have the
following lemma:

Lemma 1. Minimizing CS(δ) is equivalent to maximizing CC(δ).

Proof. Traversing the trace once, it is easy to see that for each action, either
CS(δ) or CC(δ) is incremented. Thus, CS(δ) + CC(δ) = N − 1. Hence, CS(δ)
is minimized when CC(δ) is maximized.

Therefore, our goal becomes to maximize the number of context continuations
in the simplified trace. Now let us consider the action sequence represented by
each node in the dependence graph. Since all actions in the same action sequence
are performed by the same thread, their number of context continuations are
already optimized. The remaining possible context continuations can only come
from actions that are in different action sequences. Mapping this back to the
dependence graph and because nodes representing action sequences by the same
thread are connected by local edges, we have the following lemma:

Lemma 2. Minimizing CS(δ) is equivalent to maximizing the number of con-
text continuations contributed by local edges in the dependence graph.

Consider a local edge in the graph, if the action sequences represented by
the two nodes connected by this local edge are consolidated together, it will
contribute one context continuation. Let us call a merging operation as the
consolidating of two nodes connected by a local edge in the dependence graph.
As each merging operation eliminates a local edge and correspondingly reduces
one node in the dependence graph, it is easy for us to get the following theorem:

Theorem 2. Minimizing CS(δ) is equivalent to minimizing the number of nodes
in the dependence graph.

An Efficient Static Trace Simplification Technique 173

Following Theorem 2, our objective is performing as many merging operation
as possible so as to minimize the number of nodes in the dependence graph.
However, recall that the dependence relation between actions in the trace must
be respected. Therefore, we cannot arbitrarily perform the merging operation
without satistifying a certain pre-condition: the merging condition is that the
to-be-merged two nodes are connected by the local edge only. Otherwise, the
resultant graph after the merging operation would become cyclic that violates
the definition of dependence graph. Mapping this back to the semantics of the
dependence relation, the merging condition simply requires that there should
not exist another dependent action in the trace that interleaves the two action
sequences represented by the to-be-merged two nodes in the dependence graph.
Checking the merging condition is simple because it only requires testing the
reachability relation between the two merged nodes, which costs a linear running
time in the number of nodes in the dependence graph using a simple algorithm2.

Therefore, our dependence graph simplification algorithm (Algorithm 2) tra-
verses each local edge in the dependence graph, and performs the merging op-
eration if the merging condition is satisfied. This algorithm evaluates each local
edge in the initial dependence graph once and each evaluation computes the
reachability relation between two nodes once. The worst case time complexity is
thus quadratic in the number of nodes in the initial dependence graph.

Algorithm 2. SimplifyDependenceGraph(graph)
1: input: graph (the dependence graph)
2: output: graph′ (the simplified dependence graph)
3: graph′ ← graph
4: for each local edge nodea → nodeb in a random order do
5: if nodeb is not reachable from nodea except from the local edge then
6: merge(nodea, nodeb, graph

′

)

7: end if
8: end for

Notice that in our merging algorithm, the evaluation order of the local edges
may affect the simplification result. Our algorithm does not guarantee a global
optimum but produces a locally optimal simplification given the chosen evalua-
tion order. To illustrate this problem, let us take the (incomplete) dependence
graph in Figure 1 as an example. The graph contains 6 nodes, 3 local edges
(denoted by dashed arrows ⇢), and 4 remote edge (denoted by solid arrows
→): a1 ⇢ a2, b1 ⇢ b2, c1 ⇢ c2, a1 → b2, c1 → b2, b1 → a2 and b1 → c2. If
b1 and b2 are merged first, as shown in Figure 1 (a), it would produce the
trace <a1-c1-b1-b2-c2-a2> that contains 4 context switches. However, the op-
timal solution is to merge a1 and a2, and c1 and c2, which produces the trace
<b1-a1-a2-c1-c2-b2> that contains only 3 context switches. In fact, this problem
is NP-hard (proved by Jalbert and Sen [14]), and there does not seem to exist an

2 Theoretically, constant time graph reachability computation algorithms also exist.
Please refer to [27] for details.

174 J. Huang and C. Zhang

a1 a2

b1 b2

c1 c2

(a) Non optimal

#cs=4: a1 c1 b1 b2 c2 a2

a1 a2

b1 b2

c1 c2

(b) Optimal

#cs=3: b1 a1 a2 c1 c2 b2

local edge

remote edge

merge

Fig. 1. A greedy merge may produce non-optimal result in (a). Unfortunately, the
problem of producing the optimal result in (b) is NP-hard.

efficient algorithm for generating an optimal solution. Our algorithm thus picks
a random order (or any arbitrary order) for evaluating the local edges. Though it
does not guarantee to produce a global optimum, it is easy to see that our algo-
rithm always produces a local optimum specific to the chosen evaluation order.
That is, given the evaluation order of the local edges, our algorithm produces a
trace with the fewest thread context switches.

4 Implementation and Experiments

We have implemented SimTrace as a prototype tool on top of our LEAP [13]
record and replay framework for multithreaded Java programs. From the user’s
perspective, our tool consists of three phases. It first obtains a trace of a buggy
concurrent Java program execution, which contains all the shared memory reads
and writes as well as synchronization operations performed by each thread in
the program. Then our tool applies the SimTrace algorithm on the trace and pro-
duces a simplified trace. In the third phase, it uses a replay engine to re-execute
the program according to the scheduling decisions in the simplified trace. Our
replayer is transparent to the programmers such that they can deterministically
investigate the simplified buggy trace in a normal debugging environment.

The goal of our experiments is to investigated whether our approach is effective
and how efficient it is in reducing the thread context switches in the trace.
We chose eight widely used multithreaded Java benchmarks as the evaluation
subjects (shown in the first column in Table 4). Each subject has one or more
known concurrency bugs. Philosopher is a simulation of the classical dinning
philosophers problem, Bubble is a buggy multithreaded version of the bubble
sort algorithm, TSP is a multithreaded implementation of a parallel branch and
bound algorithm for the travelling salesman problem, StringBuffer is an open
library from Suns JDK 1.4.2, Cache4j is a thread-safe implementation of cache
for Java objects with an atomicity violation bug, Weblech is a multi-threaded web
site download and mirror tool, SpecJMS is SPEC’s benchmark for evaluating the

An Efficient Static Trace Simplification Technique 175

performance of enterprise message-oriented middleware servers based on JMS,
and Jigsaw is W3C’s leading-edge web server platform.

Similar to Tinertia [14], we use the random testing approach to generate the
initial buggy trace for each subject. For each trace, we ran SimTrace multiple
times with different evaluation orders of the local edges during our graph merg-
ing process (Algorithm 2). To remove the non-determinism related to random
numbers, we fix the seed of random numbers to a constant in all the subjects.
All experiments were conducted on a HP EliteBook running Windows 7 with
2.53GHz Intel Core 2 Duo processor and 4GB memory. For others to verify our
experimental results, we put our implementation and all the evaluation subjects
publicly available at http://www.cse.ust.hk/prism/simtrace.

Table 1. Experimental results. Data are averaged over 50 runs for each subject.

Program LOC Thread SV Trace Size Time Old Ctxt New Ctxt Reduction

Philosopher 81 6 1 131 6ms 51 18 65%

Bubble 417 26 25 1,493 23ms 454 163 71%

Elevator 514 4 13 2104 8ms 80 14 83%

TSP 709 5 234 636,499 149s 9272 1,337 86%

Cache4j 3,897 4 5 1,225,167 592s 417 33 92%

Weblench 35,175 3 26 11,630 57ms 156 24 85%

OpenJMS 154,563 32 365 376,187 38s 96,643 11,402 88%

Jigsaw 381,348 10 126 19,074 130ms 2396 65 97%

Table 4 shows the experimental results. All data are averaged over 50 runs.
The first five columns show the statistics of the test cases, including the program
name, the size of the program in lines of source code, the number of threads,
the number of real shared memory locations that contain both read and write
accesses from different threads in the given trace, and the length of the trace.
The next four columns shows the statistics of our trace simplification algorithm
(all on average), including the running time of our offline analysis, the number
of context switches in the original trace, the number of context switches in the
simplified trace and the percentage of reduction due to our simplification. The
results show that our approach is promising in terms of both the trace simpli-
fication efficiency and the effectiveness. For the eight subjects, our approach is
able to reduce the number of context switches in the trace by 65% to 97% on
average. This reduction percentage is close to that of Tinertia, the reduction
percentage of which ranges from to 32.1% to 97.0% in their experiments. More
importantly, our approach is able to scale to much larger traces compared to
that of Tinertia. For a trace with only 1505 events (which is the largest trace
reported by Tinertia in their experiments), Tinertia requires a total of 769.3s to
finish the simplification, while our approach can analyze a trace (the Cache4j
subject) with more than 1M events within 600s. For a trace (the Bubble subject)
with 1,493 events, our approach requires only 23ms to simplify it. Although a
direct comparison between Tinertia and our approach is not applicable as the
two approaches are implemented for different program languages (Tinertia is

http://www.cse.ust.hk/prism/simtrace

176 J. Huang and C. Zhang

implemented for C/C++ programs) and have different evaluation subjects, we
believe the statistical data provides some evidence demonstrating the value of
our approach compared to the state of the art.

5 Related Work

From the perspective of the trace theory [6], our dependence graph modeling
of traces is an instantiation of Mazurkiewicz traces [1], which models a class of
equivalent traces with respect to an alphabet and a dependence relation over
the alphabet. Different from the equivalence axiom of Mazurkiewicz traces [1],
our trace equivalence theorem is built on top of the computation equivalence
of program state transitions and relies on a concrete model of the program
execution semantics.

Our model of the dependence relation is closely related to, but different
from the classical happens-before model [15] and various other causal models
[3,18,21,26], which do not enforce the conflicting orders used in our model, but
rely on the value dependencies between the events to obtain a more precise causal
model than ours. For example, Wang et al. [26] introduced a notion of guarded
independence to enable precisely checking of atomicity violations, Chen et al.
[3] proposed a notion of sliced causality that significantly reduces the size of
the computed causality relation by slicing the causal dependences between the
events, and Şerbănuţă et al. [21] proposed a maximal causal model that com-
prises in theory all consistent executions that can be derived from a given trace.
Although using a more precise dependence relation model may further reduce
the context switches in the trace, as explained in Section 2.1, our strict modeling
enables us to more efficiently perform the trace simplification.

Besides the problem of reducing the context switches in the trace, another
important problem for the trace simplification is to reduce the size of trace. Along
this direction, Tallam et al. [23] proposed an execution reduction (ER) system
for removing the events that are irrelevant to the bug property in the trace.
Similar to SimTrace, it also builds a dependence graph based on the dynamic
dependencies between events in the trace. The main difference is that the ER
system in [23] lacks a formal modeling of the trace elements. Without formalizing
the semantics of each event in the trace, it is not obvious to understand the
characteristics and the correctness of the resultant dependence graph.

To help locate the cause of the bug in an error trace, a number of software
model checking algorithms [11,10,2] have been proposed to minimize an error
trace and extract useful counterexamples when a bug is found. Delta Debugging
[28] has also been extended to discover the minimal difference in thread schedul-
ing necessary to produce a concurrency-based error [4]. The difference between
our approach and this school of techniques is that our approach is based on
reduction on a single trace, while they in spirit are based on comparing related
executions, e.g., similar pairs of executions such that one of them satisfies the
specification and the other does not.

An Efficient Static Trace Simplification Technique 177

To help with automatic concurrent program verification, Sinha and Wang
[22] recently proposed a novel approach that separates intra- and inter-thread
reasoning by symbolically encoding the shared memory accesses and composing
the intra-thread summaries based on a sequential consistent memory model.
Since this approach avoids redundant bi-modal reasoning, it has been shown to
greatly improve the efficiency of trace analysis over previous approaches [25].

6 Conclusion
We present an efficient static trace simplification technique for reducing the
context switches in a concurrent program execution trace. By constructing a
dependence graph model of events, our algorithm scales linearly to the trace
size and quadratic to the number of nodes in the dependence graph. Moreover,
underpinned by a trace equivalence theorem, our approach guarantees to gen-
erate an equivalent simplified trace without any dynamic program re-execution,
making it attractive to practical use.
Acknowledgement. We thank the anonymous reviewers for their valuable
feedbacks. This research is supported by RGC GRF grants 622208 and 622909.

References

1. Mazurkiewicz, A.: Trace theory. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266,
Springer, Heidelberg (1987)

2. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: POPL (2003)

3. Chen, F., Roşu, G.: Parametric and sliced causality. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 240–253. Springer, Heidelberg (2007)

4. Choi, J.-D., Zeller, A.: Isolating failure-inducing thread schedules. In: ISSTA (2002)
5. Curtis, R., Wittie, L.D.: Bugnet: A debugging system for parallel programming

environments. In: ICDCS (1982)
6. Diekert, V., Rozenberg, G.: The book of traces (1995)
7. Farzan, A., Madhusudan, P., Sorrentino, F.: Meta-analysis for Atomicity Viola-

tions under Nested Locking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 248–262. Springer, Heidelberg (2009)

8. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL (2004)

9. Fonseca, P., Li, C., Singhal, V., Rodrigues, R.: A study of the internal and external
effects of concurrency bugs. In: DSN (2010)

10. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. (2006)

11. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135. Springer,
Heidelberg (2003)

12. Hower, D.R., Hill, M.D.: Rerun: Exploiting episodes for lightweight memory race
recording. In: ISCA (2008)

13. Huang, J., Liu, P., Zhang, C.: LEAP: Lightweight deterministic multi-processor
replay of concurrent Java programs. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS,
vol. 6147, Springer, Heidelberg (2010)

14. Jalbert, N., Sen, K.: A trace simplification technique for effective debugging of
concurrent programs. In: FSE (2010)

178 J. Huang and C. Zhang

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
CACM (1978)

16. Montesinos, P., Ceze, L., Torrellas, J.: Delorean: Recording and deterministically
replaying shared-memory multi-processor execution efficiently. In: ISCA (2008)

17. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: OSDI (2008)

18. O’Callahan, R., Choi, J.-D.: Hybrid dynamic data race detection. In: PPoPP (2003)
19. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multi-

threading in software. In: ASPLOS (2009)
20. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: PRES:

probabilistic replay with execution sketching on multi-processors. In: SOSP (2009)
21. Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal causal models for sequentially con-

sistent multithreaded systems. Technical report, University of Illinois (2010)
22. Sinha, N., Wang, C.: Staged concurrent program analysis. In: FSE (2010)
23. Tallam, S., Tian, C., Gupta, R., Zhang, X.: Enabling tracing of long-running mul-

tithreaded programs via dynamic execution reduction. In: ISSTA (2007)
24. Vineet, K., Chao, W.: Universal causality graphs: A precise happens-before model

for detecting bugs in concurrent programs. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 434–449. Springer, Heidelberg (2010)

25. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of concurrent
program executions. In: ESEC/SIGSOFT FSE (2009)

26. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-based symbolic analysis for
atomicity violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 328–342. Springer, Heidelberg (2010)

27. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: ICDE (2006)

28. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. (2002)

Appendix: A Proof of Theorem 1

Proof. Let us say two actions are equal iff they perform the same operation on
the same variable and also read and write the same value. The core of the proof
is to prove the following lemma:

Lemma 3. For any action α′ in δ′, suppose it is the nth action of thread ti,
then α′ is equal to the nth action of ti in δ.

If Lemma 3 holds, we can prove Theorem 1 by applying it to the last actions
that write to each variable in both δ and δ′. To prove Lemma 3, we first define
a notion of version number and show two lemmas related to it:

Definition 7. Every variable is associated with a version number such that
it is (1) initialized to be 0 and (2) incremented by 1 when the variable is written
by an action.

Lemma 4. For any action α′ in δ′, suppose it is the kth action that writes to
a variable s, then α′ is also the kth action that writes to s in δ.

Proof. To prove Lemma 4, we only need to make sure the order of write actions
on each variable is unchanged during the rescheduling of the trace from δ to δ′.

An Efficient Static Trace Simplification Technique 179

This follows our modeling of the dependence relation includes all synchronization
orders and the WRITE→WRITE orders on the same variable. ∎

Lemma 5. For any action α′ in δ′, suppose it reads the variable s with version
number p, then α′ also reads s with the same version number p in δ.

Proof. Similar to the proof of Lemma 4, since our model of the dependence
relation includes all the synchronization orders and the WRITE→READ and
READ→WRITE orders on the same variable, we guarantee every READ action
in the rescheduled trace reads the value written by the same WRITE action as
that in the original trace. ∎

Let σ[s]p denote the value of variable s with version number p, we next prove
Lemma 3 by deduction on the version number of each variable:

Proof. Consider the jth actions performed by ti, denoted by αi∶j and α′i∶j in δ and
δ′ respectively. To prove α′i∶j is equal to αi∶j , we need to satisfy two conditions.
First, their actions should be the same, i.e., they perform the same operation on
the same variable. Second, suppose they both operate on the variable s (which
should be true if the first condition holds), the values of s before α′i∶j is per-
formed in δ′ should be the same as that in δ before αi∶j is performed. Let πi∶j
and π′i∶j denote the local store of ti after αi∶j is performed in δ and after α′i∶j is
performed in δ′, respectively. For the first condition, since the execution seman-
tics determine that the next action of any thread is determined by that thread’s
current local store, we need to ensure (I) π′i∶j−1 = πi∶j−1. For the second condition,
suppose αi∶j and α′i∶j operate on s with version number p and p′, respectively,
we need to ensure (II) σ′[s]p

′

= σ[s]p.
Let’s first assume Condition I holds, we prove p′ = p in Condition II. If α′i∶j

writes to s, i.e., α′i∶j is the p′th action that writes to s, by Lemma 4, we can get
that the corresponding action of α′i∶j in δ is also the p′th action that writes to
s. As Condition I holds, we know αi∶j is the corresponding action of αi∶j in δ′.
Since αi∶j operates on s with version number p in our assumption, we get p′ = p.
Otherwise if α′i∶j reads on s, by Lemma 5, we can get that α′i∶j ’s corresponding
action in δ also reads s with the same version number, and similarly, we get
p′ = p.

We next prove both Condition I and Condition II hold. For condition I, sup-
pose αi∶j−1 and α′i∶j−1 operate on the variable s1 with version number p1. To
satisfy condition I, we need again to make sure (Ia) π′i∶j−2 = πi∶j−2 and (Ib)
σ′[s1]p1 = σ[s1]p1. For condition II, let αi1∶j1 and α′i1′∶j1′ denote the actions that
write σ[s]p and σ′[s]p, respectively. Since the current value of a variable is de-
termined by the action that last writes to it, to satisfy condition II, we need to
make sure α′i1′ ∶j1′ is equal to αi1∶j1, which again requires (IIa) π′i1′ ∶j1′−1 = πi1∶j1−1
and (IIb) σ′[s]p−1 = σ[s]p−1. If we apply this reasoning logic deductively for
all threads, we will finally reach the base condition (i) ∀ti ∈ T, π′i∶0 = πi∶0 and
(ii) ∀s ∈ S, σ′[s]0 = σ[s]0, which are satisfied by the equivalence of the initial
program states Σ′0 = Σ0. Hence, Lemma 3 is proved.

Therefore, Theorem 1 is proved. ∎

A Family of Abstract Interpretations for Static

Analysis of Concurrent Higher-Order Programs

Matthew Might and David Van Horn

University of Utah and Northeastern University
might@cs.utah.edu, dvanhorn@ccs.neu.edu

http://matt.might.net/, http://lambda-calcul.us/

Abstract. We develop a framework for computing two foundational
analyses for concurrent higher-order programs: (control-)flow analysis
(CFA) and may-happen-in-parallel analysis (MHP). We pay special at-
tention to the unique challenges posed by the unrestricted mixture of
first-class continuations and dynamically spawned threads. To set the
stage, we formulate a concrete model of concurrent higher-order pro-
grams: the P(CEK*)S machine. We find that the systematic abstract in-
terpretation of this machine is capable of computing both flow and MHP
analyses. Yet, a closer examination finds that the precision for MHP
is poor. As a remedy, we adapt a shape analytic technique—singleton
abstraction—to dynamically spawned threads (as opposed to objects in
the heap). We then show that if MHP analysis is not of interest, we
can substantially accelerate the computation of flow analysis alone by
collapsing thread interleavings with a second layer of abstraction.

1 Higher-Order Is Hard; Concurrency Makes It Harder

The next frontier in static reasoning for higher-order programs is concurrency.
When unrestricted concurrency and higher-order computation meet, their chal-
lenges to static reasoning reinforce and amplify one another.

Consider the possibilities opened by a mixture of dynamically created threads
and first-class continuations. Both pose obstacles to static analysis by them-
selves, yet the challenge of reasoning about a continuation created in one thread
and invoked in another is substantially more difficult than the sum of the
individual challenges.

We respond to the challenge by (1) constructing the P(CEK�)S machine,
a nondeterministic abstract machine that concretely and fully models higher-
orderness and concurrency; and then (2) systematically deriving abstract inter-
pretations of this machine to enable the sound and meaningful flow analysis of
concurrent higher-order programs.

Our first abstract interpretation creates a dual hierarchy of flow and may-
happen-in-parallel (MHP) analyses parameterized by context-sensitivity and the
granularity of an abstract partition among threads. The context-sensitivity knob
tunes flow-precision as in Shivers’s k-CFA [21]. The partition among threads
tunes the precision of MHP analysis, since it controls the mapping of concrete

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 180–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Family of Abstract Interpretations for Static Analysis 181

threads onto abstract threads. To improve the precision of MHP analysis, our sec-
ond abstract interpretation introduces shape analytic concepts—chiefly, single-
ton cardinality analysis—but it applies them to discover the “shape” of threads
rather than the shape of objects in the heap. The final abstract interpretation
accelerates the computation of flow analysis (at the cost of MHP analysis) by
inflicting a second abstraction that soundly collapses all thread interleavings
together.

1.1 Challenges to Reasoning about Higher-Order Concurrency

The combination of higher-order computation and concurrency introduces design
patterns that challenge conventional static reasoning techniques.

Challenge: Optimizing Futures. Futures are a popular means of enabling par-
allelism in functional programming. Expressions marked future are computed
in parallel with their own continuation. When that value reaches a point of
strict evaluation, the thread of the continuation joins with the thread of the
future.

Unfortunately, the standard implementation of futures [5] inflicts substantial
costs on sequential performance: that implementation transforms (future e)
into (spawn e), and all strict expressions into conditionals and thread-joins.
That is, if the expression e′ is in a strict evaluation position, then it becomes:

(let ([$t e′]) (if (thread? $t) (join $t) $t))

Incurring this check at all strict points is costly. A flow analysis that works for
concurrent programs would find that most expressions can never evaluate to
future value, and thus, need not incur such tests.

Challenge: Thread Cloning/Replication. The higher-order primitive call/cc
captures the current continuation and passes it as a first-class value to its argu-
ment. The primitive call/cc is extremely powerful—a brief interaction between
spawn and call/cc effortlessly expresses thread replication:

(call/cc (lambda (cc) (spawn (cc #t)) #f))

This code captures the current continuation, spawns a new thread and replicates
the spawning thread in the spawned thread by invoking that continuation. The
two threads can be distinguished by the return value of call/cc: the replicant
returns true and the original returns false.

Challenge: Thread Metamorphosis. Consider a web server in which continua-
tions are used to suspend and restore computations during interactions with the
client [18]. Threads “morph” from one kind of thread (an interaction thread
or a worker thread) to another by invoking continuations. The begin-worker
continuation metamorphizes the calling thread into a worker thread:

182 M. Might and D. Van Horn

(define become-worker
(let ([cc (call/cc (lambda (cc) (cc cc)))])
(cond
[(continuation? cc) cc]
[else (handle-next-request)

(become-worker #t)])))

The procedure handle-next-request checks whether the request is the resump-
tion of an old session, and if so, invokes the continuation of that old session:

(define (handle-next-request)
(define request (next-request))
(atomic-hash-remove! (session-id request)
(lambda (session-continuation)
(define answer (request->answer request))
(session-continuation answer))

(lambda () (start-new-session request))))

When a client-handling thread needs data from the client, it calls
read-from-client, it associates the current continuation to the active session,
piggy-backs a request to the client on an outstanding reply and the metamor-
phizes into a worker thread to handle other incoming clients:

(define (read-from-client session)
(call/cc (lambda (cc)
(atomic-hash-set! sessions (session-id session) cc)
(reply-to session))
(become-worker #t)))

2 P(CEK�)S: An Abstract Machine Model of Concurrent,
Higher-Order Computation

In this section, we define a P(CEK�)S machine—a CESK machine with a pointer
refinement that allows concurrent threads of execution. It is directly inspired by
the sequential abstract machines in Van Horn and Might’s recent work [23].
Abstract interpretations of this machine perform both flow and MHP analysis
for concurrent, higher-order programs.

The language modeled in this machine (Figure 1) is A-Normal Form lambda
calculus [9] augmented with a core set of primitives for multithreaded program-
ming. For concurrency, it features an atomic compare-and-swap operation, a
spawn form to create a thread from an expression and a join operation to wait
for another thread to complete. For higher-order computation, it features clo-
sures and first-class continuations. A closure is a first-class procedure constructed
by pairing a lambda term with an environment that fixes the meaning of its free
variables. A continuation reifies the sequential control-flow for the remainder of
the thread as a value; when a continuation is “invoked,” it restores that control-
flow. Continuations may be invoked an arbitrary number of times, and at any
time since their moment of creation.

A Family of Abstract Interpretations for Static Analysis 183

e ∈ Exp ::= (let ((v cexp)) e)

| cexp

| æ

cexp ∈ CExp ::= (f æ1 . . .æn)

| (callcc æ)

| (set! v ævalue)

| (if æ cexp cexp)

| (cas v æold ænew)

| (spawn e)

| (join æ)

f,æ ∈ AExp ::= lam | v | n | #f
lam ∈ Lam ::= (λ (v1 . . . vn) e)

Fig. 1. ANF lambda-calculus augmented with a core set of primitives for concurrency

2.1 P(CEK�)S: A Concrete State-Space

A concrete state of execution in the P(CEK�)S machine contains a set of threads
plus a shared store. Each thread is a context combined with a thread id. A
context contains the current expression, the current environment, an address
pointing to the current continuation, and a thread history:

ς ∈ Σ = Threads × Store
T ∈ Threads = P (Context × TID)
c ∈ Context = Exp × Env × Addr × Hist

ρ ∈ Env = Var ⇀ Addr
κ ∈ Kont = Var × Exp × Env × Addr + {halt}
h ∈ Hist contains records of thread history
σ ∈ Store = Addr → D

d ∈ D = Value
val ∈ Value = Clo + Bool + Num + Kont + TID + Addr

clo ∈ Clo = Lam × Env
a ∈ Addr is an infinite set of addresses
t ∈ TID is an infinite set of thread ids.

The P(CEK�)S machine allocates continuations in the store; thus, to add first-
class continuations, we have first-class addresses. Under abstraction, program
history determines the context-sensitivity of an individual thread. To allow
context-sensitivity to be set as external parameter, we’ll leave program history
opaque. (For example, to set up a k-CFA-like analysis, the program history would

184 M. Might and D. Van Horn

be the sequence of calls made since the start of the program.) To parameterize
the precision of MHP analysis, the thread ids are also opaque.

2.2 P(CEK�)S: A Factored Transition Relation

Our goal is to factor the semantics of the P(CEK�)S machine, so that one can
drop in a classical CESK machine to model sequential language features. The
abstract interpretation maintains the same factoring, so that existing analyses
of higher-order programs may be “plugged into” the framework for handling
concurrency. The relation (⇒) models concurrent transition, and the relation
(→) models sequential transition:

(⇒) ⊆ Σ ×Σ

(→) ⊆ (Context × Store) × (Context × Store)

For instance, the concurrent transition relation invokes the sequential transition
relation to handle if, set!, cas, callcc or procedure call:1

(c, σ) → (c′, σ′)

({(c, t)} � T, σ) ⇒ ({(c′, t)} ∪ T, σ′)

Given a program e, the injection function I : Exp → State creates the initial
machine state:

I(e) = ({((e, [], ahalt, h0), t0)} , [ahalt �→ halt]),

where t0 is the distinguished initial thread id, h0 is a blank history and ahalt is
the distinguished address of the halt continuation. The meaning of a program
e is the (possibly infinite) set of states reachable from the initial state:

{ς : I(e) ⇒∗ ς} .

Sequential Transition Example: callcc There are ample resources dating to
Felleisen and Friedman [6] detailing the transition relation of a CESK machine.
For a recent treatment that covers both concrete and abstract transition, see
Van Horn and Might [23]. Most of the transitions are straightforward, but in the
interest of more self-containment, we review the callcc transition:

(

c︷ ︸︸ ︷
([[(callcc æ)]], ρ, aκ, h), σ) ⇒ ((e, ρ′′, aκ, h′), σ′), where

h′ = record(c, h)
([[(λ (v) e)]], ρ′) = E(æ, ρ, σ)

a = alloc(v, h′)
ρ′′ = ρ′[v �→ a]
σ′ = σ[a �→ aκ].

1 The transition for cas is “sequential” in the sense that its action is atomic.

A Family of Abstract Interpretations for Static Analysis 185

The atomic evaluation function E : AExp × Env × Store ⇀ D maps an atomic
expression to a value in the context of an environment and a store; for example:

E(v, ρ, σ) = σ(ρ(v))
E(lam , ρ, σ) = (lam , ρ).

(The notation f [x �→ y] is functional extension: the function identical to f ,
except that x now yields y instead of f(x).)

2.3 A Shift in Perspective

Before proceeding, it is worth shifting the formulation so as to ease the process
of abstraction. For instance, the state-space is well-equipped to handle a finite
abstraction over addresses, since we can promote the range of the store to sets of
values. This allows multiple values to live at the same address once an address
has been re-allocated. The state-space is less well-equipped to handle the ap-
proximation on thread ids. When abstracting thread ids, we could keep a set of
abstract threads paired with the store. But, it is natural to define the forthcom-
ing concrete and abstract transitions when the set of threads becomes a map.
Since every thread has a distinct thread id, we can model the set of threads in
each state as a partial map from a thread id to a context:

Threads ≡ TID ⇀ Context .

It is straightforward to update the concurrent transition relation when it calls
out to the sequential transition relation:

(c, σ) → (c′, σ′)

(T [t �→ c], σ) ⇒ (T [t �→ c′], σ′).

2.4 Concurrent Transition in the P(CEK�)S Machine

We define the concurrent transitions separately from the sequential transitions.
For instance, if a context is attempting to spawn a thread, the concurrent relation
handles it by allocating a new thread id t′, and binding it to the new context c′′:

(T [t �→
c︷ ︸︸ ︷

([[(spawn e)]], ρ, aκ, h)], σ) ⇒ (T [t �→ c′, t′ �→ c′′], σ′),
where t′ = newtid(c, T [t �→ c])

c′′ = (e, ρ, ahalt, h0)
h′ = record(c, h)

(v′, e′, ρ′, a′κ) = σ(aκ)
a′ = alloc(v′, h′)
ρ′′ = ρ′[v′ �→ a′]
c′ = (e′, ρ′′, a′κ, h

′)
σ′ = σ[a′ �→ t′], where:

186 M. Might and D. Van Horn

– newtid : Context ×Threads → TID allocates a fresh thread id for the newly
spawned thread.

– record : Context × Hist → Hist is responsible for updating the history of
execution with this context.

– alloc : Var×Hist → Addr allocates a fresh address for the supplied variable.

The abstract counterparts to these functions determine the degree of approxima-
tion in the analysis, and consequently, the trade-off between speed and precision.

When a thread halts, its thread id is treated as an address, and its return
value is stored there:

(T [t �→ ([[æ]], ρ, ahalt, h)], σ) ⇒ (T, σ[t �→ E(æ, ρ, σ)]).

This convention, of using thread ids as addresses, makes it easy to model
thread joins, since they can check to see if that address has value waiting or not:

σ(E(æ, ρ, σ)) = d

(T [t �→ ([[(join æ)]], ρ, aκ, h)︸ ︷︷ ︸
c

], σ) ⇒ (T [t �→ (e, ρ′, a′κ, h′)], σ′),

where κ = σ(aκ)
(v, e, ρ, a′κ) = κ

ρ′ = ρ[v �→ a′′]
h′ = record(c, h)
a′′ = alloc(v, h′)
σ′ = σ[a′′ �→ d].

3 A Systematic Abstract Interpretation of P(CEK�)S

Using the techniques outlined in our recent work on systematically constructing
abstract interpretations from abstract machines [23], we can directly convert
the P(CEK�)S machine into an abstract interpretation of itself. In the concrete
state-space, there are four points at which we must inflict abstraction: over basic
values (like numbers), over histories, over addresses and over thread ids.

The abstraction over histories determines the context-sensitivity of the anal-
ysis on a per-thread basis. The abstraction over addresses determines poly-
variance. The abstraction over thread ids maps concrete threads into abstract
threads, which determines to what extent the analysis can distinguish dynami-
cally created threads from one another; it directly impacts MHP analysis.

The abstract state-space (Figure 2) mirrors the concrete state-space in struc-
ture. We assume the natural point-wise, element-wise and member-wise lifting
of a partial order (�) over all of the sets within the state-space. Besides the
restriction of histories, addresses and thread ids to finite sets, it is also worth

A Family of Abstract Interpretations for Static Analysis 187

ς̂ ∈ Σ̂ = T̂hreads × Ŝtore

T̂ ∈ T̂hreads = T̂ID → P(Ĉontext)

ĉ ∈ Ĉontext = Exp× Ênv × Âddr × Ĥist

ρ̂ ∈ Ênv = Var ⇀ Âddr

κ̂ ∈ K̂ont = Var× Exp× Ênv × Âddr + {halt}

ĥ ∈ Ĥist contains bounded, finite program histories

σ̂ ∈ Ŝtore = Âddr → D̂

d̂ ∈ D̂ = P(V̂alue)

v̂al ∈ V̂alue = Ĉlo + Bool + N̂um + K̂ont + T̂ID + Âddr

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr is a finite set of abstract addresses

t̂ ∈ T̂ID is a finite set of abstract thread ids

Fig. 2. Abstract state-space for a systematic abstraction of the P(CEK�)S machine

pointing out that the range of both T̂hreads and Ŝtore are power sets. This pro-
motion occurs because, during the course of an analysis, re-allocating the same
thread id or address is all but inevitable. To maintain soundness, the analysis
must be able to store multiple thread contexts in the same abstract thread id,
and multiple values at the same address in the store.

The structural abstraction map α on the state-space (Figure 3) utilizes a fam-
ily of abstraction maps over the sets within the state-space. With the abstraction
and the abstract state-space fixed, the abstract transition relation reduces to a
matter of calculation [4]. The relation (�) describes the concurrent abstract
transition, while the relation (�) describes the sequential abstract transition:

(�) ⊆ Σ̂ × Σ̂

(�) ⊆ (Ĉontext × Ŝtore) × (Ĉontext × Ŝtore)

When the context in focus is sequential, the sequential relation takes over:

(ĉ, σ̂) � (ĉ′, σ̂′)

(T̂ [t̂ �→ {ĉ} ∪ Ĉ], σ̂) � (T̂ � [t̂ �→ {ĉ′}], σ̂′)

There is a critical change over the concrete rule in this abstract rule: thanks
to the join operation, the abstract context remains associated with the abstract
thread id even after its transition has been considered. In the next section, we
will examine the application of singleton abstraction to thread ids to allow the
“strong update” of abstract threads ids across transition. (For programs whose

188 M. Might and D. Van Horn

αΣ(T, σ) = (α(T), α(σ))

αThreads(T) = λt̂.
⊔

α(t)=t̂

α(T (t))

αContext (e, ρ, κ, h) = {(e, α(ρ), α(κ), α(h))}
αEnv(ρ) = λv.α(ρ(v))

αKont(v, e, ρ, a) = (v, e, α(ρ), α(a))

αKont (halt) = halt

αStore(σ) = λâ.
⊔

α(a)=â

α(σ(a))

αD(val) = {α(val)}
αClo(lam, ρ) = (lam, α(ρ))

αBool (b) = b

αHist (h) is defined by context-sensitivity

αTID(t) is defined by thread-sensitivity

αAddr (a) is defined by polyvariance.

Fig. 3. A structural abstraction map

maximum number of threads is statically bounded by a known constant, this
allows for precise MHP analysis.)

3.1 Running the Analysis

Given a program e, the injection function Î : Exp → Ŝtate creates the initial
abstract machine state:

Î(e) =
([
t̂0 �→

{
(e, [], âhalt, ĥ0)

}]
, [âhalt �→ {halt}]

)
,

where ĥ0 is a blank abstract history and âhalt is the distinguished abstract
address of the halt continuation. The analysis of a program e is the finite set of
states reachable from the initial state:

R̂(e) =
{
ς̂ : Î(e) �∗ ς̂

}
.

3.2 A Fixed Point Interpretation

If one prefers a traditional, fixed-point abstract interpretation, we can imagine
the intermediate state of the analysis itself as a set of currently reachable abstract
machine states:

ξ̂ ∈ Ξ̂ = P(Σ̂).

A Family of Abstract Interpretations for Static Analysis 189

A global transfer function f̂ : Ξ̂ → Ξ̂ evolves this set:

f̂(ξ̂) =
{
Î(e)
}
∪
{
ς̂ ′ : ς̂ ∈ ξ̂ and ς̂ � ς̂ ′

}
.

The solution of the analysis is the least fixed point: lfp(f̂).

3.3 Termination

The dependence structure of the abstract state-space is a directed acyclic graph
starting from the set Σ̂ at the root. Because all of the leaves of this graph (e.g.,
lambda terms, abstract numbers, abstract addresses) are finite for any given
program, the state-space itself must also be finite. Consequently, there are no
infinitely ascending chains in the lattice Ξ̂. By Kleene’s fixed point theorem,
there must exist a least natural n such that lfp(f̂) = f̂n(∅).

3.4 Concurrent Abstract Transitions

Guided by the structural abstraction, we can convert the concrete concurrent
transitions for the P(CEK�)S machine into concurrent abstract transitions. For
instance, if an abstract context is attempting to spawn a thread, the concurrent
relation handles it by allocating a new thread id t̂′, and binding it to the new
context ĉ′′:

(T̂ [t̂ �→ {
ĉ︷ ︸︸ ︷

([[(spawn e)]], ρ̂, âκ̂, ĥ)} ∪ Ĉ], σ̂) � (T̂ � [t̂ �→ {ĉ′} , t̂′ �→ {ĉ′′}], σ′),

where t̂′ = n̂ewtid(ĉ, T̂ [t̂ �→ Ĉ ∪ {ĉ}])
ĉ′′ = (e, ρ̂, âhalt, ĥ0)

ĥ′ = r̂ecord(ĉ, ĥ)
(v′, e′, ρ̂′, â′κ̂) ∈ σ̂(âκ̂)

â′ = âlloc(v′, ĥ′)
ρ̂′′ = ρ̂′[v′ �→ â′]

ĉ′ = (e′, ρ̂′′, â′κ̂, ĥ
′)

σ̂′ = σ̂ � [â′ �→ {t̂′}], where:

– n̂ewtid : Ĉontext × T̂hreads → T̂ID allocates a thread id for the newly
spawned thread.

– r̂ecord : Ĉontext × Ĥist → Ĥist is responsible for updating the (bounded)
history of execution with this context.

– âlloc : Var × Ĥist → Âddr allocates an address for the supplied variable.

These functions determine the degree of approximation in the analysis, and
consequently, the trade-off between speed and precision.

190 M. Might and D. Van Horn

When a thread halts, its abstract thread id is treated as an address, and its
return value is stored there:

T̂ ′ = T̂ � [t̂ �→ {([[æ]], ρ̂, âhalt, ĥ)}]
(T̂ ′, σ) � (T̂ ′, σ̂ � [t̂ �→ Ê(æ, ρ̂, σ̂)])

, where

the atomic evaluation function Ê : AExp × Ênv × Ŝtore → D̂ maps an atomic
expression to a value in the context of an environment and a store:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam , ρ̂, σ̂) = {(lam , ρ̂)}.

It is worth asking whether it is sound in just this case to remove the context from
the threads (making the subsequent threads T instead of T ′). It is sound, but
it seems to require a (slightly) more complicated staggered-state bisimulation
to prove it: the concrete counterpart to this state may take several steps to
eliminate all of its halting contexts.

Thanks to the convention to use thread ids as addresses holding the return
value of thread, it easy to model thread joins, since they can check to see if that
address has a value waiting or not:

â ∈ Ê(æ, ρ̂, σ̂) d̂ = σ̂(â)

(T̂ � [t̂ �→ {([[(join æ)]], ρ̂, âκ̂, ĥ)︸ ︷︷ ︸
ĉ

}], σ̂) � (T̂ � [t̂ �→ {(e, ρ̂′, â′κ̂, ĥ′), ĉ}], σ̂′),

where κ̂ ∈ σ̂(âκ̂)
(v, e, ρ̂, â′κ̂) = κ̂

ρ̂′ = ρ̂[v �→ â′′]

ĥ′ = r̂ecord(ĉ, ĥ)

â′′ = âlloc(v, ĥ′)

σ̂′ = σ̂ � [â′′ �→ d̂].

3.5 Soundness

Compared to a standard proof of soundness for a small-step abstract interpreta-
tion, the proof of soundness requires only slightly more attention in a concurrent
setting. The key lemma in the inductive proof of simulation states that when a
concrete state ς abstracts to an abstract state ς̂, if the concrete state can tran-
sition to ς ′, then the abstract state ς̂ must be able to transition to some other
abstract state ς̂ ′ such that ς ′ abstracts to ς̂ ′:

A Family of Abstract Interpretations for Static Analysis 191

Theorem 1. If:
α(ς) � ς̂ and ς ⇒ ς ′,

then there must exist a state ς̂ ′ such that:

α(ς ′) � ς̂ ′ and ς̂ � ς̂ ′.

Proof. The proof is follows the case-wise structure of proofs like those in Might
and Shivers [14]. There is an additional preliminary step: first choose a thread id
modified across transition, and then perform case-wise analysis on how it could
have been modified.

3.6 Extracting Flow Information

The core question in flow analysis is, “Can the value val flow to the expression
æ?” To answer it, assume that ξ̂ is the set of all reachable abstract states. We
must check every state within this set, and every environment ρ̂ within that
state. If σ̂ is the store in that state, then val may flow to æ if the value α(val) is
represented in the set Ê(æ, ρ̂, σ̂). Formally, we can construct a flows-to relation,
FlowsTo ⊆ Value × AExpr, for a program e:

FlowsTo(val ,æ) iff there exist (T̂ , σ̂) ∈ R̂(e) and t̂ ∈ dom(T̂) such that

(e, ρ̂, κ̂) ∈ T̂ (t̂) and {α(val)} � Ê(æ, ρ̂, σ̂).

3.7 Extracting MHP Information

In MHP analysis, we are concerned with whether two expressions e′ and e′′

may be evaluated concurrently with one another in program e. It is straightfor-
ward to decide this using the set of reachable states computed by the abstract
interpretation. If, in any reachable state, there exist two distinct contexts at
the relevant expressions, then their evaluation may happen in parallel with one
another. Formally, the MHP ⊆ Exp× Exp relation with respect to program e is:

MHP(e′, e′′) iff there exist (T̂ , σ̂) ∈ R̂(e) and t̂′, t̂′′ ∈ dom(T̂) such that

(e′, , ,) ∈ T̂ (t̂′) and (e′′, , ,) ∈ T̂ (t̂′′).

4 MHP: Making Strong Transitions with Singleton
Threads

In the previous section, we constructed a systematic abstraction of the P(CEK�)S
machine. While it serves as a sound and capable flow analysis, its precision as
an MHP analysis is just above useless. Contexts associated with each abstract
thread id grow monotonically during the course of the analysis. Eventually, it will
seem as though every context may happen in parallel with every other context.

192 M. Might and D. Van Horn

By comparing the concrete and abstract semantics, the cause of the impreci-
sion becomes clear: where the concrete semantics replaces the context at a given
thread id, the abstract semantics joins.

Unfortunately, we cannot simply discard the join. A given abstract thread id
could be representing multiple concrete thread ids. Discarding a thread id would
then discard possible interleavings, and it could even introduce unsoundness.

Yet, it is plainly the case that many programs have a boundable number of
threads that are co-live. Thread creation is considered expensive, and thread
pools created during program initialization are a popular mechanism for cir-
cumventing the problem. To exploit this design pattern, we can make thread ids
eligible for “strong update” across transition. In shape analysis, strong update
refers to the ability to treat an abstract address as the representative of a single
concrete address when assigning to that address. That is, by tracking the cardi-
nality of the abstraction of each thread id, we can determine when it is sound
to replace functional join with functional update on threads themselves.

The necessary machinery is straightforward, adapted directly from the shape
analysis literature [1,2,11,10,14,19] ; we attach to each state a cardinality counter
μ̂ that tracks how many times an abstract thread id has been allocated (but not
precisely beyond once):

ς̂ ∈ Σ̂ = T̂hreads × Ŝtore × T̂Count

μ̂ ∈ T̂Count = T̂ID → {0, 1,∞} .

When the count of an abstract thread id is exactly one, we know for certain
that there exists at most one concrete counterpart. Consequently, it is safe to
perform a “strong transition.” Consider the case where the context in focus for
the concurrent transition is sequential; in the case where the count is exactly
one, the abstract context gets replaced on transition:

(ĉ, σ̂) � (ĉ′, σ̂′) μ̂(t̂) = 1

(T̂ [t̂ �→ {ĉ} � Ĉ], σ̂, μ̂) � (T̂ [t̂ �→ {ĉ′} ∪ Ĉ], σ̂′, μ̂).

It is straightforward to modify the existing concurrent transition rules to exploit
information available in the cardinality counter. At the beginning of the analysis,
all abstract thread ids have a count of zero. Upon spawning a thread, the analysis
increments the result of the function n̂ewtid . When a thread whose abstract
thread id has a count of one halts, its count is reset to zero.

4.1 Strategies for Abstract Thread id Allocation

Just as the introduction of an allocation function for addresses provides the
ability to tune polyvariance, the n̂ewtid function provides the ability to tune
precision. The optimal strategy for allocating this scarce pool of abstract thread
ids depends upon the design patterns in use.

One could, for instance, allocate abstract thread ids according to calling con-
text, e.g., the abstract thread id is the last k call sites. This strategy would work

A Family of Abstract Interpretations for Static Analysis 193

well for the implementation of futures, where futures from the same context are
often not co-live with themselves.

The context-based strategy, however, is not a reasonable strategy for a thread-
pool design pattern. All of the spawns will occur at the same expression in the
same loop, and therefore, in the same context. Consequently, there will be no
discrimination between threads. If the number of threads in the pool is known
a priori to be n, then the right strategy for this pattern is to create n abstract
thread ids, and to allocate a new one for each iteration of the thread-pool-
spawning loop. On the other hand, if the number of threads is set dynamically,
no amount of abstract thread ids will be able to discriminate between possible
interleavings effectively, in this case a reasonable choice for precision would be
to have one abstract thread per thread pool.

4.2 Advantages for MHP Analysis

With the cardinality counter, it is possible to test whether an expression may
be evaluated in parallel with itself. If, for every state, every abstract thread id
which maps to a context containing that expression has a count of one, and
no other context contains that expression, then that expression must never be
evaluated in parallel with itself. Otherwise, parallel evaluation is possible.

5 Flow Analysis of Concurrent Higher-Order Programs

If the concern is a sound flow analysis, but not MHP analysis, then we can per-
form an abstract interpretation of our abstract interpretation that efficiently col-
lapses all possible interleavings and paths, even as it retains limited (reachability-
based) flow-sensitivity. This second abstraction map α′ : Ξ̂ → Σ̂ operates on
the system-space of the fixed-point interpretation:

α′(ξ̂) =
⊔
ς̂∈ξ̂

ς̂.

The new transfer function, f̂ ′ : Σ̂ → Σ̂, monotonically accumulates all of the
visited states into a single state:

f̂ ′(ς̂) = ς̂ �
⊔
ς̂⇒ς̂′

ς̂ ′.

5.1 Complexity

This second abstraction simplifies the calculation of an upper bound on compu-
tational complexity. The structure of the set Σ̂ is a pair of maps into sets:

Σ̂ =
(
T̂ID → P(Ĉontext)

)
×
(
Âddr → P(V̂alue)

)
.

194 M. Might and D. Van Horn

Each of these maps is, in effect, a table of bit vectors: the first with abstract
thread ids on one axis and contexts on the other; and the second with abstract
addresses on one axis and values on the other. The analysis monotonically flips
bits on each pass. Thus, the maximum number of passes—the tallest ascending
chain in the lattice Σ̂—is:

|T̂ID | × |Ĉontext | + |Âddr | × |V̂alue|.

Thus, the complexity of the analysis is determined by context-sensitivity, as
with classical sequential flow analysis. For a standard monovariant analysis, the
complexity is polynomial [17]. For a context-sensitive analysis with shared en-
vironments, the complexity is exponential [22]. For a context-sensitive analysis
with flat environments, the complexity is again polynomial [15].

6 Related Work

This work traces its ancestry to Cousot and Cousot’s work on abstract interpre-
tation [3,4]. We could easily extend the fixed-point formulation with the implicit
concretization function to arrive at an instance of traditional abstract interpre-
tation. It is also a direct descendant of the line of work investigating control-flow
in higher-programs that began with Jones [12] and Shivers [20,21].

The literature on static analysis of concurrency and higher-orderness is not
empty, but it is spare. Much of it focuses on the special case of the analysis of
futures. The work most notable and related to our own is that of Navabi and
Jagannathan [16]. It takes Flanagan and Felleisen’s notion of safe futures [7,8],
and develops a dynamic and static analysis that can prevent a continuation
from modifying a resource that one of its concurrent futures may modify. What
makes this work most related to our own is that it is sound even in the presence
of exceptions, which are, in essence, an upward-restricted form of continuations.
Their work and our own own interact synergistically, since their safety analysis
focuses on removing the parallel inefficiencies of safe futures; our flow analysis
can remove the sequential inefficiencies of futures through the elimination of run-
time type-checks. Yahav’s work is the earliest to apply shape-analytic techniques
to the analysis of concurrency [24].

It has taken substantial effort to bring the static analysis of higher-order
programs to heel; to recite a few of the major challenges:

1. First-class functions from dynamically created closures over lambda terms
create recursive dependencies between control- and data-flow; k-CFA co-
analyzes control and data to factor and order these dependencies [21].

2. Environment-bearing closures over lambda terms impart fundamental in-
tractabilities unto context-sensitive analysis [22]—intractabilities that were
only recently side-stepped via flattened abstract environments [15].

3. The functional emphasis on recursion over iteration made achieving high
precision difficult (or hopeless) without abstract garbage collection to recycle
tail-call-bound parameters and continuations [14].

A Family of Abstract Interpretations for Static Analysis 195

4. When closures keep multiple bindings to the same variable live, precise rea-
soning about side effects to these bindings requires the adaptation of shape-
analytic techniques [11,13].

5. Precise reasoning about first-class continuations (and kin such as excep-
tions) required a harmful conversion to continuation-passing style until the
advent of small-step abstraction interpretations for the pointer-refined CESK
machine [23].

We see this work as another milestone on the path to robust static analysis of
full-featured higher-order programs.

7 Limitations and Future Work

Since the shape of the store and the values within were not the primary fo-
cus of this work, it utilized a blunt abstraction. A compelling next step of this
work would generalize the abstraction of the store relationally, so as to cap-
ture relations between the values at specific addresses. The key challenge in
such an extension is the need to handle relations between abstract addresses
which may represent multiple concrete addresses. Relations which universally
quantify over the concrete constituents of an abstract address are a promising
approach.

Acknowledgements. This material is based upon work supported by the NSF
under Grant No. 1035658. The second author was supported by the National
Science Foundation under Grant No. 0937060 to the Computing Research As-
sociation for the CIFellow Project. We also acknowledge support from the Park
City Research Institute for Computer Science.

References

1. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11823230_15, doi:10.1007/11823230 15

2. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
PLDI 1990: Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementationm, PLDI 1990, pp. 296–310. ACM, New York
(1990)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pp. 238–252. ACM Press, New York (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL 1979, pp. 269–282. ACM Press, New York
(1979)

http://dx.doi.org/10.1007/11823230_15

196 M. Might and D. Van Horn

5. Feeley, M.: An Efficient and General Implementation of Futures on Large Scale
Shared-Memory Multiprocessors. PhD thesis, Brandeis University (April 1993)

6. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the
lambda-calculus. In: 3rd Working Conference on the Formal Description of Pro-
gramming Concepts (August 1986)

7. Flanagan, C., Felleisen, M.: The semantics of future and its use in program op-
timization. In: POPL 1995: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 209–220. ACM, New
York (1995)

8. Flanagan, C., Felleisen, M.: The semantics of future and an application. Journal
of Functional Programming 9(01), 1–31 (1999)

9. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: PLDI 1993: Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation, pp. 237–247. ACM, New
York (1993)

10. Hudak, P.: A semantic model of reference counting and its abstraction. In: LFP
1986: Proceedings of the 1986 ACM Conference on LISP and Functional Program-
ming, pp. 351–363. ACM, New York (1986)

11. Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.: Single and loving it: must-
alias analysis for higher-order languages. In: POPL 1998: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1998, pp. 329–341. ACM, New York (1998)

12. Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming, pp.
114–128. Springer, London (1981)

13. Might, M.: Shape analysis in the absence of pointers and structure. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 263–278. Springer,
Heidelberg (2010)

14. Might, M., Shivers, O.: Exploiting reachability and cardinality in higher-order flow
analysis. Journal of Functional Programming 18(Special Double Issue 5-6), 821–864
(2008)

15. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-CFA
paradox: illuminating functional vs. object-oriented program analysis. In: PLDI
2010: Proceedings of the 2010 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 305–315. ACM, New York (2010)

16. Navabi, A., Jagannathan, S.: Exceptionally safe futures. In: Field, J., Vasconcelos,
V. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 47–65. Springer, Heidelberg
(2009)

17. Palsberg, J.: Closure analysis in constraint form. ACM Transactions on Program-
ming Languages and Systems 17(1), 47–62 (1995)

18. Queinnec, C.: Continuations and web servers. Higher-Order and Symbolic Compu-
tation 17(4), 277–295 (2004)

19. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

20. Shivers, O.: Control flow analysis in Scheme. In: PLDI 1988: Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language Design and Imple-
mentation, pp. 164–174. ACM, New York (1988)

A Family of Abstract Interpretations for Static Analysis 197

21. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1991)

22. Van Horn, D., Mairson, H.G.: Deciding kCFA is complete for EXPTIME. In: ICFP
2008: Proceeding of the 13th ACM SIGPLAN International Conference on Func-
tional Programming, pp. 275–282. ACM, New York (2008)

23. Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP 2010: Proceed-
ings of the 15th ACM SIGPLAN International Conference on Functional Program-
ming, pp. 51–62. ACM, New York (2010)

24. Yahav, E.: Verifying safety properties of concurrent java programs using 3-valued
logic. In: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2001, pp. 27–40. ACM Press, New York
(2001)

Abstract Domains of Affine Relations�

Matt Elder1, Junghee Lim1, Tushar Sharma1, Tycho Andersen1,
and Thomas Reps1,2,��

1 University of Wisconsin, Madison, WI, USA
2 GrammaTech, Inc., Ithaca, NY, USA

Abstract. This paper considers some known abstract domains for
affine-relation analysis (ARA), along with several variants, and stud-
ies how they relate to each other. We show that the abstract domains
of Müller-Olm/Seidl (MOS) and King/Søndergaard (KS) are, in general,
incomparable, but give sound interconversion methods. We also show
that the methods of King and Søndergaard can be applied without bit-
blasting—while still using a bit-precise concrete semantics.

1 Introduction

The work reported in this paper was motivated by our work on TSL [16], which
is a system for generating abstract interpreters for machine code. With TSL,
one specifies an instruction set’s concrete operational semantics by defining an
interpreter

interpInstr : instruction× state → state.

For a given abstract domain A, a sound abstract transformer for each instruction
of the instruction set is obtained by defining a sound reinterpretation of each
operation of the TSL meta-language as an operation over A. By extending the
reinterpretation to TSL expressions and functions—including interpInstr—the
set of operator-level reinterpretations defines the desired set of abstract trans-
formers for the instructions of the instruction set.

However, this method abstracts each TSL operation in isolation, and is
therefore rather myopic. Moreover, the operators that TSL provides to spec-
ify an instruction set’s concrete semantics include arithmetic, logical, and
“bit-twiddling” operations. The latter include left-shift; arithmetic and logical
right-shift; bitwise-and, bitwise-or, and bitwise-xor; etc. Few abstract domains
retain precision over the full gamut of such operations.

A more global approach that considers the semantics of an entire instruction
(or, even better, an entire basic block or other path fragment) can yield a more
� Supported, in part, by NSF under grants CCF-{0810053, 0904371}, by ONR under

grants N00014-{09-1-0510, 10-M-0251}, by ARL under grant W911NF-09-1-0413,
and by AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those
of the authors, and do not necessarily reflect the views of the sponsoring agencies.

�� T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements
of the technology discussed in this publication.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 198–215, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abstract Domains of Affine Relations 199

precise transformer. One way to specify the goals of such a global approach is
through the notion of symbolic abstraction [22]:

– An abstract domain A is said to support a symbolic implementation of the α
function of a Galois connection if, for every logical formula ψ that specifies
(symbolically) a set of concrete stores [[ψ]], there is a method α̃ that finds a
sound abstract value α̃(ψ) ∈ A that over-approximates [[ψ]]. That is, [[ψ]] ⊆
γ(α̃(ψ)), where [[ψ]] denotes the meaning function for the logic.

– For some abstract domains, it is even known how to perform a best symbolic
implementation of α, denoted by α̂ [22]. For every ψ, α̂ finds the best value
in A that over-approximates [[ψ]].

In particular, the issue of “myopia” is addressed by first creating a logical formula
ϕI that captures the concrete semantics of each instruction I (or basic block,
or path fragment) in quantifier-free bit-vector logic (QFBV), and then perform-
ing α̃(ϕI) or α̂(ϕI). (The generation of a QFBV formula that, with no loss of
precision, captures the concrete semantics of an instruction or basic block is a
problem that itself fits the TSL operator-reinterpretation paradigm [16, §3.4].)

We explored how to address these issues using two existing abstract domains
for affine-relation analysis (ARA)—one defined by Müller-Olm and Seidl (MOS)
[19,21] and one defined by King and Søndergaard (KS) [11,12]—as well as a third
domain of affine generators that we introduce. (Henceforth, the three domains
are referred to as MOS, KS, and AG, respectively.) All three domains represent
sets of points that satisfy affine relations over variables that hold machine in-
tegers, and are based on an extension of linear algebra to modules over a ring
[8,7,1,25,19,21]. The contributions of our work can be summarized as follows:

– For MOS, it was not previously known how to perform α̃MOS(ϕ) in a non-
trivial fashion (e.g., other than defining α̃MOS to be λf.�). In contrast, King
and Søndergaard gave an algorithm for α̂KS [12, Fig. 2], which led us to
examine more closely how MOS and KS are related. A KS value consists of
a set of constraints on the values of variables. We introduce a third abstract
domain, AG, which can be considered to be the generator counterpart of
KS. A KS constraint-based value can be converted to an AG value with no
loss of precision, and vice versa.
In contrast, we show that MOS and KS/AG are, in general, incompara-

ble. However, we give sound interconversion methods: we show that an AG
value vAG can be converted to an over-approximating MOS value vMOS—i.e.,
γ(vAG) ⊆ γ(vMOS)—and that an MOS value wMOS can be converted to an
over-approximating AG value wAG—i.e., γ(wMOS) ⊆ γ(wAG).
Consequently, by means of the conversion path ϕ → KS → AG → MOS,

we show how to perform α̃MOS(ϕ) (§4.5).
– To apply the techniques described in the two King and Søndergaard papers

[11,12], it is necessary to perform bit-blasting. Their goal is to create
implementations of operations that are precise, modulo the inherent limita-
tions of precision that stem from using KS. They use bit-blasting to express a

200 M. Elder et al.

bit-precise concrete semantics for a statement or basic block. Working at
the bit level lets them track the effect of non-linear bit-twiddling operations,
such as shift and xor.
One drawback of bit-blasting is the huge number of variables that it in-

troduces (e.g., 32 or 64 bit-valued variables for each int-valued program
variable). Given that one is performing numerous cubic-time operations on
the matrices that arise, there is a question as to whether the bit-blasted ver-
sion of KS could ever be applied to problems of substantial size. The times
reported by King and Søndergaard are quite high [12, §7], although they
state that there is room for improvement by, e.g., using sparse matrices.
In our work, we use an SMT solver rather than a SAT solver, and show that

implementations of operations that are best operations for the KS domain
can be obtained without resorting to bit-blasting. Instead, we work with
QFBV formulas that capture symbolically the precise bit-level semantics of
each instruction or basic block, and take advantage of the ability of α̂KS to
create best word-level transformers.1

The greatly reduced number of variables that comes from working at word
level opens up the possibility of applying our methods to much larger prob-
lems, and in particular to performing interprocedural analysis. We show how
to use the KS domain as the basis for interprocedural ARA. In particular, we
use a two-vocabulary version of KS to create a weight domain for a weighted
pushdown system (WPDS) [23,2,10] (§5).

In addition to the specific contributions listed above, this paper provides insight
on the range of options one has for performing affine-relation analysis, and how
the different approaches relate to each other.

Organization. The remainder of the paper is organized as follows: §2 summa-
rizes relevant features of the various ARA domains considered in the paper. §3
presents the AG domain, and shows how an AG value can be converted to a
KS value, and vice versa. §4 presents our results on the incomparability of the
MOS and KS domains, but gives sound methods to convert a KS value into
an over-approximating MOS value, and vice versa. §5 explains how to use the
KS domain for interprocedural analysis without bit-blasting. §6 presents exper-
imental results. §7 discusses related work. Proofs can be found in a companion
technical report [4].

2 Terminology and Notation

All numeric values in this paper are integers in Z2w for some bit width w. That
is, values are machine integers with the standard machine addition and multi-
plication. Addition and multiplication in Z2w form a ring, not a field, so some
1 The two methods are not entirely comparable because the bit-blasting approach

works with a great deal more variables (to represent the values of individual bits).
However, for word-level properties the two are comparable. For instance, both can
discover that the action of an xor-based swap is to exchange the values of two
program variables.

Abstract Domains of Affine Relations 201

facets of standard linear algebra do not apply (and thus we must regard our
intuitions about linear algebra with caution). In particular, all odd elements in
Z2w have a multiplicative inverse (which may be found in time O(logw) [26, Fig.
10-5]), but no even elements have a multiplicative inverse. The rank of a value
x ∈ Z2w is the maximum integer p ≤ w such that 2p|x. For example, rank(1) = 0,
rank(12) = 2, and rank(0) = w.

Throughout the paper, k is the size of the vocabulary, the variable set under
analysis. A two-vocabulary relation is a relation between values of variables in
its pre-state vocabulary to values of variables in its post-state vocabulary.

Matrix addition and multiplication are defined as usual, forming a matrix
ring. We denote the transpose of a matrix M by M t. A one-vocabulary matrix
is a matrix with k+1 columns. A two-vocabulary matrix is a matrix with 2k+1
columns. In each case, the “+1” is for technical reasons (which vary according to
what kind of matrix we are dealing with). I denotes the (square) identity matrix
(whose size can be inferred from context).

Actual states in the various abstract domains are represented by k-length row
vectors. The row space of a matrix M is rowM def= {x | ∃w : wM = x}. When we
speak of the “null space” of a matrix, we actually mean the set of row vectors
whose transposes are in the traditional null space of the matrix. Thus, we define
nulltM def= {x |Mxt = 0}.
Matrices in Howell Form. An appreciation of how linear algebra in rings
differs from linear algebra in fields can be obtained by seeing how certain issues
are finessed when converting a matrix to Howell form [8]. The Howell form of
a matrix is an extension of reduced row-echelon form [17] suitable for matrices
over Zn. Because Howell form is a canonical form for matrices over principal
ideal rings [8,25], it provides a way to test pairs of abstract-domain elements for
equality of their concretizations—an operation needed by analysis algorithms to
determine when a fixed point is reached.

Definition 1. The leftmost nonzero value in a row vector is its leading
value, and the leading value’s index is the leading index. A matrix M is in
row-echelon form iff
– All rows consisting entirely of zeroes are at the bottom.
– The sequence of leading indices of rows is strictly increasing.

If M is in row-echelon form, let [M]i denote the matrix that consists of all rows
of M whose leading index is i or greater.

A matrix M is in Howell form iff
1. M is in row-echelon form,
2. the leading value of every row is a power of two,
3. each leading value is the largest value in its column, and
4. for every row r of M , for any p ∈ Z, if i is the leading index of 2pr, then

2pr ∈ row[M]i.

Suppose that w = 4. Item 4 of Defn. 1 is illustrated by M = [4 2 4
0 4 0]. The first

row of M has leading index 1. Multiplying the first row by 4 produces [0 8 0],

202 M. Elder et al.

Algorithm 1. Howellize: Put the matrix G in Howell form.
1: procedure Howellize(G)
2: Let j = 0 � j is the number of already-Howellized rows
3: for all i from 1 to 2k + 1 do
4: Let R = {all rows of G with leading index i}
5: if R �= ∅ then
6: Pick an r ∈ R that minimizes rank ri

7: Pick the odd u and rank p so that u2p = ri

8: r ← u−1r � Adjust r, leaving ri = 2p

9: for all s in R \ {r} do
10: Pick the odd v and rank t so that v2t = si

11: s← s−
(
v2t−p

)
r � Zero out si

12: if row s contains only zeros then
13: Remove s from G
14: In G, swap r with Gj+1 � Place r for row-echelon form
15: for all h from 1 to j do � Set values above ri to be 0 ≤ · < ri

16: d← Gh,i � p � Pick d so that 0 ≤ Gh,i − dri < ri

17: Gh ← Gh − dr � Adjust row Gh, leaving 0 ≤ Gh,i < ri

18: if ri �= 1 then � Add logical consequences of r to G
19: Add 2w−pr as last row of G � New row has leading index > i

20: j ← j + 1

which has leading index 2. This meets condition 4 because [0 8 0] = 2 · [0 4 0],
so [0 8 0] ∈ row[M]2.

The Howell form of a matrix is unique among all matrices with the same row
space (or null space) [8]. As mentioned above, Howell form provides a way to
test pairs of KS or AG elements for equality of their concretizations.

The notion of a saturated set of generators used by Müller-Olm and Seidl
[21] is closely related to Howell form, but is defined for an unordered set of
generators rather than row-vectors arranged in a matrix, and has no ana-
logue of item 3. The algorithms of Müller-Olm and Seidl do not compute
multiplicative inverses (see §7), so a saturated set has no analogue of item 2.
Consequently, a saturated set is not canonical among generators of the same
space.

Our technique for putting a matrix in Howell form is given as procedure
Howellize (Alg. 1). Much of Howellize is similar to a standard Gaussian-
elimination algorithm, and it has the same overall cubic-time complexity as
Gaussian elimination. In particular, Howellize minus lines 15–19 puts G in
row-echelon form (item 1 of Defn. 1) with the leading value of every row a power
of two. (Line 8 enforces item 2 of Defn. 1.) Howellize differs from standard
Gaussian elimination in how the pivot is picked (line 6) and in how the pivot
is used to zero out other elements in its column (lines 7–13). Lines 15–17 of
Howellize enforce item 3 of Defn. 1, and lines 18–19 enforce item 4. Lines 12–
13 remove all-zero rows, which is needed for Howell form to be canonical.

Abstract Domains of Affine Relations 203

The Affine Generator Domain. An element in the Affine Generator domain
(AG) is a two-vocabulary matrix whose rows are the affine generators of a two-
vocabulary relation.

An AG element is an r-by-(2k + 1) matrix G, with 0 < r ≤ 2k + 1. The
concretization of an AG element is

γAG (G) def=
{
(x, x′) | x, x′ ∈ Zk2w ∧ [1|x x′] ∈ rowG

}
.

The AG domain captures all two-vocabulary affine spaces, and treats them as
relations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the AG
element that represents the identity relation is the matrix

[
1 0 0
0 I I

]
. To compute

the join of two AG matrices, stack the two matrices vertically and Howellize the
result.

The King/Søndergaard Domain. An element in the King/Søndergaard
domain (KS) is a two-vocabulary matrix whose rows represent constraints on
a two-vocabulary relation. A KS element is an r-by-(2k + 1) matrix X , with
0 ≤ r ≤ 2k + 1. The concretization of a KS element is

γKS (X) def=
{
(x, x′) | x, x′ ∈ Zk2w ∧ [x x′|1] ∈ nulltG

}
.

Like the AG domain, the KS domain captures all two-vocabulary affine spaces,
and treats them as relations between pre-states and post-states. The original KS
paper [11] gives polynomial-time algorithms for join and projection; projection
can be used to implement composition.

