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Preface

This volume contains the papers presented at the 14th International Conference
on Computer Analysis of Images and Patterns (CAIP 2011) held in Seville during
August 29-31, 2011.

The first CAIP conference was in 1985 in Berlin. Since then CAIP has been
organized biennially in different cities around Europe: Wismar, Leipzig, Dresden,
Budapest, Prague, Kiel, Ljubljana, Warsaw, Groningen, Versailles, Vienna and
Miinster.

Following the spirit of the previous meetings, the 14th CAIP was conceived
as a period of active interaction among the participants, with emphasis on
exchanging ideas and on cooperation.

This year, 286 full scientific papers from 52 countries were submitted, of which
138 were accepted for presentation based on the positive scientific reviews. All
the papers have been revised by, at least, two reviewers and, most of them by
three.

The accepted papers were presented during the conference either as oral pre-
sentations or as posters in the single-track scientific program. Oral presentations
allowed the authors to reach a large number of participants, while posters al-
lowed for a more intense scientific interaction. We tried to continue the tradition
of CAIP in providing a forum for scientific exchange at a high-quality level.

Two internationally recognized speakers accepted our invitation to present a
stimulating research topic this year: Peter Sturm, INRIA Grenoble (France) and
Facundo Memoli, Stanford University (USA).

Indeed, these proceedings are divided into two volumes, 6854 and 6855, where
the index has been structured following the topics and program of the conference.

We are grateful for the great work realized by the Program Committee and
additional reviewers. We especially thank the PRIP and CATAM members, who
made a big effort to help.

We appreciate our sponsors for their direct and indirect financial support and
Springer for giving us the opportunity to continue publishing CAIP proceedings
in the LNCS series.

Finally, many thanks go to our local support team and, mainly, to Maria
José Jiménez Rodriguez for her huge and careful work of supervision of almost
all the tasks of the Organizing Committee.

August 2011 Ainhoa Berciano
Daniel Diaz-Pernil

Walter Kropatsch

Helena Molina-Abril

Pedro Real
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Abstract. Several methods in data and shape analysis can be regarded
as transformations between metric spaces. Examples are hierarchical clus-
tering methods, the higher order constructions of computational persis-
tent topology, and several computational techniques that operate within
the context of data/shape matching under invariances.

Metric geometry, and in particular different variants of the Gromov-
Hausdorff distance provide a point of view which is applicable in different
scenarios. The underlying idea is to regard datasets as metric spaces,
or metric measure spaces (a.k.a. mm-spaces, which are metric spaces
enriched with probability measures), and then, crucially, at the same
time regard the collection of all datasets as a metric space in itself.
Variations of this point of view give rise to different taxonomies that
include several methods for extracting information from datasets.

Imposing metric structures on the collection of all datasets could be
regarded as a ”soft” construction. The classification of algorithms, or
the axiomatic characterization of them, could be achieved by imposing
the more "rigid” category structures on the collection of all finite metric
spaces and demanding functoriality of the algorithms. In this case, one
would hope to single out all the algorithms that satisfy certain natural
conditions, which would clarify the landscape of available methods. We
describe how using this formalism leads to an axiomatic description of
many clustering algorithms, both flat and hierarchical.

Keywords: metric geometry, categories and functors, metric spaces,
Gromov-Hausdorff distance, Gromov-Wasserstein distance.

1 Introduction

Nowadays in the scientific community we are being asked to analyze and probe
large volumes of data with the hope that we may learn something about the
underlying phenomena producing these data. Questions such as “what is the
shape of data” are routinely formulated and partial answers to these usually
reveal interesting science.

An important goal of exploratory data analysis is to enable researchers to
obtain insights about the organization of datasets. Several algorithms have been
developed with the goal of discovering structure in data, and examples of the
different tasks these algorithms tackle are:

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 1-83] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Visualization, parametrization of high dimensional data

— Registration/matching of datasets: how different are two given datasets?
what is a good correspondence between sub-parts of the datasets?

— What are the features present in the data? e.g. clustering, and number of

holes in the data.

How to agglomerate/merge (partial) datasets?

Some of the standard concerns about the results produced by algorithms
that attempt to solve these tasks are: the dependence on a particular choice
of coordinates, the invariance to certain uninteresting deformations, the stabil-
ity /sensitivity to small perturbations, etc.

1.1 Visualization of Datasets

The projection pursuit method (see [42]) determines the linear projection on two
or three dimensional space which optimizes a certain criterion. It is frequently
very successful, and when it succeeds it produces a set in R? or R? which readily
visualizable. Other methods (Isomap [85], locally linear embedding [74], multi-
dimensional scaling [23]) attempt to find non-linear maps to Euclidean space
which preserve the distance functions on the data set to as high a degree as
possible. They also produce useful two and three dimensional versions of data
sets when they succeed.

Other interesting methods are the grand tour of Asimov [2], the parallel co-
ordinates of Inselberg [44], and the principal curves of Hastie and Stuetzle [38].

The Mapper algorithm [80] produces representations of data in a manner akin
to the Reeb graph [71] and is based on the idea of partial clustering and can
be considered as a hybrid method which combines the ability to parametrize
and visualize data, with the the ability to extract features, see Figure [Il This
algorithm has been used for shape matching tasks as well for studies of breast
cancer [65] and RNA [0]. The mapper algorithm is also closely related to the
cluster tree of Stuetzle [82].

1.2 Matching and Dissimilarity between Datasets

Measuring the dissimilarity between two objects is a task that is often performed
in data and shape analysis, and summaries or features from each of the objects
are typically compared to quantify this dissimilarity.

One important instance when computing the dissimilarity between is useful is
the comparison of the three dimensional shape of proteins following the underly-
ing scientific assumption that physically similar proteins have similar functional
properties [52].

The notion of zero-dissimilarity between data-sets can be dependent on the
application domain. For example, in object recognition, rigid motions specifically,
and more generally isometries, are often uninteresting and not important. The
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Fig. 1. A simplification of 3d models using the mapper algorithm [80]

same point applies to multidimensional data analysis, where particular choices
of the coordinate system should not affect the result of algorithms. Therefore,
the summaries/features extracted from the data must be insensitive to these
unimportant changes.

There exists a plethora of practical methods for object comparison and match-
ing, and most of them are based on comparing features. Given this rich and
disparate collection of available methods, it seems that in order to obtain a
deep understanding of the object matching problem and find possible avenues
of improvement, it is of great importance to discover and establish relation-
ships/connections between these methods. Theoretical understanding of these
methods and their relationships will lead to expressing conditions of validity of
each approach or family of approaches. This can no doubt help in

(a) guiding the choice of which method to use in a given practical application,

(b) deciding what parameters (if any) should be used for the particular method
chosen, and

(c) clearly determining what are the theoretical guarantees of a particular method
for the task at hand.
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1.3 Features

Often, data-sets can be difficult to comprehend. One example of this is the case
of high dimensional point clouds because our ability to visualize them is rather
limited. To deal with this situation, one must attempt to extract summaries
from the complicated data-set in order to capture robust global properties that
signal important qualitative features present, but not apparent, in the data.
The term feature typically applies to the result of applying a certain simplifica-
tion to a given dataset with the hope of retaining some useful information about
the original data. The aim is that after this simplification it would become easier
to quantify and/or visualize certain aspects of the dataset. Think for example of:

— computing the number of clusters in a given dataset, according to a given
algorithm (e.g. linkage based methods, spectral clustering, k-means, etc);

— obtaining a dendrogram: the result of applying a hierarchical clustering al-
gorithm to the data;

— computing the average distance to the barycenter of the dataset (assumed
to be embedded in Euclidean space);

— computing the average distance between all pairs of points in the dataset;

— computing a histogram of all the interpoint distances between pairs of points
in the dataset;

— computing persistent topology invariants of some filtration obtained from
the dataset [33UT7IRI].

In the area of shape analysis a few examples are: the size theory of Frosini and
collaborators [30/29/8825/24131]; the Reeb graph approach of Hilaga et al [39];
the spin images of Johnsson [49], the shape distributions of [68]; the canonical
forms of [28]; the Hamza-Krim approach [36]; the spectral approaches of [72l76];
the integral invariants of [B8IGI2I]; the shape contexts of [3)].

The theoretical question of proving that a given family of features is indeed
able to signal proximity or similarity of objects in a reasonable way has hardly
been addressed. In particular, the degree to which two objects with similar fea-
tures are forced to be similar is in general does not seem to be well understood.

Conversely, one should ask the more basic question of whether the similarity
between two objects forces their features to be similar.

Stability of features. Thus, a problem of interest is studying the extent to
which a given feature is stable under perturbations of the dataset. In order to be
able to say something precise in this respect we introduce some mathematical
language.

To fix concepts we imagine that we have a collection D of all possible datasets,
and a collection F of all possible features. A feature map will be any map
f:D — F. Assume further that dp and dz are metrics or distance functions
on F and D, respectively. One says that f is quantitatively stable whenever one
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can find a non-decreasing function ¥ : [0, 00) — [0, 00) with ¥(0) = 0 such that
for all X,Y € D it holds that

Note that this is stronger that the usual notion of continuity of maps, namely
that f(X,) — f(X) as n T oo whenever (X,,), C D is a sequence of datasets
converging to X.

In subsequent sections of the paper we will describe instances of suitable
metric spaces (D, dp) and study the stability of different features.

2 Some Considerations

2.1 Importance of Stability and Classification of Algorithms

We claim that it would be desirable to elucidate the stability properties of the
main methods used in data analysis. The underlying situation is that the output
of data analysis algorithms are used in order to draw conclusions about the
phenomenon producing the data, hence it is of extreme importance to make sure
that these conclusions would not be grossly affected if the dataset were “noisy”
or “slightly perturbed”. In order to make sense of this question one needs to
ascribe mathematical meaning to “data”, “perturbations”, “algorithms”, etc.

In a similar vein, it would be clearly highly desirable to know what are the
theoretical properties enjoyed by the main algorithms used in data analysis (such
as clustering methods, for example). From a theoretical standpoint, it would be
very nice to be able to derive algorithms from a list of desirable or required
properties or axioms. In this respect, the works of Janowitz [47], Kleinberg [51],
and von Luxburg [90] are very prominent.

2.2 Stability and Matching: A Duality

Assuming that datasets X and Y in D are given, a natural way of comparing
them is to compute the dp distance between them (whatever that distance is).
Often times, however, features computed out of datasets constitute simpler struc-
tures than the datasets themselves, and as such, they are more readily amenable
to direct comparisons.

So, for a family of indices A consider here the stable family {f.,« € A} of
feature maps f, : D — F, where a € A and F is some feature space which is
metrized by the distance function dz. In line with the observation above, spaces
of features tend to have simpler structure than the space of datasets, and in
consequence the computation of dx usually appears to be simpler. This suggests
that in order to distinguish between two datasets X and Y one computes

77A(X7 Y) = 21612 d]-'(foz(X)7 fa(Y))
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as a proxy for dp(X,Y). This would be reasonable because since each of the
features f,, o € A is stable, there exist functions ¥, such that
na(X,Y) < sug v, (dD(X, Y))
ac

However, in order for this to be totally satisfactory it would be necessary to
establish in the reverse direction! For a given subclass of datasets O C D, the
main challenge is to find a stable family {f,,« € A} that is rich enough so that
it will discriminate all objects in O: namely that if X, Y € O and

fa(X)=fo(Y)foralae A = X =Y.

In this respect the work of Olver [67], Boutin and Kemper [5] provide for example
families of features that are able to discriminate certain datasets under rigid
isometries. Other interesting and useful examples are ultrametric spaces, or in
more generality trees.

3 Datasets as Metric Spaces or Metric Measure Spaces

In many applications datasets can be represented as metric spaces (see Figure
2)), that is, as a pair (X,dx) where dx : X x X — RT satisfies the three metric
properties: (a) dx(z,2’) = 0 if and only x = 2’; (b) dx(x,2’) = dx (2, z) for
all z,2" € X; and (c) dz,2') < dx(x,2") + dx(2”,2") for all z,2',2" € X.
Henceforth, G will denote the collection of all compact metric spaces.

0 di2 dig dia
dia 0 daz dos
dig doz 0  das

Fig. 2. Datasets as metric spaces: given the dataset, and a notion of “ruler”, one
induces a matrix containing the distance between all pairs of points; this distance is
application dependent

We introduce some notation: for a finite metric space (X, dx), its separation
is the number sep (X) := ming . dx(z,z’). For any compact X, its diameter
is diam (X) := max, , dx (z,2').

For example in the case of Euclidean datasets, one has the following result:

Lemma 1 ([5]). Let X andY be finite subsets of R¥ s.t. there exists ¢ : X — Y
a bijection with || — 2’| = ||¢(z) — ¢(z')|| for all x,2’ € X. Then, there exist a
rigid isometry @ : R — R? s.t. Y = &(X).



Metric Structures on Datasets: Stability and Classification of Algorithms 7

This lemma implies that representing a Euclidean dataset (e.g. a protein, a
chemical compound, etc) as a metric space by endowing it with the ambient space
distance, one retains the original information up to ambient space isometries
(in this case, rotations, translations, and reflections). In particular, this is not
restrictive in any way, because anyhow in most conceivable cases one would not
want the output of an algorithm to depend on the coordinate system in which
the data is represented.

In the context of protein structure comparison, some ideas regarding the direct
comparison of distance matrices can be found for example in [40].

There are other types of datasets which are not Euclidean, but also fit in the
metric framework. One example is given by phylogenetic trees. Indeed, it is well
known [78] that trees are exactly those metric spaces (X, dx) that satisfy the
four point condition: for all x,y,z,w € X

dx(l’,y) + dx(Z,'lU) < max (dX(xaz) + dx(y,w),dx(lf,UJ) + dX(Zay))'

Another rich class of examples where the metric representation of objects
arises in problems in object recognition under invariance to bending transforma-

tions, see [5528)63/64/12/4TITOITTIONIO].

Fig. 3. Famous phylogenetic trees

mm-spaces. A metric measure space or mm-space for short, is a triple
(X,dx,ux) where (X, dx) is a metric space and px is a Borel probability mea-
sure on X. In the finite case, ux reduces to a collection of non-negative weights,
one for each point x € X, such that the sum of all weights equals 1. The in-
terpretation is that px(x) measures the “importance” of z: points with zero
weight should not matter, points with lower values of the weight should be less
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prominent than points with larger values of the weight, etc. The representation
of objects as mm-spaces can thus incorporate more information than the purely
metric representation of data— when there is no application motivated choice
of weights one can resort to the giving the points the uniform distribution, that
is all points would have the same weight.

Henceforth, G,, will denote the collection of all compact mm—spaces

3.1 Equality of Datasets

What is the notion of equality between datasets? In the case when datasets
are represented as metric spaces, we declare that X,Y € G are equal whenever
we cannot tell them apart by performing pairwise measurements of interpoint
distances. In mathematical language, in order to check whether X and Y are
equal we require that there be a surjective map ¢ : X — Y which preserves
distances and leaves no holes:

— dx(z,2") = dy (p(x), p(z")) for all z, 2’ € X; and
— (X)=Y.

Such maps (when X and Y are compact) are necessarily bijective, and are called
1sometries.

When datasets are represented as mm-spaces the notion of equality between
them must take into account the preservation of not only the pair-wise distance
information, but also that of the weights. One considers X,Y € G,, to be equal,
whenever there exists an isometry ¢ : X — Y that also preserves the weights:
namely that (assume that X and Y are finite for simplicity) px (z) = py (¢(x)),
for all x € X, see [60].

4 Metric Structures on Datasets

We now wish to produce a notion of distance between datasets that is not “too
rigid” and allows substantiating a picture such as that emerging from §2.21 We
will now describe the construction of distances in both G and G,,.

4.1 The Case of G

A suitable notion of distance between objects in G is the Gromov-Hausdorff
distance, which can be defined as follows. We first introduce the case of finite
objects and then explain the general construction.

Given objects X = {z1,...,z,} and Y = {y1,...,ym} with metrics dx and
dy, respectively, let R = ((r;;)) € {0,1}"*™ be such that

Zr” > 1 for all j and Zr” > 1 for all 4.

J

! The sub-index w is meant to suggest “weighted metric spaces”.
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The interpretation is that any such binary matrix R represents a notion of friend-
ship between points in X and points in Y: namely, that z; and y; are friends if
and only if r;; = 1. Notice that the conditions above imply that every point in
X has at least one friend in Y, and reciprocally, that every point in Y has at
least one friend in X.

Denote by R(X,Y) the set of all such possible matrices, which we shall hence-
forth refer to as correspondences between X and Y.

Then, one defines the Gromov-Hausdorff distance between (X, dx ) and (Y, dy)
as

1 .
dgn(X,Y) := o Min max ldx (i, zi) — dx (x5, 250) |rigrige,

where the minimum is taken over R € R(X,Y).

The definition above has the interpretation that one is trying to match points
in X to points in Y in such a way that the metrics of X and Y are optimally
aligned.

The general case. In the full case of any pair of datasets X and Y (not
necessarily finite) in G, one needs to generalize the definition above. Let R(X,Y)
denote now the collection of all subsets R of the Cartesian product X x Y with
the property that the canonical coordinate projections 71 : X x Y — X and
me : X XY — Y are surjective, when restricted to R.

Then the Gromov-Hausdorff distance between compact metric spaces X and
Y is defined as

1
d X,Y):= inf d N —d 1. 1
an(X,Y) 2 neth v (z’y)ilglll?y,)eR\ x(z,2') — dy (y,9)| (1)

This definition indeed respects the notion of equality of objects that we put
forward in §3.1k

Theorem 1 ([35]). dgx is a metric on the isometry classes of G.

Another expression for the GH distance. Recall the definition of the Haus-
dorff distance between (closed) subsets A and B of a metric space (Z,dz):

d%(A,B) = indyz(a,b indz(a,b)).
7, (A, B) := max (gleaj{ggg z(a, ),rgleaécgrélg z(a,b))

Given compact metric spaces (X, dx) and (Y,dy), consider all metrics d on
the disjoint union X LY s.t.

— d(z,2") =dx(z,2"), all x,2’ € X;
—d(y,y') =dy(y,y'), ally,y' €Y.

Then, according to [I3, Chapter 7]
don(X.Y) = inf d§¥ 9 (X, V),

where the infimum is taken over all the metrics d that satisfy the conditions
above.
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Remark 1. According to this formulation, computing the GH distance between
two finite metric spaces can be regarded as a distance matrix completion
problem. The functional is J(d) = max (maxw min,, d(z, y), max, min, d(z, y))
[60). The number of constraints is roughly of order n? for all the triangle in-
equalities, where n = | X| ~ |Y].

Example: Euclidean datasets. Endowing objects embedded in R? with the
(restricted) Euclidean metric makes the Gromov-Hausdorff distance invariant
under ambient rigid isometries [59]. In order to argue that similarity in the
Gromov-Hausdorff sense has a meaning which is compatible and comparable
with other notions of similarity that we have already come to accept as natural,
it is useful to look into the case of similarity of objects under rigid motions. One
of the most commonplace notions of rigid similarity is given by the Hausdorff
distance under rigid isometries [43] for which one has

Theorem 2 ([59]). Let X,Y C R? be compact. Then

dre (X - 1), (¥, 1 - 1)) < inf df (X, T(Y)) < ea M- (dgr (X, 1] D, (Y, - 1)) 2

where M = max(diam (X)), diam (Y')) and ¢4 is a constant that depends only
on d. The infimum over T above is taken amongst all Euclidean isometries.

Note that this theorem is a natural relaxation of the statement of Lemma [Tl

4.2 The Case of G,

Using ideas from mass transport it is possible to define a version of the Gromov-
Hausdorff distance that applies to datasets in G,,.

Fix a metric space (Z,dz) and let P(Z) denote the collection of all the Borel
probability measures. For «, 3 € P(Z), the Wasserstein distance (or order
p > 1) on P(Z) is given by:

4% (a, ) = ( / /Z ()l dz’))l/p,

where p € P(Z x Z) is a probability measure with marginals « and 5. An
excellent reference for these concepts is the book of Villani [89].

An interpretation of this definition comes from thinking that one has a pile
of sand/dirt that must be moved from one location to another, where in the
destination one wants build something with this material, see Figure @l In the
finite case (i.e. when all the probability measures are linear combinations of
deltas), p;,; encodes information about how much of the mass initially at z;
must be moved to x;, see Figure

The Gromov-Wasserstein distance between mm-spaces X and Y is de-
fined as an optimal mass transportation problem on X LUY: for p > 1
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Fig. 4. An optimal mass transportation problem (in the Kantorovich formulation): the
pile of sand/dirt on the left must be moved to another location on the right with the
purpose of assembling a building or structure

. xXuy,d
di,p(X7 Y) = Hdlf dg/\}; )(,LLX7 MY)7

where as before d is a metric on X LY gluing X and Y.

The definition above is due to Sturm [83]. Notice that the underlying optimiza-
tion problems that one needs to solve now are of continuous nature as opposed to
the combinatorial optimization problems yielded by the GH distance. Another
non-equivalent definition of the Gromov-Wasserstein distance is proposed in [60]
whose discretization is more tractable.

As we will see ahead, several features become stable in the GW sense.

4.3 Stability of Hierarchical Clustering Methods

Denote by P(X) the set of all partitions of the finite set X.
A dendrogram over a finite set X is a function x : [0, 00) — P(X) with the
following properties:

1. 0x(0) = {{z1},..., {za}}.

2. There exists tg s.t. Ox(t) is the single block partition for all t > t.
3. If r < s then Ox(r) refines Ox(s).

4. For all r there exists € > 0 s.t. Ox(r) = 0x(¢) for ¢t € [r,r + €].

Let D(X) denote the collection of all possible dendrograms over a given finite
set X.

Hierarchical clustering methods are maps $) from the collection of all finite
metric spaces into the collection of all dendrograms, such that (X, dx) is mapped
into an element of D(X).

Standard examples of clustering methods are single, complete and average
linkage methods [40)].

A question of great interest is whether any of these clustering methods is
stable to perturbations in the input metric spaces.

Linkage based agglomerative HC methods. Here we review the basic pro-
cedure of linkage based hierarchical clustering methods:
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1 1
o—0—0 P2
P, P, P Py
1
Py
1 l+e b
o—0—©0 ’
P, P, P, Py
1 2+€

Fig. 5. Complete Linkage is not stable to small perturbations in the metric. On the
left we show two metric spaces that are metrically very similar. To the right of each of
them we show their CL dendrogram outputs. Regardless of € > 0, the two outputs are
always very dissimilar.

Assume (X, dx) is a given finite metric space. In this example, we use the

formulas for CL but the structure of the iterative procedure in this example is
common to all HC methods [46, Chapter 3]. Let 6 be the dendrogram to be
constructed in this example.

1.

2.

Set Xg = X and Dy = dx and set 6(0) to be the partition of X into
singletons.

Search the matrix Dy for the smallest non-zero value, i.e. find 6y = sep (Xj),
and find all pairs of points {(;,,%;,), (zi,,2j,) .- -, (2, 2, )} at distance dy
from eachother, i.e. d(z;,,x;,) = do for all &« = 1,2,..., k, where one orders
the indices s.t. 11 < is < ... < 1.

Merge the first pair of elements in that list, (z;,,z;, ), into a single group.
The procedure now removes (x;, , ¢, ) from the initial set of points and adds a
point ¢ to represent the cluster formed by both: define X1 = (Xo\{z;,,z;, })U
{c}. Define the dissimilarity matrix D; on X; x X3 by D1 (a,b) = Do(a,b) for
all a,b # ¢ and D1(a,c) = D1(c,a) = max (Do(gci1 ,a), Do(xj,, a)) (this step
is the only one that depends on the choice corresponding to CL). Finally,

set
9(6) = {xilvle} U U {ml}
i#i1,51
The construction of the dendrogram 6 is completed by repeating the previous
steps until all points have been merged into a single cluster.

The tie breaking strategy used in step 3 results in the algorithm producing

different non-isomorphic outputs depending on the labeling of the points. This



Metric Structures on Datasets: Stability and Classification of Algorithms 13

is undesirable, but can be remedied by defining certain versions of all the linkage
based HC methods that behave well under permutations [18] .

Unfortunately, even these “patched” versions of AL and CL fail to exhibit
stability, see Figure Bl

It turns out, however, that single linkage does enjoy stability. Before we phrase
the precise result we need to introduce the ultrametric representation of dendro-
grams. Furthermore, as we will see in B there’s a sense in which SLHC is the
only HC method that can be stable.

Dendrograms as ultrametric spaces. The representation of dendrograms as
ultrametrics is well known [4837/46].

Theorem 3 ([18]). Given a finite set X, there is a bijection ¥ : D(X) —
U(X) between the collection D(X) of all dendrograms over X and the collection
U(X) of all ultrametrics over X such that for any dendrogram 6 € D(X) the
ultrametric ¥(0) over X generates the same hierarchical decomposition as 0, i.e.

(x) for eachr>0,z,2"' € Bel(r) < ¥(0)(z,2') <r.
Furthermore, this bijection is given by
¥ (0)(z,z") = min{r > 0|z, 2" belong to the same block of 6(r)}. (2)

See Figure [6l

X1
X2 X1 X2 X3 Xg
X1 0O ry r3 r3
|| (Ue)) = X [ ri 0O r3 r3
X3 ——M8M8 X3 rs rs 0 ry
X4 rs rs ra 0

X4

Fig.6. A graphical representation of a dendrogram 6 over X = {z1,z2, 23,23} and
the corresponding ultrametric ug := ¥(0). Notice for example, that according to (),
ug(z1,x2) = r1 since 71 is the first value of the (scale) parameter for which 21 and x2
are merged into the same cluster. Similarly, since z; and z3 are merged into the same
cluster for the first time when the parameter equals rs, then ug(z1,x3) = r3.

Let U C G denote the collection of all (compact) ultrametric spaces. It fol-
lows from Theorem [} that one can regard HC methods as maps $ : G — U.
In particular [I8], SLHC can be regarded as the map $5" that assigns (X, dx)
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with (X, ux), where ux is the mazimal subdominant ultrametric relative to dx.
This is given as

ux(z,2') = min{ max 1dX(x,»,mi+1), st.x=x0,...,TK = x’}. (3)
i=0,...,k—

Stability and convergence of SLHC. In contrast with the situation for
complete and average linkage HCMs, we have the following statement concerning
the quantitative stability of SLHC:

Theorem 4 ([18]). Let (X,dx) and (Y,dy) be two finite metric spaces. Then,
dgn(9°(X, dx), 5%(Y, dy)) < dgr((X, dx), (Y, dy)).

Invoking the ultrametric representation of dendrograms and using Theorem [,
[18] proves the following convergence result, see Figure [7

Theorem 5. Let (Z,dz, jiz) be an mm-space and write supp [tiz] = Uy a Z(@)
for a finite index set A and {Z(a)}aeA a collection of disjoint, compact, path-
connected subsets of Z. Let (A,ua) be the ultrametric space where w4 is the maz-

imal subdominant ultrametric with respect to Wa(a, ') == min, ¢ zo) e zen
dz(z,2"), for a,a € A.
For each n € N, let X,, = {z1,22,...,2n} be a collection of n indepen-

dent random variables (defined on some probability space 2 with values in Z)
with distribution pz, and let dx, be the restriction of dz to X, x X,. Then,

95Xy, dx, ) — (A,ua) in the Gromov-Hausdorff sense piz-almost surely.

4.4 Stability of Vietoris-Rips Barcodes

Much in the same way as standard flat clustering can be understood as the
zero-dimensional version of the notion of homology, hierarchical clustering can
be regarded as the zero-dimensional version of persistent homology [27].

The notion of Vietoris-Rips persistent barcodes provides a precise sense in
which the above statement is true. For a given finite metric space (X,dx) and
r > 0, let R.(X) denote the simplicial complex with vertex set X where o =
[0, 21,...,2k] € Ry (X,dx) if and only if max; j dx (z;, ;) < r. This is called
the Vietoris-Rips simplicial complex (with parameter r). Then, the family

R(X, dx) = {RT(X7 dx)7 r> 0}
constitutes a filtration, in the sense that
R.(X,dx) C Rs(X,dx), whenever s > r.

In the sequel we may abbreviate R, (X) for R, (X,dx), and similarly for R(X).
Now, passing to homology with field coefficients, this inclusion gives rise to a
pair of vector spaces and a linear map between them:

¢y Ho(Rp(X) — Ho(Rs(X)).

r
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Wi3< Wa3< Wyzt Wpp< Wy

X A=faj,aya3)
a |
a
———
MERRE)

Fig. 7. Illustration of Theorem[El Top: A space Z composed of 3 disjoint path connected
parts, ZM, Z?) and Z®. The black dots are the points in the finite sample X,.. In the
figure, wi; = Wal(ai,a;), 1 <i # j < 3. Bottom Left: The dendrogram representation
of (Xn,ux,) = $°%(X,). Bottom Right: The dendrogram representation of (A, u4).
Note that ua(ai,a2) = was, ua(ai,az) = wiz and ua(az,a3) = was. As n — oo,
(Xn,ux,) — (A,ua) as. in the Gromov-Hausdorff sense, see text for details.

In more detail, if 0 = ap < a1 < ... < @, = diam (X) are the distinct values
assumed by dx, then one obtains the persistent vector space:

Ho(Rao (X)) 2 Ho(Ra (X)) 250 H, (R (X)) 25 -+

m—1
Pin—2

P H (R (X)) 5 Ho (R, (X)).

It is well known [91] that there is a classification of such objects in terms of a

finite multisets of points in the extended plane RQ, called the persistence diagram
of R(X), and denoted D, R(X) which is contained in the union of the extended
diagonal A = {(z,z) : € R} and of the grid {ao, -, am} X {0, , m, Qoo =
+00}. The multiplicity of the points of A is set to 400, while the multiplicities
of the (e, ), 0 <i < j < 400, are defined in terms of the ranks of the linear

transformations ¢} = ¢7_; o -+ o0 ¢/ [20].

The bottleneck distance dF (A, B) between two multisets in (RQ,Z‘X’) is the
quantity min, maxpeca ||p — 7(p)||o, Where 7y ranges over all bijections from A to
B. Then, one obtains the following generalization of Theorem [l

Theorem 6 ([20]). Let (X,dx) and (Y,dy) be any two finite metric spaces.
Then for all k > 0,

;dgo (DkR(X),DrR(Y)) < dgn(X,Y).
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This type of results are of great importance for applications of the Vietoris-Rips
barcodes to data analysis.

4.5 Object Matching: More Details

Some features of mm-spaces. We define a few simple isomorphism invariants,
or features, of mm-spaces, many of which will be used in §4.5] to establish lower
bounds for the metrics we will impose on G,,. All the features we discuss below
have are routinely used in the data analysis and object matching communities.

Definition 1 (p-diameters). Given a mm-space (X,dx,px) and p € [1, ]
we define its p-diameter as

dh%&ﬂz(A[JM@JWWﬂMMﬂM»UP

for 1 <p < oo.

Definition 2. Given p € [1,00] and an mm-space (X,dx,ux) we define the
p-eccentricity function of X as

1/p
sxp: X =Rt given by z— (/ dX(m,x’)pu(dx’)>
X

for1 <p<oo.

Hamza and Krim proposed using eccentricity functions (with p = 2) for describ-
ing objects in [36]. Ideas similar to those proposed in [36] have been revisited
recently in [45]. See also Hilaga et al. [39]. Eccentricities are also routinely used
as part of topological data analysis algorithms such as mapper [80].

Definition 3 (Distribution of distances). To an mm-space (X,dx, pux) we
associate its distribution of distances:

fx + 0, diam (X)] — [0,1] given by ¢ pix © px ({(, )l (2,2') < 1}).
See Figure B and [5l68].

Definition 4 (Local distribution of distances). To a mm-space (X, dx, px)
we associate its local distribution of distances defined by:

hx : X x [0,diam (X)] — [0,1] given by (x,t) — ux (Bx(x,t)) .

See Figure [d The earliest use of an invariant of this type known to the author
is in the work of German researchers [4/50/T]. The so called shape context
[BIT9I7HIT4] invariant is closely related to hx.

More similar to hy is the invariant proposed by Manay et al. in [58] in the
context of planar objects. This type of invariant has also been used for three
dimensional objects [2132]. More recently, in the context of planar curves, similar
constructions have been analyzed in [7]. See also, [34].
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0 dyg dig dyy ... wh
dia 0 dy dy ... w2
dig dag 0 dyy ... ws .
diyg dag dsg 0 ... wy .

Fig. 8. Distribution of distances: from a dataset to the mm-space representation and
from it to the distribution of distances

Remark 2 (Local distribution of distances as a proxy for scalar curva-
ture). There is an interesting observation that in the class Riem C G, of closed
Riemannian manifolds local distributions of distance are intimately related to
curvatures. Let M be an n-dimensional closed Riemannian manifold which we
regard as an mm-space by endowing it with the geodesic metric and with prob-
ability measure given by the normalized volume measure. Using the well known
expansion [77] of the Riemannian volume of a ball of radius ¢ centered at x € M

one finds:
_ wa(t) Sw(x)
Ml D = o1 () (1 Tyt O(t4)>’

where Sps(z) is the scalar curvature of M at x, wy(t) is the volume of a ball of
radius ¢ in R™ and O(#*) is a term whose decay to 0 as ¢ | 0 is faster than t*.

One may then argue that local shape distributions play a role of generalized
notions of curvature.

0 dyz dia dyg ... wh
dyz dzz dzq ... wa
dig dag 0 dyy ... wy

dyg dag dzg 0 ... wy

Fig. 9. Local distribution of distances: from a dataset to the mm-space representation
and from it the local distribution of distances. To each point on the object one assigns
the distribution of distance from this point to all other points on the object.
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Precise bounds

Definition 5. For XY € G,, define

FLB(X,Y): inf (/XXY lsx.1(x) = sy,1(y)| p(dz x dy)) ;

2 peM(px,py)

SLB(XY) = [ [fx(0) ~ (0] ds

0

1 (oo}
TLB(X,Y) := min / ( / |hx(z,t) = hy (y,1)] dt> p(dx x dy).
2 peM(px,my) Jxxy \Jo

For finite X and Y, computing the (exact) value of each of the quantities in the
definition reduces to solving linear programming problems [60].

We now can state the following theorem asserting the stability of the features
discussed in this section:

Theorem 7 ([60]). For all X,Y € G, and allp > 1

TLB(X,Y) > FLB(X,Y) > }|diam; (X) — diam; (Y) |.
dow.p(X.Y) 2 {SLB(X, Y).

Bounds of this type, besides establishing the quantitative stability of the differ-
ent intervening features, have the added usefulness that in practice they may be
utilized in layered comparison of objects: those bounds involving simpler invari-
ants are frequently easier to compute, whereas those involving more powerful
features most often require more effort. Furthermore, hierarchical bounds of this
nature that interconnect different approaches proposed in the literature allow
for a better understanding of the landscape of different existing techniques, see
Figure IO

/

,[ LB (X.Y) ] [ LBya(X,Y) ]
e
d
e
[ dgw.p(X,Y) ] [ LBy, (X.Y) ] [ LB, 2(X,Y) ]

Fig. 10. Having a hierarchy (arrows should be read as > symbols) of lower bounds such
the one suggested in the figure can help in matching tasks: the strategy that suggests
itself is to start the comparison using the weaker bounds and gradually increase the
complexity

Also, different families of lower bounds for the GH distance have recently been
found [61]; these incorporate features similar to those of [56I86].
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Spectral versions of the GH and GW distances. It is possible to obtain
a hierarchy of lower bounds similar to the ones above but in the context of
spectral methods [62], see Figure The motivation comes from the so called
Varadhan’s Lemma: if X is a compact Riemannian manifold without boundary,
and kx denotes the heat kernel of X, then one has

Lemma 2 ([66]). For any compact Riemannian manifold without boundary X,

. 2
ltlllgl (—4tlnkx(t,z,2")) = dx (z,2'),

for all x,2' € X. Here dx(x,x') is the geodesic distance between x and z' on X.

The spectral representation of objects (see Figure [[2), and in particular shapes
is interesting because it readily encodes a notion of scale. This scale parame-
ter (the ¢t parameter in the heat kernel) permits reasoning about similarity of
shapes at different levels of “blurring” or “smoothing”, see Figure [l A (still
not thoroughly satisfactory) interpretation of ¢ as a scale parameter arises from
the following observations:

— For t | 0%, kx(t,z,x) ~ (4mt)~¥2(1 + [ Sx(z) + ...), where d is the di-
mension of X. Recall that Sx is the scalar curvature— therefore for small
enough t, one sees local information about X.

— For t — oo, kx(t,z,2') — Voll(X). Hence, for large ¢ all points “look the
same” .

— Pick n € Nand ¢ > 0 and let L, = (R, g, ) for g(z) = 1 + ecos(2man),
then the homogenized metric is g = 1. Then, by results due to Tsuchida and
Davies [87126] one has that

C
sup |k‘g(t, z, ') — kg(t7x,x’)| < 7 astToo.
z,x’€R t

Since for Riemannian manifolds X and Y, by Varadhan’s lemma, the heat
kernels kx and ky determine the geodesic metrics dx and dy, respectively, this
suggests defining spectral versions of the GH and GW distances. For each
p > 1, one defines [62]

spec 1 .
dgpw’p(X,Y) = _infsup Fp(kx(t, ) ky (-, ,u),

Ko t>0

where F), is a certain functional that depends on both heat kernels and the mea-
sure coupling p (see [62})9 The interpretation is that one takes the supremum
over all ¢t as way of choosing the most discriminative scale.

One has:

Theorem 8 ([62]). dgyy, , defines a metric on the collection of (isometry classes
of ) Riemannian manifolds.

2 Here p is a measure coupling between the normalized volume measures of X and Y.
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A large number of spectral features are quantitatively stable under dgy

[62]. Examples are the spectrum of the Laplace-Beltrami operator [73], features

computed from the diffusion distance, [53I22], and the heat kernel signature [84].
A more precise framework for the geometric scales of subsets of R¢ is worked

out in [54].

] :._ ) | ] y

Fig.11. A bumpy sphere at different levels of smoothing

5 Classification of Algorithms

In the next section, we will give a brief description of the theory of categories
and functors, an excellent reference for these ideas is [57].

5.1 Brief Overview of Categories and Functors

Categories are mathematical constructs that encode the nature of certain objects
of interest together with a set of admissible maps between them.

Definition 6. A category C consists of:

— A collection of objects ob(C) (e.g. sets, groups, vector spaces, etc.)

— For each pair of objects X, Y € ob(C), a set
Mor¢(X,Y), the morphisms from X toY (e.g. maps of sets from X to'Y,
homomorphisms of groups from X to Y, linear transformations from X to
Y, etc. respectively)

— Composition operations:
o : More(X,Y) x More(Y, Z) — Morc (X, Z), corresponding to composi-
tion of set maps, group homomorphisms, linear transformations, etc.

— For each object X € C, a distinguished element idx € Morg(X, X), called
the identity morphism.

The composition is assumed to be associative in the obvious sense, and for any
f € More(X,Y), it is assumed that idy o f = f and foidx = f.

Definition 7 (C, a category of outputs of standard clustering schemes).
LetY be a finite set, Py € P(Y), and f : X — Y be a set map. We define f*(Py)
to be the partition of X whose blocks are the sets f~1(B) where B ranges over
the blocks of Py . We construct the category C of outputs of standard clustering
algorithms with ob(C) equal to all possible pairs (X, Px) where X is a finite
set and Px is a partition of X: Px € P(X). For objects (X, Px) and (Y, Py)
one sets Morc((X, Px), (Y, Py)) to be the set of all maps f : X — Y with the
property that Px is a refinement of f*(Py).
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0
2 |
4
|
A'_\’(f..f'. .I") (temperature)
I <

Fig. 12. A physics based way of characterizing/measuring a shape. For each pair of
points z and =’ on the shape X, one heats a tiny area around point z to a very high
temperature in a very short interval of time around ¢t = 0. Then, one measures the tem-
perature at point =’ for all later times and plots the resulting graph of the heat kernel
kx(t,x,x") as a function of ¢. The knowledge of these graphs for all z,z’ € X and t > 0
translates into knowledge of the heat kernel of X (the plot in the figure corresponds
to z # x'). In contrast, one can think that a geometer’s way of characterizing the
shape would be via the use of a geodesic ruler that can be used for measuring distances
between all pairs of points on X, see Figure Pl According to Varadhan’s Lemma, both
approaches are equivalent in the sense that they both capture the same information
about X.

Ezample 1. Let X be any finite set, Y = {a,b} a set with two elements, and
Px a partition of X. Assume first that Py = {{a},{b}} and let f: X — Y be
any map. Then, in order for f to be a morphism in Mor(;((X7 Px), (Y, Py)) it
is necessary that « and z’ be in different blocks of Px whenever f(x) # f(z').
Assume now that Py = {a,b} and g : ¥ — X. Then, the condition that g €
More ((Y, Py ), (X, Px)) requires that g(a) and g(b) be in the same block of Px.

We will also construct a category of persistent sets, which will constitute the
output of hierarchical clustering functors.

Definition 8 (P, a category of outputs of hierarchical clustering
schemes). Let (X,0x),(Y,0y) be persistent sets. A map of sets f : X = Y
is said to be persistence preserving if for each r € R, we have that 0x (r) is a
refinement of f*(0y(r)). We define a category P whose objects are persistent
sets, and where Morp((X,0x), (Y,0y)) consists of the set maps from X toY
which are persistence preserving.
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Three categories of finite metric spaces. We will describe three cate-
gories M*°, M and M9, whose collections of objects will all consist of
the collection of finite metric spaces M. For (X,dx) and (Y,dy) in M, a map
f: X — Y is said to be distance non increasing if for all z,2’ € X, we have
dy (f(z), f(z")) < dx(x,2"). It is easy to check that composition of distance
non-increasing maps are also distance non-increasing, and it is also clear that
idy is always distance non-increasing. We therefore have the category MJ",
whose objects are finite metric spaces, and so that for any objects X and Y,
Mor pqeen (X, Y) is the set of distance non-increasing maps from X to Y. It is
clear that compositions of injective maps are injective, and that all identity
maps are injective, so we have the new category M in which Mor pin5 (X, Y)
consists of the injective distance non-increasing maps. Finally, if (X,dx)
and (Y,dy) are finite metric spaces, f : X — Y is an isometry if f is bijec-
tive and dy (f(z), f(2')) = dx(x,2’) for all x and 2'. It is clear that as above,
one can form a category M*° whose objects are finite metric spaces and whose
morphisms are the isometries. Furthermore, one has inclusions

Miso g Minj g Mgen (4)

of subcategories (defined as in [57]). Note that although the inclusions are bijec-
tions on object sets, they are proper inclusions on morphism sets.

Remark 8. The category M7°" is special in that for any pair of finite metric
spaces X and Y, Moraeen (X, Y) # (0. Indeed, pick yg € Y and define ¢ : X — Y
by x — yo for all € X. Clearly, ¢ € Moraeen (X,Y). This is not the case for
M™ since in order for Mor ygini (X,Y) # 0 to hold it is necessary (but not
sufficient in general) that Y| > |X].

Functors and functoriality. Next we introduce the key concept in our discus-
sion, that of a functor. We give the formal definition first, and several examples
will appear as different constructions that we use in the paper.

Definition 9 (Functor). Let C and D be categories. Then a functor from C
to D consists of:

— A map of sets F: ob(C') — ob(D).
— For every pair of objects X, Y € C a map of sets ®(X,Y) : Morc(X,Y) —
Morp(FX, FY) so that
1. &(X, X)(idx) = idp(x) for all X € ob(C), and
2. (X, Z)(gof) = P(Y,Z)(g) (X, Y)(f) for all f € Morc(X,Y) and
g € Morc(Y, Z).

Given a category C, an endofunctor on C is any functor F : C — C.

Remark 4. In the interest of clarity, we will always refer to the pair (F,®) with
a single letter F. See diagram (@) below for an example.
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Ezample 2 (Scaling functor). For any A > 0 we define an endofunctor oy :
MIT — MI®™ on objects by oa(X,dx) = (X, dx) and on morphisms by
ox(f) = f. One easily verifies that if f satisfies the conditions for being a mor-
phism in M9°" from (X, dx) to (Y, dy), then it readily satisfies the conditions of
being a morphism from (X, A-dx) to (Y, A-dy). Clearly, o can also be regarded
as an endofunctor in M*° and M.

Similarly, we define a functor sy : P — P by setting s)(X,0x) = (X, 0%),
where 6% (r) = 0x(}).

5.2 Clustering Algorithms as Functors

The notion of categories, functors and functoriality provide useful framework for
studying algorithms. One first defines a class of input objects Z and also a class
of output objects O. Moreover, one associates to each of these classes a class of
natural maps, the morphisms, between objects, making them into categories T
and O. For the problem of HC for example, the input class is the set of finite
metric spaces and the output class is that of dendrograms. An algorithm is to
be regarded as a functor between a category of input objects and a category of
output objects.

An algorithm will therefore be a procedure that assigns to each I € 7 an
output Oy € O with the further property that it respects relations between
objects in the following sense. Assume I,I’ € T such that there is a “natural
map” f: I — I'. Then, the algorithm has to have the property that the relation
between O and Oj has to be represented by a natural map for output objects.

Remark 5. Assume that Z is such that Morz(X,Y) = 0 for all X,Y € Z with
X # Y. In this case, since there are no morphisms between input objects any
functor 2 : Z — O can be specified arbitrarily on each X € ob(0O). It is much
more interesting and arguably more useful to consider categories with non-empty
morphism sets.

More precisely. We view any given clustering scheme as a procedure which
takes as input a finite metric space (X,dx), and delivers as output either an
object in C or P:

— Standard clustering: a pair (X, Px) where Px is a partition of X. Such
a pair is an object in the category C.

— Hierarchical clustering: a pair (X, 0x) where fx is a persistent set over
X. Such a pair is an object in the category P.

The concept of functoriality refers to the additional condition that the clus-
tering procedure should map a pair of input objects into a pair of output objects
in a manner which is consistent with respect to the morphisms attached to the
input and output spaces. When this happens, we say that the clustering scheme
is functorial. This notion of consistency is made precise in Definition [ and
described by diagram (@). Let M stand for any of M9, M or M™°.

According to Definition [@, in order to view a standard clustering scheme as a
functor € : M — C we need to specify:
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(1) how it maps objects of M (finite metric spaces) into objects of C, and

(2) how a morphism f : (X,dx) — (Y,dy) between two objects (X, dx) and
(Y,dy) in the input category M induces a map in the output category C,
see diagram ([]).

(X,dx) T =(v,dy) (5)
[ [
Y Y
(X7PX) e(f)> (Y7PY)

Similarly, in order to view a hierarchical clustering scheme as a functor § :
M — P we need to specify:

(1) how it maps objects of M (finite metric spaces) into objects of P, and

(2) how a morphism f : (X,dx) — (Y,dy) between two objects (X,dx) and
(Y,dy) in the input category M induces a map in the output category P,
see diagram ([l).

(X,dx) T = (V,dy) (6)
9 H
Y \%

(X,0x) "= (v 0y)

Precise constructions will be discussed ahead.

We have 3 possible “input” categories ordered by inclusion (@l). The idea is that
studying functoriality over a larger category will be more stringent/demanding
than requiring functoriality over a smaller one. We will consider different clus-
tering algorithms and study whether they are functorial over our choice of the
input category. The least demanding one, M**° basically enforces that clustering
schemes are not dependent on the way points are labeled.

We will describe uniqueness results for functoriality over the most stringent
category M7°" and also explain how relaxing the conditions imposed by the
morphisms in M?°", namely, by restricting ourselves to the smaller but inter-
mediate category M one allows more functorial clustering algorithms.

5.3 Results for Standard Clustering

Let (X,dx) be a finite metric space. For each r > 0 we define the equivalence
relation ~, on X given by x ~, 2’ if and only if there exist zg,x1,...,75 € X
with = zg, @’ = z and dx (z;,x;41) <rforalli=0,1,...,k— 1.

Definition 10. For each 6 > 0 we define the Vietoris-Rips clustering func-
tor
9“&5 : ./\/lgen —C

as follows. For a finite metric space (X,dx), we set Rs(X,dx) to be (X, Px(9)),
where Px (8) is the partition of X associated to the equivalence relation ~5. We
define how Ry acts on maps f: (X,dx) — (Y,dy): Rs(f) is simply the set map
f regarded as a morphism from (X, Px(9)) to (Y, Py(4)) in C.
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The Vietoris-Rips functor is actually just single linkage clustering as it is
well known, see [I5JI8].

By restricting ?s to the subcategories M and M™ | we obtain functors
R0 1 M — C and Ry : M™ — C. We will denote all these functors by Rs
when there is no ambiguity.

It can be seen [19] that the Vietoris-Rips functor is surjective: Among the
desirable conditions singled out by Kleinberg [51], one has that of surjectivity
(which he referred to as “richness”). Given a finite set X and Px € P(X),
surjectivity calls for the existence of a metric dx on X such that Rs(X,dx) =

For M being any one of our choices M**°, M or MI"  a clustering func-
tor in this context will be denoted by € : M — C. Excisiveness of a clustering
functor refers to the property that once a finite metric space has been parti-
tioned by the clustering procedure, it should not be further split by subsequent
applications of the same algorithm.

Definition 11 (Excisive clustering functors). We say that a clustering
functor € is excisive if for all (X,dx) € ob(M), if we write €(X,dx) =
(X, {Xa}aca), then

¢ (X%dx\xaxxa) = (Xa,{Xa}) for alla € A.

It can be seen that the Vietoris-Rips functor is excisive.
However, there exist non-excisive clustering functors in M*™*.

