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Preface

This volume contains the papers presented at the 14th International Conference
on Computer Analysis of Images and Patterns (CAIP 2011) held in Seville during
August 29–31, 2011.

The first CAIP conference was in 1985 in Berlin. Since then CAIP has been
organized biennially in different cities around Europe: Wismar, Leipzig, Dresden,
Budapest, Prague, Kiel, Ljubljana, Warsaw, Groningen, Versailles, Vienna and
Münster.

Following the spirit of the previous meetings, the 14th CAIP was conceived
as a period of active interaction among the participants, with emphasis on
exchanging ideas and on cooperation.

This year, 286 full scientific papers from 52 countries were submitted, of which
138 were accepted for presentation based on the positive scientific reviews. All
the papers have been revised by, at least, two reviewers and, most of them by
three.

The accepted papers were presented during the conference either as oral pre-
sentations or as posters in the single-track scientific program. Oral presentations
allowed the authors to reach a large number of participants, while posters al-
lowed for a more intense scientific interaction. We tried to continue the tradition
of CAIP in providing a forum for scientific exchange at a high-quality level.

Two internationally recognized speakers accepted our invitation to present a
stimulating research topic this year: Peter Sturm, INRIA Grenoble (France) and
Facundo Memoli, Stanford University (USA).

Indeed, these proceedings are divided into two volumes, 6854 and 6855, where
the index has been structured following the topics and program of the conference.

We are grateful for the great work realized by the Program Committee and
additional reviewers. We especially thank the PRIP and CATAM members, who
made a big effort to help.

We appreciate our sponsors for their direct and indirect financial support and
Springer for giving us the opportunity to continue publishing CAIP proceedings
in the LNCS series.

Finally, many thanks go to our local support team and, mainly, to Maŕıa
José Jiménez Rodŕıguez for her huge and careful work of supervision of almost
all the tasks of the Organizing Committee.

August 2011 Ainhoa Berciano
Daniel Diaz-Pernil
Walter Kropatsch

Helena Molina-Abril
Pedro Real
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Paulo André Vechiatto Miranda

Kernelising the Ihara Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Furqan Aziz, Richard C. Wilson, and Edwin R. Hancock

A Hypergraph-Based Approach to Feature Selection . . . . . . . . . . . . . . . . . . 228
Zhihong Zhang and Edwin R. Hancock

Curves, Surfaces and Objects beyond 2 Dimensions

Hypersurface Fitting via Jacobian Nonlinear PCA on Riemannian
Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Jun Fujiki and Shotaro Akaho

A Robust Approach to Multi-feature Based Mesh Segmentation Using
Adaptive Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Tilman Wekel and Olaf Hellwich

Shape Description by Bending Invariant Moments . . . . . . . . . . . . . . . . . . . . 253
Paul L. Rosin

Fast Shape Re-ranking with Neighborhood Induced Similarity
Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Chunyuan Li, Changxin Gao, Sirui Xing, and
Abdessamad Ben Hamza

Dynamic Radial Contour Extraction by Splitting Homogeneous
Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Christopher Malon and Eric Cosatto

Robust Hyperplane Fitting Based on k -th Power Deviation and
α-Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Jun Fujiki, Shotaro Akaho, Hideitsu Hino, and Noboru Murata



XII Table of Contents – Part I

Geo-topological Analysis of Images

Incremental-Decremental Algorithm for Computing AT-Models and
Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Rocio Gonzalez-Diaz, Adrian Ion, Maria Jose Jimenez, and
Regina Poyatos

Persistent Betti Numbers for a Noise Tolerant Shape-Based Approach
to Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Patrizio Frosini and Claudia Landi

A Spanning Tree-Based Human Activity Prediction System Using Life
Logs from Depth Silhouette-Based Human Activity Recognition . . . . . . . 302

Md. Zia Uddin, Kyung Min Byun, Min Hyoung Cho, Soo Yeol Lee,
Gon Khang, and Tae-Seong Kim

Characterizing Obstacle-Avoiding Paths Using Cohomology Theory . . . . 310
Pawe�l D�lotko, Walter G. Kropatsch, and Hubert Wagner

MAESTRO: Making Art-Enabled Sketches through Randomized
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Subhro Roy, Rahul Chatterjee, Partha Bhowmick, and
Reinhard Klette

Kernel Methods

Improved Working Set Selection for LaRank . . . . . . . . . . . . . . . . . . . . . . . . . 327
Matthias Tuma and Christian Igel

Multi-task Learning via Non-sparse Multiple Kernel Learning . . . . . . . . . . 335
Wojciech Samek, Alexander Binder, and Motoaki Kawanabe

Multiple Random Subset-Kernel Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Kenji Nishida, Jun Fujiki, and Takio Kurita

Getting Robust Observation for Single Object Tracking: A Statistical
Kernel-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Mohd Asyraf Zulkifley and Bill Moran

Image and Video Indexing and Database Retrieval

Visual Words on Baggage X-Ray Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
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Guillermo Garćıa, Josu Maiora, Arantxa Tapia, and
Mariano De Blas

Deformable Registration for Geometric Distortion Correction of
Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Xu-Feng Yao and Zhi-Jian Song

Automatic Localization and Quantification of Intracranial
Aneurysms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Sahar Hassan, Franck Hétroy, François Faure, and Olivier Palombi



Table of Contents – Part I XV

Structural Pattern Recognition

A New Ensemble-Based Cascaded Framework for Multiclass Training
with Simple Weak Learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Teo Susnjak, Andre Barczak, Napoleon Reyes, and Ken Hawick

Mutual Information Based Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . 571
Peter Harding, Michael Topsom, and Nicholas Costen

Logitboost Extension for Early Classification of Sequences . . . . . . . . . . . . 579
Tomoyuki Fujino, Katsuhiko Ishiguro, and Hiroshi Sawada

Determining the Cause of Negative Dissimilarity Eigenvalues . . . . . . . . . . 589
Weiping Xu, Richard C. Wilson, and Edwin R. Hancock

Robust Model-Based Detection of Gable Roofs in Very-High-Resolution
Aerial Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Lykele Hazelhoff and Peter H.N. de With

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607



Table of Contents – Part II

Invited Lecture

Metric Structures on Datasets: Stability and Classification of
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Facundo Mémoli

Biometrics

Semi-fragile Watermarking in Biometric Systems: Template
Self-Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Reinhard Huber, Herbert Stögner, and Andreas Uhl
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José M. Valiente-González
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Abstract. This short paper accompanies an invited lecture on a histori-
cal survey of geometric computer vision problems. It presents some early
works on image-based 3D modeling, multi-view geometry, and structure-
from-motion, from the last three centuries. Some of these are relatively
well known to photogrammetrists and computer vision researchers where-
as others seem to have been largely forgotten or overlooked. This paper
gives a very brief summary of an ongoing historical study.

Keywords: Geometry, photogrammetry, structure-from-motion, 3D
modeling, history.

1 3D Modeling from Perspectives

Relatively quickly after the invention of photography in the 1830’s1, the idea
of using photographs for map creation and 3D modelling (terrains, buildings)
emerged. Laussedat seems to have been the first to exploit photographs for
topographic modelling [32]; he is thus commonly considered as the father of
photogrammetry. In the 1850’s and 1860’s, he developed and used an approach
for topographic map generation, first with perspective drawings generated using
the so-called camera lucida [30], later with actual photographs. The approach
requires perspective images taken in particular conditions (horizontal optical
axes, known distance between the viewpoints, known internal parameters) and
carries out the mapping using elementary operations for the determination of the
relative horizontal orientation of the perspectives, of planar point triangulation,
and height measurement. The cameras were usually coupled with theodolites,
providing accurate angle measurements.

It is noteworthy that essentially the same principles were used already before
the existence of photography to generate topographic maps. Beautemps-Beaupré
developed an approach to do so, from hand-drawn “perspectives” to which angles
measured by theodolites, between sight lines to pairs of points, were added [2].
Here, the hand-drawn images seem mainly to have been used for documentation
purposes as opposed to for actual measurements. This approach was used in
marine expeditions as early as in the 1790’s to acquire topographic maps of
1 The invention of photography was the result of long-term efforts of many researchers

in different countries, although the “official” birthdate is often given as 1837 or 1839.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 1–8, 2011.
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2 P. Sturm

foreign coastlines, from observations made on board of ships and where possible,
combining these with land-based measurements.

An even earlier example of 3D modeling aided by drawings may be due to Kap-
peler2, who produced in 1726 a topographic map of a mountain range in Switzer-
land, Mount Pilatus [24,13]. Although Kappeler stated that he used perspective
drawings, no details on the approach are given, which is why in photogrammetric
litterature this work is usually not considered as the first undisputable example
of 3D modeling using inverse perspective methods.

2 “Hardware”

The maturation of photogrammetry was made possible by theoretical develop-
ments, as well as, if not more, by practical inventions. The latter concerned
of course photographic equipment as such, but also devices that ease the use
of cameras for measurement purposes, such as combinations of cameras and
theodolites. While such “hardware developments” are not the central issue of
this paper, we still like to mention that concepts such as panoramic image ac-
quisition and multi-camera systems, were developed relatively early. Indeed, it
was soon recognized that panoramic images may ease photogrammetric work;
the first panoramic camera may be one developed by Puchberger in 1843, i.e.
just a few years after the invention of modern photography [35]. Multi-camera
systems were developed at least as early as in 1884, initially mainly if not ex-
clusively for aerial imaging. The earliest work known to me (no effort was made
for an exhaustive bibliography research) is that of Triboulet, who, as reported
in [45] experimented from 1884 on with a multi-camera system consisting of 7
cameras attached to a balloon: one camera looked downwards and 6 cameras
were equally distributed around the balloon’s circumference (the system thus
resembles the popular Ladybug sensor). In addition to hardware for the acquisi-
tion of images and complementary measurements, photogrammetry progressed
signficantly through the development of equipment and procedures to exploit
the acquired images, see e.g. an early survey in [31,33].

3 Epipolar and Multi-view Geometry

Epipolar geometry seems to have been first uncovered by Hauck in 1883 [17]. In
the same paper as well as follow-up papers [18,19,20,21], trilinear relationships
of points and lines seen in three images, were also described. In his work, Hauck
did not deeply analyze these trilinear relationships theoretically, like was done
via trifocal tensors in the 1990’s; he rather concentrated on the application of
these relationships to generate a third image from two given ones (often called
“trifocal transfer” in computer vision).

Previously, in 1863, Hesse proposed an algebraic solution to an exercise pro-
posed by Chasles in [3]: given seven pairs of matching 2D points, the goal is to

2 Often spelled Cappeler.
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determine two pencils of 2D lines in homographical relation such that matching
lines are incident with matching points. Further, Chasles asked to prove that
there exist only three solutions to this problem. Hesse proposed a solution to
this problem that is effectively equivalent to the 7-point method for computing
the fundamental matrix, or epipolar geometry, between two perspective images
of a rigid 3D object [22], although the link to epipolar geometry only became
clear later.

Before Hesse, de Jonquières gave a geometrical solution and proof for Chasles’
problem [7], which were later slightly clarified by Cremona [4]. Sturm studied
the same problem as well as generalizations to other numbers of points, from a
theoretical viewpoint [41].

The special case of six point matches for which it is known that four arise
from coplanar points in the scene, was solved by Finsterwalder in 1899 [10].

4 Projective Reconstruction

Hauck, in the above works, already touches upon the issue of projective recon-
struction [17,18,19,20,21]. In 1899, Finsterwalder gives a clear exposition of the
fact that from a set of uncalibrated images, a projective 3D reconstruction is
possible and provides an algorithm for the case of two images [10]. The concept
of projective reconstruction was re-discovered in computer vision in the early
1990’s [9,16].

5 Self-calibration

In the same article where he explained the feasibility of projective reconstruc-
tion, Finsterwalder also showed that self-calibration from images of an unknown
rigid object is possible [10]. He proposed a geometric construction based on the
absolute conic and the circular points of image planes, didn’t find an analytical
solution though. In computer vision, self-calibration was first formulated for the
case of images acquired by a camera with fixed intrinsic parameters [34] and
then extended towards images acquired with different intrinsics [23,38]. Finster-
walder directly considered the problem of images with possibly different intrincis;
he showed that with four images taken with possibly varying focal length and
principal point, a finite number of solutions exists.

His construction goes as follows (formulated in computer vision jargon, the
original explanations being somewhat different). Given a projective reconstruc-
tion of the object and the cameras. Under the assumption of square pixels, the
image of the absolute conic is a circle, hence it contains the two circular points
of the image plane. Let us now back-project the circular points to 3D lines in
the projective reconstruction; these must intersect the absolute conic. For four
images, we thus get eight 3D lines that intersect the absolute conic. This is in
general sufficient to determine (a finite number of solutions for) the plane at
infinity (3 degrees of freedom) and the absolute conic lying on it (5 degrees of
freedom). Hence, the self-calibration problem can in general be solved.
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Self-calibration from rotations. The possibility of determining the focal length
from images acquired by rotating a camera, was mentioned by Meydenbauer
in 1892 [36]. In [46], von Gruber described topographic and photogrammetric
acquisitions made during an expedition in the Pamir mountain range in 1913
and subsequent measurements and the generation of a map. Panoramic image
acquisition by rotating the camera about its optical center, was an integral part
of the procedures used. It is mentioned that this was also used to determine the
focal length of cameras.

The above approaches deal with the case of known principal point and “only”
determine the focal length [42]. This was generalized in 1939 by Sutor to the
determination of both, the focal length and the principal point, as well as ra-
dial distortion, from a set of images spanning a full circle [42]. His method, like
the others above, assumes that the camera rotates about either the horizontal
or vertical axis of its coordinate system (errors resulting from deviations from
this setup are investigated by Sutor and shown to be negligible in practice).
Thus, only the horizontal or vertical coordinate of the principal point is con-
sidered respectively computed. Sutor’s method is iterative, starting from initial
values. Besides providing details of the method, Sutor also gave a theoretical
error analysis.

Wester-Ebbinghaus extended this approach towards using images acquired in
arbitrary orientations around the fixed optical center and without requiring a
closed image sequence [48]. Like Sutor, he did not propose “closed-form” solu-
tions and solved the problem in a bundle adjustment manner. He also proposed
a bundle adjustment formulation for the case where a camera rotates about a
fixed point different from the optical center.

General closed-form solutions were developed by Hartley et al. [15,6].

(Self-)calibration from 3 orthogonal vanishing points. This is a simple (in general
inaccurate) calibration idea which only requires one image of a rectangular par-
allelepiped and the extraction of the 3 vanishing points associated with its edges.
Such an image allows to compute the camera’s focal length and principal point
(if the object is in general position). This idea was discovered independently by
many researchers over time, starting with the famous mathematician Taylor in
1715 [43]. Later references include [10,11,8,1].

6 Orientation Procedures – Structure-from-Motion

The main building blocks for structure-from-motion algorithms are what is called
orientation procedures in photogrammetry: pose estimation (space resection),
motion estimation (relative orientation), and 3D point triangulation (intersec-
tion). These are classical problems, see e.g. the excellent overview [49]. A few
notes on pose and motion estimation, follow.

Pose estimation. Taylor and Lambert were probably among the first to have
posed “inverse perspective problems” in a general manner [43,44,29], both in
the 18th century. Lambert (who also studied shading and developed the so-called
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Lambertian reflectance model), proposed and solved a series of such problems,
including pose estimation, estimation of the focal length, and of the orienta-
tion of an image. This was mostly restricted to special cases, for instance the
assumption of an image plane that is orthogonal to a ground plane and the exis-
tence of rectangles or squares on the ground plane [29]. Interestingly, Lambert’s
studies were partly motivated by aesthetic considerations: his premise was that
in order to best contemplate a (perspective) painting, the observer should put
himself in a position relative to the painting that corresponds to the painter’s
eyepoint relative to the depicted scene. His initial goal thus seems to have been
the determination of this “pose” from information contained in the painting (e.g.
vanishing points) and additional knowledge.

Maybe the first analytical solution to the so-called 3-point pose problem, was
found by Lagrange: determine the position and orientation of a “camera” (La-
grange obviously didn’t speak of cameras) relative to three 3D points, given
knowledge of the relative positions of these points and the angles spanned by
pairs of points and the optical center. Lagrange discussed this problem at least
as early as from 1773 on [27,28]. He already showed that it can be reduced to
finding the roots of a quartic polynomial and also sketches an iterative numer-
ical procedure. He very likely had the complete solution although the above
publications only give a general sketch and do not contain all details.

A complete analytical solution was eventually given by Grunert in 1841 [12].
Many other solutions have been proposed in the literature since, see e.g. the
survey [14].

Motion estimation. Kruppa showed in 1913 that from five point matches between
two calibrated images of a rigid object, the relative pose between the images can
be computed up to a finite number of solutios [26]. Later works on the 5-point
problem are [37] and references therein.

The special case of a planar object was already solved by Schröter in 1880
(paragraph 45 of [39]). He showed how from two calibrated images of four copla-
nar points, these points as well as the camera positions and orientations, can be
computed up to two solutions. An equivalent result was given later by Kruppa
(section A of [25]).

7 Special Cases of 3D Modeling

Shape from silhouettes. Amazingly, this was one of the first 3D modeling ap-
proaches to be developed: around 1857, François Willème developed an approach,
baptized photo-sculpture (see e.g. [47]), that is nothing else than a “mechanical”
version of shape from silhouettes or, the visual hull. Willème acquired images
in a circle around an object (usually, a person). These were then projected to a
screen, one after the other; behind the screen, a block of clay or other material
easy to sculpt, was positioned on a turntable, which was rotated in order to
reproduce the current image’s orientation while it was acquired. Then, using a
so-called pantograph (an articulated instrument), the sculptor followed the sil-
houettes of the object on the projector screen, while steering a bar that carved
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away the parts of the clay block that lie outside the silhouette. By repeating this
procedure for all images, the outcome is nothing else than the object’s visual
hull in clay! This was finally worked on by an actual sculptor, to round edges
and add details, in order to produce a visually pleasing statue. Interestingly,
this concept seems to have been very popular in high society circles for several
years, and Willème created what one might nowadays call a start-up company,
commercializing this concept (he was even imitated in other countries).

Single-view 3D modeling. The idea of performing 3D modeling from a single
image of an object, was proposed by several researchers in the late 19th cen-
tury [17,10,36,32]. Like their modern counterparts, see e.g. [5,40], the proposed
approaches relied on the exploitation of geometric constraints provided by the
user, such as parallelism of lines, right angles, etc.

8 Conclusion

As mentioned in the abstract, this paper is the result of a historical study that is
in progress. In the mid-term future, it will be complemented by a more complete
treatment, containing more technical details, (many) more references, and cover-
ing other aspects such as 3D modeling from shadows, structure-from-motion for
refractive objects (also called “multimedia-photogrammetry”), structured light-
ing, 3D modeling of surfaces of revolution, etc.
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Abstract. Heel strike detection is an important cue for human gait recognition 
and detection in visual surveillance since the heel strike position can be used to 
derive the gait periodicity, stride and step length. We propose a novel method 
for heel strike detection using a gait trajectory model, which is robust to 
occlusion, camera view and to low resolution which can generalize to a variety 
of surveillance imagery. When a person walks, the movement of the head is 
conspicuous and sinusoidal. The highest point of the trajectory of the head 
occurs when the feet cross. Our gait trajectory model is constructed from 
trajectory data using non-linear optimization. Then, the key frames in which the 
heel strike takes place are extracted. A Region Of Interest (ROI) is extracted 
using the silhouette image of the key frame as a filter. Finally, gradient descent 
is applied to detect maxima which are considered to be the time of the heel 
strikes. The experimental results show a detection rate of 95% on two 
databases. The contribution of this research is the first use of the gait trajectory 
in the heel strike position estimation process and we contend that the approach 
is a new approach for basic analysis in surveillance imagery. 

Keywords: Heel strike detection, gait trajectory model, gradient descent, gait. 

1   Introduction 

Heel strike detection is a basic and important process in non-invasive analysis of 
people at a distance, especially, for human motion analysis, and recognition by gait, in 
a visual surveillance environment. Since the gait periodicity, stride and step length 
can be calculated directly from the position of the heel strikes; this information can be 
used to represent the individual characteristics of a human, the walking direction, and 
the basic 3D position information (given a calibrated camera). 

There are two central observations concerning heel strike detection. During the 
strike phase, the foot of the striking leg stays at the same position for half a gait cycle 
(when the foot is in contact with the floor), whilst the rest of the human body moves 
forward [1]. Another is that when the left foot and right feet cross, the head is at its 
highest position in a gait cycle. We develop our new heel strike detection method 
based on these observations.  

Generally, heel strike detection is a preliminary step in gait recognition or model-
based human body analysis and visualization. There are two major previous 
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approaches to heel strike detection. The first is a model-free approach which uses low 
level data such as silhouettes and edges to detect gait motion. Bobick and Johnson [2] 
recovered static body and stride parameters of subjects using the action of walking to 
extract relative body parameters. BenAbdelkader et al. [3] identified people from low 
resolution video by estimating the height and stride parameters of their gait. Jean et al. 
[4] proposed an automatic method of detecting body parts using a human silhouette 
image. A five point human model was detected and tracked. They solved for self-
occlusion of the feet by using optical flow and motion correspondence. Bouchrika and 
Nixon [1] built the accumulator map of all of corner points using Harris corner 
detector during an image sequence. Then, the heel strike position was estimated using 
the density of proximity of the corner points.  

An alternative approach is a model-based approach which uses prior information 
such as 3D shape, position and trajectory of body motion. The heel strike position is 
sub-result of these researches. Vignola et al. [5] fitted a skeleton model to a silhouette 
image of person. Each limb (two arms, two legs) was fitted independently to speed-up 
the fitting process. Zhou et al. [6] extracted full-body motion of walking people from 
video sequences. They proposed a Bayesian framework to introduce prior knowledge 
into system for extracting human gait. Sigal and Black [7] estimated human pose 
using occlusion-sensitive local image likelihoods method. Zhang et al. [8] presented a 
3-level hierarchical model for localizing human bodies in still images from arbitrary 
viewpoints. They handled self-occlusion and large viewpoint changes using 
Sequential Monte Carlo (SMC) optimization. Sundaresan et al. [9] proposed a 
graphical model of the human body to segment 3D voxel data of human into different 
articulated chains.  

However, many approaches consider the fronto-parallel view of a walking subject 
where the subject walks in a direction normal to the camera’s plane of view. Also, in 
the model-based approaches there is much computational load in initialization and 
tracking. Moreover, in the visual surveillance environment the image quality could be 
low and the image sequences derived from a single camera only are available. 
Therefore, an alternative heel strike detection method is needed which is robust to low 
resolution, foot self-occlusion, camera view point and suitable for single camera.  

In this paper, to overcome the above constraints, we propose a novel method of 
heel strike detection using the gait trajectory model. As mentioned before, the frame 
in which the heel strike takes place can be extracted through the gait motion even 
when the foot is hidden by another leg and the image quality is low. In this research, 
the gait trajectory model [10] is deployed. This model is applied to detect the key 
frame in which the heel strikes happen. The silhouette image at the key frame is used 
to remove background data.  

The remainder of this paper is organized as follows: Section 2 explains the key 
frame calculation. Section 3 describes the heel strike candidate detection and 
verification method using the key frame and gradient descent. Section 4 shows the 
experimental results based on visual surveillance databases. In Section 5, we conclude 
our work. 
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2   Key Frame Calculation 

To find the moment of a heel strike the basic characteristics of gait is used. When a 
person walks the movement of head is conspicuous and sinusoidal [14]. The highest 
point of a human’s trajectory in one gait cycle is the moment when the feet cross. This 
fact is deployed to implement the heel strike detection system.  

2.1   Gait Trajectory Model Construction 

The gait trajectory model [10] is described in Eq. (1). The modified version of this 
model is used and assumes that a subject walks at the same speed. This model only 
considers the vertical position of the object. The gait trajectory can be divided into 
two parts: a periodic factor and a scaling factor. The periodic factor is proportional to 
walking position; the scaling factor depends on imaging geometry. Therefore, the gait 
trajectory model is defined in the following way, where the vertical position y is a 
function of gait frequency ω .  

First, the general case is  

)()sin(*)( tgttfy ++= θω                                           (1) 

21 )/1(ln)(:factorperiodic CtCxf +−= λα
       

                       

(2) 

gaitICtCxg ++−= 43 )/1(ln)(:factorscaling λα
       

                (3)     

where ω is a gait frequency, θ is the initial phase, Igait is the initial position of gait, λ is 
a total time, α is a total length of walking, and Cn are constants.    

Around the image center, the scaling factor can be modeled as  

gaitc ItCtg += 0)(:factorscaling                                       (4) 

where C0 is constant  
To clarify the model the exact human trajectory using some manually chosen 

points are extracted. We use 34 samples (24 males, 9 female, with around 40 images 
in each sequence) chosen at random from a gait biometric database [11] and extract 
the corresponding points for all frames. The extracted gait trajectories are normalized 
in order to express the error as a percentage. After fitting using the Levenberg-
Marquadt algorithm R-squared and Sum of Square Error (SSE) is applied. Table 1 
shows the numerical result of model fitting. The value of R-squared for all samples is 
over 98% and the sum of squared errors is less than 4%, both reflecting a good fit.  

Table 1. The numerical data of each model fitting 

Measure Value (%) 

SSE 3.87 

R-Squared 98.0 
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2.2   Key Frame Selection 

The key frame can be calculated after construction of the model. The highest points of 
trajectory are calculated from gait frequency f. (x = ((2n+3/2)π− θ) / 2π f, where n is 
any integer). Figure 1 shows a sample of the key frame extraction process. In fig. 1(a) 
the highest position of y is when the left foot and the right foot cross (here, the key 
frame number is 97). Fig. 1(b) and (c) is the original and silhouette image at the key 
frame. As shown in fig. 1(b) it indicates that the head is in the highest position is 
when the feet cross. In the next stage, the silhouette image is used for filtering the 
accumulator map to extract the ROI since the accumulator map is constructed using 
all of the images in a sequence and the filtered accumulator map must contain at least 
one heel strike.  

 
(b) Original image 

 

   

 
(a) Trajectories of y position for left and 
right feet and the head  

(c) Silhouette image 

Fig. 1. Key frame extraction 

3   Heel Strike Detection 

This section shows the process of detecting heel strike position using the pre-
calculated key frame information. An accumulator map is used to be derived by 
adding samples of the walking subject’s silhouette to determine which parts of the 
body remained longest at same position. Generally, during the strike phase, the foot of 
the striking leg stays at the same position for half a gait cycle, whilst the rest of the 
human body moves forward.  

3.1   Heel Strike Candidate Extraction 

As a preprocessing step, we calculate the silhouette image [12] from the intensity and 
the color difference (between the background image and foreground image) at each 
pixel. Then, the accumulator map of a silhouette is the number of silhouette pixels in 
(i,j)th

 position. Low pass filtering is deployed to smooth the accumulator surface. 

         
#

( , ) ( , )
of images

Accumulator i j Silhouette i j= ∑                       (5)            
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Figure 2 shows an accumulator map and filtering result of a key frame silhouette 
image. The colour in the figure indicates the number of silhouette pixels from blue 
(few) to red (many). As shown in fig. 2(a), the heel strike region can clearly be 
distinguished from the other body parts. 

The filtered accumulator map shows the distribution of the number of silhouette 
pixels. It reveals that the position of heel strike has a relatively higher distribution 
than other regions. Using the characteristic, we extract a Region of Interest (ROI) and 
make it smoother to apply Gradient descent algorithm. Figure 3 shows the process for 
finding the heel strike positions from the accumulator map. The accumulator map 
shown in Fig. 2(a) is filtered by Gaussian function (filter size 12×12, σ = 2.0). Then, 
the approximate heel region, which is one eighth of person’s silhouette height from 
the bottom of silhouette, is extracted (fig. 3(a)). Accordingly, the heel strike position 
can be extracted by gradient descent. Fig. 3(b) shows the three dimensional view of 
the extracted ROI. Fig. 3(c) shows the result of analyzing Fig. 3(b) using the Gradient 
Descent algorithm. The small arrow in the figure is the point where the orientation has 
changed. Fig. 3(c) shows the trace convergence to the local maximum. 

 

 

 
      t+7                    t+25                 t+43                   t+61 

 
       t+79                 t+97                 t+115                t+133 

(a) The accmulator map (b) ROI extraction using filtering 

Fig. 2. Silhouette accumulator map  

   
(a) ROI extraction (b) 3D view of ROI (c) Result of Gradient descent 

Fig. 3. The procedure of heel strike detection 

3.2   Heel Strike Position Verification 

In previous section, the process for extracting the heel strike candidates is described. 
This section describes the heel strike verification process. In our method the silhouette 
image is used when the feet cross, so it is possible to extract the candidates from foot 
of heel strike and also another foot. For instance, in the second heel strike of fig. 4(a), 
the candidates are detected from both feet. To reduce the invalid candidates, the key  
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(a) The candidates (b) The result of filtering 

using other candidates  
(c) The filtering result using 
3D position 

Fig. 4. The verification process 

 

frame is calculated when the position of y is lowest in one gait cycle (fig. 1(a)) and 
the same procedure is executed in Section 3.1 to find other heel strike candidates. 
Since the moment at the lowest y is that the gait stride is largest, the feet still stay on 
the floor, and positions of the feet are separated, so the candidates from other key 
frames are considered as the potential heel strikes. These candidates are deployed to 
remove the invalid candidates. Simply, the distance between these two groups of 
candidates (at the highest and lowest y coordinate) is calculated. Then, the candidates 
in the fixed distance (here, 5 pixels) are selected from the group of candidates of 
lowest values for y. As shown in fig. 4(b), after this filtering process the invalid 
candidates from another foot are removed.  

The accumulator map depends on camera view and once the camera is calibrated the 
invalid candidates could be removed using the back projection from a 2D image plane into 
a 3D world space. Using the 3D projection the candidates which are the closest from the 
camera are selected. Since a single camera is used in our approach, we assume a ground 
floor is known, i.e. that z=0 (the z axis is vertical position). This enables calculation of the 
intersecting points between the projection ray from 2D image points and the ground floor. 
The closest heel strike to the floor is considered as the final heel strike position, thereby 
filtering the invalid positions. Figure 4 shows a result of the filtering process and the 
invalid points in fig. 4(a) are removed to give the final result in fig. 4(c). 

 4   Experimental Results  

To evaluate the proposal heel detection system, we use two visual surveillance 
databases: a biometric gait database [11] and PETS 2006 database [13]. The biometric 
tunnel data consists of 25 samples (18 males, 7 female, with around 130 images in 
each sequence) and each sample has two views of image sequences which are 
different from the data used to verify the gait trajectory model in Section 2. Moreover, 
we choose 10 samples from an image sequence of PETS2006 dataset which is 
recorded at a train station. In the dataset, each sample has a different walking 
direction with around 80 images in each sample sequence. 

Figure 5(a) and (b) show the detection result with different environments; the 
biometric tunnel and a train station from the PETS data. The white crosses in the 
figure represent the points detected as the heel strike positions.   
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(a) The result of top left view in the biometric tunnel database 

 
(b) The sample of walking backward camera in PETS2006 

 
(c) The sample of walking direction change in GaitChallenge dataset 
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Fig. 5. Detection result with different environments 

As shown in fig. 5 the proposed method can detect the heel strike position 
regardless the camera view since the method uses the basic characteristic of gait: its 
periodic factor. In the cases of above samples the subjects walk in series of straight 
lines. To confirm that our method works in the case of walking direction change a 
single image sequence is tested in Gait Challenge database [15] where the subject is 
walking around an elliptical path. In this situation, Equation 1 is not suited to finding 
the gait frequency. So, the gait frequency in the frequency domain is calculated since 
the waling speed is almost constant. Then, the same procedure is applied. Figure 5(c) 
shows the result of detection. Even the walking direction changes the proposed 
method still follows the position of heel strike.  

Table 2 shows the result of detection rate. A total of 359 heel strikes were tested. 
We calculate the detection rate manually because the database does not provide 
ground truth of heel strike position. The detection rate for the biometric tunnel 
database is slightly higher than for the PETS 2006 database since the environment of 
the biometric tunnel is more controlled. The overall detection rate is 95.3%. 

Table 2. The result of heel strike detection 

Database Value (%) 

Biometric tunnel 95.6 (285/298) 

PETS 2006 93.4 (57/61) 



16 S.-U. Jung and M.S. Nixon 

 

5   Conclusions 

To deploy automatic gait recognition in unconstrained environments, we need to 
develop new techniques for analysis. This paper describes new techniques for heel 
strike estimation to be robust to feet self-occlusion and view of camera. The approach 
to heel strike estimation combines human walking analysis with characteristics of heel 
strike. The approach has been demonstrated on a visual surveillance database and on 
one for biometrics with a heel strike detection rate was over 95%. As such heel strike 
analysis can be used for basic gait analysis and derivation of walking direction 
estimation and this approach provides a new and more generalized approach for 
surveillance environments.  
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Abstract. Video Analytics covers a large set of methodologies which
aim at automatically extracting information from video material. In the
context of retail, the possibility to effortlessly gather statistics on cus-
tomer shopping behavior is very attractive. In this work, we focus on
the task of automatic classification of customer behavior, with the ob-
jecting to recognize buying events. The experiments are performed on
several hours of video collected in a supermarket. Given the vast effort
of the research community on the task of tracking, we assume the exis-
tence of a video tracking system capable of producing a trajectory for
every individual, and currently manually annotate the input videos with
trajectories. From the annotated video recordings, we extract features
related to the spatio-temporal behavior of the trajectory, and to the user
movement, and analyze the shopping sequences using a Hidden Markov
Model (HMM). First results show that it is possible to discriminate be-
tween buying and non-buying behavior with an accuracy of 74%.

Keywords: Trajectory analysis, Optical flow, Hidden Markov Models,
Shopping Behavior.

1 Introduction

There is an increasing amount of research in the area of video analytics and
semantic interpretation as an application to automatic surveillance, traffic mon-
itoring, video games, marketing, etc. In the field of marketing it is of primary
concern to identify the most appealing products and services for customers and
to maximize their impact on the shopping behavior. Computer vision provides
multiple techniques which enable surveillance [5], action recognition, and behav-
ior interpretation of customers. Tracking people inside the shop can have many
applications, such as global shopping behavior recognition, region of interest de-
tection both individually and for a group of customers, measured at a specific
moment or over time intervals. We plan to use the existing surveillance systems
to observe the shopping behavior of people [4], to get a better understanding of
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their needs. The action recognition module can provide cues regarding customers’
interest in products and can help interpreting different interaction patterns, such
as grasping a product immediately, after a period time or even after more visits
at the same place. In this paper we propose an automatic surveillance system for
detecting customers’ buying behavior based on tracking and motion information
and tested on real-life recordings in a shopping mall. Its applicability resides
in identifying different buying patterns in terms of number of interactions and
time spent in the vicinity of a product but also in finding for which products
categories the customers have trouble deciding. As a result, appropriate actions
could be taken such as new products arrangements and more efficient usage of
the store space. Next we provide an overview of related studies, then the de-
sign of our system is presented, followed by the data acquisition process and
the experimental results section. Finally we formulate our conclusions and give
directions for future work.

1.1 Related Work

People tracking, behavior analysis, and prediction were investigated by Kanda
et al. in [3]. Accumulated people’s trajectories over a long period of time pro-
vided a temporal use-of-space analysis facilitating the behavior prediction task
performed by a robot. Hu et al. [2] used the Motion History Image (MHI) along
with the foreground image obtained by background subtraction and the his-
togram of oriented gradients (HOG) [1] to obtain discriminative features for
action recognition. Next a multiple-instance learning framework SMILE-SVM
was build to improve the performance. This approach proved its effectiveness
on a real world scenario from a surveillance system in a shopping mall aimed at
recognizing customers’ interest in products defined by the intent of getting the
merchandize from the shelf. These approaches are suitable for action recognition
under varying conditions in complex scenes such as background clutter or partial
occluded crowds; still they require supervised learning based on a large reliable
dataset. Human behavior analysis while shopping was investigated by Sicre and
Nicolas in [7]. They propose a finite-state-machine model for simple actions de-
tection, while the interaction between customers and products is based on MHI
and accumulated motion image (AMI) [8] description and SVM classification. It
remains to be proved and tested whether this method will be applicable in an
uncontrolled real-life scenario which deals with occlusions and different types of
settings. Another issue regards the variability of performing an action in relation
with the dataset size, which in this case is limited to 4 persons.

2 Proposed Methodology

Based on observations made in real shops we proposed a number of shopping
behavior models as described in [4]. There are many individual differences in
shopping behavior of people. Some shoppers know what they want and the lo-
cation of that product (goal oriented), others prefer to inspect the offer (looking
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around), some are helpless and would need support (disoriented), while others
are actively looking for assistance, finally some shoppers are just looking for
interesting products or just enjoy being in a shop (fun-shopper). We assume
the ultimate goal of shopping is to buy a required product. Next the design of
our system for automatic assessment of customers’ buying behavior is presented.
We propose a modular approach and we describe next the functionality of each
module. A diagram of the proposed system is shown in Fig. 1.

Fig. 1. System Overview

2.1 Trajectory Extraction

First the trajectory extraction module is employed. Currently the customers’
trajectories are manually labeled, given that our goal consisted in the high-
level analysis of behavior. In our future work, trajectories will be extracted by
adopting person detection and tracking. For this task we used our frame based
annotation tool which enables both person and event annotation.

2.2 Trajectory Analysis

Global motion analysis provides a first insight into customers’ shopping behav-
ior. Therefore the Trajectory Analysis module is employed to extract relevant
trajectory features. We started from the feature set ft = [x, y, x

′
, y

′
, x

′′
, y

′′
]

proposed in [11], described by position (x,y), velocity (x
′
, y

′
), and acceleration

(x
′′
, y

′′
). We decided to exclude spatial features (x,y) in order to prevent learn-

ing of a preferred shopping path, while our interest resided in capturing motion
characteristics. The curvature k of a trajectory was considered due its properties
such as invariance under planar rotation and translation of the curve [9].

k = (y
′′
/x

′
)2/(
√

((y
′
/x

′
)2 + 1))3

Based on experiments we noticed that the best feature set for encapsulating tra-
jectory information was the following one: ft = [x

′
, y

′
, x

′′
, y

′′
,
√

(Δx2+Δy2), k],
where Δx = x(t) − x(t − 1) and Δy = y(t) − y(t − 1).
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2.3 Stationary Segments Detector

The next module of our system is responsible for detecting segments of interest
and potential buying segments. The detection is performed using the features
defined in the previous section. Due to non-linearity of persons’ motion and
errors introduced by the manual annotation, we used Gaussian smoothing of
velocity. In this way each velocity value vμ is approximated by:

vμ =
∑t=μ+σ

t=μ−σ vt ∗ N(t; μ, σ2) (2)

where N is a density function for normal distribution with the mean μ and
variance σ2.

2.4 Human Body Area Extraction

For each trajectory segment detected by the previous module, the human body
area is extracted. To this aim, for every frame in a segment, we estimate a binary
mask corresponding to a human in a given trajectory point, according to [6].
We then combine all binary masks belonging to a segment into one area. The
combined binary mask is used to extract image content from every frame. The
extracted image content is rectified along the radial direction (see an example
in Fig. 2), to remove the influence of the orientation, i.e. so that all people are
in the upright position.

Fig. 2. Overview of the Human Body Area Extraction and Motion Analysis modules.
From left to right, clockwise: human binary mask from [6], highlighted in red; rectified
area defined by the combination of binary mask in the stationary segment; optical flow
and corresponding color coding; histogram of optical flow.

2.5 Motion Analysis

We assume buying behavior can be characterized by motion patterns, such as
picking a product and putting it in the shopping basket. The motion analysis
module is applied to each segment, by estimating optical flow in the rectified



Detecting Customers’ Buying Events on a Real-Life Database 21

Fig. 3. Motion Flow Visualization. Overlay color is according to color coding shown in
Fig. 2.

areas between every two consecutive frames. Normalized histograms of motion
vectors in 8 directions are extracted from the whole image patch and also by
considering a image patch segmentation into three regions corresponding to the
approximate position of the head, body and legs of a person. We tested several
optical flow algorithms both in terms of accuracy and also execution time such
as Lucas-Kanade or Horn-Schunk and the best results were obtained using the
method proposed by Liu [10]. An example of a buying event is depicted in Fig. 3.

2.6 Classification

Classification techniques can be divided into two groups, namely supervised and
unsupervised. From the supervised group (e.g. Hidden Markov Models (HMMs),
SVM, and Gaussian Mixture Models (GMMs)) we chose a HMM-based classifica-
tion method due to its characteristics such as incorporating dynamics of motion
features during time and ability to capture temporal correlations. The extracted
features (trajectory and optical flow) were fed to a HMM and the maximum
likelihood rule was used to decide the label corresponding to each interesting
trajectory segment.

3 Experimental Results

3.1 Data Acquisition

In order to test our system in a realistic environment, we recorded video material
in a supermarket, at different time intervals, using a fish-eye camera attached to
the ceiling. An example of the acquired type of images is shown in Fig. 2.
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Fig. 4. Trajectory density map (left), and buying event density (right), computed on
the dataset adopted for the experimental evaluation. Color coding shows in red areas
with higher density.

We collected and manually annotated approximately 5 hours of recordings
resulting in 270 customers’ trajectories, from which 100 trajectories contained
buying segments. We define as a buying event an action of a customer who picked
a product and put it in the shopping basket or just took it with him/her. The
total number of annotated buying events was 130, since some of the trajecto-
ries contained more than one buying event. A density map of the annotated
trajectories and for the buying events is shown in Fig. 4. We present next the
experimental results obtained using the recorded data.

3.2 Experiments

We performed a number of tests in order to find the best feature descriptor and
HMM topology for our buying behavior analysis system as described in Section
2. We investigated different detection methods of potential buying trajectory
segments. The aim was to detect automatically the segments containing buying
events. From our observations of buying behavior we noticed that the action
of buying a product usually happens after the customer stopped for a period
of time in the products area. By employing a stationary detector as described
in Section 2.3 based on slow velocity and duration of staying in the vicinity of
a product of at least one second we were able to detect 90% of all the buying
actions, meaning 118 segments out of 130. The rest of 10% were associated with
a different type of behavior (goal oriented) characterized by a customer which
knows what he wants and picks that product very quickly and then continues his
shopping trip. By applying the stationary detector the number of analyzed video
frames (N) was reduced to 67% of which 17% corresponded to buying segments
and 50% to non-buying ones.

In order to refine our analysis, we employed motion analysis in the detected
stationary trajectory segments. Normalized histograms of optical flow (HOF)
was selected as feature. Adopting a quantization of the optical flow directions
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in 8 bins proved to be the best tradeoff compared to average length and angle.
Furthermore, we investigated the influence of computing optical flow histogram
in separate regions of the rectified image patch, and concatenating them to allow
for an increased level of detail. We refer to HOF for the case of a single histogram,
HOF3x1 for the case of subdivision of the image in 3 vertical subregions, and
HOF3x3 for the subdivision of 9 subregions. The performance of a HMM is
highly dependant on its topology. In order to determine the best topologies for
our HMM models we performed an extensive search, by employing a diverse
number of states (1-10), number of Gaussian Mixtures (1-20), and also network
topologies (left-to-right, ergodic model). We found out that the best accuracy of
74% was obtained for a HMM model (left-to-right) with 6 states and 2 GMMs,
for HOF3x3, using a 9-fold cross validation testing approach. The ROC curves
obtained for the different HOF features are shown in Fig. 5. The improvement
in accuracy of HOF3x3 over HOF3x1 and HOF features indicates that such
separation allows to better discriminate actions, possibly because of different
body parts movement which are related to the buying actions.

Fig. 5. ROC curves for HOF features

The number of HMM training iterations plays an important role at determin-
ing the best tradeoff between true positives and false positives rate. In our case
10 iterations were enough to learn the two HMM models, while using a bigger
number of iterations led to overfitting the non-buying HMM model in detriment
of the buying one. The miss-classified false negatives are due to the challenging
type of data, such as occluded buying sequences either by another customer or
by the person herself, while the false positives contain examples of customers’
picking a product and then putting it back or just interacting with the shopping
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basket without putting a new product. Still given the difficulty and variability
of the recorded data we consider that our approach is quite good at detecting
customers’ buying behavior under varying conditions.

4 Conclusion and Future Work

We presented an approach towards understanding customers’ shopping behavior
applied to real-life recordings in a supermarket. We designed and implemented
a first running prototype for detecting customers’ buying behavior. We used
global features extracted from trajectories to detect potential buying segments
and we extracted optical flow from an interesting area for action recognition.
We achieved a best accuracy of 74% by using HOF3x3 features. As future work
we plan to improve and refine the action recognition module by using different
types of features such as interest-points models and an extended set of shopping
related actions. We also aim at extending the system by fusing the data from
cameras at different location and view angles.

Acknowledgement. This work was supported by the Netherlands Organiza-
tion for Scientific Research (NWO) under Grant 018.003.017 and the Visual
Context Modeling (ViCoMo) project.
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Centro de Tecnologia - UFC

Campus do Pici, S/N, Bloco 725
Caixa Postal 6007, CEP: 60.455-970, Fortaleza, Brasil

jarbas joaci@yahoo.com.br
2 Faculdade de Computação

Universidade Federal de Uberlândia
Av. João Naves de Ávila, 2121
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Abstract. Textures are among the most important features in image
analysis. This paper presents a novel methodology to extract information
from them, converting an image into a simplified dynamical system in
gravitational collapse whose states are described by using the lacunarity
method. The paper compares the proposed approach to other classical
methods using Brodatz’s textures as benchmark.
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1 Introduction

Texture analysis is one of the most important fields in computer vision. Although
there is no formal definition about the concept of texture, it is easily identified
by humans and it is rich in visual information. In general, textures are complex
visual patterns composed by entities, or sub-patterns, with bright, color, orien-
tation and size characteristics [1]. So, textures supply very useful informations
for automatic recognition and interpretation of an image by a computer [2].

Over the years, many methods of texture analysis have been developed, each of
them obtaining information in a different way. Actually, most of the methods can
be grouped into four main categories [3]: statistical, geometrical, model-based,
signal processing methods. The statistical approach includes classical methods,
such as co-occurrence matrices [1]. An important example of signal processing
methods is the Gabor filters [4]. Still in this category, we find many studies
on texture analysis in spectral domain, especially after the invention of wavelet
transform (e.g., [5,6]).
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In recent years, many other approaches have been developed to study pix-
els’ relationship. One of these aimed to represent and characterize the relation
among pixels using the Complex Networks Theory [7]. Another important ap-
proach is the Tourist Walk [8], where each pixel is a tourist wishing to visit N
cities according to the following rule: go to the nearest city that has not been
visited in the last μ time steps. Fractal analysis has recently been proposed as
a replacement to the histogram to study the distributions of gray levels along a
texture pattern as well [9].

In order to explore images in a new manner, and, therefore, extract valuable
information from them, this work presents a novel approach, which transforms
an image in a dynamic system in gravitational collapse process. This approach
enables images to evolve and to present different states, each of which offering a
new source of information to be extracted. To accomplish this, we employed the
lacunarity method to quantify each state in order to obtain a feature vector.

Our presentation is composed as follows. Section 2 shows the rules established
to simulate a simplified gravitational collapse in an image. Section 3 describes
the process of composing image signatures by applying the lacunarity method in
states of the collapse process. In Section 4, we described an experiment that uses
40 classes of Brodatz’s textures (10 images per class). Section 4.1 demonstrates
the superior performance of the proposed approach when it is compared to results
of other important methods. Finally, we made some considerations of this work
in Section 5.

2 Texture Analysis and Simplified Gravitational System

When an object orbits another one, two forces need to be considered. The first
is the gravitational force, which was stated by Isaac Newton in “the Principia”
and can be defined by the following sentence: the force exerted by an object to
another one is directly proportional to the product of their masses and inversely
proportional to the square of the distance between them [10]. This force, as
illustrated by Figure 1, is given by the following equation

fa =
G.m1.m2

‖r‖2 .
r

‖r‖ (1)

where G is the gravitational constant, m1 and m2 are the masses of the two
particles, r is the vector connecting the positions of the particles and f1,2 is the
gravitational force between the two particles. ‖‖ denotes the magnitude or norm
of a vector.

Fig. 1. Example of gravitational force between two massive particles
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The other force is the centripetal force, which is directed to the center of
a circular trajectory described by an object and is directly proportional to its
tangential speed. This force can be defined by the following equation

f c = mac = m
v2

‖r‖ (2)

where fc is the centripetal force, m is the mass, ac is the centripetal acceleration,
v is the tangential speed and ‖r‖ is the radius of a circular trajectory.

Before applying these concepts on a texture image, some considerations are
necessary. Literature commonly describes a gray-scale texture as a bi-dimensional
structure of pixels. So, let I(x, y) = 0 . . . 255, (x, y = 1 . . .N), be a pixel in an
image I, where x and y are the Cartesian coordinates of the pixel. The integer
values associated to a pixel I(x, y) represents the gray-scale of that pixel.

We considered each image pixel I(x, y) as a particle in the gravitational sys-
tem, where the intensity associated to that pixel, I(x, y), is its mass m. In a real
gravitational system, all particles interact with each other. Instead of adopting
this approach, which has a high computational cost, we considered that there
is just interaction between each pixel and an object of mass M , located at the
center of the texture image.

For each pixel, we established a gravitational force according to Equation 1,
where we replaced mass m1 by M and m2 by the gray-scale of the pixel, and a
centripetal force according to Equation 2, where the pixel intensity replaces m
and determines the tangential speed. To determine this speed, we have to take
into account that a very low speed causes a very fast collapse and, therefore,
information loss, while high speeds imply no collapse.

So, in order to find a range of tangential speeds so that all pixels could collapse
slowly, we established fa = fc, thus yielding the highest tangential speed as
described by the following function

vmax =
√

GM

rmax
(3)

where vmax is the highest speed of a pixel and rmax is the greatest distance
between a pixel and image center. This speed assures that even the farthest pixel
from the image center will collapse, that is, the pixel will gradually approaches
the center of the image.

To extract information regarding to both distance and gray-level intensity,
each pixel has its speed determined according to the following equation

vpix =
(

1 +
I(x, y)

255

)
vmax

2
(4)

where vpix is the tangential speed of the pixel and I(x, y) is its the gray-level.
In this way, each pixel has a particular trajectory defined by its distance and its
intensity, giving image its own signature.

These rules give pixels to types of movement. The first is constant, anti-
clockwise circular, defined by S1 = vpix.t, where D1 is the distance covered by
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the pixel in a time t. To compute this new position the pixel is rotated using an
angle of S1/(2πr), where r is the distance between the pixel and the center of
the image.

The second movement is accelerated rectilinear, directed to the center of the
image. The new location of the pixel is computed as S2 = (1/2).apix.t2, where
apix is the acceleration of the pixel toward the image center, given by (fa −
fc)/I(x, y) (for pixels I(x, y) = 0 (no mass), this equation becomes 0/0, which we
considered 0, that is, the pixels only rotate), and D2 indicates the space covered
by the pixel in a time t. To compute this new position, we decrement/increment
the axis x and y using the proportion S2/r. Figure 2 shows the movement of a
pixel in a determined time t.

Fig. 2. Example of a simplified gravitational model where a pixel p collapses. The new
position of the pixel is defined by the distances D1 and D2.

By applying this gravitational model to images, eventually two or more pixels
may try to occupy the same position during the collapse process. If this situation
occurs, the position will receive the average of pixels’ gray-levels. This adaptation
aimed to reduce the complexity of the method and to preserve image information.

3 Signature for Collapsing Texture Patterns

In this section, we present an approach to extract a texture signature using the
proposed collapsing model and a traditional texture descriptor, the lacunarity.
The concept of lacunarity was introduced by Mandelbrot [11] to characterize
different texture patterns that presented the same fractal dimension. Initially
proposed for binary patterns, the lacunarity describes the texture according to
the number of gaps dispersed over it. It is considered as a multi-scaled measure
of texture’s heterogeneity, since the lacunarity measured depends on the gap
size [12].

The gliding-box algorithm is often used to compute the lacunarity due to its
simplicity [12,13]. The method consists of gliding a box of size r over the texture
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pattern and to count the number of gaps existent in the binary pattern. Over
the years, this approach was also extended to deal with grayscale images [14,15].
Instead of simply counting the number of gaps, these approaches compute the
minimum u and maximum v pixel values inside the box. According to these
values, a column with more than one cubic may be needed to cover the image
intensity coordinates. This relative height of the column is defined as S = v −
u − 1. By considering each possible box position in the image, we compute the
probability distribution Q(S, r) of the relative height for a box size r. Then, the
lacunarity is achieved as

Λ(r) =
∑

S2.Q(S, r)

[
∑

S.Q(S, r)]2
(5)

During the collapse of a texture pattern, its roughness changes. That means
its lacunarity is different for each collapsing time steps t. Thus, this collapsing
approach enables us to characterize a texture pattern through the variations
of its lacunarity. Thus, we propose a feature vector that represents the texture
pattern in different collapsing time steps t by a set of lacunarity values computed
for a given box size r:

ψt1,t2,...,tM (r) = [Λt1(r), Λt2(r), . . . , ΛtM (r)] . (6)

We must emphasize that the lacunarity is a multi-scaled measure, i.e., it
depends on the box size r [12]. Thus, it is convenient to consider a second
feature vector that exploits such characteristic. Therefore, we propose a second
feature vector that analyses the collapsing texture using different lacunarity
values. This is accomplished by the concatenation of the signatures calculated
using ψt1,t2,...,tM (r), for different r values.

ϕ(rmax) = [ψt1,t2,...,tM (2), . . . ,ψt1,t2,...,tM (rmax)] (7)

where rmax is the maximum box size allowed.

4 Experiment

In order to evaluate the proposed feature vectors, an experiment using a synthetic
texture database was set. This database consists of a set of 400 texture images
extracted from the book of Brodatz [16]. Each sample presents 200× 200 pixels
size, with 256 gray levels. The samples are grouped into 40 classes, with 10
samples each. Evaluation of the proposed feature vectors was performed using
a statistical approach. For this task, we used the Linear Discriminant Analysis
(LDA) in a leave-one-out cross-validation scheme [17].

To provide a more robust evaluation of the proposed method, we also included
a comparison with traditional texture analysis methods. For this comparison,
the following methods were considered: Fourier descriptors [18], Co-occurrence
matrices [1], Gabor filters [19], Tourist Walk [8].
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4.1 Results

To apply the method over the set of images previously described some parameters
have to be set. These parameters are the mass M and the gravitational constant
G. The mass M can be understood as a massive black hole at the center of
the image. This mass should be capable of attracting farther and darker pixels
of the image. To accomplish this task, its value was empirically established as
M = 500. The gravitational constant was set as G = 1 in order to give pixels a
suitable step during the collapsing process. Figure 3 shows an example of collapse
process of a Brodatz’s texture in three different time steps using the cited values
of parameters.

Fig. 3. Examples of collapsing texture images: (a) Original image; (b)-(d) Collapsing
textures for time steps t = {10, 20, 30}

First, we analyzed the behavior of the estimated lacunarity using different box
sizes as an image collapses (Figure 4). We note that different r values will lead to
a different estimation of the lacunarity. However, the changes in the lacunarity
value Λ(r) are subtle as the collapsing time t increases, independent of the box
size used. As a consequence, a feature vector ψ built using sequential time steps
would present a large amount of redundant information and it should be avoided.
The use of spaced values of t is preferred. It is important to remember that the
lacunarity is considered as a multi-scaled measure. This is evident in Figure 4,
where the lacunarity Λ(r) is different for each box size r considered.

According to the previous considerations about the time step t and box size
r, we propose to use both multiple r values and different sets of t values to
compose the feature vector ϕ. Then, this feature vector was used to characterize
the Brodatz’s samples in the proposed experiment. Table 1 presents the results
achieved. The best result (97.00%) is obtained when t = {1, 6, 12, 18} and rmax =
11 are used. Results indicate that the performance of the method increases as
the number of time steps t and maximum box size rmax increase. However, for
rmax > 11, a small decrease is perceived in the success rate. This indicates that
larger box sizes are not efficient to capture the local characteristics of the texture
pattern.

Table 2 presents the results obtained by each method compared. In this com-
parison, we considered the configuration that leads to the best results of our
method in Table 1. Results demonstrate that our approach is a feasible tex-
ture descriptor as its results overcomes all traditional methods used during the
comparison experiment.
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Fig. 4. Lacunarity estimated for time steps t = 1, . . . , 20 and box sizes r = {2, 3, 4, 5, 6}

Table 1. Success rate (%) of the method on the Brodatz database for the ϕ feature
vector

rmax

Time (t) 3 4 5 6 7 8 9 10 11 12 13 14

{1, 6} 84.50 89.50 90.25 90.75 91.50 92.50 92.75 93.25 94.00 93.50 93.75 93.25
{1, 6, 12} 89.75 92.50 93.75 94.00 93.50 94.75 95.00 94.75 96.75 96.75 96.25 95.75

{1, 6, 12, 18} 89.00 94.50 94.50 94.25 95.00 95.00 95.25 96.00 97.00 96.75 96.25 95.75

Table 2. Comparison results for different texture methods in the Brodatz database

Method Images correctly classified Success rate (%)

Fourier 351 87.75
Co-occurrence matrices 330 82.50

Gabor Filters 381 95.25
Tourist Walk 382 95.50

Proposed approach 388 97.00

5 Conclusion

This work presents a novel method to extract information from textures by
transforming them in a simplified gravitational system whose states of collapse
are explored by the use of lacunarity method. This unpublished approach showed
results superior to the results yielded by classical methods, when tested on a
Brodatz’s database. Results showed that the method presents the best results
by using spaced values of t and a set of r values. Thus, the proposed method
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opens a new research in texture analysis and amplifies the set of methods of
identifying textures, improving the precision of the systems already developed.
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for address block segmentation. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005.
LNCS, vol. 3773, pp. 112–119. Springer, Heidelberg (2005)

14. Dong, P.: Test of a new lacunarity estimation method for image texture analysis.
International Journal of Remote Sensing 21(17), 3369–3373 (2000)

15. Du, G., Yeo, T.S.: A novel lacunarity estimation method applied to SAR image seg-
mentation. IEEE Trans. Geoscience and Remote Sensing 40(12), 2687–2691 (2002)

16. Brodatz, P.: Textures: A photographic album for artists and designers. Dover Pub-
lications, New York (1966)

17. Everitt, B.S., Dunn, G.: Applied Multivariate Analysis, 2nd edn. Arnold (2001)
18. Azencott, R., Wang, J.P., Younes, L.: Texture classification using windowed fourier

filters. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 148–153 (1997)
19. Idrissa, M., Acheroy, M.: Texture classification using gabor filters. Pattern Recog-

nition Letters 23(9), 1095–1102 (2002)



Robustness and Modularity of 2-Dimensional

Size Functions – An Experimental Study�

Silvia Biasotti1, Andrea Cerri2, and Daniela Giorgi1

1 IMATI, Consiglio Nazionale delle Ricerche, Genova, Italy
{silvia,daniela}@ge.imati.cnr.it

2 Vienna University of Technology, Faculty of Informatics,
Pattern Recognition and Image Processing Group, Austria

acerri@prip.tuwien.ac.at

Abstract. This paper deals with the concepts of 2-dimensional size
function and 2-dimensional matching distance. These are two ingredi-
ents of (2-dimensional) Size Theory, a geometrical/topological approach
to shape analysis and comparison. 2-dimensional size functions are shape
descriptors providing a signature of the shapes under study, while the 2-
dimensional distance is the tool to compare them. The aim of the present
paper is to validate, through some experiments on 3D-models, a compu-
tational framework recently introduced to deal with 2-dimensional Size
Theory. We will show that the cited framework is modular and robust
with respect to noise, non-rigid and non-metric-preserving shape trans-
formations. The proposed framework allows us to improve the ability of
2-dimensional size functions in discriminating between shapes.

Keywords: multidimensional persistence, non-rigid shape analysis.

1 Introduction

Interpreting and comparing shapes are challenging issues in Computer Vision,
Computer Graphics and Pattern Recognition [16,18]. Persistent Topology – in-
cluding Size Theory [3] and Persistent Homology [11] – offers both theoretical
and computational tools for shape comparison. The main idea is to take into
account topological shape features with respect to some geometric properties
conveyed by real functions defined on the shape itself [3].

Formally, this implies that a shape is represented by a pair (X, ϕ), where X
is a topological space and ϕ : X → R is a continuous real-valued function called
measuring function. A number of descriptors have been introduced to describe
pairs (X, ϕ) – such as Size Functions [12] – and successfully used for comparing
images [7] and 3D models [4].

Nonetheless, a single real-valued measuring function ϕ may not be enough to
cope with complex shape description problems. In fact, data are often charac-
terized by two or more properties; this happens for example with physical simu-
lations, where several measurements are made about an observed phenomenon,
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or when data have multidimensional features, such as colors in the RGB model
or the coordinate of a point in the 3-dimensional space. These considerations
drew the attention to the study of a multidimensional setting [2,6,13]. The term
multidimensional, or equivalently k-dimensional, is related to considering mea-
suring functions taking values in R

k, that is, ϕ : X → R
k, and the subsequent

extension of shape descriptors to this case.
As a first solution, in [2] the authors studied the concept of k-dimensional

size functions and defined the k-dimensional matching distance to compare k-
dimensional size functions. Unfortunately, they did not explain how to use the
latter in practice, namely, how to approximate it so as to obtain a good com-
promise between computational costs and quality of results. In [5], an algorithm
was presented to approximate the k-dimensional matching distance when k = 2,
up to an arbitrary error threshold.

The contribution of the paper. Our goal is to validate the framework pro-
posed in [5] to deal with 2-dimensional Size Theory. In this sense, the main
contributions of the present paper are the following ones:
– We show the robustness of our framework with respect to non-rigid shape
deformations. To this aim, we perform an experiment on the database used in
the Non rigid world Benchmark [1], which is suited for non-rigid shape retrieval
and comparison;
– We show the capability of our framework to deal with other classes of shape
deformations, such as non-metric-preserving transformations. To achieve this
task we build, starting from the previous database, a new one of 228 models and
exploit the modularity of 2-dimensional size functions: We show that, simply
by changing the 2-dimensional measuring function, 2-dimensional size functions
gain different invariance properties, better suited for this new problem;
– We show how the cited framework can improve the ability of 2-dimensional
size functions in shape discrimination, allowing us to tune computational costs
and accuracy of results.

The paper is organized as follows. We first overview the main definitions and
properties about Size Theory, with particular reference to the 1-dimensional
(Section 2) and the 2-dimensional setting (Section 3). Our experiments are shown
in Section 4. Some discussions in Section 5 conclude the paper.

2 1-Dimensional Size Functions

Size functions are shape descriptors that code the topological evolution of the
sublevel sets of a space X , according to the increasing values of a real function ϕ :
X → R defined on it, and called 1-dimensional measuring function. Indeed, size
functions count the number of connected components which remain disconnected
passing from a lower level set of X , Xu = {P ∈ X : ϕ (P ) ≤ u}, to another. Since
the sequence of lower level sets is driven by the real function ϕ, size functions
encode the geometrical properties of X captured by ϕ in the topological evolution
of Xu. More formally,
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Definition 1. Given a pair (X, ϕ) with X a non-empty, compact and locally
connected Hausdorff space and ϕ a continuous function, and denoting Δ+ =
{(u, v) ∈ R × R : u < v}, the size function of (X, ϕ) is �(X,ϕ) : Δ+ → N,
with �(X,ϕ) (u, v) equal to the number of connected components of the sublevel set
Xv = {P ∈ X : ϕ (P ) ≤ v}, containing at least one point of the sublevel set Xu.

Figure 1(b) shows a simple example of a 1-dimensional size function (1SF),
i.e. when the measuring function is real-valued. On the left (Figure 1(a)) the
considered pair (X, ϕ) can be found, where X is the curve drawn by a solid line,
and ϕ is the ordinate function. For example, let us compute the value of �(X,ϕ)

at the point (c, d). By applying Definition 1, it is sufficient to count how many
of the three connected components in the sublevel Xd contain at least one point
of Xc. It can be easily checked that �(X,ϕ)(c, d) = 2.

(a)

0 4
3

2
1

3

2

2

(b)

p1
p2

p3
p4rXϕ �(X,ϕ)

u

v

c

c

d

Fig. 1. (a) The space X and a filtering function ϕ. (b) The associated size function
�(X,ϕ), represented by the formal series r + p1 + p2 + p3 + p4.

As Figure 1 shows, 1SFs have a typical structure: They are linear combinations
(with natural numbers as coefficients) of characteristic functions of triangular
regions. That implies that each 1SF can be described by a formal series, i.e. a
(formal) linear combination of cornerpoints (e.g., the points p1, . . . , p4 in Figure
1(b)) and cornerlines (e.g., the line r in Figure 1(b)). Due to this kind of rep-
resentation, the original issue of comparing shapes can be turned into a simpler
algebraic problem: Each distance between formal series naturally produces a
distance between 1SFs, among which the so called matching distance [3,9] (also
known as bottleneck distance, see [11]).

3 2-Dimensional Size Functions

2-dimensional size functions (2SFs) generalize the 1-dimensional situation to the
case of measuring functions taking values in R

2, i.e. ϕ = (ϕ1, ϕ2).
Extending Definition 1 to the 2-dimensional case is straightforward. For every

u = (u1, u2),v = (v1, v2) ∈ R
2, we say that u � v (resp. u ≺ v) if and only if

ui ≤ vi (resp. ui < vi) for i = 1, 2. Then we have:
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Definition 2. Let be Δ+ = {(u,v) ∈ R
2 ×R

2 : u ≺ v}. The 2-dimensional size
function of (X,ϕ) is �(X,ϕ) : Δ+ → N, with �(X,ϕ) (u,v) equal to the number of
connected components of the sublevel set Xv = {P ∈ X : ϕ (P ) � v}, containing
at least one point of the sublevel set Xu.

Reduction to the 1-dimensional case. Since every 1SF may be seen as a lin-
ear combination of triangles (formal series of function characteristics), the com-
parison of two 1SFs is simple and computationally efficient [9]. Unfortunately,
the same representation seems not to hold for 2SFs (and kSFs in general).

The solution in [2] was to decompose the domain Δ+ ⊂ R
2 ×R

2 into a family
of half-planes, and prove that the restriction of a 2SF to each of these half-
planes is a particular 1SF. As a consequence, a 2SF can be represented by a
collection of 1SFs (one for each considered half-plane), and the 1-dimensional
matching distance can be applied to every half-plane of the family. This leads
to the following definition of a distance between 2SFs:

Dmatch

(
�(X,ϕ), �(Y,ψ)

)
= sup

h∈H
dh

(
�(X,ϕ), �(X,ψ)

)
,(1)

with H the set of half-planes in R
2×R

2, and dh

(
�(X,ϕ), �(Y,ψ)

)
the (1-dimensional)

matching distance (multiplied by a suitable scaling factor) between the 1SFs on
half-plane h [2].

Algorithm for approximating Dmatch. Equation (1) implies that, in general,
a direct computation of Dmatch

(
�(X,ϕ), �(Y,ψ)

)
is not possible, since we should

calculate the value dh

(
�(X,ϕ), �(X,ψ)

)
for an infinite number of half-planes h.

On the other hand, if we choose a non-empty and finite subset S ⊆ H , and
substitute suph∈H with maxh∈S in Equation (1), we get a computable distance,
say Dmatch

(
�(X,ϕ), �(Y,ψ)

)
, that can be effectively used in concrete applications.

Thinking ofDmatch

(
�(X,ϕ), �(Y,ψ)

)
as an approximationofDmatch

(
�(X,ϕ), �(Y,ψ)

)
,

we can argue that the larger the set S ⊆ H , the smaller the difference between the
two values. On the other hand, the smaller the set S, the faster the computation
of Dmatch. In this perspective, in [5] the authors presented an algorithm to find
a set S that is a compromise between these two situations. Taking as input an
arbitrary real value ε > 0 which plays the role of an error threshold, the pro-
posed procedure looks for a suitable set S, giving as output an approximation
Dmatch

(
�(X,ϕ), �(Y,ψ)

)
of Dmatch

(
�(X,ϕ), �(Y,ψ)

)
satisfying the relation

0 ≤ Dmatch

(
�(X,ϕ), �(Y,ψ)

)− Dmatch

(
�(X,ϕ), �(Y,ψ)

) ≤ ε.(2)

The algorithm follows an iterative, multi-scale approach based on some theoreti-
cal results enabling to bound the changing of dh

(
�(X,ϕ), �(X,ψ)

)
according to the

choice of the half-planes in the considered collection [5, Lemma 3.1 and Thm.
3.4]. As a by-product, these results can be used to define a cancellation strategy
and get rid of a large number of half-planes throughout the requested iterations,
thus speeding up the procedure at any rate. This is the algorithm we use for the
experiments in this paper.
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4 Experimental Results

Our goal is to validate the computational framework roughly described in the
previous section and proposed in [5] to deal with 2-dimensional Size Theory.
Through some experiments on 3D-models represented by triangle meshes, we will
prove that the cited framework is robust with respect to noise, as well as to non-
rigid and non-metric-preserving shape transformations. To this aim we will make
use of the modularity property of 2-dimensional size functions: It will be shown
that, in order to deal with invariance to different classes of transformations, it is
sufficient to change the considered 2-dimensional measuring functions, without
changing anything else in the framework. Our experiments will finally make clear
that the proposed procedure can actually improve the ability of 2SFs in shape
discrimination, allowing us to tune computational costs and accuracy of results.