It is easy to read off affine relations from a KS element: if
[a1 · · · ak a′1 · · · a′k |–b] is a row of X , then

∑
i aixi+

∑
i a

′
ix

′
i = b is a constraint

on γKS (X). The conjunction of these constraints describes γKS (X) precisely.
The bottom element of the KS domain is the matrix [0 0|1], and the KS

element that represents the identity relation is the matrix [I -I|0].
A Howell-form KS element can easily be checked for emptiness: it is empty if

and only if it contains a row whose leading entry is in its last column. In that
sense, an implementation of the KS domain in which all elements are kept in
Howell form has redundant representations of bottom (whose concretization is
∅). However, such KS elements can always be detected during Howellize and
replaced by the canonical representation of bottom, [0 0|1].
The Müller-Olm/Seidl Domain. An element in the Müller-Olm/Seidl do-
main (MOS) is an affine set of affine transformers, as detailed in [21]. An MOS
element represents a set of (k + 1)-by-(k + 1) matrices. Each matrix T is a
one-vocabulary transformer of the form T =

[
1 b
0 M

]
, which represents the state

transformation x′ := x ·M + b, or, equivalently, [1|x′] := [1|x]T .
An MOS element B consists of a set of (k + 1)-by-(k + 1) matrices, and

represents the affine span of the set, denoted by 〈B〉 and defined as follows:

〈B〉 def=

{
T

∣∣∣∣∣ ∃w ∈ Z|B|
2w : T =

∑
B∈B

wBB ∧ T1,1 = 1

}
.

204 M. Elder et al.

The meaning of B is the union of the graphs of the affine transformers in 〈B〉

γMOS (B) def=
{
(x, x′)

∣∣x, x′ ∈ Zk2w ∧ ∃T ∈ 〈B〉 : [1|x]T = [1|x′]} .
The bottom element of the MOS domain is ∅, and the MOS element that repre-
sents the identity relation is the singleton set {I}.

The operations join and compose can be performed in polynomial time. If
B and C are MOS elements, then B � C = Howellize (B ∪ C) and B ◦ C =
Howellize {BC |B ∈ B ∧ C ∈ C}. In this setting, Howellize of a set of (k+1)-
by-(k+1) matrices {M1, . . . ,Mn} means “Apply Alg. 1 to a larger, n-by-(k+1)2

matrix, each of whose rows is the linearization (e.g., in row-major order) of one
of the Mi.”

3 Relating AG and KS Elements

AG and KS are equivalent domains. One can convert an AG element to an
equivalent KS element with no loss of precision, and vice versa. In essence, these
are a single abstract domain with two representations: constraint form (KS) and
generator form (AG).

We use an operation similar to singular value decomposition, called diagonal
decomposition:

Definition 2. The diagonal decomposition of a square matrix M is a triple
of matrices, L, D, R, such that M = LDR; L and R are invertible matrices;
and D is a diagonal matrix in which all entries are either 0 or a power of 2.

Müller-Olm and Seidl give a decomposition algorithm that nearly performs diag-
onal decomposition [21, Lemma 2.9], except that the entries in their D might not
be powers of 2. We can easily adapt that algorithm. Suppose that their method
yields LDR (where L and R are invertible). Pick u and r so that ui2ri = Di,i

with each ui odd, and define U as the diagonal matrix where Ui,i = ui. (If
Di,i = 0, then ui = 1.) It is easy to show that U is invertible. Let L′ = LU
and D′ = U−1D. Consequently, L′D′R = LDR = M , and L′D′R is a diagonal
decomposition.

From diagonal decomposition we derive the dual operation, denoted by ·⊥,
such that the rows of M⊥ generate the null space of M , and vice versa.

Definition 3. The dualization of M is M⊥, where:
– Pad(M) is the (2k + 1)-by-(2k + 1) matrix [M0],
– L,D,R is the diagonal decomposition of Pad(M),

– T is the diagonal matrix with Ti,i
def

= 2w−rank(Di,i), and

– M⊥ def

=
(
L−1
)t
T
(
R−1
)t

This definition of dualization has the following useful property:

Theorem 1. For any matrix M , nulltM = rowM⊥ and rowM = nulltM⊥.

Abstract Domains of Affine Relations 205

We can therefore use dualization to convert between equivalent KS and AG
elements. For a given (padded, square) AG matrix G = [c|Y Y ′], we seek a KS
matrix Z of the form [X X ′|b] such that γKS (Z) = γAG (G). We construct Z
by letting [b|X X ′] = G⊥ and permuting those columns to Z def= [X X ′|b]. This
works by Thm. 1, and because

γAG (G) = {(x, x′) | [1|x x′] ∈ rowG}
=
{
(x, x′)

∣∣ [1|x x′] ∈ nulltG⊥}
=
{
(x, x′)

∣∣ [x x′|1] ∈ nullt Z
}

= γKS (Z) .

Furthermore, to convert from any KS matrix to an equivalent AG matrix, we
reverse the process. Reversal is possible because dualization is an involution: for
any matrix M ,

(
M⊥)⊥ = M.

4 Relating KS and MOS

4.1 MOS and KS are Incomparable

The MOS and KS domains are incomparable: some relations are expressible
in each domain that are not expressible in the other. Intuitively, the central
difference is that MOS is a domain of sets of functions, while KS is a domain of
relations.

KS can capture restrictions on both the pre-state and post-state vocabularies
while MOS captures restrictions only on its post-state vocabulary. For example,
when k = 1, the KS element for “assume x = 2” is

{[
1 0 −2
1 −1 0

]}
, i.e., “x =

2∧x′ = x”. An MOS element cannot encode an assume statement. For “assume
x = 2”, the best MOS element is the identity transformer

{[
1 0
0 1

]}
. In general,

an MOS element cannot encode a non-trivial condition on the pre-state. If an
MOS element contains a single transition, it encodes that transition for every
possible pre-state. Therefore, KS can encode relations that MOS cannot encode.

On the other hand, an MOS element can encode two-vocabulary relations that

are not affine. One example is the matrix basis B =
{[

1 0 0
0 1 1
0 0 0

]
,

[
1 0 0
0 0 0
0 1 1

]}
. The set

that B encodes is

γMOS (B) =

⎧⎪⎪⎨⎪⎪⎩
[
x y x′ y′

] ∣∣∣∣∣∣∣∣
∃w0, w1 :

[
1 x y

]⎡⎣1 0 0
0 w0 w0

0 w1 w1

⎤⎦ =
[
1 x′ y′

]
∧ w0 + w1 = 1

⎫⎪⎪⎬⎪⎪⎭
=
{[
x y x′ y′

] ∣∣ ∃w0 : x′ = y′ = w0x+ (1 − w0)y
}

=
{[
x y x′ y′

] ∣∣ ∃w0 : x′ = y′ = x+ (1 − w0)(y − x)
}

=
{[
x y x′ y′

] ∣∣ ∃p : x′ = y′ = x+ p(y − x)
}

(1)

Affine spaces are closed under affine combinations of their elements. Thus,
γMOS (B) is not an affine space because some affine combinations of its elements

206 M. Elder et al.

are not in γMOS (B). For instance, let a =
[
1 −1 1 1

]
, b =

[
2 −2 6 6

]
, and c =[

0 0 −4 −4
]
. By Eqn. (1), we have a ∈ γMOS (B) when p = 0 in Eqn. (1), b ∈

γMOS (B) when p = −1, and c �∈ γMOS (B) (the equation “−4 = 0 + p(0 − 0)”
has no solution for p). Moreover, 2a − b = c, so c is an affine combination of
a and b. Thus, γMOS (B) is not closed under affine combinations of its elements,
and so γMOS (B) is not an affine space. Because every KS element encodes a
two-vocabulary affine space, MOS can represent γMOS (B) but KS cannot.

4.2 Converting MOS Elements to KS

Soundly converting an MOS element to a KS element is equivalent to stating
two-vocabulary affine constraints satisfied by that MOS element. To convert an
MOS element B to a KS element, we
1. build a two-vocabulary AG matrix from each one-vocabulary matrix in B,
2. compute the join of all the AG matrices from Step 1, and
3. convert the resulting AG matrix to a KS element.

For Step 1, assume that B =
{[

1 ci

0 Ni

] ∣∣∣ 0 < i
}
, ci ∈ Z1×k

2w , and Ni ∈ Zk×k2w . If
the original MOS element B0 fails to satisfy this property, let C = Basis(B0), pick
the unique B ∈ C such that B1,1 = 1, and let B = {B}∪ {B + C |C ∈ C \ {B}}.
B now satisfies the property, and 〈B〉 = 〈B0〉.

From B, we construct the matrices Gi =
[

1 0 ci

0 I Ni

]
. Note that, for each matrix

Bi ∈ B with corresponding matrix Gi, γMOS ({Bi}) = γAG (Gi). In Step 2, we
join the Gi matrices in the AG domain to yield one matrix G. Thm. 2 proves
the soundness of this transformation from MOS to AG, i.e., γAG (G) ⊇ γMOS (B).
Finally, G is converted in Step 3 to an equivalent KS element by the method
given in §3.
Theorem 2. Suppose that B is an MOS element such that, for every B ∈ B,
B =
[

1 cB

0 MB

]
for some cB ∈ Z1×k

2w and MB ∈ Zk×k2w . Define GB =
[

1 0 cB

0 I MB

]
and

G =
⊔

AG {GB |B ∈ B}. Then, γMOS(B) ⊆ γAG(G).

4.3 Converting KS without Pre-State Guards to MOS

If a KS element is total with respect to pre-state inputs, then we can convert it to
an equivalent MOS element. First, convert the KS element to an AG element G.

When G expresses no restrictions on its pre-state, it has the form G =
[

1 0 b
0 I M
0 0 R

]
,

where b ∈ Z1×k
2w ; I,M ∈ Zk×k2w ; and R ∈ Zk×r2w with 0 ≤ r ≤ k.

Definition 4. An AG matrix of the form
[

1 0 b
0 I M

]
, such as the Gi matrices

discussed in §4.2, is said to be in explicit form because it represents the state
transformation x′ := x ·M + b.

Explicit form is desirable because we can read off the MOS element
{[

1 b
0 M

]}
from the AG matrix of Defn. 4.

Abstract Domains of Affine Relations 207

Algorithm 2. MakeExplicit: Transform an AG matrix G in Howell form to
near-explicit form.
Require: G is an AG matrix in Howell form
1: procedure MakeExplicit(G)
2: for all i from 2 to k + 1 do � Consider each col. of the pre-state voc.
3: if there is a row r of G with leading index i then
4: if rank ri > 0 then
5: for all j from 1 to 2k + 1 do � Build s from r, with si = 1
6: sj ← rj � rank ri

7: Append s to G
8: G← Howellize(G)

9: for all i from 2 to k + 1 do
10: if there is no row r of G with leading index i then
11: Insert, as the ith row of G, a new row of all zeroes

G is not in explicit form because of the rows [0|0 R]; however, G is quite close
to being in explicit form, and we can read off a set of matrices to create an
appropriate MOS element. We produce this set of matrices via the Shatter
operation, where

Shatter(G) def=
{[

1 b
0 M

]}
∪
{[

0 Rj,∗
0 0

] ∣∣∣∣ 0 < j ≤ r

}
, where Rj,∗ is row j of R.

As shown in Thm. 3, γAG (G) = γMOS (Shatter(G)). Intuitively, this holds be-
cause coefficients in an affine combination of the rows of G correspond cleanly
to coefficients in an affine combination of the Rj,∗ matrices in Shatter(G).

Theorem 3. When G =
[

1 0 b
0 I M
0 0 R

]
, then γAG (G) = γMOS (Shatter(G)) .

4.4 Converting KS with Pre-State Guards to MOS

If a KS element is not total with respect to pre-state inputs, then there is no
MOS element with the same concretization. However, we can find sound over-
approximations within MOS for such KS elements.

We convert the KS element into an AG matrix G as in §4.3 and put G in
Howell form. There are two ways that G can enforce guards on the pre-state
vocabulary: it might contain one or more rows whose leading value is even, or it
might skip some leading indexes in row-echelon form.

While we cannot putG in explicit form, we can run MakeExplicit to coarsen
G so that it is close enough to the form that arose in §4.3. Adding extra rows
to an AG element can only enlarge its concretization. Thus, to handle a leading
value 2p, p > 0 in the pre-state vocabulary, MakeExplicit introduces an extra,
over-approximating row constructed by copying the row with leading value 2p

and right-shifting each value in the copied row by p bits (lines 4–8). After the

208 M. Elder et al.

loop on lines 2–8 finishes, every leading value in a row that generates pre-state-
vocabulary values is 1. MakeExplicit then introduces all-zero rows so that each
leading element from the pre-state vocabulary lies on the diagonal (lines 9–11).

Example 1. Suppose that k = 3, w = 4, and G =
[

1 0 2 0 0 0 0
4 0 12 2 4 0

4 0 8

]
. After line 11

of MakeExplicit, all pre-state vocabulary leading values of G have been made

ones, and the resulting G′ has rowG′ ⊇ rowG. In our case, G′ =

[
1 0 2 0 0 0 0

1 0 3 0 1 0
2 0 0

8

]
.

To handle “skipped” indexes, lines 9–11 insert all-zero rows into G′ so that each
leading element from the pre-state vocabulary lies on the diagonal. The resulting

matrix is

⎡⎢⎢⎣
1 0 2 0 0 0 0

1 0 3 0 1 0
0 0 0 0 0

0 0 0 0
2 0 0

8

⎤⎥⎥⎦.
Theorem 4. For any G, γAG (G) ⊆ γMOS (Shatter (MakeExplicit(G))).

Thus, we can use Shatter, MakeExplicit, and the AG–to–KS conversion of
§3 to obtain an over-approximation of a KS element in MOS.

Example 2. The final MOS value for Ex. 1 is

{[
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

]
,

[
0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 0 8
0 0 0 0
0 0 0 0
0 0 0 0

]}
.

4.5 Symbolic Implementation of the α Function for MOS

As mentioned in the Introduction, it was not previously known how to per-
form symbolic abstraction for MOS. Using α̂KS [12, Fig. 2] in conjunction with
the algorithms from §3 and §4.4, we can soundly define α̃MOS(ϕ) def= let G =
ConvertKStoAG (α̂KS(ϕ)) in Shatter (MakeExplicit (G)) .

5 Using KS for Interprocedural Analysis

This section describes how to use the KS domain in interprocedural-analysis
algorithms in the style of Sharir and Pnueli [24], Knoop and Steffen [13], Müller-
Olm and Seidl [18], and Lal et al. [15].
Project. In [11, §3], King and Søndergaard describe a way to project a KS ele-
ment X onto a suffix xi, . . . , xk of its vocabulary: (i) put X in row-echelon form,
and (ii) remove every row a in which any of a1, . . . , ai−1 is nonzero. However,
when the leading values of X are not all 1, step (ii) is not guaranteed to produce
the most-precise projection of X onto xi, . . . , xk (although the value obtained
is always sound). Instead, we put X in Howell form, and by Thm. 5, step (ii)
returns the most-precise projection.

Theorem 5. Suppose that M has c columns. If matrix M is in Howell form,
x ∈ nulltM if and only if ∀i : ∀y1, . . . yi−1 :

[
y1 · · · yi−1 xi · · · xc

]
∈ nullt[M]i.

Abstract Domains of Affine Relations 209

Example 3. Suppose that X = [4 2|6], with w = 4, and the goal is to project
away the first column (for x1). King and Søndergaard obtain the empty matrix,
which represents no constraints on x2. The Howell form of X is

[
4 2 6
0 8 8

]
, and

thus the most precise projection of X onto x2 is [8|8], which represents x2 ∈
{1, 3, . . . , 15}.

Compose. In [12, §5.2], King and Søndergaard present a technique to com-
pose two-vocabulary affine relations. For completeness, that algorithm follows.
Suppose that we have KS elements Y =

[
Ypre Ypost y

]
and Z =

[
Zpre Zpost z

]
,

where Y∗ and Z∗ are k-column matrices, and y and z are column vectors. We
want to compute Y ◦ Z; i.e., some X such that (x, x′′) ∈ γKS (X) if and only if
∃x′ : (x, x′) ∈ γKS (Y) ∧ (x′, x′′) ∈ γKS (Z).

Because the KS domain has a projection operation, we can create Y ◦Z by first
constructing the three-vocabulary matrix W =

[
Ypost Ypre 0 y
Zpre 0 Zpost z

]
. Any element

(x′, x, x′′) ∈ γKS (W) has (x, x′) ∈ γKS (Y) and (x′, x′′) ∈ γKS (Z). Consequently,
projecting away the first vocabulary ofW yields a matrix X such that γKS (X) =
γKS (Y) ◦ γKS (Z), as required.

Join. In [11, §3], King and Søndergaard give a method to compute the join of
two KS elements by building a (6k+3)-column matrix and projecting onto its last
2k+1 variables. We improve their approach slightly, building a (4k+2)-column
matrix and then projecting onto its last 2k+1 variables. That is, to join two KS
elements Y =

[
Ypre Ypost y

]
and Z =

[
Zpre Zpost z

]
, we first construct the ma-

trix
[
−Ypre −Ypost −y Ypre Ypost y
Zpre Zpost z 0 0 0

]
, and then project onto the last 2k+ 1 columns.

Roughly speaking, this works because
[
−Y Y
Z 0

][
u
v

]
= 0 if and only if Y (v−u) =

0 ∧ Zu = 0.
Because (v−u) ∈ nullY , and u ∈ nullZ, v = ((v−u)+u) ∈ nullY +nullZ. The

correctness of this join algorithm can be proved by starting from the King and
Søndergaard join matrix [11, §3], applying row-reductions, permuting columns
due to be projected away, and partially performing the projection.

Merge Functions. Knoop and Steffen [13] extended the Sharir and Pnueli
algorithm [24] for interprocedural dataflow analysis to handle local variables. At
a call site at which procedure P calls procedure Q, the local variables of P are
modeled as if the current incarnations of P ’s locals are stored in locations that
are inaccessible to Q and to procedures transitively called by Q. Because the
contents of P ’s locals cannot be affected by the call to Q, a merge function is
used to combine them with the value returned by Q to create the state after Q
returns. Other work using merge functions includes Müller-Olm and Seidl [18]
and Lal et al. [15].

To simplify the discussion, assume that all scopes have the same number of
locals L. Each merge function is of the form

Merge(a, b) def= ReplaceLocals(b) ◦ a.

210 M. Elder et al.

Suppose that vocabulary i consists of sub-vocabularies gi and li. The operation
ReplaceLocals(b) is defined as follows:

1. Project away vocabulary l2 from b.
2. Insert L columns for l2 in which all entries are 0.
3. Append L rows, [0, I, 0,−I|0], so that in ReplaceLocals(b) each variable

in vocabulary l2 is constrained to have the value of the corresponding variable
in vocabulary l1.

The α̂ Operation. King and Søndergaard give an algorithm for α̂ [12, Fig.
2]. That algorithm needs the minor correction of using Howell form instead of
row-echelon form for the projections that take place in its join operations, as
discussed above.

6 Experiments

Our experiments were run on a single core of a single-processor quad-core 3.0
GHz Xeon computer running 64-bit Windows XP (Service Pack 2), configured so
that a user process has 4 GB of memory. To implement α̂KS, we used the Yices
solver [3], with the timeout for each invocation set to 3 seconds. The experiments
were designed to answer the following questions:

1. Is it faster to use MOS or KS?
2. Does MOS or KS yield more precise answers? This question actually has

several versions, depending on whether we are interested in
– the two-vocabulary transformers for individual statements (or basic

blocks)
– the one-vocabulary affine relations that hold at program points

We ran each experiment on x86 machine code, computing affine relations over
the x86 registers.

To address question 1, we ran ARA on a corpus of Windows utilities using
the WALi [10] system for weighted pushdown systems (WPDSs) [23,2]. We used
two weight domains: (i) a weight domain of TSL-generated MOS transformers,
and (ii) a weight domain of α̂KS-generated KS transformers. The weight on each
WPDS rule encoded the MOS/KS transformer for a basic block B = [I1, . . . , Ik]
of the program, including a jump or branch to a successor block.

– In the case of MOS, the semantic specification of each instruction Ij ∈ B
is evaluated according to the MOS reinterpretation of the operations of the
TSL meta-language to obtain [[Ij]]MOS. ([[·]]MOS denotes the MOS semantics
for an instruction.) The single-instruction transformers are then composed:
wBMOS := [[Ik]]MOS ◦ . . . ◦ [[I1]]MOS.

– In the case of KS, a formula ϕB is created that captures the concrete se-
mantics of B, and then the KS weight for B is obtained by performing
wBKS := α̂KS(ϕB).

Abstract Domains of Affine Relations 211

Performance (x86) Better KS

Prog. Measures of size MOS KS precision

name instrs CFGs BBs branches WPDS post* query WPDS t/o post* query 1-voc.

finger 532 18 298 48 0.969 0.281 0.094 121.0 5 0.297 0.016 11/48 (23%)
subst 1093 16 609 74 1.422 0.266 0.031 199.0 4 0.328 0.094 13/74 (18%)
label 1167 16 573 103 1.359 0.282 0.046 154.6 2 0.375 0.032 50/103 (49%)
chkdsk 1468 18 787 119 1.797 0.172 0.031 397.2 16 0.203 0.047 3/119 (2.5%)
logoff 2470 46 1145 306 3.047 2.078 0.610 817.8 19 1.906 0.094 37/306 (12%)
setup 4751 67 1862 589 5.578 1.406 0.484 1917.8 64 1.157 0.063 34/589 (5.8%)

Fig. 1. WPDS experiments. The columns show the number of instructions (instrs);
the number of procedures (CFGs); the number of basic blocks (BBs); the number
of branch instructions (branches); the times, in seconds, for MOS and KS WPDS
construction, running post*, and finding one-vocabulary affine relations at blocks that
end with branch instructions, as well as the number of WPDS rules for which KS-
weight generation timed out (t/o); and the degree of improvement gained by using
α̂KS-generated KS weights rather than TSL-generated MOS weights (measured as the
number of basic blocks that (i) end with a branch instruction, and (ii) begin with
a node whose inferred one-vocabulary affine relation was strictly more precise under
KS-based analysis).

We used EWPDS merge functions [15] to preserve caller-save and callee-save
registers across call sites. The post* query used the FWPDS algorithm [14].

Fig. 1 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches) along with the times for constructing
abstract transformers and running post*.2 Column 10 of Fig. 1 shows the num-
ber of WPDS rules for which KS-weight generation timed out. During WPDS
construction, if Yices times out during α̂KS, the implementation creates the
MOS weight for the rule instead, and then converts it to an over-approximating
KS weight (§4.2). The number of rules equals the number of basic blocks plus
the number of branches, so a timeout occurred for about 0.3–2.6% of the rules
(geometric mean: 1.1%).

The experiment showed that the cost of constructing transformers via an
SMT solver is high: creating the KS weights via α̂KS is about 185 times slower
than creating MOS weights using TSL (computed as the geometric mean of the
construction-time ratios).

To address question 2, we performed two experiments:

– On a corpus of 11,144 instances of x86 instructions, we compared (i) the KS
transformer created by applying α̂KS to a quantifier-free bit-vector (QFBV)
formula that captures the precise bit-level semantics of an instruction against

2 Due to the high cost of the KS-based WPDS construction, we ran all analyses without
the code for libraries. Values are returned from x86 procedure calls in register eax,
and thus library functions were modeled approximately (albeit unsoundly, in general)
by “eax := ?”, where “?” denotes an unknown value [18] (sometimes written as
“havoc(eax)”).

212 M. Elder et al.

(ii) the MOS transformer created for the instruction by the operator-by-
operator reinterpretation method supported by TSL [16].

– We compared the precision improvement gained by using α̂KS-generated KS
weights rather than TSL-generated MOS weights in the WPDS-based anal-
yses used to answer question 1. In particular, column 13 of Fig. 1 reports
the number of basic blocks that (i) end with a branch instruction, and (ii)
begin with a node whose inferred one-vocabulary affine relation was strictly
more precise under KS-based analysis.

The first precision experiment showed that the α̂KS method is strictly more
precise for about 8.3% of the instructions—910 out of the 11,022 instructions
for which a comparison was possible. There were 122 Yices timeouts: 105 during
α̂KS and 17 during the weight-comparison check.

Undetermined

Identical KS more Timeout during Timeout during Total
precision precise KS construction KS/MOS comparison

10,112 910 105 17 11,144

Example 4. One instruction for which the α̂KS-created transformer is better than
the MOS transformer is “add bh,al”, which adds the low-order byte of regis-
ter eax to the second-to-lowest byte of register ebx. The transformer created
by the TSL-based operator-by-operator reinterpretation method corresponds
to havoc(ebx). All other registers are unchanged in both transformers—i.e.,
“(eax′ = eax) ∧ (ecx′ = ecx) ∧ . . .”. In contrast, the transformer obtained via
α̂KS is

(216ebx′ = 216ebx+ 224eax) ∧ (eax′ = eax) ∧ (ecx′ = ecx) ∧ . . .
Both transformers are over-approximations of the instruction’s semantics, but
the latter captures a relationship between the low-order two bytes of ebx and
the low-order byte of eax, and hence is more precise.

The second precision experiment was based on the WPDS-based analyses used
to answer question 1. The experiment showed that in our WPDS runs, the KS
weights identified more precise one-vocabulary affine relations at about 12.3% of
the basic blocks that end with a branch instruction (computed as the geomet-
ric mean of the precision ratios); see column 13 of Fig. 1.3 In addition to the
phenomenon illustrated in Ex. 4, two other factors contribute to the improved
precision obtained via the KS domain:

– As discussed in §4.1 and §4.4, an MOS weight cannot express a transforma-
tion involving a guard on the pre-state vocabulary, whereas a KS weight can
capture affine equality guards.

3 Register eip is the x86 instruction pointer. There are some situations that cause the
MOS weights to fail to capture the value of eip at a successor. Therefore, before
comparing the affine relations computed via MOS and KS, we performed havoc(eip)
so as to avoid biasing the results in favor of KS merely because of trivial affine
relations of the form “eip = constant”.

Abstract Domains of Affine Relations 213

– To construct a KS weight wBKS, α̂KS is applied to ϕB, which not only
is bit-level precise, but also includes all memory-access/update and flag-
access/update operations. Consequently, even though the KS weights we used
in our experiments are designed to capture only transformations on regis-
ters, wBKS can account for transformations of register values that involve a
sequence of memory and/or flag operations within a basic block.

The fact that ϕB can express dependences among registers that are mediated
by one or more flag updates and flag accesses by instructions of a block, can
allow a KS weight generated by α̂KS(ϕB) to sometimes capture NULL-pointer or
return-code checks (as affine equality guards). For instance, the test instruction
sets the zero flag ZF to true if the bitwise-and of its arguments is zero; the jnz
instruction jumps if ZF is false. Thus,
– “test esi, esi; . . . jnz xxx” is an idiom for a NULL-pointer check: “if(p

== NULL)...”
– “call foo; test eax, eax; . . . jnz yyy” is an idiom for checking whether

the return value is zero: “if(foo(...) == 0)...”.

The KS weights for the fall-through branches include the constraints “esi =
0 ∧ esi′ = 0” and “eax = 0 ∧ eax′ = 0”, respectively, which both contain
guards on the pre-state (i.e., “esi = 0” and “eax = 0”, respectively). In contrast,
the corresponding MOS weights—“esi′ = esi” and “eax′ = eax”—impose no
constraints on the pre-state.

If a block B = [I1, . . . , Ik] contains a spill to memory of register R1 and a
subsequent reload into R2, the fact that wBKS is created from ϕB , which has
a “global perspective” on the semantics of B, can—in principle—allow wBKS

to capture the transformation R′
2 = R1. The corresponding MOS weight wBMOS

would not capture R′
2 = R1 because the TSL-generated MOS weights are created

by evaluating the semantic specifications of the individual instructions of B (over
a domain of MOS values) and composing the results. Because each MOS weight
[[Ij]]MOS in the composition sequence wBMOS := [[Ik]]MOS ◦ . . . ◦ [[I1]]MOS discards
all information about how memory is transformed, the net effect on R′

2 in wBMOS

is havoc(R′
2). A second type of example involving a memory update followed by

a memory access within a basic block is a sequence of the form “push constant ;
pop esi”; such sequences occur in several of the programs listed in Fig. 1.

Unfortunately, in our experiments Yices timed out on the formulas that arose
in both kinds of examples, even with the timeout value set to 100 seconds.

7 Related Work

The original work on affine-relation analysis (ARA) was an intraprocedural ARA
algorithm due to Karr [9]. Müller-Olm and Seidl introduced the MOS domain
for affine relations, and gave an algorithm for interprocedural ARA [19,21].
King and Søndergaard defined the KS domain, and used it to create implemen-
tations of best abstract ARA transformers for the individual bits of a bit-blasted

214 M. Elder et al.

concrete semantics [11,12]. They used bit-blasting to express a bit-precise con-
crete semantics for a statement or basic block. The use of bit-blasting let them
track the effect of non-linear bit-twiddling operations, such as shift and xor.

In this paper, we also work with a bit-precise concrete semantics; however,
we avoid the need for bit-blasting by working with QFBV formulas expressed in
terms of word-level operations; such formulas also capture the precise bit-level
semantics of each instruction or basic block. We take advantage of the ability
of an SMT solver to decide the satisfiability of such formulas, and use α̂KS to
create best word-level transformers.

In contrast with both the Müller-Olm/Seidl and King/Søndergaard work, we
take advantage of the Howell form of matrices. For each of the domains KS, AG,
and MOS, because Howell form is canonical for non-empty sets of basis vectors,
it provides a way to test pairs of elements for equality of their concretizations—
an operation needed by analysis algorithms to determine when a fixed point is
reached.

The algorithms given by Müller-Olm and Seidl avoid computing multiplica-
tive inverses, which are needed to put a matrix in Howell form (line 8 of Alg. 1).
However, their preference for algorithms that avoid inverses was originally moti-
vated by the fact that at the time of their original 2005 work they were unaware
[20] of Warren’s O(logw) algorithms [26, §10-15] for computing the inverse of an
odd element, and only knew of an O(w) algorithm [19, Lemma 1].

Gulwani and Necula introduced the technique of random interpretation and
applied it to identifying both intraprocedural [5] and interprocedural [6] affine re-
lations. The fact that random interpretation involves collecting samples—which
are similar to rows of AG elements—suggests that the AG domain might be
used as an efficient abstract datatype for storing and manipulating data during
random interpretation. Because the AG domain is equivalent to the KS domain
(see §3), the KS domain would be an alternative abstract datatype for storing
and manipulating data during random interpretation.

References

1. Bach, E.: Linear algebra modulo n. Unpublished manuscript (December 1992)
2. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of

concurrent programs with procedures. In: POPL (2003)
3. Dutertre, B., de Moura, L.: Yices: An SMT solver (2006),

http://yices.csl.sri.com/

4. Elder, M., Lim, J., Sharma, T., Andersen, T., Reps, T.: Abstract domains of affine
relations. Tech. Rep. TR-1691, Comp. Sci. Dept., Univ. of Wisconsin, Madison,
WI (June 2011)

5. Gulwani, S., Necula, G.: Discovering affine equalities using random interpretation.
In: POPL (2003)

6. Gulwani, S., Necula, G.: Precise interprocedural analysis using random interpreta-
tion. In: POPL (2005)

7. Hafner, J., McCurley, K.: Asymptotically fast triangularization of matrices over
rings. SIAM J. Comput. 20(6) (1991)

http://yices.csl.sri.com/

Abstract Domains of Affine Relations 215

8. Howell, J.: Spans in the module (Zm)s. Linear and Multilinear Algebra 19 (1986)
9. Karr, M.: Affine relationship among variables of a program. Acta Inf. 6, 133–151

(1976)
10. Kidd, N., Lal, A., Reps, T.: WALi: The Weighted Automaton Library (2007),

http://www.cs.wisc.edu/wpis/wpds/download.php

11. King, A., Søndergaard, H.: Inferring congruence equations using SAT. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 281–293. Springer, Heidelberg
(2008)

12. King, A., Søndergaard, H.: Automatic abstraction for congruences. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 197–213. Springer,
Heidelberg (2010)

13. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Pfahler, P.,
Kastens, U. (eds.) CC 1992. LNCS, vol. 641. Springer, Heidelberg (1992)

14. Lal, A., Reps, T.: Improving pushdown system model checking. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 343–357. Springer, Heidelberg (2006)

15. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448.
Springer, Heidelberg (2005)

16. Lim, J., Reps, T.: A system for generating static analyzers for machine instructions.
In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 36–52. Springer, Heidelberg
(2008)

17. Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia
(2000)

18. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: POPL (2004)

19. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: Sagiv, M. (ed.)
ESOP 2005. LNCS, vol. 3444, pp. 46–60. Springer, Heidelberg (2005)

20. Müller-Olm, M., Seidl, H.: Personal communication (April 2005)
21. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. TOPLAS 29(5) (2007)
22. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.

In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004)

23. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58(1-2) (October 2005)

24. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs
(1981)

25. Storjohann, A.: Algorithms for Matrix Canonical Forms. PhD thesis, ETH Zurich,
Zurich, Switzerland, Diss. ETH No. 13922 (2000)

26. Warren Jr., H.: Hacker’s Delight. Addison-Wesley, Reading (2003)

http://www.cs.wisc.edu/wpis/wpds/download.php

Transitive Closures of AÆne Integer Tuple Relations
and Their Overapproximations

Sven Verdoolaege, Albert Cohen, and Anna Beletska

INRIA and École Normale Supérieure

Abstract. The set of paths in a graph is an important concept with many appli-
cations in system analysis. In the context of integer tuple relations, which can
be used to represent possibly infinite graphs, this set corresponds to the transi-
tive closure of the relation representing the graph. Relations described using only
aÆne constraints and projection are fairly eÆcient to use in practice and capture
Presburger arithmetic. Unfortunately, the transitive closure of such a quasi-aÆne
relation may not be quasi-aÆne and so there is a need for approximations. In
particular, most applications in system analysis require overapproximations. Pre-
vious work has mostly focused either on underapproximations or special cases of
aÆne relations. We present a novel algorithm for computing overapproximations
of transitive closures for the general case of quasi-aÆne relations (convex or not).
Experiments on non-trivial relations from real-world applications show our algo-
rithm to be on average more accurate and faster than the best known alternatives.

1 Introduction

Computing the transitive closure of a relation is an operation underlying many im-
portant algorithms, with applications to computer-aided design, software engineering,
scheduling, databases and optimizing compilers. In this paper, we consider the class of
parametrized relations over integer tuples whose constraints consist of aÆne equalities
and inequalities over variables, parameters and existentially quantified variables. This
class has the same expressivity as Presburger arithmetic. Such quasi-aÆne relations
typically describe infinite graphs, with the transitive closure corresponding to the set of
all paths in the graph, and are widespread in decision and optimization problems with
infinite domains, with applications to static analysis, formal verification and automatic
parallelization [3, 4, 7, 15, 17, 18, 23, 25]. In this context, the use of quasi-aÆne rela-
tions is preferred because most operations on such relations can be performed exactly
and fairly eÆciently. However, as shown by Kelly et al. [25], the transitive closure of a
quasi-aÆne relation may not be representable as a quasi-aÆne relation, or may not be
computable at all. This leads to the design of approximation techniques [1, 6, 9, 24, 25].
and�or the study of sub-classes, including sub-polyhedral domains, where an exact com-
putation is possible [2, 10–14, 18, 20]. Our approach belongs to the first group. That
is, our goal is not to investigate classes of relations for which the transitive closure is
guaranteed to be exact, but rather to obtain a general technique for quasi-aÆne relations
that always produces an overapproximation, striking a balance between accuracy and
speed.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 216–232, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 217

��� �� � �� � 	�
� ����

��� � ���� � ����

Fig. 1. A sequential loop

����� ��� ������ ���

��� �� � �� � 	� ��
�
� ��� ����

��� �� � �� � 	�
� � �� ��

��� � ���� � ����

Fig. 2. A parallelized version of the loop in Figure 1

3 4 5 6 7 8 9 10 11

Fig. 3. The dependences and slices of the loop in Figure 1

Until recently, approximation for the general case of quasi-aÆne relations has only
been investigated by Kelly et al. [25], and they focus on computing underapproxima-
tions.Yet the vast majority of the applications require overapproximations, and the al-
gorithm proposed by Kelly et al. for computing overapproximations is very inaccurate,
both in our own implementation and in an independent one [9]. Overapproximations
have been considered by Beletska et al. [6], but in a more limited setting.

We use Iteration Space Slicing (ISS) [7] to illustrate the application of the transitive
closure to quasi-aÆne relations. The objective of this technique is to split up the itera-
tions of a loop nest into slices that can be executed in parallel. Applying the technique
to the code in Figure 1, we see that some iterations of the loop use a result computed in
earlier iterations and can therefore not be executed independently. These dependences
are shown as arrows in Figure 3 for the case where n � 11. The intuition behind ISS
is to group all iterations that are connected through dependences and to execute the
resulting groups in parallel. These groups form a partition of the iterations, which is
defined by an equivalence relation based on the dependences. In particular, the equiv-
alence relation needs to be transitively closed, which requires the computation of the
transitive closure of a relation representing the (extended) dependence graph. The re-
sulting relation connects iterations to directly or indirectly depending iterations. In the
example, three such groups can be discerned, indicated by di�erent colors of the nodes
in Figure 3. The resulting parallel program, with the outer parallel loop running over
the di�erent groups and the inner loop running over all iterations that belong to a group,
is shown in Figure 2. It is important to note here that if the transitive closure cannot be
computed exactly, then an overapproximation should be computed. This may result in
more iterations being grouped together and therefore fewer slices and less parallelism,
but the resulting program would still be correct. Underapproximation,on the other hand,
would lead to invalid code. Furthermore, the overapproximation needs to be transitively
closed since the slices should not overlap. Most of our target applications are based on
dependence relations. For more information, we refer to our report [33].

In this paper, we present an algorithm for computing overapproximations of transi-
tive closures. The algorithm subsumes those of [6] and [1]. Furthermore, it is experi-
mentally shown to be exact in more instances from our applications than that of [25]
and generally also faster on those instances where both produce an exact result. Our

218 S. Verdoolaege, A. Cohen, and A. Beletska

algorithm includes three decomposition methods, two of which are refinements of those
of [25], while the remaining one is new. Finally, we provide a more extensive experi-
mental evaluation on more diÆcult instances. As an indication, Kelly et al. [25] report
that they were able to compute exact results for 99% of their input relations, whereas
they can only compute exact results for about 60% of our input relations and our algo-
rithm can compute exact results for about 80% of them. This di�erence in accuracy is
shown to have an impact on the final outcome of some of our applications.

Section 2 gives background information on aÆne relations and transitive closures.
We discuss related work in Section 3. Section 4 details the core of our algorithm.
Section 5 studies a decomposition method to increase accuracy and speed. Section 6
describes the implementation. The results of our experiments are shown in Section 7.

2 Background

We use bold letters to denote vectors, and we write �a� x� for the scalar product of a
and x. We consider binary relations on �d, i.e., relations mapping d-tuples of integers to
d-tuples of integers. S Æ R denotes the composition of two relations R and S . A relation
R is transitively closed if R Æ R � R. The transitive closure of R, denoted R�, is the
(inclusion-wise) smallest transitively closed relation T such that R � T . The transitive
closure R� can be constructed as the union of all positive integer powers of R:

R� �
�

k�1

Rk� with Rk
�

�������
R if k � 1

R Æ Rk�1 if k � 2�
(1)

A relation R is reflexively closed on a set D if the identity relation IdD is a subset of
R. The reflexive closure of R on D is R � IdD. The reflexive and transitive closure of
R on D is R�

D � R� � IdD. The cross product of two relations R and S is the relation
R � S � � (x1� y1) � (x2� y2) 	 x1 � x2
 R � y1 � y2
 S �. Occasionally, we will also
consider binary relations over labeled integer tuples, i.e., subsets of

�
d1�d2�0(���d1) �

(� � �d2), with � a finite set of labels. By assigning an integer value to each label, any
such relation can be encoded as a relation over the (1 � d)-tuples with d the largest of
the d1s and d2s over all elements in the relation.

We work with relations that have a finite representation. A commonly used class of
such relations are those that can be represented using aÆne constraints. We consider
finite unions of basic relations R �

�
i Ri, each of which is represented as

Ri � s � � x1 � x2
 �
d � �d 	 �z
 �e : A1x1 � A2x2 � Bs � Dz � c � 0 �� (2)

with s a vector of n free parameters, Ai
 �
m�d, B
 �m�n, D
 �m�e and c
 �m. The

explicit declaration of the parameters (s �) only serves to stress that the relation is pa-
rameteric and will sometimes be omitted. To emphasize that the description may involve
existentially quantified variables z, we call such relations quasi-aÆne. Any Presburger
relation can be put in this form.

Unfortunately, the transitive closure of a quasi-aÆne relation may not be repre-
sentable using aÆne constraints [25]. Similarly, a description of all positive integer
powers k of R, parametrically in k, may not be representable either. We will refer to this

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 219

description as simply the power of R and denote it as Rk. Since the power Rk as well as
the transitive closure R� may not be representable, we will compute approximations, in
particular overapproximations, denoted as �k(R) and � (R), respectively.

Next to quasi-aÆne relations, our computations also make use of quasi-aÆne sets.
These sets are defined essentially the same way: the only di�erence is that sets are unary
relations on integer tuples instead of binary relations. The variables representing these
tuples are called set variables. Sets can be obtained from relations in the following
ways. The domain of a relation R is the set that results from projecting out the variables
x2, i.e., dom R � � x1
 �

d 	 �x2
 �
d : x1 � x2
 R �. The range of a relation R is the

set ran R � � x2
 �
d 	 �x1
 �

d : x1 � x2
 R �. The di�erence set of a relation R is the
set �R � � Æ
 �d 	 �x � y
 R : Æ � y � x �. We also need the following operations
on sets. The Minkowski sum of S 1 and S 2 is the set of sums of pairs of elements from
S 1 and S 2, i.e., S 1 � S 2 � � a � b 	 a
 S 1 � b
 S 2 �. The kth multiple of a set, with
k a positive integer is defined as 1 S � S and k S � (k � 1) S � S for k � 2. Note
that as with the kth power of a relation, the kth multiple of a quasi-aÆne set, with k a
parameter, may not be representable as a quasi-aÆne set.

Most of the applications we consider operate within the context of the polyhedral
model [22], where single-entry single-exit program regions are represented, analyzed
and transformed using quasi-aÆne sets and relations. In particular, the set of all it-
erations of a loop for which a given statement is executed is called the iteration do-
main. When the loop iterators are integers and lower and upper bounds of all enclosing
loops as well all enclosing conditions are quasi-aÆne, then the iteration domain can
be represented as a quasi-aÆne set. For example, the iteration domain of the single
statement in Figure 1 is n � � i 	 3 � i � n �. Dependence relations map elements
of an iteration domain to elements of another (or the same) iteration domain which
depend on them for their execution. In the example, we have as dependence relation
n � � i � i � 3 	 3 � i� i � 3 � n �� The graph with the statements and their itera-
tions domains as nodes and the dependence relations as edges is called the dependence
graph.

3 Related Work

The seminal work of Kelly et al. [25] introduced many of the concepts and algorithms
in the computation of transitive closures that are also used in this paper. In particular,
we use a revised version of their incremental computation and we apply their modi-
fied Floyd-Warshall algorithm internally. However, the authors consider a di�erent set
of applications which require underapproximations of the transitive closures instead of
overapproximations. Their work therefore focuses almost exclusively on underapproxi-
mations. For overapproximations, they apparently consider some kind of “box-closure”,
which we recall in Section 6 and which is considerably less accurate than our algorithm.

Bielecki et al. [8] aim for exact results, which may therefore be non-aÆne. In our
applications, aÆne results are preferred as they are easier to manipulate in further cal-
culations. Furthermore, the authors only consider bijective relations over a convex do-
main. We consider general quasi-aÆne relations, which may be both non-bijective and
defined over finite unions of domains.

220 S. Verdoolaege, A. Cohen, and A. Beletska

Beletska et al. [6] consider finite unions of translations, for which they compute
quasi-aÆne transitive closure approximations, as well as some other cases of finite
unions of bijective relations, which lead to non-aÆne results. Their algorithm applied to
unions of translations forms a special case of our algorithm for general aÆne relations.

Bielecki et al. [9] propose to compute the transitive closure using the classical itera-
tive least fixed point computation and if this process does not produce the exact result
after a fixed number of iterations, they resort to a variation of the “box-closure” of [25].
To increase the chances of the least fixed point computation, they first replace each dis-
junct in the input relation by its transitive closure, provided it can be computed exactly
using available techniques [8, 25].

Transitive closures are also used in the analysis of counter systems to accelerate the
computation of reachable sets. In this context, the power of a relation is known as a
“counting acceleration”[20], while our relations over labeled tuples correspond to Pres-
burger counter systems[20], extended to the integers. Much of the work on counter
systems is devoted to the description of classes of systems for which the computations
can be performed exactly. See, e.g., the work of Bardin et al.[2] and their references or
the work of Bozga et al.[13]. By definition, these classes do not cover the class of input
relations that we target in our approach. Other work on counter systems, e.g., that of
Sankaranarayanan et al.[28], Feautrier and Gonnord[24] or Ancourt et al.[1], focuses
on the computation of invariants and therefore allows for overapproximations. How-
ever, the analysis is usually performed on (non-parametric) polyhedra. That is, the rela-
tions for which transitive closures are computed do not involve parameters, existentially
quantified variables or unions. The transitive closure algorithm proposed by Ancourt et
al.[1] is essentially the same as that used by Boigelot and Herbreteau[12], except that
the latter apply it on hybrid systems and only in cases where the algorithm produces an
exact result. The same algorithm also forms the core of our transitive closure algorithm
for single disjunct relations.

4 Powers and Transitive Closures

We present our core algorithm for computing overapproximations of the parametric
power and the transitive closure of a relation. We first discuss the relationship between
these two concepts and provide further evidence for the need for overapproximations.
Then, we address the case where R is a single basic relation, followed by the case of
multiple disjuncts. Finally, we explain how to check the exactness of the result and why
the overapproximation is guaranteed to be transitively closed.

4.1 Introduction

There is a close relationship between parametric powers and transitive closures. Based
on (1), the transitive closure R� can be computed from the parametric power Rk by pro-
jecting out the parameter k. Conversely, an algorithm for computing transitive closures
can also be used to compute parametric powers. In particular, given a relation R, com-
pute C� with C � R � � i � i � 1 �. For each pair of integer tuples in C, the di�erence
between the final coordinates is 1. The di�erence between the final coordinates of pairs

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 221

in C� is therefore equal to the number of steps taken. To compute Rk, one may equate k
to this di�erence and subsequently project out the final coordinates.

As mentioned in Section 2, it is not always possible to compute powers and closures
exactly, and we may aim instead for overapproximations �k(R) and � (R). It should
be clear that both conversions above map overapproximations to overapproximations.
Important: note that the transitive closure may not be aÆnely representable even if the
input relation is a union of constant-distance translations. A well know case can be built
by considering the lengths of dependence paths associated to SUREs [19, Theorem 23].

4.2 Single Disjunct

Given a single basic relation R of the form (2), we look for an overapproximation of
R� and we will derive it from an overapproximation of Rk. Furthermore, we want to
compute the approximation eÆciently and we want it to be as close to exact as possible.

We will treat the input relation as a (possibly infinite) union of translations. The dis-
tances covered by these translations are the elements of the di�erence set � � �R. We
will assume here that � also consists of a single basic set; our implementation of the �R
operation may result in a proper union due to our treatment of existentially quantified
variables discussed below. The union case is treated in Section 4.3. Our approximation
of the kth power contains translations over distances that are the sums of k distances
in �. In particular, it contains those translations starting from and ending at the same
points as those of the input relation. That is, we compute all paths along distances in �

Pk � � x � y 	 �Æ
 �k : y � x � Æ �� with �k � k � and k
 ��1� (3)

and intersect domain and range with those of R,

�k(R) � Pk � (dom R � ran R) � (4)

Example 1. To see the importance of this intersection with domain and range, consider
the relation R � � (x� y) � (x� x) �. First note that this relation is transitively closed
already, so in our implementation we would not apply the algorithm here. If we did,
however, then we would have �R � � 0 � � �, whence Pk � � (x� y) � (x� y�) �. On the
other hand, ran R � � (x� x) � and so � (R) � �k(R) � � (x� y) � (x� x) �.

Unfortunately, the set k � in (3) may not be aÆne in general and then the same holds
for Pk. As a trivial example of k � not being aÆne, take � to be the parametric singleton
n � � n �. If, however, � is a non-parametric singleton � � � Æ �, i.e., Æ does not depend
on the parameters, then k � is simply � k Æ � and we can compute our approximation of
the power according to (4). Otherwise, we drop the definition of �k in (3) and compute
�k as an approximation of k �, essentially copying some constraints of (a projection of)
�. This process ensures that �k is easy to compute, although it may in some cases not
be the most accurate aÆne approximation of k �.

Let us first assume that the description of � does not involve any existentially quan-
tified variables or parameters. The constraints then have the form �a� x� � c � 0. Any
element in k � can be written as the sum of k elements Æi from �. Each of these satisfies
the constraint. The sum therefore satisfies the constraint

�a� x� � c k � 0� (5)

222 S. Verdoolaege, A. Cohen, and A. Beletska

meaning that the constraint in (5) is valid for k �. Our approximation �k of k � is then
the set bounded by the constraints in (5). In this special case, we compute essentially
the same approximation as [1]. Note that if � has integer vertices, then the vertices of
� � � 1 � generate the rational cone � (x� k)
 �d�1 	 �a� x� � c k � 0 �. This means that
� � � 1 � is a Hilbert basis of this cone [29, Theorem 16.4] and that therefore �k � k �.

Example 2. As a trivial example, consider the relation R � � x � y 	 2 � y � x � 3 �.
We have � � �R � � Æ 	 2 � Æ � 3 � and �k � k � � Æ 	 2 k � Æ � 3 k �. Therefore,
�k(R) � Pk � k � � x � y 	 2 k � y � x � 3 k � and � (R) � � x � y 	 y � x � 2 �.

If the description of � does involve parameters, we cannot simply multiply the para-
metric constant by k: that would result in non-aÆne constraints. One option is to treat
parameters as variables that just happen to remain constant. That is, instead of consid-
ering the set � � �R � s � � Æ
 �d 	 �x � y
 R : Æ � y � x �, we consider the set

�� � �R� � � Æ
 �n�d 	 �(s� x) � (s� y)
 R� : Æ � (s � s� y � x) �� (6)

The first n coordinates of every element in �� are zero. Projecting out these zero coordi-
nates from �� is equivalent to projecting out the parameters in �. The result is obviously
a superset of �, but all its constraints only involve the variables x and can therefore be
treated as above.

Another option is to categorize the constraints of � according to whether they involve
set variables, parameters or both. Constraints involving only set variables are treated as
before. Constraints involving only parameters, i.e., constraints of the form

�b� s� � c � 0� (7)

are also valid for k �. (� is empty for values of the parameters not satisfying these
constraints and therefore so is k �.) For constraints of the form

�a� x� � �b� s� � c � 0� (8)

involving both set variables and parameters, we need to consider the sign of �b� s� � c.
If this expression is non-positive for all values of s for which � is non-empty, i.e.,

� � s � � Æ 	 �b� s� � c � 0 � � �� (9)

then �a� x� will always have a non-negative value v and we have k �a� x� � v for k � 1.
The constraint in (8) is therefore also valid for k � if this condition holds. Our approxi-
mation �k of k � is the set bounded by the constraints in (5), (7) and (8). Constraints of
the form (8) for which (9) does not hold are simply dropped. Since this may result in a
loss of accuracy, we add the constraints derived from �� above if any constraints of the
form (8) get dropped.

Example 3. Consider the relation R � n � � (x� y) � (1 � x� 1 � n � y) 	 n � 2 �.
We have �R � n � � (1� 1 � n) 	 n � 2 � and so, by specifically treating parameters
as described above, we obtain the following approximation for R�: n � � (x� y) �

(x�� y�) 	 n � 2 � y� � 1 � n � y � x� � 1 � x �. If we consider instead R� � � (n� x� y) �

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 223

(n� 1 � x� 1 � n � y) 	 n � 2 � then �R� � � (0� 1� y) 	 y � �1 � and we obtain the
approximation n � � (x� y) � (x�� y�) 	 n � 2 � x� � 1 � x � y� � x � y � x� �. If
we consider both �R and �R�, then we obtain n � � (x� y) � (x�� y�) 	 n � 2 � y� �
1� n� y� x� � 1� x� y� � x� y� x� �. Note however that this is not the most accurate
aÆne approximation: n � � (x� y) � (x�� y�) 	 y� � 2�n� x�y� x��n � 2� x� � 1� x �
is a more accurate one.

If the description of � does involve existentially quantified variables, we compute unique
representatives for these variables, picking the lexicographically minimal value for each
of them using parametric integer programming [21]. The result is an explicit represen-
tation of each existentially quantified variable as the greatest integer part of an aÆne
expression in the parameters and set variables. This representation may involve case
distinctions, leading to a partitioning of �. If the representation involves only parame-
ters, then the existentially quantified variable can be treated as a parameter. Similarly,
if it only involves set variables, the existentially quantified variable can be treated as a
set variable too. Otherwise, any constraints involving the variable are discarded. If this
happens then, as before, we add the constraints derived from �� (6).

Example 4. Consider R � n � � x � y 	 ��0� �1 : 7�0 � �2�n�5�1 � �1�x�y�y �
6 � x �. The di�erence set of this relation is � � �R � n � � x 	 ��0� �1 : 7�0 �

�2 � n � 5�1 � �1 � x � x � 6 �. The existentially quantified variables can be defined
in terms of the parameters and variables as �0 � �(�2 � n)�7� and �1 � �(�1 � x)�5�.
�0 can therefore be treated as a parameter, while �1 can be treated as a variable. This
in turn means that 7�0 � �2 � n can be treated as a purely parametric constraint,
while the other two constraints are non-parametric. The corresponding Pk is therefore
(n� k) � � x � y 	 ��0� �1� f : k � 1�y � x� f �7�0 � �2�n�5�1 � �k� f � f � 6k �.
Projecting out the parameter k and simplifying the result, we obtain the exact transitive
closure R� � n � � x � y 	 � �0� �1 : 7�0 � �2� n� 6�1 � �x� y� 5�1 � �1� x� y �.

4.3 Multiple Disjuncts

When the set of distances � is a proper union of basic sets � �
�

i �i, we apply the
technique of Section 4.2 to each �i separately, yielding approximations �k

i of ki �i and
corresponding paths Pk

i from (3). The set of global paths should take a total of k steps
along the �is, which can be obtained by essentially composing the Pk

i s and taking k to
be the sum of all kis. However, we need to allow for some kis to be zero, so we introduce
stationary paths S i � Id�d � � x � y 	 ki � 0 � and compute the set of global paths as

Pk �
�
(Pkm

m � S m) Æ � � � Æ (Pk2
2 � S 2) Æ (Pk1

1 � S 1)
�
� � x � y 	 k �

	

i

ki � 0 �� (10)

The final constraint ensures that at least one step is taken. The approximation of the
power is then again computed according to (4). As explained in Section 4.1, �k(R) can
be represented as � (C), with C � R�� i � i�1 �. Using this representation, all �i have
1 as their final coordinate and S i above is simply Id�d�1 .

We need to be careful about scalability at this point. Given a set of distances � with m
disjuncts, a naive application of (10) results in a Pk relation with 2m�1 disjuncts. We try

224 S. Verdoolaege, A. Cohen, and A. Beletska

to limit this explosion in three ways. First, we handle all singleton �i together; second,
we try to avoid introducing a union with S i; and third, we try to combine disjuncts. In
particular, the paths along �i � � Æi � can be computed as

Pk
� � x � y 	 �ki
 ��0 : y � x �

	

i

ki Æi �
	

i

ki � k � 0 ��

In this special case, we compute essentially the same approximation as [6]. For the
remaining �i, if the result of replacing constraint k � 1 by k � 0 in the computation of
Pk yields the identity mapping, then Pk

i �S i is simply Qk
i with Qk

i the result of replacing
k � 1 by k � 0. It is tempting to always replace Pk

i � S i by this Qk
i , even if it is

an overapproximation, but experience has shown that this leads to a significant loss in
accuracy. Finally, if neither of these optimizations apply, then after each composition in
(10) we “coalesce” the resulting relation. Coalescing detects pairs of disjuncts that can
be replaced by a single disjunct without introducing any spurious elements [32].

4.4 Properties

By construction (Section 4.2 and Section 4.3), we have the following lemma.

Lemma 1. �k(R) is an overapproximation of Rk, i.e., Rk � �k(R).

The transitive closure approximation is obtained by projecting out the parameter k. If
�k(R) is represented as � (C), with C � R � � i � i � 1 �, then � (R) can be obtained
from � (C) by projecting out the final coordinates. The following lemma immediately
holds.

Lemma 2. � (R) is an overapproximation of R�, i.e., R� � � (R).

In many cases, �k(R) will be exactly Rk. Given a particular R it is instructive to know
whether the computed �k(R) is exact or not, either for applications working directly
with powers or as a basis for an exactness test on closures detailed below. The exactness
test on powers amounts to checking whether �k(R) satisfies the definition of Rk in (1):

�1(R) � R and �k(R) � R Æ �k�1(R) for k � 2�

The reverse inclusion is guaranteed by Lemma 1. If �k(R) is exact, then � (R) is also
exact since the projection is performed exactly. However, if �k(R) is not exact then� (R)
might still be exact. We therefore prefer the more accurate test of [25, Theorem 5]:

� (R) � R � (R Æ � (R)) �

However, this test can only be used if R is acyclic, i.e., if R� has no fixed points. Since
� (R) is an overapproximation of R�, it is suÆcient to check that � (R) has no fixed
points, i.e., that 0 � �� (R). If � (R) does have fixed points, then we apply the exactness
test on �k(R) instead.

Some applications also require the computed approximation of the transitive closure
to be a transitively closed one [3, 7, 17]. The power approximation �k(R) computed
above is transitively closed as soon as Pk is transitively closed: if x � y
 �k1 (R)

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 225

and y � z
 �k2(R), then x � z
 �k1�k2 (R), because Pk is transitively closed (and
so x � z
 Pk1�k2), x
 dom R and z
 ran R. If x1
 �k1 and x2
 �k2 , then
both combinations satisfy (5) and so does their sum. Constraint (8) is also satisfied for
x1 � x2, hence x1 � x2
 �k1�k2 . We conclude that in the single disjunct case, Pk in (3)
is transitively closed, which in turn implies that also Pk in (10) is transitively closed in
the multiple disjunct case. � (R) is transitively closed because for any x � y and y � z
in � (R), there is some pair k1� k2 such that x � y
 �k1(R) and y � z
 �k2 (R) and so
x � z
 �k1�k2(R). We therefore have the following theorem.

Theorem 1. � (R) is a transitively closed overapproximation of R�.

5 Strongly Connected Components

In order to improve accuracy, we apply several methods for breaking up the transitive
closure computation. The first one is a decomposition into strongly connected compo-
nents. The other two are variations of methods in [25]: we apply the modified Floyd-
Warshall algorithm internally after partitioning the domain and we apply an incremental
computation method. Our variations on these methods are explained in [33, Section 6].

Computations in Section 4.2 and Section 4.3 focus on the distance between elements
in relation. The domain and range of the input relation are only taken into account at the
very last step in (4). This means that translations described by one disjunct are applied
to domain elements of other disjuncts, even if the domains are completely disjoint. In
this section, we describe how the accuracy of �k(R) and � (R) can be improved by
decomposing the disjuncts of R into strongly connected components (SCCs).

The translations of R� are compositions of translations in the disjuncts of R. Two dis-
juncts Ri and R j should be lumped into a connected component if there exist translations
in Rk that first go through Ri and then through R j, and translations that first go through
R j and then through Ri. Formally, we consider the directed graph whose vertices are the
disjuncts in R and whose arcs connect pairs of vertices (Ri�R j) if Ri can immediately
follow R j. The SCCs can be computed from this graph using Tarjan’s algorithm [30].
In principle Ri can immediately follow R j if the range of R j intersects the domain of Ri,
i.e., if Ri Æ R j � �. However, if Ri Æ R j � R j Æ Ri then one may always interchange Ri

and R j in any sequence leading to an element of R� where Ri immediately follows R j.
It is therefore suÆcient to introduce an edge between Ri and R j only if

Ri Æ R j � R j Æ Ri� (11)

Once the components have been obtained, we compute � (Rc) on each component
Rc separately. These � (Rc) can be combined into a global � (R) in the same way the
paths are combined in (10). The combination must be performed according to a topo-
logical ordering of the components, obtained as a byproduct of Tarjan’s algorithm. The
decomposition preserves the validity of Lemma 1. The exactness check of Section 4.4
is performed on each component separately. If the approximation turns out to be inexact
for any of the components, then the entire result is marked inexact and the exactness
check is skipped on the remaining components.

To ensure closedness of � (R), we need to make a minor modification. If we are to
perform the decomposition based solely on criterion Ri ÆR j � �, then the same property

226 S. Verdoolaege, A. Cohen, and A. Beletska

will also hold for the components and, because of (4), for the powers of the components,
implying that the final result is also transitively closed. If (11) is ever used, however,
then transitive closedness of the result is not guaranteed unless all computations are
performed exactly. We therefore explicitly check whether the result is transitively closed
when the computation is not exact and when (11) has been used. If the check fails, we
recompute the result without a decomposition into SCCs.

6 Implementation Details

The algorithms described in the previous sections have been implemented in the ���

library [32]. For details about the algorithms, the design and the implementation of
this integer set library, the reader is referred to the documentation and dedicated paper:
�������	
������������
����������. The ��� library supports both a parametric
power (�k(R)) and a transitive closure (� (R)) operation. Most of the implementation is
shared between the two operations. The transitive closure operation first checks if the
input happens to be transitively closed already and, if so, returns immediately. Both op-
erations then check for strongly connected components.Within each component, either
the modified Floyd-Warshall algorithm is applied or an incremental computation is at-
tempted, depending on whether the domain and range can be partitioned. For practical
reasons, incremental computation of powers has not been implemented. In the case of
the power or in case no incremental computation can be performed, the basic single or
multiple disjunct algorithm is applied. The exactness test is performed on the result of
this basic algorithm. In the case of the transitive closure, the final coordinates encoding
the path lengths are projected out on the same result. In the case of the power, the fi-
nal coordinates are only projected out at the very end, after equating their di�erence to
the exponent parameter. The ��� library has direct support for unions of relations over
pairs of labeled tuples. When the transitive closure of such a union is computed, we first
apply the modified Floyd-Warshall algorithm on a partition based on the label and tuple
size. Each recursive call is then handled as described above.

We also implemented a variation of the “box-closure” of Kelly et al. [25], which is
a simplified version of the algorithm in Section 4.2. They overapproximate � by a rect-
angular box, possibly intersected with a rectangular lattice, with the box having fixed
(i.e., non-parametric), but possibly infinite, lower and upper bounds. This overapprox-
imation therefore has only non-parametric constraints and the corresponding �k can
be constructed using some very specific instances of (5). This algorithm clearly results
in an overapproximation of Rk and therefore, after projection, of R�. To improve accu-
racy, we also apply their incremental algorithm, but only in case the result is exact. The
���
�������
� operation which appeared in very recent versions of ����� applies
a similar algorithm. The main di�erences are that it does not perform an incremental
computation and that it computes a box-closure on each disjunct individually.

7 Experiments

In all our experiments, we have used ��� version isl-0.05.1-125-ga88daa9,����� ver-
sion 2.1.6 [16], ��� version 2.1, ����� version 3.2 and the latest version of

http://freshmeat.net/projects/isl

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 227

�����[28].1 Version 2.1.6 of ����� provides three transitive closure operations: the
original �
������������
� (TC), which computes an underapproximation of the
transitive closure; ���
�������
� (AC), which computes an overapproximation of the
reflexive and transitive closure; and ��������
������������
� (CTC), which
appears to first try the least fixed point algorithm of [9] and then falls back on
���
�������
�. The execution times of the ����� transitive closure operations in-
clude the time taken for an extra exactness test. For �
������������
�, this test is
based on [25, Theorem 1]. Presumably, a similar exactness test is performed internally,
but the result of this test is not available to the user. In some cases, ����� returns a
result containing UNKNOWN constraints and then it is clear that the result is not exact.
In other cases, the user has no way of knowing whether the result is exact except by
explicitly applying an exactness test. The ��� library, by contrast, returns the exactness
as an extra result. For ���
�������
�, we apply the test of [25, Theorem 5]. Note that
this test may result in false positives when applied to cyclic relations. The exactness of
the ����� results is evaluated in the same way. Recall from Section 4.4 that we do not
apply this test inside ��� on relations that may be cyclic. Since it is not clear whether
��������
������������
�will always produce an overapproximation,we apply
both tests when checking its exactness. For the ��� results, no exactness test is needed
since ��� will only terminate if it has computed an exact result. On the other hand,
the execution time of ��� includes a conversion of the resulting �
����� formula to
a quasi-aÆne relation, i.e., a disjunctive normal form. Since ��� only supports non-
negative variables, we split all variables into a pair of non-negative variables whenever
the input relation contains any negative value. Below, we discuss our experiments on
inputs from our target domains. We have also performed some experiments [33] on the
����� and ���
[31] test sets. On the first, ��� performs comparably to �����, while
on the second, ��� only outperforms ���
 on a small minority of the cases.

7.1 Type Size Inference

Chin and Khoo [17] apply the transitive closure operation to the following relation,
derived from their Ackermann example: � (i� j) � (i � 1� j1) 	 i � 1 � j � 1 � �
� (i� j) � (i� j � 1) 	 i � 1 � j � 1 � � � (i� 0) � (i � 1� 1) 	 i � 1 �. ���� produces an
underapproximation and the authors heuristically manipulate this underapproximation
to arrive at the following overapproximation: � (i� j) � (i1� j1) 	 i1 � 0� i1 � i� 1� j �
0 � � � (i� j) � (i� j1) 	 j1 � 0 � j1 � j � 1 � i � 1 �. We compute the exact transitive
closure: � (i� j) � (o0� o1) 	 o0 � 0 � o0 � �1 � i � j � 0 � o0 � �2 � i � j � � � (i� j) �
(o0� 1) 	 o0 � �1 � i � j � 0 � o0 � 0 � � � (i� j) � (i� o1) 	 i � 1 � o1 � 0 � o1 �

�1 � j � � � (i� j) � (o0� 0) 	 o0 � �1 � i � j � 0 � o0 � 1 �.

7.2 Equivalence Checking

Our most extensive set of experiments is based on the algorithm of [4] for checking
the equivalence of a pair of static aÆne programs. Since the original implementation
was not available to us, we have reimplemented the algorithm using !�"��#��# [26]

1 The ��� and ����� tests are based on the encoding described in [33, Section 8].

228 S. Verdoolaege, A. Cohen, and A. Beletska

Table 1. Results for equivalence checking

Omega�
isl box TC�AC AC

proved equivalent 72 46 49 50
not proved equivalent 15 51 28 45
out-of-memory 17 12 14�18 4�12
time-out 9 4 4 2

Table 2. Outcome of transitive closure operations
from equivalence checking

Omega�
isl box TC AC CTC Fast Aspic StInG

exact 472 334 366 267 274 139 201 215
inexact 67 227 157 266 245 0 268 240
failure 34 12 50 40 54 434 104 118

to compute regular expressions and ��� to perform all set and relation manipulations.
For the transitive closure operation we use the algorithm presented in this paper, the
“box” implementation described in Section 6 or one of the implementations in �����.
Since it is not clear whether ��������
������������
�will always produce an
overapproximation, we did not test this implementation in this experiment. The equiva-
lence checking procedure requires overapproximations of transitive closures and using
��������
������������
�might therefore render the procedure unsound. Since
�
������������
� computes an underapproximation, we only use the results if they
are exact. If not, we fall back on ���
�������
�. We will refer to this implementation
as “TC�AC”. For the other methods, we omit the exactness test in this experiment.

The equivalence checking procedure was applied to the output of � ��� [5] on 113 of
its tests. In particular, the output generated when using the ��� backend was compared
against the output when using the $$ backend. These outputs should be equivalent
for all cases, as was confirmed by the equivalence checking procedure of [34]. Table 1
shows the results. Using ���, 72 cases could be proven equivalent, while using �����
this number was reduced to only 49 or 50. This does not necessarily mean that all
transitive closures were computed exactly; it just means that the results were accurate
enough to prove equivalence. In fact, using ���
�������
� on its own, we can prove
one more case equivalent than first using �
������������
� and then, if needed,
���
�������
�. On the other hand, as we will see below, �
������������
� is
generally more accurate than ���
�������
�. A time limit of 1 hour was imposed,
resulting in some cases timing out, and memory usage was capped at 2GB, similarly
resulting in some out-of-memory conditions. For the ����� cases, we distinguish the
real out-of-memory and maxing out the number of constraints (2048). The ��� library
does not impose a limit on the number of constraints. For those cases that �����’s
���
�������
� was able to handle (a strict subset of those that could be handled by
���), Figure 4 compares the running times. Surprisingly, ��� is faster than �����’s
���
�������
� in all but one case. What is no surprise is that the running times
(not shown in the figure) of the combined �
������������
� and ���
�������
�

method are much higher still because it involves an explicit exactness test.
In order to compare the relative performance of the transitive closure operations

themselves, we collected all transitive closure instances required in the above experi-
ment. This resulted in a total of 573 distinct cases. The results are shown in Table 2,
where failure may be out-of-memory (1GB), time-out (60s), or in case of �����,
maxing out the number of constraints. Since only isl, box and Fast give an indica-
tion of whether the computed result is exact or not the results of the other methods are

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 229

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0001 0.001 0.01 0.1 1 10 100 1000

O
m

eg
a+

 A
pp

ro
xC

lo
su

re
 ti

m
e

(s
)

isl time (s)

Fig. 4. Equivalence checking time

 1

 10

 100

 1000

 1 10 100 1000

O
m

eg
a+

 T
ra

ns
iti

ve
C

lo
su

re
 ti

m
e

(t
ic

ks
)

isl time (ticks)

Fig. 5. Transitive closure computation time

explicitly checked for exactness. This exactness test may also contribute to some fail-
ures. Interestingly, our “box” implementation is more accurate than both
���
�������
� and ��������
������������
� on this test set. On average,
the ��� implementation is more accurate than any of the ����� implementations on
the test set. There are also some exceptions, however. There are two cases where one or
two of the ����� implementations computes an exact result while both ��� and the
box implementation do not. In all those cases where ��� fails, the other implementa-
tions either also fail or compute an inexact result. This observation, together with the
higher failure rate (compared to the box implementation), suggests that our algorithm
may be trying a little bit too hard to compute an exact result.