Ezample 3 (A non-excisive functor in M"7). For each finite metric space
X let nx = (sep (X)) . Consider the clustering functor R : M — C defined
as follows: for a finite metric space (X, dx), we define E)A%(X, dx) to be (X, Px),
where }SX is the partition of X associated to the equivalence relation ~,, on
X. That R is a functor follows from the fact that whenever ¢ € Mor ming (X, Y)
and x ~,, 2/, then ¢(z) ~,, o(a').

Now, the functor M is not excisive in general. An explicit example is the
following: Consider the metric space (X, dx) depicted in Figure [[3] where the
metric is given by the graph metric on the underlying graph. Note that sep (X ) =
1/2 and thus nx = 2. We then find that R(X,dx) = (X, {{A, B,C},{D, E}}).
Let (Y,dy) = ({AB,C’}7 (g%§)) Then, sep(Y) = 1 and hence ny = 1.
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Therefore,

R ({4.8.0}.(381)) = (4. B.CY. (A (B.OY)).

~

and we see that {A, B, C} gets further partitioned by fR.

It is interesting to point out that the similar constructions of a non-excisive
functor in MY*" would not work, see [19].
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Q>
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ZI1 o
C

Fig. 13. Metric space used to prove that the functor R : M™ — C is not excisive.
The metric is given by the graph distance on the graph.

The case of M**° One can easily describe all M **°-functorial clustering schemes.
Let Z denote the collection of all isometry classes of finite metric spaces. For each
¢ € Tlet (X¢,dx,) denote an element of the class ¢, G¢ the isometry group of
(X¢,dx, ), and Z¢ the set of all fixed points of the action of G¢ on P(X¢).

Theorem 9 (Classification of M“*’-functorial clustering schemes, [19]).
Any M*°-functorial clustering scheme determines a choice of pc € Z¢ for each
¢ € 7, and conversely, a choice of pe for each ( € I determines an Miso.
functorial scheme.

Representable Clustering Functors. In what follows, M is either of M
or M7". For each § > 0 the Vietoris-Rips functor Rs : M — C can be de-
scribed in an alternative way. A first trivial observation is that the condition that
x,x’ € X satisfy dx (x,2') < 4 is equivalent to requiring the existence of a map
f € Mora(A2(0), X) with {z,2'} C Im(f). Using this, we can reformulate the
condition that x ~s =’ by the requirement that there exist zq, z1, . .., 2x € X with
20 =, 2z = o', and f1, fa, ..., fx € Morap(A2(6), X) with {z;_1,2;} C Im(f;)
Vi =1,2,..., k. Informally, this points to the interpretation that {A2(d)} is the
“parameter” in a “generative model” for Rs.

This suggests considering more general clustering functors constructed in the
following manner. Let (2 be any fixed collection of finite metric spaces. Define a
clustering functor

¢ M—C
as follows: let (X, d) € ob(M) and write €2 (X, d) = (X, {Xa}aca). One declares
that points z and ' belong to the same block X, if and only if there exist

— a sequence of points 2g,...,2r € X with zop =z and z, = 7/,

— a sequence of metric spaces w1, ...,w, € 2 and

— for each ¢ = 1,...,k, pairs of points («;, 5;) € w; and morphisms f; €
Morpq(wi, X) s.t. fi(a;) = zi—1 and fi(8;) = zi.

Also, we declare that €?(f) = f on morphisms f. Notice that above one can
assume that zg, 21, ..., 2z, all belong to X,,.

Definition 12. We say that a clustering functor € is representable whenever
there exists a collection of finite metric spaces £2 such that € = €. In this case,
we say that € is represented by (2. We say that € is finitely representable
whenever € = €2 for some finite collection of finite metric spaces 2.



Metric Structures on Datasets: Stability and Classification of Algorithms 27

As we saw above, the Vietoris-Rips functor PR is (finitely) represented by

{A2()}-

Representability and excisiveness. Notice that excisiveness is an axiomatic
statement whereas representability asserts existence of generative model for the
clustering functor, and interestingly they are equivalent.

Theorem 10 ([19]). Let M be either of M™ or MI™. Then any clustering
functor on M is excisive if and only if it is representable.

A factorization theorem. For a given collection 2 of finite metric spaces let
TM - M (7)

be the endofunctor that assigns to each finite metric space (X, dx) the metric
space (X, d%}) with the same underlying set and metric d¢ given by the maximal
metric bounded above by W)’? , where I/V)((2 : X x X — R, is given by

(z,2") — inf {\ > 0] 3w € Rand ¢ € Mor (A - w, X) with {z,2'} C Im(¢)},
(8)
for x # 2/, and by 0 on diag(X x X'). Above we assume that the inf over the empty
set equals +o00. Note that W (z,2") < oo for all #,2’ € X as long as |w| < | X|
for some w € £2. Also, W (x,2") = oo for all # # 2’ when |X| < inf{|w|, w € 2}.

Theorem 11 ([19]). Let M be either M°™ or M™ and € be any M-functorial
finitely representable clustering functor represented by some 2 C M. Then, € =
R0 T,

This theorem implies that all finitely representable clustering functors in M7°"
and M'™ arise as the composition of the Vietoris-Rips functor with a functor
that changes the metric.

A Uniqueness theorem for M9¢™. In M9 clustering functors are very
restricted, as reflected by the following theorem.

Theorem 12 ([19]). Assume that € : MI" — C is a clustering functor for
which there exists d¢ > 0 with the property that

— €(A3(9)) is in one piece for all 6 € [0,d¢], and
— €(A3(9)) is in two pieces for all 6 > d¢.

Then, € is the Vietoris-Rips functor with parameter d¢. i.e. € = R;, .

Recall that the Vietoris-Rips functor is excisive.

Scale invariance in M9 and M®, It is interesting to consider the effect
of imposing Kleinberg’s scale invariance axiom on MY“"-functorial and M-
functorial clustering schemes. It turns out that in M9Y°" there are only two
possible clustering schemes enjoying scale invariance, which turn out to be the
trivial ones:
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Theorem 13 ([19]). Let € : MI" — C be a clustering functor s.t. Cooy = €
for all A > 0. Then, either

— € assigns to each finite metric space X the partition of X into singletons, or
— € assigns to each finite metric the partition with only one block.

By refining the proof of the previous theorem, we find that the behavior of any
M -functorial clustering functor is also severely restricted [19].

5.4 Results for Hierarchical Clustering

Ezample 4 (A hierarchical version of the Vietoris-Rips functor). We
define a functor

R: MM - P

as follows. For a finite metric space (X,dx), we define (X,dx) to be the per-
sistent set (X, 0YR), where 6% (r) is the partition associated to the equivalence
relation ~,.. This is clearly an object in P. We also define how R acts on maps
f:(X,dx) — (Y,dy): The value of JR(f) is simply the set map f regarded as
a morphism from (X, Y®) to (Y,60yR) in P. That it is a morphism in P is easy
to check.

Clearly, this functor implements the hierarchical version of single linkage clus-
tering in the sense that for each § > 0, if one writes Rs(X,dx) = (X, Px(9)),
then Px(8) = %2 (0).

Functoriality over M9°™: A uniqueness theorem. We have a theorem of
the same flavor as the main theorem of [51], except that one obtains existence
and uniqueness on M7?°" instead of impossibility in our context.

Theorem 14 ([15]). Let $ : M9" — P be a hierarchical clustering functor
which satisfies the following conditions.

(I) Let a: M9 — Sets and 3 : P — Sets be the forgetful functors (X,dx) —
X and (X,0x) — X, which forget the metric and persistent set respectively,
and only “remember” the underlying sets X . Then we assume that B $ = a.
This means that the underlying set of the persistent set associated to a metric
space is just the underlying set of the metric space.

(II) Ford >0 let Az(6) = ({p,q}, (9 3)) denote the two point metric space with
underlying set {p, q}, and where dist(p,q) = 6. Then H(A2(0)) is the persis-
tent set ({p, q},0a,(5)) whose underlying set is {p,q} and where 0, (t) is
the partition with one element blocks when t < § and is the partition with a
single two point block when t > 6.

(III) Write $H(X,dx) = (X, 09), then for any t < sep (X), the partition 09 (t)
is the discrete partition with one element blocks.

Then $ is equal to the functor *R.
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Extensions. There are extensions of the ideas described in previous sections
that induce functorial clustering algorithms that are more sensitive to density,
see [T6JT9].

6 Discussion

Imposing metric and or category structures on collections of datasets is useful.
Doing this enables organizing the landscape composed by several algorithms
commonly used in data analysis. With this in mind is possible to reason about
the well posedness of some of these algorithms, and furthermore, one is able to
infer new algorithms for solving data and shape analysis tasks.
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Abstract. Embedding biometric templates as image-dependent water-
mark information in semi-fragile watermark embedding is proposed. Ex-
periments in an iris recognition environment show that the embedded
templates can be used to verify sample data integrity and may serve
additionally to increase robustness in the biometric recognition process.

1 Introduction

There has been a lot of work done during the last years proposing watermarking
techniques to enhance biometric systems security in some way (see [4] for our
recent survey on the topic). Major application scenarios include biometric wa-
termarking (where biometric templates are embedded as “message” as opposed
to classical copyright information), sample data replay prevention (by robustly
watermarking once acquired sample data), covert biometric data communica-
tion (by steganographic techniques), and employing WM is a means of tightly
coupled transport of sample data and embedded (template or general purpose
authentication) data for multibiometric or two-factor authentication schemes,
respectively.

In this work we consider the application scenario where the aim of WM is to
ensure the integrity and authenticity of the sample data acquisition and trans-
mission process. During data acquisition, the sensor (i.e. camera) embeds a wa-
termark into the acquired sample image before transmitting it to the feature
extraction module. The feature extraction module only proceeds with its tasks
if the WM can be extracted correctly (which means that (a) the data has not
been tampered with and (b) the origin of the data is the correct sensor).

Attack. An attacker aims at inserting the WM in order to mimic correctly
acquired sensor data or to manipulate sample data without affecting the
WM.

WM properties and content. The WM needs to be unique in the sense that
it has to uniquely identify the sensor. Resistance against a WM insertion

* This work has been partially supported by the Austrian Science Fund, project no.
L554-N15.
** Correspondig author.

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 34-f1], 2011.
© Springer-Verlag Berlin Heidelberg 2011
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attack can be achieved by sensor-key dependent embedding. Since the water-
marking scheme has to be able to detect image manipulations, (semi-)fragile
embedding techniques are the method of choice. Especially in semi-fragile
watermarking it was found to be highly advantageous to embed image-
dependent watermark data in order to prevent copy attacks. WM extraction
should be blind.

Crypto alternative. Classical authentication protocols can be used to secure
the communication between sensor and feature extraction module — a digital
signature signed with the private key of the acquisition device can ensure the
authenticity of the sensor and the integrity of the image data. However, this
approach cannot provide robustness and no information about tampering
locations is obtained.

Yeung et al. [9] propose a fragile watermarking technique to add the ability for
integrity verification of the captured fingerprint images against altering during
transmission or in a database. Ratha et al. [§] propose to embed a response to an
authentication challenge sent out by a server into a WSQ compressed fingerprint
image in order to authenticate the sensor capturing the fingerprint image. If the
(fragile) watermark cannot be extracted, either the image has been tampered
with or the image does not come from the correct sensing device.

Also, semi-fragile watermarking has been suggested to verify authenticity of
biometric sample data. PCA features are used as embedded data in [7], while [1]
proposes the embedding of robust signatures into fingerprint images.

Finally, dual WM techniques have been proposed applying two different em-
bedding techniques concurrently. The first technique in [6] is used for checking
integrity on a block level using CRC checks, the second provides reversible wa-
termarking in case the first technique rates the sample as being authentic. Two
different embedding techniques (a semi-fragile and a robust one) for embedding
both, a sample image dependent signature as well as a template of a different
modality are proposed by Komninos et al. [5].

In this paper we focus on protecting the transmission of sample data from
the sensor to the feature extraction module employing a specific semi-fragile
watermarking technique. In particular, we propose to embed biometric template
data instead of general purpose watermark information which can then be used in
the matching process in addition to checking integrity. In Section 2, we introduce
the template-embedding based semi-fragile watermarking approach and discuss
its properties. Section 3 presents experiments where the proposed concept is
evaluated in the context of iris recognition using a variant of a well known
watermark embedding scheme. Section 4 concludes the paper.

2 Semi-fragile Watermarking by Template Self
Embedding

In the context of biometrics, we propose to embed template data as semi-fragile
WM information instead of general purpose image descriptors as used in classical
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semi-fragile WM schemes [2]. This is sensible since on the one hand template data
are of course image dependent data and therefore are able to prevent WM copy
attacks or similar. On the other hand, in case of tampering or other significant
data manipulations, the aim is not to reconstruct the sample data at first hand,
but to be able to generate template data from the sample data required for
matching. So data for reconstructing the sample data is suggested to be replaced
by data for directly generating template data. In the following, we describe the
WM embedding and extraction processes:

1. From the acquired sample data, a template is extracted.

2. The template is embedded into the sample data employing a semi-fragile
embedding technique (this template is referred to as “template watermark”
subsequently).

3. The data is sent to the feature extraction and matching module.

4. At the feature extraction module, the template watermark template is ex-
tracted, and is compared to the template extracted from the sample (de-
noted simply as “template” in the following). In this way, the integrity of
the transmitted sample data is ensured when there is sufficient correspon-
dence between the two templates. In case of a biometric system operating
in verification mode the template watermark can also be compared to the
template in the database corresponding to the claimed identity (denoted
“database template” in the following).

5. Finally, in case the integrity of the data has been proven, the watermark
template and the template are used in the matching process, granting access
if the similarity to the database template(s) is high enough.

When comparing this approach to previous techniques proposed in literature,
we notice the following differences / advantages: As opposed to techniques em-
ploying robust template embedding watermarking (e.g. as proposed for enabling
tightly coupled transport of sample and template data of different modalities),
the proposed scheme can ensure sample data integrity. The importance of this
property has been recently demonstrated [3] in an attack against robust embed-
ding schemes used in the multibiometric and two-factor authentication scenarios.
As opposed to techniques employing arbitrary (semi-)fragile watermarks for in-
tegrity protection (instead of the template watermark used here), the template
watermark data can be used to provide a more robust matching process after
data integrity has been assured.

However, some issues need to be investigated with respect to the proposed
scheme (which will be done in the experiments):

— Does integrity verification indeed work in a robust manner ?

— What is the impact of the embedded template watermark on the recognition
performance using the template for matching only ?

— Can a combination of template watermark and template result in more ro-
bustness in an actual matching process ?
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3 Experiments in the Case of Iris Recognition

3.1 Iris Recognition and Iris Databases

The employed iris recognition system is Libor Masek’s Matlab implementatio
of a 1-D version of the Daugman iris recognition algorithm. First, this algorithm
segments the eye image into the iris and the remainder of the image. Iris image
texture is mapped to polar coordinates resulting in a rectangular patch which
is denoted “polar image”. For feature extraction, a row-wise convolution with
a complex Log-Gabor filter is performed on the polar image pixels. The phase
angle of the resulting complex value for each pixel is discretized into 2 bits. The
2 bit of phase information are used to generate a binary code. After extracting
the features of the iris, considering translation, rotations, and disturbed regions
in the iris (a noise mask is generated), the algorithm outputs the similarity score
by giving the Hamming distance between two extracted templates.
The following three datasets are used in the experiments:

CASIAv3 Interval databasdd consists of 2639 images with 320 x 280 pixels in
8 bit grayscale .jpeg format, out of which 500 images have been used in the
experiments.

MMU databasdd consists of 450 images with 320 x 240 pixels in 24 bit grayscale
.bmp format, all images have been used in the experiments.

UBIRIS databasd] consists of 1876 images with 200 x 150 pixels in 24 bit colour
.jpeg format, out of which 318 images have been used in the experiments.

3.2 The Watermarking Scheme

As the baseline system, we employ the fragile watermarking scheme as developed
by Yeung et. al and investigated in the context of fingerprint recognition [9]. For
this algorithm, the watermark embedded is binary and padded to the size of
the host image. Subsequently, the WM is embedded into each pixel according to
some key information. As a consequence, the WM capacity is 89600, 76800, and
30000 bits for CASTAv3, MMU, and UBIRIS, respectively.

Since this technique is a fragile WM scheme, no robustness against any im-
age manipulations can be expected of course. However, the usually smaller size
of biometric templates can be exploited to embed the template in redundant
manner, i.e. we embed the template several times. After the extraction process,
all template watermarks are used in a majority voting scheme which constructs
a “master” template watermark. We expect to result in higher robustness as
compared to the original algorithm due to redundant embedding leading to an
overall quasi semi-fragile WM scheme for the watermark templates. In our im-
plementation, the iris code consists of 9600 bits, therefore, we can embed 9, 8,

! http://www.csse.uwa.edu.au/ pk/studentprojects/libor/sourcecode . html
2 http://www.cbsr.ia.ac.cn/IrisDatabase.htm/

3 http://pesona.mmu.edu.my/~ccteo/

4 http://www.di.ubi.pt/ hugomcp/investigacao.htm
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and 3 templates into images from the CASTAv3, MMU, and UBIRIS databases,
respectively.

Note that instead of this embedding scheme, any semi-fragile WM scheme [2]
with sufficient capacity to embed template information can be employed.

3.3 Experimental Results

As first topic, we investigate integrity verification under conditions which re-
quire robustness properties. As “attacks” against the sample data with embed-
ded WM, we consider mean filtering, noise addition, and JPEG compression. As
a first scenario S1 (restricted to the verification scenario), comparison between
extracted template WM and database (DB) template is covered. We consider
the case that 5 different templates are stored in the database out of which a
single database template is generated by majority coding like explained before
in the case of the template WM. Table [ (left) shows the bit error rate (BER)
for the different attacks considered. The second scenario S2 is the comparison
between extracted template WM and the template extracted from the water-
marked sample data the results of which are shown in Table [I] (right).

Table 1. BER for seven different attacks

DB template vs. template template WM vs. template

Attack CASIAv3 MMU UBIRIS CASIAv3 MMU UBIRIS
No attack 0.21 0.23 0.19 0.14 0.06 0.07
Mean filtering 0.49 0.50 0.50 0.49 0.50 0.50
Gaussian Noise N = 0.0005 0.21 0.23 0.19 0.14 0.06 0.07
Gaussian Noise N = 0.001 0.21 0.23 0.19 0.14 0.06 0.07
JPEG Q100 0.21 0.23 0.19 0.14 0.06 0.08
JPEG Q99 0.21 0.24 0.22 0.14 0.07 0.11
JPEG Q98 0.25 0.30 0.32 0.20 0.18 0.26
JPEG Q95 0.41 0.45 0.45 0.39 0.41 0.44

The first thing to note is that even without attack, BER is clearly above
zero. For S2 this effect is solely due to the influence the embedded WM has on
the extracted template - obviously the WM changes the sample in a way that
about 10% of the bits are altered. For S1 the differences are higher which is clear
since the DB template is constructed from several distinct templates. We have
to consider that a typical decision threshold value for the iris recognition system
in use is at a BER in [0.3,0.35]. When taking this into account, the extent of
template similarity is of course enough to decide on proven sample integrity. For
both S1 and S2, adding noise and applying JPEG compression with quality set
to 100 (Q100) does not change the BER. When decreasing JPEG quality to 98,
BER starts to increase slightly. The situation changes drastically when applying
JPEG Q95 and mean filtering: BER is up to 0.4 - 0.5 which means that integrity
cannot be verified successfully. We realize that integrity verification in our tech-
nique is indeed robust against moderate JPEG compression and noise. On the
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other hand, mean filtering and JPEG compression at quality 95% destroys the
template WM and indicates modification. The distribution of incorrect bits can
be used to differentiate between malicious attacks (where an accumulation of in-
correct bits can be observed in certain regions) and significant global distortions
like compression where incorrect bits are spread across the entire data.

S1 and S2 can be combined into a single integrity verification scheme. The idea
is to combine the single templates extracted from the watermark and the tem-
plate extracted from the watermarked sample into a weighted “fused template”:
in our example, we use 4 copies of the template and the embedded number of
templates from the template WM in a majority voting scheme to generate the
fused template. Table[2shows the corresponding BER when comparing the fused
template to the DB template.

Table 2. BER for the fused template under seven different attacks

Attack CASIAv3 MMU UBIRIS
No attack 0.21 0.21 0.21
Mean filtering 0.30 0.27 0.21

Gaussian Noise N = 0.0005 0.21 0.21 0.21
Gaussian Noise N = 0.001 0.21 0.21 0.21

JPEG Q100 0.21 0.21 0.21
JPEG Q99 0.21 0.21 0.21
JPEG Q98 0.23 0.23 0.21
JPEG Q95 0.27 0.26 0.21

It can be clearly seen that while the BER without attack and applying mod-
erate attacks is higher as compared to S2, we get much better robustness against
JPEG Q95 and even mean filtering. With the fusing strategy, robustness even
against those two types of attacks can be obtained. Of course, the fusion scheme
does only make sense in a biometric system in verification mode, since integrity
verification is done against templates stored in the template database.

As a second topic, we investigate iris recognition performance using the tem-
plate extracted from the watermarked sample (W1) and the extracted template
WM (W2), and compare the behavior to the “original” results using templates
extracted from the original sample data (without embedded WM, WO0). For this
purpose, we compare ROC curves of the three cases with and without attacks
(i.e. JPEG compression, noise insertion, and mean filtering) conducted against
the sample data.

In both Figs. Dla and Rla the curve WO is hidden by W2 and we clearly note
that the embedded WM impacts on recognition performance since W1 shows
clearly inferior ROC (note that this contrasts to the case of fingerprint matching
reported in [9]). So without attack, using the template WM is beneficial over the
template. This situation is also typical for moderate attacks being conducted as
shown in Figs.[Ilb and Blb as an example for the case of JPEG compression with
Q98. While for the CASTAv3 data W0 and W2 are close, both being superior to
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FRR

(a) no attack (b) JPEG Q98 (c) JPEG Q95
Fig. 1. ROC curves of the CASIAv3 data

(a) no attack (b) JPEG Q98 (c) JPEG Q95

Fig. 2. ROC curves of the UBIRIS data

(a) CASIAv3, mean (b) UBIRIS, mean (c) UBIRIS, Q9

Fig. 3. ROC curves for fused templates

W1, for the UBIRIS data W2 is the best option. WO is clearly inferior to W2,
while W1 is the worst option. Obviously, the embedded template watermark is
not yet severely impacted by the compression artifacts.

The situation changes when the attacks get more severe. As shown in Figs.[Ilc
andPlc, under JPEG compression with Q95 W2 is the worst option now since the
robustness of the WM is not sufficient any more. While for the CASIAv3 data
WO and W1 are close (so the impact of the WM is negligible), for UBIRIS the
impact of the WM is quite significant (which can be explained by the fact that the
UBIRIS data is of already quite low quality without any further degradation,
the additional WM complicates template extraction). For mean filtering the
result for W2 is even worse as shown in Figs. Bla and Blb, no recognition can be
performed at all with the extracted template WM after this attack.
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Finally, the strategy of combining W1 and W2 into a fused template for in-
tegrity verification (results given in Table[Z)) can also be applied for matching. Fig.
shows examples where the ROC behavior of W2 can be significantly improved by
using this approach. In particular, in the case of mean filtering the fused template
can be used for recognition purposes as shown in Figs. Bla and Blb.

4 Conclusion

We have introduced the concept of embedding biometric templates as image-
dependent watermark information in semi-fragile watermark embedding which
serves the purpose of verifying the integrity and authenticity of the sensor - fea-
ture extraction communication. Experiments in an iris recognition environment
show the feasibility of the approach and demonstrate, that the embedded tem-
plates can be used to verify integrity and may serve additionally as a means to
increase robustness in the biometric recognition process.

References

[1] Ahmed, F., Moskowitz, I.S.: Composite signature based watermarking for finger-
print authentication. In: Proceedings of the ACM Workshop on Multimedia and
Security (MMSEC 2005), pp. 799-802 (2005)

[2] Ekici, O., Sankur, B., Akcay, M.: A comparative evaluation of semi-fragile water-
marking algorithms. Journal of Electronic Imaging 13(1), 209-216 (2003)

[3] Himmerle-Uhl, J., Raab, K., Uhl, A.: Attack against robust watermarking-
based multimodal biometric recognition systems. In: Vielhauer, C., Dittmann,
J., Drygajlo, A., Juul, N.C., Fairhurst, M.C. (eds.) BioID 2011. LNCS, vol. 6583,
pp. 25-36. Springer, Heidelberg (2011)

[4] Hadmmerle-Uhl, J., Raab, K., Uhl, A.: Watermarking as a means to enhance bio-
metric systems: A critical survey. In: Ker, A., Craver, S., Filler, T. (eds.) Pro-
ceedings of the 2011 Information Hiding Conference (IH 2011), Prague, Czech
Republic. LNCS. Springer, Heidelberg (to appear, 2011)

[5] Komninos, N., Dimitriou, T.: Protecting biometric templates with image water-
marking techniques. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642,
pp. 114-123. Springer, Heidelberg (2007)

[6] Lee, H., Lim, J., Yu, S., Kim, S., Lee, S.: Biometric image authentication using
watermarking. In: Proceedings of the International Joint Conference SICE-ICASE,
2006, pp. 3950-3953 (2006)

[7] Li, C., Ma, B., Wang, Y., Zhang, Z.: Protecting biometric templates using au-
thentication watermarking. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo,
C.-C.J., Lew, M.S. (eds.) PCM 2010. LNCS, vol. 6297, pp. 709-718. Springer,
Heidelberg (2010)

[8] Ratha, N.K., Figueroa-Villanueva, M.A., Connell, J.H., Bolle, R.M.: A secure
protocol for data hiding in compressed fingerprint images. In: Maltoni, D., Jain,
A K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 205-216. Springer, Heidelberg
(2004)

[9] Yeung, M.M., Pankanti, S.: Verification watermarks on fingerprint recognition
and retrieval. Journal of Electronal Imaging, Special Issue on Image Security and
Digital Watermarking 9(4), 468-476 (2000)



The Weighted Landmark-Based Algorithm for
Skull Identification

Jingbo Huang, Mingquan Zhou, Fuging Duan, Qingqong Deng,
Zhongke Wu, and Yun Tian

College of Information Science and Technology, Beijing Normal University,
Beijing, 100875, P.R. China
huangjingbo@mail .bnu.edu.com, {mgzhou, fgduan}@bnu.edu.cn,
ggdeng@nlpr.ia.ac.cn, {zwu,tianyun}@bnu.edu.cn

Abstract. Computer aided craniofacial reconstruction plays an important role in
criminal investigation. By comparing the 3D facial model produced by this
technology with the picture database of missing persons, the identity of an
unknown skull can be determined. In this paper, we propose a method to
quantitatively analyze the quality of the facial landmarks for skull
identification. Based on the quality analysis of landmarks, a new landmark-
based algorithm, which takes fully into account the different weights of the
landmarks in the recognition, is proposed. Moreover, we can select an optimal
recognition subset of landmarks to boost the recognition rate according to the
recognition quality of landmarks. Experiments validate the proposed method.

Keywords: Skull identification, landmark quality, 3D-2D face recognition,
optimal recognition subset, Q-weighted algorithm.

1 Introduction

When an unknown skull is found at a crime scene, enforcement officials usually
compare it against a gallery of facial images of missing persons in order to determine
its identity. There are two kinds of methods for this. One is the craniofacial
superimposition [1], which directly compares the skull against the photos, the other is
to reconstruct the victim's face model by the craniofacial reconstruction technology
[2, 3] and then compare the 3D face model with facial images of missing persons.
Although some successful cases using the craniofacial superimposition have been
reported, many researchers are still suspicious of its scientific and validity.

This paper employs the latter method. The basic flow is shown in Figure.l. The
probe object is the 3D face model reconstructed from the skull, and the recognized
result is the 2D facial image.

The recognition here is to compare the 3D face model against the 2D face image,
and the 3D face model has only the shape information but no texture information
(Figure 2). In the realm of 3D vs. 2D face recognition, Blanz. and Vetter employed a
Morphable Model(3DMM) [4, S5]and G.Toderici et al. employed Annotated Face

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 42—@, 2011.
© Springer-Verlag Berlin Heidelberg 2011



The Weighted Landmark-Based Algorithm for Skull Identification 43

Model (AFM)[6] to compare 2D and 3D faces. However, the 3DMM and AFM both
are complex to be developed and computationally expensive. Similar to 2D face
recognition, several subspace-based algorithms to compare the 3D faces were also
proposed. This kind of algorithms includes Canonical Correlation Analysis (CCA)
based algorithm [7, 8] and Partial Principal Component Analysis [9] and so on. Those
algorithms can achieve good results, but need a great number of training samples. In
[10], D.Riccio et al. propose a particular 2D-3D face recognition method based on 16
geometric invariants, which are calculated from a number of control points. The main
problem is the sensitiveness of the algorithm with respect to the pose variations and
inaccuracy in the detection of the control points. These algorithms all have not been
used in skull identification.

Fig. 1. The procedure of skull identification with craniofacial reconstruction

For skull identification, only Peter Tu etc. propose a landmark-based recognition
algorithm [3]. The algorithm recognizes the face by extracting the landmarks in the
3D and 2D face, and then calculates the reprojection errors. This method is simple
and practicable. However, it fails to take into account of the varying quality of
landmarks.

In this paper, we propose a novel measurement for recognition quality of the
landmarks, and based on this measurement, a new landmark-based algorithm, which
takes fully into account the different weights of the landmarks in the recognition, is
proposed. Moreover, we can select an optimal recognition subset of landmarks to
improve the recognition rate according to the recognition quality of landmarks.

2 Landmark Definition and Analysis

To define the facial landmarks, it is necessary to meet two requirements: 1) landmarks
must be obvious and easily to be labeled; 2) landmarks also need to be stable and do
not vary greatly with the change of expression, age and weight.

After determining the 3D and 2D landmarks, we project the 3D landmarks to 2D
image, and then calculate the distance of the projection results to their corresponding
2D landmarks. The distance can be used to measure the similarity of 3D-2D faces.
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Fig. 2. Facial landmarks in 2D and 3D faces

Let x={(x,y1) 1i=1,2,..n}and X ={(X.¥.Z.1)" 1i=1,2,...n} denote the 2D image

landmarks and the 3D model landmarks respectively. According to the pinhole

camera model, the 3D landmarks can be projected to the 2D image plane as follows:
Xixn=P3x4%Xaxn, (D

where Psx4 is the camera projection matrix, which can be estimated from a group of

2D-3D correspondences by minimizing the following objective function:

RMS’ =12|| xi—PX 1L - )
nii
This optimization problem can be solved by the least squares method. The optimal
value of the objective function is defined as the disparity value of the 3D face and 2D
image. Smaller the disparity value is, more similar the two faces are. Thus a landmark
based method to recognize the 3D face model is defined.

In the following, we analyze the recognition quality of landmarks with given
samples. Suppose we have m pairs of 3D-2D faces and n landmarks per face. The 3D
face and the 2D face of a same person have a same index. Let Py be the optimal
camera matrix which gives the minimal reprojection error for projecting landmarks of
the kth 3D face model to the Ith 2D face image. Xjj is the jth landmark in the ith 3D
face model, and Xi; is the jth landmark in the ith 2D face image.

1) The reliability. The reliability of kth landmark can be defined as:

Re=)IIXa—PiXal , k=12,..n (3)
i=1
A smaller R value means a less reprojection error of the landmark under the optimal
projection, and the kth landmark can be located accurately and is not disturbed greatly
by the change of expressions, ages and weights.

2) The discrimination. The discrimination of kzh landmark can be calculated by the
following formula:
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D=3 S I-PXall | k=12,.n° 4)
i=l j=li#j
Contrary to the R value, the larger the D value is, the better the discriminative quality
of the landmark is.
Through the above analysis, we can see that the quality of landmark is directly
proportional to its D value and inversely proportional to its R value. Therefore, the
two indications can be combined to describe the quality of landmarks as follows:

5 Z Z II)g,-k—Pinjk”;
Qk=_k _ =l J'=’1”,i¢j , k=12,..n ®)
Ri ZII Xik — Pi X ||§

i=1

3 A Recognition Algorithm Based on Landmark Quality Analysis

3.1 A Weighted Similarity Measurement of a 3D-2D Face Pair

The procedure of the weighted similarity measurement is as follows:

1) To calculate the R value, D value and the Q value of each landmark.
2) The landmarks of unknown 3D face are projected onto all pictures of missing
people, and then to calculate the reprojection errors weighting by Q values.
Specifically,

2.1) estimate the optimal projection matrix P of the 3D-2D face pair.

2.2) the final distance of the 3D-2D face pair can be calculated by the following
formula:

dist =1ZQ,~||X,-—PX,~||§ . (6)
n gy

3) From all the candidates of the face image, choose the face image of the smallest
distance as the recognition result of the unknown skull.

3.2 Searching an Optimal Recognition Subset of Landmarks

Experiments have shown that the best recognition result is not achieved by using all
the landmarks. In fact, selecting a part of landmarks with high quality can obtain a
better recognition performance than using the all landmarks.

With above quantitative analysis of the quality of landmarks, the landmarks can be
ordered by the Q values in a descending order. Let AR be the average rank of

recognition using the top i landmarks and ARil,zmax{ ARiIizl..n} . Then the

top I, landmarks compose the optimal recognition subset of landmarks, and AR, is

the best average rank of recognition.
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4 Experimental Results

In the experiment, we have a total 41 3D- 2D face pairs. We get 2D landmarks by
manually labeling. Firstly we compute the R values and the D values of all landmarks
through the samples in the training database, and then get the Q values of those
landmarks. The detailed results are shown in Table 2, and Figure 3 is the visualization

of the results.

We compare four methods. Table 1 shows the results. The attribute of each method
is also shown in the table. Less the average rank of a method is, better its

Table 1. The four methods in the experiment

Methods gfsi:f dtfl:lz;)lgtimal subset g;rig.}::tcigi rtlhjrrors The average rank
Method 1 N N 12.34146
Method 2 Y N 10.34146
Method 3 N Y 10.41463
Method 4 Y Y 10.02439
Table 2. The results of recognition
Rank 1D R value D value Q value AR(No weighting) AR-Weighting
1 7 0.212852 1 1 0 0
2 4 0.148425 0.542458  0.777926 0O 0
3 3 0.393937 0.104859  0.056658 23.26829268 22.90243902
4 2 0.775259 0.155122  0.04259 21.80487805 21.75609756
5 8 0.239004 0.032522  0.028964 20 19.19512195
6 1 0.383031 0.049366  0.027433 21.53658537 21.43902439
7 17 0.322997 0.037264  0.024557 18.2195122 18.87804878
8 9 0.564052 0.062562  0.023609 14.14634146 14.43902439
9 16 0.149526 0.01615 0.02299 12.43902439 13.41463415
10 15 1 0.107021  0.02278 11.04878049 12.92682927
11 12 0.606698 0.061926  0.021726 11.82926829 13.02439024
12 18 0.18197 0.018084  0.021153 11.17073171 12.87804878
13 5 0.281467 0.0274 0.020721 10.58536585 12.12195122
14 19 0.22985 0.021787  0.020176 10.87804878 11.65853659
1510 05388 0047192 o0iss15 | NONUNNCRINNNNNNN 1046341463
16 13 0.5345 0.035885  0.01429 11.07317073 11.12195122
17 6 0.353525 0.02368 0.014257 11.58536585 10.63414634
18 14 0.983102 0.063833  0.013821 12.36585366
19 11 0.69372 0.039972  0.012265 g
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performance. It can be seen that the average rank of the method 4 is decreased about
18.78% compared with the method 1. The detailed information can be seen in Table
2. In Table 2, the landmarks were arranged by descending order of their Q values.
Each column of the ith row of the table includes the rank of the Q values, the
landmark number corresponding to this rank (1-19), and the R, D, Q values of the
landmark. The last two columns represent the average rank using the top i landmarks
in the table with weighting by the Q values or not. We use different colors in Table 2
to represent the average ranks of the four methods.

Fig. 3. Landmarks ranking by Q values (in descending order). The red numbers are the Q
values of landmarks, and the green are the landmark ranks.

The Cumulative Match Characteristic (CMC) graphs of the four methods are
shown in Figure 4. From Figure 4, we can see that using merely the optimal subset of
the landmarks (method 2), and only weighting the reprojection errors (method 3), or
using the both measures (method 4), all have better performance than the algorithm
(method 1) without any improving measure for nearly all sizes of the candidate list
(except that the method 3 is slightly worse than method 1 when the size is 35 or 36).

‘The four methods' CMC Graphs

Fig. 4. The CMC graphs of the four method
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5 Conclusions

In this paper, we propose a new method to quantitatively analyze the qualities of the
facial landmarks for skull identification. Based on this, a new landmark-based
algorithm, which takes fully into account the different weights of the landmarks in the
recognition, is proposed. In addition, we can select an optimal recognition subset of
landmarks to improve the recognition rate according to the recognition quality of
landmarks. Experiments show that the improving measures are effective.
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Abstract. Fusion techniques have received considerable attention for achieving
lower error rates with biometrics. A fused classifier architecture based on
sequential integration of multi-instance and multi-sample fusion schemes
allows controlled trade-off between false alarms and false rejects. Expressions
for each type of error for the fused system have previously been derived for the
case of statistically independent classifier decisions. It is shown in this paper
that the performance of this architecture can be improved by modelling the
correlation between classifier decisions. Correlation modelling also enables
better tuning of fusion model parameters, ‘N’, the number of classifiers and
‘M, the number of attempts/samples, and facilitates the determination of error
bounds for false rejects and false accepts for each specific user. Error trade-off
performance of the architecture is evaluated using HMM based speaker
verification on utterances of individual digits. Results show that performance is
improved for the case of favourable correlated decisions. The architecture
investigated here is directly applicable to speaker verification from spoken digit
strings such as credit card numbers in telephone or voice over internet protocol
based applications. It is also applicable to other biometric modalities such as
finger prints and handwriting samples.

Keywords: Multi-instance fusion, multi-sample fusion, verification error trade-
off, sequential decision fusion, correlation, verification error bounds.

1 Introduction

Reliability of the performance of biometric identity verification systems remains a
significant challenge. Performance degradation arises from intra-class variability and
inter-class similarity. Intra-class variability is caused when individual samples of the
same person are not identical for each presentation and inter-class similarity arises
from high degree of identicalness of the same biometric trait between different
persons. These limitations may lead to misclassification of the verification claims
resulting in false alarms and false rejects. These two errors are dependent and in
general, it is difficult to reduce the rate of one type of error without increasing the
other. Fusion techniques attempt to reduce both.

Fusion techniques have been classified into the 6 categories: multi-instance, multi-
sample, multi-sensor, multi-algorithm, multi-modal and hybrid. A system that
integrates multi-instance and multi-sample fusion proposed in [1] is analytically
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shown to improve performance and allow a controlled trade-off between false
rejection rate (FRR) and false acceptance rate (FAR) when the classifier decisions are
assumed to be statistically independent. A statistical analysis of the problem of fusing
independent decisions from classifiers has also been addressed in the context of writer
identification from different handwritten words in [2]. This analysis did not consider
multiple instances in a sequential scheme as used in [1].

Attempts [3] have also been made to model the correlation between classifiers and
incorporate the statistical dependence information into the fusion scheme in order to
improve performance. There have been claims of marginal improvement [4] in
performance when correlation is considered, but a systematic analysis of this problem
has not yet been presented. In this paper, we analyse the effect of modelling the
statistical dependence between classifier decisions for multi-instance and multi-
sample fused biometric identity verification system.

Section 2 and section 3 explain the methodology and theoretical analysis of the
proposed sequential decision fusion scheme in the context of text-dependent speaker
verification system. Section 4 develops the equations required for modelling the
correlation between the classifier decisions and section 5 provides a brief conclusion
with suggestions for possible future work.

2 Experimental Setup

Speech data from the CSLU Speaker Recognition Version 1.1 database is used for
evaluating performance of the proposed fusion scheme. The data comprise of spoken
digit strings that are manually segmented into individual digits. The methodology
used is the same as explained in [1]. Mel Frequency Cepstral Coefficient features are
extracted by processing utterances in 26 ms frames. Left - Right HMM models with
five states per phoneme and three mixtures per state are created for each digit. The
digit models are trained separately for each speaker. A universal background model is
used for speaker normalization and this model is adapted using MAP and MLLR.

Data from 11 male speakers is used for performance evaluation. Each speaker data
is divided into train, tune and test subsets that are kept disjoint. Impostor testing for a
client is the done using data from the 10 speakers other than the client. Several
combinations are used to obtain reliable estimates of error rates. A training set (21
client utterances) is first chosen for creating speaker specific digit dependent HMM
models. Once the models are trained, the remaining data are divided into 5 different
tune and test data subset combinations. Each tune set (35 client and 140 impostor
utterances) is used to set appropriate digit dependent threshold and evaluate individual
classifier error rates and finally the test set (70 client and 420 impostor utterances) is
used to evaluate the performance of the proposed fusion.

In text-dependent speaker verification (TDSV) mode, the digit is known and the
speaker is unknown. If the claimed speaker’s model for the digit matches the
utterance, it is accepted. This may be a true or false acceptance depending on whether
the utterance came from the claimed speaker or an impostor. Impostor testing is done
using utterances of the same (known) digit, resulting in true rejections or false
acceptances. An instance in the context of TDSV by the proposed architecture refers
to the text or digits which form the decision stages. A sample represents any single
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utterance of a digit from a speaker. If a sample is rejected at a decision stage, the next
sample is randomly picked from the remaining utterances.

3 Multi-biometric Fusion for Speaker Verification

As explained in [1], the combination of multi-instance and multi-sample fusion
schemes allows control of the verification error trade-off. It is desirable in most of the
speaker verification applications such as remote authentication, telephone and internet
shopping applications to serve both security and user convenience requirements
which can be achieved by setting the parameters of the architecture, the number of
attempts at each decision stage (samples) and the number of decision stages
(instances), to be used for verification of a specific speaker.

In the proposed architecture (Fig. 1), the maximum permissible number of repeated
samples, ‘M’, and the number of instances ‘N’ are fixed prior based on the error rates
obtained from the tune dataset. In this system, the speaker presents an input test
utterance X, (m=1,2..M, n =1, 2...N) and the classifier C, (here HMM) makes a

decision to either accept or reject the claimed identity.

For a speaker to be declared genuine for a particular instance (or spoken text), it is
considered sufficient if any one sample (or utterance) presented to the system gets
accepted. Acceptance decisions are logical ‘OR’ for multiple samples. However if the
speaker is accepted by ‘i sample’ (I1<i<m) then the subsequent samples need not be
verified. The speaker is considered to be an impostor when all the ‘m’ samples are
rejected. Rejection decisions are logical ‘AND’ for multiple samples. Conversely, it is
considered necessary in the sequential decision framework that a speaker be accepted
by all instances in the sequence of decision stages. Acceptance is thus logical ‘AND’
for multiple instances. If the speaker is rejected by any decision stage, the sequence
terminates and thus rejection decisions are logical ‘OR’ for multiple instances.
Considering false acceptance rate or FAR (a) and false rejection rate or FRR (p) to be
independent for each instance, the fusion scheme equations are:

Multiple Samples : &, = ma; p,, = p" @))
Multiple Instances : &, =a";p,) =np (when p<<1) (2)

Multi - Instance & Multi - Sample Fusion: ¢, ,, =(ma)";p, ., =n(p™) 3)

From the above equations it is clear that while the FRR decreases (since p is less
than 1) multiplicatively with the number of attempts ‘m’, the FAR increases
additively with ‘m’ and the reduction in the FAR is multiplicative (Equation 2) with
the number of instances ‘n’, while the increase in the FRR is approximately additive
with ‘n’. The facts to be noted here are (a) the behaviour with respect to ‘m’ and ‘n’
are complementary and (b) multiplicative changes are faster than additive ones and
this enables control of the errors through these parameters in the architecture.

With the above equations, it is possible to design a fused system that has lower

errors of both types compared to a single verification stage using a single sample. It is
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Fig. 1. Architecture for a multi-instance and multi-sample fusion scheme with ‘M’ repetition of
samples and ‘N’ classifiers arranged sequentially

also possible to keep both errors within reasonable bounds — without false rejections
rising quickly to nearly 100% when the false acceptance reduces or the other way
around. The trade-off in achieving this is the time for computations required to
perform multiple matches and make decisions with every sample and instance in the
architecture. It will indeed be so if the decisions were statistically independent as
assumed, for multiple samples as well as for multiple instances.

In the above analysis, it is assumed that the FAR and FRR are the same for all
stages (instances) for the purpose of simplicity. This can be relaxed and more
complicated and exact formulae obtained as:

Opgos =m0 *maty... *ma, 4)

Praea =P +A=p(")p7 +..+ A= p")..(1= )P, ®)

Verification error rates for this fusion architecture can be estimated using the above
equations and substituting the error rates for individual digits from the tune dataset
(Ideal Error Rates). Digit models with reasonably lower error rates need to be used for
fusion, otherwise ideal error rates may sometimes reach 100%. In case of statistically
independent decisions, these ideal error rates are the same as the experimental error
rates. However, statistical independence between decisions may not be always valid.
Ideal error rates may be different from the experimentally obtained error rates and the
difference can be statistically significant as demonstrated in [1]. This most likely
cause of the difference is statistical dependence (correlation) between classifier
decisions, resulting in error rates that are larger or smaller than the ideal values
obtained under independence assumption [5, 6]. The input data presented at each
classifier may also be correlated even though the text is different [7]. Taking classifier
decision correlations into account is a further refinement of the statistical analysis as
done in this work. In the next section, the effect of correlation modelling for the
sequential decision fusion scheme is analysed.
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4 Fusion of Correlated Decisions

A limitation of the analysis presented in [1] is the assumption that the decisions made
on each instance are independent, which in general is not true for several words/digits
spoken by the same individual. For modelling correlation, it is important to express
the degree of dependence between the decisions and then to derive the appropriate
decision fusion rule for fusing these decisions. The degree of dependence between the
classifier decisions can be estimated based on the Bahadur-Lazarsfeld Expansion
(BLE) [7]. The expansion begins with the ideal error rates (calculated assuming
statistical independence), and then multiplies them by a correction factor. The ideal
error rates for multi-instance fusion are obtained by using equations 4 & 5 with ‘m’
equal to one where as for a multi-sample system the ‘n’ is equal to one. For the
proposed sequential fusion, the decision fusion rules used are ‘AND’ and ‘OR’ logics.

The equations to calculate the estimated false acceptance rate (o) and false
rejection rate (p), for multiple instances using the BLE [7] and error rates for

individual instances can be given as:

(I-o)-«;) (I-e)(1-a)(1-e)
Opgy = Ogeq| 1+ 27/; — z %;k / k (6)
i<j o, i<j<k ;00

PiP 0 PiP Pk
=l | TH S 0T 50 J
Prst =27 Pla ’[ I pa—p T pi-pi=p | @

For multi-sample system, the estimated values of true rejection rate (f=1—«) and
false rejection rate ( p ) for correlated decisions can be given as:

o0 oo
st = ea 1+ il' 44_ ij il
P =Buca V4 23— ary ,-Ekf-’"\/(ha,-)(l—a,»)(l—ak) J ®
(1=p)-p) (1= p)(=p )= py)
PEst = Pldear| 1+ 73’ — > 73/( J k 9)
i<j PiPj i<j<k PiPjPrx

Here 7/k (k=0, 1) are the correlation coefficients for client and impostor decisions and

are defined using Z;’s, variables that are orthogonal with respect to the independence

model with zero mean and unit variance,

d —np
Yizn = 2121252, ]), and z; :[1—171)} p;=P(d; =1); 1- p; = P(d; =0) (10)
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Fig. 2. Comparison of Ideal Error Rates and Estimated Error Rates calculated using positive
and negative correlation coefficients. (a) FRR for Multi-instance Fusion (b) FAR for Multi-
instance Fusion (c) FRR for Multi-sample Fusion (d) FAR for Multi-sample Fusion.

Figure 2 demonstrates the effect of 2™ order correlation coefficients on the
performance of multi-instance and multi-sample fusion schemes. The error rates
plotted in the figure are calculated using the dataset 1 for ‘speaker 0241°. The lines
plotted for multi-instance fusion refers to the different two digit combinations
whereas multi-sample fusion lines represent the error rates for a single instance (digit
model) verified on two samples. It is evident that for multi-instance fusion the
reduction in the estimated FRR is proportional to the increase in decision correlation
(Fig. 2(a)) and whereas the estimated FAR is inversely proportional to the correlation
(Fig 2(b)). However for multi-sample fusion, the reduction in experimental FRR is
because of lower correlation values for a client (Fig. 2(c)) and experimental FAR
decreases with higher decision correlation for an impostor (Fig 2(d)). The comparison
of ideal error rates with the estimated values (Fig. 2) represents the same conclusion
regarding the favourable dependence for fusion as explained in [5, 6] using Q values
between classifier decisions. The favourable conditional dependence for OR fusion
[5] is negative for clients and positive for impostors. However, for AND fusion [6]
the favourable dependence is positive for clients and negative for impostors.

Favourable dependence between individual digits enables determination of the set
of favourable digit combinations for a specific speaker. Table 1 represent the decrease
in mean error rates for three random speakers for all possible digit sequences and the
set of digit sequences/combinations with favourable correlation. It can be said from
the results that favourable digit combinations are similar across different datasets for a
given speaker and differ slightly between different speakers. So verifying a speaker
using his/her favourable digit sequence can result in lower error rates. Selecting the
optimal set of digit models specific for performance enhancement can be further
based on phoneme correlation which will be explored in future.