Computational aspects. From the computational point of view, the reduction
of 2SFs to the 1-dimensional case allows us to use the existing framework for
computing 1SFs. In this discrete (1-dimensional) setting, the counterpart of a
pair (X, ϕ) is given by a size graph (G, ϕ), where G = (V (G), E(G)) is a finite
graph, with V (G) and E(G) the set of vertices and edges respectively, and ϕ :
V (G) → R is a measuring function defined on the nodes of the graph [10].

In our experiments, the size graph is made of the vertices and the edges of
the triangle mesh. Once the size graph has been built, computing the restriction
of a 2-dimensional size function on a single half-plane takes O(n log n + α(2m +
n, n)), where n and m are the number of vertices and edges in the size graph,
respectively, and α is the inverse of the Ackermann function [10].

As stressed before, the algorithm we implement in our experiments is based
on an iterative approach, the number of iteration proportional to the accuracy
in results we want to achieve. This accuracy can be fixed by choosing the thresh-
old error ε, which gives us the maximum distance between the output, i.e. the
value Dmatch

(
�(X,ϕ), �(Y,ψ)

)
and the actual 2-dimensional matching distance

Dmatch

(
�(X,ϕ), �(Y,ψ)

)
, cf equation (2).

Table 1 shows some statistics concerning the average time required to com-
pute and compare the 2-dimensional size functions associated to different 3D-
models, in comparison with an accuracy evaluation of results. In particular, the
value of the threshold error ε is expressed in accuracy percentage points, i.e.
by computing the ratio Dmatch

(
�(X,ϕ), �(Y,ψ)

)
/(Dmatch

(
�(X,ϕ), �(Y,ψ)

)
+ ε) for

every possible comparison, and then taking the average. These results have been
obtained on a 2.8GH Core i5, RAM 8GB.

Table 1. Statistics on average time for computing and comparing 2 different 2Sfs

Iterations (number) 1 2 3 4 5 6

Accuracy (%) 22% 36% 53% 69% 82% 90%

average time (seconds) 0.34 1.32 2.27 7.09 22.13 81.71
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Non-rigid shape similarity. To analyze the potential of the proposed method
for comparing and retrieving shapes, we performed some tests on the database
of 148 triangle meshes used in the Non-rigid world Benchmark [1]. Since this
database is suited for non-rigid shape retrieval and comparison purposes, it would
be desirable to have shape descriptors that are robust with respect to non-rigid
shape deformations. To this aim, we can exploit a fundamental aspect of 2-
dimensional size functions: They inherit their invariance properties (w.r.t. to
groups of transformations) directly from the associated measuring functions.
Therefore, in this experiment we selected the following 2-dimensional measuring
functions: The first component is chosen to be the heat kernel signature [17],
computed using the first 10 eigenfunctions of the Laplace-Beltrami operator and
a fixed time t = 1000, and the second one the integral geodesic distance [14].
Indeed, it is well known that this two functions are robust with respect to non-
rigid shape changing. The obtained results (after 4 iterations of the algorithm)
can be seen in the precision-recall graph in Table 2(a). The considered query
set coincides with the all database. We also compared our framework with two
methods representing a state-of-the-art shape retrieval techniques: the Spherical
harmonics (SH) method [15] and the Light Field Distribution (LFD) method [8].

Table 2. On the left (Table2(a)), the average precision-recall graphs concerning non-
rigid shape similarity. On the right (Table2(b)), the average precision/recall graphs of
our framework at different levels of accuracy, concerning robustness experiments.
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Robustness to noise and non-metric-preserving deformations. To test
the robustness of the proposed framework we built a new database of 228 3D-
surface mesh models. We started by considering one model for each of the 12 class
of the dataset used in the Non rigid world Benchmark (cat0, david0, dog0,. . . ,
victoria0, wolf0). For each model, six non-rigid transformations were applied,
at three different strength levels. An example of the transformations and their
strength levels is given in Table 3. What we get at the end is a database contain-
ing 12 classes, each one consisting of a null model together with its 18 modified
versions. We created a new database mainly because we want to emphasize the
robustness of our method not only with respect to non-rigid transformations, as
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Table 3. The null model “Victoria0” and the 3rd strength level for each deformation

Victoria0 Def. �1 Def.�2 Def. �3 Def. �4 Def. �5 Def. �6

shown in the previous experiment, but also with respect to noise (e.g Deforma-
tion 
2) and other deformations not subject to metric constraints: Actually, we
consider transformations which do not preserve the metric properties of shapes
(e.g. the Riemannian metric).

The previous considerations imply that the descriptors used to compare non-
rigid shapes could not be enough for this new task. But fortunately we can rely
on the modularity of 2-dimensional size functions: To obtain different invariance
properties, we simply have to change the 2-dimensional measuring function. For
each triangle mesh of vertices {P1, . . . , Pn}, we define a new 2-dimensional mea-
suring function as follows. We compute the center of mass B, and normalize the
model so that it is contained in a unit sphere. We also define a vector

w =
∑n

i=1(Pi − B)‖Pi − B‖∑n
i=1(Pi − B)‖Pi − B‖2

.

The 2-dimensional measuring function ϕ = (ϕ1, ϕ2) is then chosen such that ϕ1

is the distance from the line parallel to w and passing through B, and ϕ2 is the
distance from the plane orthogonal to w and passing through B. The values of
ϕ1, ϕ2 are finally normalized so that they range in the interval [0, 1]. Note that
both ϕ1 and ϕ2 are invariant with respect to translation and rotation, while the
invariance to scale comes from the a priori normalization of the models.

Table 2(b) shows the average precision/recall graphs of our framework at
different levels of accuracy, i.e. after a different number of iterations of the pro-
posed procedure, and in comparison with the (SH) and the (LFD) methods. The
query set coincides with the all database. We emphasize that our results improve
proportionally to the number of iterations of our algorithm.

5 Conclusions

In this paper we validated a new framework presented in [5] to compute an
approximation of the matching distance between 2-dimensional size functions.
More precisely, we proposed experiments proving that the cited framework is
modular and robust with respect to noisy, non-rigid and non-metric-preserving
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shape transformations. Our results show how the cited framework can be used to
improve the ability of 2-dimensional size functions in comparing shapes, allowing
us to find a good compromise between computational costs and goodness of
results. For the next future, it could be interesting to study how to extend the
discussed procedure to higher dimensional settings of Size Theory.
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versitá di Bologna (2010), http://amsacta.cib.unibo.it/2821/

6. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. In: SCG
2007, pp. 184–193 (2007)

7. Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size
functions. Graph. Models 68(5), 451–471 (2006)

8. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3d
model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

9. d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching
between reduced size functions. Acta. Appl. Math. 109, 527–554 (2010)

10. d’Amico, M.: A New Optimal Algorithm for Computing Size Functions of Shapes.
In: CVPRIP Algorithms III, Atlantic City, pp. 107–110 (2000)

11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society, Providence (2009)

12. Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Engrg.
Comm. Comput. 12(4), 327–349 (2001)

13. Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size
distances. Bulletin of the Belgian Mathematical Society 6(3), 455–464 (1999)

14. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully
automatic similarity estimation of 3d shapes. In: SIGGRAPH 2001, pp. 203–212
(2001)

15. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical har-
monic representation of 3d shape descriptors. In: Proc. SGP 2003, pp. 156–164
(2003)

16. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image
retrieval at the end of the early years. IEEE Trans. PAMI 22(12) (2000)

17. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale
signature based on heat diffusion. In: Proc. SGP 2009, pp. 1383–1392 (2009)

18. Tangelder, J., Veltkamp, R.: A survey of content-based 3D shape retrieval methods.
Multimedia Tools and Applications 39(3), 441–471 (2008)

http://tosca.cs.technion.ac.il/
http://amsacta.cib.unibo.it/2821/


A Homological–Based Description of Subdivided

nD Objects

Helena Molina-Abril1,2 and Pedro Real1,�

1 Computational Topology and Applied Mathematics Group, University of Seville
habril@us.es, real@us.es

2 Pattern Recognition and Image Processing Group, Vienna University of Technology

Abstract. We present here a topo–geometrical description of a subdi-
vided nD object called homological spanning forest representation. This
representation is a convenient tool in order to completely control not only
geometrical, but also advanced topological information of a given object.
By codifying the underlying algebraic topological machinery in terms of
coordinate–based graphs, we progress in the task to “combinatorialize”
homological information at two levels: local and global. Therefore, our
method presents several advantages with respect to the existing Alge-
braic topological models, and techniques based in Discrete Morse The-
ory. A construction algorithm has been implemented, and some examples
are shown.

1 Introduction

One way to guarantee a consistent description of an object is to base such descrip-
tion on topological principles. A topological representation of an object defines
a finite topological space made up of regions, arcs, and points which encode a
particular partitioning. Several structures have been proposed to encode such a
partitioning, including cellular complexes [1,2], combinatorial maps [3], graphs
[4], etc.

We deal here with the problem of finding an efficient and robust geometrical
and topological representation of a subdivided nD object given in terms of a cell
complex and exploiting the notion of homology or, more precisely, using chain
homotopy equivalences connecting the object with its homology groups (see [5]
for more details).

In principle, homology is a purely algebraic notion related to the degree of
connectivity at the level of formal sum of cells (connected components, holes or
tunnels, cavities,...) and most of the models based on these ideas are algebraic–
topological models (AT–model [6], AM–model [7],....). Nevertheless, it is possi-
ble to “combinatorialize” these models (eliminate its algebraic part) by using a
graph representation of the algebraic operators (boundary operator, coboundary
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operator,...) and simplify its connectivity information by using hierarchical tree–
like structures. Forman [8,9] used this idea in order to develop Discrete Morse
Theory (DMT, for short), which has become a powerful tool in its applications
to computational topology, computer graphics, image processing and geometric
modeling.

With the philosophy of representing the object in terms of a finite number
of topologically inessential “threads” as a goal, we translate DMT to a suit-
able algebraic homological setting, that of integral–chain complexes. We can
progress in this way in the task to “combinatorialize” homological information
at two level: local (DMT) and global (in terms of coordinated–based hierarchi-
cal forests based on chain homotopies [10]). The algebraic nature of the global
approach can be combinatorialized if we place these chain homotopies and crit-
ical cells (homology generators) in a graph–based ambiance. Based on that, we
develop here a non–unique combinatorial topo–geometric representation of a nD
subdivided object, called homological spanning forest (or HSF, for short). We
design and implement an algorithm for computing this model for a nD object
embedded in R

n and we do some experiments in the three dimensional case.

2 Preliminaries

In this section, we first establish a notion of (combinatorial) cell complex in a
finite–dimensional Euclidean space with the cell boundary information described
in algebraic terms.

A cell complex K = {Ki}�
i=0 embedded in E

� is a finite collection of cells
{σ(r)i=1,...n

i ∈ Kr} of different dimensions 0 ≥ r ≥ � such that (see [11] for a
formal definition of cell):

(i) |K| =
⋃n

i=1 σi = |K0| ∪ |K1| ∪ . . . ∪ |K�|. The set Kr consists of all the
r–cells of K, for 0 ≤ r ≤ �. It is possible that Ki = ∅ for some 0 < i ≤ �.

(ii) σi ∩ σj = ∅ (i �= j);
(iii) If dim(σi) = p (with 0 ≥ p ≥ �), then ∂σi ⊂

⋃p−1
i=1 Ki,

The p–skeleton K(p) for K is the set of all k–cells with 0 ≤ k ≤ p. The dimension
of the cell complex is the smallest non–negative natural number r such that the
condition K(r) = K(r+1) is satisfied. If all the cells of K are convex sets of E

�,
then K is called convex cell complex. Simplicial, Cubical and some polyhedral
complexes are special cases of convex cell complexes.

Roughly speaking, the idea of homology is to analyze the degree of connectiv-
ity of cell complexes using formal sums of cells. A differential operator for a cell
complex K with coefficients in Λ is a linear map d : Λ[K] → Λ[K], such that the
image of a p–cell σ is a linear combination of some (p− 1)–cells of the boundary
∂(σ) and d ◦ d = 0. Taking into account that our cell complex K is embedded in
E

�, its geometric realization |K| is a regular triangulable cell complex and there
can be always defined a differential operator ∂, called boundary operator, with
coefficients in the field Λ.
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The chain complex canonically associated to the cell complex K is the graded
differential vector space (C∗(K), ∂), where Cp(K) = Λ[Kp], for all p = 0, 1, . . . r,
and ∂ : C∗(K) → C∗−1(K) is the previous boundary operator for the cell com-
plex K. For instance, to find a boundary operator ∂ for a simplicial complex is
straightforward, but it is not, in general, an easy task for others cell complexes.
The following is one of the fundamental results in the theory of CW–complexes.

Theorem 1 (See [8]). Let K a finite cell complex. There are algebraic bound-
ary maps ∂p : Cp(K, Λ) → Cp−1(K, Λ), for each p, so that ∂p−1 ◦ ∂p = 0 and
such that the resulting differential complex {Cp(K, Λ), ∂p}r

p=0 calculates the ho-
mology of K. That is, if we define Hp(C, ∂) = Ker (∂p)/∂p+1(C). In other words,
Hp(C, ∂) ∼= Hp(|K|, Λ).

From now on, a finite cell complex K is denoted by (C, ∂), where ∂ : C∗(K) →
C∗−1(K) is the boundary operator for C∗(K) with coefficients in the finite field
Z/Z2 = {0, 1}.

3 Integral–Chain Complexes

In [12], we recover the algebraic machinery underlying in Discrete Morse Theory,
establishing a new framework for dealing with special chain complexes, that is
the integral–chain complexes associated to finite cell complexes. In this section,
we recall the main notions and results of this homological algebra work in order
to understand our approach.

Definition 1. [12] An integral chain complex (C, ∂, φ) is a graded vector space
C = {Cp}n

p=0 endowed with two linear maps: a differential operator ∂ : C∗ →
C∗+1, and an integral operator (also called algebraic gradient vector field [8] or
chain homotopy operator [5]) φ : C∗ → C∗+1, satisfying the global nil potency
properties ∂ ◦ ∂ = 0 and φ ◦φ = 0. An integral chain complex (C, ∂, φ) is ∂–pure
(resp. φ–pure) if the condition ∂ = ∂ ◦φ◦∂, called homology condition (resp. the
condition φ = φ◦∂ ◦φ , called strong deformation retract condition) is satisfied.

Examples of the application of integral operators is shown in Figure 1.
The computation of the homology of a chain complex (C, ∂) can be specified

in terms of finding an integral operator φ : C∗ → C∗+1, satisfying the Strong
Deformation Retract (SDR for short) and homology conditions with regards to
the differential operator ∂ ([13]).In spite of its simplicity, the following result is
essential.

Fig. 1. A cell complex and the resulting cell complex after applying the integral op-
erator φ(〈1〉) = 〈1, 2〉 (on the left) and a cell complex and the result after applying
φ(〈1, 2〉) = 〈1, 2, 3〉 (on the right)
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Lemma 1. [Integral–Chain Lemma] An integral chain complex (C, ∂, φ) is
integral–chain equivalent to its harmonic complex π(C, ∂, φ), meaning that its
homological information can be extracted from that of the harmonic (see [12]).
This last harmonic complex π(C, ∂, φ) is of the form (π(C), ∂π , φπ) where π(x) =
(id+φ◦∂+∂◦φ)(x), ∂π(π(x)) = (∂−∂◦φ◦∂)(x) and φπ(π(x)) = (φ−φ◦∂◦φ)(x).
∀x ∈ C.

We now define an algebraic constructor of a new integral–chain complex:

Definition 2. Given a ∂–pure (resp. two φ–pure) integral–chain complexes (C, ∂,
φ) and a differential operator ∂′ satisfying the homology condition (resp. an inte-
gral operator φ′ satisfying the strong deformation retract condition) for π(∂,φ)(C),
a new ∂–pure (resp. φ–pure) integral chain complex (C, ∂ + ∂′ ◦ π(∂,φ), φ) (resp.
(C, ∂, φ+ φ′ ◦ π(∂,φ))) can be constructed. This new integral chain complex is called
composition of (C, ∂, φ) by φ′.

From now on, all the integral chain complexes we consider in the paper will be
φ–pure integral–chain complexes.

4 Homological Spanning Forest Representation

Discrete Morse Theory (DMT, for short) gives a positive answer to the prob-
lem of finding combinatorial chain homotopy operators φ for chain complexes
(C∗(K), ∂) of finite cell complexes, such that the integral homology of (C∗(K), ∂,
φ) is a “good” approximation (measured in terms of critical cells, determined
by the Betti numbers) to its differential homology. These combinatorial integral
operators are seen in DMT as cell pairings (cell collapses) (see Figure 2). In
[14], given a 2–manifold, an heuristic for computing optimal Morse pairings is
developed. A pairing is considered optimal when the discrete gradient vector
field has few critical cells (cells that are not paired). This heuristic computes
optimal gradient vector fields in terms of hyper-forests. However, for general cell
complexes this problem has not been solved yet.

Now, we progress in DMT with some slightly modifications with regards the
classical theory, and without using, in principle, discrete Morse functions. In this
way, we are able to obtain an optimal pairing for any finite cell complex without
restriction.

Definition 3. A combinatorial integral operator V defined on a cell complex
K is a collection of disjoint pairs of (non–necessarily incident) cells {α(p) ≺
β(p+1)}. If the pairs are constituted by incident cells then, V is called combina-
torial vector field ([8]). A cell α is a critical cell of V if it is not paired with any
other cell in V.

In the sequel, we prefer to describe some important notions in terms of the
barycentric subdivision of a cell complex rather than using its Hasse diagram.
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Fig. 2. A cell pairing on the left (〈1〉,〈5〉, 〈3, 4〉 and 〈2, 5〉 are critical), and an optimal
one on the right (〈1〉 and 〈2, 4〉 are critical). The pairing is represented with an arrow
from the cell of lower dimension to its paired cell of higher dimension.

Fig. 3. A combinatorial vector field (on the left). On the right a gradient set of forest
where cells 〈1〉 and 〈1, 3〉 do not belong to the forest, 〈2, 5〉 and 〈2, 4, 5〉 belong to F1

and the rest of cells belong to F0.

Definition 4. Let (K, ∂) be a finite convex cell complex of dimension m em-
bedded in R

n and let (BCS(K), ∂bcs) be the simplicial barycentric subdivision of
K [15]. Let us consider a hierarchy of simplicial forests F = {F0, F1, . . . , Fm−1}
all contained in the 1–skeleton of BCS(K), such that the nodes of Fp are vertex
cells of dimension p and p + 1 of K and its leaves are cells of dimension p, for
all 0 ≤ p ≤ m. Such set of forests is called gradient set of forests for the cell
complex (K, ∂).

An example of a combinatorial vector field and a gradient set of forest is shown
in Figure 3.

A gradient set of forests F for (K, ∂) can be expressed in combinatorial terms
by means of a combinatorial vector field VF , called F–gradient vector field. In
fact, VF is defined by choosing a root in each tree T of F and pairing incident
cells (of different dimension) of T excepting the root. In this way, the roots of
the trees become critical cells of VF as well as the rest of cells in K which do
not appear in F .

A φ–pure integral–chain complex (C(K), ∂, ṼF) can be derived from (C(K), ∂,
VF). If σ(p) is a node of F which is not a root, ṼF (σ(p)) is defined as the sum of
the (p + 1)–cells of K existing in the unique path within the forest Fp, joining
σ and the corresponding root. In other case, its value is zero. This φ–pure F–
gradient integral operator ṼF satisfies the SDR–condition VF∂VF = VF .

The main algorithm of this paper is designed using as main piece the following
proposition which is already proved in [12].

Proposition 1. [12] Let (K, ∂) be a finite convex cell complex and let F a gra-
dient set of forest for K. Let (C(K), ∂, φ) be the integral–chain complex, being φ
the pure gradient integral operator derived from F . Then, the harmonic complex
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of (C(K), ∂, ṼF ) is isomorphic to ( Ker VF \VF(C(K)), ∂π , 0). This last integral–
chain complex, called Morse cell complex M(C(K),F) is constituted by finite lin-
ear combinations of the different critical cells of VF and ∂π can be seen as the
boundary operator of the corresponding cell complex determined by the critical cells.
Given a critical p–cell σ(p), then ∂π(σ(p)) = (∂ − ∂ ◦φ ◦ ∂)(σp)|criticalcells, that is,
the linear combination of the critical (p−1)–cells appearing in (∂−∂ ◦φ◦∂)(σ(p)).

Let us note that we can repeatedly apply Prop. 1 to the successive Morse com-
plexes, previously describing a corresponding gradient forest for each of them.
We can express this task in the following way:

(C(K), ∂) ⇒ M(C(K),F0) ⇒ M(M(C(K),F0),F1) ⇒
M(M(M(C(K),F0),F1),F2) ⇒ . . . ⇒ H∗(C(K), 0),

where (C, ∂) ⇒ (C′, ∂′) means that there is a chain homotopy equivalence [15]
between the chain complexes (C, ∂) and (C′, ∂′).

On the other hand, Prop. 2 provides us the integral–chain complex (C(K), ∂, h)
which is composition of (C(K), ∂, 0) by the successive gradient forests. If we ob-
tain in this way a Morse complex, with all the possible gradient forest being
trivial (constituted of only one node), the process stops and h is the “key” oper-
ator for getting the homology groups and corresponding homology generators of
K as well as a topological interpretation of K in terms of trees in the 1–skeleton
of the barycentric subdivision of K. This geo–topological (coordinate–based)
representation is called Homological Spanning Forest (or HSF, for short) repre-
sentation for K (see Figure 4).

Theorem 2. In the previous conditions, the integral operator h : C∗(K) →
C∗+1(K) specifies a set of forest G = {G0, G1, . . . , Gm} in BCS(K) called HSF–
representation for K.

5 Implementation and Experiments

In [6] the authors present an algorithm to reduce a initial chain complex up
to its minimal homological expression. The advantage of this method is that
the obtained integral operator encodes the homological information of the initial
complex (homology groups, cohomology, homology generators, relations between
them, etc.). The complexity in time of this method is O(n3).

In this section we present a new algorithm, based in Prop. 1, where the result-
ing HSF representation encodes exactly the same information that the previous
mentioned method, and besides the advantages of providing such a representa-
tion of the object, by using graph techniques, the time complexity is reduced.
The heart of the proposed algorithm runs in linear time, and the question of
how many times the loop should be executed, crucially depends on the particu-
lar complex.

Given an initial cell complex C∗(K), Algorithm 1 computes its HSF–
representation. The algorithm consists of an iterative process, where at each



48 H. Molina-Abril and P. Real

Fig. 4. In Figure 4 a) we can see a cell complex. Part of its homological spanning forest
representation (G0 and G1) is shown in Figures 4 b) and 4 c). Figures 4 d) and 4 e)
represent the optimal combinatorial pairing. The resulting critical cells are colored in
yellow in Figures 4 b) and 4 c).

step i, a gradient set of forests {F0 . . . Fp} is computed over C∗(K)i. The func-
tion M returns a Morse complex, constituted by finite linear combinations of
the different critical cells in (C∗(K)i,F i). Once the computed F i is trivial, the
process stops. The guarantee that the minimal number of critic cells is obtained
at the end of the algorithm arises in the fact that the algorithm only stops when
∂ = 0 for every cell in K.

Algorithm 1. HSF(C∗(K), ∂)
i = 0
while ! (Trivial (F i)) do

F0 = SpanningTreec (C0,1(K)i)
F1 = SpanningTreec (C1,2(K)i\F0)
. . .
Fp = SpanningTreec (Cp,p+1(K)i\Fp−1)
F i = F0 ∪ F1 ∪ · · · ∪ Fp

Gi = Gi−1⋃F i

C∗(K)i+1 = M(C∗(K)i,F i)
i = i + 1

end while
return (Gi)

The union operation
⋃

in Algorithm 1 consists of the integration of the infor-
mation residing in the forests {F0 . . . Fp} to the global forest G. This itegration
is done by using the algebraic composition operation of Prop. 2.

The computation of the gradient set of forests is performed using the Al-
gorithm SpanningT reec. Algorithm SpanningT reec is a basic spanning tree
algorithm, where some extra conditions need to be considered. The basic idea
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Fig. 5. A Bing’s house, Torus, Sphere and Double Torus cell complexes, and their
corresponding Morse complexes after some reductions. The final number of critical
cells in the final complexes coincides with the Betti Numbers.

of this method, is, to construct valid trees (by joining p–cells and (p + 1)–cells)
that satisfy the global nil potency properties and the SDR condition. Therefore,
we must asure that no cycles are created throughout the process.

We have used Depht First Search for the implementation, but any other
spanning tree algorithm could be used instead. The implementation is written
in C++, and it works either with simplicial or cell complexes. Several experi-
ments have been performed (see Figure 5) using well known examples (Torus,
Bing’s house, Double Torus, Sphere, etc.). The software has provided valid HSF–
representations and the minimum number of critical cells for each example.

6 Conclusions

In this paper we develop a non–unique combinatorial topo–geometric represen-
tation of a nD subdivided object, called homological spanning forest (or HSF,
for short). This representation is a convenient tool in order to compute not only
the minimum number of critical cells but also geometric (local curvature, nor-
mals to the boundary, Ricci curvature,....) and advanced topological information
(reconstruction of the boundary, homological classification of cycles, relative ho-
mology with regards any sub-complex, skeletons, (co)homology operations, . . . ).
Advantages with respect to existing Algebraic topological models, and DMT–
based techniques have been shown. In a near future, we have the intention to
deal with the “good” behaviour of the HSF representation for objects embed-
ded in R

n with regards to combinatorial, geometric and topological changes,
simplification, recognition, visualization, etc.
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Abstract. This paper describes a novel method for shape detection and image
segmentation. The proposed method combines statistical shape models and active
contours implemented in a level set framework. The shape detection is achieved
by minimizing the Gibbs energy of the posterior probability function. The statis-
tical shape model is built as a result of a learning process based on nonparametric
probability estimation in a PCA reduced feature space formed by the Legendre
moments of training silhouette images. The proposed energy is minimized by it-
eratively evolving an implicit active contour in the image space and subsequent
constrained optimization of the evolved shape in the reduced shape feature space.
Experimental results are also presented to show that the proposed method has
very robust performances for images with a large amount of noise.

Keywords: Active contour, Legendre moments, statistical model, segmentation,
shape detection.

1 Introduction

Active contour models have achieved enormous success in image segmentation and
although there are number of ways to construct an active contour the most common ap-
proach is based on minimizing a segmentation functional. Construction of a prior shape
constraint into the segmentation functional has recently become the focus of intensive
research [1,2,3,4]. The early work on this problem has been based on principal com-
ponent analysis (PCA) calculated for landmarks selected for a training set of shapes
which are assumed to be representative of the shape variations. Tsai et al. [5] proposed
a method to directly search solution in the shape space which is built by the signed
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distance functions of aligned training images and reduced by PCA. In [6], Fussenegger
et al. authors apply a robust and incremental PCA in order to improve segmentation
results. Recently, it has been proposed to construct nonparametric shape prior by ex-
tending the Parzen density estimator to the space of shapes [7,8,9].

Foulonneau et al. [10] proposed an alternative approach for shape prior integration
in the framework of parametric snakes. They proposed to define a geometric shape
prior based on a description of the target object shape using Legendre moments. A
new shape energy term is defined as the distance between moments calculated for the
evolving active contour and the moments calculated for a fixed reference shape priors.
The main drawbacks of such an approach lies in its strong dependence on the shape
alphabet used as reference. Indeed, as stated by the authors themselves in [10], this
method is more related to template matching than to shape learning.

Inspired by the aforementioned results and especially by the approach proposed by
Foulonneau et al. , the method proposed in this paper optimizes, within the level sets
framework, model consisting of a prior shape probability model and image likelihood
function conditioned on shapes. The statistical shape model results from a learning
process based on nonparametric estimation of the posterior probability, in a low dimen-
sional shape space of Legendre moments built from training silhouette images. Such
approach tends to combine most of the advantages of the aforementioned methods, that
is to say, it can handle multi-modal shape distributions, preserve a consistent framework
for shape modeling and is free from any explicit shape distribution model.

The structure of this paper is as follows: The statistical shape model constructed in
the space of the Legendre moments is explained in section 2.1; The level set active con-
tour framework used in the proposed method is briefly explained in section 2.2; Section
2.3 defines the energy minimization problem, whereas in section 2.4 the proposed strat-
egy for its minimization is explained in detail; Section 3 demonstrate the performance
of the proposed method on images corrupted by severe random and structural noise;
The conclusions are given in section 4.

2 Theory

The proposed method can be seen as constrained contour evolution, with the evolution
driven by an iterative optimization of the posterior probability model that combines a prior
shape probability and an image likelihood function. In this section all the elements of the
proposed model along with the proposed optimization procedure are described in detail.

2.1 Statistical Shape Model of Legendre Moments

The method proposed in this paper, similarly to the method described in [10], uses
shapes descriptors encoded by central-normalized Legendre moments λ = {λpq, p +
q ≤ No} of order No where p and q are non-negative integers, and therefore λ ∈ RNf

with Nf = (No + 1)(No + 2)/2. In the first instance, the mean vector λ̄ and the Nf ×
Nf covariance matrix Q are estimated for the central-normalized Legendre moments
{λi}Ns

i=1 calculated for the shapes {Ωi}Ns

i=1 from the training database. Subsequently the
Nf × Nc projection matrix P is formed by the eigenvectors of the covariance matrix
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Q that correspond to the largest Nc (Nc ≤ min{Ns, Nf}) eigenvalues. The projection
of feature vectors {λi}Ns

i=1 onto the shape space, spanned by the selected eigenvectors,
forms the feature vectors {λr,i}Ns

i=1 :

λr,i = PT (λi − λ̄) (1)

Finally the density estimation P (λr), with λr defined in the shape space, is performed
up to a scale using λr,i as samples from the population of shapes and with the isotropic
Gaussian function as the Parzen window:

P (λr) =
Ns∑
i=1

N (λr;λr,i, σ
2) (2)

where N (λr;λr,i, σ
2) = exp(−||λr − λr,i||2/2σ2)

2.2 Level Set Active Contour Model

To detect and segment shapes a mechanism for taking into consideration the evidence
about shape, present in an observed image, needs to be included. In this paper the region
competition scheme of Chan-Vese is used for this purposes, with the energy given by:

Ecv(Ω, μΩ , μΩc |I) =
∫

Ω

(I − μΩ)2 dxdy +
∫

Ωc

(I − μΩc)2 dxdy + γ|∂Ω| (3)

where Ωc represents the complement of Ω in the image domain and |∂Ω| represent the
length of the boundary ∂Ω of the region Ω. The above defined energy minimization
problem can be equivalently expressed as maximization of the likelihood function:

P (I|Ω) ∝ exp(−Ecv(Ω, μΩ , μΩc |I)) (4)

where P (I|Ω) could also be interpreted as a probability of observing image I when
shape Ω is assumed to be present in the image. Introducing level set (embedding) func-
tion φ such that the Ω can be expressed in terms of φ as Ω = {(x, y) : φ(x, y) ≥ 0}, as
well as Ωc = {(x, y) : φ(x, y) < 0} and ∂Ω = {(x, y) : φ(x, y) = 0}. It can be shown
that energy function defined in Eq.(3) is minimized by function φ given as a solution of
the following PDE equation:

∂φ

∂t
=
(
(I − μΩc)2 − (I − μΩ)2

) |∇φ| + γ∇
( ∇φ

|∇φ|
)
|∇φ| (5)

with μΩ and μΩc representing respectively the average intensities inside and outside
the evolving curve.

2.3 Energy Function

Introduced in the previous two sections distributions representing shape prior informa-
tion and image intensity can be combined using Bayes rule and the Gibbs distribution
model, resulting in the following energy function:

E(λr) = Eprior(λr) + Eimage(λr) (6)
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where the shape prior term is defined as:

Eprior(λr) = − ln

(
Ns∑
i=1

N (λr;λr,i, σ
2)

)
(7)

and is built based on the shape samples Ωi as explained in section 2.1. The image term
is defined as:

Eimage(λr) = Ecv(Ω, μΩ, μΩc |I)|Ω=Ω(λr) (8)

where optimization of Ecv is constraint to shapes Ω from the estimated shape space
Ω = Ω(λr) where Ω(λr) denotes a shape from the shape space represented by the
Legendre moments λ = Pλr + λ̄. The details of the optimization procedure for such
energy are given in the next section.

2.4 Optimization

The proposed optimization procedure for minimization of the energy given in Eq.(6) is
summarized in the following steps:

– Evolution of Ω according to Eq.(5):

Ω(k) → Ω
′(k) (9)

shape Ω(k), from the previous algorithm iteration, is used as the initial shape and
Ω

′(k) is the result of shape evolution. In the current implementation just single
evolution iteration is used;

– Projection of the evolved shape into the shape space:

Ω
′(k) → λ(k)

r (10)

whereλ(k)
r = PT (λ(k)−λ̄), and the central-normalized Legendre (c-nL) moments

in vector λ(k) are calculated using (Lpq are the 2D c-nL polynomials):

λ(k)
pq =

1
|Ω′(k)|

∫
Ω′(k)

Lpq

(
x, y, Ω

′(k)
)

dxdy (11)

– Shape space vector update:
λ(k)

r → λ
′(k)
r (12)

This step reduces the value of Eprior by moving λ(k)
r in the steepest descent direc-

tion:

λ
′(k)
r = λ(k)

r − β
∂Eprior

∂λr

∣∣∣∣
λr=λ

(k)
r

(13)

where
∂Eprior

∂λr
=

1
2σ2

Ns∑
i=1

wi(λr − λr,i) (14)

with

wi =
N (λr;λr,i, σ

2)∑Ns

k=1 N (λr;λr,k, σ2)
(15)
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– Shape reconstruction from Legendre moments:

λ
′(k)
r → Ω(k+1) (16)

where shape Ω(k+1) is reconstructed using:

Ω(k+1) =

{
(x, y) :

(
p+q≤No∑

p,q

λ
′(k)
pq Lpq

(
x, y, Ω

′(k)
))

> 0.5

}
(17)

with the Legendre moments λ
′(k)
pq in vector λ

′(k) calculated from the shape space
vector λ

′(k)
r using: λ

′(k) = Pλ
′(k)
r + λ̄

These steps are iterated until no shape change occurs in two consecutive iterations:
Ω(k+1) = Ω(k).

It should be pointed out that, unlike derivative based optimization methods such as
[10], the shape descriptors need not be differentiable in the proposed method.

3 Experimental Results

A first set of experiments was carried out using a chicken image database consisting of
20 binary silhouette images with different sizes where 19 of them were used as train-
ing shapes for building the statistical prior model and the remaining image was used
for testing (see Figure 1). The test images used for the method evaluation are shown in
Figure 2. These images where obtained from a binary image by applying three different
types of noise, namely, additive white Gaussian noise, structural noise for the simulation
of occlusion and defects, as well as a combination of Gaussian and structural noise (hy-
brid noise). For all the results shown for this data, the same initial contour and the same
key parameters No = 40 and Nc = 10 were used. For the test image with Gaussian
noise the noise level is so high that even people with prior knowledge of the shape have
difficulty in locating it visually. The segmentation result using the Chan-Vese model,
which is well-known for its robustness to Gaussian noise, is shown in Figure 3(d). Fig-
ure 3(g) shows the segmentation result using the multi-reference method from [10],

Fig. 1. The chicken image database where 19 images are used to build the statistical shape model
and the remaining image (second from right in the bottom row) is used for testing
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Fig. 2. Test images used for the evaluation of the proposed method. From left to right (i) Original
noise-free binary test image with initial active contour shown as a circle at the center of the
image; (ii) Image with severe white Gaussian noise; (iii) Image with structural noise; (iv) Image
with hybrid noise.

where all the 20 training shapes were used as references. In this case, a range of dif-
ferent values of the method’s design parameters (weights) were tried, but none of them
ensured the algorithm convergence to the right result. Much better result was achieved
using the proposed method as shown in Figure 3(a). As expected, the resulting shape
living in the reduced feature space tends to have more regular appearance. The seg-
mentation/detection results for the image with a large amount of structural noise are
illustrated in Figure 3(b,e,h), where the necessity of shape prior constraint is clearly
seen. Chan-Vese model without shape constraint completely failed by following the
false structures. Although by increasing the weight associated with the length term (γ
in Eq.(3)) the algorithm can avoid some of the false structures, it cannot properly lo-
cate the desired shape. Again, the multi-reference method failed to converge to the right
result. Figure 3(c,f,i) show the results obtained for an image with both Gaussian and
structural noise. As before Chan-Vese and multi-reference methods failed to recover
original shape whereas the proposed method was able to detect the shape reasonably
well. Although the main objective of the described experiment was to demonstrate a
superior robustness of the proposed methods with respect to severe random and struc-
tural noise, the accuracy of the method was also tested on repeated experiments with
different combination of the target image and structural noise pattern. It transpired that
the proposed method was able to localize object boundary with an average accuracy of
1.2, 1.7 and 2 pixels when operating respectively on images with Gaussian, structural
and hybrid noise.

A second set of experiments was carried out using gray scale images. An example
of a test image used in this experiment is shown in Figure 5 where the objective was to
segment the cup. To build the shape space for the “cup objects” an image set composed
of 20 binary cup silhouette images (shown in Figure 4), from the MPEG7 CE shape-1
Part B database, was used. It can be clearly seen that the training shapes integrate a large
shape variability. Results of segmentation using the Chan-Vese, multi-reference and the
proposed method are shown in Figure 5. Assuming that the goal of the segmentation was
to recover the shape of the cup, the proposed method leads to much more accurate result
with the final shape segmentation not altered by the drawing on the cup or by books
and a pen in the background. This clearly demonstrates that, the proposed method is
much more robust than the other two tested methods with respect to ”shape distractions”
present in the data. The final result can be seen as a good compromise between image
information and the prior shape constraints imposed by the training data set used.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Results for the test data, shown in Figure 2, obtained for: proposed method (a-c); Chan-
Vese method (d-f); multi-reference method proposed in [10] (g-i). The red solid curves depict
segmentation results, whereas the desired results (plotted for the images with the Gaussian noise
only) are shown as green dash lines.

Fig. 4. The cup image set used to build the shape space

Fig. 5. From left to right (i) an image to be segmented, (ii) result of segmentation using Chan-Vese
model, (iii) result of the segmentation using the multi-reference method from [10], (iv) result of
the segmentation using the proposed method
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4 Conclusions

The paper describes a novel method for shape detection and image segmentation. The
proposed method can be seen as constrained contour evolution, with the evolution
driven by an iterative optimization of the posterior probability function that combines a
prior shape probability and the image likelihood function. The prior shape probability
function is defined on the subspace of Legendre moments and is estimated, using Parzen
window method, on the training shape samples given in the estimated beforehand shape
space. The likelihood function is constructed from conditional image probability dis-
tribution, with the image modelled to have regions of approximately constant inten-
sities, and regions defined by the shape which is assumed to belong to the estimated
shape space. The resulting constrained optimization problem is solved using combi-
nations of level set active contour evolution in the image space and steepest descent
iterations in the shape space. The decoupling of the optimization processes into image
and shape spaces provides an extremely flexible optimization framework for general
statistical shape based active contour where evolution function, statistical model, shape
representation all become configurable. The presented experimental results demonstrate
very strong resilience of the proposed method to the random as well as structural noise
present in the image.
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Abstract. We introduce a new segmentation method based on second-order en-
ergies. Compared to the related works it has the significantly lower computational
complexity O(N log N). The increased efficiency is achieved by integrating cur-
vature approximation into a new bidirectional search scheme. Some heuristics
are applied in the algorithm at the cost of exact energy minimisation. Our novel
pseudo-elastica core algorithm is then incorporated into a user-guided segmen-
tation scheme which represents a generalisation of classic first-order path-based
schemes to second-order energies while maintaining the same low complexity.
Our results suggest that, compared to first-order approaches, it scores similar or
better results and usually requires considerably less user-input. As opposed to a
recently introduced efficient second-order scheme, both closed contours and open
contours with fixed endpoints can be computed with our technique.

Keywords: Image segmentation, second-order energy, curvature regularity, ac-
tive contour.

1 Introduction

The active contour (AC) introduced by Kass et al. [1] is a successful and seminal con-
cept in Computer Vision. The main idea is to capture an object of interest by an evolving
contour which converges towards the boundary of the object. The evolution is guided
by an internal force, which imposes regularity on the contour, and an external force at-
tracting the contour to image features. Main drawback of the original AC and its main
successor, the geodesic active contour (GAC) [2], is that the respective minimised en-
ergies are not convex and curve evolution due to gradient descent usually converges to
a steady state that is locally rather than globally optimal. During the last decade sev-
eral techniques have been introduced to overcome this drawback. Cohen and Kimmel
[3] applied Sethian’s fast marching method [4] to efficiently compute globally optimal
GACs with given endpoints. Later, Boykov and Kolmogorov [5] used graph cuts to ob-
tain closed globally optimal GACs, and Appleton and Talbot [6] achieved the same goal
by skilful application of Cohen and Kimmel’s [3] scheme in a curved product space.

The above mentioned approaches [3,5,6] have in common that they base on first-
order energies, i.e. suitably weighted arc length functionals. Subsequently, it has shown
that first-order techniques, even scale invariant ones (see [7]), have a bias toward short
curves. Therefore, segmentation energies including second-order, i.e. curvature-, terms
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have recently attracted considerable interest. Schoenemann and Cremers [7] find global
minima of a ratio energy including curvature terms. However, large product graphs are
required for this method, resulting in computing times of minutes and hours rather than
seconds. Later, Schoenemann et al. [8] proposed a similar technique for region-based
image segmentation that also suffered from high running times. Recently, Zehiry and
Grady introduced efficient algorithms with curvature regularity for both region- and
edge-based energies ([9] and [10], respectively), transforming the original problem to
an graph cut optimisation problem. The authors report running times of a few seconds.

In this paper we introduce a new approach to curvature regularised image segmen-
tation. Its core is a novel bidirectional Dijkstra search scheme in a graph-based frame-
work. Due to its computational complexity of O(N log N), the core algorithm can be
seen as a generalisation of first-order shortest path algorithms such as [11,4] and related
schemes for image segmentation [3]. The running times are typically below one second.
Yet heuristics have to be applied to achieve such computational efficiency, therefore the
computed contours are only approximately globally optimal. In contrast to the approach
in [10] our algorithm also allows for the computation of open contours with fixed end-
points, which is e.g. beneficial for feature segmentation from face- or medical data.

The paper is organised as follows: Two new segmentation energies are introduced in
Section 2. Algorithms are proposed in Section 3, that compute approximately globally
minimal open curves. The core algorithm is integrated into a user-guided schemes for
image segmentation in Section 4. Section 5 presents results on several images, includ-
ing quantitative comparisons with the state-of-the-art techniques. The conclusions in
Section 6 complete the paper.

2 Second-Order Energies for Active Contours

Let I : Ω → R
+ be a greyscale image on the rectangular domain Ω and Γ : J →

Ω be a closed contour with J = [0, 1]. Further, let f : Ω → R
+ denote an edge

indicator function, taking small values close to desired image features and larger values
elsewhere. We propose the following two segmentation energies:

E1(Γ ) =
∫

Γ

f(s)(cκ2 + 1) ds and E2(Γ ) =
∫

Γ

(
cκ2 + f(s)

)
ds , (1)

where κ is the curvature of Γ , and c > 0 is a constant. There is a close relationship
between the energies E1 and E2 proposed here and both, the classical GAC energy (E1

with c = 0, see [2]) and the elastica energy (E1 with f ≡ 1, see e.g. [9]). Thus, ener-
gies E1 and E2 can equally be interpreted as second-order regularisations of the GAC
functional and weighted versions of the elastica, attracted to certain image features.

The key difference between the two proposed energies is the following: while the
curvature term is weighted with the feature detector function f in E1, it has a constant
weight c in E2. Hence, the curvature regularisation prior is strong in E2, making this
energy suitable for robust segmentation of objects with comparatively simple shapes,
such as approximately round or elliptic objects, even under strong noise. In energy
E1, the curvature regularisation is relaxed when the contour proceeds along an edge,
therefore this energy can model a broader range of object shapes.
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Fig. 1. The idea of dynamic curvature estimation (a). Refined curvature estimation is achieved by
tracking straight segments over multiple edges (b). Representation of two discrete circles (c).

3 Efficient Approximation of Global Minimisers

3.1 Open Contours with Directional Constraints in One Endpoint

The graphs used here are directed 2D grid graphs G = 〈V , E〉 with vertices V that are
embedded into R

2 in a regular grid-like manner. The edges are generated by topologi-
cally identical neighbourhood systems D for all vertices. To obtain realistic approxima-
tions of the curvature, a large 32-neighbourhood system is chosen (cf. [7]).

Core of our algorithm is a Dijkstra scheme [11] starting from one point (possibly
with directional constraints) and terminating once the endpoint is reached. The novelty
is that curvature is integrated and the edge weights are computed dynamically. Note,
that more details of the algorithm, including pseudo-code, can be found in [12].

Dynamically computing curvature. The estimation of the curvature is achieved sim-
ilarly as in e.g. [7]: by computing the angle between two adjacent edges. However, to
obtain an efficient algorithm, we incorporate curvature estimation into a greedy algo-
rithm. Figure 1(a) illustrates the main idea of approximating the curvature, under the
assumption that the pseudo-minimal path up to pixel p has already been computed. In
order to update the neighbours of p, the edge weights are defined dynamically: the cur-
vature is approximated analysing the respective angles in the contour (γ1 and γ2 in Fig.
1(a)). Apparently, the curvature cannot be defined for a single edge, but rather for a pair
of edges. Thus, the weight of an edge is computed from the curvature and a weighted
average of f on the edge e and its predecessing edge ep (see (3) below). For the energy
E1, the weight ω of the edge e = (p, q) is computed as follows (with ep = (w, p)):

ω(e) = f̂(ep, e)(cκ2
γ1

+ 1)�(e) (2)

with f̂(ep, e) = �(ep)/
(
�(ep) + �(e)

) · f(ep) + �(e)/
(
�(ep) + �(e)

) · f(e) (3)

with �(.) the length of an edge. E2 is treated analogously. For the starting edge we
assume κ = 0 and define ω(e) = f(e)�(e).

The definition of the curvature term κγ1 is discussed next. A first guess is κγ1 = C·γ1

with C a suitable weight depending on the length of the adjacent edges (as in [7]).
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Fig. 2. The bidirectional Dijkstra scheme: (a) illustrates the key idea, and (b) details the notation

Yet considerations regarding the scaling behaviour of the curvature (detailed in [12])
suggest that this approach has to be enhanced to suit the proposed framework (see Fig.
1(b)): the algorithm tracks along the minimal path, when a straight line is extended over
multiple edges, and sums up the total length L of the straight segment. If the absolute
curvature angle |γ1| does not exceed a certain threshold pκ,1 (roughly 2 · 2π

|D| ), the
estimated curvature in p is obtained by dividing the curvature angle γ1 by L. Otherwise,
γ1 is divided by the length of the incoming edge ep = (w, p). By this means, we
achieve that the curvature scales as desired for sufficiently smooth – in a discrete sense
– contours differing only in their scale (cf. Fig. 1(c)).

3.2 Open Contours with Directional Constraints in Both Endpoints

The bidirectional Dijkstra approach (Fig. 2). Starting from the endpoints v and w,
the distance functions dv and dw are computed simultaneously – each by a dynamic
Dijkstra scheme as described in Sect. 3.1. The sets of vertices labeled ‘known’ or ‘trial’
by the Dijkstra schemes Dv and Dw after i iterations are denoted by Kv(i) and Kw(i)
(Fig. 2(a)). With increasing i, the sets Kv(i) and Kw(i) propagate and, eventually, start
to overlap (Fig. 2(a)). For a vertex p in the intersection the preliminary pseudo-minimal
paths Pv and Pw (as in Section 3.1) can be tracked back to the endpoints v and w,
respectively. We measure the smoothness of the intersection between the partial paths in
vertex p as follows (see Fig. 2(b)): first, the local curvature is computed from the angle
γ, describing the change of direction of the adjacent edges ev and ew. If |γ| is below a
certain threshold pκ,2 (e.g. π/4) the intersection is at least locally sufficiently smooth.
In this case, the curvature is reestimated in a larger neighbourhood in order to impose
smoothness on a larger scale. The simple scheme in [13] is used: given a neighbourhood
size parameter m , the scheme localises the two points b1, b2 that have the (arc length-)
distance m from p. Then, the refined curvature is computed from the change of direction
β in the m-neighbourhood (Fig. 2(b)). A score for the concatenated path is summed
up from the partial distance values dv(p) and dw(p), and the intersection energy. If
a score is lower than the current minimum, the score and the respective intersection
point are stored. The algorithm terminates as soon as the sum of the partial distances on
the propagating fronts exceeds the hitherto minimal score. The pseudo-minimal path is
then tracked back from the stored intersection point. Note that the idea of bidirectional
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Fig. 3. Example for user-guided segmentation (ultrasound kidney image, energy E2 with c = 1):
two lines Ii across the object boundary are provided by the user. Only rough constraints are
applied for the computation of P1 (left). Section P2 is constrained to smoothly close P1 (right).

search goes back to Pohl [14]. The novelty of our algorithm lies in the generalisation of
this notion to second-order energies.

For an image with N pixels and neighbourhood size |D| the graphs in our method
have N vertices and about |D| · N edges. Assuming |D| to be constant, this results in
an asymptotic complexity of O(N log N) for the algorithms proposed above.

4 Application to Image Segmentation

For the experiments shown in this paper we use the following edge detector function:

f±(e) = 1/(1 + (max{0,±〈ν,∇Iσ(e)〉})2) . (4)

Here, Iσ is an image smoothed by convolution with a suitable kernel, ∇Iσ denotes
the gradient of Iσ averaged along an edge e and ν is the unit normal of e. Depending
on whether the object or the background is brighter, f+ or f− has to applied. In the
following, these two complementary functions are subsumed under the notation f .

Algorithm for closed contours. Apart from the obvious application of the proposed
algorithm to open contours, it can also be used to compute piecewise pseudo-optimal
closed contours. As opposed to related first-order schemes (e.g. [3]), smooth transitions
are ensured by the directional constraints in the intersection points.

The user has to provide n ordered streaks (e.g. lines) I1, . . . , In across the boundary
of the object of interest. The robustness and efficiency of the algorithm is further im-
proved, when the streaks are assumed to run roughly perpendicular through the bound-
ary (cf. Fig. 3). For each section, the above algorithm for open contours is applied to
find a pseudo-minimal path satisfying the following constraints:

– A contour connecting the sets I1 and I2 is computed. f is tested with both possible
orientations, and the path with the lower energy indicates the proper orientation;

– For the interior sections (Pi, 1 < i < n) the path is constrained to start from the
second-last vertex of the previous section (Pi−1) in direction of the last edge of
Pi−1. The conditions in the endpoint are as described for the first section above;
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Fig. 4. Pseudo-elastica (classic case, f ≡ 1 in (1)) connecting two points with directional con-
straints in the starting point only (left, c = 30) and both endpoints (right, c = 30)

– For section Pn, the start direction is derived from Pn−1, and the ending direction is
inferred from P1 (Fig. 3 (right)).

5 Experimental Results

We compared the pseudo-elastica to state-of-the-art segmentation methods with respect
to accuracy and efficiency. All algorithms were coded in C++, and the experiments were
run on an Intel Core 2 Duo 2.5 GHz machine. The parameters inside the pseudo-elastica
core algorithms were kept constant across all experiments: pκ,1 = 0.15π, pκ,2 =
π
4 , m = 7, see [12]. First we validated our approach by simulating the case of the clas-
sic elastica (f ≡ 1 in either energy in (1)). The results (see Fig. 4) indicate that despite
the use of heuristics our method delivers a good approximation of the exact elastica
(cf. [15]). Subsequently, the pseudo-elastica were compared with two top recognised
schemes in the field of medical imaging: the globally optimal AC [3] and the graph
cut based GAC [5]. Note that a comparison with the algorithm proposed in [10] is the
subject of a subsequent paper. We emphasise that in contrast to [10] our technique is
also applicable to open contours with fixed endpoints (bottom row of Fig. 5).

Figure 5 shows sample results on images of different qualities and noise levels, and
a quantitative evaluation is given in Table 1. Ground truth contours were delineated
manually by a medical expert. Both, visual impression and the statistical values in
Table 1, suggest that the pseudo-elastica algorithm performs similarly well or better
than its competitors in many cases. Further, our experiments showed that considerably
less user input is required by the pseudo-elastica method than Cohen and Kimmel’s first-
order technique [3]. For the corpus callosum image with its weak edges, for instance,

Table 1. Accuracy evaluation of the proposed algorithm

Image Size Pseudo-Elastica Cohen/Kimmel [3] Graph cut [5]
(in pixels) error (pix.) time error (pix.) time error (pix.) time

Engy. c mean max in s w mean max in s σ mean max in s
C. Callosum 276 × 200 E1 1.0 1.1 3.3 0.3 0.25 1.2 4.3 0.2 1 1.4 7.1 0.1

Head 367 × 303 E2 1.0 1.7 4.3 0.5 0.1 2.1 11.9 0.6 2.5 5.9 17.8 0.3
Filament 322 × 298 E1 10.0 1.2 4.3 0.2 0.025 2.5 12.7 0.3
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Fig. 5. Comparison of pseudo-elastica (right, with input streaks) with Cohen/Kimmel AC (mid-
dle, with nodes) and graph cut GAC (left, with foreground/background seeds)

more than 10 nodes had to be provided to Cohen and Kimmel’s algorithm by the user.
This is a tedious and time consuming task, that often requires several trials before an
acceptable result is obtained. On the other hand, two lines across the object boundary
are mostly sufficient to obtain a robust and accurate result with pseudo-elastica.

Second-order techniques such as the pseudo-elastica are particularly suited for the
segmentation of ultrasound images. Such images usually contain a great amount of
speckle noise and large gaps in the object boundaries, rendering them difficult to pro-
cess. The graph cut method can hardly cope with these conditions (see the middle row
in Fig. 5), and Cohen/Kimmel’s method yields satisfactory results only if many nodes
are provided by the user. The pseudo-elastica in conjunction with energy E2 usually
achieve a robust result with little user input. Despite the additional averaging of the de-
tector function over two adjacent edges in (3) the accuracy of our method is similar or
better than that of the compared schemes. Finally, our experiments support the fact that
the computational complexity of the pseudo-elastica is the same as the one of Cohen
and Kimmel’s method [3]: O(N log N). All contours shown in Fig. 5 were computed
in less than one second. We note that further experiments can be found in [12].
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6 Conclusion

We have developed a novel framework for 2D image segmentation.Two segmentation
energies penalising curvature were introduced, and a new algorithm was developed to
efficiently approximate these minimisers using a bidirectional Dijkstra-like search. The
core algorithm has the complexity1 O(N log N), which is significantly less than exist-
ing globally optimal segmentation methods [7,16] incorporating curvature regularity.

Results on various images, including noisy ultrasound images, suggest that our
method scores favourably against state-of-the-art algorithms [5,3]. Equally good or bet-
ter results were obtained with significantly less user input. Due to typical processing
times of less than a second, the presented method constitutes a feasible alternative to
first-order shortest path approaches such as [3].

Main drawback of the pseudo-elastica compared to other methods such as [3,5,7,10]
is that the computed contours are not exact energy minimisers. Heuristics are applied
in order to obtain an efficient scheme for practical use, and some parameters inside the
algorithm have to be set. Yet the algorithm showed robustness with respect to the choice
of the parameters, since one set of values could be used across all experiments.

Like other shortest path-based techniques (e.g. [3,7]), pseudo-elastica cannot detect
multiply-connected regions. This distinguishes the path-based methods from the im-
plicit methods, such as level sets and graph cuts. Moreover, there is no obvious exten-
sion of the method to 3D volumetric images. Yet Ardon and Cohen [17] have applied
shortest path techniques to 3D surface segmentation. Studying, whether pseudo-elastica
can be embedded into a similar scheme is an exciting avenue for future research.
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Abstract. This paper presents an automatic method for detecting the conics from 
an omnidirectional image and use the conics for camera calibration. The method 
assumes the camera system is orientated in a way that the mirror axis is 
orthogonal to the floor. In this way two special cases of parallel lines can be 
obtained: one set of lines are orthogonal to the mirror axis; and the other set is 
lines that are coplanar with the mirror axis. Based on these special lines' geometric 
properties under central catadioptric projection, we show that automatic 
calibration of catadioptric from a single image can be achieved. The experiment 
results show that the method not only improve the accuracy of the conic fitting in 
the image but also provide robustness against conic occlusion and noise. 

Keywords: Conic fitting, catadioptric camera, calibration, vanishing points. 

1   Introduction 

Accurate calibration parameters of camera are important in the application of 3D 
reconstruction, ego-motion, photogrammetry, etc. With the trend of using catadioptric 
systems in various applications where a wide field of view is required, various 
techniques for calibration of catadioptric cameras are devloped. A catadioptric camera 
can be calibrated using two or more images of the same scene, e.g. Kang [2] and 
Micusik [7]. Some researchers use planar grids. For example, Scaramuzza [4] 
described the catadioptric image projection with a Taylor series expansion. The 
coefficients of the expansion model are obtained by solving a least-square linear 
minimisation problem. In Mei and Gasparini’s work [5][6], catadioptric homography 
is computed using images of planar grids. Factors such as misalignment of mirror and 
camera, camera-lens distortion are taken into account. Another route for calibrating 
catadioptric camera is to use geometric properties such as line projections from a 
single catadioptric image. Geyer and Daniilidis [11] proposed to use two sets of 
parallel lines for calibrating catadioptric camera. This method is designed for para-
catadioptric cameras, the aspect ratio of the camera is assumed to be one, and then the 
parallel lines projected on the image plane are circular arcs with collinear centres. 
Ying [8] demonstrated the use of line and sphere projections in central catadioptric 
camera calibration. Ying’s experiment show that the projection of sphere provide 
better conic fitting than line projection since sphere projection provide bigger portion 
of a conic. Hence a more accurate calibration is resulted. However, the requirement of 
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at least three sphere projections in building environment is not easy to satisfy. Our 
proposed method also uses line projections in the catadioptric image. The idea is 
motivated by the fact that large amount of regular geometric structures such as 
parallel and orthogonal lines are normally presented in images of man-made objects. 
Research papers [1, 8-11] already show that geometric properties of conics (line 
projections) in the catadioptric image enable the calibration. If conics can be 
automatically detected, then the whole calibration process from a single catadioptric 
image can be made automatic. The problem lies at the automatic conic fitting. As 
pointed out by Barreto [1], under the central catadioptric projection, line in the 3D 
world is generally mapped into a small arc of a conic. This raises the difficulty of 
accurately estimating the conic parameters from the image itself.  

This paper presents an automatic method for detecting the conics from an 
omnidirectional image and use the conics for camera calibration. The method assumes 
the camera system is orientated in a way that the mirror axis is orthogonal to the floor. 
The approach is based on the geometric properties of two special parallel lines sets: 
one set contain parallel line projections (i.e. conics) that are orthogonal to the mirror 
axis; and the other set include line projections that are coplanar with the mirror axis. 
The performance of the proposed method is evaluated on both synthetic and real data. 

2   Method 

The proposed method uses the unifying model of central catadioptric projection 
developed by Barreto [12] (shown in Figure 1(a)). A 3D world point X is projected on 
the unit sphere at XC. The unit sphere is centre at the focal point of mirror and denoted 
as O. The unifying model represents this transformation by a 3×4 matrix P |                                                    (1)   

After computing XC =PX, the point XC is then mapped to the point  in the sensor 
plane ∞. This transformation is modelled using function , in which the non-

linearity of the mapping is contained. The point OC with coordinates (0, 0, ξ)T is the 
other projection centre which re-projects the point XC on the unit sphere to  in the 

sensor plane ∞. The function  is written as 

                                                                             (2) 

Finally, a collineation HC is applied to transform  to obtain the point  in the 
catadioptric image plane, i.e. . HC is written as 

                         where 0 00 00 0 1                      (3) 
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MC changes according to the mirror type and shape, KC is the camera calibration 
matrix and RC is the rotation matrix of the mirror relative to the camera. The majority 
of the catadioptric sensors commercially available have their mirror accurately 
aligned with the camera, i.e. the conventional camera is not rotated with relation to 
the mirror surface. Therefore, the rotation matrix  and  is an affine 
transformation. The line at infinity ∞ is the intersection of the plane at infinity ∞ 
and the Catadioptric image plane . Since  is affine, then ∞ 0, 0, 1  in ∞ is 
mapped to ∞ 0, 0, 1  in . Generally, the calibration of a central catadioptric 
system is to obtain mirror parameter ξ and the collineation matrix . For parabolic 
mirror case, ξ 1 and the calibration is much easier. The lines under the projection of 
parabolic sensor are mapped to circles in the image plane if aspect ratio of the camera 
is one and skew factor is zero [11]. Our target is then the more complicated 
hyperbolic case where ξ is unknown. .00 0 1                                                   (4) 

 is the aspect ratio,  is the effective focal length,  is the skew factor and ,   is the principal point. To obtain  and  for a central catadioptric system 
from a single image, the key is the location of the absolute conic ∞ and the equation 
of cross ratio { , ; , . These are derived from  

                                     ∞                                               (5) 

             , ; , ξ , ; ,
ξ ξ , ; ,

ξ

                           (6) 

For detailed derivation, reader is referred to Barreto [12] and Duan [14]. 

 
(a) (b) 

Fig 1. (a) The unifying model for image formation of central catadioptric cameras; (b) Full 
calibration of a hyperbolic/elliptical system using two parallel lines 
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2.1   Calibration Using One Set of Parallel Lines That Is Orthogonal to the 
Mirror Axis 

Under central catadioptric projection, lines that are not coplanar with the mirror axis 
are projected to conics in the image. A set of parallel lines that is orthogonal to the 
mirror axis is represented by two line projections in Figure 1(b) which provide 
minimal information for the calibration task. The algorithm starts by fitting two conic 
curves to projected points in the image. The automatic conic fitting technique is 
described in section 2.3, here we assume the conic curves  and  are obtained. 
These two conic curves define a set of catadioptric line images which all of them 
intersect at two points  and . From proposition derived in [14], we know that if 

matrix  is affine, the principal point  lies in the middle of the line segment . 
Table 1 summarise the proposed calibration procedures. 

Table 1. Algorithm of hyperbolic system calibration using the projection of at least two parallel 
lines orthogonal to mirror axis 

Objective 
Given a single image taken by hyperbolic camera, calibrate the camera and estimate the 
mirror parameter using line projections. The lines in the scene are assumed to be orthogonal 
to the mirror axis.  
Algorithm 
(i) Obtain at least two catadioptric line images  and  (which are the projections 

of lines orthogonal to the mirror axis) using conic fitting 
(ii) Compute their common intersection points  and  
(iii) Locate image centre  since  is collinear with ,  and  
(iv) Obtain polar lines  and  of image centre  with respect to conic  and  

using  and  
(v) Compute the intersection points , , ,  of ,  with , , respectively 
(vi) Define the absolute conic ∞ using , , ,  and ∞ ∞  
(vii)  is estimated from the Cholesky decomposition of ∞ since ∞  
(viii) Line  is given by  and ∞ 0, 0, 1 , so the points , , and  

are obtained using . ∞, ∞.  and ∞ , respectively 
(ix) Mirror parameter  is then computed using equation (6) 

2.2   Improving Calibration Efficiency Using a Set of Parallel Lines Coplanar 
with the Mirror Axis 

As mentioned previously, under the central catadioptric projection, line in the 3D 
world is generally mapped into a small arc of a conic and sometimes occlusion also 
occur. This raises the difficulty of accurately estimating the conic parameters from the 
image itself. Even when the image points of a conic arc is manually selected, the 
fitting can be unreliable if the arc is smaller than 140 degrees [12][13]. This leads to 
inaccurate locations of  and  in the calibration method described in Table 1, as well 
as image centre . This problem can be solved by using the degenerate case of line 
projection (i.e. parallel lines coplanar with mirror axis). Lines coplanar with mirror 
axis are mapped to straight lines and intersect at principal point  in the catadioptric 
image plane (proposition derived in [14]). Lines are easier to detect and define than 
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conic from an image since conics correspond to points in a five dimensional 
projective space whereas lines correspond to points in two dimensional projective 
space. The accuracy of line fitting for image of lines parallel to mirror axis can be also 
used to check if the mirror is aligned properly with the perspective camera. So the 
projection of a set of parallel lines coplanar with the mirror axis can provide more 
accurate image centre   location than stage (i) to (iii) described in Table 1. 

 

Fig. 2. Catadioptric projection of two parallel-line sets, one set is orthogonal to the mirror axis 
and the other set is coplanar with the mirror axis 

2.3   Simultaneous Conic Detection and Grouping 

In this section, since the more accurate image centre can be obtained as described 
above, we show how this information can be used to automate the task of conic 
detection and grouping. 

Figure 2 illustrates the catadioptric projection of two parallel-line sets. Parallel 
lines ,  and  are orthogonal to the mirror axis and parallel lines ,  and  
are planar with the mirror axis. If ,  and  are assumed to have equal length, 
then their mapped image – conic curves ,  and  will have different arc length. 

,  and  are mapped to ,  and  in the catadioptric image. The principal 
point  can be computed by solving 

                                    min ∑                                                (7) 

Table 2 summarise the proposed conic fitting approach.  

Table 2. Conic fitting algorithm for improving fitting accuracy and enabling automatic 
processing 

Objective 
Given the catadioptric image of two sets of parallel lines, one set orthogonal to the mirror 
axis and the other coplanar with the mirror axis, fit conics to the arc segments and estimate 
the common intersection  and . 
Algorithm 
(i) Compute the principal point  using equation (7) 
(ii) Fit conic  to the arc with largest degree value 
(iii) Estimate  and  using constraints: (1) ; (2) ,  and  are 

collinear; and (3)  and  lie on the conic fitted to  
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Table 2. (Continued) 

(iv) The value of  and  is assigned to ′ and ′ 
(v) Estimate the next conic  using ′, ′ and image points of available arc, ′, ′ 

can be weighted according to the degree span of the first arc 
(vi) Re-estimate all fitted conics with the updated ′, ′ 
(vii) Compute  and  that lie on  exactly using constraints from (iii) for each 

conic fitted so far 
(viii) Update ′ and ′ with the means of all  and  and go back to stage (v) 
(ix) Stop the iteration when ′ ′  or ′ ′  is smaller than , or all arc 

segments has been fitted 

3   Experiment Results 

A number of experiments are carried out on both simulated and real data. The 
proposed method is evaluated with respect to noise sensitivity, occlusion and the 
number of detected segments. Since the location of intersecting points ,  and 
principal point ,  are the keys to unlock the whole calibration of catadioptric 
system as described in Table 1, the estimated point coordinates are compared to its 
ground truth value. The difference between constrained conic fitting described in 
Table 2 and free conic fitting (i.e. simply fit a conic to each arc) is also tested.  

3.1   Calibration with Simulated Data 

The calibration parameters of the simulated catadioptric camera are set as: aspect ratio 
r = 1, skew factor s = 0, effective focal length fe = 450, image centre 400 and 300, image size 800×600 and mirror parameter 0.9886. First of all, a set of 
N = 5 lines are generated by choosing five normal vectors n from the unit sphere. To 
make sure this set of lines are parallel and orthogonal to the mirror axis, the unit 

sphere is expressed spherical coordinate system (θ, ϕ, r) where θ ϵ [0, 2π], ϕ ϵ [0, π] 

and r = 1, then the value of ϕ of the normal vector are randomly generated while 
keeping the value of θ unchanged. 