Figure 5 shows that for those transitive closures that both �
������������
� and
��� compute exactly, ��� is as fast as or faster than ����� in all but a few exceptional
cases. This result is somewhat unexpected since �����’s �
������������
� per-
forms its operations in machine precision, while ��� performs all its operations in exact
integer arithmetic using GMP.

7.3 Iteration Space Slicing

The ISS experiments were performed on loop nests previously used in [7] and extracted
from version 3.2 of NAS Parallel Benchmarks [35] consisting of five kernels and three

Table 3. Success rate of transitive closure operations from ISS experiment

top-level nested
Omega� Omega�

isl box TC AC CTC Fast Aspic StInG isl box TC AC CTC Fast Aspic StInG
mem exact 70 44 58 43 53 25 15 39 37 25 35 7 31 1 1 15

inexact 7 60 11 50 6 0 87 22 10 42 17 50 19 0 67 43
failure 57 30 65 41 75 109 32 73 21 1 16 11 18 67 0 10

val exact 72 44 57 43 57 28 37 39 53 35 47 23 37 7 8 28
inexact 2 73 26 56 12 0 41 22 12 41 20 48 33 0 59 36
failure 60 17 51 35 65 106 56 73 12 1 10 6 7 70 10 13

230 S. Verdoolaege, A. Cohen, and A. Beletska

pseudo-applications derived from computational fluid dynamics applications. In total,
257 loops could be analyzed, but 123 have no dependences. For each of the remain-
ing 134 loops, a dependence graph was computed using either value based dependence
analysis or memory based dependence analysis [27]. Each of these dependence graphs
was encoded as a single relation and passed to the transitive closure operation. The re-
sults are shown in Table 3. Since the input encodes an entire dependence graph, ���
is expected to produce more accurate results than ����� as ��� implements Floyd-
Warshall internally. We therefore also show the results on all the nested transitive clo-
sure operations computed during the execution of Floyd-Warshall. It should be noted,
though, that ��� also performs coalescing on intermediate results, so an implementation
of Floyd-Warshall on top of ����� may not produce results that are as accurate.

8 Conclusions and Future Work

We presented a novel algorithm for computing overapproximations of transitive clo-
sures for the general case of aÆne relations. The overapproximations computed by the
algorithm are guaranteed to be transitively closed. The algorithm was experimentally
shown to be significantly more accurate than the best known alternatives on representa-
tive benchmarks from our target applications, and our implementation is generally also
faster despite performing all computations in exact integer arithmetic.

Although our algorithm can be applied to any aÆne relation, we have observed that
the results are not very accurate if the input relation is cyclic. As part of future work,
we therefore want to devise improved strategies for handling such cyclic relations. The
comparison with tools for reachability or invariant analysis has revealed that our prob-
lems have quite di�erent characteristics, in that our algorithm does not work very well
on their problems while their algorithms do not work very well on ours. The design of
a combined approach that could work for both classes of problems is therefore also an
interesting line of research.

Acknowledgments. We would like to thank Louis-Noël Pouchet for showing us how
to use !�"��#��#, Laure Gonnord for extending ����� to produce ��� compatible
output and Jérôme Leroux for explaining how to encode relations in ���.

References

1. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to aÆne loop invari-
ants detection. Electron. Notes Theor. Comput. Sci. 267, 3–16 (2010)

2. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to practice.
STTT 10(5), 401–424 (2008)

3. Barthou, D., Cohen, A., Collard, J.-F.: Maximal static expansion. Int. J. Parallel Program-
ming 28(3), 213–243 (2000)

4. Barthou, D., Feautrier, P., Redon, X.: On the equivalence of two systems of aÆne recurrence
equations. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 309–
313. Springer, Heidelberg (2002)

5. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT
2004: Proceedings of the 13th International Conference on Parallel Architectures and Com-
pilation Techniques, pp. 7–16. IEEE Computer Society, Washington, DC, USA (2004)

Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations 231

6. Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive closure of a
union of aÆne integer tuple relations. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA
2009. LNCS, vol. 5573, pp. 98–109. Springer, Heidelberg (2009)

7. Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse-grained loop
parallelization: Iteration space slicing vs aÆne transformations. In: International Symposium
on Parallel and Distributed Computing, 73–80 (2009)

8. Bielecki, W., Klimek, T., Trifunovic, K.: Calculating exact transitive closure for a normalized
aÆne integer tuple relation. Electronic Notes in Discrete Mathematics 33, 7–14 (2009)

9. Bielecki, W., Klimek, T., Palkowski, M., Beletska, A.: An iterative algorithm of computing
the transitive closure of a union of parameterized aÆne integer tuple relations. In: Wu, W.,
Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 104–113. Springer, Heidelberg
(2010)

10. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis, Université
de Liège (1998)

11. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Proceedings of the
6th International Conference on Computer-Aided Verification. Lecture Notes in Computer
Science, vol. 818, pp. 55–67. Springer, Heidelberg (1994)

12. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)

13. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)

14. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer,
Heidelberg (2010)

15. Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with unbounded in-
teger variables: symbolic representations, approximations, and experimental results. ACM
Trans. Program. Lang. Syst. 21(4), 747–789 (1999)

16. Chen, C.: Omega� library (2009), ���� !!"""#��$
���
#�
��!����!
17. Chin, W.N., Khoo, S.C.: Calculating sized types. Higher Order Symbol. Comput. 14(2-3),

261–300 (2001)
18. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic.

In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)
19. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization. Birkhauser,

Boston (2000)
20. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Towards a model-checker for counter

systems. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 493–507. Springer,
Heidelberg (2006)

21. Feautrier, P.: Parametric integer programming. Operationnelle�Operations Research 22(3),
243–268 (1988)

22. Feautrier, P.: Automatic Parallelization in the Polytope Model. In: Perrin, G.-R., Darte, A.
(eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp. 79–100. Springer, Hei-
delberg (1996)

23. Feautrier, P., Griebl, M., Lengauer, C.: On index set splitting. In: Parallel Architectures and
Compilation Techniques, PACT 1999, Newport Beach, CA (October 1999)

24. Feautrier, P., Gonnord, L.: Accelerated invariant generation for c programs with aspic and
c2fsm. Electron. Notes Theor. Comput. Sci. 267, 3–13 (2010)

25. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and
its applications. In: Huang, C.H., Sadayappan, P., Banerjee, U., Gelernter, D., Nicolau, A.,
Padua, D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 126–140. Springer, Heidelberg (1996)

26. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing VAUCANSON. Theor. Com-
put. Sci. 328(1-2), 77–96 (2004)

http://www.chunchen.info/omega/

232 S. Verdoolaege, A. Cohen, and A. Beletska

27. Pugh, W., Wonnacott, D.: An exact method for analysis of value-based array data depen-
dences. In: Proceedings of the 6th International Workshop on Languages and Compilers for
Parallel Computing, pp. 546–566. Springer, Heidelberg (1994)

28. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis.
In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)

29. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester
(1986)

30. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2),
146–160 (1972)

31. Vardhan, A., Viswanathan, M.: LEVER: A tool for learning based verification. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 471–474. Springer, Heidelberg (2006)

32. Verdoolaege, S.: isl: An integer set library for the polyhedral model. In: Fukuda, K., van der
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 299–302.
Springer, Heidelberg (2010)

33. Verdoolaege, S., Cohen, A., Beletska, A.: Transitive closures of aÆne integer tuple relations
and their overapproximations. Tech. Rep. RR-7560, INRIA (March 2011)

34. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static aÆne pro-
grams using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)

35. NAS benchmarks suite, ���� !!"""#
�#
�#��%

http://www.nas.nasa.gov

Logico-Numerical Abstract Acceleration and

Application to the Verification of Data-Flow
Programs�

Peter Schrammel and Bertrand Jeannet

INRIA Rhône-Alpes, Grenoble, France
{peter.schrammel,bertrand.jeannet}@inria.fr

Abstract. Acceleration methods are commonly used for speeding up the
convergence of loops in reachability analysis of counter machine mod-
els. Applying these methods to synchronous data-flow programs with
Boolean and numerical variables, e.g., Lustre programs, requires the
enumeration of the Boolean states in order to obtain a control flow graph
(CFG) with numerical variables only. Our goal is to apply acceleration
techniques to data-flow programs without resorting to this exhaustive
enumeration. To this end, we present (1) logico-numerical abstract accel-
eration methods for CFGs with Boolean and numerical variables and (2)
partitioning techniques that make logical-numerical abstract acceleration
effective. Experimental results show that incorporating these methods in
a verification tool based on abstract interpretation provides not only sig-
nificant advantage in terms of accuracy, but also a gain in performance
in comparison to standard techniques.

Keywords: Verification, Static Analysis, Abstract Interpretation,
Abstract Acceleration, Control Flow Graph Partitioning.

1 Introduction

This paper deals with the verification of safety properties about logico-numerical
data-flow programs, i.e., programs manipulating Boolean and numerical vari-
ables. Verification of such properties amounts to checking whether the reachable
state space stays within the invariant specified by the property.

Classical applications are safety-critical controllers as found in modern trans-
port systems, as well as static checking of high-level simulation models, e.g. a
model of a production line as depicted in Fig. 1. In such systems the properties
to be proved, like throughput and workload, depend essentially on the relation-
ships between the numerical variables of the system. Yet, there is an important
observation that we are going to exploit: In many of these control systems large
parts of the program simply count time or events, or, more generally, they per-
form rather regular linear arithmetic operations. Hence, it is appropriate to take
advantage of a specialized analysis method that exploits this regularity in order
� This work was supported by the INRIA large-scale initiative Synchronics.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 233–248, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

234 P. Schrammel and B. Jeannet

Fig. 1. Example of a production line with buffers, machines, and splitting and com-
bining material flows

to improve verification performance and precision. In this paper, we will con-
sider abstract acceleration [1] for this purpose, which aims at computing in one
step the effect of an unbounded number of loop iterations. However, at the same
time, we are confronted with a huge Boolean state space in the applications we
want to verify. Our contribution is therefore to extend abstract acceleration from
purely numerical programs to logico-numerical programs in an efficient way.

Verifying logico-numerical data-flow programs by abstract interpreta-
tion. The reachability problem is not decidable for this class of programs, so
analysis methods are incomplete. Abstract interpretation [2] is a classical method
with guaranteed termination for the price of an approximate analysis result. The
key idea is to approximate sets of states S by elements S� of an abstract domain.
A classical abstract domain for numerical invariants in ℘(Rn) is the domain of
convex polyhedra Pol(Rn) [3]. An approximation S� of the reachable set S is
then computed by iteratively solving the fixed point equation characterizing S
in the abstract domain. To ensure termination when the abstract domain con-
tains infinitely increasing chains, one applies an extrapolation operator called
widening, which induces additional approximations.

Since the analysis with a single abstract value gives only coarse results, it
is usually conducted over a control flow graph (CFG) of the program. In the
case of imperative programs, such a control graph can be obtained easily by
associating control points with programming constructs as if-then-else or while.
Data-flow programs do not have such constructs; yet, one can use finite-type
variables such as Booleans to generate a control structure. Thus, the classical
approach is to explicitly unfold the Boolean control structure by enumerating the
Boolean state space and to analyze the numerical variables on the obtained CFG
using a numerical abstract domain. The problem is that the analysis becomes
intractable with larger programs because the number of control locations grows
exponentially with the number of Boolean states.

Jeannet [4] proposed a method for iteratively refining the control structure
and analyzing the system using a logico-numerical abstract domain, making it
possible to deal with Boolean variables symbolically. We want to complement
this approach with new partitioning techniques and analysis methods.

Abstract acceleration. Acceleration [5] refers to a set of techniques aim-
ing at exactly computing the effects of loops in numerical transition systems
like counter machines, and ultimately at computing the exact reachability set
of such systems, usually using Presburger arithmetic. Abstract acceleration [1]
reformulates these concepts within an abstract interpretation approach: it aims

Logico-Numerical Abstract Acceleration 235

at computing the best correct approximation of the effect of loops in a given
abstract domain (currently only convex polyhedra have been considered).

These techniques can analyze only purely numerical programs with a given
CFG, of which the size often becomes prohibitively large. Furthermore, they
do not consider numerical inputs. In a previous paper [6], we already extended
abstract acceleration to numerical inputs.

Contributions. The missing link in the application of abstract acceleration
to logico-numerical programs, such as Lustre programs, is an efficient method
for (i) building an appropriate CFG without resorting to Boolean state space
enumeration, and (ii) analyzing it using abstract acceleration. Our methods allow
us to treat these two problems independently of each other.

Our contributions can be summarized as follows:

1. We propose methods for accelerating self-loops in the CFG of logico-numerical
data-flow programs.

2. We define Boolean partitioning heuristics that favor the applicability of ab-
stract acceleration and enable a reasonably precise reachability analysis.

3. We provide experimental results on the use of abstract acceleration enhancing
the analysis of logico-numerical programs.

Compared to other approaches, the partitioning heuristics that we propose are
based on structural properties of the program, namely the numerical transitions,
and thus, they are complementary to most common techniques based on abstract
or concrete counter-example refinement. In this paper we consider only partitions
of the Boolean state space, in contrast to the tool NBac [4], which in addition
partitions according to numerical constraints.

Organisation of the article. §2 gives an introduction to the abstract inter-
pretation of logico-numerical programs, partitioning, and abstract acceleration.
§3 and §4 describe our contributions on logico-numerical abtract acceleration
methods, §5 presents our experimental results, and finally §6 discusses related
work and concludes.

2 Analysis of Logico-Numerical Programs

Program model. We consider programs modeled as a symbolic transition

system
{I(s)
A(s, i) → s′ = f (s, i) where (1) s and i are vectors of state and input

variables, that are either Boolean or numerical; (2) I(s) is an initial condition on
state variables; (3) A(s, i) is an assertion constraining input variables depending
on state variables, and typically modeling the environment of the program; (4) f
is the vector of transition functions. An example of such a program is⎧⎪⎪⎨⎪⎪⎩

I(b, x) = ¬b ∧ (x=0)

1 ≤ ξ ≤ 3 →

⎛⎝ b′

x′

⎞⎠ =

⎛⎝ (b ∧ x≤5) ∨ β{
x+ ξ if b ∧ x≤5
0 otherwise

⎞⎠

236 P. Schrammel and B. Jeannet

An execution of such a system is a sequence s0 i0−→ s1 i1−→ . . . sk ik−→ . . . such
that I(s0) and for any k ≥ 0, A(sk, ik) ∧ sk+1 = f (sk, ik)).

The front-end compilation of synchronous data-flow programs, like Lustre,
produces such a program model, that also includes various models of counter
automata (by emulating locations using Boolean variables) [5].

We will use the following notations:
s = (b,x) : state variable vector, with b Boolean and x numerical subvectors
i = (β, ξ) : input variable vector, with β Boolean and ξ numerical subvectors
C(x, ξ) : constraints over numerical variables, seen as a vector of Boolean

decisions (for short C)

Transitions are written in the form A(b,β, C) →
(

b′

x′

)
=
(

f b(b,β, C)
fx(b,β, C,x, ξ)

)
.

Numerical transition functions are written as a disjunction of guarded actions:
fx(b,β, C,x, ξ) =

∨
i

(
gi(b,β, C) → axi (x, ξ)

)
with ¬(gi ∧ gj) for i �= j. The

program example above conforms to these notations.

2.1 Abstract Interpretation

The state space induced by logico-numerical programs has the structure E =
Bm×Rn. As mentioned in the introduction, we adopt the abstract interpretation
framework so as to abstract the equation S = S0 ∪ post(S), S ∈ ℘(E) in an
abstract domain and to solve it iteratively, using widening to ensure convergence.

We consider the domain A = ℘(Bm) × Pol(Rn) of convex states [7], which
approximates a set of states coarsely by a conjunction of a Boolean formula and
a single convex polyhedron. For instance the formula (b∧ x≤2)∨ (¬b∧ x≤4) is
abstracted by true ∧ x≤4.

Partitioning the state space. We use state space partitioning to obtain a
CFG in which each equivalence class of the partition corresponds to a location.

Definition 1. A symbolic control flow graph (CFG) of a symbolic transition
system is a directed graph 〈Π,Π0,�〉 where

– Π is the set of locations; each location � ∈ Π is characterized by its location
invariant ϕ
(s), such that {ϕ
(s) | � ∈ Π} forms a partition of E.

– Π0 is the set of initial locations with I(s) =
∨

∈Π0

ϕ
(s)
– � defines arcs between locations according to the transition relation:

∃s, i : ϕ
(s) ∧ A(s, i) ∧ s′ = f(s, i) ∧ ϕ
′(s′) ⇒ � � �′

There are several ways to define a partition inducing such a CFG. In predicate
abstraction for instance, the partition is generated by considering the truth value
of a finite set of predicates [8]. Here, we consider partitions defined by equivalence
relations on Boolean state variables. For example, the fully partitioned CFG
obtained by enumerating all Boolean states is characterized by the relation b1 ∼
b2 ⇔ b1 = b2.

Simplifying a CFG. In practice, partitioning is done by incrementally di-
viding the locations. Furthermore arcs between locations that are proved to be

Logico-Numerical Abstract Acceleration 237

c

τ

=⇒ c′ c′′
τ⊗

Fig. 2. Self-loop transition (left) and accelerated transition (right)

infeasible are removed. This can be done, e.g. by checking the satisfiability of
the transition relation, e.g. using an SMT solver.

At last, transition functions are simplified by partial evaluation (using a gen-
eralized cofactor operator, see [9]).

Analyzing a CFG. In the context of analysis by abstract interpretation, con-
sidering a CFG allows to apply widening in a more restrictive way, e.g. on loop
heads only [10]. Also the information loss due to the convex union is limited,
because we assign an abstract value to each location: We consider the compound
abstract domain (Π → A) where the concrete states S are connected to their
abstract counterparts S� by the Galois connection:

S� = α(S) = λ� . α(S � ϕ
) S = γ(S�) =
⋃

∈Π

γ(S�
)

Analyzing the partitioned system amounts to computing the least fixed point
S� = S�,0 � λ� .

⊔

′∈Π

(
post(S�
′) � ϕ

)
where S�, S�,0 ∈ (Π → A).

2.2 Abstract Acceleration

As mentioned in the introduction, acceleration [5] aims at computing exactly
(or precisely in the case of abstract acceleration [1,11]) the effect of a self-loop.
The basic idea is to replace a loop transition by its transitive closure (Fig. 2) by
providing a formula τ⊗(X) computing τ∗(X) =

⋃
k≥0 τ

k(X).

Basic concepts. A loop transition τ has the structure: g → a meaning “while
guard g do action a”. Our extension of abstract acceleration to numerical inputs
[6] deals with loop transitions of the form(

A L
0 J

)(
x
ξ

)
≤
(

v
k

)
︸ ︷︷ ︸

Ax+Lξ≤v ∧ Jξ≤k

→ x′ =
(
C T
)(x

ξ

)
+ u︸ ︷︷ ︸

Cx+Tξ+u

(1)

Existing acceleration methods can deal with transitions where the matrix C is
a diagonal matrix with zeros and ones only or when it is periodic (∃p > 0, l >
0 : Cp+l = Cp). Throughout this paper, we will call such numerical transition
functions accelerable, whereas we regard general affine transformations (with an
arbitrary C) as non-accelerable.

Widening and acceleration. Acceleration gives us a formula for computing
the transitive closure of accelerable loop transitions. Widening is still needed
in the case of non-accelerable transitions, outer loops of nested loops and to
guarantee convergence when there are multiple self-loops in the same control
location (see the concept of flat systems in [5]). The main advantages of abstract
acceleration in comparison with widening result from two properties:

238 P. Schrammel and B. Jeannet

b1 ¬b1

b0∧
x1 = 0∧
x2 = 0

x1 ≤ 9 →
x1 + +;x2 + +

x1 ≤ 9 →
x1 + +;x2 + +; b2 := ¬b2

x1 > 9 →
x1 := 0; b1 := ¬b1

x1 > 9 →
x1 := 0;x2 := 0; b1 := ¬b1

Fig. 3. Self-loop ready to be accelerated (left). Acceleration not applicable (right)

– Idempotency (τ⊗(X) = τ⊗(τ⊗(X))), which simplifies the fixed point com-
putation (widening usually requires more than one step to stabilize);

– Monotonicity X1 � X2 ⇒ τ⊗(X1) � τ⊗(X2), that makes the analysis more
robust and predictible (whereas widening operators are not monotonic).

2.3 Classical Application of Abstract Acceleration

We describe now the classical way to apply abstract acceleration to the analysis of
logico-numerical programs, for which this paper proposes major enhancements.

Numerical acceleration can be applied to self-loops where the numerical state
evolves while the Boolean state does not: see Fig. 3 for an example and a coun-
terexample. The tool Aspic [12] is based on the enumeration of the Boolean
state space which trivially yields a CFG that fulfills this requirement.

Example 1. We will try to infer invariants on the following running example:
I(b,x) = ¬b0 ∧ ¬b1 ∧ x0 =0 ∧ x1 =0 ∧ x2 =0

true →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b′0 = b0 ∨ (¬b0 ∧ x0>10 ∧ x1>10)
b′1 = b1 ∨ (¬b1 ∧ x0>20)

x′
0 =

⎧⎨⎩
x0 + 1 if (¬b0 ∧ ¬b1 ∧ x0≤10 ∧ β) ∨ (b0 ∧ ¬b1 ∧ x0≤20)
0 if ¬b0 ∧ ¬b1 ∧ x0>10 ∧ x1>10
x0 otherwise

x′
1 =

{
x1 + 1 if ¬b0 ∧ ¬b1 ∧ x1≤10 ∧ ¬β
x1 otherwise

x′
2 =

{
x2 + 1 if (¬b0 ∧ ¬b1 ∧ (x0≤10 ∧ β ∨ x1≤10 ∧ ¬β)) ∨ (b0 ∧ ¬b1)
x2 otherwise

The counting patterns of this example (see Fig. 4b) is representative of the
production line benchmarks presented in Section 5.

Generating a numerical CFG. At first, one performs a Boolean reachability
analysis in order to reduce the state space of interest (b0 ∨¬b1 in the case of our
running example). Starting from the most simple CFG of the program consist-
ing of a single location with a self-loop (see Fig. 4a), standard techniques are
used for (1) enumerating the Boolean state space and (2) simplifying the tran-
sitions by source and destination location using partial evaluation. Afterwards,
(3) the Boolean input variables are replaced by explicit non-deterministic tran-
sitions (see Fig. 4b). This CFG is purely numerical, but the guards of the loop
transitions might still be non-convex. Transforming the guard into a minimal
DNF and splitting the transition into several transitions, one for each conjunct,
yields a CFG with self-loops compatible with the transition scheme of §2.2. A

Logico-Numerical Abstract Acceleration 239

b0 ∨ ¬b1

τ

(a) Initial CFG

¬b0 ∧ ¬b1 b0 ∧ ¬b1 b0 ∧ b1

x0 ≤ 10 →
x′0 = x0 + 1;x′2 = x2 + 1

x1 ≤ 10 →
x′1 = x1 + 1;x′2 = x2 + 1

x0 > 10 ∧ x1 > 10 →
x′0 = 0

x0 ≤ 20 →
x′0 = x0 + 1;x′2 = x2 + 1

x0 > 20 →
x′2 = x2 + 1

(b) CFG after Boolean enumeration and removal of the Boolean
inputs. (Identity transition functions are implicit.)

Fig. 4. Transformation of the program of Example 1. τ is the global transition. The
guards are already convex in the obtained CFG.

single self-loop like in location b0 ∧¬b1 in Fig. 4b can now be “flattened” into a
transitive closure transition (cf. Fig. 2).

Multiple self-loops. However, the obtained CFG usually contains multiple
self-loops like in location ¬b0 ∧ ¬b1 in Fig. 4b. In this case a simple “flatten-
ing” as in Fig. 2 is not possible: For the fixed point computation we must take
into account all sequences of self-loop transitions in this location. Actually, the
idempotency of accelerated transitions can be exploited in order reduce these
sequences to those where the same transition is never taken twice successively:
For the two accelerable loops we have to compute:
τ⊗1 (X)�τ⊗2 (X)�τ⊗2 ◦τ⊗1 (X)�τ⊗1 ◦τ⊗2 (X)�τ⊗1 ◦τ⊗2 ◦τ⊗1 (X)�τ⊗2 ◦τ⊗1 ◦τ⊗2 (X)�. . .
This infinite sequence may not converge, thus in general, widening is necessary to
guarantee termination. However, in practice the sequence often converges after
the first few elements (see [5]).

The technique implemented in Aspic consists in expanding multiple self-loops
into a graph of which the paths represent these sequences, as shown in Fig. 5
in the case of three self-loops, and to solve iteratively the fixed point equations
induced by the CFG as sketched in §2.1, using widening if necessary. Moreover,
Aspic implements methods to accelerate circuits of length greater than one.

3 Logico-Numerical Abstract Acceleration

Our goal is to exploit abstract acceleration techniques without resorting to a
Boolean state space enumeration in order to overcome the limitations of current
tools (e.g. [12]) w.r.t. the analysis of logico-numerical programs.

In this section we will first discuss some related issues in order to motivate our
approach before presenting methods that make abstract acceleration applicable
to a CFG, which now may contain loops with operations on both Boolean and
numerical variables.

240 P. Schrammel and B. Jeannet

i

1

2 3

o

τi

τi

τi

τo

τo

τo

τ⊗1
τ⊗2 τ⊗1

τ⊗3

τ⊗2

τ⊗3

Fig. 5. Computation of three
accelerable self-loops τ1, τ2 and
τ3. τi and τo are the incom-
ing resp. outgoing transitions of
the location.

b0 ∨ ¬b1

τ1 : ¬b0 ∧ ¬b1 ∧ x0 ≤ 10 →
x′0 = x0 + 1;x′2 = x2 + 1

τ2 : ¬b0 ∧ ¬b1 ∧ x1 ≤ 10 →
x′1 = x1 + 1;x′2 = x2 + 1

τ3 : b0 ∧ ¬b1 ∧ x0 ≤ 20 →
x′0 = x0 + 1;x′2 = x2 + 1τr

Fig. 6. Acceleration of Ex. 1 in a CFG with a sin-
gle location: The upper three self-loops are accel-
erable. The rest of the system is summarized in
the transition τr where the Boolean equations are
not the identity.

3.1 Motivations for Our Approach

A first observation is that identifying self-loops is more complex when Boolean
state variables are not fully encoded in the CFG. Indeed, if a symbolic CFG
contains a “syntactic” self-loop (�, τ, �) with τ : g(b,x, ξ) → (b,x) = f (b,x, ξ),
there is an “effective” self-loop only for those Boolean states b ∈ ϕl such that
g(b,x, ξ) ∧ b = f b(b,x, ξ) is satisfiable1. For instance, the self-loop around lo-
cation ¬b1 in Fig. 3 is not an “effective” self-loop.

This observation also applies to circuits, where numerical inputs have to be
duplicated : If there is a circuit (�, τ1, �′) and (�′, τ2, �) with τi : gi(s, ξ) → s′ =
fi(s, ξ) for i = 1, 2, the composed transition has the form τ : g(s, ξ, ξ′) → s′′ =
f(s, ξ, ξ′). This strongly limits in practice the length of circuits that can be
reduced to self-loops and accelerated. In this paper, we will not deal with such
circuits, and we consider only self-loops.

We give a definition for a logico-numerical self-loop which can be accelerated
by the known methods, because the Boolean part of the transition function is
the identity:

Definition 2 (Accelerable logico-numerical transition). A transition τ is

said to be accelerable if it has the form gb(b,β) ∧ gx(C) →
(

b′
x′

)
=
(

b
a(x, ξ)

)
,

where gx(C) → x′ = a(x, ξ) is accelerable according to §2.2.
A naive approach to our problem could be to partition the system into sufficiently
many locations, until we get self-loops that correspond to Def. 2. This approach
is simple-minded for two reasons: (i) There might be no such Boolean states
in the program at all; (ii) in the case of Fig. 3, simply ignoring the Boolean
variable b2 would make the (syntactic) self-loop accelerable without impacting
the precision. More generally, it may pay off to slightly abstract the behaviour
of self-loops in order to benefit from precise acceleration techniques.

Another important remark is that we do not necessarily need to partition the
system into locations to apply acceleration: it is sufficient to decompose the self-
loops: Starting from the basic CFG with a single location and a single self-loop,
1 We assume here that Bool. inputs β have been encoded by non-determinism, see §2.3.

Logico-Numerical Abstract Acceleration 241

we could split the loop into loops where the numerical transition function can
be accelerated and the Boolean transition is the identity and a last loop where
this is not the case. Fig. 6 shows the result of the application of this idea to our
running example of Fig. 4.

This allows us to separate the issue of accelerating self-loops in a symbolic
CFG, addressed in this section, from the issue of finding a suitable CFG, ad-
dressed in §4. We will use a dedicated partitioning technique to find an appro-
priate CFG in order to render effective our logico-numerical acceleration method.

3.2 Decoupling Numerical and Boolean Transition Functions

We consider self-loops (�, τ, �) with τ : A(s, i) →
(

b′

x′

)
=
(

f b(s, i)
fx(s, i)

)
. We use

the abstractions ℘(E) = ℘(Bm ×Rn) −−−→←−−−
π

id
℘(Bm)× ℘(Rn) −−−→←−−−

α

id
A = ℘(Bm)×

Pol(Rn) discussed in §2.1, where π is the function that approximates a set S ∈ E
by a Cartesian product, e.g. π((B1×X1)∪(B2×X2)) = (B1∪B2)×(X1∪X2). If
τ is accelerable in the sense of abstract acceleration, then π ◦ τ∗ ⊆ τ⊗.

Our logico-numerical abstract acceleration method relies on decoupling the
numerical and Boolean parts of the transition function τ with

τb : A(s, i) →
(

b′

x′

)
=
(
f b(s, i)
λ(s, i).x

)
and τx : A(s, i) →

(
b′

x′

)
=
(
λ(s, i). b
fx(s, i)

)
.

We can approximate τ∗ as follows:

Proposition 1. τ∗ ⊆ (π ◦ τb ◦ τ∗x)∗.

See [13] for details of the proof. Briefly, we prove first τ ⊆ π ◦τb ◦ (id ∪τx). Then,
with (id ∪ τx) ⊆ τ∗x we conclude τ∗ ⊆ (π ◦ τb ◦ τ∗x)∗.

Now, we assume that τx is accelerable in the sense of Def. 2, which means
that A(s, i) = gb(b,β)∧gx(x, ξ) and fx(s, i) = a(x, ξ). By applying Prop. 1, we
obtain that (π◦τb◦τ⊗x)∗ is a sound approximation of τ∗. Although we could prove
that the involved Kleene iteration is bounded and converges without applying
widening, there exists a more efficient alternative in which numerical and Boolean
parts are computed in sequence, so that numerical acceleration is applied only
once.

Proposition 2. If τx is accelerable, then

(1) (π ◦ τb)∗ ◦ π ◦ τ∗x ◦ π is idempotent, and
(2) τ∗ ⊆ (π ◦ τb)∗ ◦ π ◦ τ∗x ◦ π

See [13] for details of the proof. The intuition for (1) is the following: If the guard
gx ∧ gb is satisfied, i.e. the transition can be taken, we saturate the numerical
dimensions first; then we saturate the Boolean ones. The point is now, that the
application of τb does not enable “more” behavior of the numerical variables.
Thus, re-applying the function has no effect.
Then we can prove (2): from Prop. 1 follows τ∗ ⊆ (π◦τb◦τ∗x)∗ = ((π◦τb)∗◦τ∗x)∗ ⊆

242 P. Schrammel and B. Jeannet

((π ◦ τb)∗ ◦ π ◦ τ∗x ◦ π)∗ = (π ◦ τb)∗ ◦ π ◦ τ∗x ◦ π (for the last step, we use (1) and
the fact that the function includes the identity).

The following theorem implements Prop. 2 in the abstract domain A. We use
the notation h = f ↓ X (“f partially evaluated on the convex polyhedron X”),
to denote any (simpler) formula h such that X(x, ξ) ⇒ (h(b,β,C) = f(b,β,C)).

Theorem 1. If a transition τ is such that τx is accelerable, then τ∗ can be
approximated in A with τ⊗ : A → A

(B,X) �→
((
τbb [X⊗]

)∗ (B) , X⊗
)

where
– X⊗ = (τxx)⊗(X)
– (τxx)⊗ is the abstract acceleration of τxx : gx(x, ξ) → x′ = a(x, ξ)
– τbb [X](B) =

{(
f b ↓ (X � gx))(b,β,C) | b ∈ B ∧ gb(b,β)

}
– (τbb [X])∗(B) = lfp(λB′ . B ∪ τbb [X](B′)).

Moreover, (τbb [X])∗ (and thus τ⊗) can be computed in bounded time as the least
fixed point of a monotonic function in the finite lattice ℘(Bm).

In other words, we compute the transitive closure X⊗ of τx using numerical
abstract acceleration and saturate τb partially evaluated over X⊗.

Discussion. At the first glance the approximations induced by this partial
decoupling seem to be rather coarse. However, it is not really the case in our
context for two reasons:
1. The correlations between Boolean and numerical variables that are lost by

our method are mostly not representable in the abstract domain A anyway.
For example, consider the loop x ≤ 4 → (b′=¬b;x′=x+1), where b could be
the least significant bit of a binary counter for instance: starting from (b, x) ∈
{(true, 0)} the exact reachable set is {true}×{0, 2, 4}∪{false}×{1, 3, 5}; its
abstraction in A is {�} × {0 ≤ x≤ 5}. Hence, this information will also be
lost in a standard analysis merely relying on widening. Yet, due to numerical
acceleration we can even expect a better precision with our method.

2. We will apply this method to CFGs (see §4) in which the Boolean states
defining a location exhibit the same numerical behavior and thus, decoupling
is supposed not to seriously affect the precision.

Until now we studied the case of a single self-loop. In the presence of multiple self-
loops we expand the graph in the same way as with purely numerical transitions,
e.g. as shown in Fig. 5, and we apply Thm. 1 to each loop. As in the purely
numerical case, widening must be applied in order to guarantee convergence.

Example 2. We give the results obtained for our running example: Analyzing
the enumerated CFG in Fig. 4b using abstract acceleration gives 0≤ x0 ≤ 21∧
0≤x1≤11∧ x0 + x1 ≤ x2 ≤ 44 bounding all variables2. Analyzing the system
on a CFG with a single location using decoupling and abstract acceleration still
bounds two variables (0≤x0≤21∧ 0≤x1≤11∧ x0 + x1≤x2), whereas, even on
2 Over-approximated result: the actual polyhedron has more constraints.

Logico-Numerical Abstract Acceleration 243

the enumerated CFG standard analysis does not find any upper bound at all:
0≤x0 ∧ 0≤x1 ∧ x0 + x1≤x2.

3.3 Decoupling Accelerable from Non-accelerable and Boolean
Transition Functions

Theorem 1 applies only if the numerical transition functions are accelerable. If
this is not the case, we can reuse the idea of Prop. 1, but now by decoupling
the accelerable numerical functions from Boolean and non-accelerable numerical
functions:

τa : A(s, i) →
⎛⎝b′

x′
n

x′
a

⎞⎠=

⎛⎝λ(s, i). b
λ(s, i).xn
a(x, ξ)

⎞⎠ , τn,b : A(s, i) →
⎛⎝b′

x′
n

x′
a

⎞⎠=

⎛⎝ f b(s, i)
fn(s, i)
λ(s, i).xa

⎞⎠
Proposition 3. τ∗ ⊆ (π ◦ τn,b ◦ τ∗a)∗ ⊆ (π ◦ τn,b ◦ τ⊗a)∗

However, Prop. 2 does not apply any more, because the function τa depends
on non-accelerated numerical variables updated by τn,b. Moreover, widening is
required because τ∗n,b is not guaranteed to converge in a bounded number of
iterations.

3.4 Using Inputization Techniques

Inputization (see [14] for instance) is a technique that treats state variables as
input variables. This method is useful to cut dependencies. For example, it can
be employed to reduce

(
(π ◦ τb)∗ ◦ π) to

(
π ◦ τ ′b ◦ π

)
in Prop. 1, where τ ′b is

computed by inputizing in τb the Boolean state variables having a transition
function which is neither the identity nor constant.

Example 3. The loop τb can be approximated by the transition τ ′b where β0 and
β2 correspond to b0 and b2 manipulated as Boolean inputs:

τb :

∣∣∣∣∣∣
b′0 = ¬b0
b′1 = b1
b′2 = b2 ∧ x≥0

τ ′b :

∣∣∣∣∣∣
b′0 = β0

b′1 = b1
b′2 = β2 ∧ x≥0

Our experiments show that this technique is quite useful: the speed-up gained
by removing loops often pays off in comparison to the approximations it brings
about.

4 Partitioning Techniques for Logico-Numerical
Acceleration

The logico-numerical acceleration method described in the previous section can
be applied to any CFG. However, in order to make it effective we apply it to a
CFG obtained by a partitioning technique that aims at alleviating the impact of
decoupling on the precision. This section proposes such partitioning techniques
that generate CFGs in which the Boolean states that exhibit the same numerical

244 P. Schrammel and B. Jeannet

behavior are grouped in the same locations, so that it is likely that the numerical
transition functions in loops do not depend on Boolean state variables.

Basic technique. In order to implement this idea we generate a CFG that is
characterized by the following equivalence relation:

Definition 3. (Boolean states with same set of guarded numerical actions)

b1 ∼ b2 ⇔
⎧⎨⎩∀β1, C : A(b1,β1, C) ⇒

∃β2 : A(b2,β2, C) ∧ fx(b1,β1, C) = fx(b2,β2, C)
and vice versa

The intuition of this heuristics is to make equivalent the Boolean states that
can execute the same set of numerical actions, guarded by the same numerical
constraints.

Example 4. We illustrate the application of this method to Example 1. We first
factorize the numerical transition functions by actions:

(x′
0, x

′
1, x

′
2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x0+1 , x1 , x2+1) if (¬b0 ∧ ¬b1 ∧ x0≤10) ∨ (b0 ∧ ¬b1 ∧ x0≤20)
(x0 , x1+1 , x2+1) if ¬b0 ∧ ¬b1 ∧ x1≤10
(0 , x1 , x2) if ¬b0 ∧ ¬b1 ∧ x0>10 ∧ x1>10
(x0 , x1 , x2+1) if b0 ∧ ¬b1 ∧ x0>20
(x0 , x1 , x2) otherwise

Then by applying Def. 3 we get the equivalence classes {¬b0∧¬b1, b0∧¬b1, b0∧b1}:
the obtained CFG is the one of Fig. 4b.

In the worst case, as in Ex. 4 above, a different set of actions can be executed
in each Boolean state, thus the Boolean states will be enumerated. In the other
extreme case in all Boolean states the same set of actions can be executed, which
induces a single equivalence class. Both cases are unlikely to occur in larger, real
systems.

From an algorithmic point of view, we represent all our functions with bdds
and mtbdds [15], and we proceed as follows: We factorize the numerical transi-
tion functions by the numerical actions (trivial with mtbdds):

fx(b,β, C,x, ξ) =
∨

1≤i≤m
(
gi(b,β, C) → axi (x, ξ)

)
Then we eliminate the Boolean inputs β, and we decompose the results into

(∃β : gi(b,β, C)) =
∨

1≤j≤ni
gbij(b) ∧ gxij(C)

where gxij(C) may be non-convex. The equivalence relation ∼ of Def. 3 can be
reformulated as

b1 ∼ b2 ⇔ ∀i∀j : gbij(b1) ⇔ gbij(b2).

This last formulation reflects the fact that in the resulting CFG the numerical
function fx specialized on a location � does not depend any more on b. Hence,
the information loss is supposed to be limited.

Reducing the size of the partition. An option for having a less discrimi-
nating equivalence relation is to make equivalent the Boolean states that can
execute the same set of numerical actions regardless of the numerical constraints
guarding them.

Logico-Numerical Abstract Acceleration 245

Definition 4. (Boolean states with same set of numerical actions)

b1 ≈ b2 ⇔
⎧⎨⎩∀β1, C1 : A(b1,β1, C1) ⇒

∃β2, C2 : A(b2,β2, C2) ∧ fx(b1,β1, C1) = fx(b2,β2, C2)
and vice versa

We clearly have ∼⊆≈. For example, if we have two guarded actions b∧x≤10 →
x′ = x+1 and ¬b ∧ x ≤ 20 → x′ = x+1, ∼ will separate the Boolean states
satisfying resp. b and ¬b, whereas ≈ will keep them together.

Another option is to consider only a subset of the numerical actions, that is,
we ignore the transition functions of some numerical variables in Defs. 3 or 4. One
can typically focus only on variables involved in the property. According to our
experiments, this method is very efficient, but it relies on manual intervention.

5 Experimental Evaluation

Our experimentation tool nbACCel implements the proposed methods on the
basis of the logico-numerical abstract domain library BddApron [16].

Benchmarks. Besides some small, but difficult benchmarks, we used primarily
benchmarks that are simulations of production lines as modeled with the library
Quest for the LCM language3 (see Fig. 1) for evaluating scalability. These mod-
els consist of building blocks like sources, buffers, machines, routers for splitting
and combining flows of material and sinks, that synchronize via handshakes.
The properties we want to prove depend on numerical variables, e.g. (1) max-
imal throughput time of the first element passing the production line, or (2)
minimal throughput of the production line. Inputs could serve modeling non-
deterministic processing and arrival times, but we did not choose benchmarks
with numerical inputs in order to enable a comparison with Aspic [12].

Results. We compared our tool nbACCel with NBac [4] and Aspic. The
results are summarized in Table 1. The tools where launched with the default
options; for nbACCel we use the partitioning heuristics of Def. 4 and the inpu-
tization technique of §3.4. We do not need the technique of §3.3 for our examples.

Discussion. The experimental comparison gives evidence about the advantages
of abstract acceleration, but also some potential for future improvement:
– nbACCel can prove a lot of examples where NBac fails: this is due to the fact

that abstract acceleration improves precision, especially in nested loops where
the innermost loop can be “flattened”, which makes it possible to recover more
information in descending iterations.

– nbACCel seems to scale better than NBac: First, the idempotency of ab-
stract acceleration reduces the number of iterations and fixed point checks.
Second, our heuristics generates a partition that is well-suited for analysis –
though, for some of the larger benchmarks, e.g. LCM quest 4-1, the dynamic
partitioning of NBac starts to pay off, whereas our static partition is more
fine-grained than necessary, which makes us waste time during analysis.

3 http://www.3ds.com

246 P. Schrammel and B. Jeannet

Table 1. Experimental comparison between Aspic, nbACCel and Nbac

Aspic nbACCel Nbac

vars size time size time size time

Gate 1 4/4/2 7 ? 5 0.73 24 ?
Escalator 1 5/4/2 12 0.14 (0.04) 9 0.49 22 ?
Traffic 1 4/6/0 18 0.14 (0.01) 16 0.19 5 3.49
Traffic 2 4/8/0 18 ? 16 0.35 28 ?
LCM Quest 0a-1 7/2/0 7 0.04 (0.01) 5 0.04 5 0.05
LCM Quest 0a-2 7/3/0 6 0.05 (0.01) 4 0.05 8 0.19
LCM Quest 0b-1 10/3/0 19 0.08 (0.01) 12 0.08 9 ?
LCM Quest 0b-2 10/4/0 17 0.09 (0.01) 11 0.20 33 ?
LCM Quest 0c-1 15/4/0 28 0.17 (0.01) 16 0.16 8 0.86
LCM Quest 0c-2 15/5/0 25 0.20 (0.05) 14 0.24 50 14.8
LCM Quest 1-1 16/5/0 114 1.99 (0.48) 42 0.92 6 2.45
LCM Quest 1-2 16/6/0 100 ? 34 ? >156 >
LCM Quest 1b-1 16/5/0 55 0.92 (0.04) 29 0.37 15 ?
LCM Quest 1b-2 16/5/0 45 0.76 (0.12) 23 0.47 61 ?
LCM Quest 2-1 17/6/0 247 c 82 7.84 9 12.8
LCM Quest 2-2 17/7/0 198 > 62 ? >76 >
LCM Quest 3-1 25/5/0 483 26.5 (14.4) 58 8.49 12 3.76
LCM Quest 3-2 25/6/0 481 c 54 ? >1173 >
LCM Quest 3b-1 26/6/0 1724 > 170 43.8 14 19.1
LCM Quest 3b-2 26/7/0 1710 > 162 > >32 >
LCM Quest 3c-1 26/6/0 1319 > 130 34.2 9 ?
LCM Quest 3c-2 26/7/0 1056 c 98 > >70 >
LCM Quest 3d-1 26/6/0 281 > 81 5.43 49 ?
LCM Quest 3d-2 26/7/0 266 c 73 ? 446 ?
LCM Quest 3e-1 27/7/0 638 > 140 20.6 49 ?
LCM Quest 3e-2 27/8/0 514 > 110 6.46 >28 >
LCM Quest 4-1 27/7/0 4482 > 386 186 9 50.1
LCM Quest 4-2 27/8/0 3586 > 290 > >6 >

vars : Boolean state variables / numerical state variables / Boolean inputs
size : number of locations of the CFG
time : in seconds (Aspic: total time (time for analysis))
? : “don’t know” (property not proved)
> : timed out after 600s
c : out of memory or crashed

(Benchmarks on http://pop-art.inrialpes.fr/people/schramme/nbaccel/)

– Once provided with an enumerated CFG, Aspic is very fast on the smaller
benchmarks. However, the current version (3.1) cannot deal with CFGs larger
than a few hundred locations. We were surprised that some of the small exam-
ples were not proven by Aspic. We suspect that this is due to some information
loss in widening.

– The analysis using logico-numerical acceleration proved twice as many bench-
marks and turned out to be 20% faster than a standard analysis of the same
CFG with widening with delay 2 and two descending iterations.

– Applying the more refined partition of Def. 3 to our benchmarks had only a
minor influence on performance and precision, and not applying inputization
had no impact on the verification of properties, but it slowed down the analysis
by 25% on average.

– Generally, for the benchmarks LCM quest 1 to 4 property 2 was not proved by
the tools. Here, the combination of our heuristics with dynamic partitioning
for further refining the critical parts of the CFG could help.

Logico-Numerical Abstract Acceleration 247

6 Conclusion and Related Work

We propose techniques for accelerating logico-numerical transitions, that allow
us to benefit from the precision gain by numerical abstract acceleration as used
in the tool Aspic, while tackling the Boolean state space explosion problem
encountered when analysing logico-numerical programs. Experimentally, our tool
nbACCel is often able to prove properties for the larger benchmarks, unlike
the two other tools we tested – and this on CFGs that are ten times smaller
than the CFGs obtained by enumeration of the reachable Boolean state space.
Although our method is based on the partial decoupling of the Boolean and
numerical transitions, the experiments confirm our intuition that our method
generally improves the precision. We attribute this to the following observations:
first, numerical abstract acceleration reduces the need for widening; second, the
information that we might lose by decoupling would often not be captured by
the abstract domain anyway; and at last, the CFG obtained by our partitioning
method particularly favors the application of our logico-numerical acceleration
method.

This work raises interesting perspectives: Regarding abstract acceleration, the
acceleration of multiple self-loops deserves additional investigation in relation
with partitioning techniques. Concerning partition refinement, the combination
of our approach with dynamic partitioning à la [4] seems to be worth pursuing.
In particular partitioning according to numerical constraints is mandatory for
proving properties relying on non-convex inductive invariants. Such improve-
ments should allow to tackle a wider range of benchmarks.

Related Work. To our knowledge there is no work about the application of
abstract acceleration to logical-numerical data-flow programs, but there is work
on related methods that we tailored to fit our purpose. In §2 we already discussed
in detail the concepts of abstract acceleration [1,11], on which our work is based,
and that we extended in [6].

Jeannet [4] uses in the tool Nbac partitioning heuristics that are based on the
property being analyzed in order to cut paths between initial and bad states. The
tool interleaves partitioning steps with analysis (dynamic partitioning), thus the
“dangerous” state space is reduced in each step. Bouajjani et al. [17] describe
a partition refinement algorithm for the Lustre compiler using bisimulation.
We think that we could exploit it to refine our CFG, when we fail to prove the
property.

Alternative approaches for verifying properties about data-flow programs rely
on bounded model-checking or k-induction techniques, which both exploit the
efficiency of modern SMT solvers. Hagen and Tinelli [18] describe the applica-
tion of these two approaches to the verification of Lustre programs. Another
example is the HySat tool [19], a bounded model-checker for hybrid systems
with piecewise linear behavior – our methods allow to analyze discretizations of
such systems. HySat relies on the integration of linear constraint solving with
SAT solving. The interesting point is that they deal implicitly with large Boolean
control structures by encoding them into linear pseudo-Boolean constraints.

248 P. Schrammel and B. Jeannet

References

1. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles of
Programming Languages, POPL 1977, pp. 238–252. ACM Press, New York (1977)

3. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages, POPL 1978, pp. 84–97.
ACM Press, New York (1978)

4. Jeannet, B.: Dynamic partitioning in linear relation analysis. application to the
verification of reactive systems. Formal Methods in System Design 23, 5–37 (2003)

5. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to
practice. Software Tools for Technology Transfer 10, 401–424 (2008)

6. Schrammel, P., Jeannet, B.: Extending abstract acceleration to data-flow programs
with numerical inputs. In: Numerical and Symbolic Abstract Domains, NSAD 2010.
ENTCS, vol. 267, pp. 101–114 (2010)

7. Jeannet, B.: Partitionnement Dynamique dans l’Analyse de Relations Linéaires
et Application à la Vérification de Programmes Synchrones. Thèse de doctorat,
Grenoble INP (2000)

8. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

9. Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequential ma-
chines based on symbolic execution. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407.
Springer, Heidelberg (1990)

10. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

11. Gonnord, L.: Accélération abstraite pour l’amélioration de la précision en Analyse
des Relations Linéaires. Thèse de doctorat, Université Joseph Fourier, Grenoble
(2007)

12. Gonnord, L.: The ASPIC tool: Accelerated symbolic polyhedral invariant compu-
tation (2009), http://laure.gonnord.org/pro/aspic/aspic.html

13. Schrammel, P., Jeannet, B.: Logico-numerical abstract acceleration and application
to the verification of data-flow programs. Technical Report 7630, INRIA (2011)

14. Bres, Y., Gérard Berry, A.B., Sentovich, E.M.: State abstraction techniques for the
verification of reactive circuits. In: Designing Correct Circuits, DCC 2002 (2002)

15. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers 35 (1986)

16. Jeannet, B.: Bddapron: A logico-numerical abstract domain library (2009),
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/

17. Bouajjani, A., Fernandez, J.C., Halbwachs, N.: Minimal model generation. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer,
Heidelberg (1991)

18. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: Formal Methods in Computer-Aided Design, FMCAD
2008. IEEE, Los Alamitos (2008)

19. Fränzle, M., Herde, C.: Hysat: An efficient proof engine for bounded model checking
of hybrid systems. Formal Methods in System Design 30, 179–198 (2007)

http://laure.gonnord.org/pro/aspic/aspic.html
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/

Invisible Invariants and Abstract Interpretation

Kenneth L. McMillan1 and Lenore D. Zuck2

1 Microsoft Research, Redmond, WA
kenmcmil@microsoft.com

2 University of Illinois at Chicago, Chicago, IL
lenore@cs.uic.edu

Abstract. The method of Invisible Invariants provides a way to verify
safety properties of infinite parameterized classes of finite-state systems
using finite-state model checking techniques. This paper looks at invisible
invariants from the point of view of abstract interpretation. Viewed in
this way, the method suggests a generic strategy for computing abstract
fixed points in the case where the best abstract transformer has a high
computational cost. This strategy requires only that we can reasonably
segregate the infinite concrete state space into finite subsets of increasing
size or complexity. We observe that in domains for which the computation
of the best abstract transformer may require an exponential number
of calls to a theorem prover, we can sometimes reduce the number of
theorem prover calls to just one, without sacrificing accuracy.

1 Introduction

The method of Invisible Invariants provides a way to verify safety properties
of infinite parameterized classes of finite-state systems using finite-state model
checking techniques [ZP04, BFPZ05]. The method applies to systems of N pro-
cesses, P1|| · · · ||PN , where N is an unknown natural number, and such that
the system is finite-state for any fixed value of N . In a typical application, one
chooses a fixed value for the parameter N and uses symbolic model checking to
compute the strongest inductive invariant (reachable states) of this finite-state
system. This set of states is then projected onto, say, two arbitrary processes Pi
and Pj . This produces a set of process state pairs Sij . This relation is then
generalized over all pairs of processes to obtain a candidate invariant for the
parameterized system ∀i, j ∈ 1 . . .N. Sij . In practice, we compute this gener-
alization for only a fixed value of N . If this finite set of states is inductive for
sufficiently large N , we can conclude using a small model result that it must be
invariant for any N . Since the actual invariant is never seen by the user of this
method, it is said to be an “invisible” invariant.

In this paper, we will look at the invisible invariants method from the point
of view of abstract interpretation [CC77]. That is, we will define a single con-
crete domain corresponding to the entire parameterized class of systems. We
can then define an abstract domain L corresponding to the set of possible in-
visible invariants. Roughly speaking, our abstraction mapping α corresponds to

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 249–262, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

250 K.L. McMillan and L.D. Zuck

the “projection” operation, while the concretization γ corresponds to “general-
ization”. Since our γ is conjunctive, we have a best abstract transformer τ �. The
invisible invariants method, when it succeeds, computes exactly the least fixed
point of this best transformer.

The interesting thing about this from the point of view of abstract interpreta-
tion is that we have computed an over-approximation (the least fixed point of τ �)
from an under-approximation (the reachable states for a fixed value of N). Some-
how we have computed the fixed point of the abstract transformer before ever
actually applying it. The fact that in practice this approach often does converge
to the abstract least fixed point suggests an alternative approach to computing
abstract fixed points that might greatly reduce the computational cost when the
abstract transformer is computationally expensive. The only requirement for this
is that we have a meaningful way to divide the infinite concrete state space into
finite subsets of increasing size or complexity. For example, instead of systems
of N finite-state processes, we might consider (finite-data) sequential programs
with heaps of N objects.

The result is a nested fixed-point computation strategy. The inner fixed point
is a purely finite-state one, computed for a fixed value of N . The next level
up alternates these fixed points with an analog of the project-and-generalize
operation (again for a fixed value of N). At the highest level, these fixed points
are alternated with applications of the true τ �. In the best case, we may obtain
a fixed point of τ � without ever applying it. From the point of view of abstract
interpretation, we have potentially reduced the cost of computing the abstract
fixed point. From the point of view of invisible invariants, we allow the possibility
to compute an invariant in the case when the existing approach would fail.

Outline of the Paper. In the next section, we introduce our generic ab-
stract fixed point computation strategy. Then in section 3 we show how the
Invisible Invariants method embodies this strategy, using Indexed Predicate Ab-
straction [Lah04] as our abstract domain. Section 4 describes some experiments
applying the strategy to computation of abstract fixed points using Indexed
Predicate Abstraction. In section 5 we cover related work.

2 Fixed Point Computation Strategy

We consider an infinite concrete state space S, with a given set of initial states
I ⊂ S and transition relation T ⊆ S×S. Our concrete domain C is 2S (the lattice
of subsets of S). The concrete transformer τ : C → C is defined such that its least
fixed point is the set of states reachable from I via T , that is, τ(S) = I ∪ T (S).

Our abstract interpretation is defined by a complete abstract lattice L, ordered
by �, with � and � as lub and glb respectively, and a monotone concretization
function γ : L → C. We assume that L is closed under infinite conjunctions
(i.e. that γ preserves glb’s), hence we also have a unique abstraction function
α : C → L, where

α(S) = �{φ ∈ L | S ⊆ γ(φ)},

Invisible Invariants and Abstract Interpretation 251

such that γ and α form a Galois connection. This in turn defines a best abstract
transformer τ � = α ◦ τ ◦γ such that l.f.p.(τ �) is the strongest inductive invariant
of our system expressible in L. Our intention is to compute this least fixed
point. However, since the evaluation of τ � may be quite costly, we wish to avoid
computing it to the extent possible. (See [CC79] and [Cou81].)

Now imagine that our infinite state space is itself a union of an infinite se-
quence of finite subsets S1,S2, . . ., not necessarily disjoint. To each SN we as-
sociate a concrete domain CN = 2SN (the corresponding sub-lattice of C). This
situation is depicted in Figure 1. For each sub-lattice, we can also define a cor-
responding concrete transformer τN : SN → SN , by simply restricting τ to SN .
That is, for each S ⊆ SN , τN (S) = τ(S)∩SN . Similarly, we can define restricted
concretization and abstraction functions γN : L → CN and αN : CN → L, such
that γN (φ) = γ(φ) ∩ SN and αN (S) = α(S). Finally, we can define restricted
best abstract transformers τ �N = αN ◦ τN ◦ γN .

L

α

τ

τΝCN

γαN γN

......C

τ#, τN
#

Fig. 1. Division of concrete domain into finite subdomains

It is immediate from the above definitions that the projection of a fixed point
of τ � is also a fixed point of τ �N , that is, l.f.p.(τ �N) � l.f.p.(τ �). Another way to
say this is that an inductive invariant of the system is also an inductive invariant
of the sub-system. The converse, of course, may not hold. In general, l.f.p.(τ �N)
is an under-approximation of l.f.p.(τ �).

Despite the fact that it is an under-approximation, τ �N has a distinct advan-
tage. That is, because SN is finite, we can compute γN directly as a finite set. By
composing γN , τN and αN , we can compute τ �N exactly, using only finite-state
methods. On the other hand, since S is infinite, we cannot directly compute γ.
One approach to computing τ � exactly is to use a theorem prover to compute
a sequence of approximations to τ �(φ), as is done in predicate abstraction and
three-valued shape abstractions [Lah04, RSY04]. A closely related approach is to
apply quantifier elimination methods as in [Mon09]. The cost of these methods is
usually an exponential number of calls to a theorem prover or decision procedure.
Thus it is attractive, to the extent possible, to rely on finite transformers.

252 K.L. McMillan and L.D. Zuck

To this end, for any monotone transformer ρ over a lattice L, let us define ρ∗

to be the transformer that takes a point φ ∈ L and returns the least post fixed
point of ρ that is (φ. That is, ρ∗(φ) = l.f.p.(λX. ρ(X) � φ). We will say that a
transformer ρ under-approximates a transformer σ when, for all φ ∈ L, ρ(φ) �
σ(φ). We can then show the following simple result about under-approximation:

Theorem 1. If ρ, σ : L → L are monotone transformers, such that ρ under-
approximates σ, then l.f.p.(σ) = l.f.p.(σ ◦ ρ∗).
Proof. Suppose φ = l.f.p.(σ). Since ρ under-approximates σ, we have ρ(φ) �
σ(φ) � φ. Therefore φ is a fixed point of λX. ρ(X) � φ, necessarily the least.
Consequently, ρ∗(φ) = φ, thus φ is a fixed point of σ◦ρ∗. Toward a contradiction,
suppose that φ′ � φ is a fixed point of σ ◦ ρ∗. Since by definition φ′ � ρ∗(φ′),
it follows by monotonicity of σ that σ(φ′) � (σ ◦ ρ∗)(φ′) � φ′. Thus φ′ � φ is a
post-fixed point of σ, contradicting φ = l.f.p.(σ). �

Now consider the following strategy for computing l.f.p.(τ �). We begin by com-
puting τ �∗N (⊥), that is to say, l.f.p.(τ �N). Because SN is finite, we can compute
this using finite-state methods. If this happens to be a fixed point of τ �, it is
necessarily the least fixed point, so we are done. If not, we can apply τ � once,
maintaining an under-approximation of the fixed point, and repeat the process,
until a fixed point of τ � is obtained.

To formalize this idea, let us define a transformer π�N = τ � ◦ τ �∗N . To compute
this transformer, we take τ �N to a fixed point, then apply τ � just once. Since τ �N
is an under-approximation of τ �, by Theorem 1 we have

l.f.p.(τ �) = l.f.p.(π�N). (1)

The advantage of π�N is that computing its fixed point iteratively might require
many fewer iterations, and hence many fewer applications of the expensive τ �. In
fact, in the best case we will have l.f.p.(τ �N) = l.f.p.(τ �). In this case computation
of the least fixed point of π�N will terminate in just one iteration. Moreover,
applying τ � to φ, where φ is a fixed point, requires only one call to the theorem
prover. Thus in the best case, we have reduced the number of theorem prover
calls to one.

If we want to take an even more radical stance, we can then use a similar
approach to try to reduce the number of computations of γN and αN . This is
based on the idea that, for any Galois connection, in addition to the one-step
best transformer α ◦ τ ◦ γ, we can also define a many-step best transformer
α ◦ τ∗ ◦ γ. We can show that iterating these two transformers is equivalent:

Theorem 2. If γ : L → C and α : C → L form a Galois connection, and
τ : C → C is a monotone transformer, then (α ◦ τ ◦ γ)∗ = (α ◦ τ∗ ◦ γ)∗.

Proof. Suppose φ is the least post-fixed point of α ◦ τ ◦ γ that is (ψ. It follows
that τ(γ(φ)) ⊆ γ(φ), thus τ∗(γ(φ)) = γ(φ). Thus (α ◦ τ∗ ◦ γ)(φ) � φ, by the
Galois properties. Toward a contradiction, suppose that φ′ is another post fixed

Invisible Invariants and Abstract Interpretation 253

point of α ◦ τ∗ ◦ γ such that ψ � φ′ � φ. Since τ under-approximates τ∗, φ′

must also be a post-fixed point of α ◦ τ ◦ γ, a contradiction. Thus φ is the least
post-fixed point of α ◦ τ∗ ◦ γ that is (ψ. �

To compute the least fixed point of τ �N , we define a transformer ρN = αN◦τ∗N◦γN .
To compute this transformer, we concretize using γN , compute the set of states
reachable from this set in sub-system N using finite-state methods, then abstract
with αN . From Theorem 2, we then have:

τ �∗N = ρ�∗N (2)

The advantage of ρ�N here is again that we may need many fewer iterations to
reach a fixed point, and thus we need fewer applications of γN and αN . In the
best case, exactly one iteration will be required. Now, using equations (1) and
(2), we have:

l.f.p.(τ �) = l.f.p.(τ � ◦ ρ�∗N) (3)
= l.f.p.(τ � ◦ (αN ◦ τ∗N ◦ γN)∗) (4)
= (τ � ◦ (αN ◦ τ∗N ◦ γN)∗)∗(⊥) (5)

The three nested Kleene stars in this equation correspond to three nested fixed
point iterations. The innermost level is a concrete reachability computation.
At the intermediate level, we alternate this with abstraction and concretization
restricted to sub-system N . At the outermost level, we alternate this with the
full abstract best transformer.

We will observe shortly that the Invisible Invariants method corresponds to
performing exactly one iteration of the outer and intermediate transformers.
Thus, viewed at a high level, it consists of exactly one concrete reachability
computation and one application each of αN , γN and τ �.

What is remarkable is that this is often sufficient to reach the least fixed point
of τ �. The intuition behind this is that the parameter N represents some measure
of the size or complexity of a uniformly defined system. As we increase N , at
some point the abstract domain loses the ability to distinguish the reachable
states of system N from the reachable states of system N+1. Thus, even though
the concrete reachable states for a fixed system size N under-approximate τ � at
every step, in the limit the reachable states cannot be distinguished from the
abstract fixed point.

Of course this is not always the case. It is possible that the abstract transformer
will allow some transition behavior that is qualitatively different from any corre-
sponding concrete transition. This might happen because some important correla-
tion is lost in the abstract domain. However, if this happens infrequently, we might
hope that only a small number of outer fixed point iterations will be needed.

Note that at any point in the computation, we also have the option to increase
the value ofN . We might choose to do this if the counterexample to inductiveness

254 K.L. McMillan and L.D. Zuck

of our current fixed point approximation requires a system larger than N . This
would potentially reduce the number of high level iterations, at the cost of a
more expensive concrete reachability computation.

A Note on Widening. In the Invisible Invariants method, the abstract domain
L is finite. However, the general approach outlined above applies as well to
domains of infinite height, for which a widening might be required to obtain finite
convergence. Note that widening is only required in the outermost iterations of
equations (1) and (5). In the inner iterations, the concrete domain is finite, thus
convergence is guaranteed without widening. As an alternative to extrapolating
the sequence obtained by iterating a transformer, it might also be interesting to
consider extrapolating the sequence of fixed points obtained as we increase N ,
that is, l.f.p.(τ �N), l.f.p.(τ �N+1), . . .

3 Invisible Invariants

In the invisible invariants method, the state space is a space of finite logical
structures, mapping variables to values of appropriate sorts. Typically in this
structure, there is one distinguished variable N, ranging over the natural num-
bers, that represents the parameter value. The remaining variables range over
various sorts that are dependent on N. For example, we may allow Boolean
variables x1, . . . xa ranging over {0, 1}, scalar variables y1, . . . , yb ranging over
[1 . . .N] and representing array indices, and array variables z1, . . . , zc that range
over maps [1 . . .N] → {0, 1}. Given a finite signature of variables, there are only
finitely many possible structures with a given value of the variable N.

Our abstract lattice L is a finite logical language. The concretization function
γ yields the extension of a formula, that is, for formula φ ∈ L, γ(φ) is the set of
structures satisfying φ.

The language L is defined as follows in terms of a set of indexed atomic
predicates called R-atoms. We are given a finite set I of logical symbols to act
as indices (say, {i, j}). For our example structures, an R-atom might be defined
as a formula of the form xk, or zk[v] or v = w, where v and w are scalar variables
(yk) or parameters in I.

For any set of variables I, we will use the shorthand ∀̇I.Q to mean the Q
holds for all distinct valuations of I (i.e. valuations in which no two distinct
variables are equal). Similarly, we will use ∃̇I.Q to mean that Q holds for some
distinct valuation of I. The abstract domain is the set of formulas ∀̇I.Q where Q,
the matrix, is a Boolean combination of R-atoms. For example, in our abstract
domain we can express the idea that no two processes are in state z1 by the
formula ∀̇i, j. ¬(z1[i] ∧ z1[j]).

We assume that the matrix of our formulas is reduced to a propositional
normal form, such as disjunctive normal form. A formula in disjunctive normal
form is a disjunction of minterms. Each minterm is a conjunction of literals over
the R-atoms, in which each R-atom occurs once, either positively or negatively.
We can also think of a minterm as a truth assignment to the R-atoms.

Invisible Invariants and Abstract Interpretation 255

The lattice operations are defined by:

(∀̇I. Q1) � (∀̇I. Q2) = ∀̇I. (Q1 ∨Q2) (6)
(∀̇I. Q1) � (∀̇I. Q2) = ∀̇I. (Q1 ∧Q2) (7)

That is, least upper bound and greatest lower bound correspond, respectively,
to disjunction and conjunction on the matrices.1 Since conjunction distributes
over universal quantification, greatest lower bound is equivalent to conjunc-
tion, or intersection in the concrete domain. Thus our abstraction is conjunc-
tive (γ preserves glb’s) and we have a unique abstract function α and best
transformer τ �. This abstract domain is also known as an Indexed Predicate
Abstraction [Lah04] for the given predicate set R.

For any natural number N , the subsystem state space SN is defined to be the
set of structures in S such that variable N is mapped to natural number N . This
in turn defines the restricted transformers αN , γN and τN . As mentioned above,
the invisible invariants method effectively computes the nested fixed point of
equation 5 for some chosen fixed value of N . However, it gives up at only one
iteration of the middle and outer fixed points. This amounts to computing the
concrete reachable states of system N , abstracting them using αN , and testing
whether this is a fixed point of τ �. Though this approach may seem näıve, in
practice it has produced useful inductive invariants in many cases for which
manual invariant construction is a non-trivial task [FPPZ06, BPZ06, BPZ07].

3.1 Engineering Invisible Invariants

The invisible invariants approach applies a number of engineering optimizations
to make this computation more efficient that might have more general applica-
tion. These are largely to do with how the various transformers are computed.
The method uses symbolic model checking techniques to compute reachable
states and exploits symmetries in the system to reduce the computational ef-
fort. The key operations are αN , which is called project for reasons that will be
clarified shortly, γN , which is called generalize, and the fixed point test.