It can also be noted from table 1 that trade-off between security and user
convenience can be achieved by selecting the parameter set (nD, mS), ‘n’ - number of
‘Digits’ and ‘m’ - number of ‘Samples’, required for verification. For example, the
FRR and FAR values reduce from initial mean error rates (1S-1D) by 4.9% and 27%
respectively for (4D, 2S) and 18.8% and 8.7% respectively for (4D, 3S) in the case of
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Table 1. Mean Error Rates for proposed fusion (1D-1S: One Digit-One Sample Combination...)
Speaker 1D-1S 4D-2S [ 4D-2S(y) | 4D-3S [ 4D-3S(y)
0047 | FRR | 02335008 | 0241500 | 022270 | 0.069*" | 0.053°!
FAR | 0231509 | 0.047*% | 0.029**% | 0.083*% | 0.055%
0176 |FRR | 0.314*0% | 0.364% | 0.300*"% | 0.159*% | 0.143*0%
FAR 0295i008 0.079i0.02 0.062i0.01 01791004 0.15710,04
0241 | FRR | 0392%07 | 0377*0% | 0343*°77 | 0229*0% | 0.204*%

FAR | 0392%007 | 0 146%00 | 0.122%09 | 031109 | 0.304%00

favorable correlation (speaker 0241). This performance can be further improved by
increasing the number of instances and samples used for verification.

The equations derived above can thus be used to tune the parameters, such as number
of instances, number of samples and favourable set of digit sequences, required to
determine the performance of the fusion method on test data set. For tune dataset, the
correlation between decisions are known and so the experimental values obtained are
equal to the estimated values obtained using Equations (6-9). However in real world
applications (test dataset), the correlation values are unknown. In order to estimate the
error rates for the test set, the correlation coefficient for a speaker across different tune
datasets can be used. Figure 3(a) & 3(b) show the overlap of 2" order correlation
coefficient values between the tune and test datasets for ‘speaker 9’. By ensuring that
the tune set considers all the (prior) conditions under which a speaker may be tested, the
overlap between the correlation sets can be maximised. Thereby using the variance of
correlation values for a specific speaker, the maximum and minimum error rates (i.e.,
error bounds) can be calculated for fixed ‘M’ and ‘N’ values using equations 6-9 with
individual error rates for each instance from tune set. The error bounds obtained using
the correlation coefficients for 2 digit combinations are shown in figure 3(c) & 3(d). It is
evident that most of the experimental error rates obtained from the test set fall within the
bounds of error rates estimated using the tune set parameters.
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Fig. 3. Comparison of tune and test dataset parameters (a) Correlation for Client (b) Correlation
for an Impostor (c) Estimated and Experimental FRR (d) Estimated and Expected FAR
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In real world applications, the verification system may set initial acceptable values
for FRR and FAR. These error rates can be easily estimated using the mathematical
formulae discussed and the fusion parameters, i.e., the number of digits and samples,
the particular digit sequence and variance of correlation. This fusion method can be
applied to biometric systems used for remote authentication with modalities such as
voice, handwriting, fingerprints, and keyboard strokes.

5 Conclusion and Future Work

A sequential decision fusion architecture with multiple attempts can be effectively used
to control the trade-off between false accepts and false rejects. It was shown in [1] that
there is potential to improve the performance of weaker classifiers by combining
decisions under the assumption of statistical independence. This work demonstrates
that superior performance can be obtained by considering the correlation values that
are favourable in the multi-instance and multi-sample components. Correlation
modelling also enables prediction of verification errors using parameters adjusted
using a tune data set. Future work possible in this direction includes (a) the modelling
of user adaptation in repetitive samples and (b) optimal classifier selection in this
architecture amongst many possible instances or digit combinations.
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Abstract. Finding facial features respectively under expression and il-
lumination variations is always a difficult problem. One popular solu-
tion for improving the performance of facial point localization is to use
the spatial relation between facial feature positions. While existing al-
gorithms mostly rely on the priori knowledge of facial structure and on
a training phase, this paper presents an online approach without re-
quirements of pre-defined constraints on feature distributions. Instead
of training specific detectors for each facial feature, a generic method
is first used to extract a set of interest points from test images. With
a robust feature descriptor named Patterns Oriented Edge Magnitude
(POEM) histogram, a smaller set of these points are picked as candi-
dates. Then we apply a game-theoretic technique to select facial points
from the candidates, while the global geometric properties of face are
well preserved. The experimental results demonstrate that our method
achieves satisfactory performance for face images under expression and
lighting variations.

Keywords: facial point localization, game-theoretic matching, POEM.

1 Introduction

Although there exists some reliable face detection methods, e.g. Viola-Jones de-
tector [12], the output faces are still not error-free. Hence, localization of facial
points is an important step for many tasks such as face recognition and face
alignment. Finding facial features respectively under expression and illumina-
tion variations is always a difficult problem. One popular solution for improving
the localization performance is to use the spatial relation between facial feature
positions. Existing algorithms mostly rely on the priori knowledge of facial struc-
ture and on a training phase. In [2TT], pairwise spatial relations between facial
point positions are learned for detection. With the knowledge of facial feature
distributions, [14] divides faces into several regions of interest(ROI), then indi-
vidual feature patch templates are used to detect points in the relevant ROI.
Ding et al.[4] first localize two eyes and estimate the approximate positions of
other features with a priori knowledge about face.

Inspired by the work of [1], where the game-theoretic technique is used for 3D
image registration and where the global consistency between correspondences is
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well preserved, we propose here an online, three-stage method for facial point
localization. While [I] matches the features of images for the same scene/object,
we try to find the correspondences between feature points of two different face
images with different identities and even of different expressions and illumina-
tions. As can be seen in Figure[Il, we cast the feature point localization problem
in a coarse-to-fine matching task. In our model, the template (T') is an image
with manually labeled target points and for each test image (I), we aim at find-
ing the corresponding feature points. In the first step, instead of training specific
detectors for each facial feature, as commonly used in other algorithms [2IT4],
a generic method is applied to extract a set of interest points from I. Then,
for each target point in T', a smaller set of these interest points are picked as
candidates, using a robust feature descriptor named Patterns Oriented Edge
Magnitude (POEM) histogram [I3]. Finally, we apply the game-theoretic tech-
nique to select desired facial points from candidates, without requirements of
pre-defined constraints on feature distributions.

Test unage (1)

Template (T)

Fig. 1. Overview of our method. For clarity, only 3 facial points are located as examples.
In Step 1, interest points are found by a generic detector. For each point in the template,
a small set of points are picked as candidates in Step 2. The desired facial points are
selected from candidates in Step 3.

2 Methodology

2.1 Step 1: Detection of Interest Points

Unlike some approaches requiring trained detectors for specific facial features
[2[T4], we first use a more generic method to extract a set of interest points
which are invariant to scale, rotation and translation and which are also robust
to illumination changes. A smaller set of these points will be picked as candi-
dates in the following step. The fundamental idea behind this is that we believe
some facial features, e.g. eye corners, mouth corners and nostrils are invariant to
similarity transformations with respect to the change of identity, expression and
illumination. We have tested several interest point detectors which are commonly
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used, including Difference of Gaussian(DoG)[6], Laplacian-of-Gaussian(LoG) [5],
Hessian-Laplacian and Harris-Laplacian [9]. According to the visual results on
several images (see an example in Figure [2)), we adopt Harris-Laplacian detector
in this paper, since it can find more facial feature points.

-
7
cila g

Fig. 2. Interest points detected by different methods. From left to right: DoG, LoG,
Hessian-Laplacian and Harris-Laplacian detector.

2.2 Step 2: Candidate Points Screening with POEM Descriptor

After the extraction of interest points, the localization of facial points turns into
a matching problem between the target points from T and the interest points
from (I). Considering the efficiency of matching, for each target point, only K
(e.g. K < 10) points in I with the nearest descriptor are picked as candidates.

Since facial features are not stable under identity, expression and lighting vari-
ations, we need a robust descriptor to distinguish facial points. We propose here
to use the recent feature descriptor called Patterns Oriented Edge Magnitude
(POEM), which has been successfully applied for face representation with very
strong quality results [I0/I3]. The main steps of calculating POEM histogram
are (for more details see [13]):

(1) Calculation of image gradient and quantification of orientations.

(2) Magnitude Accumulation. For a pixel p, a local histogram of gradients
over all pixels within the cell, centered on p, is calculated and assigned to p.

(3) Computation of self-similarity-based operator. In each orientation 6;, the
magnitude at pixel p is compared with [ surrounding pixels in a radius r:

!
POEM" (p) =Y (I} — 1% > 7)27, (1)
j=1
where Igi, 1, fJ are the magnitudes of central and surrounding pixels p, c;, the

threshold 7 is 0.2.
So for each pixel, there will be a set of m values:

POEM (p) = {POEM" (p),..., POEM®"(p)} , (2)

where m equals to the number of defined orientations.

(4) Finally, for a pixel, we calculate m histograms of POEM (one for each
orientation) over a small window, centered on that pixel. These m histograms
are concatenated and used as the feature descriptor of the considered pixel.

Depending on the distances between histograms, K interest points with the
nearest descriptor are picked as candidates for each target point.
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2.3 Step 3: Multi-template Game-Theoretic Matching

Up to this point, there are several candidate points in I for each target point in
T.Let Oy ={ai,...,an} and Oz = {by, ..., b1} be the target and candidate point
sets respectively, where a;,b; represent the coordinates. Thus a target point a;
corresponds to K candidate point pairs: (a;, b1),...,(a;, br). In this stage, we aim
at finding the match pairs for every target point, e.g. (a1, b1),(az, b2) and (as, bs)
in Figure [[l As facial features have certain geometric structure, there exists a
compatible transformation for all these match pairs. The selection process can
be seen as a matching game [I], in which candidate pairs (a;, b;) are defined
as pure strategies available to players and the payoffs for every combination of
strategies are calculated as:

min(|lay — azll, [|br — b2)[)

m((a1,b1), (az, b)) = (3)

maz([lay = azl|, [[br — ba)[))’

where ||| represents the Euclidian distance.

With Equation[3] strategies that correspond to rigid transformation have high
payoff values, while less compatible pairs get lower scores. Take Figure [ for
example, 7((a1,b1),(az,bs)) and 7((a1,b1),(as, bs)) are higher than 7((a1, b2),
(az,bs)). Since players always want to get higher payoffs, they prefer to pick
strategies that are compatible with their opponents’ choices. As the game is
repeated by a large population of players, a set of strategies with high mutual
compatibility will be assigned to high weights. The compatible set of strategies
can be obtained by calculating evolutionary stable states (ESS’s), see Appendix
for details. Finally, the point pairs with high weights are taken as match pairs.

Since facial features in test images vary with the change of identity and ex-
pression, the matching problem will suffer from the error of candidate screening.
More precisely, the correspondence b; of one target point a; may not be in-
volved in the candidate set of a;. In that case, all pairs that contain a; will
get low weights after the matching game, i.e. this facial point is miss-located.
To increase the robustness of game-theoretic matching, we apply multiple tem-
plates to match with test images. Only if one of these templates gives a match
point of target point a;, this facial point can be successfully located. Hence, the
probability of “miss-located” is very low. If a facial point is located by several
templates, the average location is used as the final result.

3 Experimental Results

3.1 Experiment Settings

Database. We use images from AR-face database [8] which contains over 4,000
color images corresponding to 126 people’s faces. Images feature frontal view
faces with different facial expressions and illumination conditions (see Figure 3.

Evaluation criterion. Let b; and bj' be the predicted and manually labeled
locations (ground truth), the localization error is calculated as: m; = ||b2 — bf”
/deye, where dcy. is the average distance between two eye pupils in ground truth.
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Fig. 3. Examples of test images. From left to right: neutral, smile, anger and side light.

If we choose a threshold ¢, the correct localization rate will be:

Zj]\il Zf\; (mf < C)

rate =
Mx N ’

(4)
where M is the number of test images and N is the number of target points per
template.

3.2 Matching of Labeled Points

In order to verify the effectiveness of our method for facial features, with the
assumption of perfect selection of candidates, we first applied our method to
match two sets of labeled points from two different images. We randomly selected
20 images of different individuals with neutral expression from AR-face database
and ran game-theoretic matching between every two images, i.e. 190 image pairs.
Original images with the resolution 768 x 576 are used directly in this experiment.

For each image pair, we take one image as template (T') and calculate feature
descriptors for all labeled points in both images. For each point in T', 5 points
with nearest descriptor in another image (I) are used as candidates. AR-face
images have been manually labeled with 22 landmarks, so there are 110 point
pairs which are then regarded as strategies in the matching game.

A point in image I assigned to the corresponding point in 7', means a cor-
rect match. We adopted different POEM parameters to determine the closest
neighbors, the average match rate is about 98% and the results are not sensitive
to parameter selection. Hence, our method works well for the matching of facial
points.

3.3 Facial Features Localization

Here, we aim at locating 10 facial points in test images (Figure ). We form two
image sets for evaluation: Data 1 consists of frontal faces with neutral, smile
and anger expression and Data 2 is a set of face images under side illumination
(Figure B]). All the face images are extracted by Viola-Jones detector [12].

1. Using different number of templates

We first evaluated the impact of adopting different numbers of templates. The
templates and 350 test images were randomly selected from Data 1. The local-
ization results can be seen in Figure @ It is clear that matching with single
template gets lower accuracy than multiple templates, due to the high probabil-
ity of “miss-located”. While the results with 10, 15 and 20 templates are very
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Fig. 4. Different numbers of templates Fig. 5. With and without game matching

similar, the accuracy of using 5 templates is slightly worse. For efficiency, we
adopt 10 templates in the following experiments, which have no overlap with
test images.

2. Verification of the importance of game-theoretic matching

To show the importance of game-theoretic matching, we also tried to localize
points without this step, i.e. we directly picked the points with closest descrip-
tor in I as the correspondence of a target point in T'. Suffering from the vari-
ation of facial features, the closest-feature-based method is more like a random
selection from detected interest points (Figure[d Data 1), while game-matching-
based method achieves a good performance. Hence the game-theoretic technique,
which carries the information of face structure, is very important to facial point
localization.

3. Using different feature descriptors under neutral condition

This section compares the performance of our method when different feature
descriptors are used: intensity, SIFT[7] and POEM descriptor. When using in-
tensity values, the sum of squared differences(SSD) between two sub-regions is
computed as the measure of distance. We calculated the three feature descriptors
with the same window size, and the localization results can be seen in Figure
(Data 1). The facial point localization method works better with POEM than
with SIFT, and SSD does not seem to be suitable in this case. Using a threshold
m < 0.15, our approach is successful in 95% of points (see some examples in
Figure [), while localization accuracy with SIFT only reaches 82%. The rates
of other methods, e.g. 96% for PRFR [2] and TST [3], 95% for [I1], are very
close to our result. Considering that our approach runs without specific trained
detectors nor face models, the localization performance is satisfactory.

4. Using different feature descriptors under lighting changes

Few evaluations have been done specifically for locating facial points under light-
ing changes. Here, 100 images were selected randomly as test images from Data 2,
and template set consists of 5 images from Data 1 and 5 images from Data 2.
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Fig. 8. Examples of localized facial points, where “+” is the output of our method and
“x” is the manually labeled location

Three kinds of features are also compared in this case, and the results are shown
in Figure [l The game-theoretic method with POEM still gives better result
than with other two features. For m < 0.15, our method reaches a success rate
of 90% and the method with SIFT gets 81%. The accuracies are slightly lower
than in neutral condition but still acceptable.

4 Conclusion

This paper presents an online approach to locating facial points, requiring no
pre-defined constraints on feature distributions. We cast the localization problem
in a matching game which preserves global geometric consistency of facial points.
The experimental results demonstrate that the game-theoretic technique works
well for facial point localization with a combination of a generic interest point
detector. Besides, POEM descriptor is adopted in our method, and it shows
better ability to represent facial features than SIFT.

References

1. Albarelli, A., Rodola, E., Torsello, A.: A game-theoretic approach to fine surface
registration without initial motion estimation. In: CVPR (2010)

2. Cristinacce, D., Cootes, T., Scott, I.. A multi-stage approach to facial feature
detection. In: 15th BMVC, pp. 277-286 (2004)



64 W. Ni, N.-S. Vu, and A. Caplier

3. Cristinacce, D., Cootes, T.: Facial Feature Detection and Tracking with Automatic
Template Selection. In: 7th FG (2006)

4. Ding, L., Martinez, A.: Precise detailed detection of faces and facial features. In:
CVPR, pp. 1-7 (2008)

5. Lindeberg, T.: Feature detection with automatic scale selection. International Jour-
nal of Computer Vision 30(2), 79-116 (1998)

6. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV (1999)

7. Lowe, D.: Distinctive image features from scale-invariant keypoints. International
journal of computer vision 60(2), 91-110 (2004)

8. Martinez, A., Benavente, R.: The AR face database. Tech. rep., CVC (1998)

9. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. In-
ternational journal of computer vision 60(1), 63-86 (2004)

10. Ni, W., Caplier, A.: Newton optimization based Congealing for facial image align-
ment. In: ICIP (2011)

11. Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using
boosted regression and graph models. In: CVPR, (2010)

12. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: CVPR (2001)

13. Vu, N., Caplier, A.: Face Recognition with Patterns of Oriented Edge Magnitudes.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311,
pp. 313-326. Springer, Heidelberg (2010)

14. Vukadinovic, D., Pantic, M.: Fully automatic facial feature point detection using
Gabor feature based boosted classifiers. In: IEEE International Conference on Sys-
tems, Man and Cybernetics (2005)

Appendix: Basic Knowledge of Game Theory

Let O = {1,2,...,n} be the pure strategies set and C' = (C;;) stands for the payoff
matrir. A mized strategy is a probability distribution & = (1, ...,2,)7 over O,
and belongsto A ={x € R": >, 2; =1 and z; > 0,i =1,...,n}. The support
of a mixed strategy o(x) defines the set of elements with non-zero probability.
If a player plays pure strategy i against a mixed strategy x, the payoff will
be (Cx); = Zj cijz;. Hence, the expected payoff by adopting a mixed strategy
y against x is y? Cx. The best replies against a mixed strategy = are 3(z) =
{y €A yTCx = maxzzTCx}. A mixed strategy x is a Nash equilibrium if it
is the best reply to itself, i.e. Vy € A, yTCx < xTCz. A strategy is said to
be an evolutionary stable strategy(ESS) if it is a Nash equilibrium and Yy €
A, z2TCx = y"Cx = 27 Cy > yTCy. An ESS can be estimated iteratively by:

where t is the number of iteration.
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Abstract. Dental biometrics are commonly used in the process of foren-
sic human identification. In order to automatize the identification, a
method of extracting and comparing dental features from digital radio-
grams was developed by the creators of Automated Dental Identification
System (ADIS). In this paper, a novel method of extracting teeth shapes
from extraoral radiograms, known as orthopantomograms, is proposed.
The method segments the image using the watershed algorithm and clas-
sifies every resulting region as belonging either to the tooth or the back-
ground. Example results obtained by means of the proposed method are
also presented.

Keywords: dental biometrics, image processing, forensic identification,
ADIS.

1 Introduction

Forensic human identification is the process of establishing the identity of an in-
dividual, to be later used in judicial proceedings. Various biometrics are applied
for this purpose, e.g. fingerprints, DNA or dental records. After the success-
ful implementation of the Automatic Fingerprint Identification System (AFIS),
other biometrics have received similar scrutiny from researchers in the hope of
automatization of the process of identification. Existing dental identification sys-
tems, such as WinlD, compare dental records previously codified by an expert.
Another approach, presented by the creators of the Automated Dental Identifi-
cation System (ADIS), consists in the automatic extraction of dental biometrics
from a radiographic image, thus minimizing the participation of an expert, which
results in speeding up the whole process ([I]). Whereas systems like WinID uti-
lize dental works as a basis for the comparison, teeth contour shapes extracted
from radiograms are used in ADIS in the process of matching ([2]).

In this paper, a method for extracting the shapes of teeth from orthopanto-
mograms is proposed. As opposed to intraoral radiograms, which are taken with

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 65-[72] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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the film situated inside the patient’s mouth, showing only a fragment of the
dentition, pantomograms are taken with the film outside the patient’s mouth
(extraoral imaging) and show the full dentition on a single image. This type of
radiogram is considered to be of poorer quality than intraoral images, because of
the relatively lower dose of radiation used in the process of developing the film.
The representation of semi-circular geometry of the jaw on a 2-dimensional im-
age also results in neighboring teeth occluding with each other more frequently
than in intraoral images.

Before the teeth contours can be extracted, firstly an image needs to be
contrast-enhanced and segmented into areas containing only a single tooth. The
image enhancement method preceding the algorithm presented in this paper
consists in decomposing the radiogram into a set of smaller images containing
a subset of information from the original image, called the Laplacian pyramid
([3]). The decomposed images, also known as the pyramid layers, are then fil-
tered and recomposed, creating as a result an enhanced version of the original
image.

The segmentation method proposed in the paper is a combination of an ex-
isting method created for intraoral images and a new approach utilizing dental
features easily localizable on a pantomogram. After using the integral projec-
tions method described in [4] to determine a line separating the upper and lower
jaw, the resulting curve is translated vertically in order to find a position where
it passes through the soft tissue in the center of a tooth known as dental pulp.
Once the location of such a line is established for both upper and lower jaw, a
new image is created by combining a range filtered original image and the neg-
ative of the original image, which helps in emphasizing the gaps between teeth.
Lastly, the values of the pixels on the new image through which the dental pulp
curve passes are grouped in an array, which is then searched for sharp spikes in
values. These spikes occur in points where the original image is dark (negative
component) and surrounded by pixels of high and low intensity values (range
filtering component), indicating a gap between teeth. After finding all the nec-
essary gaps, for each molar tooth an additional search is performed in order to
find the slope of the line separating neighboring teeth. This is caused by the
fact that molars have a higher probability of malalignment, which makes the use
of a vertical line passing through the detected gap between teeth insufficient to
properly separate them. To determine the location of the second point, a greedy
algorithm is used, moving iteratively one pixel vertically towards the root of the
tooth and selecting the darkest pixel in its horizontal vicinity. After the amount
of iterations equal to an average length of a tooth on the image, the last selected
point becomes the second segmentation point and a line passing through the
aforementioned gap position and this second point becomes the segmentation
line.

All pantomograms presented in this paper are used courtesy of Pomeranian
University of Medicine in Szczecin, Poland. A sample pantomogram with a single
segmented tooth is displayed on Fig. 11
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(a) (b)

Fig.1. A sample pantomogram ([1(a)]) and a single segment from which a tooth shape
is extracted (1(b)))

2 Methods Developed for Intraoral Images

Several approaches for extracting the shapes of teeth from dental radiograms
have been presented in scientific literature so far. These algorithms are usually
developed with intraoral images in mind and do not address the problems typical
for pantomograms. The first method, described in [5], utilizes the active contour
model (so-called ‘snakes’) to extract the shapes from a previously segmented
image. Active contours, first described in [6], are a model of parametrized curves
that, while under the influence of an external driving force (usually derived from
the image), attempt to minimize the sum of their external and internal energy by
moving in the spatial domain in accordance with limitations imposed on their
shape. The external driving force needs to be chosen in such a way that the
function takes low values in the points belonging to the contour and high values
outside of the contour; in [5] the assumed external energy function is represented
by the formula:

Eepy = —|V[Gg(x,y) *I(.’E,y)HQ, (1)

where G, is a Gaussian with the standard deviation ¢ and V is a Laplacian.
The Laplacian of Gaussian is commonly utilized in image processing for edge
detection if the image background is noisy. It results in the reduction of false
edge detection.

A modified approach based on snakes — the active contour without edges, was
used in [7]. Instead of minimizing the energy of the contour, a model fit error
term was applied to guide the contour. Thus, the minimized energy function
becomes:

BO= [  lwy)—alfdidy+ [ (o) - fdidy, ()
inside(C) outside(C)

where C' is the current contour, Iy is the original image, ¢; and ¢y are the mean
intensities of the pixels inside and outside C, respectively. The energy of a given
contour is minimized when the difference between ¢; and ¢y is maximized, i.e.
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when the contour C' contains an homogeneous area with high-intensity pixels
and the area outside C' contains low-intensity pixels. The contour shape can still
be controlled by the limitations imposed on its curvature.

Another method, applied by Chen and Jain ([8]), consists in the use of active
shape models in the process of dental shape extraction. Presented in [9] active
shape models are ”used to extract eigen-shapes from aligned training tooth con-
tours, which include tooth contours and their scaled and rotated variations”
([8]). After the resulting contour and the tooth on the image are aligned, splines
are used to represent the extracted shape.

The last described approach was presented in [4]. In this method, it is assumed
that the center of the crown (the uncovered part of the tooth) is located in
the segment. A radial scan is then performed with the angle ranging between
0 and 7, from the crown center to the edge of the image. Along every scan
line, a single point with the highest bayesian probability of belonging to the
contour (determined by its intensity and the intensity of the next pixel in the
given direction) is accepted and connected to the previously selected point to
form the crown contour. To extract the shape of the root (part of the tooth
covered by gums) an iterative algorithm is used, starting from both ends of the
crown contours, i.e. points selected for the angles 0 and 7, moving towards the
horizontal edge of the image and choosing a single point in the horizontal vicinity
maximizing the intensity difference between the points inside and outside the
contour. Which points are considered to be inside depends which side of root’s
shape is being extracted, e.g. for the left side of the root the pixels to the right
of the selected contour point are considered to be inside the contour. When the
horizontal edge of the image is reached on both sides of the tooth, the contour
is complete.

3 Description of the Proposed Method

While the approaches presented in the previous section provide good results
for intraoral images, frequent occlusions appearing in pantomograms require a
different solution, one that does not require high contrast between the pixels of
the tooth and the background. For instance, if two neighboring teeth occlude
with each other, their edes will have higher intensities than the pixels in the
center of the tooth.

It is assumed that before the proposed algorithm starts, a detection step is per-
formed to decide whether a tooth is present in a given segment of the radiogram.
Then, the image is morphologically opened in order to reduce the noise and to cre-
ate larger areas of similar intensity range. Afterwards, the image is entropy filtered
in order to detect the edges of similarly colored areas and then segmented into
small fragments using the watershed method. Because the image was previously
morphologically opened, the resulting segments are larger than on a watershed-
segmented original image, thus reducing the number of segments and, as a result,
speeding up the later stages of the presented method. The size of the resulting
segments depends on the structuring element used in morphological opening —
the larger the structuring element, the larger the segments on the image.
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For every thus achieved segment, a set of features is calculated from the orig-
inal image: segment’s centroid, normalized mean value of the intensities of its
pixels and the normalized vertical distance from the centroid to the curve sepa-
rating the upper and lower jaw. The Euclidean distance between the centroids is
also calculated and for each segment, 50 segments with the closest centroids are
chosen to calculate the distinction of its mean intensity. The distinction value of
segment 4 is calculated as:

N

D(i) = max(I(i) — I(5),0), 3)

j=1

where I(i) and I(j) are respectively the mean intensities of segments i and j.
The distinction values are later normalized and are used as an indication whether
the chosen segment is brighter than its surrounding segments. Finally, a mean
intensity is calculated for all the non-zero pixels to serve as a reference of the
image exposure.

To determine which segments belong to the tooth, a fitness function is cal-
culated. The values used in the calculation of the fitness function depend on
the type of tooth being segmented: for the first two teeth from the center of
the jaw (incissors) only the distinction function and vertical distance from the
curve separating upper and lower jaws are used, with the weights of 0.7 and 0.3
respectively, for all the other teeth the mean intensity is added, with the weights
of 0.4 (mean intensity), 0.4 (distinction function) and 0.2 (vertical distance from
the curve separating jaws). Once every region has an assigned fitness function,
the segments with the fitness above a preselected threshold are considered to
belong to the tooth and have their pixel values set to 1, and all other regions
are excluded and set to 0. The thresholds used in this study were: 0.4 for the
incissors, 0.5 for the third and fourth tooth from the center (the canine and the
first premolar) and the mean intensity of the whole image multiplied by 0.8 for
all the other teeth. All the values were established experimentally and did not
require scaling for different images, as all the radiograms used in this study were
the same size and subject to the same contrast enhancement.

Finally, after all rejected regions are set to 0, the remaining regions are mor-
phologically dilated in order to remove the borders between them. Exterior
boundaries of the objects on the resulting image are then traced and the longest
contour that also lies close to the jaws separating curve is selected as the tooth
contour. In order to smooth the contour, all border pixel positions are then
Gaussian filtered. The resulting list of points is the final contour of the tooth.
The result of consecutive stages of the proposed algorithm on the sample tooth
is presented on Fig.

4 Experimental Results

The algorithm was tested on a database containing 218 digital pantomograms
belonging to 176 different people and the result for the exemplary tooth is pre-
sented on Fig. A contour of the same tooth extracted using the active
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Fig. 2. Results of consecutive stages of the algorithm: [2(a)| watershed segmentation,
2(b)| regions remaining after thresholding, with brightness equal to their fitness value

contours without edges ([7]) can be seen on Fig. The contour shown on
3(b)| was achieved after 650 iterations and a further increase of this parameter
did not result in the inclusion of the area of dental pulp inside the contour. This
is caused by the fact that the dental pulp is a soft tissue and appears darker
than the surrounding tooth on the radiogram. Because of this, the inclusion of
the area inside the contour results in the increase of its energy. This problem is
also evident on Fig. but it has no impact on the final result.

(a) (b)

Fig.3. A comparison of the results of shape extraction using the proposed method

(3(a)) and active contour without edges ([7], [3(b))

More test results of the presented method are shown on Fig. @l The extracted
contours are repeatable across different images of the same person, as seen on Fig.
and Fig. The incorrect results are often caused by the bone formation
known as trabecula. Other problems might be caused by incorrect segmentation
that results in a fragment of neighboring tooth visible on the image segment,
like on Fig. Incorrectly excluded regions do not affect the resulting contour
as they do in the case of the active contours without edges (Fig. .

It should be noted that because the extracted shapes are later used for iden-
tification, the best way to compare the presented methods is to assess their
influence on the successful retrieval rate. Repeatability in similar conditions is
more important than the correctness of the result, because two incorrectly ex-
tracted shapes (for example because of the presence of dental braces on the
image) could still lead to a successful retrieval, if the error is similarly reflected
on both of them. Such a comparison should be the basis of a future study.
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Fig. 4. Exemplary results of the proposed method. Teeth on figures [4(a)lld(e)| come

from the image shown on Fig. Teeth on figures and [4(g)| are the same teeth
as those shown on and respectively. They were extracted from an another

pantomogram belonging to the same person.
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5 Conclusions and Future Work

In this paper, a novel method of extracting teeth contours from orthopanto-
mograms was presented. The method works fully automatically and provides
acceptable results, which can be later used in the process of forensic human
identification. The proposed algorithm was compared with another approach —
active contour model without edges.

Further development of the method could include the use of artificial neural
networks instead of the fitness function in the process of deciding which regions
on the image belong to the tooth. Another improvement could be achieved if a
post-processing step is added, removing protrusions from the contour that do
not fit the general shape of a tooth.
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Abstract. JPEG XR is considered as a lossy sample data compression
scheme in the context of iris recognition techniques. It is shown that
apart from low-bitrate scenarios, JPEG XR is competitive to the current
standard JPEG2000 while exhibiting significantly lower computational
demands.

1 Introduction

With the increasing usage of biometric systems the question arises naturally
how to store and handle the acquired sensor data (denoted as sample data sub-
sequently). In this context, the compression of these data may become imperative
under certain circumstances due to the large amounts of data involved. Among
other possibilities (e.g. like compressed template storage on IC cards and op-
tional storage of (encrypted) reference data in template databases), compression
technology is applied to sample data in distributed biometric systems, where the
data acquisition stage is often dislocated from the feature extraction and match-
ing stage (this is true for the enrolment phase as well as for authentication). In
such environments the sample data have to be transferred via a network link
to the respective location, often over wireless channels with low bandwidth and
high latency. Therefore, a minimisation of the amount of data to be transferred
is highly desirable, which is achieved by compressing the data before transmis-
sion and any further processing. As an alternative, the application of feature
extraction before transmission looks promising due to the small size of template
data but cannot be done under most circumstances due to the prohibitive com-
putational demand of these operations (current sensor devices are typically far
too weak to support this while compression can be done e.g. in dedicated low
power hardware).

While current international standards define the application of JPEG2000 for
lossy iris sample data compression, we focus in this paper on the corresponding
application of the recent JPEG XR still image coding standard. We experimen-
tally compare the achieved results to a JPEG2000 based (and therefore standard
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conformant) environment. In particular, we investigate the effects of applying
different settings concerning the use of the optional Photo Overlap Transform
(POT) as a part of JPEG XR’s Lapped Biorthogonal Transform (LBT) with re-
spect to iris recognition accuracy. In Section 2, we review related standards and
literature in the area of lossy iris sample data compression. Section 3 presents
experiments where we first shortly review the four different iris recognition sys-
tems employed in this study. Subsequently, JPEG XR basics and the investigated
transform settings are briefly explained. Experimental results comparing JPEG
XR and JPEG2000 are shown with respect to PSNR (image quality), execution
speed, and iris recognition accuracy in terms of EER. Section 4 concludes the

paper.

2 Biometric Iris Sample Compression

During the last decade, several algorithms and standards for compressing image
data relevant in biometric systems have evolved. The certainly most relevant one
is the ISO/IEC 19794 standard on Biometric Data Interchange Formats, where
in its former version (ISO/IEC 19794-6:2005), JPEG and JPEG2000 (and WSQ
for fingerprints) were defined as admissible formats for lossy compression, whereas
for lossless and nearly lossless compression JPEG-LS as defined in ISO /TIEC 14495
was suggested. In the most recently published version (ISO/IEC FDIS 19794-6 as
of August 2010), only JPEG2000 is included for lossy compression while the PNG
format serves as lossless compressor. These formats have also been recommended
for various application scenarios and standardised iris images (IREX records) by
the NIST Iris Exchange (IREX http://iris.nist.gov/irex/) program.

The ANSI/NIST-ITL 1-2011 standard on “Data Format for the Interchange
of Fingerprint, Facial & Other Biometric Information” (2nd draft as of February
2011, former ANSI/NIST-ITL 1-2007) supports both PNG and JPEG2000 for
the lossless case and JPEG2000 only for applications tolerating lossy compres-
sion.

In literature on compressing iris imagery, rectangular as well as polar iris
sample data has been considered. With respect to employed compression tech-
nology, we find JPEG [11 8], JPEG2000 [4} [1, §], and other general purpose com-
pression techniques [8] being investigated. Superior compression performance
of JPEG2000 over JPEG is seen especially for low bitrates (thus confirming the
choice of the above-referenced standards), however, for high and medium quality
JPEG is found still to be competitive in terms of impacting recognition accu-
racy. Apart from applying the respective algorithms with their default settings
and standard configurations, work has been done to optimise the compression
algorithms to the application domain: For JPEG2000, we have proposed to in-
voke Rol coding for the iris texture area [3] whereas the removal of the image
background before compression has also been suggested (i.e. parts of the image
not being part of the eye like eye-lids are replaced by constant average gray
[1]). For JPEG, we have demonstrated an optimisation of quantisation matri-
ces to achieve better matching accuracy compared to the standard values for
rectangular iris image data [7] as well as for polar iris images [6].
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The recent JPEG XR standard has not yet been investigated in the context
of biometric systems. It might represent an interesting alternative to JPEG2000
due to its simpler structure and less demanding implementations in terms of
memory and CPU resources.

3 Experiments on Compressing Iris Sample Data

3.1 Iris Recognition and Iris Database

It is crucial to assess the effects of compressing iris samples using a set of different
iris recognition schemes since it can be expected that different feature extraction
strategies will react differently when being confronted with compression artefacts
and reduced image quality in general.

Many iris recognition methods follow a quite common scheme close to the
well known and commercially most successful approach by Daugman. In our
pre-processing approach (following e.g. Ma et al. [0]) we assume the texture to
be the area between the two almost concentric circles of the pupil and the outer
iris. These two circles are found by contrast adjustment, followed by Canny edge
detection and Hough transformation. After the circles are detected, unwrapping
along polar coordinates is done to obtain a rectangular texture of the iris. In our
case, we always re-sample the texture to a size of 512x64 pixels. Subsequently,
features are extracted from this iris texture (which has also been termed polar
iris image), we consider the following four techniques in this work:

1. A wavelet-based approach proposed by Ma et al. [9] is used to extract a
bit-code. The texture is divided into N stripes to obtain N one-dimensional
signals, each one averaged from the pixels of M adjacent rows. We used
N =10 and M =5 for our 512x64 pixel textures (only the 50 rows close to
the pupil are used from the 64 rows, as suggested in [9]). A dyadic wavelet
transform is then performed on each of the resulting 10 signals, and two
fixed subbands are selected from each transform. This leads to a total of
20 subbands. In each subband we then locate all local minima and maxima
above some threshold, and write a bitcode alternating between 0 and 1 at
each extreme point. Using 512 bits per signal, the final code is then 512x20
bit. Matching different codes is done by computing the Hamming Distance.

2. Again restricting the texture to the same N = 10 stripes as described be-
fore, we use a custom C implementation similar to Libor Masek’s Matlab
implementatio of a 1-D version of the Daugman iris recognition algorithm
as the second feature extraction technique. A row-wise convolution with a
complex Log-Gabor filter is performed on the texture pixels. The phase an-
gle of the resulting complex value for each pixel is discretized into 2 bits.
Those 2 bit of phase information are used to generate a binary code, which
therefore is 512x20 bit (again, Hamming Distance can be used for similarity
determination).

! http://www.csse.uwa.edu.au/"pk/studentprojects/libor/sourcecode.html
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3. The third algorithm has been proposed by Ko et al. [5]. Here feature extrac-
tion is performed by applying cumulative-sum-based change analysis. The
algorithm discards parts of the iris texture, from the right side [45° to 315°]
and the left side [135° to 225°], since the top and bottom of the iris are often
hidden by eyelashes or eyelids. Subsequently, the resulting texture is divided
into basic cell regions (these cell regions are of size 8 x 3 pixels). For each
basic cell region an average gray scale value is calculated. Then basic cell
regions are grouped horizontally and vertically. It is recommended that one
group should consist of five basic cell regions. Finally, cumulative sums over
each group are calculated to generate an iris-code. If cumulative sums are
on an upward slope or on a downward slope these are encoded with 1s and
2s, respectively, otherwise Os are assigned to the code. In order to obtain a
binary feature vector (to enable Hamming Distance computation for com-
parison) we rearrange the resulting iris-code such that the first half contains
all upward slopes and the second half contains all downward slopes. With
respect to the above settings the final iris-code consists of 2400 bits.

4. Finally, we employ the feature extraction algorithm of Zhu et al. [I0] which
applies a 2-D wavelet transform to the polar image first. Subsequently, first
order statistical measures are computed from the wavelet subbands (i.e.
mean and variance) and concatenated into a feature vector. The similarity
between two of these real-valued feature vectors is determined by computing
the corresponding /2-Norm.

The following dataset is used in the experiments:

CASIAv3 Interval databasdd consists of NIR images with 320 x 280 pixels in
8 bit grayscale .jpeg format (high quality) of 249 persons, where for many
persons both eyes are available which leads to 391 (image) classes overall.

For intra-class matches (genuine user matches), we consider all possible tem-
plate pairs for each class (overall 8882 matches), while for inter-class matches
(impostor matches) the first two templates of the first person are matched against
all templates of the other classes (overall 2601 matches).

3.2 Compression Techniques: JPEG XR and JPEG2000

Originally developed by Microsoft and termed “HD Photo”, JPEG XR got stan-
dardized by ITU-T and ISO in 2009 [2], which makes it the most recent still image
coding standard. The original scope was to develop a coding scheme targeting
“extended range” applications which involves higher bit-depths as currently sup-
ported. However, much more than 10 years after JPEG2000 development and
10 years after its standardisation it seems to be reasonable to look for a new
coding standard to eventually employ “lessons learnt” in JPEG2000 standard-
isation. In particular, the focus is on a simpler scheme which should offer only
the amount of scalability actually required for most applications (as opposed

2 http://www.cbsr.ia.ac.cn/IrisDatabase.htm/
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to JPEG2000 which is a rather complex scheme offering almost unconstraint
scalability). JPEG XR shares many properties with JPEG and JPEG2000 but
exhibits also elements of the recent H.264 video standardisation [2].

JPEG XR is a transform coding scheme showing the classical three-stage de-
sign: transform, quantisation, and entropy encoding. JPEG XR supports lossless
to lossy compression of up to 32 bits per colour channel. The transform operates
on macroblocks consisting of 16 (arranged in 4 by 4) 4 x 4 pixel blocks. The
first stage of the integer-based transform allowing for perfect reconstruction is
applied to all 4 x 4 pixel blocks of a macroblock. Subsequently, the resulting coef-
ficients are partitioned into 240 “high pass (HP) coeflicients” and 16 coefficients
corresponding to the lowest frequency in each block. The latter are aggregated
into a square data layout (4 x 4 coefficients) onto which the transform is applied
for a second time. The result are 15 “low pass (LP) coefficients” and a single
“DC” coefficient (per macroblock). It is interesting to note that the concept of
recursively applying a filtering operation is “borrowed” from the wavelet trans-
form. Obviously, this also corresponds to three scalability layers: DC, LP, and
HP coefficients, similar to the scans being built in the spectral selection JPEG
progressive mode.

In fact, the transform used in JPEG XR is more complicated as compared to
JPEG, it is a so-called “two-stage lapped biorthogonal transform (LBT)” which
is actually composed of two distinct transforms: The Photo Core Transform
(PCT) and the Photo Overlap Transform (POT). The PCT is similar to the
widely used DCT and exploits spatial correlation within the 4 x 4 pixels block,
however, it suffers from the inability to exploit inter-block correlations due to its
small support and from blocking artifacts at low bitrates. The POT is designed to
exploit correlations across block boundaries as well as mitigate blocking artifacts.

Each stage of the transform can be viewed as a flexible concatenation of POT
and PCT since the POT is functionally independent of the PCT and can be
switched on or off, as chosen by the encoder (this is signalled by the encoder in
the bitstream). There are three options: disabled for both PCT stages, enabled
for the first PCT stage but disabled for the second PCT stage, or enabled for
both PCT stages.

Since our experiments are focused on the evaluation of those three options con-
cerning POT employment, we do not describe the subsequent JPEG XR stages
in the following, please consult the standard or related publications with respect
to this issue [2]. For experimentation, we use the official JPEG-XR reference soft-
ware 1.8 (as of September 2009) and for JPEG2000 compression, imagemagick
8.6.6.0.4-3 (employing libJASPER 1.900.1-7+b1) is used with standard settings.

3.3 Experimental Results

For enabling a fair comparison in the experiments, the same bitrate has to be set
in JPEG XR and JPEG2000. While this is straightforward in JPEG2000, JPEG
XR suffers from the same weakness as JPEG being unable to explicitly specify
a target bitrate. Therefore we have employed a wrapper-program, continuously
adapting the JPEG XR quantisation factors (set to identical values for DC, LP,
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Fig. 1. Comparing JPEG XR and JPEG2000 in terms of PSNR and Execution Speed

and HP band as used in the default settings) to achieve a certain target bitrate
(given in bytes per pixel bpp).

In Fig. Mla we compare PSNR performance averaged over all images in the
considered dataset. Up to 0.2 bpp, JPEG2000 provides the highest values. In
this bitrate range, applying no POT (LBT= 0) clearly gives the worst results
(PSNR is about 1dB reduced as compared to JPEG2000). Applying POT for
the first (LBT= 1) or both transform stages (LBT= 2) leads to almost identical
results across the entire bitrate range, up to 0.2bpp PSNR quality is only slightly
below that of JPEG2000.

The situation is different for higher bitrates. JPEG2000 saturates from 0.3bpp
upwards due to the employed irreversible 9/7 transform and is clearly outper-
formed by all JPEG XR settings. Interestingly, for bitrates larger than 0.2bpp,
applying no POT gives the best PSNR values, which is explained by the fact
that POT application is targeted to optimise data for human perception but not
for numerical error minimisation.

Fig. [lb shows a comparison of execution timings for compressing the entire
dataset. We note that depending on the target bitrate considered, JPEG XR is
faster by a factor of 2-5 as compared to JPEG2000 (target bitrate optimisation
is disabled for this evaluation). This result underlines that JPEG XR could be
an interesting alternative to JPEG2000 in biometric environments, especially in
cases with limited CPU resources at the compressing site.

In the following, we will investigate the impact compression of one template
involved in matching has on the recognition performance of the four iris recog-
nition systems considered (e.g., the sample data acquired by the sensor is com-
pressed and sent to the feature extraction / matching site). For this purpose,
we plot equal error rate (EER, on the vertical axis) for applying compression in
an entire range of target bitrates (in bpp, on the horizontal axis) and compare
JPEG2000 to the three JPEG XR POT employment variants. For reference, also
the “Lossless” case (i.e. recognition accuracy in EER without any compression
applied) is indicated as a horizontal line in Figs. 2 and Bl
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Fig. 3. EER for varying bitrates and JEPG XR compression settings

For the algorithms of Ma and Masek, JPEG2000 provides the lowest (i.e. best)
EER up to a bitrate of 0.15bpp, while for the other two recognition algorithms,
no clear tendency can be observed. In particular, for no algorithm there is a clear
indication whether application of POT would be beneficial or not. Further, it is
interesting to see that for some algorithms and bitranges, the results involving a
compressed template are superior to the uncompressed case (e.g. Ko and Masek
for bitrates > 0.2bpp, Zhu for bitrates between 0.04 and 0.15). This can be
explained by the fact that compression acts as a denoising filter and has been
observed in earlier studies as well [6].

What is especially interesting to observe, is that PSNR behaviour as shown
in Fig.[{la does not directly propagate to recognition accuracy. While the better
PSNR behaviour of JPEG2000 at low bitrates is at least reflected by the results
of two algorithms, we do not find any superiority of JPEG XR for higher bi-
trates. On the other hand it is interesting to see that except for two recognition
algorithms at low bitrates, JPEG XR compressed sample data perform almost
equivalent to JPEG2000 compressed one. Given the significantly reduced compu-
tational demand as shown in Fig.[Ilb, JPEG XR can be considered a promising
alternative to JPEG2000 in this application scenario and should be considered
in future standardisation efforts in the area.
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Conclusion

We have found that in the context of biometric systems, JPEG XR can be
an interesting alternative to the current standard JPEG2000, especially due
to its significantly lower computational demand. A minor decrease in EER as
compared to JPEG2000 can be seen only for lower bitrates for two out of four
iris recognition systems only. For most iris recognition scenarios, compression
with JPEG XR has been identified to be quite competitive to compression with
JPEG2000.
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Abstract. Motivated by the nuclear magnetic resonance (NMR) spec-
troscopy of biofluids (urine and blood serum), we present a recursive
blind source separation (rBSS) method for nonnegative and correlated
data. A major approach to non-negative BSS relies on a strict non-
overlap condition (also known as the pixel purity assumption in hyper-
spectral imaging) of source signals which is not always guaranteed in the
NMR spectra of chemical compounds. A new dominant interval condi-
tion is proposed. Each source signal dominates some of the other source
signals in a hierarchical manner. The rBSS method then reduces the
BSS problem into a series of sub-BSS problems by a combination of data
clustering, linear programming, and successive elimination of variables.
In each sub-BSS problem, an ¢; minimization problem is formulated
for recovering the source signals in a sparse transformed domain. The
method is substantiated by NMR data.

Keywords: NMR spectroscopy, non-negative correlated sources, recur-
sive blind separation.

1 Introduction

Blind source separation (BSS) aims to recover source signals from their mix-
tures without detailed knowledge of the mixing process. Nonnegative BSS has
received much attention in various fields lately, such as image processing, analyt-
ical chemistry, metabolic fingerprinting, and disease diagnosis |1, 12, |58, [10-14]
where nonnegative constraints are imposed on the mixing process and source
signals. The nonnegative BSS problem is defined by the following matrix model:

where X € R™*P ig the mixture matrix containing known mixture signals as its
rows, S € R™*? is the unknown source matrix, A € R™*" is the unknown mixing
matrix. The dimensions of the matrices are expressed in terms of three numbers:
(1) p is the number of available samples, (2) m is the number of mixture signals,
and (3) n is the number of source signals. Both X and S are sampled functions of
an acquisition variable (time, frequency, position, or wavenumber). The problem

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 81-B8], 2011.
© Springer-Verlag Berlin Heidelberg 2011
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is to estimate nonnegative A and S from X, also known as nonnegative matrix
factorization (NMF [3]).

Naanaa and Nuzillard (NN) proposed a nonnegative BSS method [6] based
on the sparseness assumption (NNA) that the source signals be strictly non-
overlapping at some locations of acquisition variable. Each source signal must
have a stand-alone peak where other sources are strictly zero. Such a strict
sparseness condition leads to a dramatic mathematical simplification of a general
nonconver NMF problem ([I). Geometrically speaking, the problem of finding
the mixing matrix A reduces to the identification of a minimal cone containing
the column vectors of X. The latter can be done by linear programming. Similar
assumption and geometric construction were known earlier [2,|12] in blind hyper-
spectral unmixing. The analogue of NNA is called pixel purity assumption. The
resulting geometric (cone) method is the so called N-findr |12]. However, certain
class of NMR data may not satisfy NNA as seen in the following two examples.

Ezample 1: Consider the NMR spectra of two chemical compounds S-sitosterol
and menthol in Fig. [l The (-sitosterol (blue) has a stand-alone peak (circled)
however menthol (red) does not have such a peak. Hence NNA does not hold.
However, (-sitosterol (blue) has a dominant interval ([420,600]) over menthol
(red), though spectral overlap occurs on [0, 420].

07

pB-sitosterol

menthol

o6 —

o5 —

0.4t -
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Fig.1. NMR spectra of two chemical compounds. In the circled region, S-sitosterol
(blue) has a stand-alone peak, while menthol (red) does not have such region.