The first experiment is to test the noise sensitivity of proposed method. Gaussian 
noise with zero mean and σ standard deviation is added to the synthetic image. The 
noisy simulated images with value of variance varying from 0.01 to 0.1. For each 
noise level, results are compared to the ground truth and RMS error are computed 
from 200 independent trials. In Figure 3(a), the algorithm's robustness against noise is 
evaluated. The second experiment conducted is to test how the calibration accuracy 
change against the number of arc segments available. Here, the value of Gaussian 
noise variance is set to σ = 0.05.  The results in Figure 3(b) shows that calibration 
accuracy increase with the number of arc segments detected and sub-pixel accuracy 
can be reached by five conics. In the third experiment, we test the robustness of the 
proposed method against occlusion. The visible conic segments are varied from 360 
to 60 degrees. Here, our proposed constrained conic fitting are compared to conic 
fitting independently to each visible arc. As can be seen from the results showing in 
Figure 3(c), the proposed algorithm shows good improvement on calibration accuracy 



74 W. Duan and N.M. Allinson 

 

compared to unconstrained conic fitting, especially when occlusion is more than 180 
degrees. For all the experiment described above, conic fitting technique LMS – 
normal least squares minimisation is chosen to be used in our experiment. This is 
because our major target is to show the use of two special parallel line sets in 
catadioptric calibration and how the conic fitting can be constrained to improve 
calibration accuracy.  

 

(a) (b) (c) 

  

(d) (e) 

Fig. 3. (a)(b)(c) Experimental results from simulated data; (d) Conic detected and grouped to 
locate the vanishing points; (e) Rectification of floor using the estimated calibration results 

3.2   Calibration with Real Data 

For the experiment with real data, we used a perspective camera with a hyperbolic 
mirror. The hyperbolic mirror is commercially available named The 0-360 Panoramic 
Optic, which has the vertical field of view (FOV) of 115 degrees. Figure 3(d) shows 
the detected conics corresponding to a set of parallel lines orthogonal to the mirror 
axis. Figure 3(e) shows the rectification using the calibration results. During the 
experiment, it is also found that the absolute conic ∞ has to be positive definite to 
enable calibration for the method described in Table 1. However, when noise is large, 
the algorithm is then unstable. Luckily, as long as the intersection points of conics for 
parallel line set are detected, the problem can be avoid using similar method as 
proposed by Geyer and Daniilidis [11].  
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4   Summary 

This paper first derived that catadioptric camera can be calibrated using the projected 
image of only one set of parallel lines. This set of lines are assumed to be orthogonal 
to the mirror axis. To enable automatic calibration from a single catadioptric image, 
automatic detection and grouping of conics corresponding to the parallel lines are 
required. This can be achieved using another set of parallel lines which are coplanar 
with the mirror axis. The projection of these lines all intersect at the principal point. 
The experiment results show that larger number of detected 'parallel' conics can 
improve the accuracy of vanishing points location. The proposed constraint on conic 
fitting can perform twice as good as unconstraint conic fitting especially when arc 
occlusion is large. The research work described in this paper is only the first step of 
exploiting the use of featured parallel line under catadioptric projection. Its usage can 
be extended further in applications such as 3d reconstruction and extracting metric 
information from the catadioptric image. 
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Abstract. An algorithm is presented to segment a color image based on the 3D 
histogram of colors. The peaks in the histogram, i.e., the connected components 
of colors with locally maximal occurrence, are detected. Each peak is associated 
a representative color, which is the color of the centroid of the peak. Peaks are 
processed in decreasing occurrence order, starting from the peak with the 
maximal occurrence, with the purpose of maintaining only the representative 
colors corresponding to the dominant peaks. To this aim, each analyzed peak 
groups under its representative color those colors, present in the histogram and 
that have not been grouped to any already analyzed peak, such that their 
distance from the centroid of the peak is smaller than a priori fixed value. At the 
end of the grouping process, a number of representative colors, generally 
substantially smaller than the number of initial peaks, is obtained, which are 
used to identify the regions into which the color image is segmented. Since the 
histogram does not take into account spatial information, the image is likely to 
result over-segmented and a merging step, based on the size of the segmentation 
regions, is performed to reduce this drawback.  

1   Introduction 

Image segmentation is a key process in pattern recognition and computer vision, since 
the quality of any image analysis and understanding task is highly conditioned by the 
quality of the segmentation results. Purpose of segmentation is to partition an input 
image into a number of disjoint regions, each of which should ideally correspond to 
one of the regions that a human observer perceives in the scene. The regions of the 
partition should be such that pixels in a given region are similar as regards a given 
property, e.g., color, intensity, or texture, while pixels belonging to adjacent regions 
should differ from each other significantly as regards that property. 

Different segmentation approaches have been suggested in the literature, such as 
histogram thresholding, feature clustering, multiresoltion representation, region-based 
methods, fuzzy techniques, neural networks (see, e.g., [1-9]).  

The majority of the published papers deal with gray level images or suggest color 
image segmentation techniques that are based on gray level image segmentation 
schemes [10]. The three components of the image in the selected color space are 
processed individually as gray level images, or by considering pair-wise color 
projections [11] and the results are then combined to originate the segmented color 
image.  
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One of the main reasons for resorting to gray level segmentation of the individual 
color components is the noticeably higher computational complexity of the high-
dimensional color space. However, since the human visual system is able to 
distinguish many more color shades than shades of gray, in some cases color is 
essential to correctly identify all objects in a scene. Thus, by taking into account that 
color information as a whole is likely to be lost when the color is projected onto three 
components and also that an increasing number of processing hardware able to deal 
with the computational complexity due to the high-dimensional color space are 
available, methods processing directly color images are of interest. 

Color segmentation can be seen as a clustering problem in the 3D space, where the 
coordinate axes are the color components and each point represents one of the colors 
in the image. Clustering is accomplished by assigning a set of observations to well 
separated clusters, where the observations in a given cluster are similar in terms of 
certain features. Image features are generally based on color or texture and are 
computed within a small size window centered on each pixel to be classified. The 
most commonly used clustering methods are the K-means [12] and the fuzzy C-means 
[13]. Particularly the fuzzy C-means algorithm has been widely employed due to its 
ability to produce rather compact regions in the segmented image and thanks to the 
simplicity of implementation. However, the method requires an initial decision on the 
number of clusters and an appropriate distribution of the initial cluster centroids, 
which may affect the quality of the resulting segmentation. Some methods aiming at 
the solution of the above problems have been recently published, e.g. [14,15], but the 
proposed suggestions do not always efficiently overcome the problems. 

In this paper, we suggest a color image segmentation scheme based on the use of 
the 3D histogram of the image. The underlying assumption is that each region of the 
image characterized by almost uniform color corresponds in the histogram to a group 
of bins including a dominant peak.  

To identify the dominant peaks, we process all peaks found in the histogram in 
decreasing occurrence order, starting from the peaks with maximal occurrence. Each 
peak gathers the colors whose distance from the peak is smaller than an a priori fixed 
value, which is set based on color distribution. All gathered colors are associated the 
same representative color. Segmentation is obtained by changing the true color of 
each pixel of the input image with the appropriate representative color. Due to the fact 
that the histogram does not take into account spatial information, the image resulting 
after the true colors have been replaced by the representative colors is likely to be 
over-segmented. Thus, a merging step, based on the size of the segmentation regions, 
is then taken into account, aimed at reducing over-segmentation. 

With respect to C-means, we do not need to fix a priori the number of dominant 
peaks. Moreover, we do not require any particular initial distribution of the centroids. 
A positive aspect of our method is that color information is employed without 
resorting to the separation of the three color components or to the use of projections 
onto suitable color planes. Though working with the 3D histogram, the method is not 
highly expensive from the computational point of view and produces in the average 
satisfactory results. 

The paper is organized as follows. Some basic notions are given in Section 2. The 
algorithm is described in Section 3. Experimental results are shown in Section 4. 
Finally, concluding remarks are given in Section 5. 
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2   Preliminaries 

We work with RGB images and interpret colors as three-dimensional vectors, with 
each vector element having an 8-bit dynamic range.  

The 3D histogram H of a 2D color image I is computed by representing the RGB 
color space as a three-dimensional cube in a cubic grid with values ranging along 
each axis from 0 to 255. The voxels of H are initially set to 0. For each pixel of I with 
color (x, y, z), the voxel in position (x, y, z) of H has its value increased by 1. When all 
pixels of I have been inspected, each voxel of the three-dimensional cube H counts 
the number of pixels of I with the same color.  

The 3×3 (3×3×3) neighborhood of a pixel (voxel) p of I (H) is the set including the 
8 (26) neighbors of p. In the following, we will use for short the same symbol p to 
refer to both a pixel of I (voxel of H) and to its color (occurrence). 

To identify the peaks of H, we find the connected components of voxels with 
locally maximal occurrence, i.e., any connected set C of voxels, all with the same 
occurrence p, such that any voxel that is not in C but has at least a neighbor in C has 
occurrence smaller than p. A peak may consist of a single voxel or of a connected 
component of voxels with the same occurrence in H. The latter case occurs when 
similar colors, corresponding to neighboring voxels in H, are equally frequent. 
Synthetical images can be built where the furthest voxels of a peak correspond to very 
different colors. However, for natural images this does not generally happens and 
each peak of H includes only voxels corresponding to colors rather similar to each 
other.  

The representative color associated with a peak consisting of a single voxel in 
position (x, y, z) is obviously the color characterized by R=x, G=y and B=z. In turn, 
for a peak consisting of a connected component of voxels, the representative color 
associated to the peak is the color of the centroid of the peak. 

3   The Algorithm 

Our segmentation algorithm consists of two steps. The first step identifies the main 
colors present in the image and builds segmentation regions where pixels in each 
region are closer to one of these colors than to any other color. The second step 
performs merging, based on the size of segmentation regions, to reduce the number of 
regions in the resulting segmented image. 

During the first step, the histogram H is built and all the peaks are identified. Peaks 
of H with occurrence smaller than a parameter θ, whose value is fixed based on color 
distribution, are not analyzed. Hence, these peaks for sure will not be regarded as 
dominant peaks, even if they are grouped into large connected components including 
many voxels with the same locally maximal occurrence. This is done to avoid the 
detection of a very large number of scarcely significant regions in the resulting 
segmented image and to decrease the computation time. Of course, we are aware that 
disregarding a number of peaks, even if characterized by limited occurrence, may 
result at the end of the first step in an image where not all pixels of I are assigned to a 
segmentation region. Pixels of I that cannot be assigned a representative color and, 
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hence, are not assigned to any segmentation region, are treated during the second step 
of the process. 

The value of θ should be selected by taking into account the occurrence of all 
peaks in the histogram. In our opinion, the value of θ should be a small percentage of 
the mean value of peak occurrence. Let µ indicate the arithmetic mean of the 
occurrences of the peaks of H, then we have experimentally found that θ=1% µ as 
default value for the parameter θ produces in the average satisfactory results. 

A second parameter τ is used to group around any peak the voxels of H whose 
colors do not dramatically differ from the color of the peak. This is done by 
associating the same representative color characterizing any peak to all voxels of H 
that are grouped with that peak. The value of τ depends on the maximal dissimilarity 
that the user accepts for colors to be grouped together. By taking into account the 
maximal Euclidean distance between different colors in the 3D histogram and the 
minimum number of colors expected to characterize a complex color image, we 
suggest τ=50 as default value. Also this default value has been determined 
experimentally. 

The peaks are examined in decreasing occurrence order, since the relevance of a 
peak is strongly conditioned by the number of times the color associated with the 
peak appears in the image I. In principle, we regard as dominant all the detected 
peaks. However, peaks whose associated representative colors do not strongly differ 
from each other may result to be merged into a unique group. Thus the final number 
of groups, and hence of representative colors, is likely to be smaller than the number 
of detected peaks. The larger is τ, the higher is the possibility to merge peaks. All 
voxels of H that have value different from zero and a distance from the centroid of the 
peak smaller than τ are associated to the current peak. Voxels of H already associated 
to a given peak are not taken into account when other peaks are examined. 

Obviously, large values of τ may cause grouping of colors that a user would 
perceive as dissimilar. On the other hand, small values of τ not only produce over-
segmented resulting images where a huge number of colors is used, but also risk to 
leave large portion of the input image I not assigned to any region. This would be the 
case for the pixels of I whose colors are at distance larger than τ from any peak 
detected in H. Thus, selection of θ and τ is a key point to obtain a good result. For the 
time being, we have experimentally found that the best values of θ and τ for each 
image, obtained by running the algorithm with different values for the parameters and 
by comparing the correspondingly obtained results, coincide in the average with the 
suggested default values. 

Once all peaks have been examined, the image I is inspected. Each pixel of I with 
color (x, y, z) is set to the representative color associated with the voxel in position (x, 
y, z) of H. Pixels of I for which no representative color is found in H are set to a 
special value in I, used to point out that these pixels remain temporarily as 
unassigned. We point out that differently from the representative colors, the special 
value may be assigned to pixels whose colors differ from each other significantly 
more than τ. Thus, it is very important to select the values for θ and τ in such a way to 
be sure that only a few pixels, possibly sparse or grouped in small size regions, 
remain unassigned. 
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Clearly, the same representative color, or the special value used for the unassigned 
pixels, may be set in correspondence with pixels not necessarily belonging to the 
same connected region of I. In fact, the histogram only counts the number of times 
that a color appears in I but does not take into account any spatial information. Thus, 
also the grouping process that gathers colors around a peak does not take into account 
spatial information. 

In Fig. 1 top the image “church” used as running example is shown, while the 
image resulting at the end of the first step of the segmentation algorithm is shown in 
Fig. 1 bottom left. The input image includes 23326 different colors. Out of the 1487 
peaks detected in the 3D histogram characterized by µ=300, only 13 final 
representative colors are obtained by using the default values for θ and τ (namely θ=3 
and τ=50). 

 

 

                  
 

Fig. 1. The input image “church” (top), the image resulting after the first step of segmentation 
(bottom left) and the final segmented image (bottom right) 

The second step of the segmentation algorithm is aimed at region merging. 
Merging is done both to take care of unassigned pixels and to reduce over-
segmentation. 

Preliminarily, connected component labeling is accomplished to distinguish all 
regions of the partition of I. For each connected component, the area of the region is 
recorded.  

During one inspection of I, pixels belonging to a connected component having area 
smaller than an a priori fixed value γ are set to zero. These pixels are successively 
assigned to the adjacent region with which they have the largest number of neighbors. 
Based on the experiments that we have carried on, we suggest as default value for γ 
25% of the arithmetic mean A of the area of the segmentation regions. 

Merging may cause a reduction in the number of representative colors. This 
happens whenever pixels of I that are assigned a given representative color are all 
grouped into connected components characterized by area smaller than γ. Of course, 
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the number of segmentation regions is generally larger than the number of 
representative colors.  

For the running example, the resulting segmented image is shown in Fig. 1 bottom 
right. The first step of the process generated 2644 connected components with A=60, 
which were reduced to only 96 final segmentation regions, after the merging step 
accomplished by using the default value γ=15. 

4   Experimental Results 

We have applied our segmentation algorithm to a collection of images with different 
size and color distribution, taken from available databases, e.g., [16-20]. A small 
dataset including four  images, used as test images together with the image “church” 
to show the performance of our method, is given in Fig. 2.  

\       

            
  

Fig. 2. Images “house”, “parrots”, “peppers” and “tulips” 

The resulting segmentations for the images “house”, “parrots”, “peppers” and 
“tulips” are shown in Fig.3. For each test image, the number of input colors, the 
number of peaks detected in H, the number of dominant peaks, the number of final 
representative colors, the number of partition regions before merging and the final 
number of partition regions are given in Table 1.  

The five images in Table 1 differ significantly for the number of colors, ranging 
from only 256 colors for “tulips” to 111344 colors for “peppers”. Also the number of 
peaks initially detected in each histogram significantly differs, while the number of 
dominant peaks and of final representative colors does not largely differ for the 
different images. We also point out the effect of merging by comparing the number of 
regions found before and after merging. 
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Table 1. Results for the test images 

 

image 
input 
colors 

peaks 
dominant 

peaks 
final repr. 
colors 

regions 
before 

merging 

final 
regions 

church 23326 1487 14 13 2644 96 
house 33847 9633 90 32 4511 265 
parrots 49942 48685 74 57 10710 1079 
peppers 111344 15884 57 36 11854 510 
tulips 256 256 23 22 12254 551 

 
 
The experiments show that the salient regions of images are effectively extracted 

and that the segmentation results are close to those expected by taking into account 
human perception. As already pointed out, the number of segmentation regions is 
generally significantly larger than the number of final representative colors. This is 
particularly the case for images like “parrots”, where colors of the original image that 
have been grouped into the same representative color are spread all over the image. 

   

   

Fig. 3. Segmentations for “house”, “parrots”, “peppers” and “tulips 

5   Concluding Remarks 

We have presented an algorithm for image segmentation based on the 3D histogram 
of colors. The peaks of the histogram are detected and are processed in decreasing 
occurrence order starting from the peak with maximal occurrence. A peak groups 
under the same representative color all colors with distance from the peak smaller 
than an a priori fixed value, set depending on color distribution. At the end of this 
process, only dominant peaks survive, which are generally less numerous than the 
initially detected peaks. The resulting representative colors are used to identify the 
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regions into which the input image is segmented. Since the histogram does not 
include spatial information, the image is likely to result over-segmented. Thus, a 
merging step is done to reduce over-segmentation.  

To reduce the computation time involved by the use of the 3D histogram, peaks 
with small occurrence are not processed. This may cause a number of generally sparse 
pixels of the input image to be not assigned to any segmentation region. The merging 
step, aimed at merging regions with small area to the adjacent larger regions, also 
allows us to treat unassigned pixels. 
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Abstract. A linear algorithm based on a discrete geometry approach is
proposed for the detection of digital arcs and digital circles using a new
representation of them. It is introduced by inspiring from the work of
Latecki [1]. By utilizing this representation, we transform the problem of
digital arc detection into a problem of digital straight line recognition.
We then develop a linear method for arc segmentation of digital curves.

1 Introduction

The digital arcs and circles are basic geometric objects of which the recognition is
an interesting topic. In the literature, some methods have been proposed for the
recognition of digital circles. Nakamura et al. [2] proposed a recursive algorithm
for determining the center of a digital circle, but its complexity is exponential
in the general case. Kim [3,4] proposed several results on digital disks. The first
result [3] detects if a set of grid points in a N × N image is a digital disk with
complexity O(n3). The second result [4] reduces this task to O(n2). Based on
the classical separating arc problem, Kovalevsky [5] (resp. Fisk [6]) proposed an
algorithm for the recognition of a digital disk in O(n2 log n) (resp. O(n2)) time.
Coeurjolly [7] transformed the problem of circle recognition into a problem of
search a 2D point that belongs to the intersection of n2 half-plane. Sauer [8] (resp.
Damaschke [9]) presented a linear algorithm to decide if a curve is a digital circle
(resp. arc) based on Megiddo’s algorithm [10]. Worring [11] introduced a digital
circle segmentation method by using a fixed size window process. Roussillon [12]
proposed a linear algorithm of circle recognition in 3 particular cases.

We present in this paper a linear method for the detection of digital circles or
digital arcs based on a discrete geometry approach. Firstly, a polygonalization
is applied in linear time on the input curve [13]. Secondly, we use a transform
proposed by Latecki et al. [1] to represent the obtained polygon in a novel space
called tangent space. We show that a sequence of chords of a circle will cor-
respond to a sequence of collinear points in the tangent space. So the problem
of arc/circle detection can be considered as a problem of digital straight line
recognition.

This paper is organized as follows. Section 2 recalls some definitions concern-
ing digital circles and blurred segments. The next section presents a technique
� We would like to thank Eric Domenjoud for his valuable comments.
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to transform an arc into the tangent space and proposes some principal proper-
ties of the arc in this representation. Section 4 proposes a linear algorithm for
the detection of digital arcs or digital circles. In Section 5, we present a linear
method for the segmentation of a curve into arcs and some experimentations.

2 Discrete Circle and Blurred Segment

Discrete circle: In the literature, there exist several definitions of discrete circle.
They are proposed by considering a real circle on the grid digitization. The differ-
ence among them is the process of discretization. Nakamura et al. [2] considered
a discretization of a real circle by the points of Z

2 that are the nearest points of
that circle. Kim [3] proposed a definition of discrete circle as a boundary of a dig-
ital disk superimposed by a real circle. Andres [14] used an arithmetic approach
to define a digital circle as a sequence of points superimposed by a ring.

Discrete line and blurred segment: The notion of blurred segment [13]
was introduced from the notion of arithmetical discrete line. An arithmetical
discrete line, noted D(a, b, μ, ω), is the set of points (x, y) ∈ Z

2 that verifies:
μ ≤ ax − by < μ + ω with a main vector (b, a), lower bound μ and thickness
ω . A width ν blurred segment (BS) is a set of points (x, y) ∈ R

2 that is
optimally bounded (see [13] for more details) by a discrete line D(a, b, μ, ω) veri-
fying ω−1

max(|a|,|b|) ≤ ν. Fig. 1 shows a BS of with 1.25 (the sequence of gray points)
whose optimal bounding line is D(5, 8,−8, 11). A linear method for recognition
of BS has been also proposed in [13].

3 Arc Representation in Tangent Space

Modified tangent space representation: We recall in this section some
notions concerning a representation of a polygon in the tangent space. Latecki
et al. [1] proposed the tangent space representation as a tool of similarity
measure for shape matching. Inspired from this representation, we propose a
modified tangent space to represent a polygonal curve. The difference is that
we do not normalize the axis 0x in the tangent space. Let C = {Ci}n

i=0 be a
polygonal curve, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1) and li - the length of the line segment

CiCi+1, i ∈ {0, . . . , n−1}. If Ci+1 is on the right of
−−−−→
Ci−1Ci then αi > 0, otherwise

αi < 0. From now, we denote P.x (resp. P.y) to indicate the x (resp. y)-coordinate
of point P . We consider a transformation that associates the polygon C of Z

2

to a polygon of R
2 that is constituted by line segments Ti2T(i+1)1, T(i+1)1T(i+1)2

for i from 0 to n − 1 with

T02 = (0, 0),
Ti1 = (T(i−1)2.x + li−1, T(i−1)2.y), i from 1 to n,
Ti2 = (Ti1.x, Ti1.y + αi), i from 1 to n − 1.

Properties of arcs in the modified tangent space representation. The
theorem below allows us to study the properties of a representation in the tangent
space of a polygon that corresponds to an arc or a circle.
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Theorem 1. Let C = {Ci}n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1). The

length of CiCi+1 is li, for i ∈ {0, . . . , n− 1}. The vertices of C are on a real arc
of radius R and of center O such that ∠CiOCi+1 ≤ π

4 for i ∈ {1, . . . , n − 1}.
This results below is obtained.

1
R

<
αi

li+li+1
2

<
1

0.9742979R

Proof. Let us consider figure 3. We have αi = ∠CiOHi−1 +∠CiOHi. We denote
that αi1 = ∠CiOHi−1 and αi2 = ∠CiOHi. Moreover, ∠C1OH0 = ∠C0OC1

2 ≤ π
8 ,

∠C1OH1 = ∠C1OC2
2 ≤ π

8 . In addition, we have sin∠C1OH0 = l0
2R , sin ∠C1OH1 =

l1
2R . Therefore, l0+l1

2R = sin α11 + sin α12. Similarly, we have li−1+li
2R = sin αi1 +

sin αi2, for i ∈ {1, . . . , n − 1}. Because of x ≥ sin x ≥ x − x3

6 with x > 0, we

have αi1 > sinαi1 > αi1(1 − α2
i1
6 ) > αi1(1 − π

8
2

6 ) > 0.9742979αi1. Similarly
αi2 > sinαi2 > 0.9742979αi2. Therefore, we have αi > li−1+li

2R > 0.9742979αi.
This theorem is proved.
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Fig. 3. Property of a set of sequential
chords of a partial circle
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Fig. 4. Property of a polygon in our modified
tangent space representation

This theorem allows to deduce that the corresponding curve of midpoints of
T(i−1)2Ti1, 1 ≤ i ≤ n in the tangent space of the curve C is quasi collinear.
From now on, the midpoint curve is called MpC. In addition, the more sinαi

closes to αi, 1 ≤ i < n, the more MpC is collinear. Therefore, we can decide if
a digital curve approximates an arc of circle by verifying the collinearity of its
MpC in the tangent space. A qualitative study on this approximation will be
also considered in Section 5.
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4 Arc Segmentation

Detection of digital arcs. Thanks to Theorem 1, we introduce now an heuris-
tic algorithm (see algo. 1) for deciding if a digital curve is an arc. Our main idea
is to work on the representation of a digital curve in the modified tangent space.
In this representation, the set of midpoints MpC = {Mi}n−1

i=0 (see the above
section) will be constructed. And we will use a linear procedure [13] to test the
collinearity of these points. If the response is positive, we consider that the input
digital curve is a digital arc (a partial circle).

Algorithm 1. Detection of a digital arc/circle

Data: P = {Pi}n
i=0 digital curve, αmax - maximal admissible angle, ν1- width of

BS for polygonalization, ν2- width of BS for collinear test1

Result: ARC (resp. CIRCLE): C is a digital arc (resp. circle), FALSE if not.
begin

Use algorithm [13] to polygonalize P into BS of width ν1: C = {C}m
i=0;

Represent C in the modified tangent space by T (C); BS = ∅;
if there exists i such that |Ti2.y − Ti1.y| > αmax then return FALSE;
Determine midpoint set MpC = {Mi}m−1

i=0 of {Ti2T(i+1)1}m−1
i=0 ; i = 1;

while |Mi.y − M0.y| ≤ 2π do BS = BS ∪ Mi; i++;
Use algorithm [13] to verify if BS is a blurred segment of width ν2;
if BS is a blurred segment of with ν2 then

if |Mm−1.y − M0.y| == 2 ∗ π then return CIRCLE;
else return ARC;

else return FALSE;
end

A higher value of the range of vertical ordinate in the tangent space leads
to false positive detection as an example; an helix can be detected as an arc.
So, to avoid this problem, the maximal difference of vertical ordinate is fixed
to 2π for detecting an arc. The input parameter αmax of Algorithm 1 allows to
control the obtained error.Parameter ν1 is used for polygonalization by using the
recognition of blurred segments. The input parameter ν2 is used as the width in
the algorithm for recognition of blurred segments [13] to test the collinearity of
the midpoint set in the representation of the tangent space. In practice, αmax

(resp. ν1) is chosen as π
4 (resp. 1). In addition, ν2 can be chosen as a fixed value

from 0.15 to 0.25 without problem.
This heuristic algorithm detect well circular arc. In Section 5 (see corollary 1),

we consider an adaptive estimation of ν2 to guarantee the quality of detected
arcs. It is evident that we can lightly change Algorithm 1 to check the condition
of Corollary 1 and Proposition 2 in linear time also.

The algorithms of polygonalization and of blurred segment recognition are
linear. The complexity of the tangent space transform, and the construction

1 By default, αmax = π
4
, ν1 = 1 for normal curves and ν2 = 0.2 (see algo. 1).
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of midpoint curve MpC = {Mi}m−1
i=1 is in O(m). Because m << n, the total

complexity of our detection method is then in O(n).

Segmentation of curves into digital arcs. Based on the above idea for de-
tection of an arc, we then develop a linear method for the segmentation of digital
arcs by using a width ν blurred segment [13] polygonalization on the curve of
midpoints. Its main idea, illustrated in figure 5, is based on the polygonalization
of the midpoint curve (Fig. 5.e). Contrariwise to Algorithm 1, we polygonalize
the midpoint curve MpC in spite of recognizing if MpC is a BS and then each
line segment corresponds to a circular arc.

Experimental results and application to real images. We have imple-
mented this linear method. An example of a curve segmented into arcs is pre-
sented in Fig. 5. Firstly, the approximating polygon (see Fig. 5.b) is constructed
from the input curve in Fig. 5.a. After that, we transform it into the modified
tangent space representation (see Fig. 5.c). Then, by polygonalizing the curve
of midpoints in this tangent space (see Fig. 5.d), the corresponding arcs can be
detected (see Fig. 5.e).

Fig. 6 shows an experimentation on technical drawing images. Figs. 6.a, 6.d are
input images. Figs. 6.c, 6.f present the extracted arcs from the borders presented
in 6.b, 6.e. Our method gives good results on this type of images which frequently
contain arc and circle primitives. Fig. 7 presents our obtained result with a real
image.

(a) (b)
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-1

 0
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Tangent space representation

(c)
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-3

-2

-1

 0

 0  100  200  300  400  500  600

Curve of midpoints in tangent space

(d) (e)

Fig. 5. Arc segmentation: (a) Input curve, (b) Approximated polygon, (c) Tangent
space representation, (d) Curve of midpoints, (e) Results of arc segmentation

(a) Input image (b) Outline (c) Result (d)Input image (e) Outline (f) Result

Fig. 6. Experimentation on technical drawing images
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(a) Detected arcs on the input
image

(b) Extracted edge using Canny
filter

Fig. 7. Experimentation on a real image at width 2

5 Quasi Collinearity Property of Midpoint Curve

Algorithm 1 works well in practice. However, we have a problem to estimate
error approximation in general case when the value of ν2 is fixed. In this section,
we present a first study concerning the utilization of this algorithm where ν2 is
chosen adaptively.

Let us suppose that αmax = max{αi}n
i=1. Let us suppose that Ri is the

radius of the approximating circle that passes through 3 points Ci−1, Ci, Ci+1;
αi1 = ∠Hi−1OCi, αi2 = ∠HiOCi (see Fig. 3). We suppose that αi1, αi2 ≤ π

8 for
i = 1, . . . , n−1 to guarantee the condition sinx � x in Theorem 1. It means that
we consider the condition sinx � x with x ∈ [0, π

8 ]. Therefore, we have αi ≤ π
4 .

Comparison of radius of local circumcircles to the global radius

Proposition 1. Let C = {Ci}n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1). The

length of CiCi+1 is li, for i ∈ {0, . . . , n − 1}. We denote Oi (resp. Ri) respec-
tively the center (resp. the radius) of circumcirle that passes through 3 points
Ci−1, Ci, Ci+1, Hi the projection of Oi on CiCi+1. Suppose that Ri − OHi ≤ h

for i ∈ {1, . . . , n − 1}. This results below is obtained. Riαi ≥ li−1+li
2 ≥ Riαi −

0.3377hαi

Proof. We denote αi1 = ∠Hi−1OiCi, αi2 = ∠HiOiCi (see Fig. 3). Firstly,
cosαi1 = 1 − 2 sin2 αi1

2 = OHi

Ri
≥ Ri−h

Ri
= 1 − h

Ri
. In addition, thanks to

αi1 ≤ π
8 and sin(x)

x is decreasing in [0, π
16 ], we have sin x ≥ x

sin π
16

π
16

. There-

fore h
Ri

≥ 2 sin2 αi

2 ≥ 2 · ( sin π
16

π
16

)2(αi1
2

)2
> 0.9872

2 α2
i1. Similarly, we have h

Ri
>

0.9872
2 α2

i2, for i ∈ {1, . . . , n − 1} (1).
In addition, we have this remark x ≥ sin x ≥ x − x3

6 with π
4 ≥ x ≥ 0. So,

αi ≥ sin αi1 +sin αi2 > αi1 +αi2− 1
6 (α3

i1 +α3
i2) = (αi1 +αi2)(1− 1

6 (α2
i1−αi1αi2 +

α2
i2)) = αi(1− 1

6 (α2
i1−αi1αi2+α2

i2)) ≥ αi(1− 1
6 (α2

i1+α2
i2))), for i ∈ {1, . . . , n−1}

(2).
Thanks to (1) and (2), we obtain sin αi1 + sinαi2 > α1(1 − 1

3·0.9872
h
R ), for

i ∈ {1, . . . , n − 1} (3).
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Moreover, we have αi = αi1 + αi2 and αi1, αi2 ≤ π
8 . In addition, we have

sin αi1 = li−1
2R , sin αi2 = li

2R . Therefore, we have li−1+li
2R = sin αi1 + sin αi2, for

1 ≤ i < n (4).
Thanks to (3) and (4), we obtain Riαi ≥ li−1+li

2 ≥ Riαi(1 − 1
3·0.9872

h
Ri

) =
αi(Ri − h

3·0.9872 ) ⇔ Riαi ≥ li−1+li
2 ≥ Riαi − 0.3377hαi.

Now we consider a set of midpoints MpC is a blurred segment whose horizontal
width is ε. Let us suppose that the slope of this blurred segment is 1

R , R ∈ R.

Mi−1

Mi

A

B

ε

Fig. 8.

C0
Ci−1

C1

Ci

O
′
i
O
′′
i

R

R

2.1δ

2.1δ

Fig. 9. {O′
i , O

′′
i }n−1

i=1 is in a compact
zone

Let us consider Fig. 8, A and B respectively are horizontal projection of Mi−1

and Mi on the left leaning line. We have: Mi.x−Mi−1.x = (B.x−A.x)+MiB−
AMi−1 = Rαi+MiB−AMi−1. Because of Mi and Mi−1 are limited by 2 leaning
lines, we have MiB ≤ ε and AMi−1 ≤ ε, so −ε ≤ MiB −AMi−1 ≤ ε. Therefore,
we have Rαi + ε ≥ li−1+li

2 ≥ Rαi − ε. This double inequations can be rewrited
as li−1+li

2 = Rαi + εi, where εi ∈ [−ε, ε].
Thank to proposition 1, we have: Riαi > Rαi + εi > Riαi − 0.3377hαi ⇔

Ri > R + εi

αi
> Ri − 0.3377h. So, ε

αi
< Ri − R < ε

αi
+ 0.3377h. So, we have

corollary 1.

Corollary 1. Let C = {Ci}n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1). The

length of CiCi+1 is li, for i ∈ {0, . . . , n − 1}. The set of midpoints {Mi}n−1
i=0 is

a blurred segment whose horizontal width is ε. We denote Oi (resp. Ri) respec-
tively the center (resp. the radius) of circumcirle that passes through 3 points
Ci−1, Ci, Ci+1, Hi the projection of Oi on CiCi+1. Suppose that Ri − OHi ≤ h
for i ∈ {1, . . . , n−1}. This results below is obtained. 0 < Ri−R < ε

αi
+0.3377h ≤

ε
min{αi}n

i=1
+ 0.3377h.

Localization of centers of local circumcircles. In this section, we consider
the convergence of local circumcircle centers if this condition below is satisfied:
|Ri − R| ≤ δ, R ∈ R, 1 ≤ i, j ≤ n − 1. Let us consider Fig. 10. To prove
the convergence of centers of local circumcircle, we show this property for an
approximation of a half of circle.
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Proposition 2. Let us consider a sequence of points {C}n
i=0. There exist R

and δ such that R, δ ∈ R, 0 ≤ Ri − R ≤ δ, i = 1, . . . , n − 1. Suppose that
∠CkCjCj+1 > π

2 for k ∈ {0, 1}, k < j < n. Therefore, we have this property
0 ≤ R

′
i − R ≤ δ, 0 ≤ R

′′
i − R ≤ δ, for 1 ≤ i ≤ n − 1.

Proof. We denote O
′
i (resp. O

′′
i ) and R

′
i (resp. R

′′
i ) the centers and radius of

circumcircles that passes through 3 points C0 (resp. C1), Ci, Ci+1. Firstly, we
have a trivial remark: the perpendicular bisector of CiCk is between that of CiCj

and CjCk. Now, we prove this proposition by induction.
Because of R

′
1 = R1, the proposition is true with i = 1. Suppose that

|R′
i−1 − R| ≤ δ. Let us consider Fig. 10. We denote H

′
i , Hi are respectively

the midpoint of C0Ci, Ci−1Ci. Thank to the above remark, we have O
′
i−1H

′
i is

between O
′
i−1H

′
i−1 and O

′
i−1Hi. We consider now the position of Ci+1 with the

circle of center O
′
i−1, of radius R

′
i−1. The proposition if trivial if Ci+1 is on this

circle because of R
′
i = R

′
i−1. If Ci+1 is outside of this circle (see Fig. 10.a), we

then deduce O
′
i−1 ∈ [O

′
iH

′
i ], O

′
i ∈ [OiHi+1]. Therefore, we have Oi+1Ci > O

′
iCi,

O
′
iCi > O

′
i−1Ci. It means that Ri+1 > R

′
i > R

′
i−1. Thank to 0 ≤ Ri+1 − R ≤ δ

and 0 ≤ R
′
i−1 − R ≤ δ, we have 0 ≤ R

′
i − R ≤ δ. In other case (see Fig. 10.b),

by applying the same arguments, we obtain Ri+1 < R
′
i < R

′
i−1. Therefore, we

have 0 ≤ R
′
i − R ≤ δ, for 1 ≤ i ≤ n − 1. By replacing C0 by C1 and using the

same argument, we have 0 ≤ R
′′
i − R ≤ δ, for 1 ≤ i ≤ n − 1.

C0

Ci−1
CiHi

O
′
i−1

Oi
O
′
i

Ci+1

H
′
i−1

H
′
i Hi+1

(a) Outside

C0

Ci−1
Ci

Ci+1

H
′
i−1

H
′
i

Hi

Hi+1

O
′
i Oi

O
′
i−1

(b) Inside

Fig. 10. Position between Ci+1 and circumcircle of C0Ci−1Ci

We have a simple remark: a triangle ABC that satisfies ∠ABC ≥ 7π
8 have :

AC > BC + cos π
8 · AB. It is trivial because of AC2 = BC2 + AB2 − 2BC ·

AB cos∠ABC > BC2 + cos2 π
8 AB2 + 2BC · AB cos π

8 . Therefore, we have:

O
′
iO

′′
i ≤ |R′

i−R
′′
i |

cos π
8

≤ δ
cos π

8
≤ 1.1δ, for i = 1, . . . , n − 1. Thanks to this result

and proposition 2, it is trivial now to show that set of center O
′
i, O

′′
i is in a

compact zone (see Fig. 9).
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6 Conclusions

We have presented a linear method for the detection of digital circles or digital
arcs. A linear method for the segmentation of a curve into digital arcs is also
proposed. This method is based on a discrete geometry approach. It is simple,
easy and robust to implement. A more complete demonstration of the algorithm
is under process.
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Multi-cue-Based Crowd Segmentation in Stereo Vision 
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Engineering, The University of Hong Kong, Hong Kong 
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Abstract. People counting and human detection have always been important 
objectives in visual surveillance. With the decrease in the cost of stereo 
cameras, they can potentially be used to develop new algorithms and achieve 
better accuracy. This paper introduces a multi-cue-based method for individual 
person segmentation in stereo vision. Shape cues inside the crowd are explored 
with a block-based Implicit Shape Model. Depth cues are obtained from the 
disparity values of some foreground blobs, which are calculated concurrently 
during crowd segmentation. Crowd segmentation is therefore achieved with 
evidences from both shape and depth cues. The methods were evaluated on two 
video sequences. The results show that the segmentation performance has been 
improved when depth cues are considered.  

Keywords: Stereo vision, Crowd segmentation, Block-based Implicit Shape 
Model, Disparity. 

1   Introduction 

Various techniques for segmenting individual pedestrians have been investigated 
based on monocular camera. As the cost of stereo cameras decreases, interests in 
people detection based on stereo vision have been increasing. Some researchers [1, 2] 
perform disparity calculation algorithm first and then followed by human detection in 
the 2D image space. In [1], the foreground is segmented into multiple blobs based on 
different disparity values. Human detection methods based on appearance are 
performed to help grouping and dividing the blobs. In [2], 2D image based human 
detection is performed in each image independently. The results are verified based on 
the epipolar geometry. 

When the calibration parameters are available, many researchers reconstruct the 
scene in the 3D space. To handle the occlusion situation, a virtual camera is assumed 
to get the plan-view map of the 3D points. Different plan-view statistics, like 
occupancy map, height map have been attempted for human detection and tracking [3, 
4]. Kelly et al. [5] proposed a region clustering algorithm to achieve better robustness 
to occlusion situations. In their later work [6], a more detailed biometric human model 
is used to avoid over- or under- segmentation during the clustering process. These 
methods rely on the recovery of the 3D points. However, when people are far away 
from the camera, the depth information is difficult to obtain.   
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Most of the reviewed methods use a disparity algorithm as the pre-processing step of 
the detection method. Commonly used disparity algorithms include three categories. 
Correlation-based algorithms calculate the disparity for each local region independently. 
It does not consider the context among the local regions. Hence, the results are usually 
quite noisy, which is difficult to be used for crowd segmentation. Dynamic 
programming based algorithms find the globally optimal correspondence point pairs line 
by line. Kelly et al. [6] tried to explore the scene features in surveillance videos to 
achieve more reliable disparity values. However, the assumption of the independence 
between lines usually produces artifacts along the lines. The third category is area based 
algorithms, like graph cut. This category assumes that regions with similar color or 
texture should have similar disparity values. These methods are computationally 
expensive and errors happen when two close objects show similar color.  

All the disparity algorithms have an assumption based on low-level image features, 
which may be incorrect in many situations. In addition, the noisy disparity values 
even inside one person make the individual segmentation difficult. In this paper, 
disparity value calculation and crowd segmentation are performed concurrently. This 
method has several advantages: First, the method assumes that body parts of one 
person have the same depth. The assumption is made on a semantic level and it is 
reasonable when the camera is far away from the camera compared with human depth 
intra-variation. Second, the developed method would only calculate one disparity 
value for each person candidate, which would make the crowd segmentation process 
easy.   In this paper, the requisites of the stereo camera setup are as follows. First, the 
two cameras in the stereo setup have a short baseline distance. In this way, scenes in 
left image and right image would have a large overlap. Second, objects are far away 
from the camera compared with human depth intra-variation. In this way, the body 
parts of a person can be assumed to have the same disparity value.  

2   System Overview 

Fig. 1 shows a block diagram of the 
proposed system. Shape and depth 
cues are considered concurrently. 
Shape cues are collected with a 
Block-based Implicit Shape Model 
and depth cues are calculated in a 
semantic level. The key steps will 
be introduced in details in the 
following sections.    

2.1   Initialization 

The initialization step is similar as 
[7]. Since our later steps are built 
upon it, we will briefly review the 
main ideas.  

Before the segmentation, a 
training stage is necessary to 

S h a p e  e v id e n c e  c o l l e c t i o n

C a n d id a t e s  r e m o v a l  b a s e d  
o n  m u l t i - c u e s

I n i t i a l  c a n d id a t e s  p r o p o s a l

S h a p e :  
-  t o t a l  s c o r e  b e f o r e  a n d  
a f t e r  t h e  r e m o v a l ;  
-  n u m b e r  o f  s u p p o r t i n g  
p o i n t s  t o  t h e  c a n d id a t e ;  

D e p t h :  
-  d i s p a r i t y  o f  t h e  
o v e r l a p p e d  r e g io n  
b e f o r e  a n d  a f t e r  t h e  
r e m o v a l ;  

F o r e g r o u n d  p a t c h e s  c o l l e c t i o n

F e a t u r e  p o in t  
d e t e c t i o n

F o r e g r o u n d  
m a s k

I n p u t :  V id e o  s e q u e n c e  f o r  c r o w d  s e g m e n t a t i o n

O u t p u t :  
-  N u m b e r  o f  p e o p le  i n  t h e  s c e n e ;  
-  L o c a t i o n  o f  e a c h  p e r s o n

S c o r e s  a n d  d i s p a r i t y  c a l c u la t i o n

Fig. 1. Block diagram of the method 
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establish a human shape model. In our system, the Block-based Implicit Shape Model 
(B-ISM) is used. A KLT feature point detector [8] is applied on the training persons. 
Then, a number of training patches are collected around the feature points and 
grouped into several clusters based on their shape descriptor - Histogram of Oriented 
Gradients (HOG)[9]. Finally, all the patches vote for the spatial occurrence of each 
cluster based on their location in the 3x3 blocks (Fig. 2a).  

In the testing stage, test patches are extracted around the KLT feature points in the 
foreground area. The spatial occurrence probabilities of each test patch in the 3x3 
blocks are obtained based on the established B-ISM. Each cluster votes for the test 
patch based on the similarity between the test patch and the cluster centers. As shown 
in Fig. 2b, the head point has got a higher probability in block-4 while the feet point 
has a higher probability in the bottom row. 

For points with a higher probability in block-1, 4 or 7, an initial rectangle candidate 
would be formed with the point as the center of the top border. In the evaluations, a 
very conservative threshold, 0.112 ( ≈ 1/9) is used to make sure that the correct 
rectangles are formed. Usually, a great number of initial rectangles may be formed for 
a crowd.  

            

               (a)                   (b)                                     (c)                            (d) 

Fig. 2. Each KLT point has obtained a 3x3 spatial occurrence table. Usually, the head point has 
a higher probability in top row while the feet point has a higher probability in the bottom rows. 
(a) 3x3 blocks; (b) an example of head and feet points; (c) the spatial occurrence table of the 
head point; (d) the spatial occurrence table of the feet point. 

2.2   Scores and Disparity Calculation   

Given a set of rectangle candidates, the test patches are assigned to the rectangles. It is 
assumed that rectangles with lower y-coordinates are occluded by those with higher 
y-coordinates. In Fig. 3a, the blue rectangle is occluded by the green one.  Based on 
its location in the associated rectangles, each patch gets a score with (1). i , k , l are 
the index for blocks, rectangles and test patches. lip is the probability that the patch 

occur in the associated block, which has been obtained in section 2.1. ( , , )i k lρ =1 

only when the patch-l falls in the block-i of rectangle-k, otherwise, ( , , )i k lρ =0.  

1:9

( ( , , ))l li
i

s p i k lρ
=

= ∑     (1) 
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At the same time, the foreground areas are assigned to the rectangles. For each 
rectangle, the associated foreground regions are shifted to find the best match in the 
right image. Since the two images from the stereo camera have been rectified, 
epipolar lines are along the scan-lines. As shown in equation (2), the disparity value is 
defined as the shift with the maximum number of matched foreground image pixels. 
In our evaluations, an image pixel is matched when the intensity difference between 
the two images is below a threshold, th. ,

L
y xF =1 means that the pixel (y, x) is a 

foreground pixel in the left image and ,
R

y x dF − =1 means that the shifted pixel in the 

right image is in the foreground region. Fig. 3c shows the foreground image patches 
falling in the green rectangle. Fig. 3d shows the foreground image patches within the 
entire shift range, min max~d d , in the right image. In this way, each rectangle will get 

one disparity value.  

min max , ,

, ,
: , 1,

,

( (( ) ))max
L R
y x y x d

k

L R
y x y x d

d d d F F
y x r

d I I th
−

−
= =

∈

= − <∑                              (2) 

 

   (a)                          (b)                                (c)                                 (d) 

Fig. 3. Disparity calculation. Disparity value is the shift which has the maximum number of 
matched foreground pixels. (a) proposed candidates in the left image; (b) the right image; (c) 
foreground area within the green rectangle in the left image; (d) foreground area within the shift 
range (0~30) in the right image.   

2.3   Removal and Merge 

In this step, the initial set of rectangle candidates are examined based on the shape 
cues and depth cues. Those with insufficient evidences from shape and depth cues 
will be removed or merged.  
 
Shape cues. Based on the patch scores obtained from last step, candidates without 
sufficient evidences from shape cues will be removed. In our evaluations, two criteria 
are considered. First, the total score for the entire crowd configuration is defined as 
the summation of the all the patch scores. If the removal of the candidate will result in 
the increase in the total score, it will be removed. That is because a higher total score 
means that most patches have been allocated to a better block in the crowd 
configuration. Second, the points which get lower scores after the candidate removal 
are called the supporting points for the candidate. The existence of the candidate is 
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supported by those supporting points. Hence, if there are few support points for the 
candidate, it will be removed.  

Depth cues. Usually, persons with lower y-coordinates in the image are farther away 
from the cameras and smaller disparity values are expected. When two candidates 
with different y-coordinates show similar disparity values, they should be merged into 
one candidate. An example of the case has been illustrated in Fig. 4. As shown in Fig. 
4a, two initial rectangles are proposed for the person. However, similar disparity 
values have been obtained for the visible parts of the two candidates. The disparity 
values are indicated with green numbers in Fig. 4b. In Fig. 4c, a new rectangle is 
proposed based on the merged foreground areas. With the new rectangle, the person 
can be more accurately located. Finally, the disparity value of the new rectangle is 
obtained based on the foreground region in it, see Fig. 4d.  

 

(a)                                   (b)                             (c)                                   (d) 

Fig. 4. Multiple candidates are merged due to similar disparity values. (a) multiple initial 
candidates for one person; (b) disparity calculation for the two candidates respectively; (c) the 
new rectangle; (d) disparity value of the new rectangle.   

After each removal and mergence step, patch scores and disparity calculation are 
recalculated. The examination process is iteratively performed until the candidates are 
not changed any more. To get more reliable disparity values, only shape cues are used 
in the first loop to remove those very close candidates.  

3   Evaluations and Results 

Datasets. The system was evaluated on two video sets from [10]. The baseline 
between the two cameras is around 100 mm. The ‘corridor’ scene was taken by a 
camera positioned above 2 meters from the ground. With the first 100 frames as the 
training set, the test was performed on the remaining frames. Starting from the 110th 
frame, one image was used in every consecutive five frames, that is, 113 testing 
images in total. In the ‘vicon’ scene, with the first 80 frames as the training set, the 
test was performed on the remaining frames. One image was used for testing in every 
consecutive five frames, that is, 60 testing images in total. 
 
Evaluations. The 2D ground truth is manually obtained. A rectangle is annotated as 
long as the head is visible in the scene. In the ‘corridor’ scene, people with y-
coordinates smaller than a threshold value would not be counted since they show very 
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few feature points. People on stairs are also excluded because they are not on the 
same ground plane as others, which makes it difficult to estimate the initial human 
size.  

A detection which has a large overlap (> 50%) with the ground truth is defined as a 
correct detection. Each ground truth can have only one correct detection. The detected 
rectangle without a corresponding person is a false detection. Detection rate is defined 
as Detection rate=#(correct detection)/#(ground truth) and false alarm rate is 
calculated as False alarm rate=#(false detection)/#(ground truth). 

Results. A fixed background image has been provided in the dataset. To ease the 
effects of uneven illumination, the foreground region is extracted based on the Hue 
component in the HSV space in our evaluations. To get a solid foreground mask, a 
series of morphology operation are performed. An open operation with a circular 
structuring element is performed to remove scattered noises. After that, a closing 
operation is performed to form a solid foreground area. To include almost all the 
feature points from the persons, a dilation operation is also performed. Fig. 5 has 
shown an example image and the final foreground mask.  

   

                                    (a)             (b)                    (c) 

Fig. 5. (a) the original image; (b) foreground image based on the Hue component; (c) 
foreground mask after a series of morphology operations 

Some sample frames on the ‘corridor’ sequence have been shown in Fig. 6. The 
method based on only shape cues can give some satisfactory results even with a very 
rough foreground mask. However, when the crowd is dense, or many feature points 
come from the details, the reliability of the shape cues may become less reliable. In 
addition, the minimum number of supporting points for a fully-visible person will be 
difficult to determine when the clothes have many details.  

Based on the depth values, candidates with different y-coordinates but similar 
disparity values are merged. As shown in the third column in Fig. 6, most false 
detections have been merged and better detections are obtained for the persons. On 
the other hand, candidates with different disparity values would not be removed even 
if only small portion is visible, as shown in Fig. 6c. The fourth column shows the 
disparity values of the final detected persons. The disparity values of the persons in 
the scene are displayed in grayscale images. Brighter region represents a larger 
disparity value while darker region represents a lower disparity value. People close to 
the cameras have got a large disparity value and those further away have a smaller 
disparity value.  
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Over all the 113 testing images, the shape-based method has the detection rate of 
75.6% and the false alarm rate is 23.9%. After the combination with the depth 
information, the detection rate is 73.9% while the false alarm rate is 12.6%. The false 
alarm rate has been significantly reduced while the detection rate remains similar. The 
miss detections are mainly due to the persons far away from the camera and very low 
contrast in the dark region. When a person is far away from the cameras, few feature 
points can be detected and the resolution is low. False detections are mainly from two 
aspects. First, the method assumes that the entire foreground region is from human 
beings. A false detection may occur when a large background region is extracted. 
Second, when the multiple candidates for the same person have similar y-coordinates, 
the false detection cannot be removed.  

 

(a) Multiple candidates on one person have been merged due to similar depth 

 

(b) A more accurate rectangle has been formed after the mergence 

 

(c) Seriously occluded persons are not incorrectly merged due to their different depth 

Fig. 6. Sample results in the ‘corridor’ sequence. First column: foreground mask; second 
column: results based on shape cues; third column: results based on shape & depth cues; fourth 
column: the final disparity map for the persons in the scene.  

More results on the ‘vicon-4’ scene have been obtained. With both shape and depth 
cues, the detection rate is 88% while the false alarm rate is 11.4%. Some sample 
frames are shown in Fig. 7.  
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(a) Multiple candidates on one person have been merged due to similar depth 

 

(b) Multiple candidates on one person have been merged due to similar depth 

 

(c) From the final disparity map, different depth of the persons can be observed 

Fig. 7. Sample results in the ‘vicon-4’ sequence. First column: foreground mask; second 
column: results based on shape cues; third column: results based on shape & depth cues; fourth 
column: the final disparity map for the persons in the scene. 

4   Conclusions 

A multi-cue based crowd segmentation method in stereo vision has been introduced in 
this paper. The contributions are two-fold. First, different from previous methods, the 
disparity values are calculated concurrently with human detection. It is based on a 
semantic-level assumption that body parts of a person have similar disparity values. 
Second, with only one disparity value for each candidate, the depth cue is easier to be 
used for individual human segmentation. Evaluations show that the use of the depth 
cue has efficiently reduced the number of false detections. 

In the future, a more accurate human model will be used. The accurate model will 
benefit both shape-based segmentation and disparity calculation.  
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Abstract. The objective of semantic segmentation in microscopic images is to 
extract the cellular, nuclear or tissue components. This problem is challenging 
due to the large variations of these components features (size, shape, orientation 
or texture). In this paper we present an automatic technique to robustly identify 
the epithelial nuclei (crypt) against interstitial nuclei in microscopic images 
taken from colon tissues. The relationship between the histological structures 
(epithelial layer, lumen and stroma) and the ring like shape of the crypt are 
considered. The crypt inner boundary is detected using a closing morphological 
hierarchy and its associated binary hierarchy. The outer border is determined by 
the epithelial nuclei, overlapped by the maximal isoline of the inner boundary. 
The evaluation of the proposed method is made by computing the percentage of 
the mis-segmented nuclei against epithelial nuclei per crypt. 

Keywords: Crypt segmentation, Morphological hierarchy, Biomedical imaging, 
Pathology, Microscopy. 

1   Introduction 

In diagnostic pathology, the pathologists give a diagnostic after a set of biological 
samples (tissues stained with different markers) are viewed and many specific 
features of the objects of interest (size, shape, colour or texture) have been analysed. 
This complex diagnostic process is an important part in clinical medicine but also in 
biomedical research and can be enhanced by providing the pathologists or the 
biologists with quantitative data extracted from the images. The image processing 
techniques are of special interest because they allow large scale statistical evaluation 
in addition to classical eye screening evaluation and are used in both sections of the 
pathology: cytology (the study of cells) and histology (anatomical study of the 
microscopic structure of tissues) [1]. The microscopic image segmentation is 
considered a hard task due to the following problems also pointed out in [2]: 

− Low contrast and weak boundaries on out-of-focus nuclei. Also some nuclei 
structures can appear as artefacts in the non-uniformly stained slices. 
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− Different grey values for the background cased by the non-uniform illumination. 
− The physical structure of the cells and the way of sectioning determine a non-

uniform distribution of material inside the nucleus (lower intensities within nuclei). 
− Considerable variation of object features like shape and/or size and/or orientation 

and different nuclei distribution within the epithelial layer. 

This paper is organized as follows. The last part of this section points out the goal of 
this study. The inner boundaries of the crypts are detected using the morphological 
hierarchy and the lumen reconstruction (section 2), while in section 3 the outer 
borders are detected using the maximal isoline. The results are evaluated in section 4 
and discussed and concluded in section 5. 

1.1   State of the Art 

Many studies from the literature cover fields like microscopy, biomedical engineering 
and imaging, bioinformatics or pattern recognition and introduce techniques for 
solving the mentioned problems [2]. Beside the nuclei segmentation attempts [1], [2], 
also the segmentation of histological structures like gland or crypt is addressed. In [3] 
a threshold is used to identify the gland seeds which are grown to obtain the nuclei 
chain. In [4] the pixel labelling to different classes is performed using a clustering 
approach based on the textural properties.  

An object-graphs approach is described in [5] where the relationship between the 
primitive objects (nucleus and lumen) is considered. The prostate cancer malignancy 
is automatically graded (Gleason system) in [6] after the prostate glands are detected. 

1.2   Aim of the Study 

The basic functional unit of the small intestine is the crypt (crypt of Lieberkühn) [7] 
and it comprises two main structures of interest: the lumen and the epithelial layer 
(Fig. 1a). The epithelial layer contains epithelial nuclei and surrounds the lumen 
which is an empty area. The interstitial cells on the other side form heterogeneous 
regions (stroma) placed between crypts. The stroma areas (Fig. 1a) contain isolated 
cells with non-regular shape and without particular patterns of arrangement. 

This work provides specific techniques to segment the crypts from fluorescence 
images of colorectal cancer tissue sections. We used 8 bit greyscale images (Fig. 1a) 
containing nuclei labelled with DAPI, a fluorescent stain that binds strongly to DNA 
[8] and acquired using a TissueFAXS slide scanner (TissueGnostics GmbH, Austria). 

The main motivation for segmenting crypts is to provide the pathologists with 
quantitative data regarding the areas covered by epithelial nuclei. One alternative 
approach is to segment each nucleus and to analyze the structures that they form. 
Since this approach can encounter additional problems, our objective is to directly 
find the boundaries of the crypts, i.e. to delineate the area covered by the epithelial 
nuclei without dealing with the individual nuclei (Fig. 2). In [5] also the high level 
information are preferred against the local one but their approach uses different 
images type (hematoxylin-and-eosin stained images) which provide more biological 
details (also cell cytoplasm is available) than our DAPI stained nuclei images. 
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Fig. 1. a) Fluorescence image with crypts from a colon tissue section. b) The image from the 
top level of the morphological hierarchy. The black regions indicate the lumen. 

 

Fig. 2. Overview scheme of the proposed technique 

2   Lumens Segmentation 

Without considering the relations between the crypt components (epithelial layer and 
lumen), the stroma and the background, the low level cues will not be able to separate 
the regions having a particular meaning [9]. A way must be found to keep only the 
important information and to remove the unnecessary details. In order to detect these 
regions, the role of local information (pixel grey values or gradient) is very important 
but not sufficient; also global information like the region’s size and relation with the 
other region types must be included [9]. 

A rough assumption about the nuclei distribution over different region types can be 
made. The lumen does not contain nuclei and appears like a big round black area 
surrounded by a ‘ring’ with variable thickness. This ring contains a high density of 
touched/chained epithelial cells. The exceptional cases appear when the lumen gets to 
be in touch with the stroma area due to missing cells that ‘break’ this ring.  

By applying the morphological closing operation [10] on the grey image, the nuclei 
closer than the size of the structure element (SE) will be connected. The epithelial 
nuclei and those from the stroma area can be connected by relating the SE’s size to 
the size of the lumen region (the connection should not pass over the lumen). For that 
we build the hierarchical image decomposition similar to the morphological pyramid 
[11]: the upper levels are obtaining by applying a morphological operator on the base 
image. The difference consists in lack of sub-sampling step [12].  
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2.1   Building the Morphological Hierarchy 

Let I  denote the input grey scale image and •  denote the morphological closing 
operation. The SE kψ  is a two-dimensional disk of diameter 12 +k . The hierarchical 

morphological representation •Π  consists of L  levels. The first one is the original 

grey scale image I=Π•
1  and each level 0>  is given by L,1,2

1 =•Π=Π •• ψ  . 

The closing operation smoothes the objects’ boundary and removes the dark holes 
smaller than the SE. Since the size of the SE increases according to the level of the 
hierarchy, in the lower levels only the small gaps will be filled, while the bigger ones 
will be closed in the upper levels. To prevent the SE from growing too large, the 
maximum number of levels is established by limiting the SE’s size so that it covers 
maximally 2-3 nuclei (in our experiments the SE 50ψ  gives 25 levels). The lumens 

should ‘survive’ till the top level (Fig. 1b) and should be easier highlighted; also the 
gaps from the crypts (do not exceed the size of 1-2 nuclei) should be filled. 

2.2   Lumen Reconstruction 

The proper reconstruction of each lumen based on the found regions from the top 
level must be done by analyzing the lower levels of the hierarchy where more details 
are present. A binary hierarchy bwΠ  is build in which each level represents the result 

of the thresholding applied on the corresponding level from the •Π . The hierarchy 

bwΠ  consists also of L  levels and each level l  is given by 

Llthrc lll
bw ,1),(Otsu =Π⋅<Π=Π ••                                         (1) 

where )(Otsu ⋅thr  computes the threshold for an image using the Otsu’s method [13] 

and 10 ≤< c  (0.5 in our experiments). 
Our goal is to find for each partition (ancestor) from the top of bwΠ  the 

corresponding partition (descendent) from a bottom level which properly identifies 
the lumen. Each level l  of the bwΠ  contains lnp  unconnected regions 

},...,,,{ 321
l

np
llll

bw l
PPPP=Π . A vertical relation between partitions of successive levels 

can be established: each partition of a level is included in a partition from the below 
level. 

1
1 thatsuch,)1(),1,2( −

′− ⊂≤′≤′∃≤≤≤≤∀ l
p

l
pll

l
p PPnpppnppLlP  (2) 

This inclusion is valid due to the reduction of the black regions caused by the 
increasing of SE’s size used in the closing operation. According to Eq. 2, for each 
partition of any level of bwΠ , the corresponding partition from the base level can be 

found so that the inclusion rule is validated. 

The base level 1
bwΠ  will not give for sure the proper regions because the global 

threshold is applied on the original image where the main structures are not properly 

highlighted. For each partition of the top level L
L

r nprP ≤≤1, , the corresponding 
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descendent from the base level 1
rP  is obtained. By bottom-up analyzing level by 

level, a certain level rl  is chosen such that the ancestor region ( rl
rP ) of 1

rP  from level 

rl  (having as ancestor the L
rP ) checks the following rules: 

• tymin_solidiP rl
r >)(solid . The function )(solid ⋅  computes the proportion of the 

pixels from the convex hull that are also in the region; 8.0=min_solidy  in our 

experiments. 

• max_distPP rr l
r

l
r <− ))(centroid),(centroid(distEuclid 1 . The function )(centroid ⋅  

returns the centroid of a region and the )(distEuclid ⋅  computes the Euclidean 

distance between these two centroids. This rule ensures stability by checking the 
distance between the regions centroids from two successive levels. 

The border of the found lumens actually describes the inner border of the crypt (Fig. 
3a). The false positive (FP) results are eliminated by a validation rule in 3.1. 
 

 

Fig. 3. a) The true positive (green curves) and the FP (red curves) lumen boundaries. b) The 
green curves indicate the inner and the outer boundaries of the crypts. 

3   Crypt’s Outer Border 

The epithelial layer is differentiated from the stroma areas by considering the nuclei 
distribution: the crypt’s nuclei are packed tightly together while those from the stroma 
areas are wide spread with considerable distances between them. The isolines of the 
inner boundary are used to eliminate the FP lumens and to detect the outer border 
which delineates the epithelial nuclei. Each isoline contains pixels situated on the 
same distance from the inner boundary.  

The maximum distance maxd (60 in our experiments) is related to the average 

width of the epithelial layer. Fig. 4b displays the smoothed signal containing the 
intensities sum for each isoline. The maximum value (green square) indicates the 

a) 

(b 
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isoline which gives the maximum sum of pixels intensities. This maximal isoline 
(depicted with blue in Fig. 4a) is used for two purposes: to validate the detected 
lumens and to mark the epithelial nuclei (used to get the outer boundary). 

3.1   Lumen Validation 

The area covered by nuclei can be identified by subtracting a highly blurred version 
from the original image: 0)( >∗−= IGINbw , where G  is a big Gaussian filter (201 

by 201 in our experiments) and ∗  denotes the convolution operation. Considering the 
high nuclei concentration around the lumen, there should be only few situations in 
which the maximal isoline crosses over the background in bwN (Fig. 4a) i.e. situations 

of big distances between epithelial nuclei or in case of crypt breaks. 
 

 
 

Based on this, the following rule is proposed to validate the lumen results from 2.2: 
if the portions of the maximal isoline overlapping the background in bwN  are not 

considerable high compared to those overlapping the nuclei than the found boundary 
does not delimit a lumen area. 

)(

)~(

bw

bw

NMIcard

NMIcard
r

∩
∩=                                                   (3) 

The binary image MI  contains the maximal isoline, )(⋅card  is the cardinality 

function and ~  gives the complement of a binary image. The FP boundaries 
( minrr > ) are depicted with red in Fig. 3a and the true positive (TP) inner boundaries 

( minrr ≤ ) with green ( 3.0min =r  in our experiments). 

3.2   Outer Border Detection 

A region from bwN  is marked as part of a crypt iff it is overlapped by the band 

formed by the inner boundary and the maximal isoline. The epithelial nuclei are 
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Fig. 4. a) The boundaries (red curves) of the crypt from the 
middle of Fig. 1a and its maximal isoline (blue curve) which 
gives the maximum sum of the pixels intensities. b) The 
smoothed signal containing the intensities sum for each isoline. 
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Fig. 5. The green curves indicate the inner and 
the outer crypt boundaries. The red portions 
delimit the FP nuclei. 

FP nuclei 

depicted with green in Fig. 4a. The outer border of the crypt (Fig. 4a the red curve 
outward) represents the exterior perimeter of the morphological closing applied on the 
found epithelial nuclei with a SE covering 2-3 nuclei. 

4   Results 

We tested the proposed segmentation technique on different datasets of images from 
tissues labelled with DAPI; some results are show in Fig. 3b and Fig.5. The results 
confirmed that the proposed method could efficiently segment the crypts with a high 
degree of accuracy. 

A more rigorous evaluation must be 
done by comparing the results against 
the ground truth segmentations. Since a 
database with reference segmentations 
for this type of images does not yet 
exist, a pathology specialist has been 
asked to validate a set of results. The 
segmentation quality is established by 
visual inspecting the number of the 
mis-segmented nuclei per crypt. A 
number of 87 crypts have been 
analyzed resulting in 284 over 
segmented nuclei. Considering an 
average of 55 nuclei per crypt, the 
over-segmented nuclei represent 5.93% 
from the total crypt’s nuclei (an 
average accuracy of 94.07% per crypt). 

5   Conclusions 

A new automatic technique for robust crypt segmentation based on hierarchical 
structures is presented in this paper. A closing morphological hierarchy is used to 
identify the lumen positions and a binary hierarchy provides enough details for proper 
lumen reconstruction. The maximal isoline is used to eliminate the false positive 
lumens and to validate the epithelial nuclei belonging to crypts. 

A significant implication of the current work consists of the top-down approach. 
Firstly the ‘obvious’ areas (lumens) are detected followed by a more detailed analysis 
to proper delimit the crypts. The morphological closing operator has been chosen to 
build the hierarchical representation due to the patterns of nuclei arrangements. 

This technique uses a coarser-to-fine approach and can be easily extended on any 
image with human body cell nuclei from different tissues types (e.g. prostate, breast 
or lung) but also in any other field in which the objects of interest have the features 
considered in designing this method. This study will be continued by analysing the 
topological properties of the graph associated to the tissues components. Considerable 
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effort will be spent to obtain a database with ground-truth segmentations and to find 
rigorous evaluation criteria of the results. 
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Abstract. Supervised or ground-truth-based image segmentation eval-
uation paradigm plays an important role in objectively evaluating seg-
mentation algorithms. So far, many evaluation methods in terms of com-
paring clusterings in machine learning field have been developed. Being
different from recognition task, image segmentation is considered an ill-
defined problem. In a hand-labeled segmentations dataset, for the same
image, different human subjects always produce various segmented re-
sults, leading to more than one ground-truth segmentations for an image.
Thus, it is necessary to extend the traditional pairwise similarity mea-
sures that compare a machine generated clustering and a “true” clus-
tering to handle multiple ground-truth clusterings. In this paper, based
on the Normalized Mutual Information (NMI) which is a popular in-
formation theoretic measure for clustering comparison, we propose to
utilize the Normalized Joint Mutual Information (NJMI), an extension
of the NMI, to achieve the goal mentioned above. We illustrate the ef-
fectiveness of NJMI for objective segmentation evaluation with multiple
ground-truth segmentations by testing it on images from Berkeley seg-
mentation dataset.