Elements of the abstract domain are represented by their matrix. A set Rb of
Boolean variables is used to represent the R-atoms, such that each R-atom p is
mapped to a Boolean variable vp ∈ Rb. A Binary Decision Diagram (BDD) over
these variables can then be used to canonically represent the matrix of the formula.

Assume that SN is encoded in some way using Boolean variables Vb and we
have a BDD S(Vb) representing some set of concrete states S ⊆ SN . We would
like to compute a BDD representing αN (S). To be precise, we wish to compute
the set of minterms over R that are consistent with S for some valuation of the
indices, that is:

matrix(αN (S)) = ∨{m ∈ minterms(R) | for some s ∈ S, s |= ∃̇I. m} (8)

This set can be computed symbolically using BDD’s by defining a relation UN
that defines the truth values of the R-atoms as a function of the concrete state
1 Note this means that the minterms are the lattice atoms. However, we prefer

“minterm” to “atom” here to avoid confusion with the meaning of “atom” in logic.

256 K.L. McMillan and L.D. Zuck

and the values of the index variables. That is, suppose for a fixedN we encode the
values of the index variables in I with a corresponding set of Boolean variables
Ib. For each R-atom a we can construct a Boolean formula aN (Vb, Ib) that is
true iff a is true in the concrete state and index valuation encoded by Vb and Ib
respectively. We then define a relation

UN (Rb, Ib,Vb) =
∧
a∈R

(va ⇔ aN (Ib,Vb)). (9)

Now we can compute the symbolic representation of αN (S) as

αN (S)(Rb) = ∃̇Ib.∃Vb.(S(Vb) ∧ UN (Rb, Ib,Vb)) (10)

This is just a relational product computation, for which well-established BDD
techniques exit. However, we can do better than this by exploiting the symmetry
of the state space. That is, because of the restrictions on the logic used to
represent the initial state set I and transition relation T , we can guarantee
that they are invariant under permutations of the scalar type [1 . . .N]. As a
result the set of reachable states also has this symmetry. This means that all
distinct valuations of the index variables are equivalent, so if S is invariant under
permutation of [1 . . .N] we have:

αN (S)(Rb) = ∃Vb.(S(Vb) ∧ UN(Rb, Ib,Vb))(σ)

where σ is any chosen distinct valuation of the index variables (say i = 1, j = 2).
If there are no scalar variables yk, this is effectively just projecting the state
set S onto a fixed set of array elements (say, 1 and 2). Hence, computing the
abstraction function αN symbolically is referred to as projection. Note, however,
that we do not require symmetry to compute αN . It is simply computationally
more efficient to substitute fixed values for the index variables than to quantify
over them existentially.

Computing γN symbolically is just a straightforward interpretation of the
language semantics. That is, we compute the set of concrete states satisfying the
matrix of the formula, as a function of I, then quantify universally over distinct
index valuations:

γN (φ)(Vb) = ∀̇Ib.∃Rb.(φ(Rb) ∧ UN (Rb, Ib,Vb)). (11)

Finally, we arrive at the fixed point test. Given an element φ of the abstract
domain, we could of course use a theorem prover to test whether τ �(φ) � φ. This
amounts to checking validity of the formulas φ ∧ T ⇒ φ′ and I ⇒ φ. However,
we can avoid this call to a theorem prover using a small model theorem. That
is, based on the form of these formulas we may be able to show that there
is a threshold M such that, if there is a countermodel with N > M , there
is a countermodel with N ≤ M . Thus it suffices to check τ �N (φ) � φ for all
N ≤ M , which we can do with finite state methods. In particular, this holds
when τ(γN (φ)) ⊆ γN (φ). In case no small model result is available, we can
always fall back on a theorem prover for the fixed point test.

Invisible Invariants and Abstract Interpretation 257

As stated above, the classical Invisible Invariants method computes the reach-
able states of concrete system N just once, abstracts via αN , then terminates
successfully if this is a fixed point. This corresponds to computing just one it-
eration of the middle and outer fixed points of equation 5. However, there is no
reason in principle to give up at this point if an invariant is not found. One could
compute further iterations of ρ�∗N . This would mean re-concretizing the abstract
state and computing further reachability iterations, repeating this process until
a fixed point of τ �N is obtained. If this is not a fixed point of τ �, one could apply
τ � (at perhaps a high cost) and continue iterating π�N to a fixed point of τ �.

Alternatively, one could apply equation 1 instead of equation 5. In this case the
inner iteration computes a fixed point of τ �N . At each iteration we go down to the
concrete domain via γN , one step forward via τN , then back up to the abstract
domain via αN . Thus, we effectively alternate concrete steps with project-and-
generalize steps (applications of γN ◦ αN). Because we abstract more frequently
in this approach, we may reach a fixed point in fewer forward steps, but at an
extra cost in computing projections and generalizations.

4 Experiments

We now consider some simple experiments to determine whether the strategy
described in Section 2 can effectively reduce the cost of computing precise least
fixed points in an abstract domain whose best abstract transformer is expensive
to compute. For our abstract domain, we will use Indexed Predicate Abstraction,
with a fixed set of predicates R for each problem.

4.1 Fixed Point Strategies

We will consider three fixed point computation strategies. Strategy A is direct
iteration of the best abstract transformer τ �. Strategy B is the nested strategy
of equation 1, which iterates the transformer τ �N in the inner loop. Strategy C is
the doubly-nested approach based on equation 5.

As a representative of strategy A, we use the tool Uclid PA [LBC03], which
implements Indexed Predicate Abstraction directly, iterating the abstract trans-
former τ �. Strategies B and C are implemented using a hybrid of the tools
TLV [PS96] and Uclid [BLS02]. The restricted abstraction and concretization
operators αN and γN are computed in TLV according to Equations (10) and
(11). TLV also computes the concrete transformer τ . For strategies A and B, we
use the Uclid tool to compute the abstract transformer, as described below.

4.2 Computing the Abstract Transformer

The Uclid PA tool uses a SAT-based procedure to compute the abstract trans-
former τ �. This is based on an eager encoding of the CLU logic into SAT using
Uclid, and Boolean quantifier elimination techniques implemented in the tool
SATQE.

258 K.L. McMillan and L.D. Zuck

Though this process is complex, we can think of it näıvely as using counter-
models from a theorem prover to compute to a series of under-approximations
ψ0, ψ1, . . . to τ �(φ). Suppose we are given a two-vocabulary formula T (V, V ′)
representing the concrete transition relation of the system and that φ (α(I) is
a pre-fixed point of τ . Our first under-approximation is ψ0 = φ. Since the ψi are
under-approximations, we know that ψi = τ �(φ) when the following formula is
valid:

φ(V) ∧ T (V, V ′) ⇒ ψi(V ′). (12)

We can test this formula with a theorem prover. If it is valid, then we are done.
Otherwise, suppose the prover produces a counter-model including an assign-
ment σ′ of values to the symbols V ′ representing the post-state. We know that
σ′ ∈ τ(γ(φ)), thus τ �(φ) (α({σ′}). Our next under-approximation is therefore
ψi+1 = ψi�α({σ′}). We repeat this process until (12) becomes valid (which must
eventually occur, since our lattice is finite). We will call this the näıve approach
to computing τ �. Notice that if φ is a fixed point to begin with, then only one
validity test is required.

The approach of Uclid PA using Boolean quantifier elimination might be sig-
nificantly more efficient than the näıve approach. Unfortunately, we were not
able to run Uclid PA because the source code has been lost. Therefore, for strat-
egy A, we use results previously obtained with Uclid PA by Shuvendu Lahiri
on the given set of benchmarks, while for Strategies B and C, we use the näıve
method with Uclid as the theorem prover. As it turns out, this is no great dis-
advantage for strategies B and C, since in all cases, only one call to the theorem
prover is needed to confirm an abstract fixed point.

We should note that the actual transformer computed using either method
may be weaker than the best transformer, owing to incompleteness of the provers.
This is inevitable, as the logics involved are incomplete. There are two particular
ways, however, in which Uclid typically fails in practice to recognize a valid for-
mula. First, Uclid Skolemizes the existential quantifiers and eagerly instantiates
the universal quantifiers. If the heuristically chosen instantiations are insuffi-
cient, a bogus countermodel can result, which can yield an over-approximation
of τ �. Second, a theorem of CLU logic may be needed that must be proved by
induction over the natural numbers. It may be necessary to manually augment
the formula with such theorems in order to strengthen the abstract transformer.
We will see an example of this shortly.

4.3 Benchmarks

For benchmarks, we use three problems solved in [Lah04] using Uclid PA:

1. The “German” cache coherence protocol, with one-message queues.
2. An N -process “Bakery” mutual exclusion algorithm.
3. An N -process version of Peterson’s mutual exclusion algorithm from [Din99].

Both mutual exclusion algorithms assume interleaving semantics. The Bakery
version assumes that we can find the least non-zero ticket in an atomic step,

Invisible Invariants and Abstract Interpretation 259

but uses a loop to wait for each other process in turn. The version of Peterson’s
algorithm allows testing of the variables of all other processes as an atomic
step. The properties being proved are coherence in the first case and mutual
exclusion in the other two. The indexed predicate set R in each case is as given
in [Lah04]. Precise descriptions of the problems in the Uclid language can be
found at http://www.kenmcmil.com.

Table 1 shows the results of computing the least fixed point of τ � using the
three strategies. The table shows run times for the three strategies, the value of
N used and the number of iterations of each transformer required to reach the
fixed point (as an example, 2ρ�n + 1τ � would mean that ρ�n was computed twice
and τ � was computed once). Note that the choice of N is a heuristic one. If N is
too small, the inner fixed point may not explore enough of the space, resulting in
more iterations of the expensive outer fixed point. On the other hand, if N is too
large, the BDD representation of the concrete space may explode. Here, we apply
a rule of thumb derived from previous work on Invisible Invariants [APR+01],
letting N be the number of index variables plus two.

Table 1. Results for computing abstract fixed points with different strategies

Strategy A Strategy B Strategy C
Problem Time (s) Iters Time (s) Iters Time (s) Iters N

German 2000 15τ � 0.08 8τ �
N 0.60 1ρ�∗

N 3

Bakery 471 18τ � 32.00 16τ �
N 9.80 1ρ�∗

N 4

Peterson 1000 18τ � 196.00 16τ �
N 6.80 1ρ�∗

N 4

The experiments for strategy A were reported by Lahiri using a 2.1 GHz Pen-
tium machine with 1 GB of RAM. The experiments for strategies B and C were
performed by the authors using a single CPU of a 2.4 GHz Intel Core Duo machine.
The single CPU performance may vary slightly between these machines. However,
we observe that strategy C provides roughly two orders of magnitude improvement
in performance. This difference dominates the difference in CPU speeds.

We should note that in Lahiri’s work, strategy A is not able to compute a
fixed point strong enough to imply mutual exclusion for the Peterson problem.
This is because a theorem of CLU logic is needed that cannot be inferred by the
prover. We provided this theorem to allow mutual exclusion to be proved.

These experiments validate the intuition behind Invisible Invariants. That is,
the best performance is obtained by maximizing the finite-state computations
and minimizing the frequency of abstraction operations (though strategy B does
score a win for the German protocol). In every case, after computing the concrete
reachable states for fixed N and abstracting, we obtain the abstract fixed point
and no further iteration is needed. In principle, strategy C can continue to iterate
after this point, but in practice this was not needed. The practical difference
between these experiments and the Invisible Invariants approach is that we did
not require a small model theorem, as the theorem prover was able to perform
the abstract fixed point test. In all three cases, only one call to the theorem
prover was needed.

260 K.L. McMillan and L.D. Zuck

5 Related Work

A closely related method is that of Yorsh et al. [YBS06]. In that work, rather
than systematically exploring a restricted concrete state space as we do here,
they explore a random finite subset using a random walk. This subset is then
abstracted via α and the abstract fixed-point test is applied. If the test fails, it
produces a counter-model. Random exploration then continues from this state.
Random walk is also used to under-approximate the abstract transformer in
implementations of Van Eijk’s method [vE98].

The random walk strategies and our systematic exploration strategy are both
in effect using exploration of the concrete state space to under-approximate the
abstract transformer. However, they make different practical trade-offs. It may
be that a random walk will quickly fill out most or all of the relevant cases in
the concrete space and thus provide a close under-approximation of the abstract
fixed point. In this case it could be more efficient than a full exploration of a
size-bounded model. On the other hand, if significant behavior of the system is
reached with low probability in a random walk, then at some point the random
exploration may cease to improve the approximation, in which case the number
of theorem prover calls could become large. This might be avoided by a more
systematic exploration of the state space.

Lacking the necessary tools, we were not able to compare the random and
systematic approaches experimentally. It should be noted, however, that it is
possible to use a hybrid of random and systematic exploration. The approach of
exploration from a single counter-model to the fixed point test can also be used
with systematic exploration and might result in fewer theorem prover calls in
some cases.

Another closely related approach is taken by Bingham in verifying parameter-
ized cache coherence protocols [Bin08]. In this method the abstraction function α
projects the state onto a fixed number N − 1 of processes. The concrete state
space used is SN . The fixed point strategy is essentially our strategy B. A sym-
metry argument is used to show that a fixed point of τ �N is necessarily a fixed
point of τ �, thus no computation of τ � is actually needed. In the absence of
symmetry among processes, however, the full strategy B or C could be applied.

Our operators γN and αN bear a superficial similarity to the the focus and blur
operators of [LAS00]. However, focus is not an under-approximation. Rather,
focus and blur are used together to compute an over-approximation of the
best abstract transformer. There are also numerous works that combined the
computation of over-approximate and under-approximate fixed points, such as
[GNRT10]. Here we are computing only an over-approximate fixed point (so, for
example, we cannot falsify safety properties).

6 Conclusion

We have observed that the Invisible Invariants method for verifying parameter-
ized systems can be viewed as a form of Indexed Predicate Abstraction, using

Invisible Invariants and Abstract Interpretation 261

a particular fixed point strategy. This strategy relies on having some way of
segregating the concrete state space into subsets of increasing size or complex-
ity. The intuition is that at some point the abstract domain will not be able
to distinguish between systems of increasing size. Thus we may hope to come
close to the true abstract least fixed point by tunneling beneath it, computing
a concrete fixed point for a fixed size and then abstracting. Often, we obtain
the exact abstract least fixed point in this way. We observed that the Invisible
Invariants method can be generalized to obtain a complete generic method for
computing abstract least fixed points while minimizing computation of the best
abstract transformer.

Experimentally, we observed that the most efficient approach for the parame-
terized systems we tested is to rely as much as possible on concrete computation
and to apply abstraction and concretization as little as possible.

The generic approach is not restricted to systems of finite state processes. It
requires only a heuristically useful way of choosing a finite subset of the state
space. Thus, for heap manipulating programs, we might restrict to heaps of a
bounded sized. The resulting invariant is proved for heaps of unbounded size
(see also [BPZ07]). Neither is the method restricted to uniform or symmetric
collections of processes. It is possible, for example, to break the symmetry of
processes by having the behavior of each process depend on its index. This
symmetry breaking only affects the efficiency of computing αN . Dynamic process
creation is also easily modeled.

Restricting the concrete computation to states of a given “size” is one heuristic
choice. It could be that other kinds of under-approximations are more effective.
For example, we might further restrict the concrete space by adding symmetry-
breaking constraints, applying partial-order reductions, and so on. The general
fixed-point strategy allows many such possibilities.

The generic strategy should also be applicable in a variety of abstract domains,
including, for example, shape analysis domains such as Three-Valued Abstrac-
tions [LAS00] and Separation Logic-based domains [BCI10]. We were not able
to explore this possibility because of a lack of tools to perform the concrete
exploration, so this application remains for future work.

Acknowledgment. Thanks to Francesco Logozzo and the anonymous reviewers
for help in improving the presentation of this paper.

References

[APR+01] Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized veri-
fication with automatically computed inductive assertions. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 221–234
Springer, Heidelberg (2001)

[BCI10] Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level
code. Technical Report 144848, MSR (2010); To appear in CAV 2011 (2011)

[BFPZ05] Balaban, I., Fang, Y., Pnueli, A., Zuck, L.D.: IIV: An invisible invariant
verifier. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 408–412. Springer, Heidelberg (2005)

262 K.L. McMillan and L.D. Zuck

[Bin08] Bingham, J.D.: Automatic non-interference lemmas for parameterized
model checking. In: Cimatti, A., Jones, R.B. (eds.) FMCAD, pp. 1–8. IEEE,
Los Alamitos (2008)

[BLS02] Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems us-
ing a logic of counter arithmetic with lambda expressions and uninterpreted
functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
p. 78. Springer, Heidelberg (2002)

[BPZ06] Balaban, I., Pnueli, A., Zuck, L.D.: Invisible safety of distributed protocols.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4052, pp. 528–539. Springer, Heidelberg (2006)

[BPZ07] Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105.
Springer, Heidelberg (2007)

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL, pp. 238–252 (1977)

[CC79] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks.
In: POPL, pp. 269–282 (1979)

[Cou81] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S.S.,
Jones, N.D. (eds.) Program Flow Analysis - Theory and Applications. Pren-
tice Hall software series, pp. 303–342. Prentice Hall, Englewood Cliffs (1981)

[Din99] Dingel, J.: Systematic Parallel Programming. PhD thesis, Carnegie Mellon
University (1999)

[FPPZ06] Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with invisible rank-
ing. STTT 8(3), 261–279 (2006)

[GNRT10] Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-
must program analysis: unleashing the power of alternation. In: POPL, pp.
43–56 (2010)

[Lah04] Lahiri, S.K.: Ubounded System Verification using decision Procedure and
predicate abstraction. PhD thesis, Carnegie Mellon University (2004)

[LAS00] Lev-Ami, T., Sagiv, S.: TVLA: A system for implementing static analyses.
In: SAS 2000, pp. 280–301. Springer, Heidelberg (2000)

[LBC03] Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate ab-
straction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 141–153. Springer, Heidelberg (2003)

[Mon09] Monniaux, D.: Automatic modular abstractions for linear constraints. In:
POPL 2009, pp. 140–151. ACM, New York (2009)

[PS96] Pnueli, A., Shahar, E.: The TLV system and its applications. Technical
report, The Weizmann Institute (1996)

[RSY04] Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best trans-
former. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
252–266. Springer, Heidelberg (2004)

[vE98] van Eijk, C.A.J.: Sequential equivalence checking without state space traver-
sal. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 1998, pp. 618–623. IEEE Computer Society, Washington,
DC, USA (1998)

[YBS06] Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: better
together? In: ISSTA, pp. 145–156 (2006)

[ZP04] Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of pa-
rameterized systems (a survey). Computer Languages, Systems & Struc-
tures 30(3-4), 139–169 (2004)

An Abstraction-Refinement Framework
for Trigger Querying

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

Abstract. Trigger querying is the problem of finding, given a system M and an
LTL formula ϕ, the set of scenarios that trigger ϕ in M ; that is, the language L
of finite computations of M such that all infinite computations that have a pre-
fix in L continue with a suffix that satisfies ϕ. For example, the trigger query
M |=? �→ F err asks for the set of scenarios after which err aught to eventu-
ally happen. Trigger querying thus significantly extends query checking, which
seeks propositional solutions, and is an extremely useful methodology for system
exploration and understanding. The weakness of trigger querying lies in the fact
that the size of the solution is linear in the size of the system. For trigger querying
to become feasible in practice, we must offer solutions to cope with systems of
big, and possibly infinite, state spaces.

In this paper we describe an abstraction-refinement framework for trigger
querying. The general idea is to replace the reasoning about M by reasoning
about an abstraction MA of M , and return to the user two languages, Ll and Lu,
that under- and over-approximate L, respectively. We consider predicate abstrac-
tion, and the languages Ll andLu are defined with respect to the set of predicates.
The challenge in defining the approximating languages is that trigger querying
does not have a clear polarity, and the definition of Ll and Lu has to combine the
upper- and over-approximations of M . We describe an automata-theoretic ap-
proach for refining and reducing Lu \ Ll. While refinement for model checking
is lengthwise, in the sense that it is based on counterexamples, here we suggest
both lengthwise and widthwise refinement, where the latter is based on cuts in an
automaton for Lu \Ll and thus can symbolically handle batches of counterexam-
ples. We show that our framework is robust and can be applied also for classical
query checking as well as variants and extensions of trigger querying.

1 Introduction

The field of formal verification developed from the need to verify that a system satisfies
its specification. In practice, formal-verification methodologies are used not only for
ensuring correctness of systems but also for understanding systems and exploring their
models [20]. In [6], Chan suggested to formalize model exploration by means of query
checking. The input to the query-checking problem is a modelM and a query ϕ, where
a query is a temporal-logic formula in which some sub-formula is the place-holder “?”.
A solution to the query is a propositional assertion that, when replaces the place-holder,
results in a formula that is satisfied in M . For example, if the query is AG(? → ack),
then the set of solutions includes all assertions θ for which M |= AG(θ → ack).
A query checker should return the strongest solutions to the query (strongest in the

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 263–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

264 G. Avni and O. Kupferman

sense that they are not implied by other solutions).1 The work of Chan was followed by
further work on query checking, studying its complexity, cases in which only a single
strongest solution exists, the case of multiple (possibly related) place-holders, and more
[5,8,9,25].

A serious shortcoming of query checking is the fact that the solutions are proposi-
tional assertions. Thus, query checking is restricted to questions regarding one point
in time, whereas most interesting questions about systems involve scenarios that de-
velop over time. For example, solutions to the query AG(? → ack) are propositional
assertions that imply ack in all the states of the system. Such assertions are clearly less
interesting than scenarios after which ack is valid. As another example, consider a pro-
grammer trying to understand the code of some software. In particular, the programmer
is interested in situations in which some function is called with some parameter value.
The actual state in which the function is called is by far less interesting than the scenario
that has lead to it. Query checking does not enable us to reveal such scenarios.

In [21], the authors introduce and study trigger querying, which addresses the short-
coming described above. Given a modelM and a temporal behaviorϕ, trigger querying
is the problem of finding the set of scenarios that trigger ϕ in M . That is, scenarios that
are feasible in M and for which if a computation of M has a prefix that follows the
scenario, then its suffix satisfies ϕ.2

Kupferman and Lustig formalized trigger querying using the temporal operator �→
(triggers). The trigger operator was introduced in SUGAR (the precursor of PSL [4],
called suffix implication there), and it plays an important role also in popular industrial
specification formalisms like ForSpec [1] and System Verilog Assertions (SVA) [26].
Consider a system M with a set P of atomic propositions. A word w over the alphabet
2P triggers an LTL formula ϕ in the system M , denoted M |= w �→ ϕ, if at least one
computation of M has w as a prefix, and for every computation π of M , if w is a prefix
of π, then the suffix of π from position |w| satisfies ϕ (note that there is an “overlap”
and the |w|-th letter of π participates both in the prefix w and in the suffix satisfying
ϕ). The solution to the trigger queryM |=? �→ ϕ is then the set of words w that trigger
ϕ in M . Since, as shown in [21], the solution is regular, trigger-querying algorithms
return the solution by means of a regular expression or an automaton on finite words.
The weakness of trigger querying lies in the fact that the size of the solution is linear
in the size of the system. For trigger querying to become feasible in practice, we must
offer solutions to cope with systems of big, and possibly infinite, state spaces.

In this paper we describe an abstraction-refinement framework for trigger query-
ing. Abstraction is a well known approach for coping with the huge, and possibly in-
finite, state space of systems [2,13].3 In particular, in the context of model checking,
the counterexample guided abstraction-refinement (CEGAR) method has proven to be
very effective [11,12,22]. Recall that the solution to the trigger query M |=? �→ ϕ is a

1 Note that a query may not only have several solutions, but may also have several strongest
solutions.

2 The definition in [21] is a bit different and allows also vacuous triggers: scenarios that are not
feasible in M are considered solutions too.

3 A different approach to cope with the complexity of trigger querying is studied in [24]. There,
the user approximates the trigger by a statistical analysis of traces in the system.

An Abstraction-Refinement Framework for Trigger Querying 265

regular language L over the alphabet 2P . The general idea of our framework is to re-
place the reasoning aboutM by reasoning about an abstractionMA ofM , and return to
the user two languages, Ll and Lu, that under- and over-approximateL. In more detail,
we consider predicate abstraction, where the state space of MA is 2Φ, for a set Φ of
propositional assertions on P . The abstraction MA is a modal transition system [23],
and has two types of transitions: may transitions, which over-approximate the transi-
tions of M , and must transitions, which under-approximate them. The approximating
languages Ll and Lu are over the alphabet 2Φ, and they satisfy Ll ⊆ L ⊆ Lu, with an
appropriate adjustment of ⊆ to the different alphabets.

While Ll and Lu under- and over-approximate L, finding them combines both the
under- and over-approximations of M . Intuitively, it follows from the fact that the
solution to a trigger query does not have a clear polarity: it is not hard to see that
M |= w �→ ϕ if the set of the states of M that are reachable by tracing w is not
empty and all the states in it satisfy Aϕ. When we consider an abstraction that under-
approximates the transitions of M , two contradicting things happen: (1) we make it
harder for words to make it into the solution, as fewer computations can trace w, and
(2) we make it easier for words to make it into the solution, as more states satisfy Aϕ.
Similar and dual difficulties arise when we try to work with an abstraction that over-
approximatesM or when we search for Lu.4

The smaller is the gap betweenLl andLu is, the more informative our approximating
trigger languages are. Given a set of predicates Φ, refinement amounts to extending Φ
so that Lu \Ll is reduced. We suggest two approaches for refinement. Both approaches
are based on a deterministic automaton C for Lu \ Ll. As we show, the construction
of C is based on an analysis of the reasons for lack of information, and avoids the
complementation of Ll. The first approach, lengthwise refinement, is similar to the one
performed in CEGAR, and is based on clinging to a single word τ ∈ (2Φ)∗ accepted by
C, and refining both the transitions that C traverses in its accepting run on τ as well as the
accepting state that the run on τ reaches. The second approach, widthwise refinement,
is possible thanks to the fact C accepts all the words in Lu \ Ll. Widthwise refinement
iteratively reduces the language of C by clinging to a cut in its underlying graph. As
we elaborate in the paper, C has cuts of special interest – these that correspond to may
transitions that are not must transitions in MA. An advantage of widthwise refinement
is that it manipulates sets of states and thus has a simple symbolic implementation. We
also suggest a hybrid approach that combines lengthwise and widthwise refinements,
by basing the refinement on a sub-language of Lu \ Ll, and is also symbolic. All the
three approaches are complete, in the sense that, unless we start with an infinite-state
system, repeated application of them results in Ll = L = Lu.

We show that our framework is robust and can handle variants and extensions of trig-
ger querying: classical query checking (in fact, the abstraction-refinement framework
there is much simpler), constrained trigger querying (where the input also includes a
regular expression, which restricts the range of solutions), and necessary conditions
(where the goal is to characterize necessary conditions on the triggers; this problem is
only NLOGSPACE-complete in the system).

4 A different combination of may and must transitions, whose goal is to combine verification
and falsification, is suggested also in [17].

266 G. Avni and O. Kupferman

Beyond making trigger-querying and its variants feasible in practice, we find the
framework interesting from a theoretical point of view as it involves several conceptual
differences from CEGAR, and thus involves new general ideas about abstraction and
refinement. As we elaborate in Section 6, we believe that these ideas are useful also in
other abstraction-refinement methodologies.

Due to the lack of space, some proofs and examples are omitted from this version
and can be found in the full version, in the authors’ homepages.

2 Preliminaries

We model systems over a set P of atomic propositions by a Kripke structure M =
〈P, S, S0, R〉, where S = 2P is the set of states, S0 ⊆ S is a set of initial states,
and R ⊆ S × S is a total transition relation. Since we take the set of states to be
2P , we do specify a labeling function: the set of atomic propositions that hold in state
s ∈ 2P is simply s. Note that our Kripke structures are deterministic (see Remark 2).
A computation of M is a (finite or infinite) sequence of states π = s1, s2, . . . such that
s1 ∈ S0 and R(si, si+1) for every i ≥ 1. For an index i ≥ 1, we use π[1..i] to denote
the prefix s1, . . . , si of π and use πi to denote the suffix si, si+1, . . . of π. Note that a
word over the alphabet 2P corresponds to at most one computation inM . The language
of M , denoted L(M), is the set of all computations of M .

For a Kripke structureM , a set of states S, and an LTL formula ϕ, we use (M,S) |=
ϕ to indicate that all the computations that start in states in S satisfy ϕ. When S = S0,
we write M |= ϕ. Also, when S = {s} is a singleton, we write (M, s) |= ϕ. We denote
by �ϕ� the set of states that satisfy ϕ. I.e., for every s ∈ 2P we have that s ∈ �ϕ� iff
(M, s) |= ϕ.

2.1 Trigger Querying

A wordw ∈ (2P)∗ triggers an LTL formulaϕ in a Kripke structureM , denotedw �→ ϕ,
if w is a computation of M and for every infinite computation π ∈ L(M), if w is a
prefix of π, then the suffix of π from position |w| satisfies ϕ. Formally, M |= w �→ ϕ
iff for every computation π of M , if π[1..|w|] = w then π|w| |= ϕ. Note that there is
an “overlap” and the |w|-th position in π participates in both the prefix w and the suffix
satisfying ϕ. Trigger querying was introduced and studied in [21]. The solution of the
trigger query M |=? �→ ϕ is the language of all words triggering ϕ in M .

Let us consider an example. Assume that M models a hardware design with a signal
err that is raised whenever an error occurs. We might be interested in characterizing
the scenarios after which the signal err is raised. These scenarios are the solution to
the trigger query M |=? �→ err. It may also be the case that we are really interested
in characterizing the scenarios after which err aught to be raised. The difference is that
now we are interested in “crossing the point of no return”; that is, the point from which
err would eventually (possibly in the distant future) be raised. The set of such scenarios
are the solution to the trigger query M |=? �→ F err.

Remark 1. Our definition is a variant of the one defined in [21]. There, M |= w �→ ϕ
iff for every infinite computation π ∈ L(M) if π[1 . . . |w|] = w then π|w| |= ϕ. Thus,

An Abstraction-Refinement Framework for Trigger Querying 267

all words not in L(M) vacuously trigger all LTL formulas. As discussed in [21], the
variants are technically similar. We find the variant with no vacuous solutions more
appealing in practice.

The definition of trigger querying refers to computations, rather than states, in M . It
is more convenient to work with an equivalent definition, which is state based:

Lemma 1. [21] For a Kripke structure M , an LTL formula ϕ, and a finite word w =
s1, . . . , sn, it holds that M |= w �→ ϕ iff w ∈ L(M) and sn ∈ �ϕ�.

By Lemma 1, triggering a formula is the same as triggering the set of states that satisfy
this formula. Accordingly, we are going to use the notation M |= w �→ T , for a set
T ⊆ S. Also, by Lemma 1, the language of triggers is simply the language of M when
viewed as an automaton with �ϕ� being the set of accepting states. As also follows
from Lemma 1, our framework can be extended to additional, more expressive universal
formalisms, such as ∀CTL�.

2.2 Predicate Abstraction

Consider a concrete Kripke structure MC = 〈P, 2P , S0C , RC〉 and a set of predicates
Φ = {θ1, . . . , θm} such that θi is a Boolean formula over P . Given MC and Φ, we
construct an abstract Kripke structure MA by merging concrete states that agree on the
predicates in ϕ into a single abstract state. Thus, the set of states of MA is 2Φ and
a concrete state is mapped to an abstract state if it satisfies exactly all the predicates
associated with the abstract state.

For a concrete state c ∈ 2P and an abstract state a ∈ 2Φ we say that c |= a iff c
satisfies exactly all the predicates in a. Formally, c |= ∧θ∈a θ ∧ ∧θ/∈a ¬θ. We then
also say that c ∈ a. Thus, for convenience, we are going to view an abstract state both
as a set of predicates (and use the notation θ ∈ a, for θ ∈ Φ) and as a set of concrete
states (and use c ∈ a). Note that the predicates in Φ need not be independent. Thus,
some subsets of Φ may be inconsistent, in which case no concrete state corresponds to
them.

Typically, Φ is much smaller than P . Consequently, moving to the state space 2Φ

involves loss of information and calls for an approximation of M ’s transition relation.
The abstract structureMA (also known as a modal transition system [23]) has two types
of transitions: may transitions, which over-approximate these of M , and must transi-
tions, which under-approximate them. Formally, MA = 〈P, 2Φ, S0A ,→may,→must〉,
where S0A , →may , and →must are defined as follows.

– a ∈ S0A iff there exists c ∈ a ∩ S0C ,
– a→may a

′ iff there exists c ∈ a and c′ ∈ a′ such that RC(c, c′), and
– a→must a

′ iff for all c ∈ a there exists c′ ∈ a′ with RC(c, c′).

A may computation is a sequence of states ofMA in which every two consecutive states
have a may transition between them. Formally, π = a0, a1, . . . is a may computation if
for every i ≥ 0 it holds that ai →may ai+1. A must computation is defined in a similar
way, with ai →must ai+1. Note that every must computation is a may computation, but
not vise versa.

268 G. Avni and O. Kupferman

Consider an LTL formula ϕ over Φ and an abstract state a. We distinguish between
may satisfaction and must satisfaction. We say that (MA, a) |=may ϕ if for every infi-
nite may computation π that starts in a, we have π |= ϕ. Must satisfaction is defined
similarly. Since may computations over-approximate the set of concrete computations,
and must computations under-approximate them, and since the more computations there
are, the less likely it is to satisfy an LTL formula, we have the following.

Lemma 2. [16] Consider an LTL formula ϕ over Φ.

1. If (MA, a) |=may ϕ then for every c ∈ a it holds that (MC , c) |= ϕ.
2. If (MA, a) �|=must ϕ then for every c ∈ a it holds that (MC , c) �|= ϕ.

For a concrete Kripke structureMC and a set Φ of predicates, we denote byMC(Φ) the
abstract Kripke structure with state space 2Φ that is induced by MC .

Remark 2. Recall that our Kripke structures are deterministic. It is possible to define
trigger querying also for nondeterministic systems – this is also the setting in [21],
which make the trigger-querying problem PSPACE-complete in the size of the system.
As in LTL model checking, abstraction is essential also when the complexity is only
NLOGSPACE in the system. We will discuss the nondeterministic setting further in
Remark 3.

2.3 Relating Concrete and Abstract Languages

We relate words over predicates with words over atomic propositions. We define two
functions: abs : 2P → 2Φ and conc : 2Φ → 22P

. For c ∈ 2P , we define abs(c) = {θ ∈
Φ : c |= θ}. For a ∈ 2Φ we define conc(a) = {c ∈ 2P : c |= a}. Thus, abs(c) is the
abstract state to which c belongs, and conc(a) is the set of concrete states that belong
to a.

We extend the definition of conc and abs to words. For a finite or infinite word
w = w1, w2, . . . over 2P we define abs(w) to be the word τ = τ1, τ2, . . . over 2Φ of
the same length as w such that for every i ≥ 1 it holds that abs(wi) = τi. For a word
τ = τ1, τ2, . . . over 2Φ we define the language conc(τ) as the set of words w such that
τ = abs(w). That is, for every w = w1, w2, . . . ∈ conc(τ) and i ≥ 1 it holds that
wi ∈ conc(τi).

For an abstract structure MC(Φ) and an abstract may or must computation τ =
τ1, τ2, .. of MA, we say that τ has a matching concrete computation iff there is a com-
putation w ∈ conc(τ) ∩ L(MC). Note that if τ is a must computation then it always
has a matching concrete computation, but if τ is a may computation, it need not have a
matching concrete computation.

We relate languages over predicates with languages over atomic propositions. For
languages L ⊆ (2P)∗ and T ⊆ (2Φ)∗ we say that L ⊆ T iff for every w ∈ L it
holds that abs(w) ∈ T . Defining language containment in the other direction is more
involved, as conc(τ), for τ ∈ (2Φ)∗, contains many concrete computations and not
all of them may be of interest. Therefore, in addition to the usual T ⊆ L relation, we
define a variant of containment that has a concrete Kripke structureMC as an additional
parameter. For a single word τ ∈ (2Φ)∗ and a language L ⊆ (2P)∗, we say that τ is

An Abstraction-Refinement Framework for Trigger Querying 269

in L with respect to MC , denoted τ ∈MC L, if conc(τ) ∩ L(MC) ⊆ L and conc(τ) ∩
L(MC) �= ∅. That is, for every concrete word w ∈ conc(τ), if w ∈ L(MC) then w in
L, and there is a word w ∈ conc(τ) that satisfies this condition non-vacuously. Now,
for languages T ⊆ (2Φ)∗ and L ⊆ (2P)∗, we say that T ⊆MC L if for every τ ∈ T , it
holds that τ ∈MC L.

3 Approximating Triggers

Let MC be a concrete Kripke structure, Φ a set of predicates, and ϕ an LTL formula
over Φ. Also, let MA = MC(Φ) and Lc ⊆ (2P)∗ be the solution to the trigger query
MC |=? �→ ϕ. That is, for a word w over 2P , it holds that w ∈ Lc iff MC |= w �→ ϕ.
As discussed above, a nondeterministic automaton for Lc is exponential in the size of
MC , and our goal is to replace it by approximating languages by reasoning about MA.
Thus, given MC , Φ, and ϕ, our goal is to find two languages Ll, Lu ⊆ (2Φ)∗ such that
Ll ⊆MC Lc ⊆ Lu.

We distinguish between may-triggering and must-triggering. Consider an abstract
Kripke structure MA. For a word τ = a1, . . . , an over 2Φ and a set of states S ⊆ 2Φ

we say that τ �→may S iff τ is a may computation of MA and an ∈ S. Similarly,
τ �→must S iff τ is a must computation of MA and an ∈ S.

We useMA |= τ �→α �ϕ�β , where α, β ∈ {may,must}, to denote that τ α- triggers
the set of states that β-satisfy ϕ.

We define the two languages Ll, Lu ⊆ (2Φ)∗ as follows:

– Ll = {τ ∈ (2Φ)∗ : MA |= τ �→must �ϕ�may}.
– Lu = {τ ∈ (2Φ)∗ : MA |= τ �→may �ϕ�must}.

Note that Ll and Lu are defined byMA when viewed as a deterministic automaton. For
Ll, the automaton follows the must transitions and its accepting states are �ϕ�may . For
Lu, it follows may transitions and its accepting states are �ϕ�must. Thus, the complexity
is still linear in the system, but now it is the abstract system, which is considerably
smaller.

Recall thatLc = {w ∈ (2P)∗ : MC |= w �→ �ϕ�}. Intuitively,Ll under-approximates
Lc as words τ in Ll should pass two criteria that are more difficult to pass than these
that words in Lc should: First, the word has to be a must (rather than concrete) com-
putation. Second, the last state in the path should may satisfy (rather than satisfy) ϕ.
Likewise, Lu over-approximates Lc as words τ in Lu should pass two criteria that are
less difficult to pass than these that words in Lc should: the word has to be a may com-
putation and the last state in the path should must satisfy ϕ. We now prove this intuition
formally.

Theorem 1. Ll ⊆MC Lc.

Proof: Let τ = a1, . . . , an ∈ Ll. We show that τ ∈MC Lc. Thus, L(MC) ∩ conc(τ)
is not empty and for everyw ∈ L(MC)∩ conc(τ) it holds thatMC |= w �→ ϕ. We first
prove that L(MC) ∩ conc(τ) is not empty. Recall that τ is a must computation and so
there must be a valid concrete computation w = c1, . . . , cn such that for all 1 ≤ i < n
it holds that ci ∈ ai. Clearly, w ∈ conc(τ) and w ∈ L(MC).

270 G. Avni and O. Kupferman

Next we prove that for every w ∈ L(MC) ∩ conc(τ) it holds that MC |= w �→ ϕ.
Consider a word w = c1, . . . , cn ∈ L(MC) ∩ conc(τ). We show that (MC , cn) |= ϕ.
Since τ ∈ Ll, we know that τ is a must computation in MA. By definition, for 1 ≤ i ≤
n it holds that ci ∈ ai. By Lemma 2, an ∈ �ϕ�may implies that for every c ∈ an it
holds that (MC , c) |= ϕ, in particular (MC , cn) |= ϕ, and we are done.

Theorem 2. Lc ⊆ Lu.

Proof: Consider a word w ∈ Lc. We prove that abs(w) ∈ Lu. That is, for the word
τ = abs(w), it holds that τ �→may �ϕ�must. By definition, w ∈ Lc implies that w ∈
L(MC). Let w = c1, . . . , cn. Consider the sequence τ = a1, . . . , an of MA, where for
every 1 ≤ i ≤ |w| it holds that ai = abs(ci). Since for every 1 ≤ i < n it holds that
RC(ci, ci+1), then ai →may ai+1. By definition, w ∈ Lc also implies that cn |= ϕ. By
Lemma 2, this implies that an ∈ �ϕ�must. We conclude that τ �→may �ϕ�must, and we
are done.

For a word τ ∈ (2Φ)∗, we say that Φ is informative for τ if τ �∈ Lu or τ ∈ Ll.
Thus, refining MA with respect to Φ is sufficient in order to know whether the words
in conc(τ) ∩ L(MC) trigger ϕ in MC : either τ �∈ Lu, in which case they all do not,
or τ ∈ Ll, in which case they do. In Example 1 and 2 we show words that are un-
informative.

Remark 3. The proofs of Theorems 1 and 2 depend on MC being deterministic. As
we demonstrate in the full version, the theorems are not valid in the nondeterministic
setting. In the full version we also suggest an alternative definition for Ll and Lu, with
which the theorems are valid. Since the added technical difficulties are orthogonal to
the ones addressed in this paper, we prefer to focus on the deterministic setting. We
still describe below the alternative definitions. First, for the lower bound, we define
Lnd
l to be {τ ∈ (2Φ)∗ : τ �→may �ϕ�may} ∩ Lmust(MA). Informally, τ is in Lnd

l iff
every may computation that induces τ ends in a state that may-satisfies ϕ, and there is
a must computation that induces τ . Now, for the upper bound, we define Lnd

u to be all
the words τ ∈ (2Φ)∗ such that there is a may computation a1, ..., an that induces τ and
(MA, an) |=must ϕ. Note that when applied to deterministic systems, we have thatLnd

l

and Lnd
u coincide with Ll and Lu, respectively.

4 Refinement

The search for approximated triggers starts with a set of predicatesΦ and two languages
Ll and Lu. During the refinement process we iteratively close the gap between Ll and
Lu by adding predicates to Φ. In this section we analyze the reasons why Φ need not be
informative with respect to some words, and describe an automata-theoretic approach
for characterizing the non-informative words and refinement.

4.1 Between the over and under Approximations

We start with examples explaining four different types of “misses” in the approximating
languages.

An Abstraction-Refinement Framework for Trigger Querying 271

a1 a2

a3

a4 a5

c1

c2

c3

c4 c5

c6

c7

c8

c9
M1

M2 a1 a2

c1

c2

c3

c4

c5

a3

c6

a4

a1

a3

a4 a5

c1

c2

c3

c4 c5

c6

c7

c8

c9M ′
1

M ′
2

c1

c2

c3

c4

c5

a3

c6

a4
a11

a21
a12

a22

a12

a22

Fig. 1. Information loss in Lu and Ll

Example 1. In this example we demonstrate the case where the word τ triggers ϕ in
MC but is not in the under-approximation. Formally, τ ∈MC Lc and τ /∈ Ll.

Consider the Kripke structure M1 appearing in Figure 1. Let MA
1 be its abstraction

with state space {a1, . . . , a5}. Consider the formula ϕ1 = FGa3 ∧ G¬a5 and the
word τ1 = a1a2a3. Note that conc(τ1) ∩ L(MC) = {c1c4c5, c2c4c5}, and that both
computations trigger ϕ1. Indeed, they both end in c5 and the only computation that
starts in c5 satisfies ϕ1. Hence, τ1 ∈M1 Lc. On the other hand, τ1 /∈ Ll, as τ1 is a may
computation that is not a must computation in MA

1 .
Consider now the word τ2 = a1a2. Note that conc(τ2)∩L(M1) = {c1c4, c2c4}, and

that both computations trigger ϕ1. Indeed, they both end in c4 and the only computation
that starts in c4 satisfies ϕ1. Hence, τ2 ∈M1 Lc. On the other hand, τ2 /∈ Ll. While it is
a must computation in MA

1 , it ends in the state a2, which does not may satisfy ϕ1.

Example 2. In this example we demonstrate the case where the word τ does not trigger
ϕ in MC but is in the over-approximation. Formally, τ ∈ Lu and τ /∈MC Lc.

Consider the Kripke structure M2 appearing in Figure 1. Let MA
2 be its abstraction

with state space {a1, . . . , a4}. Consider the formula ϕ2 = Ga2 ∨ Ga3 and the word
τ3 = a1a2a3. Since τ3 is a may computation in MA

2 that ends in a3, which must
satisfies Ga3, we have that τ3 ∈ Lu. Nevertheless, there is no concrete computation
that matches τ3, so τ3 /∈M2 Lc.

Consider now the word τ4 = a1a2. Again, since τ4 is a may computation and a2

must satisfies ϕ2, we have that τ4 ∈ Lu. Note that (M2, c4) �|= ϕ2 because the con-
crete computation c4cω6 does not satisfy ϕ2. Since c2c4 ∈ conc(τ4) ∩ L(M2) we have
τ4 /∈M2 Lc.

Note that, for technical convenience, in both examples we use c1, c2, . . . and a1, a2,
Nevertheless, the structures can be generated using “real” propositions and predicates.
For example, consider the following assignment of propositions to the variables in M2.
Let P = {a, b, c, d}, c1 = {a, c}, c2 = {a, c, d}, c3 = {a, b}, c4 = {a, b, d}, c5 =
{a, d}, and c6 = {d}. By setting Φ = {d ∧ ¬a, a ∧ c, a ∧ b} we get: a1 = {a ∧ c},
a2 = {a ∧ b}, a3 = ∅, and a4 = {d ∧ ¬a}.

272 G. Avni and O. Kupferman

Our refinement procedure is based on a deterministic automaton C over the alphabet
2Φ that accepts exactly all the words with respect to which Φ is not informative. In
other words, L(C) = Lu \ Ll. Rather than constructing C by taking the product of the
automata for Lu and Ll, we construct it according to an analysis of words with respect
to which Φ is not informative. While the examples above demonstrate four possibilities
for a word τ = a1, . . . , an ∈ (2Φ)∗ to be in Lu \ Ll, we shall prove that we can group
them into two types: Either τ is a may computation that is not a must computation
in MA and an |=must ϕ, or τ is a must computation in MA and an |=must ϕ but
an �|=may ϕ.

Accordingly, C maintains two copies of MA. In the first copy, C follows the must
transitions of MA, and it accepts words that end in a state that must satisfies but does
not may satisfy ϕ. The automaton C moves from the first copy to the second one when
it follows a may transition that is not a must transition. In the second copy, C follows
may transitions, and it accepts words that end in a state that must satisfies ϕ. Formally,
C = 〈2Φ, (2Φ × {1, 2}) ∪ {ainit}, δC , {ainit}, FC〉, where δC and FC are defined as
follows (when the condition does not hold, there is no transition and the run gets stuck):

– δC(ainit, a′) = 〈a′, 1〉, if a′ ∈ S0A .
– δC(〈a, 1〉, a′) = 〈a′, 1〉, if a→must a

′. Note that this implies that a→may a
′ too.

– δC(〈a, 1〉, a′) = 〈a′, 2〉, if a→may a
′ and a �→must a

′.
– δC(〈a, 2〉, a′) = 〈a′, 2〉, if a→may a

′.
– FC = ((�ϕ�must \ �ϕ�may) × {1}) ∪ (�ϕ�must × {2}).

Lemma 3. L(C) = Lu \ Ll.

4.2 The Refinement Algorithm

Before we turn to describe how we use C in the process of refinement, let us review the
classical counterexample guided abstract refinement (CEGAR) methodology for veri-
fication of LTL properties (see [11]). The methodology is based on the fact that if an
abstraction that over-approximates the concrete structureMC satisfies an LTL formula,
then so does MC , and if the abstraction does not satisfy the LTL formula, then a coun-
terexample for the satisfaction can be used for refining the abstraction. Formally, in
CEGAR we model check MA with may transition only. If MA |= ϕ, then we are guar-
anteed that MC |= ϕ, and we are done. If MA �|= ϕ, then we get a computation π in
L(MA) such that π �|= ϕ and check whether π corresponds to a concrete computation.
If it does, we conclude that MC �|= ϕ and we are done. Otherwise, the abstract com-
putation π is spurious and we use it in order to refine MA to a new abstract structure
M ′
A that no longer has π as a computation. In the case of predicate abstraction, the

refinement is done by adding predicates.
Consider the over and under approximations Lu and Ll of Lc. Let us use the nota-

tions Lu(Φ), Ll(Φ), and C(Φ) in order to indicate that Lu, Ll, and C have been defined
with respect to the set Φ of predicates. The objective of the refinement algorithms is to
tighten the gap between Lu and Ll. That is, we start with an initial set of predicates Φ
and we refine the set to Φ′ so that Lu(Φ′) \ Ll(Φ′) is smaller than (in fact, strictly con-
tained in) Lu(Φ) \Ll(Φ). In the case of CEGAR, refinement is lengthwise, in the sense

An Abstraction-Refinement Framework for Trigger Querying 273

that it is based on one counterexample that forms a path in the graph ofMA. In our case,
we introduce, in addition to lengthwise refinement, also widthwise refinement. This is
possible thanks to the automaton C, which maintains all the words in Lu \ Ll, and thus
constitutes a compact presentation of all “counterexamples”. We also suggest a hybrid
approach that combines lengthwise and widthwise refinements. Below we describe the
three approaches in detail.

Describing the approaches, we use the split operator, defined below. Consider two
sets of predicates Φ and Φ′ such that Φ ⊆ Φ′. That is, Φ′ extends Φ. For a state a ∈ 2Φ

we denote by split(a, Φ′) the refinement of awith respect to Φ′. Formally split(a, Φ′) =
{a′ ∈ 2Φ

′
: a′ ∩Φ = a}. Thus, all the sets in split(a, Φ′) agree with a on the predicates

in Φ and differ on the predicates in Φ′ \Φ. We extend the definition of the split operator
to words. For τ = a1, . . . , an ∈ (2Φ)∗ we define split(τ, Φ′) = {a′1, . . . , a′n ∈ (2Φ

′
)n :

a′i ∈ split(ai, Φ) for all 0 ≤ i ≤ n}.

Lengthwise refinement. The lengthwise refinement procedure,refineWord, gets as
input a concrete Kripke structureMC , a set of predicates Φ, and a word τ ∈ (2Φ)∗ such
that Φ is not informative with respect to τ . It then refines MC(Φ) according to τ . Thus,
the output is a set Φ′ ⊃ Φ such that Φ′ is informative with respect to all computations
τ ′ ∈ split(τ, Φ′). We note that the procedure can get as input also a concrete word
w ∈ (2P)∗. It then executes refineWord with respect to abs(w).

Consider a word τ ∈ Lu \ Ll. Thus, τ ∈ L(C). The procedure refineWord
proceeds in two steps. In the first step, we extend Φ to Φ̂ such that no computation in
split(τ, Φ̂) gets to the second copy of C. In the second step we extend Φ̂ to Φ′ so that
the accepting states in the first copy of C do not include states that are reachable by
computations in split(τ, Φ′).

For the first step, we initialize Φ̂ to Φ and extend it iteratively as follows. Let ainit,
〈a1, b1〉, . . ., 〈an, bn〉 be the accepting run of C(Φ) on τ . If bn = 2, then τ is a may
computation that is not a must computation. We then find the first index 1 ≤ i < n for
which bi+1 = 2. Note that ai →may ai+1 but ai �→must ai+1. We add to Φ̂ a predicate
ρ that splits the abstract state ai into two abstract states: a1

i consists of the concrete
states that have outgoing edges into concrete states in ai+1, and a2

i consists of the states
that do not have outgoing edges into the concrete states in ai+1. Thus, after refining,
a1
i →must ai+1 and a2

i �→may ai+1. Note that taking ρ =
∨
c∈ai: ∃c′∈ai+1 with RC(c,c′) c

achieves this goal. We continue with this step as long as there is a word in split(τ, Φ̂)
that C(Φ̂) accepts with a run that ends in the second copy.

We start the second step with Φ̂, so the runs of C(Φ̂) on all words in split(τ, Φ̂) end in
the first copy. Recall that the set of accepting states in this copy is (�ϕ�must \�ϕ�may)×
{1}. In order to remove a state 〈a, 1〉 from FC we use standard CEGAR, which studies
counterexamples to the may-satisfaction ofϕ in a. As in CEGAR, if the counterexample
is spurious, we use it to refine MA so that may-satisfaction is challenged. Unlike stan-
dard CEGAR, here the procedure does not terminate when we detect a counterexample
that is not spurious. Instead, such a counterexample witnesses that the must-satisfaction
of ϕ in a is due to under-approximation, and we use it in order to refine MA so that
must-satisfaction is challenged.

274 G. Avni and O. Kupferman

Example 3. As a first example, consider the Kripke structure M1 in Figure 1, its ab-
straction MA

1 , the formula ϕ1 = FGa3 ∧ G¬a5, and the computation τ1 = a1a2. As
shown in Example 1, τ1 ∈ Lu \ Ll. Since τ1 is a must computation, the accepting run
of C on τ1 ends in the state 〈a2, 1〉. Accordingly, we do not perform iterations in the
first step of refineWord and continue to the second step, where CEGAR methods
return the computation π1 = a2a4a

ω
5 . We then find the state a2 as a failure state and

return the predicate ρ1 = c3 (note that only c3 has an edge to states in a4). We split the
state a2 (see M ′

1 on the right side of Figure 1). Note that all the computations starting
at a1

2 are concrete computations. It follows that a1
2 is no longer an accepting state and

we terminate the procedure. Note also that after the refinement, the word a1a
1
2, which

is the only word that is both in split(τ1, {a1, a
1
2, a

2
2, a3, a4, a5}) and a computation in

the final abstract structure, is in Ll as required.
As a second example, consider the Kripke structure M2 in Figure 1, its abstraction

MA
2 , the formulaϕ2 = Ga2∨Ga3, and the word τ2 = a1a2a3. As shown in Example 2,

τ2 ∈ Lu \Ll. Since τ2 is a may computation that is not a must computation, the accept-
ing run of C on τ2 ends in the state 〈a3, 2〉. We perform an iteration of the first step of
refineWord. The failure state is a1 and we add the predicate c2, which splits a1 into
a1
1 and a2

1. We continue to another iteration of the first step and find the word a1
1a2a3.

The run on it ends in the state 〈a3, 2〉. The failure state is a2 and we split it by adding
the predicate c3. We construct the abstract structure MA({a1

1, a
2
1, a

1
2, a

2
2, a3, a4}) (see

M ′
2 on the right side of Figure 1). Since all the edges are now concrete edges, Ll = Lu,

and we skip the second step of refineWord.

Widthwise refinement. For two sets of abstract states S, T ⊆ 2Φ, we say that the pair
〈S, T 〉 induces an interesting frontier in C if (1) all the states in S × {1} are reachable
in C from sinit, and (2) all the states in T × {2} can reach an accepting state in C.
Interesting frontiers are interesting indeed: if there are two states a ∈ S and a′ ∈ T such
that a →may a

′ but a �→must a
′, then the transition from 〈a, 1〉 to 〈a′, 2〉 participates

in an accepting run of C. We refer to a pair 〈a, a′〉 as above as a bridge in 〈S, T 〉.
Widthwise refinement is based on a calculation of interesting frontiers and elimina-

tion of their bridges. The refinement procedure refineCut calculates frontiers that
are not only interesting but also constitute a cut in the graph of C: every accepting run
of C that ends in the second copy must contain a bridge. Thus, as C is deterministic,
elimination of bridges necessarily reduces the language of C.

Consider a set of abstract states P ⊆ 2Φ. We define post1C(P) as the set of states in
the first copy of C that have incoming edges from states in P . Formally, post1P (S) =
{a′ : there exists a ∈ P such that 〈a′, 1〉 ∈ δC(〈a, 1〉, a′)}. We define pre2C(P) as
the set of states in the second copy of C that have outgoing edges into states in P .
Formally, pre2C(P) = {a : there exists a′ ∈ P such that 〈a′, 2〉 ∈ δC(〈a, 2〉, a′}.
The procedure refineCut, described in Figure 2, starts with the interesting frontier
〈S0A, �ϕ�must〉 (note that indeed, all states in S0A × {1} are reachable from the initial
state of C, and all the states in �ϕ�must × {2} are accepting in C), and iteratively apply
post1C and pre2C on the sets found reachable so far. The sets can be maintained by
BDDs and their update is symbolic. The termination of refineCut is determined
by the user. In the description below we guard the iterations by a Boolean flag cont
that the user may update in the update(cont) procedure. Several updates are possible:

An Abstraction-Refinement Framework for Trigger Querying 275

Procedure refineCut;
Input: a set of predicates Φ
Output: a set of predicates Φ′

Φ′ ← Φ ; S ← S0A ; T ← �ϕ�must ;
while cont do

S ← post1C(S) ∪ S;
T ← pre2C(T) ∪ T ;
update(cont);

end
B ← (S × T) ∩ (→may \ →must) ;
Φ′ ←refine(B,Φ);

Fig. 2. The symbolic refineCut procedure

the procedure can run for a bounded number of iterations (which may be a parameter
to the procedure), until a fixed-point is reached (which guarantees that C(Φ′) accepts
only must computations, and is therefore typically too good), or until a desired number
of bridges is accumulated. The procedure also uses the procedure refine, which, as
described above, splits the states in the sources of bridges so that they are no longer
bridges.

Note that refineCut is similar to step one of refineWord in that it only refines
paths that correspond to words in L(C). It does not refine the accepting states like step
two of refineWord (that is, such states may be refined as a result of moving to Φ′,
but they do not play a role in deciding which predicates to add).

Hybrid refinement Recall that lengthwise refinement clings to the transitions C tra-
verses when a single word is read. Dually, widthwise refinement clings to a cut in C
that contains a single transition in a run of many accepted words. Hybrid refinement
combines the two approaches by clinging to a language of words.

Hybrid refinement gets from the user a regular expression r over 2Φ of words he
wants the approximating languages to be informative about. As with lengthwise refine-
ment, the input can also be given as an expression over 2P , in which case we replace
c ∈ 2P by abs(c). The procedure refineLanguage then constructs a nondeter-
ministic automaton A for L(r) and runs refineCut on the product of C with A.
Accordingly, the frontier and bridges are limited to words accepted by both C and A.

5 Variants of Trigger Querying

In this section we consider several variants of trigger querying and show that our frame-
work is robust and can handle them too. We start with the classical (non-triggered)
query-checking problem, where an abstraction-refinement framework is quite straight-
forward.

5.1 Query Checking

The input to the LTL query-checking problem is a model M over a set P of atomic
propositions and a queryϕ, where a query is an LTL formula in which some subformula

276 G. Avni and O. Kupferman

is the place-holder ? (e.g.,AG?). The solution to the query-checking problem, denoted
QC(M,ϕ), is the set of strongest propositional assertions overP that, when replace the
place-holder, result in a formula that is satisfied by M . We use ϕ[? ← θ] to denote that
formula obtained from ϕ by replacing ? by θ. So, θ ∈ QC(M,ϕ) iff M |= ϕ[? ← θ]
and for all propositional assertions ξ over P , if ξ → θ then M �|= ϕ[? ← ξ].

Note that we consider here queries in LTL. Adjusting the framework to branching
temporal logic is possible; it is more complicated, as it combines may and must transi-
tions, but the expected thing works, and we leave it out of the scope of our contribution.
In particular, for branching temporal logic, researchers have already found methods
to cope with the complexity of query checking [5,19]. On the other hand, known algo-
rithms for solving LTL query checking do not do much better than checking all possible
solutions. A nice exception, based on integer linear programming, is presented in [10],
but it works only on a subclass of queries.

Abstraction for query checking For two sets of propositional assertions Γ1 and Γ2, we
say that Γ1 ⊆̃ Γ2 if for every θ ∈ Γ1, there exists ξ ∈ Γ2 such that ξ → θ (possibly
ξ = θ). Thus, all the propositional formulas in Γ1 are implied by these in Γ2. In the
abstract query-checking problem, we are given a concrete Kripke structure MC , a set
of predicates Φ, and an LTL query ϕ over Φ. The goal is to find two sets, Γl and Γu, of
propositional assertions over Φ that under- and over-approximate the set of solutions.
Formally, Γl ⊆̃ QC(MC , ϕ) ⊆̃ Γu.

As we show below, the straightforward thing to do, namely to reason about the over-
and under-approximations of MC , work. Formally, let Mmay

A = 〈Φ, 2Φ, S0A ,→may〉
and Mmust

A = 〈Φ, 2Φ, S0A ,→must〉. Then,

Theorem 3. QC(Mmay
A , ϕ) ⊆̃ QC(MC , ϕ) ⊆̃ QC(Mmust

A , ϕ).

Refinement for query checking Let Γl = QC(Mmay
A , ϕ) and Γu = QC(Mmust

A , ϕ).
As is the case with refinement for trigger querying, the goal of refinement is to decrease
Γu \ Γl. The refinement is based on a propositional assertion θ over Φ such that θ ∈
Γu \ Γl. We can choose θ arbitrarily, but typically the user provides assertions he finds
interesting.

Given a formula θ ∈ Γu \ Γl, there is ξ ∈ Γu such that ξ → θ. Since ξ /∈ Γl, it
follows that Mmay

A �|= ϕ[? ← ξ]. Accordingly, refinement is similar to the one in CE-
GAR, which examines the counterexample for the satisfaction of ϕ[? ← ξ] in Mmay

A .
Unlike CEGAR, here we refine even when the counterexample is not spurious. Indeed,
predicates need to be added in order to split states along the counterexample so that
the corresponding concrete computation would match a must computation in the ab-
straction. The process can continue until Γl = QC(MC , ϕ) = Γu, but is typically
terminated earlier, when the gap between Γl and Γu is of less interest.

5.2 Constrained Trigger Querying

In this variant, the input to trigger querying contains also a regular expression r over 2P ,
and the set of solutions is restricted to ones in L(r). Let Cc = Lc∩L(r) be the solution
to the trigger querying with respect to the concrete structure. Given a set Φ of predicates,

An Abstraction-Refinement Framework for Trigger Querying 277

our goal is to return two sets of abstract computations that approximate Cc from below
and above. Let abs(r) = {abs(w) : w ∈ L(r)} and abs(r) = {abs(w) : w �∈ L(r)}.
The lower and upper bounds can now be obtained by restricting Ll and Lu according
to r. Formally, let Cl = Ll \ abs(r) and Cu = Lu ∩ abs(r).
Theorem 4. Cl ⊆MC Cc ⊆ Cu.

We start the refinement by refining Ll and Lu. We use the algorithms described in
the previous sections. In particular, we suggest to use refineLanguage with the
input language L(r). Note that it is possible for τ ∈ Ll to have w,w′ ∈ conc(τ) with
w ∈ L(r) but w′ /∈ L(r). Such computations τ are in Cu \ Cl. Let τ = a1, . . . , an ∈
Ll∩ (Cu \Cl). We continue the refinement according to the regular expression r. Since
τ is a must computation, there must be at least two concrete computations w,w′ ∈
conc(τ) such that w ∈ L(r) and w′ /∈ L(r). We find the first index 1 ≤ i such that
wi �= w′

i. We add a predicate that splits the abstract state ai so that wi and w′
i are

mapped to different abstract states. We continue until split(τ, Φ′) ∈ Cl.

5.3 Necessary Conditions

Trigger querying study sufficient conditions for ϕ to be triggered: if M |= w �→ ϕ,
then after executing w, the suffix must satisfy ϕ. A dual problem is the one of finding
necessary conditions for ϕ to hold. For a Kripke structureM and an LTL formulaϕ, the
necessary condition forϕ inM , denotedNC(M,ϕ), is a set of finite computations such
that for every π ∈ L(M), if πn |= ϕ then π[1..n] ∈ NC(M,ϕ). We requireNC(M,ϕ)
to be minimal. Thus, if w ∈ NC(M,ϕ) then there is a computation π ∈ L(M) such
that π|w| |= ϕ and π[1, . . . , |w|] = w.

It is shown in [21] that the problem of finding NC(M,ϕ) can be solved in nonde-
terministic logarithmic space. Still, as in LTL model checking, abstraction would be of
great help in coping with large state spaces, and as with trigger querying, we are looking
for languages that approximate NC(M,ϕ) from above and below. As we show below,
such languages can be obtained by reasoning about the may and must abstraction ofM .

Theorem 5. NC(Mmust
A , ϕ) ⊆MC NC(MC , ϕ) ⊆ NC(Mmay

A , ϕ).

The refinement algorithm for necessary conditions is similar to the one used in query
checking: given τ ∈ Nu \ Nl, the algorithm refines both the computation τ (in case it
is a may but not must computation) and the last state in it (in case it must-satisfies but
does not may-satisfy ϕ).

6 Discussion

We described an abstraction-refinement framework for trigger querying. Beyond mak-
ing trigger-querying and its variants feasible in practice, we find the framework inter-
esting from a theoretical point of view as it involves several conceptual differences from
CEGAR, and thus involves new general ideas about abstraction and refinement:

278 G. Avni and O. Kupferman

1. In CEGAR, the goal is to find a solution to a binary query: does the system sat-
isfy the specification. Here, we sought a solution to a query that is not binary: we
searched for the languageLc, and we approximatedLc from both above and below.
Consequently, the lack of information in the abstraction is reflected in the distance
between the approximating languages, and this distance can serve the user in the
refinement process. Furthermore, termination of the procedure is determined by the
user, when he finds the approximation satisfying.

2. In CEGAR, one needs to over-approximate the transitions of the system in order
to reason about universal properties and to under-approximate them in order to
reason about existential ones. For specification formalisms with both universal and
existential path quantifiers, CEGAR needs both may and must transitions [23], and
it is common to use a three-valued semantics in such cases [16]. Trigger querying
does not have a universal or existential polarity, and both types of approximations
are needed. However, the three-value semantics is refined to a precise measure of
the lack of information, by means of |Lu \ Ll|.

3. In CEGAR, we have to use the model-checking algorithm in order to generate coun-
terexamples, some of which may be spurious. The set of spurious counterexamples
in CEGAR corresponds to the set Lu\Ll in our setting. Unlike the case of CEGAR,
here it was possible to model this set easily by means of the automaton C, and it was
therefore possible to base the refinement process on C. In particular, it enabled both
lengthwise and widthwise refinement, and the fact the set of “counterexamples” is
regular enabled a symbolic refinement procedure.

These ideas are relevant and could be helpful in several variants of CEGAR: in model
checking of quantitative specifications, where the query is not binary [7], in a CEGAR
method for μ-calculus, where formulas need not have a universal or existential polarity
[18], in attempts to refine the three-valued semantics [3], and in algorithms that gather
batches of counterexamples before refining [14,15].

References

1. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The forSpec temporal logic: A
new temporal property-specification logic. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 196–211. Springer, Heidelberg (2002)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,
Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: EuroSys (2006)

3. Ball, T., Kupferman, O., Yorsh, G.: Abstraction for falsification. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 67–81. Springer, Heidelberg (2005)

4. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic
sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367.
Springer, Heidelberg (2001)

5. Bruns, G., Godefroid, P.: Temporal logic query checking. In: Proc. 16th LICS, pp. 409–420.
IEEE Computer Society, Los Alamitos (2001)

6. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

An Abstraction-Refinement Framework for Trigger Querying 279

7. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Kaminski, M., Martini,
S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

8. Chechik, M., Gheorghiu, M., Gurfinkel, A.: Finding state solutions to temporal logic queries.
In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 273–292. Springer, Hei-
delberg (2007)

9. Chechik, M., Gurfinkel, A.: TLQSolver: A temporal logic query checker. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210–214. Springer, Heidelberg (2003)

10. Chockler, H., Gurfinkel, A., Strichman, O.: Variants of LTL query checking. In: Raz, O. (ed.)
HVC 2010. LNCS, vol. 6504, pp. 76–92. Springer, Heidelberg (2010)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)

12. Clarke, E.M., Gupta, A., Strichman, O.: Sat-based counterexample-guided abstraction refine-
ment. IEEE Trans. on CAD of Integrated Circuits and Systems 23(7), 1113–1123 (2004)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In: Proc. 4th POPL, pp. 238–252.
ACM, New York (1977)

14. de Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. Inf. Com-
put. 208(6), 666–676 (2010)

15. Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.Y.: Multiple-counterexample
guided iterative abstraction refinement: An industrial evaluation. In: Garavel, H., Hatcliff, J.
(eds.) TACAS 2003. LNCS, vol. 2619, pp. 176–191. Springer, Heidelberg (2003)

16. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 137–150. Springer, Hei-
delberg (2002)

17. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional must program analysis:
unleashing the power of alternation. In: Proc. 37th POPL, pp. 43–56 (2010)

18. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the μ-calculus. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer, Heidelberg (2005)

19. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool for model
exploration. IEEE Trans. Software Eng. 29(10), 898–914 (2003)

20. Kühne, U., Große, D., Drechsler, R.: Property analysis and design understanding. In: DATE,
pp. 1246–1249 (2009)

21. Kupferman, O., Lustig, Y.: What triggers a behavior? In: Proc. 7th Int. Conf. on Formal
Methods in Computer-Aided Design, pp. 146–153. IEEE Computer Society, Los Alamitos
(2007)

22. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Press,
Princeton (1994)

23. Larsen, K.G., Thomsen, G.B.: A modal process logic. In: Proc. 3rd LICS (1988)
24. Lo, D., Maoz, S.: Mining scenario-based triggers and effects. In: Proc. 23rd ASE, pp. 109–

118 (2008)
25. Samer, M., Veith, H.: Validity of CTL queries revisited. In: Baaz, M., Makowsky, J.A. (eds.)