Ezxample 2: The data in Fig. 2 are from NMR spectroscopy of urine and blood
serum. The complicated NMR spectra contain both wide-peak source signals
and narrow-peak source signals. The blood serum has constituents with wide
spectral peaks which overlap others over the whole acquisition region. The urine
NMR spectrum is similar. NNA does not hold for this type of data.

The above two examples show that new BSS methods should be developed
for these non-NNA signals where wide spectral peaks exist and violates NNA.
Our work is motivated by NMR spectroscopy of biofluids such as urine and
blood serum (example 2) which provide important information for metabolic
fingerprinting and disease diagnosis |1, [11, 13, [14]. The main challenge of the



A Recursive Sparse Blind Source Separation Method 83

———— ey e
8.5 8.0 7.5 7.0 6.5 ppm 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

Fig. 2. Standard NMR spectra of serum and urine, showing representative structural
complexity produced by multiple metabolite signals (plot from [1])

non-NNA problem is that the mixing matrix A cannot be recovered from data
matrix X independently of S as in [6]. Our method breaks the source separation
process into two stages. In the first stage, clustering and linear programming
techniques are employed to recursively identify columns of the mixing matrix
while simultaneously eliminating source variables. The first stage also serves
to convexify the orginal non-convex matrix factorization problem because half
of the unknowns are estimated. The second stage is to solve a sequence of /3
regularized convex optimization problems to recover the source signals.

The paper is organized as follows. In section 2, we propose a new condition on
the source signals motivated by NMR spectroscopy data of biofluids. Then we
present our recursive BSS method, and illustrate it with a numerical example.
Section 3 is the conclusion. The following notations will be used throughout the
paper. The notation A7 (X7) denotes the j-th column of matrix 4 (X); S; (X;)
is the j-th row of matrix S (X).

This work was partially supported by NSF-ADT grant DMS-0911277.

2 Source Assumption and Recursive Method

Let us consider the determined case (m = n) for simplicity. Each column in X
of model () represents data collected at a particular value of the acquisition
variable, and each row represents a mixture spectrum. Motivated by the NMR
spectra of urine and blood serum, we propose here a more general and relaxed
condition on the source signals. Rows S1, Sa,...,5, of S, i.e. the source signals,
satisfy: for ¢ = 2,3,...,n, the source signal S; has a dominant interval over
Si—1,...,52,51, while the other part of S; may overlap with S;_1,...,55,S51.
More precisely, the source matrix S satisfies the hierarchical dominant interval
(DI) condition:

e For each k € {2,3,...,n}, there is a set Z, C {1,2,...,p} such that for each
l €Ty Sil>>Sjl,i:k,k+1,...,n,j:1,2,...,1671.
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The recursive method consists of the backward and forward steps. In the
backward step (elimination of variables from S,, to S1), the original BSS problem
is reduced to a series of smaller BSS problems. The DI condition implies that
there are columns of X such that X* = s, A" + Z?:_ll 0ixA', where s,
dominate 0; (i = 1,...,n—1), i.e., $pk > 0;k. The A™ is found inside a cluster
formed by these X*’s in R™. All X’s column vectors form a set of points P =
{XY X2 ..., XP} in n dimensional space. The convex hull of P is a polytope,
A in R™. The frame F of these points is the set of extreme points of the convex
hull. To determine if the element X* of P constitutes an element of F, the
following constraint is examined: >2%_, ;, X7)\; = XkEoXN; >0, k=1,...,p.
X% belongs to F if it cannot be written as a linear combination of other points of
P. The above constraint is solved by linear programming. Among the elements
of F, A™ is the one attracting a cluster or most number of data points in its
neighborhood.

After A™ is obtained, we reduce the model by eliminating S,, from X. Let row
vectors of X be X1,...,X,. Using A", we eliminate S,, by performing X; — X, —
ﬁi’; Xn,1=1,2,...,n—1. The reduced mixture matrix is: X(; 5 .. 1) consisting

of rows: X; — ﬁiZan> Xy — 1‘22”1 X, o0y Xpo1 — AZ‘;:” X,,. which contains
n — 1 mixtures from source signals Si,...,S,—1. The reduced BSS system is:
X1,2,.n-1) = AL:2,m=1) Sa,2,...,n—1), where A:2-n=1) 5 the mixing matrix
of sources S1,...,S,—1. In X(1 2. ,—1), the source S,,_1 has dominant regions
over other sources. So data clustering and linear programming can be used again
to recover the mixing coefficients of S, 1 from X(; 5. n—1). Then we reduce the
mixture matrix further to X1 2. n—2) containing Si,...,S,—2. The procedure
iterates until the source S7 is obtained.

In summary, the backward step not only extracts source signal S, but also
generates reduced mixtures X1 2y, X(1,2.3),- -+, X(1,2,....k)> -+ > X(1,2,...n—1)- Al-
though the original model (II]) contains nonnegative A, S and X, the reduced
mixtures and mixing matrices may have negative entries from variable elimina-
tions. The geometric cone method is still applicable, only that the cone may not
lie in the sector consisting of nonnegative vectors.

The forward step (recovery of sources from Sy to Sy,) is as follows. With Sy
recovered by the end of the forward step, we continue to separate out the source
signals So,...,S,. We shall use sparseness property in a transformed domain.
Analytical chemistry [4] says that an NMR, spectrum is represented as a sum of
symmetric, positive Lorentzian-shaped peaks. An NMR spectrum can be viewed
as a linear convolution of Lorentzian kernel with some sparse function or S =

~ 1 ~
S * L(z,w), where L(x,w) = * 2(11”1”)2, w specifies its width, and S is a sparse
2

™24
function. The sparsity under the Lorentzian kernel suggests an ¢; minimization
problem to recover the source signals. To estimate Sy, (k= 2,...,n—1) with S
(j=1,---,k—1) known, we solve:

M||§||1 H1X 12,0 — AL2k=D) S1,2,k-1) — S*L(wk)”% )

min
A(L,2.. k=1) cgk X (k=1) |
SerkXP, §>0

(2.1)
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where X(12, ) € RF*P is the mixture matrix that contains source S, ..., Sk,
the columns of A(1:2--k=1) ¢ RFX(=1) correspond to the mixing coefficients of
sources S1,...,S,—1 in X5, ). The rows of S % L(wy) represent source Sy
in X1, k), wi is the peak width of Si. Because ([2.I)) allows the constraint
A(2k=1) Sz, k—1) T S x L(wy) = X(1,2,...k) to be relaxed, it is applicable
when the mixtures are contaminated by measurement errors. The I3 norm in (2.1])
models the unknown measurement error as Gaussian. When there is minimal
measurement error, one assigns a tiny value to p to heavily weigh the fidelity
term. The widths wy’s may be estimated from peaks in the mixture. An upper
bound often suffices. The convex optimization (2II) is solved by a projected
gradient descent method which converges to a global minimum. At this point,
we have retrieved S, ...,.5,-1. Finally, we extract the last source signal .S,, from
the original mixture matrix X. We solve the ¢; minimization problem:

min IS+ X = A8y =S Llwn)[l3, (2:2)
o<a(l,...,n=1) cgnx(n—-1) B
SErRXP, §>0

where rows of X € R"™*P represent the n mixture signals, the columns of
A(1,...,n—1) correspond to the mixing coefficients of Si,...,S,-1 in X. The rows

of § L(wy,) are the multiples of S,, in X. Again, we use projected gradient de-
scent approach to solve ([2.2). The difference is that, in (2.I]) the nonnegativity
constraint is only imposed on the source signals, while in ([222)) both the mixing
matrix and sources are required to be nonnegative.

A brief pseudo-code is: (B1) recover last column A,, of mixing matrix A by
clustering columns of data matrix X; eliminate .S,, from mixing equation. (B2)
repeat (B1) and eliminate Sy, (k =n—1,---,2) till Sy is recovered. (F1) Recover

%
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Fig. 3. Backward step 1. Left: the three mixtures. Right: the geometry of the mixture
and the recovery of A% (the one in the blue circle). A dominant region containing the
widest spectral peak is in the red rectangle. An estimate w3 = 130 for the peak width
of source S3 can be read off.
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Fig. 4. Backward step 2. Model reduction via eliminating Ss. The two mixtures are on
the left. The geometrical visualization is on the right. The mixing coefficient vector (red
spot in the right plot) of source Sz in X1 ) attracts a dense cluster of planar points.
An estimate w2 = 60 (peak width of S2) is read off from the peaks in the rectangular
region.

0 100 200 300 400 500 600 700

Fig. 5. Backward step 3. The recovery of S1 by eliminating S2 from the reduced mixture

(Sa,- -+ ,Sp_1) successively from S; up by solving ([2I]) based on reduced mixing
equations in (B1)-(B2). (F2) Recover S, and (41, -, A,—1) by solving (22]).
We illustrate our method by a computational example where three sources
are to be separated from three mixtures. One source has narrow peaks, one has
wider peaks, and the last one has very wide peaks. The results are presented
in a series of plots. Fig. [ to Fig. Bl illustrate the backward step, and Fig.
presents the recovered source signals by ¢; minimization in the forward step. In
the step of recovering the source signal Sy and S3 via /1 minimization, the peak
widths we = 60, w3 = 130 are read off from the mixture signals. Compared to
ground truth, the separation results by our method are accurate. We also applied
our method to separate mixture NMR spectra of menthol and S-sitosterol, and
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Fig. 6. Forward step. Left is the recovered sources by ¢; minimization. Right is the
reference spectra.

urine mixture data. More evaluation results based on experimental NMR data,
and complexity analysis of algorithms are being reported in a comprehensive
companion paper [9].

3 Concluding Remarks

A new source condition (the hierarchical dominant interval condition) is pro-
posed for non-negative BSS of NMR mixtures. Though well-known minimal cone
method does not work for such data, we found a recursive method integrating
data clustering, successive elimination of variables, convex source recovery, and
1 norm regularized minimization in transformed domains. A large non-convex
NMF problem eventually boils down to smaller convex optimization problems.
In future work, we shall further study NMR data of biofluids with our method.
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A Novel Face Recognition Approach under Illumination
Variations Based on Local Binary Pattern
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Abstract. Local Binary Pattern (LBP) is one of the most important facial
texture features in face recognition. In this paper, a novel approach based on the
LBP is proposed for face recognition under different illumination conditions.
The proposed approach applies Difference of Gaussian (DoG) filter in the
logarithm domain of face images. LBPs are extracted from the filtered images
and used for recognition. A novel measurement is also proposed to calculate
distances between different LBPs. The experimental results on the Yale B and
Extended Yale B prove superior performances of the proposed method and
measurement compared to other existing methods and measurements.

Keywords: Face Recognition, Illumination Variation, Local Binary Pattern.

1 Introduction

Ilumination variation is one of the most challenging issues in face recognition. In [1],
differences between varying illumination conditions are proven to be more significant
than differences between individuals. A number of approaches have been proposed to
address the issue, which can be classified into three categories: illumination modeling,
illumination normalization and illumination invariant feature extraction.

Among all existing illumination invariant features, local binary pattern (LBP) [2-3]
has gained much attention. The LBP operator is one of the best local texture
descriptors. Besides the robustness against pose and expression variations as common
texture features, the LBP is also robust to monotonic gray-level variations caused by
illumination variations. The main idea in the LBP is to compare the gray value of
central point with the gray values of other points in the neighborhood, and set a binary
value to each point based on the comparison. After that, a binary string is transformed
to a decimal label. A histogram of the labels is used for further recognition task.
However, the labels are not stable when small changes occur such as noise. To
overcome the problem, local directional pattern (LDP) [4] is proposed. The LDP is
obtained by computing the edge response values in all eight directions at each pixel
position and generating a binary code based on their edge response magnitudes. Tan
and Triggs [5] proposed local ternary pattern (LTP) which extended the LBP to 3-
valued codes. It is more discriminant and less sensitive to noise in uniform region. All
the LBP and its several extensions mentioned above are not robust enough against
large illumination variations.

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 89—@, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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In this paper, different from existing methods, we propose a novel distance
measurement that can provide a stable distance based on the LBPs, instead of making
the labels (patterns) stable when noise exists. The idea is more direct and easier to
implement. In the new measurement, a distance based on pixel-level information is
calculated besides a distance between histograms in a global level. A tolerance
parameter is involved which can take two patterns as the same even if they have slight
difference.

Besides, we also propose a novel face recognition method under varying
illuminations based on the LBP. The proposed method applies Difference of
Gaussians (DoG) filter in the logarithm domain of face images firstly and extracts the
LBPs from the filtered images. The experimental results on the Yale B and Extended
Yale B prove superior performances of the proposed method and measurement
compared to other existing methods and measurements.

The rest of this paper is organized as follows. In Section 2, we introduce the
proposed novel method and measurement in details. Experimental results and
discussions are presented in Section 3. Finally, conclusions are drawn in Section 4.

2  Proposed Illumination Invariant Approach

2.1 Difference of Gaussians (DoG) Filter

The Difference of Gaussians (DoG) filter can enhance edge information, which is
important for illumination invariant face recognition. In this paper, the image F is
processed by a DoG filter:

F =DoG *F (1)
where the DoG is given by
X2 +\'2 X2 +y2
T2 1 T
DoG(x,y) = e 0 e 207 ()
2ro, 2o,

ol and 02 are standard deviations of two low-pass filters, and o is the size of the DoG
filter.

In this paper, the DoG filter is applied in the logarithm domain of face images
firstly. The logarithm transform can compress the light pixel values and expand the
dark pixel ones [1]. As a result, the transform can partially reduce the effects caused
by illumination variations. For the DoG, we set 61=2.5, 62=2 and w=6. After the DoG
filter, the LBPs are extracted from the filtered images. The experiments shown in the
following section will prove that the performance of the LBP in the DoG filtered
images can be improved significantly.

2.2 Local Binary Pattern

The LBP used in face recognition was firstly proposed by Ahonen et al. [2]. The main
idea in LBP is to compare the gray value of central point with the gray values of other
points in the neighborhood, and set a binary value to each point based on the
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comparison. After that, a binary string is transformed to a decimal label as shown in
the following equation

P-1
LBP, y(x,y) =Y s(g,—8.)2' 3)

i=0
where LBPP’R (x,y) is the decimal label of point (x, y), P is the number of

sampling points, R is the radius of a circle neighborhood, g, is the gray level of

central point (X, y), g, is the gray level of neighborhood sampling point around

) 1,x>0 A
s(x) =
0,x<0. @

central point (x, y) and

A histogram of the decimal label is calculated and can be used as a texture feature.
The histogram is defined as

H,=> I{LBP, o(x,y)=i}i =0,L,.,...1I s

X,y

where [ is the number of different labels produced by the LBP operator and

1,A is true
H{A}= _ (6)
0,A is false.

After an image is divided into non-overlapped blocks, the LBP operator is applied to
each block and a histogram of different labels is calculated for each block. All the
histograms of blocks are concatenated to an entire histogram to build a global
description of the image. The details of the LBP can be referred to [2-3].

The LBP descriptor contains three levels information: the labels for the histogram
contain information about the patterns on a pixel-level, the labels are summed over a
small block to produce information on a regional level and an entire histogram
concatenated by regional histograms presents a global description of the image [2].

In this paper, we divide the images into blocks of 24X24. After that, the

histograms of LBPF, | uniform patterns of blocks are calculated and concatenated

into a global histogram. The global histogram will be used in the global level distance
measurement.

2.3 Proposed Distance Measurement

Most popular methods [2-5] use histogram intersection or Chi Square statistic as
means of distance measurement, and they are defined as follows:
Histogram intersection:
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D(Q.S) =Zmin(Ql.,Si) 7
Chi square statistic:

2 (Q.9)= Z—(QQ_:S) ®)

where Q and S are two concatenated LBP histograms of image A and B respectively.
When the image is divided into blocks, some blocks may contain more discriminant
information than others. Therefore, it is reasonable to set weights for different blocks
based on the importance of the information they contain. The weighted Chi square
statistic is defined as
2
(Qi, i S i j)

Qw. +S; i

where Q and S are the concatenated histograms to be compared, indices i and j refer to

22(0,8)=>"w, ©)
ij

ith bin in histogram corresponding to the jth local block and w; is the weight for

block ;.

No matter either non-weighted or weighted measurements is used, it is obvious that
they only use histogram information, which means that pattern information on a pixel-
level is ignored.

In this paper, a novel measurement is proposed which considers both the
differences between images on a pixel-level and the differences between images on a

global level. The distance between images on a global level D, is defined as the
differences between concatenated histograms, using histogram intersection distance as
Eq. (7). The distance between images on a pixel-level D, is defined as the
percentage of pixels which have different patterns in two images, shown as follows.

D,(A,B) =) Z(label, (i, j),label,(i, j)) /m ‘n (10)
i=1 j=I
0,if the hammingdistance between x and y is smaller than T
2ley)= 1,otherwise (b

where the size of images is mxn, label (i, j) is the decimal label of point (i, j) in

the image A, label, (i, j)is the decimal label of point (i, j) in the image B, and T is
a threshold parameter.

As mentioned before, the labels of pixels in the LBP are not stable when some
noise exists. Several extensions of the LBP have been proposed to obtain stable labels
to address the problem [4-5]. However, no matter which extension is applied, the
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labels are still not stable in some cases. In this paper, we study the problem in another
view. We propose a novel measurement to obtain a stable distance even if the labels
have some small changes instead of obtaining stable labels. In our measurement, two
binary pattern labels are regarded the same if the number of bits having different
values is not greater than T. When T is set to 0, it means that two binary pattern labels
are taken as the same only when the values of each bit in two labels are the same.

The final distance between two images A and B is defined as

D(A,B)=aD,(Q,S)+(1-a)D,(A,B) (13)

where ¢ is the ratio between the global level distance and the total distance. With the
proposed novel measurement, the performance of the LBP is improved significantly,
shown in the experiment section. The effects of parameters will also be discussed in
the experiment section.

3 Experimental Results and Discussions

3.1 Database

In the experiments, we use the Yale Face database B [6] and Extended Yale Face
database B [7] as the test database. In total there are 38 persons with 64 different
illumination conditions for nine poses per person. Because the main concern in this
paper is on illumination variations, only 64 frontal face images per person under
different illumination conditions are chosen. After combining these two databases
except 18 corrupted images, there are 2414 images of 38 subjects named as the
Completed Yale B. The images are divided into 5 subsets based on the angle between
the light direction and the camera axis shown in Table 1. All the images are cropped
with the size of 192x168 and aligned by the database [7]. In the following
experiments, only one frontal image per person with normal illumination (0°light
angle) is applied as a training sample, which increases the difficulty of recognition.
Recognition is performed with the nearest neighbor classifier.

Table 1. Subsets divided based on light source direction

Subset 1 Subset2 Subset3 Subset4 SubsetS5
Light angle 0~12 13~25  26~50  51~77 >77
Number of images in Completed Yale B 263 456 455 526 714

3.2 Performance Comparisons for Different Distance Measurements

In this section, we compare the proposed distance measurement with other existing
distance measurements. The LBP and LDP are implemented with our proposed
measurement and histogram intersection as distance measurement. For comparison,
the DCT [8] and the LN [9], two of the most representative illumination invariant
recognition approach, are also implemented. All the results are shown in Table 2.
Please note that the DoG filter is not involved in the process.
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From the table, it is clear that although the performances of the LBP under small
illumination variations as Subsets 2 and 3 are acceptable, the LBP is not robust
against larger illumination variation such as Subsets 4 and 5. The extension LDP is
also not robust against larger illumination variations and it obtains even worse
performances compared to the LBP in Subsets 3 and 4. The reason is that histogram
intersection distance only makes use of histograms that represent global level
information but ignores pixel-level information. The results prove that histograms
could represent facial features well under small illumination variations but histograms
cannot provide sufficient discriminant information under larger illumination
variations. In our proposed measurement, pixel-level information is taken into
consideration. With the proposed measurement, the performance of the LBP has been
improved significantly. In Subset 3, the LBP with our measurement even achieves a
better performance compared to the DCT and the LN. In Subset 4, the performance of
the LBP is acceptable. In the most difficult cases as Subset 5, although the proposed
distance measurement improves the performance of the LBP obviously compared to
other distance measurements, the error rate still much higher than that of the DCT and
the LN. Similarly, our proposed measurement also improves the performance of the
LDP a lot. Thus, our distance measurement outperforms other distance measurements,
especially in the cases with larger illumination variations.

Table 2. Performance comparisons of different measurements

Error rate (%)

Method Subset 2 Subset3 Subset4 Subset5 Total
The LBP with histogram intersection 0.4 9.0 64.3 90.5 42.5
The LDP with histogram intersection 0.2 23.1 73.4 83.6 451
The LBP with our distance measurement 0.2 3.7 17.1 50.7 19.5
The LDP with our distance measurement 0 4.2 20.5 43.1 18.0
The DCT 0 10.5 10.8 12.6 8.1
The LN 0 12.3 6.3 8.4 6.2

3.3 Performance Comparisons for Different Parameter Values

Here, we evaluate the effects of parameters on our proposed measurement. The DoG
filter is still not involved in the process and a better result of the proposed method
with the DoG filter will be presented in the next section.

The results for different values of tolerance 7 are shown in Table 3. As mentioned
before, tolerance T is the number of different value bits in two pattern labels, below
which these two patterns are still taken as the same. In the strictest case where T is set
to 0, two binary pattern labels are taken as the same if and only if they are completely
the same. For the cases where small noise may exist, 7 can be set to 1 or 2. From
Table 3, we can notice that with the increase of the T value, the performances of the
LBP are also improved in the cases with larger illumination variations such as Subsets
4 and 5. Please also note that even with the strictest measurement (7=0), our proposed
measurement still improves the performance of the LBP significantly compared to
histogram intersection distance, especially in Subsets 3 and 4.

The results of different values of ¢ are shown in Table 4. The parameter
O reflects the ratio between the global level distance and the total distance. From the
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table, it is clear that it is better to select smaller value of ¢ under larger illumination
variations. This is because histograms cannot provide sufficient discriminant
information in the case with larger illumination variations and pixel-level information
could provide more useful information in such cases. Therefore, the weight of the
global level distance should be decreased.

Table 3. Performance comparisons for different values of 7'

Parameter T Error rate (%)

Subset 2 Subset3 Subset 4 Subset 5 Total
0 0.4 3.3 32.3 82.2 32.1
1 0.4 3.1 18.3 54.6 20.8
2 0.2 3.7 17.1 50.7 19.5
3 0.2 4.8 18.8 52.2 20.5

Table 4. Performance comparisons for different values of &

Error rate (%)

Subset 2 Subset3 Subset 4 Subset 5 Total
0.4 (T=1) 0.2 3.1 14.5 43.0 16.5
0.5 (T=1) 0.4 3.1 18.3 54.6 20.8
0.4 (T=2) 0.2 4.4 14.6 429 16.7
0.5 (T=2) 0.2 3.7 17.1 50.7 19.5

3.4 Performance Comparisons for Different Methods

Furthermore, we compare our proposed method involving the DoG filter with other
existing methods, including the DCT, the LN and the LBP. All the results are listed in
Table 5. From the table, we can see that our method significantly outperforms other
methods and our method can achieve a very satisfactory performance either in small
illumination variations or large illumination variations.

Table 5. Comparison of different methods

Error rate (%)

Method Subset 2 Subset3 Subset4 Subset5 Total
The DCT 0 10.5 10.8 12.6 8.1
The LN 0 12.3 6.3 8.4 6.2
The LBP 0.4 9.0 64.3 90.5 42.5
Our Proposed Method 0 2.6 1.3 6.6 2.7

4 Conclusions

In this paper, a novel distance measurement for the LBP and its extensions is
proposed. Different from existing distance measurements, pixel-level information are
fused in the measurement besides the common histogram differences in a global level.
To overcome the problem that pattern labels of the LBP are not stable when noise
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exists, a tolerant parameter is considered in the measurement. Therefore the proposed
measurement can provide a stable distance between the LBPs even if the labels have
small changes due to some noise. Besides, we proposed a novel approach based on
the LBP to improve face recognition performance under illumination variations. The
proposed approach applies DoG filter in the logarithm domain of face images. LBPs
are extracted from the filtered images and used for recognition. The experimental
results on the Yale B and Extended Yale B prove the superior performances of our
proposed method and measurement compared to other existing methods and
measurements. Further research will focus on face recognition under other variations
based on the proposed distance measurement.
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Abstract. Recent work on pedestrian detection has relied on the con-
cept of local co-occurences of features to propose higher-order, richer
descriptors. While this idea has proven to be benefitial for this detec-
tion task, it fails to properly account for a more general and/or holistic
representation. In this paper, a novel, flexible, and modular descriptor is
proposed which is based on the alternative concept of visual recurrence
and, in particular, on a mathematically sound tool, the recurrence plot.
The experimental work conducted provides evidence on the discrimina-
tory power of the descriptor, with results comparable to recent similar
approaches. Furthermore, since its degree of locality, its visual compact-
ness, and the pair-wise feature similarity can be easily changed, it holds
promise to account for characterizations of other descriptors, as well as
for a range of accuracy-computational trade-offs for pedestrian detection
and, possibly, also for other object detection problems.

Keywords: Pedestrian detection, Recurrence plot, Oriented gradients,
Feature descriptor.

1 Introduction

Human detection is the base from which other more specialized recognition tasks
can be performed, e.g. identification, categorization according to some criteria, or
body silhouette extraction. Human detection itself is even more difficult when no
temporal information is available. This problem is often addressed using images
of standing people which are usually obtained from urban scenes and that is why
the term pedestrian is so widely used the literature, as is the case for this paper.
Several approaches, in terms of both feature descriptors and classifiers, have
been proposed in the literature to solve the problem of the pedestrian detection
in static images. According to the conclusions of a recent survey [5], features
based on local edge orientation seem to be useful to encode a human figure when
no processing constraints are imposed. Similarly, [I3] shows that gradient-based
features are majoritary used to solve this task in state-of-the-art approaches.
Besides the improvement of the detection accuracy, some other problems re-
lated to pedestrian detection are of current interest. On the one hand, speeding
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up the detection is important, and has been tackled both with ad-hoc cascades [12]
or with a more generic approach aimed at reducing the number of sliding windows
required [I4]. On the other hand, the output of the detection can be refined beyond
the bounding box by detecting subparts of the human figure [I1] or by getting the
bounding box closer to the person [10].

Some recent approaches to pedestrian detection rely on co-occurrences of
neighboring low-level features [7U8] so that richer descriptors are obtained by
encoding this higher-order information. While this kind of representation has
proven useful, the global structure of the human figure is not characterized ex-
plicitly and it is therefore left to the subsequent classifier to implicitly discover
this information. In this paper, an alternative idea is explored, where the pair-
wise relationships of local features are captured. Experimental evidence is pro-
vided on the usefulness of this recurrence for pedestrian detection. To the best
of our knowledge, this pedestrian representation, based on spatial recurrences,
rather than co-occurences, has not been proposed before.

This paper is organized as follows: Section [2] presents our new method to
detect pedestrians using a descriptor based on recurrences. First experimental
results using our descriptor are presented in Section Bl Section [] concludes the
paper by summarizing some of our prelimilary findings about this technique.

2 Recurrence-Based Descriptor

Our recurrence-based descriptor is inspired by recurrence plots [2], a mathe-
matically sound concept which is useful for visualizing or describing dynamical
systems. Given a system represented by a sequence of states, 51,52, ..., S, the
recurrence plot p € {0,1}¢%¢ is defined as this 2D binary matrix:

{1 if d(S;, ;) <0,
Pij =

0 otherwise,

(1)

where d is a similarity or distance measure, 6 is a threshold on this distance, and
1 <1i,7 < &. Because of d acting as a distance function, its symmetrical property
implies p; ; = pj;, and therefore p; ; = 1.

While the most immediate use of the recurrence plot is for states describing the
temporal behavior of a system, the extension to spatial data is also possible [2].
We propose a representation with one or several recurrence plots, each of them
still 2D, simply by choosing the “states” to represent certain visual information
at a given spatial location, and the sequence of states resulting from an arbitrary
ordering of these location.

More formally, let I be the original (2D) image, and M a (2D) map obtained
from I with some visual information (edges, gradients, colour channels, etc.).
Let the size of M be H x W (height x width). A r X ¢ uniform cartesian grid
is superimposed over M, resulting in I' = r - ¢ non-overlapping cells over the
image (r cells across and ¢ cells down, discarding the elements of the last rows
and columns of M not covered by the cells when H or W are not divisible by r
or ¢, respectively) with | | x [V | = ¢ elements per cell.



A New Pedestrian Detection Descriptor 99

Based on this, a general descriptor is proposed in which the information cov-
ered by the region delimited by the cell v of M, 1 < v < I', is encoded by
a vector of IT recurrence plots PWM = p%[pfg . ..p%, with pfy‘f being the -th
recurrence plot corresponding to cell v over the information map M. Each p%f
therefore encodes the visual information at a given spatial location, and may
have its own threshold 6 and similarity function d (see ({l)). Having defined this,
the feature vector vy; associated to the map M is

_ M M M M M M M M
UM —811P12 ~-~9113621022 -~-P213 81“1'“/)1“137 (2)
~ ~ ~
PM PM PM

i.e. all the recurrence plots of a given cell, and all those vectors obtained from
all the cells, are concatenated to form the resulting feature vector. Figure [
illustrates the proposed method.

‘[‘ 3/1,1~~3/|,\m Y21 Y22 ...y\ﬂuﬂ\
- c e
Yi1 |-
H .
Y1 Y2 Y3 i‘?‘ :
Vo
Y4 Yii | Yi2 | Y13 |- yl\‘:/\ b
H ! You | Yoo | Yo3 |- yz,\wr\
—» Yoo
Yr-3 . . : . .
Y2y Yr Vg it Vit | Y1t
w i cell over M y‘ﬂuﬂ‘
rle
T
rx c grid over M Jl
M M 'M Set of [T recurrence plots
P Pi P associated to cell i.

1 2 Ly

Fig. 1. Illustration of the proposed method: given an information map M, a cartesian
grid 7 x ¢ is applied over it, resulting in I" non overlapping cells. Each cell v, 1 <~ < I,
has [ 7] x |V | = ¢ elements which are used to create IT recurrence plots. In each plot,
elements 7y, and vm,n of cell v, 1 < k,I,m,n < £ are compared using a distance func-
tion. In the figure, the emphasized cell will store the result of the comparison between
states 72,1 and ~y2,2. The feature vector is the concatenation of all the recurrence plots
obtained for all the cells, as defined in ().

Some comments on the properties of this descriptor and its implications follow.
The complexity and generality of the proposed approach depends on two factors:
the density of the grid, determined by the parameters  and ¢, and the number
of recurrence plots, I1, for each cell.

The grid configuration (parameters r and ¢) determines how local or global
the descriptor is with respect to the whole information map M. Denser grids
imply smaller cells and, therefore, smaller recurrence plots, each capturing the
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recurrence on a small local neighborhood. In the other extreme, r = ¢ = 1,
results in a single larger recurrence plot covering the whole M and therefore
capturing all pair-wise relationships of the elements of M.

Also, the number of recurrence plots per cell, IT, has an impact on how variate
is the spatial information encoded for each cell. A large I can result in a richer
and heterogeneous descriptor, while a small IT (even IT = 1) can result in a more
homogeneous descriptor per cell, independtly of its complexity.

These parameters also determine the dimensionality of the features vector.
Since each cell in M has ¢ elements and each element has to be compared with
all the other elements of the cell, each recurrence plot needs to store ¢2 elements.
Since recurrence plots are symetrical by definition, only half of those elements
are required to represent the information, 52; ¢, Since a cell has associated IT
recurrence plots, the dimensionality of the feature vector vy, is:

dim(var) 5

ri. (3)

3 Experimentation

We performed our experiments with the dataset described in Section Bl Sec-
tion specifies the implementation details and the evaluation method followed
to obtain the results of our experiments, presented and commented in Section 3.3l

3.1 Image Dataset

We use the DaimlerChrysler Pedestrian Classification Benchmark Dataset[l] [,
which consists of five disjoint sets, each containing 4,800 pedestrian pictures and
5,000 non-pedestrian pictures. Three of those sets are marked as training sets
while the other two are intended for testing purposes. Each picture is a manually
labelled 36 x 18 pixels gray-scale image.

3.2 Implementation Details and Evaluation Method

For every image in the dataset, its oriented gradients map is obtained by using
the Sobel operator. Each gradient orientation is discretized into eight possible
orientations. If the magnitude of the gradient is below a given threshold 4, it is
marked as no-gradient. Therefore, each image results in a discretized gradient
map M whose elements may take nine possible values (one per each orientation
plus one more for the no-gradient case).

We use an evaluation scheme where the three different training sets are merged
into one single training set of 29,400 instances, and the two different testing sets
are merged into a single testing set of 19,600 instances. Performance is given both
in terms of accuracy rate, Receiver Operating Characteristics (ROC) curves and,
to summarize some results, the Area Under the Curve (AUC) [9].

! http://www.science.uva.nl/research /isla/downloads/pedestrians/
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We use a Suport Vector Machine (SVM) [3] to classify our data. We use a
linear SVM since our method yields very high dimensional feature vectors. We
use the LIBLINEAR 1.7 library [4] and, due to the exploratory nature of this
work, the linear SVM penalty parameter C' was fixed to C' = 1, so no grid search
was done to find the optimal parameter when classifying.

3.3 Experimental Results

We study the impact of the number of recurrence plots per cell (determined
by parameter the IT). The results are summarized in Figure Pl and in Table [l
Later, we study the locality/globality impact (determined by parameters r and
¢) showing the results in Table 2l In all the experiments we set § = 0.5.

Ezxperiment 0: First of all, to prove the expresivity of our proposed recurrence-
based feature descriptor we compared its performance against a naive descriptor
consisting of simple concatenating all the elements of M into one raw vector.
This approach resulted in an accuracy of 67.06% with an AUC = 0.819 (see
Table [).

Study of the Impact of the Number of Recurrence Plots per Cell.
Then, we focused on the impact of the number of recurrence plots per cell, IT, to
determine if it is convenient to use a small or large set of recurrence plots per cell.
In all the following experiments, we set r = 6,c¢ = 3 as the grid configuration
parameters. Although the grid configuration determines the size of each cell,
and thus restricts the locality/globality of each recurrence plot, it is possible to
create a complex distance function d (see ({l)) independently of the area of each
cell determined by the grid.

Ezxperiment 1: First, we selected a distance function based on the equality of
all the discretized gradients across each cell, including the no-gradient value. So,
the distance function between two discretized orientations S; and S; was:

d(Si, Sj) = 1Si — Sjl , (4)

i.e. the absolute value of the difference between the discretized orientations. A
threshold § = 0 was chosen so that only if both (discretized) orientations are
equal then p; ; = 1 according to (IJ), otherwise p; ; = 0.

Ezxperiment 2: We divided the information encoded by each recurrence plot in the
previous experiment in such a way that there were a recurrence plot per possible
discretized orientation, and each recurrence plot encoded the similarities of a
single discretized orientation (including the no-gradient value).

We used a function distance dj, in which each discretized gradient k (including
the no-gradient) was compared only with its same gradient. Therefore, there was
a recurrence plot for each orientation in each cell (i.e. IT =9),

0 ifS,‘:Sj and S,‘:]{),

1  otherwise ,

dp(Si, Sj) = { (5)



102 C. Serra-Toro and V.J. Traver

with threshold § = 0. The accuracy was 90.80% and the AUC = 0.969. As it
can be seen, when comparing the experimental results obtained here with those
obtained with the previous experiment (see Table[l]), it seems that a large amount
of recurrence plots per cell, each focusing on a different aspect of the information,
is prefereable to a more complex, unique recurrence plot that stores all that
information in a common place. This is because, although a single recurrence
plot globally captures all the relations between pairs of states, it really does not
consider what those states represent. Splitting a complex information in pieces
of simpler information allow each recurrence plot to be more concise about the
information which it is representing, and thus more discriminative.

Ezxperiment 3: To confirm the last hipothesis, we performed another experiment
halfway between the two previous ones. We created four recurrence plots per
cell, each with a distance function similar to that defined by (@) but, in this
case, opposite orientations (i.e. with a difference of 180° between them) were
considered equivalent and thus were encoded in the same recurrence plot. As
was expected, the accuracy obtained was halfway between the two previous
approaches (see Table[]]), since, as stated before, splitting complex information
between different recurrence plots allow them to be more meaningful.

Table 1. Accuracies (%) and AUC obtained for the experiments performed to study the
impact of the number of recurrence plots per cell (see Section B.3]). The dimensionality
per feature vector (determined by (@) and the execution time relative to Experiment
0 are also shown. When meassuring the time, the portions of code related with I/O
and with the computation of the discretized gradients map were not measured.

Exp. Description No. features Time Factor Accuracy AUC
0 No recurrent information used 648 x1 67.06 0.819
1 =1 11,988 x9 76.37  0.848
2 r=6,c=3 =9 107,892 x15 90.80  0.969
3 II=4 47,952 %23 86.46  0.943

Study of the Impact of the Grid Configuration. We tested several r X
¢ uniform cartesian grids over the image, all uniformly sampled and without
overlap between them. So, we tested r € {3,4,...,8} and ¢ € {2,3,4,5} values.
We chose a number of recurrence plots defined by Experiment 2 in this section
since it was the distance that yielded a higher accuracy. However, the purpose
of this study is not to reach a high accuracy but to do a first exploration of the
behaviour of the proposed descriptor as the grid varies.

Since accuracies tend to increase with smaller grids (Table ), it seems that
global approaches (i.e., lower number of cells, I') perform better than local ones,
which suggests the benefit of holistic approaches accounting for the global human
shape. While further investigation is required, a global approach with bigger
recurrence plots covering larger cells seem preferable. For instance, with a 3 x 3
grid, our approach results in an AUC which is only 0.017 below of the obtained
with our implementation of a similar method to ours [7].



A New Pedestrian Detection Descriptor 103

1
(aEERE)
R 8
0.95 gee
0.9 ]DF\E - .,.:';
0.85 vty
[} - o o ;
= i ++
T 08 & o
2 ’ il e
2 075 7 Lo
3 ° F
9o ] /g
S 07 g e
3 : [ o
— 5]
= 065 L@ A
) K
06 S s Y Experiment 0 -+ ]
& + Experiment 1, II=1 ——
0.55 I i Experiment 2, T1=9 .
] Experiment 3, =4 &

0.5
0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

False Positive Rate

Fig. 2. ROC curves comparing the experiments done to investigate the impact of the
number of recurrence plots per cell (II parameter)

Table 2. Accuracies (%) and AUC obtained using the approach described in Experi-
ment 2 using several grids of sizes r X ¢

r parameter
3 4 5 6 7 8
Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC
= 2 91.20 0.972 91.03 0.972 90.27 0.968 90.57 0.969 89.86 0.964 87.36 0.949
3 91.34 0.972 91.12 0.971 90.51 0.967 90.80 0.969 89.73 0.963 87.48 0.948
8,4 90.91 0.970 90.73 0.969 89.82 0.963 90.33 0.966 89.10 0.959 86.38 0.939
© 5 90.26 0.966 89.92 0.964 89.05 0.958 89.65 0.962 88.29 0.953 85.21 0.930

aram

4 Conclusions

A novel descriptor based on recurrences of visual features has been proposed
and its properties and possibilities have been explored. The flexibility of the
descriptor and the modularity of its design and implementation facilitates its
experimental validation: the local-to-global character of the descriptor, as well
as the compactness of the visual representation can be easily varied. Due to its
generality, the proposed approach can be considered to subsume a co-occurrence-
like concept. The results for pedestrian detection are comparable to the state of
the art and suggest that best results can be obtained by splitting the raw features
into several recurrences, each focusing on a different piece of information, and
considering a global approach instead of a local one. Future work is aimed at
further improving the expresiveness of the descriptor and reducing its current

computational requirements.
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Abstract. This paper presents a 3D motion based approach to facial
expression recognition from video sequences. A non-Lambertian shape-
from-shading (SFS) framework is used to recover 3D facial surfaces. The
SFS technique avoids heavy computational requirements normally en-
countered by using a 3D face model. Then, a parametric motion model
and optical flow are employed to obtain the nonrigid motion parameters
of surface patches. At first, we obtain uniform motion parameters under
the assumptions that motion due to change in expressions is temporally
consistent. Then we relax the uniform motion constraint, and obtain
temporal motion parameters. The two types of motion parameters are
used to train and classify using Adaboost and HMM-based classifier. Ex-
perimental results show that temporal motion parameters perform much
better than uniform motion parameters, and can be used to efficiently
recognize facial expression.

Keywords: Facial Expression Recognition, SF'S, Nonrigid Motion.

1 Introduction

Over the past two decades automatic facial expression recognition has become
an active area of research. A large number of methods have been proposed to
extract and represent features associated with facial expressions. These methods
can be categorized according to whether they focus on the motion or deformation
of faces associated with forming an expression [I]. Deformation-based features
[21314] depict facial actions by capturing shape and texture changes, and these
are good indicators for facial actions. Compared with the deformation based
and indirect approach of representing facial actions, motion-based methods offer
the advantage of directly focussing on the physical action needed to form an
expression. Dense optical flow [5] and feature point tracking [6] have been used
as the basis of motion-based methods. Focussing in more detail on [5], Black
and Yacoob have shown that local parameterized models of image motion are
effective on recovering the nonrigid motion of human faces, and also for recogniz-
ing facial expressions within localized space-time intervals. Their work focuses
on the motion of intransient facial features such as the eyes, mouth, eye-brows
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which are involved in the formation of facial expressions. Optical flow and an
eight-parameter motion model are used to estimate the motion parameters from
2D image data. Fasel and Luettin [I] show that the motion estimations can be
significantly improved if they are recovered using a 3D facial model. However,
such 3D models often require complex mapping procedures and these in turn
place significant computational overheads on the method. In this paper, we aim
to estimate the motion parameters from a 3D facial surface which is recovered by
using a non-Lambertian shape-from-shading (SFS) method. By utilising SFS, we
avoid some of the computational overheads. In addition, we are able to extract
the motion of small patches over the complete facial surface. As a result we can
detect transient facial features.

Nonrigid motion recovery methods generally assume that the motion within a
small patch must be spatially consistent. To overcome the ill-posedness of non-
rigid montion recovery, Zhou and Kambhamettu [7] assumes that the motion
should be not only be spatially consistent but also temporally consistent. This
means that the motion associated with facial expressions is uniform. Unfortu-
nately, this does not agree well with the real world conditions. Here we relax
the uniform motion constraint and obtain temporal motion parameters by en-
larging the size of the patches. Potentially large patch size may cause inaccurate
parameter estimation. However, by comparing the temporal parameters to those
obtained under the uniform motion assumption, we observe that when facial ex-
pression recognition is attempted then the temporal properties of the parameters
are more useful.

For the purpose of expression classification we use the Adaboost algorithm for
classifying the non-temporal features, while a HMM-based classification method
is used for temporal motion. The HMM-based classification method has been
successful used in the field of speech recognition, and the method has also been
used to recognize facial expressions [8/9]. In this paper, we use multiple HMM-
based classifiers instead of a single classifier. A set of voting rules are used to
combine the classifier outputs and reach a decision. Experiments indicate that
this method gives good performance.

The oultine of this paper is as follows: In Section 2 we describe the elements of
our method namely a non-Lambertian SF'S technqiue and a local parameterized
motion model for 3D objects. Section 3 and 4 describes the details of implemen-
tation for our method. Section 5 presents and discusses our experimental results.
Finally, we conclude the paper and offer directions for future investigation.

2 Background

Non-Lambertian SFS. In this paper, a SFS method is employed to derive
a 3D face description from a single 2D brightness image. SFS aims to recover
3D shape from the gradual variations of shading in an image. To solve the SFS
problem, it is important to consider the image formation process. A commonly
assumed model of image formation is based on Lambertian reflectance, which
assumes that the surface reflectance is from a matte surface of uniform albedo.
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However, many types of surface, including those of faces, do not always follow
Lambert’s law. To overcome this problem, here we use the SFS framework for
non-Lambertian surfaces proposed by Smith and Hancock [10]. The aim is to
recover the surface normal n(z, y) and the facial depth map Z(z,y) which gives
the relative surface height above the point -y on the image plane.

Smith and Hancock’s non-Lambertian SF'S algorithm first obtains the surface
normal n by minimising the brightness error which is defined as a function of a
point on the manifold S? for unit surface normals.

f(n) = (9(é(n), L, V, P) — I)? (1)

where ¢(n)=n and ¢: S? — R? is an embedding of the unit surface normal
as a sphere, I is the measured image intensity, L, V are the unit vectors in
the direction of the lightsource and viewer respectively, the function g() is the
radiance function of the assumed (non-Lambertian) reflectance model, and P
denotes the set of additional parameters specific to the particular reflectance
model adopted. The radiance function of the algorithm employs the Torrance
and Sparrow model. A minimisation method applicable to functions defined over
a Riemannian manifolds is used to minimise Eq. (). The local gradient of the
error function f can be approximated in terms of a vector on the tangent plane
to the manifold 7}, 52 using finite differences.

In addition to the brightness constraint, the algorithm also satisfies a statisti-
cal regularisation constraint. A surface in the 3D space can be expressed in terms
of a linear combination of K surface basis functions ¥; (or modes of variation),
and the height function is:

2(2,y) = Zbi%(% ) (2)

where b = (by,...,bx )T are the surface parameters. A surface height basis set
is learnt from a set of exemplar face surfaces and the modes of variation are
found by applying PCA to a representative sample of face surfaces. Here ¥; is
the eigenvector of the covariance matrix of the training samples corresponding
to the i¢th largest eigenvalue. In terms of the parameter vector b, the surface
normals are given by:

K K

In order to apply this constraint to the field of surface normals n(z, y) sat-
isfying the brightness contraint, the parameter vector b* which minimises the
distance between n(x, y) and np- (z, y), must be found. Once b* is found, the sur-
face normal and surface depth can be respectively obtained according to Eq. (8]
and Eq. [2). An iterative scheme is used to compute surface normal, surface
depth and the parameters of the reflection model. Details of the algorithm can
be found in [10].
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3 3D Motion Model

In this paper, we choose to use an affine motion model since it has proven effective
in describing nonrigid motion within a small region, and has been successfully
used in the application of facial motion recovery [7]. Consider a point p;; in a
3D space with position (z;, ¥, 2:,1) at time ¢. If we assume that the image is
formed under perspective projection and f=1, then

T Yil
X = Y= (4)
Zil Zil

where (X;;, Y;;) is the 2D projection of p;; in frame i (i.e. at time 7).
At time ¢+1, the point moves to position (2;+1,1, Yi+1,i, zi+1,1) under a nonrigid
motion. Under the affine motion model, we have

(Tig1,05 Vi1, Ziv1,1, 1) = My (240,90, 200, 1) (5)

where M; is the affine transformation matrix given by Eq. ([{). From Eq. (),
Eq. @) and z;;*Z; ;=k. we have

a1, X1 + a2:.Yi; + asi + (a4 /k) Ziy

Xiany ) =
(1) ag; Xi1 + a10:Yi1 + a11i + (@12:/k) Zi
v, _ asiXip+agYig +ari + (asi/k)Ziy (©6)
(). a9i X1 + a10:Yi + a11; + (a12:/k) Zi
7. _ il
(1) a9 Xi1 + 610iYi1 + a11i + (@12:/k) Zi
a1 G2; G3; Q45 Ari Ao Aszi Ay
as; Ge; Gr; Ag; ; Asi Asi A7i Asi
M; = M = 7
Qgi Q10; G115 A12i Agi Aroi Arri Ao (™)
0 0 O 1 0 0 0 1

If the non-rigid motion is uniform, the affine matrices are constant i.e. My=
Msy=...= M, and can be learnt from the frames of the video sequence. However,
using the information provided by SFS, the height information Z(; ), for each
frame is known in advance. Here we aim to use the facial surface recovered from
the first frame using SF'S, i.e. Z1; to seed the estimation of the remainder using
the affine motion model. The motion model is

(x(i+1),z7 Y(i+1),0 Z(i41),1> 1)T = Mi(xl,lyl,lzl,ll)T (8)
where M is given by Eq. (@). The derived equations are as follows,

X, _ Alin,l + AZiyl,l + A3i + (A4i/k)Z1,l
(1)1 Agi X1+ AroiYig + Avi + (Aroi/k) Z1,
v. _ AsiXug+ AeiYry + Az + (Asi/k)Z1,
L™ g, X1+ ArgiYag + Avn + (Arai /K) Z1
7 _ 1,1
(1)1 Agi X1+ A10iYig + Avi + (Arai/k) Z1,
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Assuming M is diagonalisable, there exists an invertible matrix P:

M =PAxP~H M"=PX'P! (10)
pL D2 P3 D4 pi Py P Py M0 00
p_ | Pspsprps | por _ [ Pspsprps | _ [ 00X 00
D9 P10 P11 P12 Py Pho Pl Pha 0 0AX30
P13 P14 P15 P16 P/13 P/14 P/15 P/16 00 0 A

According to Eq. ([0), each element in M?® is a function of i, and elements
in P, P71, \. We take Aj; as an example: Ay; = Biy; — Bg;Bs;/By;, where
By = p1piAL + papsAs + pspoAs + papisAy; Bai = p1spi Al + p1aps Ay + p1spoAs +
P16P13Ass Bai = p1piA] +papg Ay +papioAs +papigAy; Bai = p1spyA] +p1apgAs +
P15P12As + P16Pis Ay Once (p1, po, ..o, P12), (P, Phy ooy P1o) and (A1, A2, A3, Ag)
are obtained, (a1, as, ...., a12) can be computed according to Eq. ().