Keywords: image segmentation evaluation, similarity measure, joint
mutual information.

1 Introduction

Image segmentation is an indispensable pre-processing step in many vision sys-
tems. Many efforts have been devoted to developing more effective segmentation
techniques, as well as quantifying the performance of current algorithms. How-
ever, due to the ill-defined nature of the segmentation problem, evaluation for
segmentation results is still a challenging task. In order to obtain more objec-
tive evaluation scores instead of just using subjective judgments, a database of
human segmented natural images [1] was established. Therefore, based on the
“true” segmentations, ground-truth-based (GT-based) evaluation paradigm is
preferred. In this paradigm, most evaluation methods can be either region-based
or boundary-based. Here, we focus on the methods used for evaluating region-
based segmentation algorithms.
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Since region segmentation can be seen as a clustering procedure for image
pixels according to the feature vector for each pixel including color and spacial
information, it is a natural way to do the evaluation task in terms of cluster-
ings comparison, i.e. compare the machine outputs against the ground-truth
segmentations through some measure of similarity. So far, a lot of clustering-
comparison measures have been proposed in machine learning domain, and they
can be categorized into three classes which are pair-counting based (e.g. Rand
Index [2]), set-matching based (e.g. H criterion [3]), and information theoretic
based similarity measures (e.g. Normalized Mutual Information [4] and Variation
of Information [5]). In [6], various clustering-comparison measures are applied to
GT-based segmentation evaluation, based on both range images and intensity
images, and the experimental results demonstrate their usefulness and applica-
bility in quantifying the performance of segmentation algorithms.

In practice, there is always a set of manual segmentations for each image in a
hand-labeled dataset, as different human subjects would produce different seg-
mented results at various granularity levels. So, the similarity measures should
be extended to deal with multiple ground-truth images. Unnikrishnan et al. [7]
have proposed a pair-counting based measure named Normalized Probabilistic
Rand (NPR) index to handle that case. In this article, we propose an informa-
tion theoretic based measure, the Normalized Joint Mutual Information (NJMI),
which is an extension of the Normalized Mutual Information (NMI).

In Sect. 2, we first review the information theoretic based measure NMI for
comparing clusterings, and then describe the Joint Mutual Information (JMI)
and its normalized version NJMI in detail. To validate the effectiveness of NJMI,
the experimental results on some images selected from Berkeley segmentation
database [1] are presented in Sect. 3. Section 4 gives the conclusion.

2 Normalized Joint Mutual Information for Segmentation
Evaluation with Multiple Ground-Truth Images

In machine learning, Normalized Mutual Information is a widely used informa-
tion criteria for clusterings comparison. It measures the similarity or distance
between two clusterings by evaluating the mutual information between them.
For image segmentation evaluation, we propose that this criteria is not only use-
ful for binary segmentation evaluation, but it can also be generalized to the case
of multiple ground-truth segmentations which is a hard problem and lacks good
methodology to deal with.

2.1 Normalized Mutual Information for Binary Clusterings
Comparison

Let D be a set of N data points {d1, . . . , dN}, and U , V are two clusterings for D,
where U includes r clusters {u1, . . . , ur}, and V includes c clusters {v1, . . . , vc}.
If we regard U and V as two random variables of cluster labels, p(ui), p(vj)
are the probabilities of a random data point labeled by ui in U and labeled
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by vj in V respectively, and p(ui, vj) represents the joint probability that a
data point labeled by ui in U and vj in V simultaneously, then according to
information theory [8], the mutual information between random variables U and
V is calculated as

I(U, V ) =
r∑

i=1

c∑
j=1

p(ui, vj) log
p(ui, vj)

p(ui)p(vj)
(1)

As the mutual information quantifies the information shared by U and V , it
can also be used to measure the similarity between clustering U and clustering
V . Further more, [4] proposed a normalized version of the mutual information
which has fixed bounds [0, 1]:

NMI(U, V ) =
I(U, V )√

H(U)H(V )
(2)

where H(U) and H(V ) are the entropies associated with U and V respectively,
H(U) = −∑r

i=1 p(ui) log p(ui), H(V ) = −∑c
j=1 p(vj) log p(vj).

2.2 Normalized Joint Mutual Information for Multiple
Ground-Truth Segmentations

For the task of segmentation evaluation with multiple manually labeled images,
we propose to use the Joint Mutual Information (JMI) to measure the similarity
between the segmentation generated by an algorithm and a set of ground-truth
images. Thus, for a given image I including N pixels, if set U = {U1, . . . , Uk},
abbreviated by U1:k, denotes a set of ground-truth segmentations, variable V
denotes a segmentation compared with U , the similarity measure is defined as

I (U1:k; V ) = KL
(
p(u(1), . . . , u(k), v)||p(u(1), . . . , u(k))p(v)

)
=

∑
u(1)∈U1,...,u(k)∈Uk,v∈V

p(u(1), . . . , u(k), v) log
p(u(1), . . . , u(k), v)

p(u(1), . . . , u(k))p(v)
(3)

where KL(·||·) denotes the Kullback-Leibler divergence, u(1), . . . , u(k), v repre-
sent the variables about segment (class) labels in U1, . . . , Uk, V respectively, and
each of them may have different number of label values, e.g. u(1) = {u(1)

1 , . . . , u
(1)
n }

if there are n segments in U1, and u(2) = {u(2)
1 , . . . , u

(2)
m } if there are m segments

in U2. The joint probabilities p(u(1), . . . , u(k), v) = |u(1) ∩ . . . ∩ u(k) ∩ v|/N and
p(u(1), . . . , u(k)) = |u(1) ∩ . . . ∩ u(k)|/N are the probabilities that a image pixel
simultaneously assigned to segment labels u(1), . . . , u(k), v for U1, . . . , Uk, V , and
simultaneously assigned to u(1), . . . , u(k) for U1, . . . , Uk, respectively. Comparing
Eq. (3) with Eq. (1), JMI can be seen as an extension of the mutual information.

Like mutual information, JMI does not have a fixed upper bound. To make the
evaluation scores comparable in a fixed range [0, 1], we also need a normalized
version of JMI. In Sect. 2.1, the normalized mutual information has been given by
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Eq. (2). In much the same way, we infer that JMI is bounded by the entropy H(V )
and the joint entropy H(U1, . . . , Uk). So, Normalized Joint Mutual Information
(NJMI) is defined as

NJMI =
I(U1, . . . , Uk; V )√
H(U1, . . . , Uk)H(V )

(4)

where H(U1, . . . , Uk) = −∑u(1)∈U1,...,u(k)∈Uk
p(u(1), . . . , u(k)) log p(u(1), . . . , u(k))

and H(V ) = −∑v∈V p(v) log p(v).

2.3 Joint Mutual Information and Multi-information

Further more, we illustrate that the JMI measure follows the intuitive principle
that “‘tightly knit’ groups are more difficult to join” [9]. From the proof of The-
orem 1 in [10], we obtain the relationship between the Joint Mutual Information
and the Multi-information:

I(U1:k; V ) = I(U1, . . . , Uk, V ) − I(U1, . . . , Uk) (5)

where I(U1, . . . , Uk, V ) and I(U1, . . . , Uk) are the two Multi-information quan-
tities among multiple variables:

I(U1, . . . , Uk, V ) =
∑

u(1)∈U1,...,u(k)∈Uk,v∈V

p(u(1), . . . , u(k), v) log
p(u(1), . . . , u(k), v)

p(u(1)) . . . p(u(k))p(v)

I(U1, . . . , Uk) =
∑

u(1)∈U1,...,u(k)∈Uk

p(u(1), . . . , u(k)) log
p(u(1), . . . , u(k))
p(u(1)) . . . p(u(k))

In [9], the Multi-information is proposed to be used as a collective measure of
similarity s(i1, i2, . . . , ir) among r > 2 elements. So, if we put this relationship
in the context of segmentation evaluation, supposing that U is a ground-truth
set and V is a segmentation result, we observe that the value of JMI should be
higher, if I(U1, . . . , Uk, V ) is larger, i.e. the segmentation V and other ground-
truth segmentations {U1, . . . , Uk} are more similar to each other. Meanwhile,
the JMI value is weakened by the collective similarity I(U1, . . . , Uk) among all
of the segmentations in the ground-truth set. It indicates that if the manually
segmented images are more consistent with each other, the compared segmenta-
tion needs to be more similar to them to get higher JMI value.

3 Experiment

In this section, we first present the performance of NJMI on comparing differ-
ent segmentations of the same image. Figure 1 gives an example image and its
four manually segmented images. Figure 2 shows seven mean shift segmenta-
tions (from oversegmentation to undersegmentation) using different bandwidth
parameters. Figure 3 depicts three evaluation scores, Global Consistency Error
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Fig. 1. An example image and its four ground-truth segmentations

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Seven mean shift segmentations

Table 1. Comparison of the average NJMI score of three segmentation algorithms on
50 images under the same number of segments

Number of Segments mean shift efficient graph normalized cut

10 0.5829 0.5374 0.5923

20 0.5906 0.5695 0.6082

40 0.5903 0.5792 0.6124

(a) (b) (c) (d) (e) (f) (g)
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Fig. 3. Three evaluation scores for different segmentations: Global Consistency Accu-
racy (GCA), Local Consistency Accuracy (LCA), and NJMI
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hs=8, hr=4 (0.4544)
hs=8, hr=8 (0.5125)
hs=8, hr=12 (0.4414)
hs=8, hr=16 (0.3308)

Fig. 4. Segmentation performance curves of mean shift algorithm. The number in
parenthesis is the average NJMI score on all 100 images for the corresponding param-
eter setting (hs is the scale bandwidth, hr is the color bandwidth, and the minimum
region = 20). The best parameter setting is hs = 8, hr = 8.
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K=100 (0.5447)
K=500 (0.5634)
K=1000 (0.5029)
K=1500 (0.4429)

Fig. 5. Segmentation performance curves of efficient graph algorithm. The number in
parenthesis is the average NJMI score on all 100 images for the corresponding parameter
setting (parameter K controls the splitting process of a segment, and the minimum
region = 20). The best performance is achieved when K = 500.
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Fig. 6. Segmentation performance curves of normalized cut algorithm. The number in
parenthesis is the average NJMI score on all 100 images for different target number of
segments.

(GCE), Local Consistency Error (LCE) [1], and NJMI over the segmentations
(a)-(g) in Fig. 2. From this plot, we observe that NJMI can indicate the segmen-
tations with appropriate granularity being consistent with ground-truth images.

Furthermore, we explore the segmentation performance of three algorithms,
mean shift (Fig. 4), efficient graph (Fig. 5) and normalized cut (Fig. 6) using
NJMI cumulative-performance curve [11], which describes the performance dis-
tribution on 100 images selected from Berkeley segmentation database. In this
curve, axis x represents the proportion of images, and axis y represents the NJMI
score. A specific point (x, f(x)) on the curve indicates that 100 · x percent of
the images are segmented with a NJMI score lower than f(x). Using a new seg-
mentation method or a parameter setting produces a new curve, and the higher
a curve, the better the performance of the corresponding parameter setting is.
Therefore, we can roughly obtain the best parameter settings for mean shift and
efficient graph. Then, we use these parameter settings for comparing the aver-
age performance of the three algorithms on another 50 images, under the same
number of segments. The comparison results in Table 1 show that normalized
cut has slightly better performance than the other two algorithms.

4 Conclusion

In this paper, we have presented an information theoretic based measure, the
Normalized Joint Mutual Information, for image segmentation evaluation in the
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case of multiple ground-truth images being available. Experimental results show
that NJMI can give reasonable scores which permit comparison between differ-
ent segmentations of the same image. And it does not arbitrarily accommodate
refinement or coarsening when all the human subjects give consistent segmenta-
tions for an image.

It should be noted that, to calculate NJMI, the joint probabilities need to be
estimated first. This suffers from the curse of dimensionality when the ground-
truth set is large. So, in that case, other parametric or non-parametric density
estimation techniques should be brought in.
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Abstract. This paper presents a novel alternating scheme for super-
vised parameter learning. While in previous methods parameters were
optimized simultaneously, we propose to optimize parameters in an al-
ternating way. In doing so the computational amount is reduced sig-
nificantly. The method is applied to four image segmentation algorithms
and compared with exhaustive search and a coarse-to-fine approach. The
results show the efficiency of the proposed scheme.

1 Introduction

This work addresses the problem of supervised parameter learning for image
segmentation algorithms. The developers of image segmentation algorithms typ-
ically train algorithm parameters in order to show how well an algorithm per-
forms for a given dataset. Mostly, manual parameter training is not applicable for
image segmentation. First, the algorithm has to be trained on a large database in
order to get representative results, which causes considerable amount of manual
work for a user. Secondly, if two different users tune parameters independently
of each other by trial and error their results will be likely different. Therefore su-
pervised parameter learning is often used in order to find the optimal parameter
setting for a given database with ground truth [11].

In this paper, we propose a novel alternating scheme for supervised parame-
ter learning. The idea behind our scheme is related to the principle used in the
Expectation-Maximization algorithm: In each step all except for one parameter
are hold fix and the best parameter setting for the free parameter is estimated.
In the subsequent steps the procedure is repeated for each parameter until the
improvement is small enough. The novel method is compared to some exist-
ing supervised parameter learning approaches: the exhaustive search and the
coarse-to-fine approach [8]. The computational amount for this methods grows
exponentially with the number of parameters. In contrast we will show that for
the proposed alternating scheme the computational amount grows linearly with
the number of parameters.

The rest of this paper is organized as follows. In Section 2 the alternating
scheme for supervised parameter learning is proposed. Next, in Section 3 other
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existing supervised parameter learning methods used in our comparison are de-
tailed. In Section 4 experimental settings are described and results are shown.
Finally, we conclude in Section 5.

2 Alternating Scheme for Supervised Parameter Learning

In this section we propose an alternating iterative scheme for supervised param-
eter learning. The exhaustive search and the coarse-to-fine approach [8] estimate
all parameters simultaneously. In contrast, in the alternating iterative scheme all
except for one parameter are fixed in each step and the best parameter setting
for the free parameter is estimated. In the next step this parameter is fixed by
using the estimated parameter setting and another parameter is set to be free.
Within each iteration every parameter is set to be free once. By this way the
computational complexity is reduced significantly.

Let us outline the case of two parameters in a more formal way:

1. Initialization: For each parameter an initial parameter range is sampled into
N (assumed to be odd for notation simplicity) parameter settings.

2. For i = 1 to maximal number of iterations, do:

(a) Fix one parameter by taking the median of the corresponding parameter
range. Estimate the second parameter from the corresponding sampled
parameter range. This is done by first segmenting each image of the
given dataset N times by using the corresponding parameter settings.
Then, the performance of the N segmentation results is computed and
the parameter setting with the highest average performance is chosen.

(b) Fix the second parameter trained from step (a) and estimate the first
parameter from the corresponding sampled parameter range in the same
way as it is done in step (a).

(c) Reduce the parameter search ranges: The neighborhood of the selected
parameter setting is resampled to obtain N parameter settings, N−1

2 to
the left and N−1

2 to the right with a predefined step size. This step size
should be appropriately chosen to narrow down the search space.

3. Output: The two parameter settings.

In our experiments the maximal number of 3 iterations yields good results. The
scheme can be easily extended to an arbitrary number of parameters. This is
simply done by alternatingly optimizing one of the parameters while fixing the
others. The scheme is applicable to any segmentation algorithm with more than
one parameter. Note that in case of only one parameter there is no alterna-
tion within each iteration and the scheme becomes similar to the coarse-to-fine
approach [8]. For this alternating scheme the computational amount grows lin-
early with the number of parameters since each iteration DN segmentations (D:
number of parameters) have to be computed.

We consider a simple example by varying the parameters of the segmenta-
tion algorithm FH [3]. FH has three parameters: a smoothing parameter (σ), a
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threshold function (k), and a minimum component size (min size). For better
illustration we fix in this case σ = 0.6 and vary the other parameters. The seg-
mentation results and parameter settings are shown in Fig. 1. The image is taken
from the Berkeley Dataset [6] and segmentations are evaluated by NMI [10].
Suppose the alternating scheme starts at the sixth segmentation. In this case
the scheme proceeds as follows: In the first step k = 200 is fixed and min size is
estimated to be 700, i.e. the seventh segmentation is the best one in the second
row. Now min size = 700 is fixed and k = 500 is estimated to be optimal in the
third column (the 15th segmentation). The iteration stops because no further
improvement is possible. Therefore k = 500, min size = 700 is estimated to be
the best parameter setting for this single image.

1. p = (50, 100) 2. p = (50, 400) 3. p = (50, 700) 4. p = (50, 1000)
NMI = 0.549 NMI = 0.622 NMI = 0.631 NMI = 0.666

5. p = (200, 100) 6. p = (200, 400) 7. p = (200, 700) 8. p = (200, 1000)
NMI = 0.690 NMI = 0.699 NMI = 0.706 NMI = 0.671

9. p = (350, 100) 10. p = (350, 400) 11. p = (350, 700) 12. p = (350, 1000)
NMI = 0.722 NMI = 0.722 NMI = 0.718 NMI = 0.793

13. p = (500, 100) 14. p = (500, 400) 15. p = (500, 700) 16. p = (500, 1000)
NMI = 0.785 NMI = 0.832 NMI = 0.832 NMI = 0.830

Fig. 1. Segmentations generated by the FH algorithm and varying parameters p =
(k, min size), whereas the parameter σ = 0.6 is fixed. In each row (column) k
(min size) is constant. Segmentations are evaluated by NMI . Higher values are better.
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3 Comparison of Supervised Parameter Learning
Methods

In this section supervised parameter learning methods used in our comparison
are detailed. The exhaustive search is the simplest method in order to learn the
best parameter setting, but it is also the most time-consuming method. In this
case the D-dimensional grid of parameter settings is sampled into ND discrete
parameter settings, resulting in a need of computing ND segmentations, i.e. the
computational amount grows exponentially with the number of parameters. In
order to learn the parameters for a given dataset each image has to be segmented
ND times. Each segmentation has to be evaluated by a suitable performance
measure (see Section 4) and the parameter setting candidate with the largest
average performance is selected as the optimal parameter setting. Note that if
the discretization of each parameter range is fine enough, the global optimum is
approximated very well by the exhaustive search.

The coarse-to-fine approach proposed in [8] aims at reducing the computa-
tional effort by using a form of multi-locus hill climbing. The multi-dimensional
grid of parameter settings in the first iteration is much smaller than for the
exhaustive search. Several parameter settings yielding the best performance are
estimated on this grid and further refined in the successive iterations. More
specifically, the authors consider 5D initial parameter settings in the first it-
eration. The highest performing one percent of the 5D parameter settings are
selected in order to refine the estimates in the second iteration. In the refinement
step a 3D sampling around each of the selected parameter settings is created.
Again, the top-performing parameter settings are selected to be carried forward
to the next iteration. The iteration continues until the improvement in per-
formance is smaller than 1%. Also for this method the computational amount
remains to grow exponentially with the number of parameters.

4 Experiments

In this section several experimental settings are detailed and then experimental
results are shown.

4.1 Experimental Settings

First some experimental settings are summarised. In order to evaluates the sim-
ilarity between the segmentation result and the given ground truth segmen-
tation (GT) a similarity measure is needed. We decided to use two different
similarity measures, the normalized mutual information (NMI) [10] and the
boundary-based F-measure [7] to demonstrate the performance. Further, we use
the Berkeley Database (BDS) with 300 images of size 321×214 (214×321 respec-
tively). The BDS provides for each image several different GT segmentations.
Therefore, we selected a representative GT segmentation, which maximizes the
sum of similarity values (either NMI or F-measure) to the other ground truth
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segmentations. Because GT generation is a time-consuming task image databases
with ground truth mostly contain much less than 300 images. In order to make
our experiments more realistic, we decided to partition the BDS into 10 datasets,
each consisting of 30 images. The datasets are numerated from 1 to 10. Note that
while it is generally important to carefully design the partitioning of a database
into training and test set [5], this issue is completely irrelevant in our study here.

We use four different segmentation algorithms to evaluate the proposed pa-
rameter learning method: the segmentation algorithm JSEG [2], the graph-based
approach FH [3], the mean shift algorithm EDISON [1], and the Color Struc-
ture Code CSC [9]. The reasons for our choice are: 1) Most of these algorithms
are state-of-the-art; 2) their code is available; 3) they are sensitive to parameter
selection; 4) they have more than one parameter.

The JSEG algorithm has two parameters: q ∈ [30, 600] and m ∈ [0.05, 1]. We
have chosen to explore the following parameter ranges for FH: σ ∈ [0.6, 1.5],
k ∈ [50, 500], min size ∈ [100, 1000]. The mean shift segmentation algorithm
EDISON has three parameters: A feature (range) bandwidth hr ∈ [3, 21], a
spatial bandwidth hs ∈ [3, 21], and a minimum region area (in pixels) min reg ∈
[100, 1000] . CSC is a hierarchical region growing method. In the HSV-mode three
parameters: The hue-table h ∈ [−4, 4], sat-table s ∈ [−4, 4] and the val-table
v ∈ [−4, 4]. For each channel it is possible to select one of nine distance tables
containing thresholds for this channel. Further, we use for CSC a smoothing
parameter σ ∈ [0.6, 1.5] for Gaussian smoothing. Four parameters have to be
optimized in this case.

Finally, let us mention some implementation details concerning the supervised
parameter learning methods. In order to restrict the computational effort for the
exhaustive search to a certain degree we chose for D = 2 an equidistant sampling
of N = 20 samples for each parameter, while N is chosen to be 10 for D = 3. In
case of CSC N is chosen to be 9 for parameters controlling the color thresholds
and 10 for the smoothing parameter. For the coarse-to-fine approach we chose
a subgrid of the grid used in the exhaustive search. Suppose the samples used
in the exhaustive search are numerated from 1 to 10 (9, 20 respectively). For
D = 2 and each parameter in the initial iteration of the coarse-to-fine approach
the samples 2, 6, 10, 14, 18 are used (these are 5 of the 20 samples used in the
exhaustive search). Analogously, for D = 3, 4 the initial samples are chosen to
be 1, 3, 5, 7, 9. In the subsequent iterations the three top-performing samples are
selected and refined by exploring the neighboring samples (in the grid computed
for the exhaustive search).

For the alternating scheme N is chosen to be 9. For D = 2 the initial param-
eter settings of each parameter are set to the samples 2, 4, 6, 8, 10, 12, 14, 16, 18
of the exhaustive search. The step size corresponds to the distance between
two samples. For D = 3, 4 the initial samples of each parameter are set to be
1, 2, . . . , 9. In order to match always the samples on the grid of the exhaustive
search the step size is set to the distance between two samples. By this way the
comparison and computation get easier.
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Table 1. JSEG algorithm. Comparison of supervised parameter learning methods:
Exhaustive search (ExSearch), coarse-to-fine approach, and the proposed alternating
scheme. Deviation is computed relative to the results of exhaustive search. For perfor-
mance evaluation NMI and F-measure, respectively, are used. DS denotes the dataset.

ExSearch Coarse-to-fine Alternating ExSearch Coarse-to-fine Alternating
DS NMI NMI deviation NMI deviation F F deviation F deviation

in % in % in % in %

1 0.588 0.587 0.1 0.580 1.3 0.501 0.499 0.2 0.497 0.8
2 0.574 0.574 0.0 0.574 0.0 0.500 0.495 1.1 0.498 0.5
3 0.629 0.628 0.2 0.628 0.1 0.519 0.515 0.7 0.519 0.0
4 0.617 0.616 0.1 0.617 0.0 0.539 0.534 0.9 0.532 1.3
5 0.634 0.634 0.1 0.634 0.0 0.537 0.537 0.0 0.535 0.4
6 0.636 0.632 0.6 0.632 0.6 0.548 0.548 0.0 0.548 0.1
7 0.602 0.602 0.0 0.602 0.0 0.556 0.549 1.2 0.556 0.0
8 0.649 0.647 0.3 0.647 0.3 0.552 0.550 0.3 0.546 1.0
9 0.618 0.618 0.0 0.617 0.2 0.538 0.538 0.0 0.538 0.0
10 0.559 0.558 0.2 0.559 0.0 0.506 0.506 0.0 0.506 0.0

4.2 Results

In Table 1 the experimental results for the JSEG algorithm and each dataset
are shown. For the coarse-to-fine approach and the alternating scheme the de-
viation (in %) from the results of the exhaustive search was computed. Note
that the latter builds an upper bound of performance for the coarse-to-fine ap-
proach and the alternating scheme because a subgrid is used in these cases. The
coarse-to-fine approach and the alternating scheme may converge to some local
optimum. Therefore, their results are slightly worse than the exhaustive search.
However, the deviation is always small and the found optima are acceptable in
all cases. The results for FH, EDISON, and CSC are shown in Table 2, 3, 4,
respectively. Also in these cases the deviation from the results of the exhaus-
tive search is rather small, i.e. the optimum is approximated very well by the
coarse-to-fine approach and the alternating scheme. Note that for CSC both the
coarse-to-fine approach and the alternating scheme converge to the optimum
even for all datasets. A close examination reveals that the main reason for this
excellent convergence is that CSC is not as sensitive to its parameters as the
other algorithms. Therefore, the optimum is easier to find in this case.

Table 2. FH algorithm. Comparison of supervised parameter learning methods.

ExSearch Coarse-to-fine Alternating ExSearch Coarse-to-fine Alternating
DS NMI NMI deviation NMI deviation F F deviation F deviation

in % in % in % in %

1 0.602 0.602 0.0 0.594 1.4 0.519 0.519 0.0 0.519 0.0
2 0.592 0.587 0.8 0.587 0.8 0.517 0.517 0.0 0.517 0.0
3 0.625 0.625 0.0 0.617 1.4 0.531 0.531 0.0 0.526 0.8
4 0.630 0.623 1.1 0.623 1.1 0.511 0.508 0.5 0.509 0.4
5 0.645 0.645 0.0 0.642 0.5 0.552 0.549 0.5 0.547 1.0
6 0.653 0.653 0.0 0.645 1.3 0.568 0.567 0.0 0.567 0.0
7 0.616 0.606 1.6 0.610 0.8 0.563 0.563 0.0 0.563 0.0
8 0.662 0.662 0.0 0.662 0.0 0.575 0.575 0.0 0.575 0.0
9 0.644 0.644 0.0 0.644 0.0 0.556 0.556 0.1 0.556 0.0
10 0.578 0.578 0.0 0.578 0.0 0.515 0.515 0.0 0.508 1.3
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Table 3. EDISON algorithm. Comparison of supervised parameter learning
methods.

ExSearch Coarse-to-fine Alternating ExSearch Coarse-to-fine Alternating
DS NMI NMI deviation NMI deviation F F deviation F deviation

in % in % in % in %

1 0.606 0.606 0.0 0.606 0.0 0.519 0.515 0.7 0.516 0.4
2 0.606 0.605 0.1 0.606 0.0 0.533 0.532 0.3 0.532 0.3
3 0.628 0.628 0.0 0.628 0.0 0.523 0.520 0.6 0.511 2.4
4 0.632 0.625 1.2 0.632 0.0 0.549 0.542 1.2 0.549 0.0
5 0.652 0.652 0.0 0.644 1.2 0.575 0.565 1.7 0.575 0.0
6 0.672 0.672 0.0 0.672 0.0 0.586 0.586 0.0 0.578 1.3
7 0.597 0.595 0.2 0.588 1.4 0.559 0.554 0.9 0.546 2.2
8 0.651 0.651 0.0 0.651 0.0 0.576 0.574 0.2 0.576 0.0
9 0.650 0.650 0.0 0.642 1.3 0.554 0.551 0.4 0.554 0.0
10 0.574 0.572 0.2 0.570 0.7 0.522 0.522 0.1 0.522 0.0

Table 4. CSC algorithm. Comparison of supervised parameter learning methods.

ExSearch Coarse-to-fine Alternating ExSearch Coarse-to-fine Alternating
DS NMI NMI deviation NMI deviation F F deviation F deviation

in % in % in % in %

1 0.499 0.499 0.0 0.499 0.0 0.454 0.454 0.0 0.454 0.0
2 0.514 0.514 0.0 0.514 0.0 0.429 0.429 0.0 0.429 0.0
3 0.565 0.565 0.0 0.565 0.0 0.459 0.459 0.0 0.459 0.0
4 0.527 0.527 0.0 0.527 0.0 0.441 0.441 0.0 0.441 0.0
5 0.567 0.567 0.0 0.567 0.0 0.477 0.477 0.0 0.477 0.0
6 0.586 0.586 0.0 0.586 0.0 0.496 0.496 0.0 0.496 0.0
7 0.522 0.522 0.0 0.522 0.0 0.484 0.484 0.0 0.484 0.0
8 0.614 0.614 0.0 0.614 0.0 0.523 0.523 0.0 0.523 0.0
9 0.533 0.533 0.0 0.533 0.0 0.452 0.455 0.0 0.455 0.0
10 0.490 0.490 0.0 0.490 0.0 0.467 0.467 0.0 0.467 0.0

Table 5. Runtime comparison of supervised parameter learning methods. Average
runtime in minutes for a dataset with 30 images.

D (# parameters) ExSearch Coarse-to-fine Alternating
JSEG 2 465 41 41

FH 3 197 30 18
EDISON 3 8440 1245 760

CSC 4 4612 414 80

In Table 5 the runtime on a dual 2.66 GHz processor with 4 GB RAM is
listed. In case of two parameters (JSEG) there is no clear difference between
the coarse-to-fine approach and the alternating scheme. For FH the exhaustive
search for a dataset with 30 images takes 197 minutes, while the computation
time of the coarse-to-fine approach is 30 minutes. The alternating scheme yields a
further speedup (18 minutes). For slower segmenters like EDISON the advantage
of the alternating scheme is even more evident. The process needs 760 minutes
for the alternating scheme, in contrast to 1245 and 8440 minutes for the coarse-
to-fine approach and the exhaustive search, respectively. The largest speedup
in comparison with the coarse-to-fine approach is observed for the case with
four parameters (CSC): 80 minutes in contrast to 414 minutes for the coarse-
to-fine approach. We conclude that in the case of three or more parameters the
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alternating scheme is clearly faster than the coarse-to-fine approach and therefore
should be preferred in order to learn parameters.

5 Conclusion

Instead of estimating parameters simultaneously an alternating iterative scheme
was proposed in this paper for supervised parameter learning. Experimental
results in image segmentation have shown that the scheme converges quite well
towards the global optimum. Further, it is much less time-consuming than the
exhaustive search and the coarse-to-fine approach. Especially in case of a large
number of parameters the speedup of the alternating scheme becomes significant.

The alternating scheme is applicable to other application domains, e.g. to
range image segmentation or edge detection. [4] or edge detection. In future
work we plan to extend the experiments to these domains.
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Abstract. Model based segmentation methods make use of a priori
knowledge of the object to improve the segmentation results. Taking
advantage of global information makes these methods less sensitive to
local interferences like noise or line gaps. Laser lines from optical sensors
are deformed due to the geometry of the measured object. Therefore we
use dynamic models for robust and fast segmentation of a laser line.

1 Introduction

Using optical sensors based on laser triangulation for the acquisition of geometric
data of objects has become a widespread method in the recent years. Nonetheless
there are many tasks during the measurement process which still leave place for
further improvements. In our work we focus on the task of segmenting the laser
line in the image. This task is often regarded as a subtask of the peak detec-
tion. The methods in this article provide an advancement for the measurement
process. They preliminarily determine the relative position of the laser line, so
the peak detection can be realized at the laser line only. This makes the system
robust to wrong measurements due to specular reflections of the laser light, or
to intensity variations of the laser line. The segmentation is done with adapted
versions of snakes [7] and the mass-spring model [2].

2 Detection of Laser Lines

Most research done in the field of image processing of laser line images is focused
on the detection of the peak of the laser line. Fisher et al. [3] give a good com-
parison of most of the common peak detectors. They range from simple methods
like linear interpolation or center of mass (sometimes called center of gravity)
to more complex methods like Gaussian approximation, the parabolic estimator
and the Blais and Rioux Detectors. A more sophisticated approach using FIR
filters was introduced by Forest Collado in [4] and [5]. All peak detectors as-
sume that the cross section of the laser line is nearly a Gaussian distribution
superimposed by noise due to speckle. Thus they need the laser line to have a
minimum width and intensity but not too many overexposed pixels. Depending
on its complexity each peak detector has different requirements for the laser line.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 126–134, 2011.
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The crucial point is that only little research is done to determine where to apply
the peak detectors. The most common approach is to search for the maximum
intensity peak in every row or column (depending on the alignment of laser and
camera) in the image. Sometimes the first peak, which is higher than a certain
threshold, is used to avoid secondary reflections when measuring translucent ma-
terial. Another approach is to examine all peaks higher than a certain threshold
and to remove erroneous data after the peak detection. This leads us to the seg-
mentation of the laser line. Ofner et al. [8] proposed a line walking algorithm to
extract line segments. It is looking for the maximum value in the adjacent row
as long as it is higher than a certain threshold. The drawback of this method
is that it segments a bulk of laser line segments instead of one line when it
is confronted with line gaps. Line gaps appear when the intensity of the laser
line is under the threshold in some areas. Such areas may occur, if the object
consists of different materials or has changes on the surface due to corrosion or
mechanical processing. To generate measuring data at these areas it is possi-
ble to use interpolation or approximation methods [10,8,9]. Nonetheless this is
recommendable only when the measured object has a known geometry and the
measurement task is to control a geometric feature like the radius of a circle. If
the measurement task is surface inspection, it is better to apply local approxi-
mation methods for data smoothing only. This is because interpolation methods
cannot distinguish between a gap in the line caused by lower intensities due to
surface characteristics or a hole in the object.

3 Model Based Segmentation of Laser Lines

In our work we make use of the fact that we are searching for a laser line. Thus we
describe the laser line as model and use this global information for segmentation.
It allows laser line segmentation when there is no local information present at
line gaps or the information is disturbed due to noise. The laser line from optical
sensors is also deformed due to projection onto an object. Therefore we apply a
smoothness constraint for controllable model deformation and use that dynamic
line model for robust segmentation.

3.1 Mass-Spring Model

The first algorithm that we use for the segmentation of a laser line is based
on the mass-spring model. It is an adaption of the physical concept of a mass-
spring system. The structure and mode of operation of the model have been
shown in detail in [2] and [1]. Thus we will give just a short aggregation of the

Fig. 1. Example line model (mass-spring model)
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most important elements needed for our work. The system is composed of masses
connected with elastic springs as shown in figure 1. The masses are representing
image features and the springs are modeling their topology. Each mass is con-
nected to sensors which generate external forces towards image features. Springs
represent the internal energy and generate forces when they are compressed or
stretched. During the segmentation process the internal and external forces will
be balanced till a stable model state is reached. The force 	Fsprij of each spring
is defined by the positions 	p of the connected masses i and j, the default length
of the spring l0 and the spring constant kij as follows.

	Fsprij = kij(||	pj − 	pi|| − l0ij )
	pj − 	pi

||	pj − 	pi|| (1)

The external force 	Fexti affecting each mass, is calculated with an intensity
sensor adapted to the segmentation of laser lines, which is introduced in sub-
section 3.3. The system is simulated by discrete time steps Δt. At each time
step the velocity of the masses is calculated from the previous velocity 	vit at t
and the weighted forces at the masses, where w denote the weights and m the
mass value. The damping constant d is used to suppress oscillations. To improve
the stability of the model [1] introduced torsion forces 	Ftori,j , which increase
when the directions of the springs change related to their original direction. The
weight of the torsion forces controls the allowed deformation of the line model.

	vit+Δt = (	vit +
wspr

∑
j

	Fsprij + wtor

∑
j

	Ftorij + wext
	Fexti

mi
Δt)(1 − d) (2)

The segmentation process is finished after fulfilling a custom criterion. In
practice it has proved successful to cancel the computation when the sum of the
movements of all masses is lower than a given threshold.

3.2 Snakes

The second algorithm that we use for the segmentation of a laser line is based
on snakes, which have been published by [7] first. Snakes consist of an energy
minimizing spline with control points. The spline builds the internal forces which
impose a piecewise smoothness constraint. The external forces affect the control
points and move them to the desired local minimum. In our application the
external forces are derived from the intensities of the image. To characterize a
line we changed the spline construction from a closed contour to an open contour
as shown in figure 2. The energy function of the snake at the control points

Fig. 2. Example line model (snake model)
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pi = (xi, yi) is shown in equation (3). Eint denotes the internal energy of the
spline and Eext the energy based on the image forces. The internal energy is the
sum of a first order term and a second order term. The first order term specifies
continuity (for each control point the two neighbored control points are taken
into account) and is weighted with αi. The second order term specifies curvature
(for each control point the two previous and following control points are taken
into account) and is weighted with βi. The image energy Eext is derived from
the image intensities. Equation (4) shows the discrete notation of the energy
function.

E∗
snake =

1∫
0

Eint(i) + Eext(i) (3)

E∗
snake =

n∑
i=1

αi |pi − pi−1|2 /2h2 + βi |pi−1 − 2pi + pi+1|2 /2h4 + Eext(i) (4)

To assign the line model to the image we need to minimize the energy and
therefore we derive the internal energy. As mentioned in [7] the derivatives are
approximated by finite differences, transformed into systems of equations and
written as matrix as shown in equation (5).

Ax + fx(x, y) = 0 Ay + fy(x, y) = 0 (5)

The matrix A maps the internal energy on the control points and creates
the internal forces. The number of rows and columns is equal to the number of
points. We have constructed a matrix for a line (open contour) with a1 = β, a2 =
−(α + 4β) and a3 = 2α + 6β which looks as follows.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0 0 0
a1 + a2 a3 a1 + a2 0 0 · · · 0 0 0

a1 a2 a3 a2 a1 0 · · · 0 0
0 a1 a2 a3 a2 a1 0 · · · 0
...

...
...

...
...

...
...

...
...

· · · 0 0 a1 a2 a3 a2 a1 0
0 · · · 0 0 a1 a2 a3 a2 a1

0 0 · · · 0 0 0 a1 + a2 a3 a1 + a2

0 0 0 · · · 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

The functions fx(x, y) and fy(x, y) denote the external forces on the control
points. They are obtained by computing the intensity gradient at the position
(x, y) of all control points with the intensity sensor introduced in subsection 3.3.
The equations (5) are solved by the calculation of the time derivative at time t
where γ denotes the step size for the time derivatives and I the identity matrix.

xt = (A + γI)−1(γxt−1 − fx(xt−1, yt−1))

yt = (A + γI)−1(γyt−1 − fy(xt−1, yt−1))
(7)
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The segmentation process assigns the line model to the image by calculating
the equations (7) at each iteration. The process is finished after fulfilling a custom
criterion. In practice it has proved successful to cancel the computation, when
the sum of the movements of all control points is lower than a given threshold.

3.3 Intensity Sensor

To calculate the external forces 	Fext we propose an intensity sensor which inte-
grates the product of the intensities In of all pixels 	pn, in an defined circumcircle
with the radius r around the position 	s of the sensor, and the vector towards
them. Each vector is divided by its square length to degrade farther points.
Integrating n pixels around the sensor suppresses speckle and noise.

	Fext(	s) =
1
n

∑
n

(	pn − 	s)In

|	pn − 	s|2 (8)

The radius of the intensity sensor is controlled during the segmentation pro-
cess with equation (9). Imax denotes the maximum attainable intensity of the
laser line, Is the intensity at position 	s, rmax the start radius and rmin the
minimum radius.

r = rmax − (rmax − rmin)min(1,
Is

Imax
) (9)

The automatic adaption of the radius of the intensity sensors enhances the
segmentation speed and preserves the line ends since the radius determines the
smoothing of the sensor at the line end.

3.4 Model Generation

Before the segmentation process with the line model can be started it is necessary
to generate the model first. Thereto an area of interest around all pixels in the
image with intensities greater than a given threshold is segmented. In this area a
number of points representing the masses (mass-spring model) or control points
(snake model) is created. To assure a good quality of the estimation of these
starting points in relation to the laser line, the area of interest is divided into

(a) (b)

Fig. 3. Generation of a line model for a horizontal laser line. The segments (red) of the
area of interest (blue) for the line model (a), and the positions of the starting points
(green) and the starting radii (blue) (b).
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(a) (b) (c)

Fig. 4. Laser line on a transparent spectacle frame. The lines on the right side are
secondary reflections from the back side of the spectacle frame. The starting position
of both models (a), the final position of the snake model (b), and the final position of
the mass-spring model (c).

segments [6]. Each starting point is positioned in the center of its segment along
the preset orientation (horizontal/vertical) of the laser line as shown in figure 3.
The offset of the starting points perpendicular to the preset direction of the laser
line is calculated from the center of gravity of the intensity in these segments. In
case of segments with very low intensities along the laser line, the positions of the
starting points in these segments are calculated with linear interpolation between
the next segments, which have starting points determined by an appropriate
number of bright pixels.

4 Experimental Results

To examine the segmentation quality of the model based segmentation methods
a set of images was used. These images have been chosen to represent a large
variety of materials and applications. They contain images of specular reflections
on metallic surfaces, diffuse reflections on rough surfaces, as well as specular
reflections on transparent materials. The only constraint for the images is that
the surface has to be continuous, so that there is only one line in each image.

4.1 Comparison of Mass-Spring Model and Snakes

The comparison of the segmentation quality of both methods shows almost sim-
ilar results for all tested images. Depending on the laser line either the snake
model or the mass-spring model provides a slightly better result. This can be
seen in figure 4, where the starting position and the segmentation results on
a spectacle frame are shown for both methods. The only difference is that the
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(a) (b) (c) (d) (e)

Fig. 5. Laser line with reflections in front of it and behind it. Segmentation result
with snake model (a), peak detection with peak detector at snake positions (b), peak
detection with first peak detector (c), peak detection with highest peak detector (d),
and peak detection with all peaks detector (e). The detection starts from the left side
with a threshold of 64[0,255] for all peak detectors.

Fig. 6. Segmented laser line on a railway wheelset with high intensity variations due
to mechanical wear and tear

springs of the mass-spring model hinder the compression and stretching of the
model. Thus the line model is a bit longer there. Both methods are robust to
the bad image quality due to speckle.

The implemented version of the snakes is faster than the implemented version
of the mass-spring model. The computing time for the segmentation of a laser
line in an image with the size of 1200x300 pixels, like the one shown in figure 6,
is about 15 milliseconds for the snake model and 20 milliseconds for the mass-
spring model (Intel Core Duo E6850 3GHz). Thus the method based on snakes
is more suitable for the segmentation of a laser line than the method based on
the mass-spring model.

Both methods have great advantages in addition to classic peak detection
algorithms. They are able to segment a laser line even if it is disturbed by reflec-
tions. This is shown on the laser line in figure 5, which has specular reflections
on metallic surfaces in front of it and behind it. The peak detection 5b along
the segmented line model 5a determines the true position of the laser line. The
peaks detected with the first peak detector 5c show some false detections on the
reflection in front the laser line instead of on the laser line. The peaks detected
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with the highest peak detector 5d show some false detections on the reflection
behind the laser line instead of on the laser line. And the detection of all peaks
5e shows false detections in front of the laser line and behind the laser line.
Another advantage is that the methods are robust to high intensity variations
along the laser line, as shown in figure 6.

5 Further Developments

The segmentation of the laser line before the peak detection steps makes it
possible to use an automatic selection and parameterization of the peak detector
accordant to the intensity of the laser line. This means that in bright parts more
complex detectors which require a Gaussian distribution can be utilized while in
dark parts simple detectors can be utilized. In addition the segmentation of the
laser line gives the chance to evaluate the whole line with regard to the optimal
exposure time of the camera. This evaluation should consider the continuity of
the laser line without overexposed or underexposed areas. Besides it might be
useful to apply an automatic split and merge algorithm [10] to the proposed
methods. This will lead to better segmentation in case of multiple lines in the
image.

6 Conclusion

The detection of the laser line is a fundamental step to determine the correct 3-D
measurement data. Especially in industrial environments the optical imaging of
the laser line is affected by reflections and has intensity variations due to different
materials or to corrosion or mechanical processing. Thus it is a great advantage to
segment the laser line before the peak detection step. The proposed methods have
reduced the number of wrongly measured points caused by secondary reflections.
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Abstract. A novel region-based active contour model is proposed in this
paper. By using the image local information in the energy function, our
model is able to efficiently segment images with intensity inhomogeneity.
Moreover, the proposed model is convex. So, it is independent of the
initial condition. Furthermore, the energy function of the proposed model
is minimized in a computationally efficient way by using the Chambolle
method.

Keywords: Segmentation, Convex, Medical Image, Active Contour.

1 Introduction

Image segmentation is one of the most important areas in image processing,
with various applications such as medical imaging, where segmentation has been
becoming a powerful computer-aided tool for cancer or pathological detection,
diagnosis and treatment as well as for surgical planning [1,3,10]. Segmentation
can provide measurements for the location, area, volume of desired object to
detect, and information allowing a dynamical analysis of anatomical structures.

In the literature, one of numerous contributions gained the attention of scien-
tists in the world, which concerns the original work of Kass et al. [4], introducing
for the first time the active contour models (ACM), also called Snakes. Since
then, Active Contour method has been developed and also proved to be one of
the most robust methods for segmentation of medical images [1,2,3]. The key
idea of these models relies on the use of curve evolution to detect objects in a
given image. More precisely, the methods consist in deforming an initial curve
towards object boundaries, under some constraints from that image. There are
two main approaches for active contour models: the edge-based models [4,5,6,7,8]
and the region-based models [9,10,11,17,18,19].

The edge-based models utilize the image gradient to guide the evolving curve
toward object boundaries. Some methods, also referred as geometric active con-
tours were firstly proposed by Caselles et al. [5] and Malladi et al. [6]. These
models take benefice of the advantages of the level set method which is an im-
plicit method and allows automatic change of topology. More recently, Shi et al.
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[16], proposed a fast method without the need of solving the partial differential
equations. Some other methods concern the geodesic active contours models,
also formulated using the level set [7,10]. However, as these edge-based models
rely on the edge properties, their performance is reasonably satisfactory or even
unsuccessful, especially in the case of weak boundaries. Other information can be
useful to take into account, such as properties of regions between the contours.

The region-based models have been then proposed [9,11,13,17], which make
use of statistical information of region instead of using image gradient, offering
hence better performance in the case of noise and weak boundaries or discontin-
uous boundaries. One of the most well-known region-based models is the Chan-
Vese model [11], which has been successful in handling images with homogeneous
regions. However, by using global statistics, such method is not effective for seg-
menting objects with intensity inhomogeneity, as in the case of MR (Magnetic
Resonance), PET (Positron Emission Tomography) or CT (Computed Tomog-
raphy) images affected by shading artifact. The same authors have proposed the
so-called Piecewise Constant (PC) models and extended their work for multiple
regions using multiphase level set functions [17]. In [14], a PC convex model was
proposed. Nevertheless, these models suffer the same drawback when treating
images with inhomogeneous regions.

To cope with the problem of intensity inhomogeneity, several models have
been proposed [17,18,19]. In particular, Chan and Vese also introduced in [17],
the so-called Piecewise Smooth (PS) model. However, this model is complex
and computationally expensive. More recently, Li et al. [18] proposed to use
intensity information in local regions as constraints to deal with inhomogeneous
regions. The proposed LBF (Local Binary Fitting) energy functional is based
on the use of a kernel function to control the size of the neighbourhood. This
problem is formulated and solved using the level set method. Later, Zhang et
al. [19] proposed a Local Image Fitting (LIF) energy functional by minimizing
the difference between an original image and the fitted image. Furthermore, a
Gaussian kernel filtering is used to regularize the level set function after each
iteration, avoiding hence re-initialization. Unfortunately, these models have the
main drawback of non-convexity. So, the involved minimization problem may
have local minima, which is not ideal for an automatic segmentation.

In this paper, we propose a convex active contour model to deal with intensity
inhomogeneity. Due to the convexity properties, the proposed model is indepen-
dent of the initial condition. In order to implement our model, we adopt the
algorithm, which is introduced by Chambolle [20] for denoising and adapted by
Bresson et al. in [14]. By using this algorithm, our proposed energy function is
minimized efficiently in terms of computation. A comparison with other models
such as the LBF and the LIF models has been performed to demonstrate the
performance of our method. We first present a background in section 2. Then
we introduce our proposed convex model and the implementation in section 3.
Our results are presented in section 4 before the conclusion in section 5.
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2 Background

Let Ω be the image domain, u0 : Ω → R
+ be a given image. Mumford and Shah

[12] suggested to find a pair (u, C), minimizing the following energy function:

FMS(u, C) =
∫

Ω

|u − u0|2dx + ρ

∫
Ω\C

|∇u|2dx + μ|C| (1)

where u is a piecewise smooth approximation of u0, while ρ, μ are positive con-
stants, |C| is the length of contour C. The segmentation is performed by min-
imizing this energy function. However, it is difficult to minimize this energy
function directly because of the unknown set C.

To overcome this drawback, Chan and Vese [11] proposed an active contour
model based on a simplified Mumford-Shah functional, with the assumption that
solution image u is composed of two intensity piecewise constant regions. In this
case, the second term of equation (1) is eliminated. Then, equation (1) becomes:

FCV (c1, c2, C) =
∫

in(C)

|u0 − c1|2dx +
∫

out(C)

|u0 − c2|2dx + μ|C| (2)

where μ is a positive constant, out(C) and in(C) represent the outside and
inside regions of the contour C, respectively, c1 and c2 are two constants which
approximate the image intensity in in(C) and out(C), respectively.

To minimize function (2), the contour C is replaced by the zero level set
function [15]. However, the energy function is not convex. Then, there may be
local minima and the resulting segmentation depends on the initial contour.

In order to eliminate the dependence on the initial contour, Chan et al. [13]
proposed the following convex model:

min
c1,c2,0≤f≤1

∫
Ω

|∇f |dx+λ

∫
Ω

f(x)(c1 −u0)2dx+λ

∫
Ω

(1− f(x))(c2 −u0)2dx (3)

where c1, c2 are the average intensities of in(C) and out(C), respectively. The
resolution of this problem is performed by using the standard Euler-Lagrange
equations technique and the explicit gradient descent based algorithm. However,
the numerical scheme is very slow because of the regularization of the first term.

More recently, Bresson et al. proposed in [14] a similar model as follows:

min
c1,c2,0≤f≤1

∫
Ω

g|∇f |dx+λ

∫
Ω

f(x)(c1−u0)2dx+λ

∫
Ω

(1−f(x))(c2−u0)2dx (4)

where g is an edge indicator function so that its value is small at object bound-
aries, e.g. g(x) = 1

1+‖∇u0(x)‖ . The authors also proved that if c1 and c2 are fixed,
and if f∗ is a minimizer of Eq. (4), then the set M = {x : f∗(x) > α} for any
α ∈ (0, 1) determines a global minimizer of the Chan-Vese model.

Note that, when c1 and c2 are fixed, problem (4) becomes:

min
0≤f≤1

F (f) =
∫

Ω

g(x)|∇f(x)|dx + λ

∫
Ω

f(x)ur(x, c1, c2)dx (5)
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with ur(x, c1, c2) = (c1−u0(x))2 − (c2−u0(x))2. Then, the constraint 0 ≤ f ≤ 1
of (5) is eliminated according to the following claim [14].

Claim 1. Let ur(x, c1, c2) ∈ L∞(Ω), for c1, c2 ∈ R, λ ∈ R
+, then the convex

constrained minimization problem (5) has the same set of minimizers as the
following convex and unconstrained minimization problem:

min
f

∫
Ω

g(x)|∇f(x)|dx +
∫

Ω

(λf(x)ur(x, c1, c2) + αψ(f(x)))dx (6)

where ψ(z) = max{0, 2|z− 1
2 |− 1} is an exact penalty function provided that the

constant α is chosen large enough compared to λ such as α > λ
2 ‖ur(x)‖L∞(Ω).

Then, Bresson et al. [14] proposed a fast algorithm based on a dual formulation
of the total variation norm, with the use of a fast algorithm proposed in [20] by
Chambolle. Problem (6) is equivalent to the following problem:

min
f,v

∫
Ω

g(x)|∇f(x)|dx +
1
2θ

‖f − v‖2 +
∫

Ω

(λv(x)ur(x, c1, c2) + αψ(v(x)))dx (7)

where the parameter θ > 0 is chosen to be small so that f and v are close.
The main drawback of these models is that they generally fail to segment

images with inhomogeneous regions. Indeed, because c1 and c2 are the global
average intensity inside and outside the contour, they can be far quite different
from the original data if in(C) or out(C) are inhomogenous regions.

3 Our Model and Implementation

To segment images with inhomogeneous regions, we propose the following model
which uses the edge information and local properties of regions inside and outside
the evolved contour:

min
u1,u2,0≤f≤1

∫
Ω

g(x)|∇f(x)|dx+λ

∫
Ω

f(x)uin(x)dx+λ

∫
Ω

(1−f(x))uout(x)dx (8)

where g is defined in equation (4), λ is a positive constant, uin and uout are the
data fidelity terms which are defined by the following equations:

uin(x) =

∫
Ω Kσ(x − y)(u0(x) − u1(y))2dy∫

Ω Kσ(x − y)dy

uout(x) =

∫
Ω Kσ(x − y)(u0(x) − u2(y))2dy∫

Ω Kσ(x − y)dy

(9)

where Kσ is a Gaussian kernel with standard deviation σ, and x, y ∈ Ω.
Here, we replace the global average intensities c1 and c2 in Eq. (3) or (4) by

the approximation functions u1 and u2 of the local intensities inside and outside
the contour C, respectively. It is easy to see that model (4) is a special case of
our model if u1 and u2 are constants. The factor Kσ is added to express the
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localization property. Indeed, the Gaussian kernel Kσ(x − y) should decreases
rapidly to zero when y goes away from x. Thus, the energy f(x)uin(x) + (1 −
f(x))uout(x) is dominated in the neighborhood of x.

Note that formula (9) is not similar to the formula of local intensity fitting [18]
of the LBF model: First, the local energy function defined by uin(x) + uout(x)
is computed with the contribution of u1(y) and u2(y) evaluated for y varying
over a neighborhood of a point x (integral of u1(y) and u2(y)), while the local
fitting energy of the LBF model is evaluated with the contribution of original
u0(y) (integral of u0(y)). Furthermore, we divide the weight function Kσ(x− y)
by
∫

Ω
Kσ(x− y)dy, which can be considered as the area of the neighborhood of

x. By this way, formula (8) is the general formula of (4).
To solve problem (8), implementation is performed by two steps as follows:

Step 1: Fixing the variable f , by using variation calculus method [21] for equation
(8) with respect to u1 and u2, we obtain:

u1(y) =

∫
Ω

Kσ(x − y)u0(x)f(x)dx∫
Ω Kσ(x − y)f(x)dx

u2(y) =

∫
Ω

Kσ(x − y)u0(x)(1 − f(x))dx∫
Ω

Kσ(x − y)(1 − f(x))dx

(10)

Step 2: Fixing u1 and u2, the minimizer f∗ of Eq.(8) is the same as:

min
0≤f≤1

F (f) =
∫

Ω

g(x)|∇f(x)|dx + λ

∫
Ω

f(x)ur(x, u1, u2)dx (11)

with ur(x, u1, u2) = uin(x) − uout(x), x ∈ Ω.
By Claim 1, the solution of (11) is the solution of the following problem:

min
f

∫
Ω

g(x)|∇f(x)|dx +
∫

Ω

(λf(x)ur(x, u1, u2) + αψ(f(x)))dx

where ψ(z) is defined as in (6). Then the variable v is introduced in:

min
f,v

∫
Ω

g|∇f |dx+
1
2θ

∫
Ω

|f −v|2dx+
∫

Ω

(λv(x)ur(x, u1, u2)+αψ(v(x)))dx (12)

where θ > 0 must be chosen small sufficiently.
To solve the minimization problem (12), we use the fast algorithm based on a

dual formulation of the total variation norm as proposed in [14,20]. After that,
the set M = {x : f(x) > α} for any α ∈ (0, 1) is used to extract the contours.
The fast segmentation algorithm for solving (12) is resumed in Algorithm 1.
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Algorithm 1
Input u0, g, θ, λ, τ, f

Repeat
Calculate u1, u2 by Eq. (10)
Calculate uin, uout by Eq. (9)
Calculate ur = uin − uout.
v = max{min{f − θλur, 1}, 0}
p0 := 0
Repeat

pn+1 =
pn+τ∇

(
div(pn)− v

θ

)
1+ τ

g |∇
(
div(pn)− v

θ

)
|

To pn+1 ≈ pn

f := v − λdiv(pn+1)
To convergence

Output f

(a) (b)

Fig. 1. Segmentation results on

synthetic image: (a) result of Chan-

Vese convex model, (b) result of our

model with θ = 0.01, λ = 1

4 Experimental Results

To evaluate the performance of our method, several experimentations have been
carried out on images with intensity inhomogeneity. Examples are shown here
for some synthetic and MR as well as X-Ray images. A comparative evaluation
has been performed to demonstrate the advantages of our method over other
methods such as the LBF [18] and the LIF [19] models. The codes of the LBF
and LIF models can be downloaded on the page of the author (http://www.
engr.uconn.edu/∼cmli/ and http://www4.comp.polyu.edu.hk/∼cslzhang/).

We use the MATLAB r2008a to implement our algorithm. The program was
run on a Dell (OptiPlex 360), which has Intel Core 2 Duo E7500 @ 2.93GHz
and 4GB RAM. Here, we use the following values of parameters: τ = 0.01, σ =
3, α = 0.5. The other parameters are specified in figures.

First, the performance of our method for segmenting images of different dis-
tributions of intensity is evaluated. As shown in Fig. 1, our method succeeds
in extracting all the objects of the synthetic image, including object with very
similar intensity as the background. As the objects are piecewise constants, the
Chan-Vese convex model [13] is also tested. As a result, this method only extracts
three objects with intensities quite different from the background.

Fig. 2. Results of our model on images with intensity inhomogeneity. Green line: initial
contour. Red line: final contour, θ = 0.01, λ = 1.
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Fig. 3. Segmentation results of the LBF model
(top row), LIF model (medium row) and our
model (last row) on MR images. Green line: ini-
tial contour. Red line: final contour. θ = 0.1, λ =
0.1.

Fig. 4. Comparison with the ground
truth established by expert on heart
MR image. Yellow line: ground
truth. Green line: our results.

Fig. 5. Segmentation results on MR images: (a) initial counter; (b) results of the LBF
model; (c) results of the LIF model; (d) results of our model. θ = 0.01, λ = 1.

In order to demonstrate the performance of our method for addressing the
intensity inhomogeneity, results obtained for typical images with non homoge-
neous regions such as blood vessel X-ray images and synthetic images are shown
in Fig. 2. As can be seen, our method successfully achieves segmentation of ob-
jects of interest. The results of segmentation for MR images in Figs. 3, 4 and 5
show that our method gives accurate segmentation results, while the LBF and
the LIF models fail to detect the truth contour. In particular, results of our
method are compared with ground truth established by expert. In Fig. 4, an
example is reported for the heart MR images. It is easy to see that the ventricle
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Fig. 6. The accurate segmentation
results. From left to right: LBF,
LIF and our models.

Table 1. Comparing CPU time (in second)
and number of the iteration between our
model with LBF, LIF models

boundaries of the heart are accurately extracted, as compared with the contour
segmented by our expert. Another interest of our model is that it is convex. As
can be seen in Fig. 3, our method gives satisfying results without depending on
the initial contour, which is not the case for the LBF and LIF models.

Finally, we have made a comparative study for the CPU time using the same
images and segmented results. As shown in Fig. 6 and Table 1, our method not
only is faster but also takes less numbers of iterations than the other models.

5 Conclusion

In this paper, we proposed a novel region-based active contour model which is
based on local information, allowing the model to segment images with intensity
inhomogeneity. As the model is convex, the results obtained are independent of
the initial contour. Furthermore, the implementation of our energy minimiza-
tion model is performed using the dual formulation and the iterative algorithm
of Chambolle. Experimental results have demonstrated the performance of our
model in term of robustness to intensity inhomogeneity and computational time.
Our model can be developped for 3D PET image segmentation and evaluated
for its performance in terms of accuracy and computational time.
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Abstract. We show a procedure for constructing a probabilistic atlas
based on affine moment descriptors. It uses a normalization procedure
over the labeled atlas. The proposed linear registration is defined by
closed-form expressions involving only geometric moments. This proce-
dure applies both to atlas construction as atlas-based segmentation. We
model the likelihood term for each voxel and each label using parame-
tric or nonparametric distributions and the prior term is determined by
applying the vote-rule. The probabilistic atlas is built with the variabili-
ty of our linear registration. We have two segmentation strategy: a) it
applies the proposed affine registration to bring the target image into
the coordinate frame of the atlas or b) the probabilistic atlas is non-
rigidly aligning with the target image, where the probabilistic atlas is
previously aligned to the target image with our affine registration. Fi-
nally, we adopt a graph cut - Bayesian framework for implementing the
atlas-based segmentation.

Keywords: probabilistic atlas, affine transformation, graph-cut.

1 Introduction

Much research has been developed to integrate prior knowledge into the seg-
mentation task. We focus on prior knowledge of shape and appearance of the
object of interest. These approaches requiere a modeling or training step before
the actual segmentation takes place. These ideas find their root in the active
shape models first introduced by Cootes et al [1] based on matching a shape
model to an unseen image using landmarks. Later, there has been increasing
interest in using level set-based representation for shape priors [2,3,4], which
avoids landmarks. However, segmentation techniques that rely on the optimiza-
tion of the complex functionals require the adjustment of multiple parameters.
Consequently, these methods suffer from sensitivity to the tuning process.

In medical images there is sometimes a weak relation between voxel data
and the label assignment. In such cases, spatial information must be taken into
account in the segmentation process. One well-validated approach relies on com-
bining the segmentations obtained from non-rigid aligning multiple manually
labeled atlas with the target image [5]. This method makes no use of the in-
tensity information. Considering such information could improves the quality of
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the atlas segmentation. The probabilistic atlas is commonly used in the analysis
of medical images, since it integrates a priori knowledge of the shape and the
appearance.

To combine prior knowledge and some type of regularization based on the
framework of a Markov random field (MRF) is a well established technique for
the medical image segmentation [6]. In these approaches spatial information
in terms of a probabilistic atlas and the contextual information are used to
formulate a maximum a posteriori probability (MAP-MRF). Since Grey et al
[7] proposed graph cuts as a generic method for estimating the maximum a
posteriori, it has been widely used for optimization in this area. For the case of
two labels, Greig constructed a graph with two terminal vertices such that the
minimum cut provides a global optimal labeling. For the multi-label problem,
Ishikawa [8] solved the minimization problem for energy functions with pairwise
terms that are convex in the linearly ordered labels. Therefore, we adopt a graph
cut - Bayesian framework for implementing the atlas-based segmentation.

The paper is organized as follows: in Section 2, we show the problem of the
linear registration and our approach based on the image normalization. Section 3
describes the method for constructing a probabilistic atlas. Section 4 presents our
framework for segmentation using the atlas information and the graph cuts for
optimizing the posterior probability. Finally, in Section 5, we apply our procedure
to liver segmentation from CT images.

2 Linear Registration Using Affine Moment Descriptors

We present a procedure for generating a probabilistic atlas based on affine mo-
ment descriptors. It captures the variability of learning samples and tries to
generalize for the segmentation task. Our first step is to align the training sam-
ples, in order to avoid artifacts due to different pose. Traditionally, the pose
parameters have been estimated minimizing a energy functional, via gradient
descent [3,9].

Our approach considers a training set consisting of N binary images
{Si}i=1,...,N : Ω ⊂ R

n → {0, 1}, n = 2 or 3. For the multi-label problem,
manual segmentation images have to be converted to binary images. All images
in the database are aligned with a single binary image as reference, S̃ref . The
new aligned images are defined as S̃i = Si ◦ T−1

i , where Ti is an affine trans-
formation, given by the composition of a rotation, a scaling transformation and
a translation. Equivalently, Si = S̃i ◦ Ti. We propose a criterion for alignment
based on a shape normalization algorithm [11]. It is only necessary to compute
the first and second order moments. The first-order moments locate the centroid
of the shape and the second-order moments characterize the size and orientation
of the image. Given a binary image Si, we compute the second-order moments
matrix, and the image is rotated using the eigenvectors and it is scaled along the
eigenvectors according to the eigenvalues of the second-order moment matrix of
Si and S̃ref , where S̃ref is a normalized shape. Then, it is translated by the cen-
troid. We do not consider the problem of reflection (for this see [10]). If we only
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consider moments up to order two, Si is approximated to an ellipse/ ellipsoid
centered at the image centroid. The rotate angles and the axes are determined
by the eigenvalues and the eigenvectors of the second-order moment matrix [11].
Let Ri be the rotation matrix.

Let {λref
j }j=1,..,n be the eigenvalues of the reference image S̃ref . We consider

one of the following scale matrices: a) Wi =
√

λref

λi · I where λc = (
∏n

j=1 λj)1/n,

c = {ref, i} and I is the identity matrix or b) Wi is a diagonal matrix where

wj,j =
√

λref
j

λi
j

. In the first case it is a homothety, while in the second case

the size fits in each principal axis as the reference. The first option is used for
shape priors without privileged directions otherwise the second case is chosen.
Finally, the affine transformation translates the origin of the coordinate system
to the reference centroid xref . We denote the i−shape centroid as xi. The affine
transformation is then defined as follows:

T−1
i (x) = Ri · Wi · (x − xi) + xref . (1)

This affine transformation aligns from Si to S̃ref . Of course, it is a bijection if
det(Ri ·Wi) �= 0. If we use a scaling identical in all directions, S̃ref will be only a
numeric artifact for the pose algorithm. The alignment error does not depend on
the reference, S̃ref . But when each principal axis is adjusted to the reference, the
alignment error depends on the choice of the reference. We can not guarantee the
optimal pose for any shape. But neither the gradient descent method guaranteed
to find the optimum because there is not evidence that the proposed functionals
are convex. Our procedure is fast and optimum if the shapes are closed to ellipses
or ellipsoids.

3 Construction of the Probabilistic Atlas

Our framework is based on the Bayesian decision theory. Given the target image
to be segmented, I : Ω ⊂ R

n → R, and the probabilistic atlas, it assigns the
label that maximizes the posterior probability:

Fx = F (x) = argmax
lj∈L

p(Ix|lj)p(x, lj),

where F : Ω ⊂ R
n → L = {l1, l2, . . . , lk} is a labeling of the voxels of Ω, p(Ix|lj)

represents the likelihood term of the voxel appearance at x corresponding to the
label lj and p(x, lj) is the prior term at x, which models the shape variability.
Therefore, these terms represent the appearance and shape models and they
are constructed using the aligned training images. The appearance and shape
models are built with the variability of our linear registration.

3.1 Appearance Prior Modeling

The appearance model is obtained from the intensities of the voxels belonging
to the set of aligned training images. Before building the appearance model, the
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training images in intensity are normalized using histogram matching. We de-
note the normalized and aligned training images as {S̃i}i=1,..N : Ω̃ ⊂ R

n → L

and {Ĩi}i=1,..N : Ω̃ ⊂ R
n → R. Gaussian mixture models are used intensively

for distribution estimation and their parameters are tuned by using expectation-
maximization based method [6], which provides a global view of the whole object
appearance. In this work we model the probabilistic appearance for each voxel
and each label using parametric or nonparametric distributions. We have imple-
mented two options: i) each voxel on the aligned learning set follows a normal
distribution for each label, N(μ(x, lj), σ2

G(x, lj)):

μ(x, lj) =

∑
{i|S̃i(x)=lj} Ĩi(x)

#{i|S̃i(x) = lj}
σ2

G(x, lj) =

∑
{i|S̃i(x)=lj}(Ĩi(x) − μ(x, lj))2

#{i|S̃i(x) = lj}
.

ii) It follows a nonparametric distribution, considering the probabilistic atlas
and the target image into the same coordinate frame (see next section):

p(Ĩx|lj) =
1

#{i|S̃i(x) = lj}σW (x, lj)

∑
{i|S̃i(x)=lj}

K

(
Ĩ(x) − Ĩi(x)

σW (x, lj)

)
,

where K(z) = 1√
2π

exp(− |z|2
2

) and
σ2

W (x, lj) = 1

#{i|S̃i(x)=lj}
∑

{p|S̃p(x)=lj} minp �=q(Ĩp(x) − Ĩq(x))2.