CSL 2003. LNCS, vol. 2803, pp. 470–483. Springer, Heidelberg (2003)
26. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.

Springer, Heidelberg (2005)

Bound Analysis of Imperative Programs with

the Size-Change Abstraction

Florian Zuleger1, Sumit Gulwani2, Moritz Sinn1, and Helmut Veith1,�

1 TU Wien,
{zuleger,sinn,veith}@forsyte.at

2 Microsoft Research,
sumitg@microsoft.com

Abstract. The size-change abstraction (SCA) is an important program
abstraction for termination analysis, which has been successfully imple-
mented in many tools for functional and logic programs. In this paper,
we demonstrate that SCA is also a highly effective abstract domain for
the bound analysis of imperative programs.

We have implemented a bound analysis tool based on SCA for im-
perative programs. We abstract programs in a pathwise and context de-
pendent manner, which enables our tool to analyze real-world programs
effectively. Our work shows that SCA captures many of the essential
ideas of previous termination and bound analysis and goes beyond in a
conceptually simpler framework.

1 Introduction

Computing symbolic bounds for the resource consumption of imperative pro-
grams is an active area of research [15,14,13,12,11,9]. Most questions about re-
source bounds can be reduced to counting the number of visits to a certain
program location [15]. Our research is motivated by the following technical chal-
lenges:
(A) Bounds are often complex non-linear arithmetic expressions built from
+, ∗,max etc. Therefore, abstract domains based on linear invariants (e.g. in-
tervals, octagons, polyhedra) are not directly applicable for bound computation.
(B) The proof of a given bound often requires disjunctive invariants that can
express loop exit conditions, phases, and flags which affect program behav-
ior. Although recent research made progress on computing disjunctive invari-
ants [15,13,23,7,4,25,10], this is still a research challenge. (Note that the domains
mentioned in (A) are conjunctive.)
(C) It is difficult to predict a bound in terms of a template with parameters
because the search space for suitable bounds is huge. Moreover the search space
cannot be reduced by compositional reasoning because bounds are global pro-
gram properties.
� Research supported by the FWF research network RiSE, the WWTF grant PRO-

SEED and Microsoft Research through a PhD Scholarship.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 280–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Bound Analysis of Imperative Programs with the Size-Change Abstraction 281

(D) It is not clear how to exploit the loop structure to achieve compositionality in
the analysis for bound computation. This is in contrast to automatic termination
analysis where the cutpoint technique [7,4] is used standardly.

In this paper we demonstrate that the size-change abstraction (SCA) by Lee
et al. [20,3] is the right abstract domain to address these challenges. SCA is a
predicate abstraction domain that consists of (in)equality constraints between
integer-valued variables and boolean combinations thereof in disjunctive normal
form (DNF).

SCA is well-known to be an attractive abstract domain: First, SCA is rich
enough to capture the progress of many real-life programs. It has been success-
fully employed for automatic termination proofs of recursive functions in func-
tional and declarative languages, and is implemented in widely used systems
such as ACL2, Isabelle etc. [21,17]. Second, SCA is simple enough to achieve a
good trade-off between expressiveness and complexity. For example, SCA ter-
mination is decidable and ranking functions can be extracted on terminating
instances in PSPACE [3]. The simplicity of SCA sets it apart from other disjunc-
tive abstract domains used for termination/bounds such as transition predicate
abstraction [24] and powerset abstract domains [15,4].

Our method starts from the observation that progress in most software de-
pends on the linear change of integer-valued functions on the program state (e.g.,
counter variables, size of lists, height of trees, etc.), which we call norms. The
vast majority of non-linear bounds in real-life programs stems from two sources
– nested loops and loop phases – and not from inherent non-linear behavior as in
numeric algorithms. For most bounds, we have therefore the potential to exploit
the nesting structure of the loops, and compose global bounds from bounds on
norms. Upper bounds for norms typically consist of simple facts such as size
comparisons between variables and can be computed by classical conjunctive
domains. SCA is the key to convert this observation into an efficient analysis:
(1) Due to its built-in disjunctiveness and the transitivity of the order relations,
SCA is closed under taking transitive hulls, and transitive hulls can be efficiently
computed. We will use this for summarizing inner loops.
(2) We use SCA to compose global bounds from bounds on the norms. To
extract norms from the program, we only need to consider small program parts.
After the (local) extraction we have to consider only the size-change-abstracted
program for bound computation.
(3) SCA is the natural abstract domain in connection with two program trans-
formations – pathwise analysis and contextualization – that make imperative
programs more amenable to bound analysis. Pathwise analysis is used for rea-
soning about complete program paths, where inner loops are overapproximated
by their transitive hulls. Contextualization adds path-sensitivity to the analysis
by checking which transitions can be executed subsequently. Both transforma-
tions make use of the progress in SMT solver technology to reason about the
long pieces of straight-line code given by program paths.
Summary of our Approach. To determine how often a location l of program P can
be visited, we proceed in two steps akin to [15]: First, we compute a disjunctive

282 F. Zuleger et al.

transition system T for l from P . Second, we use T to compute a bound on
the number of visits to l. For the first step we recursively compute transition
systems for nested loops and summarize them disjunctively by transitive hulls
computed with SCA. We enumerate all cycle-free paths from l back to l, and
derive a disjunctive transition system T from these paths and the summaries
of the inner loops using pathwise analysis. For the second step we exploit the
potential of SCA for automatic bound computation by first abstracting T using
norms extracted from the program and then computing bounds solely on the
abstraction. We use contextualization to increase the precision of the bound
computation. Our method thus clearly addresses the challenges (A) to (D)
discussed above. In particular, we make the following new contributions:

– We are the first to exploit SCA for bound analysis by using its ability of
composing global bounds from bounds on locally extracted norms and dis-
junctive reasoning. Our technical contributions are the first algorithm for
computing bounds with SCA (Algorithm 2) and the disjunctive summariza-
tion of inner loops with SCA (Algorithm 1).

– We are the first to describe how to apply SCA on imperative programs. Our
technical contributions are two program transformations: pathwise analysis
(Subsection 5.2), which exploits the looping structure of imperative pro-
grams, and contextualization (Subsection 6.1). These program transforma-
tions make imperative programs amenable to bound analysis by SCA.

– We obtain a competitive bound algorithm that captures the essential ideas of
earlier termination and bound analyses in a simpler framework. Since bound
analysis generalizes termination analysis, many of our methods are relevant
for termination. Our experimental section shows that we can handle a large
percentage of standard C programs. We give a detailed comparison with
related work on termination and bound analysis in the extended version of
this paper available on the website of the first author.

2 Examples

We use two examples to demonstrate the challenges in the automatic genera-
tion of transition systems and bound computation, and give an overview of our
approach. In the examples, we denote transition relations as expressions over
primed and unprimed state variables in the usual way.

Example 1: Transition System Generation. Let us consider the source
code of Example 1 together with its (simplified) CFG and transition relations
in Figure 1. Computing a bound for the header of the outer loop l1 exhibits
the following difficulties: The inner loop cannot be excluded in the analysis of
the outer loop (e.g. by the standard technique called slicing) as it modifies the
counter of the outer loop; this demonstrates the need for global reasoning in
bound analysis. Further one needs to distinguish whether the inner loop has
been skipped or executed at least one time as this determines whether j = 0
or j > 0. This exemplifies why we need disjunctive invariants for inner loops.

Bound Analysis of Imperative Programs with the Size-Change Abstraction 283

Example 1.
void main (int n){
int i = 0; int j;

l1 : while(i < n) {
i++; j := 0;

l2 : while((i < n) && ndet()){
i++; j++; }

if (j > 0)

i--; } }

begin

l1

l2

end

ρ0

ρ1

ρ2

ρ3 ρ4

ρ5

ρ0 ≡ i = 0
ρ1 ≡ i < n ∧ i′ = i+ 1 ∧ j′ = 0
ρ2 ≡ i < n ∧ i′ = i+1 ∧ j′ =j + 1
ρ3 ≡ j > 0 ∧ i′ = i− 1
ρ4 ≡ j ≤ 0
ρ5 ≡ i ≥ n

Fig. 1. Example 1 with its (simplified) CFG and transition relations

Moreover, the counter i may decrease, but this can only happen when i has
been increased by at least 2 before. This presents a difficulty to an automatic
analysis since the used abstract domains need to be precise enough to capture
such reasoning. In particular, a naive application of the size-change abstraction
is too imprecise, since it contains only inequalities.

Our Algorithm 1 computes a transition system for the outer loop with header
l1 as follows: The algorithm is based on the idea of enumerating all paths from
l1 back to l1 in order to derive a precise disjunctive transition system. However,
this enumeration is not possible as there are infinitely many such paths because
of the inner loop at l2. Therefore Algorithm 1 recursively computes a transition
system {i < n∧ i′ = i+ 1∧j′ = j + 1∧n′ = n} for the inner loop at l2, and then
summarizes the inner loop disjunctively by size-change abstracting its transition
system to {n− i > 0∧n′ − i′ < n− i∧ j < j′} (our analysis extracts the norms
n−i, j from the program using heuristics, cf. Section 7) and computing the reflex-
ive transitive hull {n′ − i′ = n− i ∧ j′ = j, n− i > 0 ∧ n′ − i′ < n− i ∧ j < j′}
in the abstract. (Note that we use sets of formulae to denote disjunctions of
formulae.) Then Algorithm 1 enumerates all cycle-free paths from l1 back to l1.
There are two such paths: π1 = l1

ρ1−→ l2
ρ3−→ l1 and π2 = l1

ρ1−→ l2
ρ4−→ l1. Algo-

rithm 1 inserts the reflexive transitive hull T of the inner loop on the paths π1, π2

at the header of the inner loop l2 and contracts the transition relations. This
results in the two transition relations {false, n− i− 1 > 0 ∧ n′ − i′ < n− i ∧
j′ > 0} for π1 (one for each disjunct of the summary of the inner loop), and
{n− i > 0 ∧ n′ − i′ = n− i− 1 ∧ j′ = 0, false} for π2. Note that for each path,
false indicates that one transition relation was detected to be unsatisfiable, e.g.
n− i− 1 > 0 ∧ n′ − i′ < n− i− 1 ∧ j′ > 0 ∧ j′ ≤ 0 in π2. Algorithm 1 returns
the satisfiable two transitions as a transition system T for the outer loop.

Our Algorithm 2 size-change abstracts T (resulting in {n− i > 0 ∧ n′ − i′ <
n− i ∧ j′ > 0, n− i > 0 ∧ n′ − i′ < n − i ∧ j′ >= 0}) and computes the bound
max(n, 0) from the abstraction. The difficult part in analyzing Example 1 is the
transition system generation, while computing a bound from T is easy.

Example 2: Bound Computation. Bound analysis is complicated when a
loop contains a finite state machine that controls its dynamics. Example 2, found
during our experiments on the cBench benchmark [1], presents such a loop.

284 F. Zuleger et al.

l3l2 l4 l1

l5 l6

ρ1ρ2

ρ1ρ2

ρ3

ρ3 ρ4

ρ4

ρ5 ρ6

ρ5

ρ6

The size-change abstractions of the transition
relations:

ρ1: l > 0 ∧ s′ > s ∧ s′ ≤ 255 ∧ l′ = l
ρ2: l > 0 ∧ s′ < s ∧ s′ ≥ 0 ∧ l′ = l
ρ3 and ρ5: l > 0 ∧ l′ < l ∧ s′ > s ∧ s′ ≤ 255
ρ4 and ρ6: l > 0 ∧ l′ < l ∧ s′ < s ∧ s′ ≥ 0

Fig. 2. The CFG obtained from contextualizing the transition system of Example 2
(left) and the size-change abstractions of the transition relations (right)

Example 2. // cBench/consumer_lame/src/quantize-pvt.c

int bin_search_StepSize2 (int r, int s) {

static int c = 4; int n; int f = 0; int d = 0;

do {

n = nondet();

if (c == 1) break;

if (f) c /= 2;

if (n > r) {

if (d == 1 && !f) {f = 1; c /= 2; }

d = 2; s += c;

if (s > 255) break; }

else if (n < r) {

if (d == 2 && !f) {f = 1; c /= 2; }

d = 1; s -= c;

if (s < 0) break; }

else break; }

while (1); }

The loop has three different phases: in its first iteration it assigns 1 or 2 to d,
then either increases or decreases s until it sets f to true; then it divides c by 2
until the loop is exited. Note that disjunctive reasoning is crucial to distinguish
the phases!

Our method first uses a standard invariant analysis (such as the octagon anal-
ysis) to compute the invariant c ≥ 1, which is valid throughout the execution of
the loop. Then Algorithm 1 obtains a transition system from the loop by col-
lecting all paths from loop header back to the loop header. Omitting transitions
that belong to infeasible paths we obtain six transitions:
ρ1 ≡ c ≥ 1 ∧ ¬f ∧ d �= 1 ∧ d′ = 2 ∧ s′ = s+ c ∧ s′ ≤ 255 ∧ c′ = c ∧ f ′ = f

ρ2 ≡ c ≥ 1 ∧ ¬f ∧ d �= 2 ∧ d′ = 1 ∧ s′ = s− c ∧ s′ ≥ 0 ∧ c′ = c ∧ f ′ = f

ρ3 ≡ c ≥ 1 ∧ ¬f ∧ d = 1 ∧ f ′ ∧ c′ = c/2 ∧ d′ = 2 ∧ s′ = s+ c′ ∧ s′ ≤ 255

ρ4 ≡ c ≥ 1 ∧ ¬f ∧ d = 2 ∧ f ′ ∧ c′ = c/2 ∧ d′ = 1 ∧ s′ = s− c′ ∧ s′ ≥ 0

ρ5 ≡ c ≥ 1 ∧ f ∧ c′ = c/2 ∧ d′ = 2 ∧ s′ = s+ c′ ∧ s′ ≤ 255 ∧ f ′ = f

ρ6 ≡ c ≥ 1 ∧ f ∧ c′ = c/2 ∧ d′ = 1 ∧ s′ = s− c′ ∧ s′ ≥ 0 ∧ f ′ = f

Our bound analysis reasons about this transition system automatically by
applying the program transformation called contextualization, which determines
in which context transitions can be executed, and size-change abstracting the

Bound Analysis of Imperative Programs with the Size-Change Abstraction 285

transitions. By our heuristics (cf. Section 7) we consider s and the logarithm of
c (which we abbreviate by l) as program norms.
Figure 2 shows the CFG obtained from contextualizing the transition system of
Example 2 on the left. The CFG vertices carry the information which transition
is executed next. The CFG edges are labeled by the transitions of the transition
system, where presence of edges indicates that, e.g., l4 can be directly executed
after l1, and absence of an arc from l4 to l1 means that this transition is infea-
sible. The CFG shows that the transitions cannot interleave in arbitrary order;
particularly useful are the strongly-connected components (SCCs) of the CFG.
Our bound Algorithm 2 exploits the SCC decomposition. It computes bounds for
every SCC separately using the size-change abstracted transitions (cf. Figure 2
on the right) and composes them to the overall bound max(255, s)+ 3, which is
precise.

We point out how the above described approach enables automatic bound
analysis by SCA. Note that the variables d and f do not appear in the abstracted
transitions. It is sufficient for our analysis to work with the CFG obtained from
contextualization because the loop behavior of Example 2, which is controlled
by d and f , has been encoded into the CFG. This has the advantage that less
variables have to be considered in the actual bound analysis. Further note that
the CFG decomposition gives us compositionality in bound analysis. Our analysis
is able to combine the bounds of the SCCs to an (fairly complicated) overall
bound using the operators max and + by following the structure of the CFG.

3 Program Model and Size-Change Abstraction

Sets and Relations. Let A be a set. The concatenation of two relations
B1, B2 ∈ 2A×A is the relation B1 ◦B2 = {(e1, e3) | ∃e2.(e1, e2) ∈ B1 ∧ (e2, e3) ∈
B2}. Id = {(e, e) | e ∈ A} is the identity relation over A. Let B ∈ 2A×A be a rela-
tion. We inductively define the k-fold exponentiation of B by Bk = Bk−1◦B and
B0 = Id. B+ =

⋃
k≥1 B

k resp. B∗ =
⋃
k≥0 B

k is the transitive- resp. reflexive
transitive hull of B. We lift the concatenation operator ◦ to sets of relations by
defining C1◦C2 = {B1◦B2 | B1 ∈ C1, B2 ∈ C2} for sets of relations C1, C2 ⊆ 2A×A.
We set C0 = {Id}; Ck, C+ etc. are defined analogously.

Program Model. We introduce a simple program model for sequential impera-
tive programs without procedures. Our definition models explicitly the essential
features of imperative programs, namely branching and looping. In Section 5 we
will explain how to exploit the graph structure of programs in our analysis algo-
rithm. We leave the extension to concurrent and recursive programs for future
work.

Definition 1 (Transition Relations / Invariants). Let Σ be a set of states.
The set of transition relations Γ = 2Σ×Σ is the set of relations over Σ. A
transition set T ⊆ Γ is a finite set of transition relations. Let ρ ∈ Γ be a
transition relation. T is a transition system for ρ, if ρ ⊆ ⋃ T . T is a transition
invariant for ρ, if ρ∗ ⊆ ⋃ T .

286 F. Zuleger et al.

Definition 2 (Program, Path, Trace, Termination). A program is a tuple
P = (L,E), where L is a finite set of locations, and E ⊆ L × Γ × L is a finite
set of transitions. We write l1

ρ−→ l2 to denote a transition (l1, ρ, l2).
A path of P is a sequence l0

ρ0−→ l1
ρ1−→ · · · with li

ρi−→ li+1 ∈ E for all i.
Let π = l0

ρ0−→ l1
ρ1−→ l2 · · · lk ρk−→ lk+1 be a finite path. π is cycle-free, if π does

not visit a location twice except for the end location, i.e., li �= lj for all 0 ≤ i <
j ≤ k. The contraction of π is the transition relation rel(π) = ρ0 ◦ ρ1 ◦ · · · ◦ ρk
obtained from concatenating all transition relations along π. Given a location
l, paths(P, l) is the set of all finite paths with start and end location l. A path
π ∈ paths(P, l) is simple, if all locations, except for the start and end location,
are different from l.

A trace of P is a sequence (l0, s0)
ρ0−→ (l1, s1)

ρ1−→ · · · such that l0
ρ0−→ l1

ρ1−→ · · ·
is a path of P , si ∈ Σ and (si, si+1) ∈ ρi for all i. P is terminating, if there is
no infinite trace of P .

Note that a cycle-free path π ∈ paths(P, l) is always simple. Further note
that our definition of programs allows to model branching and looping precisely
and naturally: imperative programs can usually be represented as CFGs whose
edges are labeled with assign and assume statements.

Definition 3 (Transition Relation of a Location). Let P = (L,E) be a
program and l ∈ L a location. The transition relation of l is the set P |l =⋃

simple π∈paths(P,l) rel(π).

3.1 Order Constraints

Let X be a set of variables. Given a variable x we denote by x′ its primed version.
We denote by X ′ the set {x′ | x ∈ X} of the primed variables of X . We denote
by � any element from {>,≥}.
Definition 4 (Order Constraint). An order constraint over X is an inequal-
ity x� y with x, y ∈ X.

Definition 5 (Valuation). The set of all valuations of X is the set ValX =
X → Z of all functions from X to the integers. Given a valuation σ ∈ ValX we
define its primed valuation as the function σ′ ∈ ValX′ with σ′(x′) = σ(x) for
all x ∈ X. Given two valuations σ1 ∈ ValX1 , σ2 ∈ ValX2 with X1 ∩X2 = ∅ we

define their union σ1 ∪ σ2 ∈ ValX1∪X2 by (σ1 ∪ σ2)(x) =
{
σ1(x) for x ∈ X1,
σ2(x) for x ∈ X2.

Definition 6 (Semantics). We define a semantic relation |= as follows: Let
σ ∈ ValX be a valuation. Given an order constraint x1 �x2 over X, σ |= x1 �x2

holds, if σ(x1) � σ(x2) holds in the structure of the integers (Z,≥). Given a set
O of order constraints over X, σ |= O holds, if σ |= o holds for all o ∈ O.

Bound Analysis of Imperative Programs with the Size-Change Abstraction 287

3.2 Size-Change Abstraction (SCA)

We are using integer-valued functions on the program states to measure progress
of a program. Such functions are called norms in the literature. Norms provide us
sizes of states that we can compare. We will use norms for abstracting programs.

Definition 7 (Norm). A norm n ∈ Σ → Z is a function that maps the states
to the integers.

We fix a finite set of norms N for the rest of this subsection, and describe
in Section 7 how to extract norms from programs automatically. Given a state
s ∈ Σ we define a valuation σs ∈ ValN by setting σs(n) = n(s).

We will now introduce SCA. Our terminology diverts from the seminal pa-
pers on SCA [20,3] because we focus on a logical rather than a graph-theoretic
representation. The set of norms N corresponds to the SCA “variables” in [20,3].

Definition 8 (Monotonicity Constraint, Size-change Relation / Set,
Concretization). The set of monotonicity constraints MCs is the set of all
order constraints over N ∪N ′. The set of size-change relations (SCRs) SCRs =
2MCs is the powerset of MCs. An SCR set S ⊆ SCRs is a set of SCRs. We
use the concretization function γ : SCRs → Γ to map an SCR T ∈ SCRs to a
transition relation γ(T) by defining γ(T) = {(s1, s2) ∈ Σ × Σ | σs1 ∪ σ′

s2 |= T }
as the set of all pairs of states such that the evaluation of the norms on these
states satisfy all the constraints of T . We lift the concretization function to SCR
sets by setting γ(S) = {γ(T) | T ∈ S} for an SCR set S.

Note that the abstract domain of SCRs has only finitely many elements,
namely 3(2|N |)2. Further note that an SCR set corresponds to a formula in DNF.

Definition 9 (Abstraction Function). The abstraction function α : Γ →
SCRs takes a transition relation ρ ∈ Γ and returns the greatest SCR containing
it, namely α(ρ) = {c ∈ MCs | ρ ⊆ γ(c)}. We lift the abstraction function to
transition sets by setting α(T) = {α(ρ) | ρ ∈ T } for a transition set T .

Implementation of the abstraction. α can be implemented by an SMT solver
under the assumption that the norms are provided as expressions and that the
transition relation is given as a formula such that the order constraints between
these expressions and the formula fall into a logic that the SMT solver can decide.

Using abstraction and concretization we can define concatenation of SCRs:

Definition 10 (Concatenation of SCRs). Given two SCRs T1, T2 ∈ SCRs,
we define T1 ◦ T2 to be the SCR α(γ(T1) ◦ γ(T2)). We lift the concatenation
operator ◦ to SCR sets by defining S1 ◦ S2 = {T1 ◦ T2 | T1 ∈ S1, T2 ∈ S2} for
SCR sets S1,S2 ∈ 2SCRs . S0 = {Id},Sk,S+,S∗ etc. are defined in the natural
way.

Concatenation of SCRs is conservative by definition, i.e., γ(T1 ◦T2) ⊇ γ(T1) ◦
γ(T2) and associative because of the transitivity of order relations. Concatena-
tion of SCRs can be effectively computed by a modified all-pairs-shortest-path

288 F. Zuleger et al.

algorithm (taking order relations as weights). Because the number of SCRs is
finite, the transitive hull is computable.

The following theorem can be directly shown from the definitions. We will use
it to summarize the transitive hull of loops disjunctively, cf. Section 5.

Theorem 1 (Soundness). Let ρ be a transition relation and T a transition
system for ρ. Then γ(α(T)∗) is a transition invariant for ρ.

4 Main Steps of our Analysis

Let P = (L,E) be a program and l ∈ L be a location for which we want to
compute a bound. Our analysis consists of four main steps:

1. Extract a set of norms N using heuristics (Section 7)
2. Compute global invariants by standard abstract domains
3. Compute T = TransSys(P, l) (Section 5)
4. Compute b = Bound(Contextualize(T)) (Section 6)

In Step 1 we extract a set of norms N using the heuristics described in Section 7.
The abstraction function α that we use in Steps 3 and 4 is parameterized by the
set of norms N . In Step 2 we compute global invariants by standard abstract
domains such as interval, octagon or polyhedra. As this step is standard, we
do not discuss it in this paper. In Step 3 we compute a transition system T =
TransSys(P, l) for P |l by Algorithm 1. In Step 4 we compute a bound b =
Bound(Contextualize(T)) for the number of visits to l, where we first use the
program transformation contextualization of Definition 11 to transform T into
a program from which we then compute a bound b by Algorithm 2.

Procedure: TransSys(P, l)
Input: a program P = (L,E), a location l ∈ L
Output: a transition system for P |l
Global: array summary for storing transition invariants

foreach (loop, header) ∈ NestedLoops(P, l) do
T := TransSys(loop, header);
hull := γ(α(T)∗);
summary[header] := hull ;

foreach cycle-free path π = l
ρ0−→ l1

ρ1−→ l2 · · · lk
ρk−→ l ∈ paths(P, l) do

Tπ := {ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id}) ◦ {ρ1}◦
ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · · ◦
ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk};

return
⋃

cycle-free path π∈paths(P,l) Tπ;

Algorithm 1. TransSys(P, l) computes a transition system for P |l

Bound Analysis of Imperative Programs with the Size-Change Abstraction 289

5 Computing Transition Systems

In this section we describe our algorithm for computing transition systems. We
first present the actual algorithm, and then discuss specific characteristics. The
function TransSys in Algorithm 1 takes as input a program P = (L,E) and a
location l ∈ L and computes a transition system for P |l, cf. Theorem 2 below.
The key ideas of Algorithm 1 are (1) to summarize inner loops disjunctively by
transition invariants computed with SCA, and (2) to enumerate all cycle-free
paths for pathwise analysis. Note that for loop summarization the algorithm is
recursively invoked. We give an example for the application of Algorithm 1 to
Example 1 in the extended version.

Loop Summarization. In the first foreach-loop, Algorithm 1 iterates over
all nested loops of P w.r.t. l. A loop loop of P is a nested loop w.r.t. l, if it
is strongly connected to l but does not contain l, and if there is no loop with
the same properties that strictly contains loop. Let loop be a nested loop of P
w.r.t. l and let header be its header. (We assume that the program is reducible,
see discussion below.) TransSys calls itself recursively to compute a transition
system T for loop|header .

In statement hull := γ(α(T)∗), α(T) size-change abstracts T to an SCR set,
α(T)∗ computes the transitive hull of this SCR set, and γ(α(T)∗) concretizes
the abstract transitive hull to a transition set, which is then assigned to hull .
Algorithm 1 stores hull in the array summary, which is a transition invariant for
loop|header by the soundness of SCA as stated in Theorem 1.

After the first foreach-loop, Algorithm 1 has summarized all inner loops, not
only the nested loops, because the recursive calls reaches all nesting levels. For
each inner loop loop with header header a transition invariant for loop|header
has been stored at summary[header]. Summaries of inner loops are visible to all
outer loops, because the array summary is a global variable.

Pathwise Analysis. In the second foreach-loop, Algorithm 1 iterates over all
cycle-free paths of P with start and end location l. Let π = l

ρ0−→ l1
ρ1−→ · · · lk ρk−→ l

be such a cycle-free path. The expression ITE(IsHeader(li), summary[li], {Id})
evaluates to summary[li] for each location li, if li is the header of an inner loop
loopi, and evaluates to the transition set {Id}, which contains only the identity
relation over the program states, else. Algorithm 1 computes the set Tπ = {ρ0}◦
ITE(IsHeader(l1), summary[l1],
{Id}) ◦ {ρ1} ◦ ITE(IsHeader(l2), summary[l2], {Id})
◦{ρ2}◦· · ·◦ITE(IsHeader(lk), summary[lk], {Id})◦{ρk}, which is an overapprox-
imation of the contraction of π, where the summaries of the inner loops loopi
are inserted at their headers li. The transition set Tπ overapproximates all paths
starting and ending in l that iterate arbitrarily often through inner loops along
π, because for every loop loopi the transition set summary[li] overapproximates
all paths starting and ending in li that iterate arbitrarily often through loopi (as
summary[li] is a transition invariant for loopi|li). Algorithm 1 returns the union⋃

cycle-free path π∈paths(P,l) Tπ of all those transition sets Tπ.

290 F. Zuleger et al.

Theorem 2. Algorithm 1 computes a transition system TransSys(P, l) for P |l.
Proof (Sketch). Let π′ ∈ paths(P, l) be a simple path. We obtain a cycle-free
path π ∈ paths(P, l) from π′ by deleting all iterations through inner loops of
(P, l) from π′. The transition set Tπ overapproximates all paths starting and
ending in l that iterate arbitrarily often through inner loops of (P, l) along π.
As π′ iterates through inner loops of (P, l) along π we have rel(π) ⊆ ⋃ Tπ.

Implementation. We use conjunctions of formulae to represent individual tran-
sitions. This allows us to implement the concatenation of transition relations by
conjoining their formulae and introducing existential quantifiers for the interme-
diate variables. We detect empty transition relations by asking an SMT solver
whether their corresponding formulae are satisfiable. We use these emptiness
checks at several points during the analysis to reduce the number of transition
relations.

Algorithm 1 may exponentially blow up in size because of the enumeration of
all cycle-free paths and the computation of transitive hulls of inner loops. We
observed in our experiments that by first extracting norms from the program
under scrutiny and then slicing the program w.r.t. these norms before continuing
with the analysis normally results into programs small enough for making our
analysis feasible.

Irreducible programs. Algorithm 1 refers to loop headers, and thus implicitly
assumes that loops are reducible. (Recall that in a reducible program each SCC
has a unique entry point called the header.) We have formulated Algorithm 1
in this way to make clear how it exploits the looping structure of imperative
programs. However, Algorithm 1 can be easily extended to irreducible loops by
a case distinction on the (potentially multiple) entry points of SCCs.

5.1 Disjunctiveness in Algorithm 1

Disjunctiveness is crucial for bound analysis. We have given two examples for
this fact in Section 2 and refer the reader for further examples to [15,4,23]. We
emphasize that our analysis can handle all examples of these publications. Our
analysis is disjunctive in two ways:

(1) We summarize inner loops disjunctively. Given a transition system T for
some inner loop loop, we want to summarize loop by a transition invariant.
The most precise transition invariant T ∗ = {Id} ∪ T ∪ T 2 ∪ T 3 ∪ · · · introduces
infinitely many disjunctions and is not computable in general. In contrast to this
the abstract transitive hull α(T)∗ = α({Id}) ∪ α(T) ∪ α(T)2 ∪ α(T)3 ∪ · · · has
only finitely many disjunctions and is effectively computable. This allows us to
overapproximate the infinite disjunction T ∗ by the finite disjunction γ(α(T)∗).

We underline that the need for disjunctive summaries of inner loops in the
bound analysis is a major motivation for SCA, as it allows us to compute dis-
junctive transitive hulls naturally, cf. definition and discussion in Section 3.2.

(2) We summarize local transition relations disjunctively. Given a program
P = (L,E) and location l ∈ L, we want to compute a transition system for P |l.

Bound Analysis of Imperative Programs with the Size-Change Abstraction 291

For a cycle-free path π ∈ paths(P, l) the transition set Tπ computed in Algo-
rithm 1 overapproximates all simple paths in paths(P, l) that iterate through
inner loops along π. As all Tπ are sets, the set union

⋃
cycle-free path π∈paths(P,l) Tπ

is a disjunctive summarization of all Tπ that keeps the information from different
paths separated. This is important for our analysis which relies on the observa-
tion that monotonic changes of norms can be observed along single paths from
loop header back to the header.

5.2 Pathwise Analysis in Algorithm 1

It is well-known that analyzing large program parts jointly improves the pre-
cision of static analyses, e.g. [6]. Owing to the progress in SMT solvers this
idea has recently seen renewed interested by static analyses such as abstract
interpretation [22] and software model checking [5], which use SMT solvers for
abstracting large blocks of straight-line code jointly to increase the precision of
the analysis.

We call the analyses of [22,5] and classical SCA [20,3] blockwise, because they
do joint abstraction only for loop-free program parts. In contrast, our pathwise
analysis abstracts complete paths at once: Algorithm 1 enumerates all cycle-free
paths from loop header to loop header and inserts summaries for inner loops on
these paths. These paths are then abstracted jointly in a subsequent loop sum-
marization or bound computation. In this way our pathwise analysis is strictly
more precise than blockwise analysis. We illustrate this issue on Example 1 for
SCA the extended version of this paper.

Parsers are a natural class of programs which illustrate the need for pathwise
analysis. In our experiments we observed that many parsers increase an index
while scanning the input stream and use lookahead to detect which token comes
next. As in Example 1, lookaheads may temporarily decrease the index. Pathwise
abstraction is crucial to reason about the program progress with SCA.

6 Bound Computation

Our bound computation consists of two steps. Step 1 is the program transfor-
mation contextualization which transforms a transition system into a program.
Step 2 is the bound algorithm which computes bounds from programs.

6.1 Contextualization

Contextualization is a program transformation by Manolios and Vroon [21], who
report on an impressive precision of their SCA-based termination analysis of
functional programs. Note that we do not use their terminology (e.g. “calling
context graphs”) in this paper. Our contribution lies in adopting contextualiza-
tion to imperative programs and in recognizing its relevance for bound analysis.

Definition 11 (Contextualization). Let T be a transition set. The contex-
tualization of T is the program P = (T , E), where E = {ρ ρ−→ ρ′ | ρ, ρ′ ∈
T and ρ ◦ ρ′ �= ∅}.

292 F. Zuleger et al.

Example 3.
void main (int x, int b){

while (0 < x < 255){

if (b) x = x + 1;

else x = x - 1; } }

ρ1 ≡ 0 < x < 255 ∧ b ∧ x′ = x+ 1 ∧ b′
ρ2 ≡ 0 < x < 255 ∧ ¬b ∧ x′ = x− 1 ∧ ¬b′

l1 l2

ρ1 ρ2

Fig. 3. Example 3 with its transition relations and CFG obtained from
contextualization

The contextualization of a transition system is a program in which every
location determines which transition is executed next; the program has an edge
between two locations only if the transitions of the locations can be executed
one after another.

Contextualization restricts the order in which the transitions of the tran-
sition system can be executed. Thus, contextualization encodes information
that could otherwise be deduced from the pre- and postconditions of transi-
tions directly into the CFG. Since pathwise analysis contracts whole loop paths
into single transitions, contextualization is particularly important after path-
wise analysis: our subsequent bound algorithm does not need to compute the
pre- and postcondition of the contracted loop paths but only needs to exploit
the structure of the CFGs for determining in which order the loop paths can be
executed.

We illustrate contextualization on Example 3. The program has two paths,
and gives rise to the transition system T = {ρ1, ρ2}. Keeping track of the boolean
variable b is important for bound analysis: Without reference to b not even the
termination of main can be proven. In Figure 3 (right) we show the contextu-
alization of T . Note that contextualization has encoded information about the
variable b into the CFG in such a way that we do not need to keep track of
the variable b anymore. Thus, contextualization releases us from taking the pre-
condition b resp. ¬b and the postcondition b′ resp. ¬b′ into account for bound
analysis.

At the beginning we gave an application of contextualization on the sophisti-
cated loop in Example 2, where contextualization uncovers the control structure
of the finite state machine encoded into the loop. An application of contextual-
ization to the flagship example of a recent publication [13] can be found in the
extended version of this paper.

Note that in our definition of contextualization we only consider the consis-
tency of two consecutive transitions. It would also have been possible to consider
three or more consecutive transitions. This would result in increased precision.
However, we found two transitions to be sufficient in practice.

Implementation. We implement contextualization by encoding the concatenation
ρ1 ◦ ρ2 of two transitions ρ1, ρ2 into a logical formula and asking an SMT solver
whether this formula is satisfiable. Note that such a check is very simple to
implement in comparison to the explicit computation of pre- and postconditions.

Bound Analysis of Imperative Programs with the Size-Change Abstraction 293

Procedure: Bound(P)
Input: a program P = (L,E)
Output: a bound b on the length of the traces of P
SCCs := computeSCCs(P); b := 0;
while SCCs �= ∅ do

SCCsOnLevel := ∅;
forall SCC ∈ SCCs s.t. no SCC ′ ∈ SCCs can reach SCC do

r := BndSCC(SCC);
Let r ≤ bSCC be a global invariant;
SCCsOnLevel := SCCsOnLevel ∪ {SCC};

b := b + maxSCC∈SCCsOnLevel bSCC ;
SCCs := SCCs \ SCCsOnLevel ;

return b;

Algorithm 2. Bound composes the bounds of the SCCs to an overall bound

6.2 Bound Algorithm

Our bound algorithm reduces the task of bound computation to the computation
of local bounds and the composition of these local bounds to an overall bound.
To this end, we exploit the structure of the CFGs obtained from contextualiza-
tion: We partition the CFG of programs into its strongly connected components
(SCCs) (SCCs are maximal strongly connected subgraphs). For each SCC, we
compute a bound by Algorithm 3, and then compose these bounds to an overall
bound by Algorithm 2.
Algorithm 2 arranges the SCCs of the CFG into levels: The first level consists
of the SCCs that do not have incoming edges, the second level consists of the
SCCs that can be reached from the first level, etc. For each level, Algorithm 2
calls Algorithm 3 to compute bounds for the SCCs of this level. Let SCC be
an SCC of some level and let r := BndSCC(SCC) be the bound returned by
Algorithm 3 on SCC . r is a (local) bound of SCC that may contain variables of
P that are changed during the execution of P . Algorithm 2 uses global invariants
(e.g. interval, octagon or polyhedra) in order to obtain a bound bSCC on r in
terms of the initial values of P . The SCCs of one level are collected in the set
SCCsOnLevel . For each level, Algorithm 2 composes the bounds bSCC of all
SCCs SCC ∈ SCCsOnLevel to a maximum expression. Algorithm 2 sums up
the bounds of all levels for obtaining an overall bound.

Algorithm 3 computes the bound of a strongly-connected program P . First
Alg. 3 checks if P = (L,E) is trivial, i.e., E = ∅, and returns 1, if this is the case.
Next Alg. 3 collects all norms in the set NonIncr that either decrease or stay
equal on all transitions. Subsequently Alg. 3 checks for every norm n ∈ NonIncr
and transition l1

ρ−→ l2 ∈ E, if n is bounded from below by zero and decreases
on ρ. If this is the case, Alg. 3 adds max(n, 0) to the set DecrBnded and l1

ρ−→ l2
to BndedEdgs . Note that the transitions included in the set BndedEdgs can
only be executed as long as their associated norms are greater than zero. Every
transition in BndedEdgs decreases an expression in DecrBnded when it is taken.

294 F. Zuleger et al.

Procedure: BndSCC(P)
Input: strongly-connected program P = (L,E)
Output: a bound b on the length of the traces of P
if E = ∅ then return 1;
NonIncr := ∅; DecrBnded := ∅; BndedEdgs := ∅;
foreach n ∈ N do

if ∀ l1
ρ−→ l2 ∈ E n ≥ n′ ∈ α(ρ) then

NonIncr := NonIncr ∪ {n};

foreach l1
ρ−→ l2 ∈ E, n ∈ NonIncr do

if n ≥ 0, n > n′ ∈ α(ρ) then
DecrBnded := DecrBnded ∪ {max(n, 0)};
BndedEdgs := BndedEdgs ∪ {l1

ρ−→ l2};

if BndedEdgs = ∅ then fail with “there is no bound for P”;
b = Bound((L,E \ BndedEdgs));
return ((

∑
DecrBnded) + 1) · b;

Algorithm 3. BndSCC computes a bound for a single SCC

As the expressions in DecrBnded are never increased, the sum of all expressions
in DecrBnded is a bound on how often the transitions in BndedEdgs can be
taken. If DecrBnded is empty, Alg. 2 fails, because the absence of infinite cycles
could not be proven. Otherwise we recursively call Alg. 2 on (L,E \BndedEdgs)
for a bound b on this subgraph. The subgraph can at most be entered as often
as the transitions in BndedEdgs can be taken plus one (when it is entered first).
Thus, ((

∑
DecrBnded) + 1) · b is an upper bound for P .

Role of SCA in our Bound Analysis. Our bound analysis uses the size-change
abstractions of transitions to determine how a norm n changes according to
n ≥ n′, n > n′, n ≥ 0 in Alg. 3. We plan to incorporate inequalities between
different norms (like n ≥ m′) in future work to make our analysis more precise.
Termination analysis. If in Algorithm 2 the global invariant analysis cannot infer
an upper bound on some local bound, the algorithm fails to compute a bound,
but we can still compute a lexicographic ranking function, which is sufficient
to prove termination. The respective adjustment of our algorithm is straightfor-
ward.

We give an example for the application of Algorithm 2 to Example 2 and to
the flagship example of [13] in the extended version of this paper.

7 Heuristics for Extracting Norms

In this section we describe our heuristic for extracting norms from programs.
Let P = (L,E) be a program and l ∈ L be a location. We compute all cycle-
free paths from l back to l. For all arithmetic conditions x ≥ y appearing in
some of these paths we take x − y as a norm if x − y decreases on this path;
this can be checked by an SMT solver. Note that in such a case x − y is a
local ranking function for this program path. Similar patterns and checks can

Bound Analysis of Imperative Programs with the Size-Change Abstraction 295

be implemented for iterations over bitvectors and data structures. For a more
detailed discussion on how to extract the local ranking functions of a program
path we refer the reader to [15]. We also compute norms for inner loops on which
already extracted norms are control dependent and add them to the set of norms
until a fixed point is reached (similar to program slicing). We also include the
sum and the difference of two norms, if an inner loop affects two norms at the
same time. Further, we include the rounded logarithm of a norm, if the norm is
multiplied by a constant on some program path. In general any integer-valued
expression can be used as a program norm, if considered useful by some heuristic.
Clearly the analysis gets more precise the more norms are taken into account,
but also more costly.

8 Related Work

In recent work [16] it was shown that SCA [20,3] is an instance of the more
general technique of transition predicate abstraction (TPA) [24]. We argue that
precisely because of its limited expressiveness SCA is suitable for bound analysis:
abstracted programs are simple enough such that we can compute bounds for
them. While we describe how to make imperative programs amenable to bound
analysis by SCA, [16] is not concerned with practical issues. The Terminator
tool [7] uses TPA for constructing a Ramsey based termination argument [23].
This argument does not allow to construct ranking functions or bounds from ter-
mination proofs and requires reasoning about the transitive hulls of programs by
a software model checker, which is the most expensive step in the analysis. Our
light-weight static analysis uses SCA for composing global bounds from bounds
on norms and requires only the computation of transitive hulls of abstracted pro-
grams, which is markedly less expensive. Recent papers [18,26] propose to con-
struct abstract programs for which termination is obvious and which are closed
under transitivity in order to avoid analyzing transitive hulls of programs. Oth-
ers [15,4] propose to lift standard abstract domains (as octagon, polyhedra) to
powerset domains for the computation of disjunctive transition invariants, which
requires a difficult lifting of the widening operator. In contrast, SCA is a finite
powerset abstract domain, which can handle disjunction but does not require
widening. In earlier work [15] we stated ad hoc proof rules for computing global
bounds from local bounds of transitions. We generalize these rules by our bound
algorithm and identify SCA as a suitable abstraction for bound analysis. Our
contextualization technique is a sound generalization of the flawed enabledness
check of [15]. Like our paper, [13] proposes the use of program transformation for
bound analysis. While the algorithm of [13] is involved and parameterized by an
abstract domain, our program transformations are easy to implement and rely
only on an SMT solver. Despite its success in functional/declarative languages,
e.g. [21,17], SCA [20,3] has not yet been applied to imperative programs. We are
the first to describe such an analysis.

We give a detailed comparison with the cited approaches and others in the
extended version.

296 F. Zuleger et al.

9 Experiments

Our tool Loopus applies the methods of this paper to obtain upper bounds on
loop iterations. The tool employs the LLVM compiler framework and performs
its analysis on the LLVM intermediate representation [19]. We are using ideal
integers in our analysis instead of exact machine representation (bitvectors).
Our analysis operates on the SSA variables generated by the mem2reg pass and
handles memory references using optimistic assumptions. For logical reasoning
we use the yices SMT solver [8]. Our experiments were performed on an Intel
Xeon CPU (4 cores with 2.33 GHz) with 16 GB Ram. Loopus computed a
bound for 93% of the 262 loops of the Mälardalen WCET [2] benchmark (72%
for loops with more than one path) in less than 35 seconds total time. Loopus
computed a bound for 75% (65% for loops with more than one path) of the 4090
loops of the compiler optimization benchmark cBench [1] within a 1000 seconds
timeout for each loop (3923 loops in less than 4 seconds). 1102 of the 4090 loops
required the summarization of inner loops. Loopus computed a bound for 56%
of these loops. We give more details about our experiments and the cases in
which we failed in the extended version of this paper.

Acknowledgement. We would like to thank the anonymous reviewers for their
insightful comments.

References

1. http://ctuning.org/wiki/index.php/CTools:CBench

2. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

3. Ben-Amram, A.M.: Monotonicity constraints for termination in the integer domain.
Technical report (2011)

4. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.W.: Variance
analyses from invariance analyses. In: POPL, pp. 211–224 (2007)

5. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD, pp. 25–32 (2009)

6. Colby, C., Lee, P.: Trace-based program analysis. In: POPL, pp. 195–207 (1996)
7. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:

PLDI, pp. 415–426 (2006)
8. Dutertre, B., de Moura, L.: The yices smt solver. Technical report (2006)
9. Goldsmith, S., Aiken, A., Wilkerson, D.S.: Measuring empirical computational

complexity. In: ESEC/SIGSOFT FSE, pp. 395–404 (2007)
10. Gopan, D., Reps, T.W.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)
11. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression

abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

12. Gulwani, S.: SPEED: Symbolic complexity bound analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009)

http://ctuning.org/wiki/index.php/CTools:CBench
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Bound Analysis of Imperative Programs with the Size-Change Abstraction 297

13. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: PLDI, pp. 375–385 (2009)

14. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static esti-
mation of program computational complexity. In: POPL, pp. 127–139 (2009)

15. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI, pp. 292–304
(2010)

16. Heizmann, M., Jones, N.D., Podelski, A.: Size-change termination and transition
invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–50.
Springer, Heidelberg (2010)

17. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

18. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

19. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
& transformation. In: CGO 2004: Proceedings of the International Symposium on
Code Generation and Optimization, p. 75. IEEE Computer Society, Washington,
DC, USA (2004)

20. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

21. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

22. Monniaux, D.: Automatic modular abstractions for linear constraints. In: POPL,
pp. 140–151 (2009)

23. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41 (2004)
24. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-

tion. In: POPL, pp. 132–144 (2005)
25. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,

Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2008)

26. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-
tion and termination analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

Satisfiability Modulo Recursive Programs

Philippe Suter�, Ali Sinan Köksal, and Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract. We present a semi-decision procedure for checking satisfiabil-
ity of expressive correctness properties of recursive first-order functional
programs. In our approach, both properties and programs are expressed
in the same language, a subset of Scala. We implemented our proce-
dure and integrated it with the Z3 SMT solver and the Scala compiler.
Our procedure is sound for counterexamples and for proofs of terminat-
ing functions. It is terminating and thus complete for many important
classes of specifications, including all satisfiable formulas and all formulas
where recursive functions satisfy certain syntactic restrictions. Using our
system, Leon, we verified detailed correctness properties for functional
data structure implementations, as well as syntax tree manipulations.
We have found our system to be fast for both finding counterexamples
and finding correctness proofs, and to scale to larger programs than al-
ternative techniques.

1 Introduction

This paper explores the problem of reasoning about functional programs. We
reduce this problem to solving constraints representing precisely program se-
mantics. Our starting point are SMT solving tools [3, 10, 22], which proved to
be important drivers of advances in verification of software and hardware [2,12].
SMT solvers are efficient for deciding quantifier-free formulas in the language
of useful theories, such as linear integer arithmetic, algebraic data types, and
finite sets. Nonetheless, the operations available in the existing theories are lim-
ited, which prevents verification against more detailed specifications, as well as
automated discovery of more complex invariants needed for verification. To in-
crease the power of SMT-based reasoning, we extend the expressive power of
formulas and allow them to contain user-defined recursive functions. By insist-
ing on computable (as opposed to arbitrarily axiomatizable) functions, we obtain
familiarity to developers, as well as efficiency and completeness of reasoning.

Our technique extends SMT solvers with recursive function definitions, so it
can be used for all tasks where SMT solvers are used, including verification of
functional and imperative programs, synthesis, and test generation. In this paper
we introduce this technique and its concrete implementation as a verifier, named
Leon, for a functional subset of Scala [25]. Leon enables the developer to state the
properties as pure Scala functions and compile them using the standard Scala
� Philippe Suter was supported by the Swiss NSF Grant 200021 120433.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 298–315, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Satisfiability Modulo Recursive Programs 299

compiler. Developers never leave the familiar world of Scala; they use the ex-
isting library for dynamically checking executable contracts [24] to describe the
desired properties. As a result, run-time contract violations can be found using
testing, which would be difficult if there was a significant gap between annota-
tion and implementation language [32]. Because we can use other functions to
specify properties of the functions of interest, we obtain a very expressive speci-
fication language. We can use abstraction functions to specify abstract views of
data structures. We can naturally specify properties such as commutativity and
idempotence of operations, which require multiple function invocations and are
not easy to express in type systems and many other specification approaches.

Leon generates verification conditions that enforce 1) that the functions meet
their contracts, 2) that the preconditions at all function invocations are met,
and that 3) the pattern-matching is complete for given preconditions. Note that,
to define an external property of a set of functions, the developer can write a
boolean-valued test function that invokes the functions of interest, and state
a contract that the function always returns true. Leon searches in parallel for
proofs and counterexamples for all generated verification conditions.

Contributions. The core technical result of our paper is an algorithm for com-
bined proof and counterexample search, as well as a theoretical and experimental
analysis of its effectiveness. We summarize our contributions as follows:

– We introduce a procedure for satisfiability modulo computable functions,
which integrates DPLL(T) solving with unfolding of function definitions and
validation of candidate models, which returns a model or UNSAT.

– We establish that our satisfiability procedure is:
1. sound for models: every model it returns makes the formula true;
2. terminating for all formulas that are satisfiable;
3. sound for proofs: if it reports UNSAT, then there are no models;
4. terminating for all sufficiently surjective abstractions [28];
5. satisfying the above properties if the declared functions are always termi-

nating; more generally, UNSAT implies no “terminating models”, more-
over, each returned model leads to true.

– We describe the implementation of our system, named Leon, as a plugin for
the Scala compiler, which uses only existing constructs in Scala for specifying
functions and properties. The system integrates with the SMT solver Z3.

– We present our results in verifying over 60 functions manipulating integers,
sets, and algebraic data types, with detailed invariants of complex data struc-
tures such as red-black trees and amortized heap, and user code such as syn-
tax tree manipulation. Leon verified detailed correctness properties about
the content of data as well as completeness of pattern-matching expressions.

We have found that Leon was fast for finding both counterexamples and proofs for
verification conditions. We thus believe that the algorithm holds great promise
for practical verification of complex properties of computer systems. Leon and
all benchmarks are available from http://lara.epfl.ch.

http://lara.epfl.ch

300 P. Suter, A.S. Köksal, and V. Kuncak

2 Examples

We now illustrate how Leon can be used to prove interesting properties about
functional programs. Consider the following recursive datatype, written in Scala
syntax [25], that represent formulas of propositional logic:

sealed abstract class Formula
case class And(lhs: Formula, rhs: Formula) extends Formula
case class Or(lhs: Formula, rhs: Formula) extends Formula
case class Implies(lhs: Formula, rhs: Formula) extends Formula
case class Not(f: Formula) extends Formula
case class PropVar(id: Int) extends Formula

We can write a recursive function that simplifies a formula by rewriting impli-
cations into disjunctions as follows:

def simplify(f: Formula): Formula = (f match {
case And(lhs, rhs) ⇒ And(simplify(lhs), simplify(rhs))
case Or(lhs, rhs) ⇒ Or(simplify(lhs), simplify(rhs))
case Implies(lhs, rhs) ⇒ Or(Not(simplify(lhs)), simplify(rhs)) // note the replacement
case Not(f) ⇒ Not(simplify(f))
case PropVar() ⇒ f

}) ensuring(isSimplified())

Note that ensuring is an infix command in Scala, taking the entire function body
as the left argument and taking a lambda function as the right argument. The ex-
pression e ensuring p indicates that p(e) should hold for all values of the function
parameters. To denote an anonymous function, λx.B, in Scala we write x⇒B.
When there is only one occurrence of x in B, we can denote this occurrence by
and omit the binder, so both (+1) and x⇒x+1 denote the increment function.
We can write an executable function isSimplified that checks whether a given

formula contains an implication as a subformula, and use it in a contract. The
ensuring statement in the example is a postcondition written in Scala notation
[24], stating that the function isSimplified evaluates to true on the result. We
define isSimplified recursively as follows:

def isSimplified(f: Formula): Boolean = f match {
case And(lhs, rhs) ⇒ isSimplified(lhs) && isSimplified(rhs)
case Or(lhs, rhs) ⇒ isSimplified(lhs) && isSimplified(rhs)
case Implies(,) ⇒ false
case Not(f) ⇒ isSimplified(f)
case PropVar() ⇒ true

}

Note that a developer would also typically write such an executable specification
function for testing purposes. Using our procedure for satisfiability modulo com-
putable functions, Leon can prove that the postcondition of simplify is satisfied
for every input formula f.

Such subsets of values denoted by algebraic data types are known as re-
finement types [13]. Refinement types that are defined using functions such as
isSimplified are in fact sufficiently surjective abstractions [28], which implies that

Satisfiability Modulo Recursive Programs 301

our system is a decision procedure for such constraints (see Section 3.1). This is
confirmed with our experiments—our tool is predictably fast on such examples.

Suppose now that we wish to prove that simplifying a simplified formula
does not change it further. In other words, we want to prove that the property
simplify(simplify(f)) == simplify(f) holds for all formulas f. Because our program-
ming and specification languages are identical, we can write such universally
quantified statements as functions that return a boolean and whose postcondi-
tion is that they always return true. In this case, we would write:

def simplifyIsStable(f: Formula) : Boolean = {simplify(simplify(f)) == simplify(f)} holds

Because such specifications are common, we use the notation holds instead of the
more verbose postcondition stating that the returned result should be an iden-
tity function with boolean argument ensuring(res⇒res). Our verification system
proves this property instantly.

Another application for our technique is verifying that pattern-matching ex-
pressions are defined for all cases. Pattern-matching is a very powerful construct
commonly found in functional programming languages. Typically, evaluating a
pattern-matching expression on a value not covered by any case raises a runtime
error. Because checking that a match expression never fails is difficult in non-
trivial cases (for instance, in the presence of guards), compilers in general cannot
statically enforce this property. For instance, consider the following function that
computes the set of variables in a propositional logic formula, assuming that the
formula has been simplified:

def vars(f: Formula): Set[Int] = {
require(isSimplified(f))
f match {

case And(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)
case Or(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)
case Not(f) ⇒ vars(f)
case PropVar(i) ⇒ Set[Int](i) }}

Here ++ denotes the set union operation in Scala. Although it is implied by the
precondition that all cases are covered, the Scala compiler on this example will
issue the warning:

Logic.scala: warning: match is not exhaustive!
missing combination Implies

Previously, researchers have developed specialized analyses for checking such ex-
haustiveness properties [9, 11]. Our system generates verification conditions for
checking the exhaustiveness of all pattern-matching expressions, and then uses
the same procedure to prove or disprove them as for the other verification con-
ditions. It quickly proves that this particular example is exhaustive by unrolling
the definition of isSimplified sufficiently many times to conclude that t can never
be an Implies term. Note that our system will also prove that all recursive calls
to vars satisfy its precondition; it performs sound assume-guarantee reasoning.

Consider now the following function, that supposedly computes a variation of
the negation normal form of a formula f:

302 P. Suter, A.S. Köksal, and V. Kuncak

def nnf(formula: Formula): Formula = formula match {
case Not(Not(f)) ⇒ nnf(f)
case And(lhs, rhs) ⇒ And(nnf(lhs), nnf(rhs))
case Not(And(lhs, rhs)) ⇒ Or(nnf(Not(lhs)), nnf(Not(rhs)))
...
case Implies(lhs, rhs) ⇒ Implies(nnf(lhs), nnf(rhs))

}

From the supposed roles of the functions simplify and nnf, one could conjecture
that the operations are commutative. Because of the treatment of implications
in the above definition of nnf, though, this is not the case. We can disprove this
property by finding a counterexample to

def wrongCommutative(f: Formula) : Boolean = {
nnf(simplify(f)) == simplify(nnf(f))} holds

On this input, Leon reports

Error: Counter-example found:
f -> Implies(Not(And(PropVar(48), PropVar(47))),

And(PropVar(46), PropVar(45)))

A consequence of our algorithm is that Leon never reports false positives (see
Section 3.1). In this particular case, the counterexample clearly shows that there
is a problem with the treatment of implications whose left-hand side contains a
negation. Counterexamples such as this one are typically short and Leon finds
them quickly.

As a final example of the expressive power of our system, we consider the ques-
tion of showing that an implementation of a collection implements the proper
interface. Consider the implementation of a set as red-black trees. (We omit the
datatype definition in the interest of space.) To specify the operation on the trees
in terms of the set interface that they are supposed to implement, we define an
abstraction function that computes from a tree the set it represents:

def content(t : Tree) : Set[Int] = t match {
case Empty() ⇒ Set.empty
case Node(, l, v, r) ⇒ content(l) ++ Set(v) ++ content(r) }

Note that this is again a function one would write for testing purposes. The
specification of insertion using this abstraction becomes very natural, despite
the relative complexity of the operations:

def ins(x: Int, t: Tree): Tree = (t match {
case Empty() ⇒ Node(Red(),Empty(),x,Empty())
case Node(c,a,y,b) ⇒ if (x < y) balance(c, ins(x, a), y, b)

else if (x == y) Node(c,a,y,b)
else balance(c,a,y,ins(x, b)) }

}) ensuring (res⇒ content(res) == content(t) ++ Set(x))

We also wrote functions that check whether a tree is balanced and whether it
satisfies the coloring properties. We used these checks to specify insertion and
balancing operations. Leon proved all these properties of red-black tree opera-
tions. We present more such results in Section 5.

Satisfiability Modulo Recursive Programs 303

3 Our Satisfiability Procedure

In this section, we describe our algorithm for checking the satisfiability of for-
mulas modulo recursive functions. We start with a description of the supported
class of formulas. Let L be a base theory (logic) with the following properties:

– L is closed under propositional combination and supports boolean variables
– L supports uninterpreted function symbols
– there exists a complete decision procedure for L

Note that the logics supported by DPLL(T) SMT solvers naturally have these
properties.1

Let LΠ be the extension of L with interpreted function symbols defined in a
program Π . The interpretation is given by an expression in LΠ (the implemen-
tation). To facilitate proofs and the description of program invariants, functions
in Π can also be annotated with a pre- and postcondition. We denote the im-
plementation, pre- and postcondition of a function f in Π by implΠf , precΠf and
postΠf respectively. The free variables of these expressions are the arguments of f

denoted argsΠf , as well as, for the postcondition, a special variable ρ that denotes
the result of the computation.

def solve(φ, Π) {
(φ, B) = unrollStep(φ, Π , ∅)
while(true) {

decide(φ ∧
∧

b∈B b) match {
case ”SAT” ⇒ return ”SAT”
case ”UNSAT” ⇒ decide(φ) match {

case ”UNSAT” ⇒ return ”UNSAT”
case ”SAT” ⇒ (φ, B) = unrollStep(φ, Π, B) }}}}

Fig. 1. Pseudo-code of the solving algorithm. The decision procedure for the base
theory is invoked through the calls to decide.

Figure 1 shows the pseudo-code of our algorithm. It is defined in terms of two
subroutines, decide, which invokes the decision procedure for L, and unrollStep,
whose description follows. Note that the algorithm maintains, along with a for-
mula φ, a set B of boolean literals. We call these control literals and their role
is described below.

At a high-level, the role of unrollStep is to give a partial interpretation to
function invocations, which are treated as uninterpreted in L. This is achieved
in two steps: 1) introduce definitions for one unfolding of the (uninterpreted)
function invocations in φ and 2) generate an assignment of control literals that
guard newly introduced function invocations. As an example, consider a formula
φ that contains the term size(lst), where lst is a list and size is the usual recursive
1 In Leon, L is the multi-sorted combination of uninterpreted function symbols with

integer linear arithmetic and user-defined algebraic datatypes and finite sets.

304 P. Suter, A.S. Köksal, and V. Kuncak

size(lst) = lst match {
case Nil ⇒ 0
case Cons(, xs) ⇒ 1 + size(xs)

}

ψ ≡ size(lst) = tf
∧ bf ⇔ lst = Nil
∧ bf ⇒ tf = 0
∧ ¬bf ⇒ tf = 1 + size(lst.tail)

Fig. 2. Function definition and its translation into clauses with control literals

definition of its length. Figure 2 shows on the left the definition of size(lst) and
on the right its encoding into clauses with fresh variables.

This encoding into clauses is obtained by recursively introducing, for each if-
then-else term, a boolean variable representing the truth value of the branching
condition, and another variable representing the value of the if-then-else term.

In addition to conjoining ψ to φ, unrollStep would produce the set of literals
{bf}. The set should be understood as follows: the decision procedure for the
base theory L, which treats size as an uninterpreted function symbol, if it reports
SAT, can only be trusted when bf is set to true. Indeed, if bf is false, the value
used for tf and hence for the term size(lst) may depend on size(lst.tail), which is
undefined (because its definition has not yet been introduced). A subsequent
call to unrollStep on φ ∧ ψ would introduce the definition of size(lst.tail). When
unrolled functions have a precondition, the definitions introduced for their body
and postcondition are guarded by the precondition. This is done to prevent
an inconsistent function definition with a precondition equivalent to false from
making the formula unsatisfiable.

The formula in L without the control literals can be seen as an under-
approximation of the formula with the semantics of the program defining LΠ , in
that it accepts all the same models plus some models in which the interpretation
of some invocations is incorrect, and the formula with the control literals is an
over-approximation, in the sense that it accepts only the models that do not rely
on the guarded invocations. This explains why the UNSAT answer can be trusted
in the first case and the SAT case in the latter.

In Figure 1, the third argument of calls to unrollStep denotes the set of con-
trol literals introduced at previous steps. An invocation of unrollStep will insert
definitions for all or only some function terms that are guarded by such con-
trol literals, and the returned set will contain all literals that were not released
as well as the newly introduced ones. From an abstract point of view, when a
new control literal is created, it is inserted in a global priority queue with all
the function invocations that it guards. An important requirement is that the
dequeuing must be fair : any control literal that is enqueued must eventually
be dequeued. This fairness condition guarantees that our algorithm is complete
for satisfiable formulas (see Section 3.1). Using a first-in first-out policy, for in-
stance, is enough to guarantee fairness and thus completeness. Finally, note that
unrollStep not only adds definitions for the implementation of the function calls,
but also for their postcondition when it exists. We discuss the issue of reliably
using these facts in Section 3.1.

Satisfiability Modulo Recursive Programs 305

Implementation notes. While the description of solve suggests that we need
to query the solver twice in each loop iteration, we can in practice use the
solver’s capability to output unsat cores to detect with a single query whether
the conjunction of control literals

∧
b∈B b played any role in the unsatisfiability.

Similarly, when adding the new constraints obtained from unrollStep, we can use
the solver’s incremental reasoning and push the new constraints directly, rather
than building a new formula and issuing a new query. SMT solvers can thus
exploit at any time facts learned in previous iterations.

Finally, although we noted that we cannot in general trust the underlying
solver when it reports SAT for the formula φ without control literals, it could
still be that the assignment the solver guessed for the uninterpreted function
symbols is valid. Because testing an assignment is fast (it amounts to execut-
ing the specification), we can therefore sometimes report SAT early and save
time.

3.1 Properties of Our Procedure

The properties of our procedure rely on the following two assumptions.

Termination: All precondition computations terminate for all values. Each
function in the program Π terminates on each input for which the pre-
condition holds, and similarly for each postcondition. Tools such as [14,1] or
techniques developed for ACL2 [20] could be used to establish this property.

Base theory solver soundness: The underlying solver is complete and sound
for the (quantifier-free) formulas in the base theory. The completeness means
that each model that the solver reports should be a model for the conjunc-
tion of all constraints passed to the solver. Similarly, soundness means that
whenever the solver reports unsatisfiability, false can be logically concluded
modulo the solver’s theories from these constraints.

We use the above assumptions throughout this section. Note, however, that
even without the termination assumption, a counterexample reported by Leon is
never a counterexample that generates a terminating execution of the property
resulting in the value true, so it is a counterexample worth inspecting.

Soundness for Proofs. Our algorithm reports unsatisfiability if and only if the
underlying solver could prove unsatisfiable the problem given to it without the
control literals. Because the control literals are not present, some function appli-
cations are left uninterpreted, and the conclusion that the problem is unsatisfi-
able therefore applies to any interpretation of the remaining function application
terms, and in particular to the one conforming to the correct semantics.

From the assumption that the underlying solver only produces sound proofs, it
suffices to show that all the axioms communicated to the solver as a result of the
unrollStep invocations are obtained from sound derivations. These are correct by
definition: they are logical consequences obtained by the definition of functions,
and these definitions are conservative when the functions are terminating.

306 P. Suter, A.S. Köksal, and V. Kuncak

An important consideration when discussing soundness of the post axioms is
that any proof obtained with our procedure can be considered valid only when
the following properties about the functions of Π have been proved:2

1. for each function f of Π , the following formula must hold:

precΠf =⇒ postΠf

[
implΠf /ρ

]
2. for each call in f to a function f2 (possibly f itself), the precondition precΠf2

must be implied by the path condition
3. for each pattern-matching expression, the patterns must be shown to cover

all possible inputs under the path condition.

The above conditions guarantee the absence of runtime errors, and they also
allow us to prove the overall correctness by induction on the call stack, as is
standard in assume-guarantee reasoning for sequential procedures without side
effects [15, Chapter 12].

The first condition shows that all postconditions are logical implications of the
function implementations under the assumption that the preconditions hold. The
second condition shows that all functions are called with arguments satisfying
the preconditions. Because all functions terminate, it follows that we can safely
assume that postconditions always hold for all function calls. This justifies the
soundness of axioms post in the presence of φ and Π .

Soundness for Models. Our algorithm reports satisfiability when the solver
reports that the unrolled problem augmented with the control literals is satis-
fiable. By construction of the set of control literals, it follows that the solver
can only have used values for function invocations whose definition it knows. As
a consequence, every model reported by the solver for the problem augmented
with the control literals is always a true model of the original formula. We men-
tioned in Section 3 that we can also check other satisfying assignments produced
by the solver. In this second case, we use an evaluator that complies with the
semantics of the program, and therefore the validated models are true models
as well.

Termination for Satisfiable Formulas. Our procedure has the remarkable
property that it finds a model whenever the model for a formula exists. We define
a model as an assignment to the free variables of the formula such that evalu-
ating it under that assignment terminates with the value true. An assignment
that leads to a diverging evaluation is not considered to be a proper model. To
understand why our procedure always finds models when they exist, consider a
counterexample for the specification. This counterexample is an assignment of
integers and algebraic data types to variables of a function f(x) being proved.

2 When proving or disproving a formula φ modulo the functions of Π , it is in fact
sufficient that the three properties hold only for all functions in φ and those that
can be called (transitively) from them or from their contracts.

Satisfiability Modulo Recursive Programs 307

This evaluation specifies concrete inputs a for f such that evaluating f(a) yields
a value for which the postcondition of f evaluates to false (the case of precondi-
tions or pattern-matching is analogous). Consider the computation tree arising
from (call-by-value) evaluation of f and its postcondition. This computation
tree is finite. Consequently, the tree contains finitely many unrollings of function
invocations. Let us call K the maximum depth of that tree. Consider now the
execution of the algorithm in Figure 1; because we assume that any function in-
vocation that is guarded by a control literal is eventually accessible, we can safely
conclude that every function application in the original formula will eventually
be unrolled. By applying this reasoning inductively, we conclude that eventually,
all function applications up to nesting level K + 1 will be unrolled. This means
that the computation tree corresponding to f(a) has also been explored. By the
completeness of the solver for the base theory and the consistency of a satisfying
specification, it means that the solver reports a counterexample (either a itself
or another counterexample).

Termination for Sufficiently Surjective Abstraction. Our procedure al-
ways terminates and is therefore a decision procedure in the case of a recursive
function that are sufficiently surjective catamoprhisms [28]. In fact, it also serves
as the first implementation of the technique [28]. A catamorphism is a fold func-
tion from a tree data type to some domain, which uses a simple recursive pattern:
compute the value on subtrees, then combine these values using an expressions
from a decidable logic. The sufficient surjectivity for a function f is a condition
implying, informally, that the size of the set {x | f(x) = y} can be made suffi-
ciently large for “sufficiently large” elements y. Leon shows that the technique
inspired by [28] is fast in practice. Moreover, by interleaving unrolling and satis-
fiability checking, it addresses in practice the open problem of determining the
maximal amount of unrolling needed for a user-defined function.