If the nonrigid motion is non-uniform, then M; can be learnt from two con-
secutive frames so that Z(; 1), can be straighforwardly calculated using Eq. (@).
However, this surface recovery method is rather unreliable, due to the lack of a
regularization constraint. As a result, the subsequent motion and facial surface
estimation would potentially become more and more inaccurate. In a manner
similar to that for uniform motion, we use Eq. (IIl) and an iteration scheme to
obtain (Xit1,1, Yit1,1, Zit1,1):

(1), Y1) 21,0 DT = Miy(Mi—y (M (21 ,91,021,1) 7)) (11)

The motion equations appearing in Eq. (I are almost identical to those
appearing in Eq. (@)). The difference lies in the expressions (A1;, A, ..., A12:).

4 Motion Parameters for Recognition

Facial Surface recovery. The non-Lambertian SFS algorithm describes in Sec-
tion 2l is used to obtain the depth map Z(z,y) which can be used in estimating
nonrigid motion parameters. This SFS algorithm satisfies not only the bright-
ness constraint but also a statistical regularisation constraint to ensure accurate
recovery of the facial surface. This statistical constraint is learnt from a set of
face surfaces with neutral expression. In this paper, the algorithm is used to
recover the facial surface from the first image in the expression sequence since
this is usually a face with a neutral expression.

Local Motion Estimation. The non-linear least-square optimization method
is utilized to estimate the motion parameters. The 2D optical flow algorithm
of Horn and Schunck [I1] is used to compute the required flow. Let (U;; V;;)
be the observed optical flow vectors. Then (ay;, as;, ...., a12;) are estimated by
minimizing Eq. [I2)) or Eq. (I3) for uniform motion and non-uniform motion
respectively.

numf nump

Xi = Z Z (Uis — Xig — X 10)* + (Vig = Yig = Yiq,)? (12)
i—2 =1
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nump
X5 = Z Uiy = Xig = Xim10)” + (Vig = Yig = Yic1)? (13)
=1
where numf is the number of frames of the video sequence, and nump is the
number of pixels within a small patch which undergoes nonrigid motion.

Voting Rules for Classification. The motion parameters for all of the regions
are used to recognize facial expression. The Adaboost algorithm is utilized to
handle uniform nonrigid motion parameters, and a HMM-based classification
approach is employed to train and classify non-uniform motion parameters.

We use multiple HMM-based classifiers to avoid the computational overheads
associated with high-dimensional data and problems caused by uniform scaling.
Each classifier is based on a HMM model for a particular expression class. The
overall classification decision depends on the log-likelihood given by each HMM
with the test sequence. Since we have multiple classifier we need to combine the
outputs to make a final decision. Here we use the plurality rule: 1)If there is
one winner according to the plurality rule, then the final decision is the only
winner. 2)If there are multiple winners, then the sum of the log-likelihood for
each winner is compared. The final decision is the most likely one. 3)If rules 2
still can not make the filnal decision, then randomly selects one of them as the
final winner.

5 Experiments

We carry out experiments on 38 selected image sequences from the Cohn-Kanade
AU-Coded Facial Expression Database [12]. The data set contains 19 subjects,
and each subject has two expressions i.e. smile and surprise. The length of the
sequences varies from 7 to 29 frames, and the average length is 15 frames.

Non-temporal classification. Performance comparisons between the uniform
and non-uniform motion features are shown in Table [[l The accuracy rates for
n-fold tests are the averages of three running iterations.

Table 1. Accuracy rate for uniform and non-uniform features

LOO 5-fold  3-fold LOO 5-fold  3-fold

uniform 86.84% 80.70% 78.13% nonuniform 73.68% 72.81% 72.80%
smile 100% 95.24% 88.33% smile 78.95% 91.83% 87.90%
surprise 78.68% 66.67% 68.37% surprise 68.42% 55.61% 59.30%

From the results, we observe that in non-temporal classification, the uniform
motion features perform better than the non-uniform motion features. Moreover,
the accuracy rates for the smile expression are much higher than those for the
surprise expression.

Temporal classification. Each face image is divided into 12*14 patches, and
motion parameters for the patches in one row are modeled by one HMM. So 14
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Fig. 1. Temporal non-uniform parameters

pairs of HMM models are used for classification. Each model is a 3 state left-
to-right HMM with Gaussian observation symbols. The model parameters are
generated randomly. The training and classification steps using the HMM-based
classifier are implemented using Kevin Murphy’s HMM toolbox.

Table 2 shows the classification results for the combined decision from the
complete set of classifiers. It shows that the temporal features perform better
than the non-temporal features. Fig. [[l shows the temporal non-uniform param-
eters for the two expressions.

Table 2. Accuracy rate for temporal non-uniform features

LOO smile surprise 5-fold  smile surprise  3-fold  smile surprise

92.11% 94.74% 89.47% 92.11% 94.74% 89.47% 86.84% 84.21% 89.47%

Fig.[2 gives the number of votes for each sample in a leave-one-out test. There
is one incorrect classification (No.10) in the smile samples and two incorrect
classifications (No.1 and No.10) in the surprise samples. In the surprise samples,
No.6, No.10, and No.19 make use of voting rule 2 to make the final decision.
Voting rule 3 has not been invoked by the data used in our experiments since the
equality of the sum of log-likelihoods rarely occurs. Fig.[Blshows the performance
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[ vote to surprise
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Fig. 2. votes in LOO test Fig. 3. accurate classification in
LOO test
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of each classifier. We observe that the classifiers which handle parameters from
the middle face or the middle and upper face performs better than the remaining
classifiers.

6 Conclusion

This paper has explored the use of local parameterized non-rigid motion re-
covered from 3D facial surfaces in recognizing facial expressions from video se-
quences. A SEFS method is used to recover the 3D facial surface. An affine non-
rigid motion model and an optical flow technique are used to estimate motion
parameters from the estimated 3D facial surface. Finally, Adaboost and multiple
HMM-based classifiers are employed to recognize expressions. We observe that
the recovered non-rigid motion parameters are efficient in discriminating smile
and surprise expressions.

Our future work will revolve around seeking a robust method to obtain non-
rigid motion parameters. We also aim to find a means to initialize the HMM
parameters and select models according to the motion data. Of course, more
subjects and more expressions will be used in further research.

Acknowledgement. Edwin R. Hancock is supported by the EU FET project
SIMBAD and by a Royal Society Wolfson Research Merit Award.
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Abstract. Face liveness detection in visible light (VIS) spectrum is fac-
ing great challenges. Beyond visible light spectrum, thermal IR (TIR)
has intrinsic live signal itself. In this paper, we present a novel liveness
detection approach based on thermal IR spectrum. Live face is modeled
in the cross-modality of thermal IR and visible light spectrum. In our
model, canonical correlation analysis between visible and thermal IR face
is exploited. The correlation of different face parts is also investigated to
illustrate more correlative features and be helpful to improve live face
detection ability. An extensive set of liveness detection experiments are
presented to show effectiveness of our approach and other correlation
methods are also tested for comparison.

Keywords: liveness detection, thermal IR, correlation analysis.

1 Introduction

Biometrics is an emerging technology that recognizes human identities based
upon one or more intrinsic physiological or behavioral characteristics, e.g. faces,
fingerprints, irises, voice. However, spoofing attack (or copy attack) is still a fatal
threat for biometric authentication systems [1l2]. Liveness detection, which aims
at recognition of human physiological activities as the liveness indicator to pre-
vent spoofing attack, is becoming very active in fields of fingerprint recognition
and iris recognition [1I3].

In the face recognition community, numerous recognition approaches have
been presented, but the effort on anti-spoofing is still limited [4]. The most
common faking way is to use a facial photograph of the valid user to spoof the
face recognition system, since usually one’s facial image is very easily available
for the public, for example, downloaded from the web, captured unknowingly by
the camera. Photo attack is one of the cheapest and easiest spoofing approaches.
The another face spoofing way is video of valid user. It is not difficult to get and
display nowadays thanks to high quality pinhole camera and tablet PC. The
spoofing video has more physiological clues than photos, such as eyeblink, facial
expression, and head movement. The difficulty of detecting spoofing video is
that it is a re-imaging of the original live face. High quality spoofing videos are
almost the same as live faces in a non-intrusive scenario.

* Corresponding author.

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 114-{121} 2011.
© Springer-Verlag Berlin Heidelberg 2011
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1.1 Analysis of Face Liveness

The definition of liveness in biometrics is to determine whether the biometric
being captured is an actual measurement from live person who is present at the
time of capture [3]. The live signals in face can be investigated from physiology,
psychology, physics, etc. For example, Eyeblink is a physiological form of con-
ditioning reflex, Q&A (question and answer) is a kind of intelligence test and
thermal IR is a physical phenomenon.

Most face liveness researches are based on visible light images. From the static
view, the essential difference between the live face and photograph is that a live
face is a fully three dimensional object while a photograph could be considered
as a two dimensional planar structure. With this natural trait, Choudhary et al.
[5] employed the structure from motion yielding the depth information of the
face to distinguish live person and still photo. Kollreider et al. [6] applied optical
flow to obtain the movement of different parts in face for liveness judgment.
Some researchers used the Q&A approaches to against spoofing, e.g. exploiting
the lip movement during speech [78], requiring user to act an obvious response
of head movement [J], reading the numbers which are hinted [I0]. This kind of
method needs user collaboration. Besides, the imaging difference between photo
and live face in visible light spectrum is investigated for liveness detection. Li
et al. [11] presented Fourier spectra to classify live faces or the faked images,
based on the assumption that the high frequency components of the photo is
less than those of live face images. Li et al. also stated that it would be defeated
if a clear and big size photo was used to fool the system. Tan et al. [12] and Bai
et al. [I3] modeled the imaging difference according to Lambertian model and
BRDF respectively. The weakness of these methods is unstable and effected by
the quality of photos, cameras, illumination, etc. Eye’s blink [14] and movement
[15/16] detection methods were proposed to find the physiological clue in live
face.

All these methods above are facing great challenges, e.g. depth estimation,
face movement and eyeblink can be fooled by videos, Q&A approaches can be
fooled by photograph cut out mouth region and placed in font of attacker’s face
or using photograph-pasted head mold to respond head movement, a high quality
and big size photo can spoof the imaging difference of live face and photograph.
Strictly speaking, only Q&A intelligence test can be considered as the live signal
detection in visible light spectrum. However, computer intelligence is not high

Table 1. Spoofing live face detection examples

Live Detection methods Spoofing methods

Depth information Video face

Facial movement Video face

Eyeblink Video face

Head movement Photograph-pasted head mold
Question & Answer Photograph by cutting mouth out

Imaging difference in visible spectrum High quality images
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enough, therefore, it is easily fooled by human tricks. Table[I] lists the ways to
spoof above methods.

1.2 Thermal IR for Live Detection

Beyond visible light spectrum, IR is also used to solve face problems, e.g. face
recognition in near IR [I7]. The human body emits thermal radiation in the
bands of thermal IR spectrum, typically high emissions in long-wave infrared
(LWIR) from 8.0-14.0um. The thermal image of face is an intrinsic characteristic
for human beings while energy metabolism is operating. Thermal face image itself
indicates that it is a live face [I]. Different from visible light, thermal radiation
of a live face depends on temperature, blood vessels patten, organ shape, etc.
[18], therefore it is very hard to be simulated.

The efforts on anti-spoofing in thermal IR spectrum are still very limited. The
most common ways are thermal IR face detection [I9] and recognition [20123].
The shortcoming of thermal IR face detection is that simple hand-drawn face
can be detected as face in the classical face detection methods [2122], therefore,
thermal imaging of attacker tightly pasted by the photograph of valid user can
also be possibly considered as thermal IR face. The other way is to use thermal
IR for identification. However, the ability of thermal face recognition is still
limited nowadays[23].

In this paper, our contributions are as follows, firstly, we present a novel live
face detection method which utilizes thermal IR live signals for high security in
face recognition system. To tackle this problem, we model the cross-modality of
TIR/VIS face pairs in correlation analysis framework. Secondly, the canonical
correlation analysis of the whole face and different face parts is illustrated and
patch correlation coefficient based weighting is also presented to improve liveness
detection. Thirdly, experiments show that effectiveness of our approach to detect
live face and reject thermal IR spoofing.

The paper is organized as follows: in Section 2, we describe the proposed
method in detail. The experiments and results are illustrated in Section 3. Section
4 gives the conclusion of this paper.

2 The Approach

2.1 Cross-Modality of TIR/VIS Face Pair

We model cross-modality of TIR/VIS face pair by canonical correlation analysis.
TIR and VIS face images are captured at the same time in the authentication
stage. Let (z,y) is a visible and thermal IR face pair variable with zero mean.
The canonical correlation analysis [24] between x and y maximizes the correlation
coefficient p by choosing projection directions w, and w,,

T
Wy Dy

b
T T
\/wm Emwzwy 2yyy

(1)

p = maxwm’wy
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Fig.1. Eight face patches illustration. Left eyebrow(yellow), left eye(red), left
cheek(black), nose(orange), mouth(blue), right eyebrow(purple), right eye(green), right
cheek(white).

where Y, is covariance matrix between = and y. w, can be solved by following
eigen problem,

T Bay Eo Dyatwe = Nwa, (2)
where A\? is eigenvalue and w, is eigenvector. Then
Y1y W

To control overfitting and avoid singular matrix X,, and X, regularization
term 7/ are added to X, and X, , where 7 is regularization parameter and
is identity matrix.

Given a new visible-thermal IR face pair (X,Y), the liveness confidence ¥ is
defined as

wI'X) e (WIY
(WEX) o (] Y) "
|wz X[y Yl

where e is dot product of two vectors. A live face can be verified by comparing
the liveness confidence ¥ to a predefined threshold.

T(X,Y) =

2.2 Correlation Analysis of Face Patches

We divide whole face into eight patches, shown in Figlll and investigate the
correlation between visible and thermal IR images on these patches individually.
Let (U, V) are n TIR/VIS face image pairs. We use leave-one-out cross validation
[25] to calculate the kth patch correlation coefficient py which is defined as
follows, B .
Pr = corr({wg(_i) U,Efl)}_ ,{w‘j;(_i) Vk(ﬂ)}A )s (5)

k =1 =

where wg(_i), w‘T/(_i) are the first eigen vectors trained by CCA on (U,g_i)7 Vk(_i))
k k

with ith pair removed. (Ug, V}) are the kth patch of visible light images U and
thermal infrared images V' respectively.
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To emphasize higher correlated patches, we assign weight wy to kth patch
and the final face liveness confidence is a weighted sum,

,(X,Y) = DK wn ¥ ( Xy, V). (6)

The value of weight wy, is referred to following equations,

Pk
w = In
; (1 - Pk)
Wk
WE < . 7
SK wy (7)

3 Experiments

To evaluate performance of the proposed approach, we use public IRIS Ther-
mal/Visible Face Database in OTCBVS benchmark database [26]. We select 120
visible-thermal IR image pairs of 30 persons with surprise, smile, angry and neu-
tral expressions from this database. 8 persons wear glasses and other 22 persons
do not.The eye and mouth centers are labelled manually. Faces are aligned with
eyes and mouth’s coordinates, resized to 70 x 80 pixels and cropped by an ellip-
tical mask. Visible and thermal IR face image examples are shown in Fig[2l The
pixels in the image are simply arranged into a vector in raster-scan manner. The
dimension of correlation subspace is set to 60.

Patch correlation coefficients are calculated on data exclude glasses wearing.
The second column of Tab[2] shows the correlation coefficient pg of eight face
patches. Eyes and mouth patches give the highest correlation in all.

Visible light and thermal IR images from the same person are considered as
live face. In the live face detection experiment, one person is leaved out for test
and others for training and totally 120 live tests are done. Thermal IR spoofing
is carried out using valid user’s photograph and attacker’s thermal IR face to
spoof our liveness detection approach. Any two persons are picked out from
the database to spoof each other and the remaining persons are used to train
correlation subspace.

Fig. 2. Visible and thermal IR face image examples. Top row is visible light face and
bottom row is thermal IR face.
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Table 2. Correlation coefficient of eight patches in face

Patch Pk
left eyebrow 0.861
left eye 0.938
left cheek 0.785
nose 0.831
mouth 0.903
right eyebrow 0.842
right eye 0.921
right cheek 0.791
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Fig. 3. Comparison of MLR, PLS, CCA and PCCW-CCA
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Fig. 4. Effects of glasses wearing for correlation analysis(FAR=0.1%)
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Fig. Bl shows performance of our patch correlation coefficient based weighting
CCA (PCCW-CCA) and the comparison results with other multivariate analysis
methods, multivariate linear regression (MLR) and partial least squares (PLS).
We do experiments on data include wearing glasses and exclude wearing glasses
respectively. Fig. ] shows that glasses wearing produce small bad effect because
thermal IR is blocked by glasses. The results show that our PCCW-CCA out-
performs than others and live detection rate achieve 85.1% and 90.8% on data
include and exclude glasses wearing repectively when spoofing false acceptance
rate is 0.1%.

4 Conclusions

This paper has given a novel approach to detect live face in multiple spectrum.
Characteristics of live face in the thermal IR spectrum are intrinsic live signals.
To against thermal IR spoofing, the cross-modality of thermal IR and visible
light face is modeled by correlation analysis. The experiments shows that it is
feasible to detect live face by TIR/VIS face pair and it is really highly secure for
the impossibility of spoofing valid user’s thermal IR face. Glasses wearing will
produce small bad effect because of the blocked thermal IR and the difficulty of
eye alignment. The comparison experimental results show that CCA outperforms
other multivariate analysis methods, MLR and PLS, in our problem.

Acknowledgements. This work was partly supported by National Science
Foundation of China and we would like to thank Dr. Gang Pan in Zhejiang
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Abstract. Person localization and identification are indispensable to provide var-
ious personalized services in an intelligent environment. We propose a novel
method for person localization and developed a system for identifying up to ten
persons in an office room to realize soft authentication. Our system consists of
forty-three infrared ceiling sensors with low cost and easy installation. In exper-
iments, the average distance error of person localization was 31.6cm that is an
acceptable error for sensors with 1.5m distance to each other. We also confirmed
that walking path and speed gives sufficient information for authenticating the
user. Through the experiments, we obtained the correct recognition rates of 98%,
95% and 86% for any pair, any three people and all ten people to identify indi-
viduals.

Keywords: localization, soft authentication, sensor network, infrared sensors.

1 Introduction

In recent years, along with the rapid development of network devices and person au-
thentication technology, it has become possible to provide many kinds of personalized
services in response to the implicit/explicit demands of the users. In such an intelligent
environment, people can use voice, face, gait and other physical features to realize the
person localization and authentication. In this situation, we need localization to know
where the users are and need authentication to know those who want services.

Commercial authentication systems using various biometric evidences, such as fin-
gerprint, iris, speech and palm vain, can maintain a high level of security, but such a
high-level security is not necessary in daily life. In daily life situation, misidentification
dose not cause a serious problem. Rather, psychological/physical disturbance should be
seriously considered.

For distinguishing our motivation from the motivation for security, we call the au-
thentication for personalized services soft authentication[1] and call the authentication
for security hard authentication.

Video cameras have been used in some studies for person localization [2]. However,
cameras might violate privacy. Schulz et al. [3] tried to use an ID badge for person lo-
calization and authentication. However, many people, especially elderly people, would
be unwilling to wear such sensing devices. Shankar et al. [4] tried to use pyroelectric
infrared sensors for human identification and localization in a relatively small room. On
the contrary, our first ceiling-sensor system is applicable for a large room situation [1].

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 122-[29] 2011.
(© Springer-Verlag Berlin Heidelberg 2011



Person Localization and Soft Authentication 123

Recently, in order to increase the sampling rate and reduce the noise in the previous
system [1], we have improved the ceiling sensor system [5]. In this renovated system,
sampling rate of 80 Hz for up to 128 nodes using 250 kbps equilibrium line has been
realized. However, due to the characteristics of infrared sensors, the information we ob-
tain is still only the fact that someone is under or just passed under the active sensor. In
this study, we propose a novel method for person localization to bring a finer precision
(31.6cm) than that of the geometrical precision (1.5m) of sensor placement. By using
the location information, the performance of soft authentication has also been improved
in discrimination rate.

2 Infrared Sensing System

In the improved system, ”’pyroelectric infrared sensor”, sometimes called “infrared mo-
tion sensor”, are attached to the ceiling [5]. This sensor detects an object with a different
temperature from the surrounding temperature. We used NaPiOn (AMN11111, Pana-
sonic Denko Co. Ltd.) as the sensor module. There are 16 lenses for gathering infrared
radiation to 4 quadrants on the surface of the pyroelectric infrared detector. Then, 64
detection zones are formed in front of the sensor module. The detection area is up to
7.42 m X 5.66 m on a plane at a distance of 2.5 m from the sensor. In our system, a
hand-made cylindrical lens hood was used to narrow the detection area of each sensor.
The photographs of the sensor module and the interconnection of sensor nodes with ca-
bles are shown in Fig. 1. Such infrared sensors are easy to set up at a low cost ($20/unit).
Light conditions and movable obstacles do not affect the performance.

(a) A sensor module (b) Connection of sensors

Fig. 1. The sensor module and the interconnection of sensor nodes with cables

Forty-three sensors were attached to the ceiling of our research room (15.0 m X 8.5
m) so as to cover all the area and not to produce any dead space. The average distance
between each other is 1.5m. Figure 2 shows the layout of the room and the arrangement
of the sensors. A binary response from each sensor can be read at the sampling rate
from 1 Hz to 80 Hz.

Users are not required any cooperation for authentication and they do not feel that
they are being observed. These are necessary requirements for soft authentication.

In our sensor network, motions of one person often make multiple sensors active.
There is also a get-out delay of sensors in response to motions, that is, an active sensor
keeps the active status for a few seconds after a person left the sensing area. There is no
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Fig. 2. Layout of infrared sensors

get-in delay. Another important fact is that the sensor sometimes cannot be active if the
person moves slightly, such as, keyboard typing or browsing with a mouse.

3 Person Localization

3.1 The Method for Person Localization

In indoor environments, person localization has the requirements: (1) Estimate the lo-
cation of the person at each time frame with an acceptable distance error; (2) Show the
short-term walking trajectory of the person; (3) Evaluate the speed of moving.

In the ceiling sensor system of our laboratory, we can assume that: (1) The walking
speed v of a person is known; (2) Detection area is a circle of radius R; (3) Active
status will be kept for Dgeisy (sec.) after the person getting off the detection area and
D1y does not depend on the speed v; (4) In Fig. 3, we assume that the person enters
the detection area with an angle « and the duration of active status is decomposed as
D =t, — ts = Dyetect + Daelay if the person gets out of the detection area at time frame
t(>t,).

From the sensor model in Fig. 3, we see that there are four cases to be considered: (1)
At position Py (at time frame f( before detection), the distance from the sensor is 7y > R.
(2) At position P; (at time frame {1 under detection), r% =D*?+R?>-2RDvcosa (D =
t—t; < 2R $759). (3) At position P, (at time frame £, out of detection area but the sensor
is still active), 3 = D?v?* + R? — 2RDv cos a (2R% < D < 2RS4 D). (4) At
position Pj (at time frame ¢3), the sensor becomes inactive again, and the distance from
the sensor is 3 > R.

For situations (2) and (3), with the expected value 721 of cosainrange -7 < a < 7,
we use the expected value of squared distance as E(r>) = D?v? + R? — ;‘;RDV.

Algorithm

(1) If a sensor S; has already been active for duration D;, we estimate the distance to
the person by r; = \/D?v2 +R?2 - iRDiv = \/(D,-v - 721R)2 +(1- 7;12 )R?

(2) Gathering all the information D; and thus r; (i = 1, - - -, n) from all active sensors,
estimate the position P; = (x}, y) at time frame ¢ by solving

min ¥ — 1S = Pyl)? = min Y {ri = NG =02 + (i — 2P

Py =1 XY i=1
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The solution (x;, ;) satisfies:

x:Zw,-x,-/Zwi w = \/(Xi—X)2+(yi—y)2—1’i
y=Lwyil Yw’ T a2 + (- y)?

Therefore, with appropriate initial values, we can find the solution P; by iteration.

Fig. 3. The sensor model that contains four cases when a person passes by. Without generality,
we may assume that he/she enters at the left end of x-axis.

3.2 Basic Evaluation of the Person Localization Method

We examined our localization method for the case that three subjects walked along the

same route (from the entrance to the sofa in Fig. 2). The initial values of the estimated
n

location were set to the average location of all the active sensors (xo = Y xi/n, Yo =
i=1

n

Y. yi/n) and iteration was repeated 10 times. The moving speed was set to 1.3m/s that

i=1

is an average speed of a person in our laboratory. The radius R of the detection area

is 0.75m. The true positions of the three subjects at each time frame were determined

subjectively from the image sequences taken from two video cameras established for

the purpose of evaluation (the locations are shown in Fig. 2). The true positions and

estimated positions of three subjects are both shown in Fig. 4. We can see that the

trajectories of three subjects are successfully estimated. The average distance errors of

estimated positions of three subjects was 31.6cm.

4 Identification Information

In an office environment, the motions of a person usually switch back and forth between
walking and sitting. By observing people’s behavior in our laboratory, we noticed the
possibility to identify individuals from the different speeds of sitting up and starting
walking. So, we measured the starting speeds of walking on the basis of our localization
method in each time frame.
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) Location of sensors
= True position of the person
+ Estimated position 1

Fig. 4. The true positions and estimated positions of three subjects

For investigating the varying regularity of the speed, we examined the speed of a
subject during the period in which the subject starts walking. A subject was asked to
stay below a sensor for a while, and then to move to another position for 20 times.
The sampling rate was 2 Hz. The speed was calculated after localization in every time
frame. The average speed of the 20 times is shown in Fig. 5.

Stable part

aving [c

Speed of me

Fig. 5. The speed of a subject during the period of starting to move

We noticed first that the time required for accelerating is about two seconds. After
that, the speed of the subject becomes stable with slight fluctuation. Therefore, we can
separate the period into two parts: an “accelerate part” and a “’stable part” (Fig. 5). We
expected that there is a cue for indentifying the users in both of the two parts.

Each person in an office room has his/her own living habits and tends to linger at
some certain areas. Therefore, the walking paths are also expected to hold information

Table 1. The description of the speed and path information

‘Information "E_xpressi_un -Dascfii)t_ian
; - The estimated moving
Speed at time t \ll'(le -Xx )+ (}‘Hl - )2 distance from time frame t
to t+1
Path up to " . " The sequence of the
time t (xl‘ b4l ) (XT Y2 )t (x-‘ N ) estimated locations
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for recognizing multiple persons. In our experiment, the walking speed and path infor-
mation for a short period (3 sec.) are both used for identifying multiple persons. Here,
we use only a short path because we want to identify entering users as soon as possible.
The descriptions of the speed and path information are given in Table 1.

5 Authentication Experiments

We distinguished the stable part” and ”accelerate part” to examine the potential power
of the speed and path information in two cases of “continuous soft authentication” and
“immediate soft authentication.” To do this, we prepared two kinds of datasets.

A. Ten subjects (Iaboratory students) were asked to enter the room from outside and
then to go forward to their own desks directly without stopping for twenty times. For
realizing a fast authentication, we consider the first 3 seconds to measure the speed and
path.

B. The same subjects were given different instructions. They were asked to move
into the room from outside, stay a while for changing shoes (2-3s with a strong motion),
then move to their own desks for twenty times. When they finished changing shoes and
started moving, we began to measure the speed and path for 3 seconds.

Dataset A provided the information of the stable part, and dataset B provided that
of the accelerate part. We used five kinds of sampling rate: 2Hz, SHz, 10Hz, 20Hz and
40Hz. The recognition rate was calculated by 20-fold cross-validation. The classifier
was a support vector machine (SVM) with a radial basic kernel with default parame-
ter values, the soft margin parameter was 1.0 and the variance parameter was taken as
the dimensionality (the number of features). Here, the number of full features is 3T of
(v1,x1, 1), V2, X2, ¥2), - - -, (vr, x1, y7) for time period T (T=6 for 2Hz and 3s measure-
ments). The numbers of features are T for speed only and 2T for path only. The results
are shown in Fig. 6 and Fig. 7.

We can find that the sampling rates of 2Hz, SHz and 10Hz brought better results. In
the stable part (Fig. 6), we see that the best performance with speed information only
is 59% for ten subjects, 84% for any three subjects and 87% for any two subjects. With
path information only, the best performance is 84% for ten subjects, 92% for any three
subjects and 97% for any two subjects. With both of the speed and path information,
the best performance is 82% for ten subjects, 93% for any three subjects and 95% for
any two subjects. In the accelerate part (Fig. 7), we obtained 70%, 84%, 93% for ten,

Recognition rate (%)

Recognition rate (%)

Recognition rate (%)

Sampling rate (Hz) Sampling rate (Mz)

(a) With speed (b) With path (c) With both speed and path

n 2 10
Sampling rate [Hz)

Fig. 6. Identification rates in the stable part
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Recognition rate (%)
Recognition rate (%)
Recognition rate (%]

Sampling rate (Hz) Sampling rate (Hz) Sampling rate {Hz)

(a) With speed (b) With path (c) With both speed and path

Fig. 7. Identification rates in the accelerated part

three, two subjects with speed information, 86%, 95%, 98% for ten, three, two subjects
with path information. We also obtained 83%, 91%, 94% for ten, three, two subjects
with both of the speed and path information. The recognition rate is a little higher in the
accelerate part than in the stable part, which means that people show their personalities
more when they start walking than keep walking.

6 Discussion

In our previous system [1], finger vein was used for identification at the entrance as
a necessary information of individual tracking. That, however, needs one time coop-
eration of users and is against the purpose of soft authentication. In addition, after a
while, our system would lose the users because of the characteristics of this system.
Then we need another evidence for recovering the identification precision to a required
level. Therefore, to realize a highly-reliable system for soft authentication, we need to
collect as many pieces of evidence as possible. In the previous system, we used the
enter/leave information as strong pieces of evidence and the long-stay information at a
certain desk as a weak piece of evidence. In addition, a chair system measuring hip-
print was developed for authentication [6]. In this paper, we added two more pieces
of evidence: the walking speed and path. Through the experiments we knew that both
have information for authentication to some extent, especially short path after entrance
gives sufficient information. In the next phase, combination of all the pieces of evidence
would be gathered to improve this system.

Nowadays, there are many researches about the Activities of Daily Living (ADL) [7-
8]. Precise person localization of our study has the potential application to automatically
monitoring the ADL of single living elder. As described in Introduction, preserving
privacy is necessary for this goal and thus our system is one of the promising ways.

7 Conclusion

We have tried to localize and identify subjects in an office room using a ceiling sensor
network in order to realize soft authentication for providing personalized services.

In the experiments, the average error of person localization was 31.6cm. With the
localization technique, the speed and path information were measured and exploited
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for identification. From the measurement of constantly walking persons, we obtained
59%, 84%, 87% for ten, three, two subjects with speed information, 84%, 92%, 97%
for ten, three, two subjects with path information, 82%, 93%, 95% for ten, three, two
subjects with both of the speed and path information. From the measurement of starting
walking persons after shoes exchange, we obtained 70%, 84%, 93% for ten, three, two
subjects with speed information, 86%, 95%, 98% for ten, three, two subjects with path
information, 83%, 91%, 94% for ten, three, two subjects with both of the speed and
path information.

Acknowledgement. This work was supported by JSPS Grant-in-Aid for Scientific Re-
search (C) 10213216.
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Abstract. In this paper, we present a methodology to categorize camera captured
documents into pre-defined logo classes. Unlike scanned documents, camera cap-
tured documents suffer from intensity variations, partial occlusions, cluttering,
and large scale variations. Furthermore, the existence of non-uniform folds and
the lack of document being flat make this task more challenging. We present the
selection of robust local features and the corresponding parameters by compar-
isons among SIFT, SURF, MSER, Hessian-affine, and Harris-affine. We evaluate
the system not only with respect to amount of space required to store the local
features information but also with respect to categorization accuracy. Moreover,
the system handles the identification of multiple logos on the document at the
same time. Experimental results on a challenging set of real images demonstrate
the efficiency of our approach.

Keywords: Logo detection, affine-invariant features, clustering, hamming
embedding.

1 Introduction

Logos [519111] are interesting objects that serve enormous purposes ranging from own-
ership identification to document retrieval. There are three types of logos [[11]]: one
with only graphics, the other with only text, and finally a mix of both. In this paper,
we address categorization of camera captured documents based on logo detection. Un-
like scanned documents, camera captured logo identification is more challenging as it
encounters partial occlusions, background clutter, intensity variations, and crumpled
documents as shown in Fig.[Il Furthermore, a single document might contain multiple
logos as shown in Fig.

In the recent years, logo identification and recognition have been addressed by a
significant number of researchers. Majority of these approaches [SI11412114] rely on
connected component extraction. A Bayesian approach by providing feedback between
detection and recognition phases is specified in [11l]. A method based on boundary ex-
traction of feature rectangles to generate robust candidate logos is proposed in [12].
Geometric relationship among connected components is enforced in [5] to eliminate
outliers. In [9], SIFT [6] features from a query image (image under observation) are
matched against all the descriptors of logo models. Though the accuracies are good,
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(© Springer-Verlag Berlin Heidelberg 2011



Categorization of Camera Captured Documents Based on Logo Identification 131

(@) (b) ©

Fig. 1. (a) partial occlusion, (b) crumpled document with multiple logos, and (c) background
cluttering

matching against all the model descriptors is not a good choice. The main objective of
all these methods is the logo identification on scanned documents. In the following sec-
tions, we introduce an efficient method to detect logos on camera captured documents
under various deformations.

In order to address non trivial deformations such as partial occlusions, intensity vari-
ations, and view point changes, we adapt local affine-invariant features to represent the
pre-defined logo models and the query image. Due to the availability of various local
affine-invariant features such as SIFT [6]], SURF [2], MSER [7]], Hessian-Affine [[7],
and Harris-Affine [[7]], there is always a question of selecting the good feature type.

The rest of the paper is organized as follows: Section 2] presents the comparison of
various local affine-invariant features and the selection of one for the logo detection
task. We present the detailed methodology of camera captured document categorization
in section 3l Section Ml presents the experimental results on a challenging data set, we
also discuss the impact of dimensionality reduction and representation of the features.
Finally, Section[3lconcludes the paper.

2 Comparative Analysis of Local Affine-Invariant Features

In this section, we present the selection of desired local feature by comparisons among
various local affine-invariant features. The features in consideration are SIFT [6], SURF
[2], MSER [[7], Hessian-Affine [7], and Harris-Affine [7]. The comparison is done using
25 logo models and 125 camera captured documents with 5 documents under each
logo model. Let L = {Ly, Lo, ..., L, } be a set of logo models, where m is the total
number of logo models. Each logo model L; is represented by using n; feature points
Li = {(27,97, f7)} forj € {1,2,...,n;}, where n; is the total number of feature points
in the i*" logo model; (z7,y7) and f7 are the Cartesian coordinates and d-dimensional
description of the j*" feature point respectively. Similarly, query image is represented as
Q={(xd,y, f1)} for j € {1,2,...nq}, where ng is the total number of features points
extracted from the query document. We denote the j* feature in L; and Q as L{ and
@’ respectively, and the corresponding d-dimensional feature descriptors as fij and fg
respectively.

We adapt Lowe’s [6] threshold # for comparison (as defined in Eqn.[I)), which is the
ratio of distance between the logo descriptor and the first nearest neighbor among the
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query descriptors f; € @ in the d-dimensional feature space (i.e. f(;ml) to that of the
second nearest neighbor (i.e. f;mz).

D(f] . frm1)

b= p(ss fon2) S

where D() is the Euclidean distance in d-dimensional feature space, and nnl,nn2 €
{1,2,...,n,} are the indices of the first and second nearest neighbors to f7 in the feature
space. A correspondence for each Lf is established with Q™! only if ¢ is less than a
pre-defined threshold, i.e. Q™"! is the corresponding feature point to j* feature of L;
in Q. As t goes down from 1 and approaches 0, the ambiguity in the correspondences
decreases, and more discriminative correspondences will be established.
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Fig. 2. Comparison among various local affine-invariant features

We analyze the behavior of local affine-invariant features with respect to three im-
portant criteria: correspondence precision, number of true correspondences, and num-
ber of inter-logo correspondences. Correspondence precision (as defined in Eqn.[2) and
the number of true correspondences are analyzed by establishing the correspondences
between each logo model and the corresponding 5 camera captured documents. The
number of true correspondences is counted with the help of established ground truth.
Fig. and Fig. show the behavior of average correspondence precision and av-
erage number of true correspondences at different thresholds ¢ respectively. An ideal
feature type must have high average correspondence precision along with large number
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of feature points to support partial occlusions and non-rigid deformations in the logo.
Fig. shows the average number of inter-logo correspondences established with dif-
ferent feature types at various thresholds of ¢ (for each logo model L; € L, we use the
remaining models L;; € L;i # i’ as queries). As some of the local features are common
among multiple logos, using all the features will reduce the discriminative power. One
with lower number of average inter-logo correspondences should be preferred. From
Fig. [l SIFT features at the shaded threshold ¢, i.e. 0.6, is the desired choice compared
to the remaining feature types and the thresholds. Section [3] presents how we use the
derived feature type and the corresponding threshold ¢ to build an efficient logo-based
categorization system.

Number of true correspondences (2)

Corresp(mdence Precision = Total number of correspondences

3 Methodology

The system has two modes of operation: off-line and on-line. Off-line mode is responsi-
ble for feature extraction from logo models, representation, and storage of the extracted
data. On-line mode works in two stages. In stage 1, features are extracted from a query
document and are matched against the features in the database to determine the candi-
date logo models. In stage 2, top ! candidate logo models are then subjected to cluster-
based refinement process in the image space to eliminate false positives. Finally, the
query document is categorized into the candidate logo models left after stage 2. Fig.[3]
shows the overview of our system configuration. The following subsections briefly ex-
plain the individual components of the system. We discuss the significance of optional
components of Fig.[Blin sectiondl

3.1 Off-Line: Representation and Storage of Logo Model Features

Let X = {(27,97, f7)}, 1 < j < n be the set of SIFT [6] features extracted from all
the logo models L; € L; where n is the total number of logo model features.

1. Dimensionality Reduction: It reduces the dimensionality of SIFT [6] features.
Generate a 128 x 128 dimensional matrix P with random numbers. Subject P to
QR decomposition [3] to obtain an orthogonal matrix (). The first r4 rows of the
matrix ) form the projection matrix R. Project all the descriptors f7 € X onto R
to reduce their dimensionality to 7.

2. Cluster Formation: Form the clusters of descriptors f/ € X in r4-dimensional
space using k-means [4], and denote the cluster centroids as C' = {¢;|1 < i < k}.

3. Hamming Embedding (HE): The main objective of this step is to convert the fea-
ture f7 € X to a binary string b’ for efficient representation, storage, and matching.
For each r4-dimensional descriptor f7 € C;;1 < i < k, we adapt hamming em-
bedding [3]] to convert it to a bit string &’/ of length 74 as defined in Eqn. 3l

bj(x) =1if fj(l) <= CZ(L), 1<z<ry
=0, otherwise;

3)
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Off-line On-line

SIFT feature extraction on
Query Document Image

SIFT feature extraction on Logo models

128=n, 128=m, 128=n; 128=n,

(optr'ona}}| Dimensionality Reduction |

| K-means [4] Clustering | [ Dimensionality Reduction |(optional)
— Binary signature b generation using Hamming Binary signature generation using F—
Embedding [3] Hamming Embedding [3]

PR Inverted File Index

Stage1
centroids

N
€y Id| x| y | /b n - Cluster-based refinement of Stage 2

correspondences in the image
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H Document B
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1
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Fig. 3. Document categorization framework

4. Inverted file index: We adapt inverted file indexing [3/10] structure to store the
logo models information. Only the cluster centroids C; € C' are indexed, and all
the SIFT [6] features within each cluster are linked to their corresponding cluster
centroid. The feature information attached is the logo model number(/d), Cartesian
coordinates 27,47, and the feature f7 (or) binary string b’ as shown in Fig. 3
Denote the established index structure as I.

3.2 On-line: Feature Extraction on Query Document and Matching

Let Q = {(«J,y, f])}, 1 < j < ng be the set of SIFT [6] features extracted from
a query document image and represented in the similar manner as logo model features
(section[3.T); where n, is the total number of SIFT [[6] features extracted from the query
document. Algorithm [T presents the mechanism of matching features in ) with the
established inverted file index I of section3.1] and computation of scores S; € S;1 <
1 < m of logo models.

Stage 2 matching: Refinement of scores using neighborhood check. As the scores
after stage 1 matching comprise lot of outliers, we refine the established correspon-
dences in the top [ candidate logo models using cluster-based neighborhood check in the
image space. One can enforce the ordering among the local features [13]], and check for
the relative order consistency between query document and the candidate logo model, or
refine the correspondences by fitting a transformation model [6] to the correspondences.
Due to the non-rigid deformations (i.e. crumpled document), we apply a cluster-based
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Algorithm 1. Stage 1 matching
Input: Inverted File Index I (section[3.1]), Query features Q.
Output: Scores S; € S;1 < ¢ < m of the logo models.
Initialize: All S; € S to zero.
for all @’ € Q do
Determine the nearest cluster C; € I;
Initialize: D (Distance to all features € C;) to zero.
for all (b*|f*) € C; do
Compute the distance D*=D(b%|f*,Q?); where D() is xor() for b*, and Euclidean dis-
tance in r4-dimensional space for f7;
end for
sort D in decreasing order;
Increment the score S7y(nn1) by 1 only if (D™ /D™"?) < t; where D™"! and D™"? are
the distances to the first and second nearest features of ()7, and ¢ is Lowe’s [6] threshold;
end for
sort S in decreasing order;

Algorithm 2. Stage 2 matching: cluster-based neighborhood check

Input: Top ! candidate logo models L’ € L after stage 1 matching, and the corresponding
scores S’ € S.
Output: Refined scores S’ of the candidate logo models.
forall L, € L’ do
Initialize: neighborhood cardinality r. to [ sqrt(S;)].
repeat
for all features (27, y’) € L} do
Let N(27,y7) and Ny (23, y?) be the 7. neighborhood features of the j*" correspon-
dence between the logo model L; and the query document @ respectively;

Determine the probability of j'" correspondence being an inlier as P7 =
(N(29 5))NNg (3 u3) |

Mark the 5 correspondence as inlier if P? > t,; where threshold #, is set to 0.5;
end for
Update the correspondences in L; with inliers, and refine the S; with the cardinality of
Liie. |ILi];
Update 7 to minimum of [ sqrt(5;)] and (r.-1);
until . <3
end for
sort S’ in decreasing order, and eliminate all the logo models L} € L’ with the scores S; < 3;

neighborhood check in the image space to determine the outliers. Algorithm 2] presents
the underlying mechanism.

4 Experimental Results and Discussion

Our test set consists of 375 camera captured query documents of resolution 1600 x 1200
belonging to 25 logo models. We adapt F measure[8] as defined in Eqn. H] to evaluate
the system. The higher the F measure, the better the categorization accuracy.
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Recall = Number of true categories ident'ified
Total number of true categories
Number of true categories identified (4)

Total number of identified categories
Precision X Recall

Precision+ Recall

Precision =
F measure = 2 x

' PATTERN .. BN
Rl RECOGNITION ' Meneivet S0
LIV IER Lo e e L M !

.
Stagel: 6 Stagel: 17 Stagel:12 Stagel: 11
Stage2: 6 Stage2:7 Stage2: 8 Stage2: 0

Fig. 4. Category identification: left:query document, right: predicted categories(true: scores in
green, false: scores in red i.e. rightmost logo model)

Table 1. F measure[8] at different stages of matching, and different feature representations

Feature representation
128 64 32 16 HE-128 HE-64
Stage 1 64.03% 54.99% 58.21% 40.73% 44.93% 32.51%
Stage 2 77.95% 73.92% 72.52% 55.18% 68.24% 59.96%

Table[Ilshows the accuracies at different stages, and different SIFT [6] feature repre-
sentations with k=100, t=0.5, and [=5. HE-128 and HE-64 in the table[I] corresponds to
feature representation with Hamming Embedding(HE) and bit string lengths of 128 and
64 respectively. From the table [Tl as the dimension of the SIFT [6] features decreases
from 128 to 16, the corresponding stage 2 F measure decreases gradually, and stage
2 matching significantly improves the stage 1 matching F measures. HE with 128-bit
string representation achieves a reasonable F measure of 68.24% with enormous sav-
ings in storage. We observe a similar kind of pattern at k=50 and £=200, with a minor
change of 1 to 2% in F measure, and slightly higher measures with increasing number
of clusters k. We also empirically verified the derived threshold ¢=0.6 by a comparison
among other threshold values, and observed higher F measures at t=0.6. We achieved a
F measure of 36.54% by directly adapting the HE method of [3]] with 128 bits and the
specified parameters. Finally, we verified our method on Tobacco-800 [1] dataset and
achieved a 95.14% F measure as opposed to 92.5% using [3]. Finally, Fig. @ shows
the scores of identified categories of a query document at each stage. On an average,
it takes 1 second to categorize the given query document on Intel core 2 duo machine
using MATLAB.

5 Conclusions and Future Work

This paper presents a methodology to categorize camera captured documents based
on logo identification. The selection of robust features is done by comparisons among
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various local affine-invariant features. The methodology not only categorize the docu-
ment in the case of partial occlusions, intensity variations, and non-rigid deformations
but also identify multiple categories if present. The system is evaluated with respect to
different feature representations. Improving the categorization accuracies by adapting
optimal representations constitutes the focus of our future work.
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Abstract. This paper introduces Viskew: a new algorithm to estimate
the skew of text lines in digitized documents. The algorithm is based on
a visual perception approach where transition maps and morphological
operators simulate human visual perception of documents. The algorithm
was tested in a set of 19,500 synthetic text line images and 400 images of
documents with multiple skew angles. The skew angles for the synthetic
dataset are known and our algorithm achieved the lowest mean square
error in average when compared with two other algorithms.

Keywords: Document processing, skew estimation, visual perception.

1 Introduction

Document analysis and recognition systems are subdivided into several modules
in order to achieve high performance. In general, the scanned document is first
thresholded into a bi-level image, i.e., an image where the paper is converted
into white and the ink into black [13].

After thresholding, segmentation can be carried out in different ways [6]. Doc-
ument segmentation identifies text and graphical areas in the image. The text
areas are segmented into lines and the lines into words (or, even further, into
characters in typewritten documents); this is called text segmentation. The final
objects (words or characters) are submitted to classifiers for the final recognition
phase. During segmentation phase, several factors can cause errors such as noise.

The source of errors can also come from the beginning of the process in the scan-
ning phase. At this point, most part of the errors is due to rotation of the original
document during digitization. When the document is typewritten, OCR (Optical
Character Recognition) tools can correct this rotation with a small effect in the
recognition rate. To correct the image it is common to use the Hough transform
(HT) [5] for skew estimation and further skew correction [5][15].

However, rotation can appear in different and more difficult situations, some
of which are not associated to errors in any phase. For example, it is common

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 138-{I45] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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to find in handwritten documents skew angles that are related to the writing of
the person who wrote that document; or inclinations that occur when someone
writes in unlined paper. Hough transform is defined to find just one skew angle
in an entire image; this and other methods are not suited for situations as the
one shown in Fig. [[l Another problem associated to HT-like methods is the
computational cost, although in [8], this cost is reduced by applying the HT on
the horizontal decomposition generated by a wavelet transform (Haar family).

Handwritten documents are the most difficult type of images to process with
an automatic recognition system [6]. In general, at every further step, it is harder
to produce high quality responses. This is no different for skew estimation, even
more in cases where there is more than one skew angle to be estimated.

In this paper, we present a new skew estimation algorithm which is developed
for handwritten images with one or several, possibly different, line skew angles.
The paper is divided as follows: next section reviews some skew estimation tech-
niques; Section 3 presents the new method; experiments are described in Section
4, while, in Section 5, we conclude the paper.

2 Skew Estimation

As previously stated, most skew estimation algorithms consider that the docu-
ment has a single skew angle. A rotated document will lead to a much harder
segmentation process. Fig.[[lshows an example of the results of text line segmen-
tation using Basu et al.’s method [1] in a rotated document with and without
skew correction. A correct skew estimation and correction is clear with this ex-
ample as without them several different lines are segmented as just one.

Fig. 1. Basu et al.’s line segmentation algorithm [1] applied to a handwritten document
(left) without and (right) with skew correction

A segmentation algorithm based on the idea that the text of a document can
be put inside a bounding box is proposed in [11]. Drawing this bounding box
by finding the extreme corners of the text image allows the evaluation of the
skew angle. The same authors previously introduced another skew estimation
algorithm based on histogram and connected component analysis [12]. In [2], an
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algorithm is proposed to segment text from complex background in video frames.
After locating the text lines, the projection profile is found and the skew angle
is the one that produces a minimum entropy histogram. A method based on
morphological operators has been proposed in [16]. Skew estimation is achieved
in [14] by counting the amount of black pixels in the rows, but it is not able
to deal with rotated documents which do not have large black areas. A very
robust algorithm was presented by Chou et al. [3] where the image is segmented
into four slabs and parallelograms are formed in each slab as bounding boxes
around the text lines. Different angles are tested to form these parallelograms.
The skew angle that forms more white areas indicates the rotation of the im-
age. An improvement to Chou et al.’s method was proposed in [I0]. Not only
the computational cost was highly reduced but also the original algorithm was
improved, as it is now able to have a better response when applied to noisy im-
ages and documents with tables. In [9], it was presented an algorithm for skew
estimation based on horizontal and vertical white runs counting.

As outlined, these algorithms are suited for documents with just one skew
angle, which in general is caused by the scanning process.

3 Viskew: A New Algorithm for Skew Estimation

In order to illustrate the main steps of the proposed skew estimation method,
a sample black-and-white image (Fig. [Zal) was created with very different skew
angles. This is not an expected real example but it is being used just to demon-
strate the major steps of the proposed method.