3.2 Shape Prior Modeling

To capture the variability of the shape, the set of aligned manually segmented
images are used. In [2,3,4], principal component analysis (PCA) of the signed
distance functions of training data is used to capture it. However, PCA provides
a global view of the shape variability. Saad et al [12] introduce a modification of
the idea of a probabilistic atlas by incorporating additional information derived
from the distance transform. However, we have observed that a local estimation
over our aligned training data provides robust results. It defines the prior term
at x applying the vote-rule as

k∑
j=1

p(x, lj) = 1 p(x, lj) =
#{i|S̃i(x) = lj}

N
.

4 Image Segmentation Strategy

The appearance and shape models are built with the variability of our linear
registration, without learning based on non-rigid registration as in [5]. The draw-
back is the need of an initial solution for the segmentation. However, this initial
solution does not need to be robust because the proposed affine transformation
uses only the first and second order moments.

Given a new image to be segmented, I, and an initial binary solution, S :
Ω ⊂ R

n → {0, 1}, we have two procedures: a) we apply the proposed affine



148 C. Platero et al.

registration to bring this image into the coordinate frame of the atlas S̃ = S◦T−1

and Ĩ = I◦T−1, where T−1 is calculated as (1) or b) the probabilistic atlas is non-
rigidly aligning with the target image, where the probabilistic atlas is previously
aligned to the target image with our affine registration, Sref = S̃ref ◦T . In both
cases, the posterior probability is calculated for the unseen image.

Optimizing the posterior probability is not an easy task, especially because
there are so many realizations of the MRF model and the optimization is prone
to be caught in local maximums. Greig et al. [7] were the first to discover that
powerful min-cut/max-flow algorithms from combinatorial optimization can be
used to minimize certain important energy functions in computer vision. In par-
ticular, they showed that graph cuts can be used for restoration binary images.
The problem was formulated as a maximum a posterior estimation with a MRF
regularization that required the minimization of the following energy:

E(F ) =
∑
x∈Ω

Vx(Fx) +
∑
{x, y}

x, y ∈ Ω, x 	= y

Vxy(Fx, Fy), (2)

where for the case of two labels L = {l1, l2}, Vx(Fx) =
{

λx if Fx = l2
0 if Fx = l1

, λx =

log
(

p(Ix|l2)p(x,l2)
p(Ix|l1)p(x,l1)

)
and Vxy(Fx, Fy) =

{
βxy > 0 if Fx �= Fy

0 if Fx = Fy
. Greig constructed

a graph with two terminal vertices {s, t}, such that the minimum cut provides
a global optimal labeling. There is a directed edge {s, x} from s to the voxel
x with weight ωsx = λx if λx > 0; otherwise, there is a directed edge {x, t}
from x to t with weight ωxt = −λx. There is an undirected edge {x, y} between
two internal vertices with weight ωxy = βxy. It is a smoothness term based on
intensities {I(x), I(y)}, which represents the realizations of the MRF model. For
the multi-label problem, if each Vxy defines a metric, then minimizing (2) is
known as the metric labeling problem and can be optimized effectively with the
α-expansion algorithm [13].

5 Validation, Experiments and Results

The experimental validation is performed using the problem of liver segmen-
tation from 3D CT images. Algorithms relying solely on image intensities or
derived features usually fail. To deal with missing or ambiguous low-level in-
formation, shape and appearance prior information has to be employed. The
proposed method has been considered on 20 patients CT slice set and tested on
another 10 specified CT datasets.

In a first step we align the training data by the proposed procedure. In this
case, each principal axis is adjusted to the reference. Experimentally, S̃ref was

chosen by minimizing the Similarity Index,
(
SI = 1

N

∑
i

(Si◦T−1
i )∩S̃ref

(Si◦T−1
i )∪S̃ref

)
, over the

training set. We compare our approach with other techniques. Table 1 lists the
mean (μSI) and standard deviation (σSI) values of the SI metric over the train-
ing data set. Given a CT abdominal image as target image, our approach starts
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Table 1. Results of the affine registration: μSI and σSI values of the SI

Type SSD [3] MI [9] Our

μSI 0.54 0.63 0.68

σSI 0.10 0.07 0.05

with an initial solution. It is obtained filtering the image by a nonlinear diffusion
filter with selection of the optimal stopping time. Then, region growing and 3D
edge detector are applied to the filtered image. Morphological post-processing
merges the previous steps, giving the initial solution. Next, the probabilistic at-
las and the target image are placed into the same coordinate frame using our
affine transformation. The non-rigid registration between the probabilistic atlas
and the target image was performed with ElastiX [14]. We use the min-cut/max
flow algorithm of Boykov-Kolmogorov for energy minimization [15]. In our im-
plementation, the data term, defines the edge weights connecting each node to

the source s and sink t, is proposed to: λx = log
(

p(Ix|l2)p(x,l2)
σ(x,l2)

p(Ix|l1)p(x,l1)
σ(x,l1)

)
. This proposal is

based on the more reliable of the probability estimations if there are less disper-
sion in the samples. We have experimentally observed that normal distribution
model for probabilistic appearance prior is more robust than the non-parametric
one. We think that it is due to less dependence on the initial solution. The pa-
rameters of Vxy were tuned using the leave-one-out technique from training data
according to the segmentation scores. In our case, a 6 neighborhood relation is
used to save memory.

Fig. 1 shows slices from two cases, drawing the result of the method (in blue)
and the reference (in red). The quality of the segmentation and its scores are
based on the five metrics [16]. Each metric was converted to a score where 0 is
the minimum and 100 is the maximum. Using this scoring system one can loosely
say that 75 points for a liver segmentation is comparable to human performance.

Table 2. Average values of the metrics and scores for all ten test case: volumetric
overlap error (m1), relative absolute volume difference (m2), average symmetric sur-
face distance (m3), root mean square symmetric surface distance (m4) and maximum
symmetric surface distance (m5)

Type m1 m2 m3 m4 m5

metrics 12.5% 3.5% 2.41 mm 4.40 mm 32.4 mm
AT1 [5]

scores 51 80 40 40 57

metrics 12.1% 2.5% 1.71 mm 2.96 mm 26.1 mm
Affine

scores 53 87 57 59 66

metrics 9.69% 3.9% 1.12 mm 2.03 mm 22.1 mm
Nonrigid

scores 62 79 72 72 71
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Fig. 1. From left to right, a sagittal, coronal and transversal slice for an easy case (a)
and a difficult one (b). The outline of the reference standard segmentation is in red,
the outline of the segmentation of the method described in this paper is in blue.

Table 2 lists the average values of the metrics and their scores over the test data
set. It shows the performances for the three segmentation strategies: a) atlas
matching b) probabilistic atlas with only linear registration and b) probabilistic
atlas with nonrigid techniques. The average computation times for the liver
segmentation task are 203.4 s., 25.3 s. and 211.7 s. respectively ([Dual CPU]
Intel Xeon E5520 @ 2.27GHz).

6 Conclusion

We have presented two main contributions. Firstly, the linear registration has
been solved using an image normalization procedure applied to the labeled atlas.
An advantage is that the proposed affine transformation is defined by closed-form
expressions involving only geometric moments. No additional optimization over
pose parameters is necessary. This procedure has been applied both to atlas
construction as atlas-based segmentation. Secondly, we model the probabilistic
appearance for each voxel and each label using parametric or nonparametric
distributions and the prior term is determined by applying the vote-rule. The
appearance and shape models are built with the variability of proposed linear
registration. We adopt a graph cut - Bayesian framework for implementing the
atlas-based segmentation. Finally, we illustrate the benefits of our approach on
the liver segmentation from CT images.
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Abstract. In this paper, we consider the problem of reconstructing a high-
resolution binary image from several low-resolution scans. Each of the pixels
in a low-resolution scan yields the value of the sum of the pixels in a rectangular
region of the high-resolution image. For any given set of such pixel sums, we de-
rive an upper bound on the di�erence between a certain binary image which can
be computed eÆciently, and any binary image that corresponds with the given
measurements. We also derive a bound on the di�erence between any two bi-
nary images having these pixel sums. Both bounds are evaluated experimentally
for di�erent geometrical settings, based on simulated scan data for a range of
images.

Keywords: Image reconstruction, Error bounds, Binary image, Rectangular scan.

1 Introduction

Black-and-white images, also called binary images, occur in a wide range of imaging
applications. In many such applications, the images are actually acquired as grey level
images by a scanning device. When scanning text, for example, binary characters are
often scanned by a grey level scanner. When taking pictures of numberplates using a
low resolution digital camera, the structure of the binary characters may even be un-
recognizable in the resulting grey level images. Another example can be found in the
single-pixel camera, which has recently been proposed within the framework of com-
pressive sensing. Instead of recording individual fine-resolution pixels, such a camera
records the total intensity over various areas of the object being photographed [8,11].

If several such grey level images are available, each representing a low resolution
scan of some unknown ”original” binary image, one can attempt to reconstruct the
binary image by combining the information from multiple scans [2,5,6]. In particular if
the relative position of the di�erent scans is well-known, this may lead to a high quality
reconstruction. However, if the number of low resolution images available is relatively
small in comparison with the resolution needed to properly represent the binary image,
this reconstruction problem can be highly underdetermined. In such cases, many binary
images can exist that correspond with the same scanned grey level data. At present, no
useful bounds are available that can guarantee that the reconstructed image is actually
close to the unknown original image.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 152–160, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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In a recent paper [1], the authors presented bounds for binary image reconstruction
in tomography (i.e. from projection data) that allow to bound the error between any
two binary solutions, and therefore the error between the reconstructed binary image
and the unknown original image. The proposed methodology is quite general and can
potentially be extended to other imaging problems. As an intermediate step towards a
general framework for bounding errors in binary image reconstruction, we apply the
key concepts here to the problem of reconstructing binary images from low resolution
scans.

2 Notation and Concepts

Let A � �
2 be a finite set, called the reconstruction area. We consider the problem of

reconstructing a binary image defined on A, represented by a function F : A � �0� 1�.
A high resolution binary image defined on A will be reconstructed from several low
resolution scans. The value of each pixel in such a scan corresponds with the summed
intensity over all pixels in the corresponding region of the binary image. For simplicity,
we assume here that the boundaries of the low resolution pixels coincide exactly with
pixel boundaries in the high resolution binary image. We call a set S � A a window of
the reconstruction area. Let � � 2A, the set of all windows of A. We call a set S � � of
windows a partition of A if
(i) S � T � � for all S � T � S and
(ii)

�
S�S S � A. We are also interested in the subsets of � which satisfy the property (i)

but do not necessarily satisfy (ii). Such a subset will be called a partial partition. For
S � A, define

PF (S ) �
�

(i� j)�S

F(i� j)� (1)

We refer to the values PF (S ) as window-sums. Note that our model for computing the
window sums does not take certain properties of the imaging system, such as the de-
tector point spread function, into account. However, the proposed methodology can
easily be extended to include such e�ects, as long as they are linear. The reconstruction
problem consists of finding an image F that has prescribed window-sum for a set S of
windows. The existence and uniqueness of the solution of the general reconstruction
problem is not guaranteed, in general.

To simplify the notation, the reconstruction problem can be formulated using linear
algebra notation, which will be used in the forthcoming sections. Since there is an one-
to-one mapping, say �, from A to �1� � � � � n�, the image F can be represented as a vector
x � (x j) � �n, where n � #A is the cardinality of A. We refer to the entries of x as
pixels. A binary image on A corresponds with a vector x̄ � �0� 1�n.

For a given set S � � and an image x � �n, the combined set of window sums results
in a vector p � (pi) � �m, where m represents the number of window-sums taken. As
the operator PF(S ) is linear, the mapping from an image to its window sums can be
represented by a matrix W � (wi j) � �m�n, which we call the scan matrix. The entry
wi j represents the weight of the contribution of x j to the window-sum i.

Then, the general reconstruction problem can be stated as finding a solution of the
system

Wx � p



154 W. Fortes and K.J. Batenburg

for given window-sum data p. In the binary image reconstruction problem, one seeks
a binary solution of the system. For a given scan matrix W and a window-sum vector
p, let �W(p) :� �x � �n : Wx � p�, the set of all real-valued solutions corresponding
with the given data, and let �̄W(p) :� �W(p) � �0� 1�n, the set of binary solutions of the
system.

As the scan matrix is typically not a square matrix, and also does not have full rank,
it does not have an inverse. We recall that the Moore-Penrose pseudo inverse of an
m 	 n matrix A is an n 	 m matrix A�, which can be uniquely characterized by the two
geometric conditions

A�b 
 �(A) and (I � AA�)b 
 (A) �b � �m
�

where �(A) is the nullspace of A and (A) is the range of A, [4, page 15].
Let x� � W�p. Then x� also has the property (see Chapter 3 of [3]) that it is the

minimal Euclidean norm solution of the system Wx � p, if it exists. We call x� the
central reconstruction of p. The central reconstruction plays an important role in the
bounds we derive for the binary reconstruction problem.

The description of the general reconstruction problem given above is quite broad
and we will now specify the scan model by which we define the scan matrix W and the
window-sum vector p, in order to model the problem of reconstructing high resolution
images from low resolution scans.

Put A � �(i� j) � �2� 0 � i � l�� j � h�. Let 1 � p � l, and 1 � q � h. For 0 � i � l,
0 � j � h, define a rectangular set of pixels of size p	q by

S p�q
i� j � �(i � c� j � r)� 0 � c � p� 0 � r � q��

Each pixel in a low resolution scan corresponds to a window in our framework. It
provides information about the summed intensity in a rectangular set of pixels of the
scanned high resolution image. Adjacent low resolution pixels are connected and do not
overlap. For 0 � a � p and 0 � b � q, define

Sa�b
� �S p�q

a�ip�b� jq� a � ip � l� b � jq � h�� (2)

Each set Sa�b is a partial partition. Its elements correspond to pixels of the low resolution
image. Let us now assume that several such low resolution images are available. Then
the total set S of window-sums consists of the union of partial partitions Sd :� Sad �bd for
d � �1� � � � � k�. These concepts are illustrated in Fig. 1. Fig. 1a shows a single window
S a�b, whereas Fig. 1b shows the corresponding partial partition Sa�b formed by a tiling
of its translates, where windows that cross the bounary of the image are not allowed.
Fig. 1c shows two windows that are in separate partial partitions.

For 1 � d � k, define the set of indices of the pixels x j that were scanned by a partial
partition Sd as Id :� � j� ��1( j) � �S�Sd S � and its complement Īd :� �1� � � � � n��Id.

As already mentioned, this linear scanning model can be modeled by a linear system
of equations Wx � p. The matrix W and the window-sum p can be decomposed into k
blocks as

W �

������������

W1

�
�
�

Wk

������������ � p �

������������

p1

�
�
�

pk

������������ � (3)
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(a) Scan window (b) A partial partition
formed by translates of
a scan window

(c) Scan windows for
two di�erent pairs
(a� b)

Fig. 1. Rectangular scanning

where each block Wd (d � 1� � � � � k) represents the scanning of the image with a rectan-
gular window as defined by Sd and each block pd represents the corresponding window-
sums PF (S ) for S � Sd.

3 Error Bounds

Without loss of generality, we assume that all pixels in A are contained in at least one
window. Clearly, no bounds can be given for those pixels that are not scanned at all,
and they are removed from the analysis. As each set Sd samples a collection of disjoint
subsets of A, the norm of the scanned binary image can be bound from above by the
available window-sums:

Proposition 1. Let x̄ � �̄W(p). Then, �x̄�2
2 � �x̄�1 � �pd�1 � #Īd for all 1 � d � k.

The norm of any binary solution can therefore be estimated by summation of the window-
sums in pd and its accuracy increases with the number of scanned pixels included in the
partial partition Sd.

In the next Theorem we will use Prop. 1 to show that all binary solutions of the linear
system Wx � p have bounded distance to the central reconstruction x�.

Lemma 1. Let x̄ � �̄W(p) and x� � W� p. Put R :� min1�d�k Rd, where

Rd :�
	
�pd�1 � #Īd � �x��2

2. Then, �x̄ � x��2 � R.

Proof. From the definition of x� we have (x̄�x�) � �(W), and x� 
 (x̄�x�). Combining
Pythagoras’ theorem and Prop. 1 yields the theorem. ��

We will now consider the image that is obtained by rounding each entry of x� to the

nearest binary value. Let ��� � min(���� �� � 1�) for � � �, and put U �

	
n
i�1�x

�
i �

2,

i.e., the Euclidean distance from x� to the nearest binary vector.
Let r̄ � �0� 1�n such that �r̄ � x��2 � U, i.e., r̄ is among the binary vectors that are

nearest to x� in the Euclidean sense. If R � U and R � U is small, it is possible to say
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that a fraction of the rounded values are correct, i.e., to provide an upper bound on the
number of pixel di�erences between any solution in �̄W(p) and r̄.

Suppose that x̄ � �̄W(p) and that r̄i � 1 whereas x̄i � 0. Note that we have x�i �
1
2 .

Put r̃ :� r̄ and then set r̃i to 0. We then have �r̃ � x��2
2 � �r̄ � x��2

2 � �x�i � 1�2 � �x�i �
2
�

�r̄ � x��2
2 � 2x�i � 1. Similarly, if r̄i � 0, then the squared Euclidean distance increases

by 1 � 2x�i by setting pixel i to 1. Each time an entry i of r̄ is changed, the squared
Euclidean distance to x� increases by bi :� �2x�i � 1�.

As the Euclidean distance from x� to x̄ is no greater than R, a bound can be derived
on the maximal number of pixels in r̄ that must be changed to move from r̄ to x̄. Let us
order the values bi (i � 1� � � � � n) such that bi � bi�1 for 1 � i � n � 1. Assuming that
�̄W(p) � �, we have R � �r̄ � x��2 and the change of s entries of r̄ would increase the
distance between r̄ and x� such that R2 � �r̄ � x��2

2 �

s

j�1 b j.

Theorem 1. Let r̄, x̄ and bi (i � 1� � � � � n) be as defined above. Choose s such that

s�
i�1

bi � R2 � �r̄ � x��2
2 �

s�1�
j�1

b j� (4)

Then at most s pixels can have the wrong value in r̄ with respect to x̄ and at least n � s
pixels must have the correct value.

Proof. Due to the increasing order of the bi’s, changing more than s pixels in r̄ will
result in a vector r̃ for which ��r̃ � x���2 � R, which cannot be an element of �̄W(p). ��

Theorem 1 bounds the number of pixel di�erences between x̄ and r̄, and between ȳ
and r̄. When using these two bounds to determine an upper bound on the number of
di�erences between x̄ and ȳ, we can assume that these two sets of pixel di�erences
are disjoint, as otherwise the di�erence between x̄ and ȳ will only be smaller. This
observation leads to the following corollary:

Corollary 1. Let r̄ and bi (i � 1� � � � � n) be as defined above. Let x̄� ȳ � �̄W(p). Choose
t such that

t�
i�1

bi � 2(R2 � �r̄ � x��2
2) �

t�1�
j�1

b j� (5)

Then at most t pixels can be di�erent between x̄ and ȳ.

4 Experiments and Results

A series of experiments was performed to investigate the of the bounds given in Theo-
rem 1 and Corollary 1, for several test images. The experiments are all based on sim-
ulated data obtained by computing the low-resolution scans of a series of test images
(called phantoms), shown in Fig. 2. All phantoms have a size of 512	512 pixels.

In each experiment, the central reconstruction x� was first computed using the CGLS
algorithm [9]. Depending on the experiment, this computation took from a few seconds,
up to around 50s on a standard PC. The binary vector r̄ was computed by rounding x� to
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3

Fig. 2. Original phantom images used for the experiments

the nearest binary vector (choosing r̄i � 0 if x�i �
1
2 ). The upper bound s from Theorem

1 on the number of di�erences between r̄ and the phantom image x̄ was then computed,
followed by a bound on the fraction of pixel di�erences U :� s

n , and the actual fraction
of di�erences E :� e

n , where e is the number of pixel di�erences between r̄ and x̄. The
upper bound t from Corollary 1 on the number of di�erences any two binary solutions
of Wx � p was then computed, followed by the computation of the fraction of pixel
di�erences V :� t

n . Due to space limitations, we only show the results for Phantom 3.
The results for the other two phantoms are in line with the observations made for the
third phantom. In all experiments, a square window was used. Note that the position of a
partial partition Sa�b with respect to the high resolution image is completely determined
by the pair (a� b), which we call a starting point. Each low resolution image of the high
resolution binary image corresponds to a di�erent starting point. In the experiments,
we distinguish between regularly and randomly distributed starting points, where the
regular case corresponds to a low resolution scanner that is gradually shifted across
the high resolution image, and the random case corresponds to a device that moves
irregularly (or an object that moves in such a way); see Fig. 3. In Fig. 4, the three error
measures V , U and E are plotted as a function of the number of starting points for
window size of 8	8 and 32	32 and for both regularly and randomly distributed starting
points. Note that for a larger window size, more starting points is required to obtain
similar error bounds.

Various observations can be made from the graphs in Fig. 4. Even if the number of
starting points is much smaller than the number of pixels in the window, meaning that
the reconstruction problem is severely underdetermined, it is still possible to guarantee

(a) 4 points-
regular

(b) 16 points-
regular

(c) 4 points-
random

(d) 16 points-
random

Fig. 3. Distribution of starting points in a first scan-window of size 8 � 8
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(a) window: 8�8, regular (b) window: 32�32, regular

(c) window: 8�8, random (d) window: 32�32, random

Fig. 4. computed bounds as a function of the number of partial partitions for Phantom 3; V: bound
on the distance between any two binary solutions from Cor. 1; U: bound on the distance between
any binary solution and the rounded central reconstruction r̄ from Thm. 1; E: true error between
the rounded central reconstruction and the binary phantom x̄

that only a limited fraction of pixels can be di�erent between binary solutions. Although
the given bounds U is clearly not sharp when compared to the real error E, rounding
the central reconstruction yields a binary image that is in many cases guaranteed to be
rather close to the original image. For example, for window size 8	8 and randomly
distributed starting points, having just 16 low resolution images available (resulting in
a system of equations that is underdetermined by a factor of 4) can still guarantee that
the rounded central reconstruction is within 10% of the original binary image.

Fig. 5 illustrates the key concepts involved in the proposed bounds. The top row
shows the central reconstruction for window sizes 8	8 and 32	32, with regularly and
randomly distributed starting points. Here, the number of starting points is chosen as
a fixed fraction of 1

4 times the number of pixels in the window. In this way, all four
reconstruction problems can be described by roughly the same number of equations.
The middle row shows the di�erence images between the central reconstruction and the
phantom, whereas the bottom row shows the di�erence images between the rounded
central reconstruction and the phantom.
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Fig. 5. Illustrations of the key concepts for Phantom 3; From left to right: 8�8 window, regular;
32�32 window, regular; 8�8 window, random; 32�32 window, random; From top to bottom:
central reconstruction; di�erence between the central reconstruction and the phantom; di�erence
between the rounded central reconstruction and the phantom

5 Outlook and Conclusions

In this article, we have presented general bounds on the accuracy of reconstructions
of binary images from several low resolution graylevel scans, with respect to the un-
known original image. The bounds can be computed eÆciently and give guarantees on
the number of pixels that can be di�erent between any two binary reconstructions that
satisfy given window-sums, and on the di�erence between a particular binary image,
obtained by rounding the central reconstruction to the nearest binary vector, and any
binary image satisfying the window-sums. The experimental results show that by using
these bounds, one can prove that the number of di�erences between binary reconstruc-
tions must be small, even when the corresponding real-valued system of equations is
severely underdetermined. This work represents an extension of the methodology set
up in [1], which is a step towards a set of general bounds for binary image reconstruc-
tion problems that allow various forms of image sampling and incorporation of noisy
measurements.
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Abstract. In this paper, a variational tetrahedral meshing approach is
used to adapt a tetrahedral mesh to the underlying CT volumetric data
so that image edges are well approximated in the mesh. Afterwards,
tetrahedra in the mesh are classified into regions whose image charac-
teristics are similar. Three different clustering schemes are proposed to
classify tetrahedra, while the clustering scheme viewing the mesh as an
undirected graph achieved best results.

Keywords: CT data, image segmentation, surface reconstruction, 3D
Delaunay triangulation, variational tetrahedral meshing, isotropic mesh-
ing, graph-cut segmentation.

1 Introduction

Medical imaging devices like the Computed Tomography (CT) produce volu-
metric image data detailing human anatomy. Such kind of data can be used
for creation of 3D surface models of the anatomy, what is helpful for surgery
planning and simulation.

This paper extends our previously described principles [1] where a tetrahedral
mesh is used to partition the volumetric image data into regions (see Fig. 1).
Process of the mesh construction respects detected image edges, hence surfaces
of image regions are well approximated by the mesh and can be easily derived.
Results further discussed in Sect. 3.1 show that reconstructed polygonal surfaces

Fig. 1. Surface reconstruction based upon the presented vector segmentation method
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(a) (b)

Fig. 2. Results of the proposed vector segmentation method: cut through the tetrahe-
dral mesh (a); and surfaces extracted from the classified tetrahedral mesh (b)

are more accurate than those obtained by traditional techniques which typically
process the surface meshes (e.g. smoothing and re-meshing) without any rela-
tionship to the original image data. In addition, meshes along with surfaces of
all desired tissues are reconstructed at once.

A mesh generation [2] aims at tessellation of a bounded 3D domain Ω with
tetrahedra. The iso-surface stuffing algorithm [3] was presented that fills an
iso-surface with a uniformly sized tetrahedral mesh. The algorithm is fast and
numerically robust. A variant of the algorithm creates a mesh with internal
grading. However, the algorithm does not permit grading of both surface and
interior tetrahedra.

Zhang et al. [4] presented an algorithm to extract adaptive and quality 3D
meshes directly from volumetric image data. In order to extract tetrahedral (or
hexahedral) meshes, their approach combines bilateral and anisotropic diffusion
filtering of the original data, with octree subdivision and contour spectrum, iso-
surface and interval volume selection.

Our meshing technique is partly based on the variational tetrahedral meshing
(VTM) approach, proposed by Alliez et al. [5]. The VTM approach uses a simple
quadratic energy to optimize vertex positions within the mesh and allows for
global changes in mesh connectivity during energy minimization. This Delaunay-
based meshing algorithm allows to create graded meshes (see Fig. 2), and defines
a sizing field prescribing the desired tetrahedra sizes within the domain.

2 Delaunay-Based Vector Segmentation

The presented meshing technique is called vector segmentation (shortly VSeg)
because it combines the Delaunay-based tetrahedral meshing as well as the image
segmentation. It produces meshes whose tetrahedra are classified into particular
regions – tissues. We have proposed the VSeg method as follows [1]:

– Data preprocessing – Noise reduction by means of 3D anisotropic filtering
that performs piecewise smoothing of the image, while preserving edges.
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– 3D edge and corner detection – Points lying on region boundaries and
strong edges are located.

– Initial Delaunay triangulation – Tetrahedral mesh is constructed from a
sampled set of found edge points (Fig. 3) using the Incremental method [2].

– Iterative adaptation – The triangulation is adapted to the underlying
image structure.

– Mesh segmentation – Final classification of tetrahedra into image regions.

Character and strength of edges differ between tissues. Thus, per concrete tis-
sue, the image data are pre-processed using the power-law contrast enhancement
technique to increase contrast of the desired tissue. Then, edges of the high-
lighted tissue are detected. In the end, all found edges from all different tissues
are merged together. In our experiments, the well known Canny edge detector
extended to 3D space has been used in each step.

Sizing Field. The sizing field enforces creation of larger tetrahedra inside image
regions and smaller ones along region boundaries (i.e. image edges). We use
the robust definition of presented by Alliez et al.. The sizing field is a function
hP = minS∈δΩ[Kd(S, P )+ lfs(S)] defined at any point P of space that specifies
the size of the elements in the mesh. Local feature size lfs(P ) at the domain
boundary is defined as the distance d(P, Sk(Ω)) to a medial axis of the domain.
The parameter K controls gradation of the resulting field. In our case, instead
of the conventional polygonal domain boundary, the sizing field respects found
image edges:

1. Estimate 3D distance transform [6] from all image edges and find local max-
ima to identify the medial axis.

2. Evaluate local feature size lfs(P ) on image edges using the second distance
transform propagating value from the medial axis.

3. Generate the sizing field distributing lfs(P ) from edges according to the
function hP .

2.1 Iterative Mesh Adaptation

During the adaptation, the following three steps are repeated. The idea is to
grow the mesh (in the sense of vertices) until a predefined limit is reached:

– Isotropic edge splitting – creation of points along existing edges [2] introduces
new points to the mesh,

– Variational meshing – optimization of the tessellation grid by means of the
vertex moving,

– Boundary refinement – creation of new vertices along image edges to guar-
antee that all edges are well approximated by the tessellation grid.

Analogous to the original VTM approach [5], all boundary vertices are moved
differently from the interior ones, however, the searching for boundary vertices is
quite different. Each edge voxel Vi (the one where an image edge was detected) is
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(a) (b) (c)

Fig. 3. Sampled set of points found by the edge and corner detection (a); orthogonal
cut through the sizing field (b); and result of the tetrahedral mesh segmentation (c)

examined. Its nearest vertex Sj in the mesh is located, and the distance d(Vi, Sj)
as well as the coordinates of Vi (multiplied by the distance d) are accumulated
at that vertex. Afterwards, vertices with a non–zero distance sum are moved
to the average value they each have accumulated during the pass over all edge
voxels – Lloyd’s algorithm [7].

Boundary Refinement. We propose a novel mesh refinement technique to in-
crease quality of the mesh in the sense of approximation of image edges. As other
Delaunay refinement methods do, new vertices are added to the mesh.

1. For each edge voxel Vi:
– Locate its nearest vertex Sj in the mesh and compare the distance

d(Vi, Sj) with the value stored in the corresponding accumulator. If the
distance is smaller, change the value in the accumulator.

2. For all accumulators that contain a distance higher than dmax:
– If the associated vertex is not itself located on an image edge, a new

vertex is added to the mesh in place of the closest edge voxel.

Dealing with Slivers. Towards creation of a sliver-free mesh, the mesh is re-
peatedly tested for slivers, and new vertices lying in the center of sliver circum-
spheres are inserted to the mesh. If such addition does not eliminate the sliver,
or generates new one, the vertex position is randomly perturbed. Such vertex
perturbation continues until an optimal position is found.

2.2 Mesh Segmentation

Every tetrahedron ti of the mesh is characterized by its feature vector that
details the underlying image structure (mean value μti and variance σti of voxel
intensity inside the tetrahedron, histogram of Local Binary Patterns [8], wavelet
features, etc.). Concrete features must be chosen according to a specific task.

In our experiments, three different algorithms were used for the clustering of
feature vectors into a certain number of classes:
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– Fuzzy C-means (shortly FCM ) algorithm [9],
– Gaussian Mixture Model optimized by the EM algorithm (EM-GMM ) [10],
– Min-Cut/Max-Flow graph-based algorithm [11].

The feature extraction may be problematic if a tetrahedron is relatively small.
Thus, we reject classification of small tetrahedra (limit of 15 voxels was chosen
experimentally). These non-classified tetrahedra, that appear mostly near to
region boundary, are assigned to particular regions in the next merging phase.

Agglomerative Merging. The agglomerative merging [12] sequentially reduces the
number of regions (each region consists of one or more tetrahedra) by merging
the best pair of adjacent regions among all possible pairs in terms of a given
similarity measure. The similarity measure S(rj , ri) is a function whose value is
greater as the difference between two feature vectors ti and tj decreases:

Sμ(rj , ri) =
Ni + Nj

NiNj
exp(− 1

2ρ2
|μri − μrj |2), Sσ(rj , ri) =

σriσrj

σ2
ri,j

. (1)

where Ni is the volume of the region ri in voxels, ρ affects sensitivity of the
measure, and σri,j is the variance of the intensity in a joint region ri ∪ rj . Once
the mesh is properly segmented, surface of any region rk can be easily extracted.
Boundary faces can be identified as faces between two different regions. The sur-
face is closed and its mosaic conforms to the chosen parameters of the meshing.

3 Experimental Results

The VSeg method was mainly designed for segmentation of volumetric medi-
cal images towards anatomical modeling of fundamental tissues (i.e. soft/bone
tissues) and their surfaces.

3.1 Surface Accuracy

This evaluation compares surfaces produced by the vector segmentation against
ones made by the traditional Marching Cubes (MC) method [13] followed by
mesh smoothing and mesh decimation steps [14]. Since the smoothing is crucial
for overall precision of the surface, two standard approaches were tested: Taubin’s
smoothing algorithm [15] that maintains volume of the mesh (MC+Taubin), and
HC algorithm [16] that preserves sharp edges and corners in the mesh (MC+HC ).
After the smoothing, a variant of the Quadric Edge Collapse algorithm proposed
by Garland and Heckbert [17] was used to reduce size of the mesh. Even thought
these algorithms are not the best state of the art methods [18], they are well de-
scribed in the literature and publicly available. Researchers may easily compare
their results to this baseline.

An idea of the measurement was to rasterize basic solids into 3D raster, recon-
struct surfaces from obtained artificial volumetric data, and evaluate an error
between the reconstruction and the original surface. The approximation error
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(a) (b)

Fig. 4. Histograms of the surface approximation error for two meshes with a different
level of detail (a); and overall surface approximation error (b)

defined as the distance between corresponding sections of the meshes was esti-
mated using the Metro [19] tool.

Fig. 4 shows histograms of error distribution for surface models of different
level of detail. Apparently, the VSeg method outperforms both the smoothing
based techniques. However, the difference is more evident for smaller meshes. The
figure also illustrates the overall RMS (i.e. root mean square) error depending
on the number of faces in the mesh. The same behavior can be seen. To obtain a
more detailed surface, the minimal allowed edge length in the mesh Lmin must
be decreased. However, the resolution of the raster data is limited. Decreasing
the Lmin down to the real size of a single voxel causes that the relocation of
vertices along image edges does not perform optimally.

The maximal error (maximal distance) between sampled points on compared
surfaces, is greater for surfaces obtained by the VSeg method that generates
meshes with almost regular tetrahedra. Close to the sharp surface edges, the
final mesh approximates the surface very roughly because of the limitation of
tetrahedra shape and the chosen minimal edge length.

3.2 Mesh Segmentation

The mesh segmentation was tested on several manually annotated CT data sets.
Not unfrequently, the manual segmentation made by different people varies. The
average error between two manual segmentations of the same data was about
0.96, measured by the F-measure of goodness (a perfect score is 1).

All parameters of the meshing phase were experimentally set to optimal values
(most often K = 1.5 and Lmin = 1.5). When compared to the manual segmen-
tation, the VSeg method provides precise segmentation of the same quality as
the voxel-based FCM clustering and the measured error is comparable to the
variation of manual segmentation (Fig. 5). However, the error of the bone tissue
segmentation significantly grows for the second dataset. Only the graph-based
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(a) (b)

Fig. 5. Segmentation error of the VSeg method – three alternative clustering methods
are compared to the straight FCM clustering of volumetric data (voxel FCM ) (a); and
surfaces reconstructed from pre-segmented data. In the red areas of the surface, small
anatomical structures are weakly approximated because their size is relatively small
compared to the prescribed minimal edge length.

Fig. 6. Result of the VSeg method: CT data, 512x512x318 voxels, resolution
0.63x0.63x0.70mm; K = 0.8 and Lmin = 1.5mm; soft tissues: 168308 faces; bone
tissue: 238164 faces

Min-Cut/Max-Flow algorithm provides reasonable results because it takes spa-
tial image structure into account. Due to the thickness of the cortical bone and
resolution of the CT data, very thin edges are present in the image data which
are practically undetectable by conventional edge detection techniques. There-
fore, such edges are not well approximated during the meshing process which
causes more errors.

All phases of the algorithm take approximately 25−50 minutes on a standard
PC with Intel 2.54GHz processor depending on a concrete size of the data and
specific parameters of the meshing algorithm. The meshing itself consumes ap-
proximately 40 − 65% of the total time. The MC–based techniques are able to
reconstruct surfaces in a much less time – just about minutes. However, beside
the surface, the VSeg method produces more comprehensive representation of
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the original image data – tetrahedral mesh, and it provides segmentation of the
data at the same time.

4 Conclusions

The paper presents a technique for meshing of volumetric medical images aimed
at surface reconstruction of fundamental human tissues (e.g. bone tissue). This
vector segmentation technique is based on the 3D Delaunay triangulation. Such
direct meshing of volumetric data appears to be more accurate approach than
traditional techniques which start with the surface extraction followed by the
decimation and smoothing without any relationship to the original image data.

Nevertheless, a more effective representation of the image structure is ob-
tained. The mesh representation decreases complexity of the subsequent seg-
mentation phase by means of processing a reduced number of tetrahedra instead
of a large number of voxels. As an example, it was very difficult to segment the
original voxel data using the Min-Cut/Max-Flow graph technique because of the
large graph representation.

Results show that the vector segmentation can be successfully used for anatom-
ical modeling of a human skull or soft tissues and the quality of reconstructed
surfaces is sufficient. However, several inconveniences can be still found in the
method. The original VTM approach produces well shaped tetrahedra inside the
domain. However, slivers may appear close to the boundary. The same problem
appears in case of the VSeg meshing method. Even thought the embedded sliver
elimination algorithm removes a large number of poorly shaped tetrahedra, it
does not ensure that all slivers will be successfully eliminated in a reasonable
time. J. Tournois [20] presented a new modification of the VTM algorithm that
particularly solves this problem and produces almost sliver free meshes.

Another disadvantage can be found in the edge detection step. In the future,
we would like to incorporate constraints derived from edges and other image
features directly into the original energy formulation of the VTM approach to
obtain a more robust solution.
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Abstract. A new ellipticity measure is proposed in this paper. The ac-
quired shape descriptor shows how much the shape considered differs
from a perfect ellipse. It is invariant to scale, translation, rotation and
it is robust to noise and distortions. The new ellipticity measure ranges
over (0, 1] and gives 1 if and only if the measured shape is an ellipse.
The proposed measure is theoretically well founded, implying that the
behaviour of the new measure can be well understand and predicted to
some extent, what is always an advantage when select the set of descrip-
tors for a certain application.

Several experiments are provided to illustrate the behaviour and per-
formance of the new measure.

Keywords: Shape, shape descriptors, shape ellipticity, early vision.

1 Introduction

Image technologies have developed and used into many real-life applications:
medical imaging [7], remote sensing [15], astronomy [1], etc. Different kind of
objects, which appear on the images, should be classified, recognized or identi-
fied. An approach, to solve these problems, is to use pairwise features to match
shapes from the same group/class. Such flexible matching technique could be
inaccurate and computationally expensive. Another idea is to describe objects
by using a set of numbers (a vector in Rd) and perform the searching in this
space (e.g. in a subset of Rd). For such a description we need to extract object
characteristics which can be reasonably easily and efficiently quantified by num-
bers. The shape is one of the object characteristics which enable a spectrum of
numerical quantifications. Just to mention the colour and texture, as another
object features which also enable quantifications with numbers. The shape al-
lows a big diversity of numerical quantifications and, consequently, has a big
differentiation capacity. Many shape descriptors were created and used. Some of
them are quite generic: such as, Fourier descriptors [2] and moment invariants
[5]. Alternatively, there are shape descriptors which use a single characteristic
of shapes: Circularity [20], sigmoidality [11], linearity [13], rectilinearity [19],
symmetry [16], etc. In this paper we deal with another global shape descriptor:
� J. Žunić is also with the Mathematical Institute of Serbian Academy of Science and
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shape ellipticity. We define a new ellipticity measure which is well motivated,
theoretically well founded, has a clear geometric meaning and has several desir-
able properties. The new measure is compared with several existing ellipticity
measures, on small shape ranking, shape matching and shape classification tasks,
in order to illustrate its behaviour and effectiveness.

The paper is organized as follows. Section 2 gives a brief review of the existing
ellipticity measures used for the comparison with the new measure. The new
measure is defined in Section 3. Experimental results are presented in Section 4.
The conclusions are provided in Section 5.

2 Preliminaries

Ellipse is a basic shape widely applied to a vast range of image processing tasks
involving not only man-made objects, but also natural forms. The problems
like: How to determine the ellipse which fits best to the data considered, or how
to evaluate how much a shape given differs from a perfect ellipse, have already
been studied in literature [3,8,9,10,12]. Different techniques were employed – e.g.
Discrete Fourier Transform [9], or affine moment invariants [10].

As expected, all the existing ellipticity measures have their own strengths
and weaknesses, and it is not possible to establish a strict ranking among them.
Measures which perform well in some tasks can have poor performance in others.
In this paper we define a new ellipticity measure, and will compare its behaviour
with several existing measures.

We begin a short overview, of the existing ellipticity measures, with a recent
measure EI(S) defined in [10]. The measure EI(S) varies through the interval
[0, 1] and picks the value 1 when the considered shape S is an ellipse. The problem
is that EI(S) = 1 does not guaranty (or at least this has not been proven) that
the measured shape S is a perfect ellipse. Also, since EI(S) is defined by using a
projective invariant [4], it does not change the assigned ellipticity measure when
an affine transformation is applied to the object considered. Of course, in some
applications this property can be an advantage, but in some other applications
it can be a disadvantage. EI(S) uses the following affine moment invariant [4]:

I(S) =
μ20(S) · μ02(S) − μ2

11(S)
μ4

00(S)
(1)

and is defined as follows:

EI(S) =

⎧⎪⎨⎪⎩
16 · π2 · I(S) if I(S) ≤ 1

16π2

1
16 · π2 · I(S)

otherwise.
(2)

The quantities μp,q(S) =
∫∫

S

(
x −

∫∫
S

xdxdy∫∫
S

dxdy

)p (
y −

∫∫
S

ydxdy∫∫
S

dxdy

)q

dxdy, ap-
pearing in (1), are well known as the centralized moments.

There are also some standard approaches which can be used to define an
ellipticity measure. For example, the most common method [12] to determine
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an ellipse Ef (S) which fits with a given shape S, also uses the moments for the
computation. The axes of Ef (S) are [12]:

major−axis : μ2,0(S)+μ0,2(S)+
√

4 · (μ1,1(S))2 + (μ2,0(S) − μ0,2(S))2 (3)

minor−axis : μ2,0(S)+μ0,2(S)−
√

4 · (μ1,1(S))2 + (μ2,0(S) − μ0,2(S))2. (4)

The angle ϕ between the major axis of Ef (S) and the x-axis is computed from

tan(2 · ϕ) =
2μ11(S)

μ20(S) − μ02(S)
. (5)

Now, we can define an ellipticity measure Ef (S) by comparing a given shape S
and the ellipse SEf (S), which is actually the ellipse Ef (S) scaled such that the
area of S and the area of Ef (S) coincide. A possible definition is:

Ef (S) =
Area(S ∩ SEf (S))
Area(S ∪ SEf (S))

. (6)

The angle ϕ, defined as in (5), is very often used to define the shape orientation
[12]. The problem is that this method for the computation of the shape orienta-
tion fails in many situations, but also can be very unreliable [18]. Because of that,
we modify the Ef (S) measure by replacing SEf (S) in (6) by rotating SEf (S)
around the centroid for an angle θ which maximizes the area of S ∩ SEf (S). If
such a rotated ellipse SEf (S) is denoted by SEf (S(θ)) then we define a new
ellipticity measure Efm(S) as:

Efm(S) =
Area(S ∩ SEf (S(θ)))
Area(S ∪ SEf (S(θ)))

. (7)

All three measures EI(S), Ef (S), and Efm(S), mentioned above, as well as the
new ellipticity measure, which will be defined in the next section, are area based.
This means that all the interior points are used for their computation. Because
of that, we will say that all the shapes whose mutual set differences have the
area equal to zero, are equal. For example, the shape of an open circular disc
{(x, y) | x2 + y2 < 1} and the shape of the closed one {(x, y) | x2 + y2 ≤ 1}
will be considered as equal shapes. Obviously, this is not a restriction in image
processing tasks, but will simplify our proofs.

3 Main Result

In this section we give the main result of the paper. We define a new ellipticity
measure and give some desirable properties of it. Throughout this section, it will
be assumed, even not mentioned, that all appearing shapes have the unit area.

For our derivation we need an auxiliary ellipse E(S) defined as

E(S) =
{

(x, y) | x2

ρ(S)
+ ρ(S) · y2 ≤ 1

}
, (8)
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where ρ(S) is the ratio between the major-axis and the minor-axis of S, defined
as in (3) and (4) – ρ(S) is also known as the shape elongation measure [12,14].
Notice that the area of E(S) is 1. Now, we give the main result of the paper.

Theorem 1. Let a given shape S whose area is 1 and whose centroid coincides
with the origin. Let S(α) be the shape S rotated around the origin for an angle

α, and let Q(x, y) =
x2

ρ(S)
+ ρ(S) · y2, for a shorter notation. Then:

(a)
∫∫

S

Q(x, y) dx dy =
∫∫

E(S)

Q(x, y) dx dy ⇒ S = E(S);

(b) min
α∈(0,2π]

∫∫
S(α)

Q(x, y) dx dy =
1
2

⇔ S is an ellipse.

Proof. (a) Since all the points (x, y) satisfying Q(x, y) =
x2

ρ(S)
+ ρ(S) · y2 ≤ 1

are inside the ellipse E(S) (see (8)) we deduce

(x, y) ∈ E(S) and (u, v) /∈ E(S) ⇒ Q(x, y) < Q(u, v). (9)

Now, by using the above implication, we derive∫∫
S

Q(x, y) dx dy =
∫∫

S\E(S)

Q(x, y) dx dy +
∫∫

S∩E(S)

Q(x, y) dx dy ≥

∫∫
E(S)\S

Q(x, y) dx dy +
∫∫

E(S)∩S

Q(x, y) dx dy =
∫∫

E(S)

Q(x, y) dxdy. (10)

Finally, the required implication (in (a)) follows from the fact that the equality∫∫
S Q(x, y)dxdy =

∫∫
E(S) Q(x, y)dxdy holds if and only if∫ ∫

S\E(S)

Q(x, y) dx dy =
∫ ∫

E(S)\S

Q(x, y) dx dy = 0

(a direct consequence of (9) and (10)) – i.e., if the shapes S and E(S) are equal.

(b) This item follows from (a), which actually says that
∫∫

S(α)
Q(x, y)dxdy

reaches the minimum possible value 1/2 (notice 1/2 =
∫∫

E(S)Q(x, y)dxdy and
see (10)) if there is an angle α such that S(α) = E(S). �
By the arguments of Theorem 1 we define the following ellipticity measure.

Definition 1. Let a given shape S whose area is 1 and whose centroid coincides
with the origin. The ellipticity E(S) of S is defined as

E(S) =
1
2
· 1

min
α∈[0,2π]

∫∫
S(α)

(
x2

ρ(S) + ρ(s) · y(s)
)

dx dy

where ρ(S) is the elongation of S and S(α) denotes the shape S rotated around
the origin for an angle α.
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Now, we summarize desirable properties of E(S).

Theorem 2. The ellipticity measure E(S) has the following properties:

(a) E(S) ∈ (0, 1];
(b) E(S) = 1 if and only if S is an ellipse;
(c) E(S) is invariant with respect translation, rotation and scaling transforma-

tions.

Proof. The proof of (a) and (b) follows from Theorem 1. The proof of (c) follows
directly from the definition. Basic calculus is sufficient for a formal proof. �

4 Experiments

In this section we perform several experiments to justify the effectiveness of
the E(S) ellipticity measure and to compare it to the related measures Ef(S),
Efm(S), EI(S)). Notice that being area based, all these measures are robust
(e.g. with respect to noise or to narrow intrusions) as it has been demonstrated
in Fig.1. Even that the last shape has a big level noise added, the measured
ellipticities do not change essentially.

(a) (b) (c) (d)

(a) (b) (c) (d)

E 0.7484 0.7565 0.7617 0.7466

Ef 0.6701 0.6786 0.6847 0.6668

Efm 0.6821 0.6969 0.7055 0.6929

EI 0.5622 0.5727 0.5813 0.5580

Fig. 1. Shapes with a different noise level added and their corresponded E , Ef , Efm,
and EI values

First Experiment. We start with examples in Fig.2. Eight random shapes are
ranked in accordance with the increasing E(S) measure. The computed measures
E(S), Ef (S), Efm(S), and EI(S) are in the table below the shapes. Notice that all
measures can be understood as essentially different because they give different
rankings. For example, if we consider the last 6 shapes the obtained rankings
are:
E : (c)(d)(e)(f)(g)(h); Ef : (d)(c)(f)(e)(g)(h); Efm : (c)(d)(f)(e)(g)(h);
EI : (c)(d)(e)(f)(h)(g) – i.e. all the rankings obtained are different.

The first shape in the same figure (Fig.2(a)) illustrates a big drawback of
Ef (S) and Emf (S). Both measures could assign the value 0 to the shapes with
big holes or shapes whose centroid lies outside the shape. A consequence is that
Ef (S) and Emf (S) could not distinguish among such shapes. The new measure
E(S) has no such a drawback and it does not take the value 0 for any shape.

The second shape in the same figure (Fig.2(b)) illustrates another drawback
of the Ef(S) measure. I.e., it is well-known that Ef(S) cannot be applied to the
N -fold rotationally symmetric shapes [18], because these shapes satisfy
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(a) (b) (c) (d) (e) (f) (g) (h)

Shape (a) (b) (c) (d) (e) (f) (g) (h)

E(S) 0.1628 0.3011 0.6328 0.7039 0.7676 0.7691 0.9032 0.9033

Ef (S) 0.0000 −−−− 0.5324 0.4838 0.6854 0.5326 0.7641 0.7752

Efm(S) 0.0000 0.0000 0.5374 0.6346 0.7426 0.7383 0.7612 0.7801

EI(S) 0.0266 0.0907 0.4010 0.5026 0.6120 0.6120 0.8305 0.8150

Fig. 2. Shapes are displayed in accordance with their increased E(S) measure

μ1,1(S) = μ2,0(S) − μ0,2(S) = 0 and, consequently, the orientation angle, de-
fined as in (5), cannot be computed. The new measure E(S) does not have such
a drawback. Notice that a big hole in the middle of the shape causes Efm(S) = 0
for this shape (as has already been discussed).

Finally, the shapes in Fig.2(e) and Fig.2(f) cannot be distinguished by the
measure EI(S) because it assigns the same value for all the shapes which are
produced by affine transformations applied to a shape (as they are shapes in
Fig.2(e) and Fig.2(f)). The new measure E(S) distinguishes among these shapes
and this property can be an advantage in some applications. Of course, there
are applications where this property is not preferred.

Second Experiment. In this experiment a shape matching task was performed.
For this experiment the MPEG7 CE Shape-1 Part-B database was used. 200
images were chosen from 10 different classes (bat, camel, bone, crown, fork, frog,
beetle, rat, horseshoe, bird) and the image ”camel-7” was selected as the query
image (the enclosed shape in Fig.3). In the first row the best 9 matches are
displayed if the first three Hu moment invariants are used for the matching (3 of
them were camels). In the next four task a single ellipticity measure form the set
{E(S), Ef (S), Efm(S), EI(S)} is used together with the first three Hu moment
invariants and the best 9 matches are displayed in the corresponding rows. In all
situation an improvement has been made, but the best improvement has been
achieved once the new measure E(S) has been added to the set of the first three
Hu moment invariants. In this case 8 out of 9 best matches were camels.

Third Experiment. The third task was to classify galaxies in two groups: spi-
ral and elliptical. The data set consists of 104 images (100 × 100 pixels) and
is originally used in [6]. Binary images were used for classification (i.e. images
are thresholded before the classification, as shown in Fig.4). Four classification
tasks were performed, each time by using a single ellipticity measure from the
set {E(S), Ef (S), Efm(S), EI(S)}. The classification rates obtained are dis-
played in the table in Fig.4. It can be seen that the new ellipticity measure
E(S) (75% classification rate achieved) has performed better than the measures
Ef (S) (65.48%), Efm(S) (67.31%), and EI(S) (63.46%).
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(a) The first three Hu’s moment invariants are used.

(b) E(S) and the first three Hu’s moment invariants are used.

(c) EI(S) and the first three Hu’s moment invariants are used.

(d) Ef (S) and the first three Hu’s moment invariants are used.

(e) Efm(S) and the first three Hu’s moment invariants are used.

Fig. 3. The enclosed query shape is in the first row. The best nine matches, for a
different choice of shape descriptors used, are displayed in the corresponding rows.

(a) (b)

Class. rate

E 75.00%
Ef 65.38%
Efm 67.31%
EI 63.46%

Fig. 4. Sample galaxy images with their shapes extracted by thresholding. The galaxy
on the left (a) is spiral and the galaxy in (b) is elliptical.

5 Conclusion

A robust shape ellipticity measure is introduced in this paper. The new mea-
sure is invariant with respect to translation, rotation and scale transformations,
ranges over (0, 1] and gives 1 if and only if the measure shape is an ellipse. The
new measure is theoretically well founded and has a clear geometric meaning -
it indicates the difference between the considered shape and an ellipse. These
two properties are very desirable because they give a prior indication about the
measure suitability for the task planned to be performed. Notice that, for exam-
ple, Hu’s moment invariants (apart from the first one μ2,0(S)+μ0,2(S), see [20])
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do not have precise geometric interpretation – i.e., it is not clear which shapes
maximize/minimize a certain invariant (for some related results see [17]).

Experiments provided illustrate theoretical observations and demonstrate ap-
plicability of the new ellipticity measure.
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20. Žunić, J., Hirota, K., Rosin, P.L.: A Hu moment invariant as a shape circularity
measure. Pattern Recognition 43, 47–57 (2010)



Robust Shape and Polarisation Estimation Using

Blind Source Separation

Lichi Zhang and Edwin R. Hancock�

Department of Computer Science, the University of York,
{lichi.zhang,erh}@cs.york.ac.uk

Abstract. In this paper we show how to use blind source separation to
estimate shape from polarised images. We propose a new method which
does not require prior knowledge of the polariser angles. The two key
ideas underpinning the approach are to use weighted Singular Value De-
composition(SVD) to estimate the polariser angles, and to use a mutual
information criterion function to optimise the weights. We calculate the
surface normal information using Fresnel equation, and iteratively up-
date the values of weighting matrix and refractive index to a recover
surface shape. We show that the proposed method is capable of calcu-
lating robust shape information compared with alternative approaches
based on the same inputs. Moreover, the method can be applied when
using uncalibrated polarisation filters. This is the case when the the sub-
ject is difficult to stabilse during image capture.

Keywords: Polarisation, SVD, Blind Source Separation, Shape
Estimation.

1 Introduction

Three dimensional shape estimation from two dimensional brightness images is
a key problem in computer vision, which has been approached using a number of
approaches including shape-from-shading and photometric stereo. The use of po-
larisation although less widely studied, has also proved to be an effective method.
Underpinning this approach is the Fresnel theory, which account for the way po-
larised light interacts with surfaces[13]. For dielectrics, polarisation may arise in
two different ways. In the case of specular polarisation, initially polarised light is
reflected in the specular direction. For diffuse polarisation, initially unpolarised
light is refracted into the surface and the re-emitted light acquires a spontaneous
polarisation. In both cases the zenith angle of the reflected or re-emitted light is
constrained by the degree of polarisation, and the azimuth angle is constrained
by the phase angle. Techniques derived from the Fresnel theory have been used
for surface shape recovery[2][6][9].

In this paper we aim to use a Blind Source Separation (BSS) method to esti-
mate polarisation state and recover shape from the result. Stated succinctly, we
� Edwin Hancock is supported by the EU FET project SIMBAD and by a Royal
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aim to extract the underlying source signal from a set of linear mixtures, where
the mixing matrix is unknown[5]. The technique of BSS has found applications
in the removal of reflections from transparent glass surfaces. Examples include
the work of Fraid and Adelson [4] and Bronstein et al. [3].

Umeyama and Goldin [11] extend the method of Bronstein et al. using two
polarised images and separate the diffuse and specular reflectance components.
However, there are two main disadvantages which make it limited in applications.
Firstly, it can only be used in the case where the brightness of specularities for
the two input images are different, which is difficult to meet if the source light
is unpolarised. Secondly, the information of phase angle is not considered, which
is an important factor in the polarisation vision, therefore the separation result
can not be accurately determined.

The principal contributions of this work are:

– We extend the work described in [11] and show how to accurately estimate
polarisation state without prior knowledge of the input polariser orientations.

– Our method is based on a mutual information criterion, which is optimized
with respect to determine the polariser angles and other parameters using
Newton’s method rather than exhaustive search, thus giving a relatively fast
iterative procedure.

– Our method is also referred from the Fresnel theory. This leads to an it-
erative process that interleaves the processes of estimating shape based on
the current polarisation state measurement, and updating the polarisation
estimation based on the current shape estimate.

– We show how to use the proposed method to estimate refractive index, and
prove that the results are physically reasonable.

2 Polarisation Estimation

In this section we show how to estimate polarisation state using blind source
separation. We commence form a sequence of images collected with varying po-
lariser angle. From these we aim to robustly estimate the three elements of the
polarisation image, namely the mean intensity, degree of polarisation and phase.
Wolff [12] gives a three images method for estimating the polarisation image
using only three images collected with polariser orientations of 0, 45 and 90
degrees. The application is limited due to its specific requirement on polariser
angles and poor robustness to noise.

A alternative approach available is to use the equation of Transmitted Radi-
ance Sinusoid (TRS)[8]. Here more images can be used to estimate the polarisa-
tion image and eliminate the effects of noise. However, the method can not be
applied when the subject is difficult to stabilse, which arouses problem of image
alignment. Recently Saman and Hancock [10] introduced a method to estimate
the polarisation image in a robust way, which improve the results obtained when
the number of polarisation images is large.

When scattered light is transmitted through a linear polarizing filter, the in-
tensity changes as the polariser angle θ is rotated. Let Imax denote the maximum
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brightness, Imin the minimum brightness and φ the phase angle (which corre-
sponds to the angle of maximum transmission). The measured intensity follows
the Transmitted Radiance Sinusoid (TRS) equation[8]:

I(θ) =
(Imax + Imin)

2
+

(Imax − Imin)
2

cos(2θ − 2φ) (1)

=
(Imax + Imin)

2
+

(Imax − Imin)
2

cos 2θ cos 2φ +
(Imax − Imin)

2
sin 2θ sin 2φ .

Our method requires three M × N images captured under different polariser
orientations θ1, θ2 and θ3. Each image is converted into a long-vector of length
MN . The long-vectors are the columns of the observation matrix X. Consider
the matrix

C = [(
Jmax + Jmin

2
), (

Jmax − Jmin

2
cos 2φ), (

Jmax − Jmin

2
sin 2φ)]

= [Ca, Cb, Cc] . (2)

where Jmax and Jmin are long-vectors of length M × N that contain Imax and
Imin as elements. We can determine the polarisation state via by solving the
equation

X = CAT , (3)

A =

⎡⎣1 cos 2θ1 sin 2θ1

1 cos 2θ2 sin 2θ2

1 cos 2θ3 sin 2θ3

⎤⎦ . (4)

To implement BBS, we commence by applying singular value decomposition
(SVD) to the data matrix X. We perform the operation without whitening as
it will distort Ca [11]. The SVD of the data matrix X gives

X = UDV T . (5)

where U is the MN × 3 left eigenvector matrix, D the 3 × 3 diagonal matrix
of singular values, and V the 3 × 3 right eigenvector matrix. To simplify the
equation we let P = U D. Referred from (3), it is noted that P is similar to
C while as V is similar to A. We define a 3 × 3 weighting matrix W satisfying
|W | = 1 such that

P = CW−1 , (6)
V = AW T . (7)

From (7) we have |W | = |A|/|V | = 1. As a result the elements of P can be
determined by SVD, and the unknown elements of the matrix A by θ1, θ2 and
θ3. In fact, the value of θ3 can be obtained when the values of θ1 and θ2 are
known.
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3 Shape Estimation

When unpolarised light is reflected from a surface, it will become partially
polarised. As a result the measured brightness will be modulated by a linear
polariser[13]. The variation of intensities range from Imin and Imax, and we can
measure the degree of polarisation (DOP) denoted as ρ:

ρ =
Imax − Imin

Imax + Imin
. (8)

According to the Fresnel theory[13] the polarisation is determined by the
refractive index n and the zenith angle between the light source direction and
surface normal (denoted by ψ)

ρ =
(n − 1/n)2 sin2 ψ

2 + 2n2 − (n + 1/n)2 sin2 ψ + 4 cosψ
√

n2 − sin2 ψ
. (9)

When the refractive index n is known, the zenith angle ψ is determined by
measurements of Imax and Imin. The azimuth angle of the surface normal can
be decided using the estimated phase angle. However, a directional ambiguity
must be resolved beforehand [7][1][6].

4 Iteration Process

Our aim is to estimate shape and polarisation information. There are three pa-
rameters to be estimated which are the polarised angles θ1, θ2 and the refractive
n. Here we solve the problem by maximizing mutual information on estimated
results and use the Newton Method for its rapid (quadratic) convergence.

Our mutual information criterion measures the similarity of the average inten-
sity Ī(0) = [I(0)

min + I
(0)
max]/2 and the diffuse reflectance component. This applies

over most of the surface, except in the proximity of highlights. Ignoring specu-
larities, we use Lambert’s Law to link diffuse reflectance to the estimated surface
normal direction. As a result we can write

I
(0)
min ∝ cosψ(0) . (10)

We let F (0) = cosψ(0), where the superscript is the iteration number. According
to (10), for every pixel in the image the value of F (0) is monotone increasing
with intensity value Ī(0). As texture and highlight information is contained in
Ī(0), it is inadvisable to directly fit the values of F (0) to Ī(0) using Lambert’s
Law. Instead, here we gauge their similarity using mutual information between
their distributions. The aim is to find the set of parameters that maximise the
distributional mutual information.

To compute the mutual information the probability density functions for the
two measures together with their joint distribution function are required. We
compute the distributions of F (0) and Ī(0) using their associated normalised



182 L. Zhang and E.R. Hancock

histograms, denoted as x(0) and y(0), respectively. Both histograms are quantised
into L bins. The Shannon entropy for the probability density functions is:

H = −
L∑

i=1

pi log pi (11)

where pi is the probability of density for bin i computed from the normalised
histogram. For the two distributions the Shannon entropies are H(0)(x) and
H(0)(y), respectively. To compute the the joint probability distribution, we con-
struct the joint normalised histogram z(0). The Shannon entropy for the joint
distribution is H(0)(x, y) = −∑L

i=1

∑L
j=1 z(0)(i, j) log z(0)(i, j). Hence the mu-

tual information between the distributions is given by

R(F (0); Ī(0)) = H(0)(x) + H(0)(y) − H(0)(x, y) . (12)

Finally, the Newton method for updating the three parameters is written as

Θ(t+1) = Θ(t) − γQ[R(t)]−1∇R(t) . (13)

where Θ(m) = (θ(m)
1 , θ

(m)
2 , , n(m))T , Q[R(t)] is the Hessian of the error-function

and ∇R its gradient. We initialize the parameters by setting n(0) = 1.4 as this
is typical of the materials studied, and set A(0) = V .

5 Experiments

In this section we present the experiments with our new method for shape recov-
ery and refractive index estimation, and compare it with alternatives. For each
object studied, we collected three images using an unpolarised collimated source
light placed in the direction of the camera (frontal illumination). A polariser is
placed in front of the camera (a Nikon D200).

The first experiment conducted is to estimate shape and the polarisation state
using the proposed method. Fig.1 shows the results. The three columns show the
polarisation, phase angle, and the zenith angle for surface normal, respectively.
The shape information in the third column is consistent with the subjective
object shape, and any residual noise could easily be eliminated using a simple
smoothing process [1]. This demonstrates that the estimation process works well
without the information of concerning the polariser angles.

Next we explore the robustness of the method by randomly selecting three
images from a longer sequence for the ball object, and check if the results
remain unchanged. The polarisation orientations of the three sequences are:
a)30o, 90o, 150o, b)60o, 90o, 120o, c)0o, 30o, 120o. The results are presented in
Fig.2. The polarisation and zenith angles are stable under the selection of differ-
ent polariser angles, however there is an offset of 90 degrees in the phase angle.
This suggests that we need to use constraints to consistently resolve the phase
angle ambiguities.
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Fig. 1. The result for Shape from Polarisation, the first row is for DOP, the second
for phase angle, and the third is for the result of zenith angle for the surface normal.
The four columns are for different experiment objects which are the duck, the apple,
the sponge ball and a plaster owl. The brightnesses for all graphs are adjusted to be
displayed clearly.

Fig. 2. The result for the estimation from different sequences, graphs for the first
column stands for sequence a, the second column for sequence b and the third column
for sequence c
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Fig. 3. The result for the three methods, the brightness have been adjusted

Table 1. The list of refractive index estimation results

Material nref nest

Plastic 1.28 1.30
Apple 1.20 1.19
Plaster 1.46 1.22
Porcelain 1.51 1.53
Sponge 1.48 1.30

Then we compare our method with alternatives. We consider two methods,
namely TRS fitting[8] and the method of Saman and Hancock [10]. Fig.3 shows
the results for the three methods for the sponge ball, the first row is for DOP and
the second the phase angle. There are no significant differences between the three
methods for estimating DOP, while our proposed method performs best for the
phase angle, which the distribution of the intensities is valid when representing
the azimuth angles for the objects that ranges only from 0 to 180 degrees.

Finally, we explore the application of our method to refractive index esti-
mation. In Table.1 we compare the measured refractive index values nest with
the tabulated values nref from five different materials. For the smooth surfaces,
the results delivered by our method are all consistent with the tabulated re-
sults. However, for rough or indented surfaces such as plaster and sponge the
results do not agree well. We attribute this to the effects of surface indentations
which causes departures from Lambertian reflectance[1]. It is concluded that
our method gives relatively accurate results for the refractive index of smooth
objects.

6 Conclusion

In this paper we provide a new method for simultaneous shape from polari-
sation and refractive index estimation, which exploits blind source separation.
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We demonstrate experimentally that it is both robust and reliable, and performs
better than alternative methods. It can be used as the preprocessing step in shape
segmentation, reflectance estimation and many other computer vision applica-
tions, especially when using non-calibrated polarisation filters. Future research
will explore these applications.
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Abstract. We propose a new hierarchical representation of discrete data
sets living on graphs. The approach takes advantage of recent works on
graph regularization. The role of the merging criterion that is common
to hierarchical representations is greatly reduced due to the regulariza-
tion step. The regularization is performed recursively with a decreasing
fidelity parameter. This yields a robust representation of data sets. We
show experiments on digital images and image databases.

1 Introduction

Multilevel techniques are now well established in image processing. Generally,
these techniques fall into two categories : multiresolution and multiscale. The
former class yields a stack of successively blurred images and is well understood
within the scale-space theory [1], while the latter is well formalized within the
Multiresolution Analysis (MRA) framework [2]. MRA generally decomposes a
signal into a coarse approximation and a detail or residual part. In graph theory,
such an analysis is carried out through a decimation of the vertex set and a recon-
struction. We propose in this paper a decimation procedure of functions whose
support is the vertex set of a weighted graph. The weighted graph structure
is of interest since its encapsulates pairwise interactions between discrete data
instances. Furthermore, a graph structure can be obtained after sampling a con-
tinuous manifold. Our proposal is based on recent works on graph regularization
and difference equations on graphs [3], [4]. The algorithm we propose produces
a hierarchy of graphs and functions defined on their vertex sets. Starting with
the initial data associated to a graph structure, successive coarsening procedures
are applied. The coarsening is based on a preliminary graph partitioning which
is mainly driven by a discontinuity-preserving graph regularization. The use of
graph regularization yields a more robust representation. We show the applica-
bility of our proposal to digital image hierarchical representation. In this case,
the resulting representation can be seen as new adaptive irregular pyramidal rep-
resentation of images [5]. The paper is organized as follows: in Section 2 we recall
the graph regularization framework and present the algorithm we use. Section 3
details the different steps that lead to the representation we seek: regularization,
grouping and coarsening. We present experiments and conclude in Section 4.
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2 Graph Total Variation

2.1 Definitions

Throughout this section we assume that we are given a weighted graph G =
(V, E, w) consisting of a vertex set V , and an edge set E ⊆ V × V . The nonneg-
ative weight function w : E → R

+ is supposed symmetric: w(α, β) = w(β, α) for
all (α, β) ∈ E. For a given graph edge (α, β) ∈ E, the quantity w(α, β) represents
a similarity or proximity measure between the vertices α and β. This measure
is usually computed as a decreasing function of a prior distance measure. For
α, β ∈ V we denote α ∼ β if (α, β) ∈ E. The graphs we consider in this paper
are undirected with no self loops.