We have already established termination in the case of formula satisfiability.
In the case of an unsatisfiable formula, the termination follows because the unsat-
isfiability can be detected by unrolling the function definitions a finite number of
times [28]. The unrolling depth depends on the particular sufficiently surjective
abstraction, which is why [28] presents only a family of decision procedures and
not a decision procedure for all sufficiently surjective abstractions. In contrast,
our approach is one uniform procedure that behaves as a decision procedure for
the entire family, because it unrolls functions in a fair way. 3

Among the examples of such recursive functions for which our procedure is
a decision procedure are functions of algebraic data types such as size, height,
or content (expressed as a set, multiset, or a list). Further examples include

3 Using the terminology of [28, p.207], consider the case of a sufficiently surjective
catamorphism with the associated parametric formula Mp and set of shapes Sp, and
an unsatisfiable formula containing a term α(t). Sufficiently unrolling α will result in
coverage of all possible shapes of t that belong to Sp. If no satisfying assignment for
t can be found with these shapes, then a formula at least as strong as Mp(α(t)) will
be implied, so a complete solver for the base theory will thus detect unsatisfiability
because [28] detects unsatisfiability when using Mp(α(t)).

308 P. Suter, A.S. Köksal, and V. Kuncak

properties such as sortedness of a list or a tree, or a combination of any finite
number of functions into a finite domain. Through experiments with Leon, we
have also discovered a new and very useful instance of constraints for which
our tool is complete: the predicates expressing refinement types [13], which we
specify as, e.g., the isSimplified function in Section 2. These functions map data
structures into a finite domain–booleans, so they are sufficiently surjective. This
explains why Leon is complete, and why it was so successful in verifying complex
pattern-matching exhaustiveness constraints on syntax tree transformations.

Non-terminating Functions. We conclude this section with some remarks on
the behavior of our procedure in the presence of functions that do not terminate
on all their inputs. We are interested in showing that if for an input formula
the procedure returns UNSAT, then there are indeed no models whose evalua-
tion terminates with true. (The property that all models are true models is not
affected by non-terminating functions.) Note that it may still be the case that
the procedure returns UNSAT when there is an input for which the evaluation
doesn’t terminate.

To see why the property doesn’t immediately follow from the all-terminating
case, consider the definition: def f(x : Int) = f(x) + 1. Unrolling that function
could introduce a contradiction f(x) = f(x) + 1 and make the formula immedi-
ately unsatisfiable, thus potentially masking a true satisfying assignment. How-
ever, because all introduced definitions are guarded by a control literal, the
contradiction will only prevent those literals from being true that correspond to
executions leading to the infinite loop.

4 The Leon Verification System

We now present some of the characteristics of the implementation of Leon, our
verification system that has at its core an implementation of the procedure pre-
sented in the previous sections. Leon takes as an input a program written in
a purely functional subset of Scala and produces verification conditions for all
specified postconditions, calls to functions with preconditions, and match ex-
pressions in the program.

Front-end. We wrote a plugin for the official Scala compiler to use as the
front-end of Leon. The immediate advantage of this approach is that all pro-
grams are parsed and type-checked before they are passed to Leon. This also
allows users to write expressive programs concisely, thanks to type-inference
and the flexible syntax of Scala. The subset we support allows for definitions
of recursive datatypes, as shown in examples throughout this paper, as well as
arbitrarily complex pattern-matching expressions over such types. The other ad-
mitted types are integers and sets, which we found to be particularly useful for
specifying properties with respect to an abstract interface. In our function def-
initions, we allow only immutable variables for simplicity (vals and no vars in
Scala terminology).

Satisfiability Modulo Recursive Programs 309

Conversion of pattern-matching. We transform all pattern-matching expres-
sions into equivalent expressions built with if-then-else terms. For this purpose,
we use predicates that test whether their argument is of a given subtype (this is
equivalent to the method .isInstanceOf[T] in Scala). The translation is relatively
straightforward, and preserves the semantics of pattern-matching. In particular,
it preserves the property that cases are tested in their definition order. To encode
the error that can be triggered if no case matches the value, we return for the
default case a fresh, uninterpreted value. This value is therefore guarded by the
conjunction of the negation of all matching predicates. Recall that we separately
prove that all match expressions are exhaustive. When these proofs succeed, we
effectively rule out the possibility that the unconstrained error value affects the
semantics of the expression.

Proofs by induction. To simplify the statement and proof of some inductive
properties, we defined an annotation @induct, that indicates to Leon that it should
attempt to prove a property by induction on the arguments. This works only
when proving a property over a variable that is of a recursive type; in these
cases, we decompose the proof that the postcondition is always satisfied into
subproofs for the alternatives of the datatype. For instance, when proving by
induction that a property holds for all binary trees, we generate a verification
condition for the case where the tree is a leaf, then for the case where it is a
node, assuming that the property holds for both subtrees.

Communicating with the solver. We used Z3 [22] as the SMT solver at the
core of our solving procedure. As described in Section 3, we use Z3’s support for
incremental reasoning to avoid solving a new problem at each iteration of our
top-level loop.

Interpretation of selectors as total functions. We should note that the
interpretation of selector functions in Z3 is different than in Scala, since they are
considered to be total, but uninterpreted when applied to values of the wrong
type. For instance, the formula Nil.head = 5 is considered in Z3 to be satisfiable,
while taking the head of an empty list has no meaning in Scala (if not a runtime
error). This discrepancy does not affect the correctness of Leon, though, as the
type-checking algorithm run by the Scala compiler succeeds only when it can
guarantee that the selectors are applied only to properly typed terms.

5 Experimental Evaluation

We are very excited about the speed and the expressive power of properties
that Leon can prove; this feeling is probably best understood by trying out the
Leon distribution. As an illustration, we here report results of Leon on prov-
ing correctness properties for a number of functional programs, and discovering
counterexamples when functions did not meet their specification. A summary of
our evaluation can be seen in Figure 3. In this figure, LOC denotes the number of

310 P. Suter, A.S. Köksal, and V. Kuncak

Benchmark (LOC) #p. #m. V/I U Time function #p. #m. V/I U Time

ListOperations (107)
size 0 1 V 1 0.12 sizeTailRecAcc 1 1 V 1 0.01
sizesAreEquiv 0 0 V 2 <0.01 sizeAndContent 0 0 V 1 <0.01
reverse 0 0 V 2 0.02 reverse0 0 1 V 2 0.04
append 0 1 V 1 0.03 nilAppend 0 0 V 1 0.03
appendAssoc 0 0 V 1 0.03 sizeAppend 0 0 V 1 0.04
concat 0 0 V 1 0.04 concat0 0 2 V 2 0.29
zip 1 2 V 2 0.09 sizeTailRec 1 0 V 1 <0.01
content 0 1 V 0 <0.01

AssociativeList (50)
update 0 1 V 1 0.03 updateElem 0 2 V 1 0.05
readOverWrite 0 1 V 1 0.10 domain 0 1 V 0 0.05
find 0 1 V 1 <0.01

InsertionSort (99)
size 0 1 V 1 0.06 sortedIns 1 1 V 2 0.24
buggySortedIns 1 1 I 1 0.08 sort 1 1 V 1 0.03
contents 0 1 V 0 <0.01 isSorted 0 1 V 1 <0.01

RedBlackTree (117)
ins 2 1 V 3 2.88 makeBlack 0 0 V 1 0.02
add 2 0 V 2 0.19 buggyAdd 1 0 I 3 0.26
balance 0 1 V 3 0.13 buggyBalance 0 1 I 1 0.12
content 0 1 V 0 <0.01 size 0 1 V 1 0.11
redNHaveBlckC. 0 1 V 1 <0.01 redDHaveBlckC. 0 1 V 0 <0.01
blackHeight 0 1 V 1 <0.01

PropositionalLogic (86)
simplify 0 1 V 2 0.84 nnf 0 1 V 1 0.37
wrongCommutative 0 0 I 3 0.44 simplifyBreaksNNF 0 0 I 1 0.28
nnfIsStable 0 0 V 1 0.17 simplifyIsStable 0 0 V 1 0.12
isSimplified 0 1 V 0 <0.01 isNNF 0 1 V 1 <0.01
vars 6 1 V 1 0.13

SumAndMax (46)
max 2 1 V 1 0.13 sum 0 1 V 0 <0.01
allPos 0 1 V 0 <0.01 size 0 1 V 1 <0.01
prop0 1 0 V 1 0.02 property 1 0 V 1 0.11

SearchLinkedList (48)
size 0 1 V 1 0.11 contains 0 1 V 0 <0.01
firstZero 0 1 V 1 0.03 firstZeroAtPos 0 1 V 0 <0.01
goal 0 0 V 1 0.01

AmortizedQueue (124)
size 0 1 V 1 0.14 content 0 1 V 0 <0.01
asList 0 1 V 0 <0.01 concat 0 1 V 1 0.04
isAmortized 0 1 V 0 <0.01 isEmpty 0 1 V 0 <0.01
reverse 0 1 V 3 0.20 amortizedQueue 0 0 V 2 0.05
enqueue 0 1 V 1 <0.01 front 0 1 V 3 0.01
tail 0 1 V 3 0.15 propFront 1 1 V 3 0.07
enqueueAndFront 1 0 V 4 0.21 enqDeqThrice 5 0 V 5 2.48

Fig. 3. Summary of evaluation results

Satisfiability Modulo Recursive Programs 311

lines of code, #p. denotes the number of verification conditions for function in-
vocations with preconditions, #m. denotes the number of conditions for showing
exhaustiveness of pattern-matchings, V/I denotes whether the verification condi-
tions were valid or invalid, U denotes the maximum depth for unrolling function
definitions, and Time denotes the total running time in seconds to verify all con-
ditions for a function. The benchmarks were run on a computer equipped with
two Intel Core 2 processors running at 2.66 GHz and 3.2 GB of RAM, using
a very recent version of Z3 at the time of running the experiments (June 12,
2011). We verified over 60 functions, with over 600 lines of compactly written
code and properties that often relate multiple function invocations. This includes
a red-black tree set implementation including the height invariant (which most
reported benchmarks for automated systems omit); amortized queue data struc-
tures, and examples with syntax tree refinement that show Leon to be useful for
checking user code, and not only for data structures.4

The ListOperations benchmark contains a number of common operations on
lists. Leon proves, e.g., that a tail-recursive version of size is functionally equiv-
alent to a simpler version, that append is associative, and that content, which
computes the set of elements in a list, distributes over append. For association
lists, Leon proves that updating a list l1 with all mappings from another list l2

yields a new associative list whose domain is the union of the domains of l1 and
l2. It proves the read-over-write property, which states that looking up the value
associated with a key gives the most recently updated value. We express this
property simply as:

def readOverWrite(l : List, e : Pair, k : Int) : Boolean = (e match {
case Pair(key, value) ⇒

find(updateElem(l, e), k) == (if (k == key) Some(value) else find(l, k))
}) holds

Leon proves properties of insertion sort such as the fact that the output of the
function sort is sorted, and that it has the same size and content as the input list.
The function buggySortedIns is similar to sortedIns, and is responsible for inserting
an element into an already sorted list, except that the precondition that the list
should be sorted is missing. On the RedBlackTrees benchmark, Leon proves that
the tree implements a set interface and that balancing preserves the “red nodes
have no black children” and “every simple path from the root to a leaf has the
same number of black nodes” properties as well as the contents of the tree. In
addition to proving correctness, we also seeded two bugs (forgetting to paint a
node black and missing a case in balancing); Leon found a concise counterexample
in each case. The PropositionalLogic benchmark contains functions manipulating
abstract syntax trees of boolean formulas. Leon proves that, e.g., applying a
negation normal form transformation twice is equivalent to applying it once.

Further benchmarks are taken from the Verified Software Competition [30]:
For example, in the AmortizedQueue benchmark Leon proves that operations on
an amortized queue implemented as two lists maintains the invariant that the
size of the “front” list is always larger than or equal to the size of the “rear”
4 All benchmarks and the sources of Leon are available from http://lara.epfl.ch.

http://lara.epfl.ch

312 P. Suter, A.S. Köksal, and V. Kuncak

list, and that the function front implements an abstract queue interface given as
a sequence.

We also point out that, apart from the parameterless @induct hint for certain
functions, there are no other hint mechanisms used in Leon: the programmer
simply writes the code, and boolean-valued functions that describe the desired
properties (as they would do for testing purposes). We thus believe that Leon is
easy and simple to use, even for programmers that are not verification experts.

6 Related Work

We next compare our approach to the most closely related techniques.

Interactive verification systems. The practicality of computable functions
as an executable logic has been demonstrated through a long line of systems,
notably ACL2 [18] and its predecessors. These systems have been applied to
a number of industrial-scale case studies in hardware and software verification
[18, 21]. Recent systems based on functional programs include VeriFun [31] and
AProVE [14]. Moreover, computable specifications form important parts of many
case studies in proof assistants Coq [5] and Isabelle [23]. These systems support
more expressive logics, with higher-order quantification, but provide facilities for
defining executable functions and generating the corresponding executable code
in functional programming languages [16]. When it comes to reasoning within
these systems, they offer varying degrees of automation. What is common is
the difficulty of predicting when a verification attempt will succeed. This is in
part due to possible simplification loops associated with the rewrite rules and
tactics of these provers. Moreover, for performance and user-interaction reasons,
interactive proofs often fail to fully utilize aggressive case splitting that is at the
heart of modern SMT solvers.

Inductive generalizations vs. counterexamples. Existing interactive sys-
tems such as ACL2 are stronger in automating induction, whereas our approach
is complete for finding counterexamples. We believe that the focus on counterex-
amples will make our approach very appealing to programmers that are not the-
orem proving experts. The HMC verifier [17] and DSolve [26] can automatically
discover inductive invariants, so they have more automation, but it appears that
certain properties involving multiple user-defined functions are not expressible in
these systems. Recent results also demonstrate inference techniques for higher-
order functional programs [19,17]. These approaches hold great promise for the
future, but the programs on which those systems were evaluated are smaller
than our benchmarks. Leon focuses on first-order programs and is particularly
effective for finding counterexamples. Our experience suggests that Leon is more
scalable than the alternative systems that can deal with this expressive proper-
ties. Counterexample generation has been introduced into Isabelle through tools
like Nitpick [6]. Further experimental comparisons would be desirable, but these
techniques do not use theory solvers and appear slower than Leon on complex
functional programs. Counterexample generation has been recently incorporated
into ACL2 Sedan [7]. This techniques is tied to the sophisticated ALC2 proof

Satisfiability Modulo Recursive Programs 313

mechanism and uses proof failures to find counterexamples. Although it appears
very useful, it does not have our completeness guarantees.

Counterexample finding systems for imperative code. Researchers have
explored the idea of iterative function and loop unfolding in a number of con-
texts. Among well-known tools is CBMC [8]; techniques to handle procedures
include [29,4,27]. The use of imperative languages in these systems makes their
design more complex and limits the flexibility of the counterexample search.
Thanks to a direct encoding into SMT and the absence of side-effects, Leon can
prove more easily properties that would be harder to prove using imperative
semantics. As a result, we were able to automatically prove detailed functional
correctness properties as opposed to only checking for errors such as null deref-
erences. Moreover, both [29] and [27] focus on error finding, while we were also
able to prove several non-trivial properties correct, using counterexample finding
to debug our code and specifications during the development.

Satisfiability modulo theory solvers. SMT solvers behave as (complete)
decision procedures on certain classes of quantifier-free formulas containing the-
ory operations and uninterpreted functions. However, they do not support user-
defined functions, such as functions given by recursive definitions. An attempt to
introduce them using quantifiers leads to formulas on which the prover behaves
unpredictably for unsatisfiable instances, and is not able to determine whether a
candidate model is a real one. This is because the prover has no way to determine
whether universally quantified axioms hold for all of the infinitely many values
of the domain. Leon uses terminating executable functions, whose definitions are
a well-behaved and important class of quantified axioms, so it can check the
consistency of a candidate assignment. A high degree of automation and per-
formance in Leon comes in part from using state-of-the-art SMT solver Z3 [22]
to reason about quantifier-free formula modulo theories, as well as to perform
case splitting along with automated lemma learning. Other SMT solvers, such
as CVC3 [3] could also be used.

Acknowledgments.We thank Nikolaj Bjørner and Leonardo de Moura for their
help with Z3. We thank Mirco Dotta and Swen Jacobs for preliminary versions
of some of the benchmarks. We thank Panagiotis Manolios and J Strother Moore
for discussions about ACL2.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and implementation of a cost and termination analyzer for java bytecode. In: de
Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

2. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver
verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010)

3. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

314 P. Suter, A.S. Köksal, and V. Kuncak

4. Basler, G., Kroening, D., Weissenbacher, G.: A complete bounded model checking
algorithm for pushdown systems. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899,
pp. 202–217. Springer, Heidelberg (2008)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development–Coq’Art: The Calculus of Inductive Constructions. Springer,
Heidelberg (2004)

6. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

7. Chamarthi, H.R., Dillinger, P.C., Manolios, P., Vroon, D.: The ACL2 sedan
theorem proving system. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 291–295. Springer, Heidelberg (2011)

8. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

9. Dotta, M., Suter, P., Kuncak, V.: On static analysis for expressive pattern
matching. Tech. Rep. LARA-REPORT-2008-004, EPFL (2008)

10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer,
Heidelberg (2006)

11. Ferrara, P.: Static type analysis of pattern matching by abstract interpretation.
In: Hatcliff, J., Zucca, E. (eds.) FMOODS 2010. LNCS, vol. 6117, pp. 186–200.
Springer, Heidelberg (2010)

12. Franzen, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in
symbolic execution of microcode. In: FMCAD (2010)

13. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proc. ACM PLDI (1991)
14. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination

proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004)

15. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
16. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In:

Theorem Proving in Higher Order Logics: Emerging Trends Proceedings (2007)
17. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying functional programs

using abstract interpreters. In: Computer Aided Verification, CAV (2011)
18. Kaufmann, M., Manolios, P., Moore, J.S. (eds.): Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Publishers, Dordrecht (2000)
19. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree

transducers and recursion schemes for program verification. In: POPL (2010)
20. Manolios, P., Turon, A.: All-termination(T). In: Kowalewski, S., Philippou, A.

(eds.) TACAS 2009. LNCS, vol. 5505, pp. 398–412. Springer, Heidelberg (2009)
21. Moore, J.S.: Theorem proving for verification - the early days. In: Keynote Talk

at FLoC, Edinburgh (July 2010)
22. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

24. Odersky, M.: Contracts for scala. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV
2010. LNCS, vol. 6418, pp. 51–57. Springer, Heidelberg (2010)

Satisfiability Modulo Recursive Programs 315

25. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: a comprehensive
step-by-step guide. Artima Press (2008)

26. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI (2008)
27. Sinha, N.: Modular bug detection with inertial refinement. In: FMCAD (2010)
28. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types

with abstractions. In: POPL (2010)
29. Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE 2004 (2004)
30. VSComp: The Verified Software Competition (2010),

http://www.macs.hw.ac.uk/vstte10/Competition.html

31. Walther, C., Schweitzer, S.: About veriFun. In: Baader, F. (ed.) CADE 2003.
LNCS (LNAI), vol. 2741, pp. 322–327. Springer, Heidelberg (2003)

32. Zee, K., Kuncak, V., Taylor, M., Rinard, M.: Runtime checking for program
verification. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
202–213. Springer, Heidelberg (2007)

http://www.macs.hw.ac.uk/vstte10/Competition.html

Probabilistically Accurate Program

Transformations

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard

MIT CSAIL
{misailo,droy,rinard}@csail.mit.edu

Abstract. The standard approach to program transformation involves
the use of discrete logical reasoning to prove that the transformation
does not change the observable semantics of the program. We propose
a new approach that, in contrast, uses probabilistic reasoning to justify
the application of transformations that may change, within probabilistic
accuracy bounds, the result that the program produces.

Our new approach produces probabilistic guarantees of the form
P(|D| ≥ B) ≤ ε, ε ∈ (0, 1), where D is the difference between the results
that the transformed and original programs produce, B is an acceptabil-
ity bound on the absolute value of D, and ε is the maximum acceptable
probability of observing large |D|. We show how to use our approach
to justify the application of loop perforation (which transforms loops to
execute fewer iterations) to a set of computational patterns.

1 Introduction

The standard approach to program transformation involves the use of discrete
logical reasoning to prove that the applied transformation does not change the
observable semantics of the program, This paper, in contrast, introduces a novel
approach that uses probabilistic reasoning to justify transformations that may
change the result that the program produces.

Our approach provides probabilistic guarantees that the absolute value of the
difference between the results that the transformed and original programs pro-
duce will rarely be large. A user or developer can specify bounds on the accept-
able difference. The analysis can then determine the conditions under which the
transformed computation satisfies the probabilistic guarantees for those bounds.

1.1 Loop Perforation

In this paper, we focus on loop perforation, which transforms loops to execute
only a subset of their original iterations. Empirical results demonstrate the util-
ity and effectiveness of loop perforation in reducing the amount of time (and/or
other resources such as energy) that the application requires to produce a result
while preserving acceptable accuracy [33,18,25,38]. While investigating the rea-
sons behind these empirical results, we identified specific computations in our
benchmark applications that interacted well with loop perforation.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 316–333, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Probabilistically Accurate Program Transformations 317

Inspired by these computations, in this paper we present four generalized com-
putational patterns that interact well with loop perforation. We have previously
proposed the the use of Monte-Carlo simulation to explore how loop perforation
changes the result that specific computational patterns produce [35]. In this pa-
per we propose an analytical approach that produces algebraic expressions that
characterize the effect of loop perforation on our identified set of computational
patterns.

1.2 Computational Patterns

We present four computational patterns that interact well with loop perforation
— the sum pattern, which calculates the sum of elements, the mean pattern,
which calculates the mean of elements, the argmin-sum pattern, which calcu-
lates the index of the minimum sum of elements, and the ratio pattern, which
calculates the ratio of two sums. These patterns identify general classes of com-
putations to which we can apply the analyses that we present in this paper
(rather than specific syntactic structures). The following code, for example, uses
a for loop to implement a mean pattern. Note that the pattern abstracts away
the details of the computation performed in each loop iteration, represented by
a function call f(i). We call each such abstracted value an input to the pattern.

sum = 0.0;
for (int i = 1; i <= n; i++) sum += f(i);
mean = sum / n;

In general, there may be many potential ways to realize each pattern in an
actual program. In some cases the pattern may be inherent in the program-
ming language constructs used to express the computation. For example, the
sum pattern may be realized by an explicit reduction operation in a functional
language. In other cases (as in the for loop example above) the pattern may
be realized by combinations of constructs. In such cases existing program anal-
yses (for example, reduction recognition [16,20]) can identify specific instances
of these patterns.

1.3 Modeling and Analysis

We quantify the effect of loop perforation by defining the perforation noise – the
difference between the result that the perforated computation produces and the
result that the original computation produces. We denote this (signed) noise as
D. The probabilistic guarantees have the form: P(|D| ≥ B) ≤ ε, ε ∈ (0, 1), where
P(|D| ≥ B) is the probability that the absolute value |D| is greater than or equal
to some bound B. The probability ε is the maximum acceptable probability of
observing large |D|.

We use random variables to model our uncertainty about the input values
and the results that subcomputations produce. We express the perforation noise
as a function of these random variables. Random variables in our analyses can

318 S. Misailovic, D.M. Roy, and M.C. Rinard

represent 1) inherent randomness in the inputs and/or 2) our incomplete knowl-
edge about the exact underlying processes that produce these inputs. These two
forms of uncertainty are called aleatory (objective) and epistemic (subjective)
uncertainty. Our probabilistic model therefore allows us to analyze both prob-
abilistic and deterministic computations (although in this paper we focus on
deterministic computations).

We use properties of random variables, in combination with the applied trans-
formations, to derive algebraic expressions that characterize the perforation
noise. Specifically, for each pattern our analysis produces algebraic expressions
that characterize the expected value and variance of the perforation noise as
well as the probability of observing large absolute perforation noise. Our anal-
ysis also identifies the conditions under which these expressions are accurate.
These conditions may include the number of iterations of perforated loops or
distribution or independence assumptions involving random variables. Multiple
analyses, each with different conditions, may be applicable to a single pattern.
The expressions and the conditions that the analysis produces precisely charac-
terize the effect of loop perforation on the result that the computation produces,
providing the information that automated procedures, users, or developers need
to determine whether to apply a candidate transformation.

1.4 Contributions

To the best of our knowledge, this paper is the first to propose the concept of
using static program analysis to derive probabilistic accuracy bounds to justify
transformations that may change the result that the program produces. It is
also the first to present specific static analyses which produce such probabilistic
bounds. This paper makes the following specific contributions:

– New Paradigm: It presents a new paradigm for justifying program trans-
formations. Instead of using discrete logical reasoning to justify transforma-
tions that preserve the exact semantics of the program, this paradigm uses
probabilistic reasoning to justify transformations that may, within guaran-
teed probabilistic bounds, change the result that the program produces.

– Probabilistic Modeling of Uncertainty: Every static analysis must some-
how characterize its uncertainty about the behavior of the analyzed compu-
tation. The standard approach is to use conservative, worst-case reasoning
to show that the transformation preserves the semantics in all cases.
Our novel approach, in contrast, models the values which the computation
manipulates as random variables. We use properties of these random vari-
ables to reason about the effect of the transformation on the values that the
computation produces. In particular, our analysis produces derived random
variables that model the difference between the result that the transformed
computation produces and the result that the original computation produces.

– Probabilistic Accuracy Guarantees: The analysis extracts properties of
the derived random variables such as their mean, variance, and probabilistic
bounds on their magnitude. It uses these properties to extract probabilistic

Probabilistically Accurate Program Transformations 319

accuracy guarantees that characterize the probability of observing unaccept-
ably large changes in the result that the transformed program produces. It
uses these guarantees to determine whether or not it is acceptable to apply
the transformation.

– Pattern-based Analyses: It presents a set of computational patterns
(sum, mean, argmin-sum, and ratio) with transformations that can be ana-
lyzed using probabilistic analyses. For each pattern it presents a probabilistic
analysis that characterizes the effect of loop perforation on the result that the
pattern produces. Each analysis produces expressions for the expected value
and variance of the absolute perforation noise and bounds that characterize
the probability of observing large perforation noise.

2 Example

Swaptions is a financial analysis application from the PARSEC benchmark
suite [4]; it uses Monte Carlo simulation to calculate the price of a portfolio
of swaption financial instruments. Figure 1(a) presents an abstract version of a
perforatable computation from this application. The loop performs a sequence
of simulations to compute the mean simulated value of the swaption into the
variable dMeanPrice. The analysis recognizes this computation as an instance
of the mean pattern.

Figure 1(b) presents the transformed version of the computation after loop
perforation [18], applied in this case by changing the induction variable increment
from 1 to 2. The perforated loop therefore executes half of the iterations of
the original loop. The transformed computation also extrapolates the result to
eliminate any systematic bias introduced by executing fewer loop iterations.

Modeling Values With Random Variables. The analysis models the value
of simres at each iteration as a random variable Xi, i ∈ {1, . . . n}. The variable
dPrice contains the sum of the Xi. In the original computation, the final value
of dPrice is SO =

∑n
i=1Xi. In the perforated computation the final value is

SP =
∑n/2
i=1 X2i−1 (for simplicity, we present the analysis for the case when n is

even). After extrapolating SP , the perforation noise D = 1
n

(
2SP − SO

)
.

Scenarios. We have developed analyses for a variety of scenarios, with each
scenario characterized by properties such as the distributions of the Xi and the

float dPrice = 0.0;
for (i = 1; i <= lTrials; i += 1) {

float simres = runSimulation(this, i)
dPrice += simres;

}
double dMeanPrice = dPrice / lTrials;
printf("%g\n", dMeanPrice);

float dPrice = 0.0;
for (i = 1; i <= lTrials; i += 2) {

float simres = runSimulation(this, i)
dPrice += simres;

}
double dMeanPrice = (dPrice * 2) / lTrials;
printf("%g\n", dMeanPrice);

(a) Original Computation (b) Transformed Computation

Fig. 1. Swaptions Computation: Original and Transformed Computations

320 S. Misailovic, D.M. Roy, and M.C. Rinard

number of loop iterations n. For each scenario the analysis produces an ε and B
such that P(|D| ≥ B) ≤ ε, ε ∈ (0, 1). Specific scenarios for which analyses exist
include (see Section 4) (a) the Xi have finite mean and covariance, (b) the Xi

are independent and identically distributed (i.i.d.), (b.1) in addition, the number
of iterations n of the original loop is large, or (b.2) n may be small but the Xi

are normally distributed, or (c) the Xi are correlated and form a random walk.
Note that some scenarios are more specific than others; in general, analyses for
more specific scenarios tend to deliver tighter probabilistic bounds.

Scenario (b.1). We next discuss how the analysis proceeds for Scenario (b.1)
(the Xi are i.i.d. and n is large). Using results from Section 4, the expected value
of the perforation noise E(D) = 0, and the variance is var(D) = σ2

(
1
m− 1

n

)
= σ2

n ,
where σ2 is the variance of the input variables Xi.

Because SP and SO−SP are sums of a large number of i.i.d. random variables,
the distribution of their means approaches a normal distribution (by a Central
Limit Theorem argument). Furthermore, since D is a linear combination of these
two independent means, D is also normally distributed and we can use the
Gaussian confidence interval to obtain the following bound: with probability at
least 1− ε, |D| < z1− ε

2

√
var(D) = z1− ε

2

σ√
n
, where zα is the quantile function of

the standard normal distribution. For example, P(|D| ≥ B) ≤ 0.05 for B ≈ 1.96σ√
n

(z0.975 ≈ 1.96).

Comparison with Worst-Case Analysis. We next compare the probabilistic
and worst-case analyses in an identical scenario. We assume that the Xi are
i.i.d. random variables drawn from the uniform distribution on [a, b]. In this case
the 95% probabilistic bound is BP = 1.96 b−a√

12n
≈ 0.6 b−a√

n
(σ2 = (b−a)2

12 for the
uniform distribution). The worst-case analysis, on the other hand, extracts the
bound BW = b−a

2 . Note that the worst case bound BW is asymptotically
√
n

times larger than the probabilistic bound BP .

Choosing an Appropriate Scenario. In general, the validity of the prob-
abilistic bounds may depend on how closely the actual use case matches the
selected analysis scenario. In some cases it may be appropriate to choose a sce-
nario by recording values from instrumented representative executions of the
computation, then using the values to (potentially conservatively) select aspects
of the scenario such as specific probability distributions or the expected number
of loop iterations [24]. In other cases it may be appropriate to have a user or
developer simply provide this information directly to the analysis [24].

Identifying Appropriate ε and B. In general, acceptable values for ε and B
will depend on the application and the context in which it is used. We therefore
anticipate that the user (or potentially the developer) will identify the maximum
acceptable ε and B. Transformations with ε and B less than these maxima
are acceptable. Transformations with ε or B greater than these maxima are
unacceptable.

Probabilistically Accurate Program Transformations 321

3 Preliminaries

We next describe the notation that we use throughout the probabilistic analyses.
The original loop executes n iterations; the perforated loop executes m, m < n
iterations. The perforation rate r = 1− ,mn -. A loop perforation strategy can be
represented by a n× 1 perforation vector P , each element of which corresponds
to a single loop iteration. The number of non-zero elements of P is equal to
m. The all-ones perforation vector A = (1, . . . , 1)′ represents the original (non-
perforated) computation. Some transformations may use the perforation vector.
The perforation transformation for the sum pattern, for example, uses the values
of the non-zero elements of the vector P to extrapolate the final result.

Interleaving perforation executes every k-th iteration, where k = , nm-. The
corresponding perforation vector has elements Pki+1 = 1, where i ∈ {0, ...m−1},
and Pki+j = 0 for j < k, j �= 1. Truncation perforation executes m iterations
at the beginning of the loop; the perforation vector has elements Pi = 1 for
1 ≤ i ≤ m, and Pi = 0 otherwise. Randomized perforation selects a random
subset of m elements. All of these perforation strategies can be implemented
efficiently without explicitly creating the vector P .

4 Patterns and Analyses

For each pattern we present an example of the original and the transformed
code. For simplicity we apply an interleaving perforation and assume a number
of iterations n to be a multiple of the new loop increment k.

In each pattern analysis section we first present the assumptions we make on
the distribution of the inputs. These assumptions characterize our uncertainty
about the values of these inputs. With these assumptions in place, we derive
expressions for 1) the mean perforation noise, 2) the variance of the perforation
noise, and 3) bounds on the probability of observing large absolute perfora-
tion noise. In some cases we perform additional analyses based on additional
assumptions. When applicable, we present bounds based on Chebyshev’s in-
equality, Hoeffding’s inequality, and Gaussian confidence intervals. We present
a more detailed derivation of these expressions in our accompanying technical
report [24].

4.1 Sum Pattern

We present an example of the original and perforated code for the extrapolated
sum pattern in Figure 2. We first present a generalized analysis for the sum

Original code Transformed Code
double sum = 0.0;
for (int i = 1; i <= n; i++) {
sum += f(i);

}

double sum = 0.0;
for (int i = 1; i <= n; i+=k) {
sum += f(i);

}
sum *= k;

Fig. 2. Sum Pattern; Original and Transformed Code

322 S. Misailovic, D.M. Roy, and M.C. Rinard

of correlated random variables. We then present specializations of the analysis
under additional assumptions. Special cases that we analyze include independent
and identically distributed (i.i.d.) inputs and inputs generated by a random walk.

Assumptions. We first assume only that the terms of the sum have a common
finite mean μ and finite covariance.

Analysis. For i = 1, . . . , n, let Xi = f(i) be the i-th term of the summation.
We model our uncertainty about the values Xi by treating X = (X1, . . . , Xn)′

as a vector of n random variables with mean μ and covariance matrix Σ with
elements (Σ)ij = cov(Xi, Xj). Let A be the all-ones vector defined in Section 3,
then A′X =

∑n
i=1Xi. Let P be a perforation vector with m non-zero elements.

Then P ′X =
∑n

i=1 PiXi is the result of the perforated computation. The signed
perforation noise is D ≡ P ′X −A′X = (P −A)′X with

E(D) = μ

n∑
i=1

(Pi − 1), (1)

var(D) =
∑
i,j

(Pi − 1) (Pj − 1)Σi,j . (2)

To avoid systematic bias, we can choose P so that E(D) = 0. In particular, it
follows from Equation 1 that an estimate is unbiased if and only if

∑n
i=1 Pi = n.

One extrapolation strategy equally extrapolates every non-zero element, choos-
ing Pi = n

m for non-zero elements Pi.
If P satisfies E(D) = 0, we can use Chebyshev’s inequality and var(D) to

bound the absolute perforation noise, such that, with probability at least 1− ε

|D| <
√

var(D)
ε

(3)

This bound will be conservative in practice; additional knowledge (e.g., indepen-
dence or distribution of Xi) can be used to derive tighter bounds. We next study
a number of special cases in which additional assumptions enable us to better
characterize the effect of perforation.

Independent Variables

Assumptions. We assume that the elements Xi = f(i) of the summation are
i.i.d. random variables with finite mean μ and variance σ2. To derive a tighter
bound on the mean and the variance of the absolute perforation noise, we con-
sider additional assumptions – specifically, that the Xi are normally distributed,
or that the Xi are bounded.

Analysis. From (1), we know that E(D) = 0 for any perforation P such that∑
i P = n. From (2), and since the covariance matrix Σ of i.i.d. variables

has non-zero values only along its leading diagonal, it follows that var(D) =
σ2
∑

i (1 − Pi)
2. It is straightforward to show that this value is minimized by

any perforation vector P with n −m zeros and the remaining elements taking
the value n

m . In this case, the variance takes the value

Probabilistically Accurate Program Transformations 323

var(D) =
σ2 n (n−m)

m
. (4)

We can immediately bound the probability of observing large absolute perfora-
tion noise using Chebyshev’s inequality (Equation 3).

We can get potentially tighter bounds if we make additional assumptions.
If we assume that each term Xi is normally distributed, then D will also be
normally distributed. Consequently, E(D) = 0 and var(D) remains the same as
in Equation 4.

The normality of D allows us to obtain a tighter bound on the perforation
noise. In particular, with probability 1 − ε

|D| ≤ z1− ε
2

√
var(D) (5)

where zα is the quantile function of the standard normal distribution. As a
comparison, for ε = 0.01 the bound (5) is 6.6 times smaller than the Chebyshev-
style bound (3). For normally distributed D we can also bound the absolute
perforation noise. In particular, |D| has a half-normal distribution with mean

E
(
|D|
)

= σ
√

2n(n−m)
πm , and variance var(|D|) =

(
1 − 2

π

)
var(D).

If, instead, we assume that each Xi is bounded, falling in the range [a, b],
we can apply Hoeffding’s inequality to bound the absolute perforation noise
|D|. Let X ′

i = (Pi − 1)Xi, and note that the variables X ′
i are also mutually

independent. The range of X ′
i is [ai, bi] =

[
(Pi − 1)a, (Pi − 1)b

]
. Then the sum∑n

i=1(bi − ai)2 = (b− a)2 n (n−m)
m , and thus, with probability at least 1 − ε

|D| <
√√√√1

2
ln

2
ε
·
n∑
i=1

(
bi − ai

)2
= (b− a)

√
n (n−m)

2m
ln

2
ε
. (6)

Nested Loops. We next extend the sum analysis (for i.i.d. inputs) to nested
loops. The outer loop executes n1 iterations (m1 iterations after perforation);
the inner loop executes n2 iterations (m2 iterations after perforation). When
both loops are perforated, E(D) = 0. We use Equation 4 to compute var(D)
by assigning n = n1n2 and m = m1m2. The result generalizes to more deeply
nested loops.

Random Walk

Assumptions. We assume that the sequenceX of random variables is a random
walk with independent increments. Specifically, we assume that the sequence is
a Markov process, and that the differences between the values at adjacent time
steps δi = Xi+1 −Xi are a sequence of i.i.d. random variables with mean 0 and
variance σ2. Let X0 = μ be a constant.

Analysis. From the assumption E(δi) = 0, it follows by induction that the
expected value of every element is E(Xi) = μ. As a consequence, for any perfo-
ration vector that satisfies

∑n
i=1 Pi = n, we have that E(D) = 0.

324 S. Misailovic, D.M. Roy, and M.C. Rinard

For i < j, the covariance between Xi and Xj satisfies cov(Xi, Xj) = iσ2.
Therefore, the covariance matrix Σ has entries (Σ)ij = σ2 min{i, j}, and the
variance of the perforation noise satisfies

var(D) = σ2
∑
i,j

(1 − Pi) (1 − Pj)min{i, j}. (7)

We may choose a perforation strategy P by minimizing this variance (and thus
minimizing Chebyshev’s bound on the absolute perforation noise). For example,
when Pi = 2 for odd i and 0 otherwise, we have that var(D) = n

2σ
2. Once again,

we can use Chebyshev’s inequality or Gaussian confidence intervals to derive a
probabilistic accuracy bound.

4.2 Mean Pattern

We present an example of the original and perforated code for the mean pattern
in Figure 3.

Original code Transformed Code
double sum = 0.0;
for (int i = 1; i <= n; i++) {
sum += f(i);

}
double mean = sum / n;

double sum = 0.0;
for (int i = 1; i <= n; i+=k) {
sum += f(i);

}
double mean = sum * k / n;

Fig. 3. Mean Pattern; Original and Transformed Code

We can extend the analysis for the sum pattern (Section 4.1) because the result
of the mean computation is equal to the result of the sum computation divided by
n. We denote the perforation noise of the sum as DSum, the output produced by
the original computation as 1

nA
′X , and the output produced by the perforated

computation as 1
nP

′X . The perforation noise of the mean D in the general case
with correlated variables is D ≡ 1

n

(
P ′X − A′X

)
= 1

nDSum. By the linearity
of expectation, the perforation noise has expectation E(D) = 1

nE(DSum) and
variance

var(D) =
1
n2

var(DSum). (8)

The derivation of the bounds for the more specific cases (i.i.d., normal, ran-
dom walk inputs) is analogous to the derivation discussed in Section 4.1. In
particular if we assume i.i.d. inputs, the variance var(D) = σ2

(
1
m − 1

n

)
. Based

on Chebyshev’s and Hoeffding’s inequalities, we can derive algebraic expressions
that characterize the probabilistic accuracy bounds for this case. A similar result
can be shown for the random walk case.

We can also obtain a potentially tighter Gaussian interval style bound if we
assume a large number of i.i.d. inputs with finite mean and variance. In this case
the sums P ′X and (A − m

n P)′X will be independent and their means will be

Probabilistically Accurate Program Transformations 325

approximately normally distributed (by a Central Limit Theorem argument).1

Consequently, the perforation noise D, which is a linear combination of these
two means, will also be approximately normally distributed. We can then use
Equation 5 to calculate a bound on the perforation noise.

4.3 Argmin-Sum Pattern

We present an example of the original and transformed code for the argmin-sum
pattern in Figure 4.2

Original code Transformed Code
double best = MAX_DOUBLE;
int best_index = -1;
for (int i = 1; i <= L; i++) {

s[i] = 0;
for (int j = 1; j <= n; j++)

s[i] += f(i,j);

if (s[i] < best) {
best = s[i];
best_index = i;

}
}
return best_index;

double best = MAX_DOUBLE;
int best_index = -1;
for (int i = 1; i <= L; i++) {

s[i] = 0;
for (int j = 1; j <= n; j+=k)

s[i] += f(i,j);

if (s[i] < best) {
best = s[i];
best_index = i;

}
}
return best_index;

Fig. 4. Argmin-Sum Pattern; Original and Transformed Code

Assumptions. For each i ∈ {1, . . . , L}, we assume that Xi,j = f(i, j) are in-
dependent and drawn from some distribution F . The elements of the perforation
vector P take only the values from the set {0, 1}.

Analysis The output of the argmin-sum pattern is an index which is used later
in the program. To calculate the perforation noise, we model the weight of an
index i as the entire sum Xi =

∑n
j=1Xi,j . Therefore, the original computation

produces the value SO = miniA′Xi = mini
∑n

j=1Xi,j , while the perforated
computation produces the value SP =

∑n
j=1Xγ,j, where γ ≡ argmini

∑m
j=1Xi,j

and m is the reduced number of steps in the perforated sum. Note that the
independence of the variablesXi,j implies that we can, without loss of generality,
choose any perforation strategy with perforation rate r.

1 Note that the tails of the distribution of the mean (which we use to bound the
perforation noise) converge to the normal distribution slower than the means. The
Berry-Esseen inequality can be used to determine how closely the normal distribution
approximates the actual distribution of the sum. In particular, if n is the number
of the terms, the maximum distance between the standardized sum distribution and
thenormal distribution is less than δ≈0.48 ρ

σ3√n
, where ρ=E(|Xi|3) and σ2 =var(Xi).

2 We can apply the same analysis to the min-sum pattern, which returns the (extrap-
olated) value best instead of the index best index. It is also possible to modify this
analysis to support the max-sum and argmax-sum patterns.

326 S. Misailovic, D.M. Roy, and M.C. Rinard

We are interested in studying the perforation noise D ≡ SP − SO. Note that
the perforation noise D is non-negative because SO is a minimum sum, and so
D = |D| is also the absolute perforation noise.

Let Yi ≡
∑m
j=1Xi,j and Zi ≡

∑n
j=m+1Xi,j . Then, SO = mini (Yi + Zi) =

Yω + Zω and SP = Yγ + Zγ where γ = argmini Yi and ω = argmini(Yi + Zi) is
the index of the minimum sum. Then the perforation noise satisfies

D ≤ Zγ − min
i
Zi. (9)

Let D̄ ≡ Zγ − mini Zi denote this upper bound. We can obtain conservative
estimates of the perforation noise D by studying D̄. Note that for this pattern,
D̄ is always non-negative (because Zγ ≥ mini Zi).

Let Z be a sum of n−m independent F -distributed random variables. Then
(1) Zi has the same distribution as Z, (2) γ is independent of Zγ , and (3) Zγ
has the same distribution as Z. Therefore,

E(D̄) = E(Z) − E(min
i
Zi), (10)

or, put simply, the expectation of our bound D̄ is the difference between the
mean of Z and its first order statistic (given a size L sample).

To proceed with the analysis, we make the additional assumption that Z is
uniformly distributed on the interval a ± w

2 of width w > 0 and center a.3 Let
Zi be i.i.d. copies of Z.

Define ML = mini≤L Zi. Then 1
w (ML − a+ w

2) has a Beta(1, L) distribution,
and so E(ML) = a+ w

L+1 − w
2 and variance var(ML) = Lw2

(L+1)2(L+2) . From (10),
we have E(D̄) = w

2 − w
L+1 . Furthermore, as γ is independent of every Zi, it

follows that Zγ is independent of ML. Therefore,

var(D̄) =
1
12
w2 +

Lw2

(L+ 1)2(L + 2)
. (11)

The mean and variance of D̄ can be used to derive one-sided Chebyshev style
bounds on D̄ and, since |D| = D < D̄, bounds on the absolute perforation noise
|D|. In particular, using Chebyshev’s one-sided inequality, it follows that with
probability at least 1 − ε

|D| <
√

var(D̄)
(1
ε
− 1
)

+ ED̄ (12)

4.4 Ratio Pattern

We present an example of the original and transformed code for the ratio pattern
in Figure 5.
3 We anticipate that Z will in practice rarely be uniform, however this assumption

simplifies the analysis and is in some sense conservative if we choose the center and
width to cover all but a tiny fraction of the mass of the true distribution of Z. Note
that when, instead, Z is Gaussian, the variance of the perforation noise does not
have a closed form [2]. However, if we assume Z to be uniform, we might take our
approximation to cover some number of standard deviations.

Probabilistically Accurate Program Transformations 327

Original code Transformed Code
double numer = 0.0;
double denom = 0.0;
for (int i = 1; i <= n; i++) {

numer += x(i);
denom += y(i);

}
return numer/denom;

double numer = 0.0;
double denom = 0.0;
for (int i = 1; i <= n; i+=k) {

numer += x(i);
denom += y(i);

}
return numer/denom;

Fig. 5. Ratio Pattern; Original and Transformed Code

Assumptions. Let Xi = x(i) and Yi = y(i) denote random variables repre-
senting the values of the inner computations. We assume that the sequence of
pairs (Xi, Yi) are i.i.d. copies of a pair of random variables (X,Y), where Y > 0
almost surely. Define Z = X/Y and Zi = Xi/Yi. For some constants μ and σ2

Z ,
we assume that the conditional expectation of Z given Y is μ, i.e., E(Z|Y) = μ,
and that the conditional variance satisfies var(Z|Y) = σ2

Z

Y .

Analysis. The elements of the perforation vector P only take values from
the set {0, 1}. Note that the independence of the pairs (Xi, Yi) from different
iterations implies that the perforation strategy does not influence the final result.
To simplify the derivation, but without loss of generality, we use the perforation
vector P in which the first m elements are 1 and the remaining elements 0.

Define Y n1 = A′Y =
∑n

i=1 Yi and Y m1 = P ′Y =
∑m

i=1 Yi and define Xn
1 and

Xm
1 analogously. Then the value of the original computation is SO = Xn

1
Y n
1

=∑n
i=1

Yi

Y n
1
Zi, while the value of the perforated computation is given by SP =∑m

i=1
Yi

Ym
1
Zi, where m is the reduced number of steps in the perforated sum.

Note that in the previous equations, we used the identity Xi = YiZi.
We begin by studying the (signed) perforation noise D ≡ SP − SO. The

conditional expectation of D given Y1:n = {Y1, . . . , Yn} satisfies E(D|Y1:n) =∑n
i=1

Yi

Y n
1
μ −∑m

i=1
Yi

Y m
1
μ = 0. The conditional variance satisfies var(D|Y1:n) =

σ2
Z

(
1
Ym
1

− 1
Y n
1

)
By the law of iterated expectations E(D) = E(E(D|Y1:n)) = 0.

To proceed with an analysis of the variance of the perforation noise D, we
make a distributional assumption on Y . In particular, we assume that Y is
gamma distributed with shape α > 1 and scale θ > 0. Therefore, the sum Y m1
also has a gamma distribution with parameters α′ = mα, θ′ = θ, 1

Y m
1

has an
inverse gamma distribution with mean (θ(mα− 1))−1, and so

var(D) =
σ2
Z

θ

(
1

mα− 1
− 1
nα− 1

)
. (13)

Again, using Chebyshev’s inequality, we can bound the probability of large ab-
solute perforation noise |D|.

328 S. Misailovic, D.M. Roy, and M.C. Rinard

5 Discussion

Usage Scenarios. We anticipate several usage scenarios for the analyses we
present in Section 4. First, the analyses can provide the formal foundation re-
quired to justify the automatic application of loop perforation. In this scenario,
the analysis works with a probabilistic accuracy specification (which provides the
desired accuracy bounds and probability with which the transformed computa-
tion should satisfy the bounds) and a specification of the probability distribu-
tions for the random variables used to model pattern inputs. These probability
distributions can be provided either by a developer, by a user, or by fitting dis-
tributions to values observed during profiling executions. In [24] we present an
initial empirical evaluation of our probabilistic analyses on perforatable compu-
tations from the PARSEC benchmark suite.

Second, the analyses can also help users and developers better understand
the effect of loop perforation. They may then use this information to select an
optimal operating point for their application given their combined performance
and accuracy constraints and requirements.

Third, the analyses can also help a control system dynamically select optimal
application operating points as underlying characteristics (such as load, clock
rate, number of processors executing the computation, or any other character-
istic that many affect the delivered computational capacity) of the underlying
computational platform change [18,33].

In all of these scenarios the probabilistic analyses in this paper can be used to
better understand the shape of the trade-off space and more productively drive
the selection of perforation policies, with appropriate maximum acceptable ε and
B determining the range of available policies.

Scope. In this paper we provide probabilistic guarantees for the accuracy of
perforated computations. We expect that the basic framework of the probabilistic
guarantees (algebraic expressions for expected values, variances, and probabilis-
tic bounds) will remain largely the same for other transformations (the derivation
of the expressions will of course differ). We note that even for loop perforation,
we do not attempt to provide an exhaustive list of the possible patterns and
analyses. The statistical literature provides a comprehensive treatment of op-
erations on random variables [41] and order statistics of random variables [2].
The basic compositional properties of probability distributions under such oper-
ations can provide the foundation for the analysis of computations which employ
many of these operations. In addition, for the random perforation strategy, sur-
vey sampling [9] can provide useful bounds that do not make assumptions on
the distribution of the inputs for a number of aggregation computations.

We note that, given known composition properties of operations on proba-
bility distributions (for example, sums of Gaussian distributions are Gaussian;
multiplying a Gaussian by constant produces another Gaussian), it is possible
to compose our pattern-based analyses in straightforward ways to analyze more
complex computations. For example, it is straightforward to generalize the anal-
ysis of the sum pattern to analyze arbitrary linear computations over values
modeled using Gaussian distributions.

Probabilistically Accurate Program Transformations 329

We also anticipate that a number of program analyses or type systems can
work in concert with our probabilistic analyses. These analyses and type sys-
tems can, for example, help identify computational patterns, increase confidence
in some of the input assumptions, or reason about safety of the transformation.
For example, analyses or type systems may distinguish critical parts of the com-
putation (which, if transformed, can dramatically change the behavior of the
application and as such should not be perforated), from approximate parts of
the computation, which can be perforated [5,37].

6 Related Work

Loop Perforation and Task Skipping: Loop perforation [18,25,38] can be
seen as a special case of task skipping [33,34]. The first publication on task
skipping used linear regression to obtain empirical statistical models of the time
and accuracy effects of skipping tasks and identified the use of these models
in purposefully skipping tasks to reduce the amount of resources required to
perform the computation while preserving acceptable accuracy [33].

The first publication on loop perforation presented a purely empirical justi-
fication of loop perforation with no formal statistical, probabilistic, or discrete
logical reasoning used to justify the transformation [18]. The first statistical jus-
tification of loop perforation used Monte Carlo simulation [35]. The first proba-
bilistic justification for loop perforation used a pattern-based static analysis and
also presented the use of profiling runs on representative inputs and developer
specifications to obtain the required probability distribution information [24].
The probabilistic analyses in this paper can help users or developers better un-
derstand the shape of the induced accuracy vs. performance trade-off space and
select optimal operating points within this space given their combined accuracy
and performance requirements and/or constraints.

Continuity, Sensitivity, and Robustness: Chaudhuri et al. present a pro-
gram analysis for automatically determining whether a function is continuous [6].
The reasoning is deterministic and worst-case. An extension of this research in-
troduces a notion of function robustness, and, under an input locality condition,
presents an approximate memoization approach similar to loop perforation [7].
For a special case when the inputs form a Gaussian random walk (as described
in Section 4.1) and the loop body is a robust function, the paper derives a
probabilistic bound to provide a justification for applying loop perforation.

Reed and Pierce present a type system for capturing function sensitivity,
which measures how much a function may magnify changes to its inputs [32].
Although the language contains probabilistic constructs, the type system uses
deterministic worst-case reasoning, resulting in a worst-case sensitivity bound.

Modeling Uncertainty. Typical approaches for modeling uncertainty involve
the use of intervals, random variables, or fuzzy sets to represent values, and
the definition of computational patterns that operate on these uncertain values.

330 S. Misailovic, D.M. Roy, and M.C. Rinard

Interval analysis [28] represents uncertain values as intervals and defines basic
arithmetic operations on such values. It is often used to analyze the worst-case
rounding error in numerical computations, ideally producing small interval sizes.
For loop perforation the interval sizes are typically much larger and the derived
bounds therefore much less precise.

Additional knowledge about the inputs can make it possible to use proba-
bilistic, fuzzy, or hybrid modeling of the computations [21] to provide tighter
bounds. In this paper we use random variables to model uncertainty. The source
of this uncertainty can be either 1) innate randomness in the inputs or com-
putation or 2) our partial understanding of parts of the computation. Fuzzy
or hybrid approaches to modeling uncertainty may also, at least in principle,
provide alternate justifications for loop perforation.

Probabilistic Languages and Analyses: Researchers have previously
defined languages for probabilistic modeling, in which programs work directly
with probability distributions [36,22,19,31,11,30,13], and analyses to reason about
probabilistic programs [29,12,26,27,23,10,39]. Researchers have also used a prob-
abilistic foundation to quantitatively reason about certain properties of deter-
ministic programs [14,8]. Our approach quantitatively analyzes the application of
loop perforation to a set of amenable computational patterns, which may appear
in deterministic or probabilistic programs. It specifies probabilistic semantics at
a pattern level instead of the statement level. In comparison with general prob-
abilistic analyses, pattern-based analyses can, typically, provide more precise
accuracy bounds, since patterns provide additional information about the na-
ture of the analyzed computations (instances of patterns). Moreover, patterns
can identify additional information such as a definition of perforation noise (e.g.,
for the argmin-sum pattern), which may be impossible for a general probabilis-
tic semantics to capture. Computational patterns similar to ours have also been
used to provide more precise analyses in other contexts [15].

Performance vs. Accuracy Trade-Off Management: Both task skipping
[33,34] and loop perforation [18,38] can augment an application with the ability
to operate at multiple points in an underlying accuracy vs. performance trade-off
space. Of particular interest is the ability to move between points in this space as
the application is executing, enabling the application to adapt to the underlying
computing environment [18,33,34]. The empirical discovery of Pareto-optimal
combinations of perforated computations can enable a control system to find
and exploit optimal operating points within the trade-off space [18].

Dynamic Knobs converts static application configuration parameters into dy-
namic control variables, which the system can use to change the point in the
underlying trade-off space at which the application executes [17]. Eon [40],
Green [3], and Petabricks [1] allow developers to provide multiple implemen-
tations of a specific piece of application functionality, with each implementation
potentially exhibiting different performance versus accuracy trade-offs. There is
no explicit reasoning to justify the acceptability of the different alternatives –
all of these systems empirically evaluate the alternatives and ultimately rely on
the developer to identify only acceptable implementations.

Probabilistically Accurate Program Transformations 331

7 Conclusion

Traditional program analysis and transformation approaches use worst-case log-
ical reasoning to justify the application of transformations that do not change
the result that the program produces. We propose instead to use probabilistic
reasoning to justify the application of transformations that may, within proba-
bilistic bounds, change the result that the program produces. A goal is to provide
a reasoning foundation that can enable the application of a richer class of pro-
gram transformations.

Our results demonstrate how to apply this approach to justify the use of loop
perforation, which transforms the program to skip loop iterations. We identify
computations that interact well with loop perforation and show how to use
probabilistic reasoning to bound how much loop perforation may change the
result that the program produces. This reasoning can provide the foundation
required to understand, predict, and therefore justify the application of loop
perforation. In the future, we anticipate the use of similar probabilistic reasoning
to justify the application of a broad range of new transformations that may
change the result that the program produces.

Acknowledgements. We would like to thank Michael Carbin and the anony-
mous reviewers for their useful comments on the earlier drafts of this paper.

This research was supported in part by the National Science Foundation
(Grants CCF-0811397, CCF-0905244, CCF-1036241 and IIS-0835652) and the
United States Department of Energy (Grant DE-SC0005288).

References

1. Ansel, J., Chan, C., Wong, Y., Olszewski, M., Zhao, Q., Edelman, A., Amara-
singhe, S.: Petabricks: A language and compiler for algorithmic choice. In: PLDI
2010 (2010)

2. Arnold, B., Balakrishnan, N., Nagaraja, H.: A first course in order statistics. Society
for Industrial Mathematics, Philadelphia (2008)

3. Baek, W., Chilimbi, T.: Green: A framework for supporting energy-conscious pro-
gramming using controlled approximation. In: PLDI 2010 (2010)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Char-
acterization and architectural implications. In: PACT 2008 (2008)

5. Carbin, M., Rinard, M.: Automatically Identifying Critical Input Regions and Code
in Applications. In: ISSTA 2010 (2010)

6. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
POPL 2010 (2010)

7. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving Programs
Robust. In: FSE 2011 (2011)

8. Chaudhuri, S., Solar-Lezama, A.: Smooth interpretation. In: PLDI 2010 (2010)
9. Cochran, W.G.: Sampling techniques. John Wiley & Sons, Chichester (1977)

10. Di Pierro, A., Hankin, C., Wiklicky, H.: A systematic approach to probabilistic
pointer analysis. In: ASPLAS 2007 (2007)

11. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic λ-calculus and quantitative
program analysis. Journal of Logic and Computation (2005)

332 S. Misailovic, D.M. Roy, and M.C. Rinard

12. Di Pierro, A., Wiklicky, H.: Concurrent constraint programming: Towards proba-
bilistic abstract interpretation. In: PPDP 2000 (2000)

13. Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., Tenenbaum, J.: Church: a
language for generative models. In: UAI 2008 (2008)

14. Gulwani, S., Necula, G.C.: Precise interprocedural analysis using random interpre-
tation. In: POPL 2005 (2005)

15. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI 2010 (2010)

16. Hall, M., Murphy, B., Amarasinghe, S., Liao, S., Lam, M.: Interprocedural analysis
for parallelization. In: Languages and Compilers for Parallel Computing (1996)

17. Hoffman, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.:
Dynamic knobs for power-aware computing. In: ASPLOS 2011 (2011)

18. Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., Rinard, M.: Using Code
Perforation to Improve Performance, Reduce Energy Consumption, and Respond
to Failures. Technical Report MIT-CSAIL-TR-2009-042 (2009)

19. Hurd, J.: A formal approach to probabilistic termination. In: Carreño, V.A.,
Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, p. 230. Springer,
Heidelberg (2002)

20. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann, San Francisco (2002)

21. Klir, G.: Uncertainty and information. John Wiley & Sons, Chichester (2006)

22. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences (1981)

23. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic symbolic model
checker. In: Computer Performance Evaluation: Modelling Techniques and Tools
(2002)

24. Misailovic, S., Roy, D., Rinard, M.: Probabilistic and Statistical Analysis of Per-
forated Patterns. Technical Report MIT-CSAIL-TR-2011-003, MIT (2011)

25. Misailovic, S., Sidiroglou, S., Hoffmann, H., Rinard, M.: Quality of service profiling.
In: ICSE 2010 (2010)

26. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: SAS 2000.
LNCS, vol. 1824, pp. 322–340. Springer, Heidelberg (2000)

27. Monniaux, D.: An abstract monte-carlo method for the analysis of probabilistic
programs. In: POPL 2001 (2001)

28. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

29. Morgan, C., McIver, A.: pGCL: formal reasoning for random algorithms. South
African Computer Journal 22 (1999)

30. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based upon sampling
functions. In: POPL 2005 (2005)

31. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL 2002 (2002)

32. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for
differential privacy. In: ICFP 2010 (2010)

33. Rinard, M.: Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. In: ICS 2006 (2006)

34. Rinard, M.: Using early phase termination to eliminate load imbalances at barrier
synchronization points. In: OOPSLA 2007 (2007)

35. Rinard, M., Hoffmann, H., Misailovic, S., Sidiroglou, S.: Patterns and statistical
analysis for understanding reduced resource computing. In: Onward! 2010 (2010)

36. Saheb-Djahromi, N.: Probabilistic LCF. In: MFCS 1978 (1978)

Probabilistically Accurate Program Transformations 333

37. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
Enerj: Approximate data types for safe and general low-power computation. In:
PLDI 2011 (2011)

38. Sidiroglou, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing Performance
vs. Accuracy Trade-offs With Loop Perforation. In: FSE 2011 (2011)

39. Smith, M.: Probabilistic abstract interpretation of imperative programs using
truncated normal distributions. Electronic Notes in Theoretical Computer Science
(2008)

40. Sorber, J., Kostadinov, A., Garber, M., Brennan, M., Corner, M.D., Berger, E.D.:
Eon: a language and runtime system for perpetual systems. In: SenSys 2007 (2007)

41. Springer, M.: The algebra of random variables. John Wiley & Sons, Chichester
(1979)

Probabilistic Abstractions with Arbitrary

Domains

Javier Esparza and Andreas Gaiser

Fakultät für Informatik, Technische Universität München, Germany
{esparza,gaiser}@model.in.tum.de

Abstract. Recent work by Hermanns et al. and Kattenbelt et al. has
extended counterexample-guided abstraction refinement (CEGAR) to
probabilistic programs. These approaches are limited to predicate ab-
straction. We present a novel technique, based on the abstract reacha-
bility tree recently introduced by Gulavani et al., that can use arbitrary
abstract domains and widening operators (in the sense of Abstract In-
terpretation). We show how suitable widening operators can deduce loop
invariants difficult to find for predicate abstraction, and propose refine-
ment techniques.

1 Introduction

Abstraction techniques are crucial for the automatic verification of systems
with a finite but very large or infinite state space. The Abstract Interpre-
tation framework provides the mathematical basis of abstraction [8]. Recent
work has extended abstraction techniques to probabilistic systems using games
[13,14,16,22,23]. The systems (e.g. probabilistic programs) are given semantics in
terms of Markov Decision Processes (MDPs), which can model nondeterminism
and (using interleaving semantics) concurrency. The key idea is to abstract the
MDP into a stochastic 2-Player game, distinguishing between nondeterminism
inherent to the system (modeled by the choices of Player 1) and nondeterminism
introduced by the abstraction (modeled by Player 2). The construction ensures
that the probability of reaching a goal state in the MDP using an optimal strat-
egy is bounded from above and from below by the supremum and infimum of
the probabilities of reaching the goal in the 2-Player game when Player 1 plays
according to an optimal strategy (and Player 2 is free to play in any way)1. An
analogous result holds for the probability of reaching a goal state in the MDP
using a pessimal strategy.

The abstraction technique of [16,23] and the related [13,14,22] relies on pred-
icate abstraction: an abstract state is an equivalence class of concrete states,
where two concrete states are equivalent if they satisfy the same subset of a given
set of predicates. The concretization of two distinct abstract states is always dis-
joint (the disjointness property). If the upper and lower bounds obtained using a
set of predicates are not close enough, the abstraction is refined by adding new
1 In [16], the roles of the players are interchanged.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 334–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Probabilistic Abstractions with Arbitrary Domains 335

predicates with the help of interpolation, analogously to the well-known CEGAR
approach for non-probabilistic systems.

While predicate abstraction has proved very successful, it is known to have
a number of shortcomings: potentially expensive equality and inclusion checks
for abstract states, and “predicate explosion”. In the non-probabilistic case, the
work of Gulavani et al. has extended the CEGAR approach to a broader range
of abstract domains [12], in which widening operations can be combined with
interpolation methods, leading to more efficient abstraction algorithms. We show
that the ideas of Gulavani et al. can also be applied to probabilistic systems,
which extends the approaches of [16,17,23] to arbitrary abstract domains. Given
a probabilistic program, an abstract domain and a widening for this domain, we
show how to construct an abstract stochastic 2-Player reachability game. The
disjointness property is not required. We prove that bounds on the probability
of reaching a goal state in the MDP can be computed as in [16,23]. The proofs
of [23] use the disjointness property to easily define a Galois connection between
the sets of functions assigning values to the abstract and the concrete states.
Since there seems to be no easy way to adapt them or the ones from [16,17] to
our construction, we show the soundness of our approach by a new proof that
uses different techniques.

We also propose an abstraction refinement technique that adapts the idea
of delaying the application of widenings [5] to the probabilistic case. The tech-
nique delays widenings at the nodes which are likely to have a larger impact in
improving the bounds. We present experimental results on several examples.

The paper is organized as follows. In the rest of the introduction we discuss
related work and informally present the key ideas of our approach by means
of examples. Section 2 contains preliminaries. Section 3 formally introduces the
abstraction technique, and proves that games we are considering indeed give us
upper resp. lower bound of the exact minimal and maximal reachability prob-
abilities of reaching a set of states. Section 4 shows methods of refining our
abstractions and discusses some experiments.

Related work. Besides [13,14,16,22,23], Monniaux has studied in [18] how to ab-
stract probability distributions over program states (instead of the states them-
selves), but only considers upper bounds for probabilities, as already pointed out
in [23]. In [19], Monniaux analyses different quantitative properties of Markov
Decision processes, again using abstractions of probability distributions. In con-
trast, our approach constructs an abstraction using “non-probabilistic” domains
and widenings and then performs the computation of strategies and strategy val-
ues, which might be used for a refinement of the abstraction. Finally, in [20] Han-
kin, Di Pierro, and Wiklicky develop a framework for probabilistic Abstract In-
terpretation which, loosely speaking, replaces abstract domains by linear spaces
and Galois connections by special linear maps, and aims at computing expected
values of random variables. In contrast, we stick to the standard framework,
since in particular we wish to apply existing tools, and aim for upper and lower
bounds of probabilities.

336 J. Esparza and A. Gaiser

1.1 An Example

Consider the following program, written in pseudo code:

int nrp = 0;
1: while (nrp < 100)
2: if (rec_pack()) then nrp = nrp+1 else break
3: if (nrp < 1) then (fail or goto 1) else exit

where the choice between fail and goto 1 is decided by the environment. The
goal of the program is to receive up to 100 packets through a network connec-
tion. Whenever rec pack() is executed, the connection can break down with
probability 0.01, in which case rec pack() returns false and no further packets
can be received. If at least one packet is received (line 3) the program termi-
nates2; otherwise, the program tries to repair the connection, which may fail or
succeed, in which case the program is started again. The choice between success
and failure is nondeterministic.

We formalize the pseudo code as a Nondeterministic Probabilistic Program,
abbreviated NPP3 (see Fig. 1). A NPP is a collection of guarded commands.
A guarded command consists of a name (e.g. A1), followed by a guard (e.g.
(ctr = 1) & (nrp < 100)) and a sequence of pairs of probabilities and update
commands (e.g. 0.99: (nrp’ = nrp+1)), separated by ’+’. A reach-line at the
end of the NPP describes the set of states for which we want to compute the
reachability probability. We call them the final states. In our example, reaching
fail corresponds to satisfying (ctr = 3) && (nrp < 1). A program execution
starts with the initial configuration given by the variable declarations. The pro-
gram chooses a guarded command whose guard is enabled (i.e., satisfied) by the
current state of the program, and selects one of its update commands at ran-
dom, according to the annotated probabilities. After performing the update, the
process is repeated until the program reaches a final state.

The probability of reaching fail depends on the behaviour of the environ-
ment. The smallest (largest) probability clearly corresponds to the environment
always choosing goto 1 (fail), and its value is 0 (0.01). However, a brute force
automatic technique will construct the standard semantics of the program, a
Markov decision process (MDP) with over 400 states, part of which is shown in
Fig. 1. We informally introduce our abstraction technique, which does better
and is able to infer tight intervals for both the smallest and the largest proba-
bility. It is based on the parallel or menu-based predicate abstraction of [13,22],
which we adapt to arbitrary abstract domains.

1.2 Constructing a Valid Abstraction

Given an abstract domain and a widening operator, we abstract the MDP of the
program into four different stochastic 2-Player games sharing the same arena and
2 It would be more realistic to set another bound, like 20 packets, but with one packet

the probabilities are easy to compute.
3 NPPs roughly correspond to a subset of the input language of the model checker

PRISM [1].