The main idea of our proposal uses some aspects of our visual system and
some theories from visual perception. The first time we see a document, we can
perceive several characteristics of it without focusing our attention specifically
on any of them. For example, in general, we can perceive if the document has
figures or not, if it is handwritten or typewritten, or if its text is written with
a zero degree skew angle in relation to the superior and inferior margins of the
paper. Documents with text line with different skew angles is very common when
the document is handwritten and the sheet of paper has no guide lines to help
the writer to keep a straight text. Usually, the text lines change the skew angle
along the document generating a document with multiple skew angles. After this
initial perception of the document, we can concentrate in reading the document,
focusing our attention on its contents. This aspect of our visual system can be
understood as what is called pre-attentive vision [17] which involves the visual
processes that operate before we attend to an object.

With this in mind, we can consider that several details of the document do
not need to be observed to have some features perfectly perceived. Thus, the
first idea is to loose details. This can be achieved by the application of a blur
effect in the document image. However, this operation can group different text
lines vertically. Then we opted to use transition maps to simulate this effect [7].
This map counts the number of transitions (from black to white or vice versa)
which appears in a sliding window of height A and width w. For the evaluation
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of the transition map, it is proposed the use of 1-pixel height windows [7]. For
our experiments, the width is set to 180 pixels as small widths can segment the
lines into words. The window is centered in the pixel that is being processed. The
result (the transition map) is a grayscale image where the zero values correspond
to regions where there are no transitions, i.e., regions without text (Fig. 2h).

The result of the transition map gives an idea of the skew angles of the docu-
ment. But as the behavior is still not completely clear, we try to decrease even
more the amount of details. The transition map is binarized using Otsu thresh-
olding algorithm [13] and a low pass filter is used to smooth the map, creating
large homogeneous areas. These two steps are presented in Fig. ] for the tran-
sition map of Fig. Rhl We also maintain the ideas of Gestalt grouping principles
as established for document processing in [4]: good continuity is maintained as
each text line is kept together; proximity is also applied as elements that are
closer are merged together (words from the same text line).

Once we have this filtered image, the skeleton of each white area is computed
using the algorithm of [18]. These skeletons represent the line axis of each text
line. Small skeletons are removed as it is not expected that they represent real
text lines. Based on our experiments, for 200 dpi resolution documents, the
skeleton is considered small if it has area less than 250 pixels. This removal of
small skeletons also makes our method suitable to deal with noisy images.
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Fig. 2. (a) Sample document used to illustrate the main phases of the proposal and
(b) transition map for the sample document of Fig. 2a] (the contrast was enhanced for
a better visualization), (c) binarization of the transition map of Fig. Rhl (d) the result
after a low pass filtering on Fig. Bd (e) skeletization of the filtered image of Fig. Rd] (f)
final image with small skeletons removed, (g) best fit linear functions, (h) a zooming
into the lines of Fig. [2g] with the skew angle 6 to be evaluated and (i) final image after
skew estimation and correction
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Fig. 2 shows the initial skeleton image (Fig. 2€) and the final image after the
removal of the small skeletons (Fig. 2I). It is clear that these line axes have the
skew angle information.

Using the coordinates of each separated line axis, a first degree function is
calculated so that it fits best using least squares approximation (Fig. [2g). Now
it is just necessary to compute the skew angle of each line and to proceed with
the inverse rotation for skew correction (Fig. D). For example, for the sample
document depicted in Fig. Bal, the algorithm estimates an angle of 4.73 degrees
for the first text line and -3.81 degrees for the second one. The negative value in-
dicates a clockwise rotation (which will thus require a counter-clockwise rotation
for correction).

A search for the components of the original image that are connected to the
line axis defines the text that is going to be rotated according to the specific
skew angle of that axis. The text line that corresponds to each separate line axis
receives a different label. Inverse rotations with the skew angles are then applied
to each text line to generate the final image (Fig. 21).

4 Experiments and Discussion

Fig. Bl presents a more complex synthetic sample document with very different
skew angles and the final corrected image (for skew correction, we used [5]) after
skew estimation by our algorithm. In Fig.Bd we show a synthetic double column
document, generated by duplicating the image of Fig. Bal Fig. presents the
corrected image.
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Fig.3. (a) Original document and (b) the final image after skew estimation with
Viskew and skew correction. (c) Original double column document and (d) the final
image after skew estimation with Viskew and skew correction.

Another experiment was done with the first text line of the image depicted in
Fig. 21 We separated that line from the rest of the image and rotated it so that
it becomes as straight as possible (Fig. fal). This straight line was considered as
the ground truth. Next, the text line was rotated 5 degrees counter-clockwise
(Fig. [4h). We have applied Mascaro et al. [10], Chou et al. [3] and our algorithm
to this rotated image and we compared the results to the gold standard. Fig. [4d,
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Fig. Bdl and Fig. e present a comparison between the gold standard text line
(in black) and the text lines obtained after skew correction of the rotated image
with the skew angles detected by these three algorithms (in light gray). We also
compared the results of skew estimation by the three different algorithms, as
presented in Table 1. The proposed algorithm estimated the small angle for the
gold standard image and it also estimated the closest slant for the 5 degrees
rotated image.
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Fig.4. (a) Gold standard, (b) its 5 degrees rotated version; a comparison of Fig. [4al
and the skew correction with skew angles estimated by: (c) Chou et al., (d) Mascaro
et al. and e) our proposed algorithm. In this figure the dark text is the gold standard
and the light grey is the corrected text line (see quantitative results on Table 1).

Table 1. Skew estimation of Chou et al., Mascaro et al., and Viskew for the ground
truth image and its 5 degrees rotated version (see Fig. M)

Image Chou et al. Mascaro et al. Viskew
Ground truth (0 degree)  -2.00 -1.50 0.42
5 degrees rotated 3.70 4.20 4.53

Other examples are shown in Fig. Bl which depicts real images of histori-
cal documents with multiple skew angles and the images generated after skew
correction using the angles found by our proposed algorithm.
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Fig. 5. Two real handwritten historical documents: (a) and (c): the original documents;
(b) and (d): the images after multiple skew estimation and correction
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None of the tested algorithms achieved acceptable results, as they are suited
for documents with just one skew angle. The algorithms introduced in [3] and
[10] when applied to the sample document of Fig. [Zal found unique angles of
-0.1 and -0.5 degrees, respectively. These values are not even close to the angles
found by our algorithm for each line (4.73 and -3.81 degrees) which resulted in
the corrected image (Fig. 2.

For evaluation of the proposed algorithm, two experiments were developed.
In both of them, a set of 296 documents were segmented generating 1,500 text
lines. These text lines were straightened in order to obtain gold standard text
lines. Rotations are then imposed to these gold standard text lines from 0.5 to
6 degrees with a 0.5 step. This process produced 18,000 text lines (12 rotations
for each one of the 1,500 gold standard lines).

In the first experiment, Mascaro et al. [10], Chou et al. [3] and our proposed
algorithm were applied to the complete set of 19,500 text lines (the rotated and
the gold standard images). As the angles are known a priori, it was possible to
analyze the mean square error of the skew angle estimated for each technique.
Our method achieved the lowest value in average (1.00) against 49.96 (Chou et
al.) and 6.35 (Mascaro et al.). Other algorithms were not tested as they are not
suited for this application.

For the second experiment, these rotated text lines were randomly grouped
into 400 synthetic images of document (each one with ten text lines). Again,
the skew angle of each text line is known. The proposed algorithm was applied
to this set of 400 documents. The estimated skews were analyzed reaching an
average mean square error of 0.896.

5 Conclusions

This paper presents Viskew: a robust algorithm for skew estimation of hand-
written documents with different skew angles at each text line based on aspects
of our visual system. It starts with the evaluation of a transition map to simu-
late pre-attentive aspects of vision removing details of the document image. The
skeleton of this map is used to generate an axis line which allows the estimation
of the skew angle. The components of the text that are connected to the skeleton
are classified as part of that line and then rotated according to the defined skew
angle for that line. The approach was applied to a set of 150 images of documents
with a total amount of more than 1,700 text lines. Isolated rotated lines were
also tested and compared with the results of Chou et al.’s and Mascaro et al.’s
algorithms. In every experiment, our method achieved more precise skew angles
estimation.

Different values of window width in the transition map phase could allow the
skew estimation of different angles in the same text line. We will examine this issue
in further studies. We will also try to attack the problem of non-linear text lines.
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Abstract. The log-polar space variant representation, motivated by
biological vision, has been widely studied in the literature. Its data re-
duction and invariance properties made it useful in many vision appli-
cations. However, due to its nature, it fails in preserving features in the
periphery. In the current work, as an attempt to overcome this prob-
lem, we propose a novel space-variant representation. It is evaluated and
proved to be better than the log-polar representation in preserving the
peripheral information, crucial for on-board mobile vision applications.
The evaluation is performed by comparing log-polar and the proposed
representation once they are used for estimating dense optical flow.

Keywords: log-polar mapping, space-variant representation, optical
flow.

1 Introduction

Space variant representation schemes have been used in the computer vision
field in order to improve the efficiency of proposed solutions. Log-Polar Repre-
sentation (LPR) is one of the most widely used. It is inspired by the biological
vision systems [1], [2] and has been exploited in the robotics and active vision
communities for pattern recognition [3] and navigation [4] tasks. The LPR has
many advantages with respect to the conventional cartesian representation of
images [5]; the most important are the reduction in the data and invariance to
scale and rotation. The data reduction due to the polar mapping and logarithmic
sub-sampling leads to a high resolution in the fovea and a low resolution in the
periphery, which is a desired feature for instance in the active vision community.

A review of log-polar imaging is presented in [6] for robotic vision applications
such as: visual attention, target tracking and 3D perception. All these applica-
tions benefit from the high resolution of the fovea region. There have been also
attempts to use LPRs for motion analysis [4] [7], mainly based on the estimation
of optical flow. For instance, [5] presents the advantages of polar and log-polar
mapping to the cartesian representation and proposes a technique to estimate
time-to-impact using optical flow. In [8], a novel optical flow computation ap-
proach is proposed. It is based on the concept of variable window and generalized
dynamic image model. The variable window adapts its size along the LP space.
Also working in the LP space, [9] analyzes the polar deformation and proposes
several local optical flow estimation techniques on log-polar plane.

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 146 2011.
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In the particular contexts of robotics and advanced driver assistance systems
(ADAS), LPR has attracted the attention of many researchers. In general, in
these fields LPRs are obtained using the vanishing point (VP) as a center of the
log-polar reference system. V P, . corresponds to a point at z — oo where
two parallel lines of a road appear to converge in the image plane. Since LPR
results in a high sampling in the fovea region, the periphery are under-sampled.
It should be noted that the periphery corresponds to regions near to the camera
reference system, hence are the most important areas for robotics navigation
tasks and ADAS applications. Furthermore, features near to the camera are not
only useful for detection tasks but also for an accurate calibration; note that the
accuracy of 3D data decreases with the depth.

In the current work a new space variant representation scheme is proposed.
It is intended to overcome the problem of LPR with respect to periphery in for-
ward facing motion problems. The superiority of the proposed representation, to
LPR, is analyzed using dense optical flow on these representations. The paper is
organized as follows. Section ] presents the proposed space variant representa-
tion and optical flow estimation. Then, experimental results and a comparative
study are given in Section [3l Finally, the work is concluded in Section [l

2 Proposed Approach

This section introduces first, the LPR and then the proposed space variant rep-
resentation of cartesian images; next, the basic variational optical flow model is
presented.

2.1 Space-Variant Representations

A log-polar representation is a polar mapping with logarithmic distance along
the radial axis. For a given pixel (z,y), the log-polar (p, 6) are defined as:

p=log(/(x — o)+ (y —w0)?),  6=arctan((y —yo)/(x — z0)), (1)

where (xg,yo) is the origin of mapping; the current work focuses on the study
of the particular scenario of forward facing moving platforms, hence the origin
of the reference system corresponds to the vanishing point.

As mentioned above, LPR oversamples the fovea and undersamples the pe-
riphery. This leads to the non-preservation of vital information of the periphery
useful for mobility applications. The latter motivates us to propose a better
space variant representation, where a (x,y) pixel is mapped as:

p = 10g(rmaz — /(2 —20)? + (y —y0)?), 0 = arctan((y — yo)/(z — o)), (2)

where 7,4, is the radius of the largest inner circle around VP in the cartesian
image. This is different from LPR in the sense that logarithmic subsampling is
from the periphery towards the center and will be referred as Reverse Log-Polar
Representation (RLPR). Figure[ll (right) shows LP (¢op) and RLP (bottom) rep-
resentations of the same image Fig. [(left). In both cases the images are sparsely
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Fig. 1. (top) Log-Polar and (bottom) Reverse-Log-Polar representations of an image

sampled as depicted in Fig.[[(middle) correspondingly. Since the LP/RLP trans-
formation involves both many-to-one and one-to-many mapping, the LP/RLP
images cannot be straight forwardly dense. The dense images presented in the
right column are obtained by querying for each (p, 6) to the cartesian and by bi-
linear interpolations—horizontal axis is angles (6’s) and vertical axis is distances
(p's). As can be seen in the grids in Fig. [[l(middle), qualitatively, the RLPR im-
age better preserves the periphery information, which covers most part of the
road at the bottom in the scenario of a moving vehicle.

2.2 Variational Optical Flow

The aim in this paper is to evaluate the performance of LP and RLP representa-
tions once they are used to compute optical flow in the context of on-board vision
systems. The variational optical flow [10] is based on two assumptions: i) the
brightness constancy (BCA) and ii) the homogeneous regularization. The BCA,
also called as optical flow constraint, assumes the grey value of objects remains
constant over time. The homogeneous regularization assumes that the resulting
flow field varies smoothly all over the image, necessary to overcome the aperture
problem. The BCA can be formulated as: I (z+ u) — Ip(x) = 0, where [ and
I, is the image pair, = (21, x2) is the pixel location within a rectangular image
domain 2 C R?; u = (ui(x), uz(x)) is the two-dimensional displacement vector.
Linearizing above equation using first-order Taylor expansion, and combining it
with smoothness assumption in a single variational framework and squaring both
constraints, the energy functional becomes:

E(u) = /Q {Tnw +Lyan+ 1P +a(Vul+ Vi) b dz,  (3)

Data Term Regularization
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where « is a regularization parameter. Variational optical flow energy functions
can be minimized in a number of ways. The most used way is to express and solve
the set of Euler-Lagrange equations of the energy model. Another popular way
of solving eq. ([B) is by using a dual formulation based on iterative alternating
steps [I1]. In the current work a recent variational optical flow technique [12] is
used. It explores the basic formulation and some concepts such as pre-processing,
coarse-to-fine warping, graduated non-convexity, interpolation, derivatives, me-
dian filtering. [I2] proposes an improved model underlying median filtering.

3 Experimental Results

As mentioned in Section [ there have been many applications using LP rep-
resented images, some of them based on the optical flow estimation on those
images. The current work aims to estimate the optical flow on RLP represented
images and compare it with results from LPRs.

In LP/RLP representations of images the origin of mapping should be the
vanishing point in the scenario of a forward facing moving vehicle, so that the
mapped images better suit the applications. In the current work, vanishing points
computed from a RANSAC based approach [13] are used. Then, the optical flow
is computed on these LP and RLP represented images. The bottleneck to com-
pare the flow fields from LP and RLP representations is that the flow field patches
at a particular location in both representations correspond to different regions of
the image in cartesian with varied resolution. Hence, the framework proposed to
perform the comparison consists of inverse mapping the flow fields back to carte-
sian and compare them in the cartesian space. Figure [2] shows an image pair in
cartesian (top-left), their ground-truth flow (top-right), LPR (middle-left) and
RLPR (bottom-left), and their computed flow fields (middle-right and bottom-
right). The color map used to display optical flow is shown in Fig. 2 bottom
right corner. Since the image pairs correspond to a translation along the camera
focal axis, the flow field in cartesian looks diverging. The computed flow field in
both LP/RLP representations looks blue in color indicating all the vectors point
downwards. Figure 3] depicts the inverse maps of both LP and RLP flow fields
back to cartesian which are sparse. Hereinafter, the LP and RLP representations
of flow fields refer to these mapped back to cartesian.

The well known error measures to compare flow fields are Average Angular
Error (AAE) and Average End-Point error (AEP) [I4] [I5]. The AAE is chosen
in the current work as the measure to compare flow fields. The angular error e
between two vectors (u1,v1) and (ug,v2) is given by:

(4)

1
e((u1,v1), (ug,v2)) = arccos ( uju2 + v1v2 + )

V(W v+ 1)(ud + 03+ 1)
Since the flow fields from LP and RLP representations are sparse and of varied

resolution, in order to do a fair comparison a common set of pixels (mask) is
selected. Figure [l shows the masks of LPR (left) and RLPR (middle) of flow
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Fig. 2. (top) Flow fields in Cartesian, (middle) LP and (bottom) RLP representations

fields and the intersection mask (right) that is the set of positions those have
flow values in both representations. This mask is used to compute the errors
between LPR/RLPR and ground-truth flow fields. Table [Il shows AAE of ten
different flow fields from sequence-1 of set-2 of [I6]. The images in this dataset
are of resolution 480x640. They are mapped to LP and RLP representations
of resolution 230x 360, placing the vanishing point at (230, 340), computed from
[13]. Then, optical flow is computed on these images using [12]. The flow fields are
mapped back to cartesian and then, using the mask as shown in Fig.[d{right), the
AAEs between LP and ground-truth flow fields, and between RLP and ground-
truth flow fields, are computed. The AAEs in Table [I] show that flow fields
estimated in RLP representations are more accurate than flow fields from LPRs.
In all these experiments, the image region contained in the largest inner circle
around the vanishing point is considered for mapping to LP/RLP.

Table 1. AAEs (deg.) for flow fields from sequences [16] in LPR and RLPR

1 2 3 4 5 6 7 8 9 10
Seq. LPR 24.38 24.35 23.99 23.95 23.92 23.80 23.63 23.78 23.53 23.42
1 RLPR 20.98 19.15 19.04 19.43 18.30 18.47 18.47 18.00 17.92 18.94
Seq. LPR 24.30 24.59 27.45 27.18 24.32 24.63 24.70 24.52 24.75 24.87
2 RLPR 21.68 21.80 27.24 26.60 21.61 23.39 24.25 23.80 23.87 22.05
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Fig. 3. Inverse mapped flow fields from (left) LP and (right) RLP

Fig. 4. (left) LP mask; (middle) RLP mask; (right) Mask from their intersection

A similar experiment on sequence-2 of set-2 of [16] is performed; results are
presented in Table[Il Vanishing point for these 10 image pairs lies in (240, 320),
and the resolution of the mapped images is 240x360. In the results of sequence-
2, the difference in AAEs between LP and RLP is smaller than the results of
sequence-1 because the displacement between consecutive frames in sequence-2 is
very high. These large displacements lead to more stretching in RLP represented
images and hence more erroneous flow fields.

Further experiments are done to analyze how the error evolves along the space
in these variant representations. Different circular regions around the vanishing
point, with an increase in the radius of the circles within the flow field bound-
ary, are considered. At each radius of the circle, the AAE is calculated inside the
circle and outside the circle. This experiment is done on both LPR and RLPR.
Since the radial axis for the flow fields of sequence-1 of set-2 is of length 230,
nine circles with increasing radius from 23 till 207 in multiples of 23 are consid-
ered. Figure BY(top-left) and (middle-left) shows the AAEs in colormap for the
region inside the circle at radius of 115 for LPR and RLPR. Figure [ top-right)
and (middle-right) show the AAEs in colormap for the region outside the cir-
cle at radius 115 for LPR and RLPR respectively. In Fig. Bl bottom-left), solid
lines indicates AAEs (the average of ten flow fields’ region inside the circle)
with the increase in radius in LPR. The AAE increases as the inner area in-
creases with the increase in radius. This proves that the flow field near the fovea
is more accurate than in the periphery in LPR. The dashed lines correspond
to AAEs (the average of ten flow fields’ region inside the circle) in RLPRs with
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the increase in radius. In the plot Fig.Bl(bottom-left) the AAE of RLPR decreases
from radius 138 till the boundary. At radius 207, where most of the image area
is covered inside the circle, the AAE of RLPR is less than the AAE of LPR.
This shows RLPR is better at periphery than LPR.

Figure Bl(bottom-right) shows the AAEs of LPR and RLPR, outside the cir-
cles, with the increase in radii of the circles. That means the outer area getting
reduced with the increase in radius of the circle. The solid line indicating AAE
of LPR increases as the outer area decreases, whereas the dashed line indicat-
ing AAE of RLPR decreases as the outer area decreases till the circle with
radius 161. Then it increases due to some artifacts in the extreme periphery of
RLPR flow field. Figure Bl middle-right) shows the artifact, thin band of circular
arc on the top, whereas this band is absent in the LPR (top-right) flow field.
This plot (bottom-right) gives the same conclusion obtained from the plot in
(bottom-left).

Average angular error
Average angular error

——— AAE inside the circle in LPR 14
AAE inside the circle in RLPR

23 46 69 9 115 138 161 184 207 23 46 69 9 115 138 161 184 207
Increasing area of coverage Decreasing area of coverage

Fig.5. Analysis of AAEs over space in LPR and RLPR (values in colormap scale
computed from eq. H)). (left) Region inside circle. (right) Region outside circle.
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4 Conclusion

The current paper shows that LPR, although inspired by biological vision sys-
tems, is not an appropriate representation for forward faced on-board vision
systems, where translation in the optical axis is the predominant motion (e.g.,
mobile robotics, automotives). The previous statement is proved in a dense op-
tical flow estimation framework, using as evaluation metric the average angular
error. The optical flow is estimated on both, LP and RLP representations, and
the results qualitative and quantitatively shows RLPR better preserves the pe-
ripheral information and hence more accurate flow field. The analysis of variance
of errors along the space proves that the accuracy in flow field decreases along
the distance from the fovea in LPR, whereas it increases along the distance from
the fovea to periphery in RLPR. The possible future works are estimation of
vanishing point along with the optical flow estimation in proposed representa-
tion, analysis of data reduction in RLPR to LPR and the cause of errors in space
variant representations.
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Abstract. In the world of autonomous underwater vehicles (AUV) the
prominent form of sensing is sonar due to cloudy water conditions and
dispersion of light. Although underwater conditions are highly suitable
for sonar, this does not mean that optical sensors should be completely
ignored. There are situations where visibility is high, such as in calm
waters, and where light dispersion is not significant, such as in shallow
water or near the surface. In addition, even when visibility is low, once
a certain proximity to an object exists, visibility can increase. The fo-
cus of this paper is this gap in capability for AUVs, with an emphasis
on computer-aided detection through classifier optimization via machine
learning. This paper describes the development of color-based classifi-
cation algorithm and its application as a cost-sensitive alternative for
navigation on the small Stingray AUV.

Keywords: Stingray, AUV, object detection, color, boosting.

1 Introduction

The goal of this paper is to use the Stingray platform to investigate object de-
tection and classification as a basis for navigation. Reliable navigation on small
AUVs is challenging in the absence of large and expensive sensors for estimating
position. Using vision to detect and classify objects in the environment can be
a source for estimating relative position. The target object can be used as a
destination or could act as a path for the vehicle to follow [I]. The focus of this
research is on developing robust object classifiers for specific targets based on
color. The movement of the water and changes in lighting due to refraction and
light dispersion cause colors to blur and change. In order to overcome these diffi-
culties, we use a boosting algorithm to optimize the color classifier and improve
the detector capability.

The target destination objects are three different colored buoys, anchored
with relatively close proximity and varying depth. The buoy colors, chosen for
their contrast with an underwater environment, are orange, yellow, and green
in decreasing order of contrast. The green buoy should be more difficult to de-
tect since it is most similar in color to the background. Once the algorithm
can correctly detect and classify the target buoy, the vehicle demonstrates the

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 155{162,]2011.
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navigation capability by approaching and touching the buoy. The path or bear-
ing objects are orange pipes, which are anchored to the bottom. In some cases
there are two pipes with different orientations in the same location. The vision
algorithms detect and classify the pipe and then estimate the orientation. The
vehicle demonstrates the vision-based navigation capability by centering over the
pipe and altering its heading based on the estimated orientation. When there
are multiple pipes, the vehicle must decide which direction to navigate. The two
target types are shown in Figure [I] below.

(b)

Fig. 1. (a) Stingray AUV. (b) Destination buoy objects. (c) Bearing pipe objects.

It turns out that the boosting of the classifiers for the buoys and pipes greatly
improves the detectors. For the pipe, we show that the bearing estimation be-
comes extremely accurate as well. We implement the optimized detectors and
bearing estimator on the Stingray, which is able to navigate to the correct buoy
and change bearing based on the pipe with high reliability.

The remainder of this paper is organized as follows. In Section [2] we discuss
related work, while in Section [B] we describe our process for developing a clas-
sification algorithm. In Sections [ and [l we focus on the specific targets of the
buoy and pipe, providing results from the final algorithms for each. Finally, in
Section [0l we conclude by discussing the aspects of this research that are novel
and the promising directions for future work.

2 Related Work

There has been an increase of research in vision-based navigation for underwater
vehicles in recent years. Most of the research focuses on avenues that do not
parallel the work in this paper, but there are some similar efforts.

The papers that use landmarks as reference points for underwater navigation
are most similar. The work of Yu et al. [7] uses yellow markers and colored
cables for AUV navigation by thresholding the UV components of the YUV color
space, which is similar to the baseline methods for this paper. Another method
thresholds on the RG components of the RGB color space to detect yellow sensor
nodes, as presented by Dunbabin et al. [3]. In the research by Soriano et al. [6]
an average histogram is created for each target, which is compared to a region
of interest for classification.
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Cable or pipe tracking is another task, which is heavily researched in terms
of vision-based systems. The work of Balasuriya et al. [I] shows a method of
using Laplacian of Gaussian (LoG) filters to detect the edges of the pipe. Foresti
et al. [4] use a trained neural network to recognize the pipeline borders, while
Zingaretti and Zanoli [8] use vertical edge detection in horizontal strips and
contour density within the strips to detect the pipe.

These papers avoid much of the underwater difficulties, which cause colors
to change based on light absorption, by attaining proximity to the target. We
show that without boosting, a simple color classifier is not sufficient on our test
data set, which includes images of the targets at substantial distances and under
varying lighting conditions.

3 Developing a Classification Algorithm

The process of developing the classification algorithm generally starts with choos-
ing a feature set to describe the target. The feature chosen for these targets is
color. The Hue-Saturation-Value (HSV) color model is used for its separation
of brightness from the hue and saturation pair. Because of this isolation of the
brightness element of a color, a single object is more reliably detectable under
different lighting conditions. The more common Red-Green-Blue (RGB) color
model is an additive model, which makes it difficult to identify the same color
under different lighting conditions [2].

The boosting algorithm requires a large number of examples in order to opti-
mize the decision tree. For the HSV color classifier, we labeled individual pixels
as positive or negative in terms of the target. The examples, which number in
the hundreds of thousands, are then inputs into the boosting algorithm.

For this research, the LogitBoost form of boosting is used via the JBoost soft-
ware package. The JBoost application expects the input examples in a standard
format with classifier data and a label. JBoost can output the resulting decision
tree visually as well as in Java or C code.

4 Buoy Detection

The buoy targets have the same size and shape, only differing by color. To develop
the algorithm, we focus first on the orange buoy. Once an algorithm is developed,
including the pixel level optimized decision tree and post processing, we can train
the classifier for the other buoys. The final algorithm will have a pixel decision tree
for each color to create a binary image. The binary image will be post processed
in the same way for each color. The goal is to accurately estimate the location of
the designated buoy in the image and use the distance from the buoy to the center
of the image as a heading offset for the Stingray vehicle.

4.1 Baseline

There must be a baseline algorithm in order to determine the improvements
provided by using boosting to optimize the decision tree for the HSV classifier.
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The baseline in this research is a simple HSV thresholding, which was previously
implemented on the Stingray. An HSV estimation of the color orange in the buoy
is extended to provide a range for each of hue, saturation and value, which was
tuned over many iterations to achieve the best possible threshold range. The
range is used to determine if a pixel is positive or negative, thus creating a
binary image, which is used without post processing to estimate the center of
the buoy based on the centroid of the positive pixels.

The metrics used to compare algorithms are the true positive rate (TPR)
and false positive rate (FPR). There are two sets of images from two different
environments. The first environment is a large anechoic pool, which is 300 ft by
200 ft by 38 ft deep. The other is a small above ground pool, which is 10 ft in
diameter and 4 ft deep. Both pools are situated outside in natural lighting. For
each environment there is a set of images for training the classifier and a set
of images for testing the resulting classifier. Both image sets have examples of
the buoy from different distances as well as images with no buoy present. To
determine TPR and FPR, we label the center of the buoy in each test image,
as well as the edge of the buoy. The distance between these points provides a
threshold for the correctness of a center estimation. The baseline TPR is 0.45
and 0.18 for the Tank and the Pool respectively, while the FPR is 0.55 and 0.45.

4.2 Post Processing

Since the boosted classification algorithm is for individual pixels, the output is
a binary image without clearly defined object boundaries and with extraneous
positive or negative pixel noise. The goal of the post processing techniques used
in this research is to prepare the binary image for the best possible estimation
of the location of the buoy.

We start by using one iteration of opening, which is erosion followed by dila-
tion, to remove noise in the binary image. Next we use two iterations of closing,
which is two dilations followed by two erosions, to fill binary objects containing
gaps. Then the smoothing algorithm via Median blur with a 7x7 kernel creates
smooth edges of binary objects in the image. Finally, we use the convex hull
algorithm to approximate the shape of the binary object with only convex cor-
ners, which provides more complete binary objects in situations where part of
the target is not correctly classified.

4.3 Boosting HSV

As described in Section Bl the first step to boosting the HSV classifier is labeling
examples. The pixel examples are given as input to JBoost, which outputs a
complex decision tree in a C code function. The function provides a score for a
given pixel, which is labeled as a one or zero based on a threshold.

In order to determine the threshold that provides the best output, we look
at the receiver operating characteristic (ROC) curve for thresholds from -2.0 to
5.0 over 0.1 increments. Since the threshold determines the status of a pixel and
the performance of the classifier is determined by the accuracy of the center
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Fig. 2. (a) The ROC curves for four versions of the buoy classifier on the test image set
from the tank environment. (b) Example of classifying specifically for different color
buoys independently. The green circles show the estimated centers for each buoy.

estimation, the generated ROC curve is not a smooth curve. The tank is large
and representative of an ocean environment in terms of acoustics and reflectivity,
while the pool is small with reflective walls and bottom. The two environments
are distinct enough that when we label extra examples for the pool, we ultimately
overfit causing reduced performance for tank images. The simple solution is to
develop target classifiers for the environments independently.

We start with the tank environment by generating a decision tree, which
we use on our test image set to produce the ROC curve and choose the best
threshold value. Based on the results at this threshold, additional labeling may
improve the classifier. Figure 2] shows the ROC curves from four such iterations
of the decision tree. The best results are at the threshold of 3.6, which gives a
TPR of 0.98 and a FPR of 0.18, and the threshold of 4.2, which gives a TPR of
0.92 and a FPR of 0.0.

We follow the same iterative sequence for the pool environment, which is much
more challenging because of its small size and shallow depth. The two best thresh-
olds are 0.7, which gives a TPR of 0.68 and a FPR of 0.26, and the threshold 1.7,
which gives a TPR of 0.61 and FPR of 0.05. These results are not as reliable as the
tank results, but they are still a substantial improvement over the baseline.

4.4 Results

The same technique described in Section can be applied to the other two
buoy colors to create decision trees for classifying the pixels. The post processing
techniques are the same for each color buoy. This means that the algorithm will
switch between the decision trees based on the target buoy. Figure [2 shows the
processing of the same image while looking for each of the different color buoys.

When combining the results of the three buoy classification algorithms on the
test image set, we can calculate the total TPR and FPR for the overall algorithm
as 0.84 and 0.16 respectively. The relatively low quality of the classifier for the
green buoy reduces the overall result.
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In practice the Stingray is able to reliably detect the designated target buoy
at approximately six frames per second and the detection becomes more reliable
as the Stingray approaches the buoy.

5 Pipe Detection

The pipe is an interesting target because it provides a bearing for navigation.
There can be two pipes leading to different destinations, as shown in Figure
[0, which means the algorithm needs to be able to classify multiple pipes in a
single image. After determining that a binary object is a pipe, the algorithm
must calculate the orientation. The goal is to use the orientation of the pipe as
a target heading for the Stingray vehicle.

5.1 Baseline

The baseline for the pipe, similar to the buoy, is a simple HSV threshold used
to create a binary image on which a custom algorithm, using least squares es-
timation, attempts to determine the orientation. This orientation estimation
technique is not dependable and is only used in the baseline algorithm.

The same metrics are used for the pipe results as are used for the buoys. The
main difference is that there are no examples from a secondary environment.
This makes the classification problem slightly easier, so that the problem of
estimating orientation can take focus. The baseline for the Tank is a TPR of
0.74 and a FPR of 0.16.

5.2 Classification

The pipe, like the buoy, has a unique color which makes for a useful classifier.
The same process of labeling images and inputting the examples into JBoost
to optimize a decision tree ultimately outputs a function for scoring individual
pixels of the image. The same post processing techniques from Section are
applied to the pipe binary images to create smooth and closed binary objects.

The version of the decision tree that produces the best ROC results has two
thresholds with a trade off between TPR and FPR. Both of these thresholds
provide very reliable rates, -0.3 give a TPR of 0.97 and a FPR of 0.02, while the
threshold 0.7 gives a TPR of 0.95 and a FPR of 0.01.

5.3 Bearing Estimation

The overall goal of the pipe detection is to determine the orientation of the pipe
to be used as a bearing for navigation purposes. Therefore, with a binary object
found, only the edges of the object are actually pertinent. The Canny edge
detector, with threshold values of 50 and 150 pixels, is applied to the binary
image and the output contains only the edges of all binary objects.
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With only edges remaining, the Hough Transform can be used to easily esti-
mate the straight lines in the image. We use the Probabilistic Hough Transform
(PHT) due to its ability to combine similar lines with a gap between them [5].
We use a p of one pixel and a 6 of 7 or 1.5 degrees. Our threshold is set at
30 pixels, with an acceptable line segment length of 20 pixels and an acceptable
gap of 20 pixels.

Often times the output from the PHT has extraneous line segments. The goal
of the pruning portion of the algorithm is to reduce all the line segments from
the Hough Transform down to the two per pipe that represent the long edges of
the pipe. This is broken into two steps, starting with merging all line segments
that are close to collinear. The next step is using the property of parallelism to
remove extraneous line segments. Figure [3 shows three scenarios where different
tests of parallelism remove extraneous line segments.

Fig. 3. Examples of the three algorithms of the pruning stage. The blue and red circles
with lines show the estimated centers and orientations of the pipes.

5.4 Results

The important result of the pipe detection is the ability to estimate the orienta-
tion of the pipe with great precision, in order to provide the vehicle with useful
bearing. Of course, detecting the location of the pipe is necessary to allow for
the bearing estimation, which we have shown to be very reliable.

In order to quantify the accuracy of the bearing estimation, the edges of the
pipes are labeled in the test image set and then compared to the algorithm’s
estimate. The average error with standard deviation for the baseline algorithm
is 9.0° +14.6° compared to 0.7° £ 0.8° for the hough transform based algorithm.

In practice the Stingray is able to process the images at five frames per second,
allowing the vehicle to center itself over the pipe and estimate the orientation.
The vehicle then rotates to match its heading with the orientation of the pipe,
and navigates in that direction.

6 Conclusion

This paper presents a method for using object detection and classification of
target objects to aid in navigation for AUVs. The color classifier is one unique
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element of this research, as it is not common in underwater applications. Also,
the use of boosting algorithms to optimize the classifier greatly improves on
previous work. We incorporated the use of post processing techniques to make
identifying the center of the target objects more reliable. We also showed a
technique for calculating the orientation of up to two pipes simultaneously, and
with high precision.

The result is two classification algorithms that are more efficient than the
baseline algorithms of simple thresholding. We demonstrated these algorithms
on the Stingray AUV, which navigates towards and touches a specific color of
buoy and changes heading based on the pipe.

The process we presented for creating an optimized classifier via boosting can
be applied to other targets and with classifiers other than color. The complex
and dynamic properties of underwater environments cause these classifiers to be
very specialized, which naturally leads this research towards efforts in adaptive
learning to improve a classifier in real time for changing environments.
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Abstract. We present a new approach for anomaly detection in the
context of visual surface inspection. In contrast to existing, purely
appearance-based approaches, we explicitly integrate information about
the object geometry. The method is tested using the example of wire
rope inspection as this is a very challenging problem.

A perfectly regular 3d model of the rope is aligned with a sequence of
2d rope images to establish a direct connection between object geometry
and observed rope appearance. The surface appearance can be physically
explained by the rendering equation. Without a need for knowledge about
the illumination setting or the reflectance properties of the material we
are able to sample the rendering equation. This results in a probabilistic
appearance model. The density serves as description for normal surface
variations and allows a robust localization of rope surface defects.

We evaluate our approach on real-world data from real ropeways. The
accuracy of our approach is comparable to that of a human expert and
outperforms all other existing approaches. It has an accuracy of 95% and
a low false-alarm-rate of 1.5%, whereupon no single defect is missed.

Keywords: anomaly detection, image-based analysis, surface inspection.

1 Introduction

Automatic surface inspection is a research area of rising interest. It is an impor-
tant problem as the inspection task is an exhausting and monotonous work for a
human with high quality claims on the other hand. In addition, surface analysis
in general is a difficult problem, as the visual appearance of surfaces is highly
subjected to various kinds of noise and changing lighting conditions.

A good example for such a task is the visual inspection of wire ropes. This is
a very important problem, as damaged ropes pose a risk for the human life. Fur-
thermore, the long, heavy ropes cannot be unmounted, are often contaminated
with e.g mud or oil and their material is highly reflective. In consequence, the
surface appearance of an intact rope exhibits various characteristics. In contrast,
defects in the surface structure are often very small and inconspicuous. Some ex-
amples for typical surface defects are displayed in the upper images of Fig.[Bl Due
to the high intra-class variability and the poor inter-class separability, a discrim-
ination between defect and normal appearance variation is a difficult problem.

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 163-{L70,| 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Furthermore, a common problem of visual inspection tasks is the limited amount
of available defective samples which hinders a supervised learning. For this rea-
son, anomaly detection techniques [1/4], also known as one-class classification
[9] have been used in the past for defect detection in material surfaces [S/IT].
In general, these approaches are highly dependent on their choice of features
used to represent the intact class. Platzer et al [7] compared the performance
of different textural features for the problem of defect detection in wire rope
surfaces. Their results underline the importance of context information for the
problem of surface defect detection, especially with respect to the complex struc-
ture of wire ropes. In [6] Platzer et al focused on contextual anomaly detection
by modeling the intact class with help of Hidden Markov Models. Haase et al [2]
diagnosed contextual anomalies in the rope surface with help of an autoregres-
sive model which predicts the intact surface appearance given its neighborhood.
Nevertheless, no approach achieves the accuracy of a human inspector.

We state that the main reason for this is the lack of geometrical context in
these purely appearance-based approaches. Therefore, we present a model-based
approach for visual surface inspection. By fusing a geometrical structure model
with a statistical appearance model we achieve a much better discrimination be-
tween a real defect and normal appearance variations. In a first step the model
geometry is estimated in an image-based manner with help of a perfectly regular
3d rope model introduced recently by Wacker and Denzler [10]. In contrast to
our work, they used this model to monitor important rope parameters but they
did not address the problem of rope surface defect detection. We introduce a
statistical appearance model which is linked to the geometric constraints im-
plied by the rope structure. This allows a description of the surface appearance
dependent on the position in the rope. Our method is data-driven and purely
image-based. Moreover, we have no need for calibration information with respect
to camera positions or the illumination setting.

The remainder of this paper is structured as follows: in section 2] the 3d
model and the geometry estimation are summarized. Section [ explains how this
structural model can be linked to an statistical appearance model based on the
rendering equation, which gives a physical explanation for light transport. Fi-
nally, section [ turns to the problem of anomaly detection for defect analysis. A
special focus will be laid on a validation strategy, which normalizes the learned
appearance model with respect to small inaccuracies, which result from the ge-
ometry estimation step. Our experimental evaluation on real-world rope data is
provided in section Bl Finally, conclusions are given in section

2 Geometric Rope Model

To estimate the rope geometry from 2d rope images, we use the framework
described recently by Wacker and Denzler [I0]. Their approach focuses on the
image-based monitoring of important rope parameters and is not suitable for
the automatic detection of surface defects.

A rope has a hierarchical structure composed of J strands S; which comprise
I wires W;. A wire centerline W, ; of wire ¢ in strand j for the time step ¢ can
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Fig. 1. Scenario sketch: given the point correspondence of a rope pixel x, in the real
rope image (B) and a rope pixel x; in the aligned artificial model projection (A) a 3d
surface point X of the rope can be parametrized by the two phase angles ps, pw and
the 2d distance d., of x; to its corresponding projected wire centerline. d.. results from
a 1:1 mapping of the unknown 3d distance d..

be described by a sum of two parametrized helices:

t 0
Wi i(p,t) = | rssin(ps(p,t)) |+ | rwsin(ew(p,t)) |- (1)
—Ts COS(QDS (pa t)) —Tw COS(SOW(I% t))
~ -~ PR ~ -
Sj Wi

p is a vector of free model parameters and pgs(p,t), ¢w(p,t) are the phase
angles of the helices which are dependent on the model parametrization. The
cross section through this model for one time step is shown in the top of Fig. [l

By means of analysis-by-synthesis this parametric model is aligned with the
digitally acquired 2d rope images. For that purpose an artificial 2d projection of
the 3d rope model is computed. Real rope images and the artificial projections are
then registered by optimizing the free model parameters in a non-linear fashion
and these steps are repeated until convergence. We obtain a correspondence
between a pixel x; in the artificial projection and a pixel x, in the real image.

In contrast to [I0] we use this correspondence to form a parametric description
of each surface point X in the rope. Fig. [l clarifies that every 3d surface point
can be described by the two phase angles g and @y of the corresponding wire
centerline and the 3d distance d. to this surface point (time is neglected):

0
—/0.52%, — d2

Here @y is the known diameter of the wires and n’ points into the direction of
the surface normal. As the rope model reveals no volumetric information d. is
unknown, but there exists a 1:1 mapping to the measurable 2d distance d’, of an
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image pixel x; to its corresponding projected wire centerline. Therefore, we will
use the parametric description 6 = (¢s(p), ew(p), d.) to characterize a surface
point in the rope and to build a combined model for structure and appearance.

3 Combined Model for Structure and Appearance

The rendering equation is a physical model describing the observed radiance at
a surface point of an geometric object. It was first introduced by Kajiya [3] in
1986 and is an integral equation describing the propagation of light. One of the
most common formulations of the rendering equation is:

Lo(X,we) = Li(X,w,) + /Q £(X,wiw0) Li(X,ws) (wi-n)dws. (3)

The radiance which can be observed at a surface point X depends on the viewing
direction w,, the emitted amount of light Lr and the reflected radiance which
results from the incoming radiance L, the bidirectional reflectance distribution
function f, of the surface point and the inner product of surface normal n and
the inward direction w; integrated over the hemisphere (2.

Usually, in visual inspection scenarios we have neither calibration information
nor knowledge about the illumination setting so that w, and w; are unknown.
However, the relation between camera, object and position of the light source(s)
typically stays fixed. This implies that the viewing direction and the incident
angle of the incoming light depend only on the parametrization 6 of the surface
point X, which we derived in section[2l Fig. [l clarifies this scenario. In this case,
the rendering equation can be re-parametrized and the emitting term Lg can be
neglected for non-emitting objects like the rope:

i0(9)=Lo(X(9))=/er(X(9)7wi) Li(X(0), wi)(wi - n(X(0)))dwi,  (4)

Now, we are able to sample the observed irradiance Lo at a surface point X of
the rope only dependent on its parametrization § without additional knowledge
about the camera position or the illumination setting. As our goal is the estima-
tion of a representative surface appearance model including normal appearance
variations, we exploit the periodic structure of a rope to obtain several samples
for the same surface point. We consider a whole sequence of rope images which
are aligned with the rope model for this purpose.

The appearance model is learned from an images of an intact rope. We are
interested in the likelihood of observing a gray value g, at the position x, in
the real rope image given its corresponding 3d surface point X (). This can be
formulated as a density estimation problem. We estimate the joint distribution
p(gr,0) for any parametrization § and its corresponding observed gray values
g- in a non-parametric manner. To obtain a dense representation we apply a
4d Parzen estimator. This density constitutes a combined model for appearance
and structure, which allows to describe the normal surface appearance of each
surface point subjected to the underlying rope geometry.
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Fig. 2. Original rope image with defect (left), corresponding probability map (middle)
for the strand with the defect and sketch of the rope regions (right)

4 Defect Analysis

Once having learned the rope surface appearance model, the defect diagnosis
can be treated as anomaly detection problem. Again, the input rope images
must be aligned with the rope model to obtain the parametrization 6 of each
surface point. Subsequently, the appearance representation is extracted from the
density p(gr,0) as a function of the position in the rope. A probability map can
be computed which contains the likelihood of observing gray value g, for a pixel
X, in the real rope image given its corresponding parametrization 6

p(g’l“7 9)
p(0)

Fig. 2 shows a real rope image including a typical defect on the left and its
corresponding probability map for the strand of interest in the middle. The
darker the color in the probability map, the smaller the obtained likelihood.

Nevertheless, an alignment of a rigid rope model with the flexible structure
of a real rope leads to systematic registration inaccuracies which arise mainly in
the border areas between two strands. In these regions a robust estimation of
the appearance model is hindered. Hence, we normalize the appearance model
with respect to these stability variations.

Different regions in the rope can be encoded with help of the two phase angles
ps, ew of the 3d model. This allows a separation into K discrete region classes
Ry, as sketched in the right hand side of Fig.[l In order to increase the robustness
of the appearance model with respect to systematic registration inaccuracies, we
normalize the expectation of all rope regions. Hence, we compute the average
likelihood p(Ry,) for each rope region Ry and all Ny rope pixels belonging to R:

plgr | 0) = ()

N,

PR = o > plat |67) (6)

n=1

This average is used to obtain a normalized likelihood according to (E):
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€ > 0 is a stabilization factor. The validation compensates for a systematic prob-
lem caused by the alignment of a rigid model with flexible real-world data. Thus,
the normalization is data-independent and can be performed on the training set.

Finally, the resulting probability map for the input rope image including the
normalized likelihoods p(g, | 0) is filtered along the wire course. To transfer this
soft, classification result into a hard discrimination between suspicious changes
and normal variations in the rope surface, a thresholding operation can be used.

5 Experiments

We evaluate our approach on real-world data taken from real ropeways under
realistic acquisition conditions. Our data set comprises 400 meters of rope in
total which corresponds to 7.7 GB of data. It was carefully selected by a human
expert to ensure, that a maximum amount of appearance variations and surface
defects are contained. The used system [5] operates with four line cameras, which
are equally placed around the rope. A concatenation of the four individual 1d
measurements results in four different 2d image sequences which are referenced
as view 1 - 4 from now on. Thus the amount of rope meters is quadrupled
and the set of natural variations which occur during the acquisition process is
augmented. The reference labeling is also provided by a human expert. The
appearance model is trained on 5m of rope which are known to be defect free.
The remaining 395 m were used for testing.

5.1 Overall Performance

In order to evaluate the overall performance of our approach, we compute Re-
ceiver Operating Characteristic (ROC) curves for each sequence. The results can
be seen in Fig. Bl The Area Under the Curve (AUC) value for each curve is given
in the legend. The True Positive Rate (TPR) represents the total area of recov-
ered defects and the False Positive Rate (FPR) relates to the false alarm rate
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Fig. 5. Recovered defects: original rope image (upper image in each group) and result
with recovered defect (blue) and ground truth labeling (black box)

(both measured in camera lines). As it is not sufficient to measure the error just
as a function of the total length of detected anomalies we furthermore introduce
the 50% recovery case. The black squares on each curve mark the recognition
rates, which can be achieved if every known defect is recognized to at least 50%
of its extent. Note, that these rates are bounded to the most inconspicuous de-
fects in the sequence and the overall recognition rate is significantly higher than
50% in all cases. Keep in mind, that for the application it is not important to
recover 100% of the defect area. But, it is crucial to recover every single defect
to at least a certain extent while minimizing the FPR. In Fig. Bl some of our
detection results are displayed. These results underline the high accuracy of the
presented approach. As in most security relevant applications, the final decision
must be made by a human expert who needs an image context of around 5cm
around each system alarm to judge weather it is a critical anomaly or a false
alarm. With a false alarm rate of 1.5% for the 50% defect recovery case, a human
expert would have to re-inspect only 103 m of the rope instead of 395 m.

5.2 Comparison to other Rope Defect Detection Approaches

We compare our results to the one obtained with the Hidden-Markov model
(HMM) approach of Platzer et al [6] which leads to the best published results
so far with regard to an individual analysis of each camera view.

Fig. @ shows the ROC curves obtained on the same dataset with the HMM
approach. Again the AUC values for each curve are given and the black squares
mark the recognition rates obtained for the 50% recovery case of each defect.

It is obvious that our approach outperforms the HMM-based strategy. Partic-
ularly, in case of views 2—4 the HMM approach fails with an unfeasible high false
alarm rate if the request is a detection of every single defect to at least 50%.
But for a security-relevant task this claim is essential and this is not guaranteed
by the existing approaches.
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6 Summary and Conclusions

We presented a new approach for anomaly detection in wire ropes. The com-
bination of a statistical appearance model with a parametric description of the
object geometry leads to a position-dependent appearance representation. This
combination allows a clearly enhanced discrimination between normal appear-
ance variations and suspicious anomalies. One open question is the automatic
determination of an optimal threshold. At the moment, the optimal threshold is
evaluated with ROC curves, which always require a labeled data set.