We denote by H(V ) the set of functions that assign a real value to each vertex
of the graph G and H(E) the set of functions that assign a real value to each edge.
The sets H(V ) and H(E) are equipped with the standard inner products denoted
〈., .〉H(V ) and 〈., .〉H(E). The graph difference operator, dw : H(V ) → H(E), is
defined as: (dwf)(α, β) =

√
w(α, β) (f(β)− f(α)), f ∈ H(V ), (α, β) ∈ E. The

graph divergence operator, divw : H(E) → H(V ), is related, as in the continuous
setting, to the adjoint of dw:

〈dwf, G〉H(E) = −〈f, divwG〉H(V ), for all f ∈ H(V ), G ∈ H(E). (1)

Its expression is given by: (divwG)(α) =
∑

β∼α

√
w(α, β)(G(α, β) − G(β, α)).

For p ∈ H(E) and α ∈ V , we denote |p|α =
√∑

β∼α p(α, β)2. A path joining

two vertices α, β ∈ V is a sequence of vertices (γ1, . . . , γn) such that γ1 = α,
γn = β and (γi, γi+1) ∈ E, i = 1, . . . , n − 1.

2.2 Minimization

Let f ∈ H(V ) associated with a graph structure G. The graph total variation
(TV) of f is defined as: TVw(f) =

∑
α∈V

√∑
β∼α w(α, β)(f(α) − f(β))2. Let

f0 ∈ H(V ) be a possibly noisy data. In order to smooth f0 we seek the minimum
of the following functional: E(f ; f0, λ) = TVw(f)+ λ

2

∑
α∈V (f(α)−f0(α))2. The

parameter λ controls the amount of smoothing being applied to f0.
Functional E corresponds to the particular case of p = 1 in the family of

functionals introduced in [3]. It has been studied in [6] and has found numer-
ous applications in image and mesh processing [3], and data filtering [4]. In [7],
the authors propose the adapt the penalization to the topology of the underly-
ing function. The same approach has been taken in [8] for motion deblurring.
Recently, [9] used functional E as a tool to generate an inverse scale space rep-
resentation of discrete data on graphs.

Functional E is strictly convex but nonsmooth. Rather than smoothing the
penalty term and differentiating, we use an adaption of Chambolle’s projection
algorithm [10] to graphs of arbitrary topologies. This adaption first appeared in
[6]. In our notations, the solution of min {E(f ; f0, λ), f ∈ H(V )} is given by :
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f = f0−λ−1divw(p∞), where p∞ is the limit of the following fixed point iterative
scheme:⎧⎨⎩

p0 = 0 ,

pn+1(α, β) =
pn(α, β) + τ (dw(divwpn − λf)) (α, β)

1 + τ |dw(divwpn − λf)|α , (α, β) ∈ E .
(2)

If 0 < τ ≤ 1
‖divw‖2 , where ‖divw‖ is the norm of the graph divergence operator,

then (2) converges [6]. We use algorithm (2) in the next section as a tool to
detect the possible groupings at different scales. Figure 1 shows the grouping
effect yielded by a regularization of a color image and a triangular mesh. One
should notice the preservation of discontinuities in the results.

(a) (b)

Fig. 1. Grouping effect of TV regularization. (a): left figure: original image; right: result
of color components regularization with λ = 0.01. (b): left : original triangular mesh;
right : result of spatial coordinates regularization with λ = 0.01.

3 Hierarchical Representation

3.1 TV as a Tool for Graph Partitioning

We propose to use TV regularization as a tool to detect the possible partitions in
a given graph. The regularization yields a more regular data with respect to the
graph TV prior while staying close to the original observations. The degree of
closeness is inferred from the parameter λ . Once the TV regularization has been
performed, a partitioning can be obtained by considering an equivalence relation
on the vertex set. Let Gi = (Vi, Ei, wi) denote a given weighted graph, fi ∈ H(Vi)
and λ > 0. Let f∗

i be the result of TV regularization of fi with parameter λ. We
associate with each vertex α ∈ Vi a feature vector Fi(α) whose components are
based on f∗

i . For instance, in image processing, the feature vector Fi(α) could
consist of the values of (f∗

i (β), β ∈ N (α)) where N (α) is an image patch centered
at α. Define the metric d on Vi as the Euclidean distance between feature vectors:
d(α, β) = ‖Fi(α)−Fi(β)‖2, α, β ∈ Vi. Consider the following binary relation Rε

on Vi: αRε β if α = β or if there exists a path (γ1, . . . , γn) joining α and β such
that: d(γj , γj+1) < ε, for all j = 1, . . . , n− 1, ε > 0. The relation Rε is reflexive,
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symmetric (Gi is undirected), and transitive. It is an equivalence relation. The
quotient set Vi/Rε of Vi by Rε is a partition of Vi: Vi/Rε = {[α], α ∈ Vi}
and [α] = {β ∈ Vi : αRε β}. The partition yielded by Rε can be seen as
a region growing algorithm. The strength of the grouping is controlled by the
parameter ε . It is important to understand that TV regularization will simplify
the initial data and similar vertices will become closer. This will enable us to
keep the parameter ε fixed in contrast to region merging techniques that do rely
on variable thresholds.

3.2 Graph Coarsening

Let P ε(Vi) = {Pi,1, . . . , Pi,ni} denote the partition of Vi obtained through the
equivalence relation Rε. In the sequel, we call the elements of P ε(Vi) parts of
Vi. We construct a coarse graph Gi+1 = (Vi+1, Ei+1, wi+1) by aggregating the
nodes belonging to each part. Let γ ∈ Vi+1 be a vertex in the coarse graph. We
denote Ri

γ the set of vertices in Vi which have been aggregated into γ in Vi+1.
Two nodes γ1, γ2 ∈ Vi+1 are connected by a coarse edge if there exits α1 ∈ Ri

γ1
,

α2 ∈ Ri
γ2

such that α1 and α2 are connected by a (fine) edge. In the latter case,
we adopt the notation Ri

γ1
∼ Ri

γ2
.

In order to take account of the volumes of the parts obtained by the partition-
ing, the edges of the coarse graph should be weighted. We use the ratio-cut mea-
sure between two parts in the fine graph as the weight between their aggregates in

the coarse graph: wi+1(γ1, γ2) =
cut(Ri

γ1
,Ri

γ2
)

|Ri
γ1

| +
cut(Ri

γ1
,Ri

γ2
)

|Ri
γ2

| , where cut(A, B) =∑
(a,b)∈A×B w(a, b) is the edge cut between A and B. Once the coarse graph

Gi+1 = (Vi+1, Ei+1, wi+1) has been constructed, we define a new function fi+1 ∈
H(Vi+1) by averaging the values of each part: fi+1(γ) = 1

|Ri
γ |
∑

α∈Ri
γ

fi+1(α), γ ∈
Vi+1.

3.3 Recursive Construction of the Hierarchy

We have showed in the two previous sections how to construct a weighted coarse
graph from an input graph and function pair. We now move on to see how this
process can be repeated to generate a hierarchy of graphs.

A hierarchical representation can be obtained by varying the ε parameter.
However, we do not follow this direction in this section and ε will remain fixed
within all the hierarchy: the partitioning is induced by the TV regularization.
We seek to adapt the different levels of the representation to the local properties
of the data.

The hierarchical representation is based on recursive partitioning and coars-
ening as described above. In order to adapt to the local properties of data, the
fidelity parameter λ should evolve through the hierarchy. In our case, λ should
decrease through the coarsening process, favoring more regularity and less fi-
delity as the hierarchy evolves. In our experiments, we have chosen a dyadic
progression λi+1 = λi

2 . The initial regularization is responsible for denoising the
initial data. It yields a choice for the first fidelity parameter λ0 which is set
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to 1
σ2 where σ2 is the variance of the noise, which we suppose Gaussian (see

[11]). The standard deviation can be estimated through the standard estimator:
σ̂ = 1.4826 MAD(f0(α), α ∈ V ), where MAD is the median absolute deviation
estimator [12]. Finally we summarize the algorithm:

Algorithm 1. Hierarchical representation of discrete data on graphs
1: INPUT: G0 = (V0, E0, w0), f0 ∈ H(V0), λ0 = 1

σ2 , n ≥ 1, ε fixed
2: for i = 0 n do
3: Regularization : f∗

i ← arg min {E(f ; fi, λi), f ∈ H(Vi)}
4: Partitioning of Vi based on f∗

i through equivalence relation Rε to yield P (Vi) =
{Pi,1, . . . , Pi,ni}

5: Coarse nodes: Aggregate each part to yield Vi+1 = {j1, . . . , jni}
6: Coarse edges : Ei+1 = {eα,β : α, β ∈ Vi+1 and Ri

α ∼ Ri
β}

7: Coarse weights: wi+1(α, β) =
cut(Ri

α,Ri
β)

|Ri
α| +

cut(Ri
α,Ri

β)

|Ri
β
| , (α, β) ∈ Ei+1

8: Coarse function fi+1(α) = 1
|Ri

α|
∑

β∈Ri
α

fi(β), α ∈ Vi+1

9: Update the fidelity parameter : λi+1 = λi/2
10: end for

4 Experiments and Conclusion

We begin by applying our approach to digital images. The algorithm we propose
leads to a hierarchy of partitions of an image. Each pixel is represented by a
vertex. In the experiments, we have chosen an eight connectivity graph. The
edge weights are computed as follows: w(α, β) = exp(− d2(α,β)

σ2 ), where d is the
Euclidean distance between two RGB color vectors. The function to regularize
is the one that assigns to each pixel its RGB color values. The regularization of
multivalued functions is carried on each component but with a common total
variation prior. The merging at the first stage is based on the distance between
RGB color patches (5x5 in our case). At the following stages, its is based on
vertex-wise distance. In all cases, the parameter ε was set to one. Figures 2 and
3 show the result of the regions obtained as well as their colorizations based on
the original image.

We also show an application of our approach to image databases. Here each
vertex represents a given image. The edges are obtained by considering a nearest
neighbor graph (NNG) weighted with w = 1/d. The number of neighbors was set
to 7. Figure 4 shows the hierarchy obtained. One should notice that the graph
structure evolves as well as the image data. This yields simplification as well as
decimation.

As Figures 2 and 3 show, its is difficult to get rid of outlier pixels in the
first levels. Its seems interesting to adopt an approach based on concentration
inequalities as used in [13] to replace the equivalence relation Rε. This will be
the subject of a future work.
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original

level 1 level 1 (colorized) level 3 level 3 (colorized)

level 5 level 5 (colorized) level 6 level 6 (colorized)

Fig. 2. Hierarchy of partitions and corresponding colorizations. Levels 1, 3, 5 and 6.

original

level 1 level 1 (colorized) level 3 level 3 (colorized)

level 5 level 5 (colorized) level 6 level 6 (colorized)

Fig. 3. Hierarchy of partitions and corresponding colorizations. Levels 1, 3, 5 and 6.
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Initial graph

Level 2

Level 3

Level 4

Level 5

Fig. 4. 0-digits database hierarchical representation
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Abstract. In this paper, we introduce a novel concept: Inverse Em-
bedding. We formulate inverse embedding in the following terms: given
a set of multi-dimensional points coming directly or indirectly from a
given spectral embedding, find the mininal complexity graph (following
a MDL criterion) which satisfies the embedding constraints. This means
that when the inferred graph is embedded it must provide the same
distribution of squared distances between the original multi-dimensional
vectors. We pose the problem in terms of a Lagrangian and find that a
fraction of the multipliers (the smaller ones) resulting from the determin-
istic annealing process provide the positions of the edges of the unknown
graph. We proof the convergence of the algorithm through an analysis of
the dynamics of the deterministic annealing process and test the method
with some significant sample graphs.

Keywords: Graph-based Methods, Inverse Embedding, Deterministic
Annealing, Lagrangian Formulation.

1 Introduction

Recently, there has been an important avenue of methods for embedding the
nodes of unattributed graphs in Euclidean subspaces in a way that we assign
a given number of coordinates (feature vector) to each node in the graph. Ide-
ally, the composition of the feature vector must correlate topological distances
between nodes in terms of Euclidean distances in the embedding. One of the
most popular approaches for graph embedding is spectral embedding. The cat-
alog of spectral methods for graph embedding includes Laplacian Eigenmaps
or LEMs [1], Diffusion Maps or DMs [2], Heat Kernels or HKs [3] and Com-
mute Times or CTs [4]. All the cited spectral embeddings rely on a function
F(.) of the eigenvalues (encoded in a diagonal matrix Λ) and/or eigenvec-
tors (encoded in the matrix Φ) of a proper matrix, typically a Laplacian ma-
trix L of the graph or its normalized version L. For HK and CT embeddings
F(L) = ΦF(Λ)ΦT = ΘT Θ, where Θ results from the Young-Householder decom-
position. For CT, F(L) =

√
volXΛ−1/2 ; for HK we have F(L) = exp

(− 1
2 tΛ
)

where t is time; and for DT, we have F(L) = Λt where Λ results from a gener-
alized eigenvalue/eigenvector problem as in the case of LEM where F(L) = Φ.
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Alternatively to spectral methods; Bunke and co-workers [5] have proposed
to embed graphs through exploiting dissimilarities (typically approximations of
the graph edit distance) between a graph and a set of prototypes so that a
graph is encoded by a vector of dissimilarities. The main advantage of the latter
representation is that it simplifies the problem of classifying graphs [5,6] or even
the problem of finding the median graph [7]. The method described herein is
inspired in the way that one recovers a particular grap (the median graph) from
an embedding as described in [7] where vectors encode graphs. However, in this
paper, the proposed method relies on embeddings where each vector encodes a
node, and what is more important, the catalog of possible embeddings relying
on spectral graph theory is wider making our method more general. Helping
in graph classification is also shared with spectral embedding methods when
the graph is encoded by a set of feature vectors [3] (typically the columns of
Θ). Our recent work in this context has been addressed to re-formulate the
problem of graph matching in terms of the non-rigid alignment of two sets of
feature vectors coming from different graphs [8]. In a more general context, we
consider the set of feature vectors resulting from spectral graph embedding as
a multi-dimensional probability distribution. Such consideration and the fact
of using information-theoretic dissimilarity measures between distributions is
shared with recent population-based point matching algorithms. In [8] we define
the symmetrized normalized entropy squared variation (SNESV), but the catalog
also includes the Henze-Penrose (KP) divergence [10] based on MSTs (Minimum
Spanning Trees) and relying on the Friedman-Rafsky test [11] as well as the
KD-partitions (KDP) divergence based on the method proposed by Stowell and
Plumbey [12]. The latter dissimilarities have been tested both in contexts of
graph comparison [8] where the SNESV is the best one, and in shape comparison
where HP is the best [13].

Working with distributions of feature vectors instead of graphs opens a novel
perspective, not only for classification and matching/comparison of graphs but
for the building of generative models for graphs. Consider the case of a multi-
dimensional distribution coming from the embedding of a graph or from the ag-
gregation of several distributions coming from different graphs coming from the
same object class. Nowadays it is possible to learn, in a very fast and consistent
way, a minimal complexity Gaussian mixture model see our method proposed
in [14,15]. Given the Gaussian mixture is straightforward to generate samples
which will encode representations of nodes coming from the same kind of graph.
What is the formal relationship between the set of samples generated and the
topology of the original graphs? It seems that when we exploit embedding to
map graphs to multi-dimensional distributions we loss topological information,
that is, it is difficult to come back to the original structure. Since we want to
progress in the distributional domain it is also desirable to propose methods for
learning a graph from a multi-dimensional distribution. This is the motivation
of inverse embedding. In this paper we pose the problem of inverse embedding
through a Lagrangian formulation as in [16]. The formal beauty of the proposed
deterministic annealing algorithm is that a fraction of the optimal Lagrange
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multipliers yield the MDL (minimum-description length) graph satisfying the
embedding constraints. We provide a convergence proof through the analysis
of the dynamics of the algorithm and test it succesfully in some representative
graphs. In this paper we consider the case of CT embedding because Commute
Times have proved to be more discriminative than the other spectral ones [8].

2 A Lagrangian Method for Inverse Embedding

2.1 Problem Formulation

Let x1,x2, . . . ,xm be a collection of m-dimensional points in the Euclidean space
and generated by a node embedding of an unknown graph G = (V, E) where
|V | = m and adjacency matrix A. The problem of learning or inferring the
graph G from the latter collection of multi-dimensional points can be posed in
the following terms:

Max.
∑
j>i

Aij

s.t. Θij = ||xi − xj ||2
0 ≤ Aij ≤ 1; ∀ i, j , (1)

where Θij = ||Θi − Θj ||2 and Θi, Θj are the m−dimensional coordinates of the
embedded nodes i and j respectively. The maximization is motivated by the fact
that the starting point of the method will be a complete graph which usually
does not satisfies all the embedding constraints. Therefore, those links in the
adjacency matrix which do not satisfy the constraints will be reduced to zero.
Therefore the maximization of

∑
j>i Aij is consistent with finding the closest

graph to the complete one which satisfies all the embedding constraints.
For the commute times embedding we commence by computing the normal-

ized Laplacian of the graph L = D−1/2LD−1/2 where D is the diagonal degree
matrix, and L = D − A is the Laplacian matrix. The hitting time O(i, j) of a
random walk on a graph is defined as the expected number of steps before node
j is visited, commencing from node i. The commute time CT (i, j), on the other
hand, is the expected time for the random walk to travel from node i to reach
node j and then return. As a result CT (i, j) = O(i, j) + O(j, i). In terms of the
Green’s function the commute time is given by [4]

CT (i, j) = vol

m∑
z=2

1
λ(z)

(
φ(z)(i)√

di

− φ(z)(j)√
dj

)2

(2)

where λ(z) is the z−th eigenvalue and φ(z)(i) i−th component of the z−th eigen-
vector of L, vol = trace(D) is the volume of the graph and di and dj are the
respective degrees of nodes i and j. Then, the CT embedding is given by the fol-
lowing function of the eigenvalues and eigenvectors of the normalized Laplacian
Θ =

√
volΛ−1/2ΦD−1/2 where: Θ is a m × m matrix with the i−th column Θi
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being the embedding coordinates of the i−th node, Λ is the diagonal matrix of
eigenvalues (λ(1) = 0 and 0−1/2 = 0) and Φ is the matrix of eigenvectors. Then,
the form of Θi is

Θi =
√

vol

di

(
0

1√
λ(2)

φ(2)(i) . . .
1√
λ(m)

φm(i)
)T

. (3)

Having an initial definition of Θij = ||Θi − Θj ||2 it proceeds to re-formulate
the problem defined by Eq. 1 in terms of Lagrange multipliers. Therefore, us-
ing Lagrange multipliers (one for each constraint) the problem is equivalent to
maximizing:

E(A, {αij}) =
∑

ij:j>i

Aij +
1
β

∑
ij:j>i

Aij(log Aij −1)+
∑

ij:j>i

αij(Θij −||xi −xj ||2) ,

(4)
where the second (entropic) term is used to make concave the energy function
for lower values of β; the third term contains the m(m + 1)/2 − m Lagrange
multipliers (one multiplier per constraint).

The fixed point equations for updating the Aij are given by

∂E

∂Aij
= 1 +

1
β

log Aij + αij
∂Θij

∂Aij

∂E

∂Aij
= 0 ⇒ 1

β
log Aij = −1 − αij

∂Θij

∂Aij

⇒ Aij = expβ

(
−1 − αij

∂Θij

∂Aij

)
, (5)

where ∂Θij

∂Aij
(approximated numerically) is the gain in terms of squared distance

with respect to the variation of a single component Aij .
On the other hand, the update of the multipliers has not a closed formed and

it must be performed through gradient ascent, given the previous multipliers
and distances:

∂E

∂αij
= Θij − ||xi − xj ||2 ⇒ αt+1

ij = αt
ij + μ(Θt

ij − ||xi − xj ||2) , (6)

with μ ∈ [0, 1] (learning factor). In practice, such a factor must be fixed so that
it decreases with the size of the graph.

2.2 Deterministic Annealing Algorithm

Given the above updates for {Aij} and {αij} it is straightforward to devise a
deterministic annealing algorithm:
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Initialize β to β0, Aij = 1/m, αij = 0, j > i, μ
Begin: Deterministic Annealing. Do while β ≤ βf

H ← ComposeAdjacencyMatrix({Aij})
Θ ← Embedding(H)
αij ← αij + μ(Θij − ||xi − xj ||2)
∂Θij

∂Aij
← ComputeDerivative(i, j, G)

Aij ← expβ
(
−1 − αij

∂Θij

∂Aij

)
β ← ββr

End

G = MDLCleanup({Aij}, {αij})

Convergence Proof. In the latter algorithm, the initialization Aij = 1/m, that
is, a barycenter depending on the complete graph (Aij = 1) ensures that the
m−dimensional points of Θ obtained from Embedding(G) are equally spaced.
In practice this implies large equal square distances Θij . We will have both
Θij − ||xi −xj ||2 < 0 and Θij − ||xi −xj ||2 > 0. However, as the unknown graph
can only be obtained by removing edges from the complete graph (that is zeroing
components of the barycenter adjacency matrix) the cases where Θij − ||xi −
xj ||2 < 0 will start dominating over the others. Consequently, as many αij < 0
we wil have that

∑
ij:j>i αij(Θij −||xi−xj ||2) > 0. It is straightforward to prove

that under the conditions of Aij < 0 we will obtain ∂Θij

∂Aij
> 0. Therefore, at the

beginning of the determinisic annealing we will have Aij = expβ(−1+z), z > 0,
where the magnitude of z depends on μ. As the effect of the exponentiation for
a low β is to make equall all the Aij unless significant differences appear, we
will obtain At+1

ij = kAt
ij , k ∈ (0, 1) for low and mid values of β (while the

1
β

∑
ij:j>i Aij(log Aij − 1) < 0) dominates the energy. This latter term, which

also plays the role of a regularizing term for the Aij , will increase with β more
significantly than

∑
ij:j>i αij(Θij − ||xi − xj ||2) > 0.

Considering the update of the multipliers αij , the latter entropic term has a
significant effect on αt+1

ij = αt
ij+μ(Θt

ij−||xi−xj ||2) which is focused on the values
of Θt

ij . We have that since At+1
ij < At

ij for small β, we obtain Θt+1
ij < Θt

ij in these
conditions. However, a good property of the proposed algorithm is that despite
the latter effect, the entropic term is unable to regularize the αij where each
multiplier evolves in order to satisfy its constraint. As β increases, we have that
small variations in αij yield also small variations in Aij = expβ(−1 − αij

∂Θij

∂Aij
).

There are two consequences: (i) some multipliers αij tend to zero faster than
others, which indicates a greater degree of constraints satisfaction; and (ii) the
corresponding Aij tend also to zero faster than others, which indicates that
the structure of the hidden graph is emerging: while maximizing the sum of
Aij constrained to satisfying the embedding constraints we obtain close-to-zero
values in positions where constraints are satisfied and this is enforced by the
exponential decay. When βf is reached, the smalles values of Aij and the less
negative αij yield the solution to the inverse embedding problem.
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Regarding the function G = MDLCleanup({Aij}, {αij}) it must be carefully
designed for inferring the correct graph. For instance, as the number of edges
in the graph is typically very low compared with the one of a complete graph,
a clustering method working with the Aij , with αij or with their combination
will fail due to the fact that we have a very small cluster and a large. The
usually tiny numerical differences between the correct edge-weights/multipliers
and the incorrect ones prevent the use of a generic threshold. Then, we propose
to apply a MDL (minimum description length criterion) consisting on sorting
the weights/multipliers in ascending order and taking the first n ones (taking
the absolute values in the case of the multipliers) leading to a graph with a
unique connected component. Considering that the minimum mumber of edges
for connecting m nodes is m−1 we set n = m−1, check if the graph is connected
and otherwise we increase n until connectivity arises. Therefore, MDL-cleanup
provides the smallest connected graph satisfying the embedding constraints. In
practice it is more convenient to use the multipliers because they converge faster
than the edge weights which become more ambiguous. In some sense we are
applying a kind of explicit mild MDL because we do not select the correct model
(graph) order until the algorithm converges. However, MDL is implicit in the
computation of the multipliers and in their ranking; we must only find the correct
cut-off.

In Fig. 1 we represent data concerning both a Delaunay triangulation and a
linear graph. The energy functions plots show the convergence of the algorithm.
On the other hand, the plot of sorted absolute values of the optimal Lagrange
multipliers for the Delaunay triangulation shows also the MDL cutoff found by
the algorithm (slightly greater than the corresponding to the ground truth).
In terms of error, if we measure the relative error ε =

∑
ij

|Gij−G∗
ij |

|G|2 which is
the relative number of different components in the adjacency matrix we obtain

Fig. 1. Examples of applications of the deterministic annealing algorithm. Left: Evolu-
tion of the energy function for the Delaunay triangulation (first graph of the GatorBait
database) of m = 86 nodes and for the linear graph of m = 50 nodes. Right: Sorted
optimal Lagrange multipliers for the Delaunay triangulation with the obtained MDL
cutoff (k = 275 edges); in this case the real number of edges is 242.
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ε = 0.0224 (2.24%) for the Delaunay triangulation and ε = 0.0 for the linear
graph.

3 Conclusions

In this paper we have formulated the problem of inverse embedding and have
proposed a simple method for solving it. We show that the solution to this in-
ference problem is typically encoded by a small fraction of the optimal Lagrange
multipliers. Such small fraction is key for defining a MDL-like cleanup strategy
which returns the connected graph which satisfies the embedding constraints
with the minimal number of edges. Future work includes a more in depth test
with complete graph databases in order to evaluate the method more thoroughly.
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Abstract. Metric trees (m-trees) are used to organize and execute fast queries 
on large databases. In classical schemes based on m-trees, routing information 
kept in an m-tree node includes a representative or a prototype to describe the 
sub-cluster. Several research has been done to apply m-trees to databases of 
attributed graphs. In these works routing elements are selected graphs of the 
sub-clusters. In the current paper, we propose to use Graph Metric Trees to 
improve k-nn queries. We present two types of Graph Metric Trees. The first 
uses a representative (Set Median Graph) as routing information; the second 
uses a graph prototype. Experimental validation shows that it is possible to 
improve k-nn queries using m-trees when noise between graphs of the same 
class is of reasonable level. 

Keywords: graph database, m-tree, graph organization, graph prototype, graph 
indexing, Mean Graph, Median Graph, Set Median Graph. 

1   Introduction and Related Work 

Indexing structures are fundamental tools in database technology. In the field of 
pattern recognition, they are used to obtain efficient access to large collections of 
images. Traditional database systems manage global properties of images, such as 
histograms, and many techniques for indexing multi-dimensional data sets have been 
defined. Since a distance function over a particular attribute domain always exists, 
this distance function can be used to partition the data. In addition, it can be exploited 
to efficiently support queries. Several multi-dimensional indexes have been 
developed, such as, color, texture, shape and so on, with the aim of increasing the 
efficiency in executing queries on sets of objects characterized by multi-dimensional 
features [1]. Effective access to image databases requires queries addressing the 
expected appearance of searched images [2]. To overcome these systems, objects 
contained in images can be modeled using attributed graphs, [3] and [4]. In this way, 
each object is composed by local entities and relations between these entities. This 
paradigm enriches indexing structures considering of the same relevance local entities 
and relations. Likewise traditional indexing structures, each local entity can represent 
multi-dimensional features. The main impediment of using attributed graphs as 
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indexing structures is that the problem of optimally compare two attributed graphs is 
NP-Complete [5]. However, some sub-optimal solutions exist [6], [7].  

Some indexing techniques have been developed for graph databases. We divide 
these techniques into two categories. In the first ones, the index is based on several 
tables and filters [8], [9]. In the second ones, the index structure is based on trees [3], 
[10], [11]. In the first group of techniques, we emphasize the method developed by 
Shasha et. al. [8] called GraphGrep. GraphGrep is based on a table in which each row 
stands for a path inside the graph (up to a threshold length) and each column stands 
for a graph. Each entry in the table is the number of occurrences of the path in the 
graph. More recently, Yan et. al. [9] proposed GIndex which uses frequent patterns as 
indexing features. These frequent patterns reduce the indexing space as well as 
improve the filtering rate. The main drawback of these models is that the construction 
of the indices requires an exhaustive enumeration of the paths or fragments which 
increases memory and time requirements. Considering the second group, the first 
work where metric trees were applied to graph databases was done by Berretti et. al. 
[3]. AGs were clustered hierarchically according to their mutual distances and 
indexed by m-trees [12]. The method in [3] was successfully applied to the problem 
of performing similarity queries. Latter, Lee et. al. [10] used this technique to model 
graphical representations of foreground and background scenes in videos. More 
recently, He and Singh [11] proposed what they called a Closure-tree. It uses a similar 
structure than the one presented by Berretti [3] but, the representative of the cluster 
was not one of the graphs but a graph prototype (called Closure Graph) which could 
be seen as the union of the AG that compose the cluster. 

Our proposal is to apply metric trees to the problem of graph k-nn queries. In [19], 
metric trees where used to obtain graphs sorted by minimum distance. We propose to 
use as a routing element of the metric tree two types of graphs: a representative (Set 
Median Graph) and a graph prototype. Results validate that under a reasonable noise 
level graph metric trees can perform k-nn queries faster than the traditional method. 

The article is structured as follows. Section 2 gives some basic definitions. 
Sections 3 and 4 present the metric tree and how it is applied to graph k-nn queries. In 
Section 5, we experimentally evaluate the models. We finish the paper drawing some 
conclusions and presenting the future work. 

2   Graph Preliminaries 

An Attributed Graph AG over (Dv and De) is defined by a tuple Σ , Σ , , , 
where S   |   1, … ,  is the set of vertices, S œ  | ,  œ 1, … , ,  ∫  
is the set of arcs and g :S → D  and g :S →D  assign attribute values to vertices 
and arcs respectively. In case it is required, any AG can be extended with null nodes, 
which have special attribute  Ø œ D   [13].  
 
Set Median Graph. Given a set of graphs , , … ,  and a distance 
between graphs , , the Set Median Graph is defined as follows. 
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Γ ,  (1)

That is, the graph in the set Γ that minimizes distances to all other graphs in . For 
further references to the Set Median Graph the reader is referred to [16]. 

Mean Graph: Given a set of graphs , , … , , we define a common 
labeling [15]   , , … ,  over the graphs in Γ as a set bijective mappings 
from nodes of graphs in Γ to a virtual vertex set  , Σ  . We define the 
Mean Graph from a set of attributed graphs Γ under a common labeling  as another 
attributed graph where attributes on nodes and arcs are: 

∑ |  and  ∑ |  (2)

being M the number of nodes such that Γ| ,  N the number of arcs 

such that  and being   the attribute value of the arc ,  in  .  

3   K-nn Queries Based on m-Trees 

A metric tree [12], m-tree in short, is a tree of nodes, each containing a fixed 
maximum number of m entries, . In turn, each entry is 
constituted by a routing element H, a reference to the root   of a sub-index 
containing the element in the so-called covering region of H and a radius  
providing an upper bound for the distance between H and any element in its covering 
region, , , .  

To perform k-nn queries in metric trees, the tree is analyzed in a top down fashion 
using triangular inequality to prune unfruitful tree branches. The method proposed in 
[12] uses mainly two arrays PR and NN. Array PR stores the possibly fruitful tree 
nodes to be explored and NN stores the best K graphs found until the moment.  

Let  be a query graph and  the maximum distance from G to any element in 
NN. In each iteration of the search algorithm, the tree node in PR with lower distance 
to  is selected, let this node be named . Children of ..  are analyzed 
and its distance to  is computed. If son i is a routing node, this node is inserted in PR 

if ,   . In other words, it is possible to find a graph with lower 
distance than the ones already found.  If son i is a leave, that is, a database graphs, and ,  , array NN  and  are updated to consider this element. Note that in 
k-nn queries,  acts as a dynamic maximum search distance of range queries. For a 
detailed description of k-nn and range queries the reader is referred to the original 
article [12]. 
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Classification Performance Rate. In the ideal case, the k-nn search applied to any 
m-tree should return the same information than a classical k-nn search. However, 
recall that Graph Edit Distance does not hold the triangle inequality, so routing over 
graph metric trees using triangle inequality theorem could produce different and non-
correct results. Taking into account this consideration, we consider necessary to 
evaluate the classification rate of graph metric trees. 

To evaluate the graph metric tree proposed here under controlled graph order and 
known noise level, we created synthetically 16 5 80 tests. Each test is composed 
by 15 classes of  10  graphs per class, each graph of order 10, 20, 30, 40 . Each class was created as follows. We randomly generate a base 
graph with random  attributes in the range Dv=[0..100, 0..100]. Edges are defined by 
the Delaunay triangulation. Then, with this base graph, we created the N class graphs 
by: 1) generating Gaussian noise at every node with standard deviation σ={0.05, 0.1, 
0.15, 0.20}, 2) removing ν œ [5%, 10%, 15%, 20%] nodes randomly, 3) inserting v 
nodes (with random attributes) and 4) changing the state of v edges. We created a 
single Graph Metric Tree per test. To do so, the distance matrix was obtained using 
the Graph Edit Cost defined in [14]. The bijection which leads to the minimum cost 
was computed using the Graduated Assignment algorithm [6]. We took values of 10, 10. Using the 7 resting graphs, we performed  3-nn queries per 
class. That is, a total of 105 5 525 queries per test. For each test, we evaluated 
the penetration rate and the classification performance. With the aim of obtaining 
non-biased results, we performed 5 experiments per each test and we averaged the 
results. 

 

 

Fig. 4.1 Results using Mean 
Graph 

 

Fig. 4.2 Results using the Set 
Median Graph 

 

Fig. 4.3. Ground truth using 
3-nn 

Fig. 4.1, 4.2 and 4.3 show the results of the evaluation. Analyzing metric trees 
classification rate in comparison with the ground truth 3-nn we see that the 
performance is not affected. That is, we conclude that, at least in the used dataset, the 
Graph Edit Distance fulfils metric properties. 

With respect to penetration rate we could say that there is a noise level range where 
graph metric trees are faster than traditional k-nn queries. However, the penetration 
rate of metric trees decays when noise exceeds level 15. Penetration rate is also 
affected with the number of nodes of the graph, being lower with graph of small 
order. In addition, we see that with values of noise higher than 15, the penetration 
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rates crosses the critical rate of 1 meaning that it is faster to use a classical 3-nn 
classifier than a 3-nn classifier using graph metric trees. 

Comparing the results obtained using a graph representative or a graph prototype, 
we conclude that using a graph prototype do not significantly affect neither the 
penetration rate nor the classification rate. 

6   Conclusions and Further Work 

In this article, we presented an approach to increment performance in k-nn graph 
queries. This approach makes use of metric trees adapted to attributed graph data. We 
tested the approach using two types of graph routing elements: a representative (Set 
Median Graph) and a graph prototype, which we call Mean Graph, proposed in the 
present article.  

Results show that metric trees can be used to improve k-nn graph queries when the 
noise among graphs that belong to the same class is not excessively high. Moreover, 
Mean Graph Metric Tree seems to be more effective in comparison to Set Median 
Metric Tree but the improvement is not significant.  

Besides the direct analysis of the results, it is worth to note that under some 
conditions, metric properties, such as triangle inequality, can be used on Graph Edit 
Distance; even this distance is not proven to be a metric. 

As a further work, authors will attempt to deduce under which conditions Edit 
Distance behaves as a metric and how this metric properties differ from the ideal case. 

References 

1. Smith, J.R., Samet, H.: VisualSEEk: A Fully Automated Content-Based Image Query 
System. In: Proc. ACM Multimedia, pp. 87–98 (1996)  

2. Gudivada, V.N., Raghavan, V.V.: Special issue on Content Based Image Retrieval 
Systems. Computer 28(9) (1995)  

3. Berretti, S., Del Bimbo, A., Vicario, E.: Efficient Matching and Indexing of Graph Models 
in Content-Based Retrieval. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 23(10), 1089–1105 (2001) 

4. Zhao, J.L., Cheng, H.K.: Graph Indexing for Spatial Data Traversal in Road Map 
Databases. Computers & Operations Research 28, 223–241 (2001) 

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness (1979)  

6. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996) 

7. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite 
graph matching. Image Vision Comput. 27(7), 950–959 (2009) 

8. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and graph 
searching. In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database 
Systems, pp. 39–52 (2002)  

9. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: ACM 
SIGMOD International Conference on Management of Data, pp. 335–346 (2004)  



210 F. Serratosa, A. Solé-Ribalta, and X. Cortés 

 

10. Lee, S.Y., Hsu, F.: Spatial Reasoning and Similarity Retrieval of Images using 2D C-
Strings Knowledge Representation. Pattern Recognition 25(3), 305–318 (1992) 

11. He, H., Singh, A.K.: Closure-Tree: An Index Structure for Graph Queries. In: Proc. 
International Conference on Data Engineering, p. 38 (2006)  

12. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity 
Search in Metric Spaces. In: Proc. 23rd VLDB Conference, pp. 426–435 (1997)  

13. Wong, A.K.C., et al.: Entropy and distance of random graphs with application to structural 
pattern recognition. IEEE Trans. on Patt. Anal. & Machine Intelligence 7, 599–609 (1985) 

14. Sanfeliu, A., King-Sun, F.: A Distance measure between attributed relational graphs for 
pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3), 353–362 (1983) 

15. Solé-Ribalta, A., Serratosa, F.: Graduated Assignment Algorithm for Finding the Common 
Labelling of a set of Graphs. In: Proceedings of Syn. and Struc. Patt. Recog., pp. 180–190 
(2010)  

16. Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new 
theoretical properties. Pattern Recognition 42(9), 2003–2012 (2009) 

17. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. 
Springer, New York (2009) ISBN 0-387-84857-6 

18. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. 
Springer, Heidelberg (2005) ISBN-13: 978-0387954318 

19. Solé, A., Serratosa, F., Vidiella, E.: Graph Indexing and Retrieval based on Median 
Graphs. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. 
LNCS, vol. 6256, pp. 311–321. Springer, Heidelberg (2010) 



User-Steered Image Segmentation Using Live Markers
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Abstract. Interactive image segmentation methods have been proposed based
on region constraints (user-drawn markers) and boundary constraints (anchor
points). However, they have complementary strengths and weaknesses, which can
be addressed to further reduce user involvement. We achieve this goal by com-
bining two popular methods in the Image Foresting Transform (IFT) framework,
the differential IFT with optimum seed competition (DIFT-SC) and live-wire-
on-the-fly (LWOF), resulting in a new method called Live Markers (LM). DIFT-
SC can cope with complex object silhouettes, but presents a leaking problem
on weaker parts of the boundary. LWOF provides smoother segmentations and
blocks the DIFT-SC leaking, but requires more user interaction. LM combines
their strengths and eliminates their weaknesses at the same time, by transform-
ing optimum boundary segments from LWOF into internal and external markers
for DIFT-SC. This hybrid approach allows linear-time execution in the first in-
teraction and sublinear-time corrections in the subsequent ones. We demonstrate
its ability to reduce user involvement with respect to LWOF and DIFT-SC using
several natural and medical images.

1 Introduction

Image segmentation requires object recognition to indicate its whereabouts in the im-
age and make corrections, and object delineation to define its precise spatial extent in
the image. Humans usually outperform computers in recognition and the other way
around can be observed in delineation. Besides, interactive segmentation is necessary
in many applications, such as medical image analysis and digital matting. Hence, it
is desirable to have interactive methods that combine the superior abilities of humans
for recognition with the outperformance of computers for delineation in a synergistic
way [1,2,3,4,5,6,7]. In this context, however, the challenges ought to simultaneously (i)
maximize accuracy, precision, and computational efficiency, (ii) minimize user involve-
ment and time, and (iii) maximize the user’s control over the segmentation process.

Many interactive methods exploit boundary constraints, such as anchor points, or
region constraints, such as internal and external markers, and make direct/indirect use
of some image-graph concept, such as arc weight between pixels. The weight may rep-
resent different attribute functionals such as similarity, speed function, affinity, cost,
distance, etc; depending on different frameworks used, such as watershed, level sets,
fuzzy connectedness, graph cuts, etc [6]. In the first case, the object may be defined
by optimum boundary segments that pass through the anchor points to close its bound-
ary. This idea was first formulated as a heuristic search problem in an image-graph by

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 211–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Martelli [8], but with no guarantee of success. This guarantee was only possible without
any shape constraints in the 2D dynamic programming framework of live wire [1, 2].
However, the real-time response of live wire with respect to user’s actions strongly de-
pended on the image size. This problem was circumvented later in live-wire-on-the-fly
(LWOF), by exploiting key properties of Dijkstra’s algorithm to determine optimum
paths [9]. Several approaches further extended live wire to cope with multiple chal-
lenges [10, 11].

Methods based on region constraints usually have the advantage of being more eas-
ily extended to 3D images. Some popular approaches based on internal and external
markers are watershed [12, 13] (WS), fuzzy connectedness [14, 15] (FC), and the tradi-
tional graph cuts [3, 16] (GC). These methods can define the object as some optimum
cut in the graph and can produce similar results under certain conditions [17, 13, 15].
However, they may differ in computational efficiency and user involvement, time, and
control, depending on the quality of the arc-weight assignment and algorithm chosen
for implementation. WS and FC are more robust to the markers’position and better per-
form in the case of complex object silhouettes (with protrusions and indentations) than
GC and LWOF [17, 15] (Figure 1a). However, in the presence of poorly defined parts
of the boundary (bad arc-weight assignment), they present a leaking problem where
parts of the background (object) are conquered by object (background) markers. On
the other hand, GC and LWOF produce smoother borders and better perform on the
poorly defined parts of the boundary (Figure 1b). This makes interesting to investigate
hybrid approaches that can combine the complementary strengths of both paradigms
and eliminate their weaknesses.

(a) (b) (c)

Fig. 1. (a) DIFT-SC handles complex object shapes but suffers from the same drawbacks of FC
and WS towards weak boundary information, thus requiring a few markers around the wrist to
finish segmentation. (b) Hand segmentation using LWOF with eight anchor points. (c) The hand
segmentation by Live Markers used a couple of internal and external markers and one LWOF
segment on the wrist to segment the hand.

In this work, we propose a hybrid approach using the above strategy and a com-
mon graph-based framework to develop methods, named Image Foresting Transform
(IFT) [18]. In this framework, an image is interpreted as a graph whose image ele-
ments (pixels, vertices, edges, regions) are the nodes and the arcs are defined by some
adjacency relation between them. A connectivity function is assigned to any path in
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the graph, including trivial paths formed by single nodes. Considering an initial con-
nectivity map with only trivial paths, its maxima (minima) are taken as root nodes.
These roots may offer better paths to their adjacent nodes and the adjacent nodes may
also propagate better paths in such a way that an optimum-path propagation process
transforms the image into an optimum-path forest. Different image operators are then
reduced to a local processing on the attributes of the forest (optimum paths, root labels,
optimum connectivity values). In image segmentation, the IFT has been used to better
understand the differences among WS algorithms [12], to considerably speed up FC
computation [15], and to create new methods [19].

The IFT algorithm is an extension of Dijkstra’s algorithm for multiple sources and
more general connectivity functions, whose linear-time implementation is possible in
most cases. By adding/removing trees, the optimum-path forest can also be updated in
sublinear time with the differential IFT (DIFT) algorithm. This strongly favors the use
of the DIFT for multidimensional interactive segmentation with region constraints, such
as the method DIFT with seed competition (DIFT-SC) where the seeds come from the
internal and external markers [4]. Besides, the time complexity of the algorithm does
not increase with the number of objects. Seeds compete among themselves and each
object is defined by pixels more strongly connected to its internal seeds than to any
other.

Therefore, DIFT-SC and LWOF are combined into a new method called Live Mark-
ers (LM) in order to reduce user involvement and time for interactive segmentation.
LM combines their strengths and eliminate their weaknesses at the same time, by trans-
forming optimum boundary segments from LWOF into internal and external markers
for DIFT-SC (Figure 1c). It allows linear-time execution in the first interaction and
sublinear-time corrections in the subsequent ones. Although DIFT-SC can use differ-
ent connectivity functions and handle multiple objects, we will present it for binary
segmentation using a connectivity function suitable for complex object silhouettes. As
a consequence of that, LM will present the leaking problem on weaker parts of the
boundary which will be solved by LWOF or by additional internal and external markers
(Figure 1c). We will also present LM for the 2D case. However, it should be clear that
its extension to the 3D case is straightforward. LWOF can execute in a few selected
slices but object delineation will always be done by DIFT-SC in 3D.

Given that IFT is used in every aspect of LM, some general concepts about its opera-
tors and image-derived graphs are presented in Section 2. Section 3 details the segmen-
tation process by Live Markers, including how the object is extracted by DIFT-SC using
both manual and LWOF border markers. Lastly, in Section 4 Live Markers is compared
with DIFT-SC and LWOF and our conclusions are stated.

2 Image Foresting Transform

An image Î is a pair (DÎ , I), where DÎ ⊂ Zn corresponds to the image domain and
I(t) assigns a set of m scalars Ib(t), b = 1, 2, . . . , m, to each pixel t ∈ DÎ . The
subindex b is removed when m = 1. A graph (N ,A) may be defined by taking a set
N ⊆ DÎ of pixels as nodes and an adjacency relation A between nodes of N to form
the arcs. We use t ∈ A(s) or (s, t) ∈ A to indicate that a node t ∈ N is adjacent
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to a node s ∈ N . Live Markers considers for LWOF and DIFT-SC a graph in which
every pixel is a node and the arcs are defined between the 8 neighbors of a pixel in the
image domain (i.e., N = DÎ and (s, t) ∈ A if ‖t − s‖ ≤ √

2). The arcs (s, t) ∈ A
are assigned fixed weights 0 ≤ w(s, t) ≤ K computed from local image features and
object information [20], such that higher arc weights are assigned across the object’s
boundary for DIFT-SC (and lower arc weights w̄(s, t) = K − w(s, t) on the object’s
border for LWOF).

A path πt = 〈t1, t2, . . . , t〉 is a sequence of adjacent nodes with terminus at a node
t. A path πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc (s, t) and a path
πt = 〈t〉 is said trivial. A connectivity function f assigns to any path πt a value f(πt).
A path πt is optimum if f(πt) ≤ f(τt) for any other path τt in (N ,A). Considering all
possible paths with terminus at each node t ∈ N , an optimum connectivity map V (t)
is created by V (t) = min∀πt in (N ,A){f(πt)}.

The IFT solves the minimization problem above by computing an optimum-path
forest — a function P which contains no cycles and assigns to each node t ∈ N either
its predecessor node P (t) ∈ N in the optimum path or a distinctive marker P (t) =
nil �∈ N , when 〈t〉 is optimum (i.e., t is said root of the forest). The root R(t) of each
pixel t can be obtained by following its optimum path backwards in P . However, it
is more efficient to propagate them on-the-fly, creating a root map R. Also, the path
optimality is only guaranteed for smooth functions [18], such as the ones below used
for region and boundary based segmentation, respectively

fmax(〈t〉) = H(t)
fmax(πs · 〈s, t〉) = max{fmax(πs), w(s, t)}, (1)

f�
Σ (〈t〉) = H(t)

f�
Σ (πs · 〈s, t〉) =

{
f�

Σ (πs) + w̄β(s, t) if O(l) ≥ O(r)
f�

Σ (πs) + Kβ otherwise,
(2)

where H(t) is a handicap value specific to each IFT-based operator, l and r are the
pixels at the left and right sides of arc 〈s, t〉, O is a reference map expected to be
brighter inside the object, and the parameter β ≥ 1 produces longer segments for LWOF
in an anti-clockwise fashion. Function fmax propagates the maximum arc weight value
along the path, while f�

Σ is the oriented additive path-cost function. Other connectivity
functions are discussed in [18] for several image operators.

3 Live Markers

In Live Markers, the object is always extracted using optimum seed competition through
the DIFT-SC operator [4]. DIFT-SC computes an optimum-path forest spanning from
a set of selected marker pixels (seeds) to every node in a graph derived from the im-
age (Section 2). The object is defined as the union of trees rooted at the internal seeds.
These seeds can be strokes drawn by the user and/or automatically generated sets of
pixels surrounding border segments computed by LWOF. User-drawn markers are of-
ten placed at locations with homogeneous color and texture, and may provide useful
information for arc-weight estimation. Intelligent arc-weight estimation [20] simplifies
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the user interface by determining when and where the weights can be recomputed, us-
ing an automatically selected subset of the marked pixels with the most representative
image attributes that help distinguish object from background. It aims at computing
higher arc weights across the object’s border than anywhere else, such that the object
can be extracted using DIFT-SC with fmax from only two marker pixels, one inside
and one outside it [6]. Nevertheless, perfect arc-weight assignment is often not possible
and more markers should be placed around weaker parts of the boundary for correction.
In this case, the automatic generation of markers surrounding LWOF border segments
forms perfect barriers that are much more effective. In fact, LWOF border markers are
so important that in many cases they can virtually replace user-drawn markers alto-
gether, since DIFT-SC labels the rest of the image accordingly (e.g., fish in Figure 2).

3.1 Segmentation by Live-Wire-on-the-Fly

Boundary-based segmentation by live wire [1] outputs a closed contour computed as
an optimum curve that is constrained to pass through a sequence 〈s1, s2, . . . , sN 〉 of
N anchor points (seeds) selected by the user on the object’s boundary, in that order,
starting from s1 and ending in sN , where s1 = sN . The optimum curve that satisfies
those constraints consists of N − 1 segments πs2 , πs3 , . . . , πsN , where each πsi is an
optimum path connecting si−1 to si. Therefore, we can solve this problem by N − 1
executions of the IFT and the optimum contour can be obtained from the predecessor
map P after the last execution.

To select a new anchor point si, the user moves the mouse’s cursor and the optimum-
path from si−1 to the cursor’s position (candidate for si) is displayed in real-time. In
this work, each execution i = 2, 3, . . . , N of IFT for live wire uses the initial point
si−1 as seed and the oriented version of the additive path-cost function in Eq. 2 (with
H(t) = 0 if t = si−1, and H(t) = +∞ otherwise). For our purpose, O is taken as the
object membership map M computed during arc weight estimation [20] as a result of
supervised fuzzy pixel classification.

At each IFT iteration (i = 2, 3, . . . , N ), the previous segments πs2 , πs3 , . . . , πsN

are kept unchanged during the algorithm, so their nodes can not be revisited or reseted.
Live-wire-on-the-fly [9] is finally obtained by exploiting the Bellman’s principle for
early termination and incremental computation in each execution of IFT.

3.2 Combination of Live-Wire-on-the-Fly with DIFT-SC

Instead of defining a closed contour to delineate the object, the combination between
LWOF and DIFT-SC transforms each optimum boundary segment πsi , computed by
LWOF between two anchor points si−1 and si, into region constraints for DIFT-SC.
The addition of a new border segment causes DIFT-SC to be instantaneously issued
to update the result on-the-fly. Segmentation may continue by prolonging the current
border segment, by restarting LWOF at another location with a new anchor point, or by
adding/removing markers.

Let M be a set of marker pixels drawn by the user and B be the set of pixels that
belong to the optimum path πsi rooted at the anchor point si−1. The seed set used to
extract the object by DIFT-SC can be taken as U = M ∪ B ∪ E ∪ D, where E and D
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Fig. 2. The images in the first row present the segmentation result using LWOF. The second and
third row depict, respectively, the delineation of objects by DIFT and Live Markers. Note how
the fish segmentation only required border markers when using LM.

Table 1. Measures of accuracy (F-measure and ED) and interaction (number of markers for LM
and DIFT-SC, and anchor points for LWOF) from both experiments

GrabCut Dataset Liver CT Dataset
LM LWOF DIFT-SC LM LWOF DIFT-SC

F-measure 98.9 ± 0.5 98.7 ± 0.6 99.0 ± 0.4 98.6 ± 0.2 98.6 ± 0.2 98.5 ± 0.5

ED 0.6 ± 0.2 0.7 ± 0.2 0.6 ± 0.3 1.3 ± 0.2 1.2 ± 0.1 1.3 ± 0.3
Interactions 6.4 ± 4.1 13.5 ± 8.7 9.6 ± 6.0 10.3 ± 2.3 17.9 ± 5.5 13.9 ± 3.0

are the 8 adjacent pixels to the left and right of πsi , respectively. The marker label for
pixels in E and D can be easily determined according to the current orientation being
used for LWOF. For instance, in anti-clockwise orientation every t ∈ E is assigned an
object label λ(t) = 1, while every s ∈ D is given a background label λ(s) = 0. All
nodes in B are always object markers. Such definition of LWOF border markers ensures
a tight seed assignment that protects weaker parts of the boundary.

3.3 Object Extraction by DIFT-SC

Object extraction is performed on an 8-neighbor graph derived from the image (DÎ ,A),
with regular arc weights w(s, t). All pixels in set U are taken as seeds for optimum com-
petition by IFT. It is expected that the optimum-path forest P computed on (DÎ ,A) for
fmax in Eq. 1 with H(t) = 0 if t ∈ U , and H(t) = +∞, otherwise, extracts the object
as the union of trees rooted at the object pixels in U . The object is identified as the pixels
1 after a local operation, which assigns the correct label L(t) = λ(R(t)) ∈ {0, 1} of the
root to each pixel t ∈ DÎ . That is, object and background seeds will compete with each
other to conquer their most strongly connected pixels, hopefully from the same label.
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The user may draw new markers, add LWOF border markers, and/or remove markers
by clicking on them, and the optimum-path forest P can be recomputed in a differential
way, taking time proportional to the number of pixels in the modified image regions
(sublinear time in practice, if w(s, t) is normalized within an integer range of num-
bers). This approach comprises the differential image foresting transform with seed
competition (DIFT-SC) [4]. That is, each marker pixel added to U may define a new
optimum-path tree by invading the trees of other roots. The removal of a marker elimi-
nates all optimum-path trees rooted at it, making their pixels available for a new dispute
among the remaining roots.

4 Experiments and Conclusions

Some examples of segmentation using Live Markers are presented in Figure 2. Live
Markers was used to segment 22 natural images selected from the GrabCut [16] dataset,
and a set with 20 CT-images of the liver from 10 different subjects. These images were
also segmented using DIFT-SC and LWOF separately, on graphs whose arc weights
were also estimated using the intelligent approach in [20].

Segmentation accuracy is established taking into account region and boundary based
metrics (Table 1). Namely, the F-measure score computed over the groundtruths and the
average euclidean distance between the segmentation masks and groundtruth bound-
aries ED. The amount of user interaction is measured by the total number of markers
used for LM and DIFT-SC, and the number of anchor points for LWOF (Table 1). While
the overall user time spent in segmentation for all methods ranges from 1 to 2 minutes,
being greater for LWOF in general, their computational time is low, in the order of
0.2 to 0.6 seconds per interaction for images sized between 481 × 321 and 640 × 480
pixels. All experiments were executed in a machine with a 2.2 GHz Intel Core i5 proces-
sor and 4 GB of RAM. From our experiments we can see that Live Markers achieves
high accuracy, and demands from 26% to 52% less user interaction than LWOF and
DIFT-SC used separately. The metrics based on boundary distance indicate some dis-
crepancies between the segmentation mask and the groundtruths. This is mostly related
to some discretization artifacts and the manual generation of groundtruths, which pro-
duced rough borders. Nevertheless, Live Markers is a promising approach that can be
straightforwardly extended to 3d to further reduce user interaction in segmentation for
medical image analysis. Future work also involves the development of matting algo-
rithms to produce smoother borders and cope with fine features such as hair.

We would like to thank FAPESP (2009/11908-8, 2011/01434-9, 2009/16428-4,
2007/52015-0), CNPq (481556/2009-5, 201732/2007-6, 302617/2007-8), and the Uni-
versity of Campinas for the financial support, J. K. Udupa and the creators of the Grab-
Cut and Berkeley datasets for the images and groundtruths.
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Abstract. The Ihara Zeta Function, related to the number of prime
cycles in a graph, is a powerful tool for graph clustering and character-
ization. In this paper we explore how to use the Ihara Zeta Function to
define graph kernels. We propose to use the coefficients of reciprocal of
Ihara Zeta Function for defining a kernel. The proposed kernel is then
applied to graph clustering.
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1 Introduction

Although originally developed for vector-data, there has recently been a con-
certed effort to extend kernel methods to the structural domain, i.e. to measur-
ing the similarity of strings, trees and graphs. While there is an order relation
in strings and trees, graphs represent more difficult structures to kernelise since
there is no order relation. It is for this reason that the construction of graph
kernels has proved to be particularly challenging.

The lack of an order relation renders the problem both computationally and
algorithmically burdensome. For instance subgraph isomorphism is known to be
NP-complete, and this makes the exact solution computationally intractable. It is
for this reason that inexact and decomposition methods have been used instead.
Methods falling into the former category include the use of approximate methods
to compute graph-edit distance[1,16], and those falling into the latter category
include those that decompose a graph into path length[3], random walk[2] and
cycle kernels [5,4]. One of the advantages of the decomposition methods is that
they lead to kernels that can be computed in polynomial time.

One of the most popular polynomial time graph kernels is the random walk
kernel[2]. This relies on the fact that the path length distribution of a graph can
be easily computed from powers of the adjacency matrix, and this is an operation
that can be computed in polynomial time. Moreover, by using a product graph
formalism the computation can be accelerated[2]. There are a number of well
documented problems with the random walk kernel. These include a)problems
that different graphs are mapped to the same point in the feature-space of the
random walk (this can be attributed to the cospectrality of graphs), and b)the
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fact that random walks totter and may visit the same edges and nodes multiple
times. Both of these problems mean that the ability of the graph kernel to
discriminate graphs of different structure is reduced. One way to overcome these
problems is to define kernels on cycles rather than paths (walks)[5].

Recently Peng et al[6,7,8] have explored the use of the Ihara zeta function as
a mean of gauging cycle structure in graphs. The Ihara zeta function is com-
puted by first converting a graph into the equivalent oriented line digraph, and
then computing the characteristic polynomial of the resulting structure. The
coefficients of the characteristic polynomials are related to the frequencies of
prime cycles of different size, and can be computed in polynomial time from the
eigenvalues of the oriented line-digraph adjacency matrix. The method can be
easily extended from simple graphs to both weighted graphs and hypergraphs.
Moreover, since the method is based on a oriented line digraph, it is closely akin
to the discrete time quantum walk on a graph[14] and is hence less prone to
problems of failing to distinguish graphs due to cospectrality of the Laplacian
or adjacency matrices.

The aim in this paper is to explore how to use the Ihara zeta function to define
a new family of graph kernels based on cycle composition. There are a number of
ways in which this can be achieved, however here we choose to define our kernel
using the coefficients of reciprocal of the Ihara zeta function. We show how to
compute these coefficients efficiently using the complete Bell polynomials. The
resulting kernel is compared to the path length kernel, and evaluated on graphs
extracted from image data.

2 The Ihara Zeta Function

The Ihara zeta function associated to a finite connected graph G is defined to
be a function of u ∈ C with u sufficiently small by [15]

Fig. 1. Example of an undirected graph
with five nodes and six edges and its ori-
ented line digraph

ζG(u) =
∏

c∈[C]

(
1 − ul(c)

)−1

(1)

The product is over equivalence classes
of primitive closed backtrackless, tail-
less cycles c = (v1, v2, v3, ..., vm = v1)
of positive length m in G. Here l(c)
length of c = number of edges in c.

The Ihara zeta Function can also be
written in the form of a determinant
expression [10]

ζG(u) =
1

det(I − uT )
(2)

where T, the Perron-Frobenius operator, is the adjacancy matrix of the oriented
line graph of the original graph. The size of T is 2m×2m, where m is the number
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of edges in original graph. I is the identity matrix of size 2m. The oriented line
graph is constructed by taking two nodes corresponding to each edge in the
graph. A node corresponding to edge i is connected to a node corresponding to
edge j, if edge i feeds into edge j to form a no backtrack path. Figure 1 shows
a graph and its oriented line graph.

3 The Coefficients of Reciprocal of Ihara Zeta Function

The reciprocal of the Ihara zeta function can be written in terms of a determinant
of the matrix T, and hence in the form of a polynomial of degree 2m:

ζG(u)−1 = det(I − uT ) = c0 + c1u + c2u
2 + c3u

3 + ... + c2mu2m (3)

These coefficients are related to the number of prime cycles in the graph. If G is
a simple graph, the coefficients c3, c4 and c5 are the negative of twice the number
of triangles, squares, and pentagons in G respectively. The coefficient c6 is the
negative of the twice the number of hexagons in G plus four times the number
of pairs of edge disjoint triangles plus twice the number of pairs of triangles with
a common edge, while c7 is the negative of the twice the number of heptagons
in G plus four times the number of edge disjoint pairs of one triangle and one
square plus twice the number of pairs of one triangle and one square that share
a common edge[9]. The highest order coefficient is associated with the number
of edges incident to vertex vi, i.e., the node degree d(vi)[10]:

c2m = (−1)|V |G|−E|G|| ∏
vi∈V

(d(vi) − 1) (4)

The above coefficients can be computed as a summation of a series of
determinants[11,6]

cn =
∑

( 2m
2m−k)

det

⎛⎜⎜⎜⎝
b1,1 b1,2 ... b1,2m

b2,1 b2,2 ... b2,2m

...
...

. . .
...

b2m,1 b2m,2 ... b2m,2m

⎞⎟⎟⎟⎠
This method, however, computes

(
2m

2m−k

)
determinants of size 2m×2m to find

one coefficient ck. Here we derive a new method for computing the coefficients
of the reciprocal of Ihara zeta function, which requires only the computation of
the determinant of one matrix. The Ihara zeta function can formally be written
in terms of a power series of the variable u, by[13]

ζG(u) = exp

⎛⎝∑
m≥1

Tr (T m)
m

um

⎞⎠ (5)

where Tr (T m) is the trace of T m. Using (3) and (5), we get

∑
m≥0

cmum = exp

⎛⎝−
∑
m≥1

Tr (T m)
m

um

⎞⎠ (6)
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The coefficient ck, can be computed by evaluating the kth derivative of Equa-
tion(6) at u=0. The first five coefficients are

c0 = 1, c1 = −Tr[T ], c2 = 1
2!

(−Tr[T 2] + Tr[T ]2
)
,

c3 = 1
3!

(−2Tr[T 3] + 3Tr[T 2]Tr[T ] − Tr[T ]3
)
,

c4 = 1
4!

(−6Tr[T 4] + 8Tr[T 3]Tr[T ] + 3Tr[T 2]2 − 6Tr[T 2]Tr[T ]2 + Tr[T ]4
)

In general the nth coefficient is given by

cn =
∑

k1,k2,...,kn

(
−x1

1

)k1
(
−x2

2

)k2

...
(
−xn

n

)kn

(7)

where k1 + 2k2 + 3k1 + ... + nkn = n and xk = −(k − 1)!Tr[T k]. We can write
cn in terms of Bell polynomials[12]:

cn =
1
n!

(
n∑

k=1

Bn,k (x1, x2, ..., xn−k+1)

)
(8)

=
1
n!

Bn (x1, x2, ..., xn) (9)

where Bn,k (x1, x2, ..., xn−k+1) are partial Bell polynomials and Bn (x1, x2, ..., xn)
is the complete Bell polynomial. Since the complete Bell polynomial can be writ-
ten in the form of a determinant, we can, therefore, write cn as

cn =
1
n!

det

⎛⎜⎜⎜⎜⎜⎝
x1

(
n−1

1

)
x2

(
n−1

2

)
x3 ... xn

−1 x1

(
n−2

1

)
x2 ... xn−1

0 −1 x1 ... xn−1

...
...

...
. . .

...
0 0 0 ... x1

⎞⎟⎟⎟⎟⎟⎠
Each xk can be efficiently computed as

xk = −(k − 1)!
(∑

λk
i

)
(10)

where λ1, λ2, λ3, ... are the distinct eigenvalues of T.
Since Tr[T k] is the number of all prime cycles of length k[13], the above

expression for the coefficients gives us some interesting information about each
coefficient. For example, when G is a simple graph then

– c0 = 1
– c1 = −Tr[T ] = 0. Since there are no loops in a simple graph so Tr[T ] is

always zero.
– c2 = 1

2!

(−Tr[T 2] + Tr[T ]2
)

= 0. Since there are no cycles of length two in a
simple graph, so Tr[T 2] is always zero.

– c3 = 1
3!

(−2Tr[T 3] + 3Tr[T 2]Tr[T ] − Tr[T ]3
)

= − 1
3Tr[T 3]. So c3 depends only

on the number of triangles in the graph.
– c4 = − 1

4Tr[T 4]. So c4 depends only on the number of squares in the graph.
– c5 = − 1

5Tr[T 5]. So c5 depends only on the number of pentagons in the graph.
– c6 = − 1

6Tr[T 6] + 1
18Tr[T 3]2. So c6 depends only on the number of prime

cycles of length 6 and the number of triangles in the graph.
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4 Graph Kernel

Graph kernel is a positive definite kernel on set of graphs G. For such kernel
κ : G × G → R it is known that a map Φ : G → H into a Hilbert space H exists,
such that κ (G, G′) = 〈Φ(G), Φ(G′)〉 for all G, G′ ∈ G[2]. Our objective in this
paper is to use the graph kernel to measure the similarity between graphs.

Gärtner et al [2] have defined graph kernel using random walk, which is based
on the idea of counting the number of matching walks in two input graphs. Their
kernel for the two input graphs G1 = (V1, E1) and G2 = (V2, E2) is given by the
direct product graph G×:

κ× (G1, G2) =
|V×|∑
i,j=1

[ ∞∑
n=0

εnAn
×

]
(11)

where A× is the adjacency matrix of G× = (V×, E×), which is defined as
V×(G1×G2) = {(v1, v2) ∈ V1 × V2 : label(v1) = label(v2)}
E×(G1×G2) = {((u1, u2) , (v1, v2)) ∈ V 2 (G1 × G2) :
(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ label (u1, v1) = label (u2, v2)}

An interesting approach to defining a graph kernel is to use T, the adjacency
matrix of the oriented line graph, instead of using the adjacency matrix of the
original graph. Since the oriented line graph captures the backtrackless structure
of a graph, the proposed kernel can be a very good measure for the similarity of
graphs. There are however number of problems with kernels based on random
walks. Such kernels can be very expensive to compute because the direct product
graph can have |V1|×|V2| nodes. Finding the higher power of such matrix is com-
putationally expensive. These kernels can also lead to the problem of tottering.
i.e., visiting the same node or edge multiple times. One way to overcome such
problems is to use kernels based on the set of all paths or the set of all cycles.
Horváth et al [5] have defined kernel based on set of all cyclic patterns in the
graph. However their kernel can only be applied to graphs where the number of
cycles is bounded by a constant. The reason is that computing such kernels can
take exponential time. A number of kernels therefore have been defined that use
only a subset of all paths or all cycles. Borgwardt and Kriegel[3] have defined
their kernel based on the shortest paths between every pair of nodes in the graph.
Qiangrong et al [4] have defined a kernel which is based on the subset of cycles
of undirected graph. To compute the kernel, they first find the spanning tree of
undirected graph. Using the spanning tree and each edge e ∈ {E(G)−Espan(T )}
they find the cycles in the graphs. They have used these cycles to define a graph
kernel. So their kernel is based on only ||E(G)| − |Espan(T )|| cycles, which is
much smaller than the actual number of cycles in the graph.

Here we propose the use of the coefficients of the reciprocal of Ihara zeta
function for computing graph kernels. We propose to use the feature vector
v = [ε3c3 ε4c4 ε5c5 ... εkck] for the graph G, where ci is the ith coefficients of the
reciprocal of Ihara zeta function of graph G. Since c0 = 1, c1 = 0 and c2 = 0,
we have ignored these coefficients in the feature vector. The reason for assigning
different weights to different coefficients is that the coefficients besides c3, c4
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and c5 provide some redundant information. We choose the weights in such a
way that the higher order coefficients are assigned smaller weights. We propose
to choose εi = εi−2 for i ≥ 3 and 0 < ε < 1. The value of ε depends on the
dataset we are using. In practice we select a smaller value for dense graph and a
larger value for sparse graph. This is because for dense graphs, the higher order
coefficients add more noise to the structural representation of the graph. Our
graph kernel is then given by

κ (G1, G2) =
∑

αi∈v1,βi∈v2

αiβi (12)

where v1 and v2 are the feature vectors that are computed from the graphs G1

and G2 respectively, as discussed above. Since our feature vector is constructed
using the coefficients of the reciprocal of Ihara zeta function, which are related to
the number of prime cycles in the graph, our kernel gives a measure of similarity
between graphs. The proposed graph kernel is positive definite, since it is a
dot product of two feature vectors. In terms of time complexity, our proposed
kernel can be computed in O(n3), once the eigenvalues of oriented line graph
are known. In the case of sparse unlabeled graphs, which is usually the case
when the graphs are extracted from images, our method outperforms most of
the alternative methods.