Probabilistic Abstractions with Arbitrary Domains 337

int nrp = 0, ctr = 1;

A1: (ctr = 1) & (nrp < 100)

-> 0.99:(nrp’ = nrp+1)

+ 0.01:(ctr’ = 2);

A2: (ctr = 1) & (nrp >= 100)

-> 1:(ctr’ = 3);

A3: (ctr = 2) & (nrp < 1)

-> 1:(ctr’ = 1);

A4: (ctr = 2)

-> 1:(ctr’ = 3);

A5: (ctr = 3) & (nrp >= 1)

-> 1:(ctr’ = 3);

reach: (ctr = 3) & (nrp < 1)

1,0

A1

1,1 2,0

A4 A3A1

1,2 2,1

.

3,0

0.99 0.01
1

0.99 0.01 1

Fig. 1. Example program and prefix of the corresponding Markov Decision Process.
Actions are drawn as circles, program states 〈ctr, nrp〉 as rectangles. 〈3, 0〉 is a final
state.

1, [0, 0]

A1

1, [0, 0]

2, [0, 0]

A3 A4

2, [0, 0] 2, [0, 0]

1, [0,∞)

A1A2

1, [100,∞) 1, [0, 99]

2, [0, 99]

A3A4

2, [0, 0]2, [0, 99]

3, [0, 99]

A5

3, [1, 99]

�?

3, [100,∞)

A5

3, [100,∞)

3, [0, 0]

�?

�

�

0.01 0.99

1

1 1 0.01

1

1

0.99

1

1

Fig. 2. Abstraction of the program from Fig. 1

338 J. Esparza and A. Gaiser

the same rules (i.e., the games differ only on the winning conditions). A round
of the game starts at an abstract state n (we think of n as a set of concrete
states) with Player 1 to move. Let ni be the set of concrete states of n that
enable command Ai. Player 1 proposes an Ai such that ni �= ∅, modeled by a
move from n to a node 〈n,Ai〉. If n contains some final state, then Player 1 can
also propose to end the play (modeled by a move to 〈n,�〉). Then it is Player 2’s
turn. If Player 1 proposes Ai, then Player 2 can accept the proposal (modeled
by a move to a node determined below), or reject it and end the play (modeled
by a move to another distinguished node �), but only if ni �= n. If Player 2
accepts Ai, she moves to some node 〈n,Ai, n′〉 such that ni ⊆ n′ (i.e., Player 2
can ”pick“ a subset n′ of ni out of the subsets offered by the game arena). The
next node of the play is determined probabilistically: one of the updates of Ai
is selected randomly according to the probabilities, and the play moves to the
abstract state obtained by applying the update and (in certain situations) the
widening operator to n′. If Player 1 proposes � by choosing 〈n,�〉, then Player
2 can accept the proposal, (modeled by a move to �) or, if not all concrete states
of n are final, reject it (modeled by a move 〈n,�〉 → 〈n,�〉).

Fig. 2 shows an arena for the program of Fig. 1 with the abstract domain
and widening operator described in the following. Nodes owned by Player 1 are
drawn as white rectangles, nodes owned by Player 2 as circles, and probabilistic
nodes as grey rectangles. In the figure we label a node 〈n,Ai〉 belonging to Player
2 with Ai and a probabilistic node 〈n,Ai, n′〉 with n′ (n resp. n and Ai can easily
be reconstructed by inspecting the direct predecessors). Nodes of the form 〈n,�〉
are labeled with ’�?’.

A (concrete) state of the example program is a pair 〈ctr ,nrp〉, and an ab-
stract state is a pair 〈ctr , [a, b]〉, where [a, b] is an interval of values of nrp
(i.e., ctr is not abstracted in the example). The widening operator ∇ works as
follows: if the abstract state 〈ctr , [a, b]〉 has an ancestor 〈ctr , [a′, b′]〉 along the
path between it and the initial state given by the construction, then we over-
approximate 〈ctr , [a, b]〉 by 〈ctr , s〉, with s = [a′, b′]∇ [min(a, a′),max(b, b′)]. For
instance the node n = 〈1, [0,∞)〉 in Fig. 2 enables A1 and A2, and so it has
two successors. Since n contains concrete states that do not enable A1 and con-
crete states that do not enable A2, both of them have � as successor. The node
〈n, A1, 〈1, [0, 99]〉〉 (whose label is abbreviated by 〈1, [0, 99]〉 in the figure) is prob-
abilistic. Without widening, its successors would be 〈2, [0, 99]〉 and 〈1, [1, 100]〉
with probabilities 0.01 and 0.99. However, 〈1, [1, 100]〉 has 〈1, [0,∞)〉 as (direct)
predecessor, which has the same ctr-value. Therefore the widening overapprox-
imates 〈1, [1, 100]〉 to 〈1, [0,∞)∇[0,∞)〉 = 〈1, [0,∞)〉, and hence we insert an
edge from 〈n, A1, 〈1, [0, 99]〉〉 (back) to 〈1, [0,∞)〉, labeled by 0.99.

After building the arena, we compute lower and upper bounds for the minimal
and maximal reachability probabilities as the values of four different games,
defined as the winning probability of Player 1 for optimal play. The winning
conditions of the games are as follows:

(a) Lower bound for the maximal probability: Player 1 wins if the play ends by
reaching �, otherwise Player 2 wins.

Probabilistic Abstractions with Arbitrary Domains 339

int c = 0, i = 0;

1: if choice(0.5) then

2: while (i <= 100)

3: i = i+1;

4: c = c-i+2

5: if (c >= i) then fail

int c = 0, i = 0;

1: while(i <= 100)

2: if choice(0.5) then i = (i+1);

3: c = c-i+2;

4: if (c >= i) then fail

Fig. 3. Example programs 2 and 3

(b) Upper bound for the maximal probability: Players 1 and 2 both win if the
play ends by reaching �, and both lose otherwise.

(c) Lower bound for the minimal probability: Players 1 and 2 both lose if the
play ends by reaching � or �, and both win otherwise.

(d) Upper bound for the minimal probability: Player 1 loses if the play ends by
reaching � or �, otherwise Player 2 loses.

For the intuition behind these winning conditions, consider first game (a). Since
Player 1 models the environment and wins by reaching �, the environment’s goal
is to reach a final state. Imagine first that the abstraction is the trivial one, i.e.,
abstract and concrete states coincide. Then Player 2 never has a choice, and the
optimal strategy for Player 1 determines a set S of action sequences whose total
probability is equal to the maximal probability of reaching a final state. Imagine
now that the abstraction is coarser. In the arena for the abstract game the
sequences of S are still possible, but now Player 2 may be able to prevent them,
for instance by moving to � when an abstract state contains concrete states not
enabling the next action in the sequence. Therefore, in the abstract game the
probability that Player 1 wins can be at most equal to the maximal probability.
In game (b) the team formed by the two players can exploit the spurious paths
introduced by the abstraction to find a strategy leading to a better set of paths;
in any case, the probability of S is a lower bound for the winning probability of
the team. The intuition behind games (c) and (d) is similar.

In our example, optimal strategies for game (b) are: for Player 1, always play
the “rightmost” choice, except at 〈2, [0, 99]〉, where she should play A4; for Player
2, play � if possible, otherwise anything but �. The value of the game is 1. In
game (a), the optimal strategy for Player 1 is the same, whereas Player 2 always
plays � (resp. stays in �?) whenever possible. The value of the game is 0.01.
We get [0.01, 1] as lower and upper bound for the maximal probability. For the
minimal probability we get the trivial bounds [0, 1].

To get more precision, we can skip widenings at certain situations during
the construction. If we e.g. apply widening only after the second unrolling of
the loop, the resulting abstraction allows us to obtain the more precise bounds
[0, 0.01] and [0.01, 0.01] for minimal and maximal reachability, respectively.

The main theoretical result of our paper is the counterpart of the results
of [16,13]: for arbitrary abstraction domains, the values of the four games de-
scribed above indeed yield upper and lower bounds of the maximal and minimal
probability of reaching the goal nodes.

340 J. Esparza and A. Gaiser

In order to give a first impression of the advantages of abstraction domains be-
yond predicate abstraction in the probabilistic case, consider the (deterministic)
pseudo code on the left of Fig. 3, a variant of the program above. Here choice(p)
models a call to a random number generator that returns 1 with probability p
and 0 with probability 1 − p.

It is easy to see that c ≤ 1 is a global invariant, and so the probability of
failure is exactly 0.5. Hence a simple invariant like c ≤ k for a k ≤ 100, together
with the postcondition i > 100 of the loop would be sufficient to negate the
guard of the statement at line 5. However, when this program is analysed with
PASS [13,14], a leading tool on probabilistic abstraction refinement on the basis
of predicate abstraction, the while loop is unrolled 100 times because the tool
fails to “catch” the invariant, independently of the options chosen to refine the
abstraction 4.

On the other hand, an analysis of the program with the standard interval do-
main, the standard widening operator, and the standard technique of delaying
widenings [5], easily ‘catches” the invariant (see Section 4.1). The same happens
for the program on the right of the figure, which exhibits a more interesting
probabilistic behaviour, especially a probabilistic choice within a loop: we obtain
good upper and lower bounds for the probability of failure using the standard
interval domain. Notice that examples exhibiting the opposite behaviour (pred-
icate abstraction succeeds where interval analysis fails) are not difficult to find;
our thesis is only that the game-based abstraction approach of [13,16] can be
extended to arbitrary abstract domains, making it more flexible and efficient.

2 Stochastic 2-Player Games

This section introduces stochastic 2-Player games. For a more thorough intro-
duction into the subject and proofs for the theorems see e.g. [21,6,7].

Let S be a countable set. We denote by Dist(S) the set of all distributions
δ : S → [0, 1] over S with δ(x) = 0 for all but finitely many x ∈ S.

Definition 1. A stochastic 2-Player game G (short 2-Player game) is a tuple
((V1, V2, Vp), E, δ, s0), where

– V1, V2, Vp are distinct, countable sets of states. We set V = V1 ∪ V2 ∪ Vp;
– E ⊆ (V1 ∪ V2) × V is the set of admissible player choices;
– δ : Vp → Dist(V) is a probabilistic transition function;
– s0 ∈ V1 is the start state.

Instead of (q, r) ∈ E we often write q → r. A string w ∈ V + is a finite run (short:
run) of G if (a) w = s0, or (b) w = w′s′s for some run w′s′ ∈ V ∗(V1 ∪ V2) and
s′ → s, or (c) w = w′s′s for some run w′s′ ∈ V ∗Vp such that δ(s′)(s) > 0.
We denote the set of all runs of G by Cyl(G). A run w = x1 . . . xk is accepting

4 Actually, the input language of PASS does not explicitly include while loops, they
have to be simulated. But this does not affect the analysis.

Probabilistic Abstractions with Arbitrary Domains 341

relative to F ⊆ V1 if xk ∈ F and xi �∈ F for 1 ≤ i < k. The set of accepting
runs relative to F is denoted by Cyl(G, F).

A stochastic 2-Player game with V2 = ∅ is called a Markov Decision Process
(MDP), and then we write G = ((V1, Vp), E, δ, s0).

Fix for the rest of the section a 2-Player game G = ((V1, V2, Vp), E, δ, s0). The
behaviours of Player 1 and 2 in G are described with the help of strategies:

Definition 2. A strategy for Player i ∈ {1, 2} in G is a partial function φ :
Cyl(G) → Dist(V) satisfying the following two conditions:

– φ(w) is defined iff w = w′v ∈ V ∗Vi and v → x for some x ∈ V ; and
– if φ(w) is defined and φ(w)(x) > 0 then wx is a run.

We denote the set of strategies for Player i by Si(G). A strategy φ is memoryless
if φ(w1) = φ(w2) for any two runs w1, w2 ending in the same node of Vi, and
non-randomized if for every run w such that φ(w) is defined there is a node x
such that φ(w)(x) = 1. Given strategies φ1, φ2 for Players 1 and 2, the value
val (w)G[φ1,φ2] of a run w under φ1, φ2 is defined as follows:

– If w = s0, then val (w)G[φ1,φ2] = 1.
– If w = w′s ∈ V ∗Vi for i ∈ {1, 2} and φi(w′) is defined, then val (w)G[φ1,φ2] =

val (w′)G[φ1,φ2] · φi(w′)(s).
– If w = w′s′s for some run w′s′ ∈ V ∗Vp then

val (w)G[φ1,φ2] = val (w′s′)G[φ1,φ2] · δ(s′)(s).
– Otherwise val (w)G[φ1,φ2] = 0.

We are interested in probabilistic reachability:

Definition 3. The probability Reach(G[φ1, φ2], F) of reaching F ⊂ V1 in G
under strategies φ1 and φ2 of Players 1 and 2 is

Reach(G[φ1, φ2], F) :=
∑

w∈Cyl(G,F)

val (w)G[φ1,φ2].

If the context is clear, we often omit the subscript of val (·). We write
Cyl(G[φ1, φ2]) (resp. Cyl(G[φ1, φ2], F)) for the set of all finite runs r ∈ Cyl(G)
(resp. r ∈ Cyl(G, F)) with val (r)G[φ1,φ2] > 0. In a MDP M we do not require to
have a strategy for the second Player. Here we just write Reach(M[φ1], F) for a
given strategy φ1 ∈ S1(M).

Definition 4. Let G = ((V1, V2, Vp), E, δ, s0) be a 2-Player game, and F ⊂ V1.
The extremal game values Reach(G, F)++,Reach(G, F)+−,Reach(G, F)−+ and
Reach(G, F)−− are

Reach(G, F)++ := sup
φ1∈S1(G)

sup
φ2∈S2(G)

Reach(G[φ1, φ2], F)

Reach(G, F)+− := sup
φ1∈S1(G)

inf
φ2∈S2(G)

Reach(G[φ1, φ2], F)

Reach(G, F)−+ := inf
φ1∈S1(G)

sup
φ2∈S2(G)

Reach(G[φ1, φ2], F)

Reach(G, F)−− := inf
φ1∈S1(G)

inf
φ2∈S2(G)

Reach(G[φ1, φ2], F)

342 J. Esparza and A. Gaiser

If G is a MDP, we define Reach(G, F)+ := Reach(G, F)++ = Reach(G, F)+− and
Reach(G, F)− := Reach(G, F)−− = Reach(G, F)−+.

The following well-known theorem will be crucial for the validity of our ab-
stractions [6]:

Theorem 1. Let F ⊂ V1. For each κ ∈ {++,+−,−+,−−} there exist non-
randomized and memoryless strategies φκ1 ∈ S1(G), φκ2 ∈ S2(G) such that

Reach(G, F)κ = Reach(G[φκ1 , φ
κ
2], F).

Extremal game values can be computed e.g. by variants of value iteration [7].

3 Abstractions of Probabilistic Programs

We start by giving a formal definition of NPPs.

Definition 5. Let V be a finite set of variables, where x ∈ V has a range rng(x).
A configuration (or state) of V is a map σ : V → ⋃x∈V rng(x) such that σ(x) ∈
rng(x) for all x ∈ V. The set of all configurations is denoted by ΣV . A transition
is a map f ∈ 2ΣV → 2ΣV such that |f({σ})| ≤ 1 for all σ ∈ ΣV (i.e., a transition
maps a single configuration to the empty set or to a singleton again), and⋃

σ∈M
f({σ}) = f(M) for all M ⊆ ΣV .

A transition g is a guard if g({σ}) ∈ {{σ}, ∅} for every configuration σ.
We say that σ enables g if g({σ}) = {σ}. A transition c is an assignment if
|c({σ})| = 1 for all σ ∈ ΣV . The semantics of an assignment c is the map
�c� : ΣV → ΣV given by �c�(σ) := σ′ if c({σ}) = {σ′}. The set of transitions is
denoted by TransV .

Definition 6. Nondeterministic Probabilistic Programs.
A nondeterministic probabilistic program (NPP) is a triple P = (V , σ0, C) where
V is a finite set of program variables, σ0 ∈ ΣV is the initial configuration, and
C is a finite set of guarded commands. A guarded command A has the form
A = g → p1 : c1 + . . . + pm : cm, where m ≥ 1, g is a guard, p1, . . . , pm
are probabilities adding up to 1, and c1, . . . , cm are assignments. We denote the
guard of A by gA, the updates {〈p1, c1〉, . . . 〈pm, cm〉} of A by upA, and the set
{upA | A ∈ C} by upC.

Definition 7. Semantics of NPPs and Reachability Problem.
The MDP associated to a NPP P = (V , σ0, C) is MP = ((V1, Vp), E, δ, σ0),
where V1 = ΣV , Vp = ΣV ×C, E ⊆ V1 × (V1 ∪Vp), δ : (ΣV ×C) → Dist(V1), and
for every A ∈ C, σ, σ′ ∈ ΣV

σ → 〈σ,A〉 iff σ enables gA and δ(〈σ,A〉)(σ′) :=
∑

〈p,c〉∈upA: �c�(σ)=σ′
p .

The reachability problem for P relative to a set F ⊆ ΣV of states such that
σ0 /∈ F is the problem of computing Reach(MP , F)+ and Reach(MP , F)−. We
call F the set of final states.

Probabilistic Abstractions with Arbitrary Domains 343

We assume in the following that for every run wσ ∈ V ∗V1 in MP either σ ∈ F or
σ enables the guard of at least one command (i.e., we do not ’get stuck’ during the
computation). This can e.g. be achieved by adding a suitable guarded command
that simulates a self loop.

3.1 Abstracting NPPs

We abstract NPPs using the Abstract Interpretation framework (see [8]). As
usual, an abstract domain is a complete lattice (D�,�,�,⊥,�,�) (short D�),
and we assume the existence of monotone abstraction and concretization maps
α : 2ΣV → D� and γ : D� → 2ΣV forming a Galois connection between D� and
2ΣV . A widen operator is a mapping ∇ : D� ×D� → D� satisfying (i) a∇b (a
and a∇b (b for all a, b ∈ D�, and (ii) for every strictly increasing sequence
a0 � a1 � . . . in D� the sequence (bi)i∈N defined by b0 = a0 and bi+1 = bi∇ ai+1

is stationary.
We abstract sets of configurations by elements of D�. Following ideas

from [16,13,14,22], the abstraction of an NPP is a 2-player stochastic game.
We formalize which games are valid abstractions of a given NPP (compare the
definition to the comments in Section 1.2):

Definition 8. Let P = (V , σ0, C) be a NPP with a set F ⊆ ΣV of final states
such that σ0 /∈ F . A 2-player game G = ((V1, V2, Vp), E, δ, s0) with finitely many
nodes is a valid abstraction of P relative to F for D� if

– V1 contains a subset of D� plus two distinguished states �,�;
– V2 is a set of pairs 〈s,A〉, where s ∈ V1 \ {�,�} and either A = � or A is

a command of C enabled by some state of γ(s);
– Vp is a set of fourtuples 〈s,A, s′, d〉, where s, s′ ∈ V1 \ {�,�} such that
s (s′, A is a command enabled by some state of γ(s′), and d is the mapping
that assigns to every update 〈p, c〉 ∈ upA an abstract state s′ ∈ V1 with
γ(d(〈p, c〉)) ⊇ c(γ(s′));

– s0 = α({σ0});
and the following conditions hold:

1. For every s ∈ V1 \ {�,�} and every A ∈ C:
(a) If γ(s) ∩ F �= ∅ then s→ 〈s,�〉 → �. If moreover γ(s) ⊆ F , then 〈s,�〉

is the only successor of s; otherwise, also 〈s,�〉 → 〈s,�〉 holds.
(* If γ(s) contains some final state, then Player 1 can propose �. If
all states of γ(s) are final, then Player 2 must accept, otherwise it can
accept, or reject by staying in 〈s,�〉. *)

(b) If gA(γ(s)) �= ∅ then 〈s,A〉 ∈ V2 and s→ 〈s,A〉.
(* If some state of γ(s) enables A then Player 1 can propose A. *)

2. For every pair 〈s,A〉 ∈ V2 and every A ∈ C:
(a) there exist nodes {〈s,A, s1, d1〉, . . . , 〈s,A, sk, dk〉} ⊆ Vp such that 〈s,A〉 →

〈s,A, si, di〉 for every i ≤ k and gA(γ(s)) ⊆ ⋃kj=1 γ(sj).
(* If Player 2 accepts A, then she can pick any concrete state σ ∈ γ(s)
enabling A, and choose a successor 〈s,A, si, di〉 such that σ ∈ γ(si). *)

344 J. Esparza and A. Gaiser

(b) If γ(s) ∩ F �= ∅, then 〈s,A〉 → �.
(* If γ(s) contains some final state, then Player 2 can reject and move
to �. *)

(c) If gA(γ(s)) �= γ(s), then 〈s,A〉 → �.
(* If some state of γ(s) does not enable A, then Player 2 can reject A
and move to �. *)

3. For every 〈s,A, s′, d〉 ∈ Vp and every abstract state s′′ ∈ V1:

δ(〈s,A, s′, d〉)(s′′) :=
∑

〈p,c〉∈upA : d(〈p,c〉)=s′′
p .

4. The states � and � have no outgoing edges.

We can now state the main theorem of the paper: the extremal game values of
the games derived from valid abstractions provide upper and lower bounds on
the maximal and minimal reachability probabilities. The complete proof is given
in [10].

Theorem 2. Let P be a NPP and let G be a valid abstraction of P relative to
F for the abstract domain D�. Then

Reach(MP , F)− ∈ [Reach(G, {�,�})−−,Reach(G, {�,�})−+] and

Reach(MP , F)+ ∈ [Reach(G, {�})+−,Reach(G, {�})++].

Proof. (Sketch.) The result is an easy consequence of the following three asser-
tions:

(1) Given a strategy φ of the (single) player in MP , there exists a strategy
φ1 ∈ S1(G) such that

inf
ψ∈S2(G)

Reach(G[φ1, ψ], {�,�}) ≤ Reach(MP [φ], F) and

sup
ψ∈S2(G)

Reach(G[φ1, ψ], {�}) ≥ Reach(MP [φ], F).

(2) Given a strategy φ1 ∈ S1(G) there exists a strategy φ ∈ S1(MP) such that

Reach(MP [φ], F) ≤ sup
ψ∈S2(G)

Reach(G[φ1, ψ], {�,�}).

(3) Given a strategy φ1 ∈ S1(G) there exists a strategy φ ∈ S1(MP) such that

Reach(MP [φ], F) ≥ inf
ψ∈S2(G)

Reach(G[φ1, ψ], {�}).

To prove (1) (the other two assertions are similar), we use φ to define a function
D that distributes the probabilistic mass of a run R ∈ Cyl(G) among all the runs
r ∈ Cyl(M) (where M is a normalization of MP). The strategies φ1 and φ2 are
then chosen so that they produce the same distribution, i.e., the mass of all the
runs r that follow the strategies and correspond to an abstract run R following
φ is equal to the mass of R. ��

Probabilistic Abstractions with Arbitrary Domains 345

Recall that in predicate abstraction the concretizations of two abstract states
are disjoint sets of configurations (disjointness property). This allows to easily
define a Galois connection between the sets of functions assigning values to the
abstract and the concrete states: Given a concrete valuator f , its abstraction
is the function that assigns to a set X the minimal resp. the maximal value
assigned by f to the elements of X . Here we have to distribute the value of a
concrete state into multiple abstract states (which is what we do in our proof).

3.2 An Algorithm for Constructing Valid Abstractions

Algorithm 1 builds a valid abstraction G of a NPP P relative to a set F of final
states for a given abstract domain D�. It is inspired by the algorithms of [4,11]
for constructing abstract reachability trees. It constructs the initial state s0 =
α({σ0}) and generates transitions and successor states in a breadth-first fashion
using a work list called work. The GENSUCCS procedure constructs the successors
of a node guided by the rules from Def. 8. It uses abstract transformers g� and c�

for the guards and commands of the NPP. Hereby a transformer g� : D� → 2D
�

abstracting a guard g has to satisfy that for all a ∈ D�, g�(a) is finite and⋃
b∈g�(a) γ(b) ⊇ g(γ(a)). Allowing g� to return a set rather than just one element

from D� can help increasing the accuracy of G. Here we implicitly make use of
abstract powerset domains. GENSUCCS assumes that it can be decided whether
γ(s) ∩ F = ∅, γ(s) �⊆ F , gA(γ(s)) �= ∅ or gA(γ(s)) �= γ(s) hold (lines 2 and
4). The assumptions on F are reasonable, since in most cases the set F has a
very simple shape, and could be replaced by conservative tests on the abstract.
A conservative decision procedure suffices for the test gA(γ(s)) �= γ(s), with
the only requirement that if it returns 0, then gA(γ(s)) = γ(s) has to hold. The
same holds for the test gA(γ(s)) �= ∅. GENSUCCS closely follows the definition of
a valid abstraction, as specified in Def. 8.

Lines 1 and 2 guarantee that condition (1a) of Def. 8 holds, and, similarly,
line 4 guarantees condition (1b). Similarly, lines 3 and 5 are needed to satisfy
conditions (2b) and (2c), respectively. The loop at line 6 generates the nodes of
the form 〈s,A, si, d〉 required by condition (2a) of our definition, and the loop
at line 7 constructs the function d appearing in condition 3.

As usual, termination of the algorithm requires to use widenings. This is the
role of the EXTRAPOLATE procedure. During the construction, we use the function
pred(·) to store for every node s ∈ V1 \{s0,�,�} its predecessor in the spanning
tree induced by the construction (we call it the spanning tree from now on). For
a node s′ ∈ V1 that was created as the result of chosing a guarded command A,
the procedure finds the nearest predecessor s in the spanning tree with the same
property, and uses s to perform a widen operation. Note that in the introductory
example, another strategy was used: There we applied widenings only for states
with matching control location. The strategy used in EXTRAPOLATE does not use
additional information like control flow and thus can be used for arbitrary NPPs.
We can now prove (see [10]):

Theorem 3. Algorithm 1 terminates, and its result G is a valid abstraction.

346 J. Esparza and A. Gaiser

Algorithm 1: Computing G.
Input: NPP P = (V, σ0, C), abstract domain D�, set of final states F ⊆ ΣV ,

widening ∇.
Output: 2-Player game G = ((V1, V2, Vp), E, δ, s0).

s0 = α({σ0}); pred(s0)← nil
V1 ← {s0,�,�}; V2 ← ∅; Vp ← ∅; work ← {s0}
while work �= ∅ do

Remove s from the head of work; GENSUCCS(s)

Procedure GENSUCCS(s ∈ V1)
fopt ← false
if γ(s) ∩ F �= ∅ then

1 E ← E ∪ {(s, 〈s,�〉), (〈s,�〉,�)}
2 if γ(s) �⊆ F then { E ← E ∪ {(〈s,�〉, 〈s,�〉)}; fopt← true }

else return

forall the A ∈ C do
if gA(γ(s)) �= ∅ then

3 V2 ← V2 ∪ {〈s,A〉}; E ← E ∪ {(s, 〈s,A〉)}
4 if gA(γ(s)) �= γ(s) then E ← E ∪ {(〈s,A〉,�)}
5 if fopt then E ← E ∪ {(〈s, A〉,�)}
6 forall the s′ ∈ g�

A(s) do
Create a fresh array d : upC → V1

7 forall the 〈p, c〉 ∈ upA do

v ← EXTRAPOLATE(c�(s), s, A); d(〈p, c〉)← v
if v �∈ V1 then {
V1 ← V1 ∪ {v}; pred(v) = 〈s,A〉; add v to work }

Vp ← Vp ∪ {〈s,A, s′, d〉}; E ← E ∪ {(〈s,A〉, 〈s,A, s′, d〉)}

Procedure EXTRAPOLATE(v ∈ D�, s ∈ V1 \ {�,�}, A ∈ C)
〈s′, A′〉 ← pred(s)
while pred(s′) �= nil do

if A′ = A then return s∇(s " v)
else { buffer← s′; 〈s′, A′〉 ← pred(s′); s← buffer }

return v

4 Refining Abstractions: Quantitative Widening Delay

Algorithm 1 applies the widening operator whenever the current node has a
predecessor in the spanning tree that was created by the application applying the
same guarded command. This strategy usually leads to too many widenings and
poor abstractions. A popular solution in non-probabilistic abstract interpretation
is to delay widenings in an initial stage of the analysis [5], in our case until the
spanning tree reaches a given depth. We call this approach depth-based unrolling.

Probabilistic Abstractions with Arbitrary Domains 347

Note that if MP is finite and the application of widenings is the only source of
imprecision, this simple refinement method is complete.

A shortcoming of this approach is that it is insensitive to the probabilistic
information. We propose to combine it with another heuristic. Given a valid
abstraction G, our procedure yields two pairs (φ+

1 , φ
+
2) resp. (φ−1 , φ

−
2) of mem-

oryless and non-probabilistic strategies that satisfy Reach(G[φ−1 , φ
−
2], {�}) =

Reach(G, {�})+− resp. Reach(G[φ+
1 , φ

+
2], {�})=Reach(G, {�})++. Given a node

s for Player 1, let P+
s and P−

s denote the probability of reaching � (resp. � or
� if we are interested in minimal probabilities) starting at s and obeying the
strategies (φ+

1 , φ
+
2) resp. (φ−1 , φ

−
2) in G. In order to refine G we can choose any

node s ∈ V1 ∩ D� such that P+
s − P−

s > 0 (i.e., a node whose probability has
not been computed exactly yet), such that at least one of the direct successors
of s in the spanning tree has been constructed using a widening. We call these
nodes the candidates (for delaying widening). The question is which candidates
to select. We propose to use the following simple heuristic:

Sort the candidates s according to the product ws · (P+
s −P−

s), where ws
denotes the product of the probabilities on the path of the spanning tree
of G leading from s0 to s. Choose the n candidates with largest product,
for a given n.

We call this heuristic the mass heuristic. The mixed heuristic delays widenings
for nodes with depth less than a threshold i, and for n nodes of depth larger than
or equal to i with maximal product. In the next section we illustrate depth-based
unrolling, the mass heuristic, and the mixed heuristic on some examples.

4.1 Experiments

We have implemented a prototype of our approach on top of the Parma Polyhe-
dra Library [3], which provides several numerical domains [2]. We present some
experiments showing how simple domains like intervals can outperform predi-
cate abstraction. Notice that examples exhibiting the opposite behaviour are also
easy to find: our experiments are not an argument against predicate abstraction,
but an argument for abstraction approaches not limited to it.

If the computed lower and upper bounds differ by more than 0.01, we select
refinement candidates using the different heuristics presented before and rebuild
the abstraction. We used a Linux machine with 4GB RAM.

Two small programs. Consider the NPPs of Fig. 4. We compute bounds with
different domains: intervals, octagons, integer grids, and the product of integer
grids and intervals [9]. For the refinement we use the mass (M) depth (D) and
mixed (Mix) heuristics. For M and Mix we choose 15 refinement candidates at
each iteration. The results are shown in Table 1. For the left program the inte-
ger grid domain (and the product) compute precise bounds after one iteration.
After 10 minutes, the PASS tool [13] only provides the bounds [0.5, 0.7] for the
optimal reachability probability. For the right program only the product of grids
and intervals is able to “see” that x ≡ 0 (mod 3) or y < 30 holds, and yields

348 J. Esparza and A. Gaiser

int a=0, ctr=0;

A1: (ctr=0)

-> 0.5:(a’=1)&(ctr’=1)

+0.5:(a’=0)&(ctr’=1);

A2: (ctr=1)&(a>=-400)&(a<= 400)

-> 0.5:(a’=a+5)

+0.5:(a’=a-5);

A3: (ctr=1) -> 1:(ctr’=2);

reach: (a=1)&(ctr=2)

int x=0, y=0, c=0;

A1: (c=0)&(x<=1000)

-> 0.25:(x’=3*x+2)&(y’=y-x)

+0.75:(x’=3*x)&(y’=30);

A2: (c=0)&(x>1000) -> 1:(c’=1);

A3: (c=1)&(x>=3) -> 1:(x’=x-3);

reach: (c=1)&(x=2)&(y>=30)

Fig. 4. Two guarded-command programs

precise bounds after 3 refinement steps. After 10 minutes PASS only provides
the bounds [0, 0.75]. The example illustrates how pure depth-based unrolling,
ignoring probabilistic information, leads to poor results: the mass and mixed
heuristics perform better. PASS may perform better after integrating appropri-
ate theories, but the example shows that combining domains is powerful and
easily realizable by using Abstract Interpretation tools.

Programs of Fig. 3. For these PASS does not terminate after 10 minutes,
while with the interval domain our approach computes the exact value after at
most 5 iterations and less than 10 seconds. Most of the predicates added by
PASS during the refinement for program 2 have the form c ≤ α · i + β with
α > 0, β < 0: PASS’s interpolation engines seem to take the wrong guesses
during the generation of new predicates. This effect remains also if we change
the refinement strategies of PASS. PASS offers the option of manually adding
predicates. Interestingly it suffices to add a predicate as simple as e.g. i > 3 to
help the tool deriving the solution after 3 refinements for program 2.

Zeroconf. This is a simple probabilistic model of the Zeroconf protocol, adapted
from [1,16], where it was analyzed using PRISM and predicate abstraction. It is
parameterized by K, the maximal number of probes sent by the protocol. We
check it for K = 4, 6, 8 and two different properties. Zeroconf is a very good
example for predicate abstraction, and so it is not surprising that PASS beats
the interval domain (see Table 2). The example shows how the mass heuristic by

Table 1. Experimental results for the programs in Fig. 4. Iters is the number of
iterations needed. Time is given in seconds. ’-’ means the analysis did not return a
precise enough bound after 10 minutes. Size denotes the maximal number of nodes
belonging to Player 1 that occured in one of the constructed games.

Program Value Interval Octagon Grid Product

M D Mix M D Mix M D Mix M D Mix

Left

Iters: 23 81 24 28 81 28 1 1 1 1 1 1
Time: 25 66.1 27.6 26.6 63.2 26.9 0.39 0.39 0.39 0.6 0.6 0.6
Size: 793 667 769 681 691 681 17 17 17 61 61 61

Right

Iters: - - - - - - - - - 3 7 3
Time: - - - - - - - - - 8.3 20.3 8.2
Size: - - - - - - - - - 495 756 495

Probabilistic Abstractions with Arbitrary Domains 349

Table 2. Experimental results for the Zeroconf protocol. Time in seconds.

Zeroconf protocol K = 4 K = 6 K = 8 K = 4 K = 6 K = 8
(Interval domain) P1 P1 P1 P2 P2 P2

Time (Mass heuristic): 6.2 16.8 32.2 5.8 18.5 50.6
Time (Depth heuristic): 2.6 6.0 6.6 2.6 6.7 8.1
Time (Mix): 2.6 6.3 6.8 2.6 6.9 8.4
Time PASS: 0.6 0.8 1.1 0.7 0.9 1.2

itself may not provide good results either, with depth-unrolling and the mixed
heuristics performing substantially better.

5 Conclusions

We have shown that the approach of [16,23] for abstraction of probabilistic sys-
tems can be extended to arbitrary domains, allowing probabilistic checkers to
profit from well developed libraries for abstract domains like intervals, octagons,
and polyhedra [3,15].

For this we have extended the construction of abstract reachability trees pre-
sented in [11] to the probabilistic case. The extension no longer yields a tree,
but a stochastic 2-Player game that overapproximates the MDP semantics of
the program. The correctness proof requires to use a novel technique.

The new approach allows to refine abstractions using standard techniques like
delaying widenings. We have also presented a technique that selectively delays
widenings using a heuristics based on quantitative properties of the abstractions.

Acknowledgements. We thank Holger Hermanns, Ernst-Moritz Hahn, and
Luis M.F. Fioriti for valuable comments, Björn Wachter for many discussions
during the second author’s stay at the University of Oxford, made possible by
Joel Ouaknine, and five anonymous reviewers for helpful remarks. The second
author is supported by the DFG Graduiertenkolleg 1480 (PUMA).

References

1. PRISM homepage: http://www.prismmodelchecker.org/
2. Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zaffanella, E.: Grids: A domain

for analyzing the distribution of numerical values. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 219–235. Springer, Heidelberg (2007)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. Proc. of STTT 9(5-6), 505–525 (2007)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002)

http://www.prismmodelchecker.org/

350 J. Esparza and A. Gaiser

6. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992)

7. Condon, A.: On algorithms for simple stochastic games. DIMACS Series in Discr.
Math. and Theor. Comp. Sci., vol. 13, pp. 51–73. AMS (1993)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL, pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, San Antonio, Texas, pp. 269–282. ACM Press, New York (1979)

10. Esparza, J., Gaiser, A.: Probabilistic abstractions with arbitrary domains. Techni-
cal report, Technische Universität München (2011),
http://arxiv.org/abs/1106.1364

11. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically re-
fining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

12. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract
interpretation. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 474–
488. Springer, Heidelberg (2006)

13. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: Abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010)

14. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

15. Jeannet, B., Miné, A.: apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

16. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Abstraction refine-
ment for probabilistic software. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI
2009. LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)

17. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for markov decision processes. Form. Methods
Syst. Des. 36, 246–280 (2010)

18. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: SAS 2000.
LNCS, vol. 1824, pp. 322–340. Springer, Heidelberg (2000)

19. Monniaux, D.: Abstract interpretation of programs as markov decision processes.
In: Proc. of SAS, pp. 237–254 (2003)

20. Di Pierro, A., Hankin, C., Wiklicky, H.: On probabilistic techniques for data flow
analysis. Electr. Notes Theor. Comput. Sci. 190(3), 59–77 (2007)

21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Interscience, Hoboken (1994)

22. Wachter, B.: Refined Probabilistic Abstraction. PhD thesis, Universität des Saar-
landes (2011)

23. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer,
Heidelberg (2010)

http://arxiv.org/abs/1106.1364

Software Verification Using k-Induction�

Alastair F. Donaldson1, Leopold Haller1, Daniel Kroening1, and Philipp Rümmer2

1 Computer Science Department, Oxford University, Oxford, UK
2 Uppsala University, Department of Information Technology, Uppsala, Sweden

Abstract. We present combined-case k-induction, a novel technique for veri-
fying software programs. This technique draws on the strengths of the classical
inductive-invariant method and a recent application of k-induction to program
verification. In previous work, correctness of programs was established by sepa-
rately proving a base case and inductive step. We present a new k-induction rule
that takes an unstructured, reducible control flow graph (CFG), a natural loop oc-
curring in the CFG, and a positive integer k, and constructs a single CFG in which
the given loop is eliminated via an unwinding proportional to k. Recursively ap-
plying the proof rule eventually yields a loop-free CFG, which can be checked
using SAT-/SMT-based techniques. We state soundness of the rule, and investi-
gate its theoretical properties. We then present two implementations of our tech-
nique: K-INDUCTOR, a verifier for C programs built on top of the CBMC model
checker, and K-BOOGIE, an extension of the Boogie tool. Our experiments, using
a large set of benchmarks, demonstrate that our k-induction technique frequently
allows program verification to succeed using significantly weaker loop invariants
than are required with the standard inductive invariant approach.

1 Introduction

We present a novel technique for verifying imperative programs using k-induction [21].
Our method brings together two lines of existing research: the standard approach to
program verification using inductive invariants [15], employed by practical program
verifiers (including [4,5,10,20], among many others) and a recent k-induction method
for program verification [12,13] which we refer to here as split-case k-induction. Our
method, which we call combined-case k-induction, is directly stronger than both the
inductive invariant approach and split-case k-induction. We show experimentally that
combined-case k-induction frequently allows program verification to succeed using sig-
nificantly weaker loop invariants than would otherwise be required, reducing annotation
overhead.

We start by recapping the inductive invariant and split-case k-induction approaches
to verification, and outlining our new combined-case k-induction technique. We then
make the following novel contributions:

– We formally present combined-case k-induction as a proof rule operating on control
flow graphs, and state soundness of the rule (§4)

� Supported by the EU FP7 STREP MOGENTES (project ID ICT-216679), the EU FP7 STREP
PINCETTE (project ID ICT-257647), EPSRC projects EP/G026254/1 and EP/G051100/1, and
a grant from Toyota Motors.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 351–368, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

352 A.F. Donaldson et al.

– We state a confluence theorem, showing that in a multi-loop program the order in
which our rule is applied to loops does not affect the result of verification (§5)

– We present two implementations of our method: K-INDUCTOR, a verifier for C pro-
grams, and K-BOOGIE, an extension of the Boogie tool, and experimental results
applying these tools to a large set of benchmarks (§6)

Compared with our previous work on k-induction techniques for software [12,13],
which are restricted to programs containing a single while loop (supporting multiple
loops only via a translation of all program loops to a single, monolithic loop), our novel
proof rule handles multiple natural loops in arbitrary reducible control-flow graphs.

Throughout the paper, we are concerned with proving partial correctness with re-
spect to assertions: establishing that whenever a statement assert φ is executed, the
expression φ evaluates to true. We shall simply use correctness to refer to this notion of
partial correctness.

2 Overview

Throughout the paper, we present programs as control flow graphs (CFGs) and use
the terms program and CFG synonymously. We follow the standard approach of mod-
elling control flow using a combination of nondeterministic branches and assume state-
ments. During execution, a statement assume φ causes execution to silently (and non-
erroneously) halt if the expression φ evaluates to false, and does nothing otherwise.

Consider the simple example program of Figure 1(a). The program initialises a, b
and c to distinct values, and then repeatedly cycles their values, asserting that a and b
never become equal. The condition for the loop is i < n, and is encoded using assume
statements at the start of the loop body, and at the start of the node immediately follow-
ing the loop. Variable x is initialised to zero, and after the loop an assertion checks that
x has not changed. The program is clearly correct.

The Inductive Invariant Approach. To formally prove a program’s correctness using
inductive invariants, one first associates a candidate invariant with each loop header in
the program. One then shows that a) the candidate invariants are indeed loop invariants,
and b) these loop invariants are strong enough to imply that no assertion in the program
can fail. A technique for performing these checks in the context of unstructured pro-
grams is detailed in [3]. The technique transforms a CFG with loops into a loop-free
CFG. Each loop header in the original CFG is prepended in the transformed CFG with
a basic block that: asserts the loop invariant, havocs each loop-modified variable,1 and
assumes the loop invariant. Loop entry edges in the original CFG are replaced with
edges to these new blocks in the transformed CFG. Each back edge in the original CFG
is replaced in the transformed CFG with an edge to a new, childless basic block that
asserts the invariant for the associated loop. Otherwise, the CFGs are identical.

We say that a loop is cut with respect to invariant φ. This is illustrated in Figure 1(b)
for the program of Figure 1(a), where invariant φ is left unspecified. Cutting every loop
in a CFG leads to a loop-free CFG, for which verification conditions can be computed

1 A variable is havocked if it is assigned a nondeterministic value. A loop-modified variable is a
variable that is the target of an assignment in the loop under consideration.

Software Verification Using k-Induction 353

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

B1

assume i < n;
assert a �= b;
a,b,c:=b,c,a;

i++;

B2

assume i ≥ n;
assert x = 0;

(a) Original CFG

B1

assert φ;
i,a,b,c := *;
assume φ;

B2

assume i ≥ n;
assert x = 0;

assert φ;

(b) CFG after loop cutting

Fig. 1. A simple program, and the CFG obtained using the inductive invariant approach

using weakest preconditions (an efficient method for this step is the main contribution
of [3]). These verification conditions can then be discharged to a theorem prover, and
if they are proven, the program is deemed correct. In Figure 1(b), taking φ to be (a �=
b ∧ b �= c ∧ c �= a) allows a proof of correctness to succeed.

The main problem with the inductive invariant approach is finding the required loop
invariants. Despite a wealth of research into automatic invariant generation (see [8] and
references therein for a discussion of state-of-the-art techniques), this is by no means a
solved problem, and in the worst case loop invariants must still be specified manually.

Split-case k-induction. The k-induction method was proposed as a technique for SAT-
based verification of finite-state transition systems [21]. Let I(s) and T(s, s′) be for-
mulae encoding the initial states and transition relation for a system over sets of propo-
sitional state variables s and s′, P(s) a formula representing states satisfying a safety
property, and k a non-negative integer. To prove P by k-induction one must first show
that P holds in all states reachable from an initial state within k steps, i.e., that the
following formula (the base case) is unsatisfiable:

I(s1) ∧ T(s1, s2) ∧ · · · ∧ T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) (1)

Secondly, one must show that whenever P holds in k consecutive states s1, . . . , sk,
P also holds in the next state sk+1 of the system. This is established by checking that
the following formula (the step case) is unsatisfiable:

P(s1) ∧ T(s1, s2) ∧ · · · ∧ P(sk) ∧ T(sk, sk+1) ∧ P(sk+1) (2)

In prior work [12,13] we investigated a direct lifting of k-induction from transition
systems to the level of program loops. We refer to the technique of [12,13] as split-case
k-induction, as it follows the transition system approach of splitting verification into a
base case and step case. Split-case k-induction is applied to a single loop in a program.
In the simplest case, no loop invariant is externally provided. Instead, assertions appear-
ing directly in the loop body take the role of an invariant. Given a CFG containing a
loop, two programs are derived; we illustrate these for our running example in Figure 2

354 A.F. Donaldson et al.

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

B1

assume i < n;
assert a �= b;
a,b,c:=b,c,a;

i++;

B2

B2

B2

assume i ≥ n;
assert x = 0;

(a) Base case

x,i,a,b,c:=*;

assume i < n;
assume a �= b;
a,b,c:=b,c,a;

i++;

Ba
2

Ba
2

Ba
2

assume i ≥ n;
assert x = 0;

B2

(b) Step case

Fig. 2. Split-case k-induction, with k = 3

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

assume i < n;
assert a �= b;
a,b,c:=b,c,a;

i++;

B2

B2

B2

i,a,b,c:=*;

assume i < n;
assume a �= b;
a,b,c:=b,c,a;

Ba
2

Ba
2

Ba
2

B2

assume i ≥ n;
assert x = 0

Fig. 3. Combined-case k-induction, with k = 3

with k = 3. The base case program (Figure 2(a)) checks that no assertion can be vi-
olated within k loop iterations. This is analogous to Equation 1 above. The step case
program (Figure 2(b)) is analogous to Equation 2. It checks whether, after executing the
loop body successfully k times from an arbitrary state, a further loop iteration can be
successfully executed. In this further loop iteration, back edges to the loop header are
removed, while edges that exit the loop are preserved. Thus the step case verifies that
on loop exit, the rest of the program can be safely executed.

Correctness of both base and step case implies correctness of the whole program. On
the other hand, an incorrect base case indicates an error; an incorrect step case might
either indicate an error or a failure of k-induction to prove the program correct with the
current value of k (which is, in fact, the case for the step case pictured in Figure 2(b)).
In a program with multiple loops, applying split-case k-induction to one loop may lead

Software Verification Using k-Induction 355

to a base and step case that each contain loops. In this case, the splitting procedure can
be applied recursively until loop-free CFGs are obtained, whose verification conditions
can be discharged to a prover.

Compared with the inductive invariant approach, split-case k-induction has the ad-
vantage that verification may succeed using weaker loop invariants. The assertion a �= b
in Figure 1(a) can be established using split-case k-induction as shown in Figure 2
by taking k ≥ 3: unlike the inductive invariant approach, no external invariant (like
a �= b ∧ b �= c ∧ c �= a) is required. However, split-case k-induction has the disad-
vantage that in the step case (Figure 2(b)), information about the values of variables
not occurring in the loop is entirely lost. Although the variable x in the example is not
modified in the loop, proving the assertion x = 0 after the loop is beyond the reach
of split-case k-induction. For split-case k-induction to succeed on this example, an in-
variant like x = 0 must be added to the loop body as an assertion. In contrast, with
the inductive invariant approach, the fact that x is assigned to zero before the loop is
preserved by the loop cutting process.

Our Contribution: combined-case k-induction. In combined-case k-induction, the
strengths of split-case k-induction and the inductive invariant approach are brought
together. Like the inductive invariant approach, combined-case k-induction works by
cutting loops in the input CFG one at a time, resulting in a single program that needs to
be checked, but like split-case k-induction, no external invariant is required.

A non-negative integer kL is associated with each loop L in the input CFG. Loop L
is then kL-cut by replacing it with: kL copies of the loop body, statements havocking
all loop-modified variables, and kL copies of the loop body where all assertions are
replaced with assumptions and edges exiting the loop are removed. The last of the
“assume” copies of the loop body is followed by a regular copy of the loop body, in
which back edges to the loop header are removed.

Figure 3 illustrates combined-case k-induction applied to the example CFG of Fig-
ure 1(a); the single loop has been 3-cut. Comparing Figure 3 with Figure 2, observe that
the base and step cases of Figure 2 are essentially merged in Figure 3. There is one key
difference: variable x, which is not modified by the loop of Figure 1(a), is not havocked
in Figure 3. Thus, unlike with split-case k-induction, we do not lose the information
that the variable always retains its original value. With combined-case k-induction, the
program of Figure 1(a), which is beyond the reach of split-case k-induction, can be
directly verified with k ≥ 3. As a further difference, note that base and step case are
composed sequentially, with a transition leading from the last blockB2 of the base case
to the first block of the step case. For some programs, this can increase the strength
of the induction rule considerably compared to split-case k-induction, since path con-
straints established in the base case can be helpful for verifying the step case. Unlike
with the inductive invariant approach, no external invariant is required.

Of course, combined-case k-induction does not solve the problem of finding invari-
ants. The technique depends on invariants appearing as assertions in loop bodies. For
example, if the assertion a �= b was moved to the exit of the loop in Figure 1(a), the
program could not be proved using combined-case k-induction. In practice it may be
necessary to strengthen the induction hypothesis by adding manually or automatically
derived invariants as assertions in the body of a loop. However, our experimental evalu-

356 A.F. Donaldson et al.

ation in §6 demonstrates that combined-case k-induction frequently makes verification
possible with significantly weaker invariants than are otherwise required, thus reducing
annotation overhead.

3 Control Flow Graphs and Loops

We present our results in terms of control flow graphs, which are minimal but general
enough to uniformly translate imperative programs where procedure calls are either
inlined, or replaced with pre- and post-conditions. In the diagrams of §2 we presented
CFGs whose nodes are basic blocks. For ease of formal presentation, from this point on
we consider CFGs whose nodes are single statements.

Let X be a set of integer variables, and let Expr be the set of all integer and boolean
expressions overX , using standard arithmetic and boolean operations. The set Stmt of
statements over X covers nondeterministic assignments, assumptions, and assertions:

Stmt = {x := ∗ | x ∈ X} ∪ {assume φ | φ ∈ Expr} ∪ {assert φ | φ ∈ Expr}.
Intuitively, a nondeterministic assignment x := ∗ alters the value of x arbitrarily; an
assumption assume φ suspends program execution if φ is violated and can be used
to encode conditional statements and constrain the effects of nondeterministic assign-
ments, while an assertion assert φ raises an error if φ is violated. Neither assume φ
nor assert φ have any effect if φ holds. We also use x := e as shorthand for ordinary
assignments, which can be expressed in the syntax above via a sequence of nondeter-
ministic assignments and assumptions.

Definition 1. A control flow graph (CFG) is a tuple (V, in, E, code), where V is a finite
set of nodes, in ∈ V an initial node,E ⊆ V × V a set of edges, and code : V → Stmt
a mapping from nodes to statements.

Loops and reducibility. We briefly recap notions of dominance, reducibility, and natu-
ral loops in CFGs, which are standard in the compilers literature [1].

Let C = (V, in, E, code) be a CFG. For u, v ∈ V , we say that u dominates v if
u = v, or if every path from in to v must pass through u. Edge (u, v) ∈ E is a back
edge if v dominates u.

Definition 2. The natural loop associated with back edge (u, v) is the smallest set
L(u,v) ⊆ V satisfying the following conditions:

– u, v ∈ L(u,v)

– (u′, v′) ∈ E ∧ v′ ∈ L(u,v) \ {v} ⇒ u′ ∈ L(u,v)

For a node v such that there exists a back edge (u, v) ∈ E, the natural loop associated
with v is the set Lv =

⋃
u∈V,(u,v) is a back edge L(u,v). Node v is the header of loop Lv.

For a loop L ⊆ V , modified(L) denotes the set of variables that may be modified by
nodes in L. Formally, modified(L) = {x ∈ X | ∃l ∈ L . code(l) = ‘x := ∗’}.2

2 In practice, modified(L) could be computed more precisely, e.g. disregarding assignments in
dead code. For a language with pointers, modified(L) is computed with respect to an alias
analysis, in the obvious way.

Software Verification Using k-Induction 357

In a reducible CFG, the only edges inducing cycles are back edges. More for-
mally, C is reducible if the CFG C′ = (V, in ,FE , code) is acyclic, where FE is the
set {(u, v) ∈ E | (u, v) is not a back edge} of forward edges; otherwise we say that C
is irreducible.

From now on, we assume that all CFGs are reducible. This ensures that every cycle
in a CFG is part of a loop, and allows our k-induction method to work recursively, un-
winding loops one-by-one until a loop-free CFG is obtained. This is not a severe restric-
tion: structured programming techniques guarantee reducibility, and standard (though
expensive) techniques exist for transforming irreducible CFGs into reducible ones [1].

Semantics. Semantically, a CFG denotes a set of execution traces, which are defined
by first unwinding CFGs to prefix-closed sets of statement sequences. Subsequently,
statements and statement sequences are interpreted as operations on program states.

Definition 3. Let C = (V, in , E, code) be a CFG. The unwinding of C is defined as:

unwinding(C) =

{
〈code(v1), . . . , code(vn)〉 | n > 0 ∧ v1 = in ∧

∀i ∈ {1, . . . , n− 1}. (vi, vi+1) ∈ E

}
∪ {ε} ⊆ Stmt∗

where ε denotes the empty sequence.

A non-error state is a store mapping variables to values in some domain D. The set of
program states for a CFG overX is the set of all stores, together with a designated error
state: S = {σ | σ : X → D} ∪ {�}.

For an expression φ and store σ, we write φσ to denote the value obtained by evalu-
ating φ according to the valuation of variables given by σ.

We give trace semantics to CFGs by first defining the effect of a statement on a
program state. This is given by the function post : S × Stmt → 2S defined as follows:

post(�, s) = {�} (for any statement s)

For non-error states σ �= �:

post(σ, x := ∗) = {σ′ | σ′(y) = σ(y) for all y �= x}
post(σ, assume φ) =

(
if φσ = tt then {σ}, otherwise ∅)

post(σ, assert φ) =
(
if φσ = tt then {σ}, otherwise {�})

The function post is lifted to the evaluation function traces : S × Stmt+ → 2S
∗

on
non-empty statement sequences as follows:

traces(σ, s) = {〈σ, σ′〉 | σ′ ∈ post(σ, s)}
traces(σ, 〈s1, . . . , sn〉) = {σ.τ | ∃σ′. σ′ ∈ post(σ, s1) ∧ τ ∈ traces(σ′, 〈s2, . . . , sn〉)}
Here, for a state σ ∈ S and state tuple τ ∈ Sm, σ.τ ∈ Sm+1 is the concatenation of σ
and τ . The set of traces of a CFG C is the union of the traces for any of its paths:

traces(C) =
⋃

{traces(σ, p) | σ ∈ S \ {�} ∧ p ∈ unwinding(C)}.
Note that there are no traces along which assume statements fail.
We say that CFG C is correct if � does not appear on any trace in traces(C). Other-

wise C is not correct, and a trace which leads to � is a counterexample to correctness.

358 A.F. Donaldson et al.

Algorithm 1: ANALYSE

Input: Reducible CFG C = (V, in, E, code).
Output: One of {CORRECT,DON’T KNOW}
if C is loop-free then

if DECIDE(C) = CORRECT then // Program is correct
return CORRECT;

else // Correctness not determined
return DON’T KNOW;

end
else // apply the k-induction rule

(∗) choose loop L in C and depth k ∈ N;
result ←− ANALYSE(CL

k);
if result = CORRECT then // k-induction succeeded

return CORRECT;
else // k-induction was inconclusive

(∗∗) either back-track to (∗), or return DON’T KNOW;
end

end

4 Proof Rule and Verification Algorithm

Given a CFG C containing a natural loop L (see Def. 2), and a positive integer k, we
shall define a k-induction rule that transforms C into a CFG CLk in which loop L is
eliminated via k-cutting, such that correctness of CLk implies correctness of C. We start
by motivating the use of the rule, considering the procedure ANALYSE of Algorithm 1.

ANALYSE attempts to prove correctness ofC by applying the k-induction rule recur-
sively. At each step, a loop in the CFG, and a corresponding value of k is chosen. The
loop is eliminated from the CFG by k-cutting. If the result is a loop-free CFG, correct-
ness is checked by an appropriate decision procedure (e.g. an SMT solver). Otherwise,
the process continues with the selection of another loop. If a k-cut CFG is not found
to be correct (a recursive call to ANALYSE returns DON’T KNOW) then the procedure
either returns an inconclusive result, or backtracks and applies k-induction to a different
loop, and/or using a different value for k.

Note that ANALYSE cannot be used to determine that a program is incorrect. It could
be modified to do so, by explicitly marking those portions of a k-cut CFG in which
an error signifies a genuine bug. Genuine bugs can only be detected via traces through
the k-cut CFG that do not pass through any havoc nodes introduced by the k-induction
rule. Alternatively, ANALYSE can simply be executed in parallel with bounded model
checking [6].

4.1 Graphical Description of k-induction Proof Rule

Figure 4(a) depicts an arbitrary CFG C that contains at least one loop, L. The CFG is
separated into L (the smaller cloud), and the set of nodes outside L (the cloud labelled

Software Verification Using k-Induction 359

Main
program

L

(a) Program

B
as

e
ca

se
S

te
p

ca
se

Z

Main
program

L1 L2 Lk

La
1 La

2 La
k Lk+1

· · ·

· · ·

x1 := ∗x2 := ∗xd := ∗ · · ·

(b) Unrolled program

Fig. 4. Schematic overview of the new k-induction rule, assuming modified(L) = {x1, . . . , xd}

“Main program”). The main program may contain further loops, and L may contain
nested loops. We assume that entry to the CFG, indicated by the edge into “Main pro-
gram”, is not via L. The program can be re-written to enforce this, if necessary.

Loop L has a single entry point, or header, indicated by the large dot in Figure 4(a).
There are edges from at least one (and possibly multiple) node(s) in the main program
to this header. Inside L, there are back edges from at least one node to the header. In
addition, there are zero-or-more edges that exit L, leading back to the main program.

For some unspecified k > 0, Figure 4(b) shows the CFG CLk generated by our novel
k-induction rule, which we present formally in §4.2. The loop L has been k-cut, pro-
ducing a CFG CLk with four components. The nodes outside L are labelled “Main pro-
gram”. Edges from the main program into L in Figure 4(a) are replaced with edges into
the first of k copies of the body of L, denoted L1, . . . , Lk. These are marked “Base
case” in Figure 4(b). In each Li, edges leaving L are preserved, as are edges within L,
except for back edges. For i < k, a back edge in L is replaced in Li with an edge to the
header node of the next copy of L, namely Li+1. The base case part of CLk checks that
the first k iterations of L can be successfully executed.

In the final copy of L appearing in the base case, Lk, back edges are replaced with
edges to the sequence of nodes marked Z in Figure 4(b). Z has the effect of havocking
the variables x1, . . . , xd that comprise modified(L), the loop-modified variables for L.

The final node of Z is followed by k copies of the body of L in which all state-
ments of the form assert φ are replaced with assume φ, and all edges leaving L are
removed. These modified copies of the body of L are denoted La1 , . . . , L

a
k (where a de-

notes assume), and back-edges in L are replaced in Lai with edges to to the header of
Lai+1, for i < k. In Lak, back edges are replaced with edges to Lk+1. This is a final copy

360 A.F. Donaldson et al.

of the body of L, where assertions are left intact, edges leaving L are preserved, and
back-edges are removed. The fragments La1, . . . , L

a
k and Lk+1 are denoted “Step case”

in Figure 4(b). Together with the Z nodes, they check that, from an arbitrary loop entry
state, assuming that k iterations of L have succeeded, a further iteration that is followed
by execution of the main program, will succeed.

It may be instructive to compare the abstract program of Figure 4(a), and correspond-
ing k-cut program of Figure 4(b), with the program of Figure 1(a) and 3-cut program
of Figure 3. Loop L of Figure 4(a) corresponds to B2 in Figure 1(a). Components
L1, . . . , Lk in Figure 4(b) correspond to the three copies of B2 on the left of Figure 3,
La1 , . . . , L

a
k to the three copies ofBa2 on the right of Figure 3, andLk+1 to the additional

copy of B2 on the right of Figure 3. Finally, the Z nodes of Figure 4(b) are reflected by
the statement i, a, b, c := ∗ in Figure 3.

4.2 Formal Definition of k-induction Proof Rule

We now formally define our novel k-induction rule as a transformation rule on control
flow graphs, using the same notation as presented in Figure 4.

Let C = (V, in , E, code) be a CFG and L ⊆ V a loop in C with header h. Assume
that in /∈ L. (This can be trivially enforced by adding an assume tt node to C if neces-
sary.) We present a k-induction proof rule for positive values of k, under the assumption
that modified(L) is non-empty. Extending the definition, and all the results presented
in this paper, to allow k = 0, and modified(L) = ∅, is trivial, and the implementations
we describe in §6 incorporate such extensions. However, a full presentation involves
considering pedantic corner cases which make the essential concepts harder to follow
without providing further insights into our work.

Thus, let k > 0, and suppose modified(L) = {x1, . . . , xd} for some d > 0. For
1 ≤ i ≤ k + 1, define Li = {vi | v ∈ L}. Similarly, for 1 ≤ i ≤ k, define Lai =
{vai | v ∈ L}. Let Z = {zh1 , . . . , zhd}. Assume that the sets Li (1 ≤ i ≤ k + 1), Lai
(1 ≤ i ≤ k) and Z consist of fresh nodes, all distinct from each other and from the
nodes in V .

Definition 4. CLk = (V Lk , in
L
k , E

L
k , code

L
k) is defined as follows:

V Lk = (V \ L) ∪⋃k+1
i=1 Li ∪

⋃k
i=1 L

a
i ∪ Z

inLk = in (recall that, by assumption, in /∈ L)

ELk =
{ (u, v) | (u, v) ∈ E ∧ u, v /∈ L } Edges in Main program

∪ { (u, h1) | (u, h) ∈ E ∧ u /∈ L } Main program → L1

∪ { (ui, vi) | 1 ≤ i ≤ k + 1 ∧ (u, v) ∈ E ∧ u, v ∈ L ∧ v �= h } Edges in Li
∪ { (uai , v

a
i) | 1 ≤ i ≤ k ∧ (u, v) ∈ E ∧ u, v ∈ L ∧ v �= h } Edges in Lai

∪ { (ui, hi+1) | 1 ≤ i < k ∧ (u, h) ∈ E ∧ u ∈ L } Li → Li+1 (i < k)
∪ { (uai , h

a
i+1) | 1 ≤ i < k ∧ (u, h) ∈ E ∧ u ∈ L } Lai → Lai+1 (i < k)

∪ { (uak, hk+1) | (u, h) ∈ E ∧ u ∈ L } Lak → Lk+1

∪ { (ui, v) | 1 ≤ i ≤ k + 1 ∧ (u, v) ∈ E ∧ u ∈ L ∧ v /∈ L } Li → Main program
∪ { (uk, zh1) | (u, h) ∈ E ∧ u ∈ L } Lk → Z
∪ { (zhi , z

h
i+1) | 1 ≤ i < d } Edges in Z

∪ { (zhd , h
a
1) } Z → La1

Software Verification Using k-Induction 361

codeLk (zhi) = ‘xi := ∗’ (1 ≤ i ≤ d)

codeLk (vai) =

{
assume φ if code(v) = assert φ

code(v) otherwise
(1 ≤ i ≤ k)

codeLk (vi) = code(v) (1 ≤ i ≤ k + 1)
codeLk (v) = code(v) for v ∈ V Lk ∩ V

Theorem 1 (Soundness). If CLk is correct then C is correct.

5 Theoretical Properties of the k-induction Rule

Confluence. We now turn to the question of confluence: for fixed values of k, does it
matter in which order the loops of a CFG are processed when recursively applying the
k-induction rule? First, we define what it means for CFGs to be isomorphic.

Definition 5. Let C = (V, in , E, code) and C′ = (V ′, in ′, E′, code ′) be CFGs. A
bijection α : V → V ′ is an isomorphism between C and C′ if α(in) = in ′ and, for
all u, v ∈ V , code(u) = code ′(α(u)), and (u, v) ∈ E ⇔ (α(u), α(v)) ∈ E′. If there
exists an isomorphism between C and C′, we say that C and C′ are isomorphic and
write C ≡ C′.

It is easy to show that ≡ is an equivalence relation on CFGs.
In what follows, C denotes a CFG. The next result follows directly from the defini-

tion of a natural loop:

Lemma 1. For distinct loops L and M in C, either L ∩M = ∅, L ⊂M or M ⊂ L.

Lemma 2 (Confluence of k-induction rule for disjoint loops). Let L and M be dis-
joint loops in C, and let kL and kM be positive integers. Then (CLkL

)MkM
≡ (CMkM

)LkL
.

Lemma 2 shows that, for disjoint loops, the order in which k-induction is applied to
each loop is irrelevant; an isomorphic CFG always results. Thus, for mutually disjoint
loops L1, . . . , Ld in a CFG C, and positive integers k1, . . . , kd, we can write CL1,...,Ld

k1,...,kd

to denote a CFG obtained by applying the k-induction rule d times, on each application
eliminating one of the loops Li according to ki.

Now consider loops L ⊂M of C, and positive integers kL and kM .
The CFG CMkM

contains kM + 1 direct copies of L, and kM copies of L in which all
assertions are replaced with assumptions. This is because L forms part of the body of
M . Let us denote these copies of L by L1, . . . , LkM+1 and La1 , . . . , L

a
kM

respectively.
Def. 4 ensures that they are all disjoint in CMkM

.
The CFG CLkL

contains a loop M ′ identical to M , except that L has been eliminated
from the body of M ′, and replaced with an unwinding of L proportional to kL.

Lemma 3 (Confluence of k-induction rule for nested loops). Let L ⊂M be loops of
C, and kL and kM positive integers. Using the above notation, we have:

(CLkL
)M

′
kM

≡ (CMkM
)L1,...,Lk+1,L

a
1 ,...,L

a
k

kL,.....................,kL
.

362 A.F. Donaldson et al.

We now show that if we repeatedly apply the k-induction rule to obtain a loop-free
CFG, as long as a value for k is used consistently for each loop in C the order in which
the k-induction rule is applied to loops is irrelevant.

We assume a map origin which, given any CFG D derived from C by zero-or-more
applications of the k-induction rule and a loop L of D, tells us the original loop in C
to which L corresponds. For example, given loops L ⊂ M ⊂ N in C and positive
integers kL, kM , kN , CFG CNkN

contains many duplicates of L and M , including loops

L1 ⊂ M1. In turn, CFG (CNkN
)M1
kM

contains many duplicates of L1, including L11 . We
have origin(L11) = origin(L1) = origin(L) = L, origin(M1) = origin(M) = M ,
and origin(N) = N . Also, CFG CLkL

includes loops M ′ ⊂ N ′ identical to M and N ,
except that L has been unrolled. We have origin(M ′) = M and origin(N ′) = N .

Definition 6. Let k : (loops of C) → N associate a positive integer with each loop
of C. For i ≥ 0, let Pi be the set of all CFGs that can be derived from C by exactly
i applications of the k-induction rule, together with all loop-free CFGs that can be
derived from C by up to i applications of the k-induction rule. In all applications of the
rule, k is chosen according to the mapping k.

The sequence (Pi) is defined by P0 = {C} and

Pi = {DL
k(origin(L)) | D ∈ Pi−1 ∧ L is a loop of D} ∪

{D ∈ Pi−1 | D is loop free } .
(for i > 0)

Our main confluence theorem states that the result of exhaustively applying the
combined-case k-induction rule is independent (up to isomorphism) of the order in
which loops are eliminated. The result is stated with respect to Def. 6, and is proved
using Lemmas 1–3.

Theorem 2 (Global confluence). There is an integer n such that Pm = Pn for all
m ≥ n. All the CFGs in Pn are isomorphic, and loop-free.

It should be noted that, although the final CFGs are isomorphic regardless of the order
of loop elimination, intermediate CFGs can differ both in size and in the number of
remaining loops. Also, the total number of required applications of the k-induction rule
depends on this order: eliminating loops starting from innermost loops will altogether
need fewer rule applications than elimination starting with outer loops.

Size of Loop-free Programs Produced by k-induction. Since the program CLk ob-
tained via a single application of the k-induction rule contains 2k + 1 copies of the
loop L, repeated application can increase the size of a program exponentially. Such
exponential growth can only occur in the presence of nested loops, however, because
k-induction leaves program parts outside of the eliminated loop L unchanged. By a
simple complexity analysis, we find that the size of loop-free programs derived though
repeated application of k-induction is (singly) exponential in the depth of the deepest
loop nest in the worst case, but only linear in the number of disjoint loops. Thus the size
of generated programs is not a bottleneck for combined-case k-induction in practice.