Our results obtained on real-world rope data are very accurate and comparable
to those of a human expert. We achieve low false alarm rates of 1.5% while
fulfilling the claim that every single defect is recovered to a certain extent. This
outperforms all existing approaches for automatic rope inspection and marks a
clear improvement with respect to the practical applicability. Furthermore, our
approach allows a precise localization of the defects.
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Abstract. Eye status detection and localization is a fundamental step
for driver awareness detection. The efficiency of any learning-based ob-
ject detection method highly depends on the training dataset as well
as learning parameters. The research develops optimum values of Haar-
training parameters to create a nested cascade of classifiers for real-time
eye status detection. The detectors can detect eye-status of open, closed,
or diverted not only from frontal faces but also for rotated or tilted head
poses. We discuss the unique features of our robust training database
that significantly influenced the detection performance. The system has
been practically implemented and tested in real-world and real-time pro-
cessing with satisfactory results on determining driver’s level of vigilance.

1 Introduction

The automotive industries implements active safety systems into their top-end
cars for lane departure warning, safe distance driving, stop and speed sign recog-
nition, and currently also first systems for driver monitoring [Wardlaw 2011].
Stereo vision or pedestrian detection are further examples of components of a
driver assistant system (DAS).

Any sort of driver distraction and drowsiness can lead to catastrophic cases
of traffic crashes not only for the driver and passengers in the ego-vehicle (i.e.
the car the DAS is operating in) but also for surrounding traffic participants.
Face pose and eye status are two main features for evaluating a driver’s level
of fatigue, drowsiness, distraction or drunkenness. Successful methods for face
detection emerged in the 2000s. Research is now focusing on real time eye detec-
tion. Concerns in eye detection still exist for non-forward looking face positions,
tilted heads, occlusion by eye-glasses, or restricted lightening conditions.

According to [Zhang and Zhang 2010], research on eye localization can be
classified into four categories. Knowledge-based methods include some predefined
rules for eye detection. Template-matching methods generally judge the presence
or absence of an eye based on a generic eye shape as a reference; a search for
eyes can be in the whole image or in pre-selected windows. Since eye models
vary for different people, the locating results are heavily affected by eye model
initialization and image contrast. High computational cost also prevents a wide
application for this method. Feature-based approaches are based on fundamental
eye-structures; typically a method starts here with determining properties such
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as edges, intensity of the iris and sclera, plus colour distributions of the skin
around eyes to identify ‘main features’ of eyes [Niu et al. 2006]. This approach
is relatively robust to lightning but fails in case of face rotation or eye occlusion
(e.g. by hair or eye-glasses). Appearance-based methods learn different types of
eyes from a large dataset and are different to template matching. The learning
process is on the basis of common photometric features of human eye from a
collective set of eye images with different head poses. The paper develops the
last one-appearance-based method.

2 Cascade Classifiers Using Haar-Like Masks

Such a system was developed by [Viola and Jones 2001] as a face detector. The
detector combines three techniques: the use of a comprehensive set of Haar-like
masks (also called ‘features’ by Viola and Jones) that are in analogy to base
functions of the Haar transform, the application of a boosted algorithm to select
a set of masks for classifier training, and forming a cascade of strong classifiers
by merging week classifiers. Haar-like masks are defined by adjacent dark and
light rectangular regions; see Fig. [11

Selection process of the object is based on the value distributions in dark or
light regions of a mask that models expected intensity distributions. For example,
the mask in Fig. 2] left, relates to the idea that in a face there are darker regions
of eyes compared to the bridge of the nose. similarly, the mask in Fig. 2] right,
models that the central part of an eye (the iris) is darker than the sclera area.

Computing Mask Values. Mean values in rectangular mask regions are cal-
culated by applying the integral image as proposed in [Viola and Jones 2001];
see Fig. Bl For a given M x N picture P, at first the integral image

Izy)= Y. P(i,j) (1)

0<i<zA0<j<y
is calculated. The sum P(R;) of all P-values in rectangle region R; (see Fig.[B]) is
then given by I(D)+ I(A) —I(B)—I(C). Analogously we calculate sums P(Rz)

and P(Rs3) from corner values in the integral image I. Values of contributing
regions are weighted by reals w; that create regional mask values in form of

Line masks Edge masks

R Tk 2 it X SR

Centre surround masks Diagonal masks I

Fig. 1. Four different sets of masks for calculating Haar-like masks
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Fig. 2. Left: Application of two triple masks for collecting mean intensities in bright
or dark regions. Right: Camera assembly in HAKA1 for driver distraction detection.

v; = w; - P(R;), and then a total mask value; for the shown example this is V; =
w1 - P(R1)+wsa- P(R2)+ws- P(R3). Signs of w;’s are opposite for light and dark
regions. In generalizing this approach, we also allow for arbitrary rotations. R; is
now defined by five parameters x, y, w, h, and ¢, where x and y are coordinates of
the lower-right corner, w and h are width and height, and ¢ is the rotation angle
[Zhang and Zhang 2010]. For example, P,(R:) = I,(B)+1,(C)—1,(A)—1,(D)
and for ¢ = 45° we have

I45° (m,y) = Z P(Zv.7> (2)

|lz—i|<y—j A 0<j<y

For any angle ¢, the calculation of all M x N integral values I, takes time
O(M x N). This allows for real-time calculation of features on Haar-like masks.

Cascaded Classifiers via Boosted Learning. In a search window of 24 x 24
pixel there are more than 180,000 different rectangular masks of different shape,
size, or rotation. However, only a small number of masks (usually less than 100)
is sufficient to detect a desired object in an image (e.g. eye). In addition to
defining regional mask weight w;, using a boosting algorithm, the classifier can
learn to sort out the prominent masks p; based on their overall wight W,. Such
wights determine the importance of each mask in an object detection process so
we arrange all the masks in cascaded nodes as Fig. @l

Each node (weak classifier) tries to determine whether the object (e.g. an eye)
is inside the search window or not. The first classifier simply reject non-objects if

(0, 0)

D AT B ' i HeEHEEEH
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Fig. 3. Illustration for calculating a mask value using integral images. The coordinate
origin is in the upper left corner.
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the main masks (such as in Fig. 2]) do not exist. If they exist then more detailed
masks will be evaluated in next classifiers and the process continues. Actually
each node represents a boosted classifier adjusted not to miss any object while it
is rejecting non-objects if not matching the desired masks. Although each node
is a weak classifier but all of them are considered a strong classifier and reaching
the final node means that all non-objects have already been rejected and we have
only one object (here: an eye). The function y; returns +1 if the mask value V;
is greater or equal to a trained threshold, and -1 if not:

+1 ifV; >T;

et ®)
-1 ifV, <T;

t; = +1 means that the current weak classifier matches the object and we
can proceed to the next classifier. Statistically about 75% of non-objects are
rejected by the first two classifiers; the remaining 25% are for a more detailed
analysis. This speeds up the process of object detection. In order to train the
the algorithm we need a database of positive images (e.g. eyes)and on the first
pass through the positive image database, we learn threshold T; for p; such that
it best classifies the input. Then boosting uses the resulting errors to calculate
the overall weight W;. Once the first node is trained then boosting continues
for other nodes but with some other masks that are more sophisticated than
previous ones [Freund et al. 1996].

Assume that each node (a weak classifier) is trained to correctly match and
detect objects of interest with the true rate of p = 99.9% (true positive, TP).
Since each stage alone is a weak classifier it is expected to be many false de-
tections of non-objects, say f = 50% (false positive, FP)in each stage. This is
still acceptable because, due to the serial nature of cascade classifiers, the overall
detection ratios remains high (near 1) but it leads to a logarithmic decrease in
the false positive rate (approaches to 0).

3 Scenarios and 3D Cascaded Classifiers

Most of eye detection algorithms such as [Wang et al. 2010] just look for the
eyes in an already localized face. Therefore, eye detection simply fails if there is

All Sub-windows

Final stage
g T
Object

Further

1™ Classifier -
Processing

- Non-object
Rejected Sub—win@ on-00jee

Fig.4. Structure of cascaded classifiers for object detection
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no full frontal view of a face, or some parts of face be occluded, or if parts of a
face are outside of the camera viewing angle .

Our method follows a dynamic approaches, if the initial result of face detec-
tion is positive then we just look through the face region. Detection of an eye
in a previously detected face region supports a double confirmation, and more
confidence for the validity of eye detection. But if the face is not detected our 3D
cascade looks for eye in the whole image. In our particular context we consider
driver fatigue, drowsiness, distraction, or drunkenness when the driver misses to
look forward on the road, or when the eyes are closed for some long uninter-
rupted period of time (say 1 sec. or more). As an example, when driving with
a speed of 100 km/h, just one second eye closure means passing of 28 meters
without paying attention. This can easily cause lane drift and a fatal crash. In
our method we assume two status of Looking Forward and Open Fyes as im-
portant properties for judging driver’s vigilance. for the face detection we follow
the classifier in |Lienhart et al. 2003| for face detection and for the eye status
detection we design our own classifiers. the proposed 3D designed classifier is
able to detect and define 5 different scenarios while driving as below (see Fig.
from left to right):

Scenario 1: Obviously eyes are in the upper half of face region. By assessing 200
different faces from different races we derived that human eyes are geometrically
located in segment A between 0.55 to 0.75 of the face’s height. Applying this
rough estimation in eye localization we already increased the search speed by
factor 5 compared to a blind search, as we are only looking into 20% of the face’s
region. An eye pair is findable in segment A while the driver is looking forward.

Scenario 2: Some rare times happens that only one eye is detectable in segment
A when the driver tilts his face. In that case we need to look for the second eye
in segment B in the opposite half of the face region. Segment B is considered to
be between 0.35 to 0.95 of the face’s height; this covers more than +30 degrees of
face tilt. The size of the search window in segment B is 30% of the face region.
In that case of a tilted face we search both sections A and B (in total, 50%
of the face’s region). In Scenarios 1 and 2, the driver is looking forward to the
roadway. So if we detect two open eyes then we decide that the driver is in the
Aware state.

Scenario 3: If a frontal face is not detectable and just one of the eyes is detected,
then this can be due to more than 45° of face rotation. The driver is looking

Fig. 5. Left to right: Scenarios 1 to 5 for driver’s face and eye poses; see text for details
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towards the right or left such that the second eye is occluded by the nose. The
system immediately measures the period of time that the driver is looking to
other sides instead of forward. This scenario also happens when the driver looks
to side mirrors (but this takes normally less than second). Depending on the
ego-vehicles speed, any occurrence of this scenario that takes more than 1 sec is
considered as a sign of Distraction and the system will raise an alarm.

Scenario 4: Detection of closed eyes. Here we use an individual classifier for close
eye detection. A closed-eye status happens frequently for normal eye blinking,
and the eye closure time t. is normally less than 0.3 sec. Any longer eye closures
is a strong evidence of fatigue, drowsiness, or drunkenness. The system will raise
an alarm for Drowsiness status if there is no open eye and at least one closed
eye is detected.

Scenario 5: The worst case is when neither face, nor open eyes, nor closed eyes
are detectable. This case occurs, for example, when the driver is looking over
the shoulder, when the head falls in, or when the driver is performing secondary
tasks. The system will raise an alarm for a detected Risky Driving status.

Considering all active detectors (face, open-eye, and close-eye detectors), we
have cascaded classifiers in three dimensions that work in parallel. Implementing
separate detectors for open and closed eye detection is important because at
some times the open eye detector may fail to detect open eyes, but this does
not necessarily mean that the eyes are closed. Missing eyes may be because of
a specific head pose or bad lightening conditions. Having a separate closed-eye
detector is a step toward high accuracy in driver distraction detection.

4 Training Image Database

The process of selecting positive and negative images is a very important step
that affects the overall performance considerably. After several experiments it is
determined that, although a larger number of positive and negative images can
improve the detection performance in general, there is also an increase of the risk
of mask mismatching during the training process. Thus, a careful consideration
for number of positive and negative images and their content is essential. In
addition, the multi-dimensionality of training parameters and the complexity of
the feature space defines challenges. We propose optimized values of training
parameters as well as unique features for our robust database.

In the initial negative image database, we removed all images that contained
any objects similar to human eye (e.g. animal eyes). We prepared the training
database by manually cropping closed or open eyes from positive images. Impor-
tant questions needed to be answered: how to crop the eye regions and in what
shapes (e.g. circular, isothetic rectangles, squares)? There is a general believe
that circles or horizontal rectangles are best for fitting eye regions. However, we
obtained the best experimental results by cropping eyes in square form. We fit
the square enclosing full eye-width; for the vertical positioning we select balanced
portions of skin area below and above the eye region. We cropped 12,000 eyes
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from selected positive images of our own database plus six other databases:
FERET database sponsored by the DOD Counterdrug Technology Develop-
ment Program Office [Phillips et al. 1998, [Phillips et al. 2000], Radbound face
database |[Langner et al. 2010], Yale facial database B [Lee et al. 2005], BioID
database [Jesorsky et al. 2001], PICS database [PICS], and the “Face of Tomor-
row” [ETD]. The positive database includes more than 40 different poses and
emotions for different faces, eye types, ages, and races:

— Gender and age: females and males between 6 to 94 years old,
— Emotion: neutral, happy, sad, anger, contempt, disgusted, surprised, feared,
— Looking angle: frontal (0°), £22.5°, and profile (+45.0°), and
— Race: East-Asians, Caucasians, dark-skinned people, and Latino-Americans.

The generated multifaceted database is unique, statistically robust and compet-
itive compared to other training databases.

We also selected 7,000 negative images (non-eye and non-face images) includ-
ing a combination of common objects in indoor or outdoor scenes. Considering
a search window of 24 x 24 pixel, we had about 7,680,000 sub-windows in our
negative database. An increasing number of positive images in the training pro-
cess caused a higher rate for true positive cases (TP) which is good, and also
increased false positive cases (FP) which is bad. Similarly, when the number of
negative training images increased, it lead to a decrease in both FP and TP.
Therefore we needed to consider a good trade-off for the ratio of number of neg-
ative sub-windows to the number of positive images. For eye classifiers, we got
the highest TP and lowest rate for false negative detection when we arranged
the ratio of N,/N,, = 1.2 (this may vary for face detection).

5 AdaBoost Learning Parameters and Experiments

We implemented the training algorithm in OpenCV 2.1. With respect to our
database we gained a maximum performance by applying the following settings:
Size of mask-window: 21 x 21 pixel. Total number of classifiers (nodes): 15 stages;
any smaller number of stages brought a lot of false positive detection, and a larger
number of stages reduced the rate of true positive detection. The minimum of
acceptable hit rate for each stage: 99.80% and increasing; a rate too close to 100%
may cause the training process to take for ever or early failure. The maximum
acceptable false alarm for the 1st stage: 40.0% per stage; this error goes to
zero exponentially when the number of iterations increases. Weight trimming
threshold: 0.95; this is the similarity weight to pass or fail an object in each
stage. Boosting algorithm: among four types of boosting (Discrete AdaBoost,
Real AdaBoost, Logit AdaBoost, and Gentle AdaBoost), we got about 5% more
TP detection rate with Gentle AdaBoost. [Lienhart et al. 2003] also proved that
GAB will result into lower FP ratios for face detection.

We performed a performance evaluation test on 2,000 images from the second
part of the FERET database plus on 2,000 other image sequences recorded by
HAKAL, our research vehicle (see Fig. 2] right). None of the test images were
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Table 1. Classifiers accuracy (in %) in terms of true positive and false positive rate

Open-eye detection  Closed-eye detection

Facial status TP FP TP FP
Frontal face 98.6 0.0 97.7 0.20
Tilted face (up to £30°) 98.2 0.002 97.1 0.54
Rotated face (up to +45°) 96.8 0.0 96.8 0.7

included before in the training process and all the images are recorded in day-
light condition. Table [l shows the final results of open and closed eye detection
rate.

6 Conclusions

With the aim of driver distraction detection, we implemented a robust 3D de-
tector based on Haar-like masks and AdaBoost machine learning that is able to
inspect for face pose, open eyes and closed eyes at the same time. Despite the sim-
ilar research that are only able to work on frontal faces, The developed classifier
is also able to works for tilted and rotated faces in real-time driving applica-
tions. There are no comprehensive data about performance evaluation for eye
detection. Comparing results in [Kasinski and Schmidt 2010], [Niu et al. 2006],
[Wang et al. 2010] and in [Wilson and Fernandez 2006] with our results (see Ta-
ble [l), the method appears to be superior in a majority of cases. The method
still needs improvement for dark environments. High-dynamic range cameras or
some kind of preprocessing might be sufficient to obtain satisfactory detection
accuracy also at night or in low-light environments.
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Abstract. We present a new method to detect the presence of the hollow
heart, an internal disorder of the potato tubers, using hyperspectral imag-
ing technology in the infrared region. A set of 468 hyperspectral cubes
of images has been acquired from Agria variety potatoes, that have been
cut later to check the presence of a hollow heart. We developed several
experiments to recognize hollow heart potatoes using different Artifi-
cial Intelligence and Image Processing techniques. The results show that
Support Vector Machines (SVM) achieve an accuracy of 89.1% of correct
classification. This is an automatic and non-destructive approach, and it
could be integrated into other machine vision developments.

Keywords: Hyperspectral, Infrared, Potato, SVM, Random Forest.

1 Introduction

Potatoes (Solanum tuberosum) are nowadays one of the most consumed products
in the world: they are the world’s fourth largest food crop. The annual production
is 325 million tons and it moves an amount of global transactions of about 6
billion US dollars (2007 data). Thus, the world potato average consumption is
31 Kg per capita and year [1].

One of the internal characteristics of the potato tubers is the called hollow
heart, a star—shaped cavity that grows into the potato. Some early studies point
that there exist a relation between growing disorders and probability of the
presence of a hollow heart [2]. Some contributions in the last years have tried
to detect hollow hearts in potatoes using X-Ray examination [3] and acoustics
[405], providing successful results (98%). However, [4] needs the potatoes to be
isolated from noise and it can not detect tiny hollow hearts, meanwhile in [5] the
potatoes are dropped to study the sound produced by the fall, which eventually
bruises the samples. Moreover, both approaches are strongly dependent on the
orientation of the potato. Despite these contributions, the main packaging com-
panies in the North of Spain still use a human operator to deal with the problem,
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by removing bigger and amorphous tubers after destructively checking a small
sample of the production, which causes subjectivity mistakes and possibly lower
(but unknown) accuracy rates.

We propose a new automatic non—destructive method based on hyperspectral
imaging, not dependent on the orientation, and with no potato isolation required.
Hyperspectral imaging is a reliable approach to classical spectroscopy, because an
object can be analysed in significantly less time, and always in a non-destructive
way, despite a little loss of accuracy. This technology has become interesting in
the field of food quality assessment [6], being used to predict the water content
in potatoes [7], and to detect clods between a set of potato tubers [§]. Other
contributions [9] use near—infrared (NIR) spectroscopy to predict specific gravity
and dry matter in potatoes.

2 Image Acquisition System

The objective of hyperspectral imaging is to perform a spectroscopic analysis of
the light reflected or transmitted by the object of interest. This is accomplished
by coupling a spectrograph and a matrix camera, which obtains both spectral
and spatial information. Our hyperspectral system has been designed for non-
destructive food inspection in the NIR region. We coupled an infrared camera
and a SWIR-NIR spectrograph, both sensitive from 900 nm to 1700 nm. Specif-
ically, we used a Xenics Xeva 1.7-320 camera with an InGaAs 320 x 256 pixel
sensor and USB connection. The spectrograph is a Specim Imspector N17E. The
system has also three 50 W AC halogen lamps placed in the inspection plate to
provide diffuse illumination to the potato surface. The diffuse light is obtained
by the reflection in a plastic dome over the plate.

The spectrograph has a linear input (one pixel height), where the z-axis repre-
sents the same z-axis (spatial) of the object. The y-axis (spectral) is then studied
to obtain how every pixel in the row varies along the spectral range.

With one spectral image, we are inspecting only one spatial line, so that we
need to perform the inspection over the whole object. This is accomplished by
joining a rotatory mirror scanner to the spectrograph. It is based on performing
the mirror rotation, covering a 40° window over the object, taking care of syn-
chronization between mirror stepping and image acquisition (Figure [Il). Finally
the images are transposed in order to obtain the hyperspectral cube (Figure [2I).

To sum up, our system obtains 320 spectral images (320 x 240 pixels), that
are transposed into a hyperspectral cube formed by 256 images with 320 x 320
pixels, corresponding to 256 consecutive wavelengths, equally spaced from 900
nm to 1700 nm.

3 Experiment

The objective of the experiment is to compare different algorithms for each
Pattern Recognition stage in order to compose the combination of methods that
maximizes the accuracy classifying hollow heart affected and healthy potatoes.
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Fig. 1. Left: scanning initial position at 70°. Right: scanning final position at 110°.
The arrow shows the direction of scanning. Hyperspectral system scheme: a) camera,
b) spectrograph, ¢) mirror scanner, d) object, €) diffuse chamber, f) halogen lamp.
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Fig. 2. Up: Three spectral images taken from different lines of the object. Down:
978 nm, 1173 nm, and 1608 nm spatial images.

The experiment uses 234 potato tubers (variety Agria) from Xinzo de Limia
(Spain), that have been collected from some potato packing companies during
2009. The potatoes have been captured from two sides, using the system de-
scribed in Section [2L and cut later to check the presence of hollow heart. They
have been placed in a stable position, so that the biggest area is acquired.

3.1 Segmentation

Segmentation runs in several steps to obtain a mask to remove the background
for the hyperspectral cube using the open source library OpenCV [10]. First, we
binarize the image using Otsu’s method [I1], that calculates the optimum bi-
narization threshold. Then, a Gaussian blurring clusters the noise in the image.
Another binarization is needed for the next operation. A connected-component
labelling is performed to remark contiguous areas in the image. At this point,
we know that the blob with the largest area (excluding the background) is the
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potato. We select this blob and create the mask used to segment all the images
in the hyperspectral cube. We call this segmentation method full.

Additionally, we have implemented three other segmentation methods. The
core algorithm is intended to remove the external area of the potatoes, using a
heavy erosion operation, so that we only take into account their central part. In
the border algorithm, the aim is to remove the centre of the potato, so that the
segmentation only makes visible a portion similar to a ring.

The last segmentation method (scab) has been developed in a parallel research
[12], aimed to detect common scab (a skin disease in the potatoes) in an auto-
matic and non-destructive way, using the same acquisition system. We use the
result of the scab segmentation to obtain a hyperspectral cube free of common
scab, which might be more accurate in the detection of hollow heart. The Figure
visualizes examples of the results given by these processes.

3

Fig. 3. 1: Binarization using Otsu’s method. 2: smooth operation. 3: second binariza-
tion. 4: blob analysis. 5: mask used for hyperspectral cube segmentation. 6: full mask.
7: core mask. 8: border mask. 9: scab mask.

3.2 Feature Extraction

We calculated the average luminance value of the pixels belonging to the potato
for each image in the hyperspectral cubes (i.e. for each of the 256 wavelengths).
Depending on the segmentation method, we use the whole potato for this calcu-
lation (full mask), or different zones of the tuber (core, border and scab masks).
Additionally, we included three morphological features in the feature list, namely
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the area, perimeter and roundness of the potato. Our objective is to test
whether the potato size and roundness are relevant for the hollow heart de-
tection. Hence, every hyperspectral cube is represented with 259 attributes (256
spectral and 3 morphological features). We used 468 samples (208 hollow heart
affected and 260 healthy potatoes).

3.3 Feature Selection

This stage identifies which wavelengths are the optimal to detect hollow heart
potatoes, in order to decrease the number of images to analyse. We used some
algorithms implemented in Weka [I3], using their default parameters: Genetic
Search [14], Scattered Search [15], Greedy Stepwise [16], Linear Forward Selec-
tion (LFS) [17], and Correlation-based Feature Subset Selection (CFS) [18]. We
also included the data set with all the features (full). We have discarded tech-
niques such as Principal Component Analysis and Linear Discriminant Analysis,
because they perform a linear combination of all the wavelengths, instead of se-
lecting a subset, as the used feature selection methods do.

3.4 Classification

We present results of four classification algorithms: Random Forest (RF) [19],
Support Vector Machines (SVM) [20] with Gaussian (SVM-RBF) and linear
(SVM-LIN) kernels, and Logistic Regression (LR) [2I]. Although LR is not
among the most popular algorithms, it has been included in the experiment
after good preliminary results with Weka [13].

Note that we have 4 segmentation methods and 6 feature selection methods
(24 data sets) and 4 classification algorithms. In this stage we test each of these
96 options to solve our problem in order to evaluate which is the best solution.
We randomly generated 10 permutations of the data sets. Each permutation was
divided into three parts: training (50% of the samples), validation (25% of the
samples, used for parameter tuning), and test (the remaining 25%). The samples
were normalized (zero mean and standard deviation one) to avoid that attributes
in greater numeric ranges influence excessively over those with smaller variation.

For each classifier, for each combination of tunable parameters and for each
permutation, we trained the classifier using the 10 training sets. We tested its
performance on the validation sets, selecting the parameter values with the best
average accuracy over the 10 permutations. These parameters are: my,y, (the
number of features to use in random selection) for RF, using mtyy = p°, meyy =
VP, Miry = p/4 and myry = p/2, with p =number of features; the regularization
parameter (C') and kernel spread () for SVM-RBF, using C = 2", n=-5:14
and v = 2",n = —15 : 0; SVM-LIN has just (C), using C = 2", n = =5 : 14,
and LR has the ridge estimator (r), using r = 10*, k = —9 : 0. Finally, for each
permutation, we trained the classifier using the training sets tuned with the best
parameters values, evaluating its accuracy on the 10 test sets.
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4 Results and Discussion

The results are presented in Figure[dl Some average results using all the data sets
are provided, in order to determine the best segmentation method (upper left
panel in Figure]), the best feature selection method (upper right panel), and the
best classifier (lower left panel). The best data set uses the border segmentation
method, the genetic feature selection method, and the SVM-LIN classification
algorithm, achieving 89.06% of accuracy (lower right panel). The Table [[l shows
the average confusion matrix achieved by the best data set—classifier pair using
the test sets (117 samples).

Segmentation Accuracy  Feature Selection Accuracy

full 86.58% full 86.53%
core 86.78% genetic 87.08%
border 87.40%  Scattered 86.76%
scab 86.37% g.','l‘l‘l‘(l_\' 86.99%
LFS 86.48%
CFS 86.88%
Classification Average Accuracy  Classification Accuracy Best parameters
RF 86.62% Ry 87.69% Mery = 3
SVAERBE 86.86% SVM-RBF  88.89% C =2°,7y=2""
SVM-LIN 86.87% SVM-LIN  89.06% C=2""
LR 86.80% LR 88.72% r=0.1

Fig. 4. Upper left: average segmentation results using all the data sets. Upper right:
average feature selection results using all the data sets. Lower left: average classification
results using all the data sets. Lower right: results of the best data set (border—genetic).

Table 1. Average test confusion matrix achieved with the best combination of seg-
mentation, feature selection and classification methods

Classified as Hollow heart Healthy
Real

Hollow heart 57.9 6.4
Healthy 6.4 46.3

It is interesting to note that the three morphological features were selected
by all the feature selection algorithms in all the data sets, so that it seems they
are very important information for the problem, which confirms [2] conclusions.

Finally, the Figure[dl presents the 10 wavelengths selected by the best feature
selector (genetic), marked with black columns (wavelengths in 863, 905, 921,
1026, 1068, 1091, 1195, 1398, 1405, and 1434-1438nm) over an example potato
spectral chart. Although water absorption increases rapidly after 1450 nm [22], it
is remarkable that all the selected wavelengths are below 1438 nm. This suggests
that the water amount is not an important factor in the hollow heart detection.
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Fig. 5. Selected wavelengths on the best data set, marked with columns. The z-axis
represents the bands. The y-axis represents the average grey level.

5 Conclusions

Infrared hyperspectral imaging has shown to be a good choice for hollow heart
detection in potatoes of Agria variety. We developed an objective and non—
destructive detection method using Pattern Recognition and Image Processing
techniques, achieving accuracies of about 89.1%. The result can be interesting for
the industry, because nowadays the process is still handled by human operators.

The border segmentation method seems slightly better than using the full
potato. The results also indicate that removing the common scab from the hy-
perspectral cubes does not help the classification procedure and decreases the
accuracy. The correlation between common scab and the presence of hollow heart
will be studied in the future.

Regarding feature selection, size and roundness were detected to be essen-
tial features for the hollow heart detection, and should be taken into account.
Besides, genetic has shown to be the most suitable feature selection algorithm.

In future work, it would be interesting to evaluate the system with other
potato varieties, as well as researching the relationship between the optimal
wavelengths and the biological causes of hollow heart.

Acknowledgements. This work was partly supported by the “Xunta de Gali-
cia” (projects PGIDIT08TIC004CT and PGIDITO8MMAQ010402PR). We want
to acknowledge the “Laboratorio Oficial de Metroloxia de Galicia (LOMG)” and
the “Centro Tecnoléxico da Carne (CTC)” for their helpful collaboration.

References

1. Potato World, World-wide potato production statistics. International Year of the
Potato (2008), http://www.potato2008.org/en/world/index.html

2. Rex, B.L., Mazza, G.: Cause, control and detection of hollow heart in potatoes: A
review. Am. J. Potato Res. 66(3) (1989)


http://www.potato2008.org/en/world/index.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A hyperspectral Non—destructive Detection of Hollow Heart in Potatoes 187

. Finney, E.E., Norris, K.H.: X-Ray scans for detecting hollow heart in potatoes.

Am. J. Potato Res. 55(2) (1978)

. Jivanuwong, S.: Nondestructive detection of hollow heart in potatoes using ultra-

sonics. Master Thesis. Virginia Polytechnic Institute (1998)

. Elbatawi, I.LE.: An acoustic impact method to detect hollow heart of potato tubers.

Biosyst. Eng. 100, 206-213 (2008)

. Sun, D.: Hyperspectral Imaging for Food Quality Analysis and Control. Academic

Press Elsevier, San Diego (2009)

. Singh, B.: Visible and near-infrared spectroscopic analysis of potatoes. M.Sc. The-

sis, McGill University, Montreal, PQ, Canada (2005)

. Al-Mallahi, A., Kataoka, T., Okamoto, H., Shibata, Y.: Detection of potato tubers

using an ultraviolet imaging-based machine vision system. Biosyst. Eng. 105, 257—
265 (2009)

. Kang, S., Lee, K., Son, J.: On-line internal quality evaluation system for the pro-

cessing potatoes. In: Food Process. Autom. Conf. Proc., Providence, Rhode Island
(2008)

Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, Sebastopol (2008)

Otsu, N.: A threshold selection method for gray level histograms. IEEE Trans.
Syst. Man Cybern. 9, 62-66 (1979)

Dacal-Nieto, A., Formella, A., Carrién, P., Vazquez-Fernandez, E., Ferniandez-
Delgado, M.: Common scab detection on potatoes using an infrared hyperspec-
tral imaging system. In: Proceedings of ICIAP 2011. LNCS, Springer, Heidelberg
(2011)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.LH.: The
WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)
Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

Garcia-Lépez, F., Garcia-Torres, M., Melidn-Batista, B., Moreno-Pérez, J.A.,
Moreno-Vega, J.M.: Solving feature subset selection problem by a Parallel Scatter
Search. Eur. J. Oper. Res. 169(2), 477-489 (2008)

Weihs, C.: Multivariate Exploratory Data Analysis and Graphics, A tutorial. J.
Chemom. 7, 305-340 (1993)

Guetlein, M., Frank, E., Hall, M., Karwath, A.: Large Scale Attribute Selection
Using Wrappers. In: Proc IEEE Symposium on Computational Intelligence and
Data Mining, pp. 332-339 (2009)

Hall, M.: Correlation-based Feature Subset Selection for Machine Learning, Hamil-
ton, New Zealand (1998)

Breiman, L.: Using Iterated Bagging to Debias Regressions. Mach. Learn. 45, 261
277 (2001)

Chang, C.C., Lin, C.J.: LIBSVM:a library for support vector machines (2008),
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Le Cessie, S., Van Houwelingen, J.C.: Ridge Estimators in Logistic Regression.
Appl. Stat. 41, 191-201 (1992)

Curcio, J.A., Petty, C.C.: The Near Infrared Absorption Spectrum of Liquid Water.
J. Opt. Soc. Am. 41, 302-302 (1951)


http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Dice Recognition in Uncontrolled Illumination
Conditions by Local Invariant Features

Gee-Sern Hsu*, Hsiao-Chia Peng, Chyi-Yeu Lin, and Pendry Alexandra

Department of Mechanical Engineering,
National Taiwan University of Science and Technology
jison@mail.ntust.edu.tw

Abstract. A system is proposed for the recognition of the number of
the dots on dice in general table game settings. Different from previ-
ous dice recognition systems which use a single top-view camera and
work only under controlled illumination, the proposed one uses multi-
ple cameras and works for uncontrolled illumination. Under controlled
illumination edges are the prominent features considered by most ap-
proaches. But strong specular reflection, often observed in uncontrolled
illumination, paralyzes the approaches solely based on edges. The pro-
posed system exploits the local invariant features robust to illumination
variation and good for building homographies across multi-views. The
homographies are used to enhance coplanar features and weaken non-
coplanar features, giving a way to segment the top faces of the dice and
make up the features ruined by possible specular reflection. To identify
the dots on the segmented top faces, an MSER detector is applied for its
consistency rendering local interest regions across large illumination vari-
ation. Experiments show that the proposed system can achieve a superb
recognition rate in various uncontrolled illumination conditions.

Keywords: Object recognition, invariant feature, local descriptor.

1 Introduction

Dice is a popular table game in casinos, especially in Asia. As automatic or
computer-controlled games are emerging and becoming popular, many are inter-
ested in the technologies able to assist or replace human bankers. A computer
vision system is proposed in this paper for dice recognition, which refers to the
automatic recognition of the numbers of dots on dice, in normal table game
settings. Different from existing dice recognition systems, for example [4] and
[5], which work under controlled illumination, the proposed system can work
in uncontrolled illumination conditions. In controlled illumination edges are the
prominent features considered. But specular reflection, often observed in uncon-
trolled illumination, paralyzes the approaches solely based on edges. Fig. [l shows
an image in the middle with strong specular reflection, on the left is its edge map
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Fig. 1. Middle: specular reflection on the dice; Left: the edge map obtained by previous
methods; Right: the edge map obtained by the proposed method

obtained by previous methods. Because it is not limited to controlled illumina-
tion, the proposed allows a much wider scope of applications, e.g., integration
with table games or different designs of automatic dice games.

Existing dice recognition systems only consider the top view of dice. But a
top-view camera is difficult to install on a game table as a specially designed
camera support will be needed. To enable an easy integration with a game table,
the proposed system considers tilted views to the dice captured by the cameras
held on the peripheral supports around the table. Peripheral cameras are more
friendly to install on a game table than top-view ones. However top views only
capture the top faces of the dice, tilted views reveal the top and side surfaces.
The latter is harder to handle as a method is required to segment the top faces
and remove the side surfaces.

The proposed system consists of two major modules: dice segmentation and
dots identification. To segment dice, it exploits the local invariant features robust
to illumination variation and good for building homographies across multi-views.
The homographies are used to enhance coplanar features, segment the top faces
of the dice and make up the features ruined by possible specular reflection.
To identify the dots on the segmented top faces, an MSER (Maximally Stable
Extreme Region) [8] detector is applied for its consistency rendering local interest
regions across large illumination variation. Although one can consider classifiers
for the segmentation and identification, such as that proposed by Viola and
Jones [12], they are not considered here as a large amount of training samples
are required. The proposed only need a few samples as references.

The rest of this paper is organized as follows: the dice segmentation is pre-
sented in Section 2l The dot identification is elaborated in Section [Bl Section @
presents an experimental study of the proposed methods, followed by a conclu-
sion in Section

2 Dice Segmentation Using Local Invariant Features

Because dice can pose in arbitrary locations and orientations on a dice roller
base and their sizes vary slightly according to the distance to the camera, local
invariant features are explored in capturing these variations. Many local invariant
feature detectors were proposed and applied in a broad range of applications.
Reviews on these detectors can be found in [I0], and [9], [3]. The invariant
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Fig. 2. Correspondences across two different views on the local invariant features de-
tected by a multi-scale Harris-Hessian detector. Many of the detected correspondences
are removed for better visual inspection.

feature detectors can be generally categorized into three types [I1]. One detects
corner-like features, e.g., Harris-affine, Harris-Laplace, and multi-scale Harris
detectors.One detects blob-like features, e.g., Hessian-affine, Hessian-Laplace,
multi-scale Hessian and Difference of Gaussians (DoG) [7]. Different from the
former two types, region detectors extract homogeneous local areas, e.g., the
MSER detector [8], which is used in this work for identifying the dots on dice,
and will be addressed in details in Sec.

Due to the limitation of Harris and Hessian detectors in handling multiple
scales, both are modified with multiple scales and made scale-invariant in [IJ.
To determine the most appropriate scale for a local feature, Harris-Laplace and
Hessian-Laplace both search for the characteristic scale with a Laplace operator
added on top of the multi-scales. Harris-affine and Hessian-affine obtain the affine
invariant corners or blobs by an iterative estimation of elliptical affine regions
proposed by Lindeberg et al. [6]. The shape of the feature region is adapted to
ensure that the same region is covered when extracted from a different viewpoint.

The performance of the aforementioned 8 invariant feature detectors in render-
ing the most accurate homographies between different viewpoints is evaluated
by a comparison to the ground truth obtained using manually selected corre-
spondences. All of the invariant regions (or interest regions) are represented in
the form of SIFT descriptor [7] as it is experimentally proven as one of the
most effective descriptors among others [I0]. The match of the invariant fea-
tures across views is measured by the Euclidean distance between the feature
descriptors, and a threshold on this distance measure is determined to select
correspondences. Because a dot on a die in a given view can appear quite similar
to a different dot in another view, the scale factor in the local feature detectors
is first chosen as that comes with the maximum number of correct correspon-
dences. RANSAC [2] is then applied to filter out outliers and determine the most
appropriate homographies across different views with matched correspondences.
Our experiments reveal that the multi-scale Harris-Hessian detector gives the
best performance. Fig. 2] shows an example of the correspondences across two
viewpoints obtained using this detector. The settings and other details of the
performance evaluation are reported in Section [4l
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Given N different viewpoints of dice images, N (N —1)/2 homographies would
be obtained using the invariant feature correspondences. In most cases2 < N < 4
suffices. Each homography and its inverse define the transformation between a
pair of different viewpoints, and such a transformation only works for the top
faces of the dice as these surfaces are coplanar. This property motivates the
stacking of coplanar surfaces to segment the top faces of the dice even when
specular reflection appears in certain viewpoints. One can choose a dice image
of any viewpoint as a reference image and transform the rest NV — 1 images of
different viewpoints to the reference one using the corresponding homographies.

Stacking of the reference image and N — 1 transformed images does not just
enhance the coplanar features but also weaken the non-coplanar features, as
those on the lateral sides of the dice would be overlapped with features from
different planes. As the specular reflection can be considered a view-dependent
feature, different from the coplanar features observed in other majority of views,
it can be removed by imposing a threshold on a similarity measure. An example
with N = 3 is shown in Fig. [l which in the middle shows a view of the dice
with strong specular reflection, and on the right is the edge map of the image
by stacking the homography-transformed images from the rest two views.

3 Dot Identification and Dice Recognition

Given a segmented top face of a die, an MSER detector [§] is exploited to extract
the dots from the segmented area because of its stability in rendering persistent
or slowly varying edges around the dots as illumination varies. The extraction
of MSER considers the set of all possible thresholds able to binarize an intensity
image I(x) into a binary image F,, (x),

1 ifI(x) <tuy
Eiy () = {0 O{h((arz)l)ise. (1)
where tj; is the threshold. An MSER is a connected region in E},, (x), with
little change in its size for a range of thresholds, extracted with a watershed
like segmentation algorithm. The homogeneous intensity regions extracted are
stable over a wide range of thresholds. The number of thresholds that maintain
the connected region similar in size is known as the margin of the region.

The dots on dice are blob-like objects and MSER usually anchors on the
boundaries of such objects, and thus the dots can be better located by MSER
compared to other interest region detectors. Fig. Bl shows the MSER. regions
detected on dice. With some preprocessing, as histogram equalization, MSER
can achieve highly accurate identification rate. Fig. [3] shows a case with the
segmented top faces, and the regions detected by MSER, before and after pre-
processing. Note that the MSER can detect incomplete or partial interest regions
which can be due to imperfect segmentation.

The dots identified by the MSER are clustered by k-means (k happens to
be the number of dice) subject to the constraints that the number of dots in
a cluster must be less than 7 and the distance between the farthest dots must
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(a) Segmentation of (b) Regions detected (c) Regions detected
top faces before preprocessing after preprocessing

Fig. 3. The performance of MSER in the identification of the dots

be less than the diagonal of the dice. The spatial distribution of the dots in
each cluster must be verified against the 6 known patterns. For example, 6-dot
must contain two parallel rows of dots and 3 dots each row. 5-dot must have two
crossing rows of dots, 3 dots each row and crossing each other at the same central
dot. Specific patterns are configured for 4-, 3-, and 2-dot cases. Depending on
the number of dots in a given cluster, the distribution pattern for that number
is examined first, and if found incompatible, two possibilities would be verified.
One is a non-dot spot falsely considered as a dot and the other is a valid dot
failed to be identified as a dot. A large number of casts and experiments, with
details given in Section Ml reveal that such a combination of size-constrained
clustering and spatial pattern confirmation yields a superb recognition rate.

4 Experiments

The experimental setup follows a common dice table game ”sci-bo” with three
dice, and three cameras of different viewpoints are installed on the sides of a
game table. 12 different illumination conditions are configured to study the per-
formance of the proposed system, 3 of them chosen as the training set and the
rest 9 as the test set, as shown in Fig. @l The intensity on the dice from the
training set is 67, 108, and 138 in average, in 8-bit gray scale, with deviation 8§,
10, and 11, respectively. The intensity on the test set is between 45 to 158 in
average with deviation from 7 to 12. 120 random cast sessions and 30 manual
placement sessions are carried out under each illumination condition. The man-
ual placement attempts to create special layouts of the dice, such as three dice
in a row and others.

4.1 Homography Based on Local Invariant Features

The training set is for the evaluation of the 8 invariant feature detectors, men-
tioned in Section 2 in creating homographies with least error across different
illumination conditions. The error Fp, is measured by the difference between
the correspondences from the invariant-feature-based homography Hp, and the
ground-truth He obtained using manually selected correspondences, i.e.,
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Fig. 4. First column from the left is the training set with 3 illumination conditions;
the rest is the test set with 9 illumination conditions

pan _ NHET —HE )G | )
F; NF,'
where H(a Y is the homography that transforms the invariant features x5 F, de-
tected by the invariant feature detector F; in the image I, to the corresponding
ones in I,; Hg is the ground-truth homography obtained by manual selected
correspondences between I, are I, Np, is the number of features detected by
F;, and a, b denote two different viewpoints.

Additionally, it is also desired that the correspondences from the feature-based
homographies can be consistent across different scales, as some features change
with scales. To investigate what features are better than others in rendering de-
sired homographies across illumination and scale, the original images in 320 x 240
pixels are scaled down to smaller sizes, and the error is computed in each size and
averaged over the three illumination conditions in the training set. Fig. Bl shows

— 320240
e~ 256192 |
—e=192%144 |
| == 12606

o L | L J
Harmulti Harlap Haraff Hesmuti Heslap Hesaff Harhesmulti DoG

Fig. 5. Normalized error of feature-based homography across scales and three illumi-
nation conditions
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this comparison, the smallest scale with 128 x 96 reveals relatively high errors, in-
dicating that some details between the dice are lost in such a small scale and thus
the accuracy in the homography estimation is degraded. Among the eight invari-
ant feature detectors we tested, the multi-scale Harris-Hessian detector gives the
lowest error at 0.87%, and it is about 1.7 pixels in a 192 x 144 image.

4.2 Dice Identification

The performance evaluation on the 9 test sets reveals the following observations
and results:

— As long as the correspondences from the feature-based homography are con-
sistent over at least two scales, the average match error can be kept below or
near 1%, and the top faces of dice can be perfectly segmented in all tested
conditions.

— Two identification rates are measured in each test illumination condition,
one is the identification of the dots and the other is the identification of the
dot number on each die. The former is shown by the bar on the left and the
latter by the bar on the right at each indexed illumination condition in Fig.
[Bl Because the MSER dot detector has been adjusted to zero miss rate on
the price of additional false positives on the training set, the imperfections in
the dot identification in Fig. [0l are all caused by false positives. For example,
in the brightest illumination condition, indexed 17, 1.8%(=1 — 98.2%) of
the dots identified are false positives. All false positives are found caused
by specular reflection or insufficient lightings. As the intensity of the illu-
mination increases, specular reflection becomes stronger, causing more false
positives to appear.

— The combination of size-constrained clustering and spatial pattern confirma-
tion can effectively remove the false positives and yield superb dice recogni-
tion rates in all tested conditions, as shown by the right bar at each indexed
illumination in Fig. [@

Il Dot identification || Dice Recognition]|

Identification Rate

Index of llumination Condition

Fig. 6. Identification rates in 9 illumination conditions, indexed from 1 to 9; at each
index the left bar shows the rate of dot identification, and the right bar shows the rate
of dice number identification
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5 Conclusion

A solution with invariant features across multiple views is proposed for dice
recognition under uncontrolled illumination. An extensive comparison on the
performance of various invariant feature detectors in rendering correct homogra-
phies under various test conditions and parameters shows that the multi-scale
Harris Hessian is the best, and better than the commonly selected SIFT features.
The homographies built on the multi-scale Harris Hessian features are exploited
to enhance the coplanar features and weaken the non-coplanar features on the
dice. This leads to an extraction of the coplanar features and the segmentation of
the top faces of the dice even when the features, observed from some viewpoint,
are ruined by specular reflection. An MSER detector is applied for the identi-
fication of dots on the top faces, followed by a pattern-specific confirmation of
the spatial distribution of dots. Experiments reveal that, although false positives
of dots are observed in few cases, as under strong or insufficient illumination,
the numbers of the dots on the dice can still be recognized accurately by the
proposed solution.
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Abstract. Time-of-flight (TOF) cameras are primarily used for range
estimation by illuminating the scene through a TOF infrared source.
However, additional background sources of illumination of the scene are
also captured in the measurement process. This paper exploits conven-
tional Lambertian and Phong’s illumination models, developed for 2D
CCD image cameras, to propose a radiometric model for a generic TOF
camera. The model is used as the basis for a novel specularity detec-
tion algorithm. The proposed model is experimentally verified using real
data.

Keywords: Time-of-flight, Radiometric Modelling, Specularity Detec-
tion, Reflectance Modelling.

1 Introduction

Objects and materials in real world appear differently to an observer depending
on the nature of the light source that they are illuminated by and the manner
in which the light is reflected to the observer. Computer vision [I] and computer
graphics [2] researchers have extensively treated reflectance modelling for image
analysis, rendering and scene geometry. Specular highlights can be used to pro-
vide information about the surface [I2] and the illumination geometry [14] in a
natural scene. However, saturation effects, due to specularity in intensity images,
often create problems for image processing algorithms in real environments [13].
In addition, many computer vision algorithms [7,[9] are dependent on surface
illumination of an object and changing illumination conditions, such as highly
saturated highlights interfere and adversely effect the camera image. It is there-
fore, important to detect specular highlights in image processing applications
and algorithms. Since photometric understanding (using 2D CCD camera tech-
nology) of illumination modelling is focused on intensity, specularity detection
methods [8[1] are normally based on chromaticity of the region.

3D time-of-flight (TOF) cameras provide information in addition to intensity
that can be incorporated in a reflectance model. A TOF camera works on the
principle of measuring time of flight of a modulated infrared light signal as phase
offset after reflection and provides amplitude, phase and intensity data over a
full image array at video frame rate [5].

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 196 2011.
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This paper presents a novel algorithm for specularity detection using TOF
cameras. In the proposed radiometric framework, the background light sources
and the dependencies between amplitude, intensity and phase/range measure-
ments of a TOF camera are exploited. The model is utilized for specularity
detection using real TOF camera data.

2 Reflectance Model

Time-of-flight (TOF) sensors estimate distance to a target using the time of flight
of a modulated infrared (IR) wave between the target and the camera. The sensor
illuminates/irradiates the scene with a modulated signal of amplitude A (exi-
tance) and receives back a signal (radiosity) after reflection from the scene with
background signal offset I, that includes non-modulated DC offset generated by
TOF camera as well as ambient light reflected from the scene. The amplitude,
intensity offset I and phase of a modulated signal can be extracted by demodu-
lating the incoming signal A; = Acos(wt; +¢) +I; (t; =i-J ,i=0,...3) [5].
With known phase ¢, modulation frequency fi,0q4 and precise knowledge of speed
of light ¢, it is possible to measure the un-ambiguous distance r from the cam-
era [L1].