5 Experiment

To evaluate the performance of our graph kernel, we choose a graph set, extracted
from images of three objects in the COIL dataset. Here 90 images (30 per object)
should be classified into 3 distinct classes. These objects are shown in Fig 2. For
this dataset we choose ε = 0.2.

Fig. 2. COIL dataset

We first extract the feature points from the images. For this purpose we
use the Harris corner detector[17]. We then construct a Delaunay graph from
these feature points as nodes. To visualize the results, we perform PCA on the
similarity matrix obtained by applying our kernel to the graphs of the objects.
Figure 3 shows the results of our clustering using first three eigenvectors.

To evaluate the performance, we compare our method with both shortest path
kernel[3] and random walk kernel[2]. To validate the performance of clustering
we use Rand index, which measures the consistency of a given clustering with
higher value indicating better clustering. Table 1 shows the rand indices of both
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Fig. 3. Performance of Clustering

Table 1. Rand Indices

Method Rand Index

Shortest path Kernel 0.7336

Random walk kernel 0.8669

Proposed kernel 0.9172

the methods. It is clear from the table that our method is superior to both
the shortest path kernel and random walk kernel. We have also compared our
method with one that uses a pattern vector from the coefficients of Ihara zeta
function [6]. Table 2 shows the rand indices of the two methods using different
number of coefficients. These results are also shown in Fig 4. For large feature
vector, we normalize the vector to the unit vector. It is clear from the figure that
our method gives good results. When using two or three components, the results
are comparable. However if we increase the number of components, the result of
our method are much better. We have also compared both methods using the
coefficients c3, c4, c5, c6, c7, ln (|c2m|), suggested by Peng et al [6]. The results are
plotted using ‘*’ in Fig 4, which shows that our method gives good results. It is
clear from table 1 that our method using 4 to 6 components gives best results.

Fig. 4. Number of coefficients Used
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Table 2. Rand Indices (Comparison with Pattern Vector)

2 3 4 5 6 6* 7 8

Pattern Vector 0.8699 0.8699 0.8699 0.7206 0.7081 0.7206 0.6002 0.6002

Kernel 0.8699 0.8699 0.9191 0.9191 0.9191 0.8819 0.9059 0.8913

6 Conclusion

In this paper we have defined a positive definite graph kernel using the coeffi-
cients of reciprocal of Ihara Zeta Function. The kernel can be computed very
efficiently in polynomial amount of time. We have also derive a new method for
computing these coefficients. The proposed scheme is superior to path length
kernel, both in terms of time and accuracy, and is better than the one that uses
pattern vectors from coefficients of reciprocal of Ihara Zeta function.
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Abstract. In many data analysis tasks, one is often confronted with the
problem of selecting features from very high dimensional data. The fea-
ture selection problem is essentially a combinatorial optimization prob-
lem which is computationally expensive. To overcome this problem it is
frequently assumed that either features independently influence the class
variable or do so only involving pairwise feature interaction. To over-
come this problem, we draw on recent work on hyper-graph clustering
to extract maximally coherent feature groups from a set of objects using
high-order (rather than pairwise) similarities. We propose a three step
algorithm that, namely, i) first constructs a graph in which each node
corresponds to each feature, and each edge has a weight corresponding
to the interaction information among features connected by that edge, ii)
perform hypergraph clustering to select a highly coherent set of features,
iii) further selects features based on a new measure called the multidi-
mensional interaction information (MII). The advantage of MII is that
it incorporates third or higher order feature interactions. This is realized
using hypergraph clustering, which separates features into clusters prior
to selection, thereby allowing us to limit the search space for higher or-
der interactions. Experimental results demonstrate the effectiveness of
our feature selection method on a number of standard data-sets.

Keywords: Hypergraph clustering, Multidimensional interaction infor-
mation(MII).

1 Introduction

High-dimensional data pose a significant challenge for pattern recognition. The
most popular methods for reducing dimensionality are variance based subspace
methods such as PCA. However, the extracted PCA feature vectors only capture
sets of features with a significant combined variance, and this renders them
relatively ineffective for classification tasks. Hence, it is crucial to identify a
smaller subset of features that are informative for classification and clustering.
The idea underpinning feature selection is to a) reduce the dimensionality of the
feature space, b) speed up and reduce the cost of a learning algorithm, c) obtain
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the feature subset which is most relevant to classification. In practice, however,
optimal feature selection requires 2n feature subset evaluations, where n is the
original number of features and many problems related to feature selection are
shown to be NP-hard [2]. Traditional feature selection methods address this
issue by partitioning the original feature set into distinct clusters formed by
similar features [3]. However, all of the above methods are weakened by only
considering pairwise relations. In some applications higher-order relations are
more appropriate to the classification task on hand, and approximating them in
terms of pairwise interactions can lead to a substantial loss of information.

To overcome the above problem, in this paper, we propose a hypergraph-based
approach to feature selection. Hypergraph clustering is capable of detecting high-
order feature similarities. In this feature selection scheme, the original features
are clustered into different groups based on hypergraph clustering and each group
includes just a small set of features. In addition, for each group, a new feature
selection criterion referred to as multidimensional interaction information (MII)
I(F ; C) is applied to feature selection. In contrast to existing feature selection
criterion, MII is sensitive to the relations between feature combinations and can
be used to seek third or ever higher order dependencies between the relevant
features. However, the limitations of the MII criterion are that it requires an ex-
haustive “combinatorial” search over the feature space and demands estimation
of the joint probability distribution for features using large training samples.
So most existing works use MII based on the second-order feature dependence
assumption [1]. Since hypergraph clustering separates features into clusters in
advance, this allows us to limit the search space for higher order interactions
directly using the MII criterion I(F ; C) for feature selection. Using the Parzen
window for probability distribution estimation, we apply a greedy strategy to
incrementally select the features that maximize the multidimensional mutual
information between the current selected features and the output class set.

2 Hypergraph Clustering Algorithm

Concept of hypergraph: A hypergraph is defined as a triplet H = (V, E, s),
where V = {1, . . . , n} is the node-set, E is a set of non-empty subsets of V or
hyperedges and s is a weight function which associates a real value with each
edge. A hypergraph is a generalization of a graph. Unlike graph edges which
consisting pairs of vertices, hyperedges are arbitrarily sized sets of vertices. Ex-
amples of a hypergraph are shown in Fig. 1. For the hypergraph, the vertex set
is V = {v1, v2, v3, v4, v5}, where each vertex represents a feature, and the hyper-
edge set is E = {e1 = {v1, v3}, e2 = {v1, v2}, e3 = {v2, v4, v5}, e4 = {v3, v4, v5}}.
The number of vertices constituting each hyperedge represent the order of the
relationship between features.

Hypergraph Clustering Algorithm: Let H = (V, E, s) be a hypergraph
clustering problem. We can locate the hypergraph cluster by finding the solutions
of the following non-linear optimization problem that maximizes the functional
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Fig. 1. Hypergraph example

f(x) =
∑
e∈E

s(e)
∏
i∈e

xi . (1)

subject to x ∈ �, where � = {x ∈ R
n : x ≥ 0,

∑n
i=1 xi = 1} and s is a weight

function which associates a real value with each edge. The local maximum of
f(x) can be solved using the Baum-Eagon inequality and leads to the iteratively
updated lambda:

zi =
xi∂if(x)∑n

j=1 xj∂jf(x)
, i = 1, . . . , n . (2)

where f(x) is a homogeneous polynomial in the variables xi and z = M(x)
is a growth transformation of x. The Baum-Eagon inequality f(M(x)) > f(x)
provides an effective iterative means for maximizing polynomial functions in
probability domains.

3 Feature Selection Using Hypergraph Clustering

In this paper we aim to utilize the hypergraph clustering algorithm for feature
selection. Using a hypergraph representation of the features, there are three
steps to the algorithm, namely a) computing the relevance matrix S based on
the interaction information among feature vectors, b) hypergraph clustering to
cluster the feature vectors and c) selecting the optimal feature set from each
cluster using the multidimensional interaction information (MII) criterion. In
the remainder of this paper we describe these elements of our feature selection
algorithm in more detail.

Computing the Relevance Matrix: In accordance with Shannon’s informa-
tion theory, the uncertainty of a random variable Y can be measured by the
entropy H(Y ). For two variables X and Y , the conditional entropy H(Y |X)
measures the remaining uncertainty about Y when X is known. The mutual in-
formation (MI) represented by I(X ; Y ) quantifies the information gain about Y
provided by variable X . The relationship between H(Y ), H(Y |X) and I(X ; Y )
is I(X ; Y ) = H(Y )−H(Y |X). As defined by Shannon, the initial uncertainty for
the random variable Y is expressed as: H(Y ) = −∑y∈Y P (y) log P (y), where
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P (y) is the prior probability density function over y ∈ Y . The remaining un-
certainty in the variable Y if the variable X is known is defined by the con-
ditional entropy H(Y |X) = − ∫x p(x){∑y∈Y p(y|x) log p(y|x)}dx, where p(y|x)
denotes the posterior probability for variable y ∈ Y given another random
variable x ∈ X . After observing the variable vector x, the amount of addi-
tional information gain is given by the mutual information (MI) I(X ; Y ) =∑

y∈Y

∫
x p(y, x)log p(y,x)

p(y)p(x)dx.
From the above definition, we can see that mutual information quantifies the

information which is shared by two variables X and Y . When the I(X ; Y ) is
large, this implies that variable x ∈ X and variable y ∈ Y are closely related,
otherwise, when I(X ; Y ) is equal to 0, this means that two variables are totally
unrelated. Analogically, the conditional mutual information of X and Y , denoted
as I(X ; Y |Z) = H(X |Z) − H(X |Y, Z), represents the quantity of information
shared by X and Y when Z is known. The conditioning on a third random
variable may either increase or decrease the original mutual information.That
is, the difference between the conditional mutual information and the simple
mutual information, referred to as the Interaction Information is:

I(X ; Y ; Z) = I(X ; Y |Z) − I(X ; Y ) . (3)

The interaction information measures the influence of the variable Z on the
amount of information shared between variables {Y, X}, the value can be posi-
tive, negative, or zero. A zero value means that the relation between X and Y is
entirely because of Z. A positive value means that X and Y are independent of
each other. However, when combined with Z, X and Y are correlated with each
other. A negative value indicates that Z can account for or explain the correla-
tion between X and Y . The extension of interaction information to n variables
is defined recursively,

I({X1, . . . , Xn}) = I({X1, . . . , Xn−1}|Xn) − I({X1, . . . , Xn−1}) . (4)

In our feature selection scheme, the high-order relevance of features is com-
puted using interaction information. Suppose there are N training samples, each
having K feature vectors. The kth feature vector for the lth training sample is
f l

k, and so we can represent the kth feature vector for the N training samples
as the long vector Fk = {f1

k , f2
k , . . . , fN

k }. For three feature vectors Fk1, Fk2 and
Fk3, their interaction information I(Fk1, Fk2, Fk3) can be computed by Equation
(3). The relevance degree among three feature vectors Fk1, Fk2 and Fk3 can be
defined as

S(Fk1, Fk2, Fk3) =
3I(Fk1, Fk2, Fk3)

H(Fk1) + H(Fk2) + H(Fk3)
. (5)

where k1, k2, k3 ∈ K and the higher the value of S(Fk1, Fk2, Fk3) the more
relevant are the features Fk1, Fk2 and Fk3. Otherwise, if S(Fk1, Fk2, Fk3) = 0,
the three features are totally unrelated. In addition, for the above computation,
we use Parzen-Rosenblatt window method to estimate the probability density
function of random variables Fk1, Fk2 and Fk3. The Parzen probability density
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estimation formula is given by: p(x) = 1
N φ(x−xi

h ), where φ(x−xi

h ) is the window
function and h is the window width. Here, we use a Gaussian as the window
function, so φ(x−xi

h ) = 1

(2π)
d
2 hd|Σ| 12

exp( (x−xT
i )Σ−1(x−xi)
−2h2 ), where Σ is the covari-

ance of (x − xi), d is the length of vector x. When d = 1, p(x) estimates the
marginal density and when d = 3, p(x) estimates the joint density of variables
such as Fk1, Fk2 and Fk3.

Hypergraph Clustering: the hypergraph clustering algorithm commences from
the relevance matrix and iteratively bi-partitions the features into a foreground
cluster and a background cluster. It locates the foreground cluster progressively
and hierarchically. The clustering process stops when all the features are grouped
into either the foreground or background cluster.

Selecting Key Features: The multidimensional interaction information be-
tween feature vector F = {f1, . . . , fm} and class variable C is:

I(F ; C) =
∑

f1,...,fm

∑
c∈C

P (f1, . . . , fm; c) × log
P (f1, . . . , fm; c)

P (f1, . . . , fm)P (c)
. (6)

The main reason for using I(F ; C) as a feature selection criterion is that since
I(F ; C) is a measure of the reduction of uncertainty in class C due to knowl-
edge of the feature vector F = {f1, . . . , fm}, from an information theoretic per-
spective selecting features that maximize I(F ; C) translates into selecting those
features that contain the maximum information about class C. In practice, and
as noted in the introduction, locating a feature subset that maximizes I(F ; C)
presents two problems: 1) it requires an exhaustive “combinatorial” search over
the feature space, and 2) it demands large training sample sizes to estimate
the higher order joint probability distribution in I(F ; C) with a high dimen-
sional kernel [6]. Bearing these obstacles in mind, most of the existing related
papers approximate I(F ; C) based on the assumption of lower-order dependen-
cies between features. For example, the first-order class dependence assumption
includes only first-order interactions. That is, it assumes that each feature in-
dependently influences the class variable, so as to select the mth feature, fm,
P (fm|f1, . . . , fm−1, C) = P (fm|C). A second-order feature dependence assump-
tion is proposed by Guo and Nixon [5] to approximate I(F ; C), and this is
arguably the most simple yet effective evaluation criterion for selecting features.
The approximation is given as

I(F ; C) ≈ Î(F ; C) =
∑

i

I(fi; C) −
∑

i

∑
j>i

I(fi; fj) +
∑

i

∑
j>i

I(fi; fj|C) . (7)

Although an MII based on the second-order feature dependence assumption
can select features that maximize class-separability and simultaneously minimize
dependencies between feature pairs, there is no reason to assume that the final
optimal feature subset is formed by pairwise interactions between features. In-
fact, it neglects the fact that third or higher order dependencies can be lead to
an optimal feature subset.
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The primary reason for using the approximation Î(F ; C) for feature selection
instead of directly using multidimensional interaction information I(F ; C) is that
I(F ; C) requires estimation of the joint probability distribution of features using
a large training sample. Consider the joint distribution P (F ) = P (f1, . . . , fm),
by the chain rule of probability

P (fi, . . . , fm) = P (f1)P (f2|f1) × P (f3|f2, f1) · · ·P (fm|f1, f2 . . . fm−1) , (8)
P (F ; C) = P (f1, . . . fm; C) = P (C)p(f1|C)P (f2|f1, C)P (f3|f1, f2, C)

×P (f4|f1, f2, f3, C) · · ·P (fi|f1, . . . , fm, C) . (9)

In our feature selection scheme, the original features are clustered into differ-
ent groups based on hypergraph clustering and each cluster just includes a small
set of features. Therefore, for each cluster, we do not need to use the approx-
imation Î(F ; C). Instead, we can directly use the multidimensional interaction
information I(F ; C) criterion for feature selection. Using Parzen windows for
probability distribution estimation, we then apply the greedy strategy to select
the feature that maximizes the multidimensional mutual information between
the features and the output class set. As a result the first feature f

′
max max-

imizes I(f
′
, C), the second selected feature f

′′
max maximizes I(f

′′
, f

′
, C), the

third feature f
′′′
max maximizes I(f

′′′
, f

′′
, f

′
, C), and so on. For each cluster, we

repeat this procedure until |S| = k.

4 Experiments and Comparisons

The data sets used to test the performance of our proposed algorithm are the
benchmark data sets from the UCI Machine Learning Repository. Table. 1 sum-
marizes the properties of these data-sets. Using the feature selection algorithm
outlined above, we make a comparison between our proposed feature selection
method (referred to as the HGplusMII method) (which utilizes the multidi-
mensional interaction information (MII) criterion and hypergraph clustering for
feature selection) and the use of multidimensional interaction information (MII)
using the second-order approximation (see Equation (7)).

The experimental results shown in Table. 2 demonstrate that our proposed
method (i.e. HGplusMII ) can achieve higher degree of dimensionality reduc-
tion, as it selects a smaller feature subset compared with those obtained using
MII with second-order approximation. There are three reasons for this. The first
reason is that hypergraph clustering simultaneously considers the information-
contribution of each feature and the correlation between features, so the struc-
tural information concealed in the data can be effectively identified. The second

Table 1. Summary of UCI benchmark data sets

Data-set Examples Features Classes

Australian 690 14 2

Breast cancer 699 10 2

Pima 768 8 2
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reason is that the multidimensional interaction information (MII) criterion is
applied to each cluster for feature selection, and can consider the effects of third
and higher order dependencies between the features and the class. As a result
the optimal feature combination can be located so as to guarantee the optimal
feature subset. The third and final reason is that second-order approximation
to multidimensional interaction information (MII) simply checks for pair-wise
dependencies between features and the class, and so only limited feature subsets
can be obtained.

Table 2. The experiment results on three data-sets

Method Australian Breast cancer Pima

MII {f8, f14, f5,f13} {f3, f8, f7} {f2,f8,f6,f7}
HGplusMII {f8, f9, f5} {f3, f7, f9} {f2,f6,f1}

After obtaining the discriminating features, we compute a scatter separability
criterion to evaluate the quality of the selected feature subset. This is a well
known measure of class separability introduced by Devijiver and Kittler [4], and
given by J(Y ) = |Sw+Sb|

|Sw| =
∏d

k=1(1 + λk), where Y denotes the feature set, λk,
k = 1 . . . d, are the eigenvalues of matrix S−1

w Sb, and Sw and Sb are the between
and within class scatter matrices.

Table 3. J value comparisons for two methods on three data sets

Method Australian Breast cancer Pima

MII 2.2832 5.0430 1.3867

HGplusMII 2.3010 5.1513 1.3942

In Table. 3, we compare the the performance of the two methods. We find
that the effective feature subsets can be obtained using our proposed HGplusMII
method, e.g., for dataset Australian and Pima, it can achieve a higher discrim-
inability power based on fewer features.This means that our feature selection
method can guarantee the optimal feature subset, as it not only achieves higher
degree of the dimensionality reduction but also obtains better discriminability
power.

After obtaining the discriminating features, we apply a variational EM algo-
rithm to learn Gaussian mixture model on the selected feature subset for the
purpose of classification. For the Breast Cancer dataset, we visualize the clas-
sification results using the selected feature subset. The classification accuracy
achieved using the selected feature subset is 96.3% which is superior to the ac-
curacy of 95.4% achieved by RD-based method [7]. The classification results
are shown in Fig. 2. The left hand panel is the data with correct labeling, and
the right hand panel is the classification results with the misclassified data high-
lighted. Because of the unsupervised nature of the variational EM algorithm and
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(a) Original data (b) Classification result

Fig. 2. Classification result visualized on 3rd, 7th and 9th features

the Gaussian mixture model, the classification accuracy of 96.3% demonstrates
the adequate class separability provided by the selected feature subset.

5 Conclusions

This paper has presented a new graph theoretic approach to feature selection.
The proposed feature selection method offers two major advantages. First, hyper-
graph clustering simultaneously considers the significance of both the features
and the correlation between features, and therefor the structural information
concealed in the data can be more effectively utilized. Second, the MII criteria
takes into account high-order feature interactions with the class, overcoming the
problem of overestimated redundancy. As a result the features associated with
the greatest amount of joint information can be preserved.
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HAIS 2009. LNCS, vol. 5572, pp. 169–176. Springer, Heidelberg (2009)

4. Devijver, A., Kittler, J.: Pattern Recognition: A Statistical Approach, vol. 761.
Prentice-Hall, London (1982)

5. Guo, B., Nixon, S.: Gait Feature Subset Selection by Mutual Information. IEEE
TSMC, Part A: Systems and Humans 39(1), 36–46 (2008)

6. Kwak, N., Choi, H.: Input Feature Selection by Mutual Information Based on Parzen
Window. IEEE TPAMI 24(12), 1667–1671 (2002)

7. Zhang, F., Zhao, Y.J., Fen, J.: Unsupervised Feature Selection based on Feature
Relevance. In: ICMLC, vol. 1, pp. 487–492 (2009)



Hypersurface Fitting via Jacobian Nonlinear

PCA on Riemannian Space

Jun Fujiki and Shotaro Akaho

National Institute of Advanced Industrial Science and Technology,
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

{jun-fujiki,s.akaho}@aist.go.jp

Abstract. The subspace fitting method based on usual nonlinear princi-
ple component analysis (NLPCA), which minimizes the square distance in
feature space, sometimes derives bad estimation because it does not reflect
the metric on input space. To alleviate this problem, authors proposed the
subspace fitting method based on NLPCA with considering the metric on
input space, which is called Jacobian NLPCA. The proposed method is
efficient when the metric of input space is defined. The proposed method
can be rewritten as kernel method as explained in the paper.

Keywords: fitting, nonlinear principal component analysis, Rieman-
nian space, Euclideanization, kernel.

1 Introduction

Understanding of the structure of data by dimensionality reduction is a funda-
mental and important task in data processing. To realize this dimensionality re-
duction, principal component analysis (PCA) is commonly used. However, PCA
can extract only linear (affine) structure of data, and when the data is not as-
sumed to be on a linear space, PCA can not extract appropriate structure of the
data. To overcome this drawback, many kinds of nonlinear PCA (NLPCA) are
proposed. The basic idea of NLPCA is that the data which have nonlinear struc-
ture is mapped to a high-dimensional space, called feature space, so as to have
linear structure in the feature space. Then, original PCA is applied to extract
linear structure of the data in the feature space. In the framework of NLPCA,
type of extractable nonlinear structure strongly depends on this nonlinear map-
ping to a feature space, which is called feature mapping. Hence, selecting an
appropriate feature mapping is very important to extract appropriate nonlinear
structure of the observed data. Generally, type of structure is unknown, while
in many applications such as line detection and quadratic curve fitting, type of
structure is known and the structure is parameterized by linear parameters. In
those cases, NLPCA works very well, however NLPCA sometimes derives a bad
estimation. This is because errors of data are measured by the metric in the
feature space, not in the input space (the space of observed data) in NLPCA.
Since nonlinear mapping does not preserve distances, small errors in the input
space sometimes become large in the feature space and large errors in the in-
put space sometimes become small in the feature space, then measuring errors
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in the feature space is not the best strategy in extracting structure of data.
Briefly speaking, usual NLPCA, which is the least squares (LS ) of Euclidean
distance in the feature space, is not the maximum likelihood estimator (MLE )
in the input space, and only the MLE in the feature space. Therefore, LS esti-
mator in the input space is investigated, when the input space is an Euclidean
space [1,3,6,7,8], and a two-dimensional sphere [5]. In this paper, we extend the
framework of these hypersurface fitting methods from an Euclidean space and/or
a two-dimensional sphere to a general Riemannian space. The effectiveness of
the hypersurface fitting method is shown through experiments.

2 Jacobian NLPCA

When considering hypersurface fitting for the data in m-dimensional input space,
the data are mapped into n-dimensional Hilbert space, which is called feature
space, so as to have linear structure. By this mapping, hypersurface fitting is
resolved into n − 1-dimensional linear subspace fitting in the feature space. In
usual NLPCA, the linear subspace is estimated by minimizing the sum of squared
Euclidean distance between data and linear space in the feature space. However,
when metric is naturally introduced in the input space, the LS estimator in the
feature space sometimes derives bad estimation [2]. Therefore, the approximation
of the LS estimator in the input space is proposed when the input space is an
Euclidean space [1,3,6,7,8] and/or two-dimensional sphere [5].

2.1 The Metric of Input Space and Feature Space

The input space is assumed to be m-dimensional Riemannian space, and let the
Riemannian metric of the space at point x is denoted by Gx. The observed data
in the input space, which are contaminated by noise, is denoted by {x[d]}D

d=1.
In this paper, the metric around the data x[d] is assumed to be approximated

by the constant metric G[d] = Gx[d] , that is, the Riemannian space around
the data x[d] is approximated by the tangent affine space at x[d]. Under this
assumption, the Euclidean distance between the observed data x[d] and the point

x = x[d] + δx, which is close to x[d] is approximated by r[d] =
√

(δx)�G[d](δx).
In hypersurface fitting, the input data x is mapped to the n-dimensional

Hilbert space, called feature space, by the feature map φ : x �→ φ(x). Let Jφ
be the Jacobian matrix of this mapping, there holds Jφ = ∂φ

∂x .
By using the value Jφ, infinitesimal distance δφ in the feature space is linearly

approximated by the infinitesimal distance δx in the input space as δφ = J[d]δx,
where J[d] = Jφ[d]

is a Jacobian matrix at x[d].
By this approximation, the distance in the input space r[d] is approximated

by the quantities in the feature space as

r[d] =
√

(δx)�G[d](δx) ≈ R[d] =
√

(δφ(x))�G[d] δφ(x) (1)

where G[d] = (J+
[d])

�G[d]J
+
[d] and X+ is the Moore-Penrose inverse matrix of X .



238 J. Fujiki and S. Akaho

2.2 Linear Fitting in the Feature Space

This subsection explains how to fit an m−1-dimensional hypersurface (nonlinear
subspace) for m-dimensional data which belong to the input space. In this paper,
the set of general hypersurface on R as a family of hypersurfaces described by a
linear parameter a, that is, the family of fitting curves can be represented as

f(x;a) = a�φ = 0 .

where a be the parameter which determines a type of fitting curves. For example,
the quadratic curve in two-dimensional Euclidean space and the rhumb line
in two-dimensional sphere are represented as a�(x2, xy, y2, x, y, 1)� = 0 and
a�(sinh−1(cotϕ), ψ, 1)� = 0, respectively, where x and y are the first and second
components of two-dimensional Euclidean data, and ϕ and ψ are the colatitude
and the longitude of two-dimensional spherical data. When the mapping x �→
φ is considered as a feature mapping, m − 1-dimensional hypersurface fitting
problem is resolved to n−1-dimensional linear subspace fitting on feature space.
In usual NLPCA, the distance between two points in feature space is measured by
Euclidean distance in the feature space, but in the proposed Jacobian NLPCA
(JNLPCA), the distance between two points in feature space is measured by
Eq.(1), which is an approximation of the Euclidean distance in the input space.
In this framework, the distance between the data and fitting hypersurface is
approximated by the quantities in the feature space as following.

Let φ̂[d] be the true value of φ[d] in the feature space, and let δφ[d] = φ̂[d]−φ[d]

be the error of each datum. Because the true values are on the fitting hyperplane,
there holds a�φ̂[d] = 0, then, a�δφ[d] = −a�φ[d] holds. Therefore, the square
distance between observed data and the hyperplane is obtained by minimizing

R2
[d] = (δφ(x))�G[d] δφ(x) under the condition

∣∣∣a�δφ[d]

∣∣∣2 =
∣∣∣a�φ[d]

∣∣∣2.
This minimization problem can be solved by Cauchy-Schwarz inequality as

min R2
[d] =

a�
[
φ[d]φ

�
[d]

]
a

a�G+
[d]a

, and the sum of square distance between observed

data and hypersurface is approximated by

E(a) =
D∑

d=1

a�
[
φ[d]φ

�
[d]

]
a

a�G+
[d]a

, (2)

which is the sum of Rayleigh quotients. Then, JNLPCA estimates hypersurface
by minimizing E(a).

2.3 Algorithm

In this section, the algorithm to minimize Eq.(2) [1] is introduced. When the ap-
proximation of a is computed as â, the value a�G+

[d]a is fixed as μ[d] = â�G+
[d]â,

and Eq.(2) is approximated by a quadratic form as

E(a) ≈ E ′(a) =
D∑

d=1

a�
[
μ−1

[d]φ[d]φ
�
[d]

]
a = a�FΛ−1Fa
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where Λ = diag
{
μ[1], . . . , μ[D]

}
and F = (φ[1], . . . ,φ[D]). Under this approxi-

mation, a is approximated by the unit eigen vector of FΛ−1F corresponding to
the minimum eigen value, which is denoted by UnitMinEigenVec

[FΛ−1F].
By using this, the iterative algorithm to compute a is presented. In the fol-

lowing algorithm, upper right suffix [k] represents the values in the k-th step.
Especially, upper right suffix of initial values are [0]. How to compute the initial
values are introduced later.

(1) Compute initial values {μ[0]
[d]}D

d=1.
(2) Repeat (a) and (b) till converge:

(a) â[k+1] = UnitMinEigenVec[F(Λ[k])−1F ]
(b) μ

[k+1]
[d] = (â[k+1])�G+

[d](â
[k+1]).

2.4 Euclideanization of Metric as an Initial Value

In this section, we introduced zeroth (0th) order Euclideanization of metric as a
method to compute an initial value of the proposed method. Akaho [1] uses the
LS estimator in feature space (result of usual NLPCA) as an initial value. The
usual LS does not consider the change of metric, that is, estimate hypersurface
parameters under the assumption of the metric of feature space is the identity
matrix. In this case, the initial value of a is derived by setting {μ[0]

[d] = 1}D
d=1.

Then the energy function (Eq.2) is approximated as E(a) ≈ a� [FF�]a, and
the initial value of the estimation is set to â[1] = UnitMinEigenVec

[FF�],
which is the LS estimator. The usual LS estimator is a good initial value for
JNLPCA, but sometimes the usual LS estimator estimates bad parameters.
Therefore, Euclideanization of metric on hypersphere is proposed to estimate
small hypersphere [4]. This paper extends the Euclideanization for general Rie-
mannian spaces. The concept of Euclideanization is the adjustment of the metric
of feature space to keep the metric of the input space. In this sense, the method
proposed in previous section is also a kind of Euclideanization. To distinguish
these Euclideanizations, Euclideanization proposed by [4] is called zeroth or-
der Euclideanization, and Euclideanization proposed in this paper is called first
order Euclideanization. Zeroth order Euclideanization of metric is first intro-
duced as the adjustment of the length by using the enlargement of volume el-
ement. The concept of zeroth order Euclideanization is when m-dimensional
volume is enlarged k times by feature mapping, length is expected to be en-
larged k

1
m times. Therefore, LS in input space is approximated by weighted LS

in feature space, and the weights are computed by k− 2
m . Because the Jacobian

matrix of the mapping x �→ φ satisfies δφ = Jφδx, the enlargement of m-
dimensional volume element by the mapping around x[d] is (DetG[d])−

1
2 , where

DetG[d] =
detG[d]

det
{
J�

[d]J[d]

} . Therefore, the one-dimensional length is expected to

enlarged (DetG[d])−
1

2m times, and LS in input space is approximated by weighted
LS in feature space, and the weights are computed by (DetG)

1
m .
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By the Euclideanization of the metric, E(a) is approximated as a�
(
FD

1
m F
)
a

where D = diag
{
DetG[1], . . . , DetG[D]

}
. Then, the initial value is computed as

â[0] = UnitMinEigenVec[FD
1
m F ]. Note that the change of infinitesimal dis-

tance by the mapping is as already mentioned as r2
[d] ≈ R2

[d] = δφ�G[d]δφ, the
zeroth order Euaclideanization is easy to compute by considering the change
of infinitesimal distance. Now, we compare with three types of distance in the
feature space (Table 1). In the three types of distance, numerator is common,
and denominator is different. For usual LS, the metric in the feature space is
the identity matrix. For the zeroth order Euclideanization, the metric is a scalar
matrix. For the first order Euclideanization, the metric is a symmetric matrix.
Here, the zeroth order Euclideanization is an approximation of that of the first
order as G+

[d] ≈ (DetG+
[d])

1
m In on m-dimensional space.

Table 1. Three types of distance

ordinary LS 0th order 1st order (JNLPCA)

r2
[d]

{f(x[d];a)}2

a� In a

{f(x[d];a)}2

a�
{(

detG+
[d]

) 1
2
In

}
a

{f(x[d];a)}2

a� G+
[d] a

3 Quadratic Curve Fitting on Plane

In this section, an experimental result to show the effectiveness of JNLPCA
is provided. We generate 50-data from y = x2 of its x-coordinate is chosen
uniformly from the interval [−3, 3] and adding the Gauss noise of 0.04-standard
deviation for each coordinate. Figure 1 shows the fitting result when feature map-
ping is chosen as φ(x) =

(
x2 2xy y2 2x 2y 1

)�, which is denoted as DLT (direct
linear transformation). For DLT, JNLPCA derives better result than NLPCA.
Figure 2 shows the effect of selecting feature mapping for NLPCA and JNLPCA.
The horizontal axis shows the fitting error of DLT, and the vertical axis shows the
fitting error of polynomial kernel mapping φ(x) =

(
x2

√
2xy y2

√
2x

√
2y 1

)�
.

Fig. 1. Fitting results: NLPCA (left), JNLPCA (right)
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The left of Fig. 2 is for NLPCA, and the right of Fig. 2 is for JNLPCA. When
the estimation by using DLT and polynomial kernel mapping is the same, the
points depicts in Fig. 2 is lying on the diagonal line. From Fig. 2, estimation
by NLPCA is sensitive to selecting the feature mapping but JNLPCA is not
sensitive to the choice of the feature mapping. This is because JNLPCA reflects
the distance in the input space, but NLPCA does not reflect the distance in the
input space. Figure 3 plots the true distance versus the approximated distance
by JNLPCA. The left of Fig. 3 shows the mean of square distance of the approx-
imated distance and the true distance in the input space of each iteration, and
the right of Fig. 3 shows the distance of the approximated distance and the true
distance in the input space of each datum after convergence. Both figures show
the approximated distance approximates true distance very well. Figure 4 plots
the approximated distance by JNLPCA versus the approximated distance by
zeroth order Euclideanization. The figure shows zeroth order Euclideanization is
very good initial value for JNLPCA.

Fig. 2. Distance between data and curve: NLPCA (left), JNLPCA (right)

Fig. 3. Approximated distance and true distance by JNLPCA: The number of iteration
vs. energy function (left) and comparison between true distance and approximated
distance by JNLPCA (right)

4 Rhumb Line Fitting on 2-Dimensional Sphere

In this section, JNLPCA is applied for the estimation of rhumb line on S2 data
by projecting into Mercator projection plane. In the experiment, the true rhumb
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Fig. 5. Rhumb line fitting: Fitting result (left) and error distribution of rhumb line
fitting (right; horizontal axis is ordinary LS error and vertical axis is first order Eu-
clideanization error)

line path through φ = (70, 120)�[deg] and (175, 60)�[deg]. We generate 50-data
from uniform distribution on the arc of the rhumb line and adding the Gauss
noise of 0.05-degree standard deviation for each of 3D coordinate of S2 data
and normalized as normal vector. Left of Fig. 5 is the fitting result of rhumb
line. Green dashed line is the ground truth, blue dotted line is the estimation by
ordinary LS, and red solid line is the estimation by first order Euclideanization.
From left of Fig. 5, Euclideanization works very well. Right of Fig. 5 shows the
error distribution. From right of Fig. 5, errors for each data tend to be small by
using Euclideanization.

5 Conclusion

In this paper, we proposed a hypersphere fitting method via JNLPCA, which
minimizes the sum of the squares approximated Euclidean distance in the
input space. We also extended the zeroth Euclideanization of the metric from
hyperspherical data to a general Riemannian spaces. Experiments showed the
effectiveness of JNLPCA. The fitting method has possibilities to apply for many
kinds of problems which can be regarded as nonlinear dimension reductions.
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The proposed method can be extended to the kernel method by defining a
kernel function k(x,y) = φ(x)�φ(y) and its diffential k(x,y) = ∂k(x,y)

∂x� =
Jφ(x)�φ(y), which is named Jacobian kernel. Although it is not proved that
the representer theorem holds or not, suppose that a can be represented by a
linear combination of φ[d] as a =

∑
p α[d]φ[d] = Φα. Let K and K[d] be defined

as

(K)ij = k(x[i],x[j]), K =
(K[1] · · · K[D]

)
,

k[i][j] = k(x[i],x[j]), K[d] =
(
k[d][1] · · · k[d][D]

)�
,

respectively, there hold K[d] = Φ�φ[d] and K[d] = Φ�J[d], and therefore,

a�
[
φ[d]φ

�
[d]

]
a = α�K[d]K�

[d]α and a�G+
[d]a = α�K[d]G

−1
[d] K�

[d]α hold. Then
Eq.(2) can be rewritten as

Ekernel(α) =
D∑

d=1

α�K[d]K�
[d]α

α�K[d]G
−1
[d] K�

[d]α
(3)

which is also the sum of Rayleigh quotients, and estimation is realized by mini-
mizing Ekernel(α) in the same way as the proposed method.
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Mesh Segmentation Using Adaptive Density
Estimation
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Abstract. In this paper, a new and robust approach to mesh segmen-
tation is presented. There are various algorithms which deliver satisfying
results on clean 3D models. However, many reverse-engineering applica-
tions in computer vision such as 3D reconstruction produce extremely
noisy or even incomplete data. The presented segmentation algorithm
copes with this challenge by a robust semi-global clustering scheme and
a cost-function that is based on a probabilistic model. Vision based recon-
struction methods are able to generate colored meshes and it is shown,
how the vertex color can be used as a supportive feature. A probabilistic
framework allows the algorithm to be easily extended by other user de-
fined features. The segmentation scheme is a local iterative optimization
embedded in a hierarchical clustering technique. The presented method
has been successfully tested on various real world examples.

Keywords: mesh segmentation, density estimation, hierarchical clus-
tering, variational shape approximation.

1 Introduction

3D reconstruction is an important research field in computer vision. Recent ad-
vances in software and hardware technology allow to acquire highly complex and
detailed volumes based on common, heterogeneous images. 3D reconstruction is
a reverse-engineering discipline and the acquired data is unstructured, noisy or
incomplete. The outcome of a laser-scanner or a vision based reconstruction is
a point-cloud or a polyhedral surface without semantic information [1]. In order
to enable an efficient representation and further use such as navigation, com-
puter aided design or structural analysis, high level information needs to be
obtained from the data. Mesh segmentation refers to the process of subdivid-
ing a polyhedral surface into several segments in order to obtain a more suitable
representation or to guide further processing algorithms. In this work, a segmen-
tation that maximizes a given probability function is defined as optimal. While
many state-of-the-art algorithms deliver satisfying results on clean 3D models,
there is still a lack of attention to the segmentation of real world data which
is far more challenging. The design of the segmentation algorithm needs to be

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 244–252, 2011.
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adapted in order to cope with typical deficits of real-world data. In this paper,
a novel approach to the segmentation of noisy polyhedral surfaces is presented.
The introduced segmentation scheme is inspired by the well known Expectation-
Maximization-Algorithm (EM) [2] and the hierarchical clustering (HC) [3]. Un-
derpinned by a probabilistic model, a cost function is introduced that is based
on an adaptive probability density estimation. The theoretical model allows to
incorporate multiple local features such as color, normal vectors or curvature.
The paper is organized as follows. Related state of the art approaches are briefly
reviewed in the following section. In Section 3, the probabilistic model and the
probability density estimation is derived. The design of the incorporated fea-
tures is presented in Section 4. The actual algorithm is presented in Section 5,
while experimental results are given in Section 6. Finally, an outlook as well as
possible applications are shown in the last section.

2 Related Work

Hierarchical clustering is an unsupervised learning technique and has been stud-
ied for decades [4]. The application to mesh segmentation is also not new. The
bottom-up version initializes each face with its own cluster. The segmentation
is now performed by an iterative merge of adjacent clusters according to a cost
function. The segmentation scheme presented by Garland et al. provides a key
component for this work [5]. It uses a dual graph to describe the current cluster
configuration. Each node in this graph represents a cluster and adjacent clus-
ters are connected by edges. A quadric-error based metric is used to estimate the
merging costs. They introduce a compactness heuristic to avoid irregular shapes.
Attene et al. present an advanced cost function for this algorithm, where basic
geometric models such as planes, spheres and cylinders are fitted to a potential
cluster pair in order to estimate the costs [6]. The algorithm is applied to a
selection of clean 3D models. Iterative clustering also has its origin in the field
of unsupervised learning. Related mesh segmentation schemes mostly follow a
k-means strategy, also known as Lloyd’s algorithm. The number of clusters must
be given in advance and each cluster is represented by a center, sometimes called
proxy [7]. Each facet is assigned to one cluster before its proxy is re-fitted to the
current partitioning. The two step procedure is repeated until convergence. The
algorithm can run into local minima if the initial cluster centers are not estimated
appropriately. A segmentation algorithm that is based on Lloyd’s algorithm is
presented by Shlafman et al. [8]. The cost function incorporates the angular as
well as the Euclidean distance between face and cluster. In contrast to this work,
the algorithm is initialized with one cluster and new clusters are added one after
another until the desired number of clusters is reached. The variational shape ap-
proximation (VSA) algorithm presented by Cohen-Steiner et al. uses a modified
Lloyd scheme, but in the context of mesh simplification [7]. The cost function
is based on the normal vectors. A region growing scheme is used to assign the
facets in order to ensure connected clusters. There are many papers that suggest
improvements and extensions for this algorithm. However, the cluster initializa-
tion problem remains a crucial aspect of this approach. Wu and Kobbelt use
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geometric models such as cylinders, spheres and planes as proxies. It allows to
segment heterogeneous geometry on the expense of the computational complex-
ity [9]. Julius et al. present a slightly modified version of the VSA-algorithm,
that partitions the surface into developable charts [10]. Chiosa and Kolb present
a combination of the VSA- and the HC-algorithm. Compared to our work, they
use a simple normal-vector based cost function and each facet is initialized with
its own cluster [11].

3 Propabilistic Model and Density Estimation

In this section, a probabilistic model is derived in order to formulate the given
problem precisely. In a clustering analysis, one tries to find an assignment of
a set of observations to clusters C = {c0, . . . , ce}, according to the similarity
of specific properties. The observations are the facets D = {d0, . . . , dn} of a
polyhedral surface S = {D}. Note, that di does not only contain the geometric
representation of the respective facet, but also features such as color, normal
vectors or other local properties. Assuming that the observations D are a sample
drawn from a mixed model θ = {θ0, . . . , θe}, one tries to find a θ̂, that maximizes
the likelihood. A set of hidden variables Z = {z0, · · · , zn} is introduced, which
represents the assignment for each facet di to the individual model components
of θ. The resulting problem can be stated as:

θ̂(D) = θ̂ = arg max
θ

n∏
i=1

p(di, zi | θ) . (1)

Unfortunately, there is no closed form solution to this problem and neither the
model parameters nor the hidden variables are known. However, if fixed model
parameters θ are assumed, an assignment Ẑ can be computed in the tth-iteration
in order to maximize:

Ẑ(t) = arg max
Z

n∏
i=1

p(zi | di, θ(t)) . (2)

Here, each facet is assigned to a cluster according to:

zi = arg max
m∈[0,e]

p(di |θm) . (3)

Note, that this describes a hard class assignment, each facet is assigned to one
cluster only. Given Ẑ(t) in the tth-iteration, the new model parameters can be
estimated using maximum likelihood-estimation:

θ̂(t+1) = arg max
θ

n∏
i=1

p(zi
(t) | θ) , (4)

where p(zi
(t) | θ(t)) is computed according to a probability density function.

The presented derivation leads to Lloyd’s algorithm, also known as k-means,
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which tries to find optimal clusters by iterating these two steps until convergence
[12]. Another approach to that problem is a greedy-algorithm that is called
hierarchical clustering [3]. The bottom-up approach initializes each facet di with
its own cluster cj and iteratively merges the cluster pairs according to a cost-
function. Here, the probability density of a cluster merge is approximated by:

p(cn = ca ∪ cb) ≈
∏

di∈ca

p(di| θb) ·
∏

di∈cb

p(di| θa) , (5)

which allows to express the compatibility of two clusters without estimating
a new parameter vector θn. Each cluster cj is represented by a model and its
corresponding parameter vector θj . It is now shown, how a kernel based density
estimator can be used to quantify θj and the likelihood function p(d|θj). In many
segmentation algorithms each cluster is only represented by a single feature
vector [7]. From a probabilistic perspective, this implicitly assumes that the
features within one cluster are samples, drawn from a Gaussian distribution.
Non-parametric kernel based methods are very suitable if no prior knowledge
is given [13]. The goal of a density estimation is to find a function p̂j , that
approximates the true probability density function p(d|θj) as good as possible.
Now, consider that θj is updated in the maximization step based on all facets
currently assigned to cj . The kernel density estimator turns out to be:

p(d|θj) ≈ p̂j(d) =
1

|cj|∑
i=1

wi

|cj|∑
i=1

wi

hi
K(

d− di

hi
), di ∈ cj , (6)

where an exponential kernel function is used for K. hi is the bandwidth which
controls the smoothness of a given kernel function. An adaptive bandwidth allows
to model fine details in densely observed areas while reducing the variance in
areas with only a few data points. According to the standard adaptive two-
step stage estimator presented by Abramson [14], hi can be approximated by a
function p̂′j which is again a density estimator, but with ĥ = 1:

hi = (ḡj/p̂′j(di))0.5 , (7)

where ḡj is the geometric mean over all p̂′j(di), di ∈ cj . As mentioned before, di is
a multidimensional vector which contains several features such as color or normal
vectors. The quality of the probability function depends on the sample density
which decreases rapidly with higher dimensions. However, the vector di can be
decomposed into low-dimensional sub-vectors that are assumed to be statistically
independent di = (di

(1), · · · , di
(m))T , where m is the number of independent

feature vectors. Each sub-vector contains the parameters of a feature such as
normal vectors or color. The relatively small dimension of the sub-vectors allows
to perform a seperate and reliable density estimation for each di

(k). Accordingly,

the likelihood can then be calculated as: p(di|θj) =
m∏

k=1

p(di
(k)|θj).
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Fig. 1. Segmentation scheme and mapping of normal vectors

4 Features

It is shown by Garland et al., that the normal vectors can be used as reasonable
segmentation features [5]. Alternatively, complex model fitting approaches are
quite successful but assume a specific geometric structure such as spheres or
cylinders and the computation costs are relatively high. The space of all normal
vectors is a 2D manifold embedded in R

3. A mapping L : R
3 → R

2 is derived
in the following. The Gauss map projects each point pi of a surface to the unit
sphere S2 = {(x, y, z) ∈ R

3|x2 + y2 + z2 = 1} by centering the corresponding
normal vector ni at the origin of S2, where ‖ni‖ = 1. The surface of the unit
sphere is a 2D manifold embedded in R

3. If the orientation ambiguity is taken
into account, one hemisphere is sufficient to represent all possible normal vectors.
Instead of doing calculus in spheric coordinates, the vector ni is projected to
a point ni

′ on a tangent plane, as shown in (b) of fig. 1. The tangent plane
is centered at nm and orthogonal to nm. nm is the mean normal vector of a
cluster. The two-dimendional difference vector Δ′

im now represents the feature
vector di

(0). If color information is available, for example in the context of vision
based reconstruction, it might be used as an additional feature. It is shown, that
the HSI - model is more compatible to human vision [15]. The hue and saturation
value is very discriminative. The intensity channel is not taken into account. The
color information for each facet is represented by di

(1). Although the features
presented in this section are quite promising, others might be incorporated as
well in order to customize the segmentation algorithm according to the specific
application.

5 Segmentation Scheme

The probabilistic framework that is presented in Section 3 is now used to derive
a mesh segmentation algorithm that represents a combination of both unsuper-
vised learning methods. The segmentation scheme consists of an outer algorithm,
which is a slightly modified hierarchical clustering and an embedded Lloyd’s al-
gorithm which optimizes the modified clusters after each merging. Consider a
polyhedral surface S = {D}, that consists of facets D = {d0, . . . , dn}. The goal
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is a suitable partitioning of the data into e non overlapping and connected sub-
sets of facets, C = {c0, . . . , ce}. According to Garland et al. , a cluster graph
G = {C, A} is introduced, where the nodes C represent the clusters and the
edges A define the neighborhood in between the clusters [5]. Only adjacent clus-
ters are considered for merging. A merge is performed by a collapse of an edge
in the clustering graph. Each edge is assigned with a merging probability ac-
cording to equation 5. The set of all collapses is efficiently managed in a heap
sorted by costs. Similar to the approach presented by Chiosa and Kolb, the al-
gorithm is interrupted after each iteration and an iterative optimization scheme
is applied [11]. In contrast to their work, this algorithm only considers the local
neighborhood consisting of the merged cluster itself and its adjacent clusters.
Lloyd’s algorithm is embedded in the hierarchical clustering scheme and a local
subset of clusters is optimized after merging as it can be seen in (a) of fig. 1. The
optimization is done by a repeated expectation and maximization step. Given
a fixed number of s clusters in the local neighborhood, s seed facets are picked
at random to initialize them. The seed facets are paired with the corresponding
cluster labels and pushed into a priority queue. At each iteration, a facet d(q,j) is
extracted from the queue. If not already assigned to a cluster, all adjacent facets
of d(q,j) are tested against the j− th cluster by calculating the probability of the
facet, given θj according to equation 3. If not already contained, the facets and
their assignment probabilities are then inserted into the queue. Please note that
this ensures fully connected clusters. The expectation step is finished when the
priority queue is empty. In a second step, the model parameters of each cluster
is recalculated using the density estimation in order to maximize the term in
equation 4. Now for each cluster, the facet with highest assignment probability
density is used as the new seed face. The inner algorithm terminates either af-
ter a user defined number of maximum iterations or if a convergence threshold
is reached and the hierarchical clustering scheme continues. Originally, the hi-
erarchical clustering algorithm starts with initializing a cluster for each facet.
However, the desired number of clusters ce is typically significantly smaller than
the number of facets n and the algorithm is bootstrapped with cs clusters, where
ce < cs < n. The initial cs clusters are optimized by Lloyd’s algorithm before
the actual segmentation starts.

6 Evaluation

In the following, the algorithm is tested on real-world data. A detailed evaluation
of the segmentation result is a challenging issue by itself and beyond the focus
of that paper. The result highly depends on the applied cost function which
always assumes a specific application. Mostly, results are compared to human
segmentation. Furthermore, the available model databases consist of clean and
uncolored meshes which are not suitable for this approach [16]. Consider the
polyhedral surfaces presented in (a) and (b) of fig. 2. The data has been obtained
by a multiple vision reconstruction tool-chain. The design of the incorporated
features highly depends on the context. Consequently, the evaluation focuses on
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Fig. 2. Two examples are investigated, where (a) represents a plastic house and (b)
is the reconstruction of a town hall. The result of a related hierarchical clustering
algorithm can be seen in (c) and (b). The segmentation achieved by the presented
approach is given in (e) and (f).

colored meshes with mostly planar shapes. The result of a normal vector based
hierarchical clustering approach can be seen in (c) and (d). The segmentation
has been computed by the tool that comes with the corresponding paper of
Attene et. al [6]. Although the algorithm produces a reasonable segmentation
that respects the general geometry, the quality of the cluster shapes as well as
the partitioning is not satisfying. The result of the presented algorithm can be
seen in (e) and (f). The shape of the clusters is not unnecessarily complex and
the boundary looks smoother. The distribution of the clusters appears to be
more reasonable. Please note that the propabilities of the independent features
are multiplied and one cluster should be characterized by both similar color and
similar normal vectors. In regions characterized by homogeneous normal vectors
such as the roof of the town hall (b), the color becomes the dominant feature,
as it can be seen in (f). It turns out, that the local Lloyd optimization does not
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need to be performed after every single merge. Instead, computation time can be
reduced by executing multiple merges before the respective region is optimized.

7 Conclusion

The proposed algorithm has been shown to be successful by various examples.
This work holds several new contributions. A probabilistic model is used to intro-
duce a combination of hierarchical and iterative clustering and the incorporation
of multiple features. The cost function is based on an adaptive probability den-
sity function in order to avoid strong assumptions. The color is presented as
an useful feature especially in the context of vision-based surface reconstruc-
tion. Furthermore, it is shown, how the normal vectors can be efficiently repre-
sented and compared in 2D space. Although the presented approach is promising,
the general problem of mesh segmentation remains challenging. In future work,
the performance as well as the reliability of the presented algorithm will be
investigated.
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Abstract. A simple scheme is presented for modifying geometric mo-
ments to use geodesic distances. This provides a set of global shape
descriptors that are invariant to bending as well as rotation, translation
and scale.

Keywords: moments, transformation invariance, bending, articulation.

1 Introduction

In the literature there is a huge range of techniques for shape description, not
only for computer vision [14,20,23], but also in particle science [22], medical
imaging [3], geography [4], art [1], etc. Shape descriptors can be categorised into
global or local methods. Global methods have the advantage of simplicity, and
are efficient to both store and match. Local methods provide a richer represen-
tation, and so are sometimes more capable of performing object discrimination.
However, computing the descriptor tends to require some parameters (e.g. a scale
parameter), and matching such descriptors can be computationally expensive.

A desirable property for shape descriptors is that they are invariant to certain
transformations of the shape in the image. Invariance to translation, rotation,
scale, and possibly skew have become standard practice. However, for shapes
that undergo articulation or bending deformation, although there exist methods
for matching local descriptors [5,11,15], there is little work on invariant global
descriptors [19]. In computer vision textbooks [21] the only instance given is the
Euler number, which is generally not sufficiently discriminative.

Moments are widely used as shape descriptors [9,17,18]. Central moments
provide translation invariance, and further moment invariants were developed
to provide additional invariance to rotation and scale [13] and skew [8]. The
contribution of this paper is to describe a simple scheme to enable shapes to be
described by geometric moments that are invariant to bending in addition to
translation, rotation and scale.

2 Bending Invariant Moments

Our starting point is radial or rotational moments that are generally defined in
terms of polar coordinates (r, θ) over the unit disk as
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Rpq =
∫ 2π

0

∫ 1

0

rpeiqθf(r cos θ, r sin θ)rdrdθ.

Since the polar angles of points will vary under bending, we discount these
values and just use distances over the 2D image plane. Given a discretised two
dimensional shape S, the bending invariant moments are

Ap =
∑
xi∈S

dg(xi,xc)p

where xc is the centre of S. To provide invariance to bending, the Euclidean
radial distances have been replaced by geodesic distances. The geodesic distance
dg(x1,x2) between two points x1 and x2 in S is the length of the shortest path
between x1 and x2 such that the path lies within the S. This path will consist
of linear segments and possibly sections of the boundary of S.

The centre also needs to be chosen such that it is invariant to bending. For
the Euclidean metric, the centroid is the point minimising the sum of squared
distances, while the geometric median is the point that minimises the sum of dis-
tances (for which there is no direct closed-form expression). In a similar manner,
we choose

xc = argminy∈S

∑
xi∈S

dg(xi,y).

Since geodesic distances have been used, the above guarantees that Ap is
invariant to translation, rotation and bending. In addition, a normalisation is
applied to provide invariance to scale:

αp =
Ap

A
p+2
2

0

where A0 is the area of S.
Standard geometric image moments of a 2D shape are defined as

mpq =
∑

(xi,yi)∈S

xp
i y

q
i

where the distances from the origin are measured along the Cartesian axes. We
modify the moments Ap to loosely follow the concept of geometric moments,
using something like a set of curvilinear axes. The first axis is the geodesic path
to the centre xc (used for Ap). The second axis at xi is determined locally as the
shortest geodesic path from xi to the boundary of S. Thus, the second bending
and scale invariant moment is

βpq =
Bpq

B
1+ p+q

2
0

where
Bpq =

∑
xi∈S

dg(xi,xc)pdg(xi, E)q
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and E is the exterior of S. This provides a more general version of αp since
βp0 = αp.

To ensure that all points in S are reachable from the centre by geodesic paths
we require that S is a single connected component (although holes are allowed).
The geodesic centre is not unique – a simple counterexample is given by an
annulus. However, this has not proven to be a problem in our experiments.

The only other global bending invariant descriptors of shapes in the computer
vision literature that we are aware of is the recent work by Rabin et al. [19]. They
also use geodesic distances, but they are computed between pairs of points. To
reduce computational complexity they perform uniform furthest point sampling
of the points in S, and compute geodesics between these points and the full point
set in S. Three quartiles of these distances are taken as global descriptors.

Other related work is by Gorelick et al. [12]. Instead of the distance trans-
form or geodesic paths they used the Poisson equation which generates expected
distances travelled by particles following a random walk. Gorelick et al. also
computed shape descriptors using moments, but they were not concerned with
invariance to bending. Rather than directly computing moments from the ran-
dom walk distances they used several features derived from the distances. Since
several of these features involved the local orientation of the distance field, and
combinations of local orientations, the features (and their moments) were not
bending invariant. Moreover, the shape was centred at the (standard) centroid
which is bending invariant.

3 Implementation Details

To compute the geodesic distances there are several approaches. Long and Ja-
cobs [15] created a graph whose vertices were sample points. Edges were included
in the graph if the straight line between a pair of sample points (correspond-
ing to the vertices) was completely included within the shape. They only used
sample points on the boundary, and the cost of both graph construction and
determination of the shortest paths between all pairs of points is O(n3) for n
boundary points.

However, in order to reduce the effects of noise, we wish to use geodesic dis-
tances between interior points as well as boundary points. This will ensure that
the centre will be relatively insensitive to boundary noise. An extreme case is
shown in figure 1, in which half the circle has been perturbed. The point min-
imising the summed geodesic distance to the boundary is significantly affected,
unlike the summed geodesic distance to all points in the shape.

We compute geodesic distances using a distance transform capable of oper-
ating in non-convex domains. Algorithms for computing the geodesic distance
transform using ordered propagation are available with computation complexity
linear in the number of pixels [6]1. Finding the centres of shapes is the most com-
putationally expensive step (O(n2) for a shape containing n points). Therefore
1 For simplicity, a geodesic distance transform was used. It performs ordered propaga-

tion with a heap based priority queue, and produces approximate geodesic distances.
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(a) (b)

Fig. 1. Centres determined by minimising the geodesic distances to (a) the shape
boundary, (b) the shape interior. The geodesic distances to the centres are displayed
inside the shapes.

a multiresolution strategy is used. The centre is first found at a low resolution
after the image has been downsampled so that the shape contains about 5000
pixels2. The centre position is then refined at full resolution within a 3F × 3F
window, where F is the ratio of high to low resolution. To perform downsam-
pling, each pixel in the low resolution image is set to the foreground value if any
of its parent pixels in the high resolution image are foreground. This ensures that
the downsampled shape remains a single connected component (even though the
topology may change, i.e. holes can be removed).

4 Experiments

We start by showing the effectiveness of the geodesic centre. Despite the shape
in figure 2 undergoing articulation and deformation the centre of the shape is
captured reliably.

Next, we show classification results for Ling and Jacob’s dataset of articulated
shapes [15] which consists of 40 shapes made up of 8 classes each containing 5
examples (see figure 3). As a baseline, comparison is made with two methods
that are not invariant to bending: the standard Hu moments invariants and
Belongie et al.’s shape context [2]. In addition, comparison is made with two
bending invariant methods: Ling and Jacob’s inner-distance (geodesic) extension
of shape context [15], and Rabin et al.’s work [19] which extracts a 4D description
from geodesic quartiles and uses stochastic gradient descent to compute the
Wasserstein distance between distributions.

For our classifier we compute the following moments: all Ap of order 1 to 9,
all Bpq of order 1 to 4 (i.e. 14 moments), and the first 7 Hu moment invariants.
For each type of moment we choose the combination of up to 5 moments that
2 Choosing 5000 pixels for the low resolution version of the shape provides a reasonable

compromise between maximising accuracy and computational efficiency. The value
was experimentally determined as suitable for all the data tested in this paper.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Despite undergoing articulation and deformation the shape’s centre is correctly
determined

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Examples of pairs of shapes from four classes from Ling and Jacob’s dataset of
articulated shapes

gives the best classification. Nearest neighbour classification is performed using
Mahalanobis distances and leave-one-out cross validation.

The bending moment invariants perform very well, as do the geodesic quar-
tiles, and are only marginally outperformed by the inner distance shape context;
see table 1.

Table 1. Classification accuracies for Ling and Jacob’s dataset of articulated shapes

Method Accuracy (%)

Hu moment invariants 70

shape context 50

inner distance shape context 100

4D geodesic quartiles 97

αp 97

βpq 97

Classification performance is evaluated on a second dataset of articulated
shapes provided by Gopalan et al. [11]. However, since their images contain
substantial segmentation errors producing many small holes and components,
we have pre-processed the images to extract only the single largest foreground
object – examples are shown in figure 4. Gopalan et al. report recognition rates
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Examples of pairs of shapes from four classes from Gopalan et al.’s dataset of
articulated shapes. Only the single largest foreground object from each original image
has been retained.

Table 2. Classification accuracies for Gopalan et al.’s dataset of articulated shapes

Method Accuracy (%)

Hu moment invariants 72

shape context 82

inner distance shape context 90

αp 92

βpq 100

Table 3. Bulls-eye test scores for MPEG-7 CE-1 database

Method Bulls-eye scores

Hu moment invariants 46

shape context 76

inner distance shape context 85

ASC & LCDP 96

4D geodesic quartiles 60

αp 38

βpq 61

of 58% for the inner distance shape context and 80% for their own method,
although our experiments (on the cleaned data) using the inner distance shape
context gave a much higher accuracy (90%). Again, as table 2 shows, the bending
moment invariants perform very well.

Our final evaluation was performed on the MPEG-7 CE-1 database 1400
shapes. As table 3 shows, the invariance to bending does allow βpq to demon-
strate clear improvements on the Hu moment descriptors which are only invariant
to similarity transformations. However, the bending moment invariants do not
perform as well as many other reported methods. The reason is that for some
of the object classes there is considerable variation in shape which cannot be
captured easily by global descriptors. Note that Rabin et al.’s geodesic quar-
tiles give a similar accuracy to βpq. Approaches based on local matching such
as shape context can generate excellent accuracies. Currently, the best perfor-
mance for the MPEG-7 CE-1 database has been achieved by Lin et al.’s aspect
shape context (ASC) [16] which was combined with locally constrained diffusion
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process (LCDP) to achieve a bulls-eye score of 96%. However, such methods are
computationally expensive.

5 Conclusions

This paper describes an approach to generate global shape descriptors that are
invariant to bending, rotation, translation and scale. The shape centre is es-
timated as the point that minimises the summed geodesic distances to other
points, and then moments are computed on the distances from the centre. The
benefit of such global shape descriptors is that they tend to be much more ef-
ficient to match compared to local shape descriptors. For instance, matching
by shape context requires dynamic programming, while both [19] and [5] use
iterative matching schemes.

Several approaches in the literature could be adapted to the proposed frame-
work. For instance, for describing 3D shapes Gal et al. [10] use a histogram of
centricity, which is the average of the geodesic distance from a mesh vertex to all
other vertices. The proposed moment descriptors could also be generated from
centricity values instead of distances from the centre. However, since computing
pairwise distances is computationally expensive this would have the disadvantage
of requiring all the pairwise distances to be computed at full resolution.

An alternative to directly using the geodesic distances to modify the mo-
ments, is to use the geodesic distances along with multidimensional scaling to
construct a bending invariant form of the shape [7,15]. Moments subsequently
computed would therefore be bending invariant. Future work will investigate the
effectiveness of this approach.

Finally, extending the proposed method to 3D shapes would be straightfor-
ward. The geodesic distance transform using ordered propagation can be readily
and efficiently applied in higher dimensions, with run-time proportional to the
number of elements (e.g. voxels).
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Abstract. In this paper, we address the shape retrieval problem by
casting it into the task of identifying “authority” nodes in an inferred
similarity graph and also by re-ranking the shapes. The main idea is
that the average similarity between a node and its neighboring nodes
takes into account the local distribution and therefore helps modify the
neighborhood edge weight, which guides the re-ranking. The proposed
approach is evaluated on both 2D and 3D shape datasets, and the exper-
imental results show that the proposed neighborhood induced similarity
measure significantly improves the shape retrieval performance.

Keywords: Shape retrieval, graph theory, similarity, re-ranking.

1 Introduction

Searching shapes more accurately and faster is one of the most important goals
in computer vision. In recent years, several approaches have been proposed to
optimize shape retrieval systems, from designing smart descriptors [1–4], to ex-
ploring suitable similarity measure-based methods [5]. However, almost all these
systems suffer from the following phenomenon: when a user submits a query,
some shapes in the database are returned relatively often, while some are re-
turned only given certain special queries. To tackle this problem, we propose
the Neighborhood Induced Similarity (NIS), which updates the original similar-
ity based on the neighborhood of a shape before the final ranking. Traditional
shape retrieval systems compute the pair-wise similarity among shapes, from
which a global ordering can be derived. By separating ranking from similarity
measurements, one can leverage ranking algorithms to generate a global ordering.
Just like existing re-ranking algorithms for web page [6], image [7] and video [8]
retrieval, our proposed method also takes the similarity/dissimilarity/distance
matrix as the input, and outputs an optimized similarity matrix for the final
ranking. However, the difference in our setting is that we aim at eliminating the
undesired phenomenon stated above. We present an approach from the perspec-
tive of a graph representation, where shapes are represented as graph nodes and
the graph edges encode the similarity between these shapes. In this way, search-
ing shapes is formulated as label propagation on a graph. Therefore, the edge
value is very critical, since it guides the propagation behavior. In our method,

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 261–268, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



262 C. Li et al.

we consider all the nodes on the graph as a whole, and update the edge value
by the average similarity of nodes, resulting in an improved retrieval accuracy.

Shape retrieval techniques may be broadly classified into two main categories:
traditional matching/retrieval methods and similarity learning methods [5]. Be-
longie et al. [1] introduced shape contest, which is a 2D histogram representation
of a shape. Ling and Jacobs [2] proposed the inner distance which modifies shape
contexts by considering the geodesic distance between contour points instead of
the Euclidean distance, and thus significantly improves the retrieval and classifi-
cation of articulated shapes. Wei et al. [9] extracted Zernike features to describe
trademark shapes. Trademark images are very complex 2D shapes, and obtain-
ing a high performance of trademark retrieval is of paramount importance to
the industry. On the other hand, the Light Field Descriptor (LFD) [10] has been
reported in the literature as one of the most efficient techniques for retrieving
3D rigid models [11]. Our method is, however, general and not limited to any
particular similarity measure or representation.

Our work is partly motivated by Bai et al.’s work [5], which adopts a graph-
based transductive learning algorithm to improve the shape retrieval results. The
key idea of this distance learning algorithm is to replace the original shape dis-
tance with a distance induced by geodesic paths on a manifold of known shapes.
In other words, each shape is considered in the context of other shapes in its class,
and the class need not be known. Instead of Graph Transduction, we propose
in this paper a neighborhood induced similarity to improve the shape retrieval
results. There has been a significant body of work on similarity measures-based
methods. Cheng et al. [12] proposed the sparsity induced similarity measure to
improve the label propagation performance [13]. Jegou et al. [14] proposed the
Contextual Dissimilarity Measure (CDM) to improve the image search accuracy
through improving the symmetry of the k-neighborhood relationship. Our work
reassigns edge weight in a fully connected graph by the average neighborhood
weight, which is in a similar spirit as CDM. More related work on similarity
measure-based methods can be found in [15]. The main advantages of our pro-
posed approach may be summarized as follows:

– It eliminates the abnormal frequency phenomenon for shape retrieval with
a graph representation.

– It is universal to arbitrary 2D and 3D shapes.

The rest of the paper is organized as follows. The problem formulation is stated
in Section 2. The proposed neighborhood induced similarity approach is de-
scribed in Section 3. The experimental results using the proposed algorithm are
provided in Section 4. Finally, we conclude in Section 4 and point out future
work directions.

2 Problem Formulation

In traditional shape retrieval systems, a user usually employs a distance function
to compute the pair-wise similarity between two shape features, and assumes
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that the more similar two shapes are, the smaller their difference is. For a given
query, these systems rank the shapes in the dataset as a list according to the
values of the pair-wise similarity, and present to the user several top rankings in
the returned list. To measure the number of returned times of a shape in a given
dataset, we first introduce the concept of appearing frequency of a shape. Suppose
there are N shapes in a dataset, and let us consider the top t ranking shapes
Rt(n) in the returned list L(n) of a query shape Qn, 1 ≤ n ≤ N . Obviously, the
cardinality |Rt(n)| = t of the set Rt(n) is constant within the t-highest ranking
framework. The appearing frequency of Qn is then defined as follows:

f(n) =
N∑

i=1

∑
j∈Rt(n)

δi,j (1)

where

δi,j =

{
1, if Qn is the j-th returned shape of the query Qi

0, otherwise.