Software Verification Using k-Induction 363

6 Experimental Evaluation

We have implemented our techniques in two tools. K-BOOGIE is an extension of the
BOOGIE verifier, allowing programs written in the BOOGIE language to be verified
using combined-case k-induction, as well as with the inductive invariant approach sup-
ported by regular BOOGIE. When combined-case k-induction is selected, our novel
k-induction rule is used to eliminate innermost loops first. As BOOGIE is an inter-
mediate language for verification, K-BOOGIE can be applied to programs originating
from several different languages, including Spec# [4], Dafny [20], Chalice, VCC, and
Havoc. K-INDUCTOR is a k-induction-based verifier for C programs built on top of
the CBMC tool [9]. K-INDUCTOR supports both split- and combined-case k-induction.
Again, with combined-case k-induction, loops are processed innermost first. With split-
case k-induction, all outermost loops are simultaneously eliminated in each application
of the k-induction rule; we have found this strategy works best in practice.

We use K-BOOGIE to compare the standard inductive invariant approach to verifica-
tion with our novel combined-case k-induction method, and K-INDUCTOR to compare
combined-case k-induction with split-case k-induction. Both tools, and all our bench-
marks, are available online: http://www.cprover.org/kinduction

Experiments with K-BOOGIE. We apply K-BOOGIE to a set of 26 Boogie programs,
the majority of which were machine-generated from (hand-written) Dafny programs
included in the Boogie distribution. Most of the programs verify functional correctness
of standard algorithms, including sophisticated procedures such as the Schorr-Waite
graph marking algorithm. The Boogie programs contain altogether 40 procedures, an-
notated with assertions, pre-/post-conditions, and loop invariants, and were not previ-
ously known to be amenable to k-induction. Six of the procedures contain multiple
loops, three contain (singly) nested loops. Our findings are summarised in Table 1.

To evaluate the applicability of k-induction, we first split conjunctive loop invariants
in the programs into multiple invariants, and then eliminated all invariants that were
not necessary to verify assertions and post-conditions even with the normal Boogie
induction rule. Since Boogie uses abstract interpretation (primarily with an interval
domain) to automatically infer simple invariants, in this step also all those invariants
were removed that can be derived with the help of inexpensive abstract interpretation
techniques. The elimination of invariants was done in a greedy manner, so that in the
end a minimum set of required invariants for each procedure was obtained (though not
necessarily a set with the smallest number of invariants).

We then checked, using 0 ≤ k ≤ 4, which of the loop invariants were unnecessary
with combined-case k-induction. This was done by first trying to remove invariants in-
dividually, keeping all other invariants of a procedure. In Table 1, # removable shows
the number of invariants that could be individually removed, in comparison to the total
number of invariants. As second step, we determined maximum sets of invariants that
could be removed simultaneously, shown under # sim. remov. in Table 1. In both cases,
we show the largest value of k required for invariant removal, over all loops (required
k), which was determined by systematically enumerating all combinations of k. For
each procedure, we show the verification time with the normal Boogie loop rule (time
w/o k-ind.), the range of times needed by the various runs with k-induction (times w/

364 A.F. Donaldson et al.

Table 1. Experimental results applying K-BOOGIE to Dafny and Boogie benchmarks included in
the Boogie distribution

Procedure # removable, # sim. remov., time w/o times w/ LOC/ LOC
required k required k k-ind. k-ind. # loops program

Procedures generated from Dafny programs
VSI-b1.Add 2/4, 1 2/4, 1 2.5s [2.6s, 2.9s] 114/2 710
VSI-b2.BinarySearch 0/5, 1 2.5s 2.6s 100/1 595
VSI-b3.Sort 1/16, 1 1/16, 1 3.9s [6.2s, 6.2s] 186/2

798VSI-b3.RemoveMin 1/6, 1 1/6, 1 3.0s [4.5s, 4.5s] 176/2
VSI-b4.Map.FindIndex 3/4, 2 2/4, 1 3.7s [3.6s, 4.6s] 84/1 956
VSI-b6.Client.Main 1/3, 1 1/3, 1 3.1s [3.5s, 3.5s] 139/1 900
VSI-b8.Glossary.Main 4/16, 1 3/16, 1 5.3s [18.7s, 21.6s] 381/3
VSI-b8.Glossary.readDef 0/1, 1 3.4s 3.6s 71/1 1998
VSI-b8.Map.FindIndex 0/1, 1 3.3s 3.4s 66/1
Composite.Adjust 1/3, 2 1/3, 2 5.3s [44.3s, 44.3s] 80/1 1275
LazyInitArray 1/5, 1 1/5, 1 5.0s 5.0s 165/1 806
SchorrWaite.RecursiveMark 0/6, 1 3.4s 4.2s 98/1
SchorrWaite.IterativeMark 2/17, 1 2/17, 1 4.8s 5.7s 177/1 1175
SchorrWaite.Main 4/27, 1 3/27, 1 33.3s [16.9s, 34.5s] 275/1
SumOfCubes.Lemma0 1/2, 1 1/2, 1 2.6s [2.6s, 2.6s] 81/1
SumOfCubes.Lemma1 1/2, 1 1/2, 1 2.7s [2.7s, 2.7s] 65/1

915SumOfCubes.Lemma2 1/2, 1 1/2, 1 2.5s [2.5s, 2.5s] 48/1
SumOfCubes.Lemma3 1/2, 1 1/2, 1 2.5s [2.5s, 2.5s] 51/1
Substitution 0/1, 1 2.7s 2.8s 131/1 846
PriorityQueue.SiftUp 1/2, 2 1/2, 2 2.9s 3.3s 92/1

819PriorityQueue.SiftDown 1/2, 2 1/2, 2 3.1s [16.0s, 16.0s] 101/1
MatrixFun.MirrorImage 2/6, 1 2/6, 1 2.9s [3.5s, 3.5s] 125/2

922MatrixFun.Flip 1/3, 1 1/3, 1 2.7s [2.8s, 2.8s] 103/1
ListReverse 2/3, 2 2/3, 2 2.4s [2.4s, 2.4s] 71/1 329
ListCopy 1/4, 1 1/4, 1 2.5s [2.5s, 2.5s] 141/1 434
ListContents 1/3, 1 1/3, 1 3.4s [6.1s, 6.1s] 141/1 717
Cubes 3/4, 2 3/4, 4 2.8s [2.7s, 3.3s] 97/1 339
Celebrity.FindCelebrity1 1/1, 2 1/1, 2 2.5s [3.0s, 3.0s] 98/1
Celebrity.FindCelebrity2 0/1, 1 2.5s 2.7s 99/1 795
Celebrity.FindCelebrity3 0/2, 1 2.5s 2.6s 86/1
VSC-SumMax 1/2, 1 1/2, 1 2.4s [2.7s, 2.7s] 77/1 458
VSC-Invert 0/1, 1 15.4s [3.2s, 3.2s] 61/1 568
VSC-FindZero 1/2, 1 1/2, 1 2.7s [2.7s, 2.7s] 90/1 625
VSC-Queens.CConsistent 0/3, 1 2.6s 2.7s 79/1

825VSC-Queens.SearchAux 0/1, 1 2.9s 3.2s 139/1

Native Boogie programs
StructuredLocking 1/1, 1 1/1, 1 1.8s [1.8s, 1.8s] 16/1

40StructuredLockingWithCalls 0/1, 1 1.8s 1.8s 13/1
Structured.RunOffEnd1 1/1, 1 1/1, 1 1.8s [1.8s, 1.8s] 12/1 53
BubbleSort 7/14, 1 7/14, 1 2.1s [3.0s, 3.2s] 33/3 42
DutchFlag 1/5, 1 1/5, 1 1.9s [2.0s, 2.0s] 29/1 37

Table 2. Experimental results applying K-INDUCTOR to DMA processing benchmarks

Benchmark LOC # loops nesting split-case combined-case speedup with
depth min k max k time (s) # invariants min k max k time (s) combined-case

1-buf 151 2 2 1 1 0.32 3 0 1 0.23 1.35
1-buf I/O 178 2 2 1 1 0.39 5 0 1 0.27 1.44
2-buf 254 3 2 1 2 1.18 17 0 2 0.45 2.62
2-buf I/O 304 3 2 1 2 2.06 29 0 2 0.53 3.85
3-buf 282 4 2 1 3 9.56 27 0 3 1.00 9.58
3-buf I/O 364 4 2 1 3 8.47 38 0 3 1.03 8.19
Euler simple 101 3 3 1 2 3.30 10 0 2 2.95 1.12
sync atomic op 91 3 2 1 1 0.40 4 0 1 0.18 2.24
sync mutex 83 2 2 1 1 0.87 2 0 1 0.28 3.08

Software Verification Using k-Induction 365

k-ind., using the smallest k for which verification succeeded), the number of lines of
executable code (LOC), and the number of loops (# loops). We also show the total num-
ber of lines for each program (LOC program), including all procedures and additional
definitions (which can be quite considerable). Experiments were run on a 2.5GHz Intel
Core2 Duo machine with 2 GB RAM and Windows Vista.

For all but 11 of the procedures, spread over 22 of the 26 programs, we find that, with
1- or 2-induction, we are able to remove invariants that are necessary for the normal
Boogie loop rule. Since the normal Boogie rule corresponds to 0-induction, augmented
with assumptions and assertions encoding the loop invariant, already 1-induction is
often able to succeed with a significantly reduced number of invariants. Values of k
larger than two proved to be beneficial only for a single procedure (Cubes); additional
gains with even larger values of k therefore seem unlikely. On average, 32% of the
invariants could be removed (simultaneously) when using k-induction. The verification
times with k-induction are only marginally larger than those with the normal Boogie
rule, and for some examples even smaller (averaging over all benchmarks, verification
time increased by 44%). In cases where the same set of invariants is used, verification
times almost coincide. This shows that k-induction, with small values of k, can be
useful for general-purpose verification, since the (extremely time-consuming) process
of constructing inductive invariants can be shortened.

Experiments with K-INDUCTOR. We apply K-INDUCTOR to a set of benchmarks
from the domain of direct memory access (DMA) race checking, studied in [12,13]
(in which full details can be found). These consist of data processing programs for
the Cell BE processor, where data is manipulated using DMA. In [12,13], split-case
k-induction is applied to these benchmarks, under the simplifying assumption that in
many cases inner loops unrelated to DMA are manually sliced away, leaving single-
loop programs. We find that combined-case k-induction allows us to handle inner loops
in these benchmarks directly. With split-case k-induction, handling inner loops requires
the addition of numerous invariants, as assertions in the program text.

For each DMA processing benchmark, Table 2 shows the number of lines of code
(LOC), the number of loops processed by k-inductor (# loops, this is the number of
loops after function inlining, which may cause loop duplication), and the depth of the
deepest loop nest (nesting depth). All benchmarks involve nested loops. For the split-
case and combined-case approaches, we manually determined the smallest values of k
required for each loop in order for verification to succeed. In each case, the minimum
and maximum values of k required are shown (min/max k), as well as the time (in
seconds) taken for verification with this combination of k values (time). For the split-
case approach, we show the number of invariants that had to be added manually for
verification to succeed (# invariants) – these invariants are not required when our novel
combined-case method is employed. Finally, we show the speedup obtained by using
combined-case k-induction instead of split-case k-induction (speedup with combined-
case). Experiments are performed on a 3GHz Intel Xeon machine, 40 GB RAM, 64-bit
Linux. MiniSat 2 is used as a back-end SAT solver for CBMC. Manually specified
invariants are mainly simple facts related to variable ranges; many could be inferred
automatically using abstract interpretation.

366 A.F. Donaldson et al.

The results show that combined-case k-induction avoids the need for a significant
number of additional invariants when verifying these examples. This allows many in-
ner loops that are unrelated to DMA processing (and thus do not contain assertions of
interest) to be handled using k = 0. In such cases, k = 0 is sufficient because we
do not havoc variables that are not modified by the loop in question. With split-case
k-induction, explicit invariant assertions must be added to assert that such variables are
invariant under loop execution. This involves a lot of manual effort, and verification
with k-induction requires at least k = 1 to take advantage of these assertions.

We also find that combined-case k-induction is uniformly, and sometimes signifi-
cantly faster than split-case k-induction. We attribute this to the multiple loop-free pro-
grams that must be solved with split-case k-induction, compared with the single loop-
free program associated with combined-case k-induction. Verification using combined-
case k-induction never takes longer than three seconds for this benchmark set, suggest-
ing good scalability of the approach.

7 Related Work and Conclusions

The concept of k-induction was first published in [21,7], targeting the verification of
hardware designs and transition relations. A major emphasis of these two papers is
on the restriction to loop-free or shortest paths, which is so far not considered in our
k-induction rule due to the size of state vectors and the high degree of determinism in
software. Several optimisations and extensions to the technique have been proposed, in-
cluding property strengthening to reduce induction depth [22], improving performance
via incremental SAT solving [14], and verification of temporal properties [2].

Besides hardware verification, k-induction has been used to analyse synchronous
programs [18,16] and, recently, SystemC designs [17]. To the best of our knowledge, the
first application of k-induction to imperative software programs was done in the context
of DMA race checking [12,13], from which we also draw some of the benchmarks used
in this paper. A combination of the k-induction rule of [12,13], abstract interpretation,
and domain-specific invariant strengthening techniques for DMA race analysis is the
topic of [11]. The main new contributions of this paper over our previous work are
that we present a k-induction technique that can be applied in a structured manner to
multiple, arbitrary loops in a reducible control-flow graph (prior work was restricted to
single-loop programs, with multiple loops handled via translation to a single, monolithic
loop), and we present the novel idea of combined-case k-induction, where base and
step case are combined into a single program. We have demonstrated experimentally
that combined-case k-induction can allow verification to succeed using weaker loop
invariants than are required with either split-case k-induction or the inductive invariant
approach, and that it can significantly out-perform split-case k-induction.

Combined-case k-induction depends on analysis of those variables which are not
modified by a given loop. This can be viewed as a simple kind of loop summary. We
plan to investigate whether k-induction can be strengthened using more sophisticated
loop summarisation analyses [19]. In addition, we intend to study automatic techniques
for selecting and exploring values of k for programs with multiple loops.

Software Verification Using k-Induction 367

Finally, our experiments show that the effectiveness of k-induction varies signifi-
cantly from example to example. It would be interesting and useful to characterise,
ideally formally but at least intuitively, classes of programs for which k-induction is
likely to be beneficial for verification. Our initial efforts in this direction indicate that it
is a challenging problem.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading (2006)

2. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.: SAT-based induc-
tion for temporal safety properties. Electr. Notes Theor. Comput. Sci. 119(2), 3–16 (2005)

3. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE, pp.
82–87. ACM, New York (2005)

4. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In:
Barthe, G., et al. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg
(2005)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-
vances in Computers 58, 118–149 (2003)

7. Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In: Johnson,
S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 372–389. Springer, Heidel-
berg (2000)

8. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp.
Comput. 20(4-5), 379–405 (2008)

9. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

10. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In: OOPSLA,
pp. 213–226. ACM, New York (2008)

11. Donaldson, A.F., Haller, L., Kroening, D.: Strengthening Induction-Based Race Checking
with Lightweight Static Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 169–183. Springer, Heidelberg (2011)

12. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad memory code
for heterogeneous multicore processors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 280–295. Springer, Heidelberg (2010)

13. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of DMA races using model
checking and k-induction. In: Formal Methods in System Design (to appear, 2011), doi:
10.1007/s10703-011-0124-2

14. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.
Comput. Sci. 89(4) (2003)

15. Floyd, R.: Assigning meaning to programs. In: Mathematical Aspects of Computer Science.
Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32. AMS, Providence
(1967)

16. Franzén, A.: Using satisfiability modulo theories for inductive verification of Lustre pro-
grams. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)

17. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level properties of un-
timed SystemC TLM designs. In: MEMOCODE, pp. 113–122. IEEE, Los Alamitos (2010)

368 A.F. Donaldson et al.

18. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based
techniques. In: FMCAD, pp. 109–117. IEEE, Los Alamitos (2008)

19. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop sum-
marization using abstract transformers. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125. Springer, Heidelberg
(2008)

20. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidel-
berg (2010)

21. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp.
108–125. Springer, Heidelberg (2000)

22. Vimjam, V.C., Hsiao, M.S.: Explicit safety property strengthening in SAT-based induction.
In: VLSID, pp. 63–68. IEEE, Los Alamitos (2007)

Using Bounded Model Checking
to Focus Fixpoint Iterations�

David Monniaux1 and Laure Gonnord2

1 CNRS, VERIMAG, Gières, France
2 Université Lille 1, LIFL, Villeneuve d’Ascq, France

Abstract. Two classical sources of imprecision in static analysis by abstract in-
terpretation are widening and merge operations. Merge operations can be done
away by distinguishing paths, as in trace partitioning, at the expense of enumer-
ating an exponential number of paths.

In this article, we describe how to avoid such systematic exploration by focus-
ing on a single path at a time, designated by SMT-solving. Our method combines
well with acceleration techniques, thus doing away with widenings as well in
some cases. We illustrate it over the well-known domain of convex polyhedra.

1 Introduction

Program analysis aims at automatically checking that programs fit their specifications,
explicit or not — e.g. “the program does not crash” is implicit. Program analysis is
impossible unless at least one of the following holds: it is unsound (some violations
of the specification are not detected), incomplete (some correct programs are rejected
because spurious violations are detected), or the state space is finite (and not too large,
so as to be enumerated explicitly or implicitly). Abstract interpretation is sound, but
incomplete: it over-approximates the set of behaviours of the analysed program; if the
over-approximated set contains incorrect behaviours that do not exist in the concrete
program, then false alarms are produced. A central question in abstract interpreta-
tion is to reduce the number of false alarms, while keeping memory and time costs
reasonable [8].

Our contribution is a method leveraging the improvements in SMT-solving to in-
crease the precision of invariant generation by abstract fixpoint iterations. On practical
examples from the literature and industry, it performs better than previous generic tech-
nique and is less “ad-hoc” than syntactic heuristics found in some pragmatic analyzers.

The first source of imprecision in abstract interpretation is the choice of the set of
properties represented inside the analyser (the abstract domain). Obviously, if the prop-
erty to be proved cannot be reflected in the abstract domain (e.g. we wish to prove a
numerical relation but our abstract domain only considers Boolean variables), then the
analysis cannot prove it.

In order to prove that there cannot be a division by zero in the first branch of the
second if-then-else of Listing 1, one would need the non-convex property that x �

0�01 � x � �0�01. An analysis representing the invariant at that point in a domain of

� This research was partially funded by ANR project “ASOPT”.

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 369–385, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

http://asopt.inrialpes.fr

370 D. Monniaux and L. Gonnord

Listing 1. C implementation of y � sin(x)�x � 1, with the �0�01 � x � 0�01 range implemented
using a Taylor expansion around zero in order to avoid loss of precision and division by zero as
sin(x) � x � 0.

i f (x >= 0) { xabs = x ; } else { xabs = �x ; }
i f (xabs >= 0 . 0 1) {

y = s in (x) / x � 1 ;
} else {

xsq = x∗x ; y = xsq∗(�1/6. + xsq / 1 2 0 .) ;
}

Listing 2. Circular bu�er indexing

i n t x = 0 ;
while (t rue) {

i f (nondet ()) {
x = x +1;
i f (x >= 100) x = 0 ;

} }

convex properties (intervals, polyhedra, etc.) will fail to prove the absence of division
by zero (incompleteness).

Obviously, we could represent such properties using disjunctions of convex poly-
hedra, but this leads to combinatorial explosion as the number of polyhedra grows: at
some point heuristics are needed for merging polyhedra in order to limit their num-
ber; it is also unclear how to obtain good widening operators on such domains. The
same expressive power can alternatively be obtained by considering all program paths
separately (“merge over all paths”) and analysing them independently of each other.
In order to avoid combinatorial explosion, the trace partitioning approach [36] applies
merging heuristics. In contrast, our method relies on the power of modern SMT-solving
techniques.

The second source of imprecision is the use of widening operators [14]. When
analysing loops, static analysis by abstract interpretation attempts to obtain an inductive
invariant by computing an increasing sequence X1� X2� � � � of sets of states, which are
supersets of the sets of states reachable in at most 1� 2� � � � iterations. In order to enforce
convergence within finite time, the most common method is to use a widening opera-
tor, which extrapolates the first iterates of the sequence to a candidate limit. Optional
narrowing iterations may regain some precision lost by widening.

Illustrating Example. Consider Listing 2, a simplification of a fragment of an ac-
tual industrial reactive program: indexing of a circular bu�er used only at certain it-
erations of the main loop of the program, chosen non-deterministically. If the non-
deterministic choice nondet() is replaced by true, analysis with widening and nar-
rowing finds [0� 99]. Unfortunately, the “narrowing” trick is brittle, and on Listing 2,

Using Bounded Model Checking to Focus Fixpoint Iterations 371

widening yields [0���), and this is not improved by narrowing!1 In contrast, our
semantically-based method would compute the [0� 99] invariant on this example by first
focusing on the following path inside the loop:

Listing 3. Example focus path

assume (nondet ()) ; x = x +1; assume (x < 1 0 0) ;

If we wrap this path inside a loop, then the least inductive invariant is [0� 99]. We then
check that this invariant is inductive for the original loop.

This is the basic idea of our method: it performs fixpoint iterations by focusing tem-
porarily on certain paths in the program. In order to obtain the next path, it performs
bounded model checking using SMT-solving.

2 Background and Notations in Abstract Interpretation

We consider programs defined by a control flow graph: a set P of control points, for
each control point p � P a (possibly empty) set Ip of initial values, a set E � P � P of
directed edges, and the semantics �e : 	(�)
 	(�) of each edge e � E where 	(�) is
the set of possible values of the tuple of program variables. �e thus maps a set of states
before the transition expressed by edge e to the set of states after the transition.

To each control point p � P we attach a set Xp � � of reachable values of the tuple
of program variables at program point p. The concrete semantics of the program is the
least solution of a system of semantic equations [14]: Xp � Ip �

�
(p�

�p)�E �(p�
�p)(Xp�).

Abstract interpretation replaces the concrete sets of states in 	(�) by elements of an
abstract domain D. In lieu of applying exact operations � to sets of concrete program
states, we apply abstract counterparts ��.2 An abstraction �� of a concrete operation � is
deemed to be correct if it never “forgets” states:

�X � D �(X) � ��(X) (1)

We also assume an “abstract union” operation , such that X � Y � X Y. For in-
stance, � can be �n, D can be the set of convex polyhedra and the convex hull oper-
ation [27,17,3].

In order to find an inductive invariant, one solves a system of abstract semantic
inequalities: �����

�p Ip � Xp

�(p�� p) � E �
�

(p� �p)(Xp�) � Xp�
(2)

1 On this example, it is possible to compute the [0� 99] invariant by so called “widening up-
to” [28, Sec. 3.2], or with “thresholds” [8]: essentially, the analyser notices syntactically the
comparison x � 100 and concludes that 99 is a “good value” for x, so instead of widening
directly to ��, it first tries 99. This method only works if the interesting value is a syntactic
constant.

2 Many presentations of abstract interpretation distinguish the abstract element x� � D from the
set of states �(x�) it represents. We opted not to, for the sake of brevity.

372 D. Monniaux and L. Gonnord

p1

p2

p3

x :� 0

x :� x � 1
x � 100
x :� 0

x � 100

(a) With original variables

p1

p2 : x2 � �(x1� x2� x3� x4)

p3

x1 � 0

x3 :� x2 � 1x3 � 100
x4 � 0

x3 � 100

(b) SSA version. x � �(e1� e2� � � �) denotes
a SSA �-node: x takes value e1 if control
flows from the first incoming edge, e2 from
the second. . .

Fig. 1. Control flow graph corresponding to listing 2

Since the ��
e are correct abstractions, it follows that any solution of such a system defines

an inductive invariant; one wishes to obtain one that is as strong as possible (“strong”
meaning “small with respect to �”), or at least suÆciently strong as to imply the desired
properties.

Assuming that all functions �
�
e are monotonic with respect to �, and that is the

least upper bound operation in D with respect to �, one obtains a system of monotonic
abstract equations: Xp � Ip

�
(p� �p)�E �

�

(p� �p)(Xp�). If (D��) has no infinite ascending
sequences (d1 � d2 � � � � with d1� d2� � � � � D), then one can solve such a system by
iteratively replacing the contents of the variable on the left hand side by the value of the
right hand side, until a fixed point is reached. The order in which equations are iterated
does not change the final result.

Many interesting abstract domains, including that of convex polyhedra, have infi-
nite ascending sequences. One then classically uses an extrapolation operator known
as widening and denoted by � in order to enforce convergence within finite time. The
iterations then follow the “upward iteration scheme”:

Xp :� Xp �

�������	Xp

(p� �p)�E

�
�

(p� �p)(Xp�)

������� (3)

where the contents of the left hand side gets replaced by the value of the right hand
side. The convergence property is that any sequence un of elements of D of the form
un�1 � un � vn, where vn is another sequence, is stationary [14]. It is suÆcient to apply
widening only at a set of program control nodes PW such that all cycles in the control
flow graph are cut. Then, through a process of chaotic iterations [13, Def. 4.1.2.0.5,
p. 127], one converges within finite time to an inductive invariant satisfying Rel. 2.

Once an inductive invariant is found, it is possible to improve it by iterating the
�� function defined as Y � ��(X), noting X � (Xp)p�P and Y � (Yp)p�P, with Yp �

Ip
�

(p� �p)�E �
�

(p� �p)(Xp�). If X is an inductive invariant, then for any k, ��k
(X) is also an

invariant. This technique is an instance of narrowing iterations, which may help recover
some of the imprecision induced by widening [14, §4].

Using Bounded Model Checking to Focus Fixpoint Iterations 373

Algorithm 1. Classical Algorithm
1: A � 	;
2: for all p � P such that Ip � 	 do
3: A � A
 �p�
4: end for; � Initialise A to the set of all non empty initial nodes
5: while A is not empty do � Fixpoint Iteration
6: Choose p1 � A
7: A � A �p1�

8: for all outgoing edge (e) from p1 do
9: Let p2 be the destination of e :

10: if p2 � PW then
11: Xtemp � Xp2 �

�
Xp2 � �

�
e(Xp1)

�
� Widening node;

12: else
13: Xtemp � Xp2 � �

�
e(Xp1) ;

14: end if
15: if Xtemp Xp2 then � The value must be updated
16: Xp2 � Xtemp;
17: A � A
 �p2�;
18: end if
19: end for;
20: end while; � End of Iteration
21: Possibly narrow
22: return all Xpi s;

A naive implementation of the upward iteration scheme described above is to main-
tain a work-list of program points p such that Xp has recently been updated and replaced
by a strictly larger value (with respect to �), pick and remove the foremost member p,
apply the corresponding rule Xp :� � � � , and insert into the work-list all p� such that
(p� p�) � E (This algorithm is formally described in Algorithm 1).

Example of Section 1 (Cont’d) Figure 1(a) gives the control flow graph obtained by
compilation of Listing 2. Node p2 is the unique widening node.

The classical algorithm (with the interval abstract domain) performs on this control
flow graph of the following iterations :

– Initialisation : Xp1 � (�����), Xp2 � Xp3 � Xp4 � �.
– Step 1: Xp2 � [0� 0], then the transition to p3 is enabled, Xp3 � [1� 1], then the

return edge to p2 gives the new point x � 1 to Xp2 , the new polyhedron is then
Xp2 � [0� 1] after performing the convex hull. Widening gives the polyhedron Xp2 �

[0��).
(The widening operator on intervals is defined as [xl� xr]�[x�l � x�r] � [x”l� x”r] where
x”l � xl if xl � x�l else ��, and x”r � xr if xr � x�r else ��.)

– Step 2: Xp3 becomes [1���). The second transition from p3 to p2 is thus enabled,
and the back edge to p2 gives the point x � 0 to Xp2 . At the end of step 2 the
convergence is reached.

– If we perform a narrowing sequence, there is no gain of precision because of the
simple loop over the control point p2.

374 D. Monniaux and L. Gonnord

3 Our Method

We have seen two examples of programs where classical polyhedral analysis fails to
compute good invariants. How could we improve on these results?

– In order to get rid of the imprecision in Listing 1, one could “explode” the control-
flow graph: in lieu of a sequence of n if-then-else, with n merge nodes with 2 input
edges, one could distinguish the 2n program paths, and having a single merge node
with 2n input edges. As already pointed out, this would lead to exponential blowup
in both time and space.

– One way to get rid of imprecision of classical analysis (Sec. 2) on the program from
Fig. 1(a) would be to consider each path through the loop at a time and compute a
local invariant for this path. Again, the number of such paths could be exponential
in the number of tests inside the loop.

The contribution of our article is a generic method that addresses both of these
diÆculties.

3.1 Reduced Transition Multigraph and Path Focusing

Consider a control flow graph (P� E) with associated transitions (�e)e�E , a set of widen-
ing points PW � P such that removing PW cuts all cycles in the graph, and a set PR

of abstraction points, such that PW � PR � P (On the figures, the nodes in PR are in
bold). We make no assumption regarding the choice of PW ; there are classical methods
for choosing widening points [9, §3.6]. PR can be taken equal to PW , or may include
other nodes; this makes sense only if these nodes have several incoming edges. Includ-
ing other nodes will tend to reduce precision, but may improve scalability. We also
make the simplifying assumption that the set of initial values Ip is empty for all nodes
in P � PR — in other words, the set of possible control points at program start-up is
included in PR.

We construct (virtually) the reduced control multigraph (PR� ER), with edges ER con-
sisting of the paths in (P� E) that start and finish on nodes in PR, with associated seman-
tics the composition of the semantics of the original edges �e1�����en � �en Æ � � � Æ �e1 .
There are only a finite number of such edges, because the original graph is finite and
removing PR cuts all cycles. There may be several edges between two given nodes, be-
cause there may exist several control paths between these nodes in the original program.
Equivalently, this multigraph can be obtained by starting from the original graph (P� E)
and by removing all nodes p in P�PR as follows: each couple of edges e1, from p1 to p,
and e2, from p to p2, is replaced by a single edge from p1 to p2 with semantics �p2 Æ�p1 .

Example of Section 1 (Cont’d) The reduced control flow graph obtained for our running
example is

loop

x :� 0
guard x � 99
x :� 0

guard x � 99
x :� x � 1

Using Bounded Model Checking to Focus Fixpoint Iterations 375

Our analysis algorithm performs chaotic iterations over that reduced multigraph,
without ever constructing it explicitly. We start from an iteration strategy, that is, a
method for choosing which of the equations to apply next; one may for instance take
a variant of the naive “breadth-first” algorithm from §2, but any iteration strategy [9,
§3.7] befits us (see also Alg. 1). An iteration strategy maintains a set of “active nodes”,
which initially contains all nodes p such that Ip � �. It picks one edge e from an active

node p1 to a node p2, and applies Xp2 :� Xp2�
�
e(Xp1) in the case of a node p2 � PR�PW ,

and applies Xp2 :� Xp2 �(Xp2 �
�
e(Xp1)) if p2 � PW ; then p2 is added to the set of active

nodes if the value of Xp2 has changed.
Our alteration to this algorithm is that we only pick edges e from p1 to p2 such that

there exist x1 � Xp1 , x2 � �e(�x1�) and x2 � Xp2 with the current values of Xp1 and Xp2 .
In other words, going back to the original control flow graph, we only pick paths that
add new reachable states to their end node, and we temporarily focus on such a path.

How do we find such edges e out of potentially exponentially many? We express
them as the solution of a bounded reachability problem — how can we go from control
state p1 with variable state in Xp1 to control state p2 with variable state in Xp2 —, which
we solve using satisfiability modulo theory (SMT). (See Alg. 2)

3.2 Finding Focus Paths

We now make the assumption that both the program transition semantics �e and the
abstract elements x� � D can be expressed within a decidable theory T (this assump-
tion may be relaxed by replacing the concrete semantics, including e.g. multiplicative
arithmetic, by a more abstract one through e.g. linearization [30]).

Such is for instance the case if the program operates on rational values, so a program
state is an element of � � �n, all operations in the program, including guards and
assignments, are linear arithmetic, and the abstract domain is the domain of convex
polyhedra over �n, in which case T can be the theory of linear real arithmetic (LRA).
If program variables are integer, with program state space � � �n, but still retaining
the abstract domain of convex polyhedra over �n, then we can take T to be the theory
of linear integer arithmetic (LIA). Deciding the satisfiability of quantifier-free formulas
in either LIA or LRA, with atoms consisting in propositional variables and in linear
(in)equalities with integer coeÆcients, is NP-complete. There however exist eÆcient
decision procedures for such formulas, known as SMT-solvers, as well as standardised
theories and file formats [6]; notable examples of SMT-solvers capable of dealing with
LIA and LRA are Z3 and Yices. Kroening & Strichman [29] give a good introduction
to the techniques and algorithms in SMT solvers.

We assume that the program is expressed in SSA form, with each program vari-
able being assigned a value at only a single point within the program [18]; standard
techniques exist for converting to SSA. Figure 1 gives both “normal” and SSA-form
control-flow graphs for Listing 2.

We transform the original control flow graph (P� E) in SSA form by disconnecting
the nodes in PR: each node pr in PR is split into a “source” node ps

r with only outbound
edges, and a “destination” node pd

r with only inbound edges. We call the resulting graph
(P�� E�). Figure 2(a) gives the disconnected SSA form graph for Listing 2 where p1 and
p2 have been split.

376 D. Monniaux and L. Gonnord

We consider execution traces starting from a ps
r node and ending in a pd

r node. We
define them as for doing bounded model checking [2]. To each node p � P� we attach
a Boolean bp or reachability predicate, expressing that the trace goes through program
point p. For nodes p� not of the form ps

r , we have a constraint bp� �
�

p ep�p� , for ep�p�

ranging over all incoming edges. To each edge p
 p� we attach a Boolean ep�p� , and
a constraint ep�p� � bp � �p�p� . The conjunction � of all these constraints, expresses the
transition relation between the ps

r and pd
r nodes (with implicit existential quantification).

If the transitions �(p�p�) are non-deterministic, a little care must be exercised for the
path obtained from the bp to be unique. For instance, if from program point p1 one can
move non-deterministically to p2 or p3 through edges e2 and e3 an incorrect way of
writing the formula would be (b2 � e2)� (b3 � e3)� (e2 � b1)� (e3 � b1), in which case
b2 and b3 could be simultaneously true. Instead, we introduce special “choice” variables
ci that model non-deterministic choices (Fig. 2).

ps
1 ps

2

p3

pd
2 : x�

2 � �(x1� x4� x3� x2)

e3x3 � x2 � 1

e5
x3 � 100
x4 � 0

e4 x3 � 100
e2

e1x1 � 0

(a) Disconnected (SSA) CFG

ps
1 ps

2

p3

pd
2 : x�

2 � �(x1� x4� x3� x2)

e3x3 � x2 � 1

e5
x3 � 100
x4 � 0

e4 x3 � 100
e2

e1x1 � 0

(b) With a focus path (solid edges) from x2 �

0 at program point 2 to x�
2 � 1 at the same

program point

(e1 � (x1 � 0)�bs
1)�(e3 � (x3 � x2�1)�bs

2�cs
2)�(e2 � bs

2��cs
2)�(e5 � b3� x3 � 100� x4 � 0)

� (e4 � b3 � x3 � 100) � (b3 � e3) � (bd
2 � e1 � e4 � e5 � e2) � (x�

2 � ite(e1� x1� ite(e5� x4� ite(e4�

x3� x2))))

Fig. 2. Disconnected version of the SSA control flow graph of Fig. 1(b), and the corresponding
SMT formula. ite(b� e1� e2) is a SMT construct whose value is “if b then the value of e1 else the
value of e2”. To each node px corresponds a Boolean bx and an optional choice variable cx; to
each edge, a Boolean ey.

In order to find a path from program point p1 � PR, with variable state x1, to program
point p2 � PR, with variable state x2, we simply conjoin � with the formulas x1 � Xp1

and x2 � Xp2 , with x1, x2, x1 � Xp1 and x2 � Xp2 expressed in terms of the SSA
variables.3 For instance, if Xp1 and Xp2 are convex polyhedra defined by systems of
linear inequalities, one simply writes these inequalities using the names of the SSA-
variables at program points p1 and p2.

3 The formula defining the set of values represented by an abstract element X has sometimes
been denoted by �̂ [34].

Using Bounded Model Checking to Focus Fixpoint Iterations 377

We apply SMT-solving over that formula. The result is either “unsatisfiable”, in
which case there is no path from p1, with variable values x1, to p2, with variable values
x2, such that x1 � Xp1 and x2 � Xp2 , or “satisfiable”, in which case SMT-solving also
provides a model of the formula (a satisfying assignment of its free variables); from this
model we easily obtain such a path, unique by construction of �.

Indeed, a model of this formula yields a trace of execution: those bp predicates that
are true designate the program points through which the trace goes, and the other vari-
ables give the values of the program variables.

Example of Section 1 (Cont’d) The SSA form of the control flow graph of Figure 1(a)
is depicted in Figure 1(b). Fig. 2 shows the disconnected version of the SSA Graph (the
node p2 is now split), and the formula � expressing the semantics is shown beneath it.

Then, consider the problem of finding a path starting in control point 2 inside poly-
hedron x � 0 and ending at the same control point but outside of that polyhedron.
Note that because there are two outgoing transitions from node ps

2, which are chosen
non-deterministically, we had to introduce a Boolean choice variable cs

2.
The focus path of Fig. 2(b) was obtained by solving the formula ��bs

1 � false�bs
2 �

true � bd
2 � true� (x2 � 0) � �(x�2 � 0): we impose that the path starts at point ps

2 (thus
forcing bs

1 � false � bs
2 � true) in the polyhedron x � 0 (thus x2 � 0) and ends at point

pd
2 (thus forcing bp

2 � true) outside of that polyhedron (thus �(x2 � 0)).

3.3 Algorithm

Algorithm 2 consists in the iteration of the path finding method of Sec. 3.2, coupled with
forward abstract interpretation along the paths found and, optionally, path acceleration.

3.4 Correctness and Termination

We shall now prove that this algorithm terminates, and that the resulting Xp define
an inductive invariant that contains all initial states Ip. The proof is a variant of the
correctness proof of the chaotic iterations.

The invariant maintained by this algorithm is that all nodes p1 � PR � A are such that
there is no execution trace starting at point p1 in a state x1 � Xp1 and ending at point p2

in a state x2 � Xp2 . Evidently, if A becomes empty, then this condition means that Xp is
an inductive invariant.

Termination is ensured by the classical argument of termination of chaotic iterations
in the presence of widening: they always terminate if all cycles in the control flow
graph are broken by widening points [13, Th. 4.1.2.0.6, p. 128]. In short, an infinite
iteration sequence is bound to select at least one node p in PW an infinite amount of
times, because PW breaks all cycles, but due to the properties of widening, Xp should
be stationary, which contradicts the infinite number of selections. Our comment at line
20 of Alg. 2 is important for termination: it ensures that for any widening node p, the
sequence of values taken by Xp when it is updated and reinserted into set A is strictly
ascending, which ensures termination in finite time.

378 D. Monniaux and L. Gonnord

Algorithm 2. Path-focused Algorithm
1: Compute SSA-form of the control flow graph.
2: Choose PR, compute the disconnected graph (P�� E�) accordingly.
3: 	 � computeFormula(P�� E�) � Precomputations
4: A � 	;
5: for all p � PR such that Ip � 	 do
6: A � A
 �p�
7: end for;
8: while A is not empty do � Fixpoint Iteration on the reduced graph
9: Choose p1 � A

10: A � A �p1�

11: repeat

12: res � SmtSolve

��������	 � bp1 � x1 � Xp1 �
�

p2 �(p1�p2)�E�

�
bp2 � x2 � Xp2

�	

�
13: if res is not “unsat” then
14: Compute e� � E� from res � Extraction of path from the model (§3.2)
15: Y � �

�

e�
(Xp1)

16: if p2 � PW then
17: Xtemp � Xp2 �

�
Xp2 � Y

�
� Final point p2 is a widening point

18: else
19: Xtemp � Xp2 � Y
20: end if

� at this point Xtemp Xp2 otherwise p2 would not have been chosen
21: Xp2 � Xtemp

22: A � A
 �p2�

23: end if
24: until res�“unsat”
25: end while � End of Iteration
26: Possibly narrow (see Sec. 4.1)
27: Compute Xpi for pi � PR

28: return all Xpi

3.5 Self-Loops

The algorithm in the preceding subsection is merely a “clever” implementation of stan-
dard polyhedral analysis [17,27] on the reduced control multigraph (PR� ER); the dif-
ference with a naive implementation is that we do not have to explicitly enumerate an
exponential number of paths and instead leave the choice of the focus path to the SMT-
solver. We shall now describe an improvement in the case of self-loops, that is, single
paths from one node to itself.

Algorithm 3 is a variant of Alg. 2 where self-loops are treated specially:

– The loopiter(��� X) function returns the result of a widening � narrowing iteration
sequence for abstract transformer �� starting in X; it returns X� such that X � X�

and ��(X�) � X�.
– In order not to waste the precision gained by loopiter, the first time we consider

a self-loop e� we apply a union operation instead of a widening; set U records the
self-loops that have already been visited. This is a form of delayed widening [28].

Using Bounded Model Checking to Focus Fixpoint Iterations 379

Algorithm 3. Path-focused Algorithm with Self-Loops. marks changes from Alg. 2.
1: Compute SSA-form of the control flow graph.
2: Choose PR, compute the disconnected graph (P�� E�) accordingly.
3: 	 � computeFormula(P�� E�) � Precomputations
4: A � 	;
5: for all p � PR such that Ip � 	 do
6: A � A
 �p�
7: end for;
8: while A is not empty do � Fixpoint Iteration on the reduced graph
9: Choose p1 � A

10: A � A �p1�

11: U � 	 � U is a set of “already seen” edges
12: repeat

13: res � SmtSolve

��������	 � bp1 � x1 � Xp1 �
�

p2 �(p1�p2)�E�

�
bp2 � x2 � Xp2

�	

�
14: if res is not “unsat” then
15: Compute e� � E� from res
16: if p1 � p2 then

17: Y � loopiter(��e�
� Xp1)

18: else
19: Y � �

�

e�
(Xp1)

20: end if
21: if p2 � PW and (p1 � p2 � e� � U) then
22: Xp2 � Xp2 �

�
Xp2 � Y

�
� Final point p2 is a widening point

23: else
24: Xp2 � Xp2 � Y

25: U � U
 �e��

26: end if
27: A � A
 �p2�

28: end if
29: until res�“unsat”
30: end while � End of Iteration
31: Compute Xpi s for pi � PR

32: return all Xpi s

Termination is still guaranteed, because the inner loop cannot loop forever: it can
visit any self-loop edge e� at most once before applying widening.

Example of Section 1 (Cont’d) Let us perform our algorithm on our example :

– Step 1 : Is there a path from control point p1 to control point p2 feasible (without
additional constraint) ? Yes. On Figure 2, the obtained model corresponds to the
transition from ps

1 to pd
2, and leads to the interval Xp2 � [0� 0].

– Step 2 : Is there a path from p2 with x � 0 to p2 with x � 0 ? The answer to this
query is depicted in Figure 2(b): there is such a path, on which we now focus. This
path is considered as a loop and we therefore do a local iteration with widenings

380 D. Monniaux and L. Gonnord

(loopiter). Xp2 becomes [0� 1], then after widening [0��]. A narrowing step gives
finally Xp2 � [0� 99], which is thus the result of loopiter.

– Step 3 : Is there a path from p2 with x � [0� 99] to p2 with x� � [0� 99] ? No.

The iteration thus ends with the desired invariant.

4 Extensions

4.1 Narrowing

Narrowing iterations can also be applied within our framework. Let us assume that
some inductive invariant Xp�PR has been computed; it satisfies the relation �(X) � X
component-wise, noting X � (X1� � � � � X�P�), and �(X) denotes (Y1� � � � � Y�P�) defined as

Yp2 � Ip2 �
�

e�ER e from p1 to p2

�e

�
Xp1

�
(4)

The abstract counterpart to this operator is ��, defined similarly, replacing � by �� and
� by . It satisfies the correctness condition (see Rel. 1) �X � D �(X) � ��(X).

As per the usual narrowing iterations, we compute a narrowing sequence X(k) �

��k
(X). It is often suÆcient to stop at k � 1; otherwise one may stop when X(k�1) � X(k).

Let us now see a practical algorithm for computing Y � ��(X):
For all p � PR, we initialise Yp :� Ip. For all p2 � PR, we consider all paths e � ER

from p1 � PR to p2 such that there exist x1 � Xp1 , x2 � Xp2 , x2 � �e(�x1�) as explained

in §3.2. We then update Yp2 :� Yp2 �
�
e(Xp1).

4.2 Acceleration

In Sec. 3.5, we have described loopiter function that performs a classical widening
� narrowing iteration over a single path. In fact, the only requirement over it is that
loopiter(��� X) returns X� such that X � X� and ��(X�) � X�. In other words, X� is an
over-approximation of ���(X), noting R� the transitive closure of R.

In some cases, we can compute directly such an over-approximation, sometimes even
obtaining ���(X) exactly; this is known as acceleration of the loop. Examples of possi-
ble accelerations include the case where �e is given by a di�erence bound matrix [12],
an octagon [10], ultimately periodic integer relations [11] or certain aÆne linear rela-
tions [23,22,1].

For instance, the focus path of Fig. 2(b) consists in the operations and guards x �

x � 1; x � 100; instead of iterating that path, we can compute its exact acceleration,
yielding x � [0� 99].

4.3 Partitioning

It is possible to partition the states at a given program point according to some predicate
or a partial history of the computation [36]. This amounts to introducing several graph
nodes representing the same program point, and altering the transition relation.

Using Bounded Model Checking to Focus Fixpoint Iterations 381

4.4 Input-Output Relations

As with other analyses using relational domains, it is possible to obtain abstractions of
the input-output relation of a program block or procedure instead of an abstraction of the
set of states at the current point [1]; this also allows analyzing recursive procedures [27,
Sec. 7.2]. It suÆces to include in the set of variables copies of the variables at the
beginning of the block or procedure; then the abstract value obtained at the end of the
block or procedure is the desired abstraction.

5 Implementation and Preliminary Results

Our algorithm has been implemented as an option for A����, that computes invariants
from counter automata with Linear Relation Analysis ([20]). We wrote an Ocaml in-
terface to the Yices SMT-solver ([19]), and modified the fixpoint computation inside

Table 1. Invariant generation on two simple challenging programs

Program Automaton Result and notes

Listing 4. Boustrophedon

void boustrophedon () {
i n t x ;
i n t d ;
x = 0 ;
d = 1 ;
while (1) {

i f (x == 0) d=1;
i f (x == 1000) d= 1;
x += d ;

}
}

The compilation of the pro-
gram gives an expanded con-
trol structure where some
paths are “clearly” unfeasi-
ble (e.g. imposing both x 0
and x 1000), thus the only
feasible ones are guarded by
x 0, x 0, 0 x 1000,
x 1000 and x 1000.
The tool finds the invariant
0 x 1000 1 d 1

Classical Analysis with
widening “upto” gives
d 1 d 1999 2x

and Gopan and Reps’ im-
provement is not able to find
x 0.

Listing 5. Rate limiter

void main () {
f l o a t x_old , x ;
x_old = 0 ;
while (1) {

x = input (1000 ,1000) ;
i f (x >= x_old +1)

x = x_old +1;
i f (x <= x_old 1)

x = x_old 1;
x_old = x ;

}
}

Source : [32]

In order to properly analyse
such a program, A ´ dis-
tinguishes all four execution
paths inside the loop through
trace partitioning [36],
which is triggered by ad hoc
syntactic criteria (e.g. two
successive if-then-else). Our
algorithm finds the invariant

1000 xold 1000 ,
which is not found by
classical analysis.

382 D. Monniaux and L. Gonnord

A���� to deal with local iterations of paths. The implementation still needs some im-
provements, but the preliminary results are promising, and we describe some of them
in Table 1. We provide no timing results since we were unable to detect any overcost
due to the method. These two examples show that since we avoid (some) convex hulls,
the precision of the whole analysis is improved.

The rate limiter example is particularly interesting, since, like the one in Listing 1
(which does not include a loop), it will be imprecisely analyzed by any method enforc-
ing convex invariants at intermediate steps.

6 Related Work

Our algorithm may be understood as a form of chaotic iterations [13, §2.9.1, p. 53] over
a certain system of semantic questions; we use SMT as an oracle to know which equa-
tions need propagating. The choice of widening points, and the order in which to solve
the abstract equations, have an impact on the precision of the whole analysis, as well as
its running time. Even though there exist few hard general results as to which strategy
is best [13, §4.1.2, p. 125], some methods tend to experimentally behave better [9].

“Lookahead widening” [24] was our main source of inspiration: iterations and widen-
ings are adapted according to the discovery of new feasible paths in the program. This
approach avoids loss of precision due to widening in programs with multiple paths
inside loops. It has proved its eÆcacy to suppress some gross over-approximations in-
duced by naive widening. However, it does not solve the imprecisions introduced by
convex hull (e.g. it produces false alarms on Listing 1).

Our method analyzes separately the paths between cut-nodes. We have pointed out
that this is (almost) equivalent to considering finite unions of elements of the abstract
domain, known as the finite powerset construction, between the cut-nodes.4 The fi-
nite powerset construction is however costly even for loop-free code, and it is not so
easy to come up with widening operators to apply it to codes with loops or recursive
functions [4]; for limiting the number of elements in the unions, some may be lumped
together (thus generally introducing further over-approximation) according to aÆnity
heuristics [37,33].

Still, in the recent years, much e�ort has been put into the discovery of disjunctive
invariants, for instance in predicate abstraction [25]. Of particular note is the recent
work by Gulwani and Zuleger on inferring disjunctive invariants [26] for finding bounds
on the number of iterations of loops. We improve on their method on two points:

– In contrast to us, they assume that the transition relation is given in disjunctive
normal form [26, Def. 5], which in general has exponential size in the number of
tests inside the loop. By using SMT-solving, we keep the DNF implicit and thus
avoid this blowup.

4 It is equivalent if the only source of disjunctions are the splits in the control flow, and not
atomic operations. For instance, if the test �x� � 1 is considered an atomic operation, then we
could take the disjunction x � 1 � x � �1 as output. We can rephrase that as a control flow
problem by adding a test x � 0, otherwise said to express �x� as a piecewise linear function
with explicit tests for splits between the pieces.

Using Bounded Model Checking to Focus Fixpoint Iterations 383

– By using acceleration, we may obtain more precise results than using widening, as
they do for lattices that do not satisfy the ascending chain condition.

Nevertheless, their method allows expressing disjunctive invariants at loop heads, and
not only at intermediate points, as we do. However, we think it is possible to get the
best of both worlds and combine our method with theirs. In order to obtain a disjunctive
invariant, they first choose a “convexity witness” (given that the number of possible wit-
nesses is exponential, they choose it using heuristics) [26, p. 7], and then they compute
a “transitive closure” [26, Fig. 6], which is a form of fixed point iteration of input-output
relations (as in our Sec. 4.4) over an expanded control-flow graph. The choice of the
convexity witness amounts to a partitioning of the nodes and transition (Sec. 4.3). Thus,
it seems to possible to apply their technique, but replace their fixed point iteration [26,
Fig. 6] by one based on SMT-solving and path focusing, using acceleration if possible.

In recent years, because of improvement in SMT-solving, techniques such as ours,
distinguishing paths inside loops, have become tractable [31,7,32,21]. An alternative to
using SMT-solving is to limit the number and length of traces to consider, as in trace
partitioning [36], used in the Astrée analyzer [16,15,8], but the criteria for limitation
tend to be ad hoc. In addition, methods for abstracting the sets of paths inside a loop,
weeding out infeasible paths, have been introduced [5].

With respect to optimality of the results, our method will generate the strongest in-
ductive invariant inside the abstract domain if the domain satisfies the ascending chain
condition and no widening is used; for other domains, like all methods using widenings,
it may or may not generate it. In contrast, some recent works [21] guarantee to obtain
the strongest invariant for the same analysis problem, at the expense of restriction to
template linear domains and linear constructions inside the code.

7 Conclusion and Future Work

We have described a technique which leverages the bounded model checking capaci-
ties of current SMT solvers for guiding the iterations of an abstract interpreter. Instead
of normal iterations, which “push” abstract values along control-flow edges, including
control-flow splits and merges, we consider individual paths. This enables us, for in-
stance, to use acceleration techniques that are not available when the program fragment
being considered contains control-flow merges. This technique computes exact least
invariants on some examples on which more conventional static analyzers incur gross
imprecision or have to resort to syntactic heuristics in order to conserve precision.

We have focused on numerical abstractions. Yet, one would like to use similar tech-
niques for heap abstractions, for instance. The challenge will then be to use a decidable
logic and an abstract domain such that both the semantics of the program statements and
the abstract values can be expressed in this logic. This is one direction to explore. With
respect to the partitioning technique, 4.3, we currently express the partition as multi-
ple explicit control nodes, but it seems desirable, for large partitions (e.g. according to
Boolean values, as in B. Jeannet’s BDD-Apron library) to represent them succinctly;
this seems to fit nicely with our succinct encoding of the transition relation as a SMT-
formula.

384 D. Monniaux and L. Gonnord

Another direction is to evaluate the scalability of these methods on larger programs.
The implementation needs to be tested more to evaluate the precision of our method
on middle-sized programs, the main advantage is that A���� implements some of the
acceleration techniques. Analyzers such as A����́� scale up to programs running a con-
trol loop several hundreds of thousands of lines long; translating such a loop to a SMT
formula and solving for this formula and additional constraints does not seem tractable.
It is possible that semantic slicing techniques [35] could help in reducing the size of the
generated SMT problems.

References

1. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to aÆne loop in-
variants detection. Electr. Notes Theor. Comput. Sci. 267(1), 3–16 (2010); Proceedings of
NSAD

2. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using smt
solvers instead of sat solvers. International Journal on Software Tools for Technology Trans-
fer (STTT) 11(1), 69–83 (2009)

3. Bagnara, R., Hill, P.M., Za�anella, E.: The Parma Polyhedra Library, version 0.9,
������������	�
����������

4. Bagnara, R., Hill, P.M., Za�anella, E.: Widening operators for powerset domains. Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 8(4-5), 449–466 (2006);
See also erratum in June 2007 issue

5. Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Refining the control structure
of loops using static analysis. In: Chakraborty, S., Halbwachs, N. (eds.) EMSOFT, pp. 49–58.
ACM, New York (2009)

6. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The satisfiability modulo theories library, SMT-
LIB (2008), ����	��������

7. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: PLDI, pp.
300–309. ACM, New York (2007)

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: Programming Language Design
and Implementation (PLDI), pp. 196–207. ACM, New York (2003)

9. Bourdoncle, F.: Sémantique des langages impératifs d’ordre supérieur et interprétation ab-
straite. Ph.D. thesis, École polytechnique, Palaiseau (1992)

10. Bozga, M., Gîrlea, C., Iosif, R.: Iterating octagons. Tech. Rep. 16, VERIMAG (2008)
11. Bozga, M., Iosif, R., Konecny, F.: Fast acceleration of ultimately periodic relations. Tech.

Rep. 2010-3, VERIMAG (2010)
12. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger arithmetic.

In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidel-
berg (1998)

13. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. State doctorate
thesis, Université scientifique et médicale de Grenoble and Institut National Polytechnique
de Grenoble (1978), �����������������	��
����	�������������������

14. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. of Logic and Computation,
511–547 (August 1992)

15. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ analyzer. In: Sagiv, S.M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)

http://www.cs.unipr.it/ppl
www.smtlib.org
http://tel.archives-ouvertes.fr/tel-00288657/en/

Using Bounded Model Checking to Focus Fixpoint Iterations 385

16. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the ASTRÉE static analyzer. In: Okada, M., Satoh,
I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2008),
����������������	������
	��� !"#!$����	�%#&%'���	����

17. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a pro-
gram. In: Principles of Programming Languages (POPL), pp. 84–96. ACM, New York (1978)

18. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An eÆcient method of
computing static single assignment form. In: Principles of Programming Languages (POPL),
pp. 25–35. ACM, New York (1989)

19. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

20. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with Aspic and
C2fsm. In: Tools (TAPAS) (2010)

21. Gawlitza, T.M., Monniaux, D.: Improving strategies via SMT solving. In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)

22. Gonnord, L.: Accelération abstraite pour l’amélioration de la précision en anal-
yse des relations linéaires. Ph.D. thesis, Université Joseph Fourier (October 2007),
�����������������	��
����	���������()��))����

23. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analy-
sis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)

24. Gopan, D., Reps, T.W.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

25. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over predi-
cate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp.
120–135. Springer, Heidelberg (2009)

26. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: Zorn, B.G., Aiken, A. (eds.)
PLDI, pp. 292–304. ACM, New York (2010)

27. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. State doctorate thesis, Université scientifique et médicale de Grenoble and
Institut National Polytechnique de Grenoble (1979),
�����������������	��
����	�������������������

28. Halbwachs, N.: Delay analysis in synchronous programs. In: Courcoubetis, C. (ed.) CAV
1993. LNCS, vol. 697, pp. 333–346. Springer, Heidelberg (1993)

29. Kroening, D., Strichman, O.: Decision procedures. Springer, Heidelberg (2008)
30. Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains.

In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363.
Springer, Heidelberg (2005)

31. Monniaux, D.: Automatic modular abstractions for linear constraints. In: Pierce, B.C. (ed.)
Symposium on Principles of Programming Languages (POPL). ACM, New York (2009)

32. Monniaux, D.: Automatic modular abstractions for template numerical constraints. Logical
Methods in Computer Science (2010) (to appear)

33. Popeea, C., Chin, W.N.: Inferring disjunctive postconditions. In: Okada, M., Satoh, I. (eds.)
ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg (2008)

34. Reps, T.W., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer. In: Ste�en,
B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266. Springer, Heidelberg (2004)

35. Rival, X.: Understanding the origin of alarms in �����́�. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)

36. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. Transactions on Program-
ming Languages and Systems (TOPLAS) 29(5), 26 (2007)

37. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in disjunctive nu-
merical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 3–17. Springer, Heidelberg
(2006)

http://www.di.ens.fr/~cousot/COUSOTpapers/ASIAN06.shtml
http://tel.archives-ouvertes.fr/tel-00196899/en/
http://tel.archives-ouvertes.fr/tel-00288805/en/

Author Index

Andersen, Tycho 198
Avni, Guy 263

Beletska, Anna 216
Blackshear, Sam 60
Bouajjani, Ahmed 129

Chang, Bor-Yuh Evan 60
Cohen, Albert 216

Donaldson, Alastair F. 351

Elder, Matt 198
Emmi, Michael 129
Esparza, Javier 334

Feret, Jérôme 6
Flexeder, Andrea 77
Foster, Jeffrey S. 95

Gaiser, Andreas 334
Godefroid, Patrice 112
Gonnord, Laure 369
Gorogiannis, Nikos 25
Gulwani, Sumit 280

Haller, Leopold 351
Hicks, Michael 95
Huang, Jeff 163

Jeannet, Bertrand 233

Kanovich, Max 25
Kästner, Daniel 5
Köksal, Ali Sinan 298
Kroening, Daniel 351
Kuncak, Viktor 298
Kupferman, Orna 263

Lahiri, Shuvendu K. 112
Lim, Junghee 198

Ma, Kin-Keung 95
Madhavan, Ravichandhran 7

Madhusudan, P. 43
McMillan, Kenneth L. 1, 249
Might, Matthew 180
Misailovic, Sasa 316
Mitchell, John C. 4
Monniaux, David 369

Nori, Aditya V. 2

O’Hearn, Peter W. 25

Parlato, Gennaro 129
Petter, Michael 77

Qiu, Xiaokang 43

Rajamani, Sriram K. 2
Ramalingam, Ganesan 7
Reps, Thomas 198
Rinard, Martin C. 316
Roy, Daniel M. 316
Rubio-González, Cindy 112
Rümmer, Philipp 351

Sankaranarayanan, Sriram 60
Schrammel, Peter 233
Seidl, Helmut 77
Sharma, Tushar 198
Sinn, Moritz 280
Sridharan, Manu 60
Suter, Philippe 298

Vafeiadis, Viktor 146
Van Horn, David 180
Vaswani, Kapil 7
Veith, Helmut 280
Verdoolaege, Sven 216

Yit Phang, Khoo 95

Zappa Nardelli, Francesco 146
Zhang, Charles 163
Zuck, Lenore D. 249
Zuleger, Florian 280

	Title
	Preface
	Conference Organization
	Table of Contents
	Widening and Interpolation
	Program Analysis and Machine Learning: A Win-Win Deal
	References

	Program Analysis for Web Security
	Astr´ee: Design and Experience
	Formal Model Reduction
	References

	Purity Analysis: An Abstract Interpretation Formulation
	Introduction
	The Language, Concrete Semantics, and the Problem
	The WSR Analysis as an Abstract Interpretation
	Transformer Graphs: An Informal Overview
	The Abstract Domain
	The Abstract Semantics

	Optimizations
	Empirical Evaluation
	Related Work
	References

	The Complexity of Abduction for Separated Heap Abstractions
	Introduction
	Preliminaries
	Syntax of Separated Heap Abstractions
	Semantics

	Separated Abduction Problems
	Membership in NP
	NP-completeness
	From 3-SAT to the Abduction Problem (P1)
	From the Abduction Problem (P1) to 3-SAT

	NP-completeness and PTIME Results for Fragments
	SAP() is NP-complete
	rSAP() Is in PTIME

	Conclusion
	References

	Efficient Decision Procedures for Heaps Using STRAND
	Introduction
	Data-Structures, Submodels, Elasticity and Strand
	An Overview of Strand
	Recursively Defined Data-Structures
	Submodels
	Elasticity and Strand

	The New Decision Procedure for Strand
	Comparison with Earlier Known Decision Procedure

	Experiments
	Related Work
	Conclusions
	References

	The Flow-Insensitive Precision of Andersen’s Analysis in Practice
	Introduction
	Flow-Insensitive Imprecision in Andersen's Analysis
	Precise Analysis via Witness Search
	A Precise Algorithm for Finite Memory
	Handling Summarized Locations
	A Symbolic Encoding

	Is There a Precision Gap in Practice?
	Discussion: Why Is There No Precision Gap in Practice?
	Threats to Validity

	Related Work
	Conclusion
	References

	Side-Effect Analysis of Assembly Code
	Introduction
	The Concrete Semantics
	Analysis of Side-Effects
	Effect Integration
	Effect Computation
	Correctness

	Experimental Results
	Conclusion
	References

	Directed Symbolic Execution
	Introduction
	Directed Symbolic Execution
	Forward Symbolic Execution
	Shortest-Distance Symbolic Execution
	Call-Chain-Backward Symbolic Execution
	Mixing CCBSE with Forward Search

	Experiments
	Synthetic Programs
	GNU Coreutils
	Threats to Validity

	Other Related Work
	Conclusion
	References

	Statically Validating Must Summaries for Incremental Compositional Dynamic Test Generation
	Introduction
	Background and Problem Definition
	Background: Compositional Symbolic Execution
	Problem Definition: Must Summary Checking

	Phase 1: Static Change Impact Analysis
	Phase 2: Predicate-Sensitive Change Impact Analysis
	Phase 3: Must Summary Validity Checking
	Dealing with Partial Summaries
	Recomputing Invalidated Summaries
	Experimental Results
	Implementation
	Benchmarks
	Results

	Related Work
	Conclusions
	References

	On Sequentializing Concurrent Programs
	Introduction
	Concurrent Programs
	Compositional Semantics
	Bounded Semantics
	Global-Round Explorations
	Context-Bounding
	Delay-Bounding
	Context-Bounding vs. Delay-Bounding

	Related Work
	Conclusion
	References

	Verifying Fence Elimination Optimisations
	Introduction
	The x86-TSO Memory Model and CompCertTSO
	The Optimisations
	Formalisation of Traces and Simulations
	Proofs of the Optimisations
	Coq Experience
	Related Work
	Conclusion
	References

	An Efficient Static Trace Simplification Technique for Debugging Concurrent Programs
	Introduction
	Preliminaries
	Concurrent Program Execution Model
	General Trace Simplification Problem

	SimTrace: Efficient Static Trace Simplification
	Modeling of the Dependence Relation
	A Theorem of Trace Equivalence
	SimTrace Algorithm

	Implementation and Experiments
	Related Work
	Conclusion
	References

	A Family of Abstract Interpretations for Static Analysis of Concurrent Higher-Order Programs
	Higher-Order Is Hard; Concurrency Makes It Harder
	Challenges to Reasoning about Higher-Order Concurrency

	P(CEK)S: An Abstract Machine Model of Concurrent, Higher-Order Computation
	P(CEK)S: A Concrete State-Space
	P(CEK)S: A Factored Transition Relation
	A Shift in Perspective
	Concurrent Transition in the P(CEK)S Machine

	A Systematic Abstract Interpretation of P(CEK)S
	Running the Analysis
	A Fixed Point Interpretation
	Termination
	Concurrent Abstract Transitions
	Soundness
	Extracting Flow Information
	Extracting MHP Information

	MHP: Making Strong Transitions with Singleton Threads
	Strategies for Abstract Thread id Allocation
	Advantages for MHP Analysis

	Flow Analysis of Concurrent Higher-Order Programs
	Complexity

	Related Work
	Limitations and Future Work
	References

	Abstract Domains of Affine Relations
	Introduction
	Terminology and Notation
	Relating AG and KS Elements
	Relating KS and MOS
	MOS and KS are Incomparable
	Converting MOS Elements to KS
	Converting KS without Pre-State Guards to MOS
	Converting KS with Pre-State Guards to MOS
	Symbolic Implementation of the Function for MOS

	Using KS for Interprocedural Analysis
	Experiments
	Related Work
	References

	Transitive Closures of AÆne Integer Tuple Relations and Their Overapproximations
	Introduction
	Background
	Related Work
	Powers and Transitive Closures
	Introduction
	Single Disjunct
	Multiple Disjuncts
	Properties

	Strongly Connected Components
	Implementation Details
	Experiments
	Type Size Inference
	Equivalence Checking
	Iteration Space Slicing

	Conclusions and Future Work
	References

	Logico-Numerical Abstract Acceleration and Application to the Verification of Data-Flow Programs
	Introduction
	Analysis of Logico-Numerical Programs
	Abstract Interpretation
	Abstract Acceleration
	Classical Application of Abstract Acceleration

	Logico-Numerical Abstract Acceleration
	Motivations for Our Approach
	Decoupling Numerical and Boolean Transition Functions
	Decoupling Accelerable from Non-accelerable and Boolean Transition Functions
	Using Inputization Techniques

	Partitioning Techniques for Logico-Numerical Acceleration
	Experimental Evaluation
	Conclusion and Related Work
	References

	Invisible Invariants and Abstract Interpretation
	Introduction
	Fixed Point Computation Strategy
	Invisible Invariants
	Engineering Invisible Invariants

	Experiments
	Fixed Point Strategies
	Computing the Abstract Transformer
	Benchmarks

	Related Work
	Conclusion
	References

	An Abstraction-Refinement Framework for Trigger Querying
	Introduction
	Preliminaries
	Trigger Querying
	Predicate Abstraction
	Relating Concrete and Abstract Languages

	Approximating Triggers
	Refinement
	Between the over and under Approximations
	The Refinement Algorithm

	Variants of Trigger Querying
	Query Checking
	Constrained Trigger Querying
	Necessary Conditions

	Discussion
	References

	Bound Analysis of Imperative Programs with the Size-Change Abstraction
	Introduction
	Examples
	Program Model and Size-Change Abstraction
	Order Constraints
	Size-Change Abstraction (SCA)

	Main Steps of our Analysis
	Computing Transition Systems
	Disjunctiveness in Algorithm 1
	Pathwise Analysis in Algorithm 1

	Bound Computation
	Contextualization
	Bound Algorithm

	Heuristics for Extracting Norms
	Related Work
	Experiments
	References

	Satisfiability Modulo Recursive Programs
	Introduction
	Examples
	Our Satisfiability Procedure
	Properties of Our Procedure

	The Leon Verification System
	Experimental Evaluation
	Related Work
	References

	Probabilistically Accurate Program Transformations
	Introduction
	Loop Perforation
	Computational Patterns
	Modeling and Analysis
	Contributions

	Example
	Preliminaries
	Patterns and Analyses
	Sum Pattern
	Mean Pattern
	Argmin-Sum Pattern
	Ratio Pattern

	Discussion
	Related Work
	Conclusion
	References

	Probabilistic Abstractions with Arbitrary Domains
	Introduction
	An Example
	Constructing a Valid Abstraction

	Stochastic 2-Player Games
	Abstractions of Probabilistic Programs
	Abstracting NPPs
	An Algorithm for Constructing Valid Abstractions

	Refining Abstractions: Quantitative Widening Delay
	Experiments

	Conclusions
	References

	Software Verification Using k-Induction
	Introduction
	Overview
	Control Flow Graphs and Loops
	Proof Rule and Verification Algorithm
	Graphical Description of k-induction Proof Rule
	Formal Definition of k-induction Proof Rule

	Theoretical Properties of the k-induction Rule
	Experimental Evaluation
	Related Work and Conclusions
	References

	Using Bounded Model Checking to Focus Fixpoint Iterations
	Introduction
	Background and Notations in Abstract Interpretation
	Our Method
	Reduced Transition Multigraph and Path Focusing
	Finding Focus Paths
	Algorithm
	Correctness and Termination
	Self-Loops

	Extensions
	Narrowing
	Acceleration
	Partitioning
	Input-Output Relations

	Implementation and Preliminary Results
	Related Work
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