The measurement parameters of amplitude A, intensity I, and range r are not
independent but depend on the reflectance characteristics of the scene [11]. In
this discussion a near-field IR point source for the camera’s active LED array, an
ambient illumination and a far-field source for background illumination is con-
sidered. The primary source of illumination in TOF cameras is an IR source that
produces a modulated IR signal offset and a non-modulated DC signal. Based
on Phong’s illumination model [14], [3| p. 729], the following discussion incor-
porates diffuse (.),, ambient (.),, and specular (.), components of illumination.

s

2.1 Modulated IR Source

Let P be a Lambertian surface in space with n,, denoting the normal to each point
p € P on the surface as shown in Figure. [[l Following the laws of radiometry
[15] the amplitude of total radiance A,(p) (called radiosity) leaving point p
due to illumination by the modulated signal A(s) is proportional to the diffuse
reflectance or albedo pq(p) scaled by the cosine of arrival angle 8, [10, p.68]. In the
present analysis, the LED point sources of the camera are part of the compact IR
array of the TOF camera, and can be approximated by a single virtual modulated
point source [4, p. 78] with the centre of illumination aligned with the optical
axis of the camera [6]. In this case, the integration for illuminating sources can
be written as a function of the exitance of a single point source at S as [4, p.
77 [1]

A (p) = 1 palp) A(s) cos b, cos 0 .

™ 72

(1)
The irradiance of an image point x is obtained [10) p. 48] as

Ad (33) = TAd (p)a (2)
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Transmitter and receiver in same housing

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

B0z !

TOF camera .
Receiver

Fig. 1. Geometry of reflectance model for time-of-camera. Note that although the LED
source and receiver of a physical TOF camera are co-located, it is difficult to provide
a visualisation of this geometry. Here the source is shown separately to make is easier
to see notation. However, in practice the directional vectors r and z, are equal. Note
that time variation (discussed in Section 2] of A(s) does not need to be modelled as
only the relative magnitude of A(s) is of interest.

where T := T(m is the lens collection [I5] representing the vignetting due to
aperture size and irradiance fall-off with cosine-fourth law.

2.2 Non-modulated IR Source

The TOF camera IR source produces a DC signal from the same IR source
LEDs. This signal will have the same reflectance model as has been derived for
the modulated IR source (see (Il)). The received signal I..,(z) is given by [11]

I (x) =TI, (p). 3)

The effect of this signal is an added offset to the modulated signal that provides
better illumination of the scene.

2.3 Far-Field Background Illumination

For a point source ¢ € @ that is far away compared to the area of the target
surface, the exitance I,(q), does not depend on the distance from the source or
the direction in which the light is emitted. Such a point source can be treated
as constant [4, p. 76]. The radiosity perceived by a TOF image plane as a result
of this IR source is given by [11]

I, (x) = Z,Dd(p)fb(Q) cos by
=Th,(p). (4)

where 6, is the angle between normal to the surface point p.

! .= Defination of a symbol
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2.4 Ambient Background Illumination

Consider an ambient background illumination of the scene i.e an illumination
that is constant for the environment [4, p. 79] and produces a diffuse uniform
lighting over the object [3, p. 273]. Let I, be the intensity (called exitance) of
the ambient illumination, then the received intensity I,(p) from a point p is
expressed in an image plane as [I1]

1) = pao)la
=TI, (p)7 (5)

where p, is the ambient reflection coefficient which is often estimated empirically
instead of relating it to the properties of a real material [3, p. 723].

2.5 Specular Illumination

Specular reflection is observed from a shiny surface when light is reflected in
a single direction where the angle of incidence ¢, and angle of reflection 0 are
equal around the normal to the surface. The fall off effect of specular reflectance
from shiny surfaces is modelled by cos™ a, where n is the specular reflection
exponent [3] and « is the angle between direction of reflection and the view
point. For imperfect shiny surfaces, specular reflection is spread over an angle «
around the direct reflection. The received illumination components for intensity
and amplitude observed in the image plane due to specularity are given by

_ Y ps(p) Is(s) cos™ acos QS;A (2) -

s

T r2 T r2

USHEIR _ Tps(p) As(s) cos™ accos b -

where the specular reflection coefficient ps(p), effects the brightness of specu-
larity. Typical values of n vary from 0 to several hundred depending upon the
surface material. A value of 1 gives a broad fall off of specular reflectance and a
high value results in sharp fall-off of the specular reflectance.

3 Specularity Detection

From the principles of TOF camera (see Section [2]) signals one knows that inten-
sity component of TOF carries information for both, amplitude of the modulated
signal and the background offset I,. The radiometric intensity measured by a
TOF camera is then

I=A+1,. (7)

The background offset I, is composed of DC offset I.., due to the DC component
of the illumination by the TOF camera LED array and background illumination
that are modelled by an ambient illumination I, and a background illumination
I, due to an infrared far field source present in the environment such as the Sun
or other light source. Indexing the point p in the scene by the TOF receiving
pixel x, one has
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Lo(x) = La(x) + Iy, () + Io, () + ey (2) + L, (2), (8)

Using the total intensity of the TOF camera ([7) and background offset () and
dividing it by the total (diffuse plus specular) received amplitude, one has

@) . L) b | L)
Aw) " A T A@) T A ©)

where Iy(z) = Iy, (z)+ Iy, (z), I.(z) = I, (x)+ I (x) and A(z) = A, (x)+ A, (z).
Using the reflectance models derived earlier ([2]) (B]), and the specular model (@),
it is now possible to re-arrange (@) as

I(x)
A(z)

% (2)pa(p)

=1+ Kel(Z) + R ’
() cos bs[pa(p) cos b, + ps(p) cos™ o

(10)
where 0, := 05(x) is a known function of a pixel and k, is defined as the ratio of
background ambient light I, to modulated TOF IR source A(s). Observe that
ke does not depend upon scene or camera geometry and hence is a constant
parameter over the full image array. Also for an indoor environment (such as
the one with no direct sunlight effect) the terms involving I in (@) is ignored
in order to simplify the model and only ambient illumination (due to indoor
lighting) component I, is considered. The parameter k. = k.(z), is defined as
the ratio of TOF non-modulated IR source I.(s) to TOF modulated IR source
A(s). Since the two sources of illumination originating from the TOF camera IR
LED source have the same ray geometry, they are in direct proportion where
ke(z) is a camera based pixel x € R? parameter independent of the scene for an
entire image [11].
Thus for each pixel x, one can re-write (I{) as

Pa(p) [ 1(x) () — cos O
W@wwﬁm@wwﬂ'(Mﬂ *)1)M@' )

Define the specular measurement criterion &, (z) based on measurements taken
from the camera at a given time as

Falz) pa(p) — (I:(@) ~ he(a) — 1) cos 0 ’ (12)

[pa(p) cos O, + ps(p) cos™ a] 72

Ka(T)

where #.(z) € R? is an estimate of camera based pixel parameter for an entire
image. Since k.(z) is scene independent, it can be measured offline as k.(x) in
a set of calibration experiments.

For a TOF camera, the light direction of the source and the receiver are
collinear as a result specularity is only observed in the direction of IR light from
the camera. For maximum specularity a = 0, the angle cosf, = 1 and the left
hand side of (I2) is scaled by a constant term C, as

I(z)

Fra(2)C) 1= (A (13)
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where C), is given by

L pa(p)
O = ) + pap)

Note that maximum specularity occurs when the angles (cos#f,,cos™ &) have
maximum values resulting in a higher denominator term with respect to nu-
merator irrespective of the scaled constant terms of reflectivity coefficients C,
(with decreasing denominator for non-perfect specularity regions). The specu-
larity criterion can be easily formulated without explicit angle estimation. For a
specular region, the TOF camera receives sufficient signal and the range data is
reliable. As a result the specular radiometric criterion (I3) has only one dominat-
ing parameter k, representing the ratio of ambient offset to TOF IR amplitude.
Consequently, specularity can be detected from a &, (x) plot where

(14)

specularity = min |iq(z)| V(z) (15)

due to high IR amplitude signal and low background offset of intensity. A spec-
ular lobe around this point would be indicative of the surface material encoded
by n.

Fig. 2. (a) Picture taken from a normal CCD camera of the experimental setup showing
TOF camera and a white board (b) Grayscale intensity image as observed in the TOF
camera with specular lobe visible due to IR reflection from the board to camera. (c)
Segmentation of specular and non-specular regions based on &q(z) of a frame.
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Fig. 3. (a) Picture taken from a normal CCD camera of the experimental setup (b)
Intensity image as observed in TOF camera. (c) Segmentation of specular and non-
specular regions of a complete frame.

4 Experiments

An indoor environment was chosen for experiments as shown in Figure and
using a white board placed in front of the camera. The board provided
sufficient specular reflectance due to its surface material.

In the first case specular reflectance was picked up by the camera. The min-
imum point of K, (x) space represented the point of maximum specularity with
the fall-off forming a lobe of specularity due to the surface material. Since the
camera was placed in corridor, a few side reflections from the wall on the board
caused a secondary specular lobe as observed in Figure and Figure
These were picked up by the algorithm along with the main specular lobe as illus-
trated in Figure In another experimental setup, as shown in Figure the
algorithm has picked the specular reflection (see Figure that was observed

in Figure

5 Conclusion

Unlike conventional cameras where only a single parameter is measured as inten-
sity, TOF camera measures three independent parameters of amplitude, intensity
and phase. These measurements along with the illumination conditions of the
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environment facilitated in deriving a radiometric model for specular highlights in
TOF cameras. The proposed framework proved robust and effective for specular
highlights detection in imaging algorithms.
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Abstract. The symmetry computation has recently been recognized as a topic
of interest in many different fields of computer vision and image analysis, which
still remains as an open problem. In this work we propose an unified method to
compute image symmetries based on finding the minimum-variance partitions
of the image that best describe its repetitive nature. We then use a statistical
measurement of these partitions as symmetry score. The principal idea is that
the same measurement can be used to score symmetries (rotation, reflection, and
glide reflection). Finally, a feature vector composed from these symmetry values
is used to classify the whole image according to a symmetry group. An increase
in the success rate, compared to other reference methods, indicates the improved
discriminative capabilities of the proposed symmetry features. Our experimental
results improve the state of the art in wallpaper classification methods.

Keywords: Symmetry features, plane symmetry groups, symmetry analysis.

1 Introduction

Images of repetitive patterns are very common in industrial sectors, such as ceramics,
textile or graphic arts. They also appear in specific applications, such as architecture
designs, medical imaging or geographic analysis. These images are usually composed
by patterns or motifs that are repeated in some parts of the image or, in many cases,
completely fill the image. In the last case, the images are commonly referred to as reg-
ular mosaics, wallpaper images, or simply wallpapers. Some examples of wallpapers
obtained from textile collections are shown in Fig.[Il

The study and definition of feature sets that define the structure and contents of
such repetitive images brings the possibility of building Content-Based Image Retrieval
systems (CBIR), specifically designed for applications such as identifying buildings
in photographs, recovering similar designs from textile databases, or dating ancient
mosaics.

A wallpaper pattern is a regular tiling made by repetition of a parallelogram shaped
subimage or motif, called Unit Lattice (UL) or Unit Tile. A symmetry of this UL can be
described through the geometrical transformation that transforms it on itself (isometry).
The standard isometries are: displacements (translational symmetry), rotations (n-fold
symmetry), reflections (specular symmetry), and glide reflections (specular plus lateral
displacement). Depending on the UL image content only certain isometries hold. For

A. Berciano et al. (Eds.): CAIP 2011, Part II, LNCS 6855, pp. 204 2011.
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Fig. 1. Wallpaper images obtained from textile collections. The repetitive pattern (lattice) is
marked out with a grid that can be located anywhere. (Right) Grid parameters.

example, the pattern in Fig. [Tl (left) is only translational. In contrast, the other patterns
of Fig.[Mhave 180° rotations and reflections. When several isometries are applicable to
the pattern, they form a symmetry group. The well-known Symmetry Groups Theory
(Horne established that, due to geometric constraints, only a limited number of
symmetry groups can be defined. Specifically, in the 2D case there are 17 Plane Symme-
try Groups (PSG). Figure 2l shows the details of each 17 PSG as well as their standard
notation. For example, the patterns in Fig. [l belong, respectively, to symmetry groups
P1, PMM and PM.

The interest in the algorithmic treatment of symmetries has been recognized by a
recent tutorial (Liu 2010), which includes an extended discussion and comparison of
the state of the art of symmetry detection algorithms. The work of Liu et al. uses
the Mean of Square Differences between original and transformed image to compute
symmetries and a rule-based classifier (RBC) to classify the images. In a recent work
(Agusti et al. 2011)) we proposed an alternative Mean of Absolute Differences method
and a Prototype Based Classifier (PBC) for the same purpose.

In this work we propose an unified method to compute image symmetries based on
finding the minimum-variance partitions of the image that best describe its repetitive na-
ture. We then use a statistical measure of these partitions as symmetry score. The main
idea is that the same measure can be used to score all symmetries (rotation, reflection,
glide reflection).

:7’ @ o
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Fig. 2. Representation of the 17 wallpaper groups, their standard notation and their internal sym-
metries. The UL is referred as the fundamental parallelogram.
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2 Calculation of Symmetries through the Image Partition

As indicated before, a wallpaper pattern is generated by the repetition of a parallelo-
gram shaped sub-image (UL) in two directions L; and Lo, which are defined by four
parameters (L1, o1, Lo, az). The geometry of this lattice can be seen as a grid imposed
on the pattern (see Fig. [l (right)). It should be noted that this geometry is translation
invariant, which means that it is independent of the starting point used to draw the grid.
We can find the repetitiveness of a wallpaper image by dividing or partitioning the im-
age using this regular lattice. The lattice geometry that makes equal all subimages will
denote the perfect translational symmetry. On the contrary, a wrong lattice geometry
will produce very different lattice subimages. In this work, we introduce a symmetry
measure based on the variance of the image partition.

A gray level image I(x,y) can be seen as a set of n points defined by grand mean g
and total variance S2. This total variance can be partitioned by decomposing the image
into r disjoined groups P = P, P, ..., P, of n; points each (ny + ng + ... +n, = n),
with mean g; and variance S?. According to the Law of the Total Variance:

1 « 1
§'= D omiSi+ Y o (g —9)° (1
i=1 =1

If we divide booth terms by the total variance S2:

_ 'r1L 2121 ng - S,? + TIL 2121 ni - (gi — g)?
N 52 52

The first term is the Fraction of Variance Explained (F'V E) statistic, which is a
measure of how well the performed partition P predicts the image variability. The com-
plementary term is the Fraction of Variance Unexplained (F'V'U). In presence of trans-
lational symmetry, the image partition P that makes similar every subset P; will also
make one of the terms tends to 0 and the other to 1. Moreover, it depends on how the
subsets P; are formed, with two extreme cases:

1 = FVE+FVU 2)

Continuous point selection: Every point in each UL parallelogram belongs to same
subset P;. As the UL is regularly repeated, every subset P; has the same mean and
variance, and the mean of all variances is similar to the total variance. In this way,
the statistic F'V E tends to 1 and the F'V'U tends to 0.

Scattered point selection: Only one point of each UL parallelogram belong to same
P;. The points of P; are selected at grid steps. In this way the same point of every
UL belongs to one subset P; so, if these points are regularly repeated, their variance
will be 0 and the mean of all variances (F'V E) tends to 0 and the value F'V'U to 1.

The first method requires that each subset P; has the same number of points. Partial
parallelograms in image sides have fewer points, so the mean values g; are very dif-
ferent to the rest, biassing the F'V E. Therefore, these partial parallelograms must be
discharged and the total variance S? be re-computed in each case. We prefer the second
method, because all image points are considered and each subset P; may have different
number of points. Besides, it is easier to compute the statistic F'VU, so we prefer to
maximize the factor FVU = 1 — FV E, instead of minimising F'V E.
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However these image partitions only take into account the translational nature of the
image. To consider other possible internal symmetries we propose a partition method
that incorporates the transformation function 7" involved in each symmetry.

The proposed partition method performs a two-dimensional division of the whole
image into L2 Lo subsets, PT = {U ng} ,k=1,...,0L11=1,..., Lo. The points
at the same relative position (k, [) inside each UL, after applying the function T, belong
to same subset P;. This can be done using non-orthogonal grid coordinate system
defined by the lattice direction vectors Ly = (L; - cosay, Ly - sinay) and Ly =
(Lg - cosag, Lo - sinaw). The cartesian coordinates of any image point p = (z;,y;) can
be transformed into grid coordinates (u;, v;) through:

-1
u; \ _ ( Licosoy Lacosan T T; — X0 3)
vj ) \ Lisinay Lasinas Yi — Yo (

where (g, yo) is the grid origin and T is the lattice transformation function. The inte-

ger part Int(u;, v;) represents the lattice coordinates (grid intersection points), and the
fractionary part F'rac(u;, v;) represents the internal position of each UL parallelogram.

If an internal symmetry is held, the contents of this parallelogram is the same after ap-

plying the transformation T". In short, a partition of the image P” can be obtained by
accumulating the gray values of each subset P, through an image scan, as follows:

1
I(zi,y;) € P,QTl kY Licosar Lacosas Ti — To L1
< = Frac Lisinay Lasinas T Y; — Yo Lo

Vi Vg l
“)
Table [Tl shows the transformation functions T for each of the involved symmetries.

Table 1. Transformation functions 7" for each of symmetries. (homogeneous coordinates)

Rotation of angle o Reflection about axis L with angle (3
cosa sina 0 cosf sinf3 0 100 cosf3 —sinf3 0
Ro = | —sinacosa 0 | Repy = | —sinfcosf0 |- 0-10|-| sinB cosB 0
0 0 1 0 0 1 001 0 0 1

Glide reflection about axis L with angle 3 and displacement d

cosf sinf3 0 10d cosf3 —sinf3 0
GRery, = | —sinBcosB0|-|0-10]-| sinB cosB 0
0 0 1 001 0 0 1

Once the subsets P,;"; have been accumulated, and ny; and g,”;’fl values are obtained,
the FFUV statistic can be computed as follows:
1 Ly ZLG .(—Ti—
i - 2ok (G — 9)2
FVU(PT) = Lile k=1 2ui=1 5
(") - )
Under ideal conditions (e.g. synthetic repetitive images) this measure will be 1, de-
noting perfect symmetry. In real cases, F'VU will be high if the symmetry is present
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and low otherwise, so we can use it as a symmetry score. Note that the transforma-
tion involved in @) is equivalent to making an image transformation, but gray level
interpolation of resulting image points is not needed. In this way, every image points
participates, because they are, independent of the transformation considered.

To obtain the translational symmetry we have to find an image partition (grid geom-
etry) that maximises the F'V'U value. As stated before, this grid geometry is translation
invariant, so we can select (zg, o) = (0, 0) as the grid origin. We then perform a search
for a maximimum by varying the grid angles (a1, as) and sides (L1, Lo) and the com-
puting a map of FUV values. The maximum of this map represents the Translational
Symmetry (T'S) of the image. Note that this value will always be high because repeata-
bility is required in this type of image. A low value of TS indicates that the content of the
image is not repeated, or is excessively distorted. The four parameters (L1, Lo, a1, a2)
at the maximum position indicate the lattice geometry for the image. This is a costly
brute-force procedure that can be speed up by optimisation techniques.

As indicated in Fig.[2] the internal symmetries to be computed are: 2-fold, 3-fold,
4-fold and 6-fold rotational symmetries, and reflection and glide-reflection symmetries
around sides and diagonals of the UL. As the lattice geometry of the image has already
been obtained previously, we now propose a Extended Partition (F P), formed by the
union of the original translational partition P’ and the image partitions P obtained
after applying the appropriate transformation 7" to the lattice geometry. Table [2] shows
the proposed partition and the search parameters for each case.

Table 2. Symmetry features and their corresponding partition and transformation function

Symmetry Name Partition PT T Parameters Search space
Translation TS Pt I (zo,y0) = (0,0) (Ll,al, Lo, a3)
2-fold RS, PlupFiso Ry a = 180° (wo,y0) € UL
3-fold RSy  Plupfizo Ry a=120° (z0,y0) € UL
4-fold RSy  PLuP®0 Ry a = 90° (x0,90) € UL
6-fold RSs  P'uPf  Rg o = 60° (z0,0) € UL
Reflection side 1 ReSp, PTuPR1  Rep B=a1 (zo,y0)L L1
Reflection side 2 ReSr, PTuUPR®l2 Reps B=as (zo,y0)L L2
Reflection diagonal 1 ReSp, P’UPR®P1 Rep, [ = api (zo,y0)LD1
Reflection diagonal 2 ReSp, P'U PRerz  Reps B = ap2 (zo,y0)LD2
Glide reflect. side I GReSz, P! UP%%t1 GRer1 B=o1d=11/2 (x0,y0) LI
Glide reflect. side2 GReSr, PTUP%ReL2 GRers B=oasd=L2/2 (x0,y0)LL2
Glide reflect. diag. 1 GReSp, P! U PSRP1 GRepy 8= apid=D1/2 (zo0,y0)LD1
Glide reflect. diag. 2 GReSp, P’ U P€RP> GReps B =apsd= D2/2 (z0,y0)LD2

The rotation depends on rotation center, so we make a search moving the grid ori-
gin point (g, %) in the scope of an UL, maintaining the original P/. The maximum
obtained indicates the rotational symmetry score as well as the best position of the rota-
tion center. In all cases, a minimum value is also obtained, indicating a reference value
for symmetry ’absence’. These maximum and minimum values will be later used for
feature normalization.
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The reflection about an axis depends on the axis angle 3 and position. The angles
are known, because they are drawn from the lattice geometry previously obtained. The
position is unknown so we again make a search by moving the axis L parallely to angle
0, which implies moving the grid origin point (zg, yo) in a perpendicular direction to
axis L3.The maximum obtained indicates the reflection symmetry score as well as the
best position of the reflection axis. Similarly for the Glide Reflection Symmetries.

As in reference works (Liu et al. 2004l and Agusti et al. 2011), we put everything
together into a normalised Symmetry Feature Vector of twelve symmetry scores .S; as
follows:

SFV = (nga RS?& RSE& RSE?? Resgl ’ R@SEQ, Resgl ’ R65%2,
GReS},,GReS},,GReS}, ,GReSY, ) ©)

Table [3] shows the symmetry feature vectors obtained for the three images of Fig.
[ It includes a classical MAD-based (Mean of Absolute Differences) feature vector
SFVurap, reported in previous work (Agusti et al. 2011), and the proposed partition-
based feature vector S F'V, both normalized as in (@). Values in bold indicate the sym-
metries that should be high, according to its symmetry group. You can see how the
proposed symmetry features work better than the classic features, due to wider range of
values between the presence and absence of symmetry in each sample. In addition, the
classic features fail in the third case, while the new ones perfectly describe the symme-
tries present in that image.

Table 3. Symmetry feature vectors of images in Fig. [[land the corresponding PSG

MAD symmetry features SFVyrap - PSG

70.93 43.32 51.45 48.58 69.48 58.32 49.07 45.68 53.72 36.88 48.47 45.58 Pl
89.18 17.26 74.91 17.76 89.00 83.31 13.89 17.00 44.76 45.93 13.70 17.50 PMM
94.69 99.32 96.47 100.0 95.57 99.23 97.75 99.03 93.11 96.31 94.25 95.34 PM
Proposed symmetry features SF'V - PSG

69.18 3.78 11.404.16 37.13 25.00 6.54 16.92 36.79 26.85 6.54 16.92 P1

98.15 4.05 70.34 4.69 97.93 98.27 6.01 6.86 62.84 51.89 6.01 6.86 PMM
62.24 9.59 45.357.10 60.63 96.30 45.07 48.23 42.07 33.92 45.07 48.23 PM

3 Experiments and Results

To establish a comparison between the two sets of symmetry features, classical and
proposed, we made an experiment of classifying an image testbed. The performance
measurement was the percent of success in the classification (accuracy). As a standard
image database is not publicly available, we selected several image collections from
known websites. We picked image datasets from Wallpaper (2007), Wikipedia (2010),
Quadibloc (2010), and SPSU (2009), resulting in a test bed of 218 images. All images
were hand-labelled to make the ground truth.
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Several classifiers were selected: a Bayes classifier (NaiveBayes), a decision tree
(J48), a neural network (Perceptron) and a statistical Nearest Neighbour (NN). Also,
two other classifiers specifically adapted for this type of application where chosen: Liu’s
Rule-Based classifier (RBC) and Agusti’s Prototype-Based classifier (PBC). In these
cases some threshold values were needed. In the first case to binarise the feature vector
and, in the second case, to distinguish symmetry/no symmetry in the prototypes. A
threshold of 80% was experimentally obtained for the MAD features and a pair 80-100
was selected for the prototypes, as indicated in Agusti et al. (2011). Then, the Weka
tool was used to make the experiments, with 10-fold cross-validation.

The results are summarized in Table [l It can be seen that, using the PBC classifier,
the classic feature set gets an absolute maximum of 72.94% of success, which grows up
to 80.74% with the proposed symmetry features — an improvement of 8%. With respect
to the RBC method, an increase from 67.43% to 80,28% is achieved — an improvement
of nearly 13 points. Similar behaviour were obtained with the remaining classifiers. As
a general result, it can be concluded that the proposed symmetry features have higher
capabilities to express the symmetries present in an image that other classic methods.
In relation to the classifier, the PBC and RBC are, obviously, the best choices.

Table 4. Classification results for several classifier types using classic and proposed feature sets

— Classifier — - Classic — — Proposed — — Classifier — — Classic — — Proposed —
NaiveBayes  55.50% 64.22% NN 61.93% 63.30%
J48 49.54% 71.10% RBC 67.43% 80.28%
PERCEPTRON  60.09% 65.14% PBC 72.94% 80.73%

A final experiment was conducted to explored the behaviour of the proposed fea-
ture set in classifying images from the different wallpaper collections. The results are
showed in Table [5l These results showed that the proposed features behave very well
with images collections composed of very geometric and low-noise images, such as the
Wallpaper and Quadibloc collections, and even with collections of intermediate com-
plexity, such as Wikipedia. The SPSU collections behaves poorly, because many of
SPSU images are noisy or strongly distorted.

Table 5. RBC and PBC classification results for each image collection (number of samples)

Classifier Wallpaper (17) Wikipedia (68) Quadibloc (47) SPSU (86) FULL-SET (218)

RBC 100.0% 75.00% 97.87% 70.93% 80.28%
PBC 100.0% 75.00% 95.75% 73.26% 80.73%

It often happens that the image has wrong aspect ratio, probably due to the acquisi-
tion process (e.g. squares become rectangles). In these cases the translational symmetry
remains high, but other symmetries decrease or disappear so the original symmetry
group (PSG) changes. In other cases, the presence/absence of a certain symmetry is
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due to small details in the image, so much so that the difference between the original
and the transformed image is only a few pixels. In these cases, the computed scores
are in the noise level, so that they are not distinguishable from the correct value. But
even with these drawbacks, the symmetry features proposed have proved to be more
discriminative than other proposals in the literature.

4 Conclusions

This paper had presented a novel framework for computing symmetry features in repet-
itive images. The indicated symmetries are: n-fold rotation, reflection and glide reflec-
tion symmetries. To achieve this, the classical approaches are based on computing the
differences between the original and transformed images (MSD or MAD features). In
this work, we propose an image partition based on scattered point selection at lat-
tice intervals, which can be achieved with just an image scan. If the symmetry holds
the formed sub-sets have minimal intra-group variance, or equivalently maximal inter-
group variance. This idea is picked up by the statistic F'VU, or Fraction of Variance
Unexplained, which depends on the image content and the lattice geometry. The key
point is that the same statistic can be computed using different image partitions, adapted
to the type of symmetry. Finally, a Symmetry Feature Vector is composed, joining and
normalising twelve symmetry scores.

The performance of the proposed symmetry feature set is evaluated through image
classification. The results show the higher discriminative capabilities of the proposed
feature set, obtaining an improvement of near 8—13% in success rates with respect to the
MAD feature set. The goodness of the specific method is related to its uniform treatment
of all symmetries. The badness is due to its parametric configuration, which implies the
use of minimisation algorithms. As future work, we are looking for extending the test
beds, and propose using this results in recovery tasks (CBIR systems) by computing a
list of similarity for every group that can be sorted from highest to lower values and so,
for example, detect images that are near to several groups.
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Tensor Method for Constructing 3D Moment
Invariants
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Abstract. A generalization from 2D to 3D of the tensor method for
derivation of both affine invariants and rotation, translation and scaling
(TRS) invariants is described. The method for generation of the 3D TRS
invariants of higher orders is automated and experimentally tested.

Keywords: Recognition, tensor, moment, rotation, invariant, 3D.

1 Introduction

Pattern recognition of objects in two-dimensional (2D) images has been an im-
portant part of image analysis for many years. The images are often geometri-
cally distorted; the distortion of a flat scene can be modeled as a combination of
translation, rotation and scaling (TRS) in the case of a scanning device parallel
to the scene and as a projective transformation in the opposite case.

An efficient approach to the recognition of deformed objects is using certain
features that do not vary in the transformation; we call them invariants. Thus,
TRS invariants can be applied to the recognition of objects distorted by TRS,
and projective invariants to the recognition of objects distorted by the projective
transform. Since it is difficult to derive global projective invariants describing
an entire object, the projective transform is often approximated by an affine
transformation. If the distance of the scanned scene and the camera is large, this
approximation is accurate enough.

Recently, the scanning devices of 3D objects (computer tomography (CT),
magnetic resonance imaging (MRI), rangefinders, etc.) become more and more
affordable, which arises the need of recognition of 3D objects and thus the need
of having 3D invariants. One of the most popular family of 3D invariants is
based on image moments. While moment invariants in 2D have been studied
extensively for decades (see [3] for a survey and [7] for the latest results), the
theory of 3D moment invariants has not been fully explored. The first attempts
to derive 3D rotation moment invariants are relatively old (see e.g. [6], [4]), but
the generalization to higher moment orders has not been reported as it is rather
complicated.

The topic of this paper is generalization of the tensor method for deriving
rotation moment invariants in 3D. The main contribution is not only finding a
closed-form solution for 3D rotation and an affine invariant but principally an
algorithm, which generates all invariants up to a given order.

A. Berciano et al. (Eds.): CAIP 2011, Part IT, LNCS 6855, pp. 212 2011.
© Springer-Verlag Berlin Heidelberg 2011
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2 Moments and Tensors

Geometric moments of image f (2D or 3D) are defined as

Mpg = / /wpyqf(x,y) dz dy,

7% % (1)

Mpgr = / / / mpyqzrf(xv:%z) dzx dy dz.

—00 —00 — 00

The sum of the indices is called the order of the moment. To provide the trans-
lation invariance, we often use the central geometric moments

o o
Mpq?“://
— 00 —O0

where . = migo/Mo00, Ye = Mo10/Mooo and z. = mgo1/Mooo are centroid
coordinates of the image f(z,y, 2).

We can define a moment tensor [I] for using tensor calculus for derivation of
moment invariants

(LII - xC)p(y - yC)q(’z - ZC)Tf(.'I},y, Z) dz dy dZ7 (2)

\8

8

oo oo oo
Matzie — / / / grxiz gt f (et 2? 2®) dat da? da®, (3)

where 2! = z, 2 = y and 23 = 2. If p indices equal 1, ¢ indices equal 2 and r

indices equal 3, then M“ %% = m,,,.. The definition in 2D is analogous. The
behavior of the moment tensor under an affine transform (in Einstein notatiOIEI)
is
Mivizir — ‘J|plal pZZ .. .pg- Ma1a2"'a7'
1 2 r

Miliz“'ir — ‘J|*1qi1 qi2 - qiv- Meraz-ar (4>
a1 das o ’
where p!, is the matrix of the direct affine transform and ¢!, is the matrix of

the inverse affine transform (without translation). This means that the moment
tensor is a relative contravariant tensor with the weight -1.

2.1 Affine Invariants in 2D and in 3D

The tensor method for affine invariants in 2D is described e.g. in [5]: we arrange
our measurements into a tensor, multiply the tensors so the number of con-
travariant indices equals the number of covariant indices and compute the total
contraction of the product. Since the moment tensor is purely contravariant, we
need to multiply them by some covariant tensors. In such a case, we can use
so-called unit polyvectors.

L A. Einstein introduced this notation to simplify expressions with n-dimensional co-
ordinates, see e.g. [9] for explanation.
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The unit polyvector is an antisymmetric tensor over all indices and the com-
ponent with indices 1,2,...,n equals 1. It can be both covariant, i.e. €15...,, = 1
and contravariant, i.e. €2 = 1. The term antisymmetric means that the tensor
component changes its sign and preserves its magnitude when interchanging two
arbitrary indices. In 2D, it means that (in matrix notation except for the unit
polyvector is not multiplied like a matrix)

S (_‘f é) . 5)

Then a proper tensor product can be used for derivation of a relative affine
invariant, e.g.
ij Akl 2
MY M €ik€jl = 2(m20m02 — mn).

After modification, we obtain an absolute affine invariant

ITP = (paopto2 — p3y)/ 1go-

The exponent w = 4 of upg equals the number of factors in the tensor product,
i.e. the moment tensors and the unit polyvectors. Other example

MijkMlm"M"qu”teilejmekoe”epseqt :

3P = (= pdouds + 6psopzpzios — Apsondy — 4ud1pos + 3u3iuia)/ 1so.
A question how to generate all relevant tensor products arises. We can employ an
idea, that the tensor products can be described by graphs and then generation
of all tensor products means generation of all graphs with the corresponding

number of nodes and edges; this is a so-called graph method [3].
In 3D, the unit polyvector looks like

0 00 00-1 010
€ihist= 1 0 0 1], ¢€62=| 00 0], ¢c53=|-100]. (6)
0-10 10 0 000

There are two differences between 2D and 3D; the unit polyvector has three
indices, i.e. we need fewer factors in the tensor product, and each index can have
three values 1, 2 and 3. In the sense of Einstein notation, we sum over these
three values. Some examples

MiijlenEik’,,LEjZn :

3D _ 2 2 2 5
I?% = (20010204002 + 211104101 fo11 — M200M4011 — H020M4701 — M002M110)/M000~
and
MijkMlm"M"qu”teiloejmrekpsenqt :

IS’D = (1430011003 41204021 + 1300 H030/4102/012 + 103040031210 4201 — M300/J120/J%12
—u300u102M321 - Mo3oM21oM%oz - Mo3oM501M012 - uoo3M§1oM021 - Moos/mom%m

— (430014030 4003 4111 + H300 4021 Ho12/4111 + Ho30M4201 41024111 + H003 4210412044111
+H310M012 + 1301 b1 T Hi20HT02 — H210H1204102/4012 — H210/4201 1021 H012

— 201 412041024021 — 2#210/1012/1%11 - 2#201/1021/@11 - 2#120#102#%11
+3p210/102/4021 4111 + 3201 1200124111 + K1)/ HS00-
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The idea of the graphs is more complicated in 3D, we cannot use the ordi-
nary graphs, we need so-called three-uniform hypergraphs, where each hyperedge
connects three nodes.

2.2 Rotation Invariants in 2D and in 3D

When the transformation in question is not a full affine transform, but is a mere
TRS, then a slightly different approach is suitable to yield simpler invariants. So-
called Cartesian tensors are suitable for derivation of the rotational invariants.
The ordinary tensor behaves in the affine transformation according to the rule

Tfj’ﬁz’ Bry Bry i1 s Tj17j27---7j1c2 (7)

. 22 .
02,5, Oy qjl qu qij Pa,Pa, "+ Pouy 11,9250 y0kq )

while the Cartesian tensor behaves in the rotation according to the rule

Toy,an,..oar, = TarisTazis *** Tagix Lin iz, ik (8)

where r;; is an arbitrary orthonormal matrix. The distinction of the covariant
and contravariant tensors has no meaning in the case of the Cartesian tensors
and we can perform the total contraction of the moment product without the
unit polyvectors.

The simplest example is the total contraction of the second-order moment
tensor M;;. In 2D

My + Moy : 93P = (oo + po2)/ 1o,
in 3D
3D 5/3
M1+ Mo + M3z : @37 = (p200 + f1020 + Ho02)/ Hobo-
Another example is M;;M;;. In 2D
P3P = (130 + 1o + 20431)/ 1o
in 3D

10/3
@gD = (/’L%OO + /1“320 + ,U%()Q + 2/14%1() + 2#%01 + 2#%11)/#00(/) :

The last example of the second order is M;; M, My;. In 2D it is
B3P = (3o + 3popiy + 3ui1 o2 + 1)/ 1o
while in 3D it becomes
P3P = (3o + 3#200#110 + 3#200#101 + 313 10k020 + 31501 1002 + Ko
+3p0204811 + 31111002 + Koz + 6111104101 H011)/ Ko00-

The scaling normalization is slightly more difficult; the exponent is
w
W= n + s, (9)

where w is the sum of the indices of all moments in one term, s is the number
of the moments in one term and n is the dimension.



216 T. Suk and J. Flusser

2.3 Automated Generation of the Rotation Invariants in 3D

We recall the idea of using graphs for constructing invariants. In the case of
a 3D rotation, the ordinary graphs, where each edge connects two nodes, are
sufficient. These graphs can include self-loops, see e.g. Fig. [h.

(a) (b)

Fig. 1. The generating graphs of (a) both 3 and 37, (b) both $3° and #3° and
(c) both ®#3P and &3”

An important part of this process is an elimination of the linearly dependent
invariants, i.e. zeros, identical invariants, products and linear combinations. The
invariants remaining after this elimination are called irreducible; those which
were eliminated are called reducible invariants. It should be noted that irre-
ducibility does not mean independence. There may be polynomial dependencies
among irreducible invariants which are not discovered in the elimination al-
gorithms. As will be shown, there must be a large number of them but their
identification is an extremely complex problem even in 2D.

The method of finding all irreducible invariants we propose here is a gener-
alization of our method for 2D case [3]. We first generate all possible invariants
(graphs) and then, by exhaustive search, eliminate the reducible ones. Every-
thing is carried out on symbolic level, independent of any particular image data.
As aresult of this algorithm, we obtain closed-form expressions for all irreducible
invariants along with automatically generated data for their calculation. Taking
into account the computing complexity on the one hand and the capability of
our computers on the other, the maximum number of graph edges which are
feasible to construct is 8. Table [l summarizes their numbers.

The first row of the table shows the orders of the invariants, the second row
contains the cumulative number of the irreducible invariants up to the given
order which were actually constructed by the proposed algorithm (note that
there is no guarantee that all existing irreducible invariants were found because
of the limitation to maximum of 8 graph edges), and the third row contains
the theoretical maximum number of the independent invariants. The number of
the independent invariants was estimated as a difference between the number
of moments and the number of degrees of freedom of the transformation, i.e.
(tgs) — 7 up to the order ¢ in our case. As previously mentioned, currently we
are not able to systematically find these independent invariants (i.e. to identify
polynomial dependencies among irreducible invariants). This extremely difficult
task will be a subject of future research.
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Table 1. The numbers of the 3D irreducible and independent rotation invariants

Order 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
irred. 3 42 242 583 840 1011 1098 1142 1164 1174 1180 1182 1184 1184 1185
indep. 3 13 28 49 77 113 158 213 279 357 448 553 673 809 962

We generated explicit forms of all 1185 invariants, they are available on our
website [2]. However, the corresponding pdf file contains more than 10 000 pages.

3 Numerical Experiment

The following simple experiment verifies that the constructed irreducible invari-
ants are actually invariant to rotation, i.e. they were derived correctly. Moreover,
it demonstrates that two similar but different objects have different values of (at
least some) invariants.

The experiment was carried out on real data. We used two ancient Greek
amphoras scanned using a laser rangefinder from various sides. Consequently
all measurements were combined to obtain a 3D binary image of the amphora.
Since the rangefinder cannot get inside the amphora, it is considered filled up and
closed on the top. To compress the data, the surface of the amphora was divided
into small triangles (42 400 and 23 738 triangles, respectively). The amphoras
were then represented only by their triangulated surfaces. The test data are
shown in Fig. 2l The photographs are for illustration only, no graylevel/color
information was used in moment calculation.

Fig. 2. The amphoras: (a) photo of Al, (b) photo of A2, (¢) wire model of the trian-
gulation of A2
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For each amphora we generated 10 random rotations and translations of its
triangular representatiorﬁ and calculated the values of the first 242 invariants
up to the 4th order. Here we have two possibilities as to what moments to use
for computing invariants — we can employ either traditional 3D volume moments
or surface moments [10]. Surface moments are calculated by double integration
over the object surface only. We used both approaches.

The maximum relative standard deviation was 3.2-107!2 in the case of invari-
ants computed from the volume moments and 4.5- 10713 for the invariants from
the surface moments, which illustrates a perfect invariance in all cases. On the
other hand, the maximum relative deviations between two different amphoras
Al and A2 were 1.01 for volume invariants and 1.55 for surface invariants, which
proves discriminability — different objects have distinct values of the invariants.

3.1 Computing Moments of Triangulated Objects

Now we explain how the 3D moments (both volume and surface) were actu-
ally calculated in this experiment. It would be of course possible to calculate
them from definition but since we already have the triangular representation,
the moments can be calculated in a more efficient way [g].

We complete each triangle to a tetrahedron such that the new vertex coincides
with the coordinate origin. The triangles must have the same orientation with
respect to the object, e.g. counterclockwise when seeing from outside to inside
of the object. The object volume is then divided into these disjoint tetrahedrons
and the volume moment is given as a sum of moments of all tetrahedrons. Using
the vertices of the triangulation only, the volume moment is calculated as

IT((

plg!r! j=
(p+q+r+n) (

kij)!)

N 3 -
13 ! ZA@ H (al(f)) , (10)
kij)ek H (k;ij!) =1 i,j=1

ij=1

3
1=

Mpgr

where N is the number of the triangles, K is a set of such 3 x 3 matrices k;; with
non-negative integer values that Z?=1 ki; =p, Z?=1 k2; = g and Z?=1 ksj =,
() is a matrix of the vertex coordinates of the ¢-th triangle, 4 is the number

ij
of the coordinate and j is the number of the vertex. A, = det (a@

a

ij
6-multiple of the oriented tetrahedron volume and the dimension n = 3.
In the case of the surface moments the formula is basically the same except for
Ay = ‘ (a(-z) — a(-z)) X (a(-g) — a(-z))
32 il i3 il
The surface moments have different scaling normalization, the dimension n = 2

in ([@) and in (I0).

2 A more correct way would be to rotate the amphora physically in the capturing
device and scan it again in each position. However, this would be extremely costly
and the results would be comparable.

)7 ie. it is a

is twice the oriented area of the triangle.
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4 Conclusion

We have proposed and implemented a tensor method for generation of 3D rota-
tion moment invariants of arbitrary orders. We tested this method on invariants
up to the order 16. We constructed 1185 irreducible invariants, a vast major-
ity of them being published for the first time. Our method includes elimination
of linearly dependent invariants, but for now does not contain identification of
polynomial dependencies among the invariants.
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Abstract. 3D imaging sensors for the acquisition of three dimensional
faces have created, in recent years, a considerable degree of interest for
a number of applications. Structured light camera/projector systems are
often used to overcome the relatively uniform appearance of skin. In this
paper, we propose a 3D acquisition solution with a 3D space-time non-
rigid super-resolution capability, using three calibrated cameras coupled
with a non calibrated projector device, which is particularly suited to 3D
face scanning, i.e. rapid, easily movable and robust to ambient lighting
conditions. The proposed solution is a hybrid stereovision and phase-
shifting approach, using two shifted patterns and a texture image, which
not only takes advantage of the assets of stereovision and structured
light but also overcomes their weaknesses. The super-resolution process
is performed to deal with 3D artifacts and to complete the 3D scanned
view in the presence of small non-rigid deformations as facial expressions.
The experimental results demonstrate the effectiveness of the proposed
approach.

Keywords: Stereovision, Phase-shifting, Space-time, Multi-camera,
Super-resolution, Non-rigid matching, 3D frames.

1 Introduction

Real-time 3D imaging sensors for the acquisition of three dimensional faces have
created, in recent years, a considerable degree of interest for a wide range of
applications, including biometry, facial animation and aesthetic surgery. Struc-
tured light camera/projector systems are often used to overcome the relatively
uniform appearance of skin. These systems require explicit user cooperation and
controlled lighting conditions [II2]. Depth information is recovered by decod-
ing patterns of a projected structured light which include gray codes, sinusoidal
fringes, etc. Current solutions mostly utilize more than three phase-shifted sinu-
soidal patterns to recover the depth information, thus impacting the acquisition
delay; they further require projector-camera calibration whose accuracy is cru-
cial for phase to depth estimation step; and finally, they also need an unwrapping
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stage which is sensitive to ambient light, especially when the number of patterns
decreases [3]. An alternative to projector-camera systems consists of recover-
ing depth information by stereovision using a multi-camera system as proposed
in [2/4]. A stereo matching step finds correspondence between stereo images
and the 3D information is obtained by optical triangulation [2I5]. However, the
model computed in this way generally is quite sparse. To upsample and denoise
depth images, researchers looked into super-resolution techniques. Kil et al. [9]
applied super-resolution for laser triangulation scanners by regular resampling
from aligned scan points with associated gaussian location uncertainty. Super-
resolution was especially proposed for time-of-flight cameras which have very low
data quality and a very high random noise by solving an energy minimization
problem [10].

In this paper, we propose a 3D acquisition solution with a 3D space-time
and non-rigid super-resolution capability, using three calibrated cameras coupled
with a non calibrated projector device, which is particularly suited to 3D face
scanning, i.e. rapid, easily movable and robust to ambient lighting conditions.
The proposed solution is a hybrid stereovision and phase-shifting approach which
not only takes advantage of the assets of stereovision and structured light but
also overcomes their weaknesses. According to our method, first an automatic
primitives sampling is performed from stereo-matching to provide a 3D facial
sparse model with a fringe-based resolution and a subpixel precision. Second,
an intra-fringe phase estimation densify the 3D sparse model using the two
sinusoidal fringe images and a texture image, independently from the left, middle
and right cameras. The left, middle and right 3D dense models are merged to
produce the final 3D model which constitutes a spatial super-resolution.

Also, we propose to carry out a temporal super-resolution process which con-
siders the facial deformable aspect. The temporal super-resolution corrects the
3D information and completes the 3D scanned view. In contrast to conventional
methods, our method is less affected by the ambient light thanks to the use of
stereo in the first stage of the approach, replacing the phase unwrapping stage.
Also, it does not require a camera-projector off-line calibration which constitutes
a tedious and expensive task. Moreover, our approach is applied only to the re-
gion of interest which decreases the whole processing time. Section (2) details
the primitives sampling to generate the 3D sparse model. In Section(3), we high-
light the spatial super-resolution from the three calibrated cameras. Section(4)
explains how the 3D non-rigid temporal super-resolution is carried out. Section
(5) discusses the experimental results and section (6) concludes the paper.

2 Primitives Sampling for 3D Sparse Model Generation

First, an offline strong stereo calibration computes the intrinsic and extrinsic
parameters of the cameras, estimates the tangential and radial distortion param-
eters, and provides the epipolar geometry as proposed in [§]. In online process,
two w-shifted sinusoid patterns and a third white pattern are projected onto
the face. Three sets of left, middle and right images are captured, undistorted
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and rectified. The proposed model is defined by the system of equations (). It
constitutes a variant of the mathematic model proposed in [3].

Ip(sat) = Ib(svt) + Ia(sat) ' sin(¢(5,t)),
I,(s,t) = Iy(s,t) + I (s, t) - sin(P(s, t) + ), (1)
Ii(s,t) = Iy(s,t) + I (s, ).

At time ¢, I(s,t), In(s,t), I;(s,t) constitute the intensity term of the pixel s
on respectively the positive image, the negative one and the texture one. Ip(s,t)
represents the texture information and the lighting effect. ¢(s,t) is the local
phase defined at each pixel s. Solving (), Iy(s,t) is computed as the average
intensity of I,(s,t) and I, (s,t). Io(s,t) is then computed from the third equation
of the system () and ¢(s,t) is estimated by equation (2.

Ip(s,t)fln(s,t) :| ) (2)

¢(s,t) = arcsin | o 1 J37 0 (HTT (s0)

Also, we suggest an automatic region-of interest localization to decrease the
whole processing time. The idea is to benefit from the contrast variation and
carry out a spectral analysis to localize the low frequencies on captured images.
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(a) Captured image (b) A FFT spectral representation for one epiline.
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(c) Segmented image (d) 2D facial region segmented by a FFT spectral analysis.

Fig. 1. Pattern-based face localization
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First, we compute FFT on a sliding window for each epiline which provides for
each pixel a 2D curve of FFT frequency amplitudes. A 3D spectral distribution
is obtained which highlights the facial region for the current epiline as shown in
figure MIb. We propose to keep only pixels belonging to this highlighted region.
Thus, for each pixel in the epiline, we consider a weighted sum of only the
low-frequency amplitudes and we apply an adequate thresholding to obtain the
region-of-interest as illustrated by figure [Ild.

Finally, the sparse 3D model is generated through a stereovision scenario. It is
formed by the primitives situated on the fringe change-over which is the intersec-
tion of the sinusoidal component of the positive image and the second 7-shifted
sinusoidal component of the negative one [5]. Therefore, the primitives localiza-
tion has a sub-pixel precision. Corresponding multi-camera primitives necessarily
have the same Y-coordinate in the rectified images. Thus, stereo matching prob-
lem is resolved in each epiline separately using Dynamic Programming. The 3D
sparse point cloud is then recovered by computing the intersection of optical rays
coming from the pair of matched features. When projecting vertical fringes, the
video projector can be considered as a vertical adjacent sources of light. Such
a consideration provides for each epiline a light source point Op,; situated on
the corresponding epipolar plane. The sparse 3D model is a serie of adjacent
3D vertical curves obtained by the fringes intersection of the positive and the
negative images. Each curve describes the profile of a projected vertical fringe
distorted on the 3D facial surface. We propose to estimate the 3D plane contain-
ing each distorted 3D curve separately. As a result, the light source vertical axis
of the projector is defined as the intersection of all the computed 3D planes. This
estimation can be performed either as an offline or online process unlike conven-
tional phase-shifting approaches where the projector is calibrated on offline and
cannot change its position when scanning the object.

3 3D Multi-camera Spatial Super-Res