We can observe that some shapes have high frequency rate, while others are
returned only when submitting specific queries. These shapes are referred to as
over-returned shapes and never-returned shapes respectively, which are defined
for a given neighborhood size. Both of them are considered abnormal shapes or
‘bad shapes’ in a shape retrieval system. Our goal is to reduce the number of
these abnormal shapes. In other words, we hope that the frequency rates of each
shape in the dataset would be the same constant which is relative to |Rt(n)|.

3 Proposed Neighborhood Induced Similarity Approach

Let D = (dij) be a distance matrix computed by a shape function. We formulate
the shape retrieval problem as a form of propagation on a graph, where a node’s
label propagates to the neighboring nodes according to their proximity. In this
process, we fix the label on the query shape. Thus, the query shape acts like
a source that pushes out the label to other shapes. Intuitively, we want shapes
that are similar to have the same label. We create a graph G = (V , E) where the
node set V represents all the shapes in the dataset, both query and the others.
The elements of the edge set E represent the similarity between nodes (shapes).
We propagate the labels through the edges. Larger edge weights allow labels to
travel through more easily. The propagation process stops when a user-specified
number of nodes are labeled. Likewise, the frequency of a node vi ∈ V is defined
as the sum of the labeled times after each node in the graph propagates its
label to its neighborhood. Interestingly, we find that the frequency of a node is
equal to the degree of the node if we cut off the edges that no label travels. A
subgraph of the newly obtained graph G0 includes a dense graph Gdense and a
sparse graph Gsparse. Obviously, Gdense consists of nodes with high frequency (or
degree) Vhigh, and Gsparse consists of nodes with low frequency Vlow. Viewed in
this fashion, our target is to obtain a well-distributed graph.
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Now assume that the graph is fully connected with the weights computed by
a Gaussian kernel as follows:

w(vi,vj) = exp
(
−dij

α2

)
, (2)

where α is a bandwidth parameter that is usually determined empirically. In the
sequel, we set the parameter α to 100.

The k-nearest neighbors of a given node vi are the nodes NNk(i), in which
the nodes v and vi are connected by an edge, if the edge weight between v and
vi is among the k-th largest from vi to other nodes, i.e.

NNk(i) = {v : max
k

w(vi,v)}. (3)

The above-mentioned problem of frequency rate suggests a solution which
reassigns weight. Intuitively, we would like the k-neighborhoods to have similar
weights in order to eliminate ‘bad shapes’.

Let us consider the neighborhood of a given node defined by its |NNk(i)|
nearest neighbors. The value k is a compromise between computation cost and
quality of retrieval result. The larger the value of k, the more expensive the
computation is. In general, k needs to be greater than 20 to prevent the system
from being over-constrained due to possible noise in the original measure.

We define the neighborhood weight or similarity s(i) as the mean weight of a
given node vi to the nodes of its neighborhood:

s(i) =
1
k

∑
x∈NNk(i)

w(vi,x) (4)

and it is computed for each node. Subsequently, we define a new weight between
two nodes as follows:

w�(vi,uk) = w(vi,uk)
s̄

(s(i)s(j))1/2
, (5)

where s̄ is the geometric mean neighborhood similarity obtained by

s̄ =
∏

i

s(i)1/n. (6)

Thus, we reassign the graph weight and propagate the query label according
to the new weight. Note that the terms s̄ and s(i) do not impact the nearest
neighbors of a given node.

4 Experimental Results

In the first experiment, we test the performance of the proposed NIS approach
for improving the retrieval results on 2D Wei’s Trademark Image dataset which
consists of 1003 images in 14 classes [9]. These include Apple, Fan, Abstract
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Circle1, Abstract Circle2, Encircled Cross, Abstract Saddle, Abstract Saddle,
Abstract Sign, Triangle, Bat, Peacock, Abstract Flowers, Rabbit, Snow Flake
and Miscellaneous. Fig. 1 displays sample images from this Trademark Image
dataset. Traditional descriptor-based methods applied on these complex shapes
still maintain a modest performance. However, the industry is in urgent need
for a satisfactory retrieval performance because it will save human consump-
tion of comparing trademark shapes one by one to avoid reduplication. In this
experiment, the neighborhood size is set to 85.

Fig. 1. Sample images from the trademark shape dataset

In our comparative analysis, we used the Precision/Recall curve to measure
the retrieval performance. Ideally, this curve should be a horizontal line at unit
precision. For each query image, we use the first 108 return trademark images
with descending similarity rankings (i.e. ascending Euclidean distance ranking),
dividing them into 9 groups accordingly. However, in order to obtain a more
objective picture of the performance, we plot the average performance of 20
query images of the same class. We show the retrieval result in Fig. 2, where
Zernike features [3] are first extracted to calculate the original distance matrix,
and then the proposed algorithm is used to obtain the accuracy-improved matrix.
Again, the overall retrieval performance is improved by NIS.

We also tested the performance of the proposed matching algorithm on the
McGill Shape Benchmark [16]. This publicly available benchmark database pro-
vides a 3D shape repository, which contains 255 objects that are divided into
ten categories, namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’, ‘Octo-
puses’, ‘Pliers’, ‘Snakes’, ‘Spiders’, and ‘Teddy Bears’. Sample models from this
database are shown in Fig. 3. In this experiment, we set k to 30.

The evaluation of the 3D retrieval results is based on the following quantifi-
cation measures. These measures range from 0% to 100%, and higher values
indicate better performance.

A. Nearest Neighbor (NN) The percentage of queries where the closest
match belongs to the query’s class.

B. First Tier (FT): the recall for the (κ− 1) closest matches, where κ is the
cardinality of the query’s class.

C. Second Tier (ST): the recall for the 2(κ− 1) closest matches.
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Fig. 2. NIS improves the overall retrieval performance for the trademark image dataset.
Blue line is with NIS and red line is without NIS.

Fig. 3. Sample shapes from McGill Articulated Shape Database. Only two shapes for
each of the 10 classes are shown.

D. Discounted Cumulative Gain: a statistic that emphasizes on retrieving
highly relevant shapes. Correct results near the front of the retrieval list are
weighted more heavily than correct results near the end, under the assumption
that a user is most interested in the first results.

We compare our method with the 3D Light Field Distribution (LFD) method.
The distance matrix calculated via LFD is chosen as the input of NIS, and the
neighborhood size is set to 48. The corresponding scores of each method for
each class of the database as well as the overall scores for the complete database
are shown in Table 1. We render numbers in bold if our method is superior or
equivalent to LFD. Obviously, in most cases, NIS has a positive effect on 3D
shapes re-ranking. Though not all the entries with NIS outperform LFD in the
comparative results, it is understandable that NIS works in a given statistical
range. For example, ‘Hands’, the worst class according to the result, will still
lead to effective shape re-ranking based upon the First Tier measure.

The time to compute the neighborhood distance is O(kN), to compute geo-
metric mean is O(N), and to update the weight is O(N). There is an additional
cost for ranking the scores at the end, which is O(k log N). Thus, the total
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Table 1. Quantitative measure scores of the retrieval methods

# Queries Method NN (%) FT (%) ST (%) DCG (%)

Overall Database
Ours 84.16 46.26 62.18 83.72
LFD 84.61 44.69 59.28 82.74

Ants
Ours 90 53.6 77.78 88.42
LFD 93.33 54.56 76.11 89.33

Crabs
Ours 93.33 50.89 65.33 86.33
LFD 93.33 45 60.11 84.08

Spectacles
Ours 76 51.52 66.08 88.45
LFD 100 50.56 65.60 88.34

Hands
Ours 80 28.25 40.50 75.36
LFD 90 28 42.25 75.44

Humans
Ours 79.31 40.79 54.94 81.26
LFD 79.31 39.35 53.03 80.69

Octopuses
Ours 60 26.88 41.93 72.30
LFD 48 24 35.36 68.47

Pliers
Ours 100 75.50 87.25 97.58
LFD 100 75.25 87.25 97.47

Snakes
Ours 76 26.14 33.92 71.68
LFD 68 20.64 25.28 66.53

Spiders
Ours 70.97 41.94 65.45 81.18
LFD 74.12 42.77 65.35 82.35

Teddy Bears
Ours 100 66.50 86.50 95.64
LFD 100 66.75 82.50 94.59

complexity of our method amounts to O(k log N + (k + 2)N). Since k � N ,
the overall time complexity of our algorithm is bounded by O(N2). It is worth
pointing out that the complexity of our approach is at least one order smaller
than the complexity O(TN3) of the graph transduction algorithm, where T is
the number of iterations.

5 Conclusions and Future Work

In this paper, we proposed a novel similarity measure for eliminating abnormal
shapes in shape retrieval systems. The proposed NIS measure takes into account
the hidden local structure by using the average neighborhood similarity in a
graph representation. We tested the proposed similarity measure on 2D and 3D
shape datasets. The experimental results demonstrated the efficiency of the pro-
posed method both in 2D and 3D, even on shapes with large variations. Future
research directions include further exploration of the frequency problem on shape
classification as well as clustering. We also plan to combine sparse representation
with the proposed method in order to achieve much better retrieval results.
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Abstract. We introduce a dynamic programming based algorithm to
extract a radial contour around an input point. Unlike many approaches,
it encloses a region using feature homogeneity, without relying on edge
maps. The algorithm operates in linear time in the number of pixels
to be analyzed. Multiple initializations are unnecessary, and no fixed
smoothness/local–optimality tradeoff needs to be tuned. We show that
this method is beneficial in extracting nuclei from color micrographs of
hematoxylin and eosin stained biopsy slides.

Keywords: Contour extraction, dynamic programming, histological im-
ages, segmentation, digital pathology.

1 Introduction

Contour extraction quality can critically affect image features used for pattern
recognition and classification. Histological imaging, in particular, may require
fast, sensitive feature measurements of thousands of cells. As the goal may be to
detect irregular cells, outlying measurements cannot simply be smoothed over.

In the nascent practice of digital pathology [1], this problem manifests itself
in the detection and grading of breast cancer based on scanned micrographs of
hematoxylin and eosin stained biopsy tissues. Variation in the size, shape, and
texture of nuclei determine the degree of pleomorphism, which is a component
of the Bloom–Richardson grade [2] and an indicator of malignancy itself. These
attributes rely on accurate nuclear contours, yet the general purpose dyes often
fail to produce crisp edges at nuclear boundaries.

For this reason, we aim to develop a contour extraction system that can fit
the nuclei with less sensitivity to edge sharpness. We propose a very general
framework that performs global homogeneity splitting. The framework replaces
the traditional edge signal with differences in texture over an area, measured all
the way back to the center of a nucleus. It chooses a globally optimal boundary
using a dynamic programming algorithm. Overall computation time is linear in
the number of pixels analyzed.

Nuclear extraction has been studied frequently in the cytology and emerging
digital pathology literature. In comparison to our proposed approach, edge–based
methods typically require multiple filter strengths to describe all contours: [3]
uses adaptive thresholding and [4] uses a Watershed algorithm. In liquid cytology,
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some authors use snakes [5], but some work using dynamic programming search
has emerged [6]. Compared to [6], our objective uses texture homogeneity instead
of edge fitting, it has lower complexity, and it enforces continuity by limiting the
size of a radial jump instead of allowing arbitrary jumps penalized by elasticity
cost.

Radial contour extraction also has appeared in the radiology literature. In [7],
a typical dynamic programming algorithm [8] is applied in the space of polar
coordinates, to extract the radial contour of a ventricule. Their algorithm lacks
the loop constraint that we impose, and large radial jumps to close the contour
would not be penalitzed. Also, in contrast to our homogeneity objective, the
local objective of their algorithm is to maximize the response of an edge filter.

Our radial contour extraction algorithm most closely resembles the multiple
backtracking algorithm of Sun and Pallottino [9]. Ours is slightly more general, as
we allow the radius to jump up to a constant distance between discretized angles.
Although Sun and Pallottino did not prove that their algorithm always succeeded
in producing a closed loop, we prove that our algorithm does in Theorem 1.
Later work of Appleton and Sun [10] gives a different solution to radial contour
extraction that yields the true minimum cost path at more time expense in the
worst case but just as quickly as dynamic programming in the average case.

Segmentation techniques, such as Seeded Region Growing [11], iteratively en-
large regions by comparing pixels to be enclosed to the average of a feature
already measured. Our dynamic programming approach solves for a global op-
timum, so it will not be perplexed by aberrant pixels. The minimization of a
second–order statistic over the enclosed region establishes another remarkable
difference.

2 Homogeneity Splitting

The first novelty of our approach is the objective of the contour extraction. We
do not apply an edge filter to the original signal.

Rather, we take an arbitrary signal T (x, y) presumed to be homogeneous
inside the desired boundary (here we simply use pixel luminance, but more
complicated texture features could be used interchangeably). Homogeneity of T
around the point (0, 0) inside a boundary parameterized in polar coordinates by
ρ(θ) is defined by variance in T :

H =
∫ 2π

θ=0

σθ(ρ(θ))dθ (1)

where σθ(r) =
∫ r

r′=0

(Tpolar(r′, θ))
2
dr′ − 1

r

(∫ r

r′=0

Tpolar(r′, θ)dr′
)2

(2)

Our goal is to bound the center (say (0, 0)) of the detection by a boundary
B, such that the variance H of T inside B is small, and sharply rises if B is
extended. This amounts to minimizing a local cost function

Cθ(r) = σθ(r) − σθ(r + δ) + 1 (3)
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for a constant δ = lookAhead that affects smoothness. Assuming that F is
normalized so that 0 ≤ F ≤ 1, the “1” term ensures that Cθ ≥ 0.

3 Radial Contour Extraction

The dynamic radial contour extraction produces a contour around each input
point. The main steps of the algorithm are summarized in Table 1.

Table 1. Dynamic Radial Contour Algorithm

Input.
Real–valued feature map F (x, y), 0 ≤ F (x, y) ≤ 1
Point (p, q)
Integers minRadius, maxRadius, numTheta, lookAhead, maxJump

Algorithm.
G ← PolarTransform(F, maxRadius,numTheta, p, q)
C ← VarianceCost(G)
B ← LoopDP(G, C, minRadius, lookAhead)

Output. RectTransform(B,maxRadius, numTheta, p, q)

First, a polar transform around the input point transforms the feature map
F into a map G:

G(r, s) = F (p + r cos θ, q + r sin θ) (4)

where
θ =

2πs

numTheta
; 0 ≤ s ≤ numTheta ; 1 ≤ r ≤ maxRadius (5)

The contours to be produced by our algorithm may be parameterized by
their radii ρ = r(θ) in terms of the angle (ı.e., they do not cross the same angle
multiple times). At each angle θ, we measure homogeneity along the arc from
(p, q) out to the point r(θ) by the standard deviation in G:

σθ(r) =

√∑r
r′=1 G(r′, s)2

r2
−
(∑r

r′=1 G(r′, s)
r

)2

Locally (at θ), we wish to draw the boundary at a point where the homogeneity
inside the contour is good (σθ(r) is small) but the homogeneity would be much
worse if the contour were pushed further out (σθ(r+lookAhead) is much bigger).
Thus, we define the local cost

C(r, s) = σθ(r) − σθ(r + lookAhead) + 1 (6)

and the global cost

Cost(ρ) =
numTheta−1∑

s=0

Cθ(ρ(
2πs

numTheta
)). (7)



272 C. Malon and E. Cosatto

The range of F ensures that the cost will be nonnegative.
The LoopDP function solves a relaxation of the following minimization prob-

lem:Determine ρminimizingCost(ρ), such thatρ(θ) ∈ [minRadius, maxRadius],
|ρ( 2π(s+1)

numTheta )− ρ( 2πs
numTheta )| ≤ maxJump, and ρ(0) = ρ(2π). Setting an appro-

priate minRadius avoids a trivially small enclosure with zero variance in F .
LoopDP is implemented by a dynamic programming algorithm [12]. With com-
plexity O(numTheta ·maxRadius ·maxJump) the typical algorithm gives the
cheapest assignments ρ(θ(s)) ending at G(r2, numTheta), without restriction
on the originating node G(r1, 0). A modification to the typical algorithm rejects
solutions where r1 
= r2 by imposing an infinite cost at the final step of a path to
(numTheta, r2 = ρ(2π)) when r1 
= r2. Also, at any step where there are equal
costs, the algorithm always prefers the smaller–indexed parent.

Theorem 1. The modified algorithm finds a path with finite cost.

(For the proof, see section 6.) This path translates to a closed loop in rectangular
coordinates.

The overall complexity of our algorithm (the computation of C, followed by
the dynamic programming search) is O(maxRadius · numTheta · maxJump ·
lookAhead) per candidate. As maxJump and lookAhead enforce continuity
of the extracted contours, they should be regarded as constant (here we set
maxJump = 1). If candidates are well–separated (meaning that the neighbor-
hoods around the candidates do not overlap, on average), then the whole pro-
cedure may be completed in linear time, relative to the number of pixels in the
input image. Our method is faster than typical implementations of the active
contour algorithm, which run for at least several hundred and maybe several
thousand iterations to produce a single contour (and many initializations are
typically used), and consider many initializations.

The given contour extraction algorithm will return a contour around any input
point. As a simple method to filter bad candidate detections, we propose setting
a threshold on H inside the extracted contour.

4 Experiments

The baseline for our experiments is our previous state–of–the–art active con-
tour, edge–based contour extraction algorithm, described in [13], in which bad
extractions are rejected by an SVM. We are interested in the ability of the
homogeneity–based dynamic radial contour algorithm to pick up nuclei missed
by the baseline algorithm. Furthermore, we are interested in the significance of
these detections for cancer diagnosis.

The present algorithm extracts a contour to enclose each nuclear site. The
nuclear sites are provided by another algorithm as input to this contour extrac-
tor. Here we use a Difference of Gaussian (DoG) method. Three DoG filters are
used, to extract small, medium, and large nuclei. As in [13], the sites for the
active contour method may also be selected as peaks of a Hough transform [14].
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As for breast cancer, gastric cancer diagnosis weighs heavily on the shape and
distribution of cell nuclei [15]. Here we study a set of 588 regions of interest (ROI)
from 453 distinct slides of biopsy tissue of patients suspected of gastric cancer.
The tissues were stained by hematoxylin and eosin, and a computed selected
microscopic regions of interest, measuring 233 microns by 233 microns, or 1024
pixels by 1024 pixels at 400X objective magnification. At this magnification,
a Japanese pathologist diagnosed whether cancer appeared in each individual
ROI, and the computer was challenged to make the same decisions.

The difference in extraction methods may be seen in Figure 1. If the active
contour method is used together with a tight SVM threshold on nuclear de-
tections, as intended in [13], very few nuclei can be segmented (image (b)). If
a looser threshold is used, so that the number of outputs matches the num-
ber of outputs of the Homogeneity Splitting method overall, then a substantial
difference in quality may be seen (images (c) and (d)).

Quantitatively, we show the diagnostic importance of the different extractions
by attempting to perform cancer diagnosis using features derived from the nuclei
extracted by the present method (HS) and the method of [13] (AC). The results
reflect 3–fold cross validation over the 588 ROI set. Correlations among ROI
from the same slides are substantial, so ROI from each slide were either taken
into or omitted from each set of the partition as a unit.

(a) (b)

(c) (d)

Fig. 1. Comparison of contour extraction algorithms. (a) Original image; (b) Active
Contour detections (tight threshold); (c) Active Contour detections (loose threshold);
(d) the present algorithm (loose threshold).
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Our results are summarized in the first part of Table 2. For fair comparison,
each contour method should be compared at a threshold producing the same
number of detections. Hence Table 2 has four entries. The method of thresh-
olding the detections differs between contour methods (the AC method uses a
support vector machine on fourteen features; the HS method uses a threshold on
luminance homogeneity). At a “tight” threshold, each extractor is run on large
nuclei detections; at the loose threshold, all three DoG filters are used. At the
“tight” threshold, about 1,000 large nuclei are extracted by each method (50,000
nuclei of all sizes). At the “loose” threshold, about 270,000 nuclei (of all sizes)
are extracted. The loose threshold was not carefully tuned, but rather chosen to
exclude some obvious misdetections. The recognition rate reported in the table
is “balanced recognition”: one–half the recognition rate on ROI labeled as can-
cerous by the pathologist, plus one–half the recognition rate on ROI labeled as
non-cancerous.

Table 2. Classification results with different contour techniques

Problem Contour Threshold Recognition Rate

ROI 1. AC Tight (large nuclei) 67.2%
ROI 2. HS Tight (large nuclei) 54.0%
ROI 3. AC Loose (all nuclei) 69.4%
ROI 4. HS Loose (all nuclei) 70.8%

Gland 1. AC Loose (all nuclei) 62.0%
Gland 2. HS Loose (all nuclei) 65.7%

At the tight threshold, the AC method is clearly better at producing a few
significant high–confidence contours. At the loose threshold, the HS method per-
forms better. It produces more reliable nuclear contours when it is not acceptable
to reject many nuclei.

Gland classification. The problem of gland nuclear analysis makes it even
clearer that the HS method produces more reliable nuclear contours when it is
not acceptable to reject many nuclei. Here, a separate algorithm [16] automat-
ically extracts binary masks representing epithelia of glands. There should be
only one mask per gland, and the algorithm will select no more than three masks
per ROI.

Nuclei positions within each gland are extracted by the same DoG method as
above. Using nuclear features of the gland, we wish to decide whether the gland
comes from a cancerous ROI. Of the 453 ROI considered above, 353 have at
least one gland detection; in all, 883 glands are detected. On average, one gland
has on the order of a dozen nuclear detections.

The second part of Table 2 shows the results. Because the number of nuclei in
the gland epithelium is much smaller than the number of nuclei in the ROI, the
impact of a bad contour extraction is much greater. Accordingly, the positive
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impact of the HS method over the AC method is clearer than for ROI–based
classification.

5 Discussion

We have introduced a novel contour extraction algorithm for radial boundaries
that encloses regions by feature homogeneity, not edge strength. As a dynamic
programming–based method with bounded radial jumps, it performs in linear
time in the number of pixels to be searched for the boundary. In practice, this
may be faster than using the active contour method with many initializations
and parameter choices.

We have shown that its nuclear extractions in hematoxylin and eosin–stained
gastric tissue are comparable or better to those of a well–tuned active contour
edge–based contour extractor, in predicting cancer of an ROI. On gland classifi-
cation, where a decision must be made with just a few nuclear extractions, it is
clearly more powerful.

We believe that the homogeneity–based boundaries are better able to deal
with unclear nuclear boundaries than edge–based boundaries. Dynamic pro-
gramming allows a good global solution to be found without requiring an a
priori decision of a smoothness versus local optimality tradeoff.

Training a classifier to accept or reject nuclear extractions, such as the one
applied in the active contour method reviewed in this paper, could benefit the
dynamic radial contour extractor as well. The comparisons in this paper compare
the AC method with the benefit of such an advanced classifier, to the HS method
without this benefit (simply filtering on luminance homogeneity).

6 Appendix: Proof of Theorem 1

For i ∈ {minRadius, . . . , maxRadius}, let ρi denote the cheapest path to
(numTheta−1, i). In particular, we have ρi(numTheta−1) = i. Let f(i) = ρi(0).
If |i−f(i)| ≤ maxJump for some i, then the cheapest path to (numTheta−1, i)
may be extended to a path to (numTheta, f(i)) at finite cost, and the theorem
holds.

Otherwise, |i − f(i)| > maxJump for all i. In particular, i 
= f(i) for all i.
Then there exist a < b with f(a) > f(b); otherwise we would have

minRadius < f(minRadius) < f(minRadius + 1) < · · ·
< f(maxRadius− 1) < f(maxRadius) < maxRadius

and there are not enough integers in the range from minRadius to maxRadius
for all of these inequalities to hold simultaneously. Take such a and b.

Let s be the maximal value such that ρa( 2πs
numTheta ) > ρb( 2πs

numTheta ). Take
α = 2πs

numTheta and β = 2π(s+1)
numTheta . Then s < numTheta− 1, ρa(α) > ρb(α), and

ρa(β) ≤ ρb(β).
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Consequently,

ρa(α)− ρb(β) ≤ ρa(α) − ρa(β) ≤ maxJump (8)

and
ρb(β)− ρa(α) < ρb(β) − ρb(α) ≤ maxJump (9)

so |ρa(α)− ρb(β)| ≤ maxJump and (s, ρa(α)) is a parent to (s + 1, ρb(β)) in the
Viterbi graph. Similarly,

ρb(α)− ρa(β) < ρa(α) − ρa(β) ≤ maxJump (10)

and
ρa(β)− ρb(α) ≤ ρb(β) − ρb(α) ≤ maxJump (11)

so (s, ρb(α)) is a parent to (s+1, ρa(β)) in the Viterbi graph. Let Ca be the total
cost of the path up to ρa(α) and Cb be the total cost of the path up to ρb(α). If
Ca < Cb, then a smaller–cost path to (s+1, ρb(β)) may be obtained by redefining
ρb up to α to match ρa, contradicting the correctness of the Viterbi algorithm. If
Ca > Cb, then redefining ρa up to α to match ρb provides a cheaper path, again
a contradiction. Finally, if Ca = Cb, then ρa violated the convention of taking
the lower–indexed parent, among parents of equal cost, at β. The theorem is
proven. ��
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Abstract. In this paper, two methods for one-dimensional reduction
of data by hyperplane fitting are proposed. One is least α-percentile of
squares, which is an extension of least median of squares estimation and
minimizes the α-percentile of squared Euclidean distance. The other is
least k-th power deviation, which is an extension of least squares esti-
mation and minimizes the k-th power deviation of squared Euclidean
distance. Especially, for least k-th power deviation of 0 < k ≤ 1, it is
proved that a useful property, called optimal sampling property, holds
in one-dimensional reduction of data by hyperplane fitting. The optimal
sampling property is that the global optimum for affine hyperplane fit-
ting passes through N data points when an N−1-dimensional hyperplane
is fitted to the N-dimensional data. The performance of the proposed
methods is evaluated by line fitting to artificial data and a real image.

Keywords: hyperplane fitting, least k-th power deviations, least
α-percentile of squares, optimal sampling property, random sampling.

1 Introduction

Dimensionality reduction is an important task in data processing, and princi-
pal component analysis (PCA) is, for example, commonly used to extract an
essential structure of given data. PCA finds the subspace that maximizes the
variance of the projected data. From the Pythagorean theorem, PCA is equiva-
lent to the method of reducing the subspace that minimizes the variance of the
projected data, which is called minor component analysis (MCA) [14]. In this
paper, dimensionality reduction is considered in terms of reducing subspaces of
data. Particularly, one-dimensional reduction is discussed throughout the paper.

In one-dimensional reduction of data, regression is one of the most important
methods. In usual regression analysis, target variable is predicted by a linear
combination of explanatory variables and the coefficients of the linear combina-
tion are estimated by minimizing residuals, which are the differences between
true and predicted values of the target variable.

Least squares regression (LS ), which is the most typical regression method,
aims to minimize the sum of squared residuals. In least absolute regression [2] and
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Chebyshev regression [2], the sum of absolute residuals and the maximum of ab-
solute residuals are minimized, respectively. In those regression models, it is as-
sumed that all the explanatory variables do not contain any errors and only the
target variable contains errors. There are other regression models in which the
explanatory variables are assumed to be contaminated with errors. An example
is Deming regression [3], or orthogonal regression, which minimizes sum of least
mean squares of Euclidean distances between observed data and the fitted hyper-
plane. Deming regression is known to be equivalent to one-dimensional reduction
of data by PCA, and is closely related to the measurement error model [1,10], which
is recently investigated in statistics. Thus, hyperplane fitting by one-dimensional
reduction, which is a kind of regression, is very important in data processing.

Also detecting lines in a two-dimensional image is an important example of
one-dimensional reduction, and it is one of the most fundamental problems in
image processing. To detect lines, the Hough transformation (HT ) [4] and ran-
dom sampling consensus (RANSAC ) [7] are frequently used. The idea of HT is
estimating the parameters of lines by voting on the cells in the parameter space.
After the voting process, the parameters of lines are estimated as local maxima
of the votes, and the data points are determined which line they belong to. In
the HT, each data point is projected to a curve in the parameter space, i.e.
many cells are voted by each data point, therefore a large computational cost is
required to count the numbers of votes of all the cells in general. To overcome
this drawback, the randomized Hough transformation (RHT ) [13] is proposed. In
the RHT, two data points are randomly sampled and a line that passes through
those two points votes on the corresponding cell. Since each pair of points con-
cerns with one cell only, the computational cost is drastically reduced. In the
HT and RHT, the accuracy of detected lines depends on the resolution of cells
in the parameter space. On the other hand, the idea of RANSAC is estimating
the parameters of lines by counting the number of inliers. Many hyperplanes are
iteratively generated by random sampling of the data points, and all the data
are tested whether inlier or outlier with respect to the generated hyperplanes.
In this test, each data point is regarded as an inlier when the distance between
the data point and hyperplane is less than the given threshold. In RANSAC, the
accuracy of detected lines depends on this threshold.

In this paper, two methods for one-dimensional reduction of data by hyper-
plane fitting are proposed. One is least α-percentile of squares (LαPS), which
is an extension of least median of squares (LMedS ) estimation [12]. The other
is least k-th power deviation (LkPD), which is an extension of LS estimation.
Briefly speaking, LαPS uses the α-percentile instead of the median in LMedS,
and LkPD minimizes the sum of the k-th power deviations of errors instead of
the sum of squares of errors. The regression models based on LkPD for 1 ≤ k ≤ 2
are already discussed in the previous papers [5,6,8,9,11]. In this paper, Deming
regression by LkPD, i.e. LkPD of Euclidean distances for 0 < k ≤ 1, is con-
sidered. Especially, the optimal sampling property of LkPD is discussed. This is
a characteristic property that the global optimum for affine hyperplane fitting
passes through N data points when an N−1 dimensional hyperplane is fitted
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to the N dimensional data, and it is proved that this property always holds in
one-dimensional elimination of data by hyperplane fitting with LkPD. Based on
the optimal sampling property, an approximated optimization method for LkPD
is also proposed.

2 Hyperplane Fitting by Least k-th Power Deviations of
Euclidean Distances

This section shows that (weighted) LkPD of Euclidean distances has the optimal
sampling property when 0 < k ≤ 1.

Let x be a variable in an N -dimensional space, and x̃ = (1,x�)� be its
homogeneous coordinate. D observations of the variable and their homogeneous
coordinates are denoted by {x[d]}D

d=1, and {x̃[d]}D
d=1, respectively. The equation

of fitting affine hyperplane is written as

n0 + n�x = ñ�x̃ = 0 where ||n|| = 1, ñ = (n0,n
�)� ,

and the Euclidean distance between the d-th observation x[d] and the fitting
hyperplane is denoted by ẽ[d] = |ñ�x̃[d]| (d = 1, . . . , D). Then, weighted LkPD
is realized by minimizing the energy function

Ek =
D∑

d=1

w[d]|ñ�x̃[d]|k =
D∑

d=1

∣∣∣w 1
k

[d]ñ
�x̃[d]

∣∣∣k
subject to ||n|| = 1, w[d] > 0 (d = 1, . . . , D)

with respect to n.
When the vector n belongs to an N − 1-dimensional hypersphere, SN−1, the

vector ñ belongs to an N -dimensional cylinder (Fig. 1), R × SN−1, which is
a convex hypersurface named Q̃ in this paper. The quadratic hypersurface Q̃
is divided to convex regions by D kinds of hyperplanes x̃�

[d]ñ = 0, and these

convex pyramid

convex cylinder

convex region

Fig. 1. The intersection between convex cylinder and a pyramid



Robust Hyperplane Fitting 281

hyperplanes make hyperpyramids. To distinguish each hyperpyramid, the sign
of the hyperplane, which corresponds to the positive or negative region, is used.
By defining the sign of each hyperplane as

s[d] =

{
1 (positive region of x�

[d]n = 0)
−1 (negative region of x�

[d]n = 0) ,

each hyperpyramid can be distinguished by the sign vector s = (s1, . . . , sD),
each hyperpyramid is denoted by P(s) in this paper. Also, each divided region
of the quadratic hypersurface Q̃ is distinguished by s as the intersection of Q̃ and
P(s), and each divided region is denoted by D(s). Because both of the quadratic
hypersurface Q̃ and one of the hyperpyramid P(s) are convex regions, the region
D(s), which is the intersection of Q̃ and P(s), is also a convex region.

Let a linear transformation L be

L =
(
s[1]w

1
k

[1]x̃[1] · · · s[D]w
1
k

[D]x̃[D]

)�
∈ R

D×(N+1)

and the image of n by the linear transformation L be χ = (χ[1], . . . , χ[D])� =
Lñ ∈ R

D
+ . Then, there holds

Ek =
D∑

d=1

|χ[d]|k = ||χ||kLk
,

that is, Ek is the k-th power of Lk-norm of the vector χ. Since the vector
χ is on the image of the convex surface Q̃ by the linear transformation L, χ
also belongs to the surface of some convex region. Therefore, L(D(s)), which
is the image of D(s) by the transformation L, is the intersection of the convex
quadratic hypersurface and pyramid L(P(s)). Then, desired n is the minimizer
of the Lk-distance between the origin of the coordinate and the point on the
region L(D(s)).

On R
D
+ , the set of the point within constant Lk-distance from the origin of

the coordinate is concave when 0 < k < 1, the minimum of the Lk-distance from
the origin of the coordinate to the convex region L(D(s)) is on the boundary
of L(D(s)), which is denoted by ∂L(D(s)). Because the vector on the boundary
∂L(D(s)) is on one of the hyperplanes of the pyramid, the minimum of the
Lk-distance from the origin to the convex region ∂L(D(s)) is on the boundary
of ∂L(D(s)), which is denoted by ∂2L(D(s)). By repeating this procedure, the
minimum of the Lk-distance from the origin to the convex region L(D(s)) is
attained at one of the vertex of L(D(s)). Because at least one vertex on D(s) is
projected to the vertex of L(D(s)) which gives the minimum, then the minimum
of Ek is attained at least one of the vertex on D(s). This argument is true for
all D(s)’s, then the global optimum is attained at least one of the vertex of the
set of D(s).

Here, the vertex of D(s) is the intersection of N hyperplanes, then the esti-
mated hyperplane passes through N observed points, that is, affine hyperplane
fitting by weighted LkPD (0 < k ≤ 1) has the optimal sampling property.
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3 Random Sampling Approximation

When the hyperplane fitting criterion satisfies the optimal sampling property,
the fitting problem is reduced to combinatorial optimization of polynomial order,
that is, we can find the optimum hyperplane among DCN (< DN ) or DCN−1

(< DN−1) samplings in N − 1-dimensional hyperplane fitting for D points.
However, the number of combinations is quite large. Even for D = 100 and
N = 3, it becomes about one million combinations, for example. To reduce the
computational time, the random sampling technique can be adopted in order to
approximate sampling all the combinations.

RANSAC and LMedS are typical methods utilizing random sampling. To find
the optimum hyperplane, RANSAC tries to generate many hyperplanes by ran-
dom sampling of the data points, and each data point is checked whether an
inlier or an outlier of the generated hyperplanes. A data point is regarded as
an inlier when the distance between the data point and the hyperplane is less
than the given threshold e, and otherwise it is regarded as an outlier. Then, the
optimum hyperplane is estimated as a hyperplane which has the maximum num-
ber of inliers. On the other hand, LMedS minimizes the median of the distances
between data points and the hyperplane. LMedS does not require any prede-
fined parameter such as a threshold in RANSAC, while we cannot use LMedS
when the ratio of outliers is over 0.5 because the breakdown point of LMedS is
0.5 (50%). Therefore, in the case where the ratio of outliers is over 0.5, the me-
dian used in LMedS have to be extended to the α-percentile, which improves the
breakdown point to (100−α)%. This extension is called LαPS, (least α-percentile
of squares) in this paper. In LαPS, the value α can be regarded as a parameter,
which is an estimate of inlier-ratio. By the definition of LαPS, LMedS is repre-
sented as least 50-percentile squares (we denotes 50-LαPS in this paper), and
the minimax criterion is represented as 100-LαPS. The major difference between
RANSAC and LαPS is that RANSAC ignores the data which have larger errors
than the given threshold, and LαPS ignores top (100 − α)% data with large
errors.

Differently from these two methods, we propose a method which reduces the
influence (weight) of data with large errors. In LkPD, this is achieved by making
the power k small, and particularly k is chosen as nonnegative and less than 2
(0 ≤ k < 2). Note that making the power k smaller in LkPD corresponds to
making the threshold smaller in RANSAC and making the percentile α smaller
in LαPS. To illustrate the property of LαPS and LkPD, numerical experiments
are carried out in the next section.

4 Experiments

It is known that line fitting based on L1-norm is more robust than usual line fit-
ting based on L2-norm. However, the estimated line based on L1-norm sometimes
derives bad result because of leverage point [12]. Then to reduce this effect by
leverage point, 0.5-LkPD is applied for line fitting, for example. Figure 2 shows
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Fig. 2. Fitting results for 0.5-LkPD, 1-LkPD and 2-LkPD (LS)

line fitting for four inliers, four inliers with one outlier, seven inliers with one
outlier, and 11 inliers with one outlier, from left to right. In Fig. 2, 0.5-LkPD,
1-LkPD and 2-LkPD (LS) are denoted as red dotted line, blue dashed line and
green solid line, respectively. From Fig. 2, 0.5-LkPD reduces the effect by lever-
age point more than 1-LkPD. From this experiment, making k smaller is effective
for robust estimation.

Figure 3 shows the relation of line fitting among RANSAC (cyan dotted line),
0.01-LkPD(blue solid line), 0.5-LkPD (blue dashed line), 5-LαPS(green solid
line), LMedS (green dashed line) and LS (red dotted line). As shown in Fig. 3,
we generated 70 data points in a stepwise manner and 20 points from the Gaus-
sian distribution of its mean (130, 70)� and variance 20.0I2, where I2 is the
two-dimensional identity matrix. As seen from Fig. 3, LkPD and LαPS with
appropriate k and α can reduce the effect of outliers and detect overall trend of
the data. It is also seen that when k and α are set to very small values, these
methods can detect fine structure from the contaminated observations.

Figure 4 shows the extracting line segments by RANSAC, 5-LαPS and 0.01-
LkPD. The original 640 × 480 image is converted to an edge image by Canny
filter with Gaussian convolution function of σ = 2.0, and 4769 feature points
having the peak value in the edge image are chosen. In this paper, line segment is
assumed to consist of at least 20 points. When one line segment is estimated, the
observed points of which distance from estimated line within

√
5-pixel is regarded
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Fig. 3. Lines extraction for synthesized data: RANSAC (cyan), LkPD (blue), LαPS
(green) and LS (red)
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as inlier and removed. Then the same procedure is iteratively applied to the rest
of the observed points till no line segment is estimated. In the procedure, the
number of random trials is determined as follows: When there are n points, the
number of random trials such that at least one line is passing through two inliers

among 20 inliers in probability 1− 10−4 is approximated by
log(10−4)

log
{

1− 20C2

nC2

} .

Figure 4 shows the lines with more than 100 inliers among the extracted lines.
As argued in section 3, RANSAC, LkPD, and LαPS are similar in that they are
developed to reduce the effect of outliers. From an experimental result with a
real-image, most of line segments in the picture are detected by either methods.
As seen from Fig. 4 (middle), LαPS is suitable for line segments estimation and
it can be used instead of RANSAC or HT. It is noted that, in this experiment,
LkPD does not give the best performance. The reason why the result of LkPD
is slightly inferior to others is that LkPD considers the effect of all points, while
RANSAC and LαPS only consider the effect of the points around line segments.

Fig. 4. Comparison of lines extraction methods: RANSAC (left), 5-LαPS (middle)
and 0.01-LkPD (right)

5 Conclusion

In this paper, two methods for one-dimensional elimination of data by hyperplane
fitting are proposed: one is least k-th power deviation (LkPD) and the other
is least α-percentile of squares (LαPS). It is proved that in least k-th power
deviation of 0 < k ≤ 1, the optimum N−1-dimensional hyperplane in an N -
dimensional space is always represented by N data points, which is called the
optimal sampling property. Based on this property, an optimization method for
LkPD with random sampling is also presented.

Numerical experiments with simulated data show that LkPD and LαPS are
considerably robust against outliers with appropriate values of the parameters, k
and α, respectively. Also it is shown that LkPD and LαPS can successfully ex-
tract both local structure and global structure depending on the values of those
parameters. In line extraction experiments with a real image, LαPS is compara-
ble to RANSAC or HT, however the performance of LkPD is slightly inferior as
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compared to other two methods. This is because RANSAC and LαPS only con-
sider the points around the target line segment, but LkPD is affected by all the
points. Hence, LkPD is more suitable for extracting global or principal structure
of data than local structure. For example, in practical application of epipolar ge-
omety, estimation of the fundamental matrix is an important problem, and it
is solved by the eight-point algorithm which is regarded as hyperplane fitting.
This is an problem of extracting global structure, and a study on application of
LkPD to such a field remains as our future work.
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Abstract. In this paper, we establish a correspondence between the in-
cremental algorithm for computing AT-models [8,9] and the one for com-
puting persistent homology [6,14,15]. We also present a decremental al-
gorithm for computing AT-models that allows to extend the persistence
computation to a wider setting. Finally, we show how to combine incre-
mental and decremental techniques for persistent homology computation.

Keywords: Persistent homology, AT-model for computing homology,
cell complex.

1 Introduction

Homology is a topological invariant i.e. it is a property of an object which does
not change under continuous (elastic) transformations of the object. Homology
characterizes “holes” in any dimension (e.g. connected components, tunnels, cav-
ities, etc.) by means of cycles. Given a combinatorial object made up by basic
building blocks called cells (vertices, edges, faces, etc.), a cycle is a set of cells
that “surround” a hole or a part of the object (e.g. a closed path in 2D, a closed
path or a closed surface in 3D). Intuitively a homology class collects all cycles
that “surround” the same hole (a precise mathematical definition is given later).
The homology of a given object is then fully characterized by a basis of indepen-
dent homology classes, which in turn is characterized by identifying one cycle,
called representative cycle, for each of these classes.

Persistent homology studies homology classes and their lifetimes (persistence).
Notice that while homology characterizes an object, persistent homology char-
acterizes a sequence of growing object-instances i.e. an object together with an
ordering for the cells (called a filtration). In recent years, persistent homology
has found its way to applications, where it is mainly used to identify salient
� Partially supported by the Austrian Science Fund under P20134-N13.
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features of an object in the presence of noise. E.g. find relevant local maxima
without smoothing, compute the similarity of two objects as the similarity of
their persistence information [5,3]. What all these applications have in common
is that the object under study is fixed (e.g. one picture [3], one set of 3D sample
points [4], one scan of a bone [7], etc.).

Current sensor and recording technologies provides not just one such recording
but whole sequences over the temporal domain. Video has become ubiquitous,
with decent to good quality recordings being produced by most mobile devices
(phones, PDAs) and low priced webcams. Medical imaging is also moving from
single 2D/3D image capture to recordings over a certain time period (e.g. se-
quences of ultrasound images). One way to deal with sequences is to take each
frame separately and do all computation independently. However, due to tempo-
ral continuity, the same object can look very similar in consecutive frames and
the overlap in the image can be high. Moreover, temporal information present in
the sequence can help to identify salient features, as ones having a long lifetime
not just over the filtration in the same frame, but also over multiple frames.
There is no guarantee of inclusion or growing of objects in consecutive frames,
some parts might “disappear” and some might “appear”. A theory of decre-
mental persistence, and incremental-decremental algorithms are needed for such
arbitrary changes in the object.

In this paper we describe a further step in providing such a theory. First,
we establish a correspondence between the incremental algorithm for computing
AT-models [8,9] and the one for computing persistent homology [6,14,15]. Then,
we provide a decremental algorithm for computing AT-models, suitable for ex-
tending the computation of persistence with the combination of an incremental-
decremental technique.

2 Background

We consider Z/2 as the ground ring throughout the paper.
Roughly speaking, a cell complex is a general topological structure by which

a space is decomposed into basic elements (cells) of different dimensions, which
are glued together by their boundaries (see a formal definition of CW-complex
in [12]). If the building blocks (cells) of a cell complex are convex polytopes
(vertices, edges, polygons, polyhedra, ...) then the cell complex is a polyhedral
cell complex. Given a (polyhedral) cell complex K, a proper face of σ ∈ K is a
face of σ whose dimension is strictly less than the one of σ. A facet of σ is a
proper face of σ of maximal dimension. A maximal cell of K is a cell of K which
is not a proper face of any other cell of K.

For any graded set S = {Sp}p (subscript is used to denote the dimension of the
elements), one can consider formal sums of elements of Sp = {s1

p, . . . , s
mp
p }, for

a fixed p, which are called p-chains, and which form an abelian group, denoted
by Cp(S), with respect to the component-wise addition (mod 2). Therefore, a p-
chain c is c =

∑m
i=1 aisi

p, where ai ∈ Z/2 for i = 1, ..., m. This way, si
p ∈ c if ai =

1. The collection of all the chain groups associated to S, {Cp(S)}p, is called also
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chain group, for simplicity. A chain complex is a collection C(S) = {Cp(S), ∂S
p }p,

where ∂S = {∂S
p : Cp(S) → Cp−1(S)} is a square zero homomorphism (i.e.,

∂p−1∂p ≡ 0) called the boundary operator. The boundary of a q-cell is the formal
sum of all its facets. It is extended to q-chains by linearity. A homomorphism
f = {fp : Cp(S) → Cp(S′)}p is a chain map if fp−1∂

S
p ≡ ∂S′

p fp, for all p. For
simplicity, we sometimes write f : C(S) → C(S′) instead of f = {fp : Cp(S) →
Cp(S′)}p and f(σ) instead of fp(σ). A p-chain a ∈ Cp(S) is called a p-cycle if
∂S

p a = 0. If a = ∂S
p+1b for some b ∈ Cp+1(S) then a is called a p-boundary. We

say that two p-cycles a and b are homologous if there exists a (p + 1)-chain
c ∈ Cp+1(S) such that a = b + ∂S

p+1c. Define the p-th homology group to be the
quotient group of p-cycles mod p-boundaries denoted by Hp(S). Each element
[a] of Hp(S) is a quotient class obtained by adding each p-boundary to a given
p-cycle a called a representative cycle of the homology class [a]. The homology
of S is the chain group H(S) = {Hp(S)}p. See [13] for further details.

3 AT-Model

An algebraic topological (AT) model (implicitly used in [8] and first defined in
[9]) for a given cell complex K not only permits to compute homology but also
finer topological invariants such as cohomology or the cohomology ring.

An AT-model for a cell complex K is an algebraic set (f, g, φ, K, H), where:

– K is the cell complex.
– H ⊆ K describes the homology of K, in the sense that it contains a distinct

p-cell for each p-homology class of a basis, for all p. The cells in H are
called surviving cells. Since ∂H

p ≡ 0 for all p, C(H) is simply the chain group
{Cp(H)}p. Moreover, C(H) (the chain group generated by H) andH(K) (the
homology of K) are isomorphic [8,9]. Therefore, every cell of H corresponds
to a homology class generator.

– g = {gp : Cp(H)→ Cp(K)}p is a chain map that maps each p-cell h in H to
one representative cycle gp(h) of the corresponding class [gp(h)] in Hp(K).

– f = {fp : Cp(K)→ Cp(K)}p is a chain map that maps each p-cell x in K to
a sum of surviving cells, satisfying that if a, b ∈ Cp(K) are two homologous
p-cycles then fp(a) = fp(b). Moreover, fg(x) = x for any x ∈ H .

– φ = {φp : Cp(K) → Cp+1(K)}p is a chain homotopy (see [13]) from gf to the
identity homomorphism of C(K). Intuitively φ(σ) returns the cells needed
to be contracted to “bring” σ to a surviving cell.

Fig. 1 is an example of an AT-model for a single pixel codified as a cubical
complex.

In order to establish a connection between the existing algorithms for com-
puting AT-models [9] and the theory of persistent homology [6,14,15], we add
two extra-conditions which ensure that the basis for H(Ki) is maintained
implicitly through the cells in Hi (see Section 5 for more details):

(P1) Annihilation: φp+1φp ≡ 0, fp+1φp ≡ 0 and φpgp ≡ 0.
(P2) If h ∈ K is a surviving p-cell then fp(h) = h and φp(h) = 0.
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Fig. 1. AT-model for a single pixel

Lemma 1. The extra-conditions (P1) and (P2) are satisfied by the incremental
and decremental algorithm for computing AT-models presented in this paper.

4 Algorithms for Computing AT-Models

Now, we give an intuitive approach to the incremental algorithm for computing
AT-models given in [8] in order to establish an interpretation in terms of per-
sistence, and present a decremental algorithm for computing AT-models with
the aim of extending the computation of persistent homology to a more general
setting.
Incremental AT-model: Let K be a cell complex with a full ordering of its
cells, {σ1, . . . , σn}, satisfying that if σi is a face of σj then i < j. Consider a
filtration of K, i.e. a nested sequence of subcomplexes, ∅ = K0 ⊆ K1 ⊆ K2 ⊆
· · · ⊆ Kn such that Ki = {σ1, . . . , σi}. All the proper faces of σi are in Ki−1.

First, define an AT-model (f1, g1, φ1, K1, H1) for K1: H1 := {σ1}, f1(σ1) :=
σ1, g1(σ1) := σ1 and φ1(σ1) := 0. Second, successively add a new cell σi, for i =
2, . . . , n, computing a new AT-model (f i, gi, φi, Ki, Hi) for Ki = Ki−1 ∪ {σi},
as follows: Initially, Hi := Hi−1; f i(μ) := f i−1(μ) and φi(μ) := φi−1(μ), for any
μ ∈ Ki different from σi; gi(h) := gi−1(h), for any h ∈ Hi. Consider f i−1∂(σi)
to detect if σi will create or destroy a homology class:

(1) If f i−1∂(σi) = 0 (a new homology class is created) then, Hi := Hi−1 ∪{σi},
f i(σi) := σi, gi(σi) := σi + φi−1∂(σi) and φi(σi) := 0.

(2) If f i−1∂(σi) 
= 0 (a homology class is destroyed), let j be the largest index
such that σj ∈ f i−1∂(σi). T̊hen, observe that j < i and dim σj =dim σi−1.
Then, Hi := Hi−1 \ {σj}, f i(σi) := 0, φi(σi) := 0.
Besides, two operations are applied to all cells x ∈ Ki such that σj ∈ f i−1(x):
• Update f : f i(x) := f i−1(x)+f i−1∂(σi). Intuitively, it “propagates” over

σi the information for f of the cells in ∂σi and cancels out σj .
• Update φ: φi(x) := φi−1(x) + σi + φi−1∂(σi). Roughly speaking, σi +

φi−1∂(σi) is a connection between the old and the new surviving cell(s).

Relation to persistent homology: The algorithm for computing persistent
homology that appears in [6,14,15], marks a k-cell σi as positive if it belongs
to a k-cycle in C(Ki) (σi creates a new homology class at time i) and negative
otherwise (σi destroys the homology class created before by σj for j < i and,
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in this case, σi is paired with σj). The following lemmas show the equivalence
between these concepts and the incremental AT-model above.

Lemma 2. σi belongs to a k-cycle in C(Ki) if and only if f i−1∂(σi) = 0.

Proof. If f i−1∂(σi) = 0, then ∂σi = ∂φi−1(∂σi). Therefore, σi + φi−1∂(σi)
is a k-cycle and σi belongs to it. Conversely, if σi belongs to a k-cycle a in
C(Ki), then a = σi + b where b is a k-chain in C(Ki−1). Since ∂a = 0 then
f i−1(∂σi) = f i−1(∂b). Since f i−1(∂b) = ∂f i−1(b) = 0 then f i−1(∂σi) = 0. ��
By Lemma 2, the fact of marking a cell σi as positive is equivalent to holding
condition f i−1∂(σi) = 0 in the incremental algorithm for computing AT-models.

Following the theory of persistent homology, a canonical cycle ci is a non-
bounding cycle that contains σi but no other positive cell.

Lemma 3. If σi is positive, then gi(σi) = σi + φi−1∂(σi) is a canonical cycle.

At time i, the youngest cell σj ∈ Γ (∂σi) is paired with σi, identifying σi as
the destroyer of the homology class created by σj . Once one has the pairing of
positive and negative cells, computing the persistent Betti numbers is trivial. To
measure the life-time of a non-bounding cycle, one has to find when the cycle’s
homology class is created by a positive cell and destroyed by a negative cell.
To detect these events, the collection of positive k-cells Γ (d) for a given cycle d
such that d and

∑
σg∈Γ (d) cg are homologous, is obtained using the incremental

method for computing AT-models as follows:

Lemma 4. Any k-cycle d in C(Ki−1) is homologous to gi−1f i−1(d). Moreover,
Γ (d) = f i−1(d) and gi−1f i−1(d) =

∑
σg∈Γ (d) cg.

Decremental AT-model: Let (f, g, φ, K, H) be an AT-model for a cell complex
K satisfying the extra-conditions (P1) and (P2). Let σ be a maximal cell of K.
Then an AT-model for K ′ = K \ {σ} is constructed as follows:

Algorithm 1. Initially, H ′ := H, g′(h) := g(h) for all h ∈ H ′, f ′(x) := f(x)
and φ′(x) := φ(x) for all x ∈ K ′.

(1) If there exists β ∈ H such that σ ∈ g(β) then σ destroys the homology class
[g(β)] created before by β. Therefore, H ′ := H \ {β}; f ′(x) := f(x) + β
if β ∈ f(x) and x ∈ K ′; g′(h) := g(h) + g(β) if σ ∈ g(h) and h ∈ H ′;
φ′(y) := φ(y) + g(β) if σ ∈ φ(y) and y ∈ K ′.

(2) Otherwise, since σ ∈ φ∂σ, there exists μ ∈ ∂σ, μ 
∈ H, such that σ ∈ φ(μ).
Then μ creates a new homology class [g′(μ)]. Therefore: H ′ := H ∪ {μ};
g′(μ) := gf(μ) + ∂φ(μ). f ′(x) := f(x) + μ + f(μ) and φ′(x) := φ(x) + φ(μ)
if σ ∈ φ(x) and x ∈ K ′.

In order to satisfy the following proposition, the formulas for f ′ and φ′ in step
(2) above are different to the ones given in [9].

Proposition 1. The output of Alg. 1, (f ′, g′, φ′, K ′, H ′), is an AT-model for
K ′ = K \ {σ} satisfying the extra-conditions (P1) and (P2).
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Proof. Proof of step (1) in Alg. 1 is given in [9]. The verification of the rest of
the properties follows a similar strategy and is left to the reader. ��

5 Incremental-Decremental Algorithm for Computing
AT-Models and Persistent Homology

Now, let ∅ = K0 ↔ K1 ↔ · · · ↔ Kn be a sequence of cell complexes (that we
call a zig-zag filtration), such that every two consecutive complexes differ by a
single cell, i.e. either Ki = Ki−1 ∪ {σ} or Ki = Ki−1 \ {σ}. Let {σ1, . . . , σm},
m ≤ n, be the ordered set of all the cells added in a given zig-zag filtration
such that if i < j then σi was added before σj to the filtration. Then, one can
consider the sequence of homology groups H(K0) ↔ H(K1) ↔ · · · ↔ H(Kn)
where the connecting homomorphisms are induced by inclusion.

Incremental-decremental algorithm: Initially, H1 := {σ1}, f1(σ1) := σ1,
g1(σ1) := σ1 and φ1(σ1) := 0. At time i, a cell σ is added or removed. Then,
use the incremental or decremental algorithm presented here, respectively, for
computing the AT-model (f i, gi, φi, Ki, Hi). Two cases can occur:

(1) A homology class is created by a positive cell μ. If Ki = Ki−1 ∪ {σ} then
μ := σ. If Ki = Ki−1 \ {σ}, then μ := σj where σj is the youngest cell in
∂σ such that σ ∈ φi−1(σj). The cell μ is added to Hi−1 to get Hi.

(2) A homology class represented by a positive cell σj is destroyed by a negative
cell σk, j < k ≤ i. If Ki = Ki−1 ∪ {σ} then σk := σ and σj is the youngest
cell in f i−1∂(σ). If Ki = Ki−1 \ {σ}, then σk := σ and σj is the youngest
cell in Hi−1 such that σk ∈ gi−1(σj). The cell σj is removed from Hi−1 to
get Hi.

If a cell μ creates a homology class at time j and it is destroyed at time i,
j < i, then a horizontal line from (j, �) to (i, �) is added to the corresponding
barcode (see [2]); If a cell μ creates a homology class at time i and it survives
along the process then a horizontal line from (i, �) to (∞, �) is added, where � is
the index of the cell μ in the given ordering of the cells. See examples of barcodes
using incremental-decremental algorithm for computing AT-models in Fig. 2, 3,
4. See Fig. 5 as an example of application with digital images.

Fig. 2. Symmetric zig-zag filtration and barcode
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Fig. 3. Non-symmetric zig-zag filtration and barcode

Fig. 4. Example of zig-zag filtration and barcode

Fig. 5. Example of application. Each color refers to one connected component
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6 Future Work

The proposed method is able to deal with a general filtration, allowing randomly
adding or removing a cell. This is different from both standard persistence and
zigzag persistence [2], which compute the filtration from a single scalar function.
A correspondence between the algorithms presented here and the one given in
[2] is left as a future work.

The presented algorithm is valid for any dimension but with Z/2 domain; how
can persistence for integer homology be defined? The results given in [10] may be
used to try to find the answer. Since the computation of AT-models allows the
computation of finer invariants than homology such as the cohomology ring [8],
how could we deal with persistence of other (finer) topological invariants? We
also plan to deal with the problem of extending persistence to other geometrical
operations such as face removal, simplicial collapse and edge contractions using
AT-models by means of the initial results given in [11].
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Abstract. In content-based image retrieval a major problem is the pres-
ence of noisy shapes. It is well known that persistent Betti numbers are
a shape descriptor that admits a dissimilarity distance, the matching
distance, stable under continuous shape deformations. In this paper we
focus on the problem of dealing with noise that changes the topology
of the studied objects. We present a general method to turn persistent
Betti numbers into stable descriptors also in the presence of topological
changes. Retrieval tests on the Kimia-99 database show the effectiveness
of the method.

Keywords: Multidimensional persistent homology, Hausdorff distance,
symmetric difference distance.

1 Introduction

Persistence is a theory for studying objects related to computer vision and com-
puter graphics, by adopting different functions (e.g., distance from the center of
mass, distance from the medial axis, height, geodesic distance, color mapping) to
measure the shape properties of the object under study (e.g., roundness, elonga-
tion, bumpiness, color). The object, considered as a topological space, is explored
through the sequence of nested sub-level sets of the considered measuring func-
tion. A shape descriptor, called a persistent homology group, can be constructed
by encoding at which scale a topological feature (e.g., a connected component,
a tunnel, a void) is created, and when it is annihilated along this filtration. For
application purposes, these groups are further encoded by considering only their
dimension, yielding a parametrized version of Betti numbers, known in the lit-
erature as persistent Betti numbers [14], a rank invariant [8], and, for the 0th
homology, a size function [19].

In the literature, a large number of methods for shape matching has been
proposed, such has the shape-context [1], the shock graph [17], and the inner
distance [5], to name a few. Persistent Betti numbers are shape descriptors be-
longing to the class of shape-from-functions methods which are widely reviewed
in [4].
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The stability of persistent Betti numbers functions (hereafter, PBNs, for
brevity) is quite an important issue, every data measurement being affected by
noise. The stability problem involves both stability under perturbations of the
topological space that represents the object, and stability under perturbations
of the function that measures the shape properties of the object.

The problem of stability with respect to perturbations of the measuring func-
tion has been studied in [10] for scalar-valued measuring functions. For vector-
valued measuring functions, the multidimensional matching distance between
PBNs is introduced in [6], and is shown to provide stability in [9]. For the case
of 0th homology, this problem is treated in [12] and [3] for scalar- and vector-
valued functions, respectively.

In this paper we consider the problem of stability of PBNs with respect to
changes of the topological space. This topic has been studied in [11] for sub-
level sets of smooth functions satisfying certain conditions on the norm of the
gradient. Unfortunately these conditions seem not to be satisfied in a wide variety
of situations common in object recognition, such as point cloud data, curves in
the plane, domains affected by salt & pepper noise.

We propose a general approach to the problem of stability of PBNs with
respect to domain perturbations that applies to more general domains, i.e. com-
pact subsets of R

n. Moreover, according to the type of noise affecting the data,
we propose to choose an appropriate set distance to measure the domain per-
turbation (for example, the Hausdorff distance in case of small position errors,
the symmetric difference pseudo-distance in the presence of outliers). The core
of our approach is to choose an appropriate continuous function to represent the
domain, so that the problem of stability for noisy domains with respect to a given
set distance can be reduced to that of stability with respect to changes of the
functions. This is achieved by substituting the domain K with an appropriate
function fK defined on a fixed set X containing K. Assuming we were interested
in the shape of K, as seen through a measuring function ϕ|K : X → R

k, we
actually study the function Φ : X → R

k+1, with Φ = (fK ,ϕ). Persistent Betti
numbers of Φ can be compared using the multidimensional matching distance,
thus obtaining robustness of PBNs under domain perturbations.

In particular, we use this strategy when sets are compared by the Hausdorff
distance and by the symmetric difference pseudo-distance. In both these cases
we show stability results (Theorems 1 and 3). Moreover we show the relation
existing between the shape of K as described by ϕ|K and the shape described
by Φ = (fK ,ϕ) (Theorem 2).

Finally, we conclude our paper presenting some experiments in which our
method is tested on the Kimia-99 database [16], using as query shapes noisy
versions of the original shapes.

2 Preliminaries on PBNs

Persistence may be used to construct shape descriptors that capture both geo-
metrical and topological properties of objects K ⊂ R

n. Geometrical properties
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of K are studied through the choice of a function ϕ = (ϕi) : K → R
k, each com-

ponent ϕi describing a shape property. The function ϕ is called a k-dimensional
measuring (or filtering) function. Topological properties of K as seen through ϕ
are studied by considering sub-level sets K〈ϕ � u 〉 = {x ∈ K : ϕi(x) ≤ ui, i =
1, . . . , k}. For u = (ui),v = (vi) ∈ R

k with ui ≤ vi, (briefly, u � v), the sub-level
set K〈ϕ � u 〉 is contained in the sub-level set K〈ϕ � v 〉. A classical transform
of algebraic topology, called homology, provides topological invariants. Working
with homology coefficients in a field, it transforms topological spaces into vector
spaces and continuous maps (e.g., inclusions) into linear maps. This leads to the
following definition.

Definition 1 (Persistent Betti Numbers). Let q ∈ Z. Let π
(u,v)
q : Ȟq(K〈ϕ �

u〉) → Ȟq(K〈ϕ � v〉) be the homomorphism induced by the inclusion map π(u,v) :
K〈ϕ � u〉 ↪→ K〈ϕ � v〉 with u � v, where Ȟq denotes the qth Čech ho-
mology group. The qth persistent Betti number function of ϕ is the function
βϕ : {(u,v) ∈ R

k×R
k : u ≺ v} → N∪{∞} defined as βϕ(u,v) = dim imπ

(u,v)
q .

If K is a triangulable space embedded in some R
n, then βϕ(u,v) < +∞, for

every u ≺ v and every q ∈ Z [7]. Clearly, u ≺ v means ui < vi for i = 1, . . . , k.
In order to get a dissimilarity measure between the shapes described by two

PBNs, in the case of scalar-valued measuring functions, we can use the match-
ing distance dmatch, also known as the bottleneck distance between persistence
diagrams [10]. In the case of vector-valued measuring functions, we can utilize
the foliation method to obtain the following distance via a reduction to the case
of scalar-valued measuring functions, as described in [6].

Definition 2. The distance Dmatch between the PBNs of two vector-valued mea-
suring functions ϕ,ψ : K → R

k is defined as follows:

Dmatch(βϕ, βψ) = sup
(l,b)∈Admk

min
i

li · dmatch

(
βFϕ(l,b)

, βGψ(l,b)

)
,

where Admk = {(l, b) ∈ R
k × R

k : li > 0,
∑k

i=1 l2i = 1,
∑k

i=1 bi = 0}, Fϕ(l,b) :

K → R, Fϕ(l,b)(x) = maxi=1,...,k

{
ϕi(x)−bi

li

}
, and Gψ(l,b) : K → R, Gψ(l,b)(x) =

maxi=1,...,k

{
ψi(x)−bi

li

}
.

The key property of Dmatch is that it inherits stability with respect to perturba-
tions of the measuring function from the stability of dmatch assuming ϕ,ψ only
continuous [9].

3 Stability of PBNs with Respect to Noisy Domains

Our method to achieve stability of PBNs with respect to changes of the topolog-
ical space K even under perturbations that change its topology, is to consider
K embedded in a larger space X in which K and its noisy version are similar
with respect to some metric.
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Next we substitute the set K with an appropriate function fK defined on X , so
that the perturbation of the set K becomes a perturbation of the function fK . As
a consequence, instead of studying the shape of K as seen through a measuring
function ϕ|K : K → R

k, we study a new measuring function Φ : X → R
k+1, with

Φ = (fK ,ϕ). PBNs of Φ can be compared using the multidimensional matching
distance in a stable way, as a consequence of stability with respect to functions
perturbations. The key issue here is that we can prove that the PBNs of Φ are
still descriptors of the shape of K.

The proofs of the results presented in this section can be found in [15].

3.1 Comparison of Sets

A frequently used dissimilarity measure in classical set theory is the Hausdorff
distance. If K1, K2 are non-empty compact subsets of R

n, the Hausdorff distance
can be defined by

δH(K1, K2) = max{max
x∈K2

dK1(x), max
y∈K1

dK2(y)},

where dK1 and dK2 denote the distance functions from K1 and K2, respectively.
The Hausdorff distance plays an important role in object recognition because

it is quite resistant to small position errors such as those that may occur with
feature extraction methods, but it is sensitive to outliers.

The symmetric difference pseudo-metric overcomes the problem of outliers.
Denoting by μ the Lebesgue measure on R

n, the symmetric difference pseudo-
metric is defined between two measurable sets A, B with finite measure by

d�(A, B) = μ(A�B)

where A�B = (A ∪B) \ (A ∩B).

3.2 Stability with Respect to Hausdorff Distance

In order to achieve stability under set perturbations that are measured by the
Hausdorff distance, we can take the function fK equal to the function distance
from K as the following result shows.

Theorem 1. Let K1, K2 be non-empty closed subsets of a triangulable subspace
X of R

n. Let dK1 , dK2 : X → R be their respective distance functions. More-
over, let ϕ1,ϕ2 : X → R

k be vector-valued continuous functions. Then, defining
Φ1,Φ2 : X → R

k+1 by Φ1 = (dK1 ,ϕ1) and Φ2 = (dK2 ,ϕ2), the following in-
equality holds:

Dmatch (βΦ1 , βΦ2) ≤ max {δH(K1, K2), ‖ϕ1 −ϕ2‖∞} .

In plain words, Theorem 1 states that small changes in the domain and in the
measuring function imply small changes in the PBNs, i.e. the shape descriptors.

The next result shows that the PBNs of Φ still provide a shape descriptor for
K as seen through ϕ|K .
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Theorem 2. Let K be a non-empty triangulable subset of a triangulable sub-
space X of R

n. Moreover, let ϕ : X → R
k be a continuous function. Setting

Φ : X → R
k+1, Φ = (dK ,ϕ), for every u,v ∈ R

k with u ≺ v, there exists a real
number b̂ > 0 such that, for any b ∈ R with 0 < b ≤ b̂, there exists a real number
â = â(b), with 0 < â < b, for which

βϕ|K (u,v) = βΦ ((a,u), (b,v)) ,

for every a ∈ R with 0 ≤ a ≤ â. In particular,

βϕ|K (u,v) = lim
b→0+

βΦ ((0,u), (b,v)) .

In other words, Theorem 2 ensures that we can recover the PBNs of ϕ|K , i.e.
a description of the shape of K as seen by ϕ, from the PBNs of Φ, simply by
passing to the limit.

3.3 Stability with Respect to the Symmetric Difference
Pseudo-Distance

In order to achieve stability under set perturbations that are measured by the
symmetric difference pseudo-distance, we can use as function fK a function
obtained convolving the characteristic function of K with that of a ball. More
precisely, let λε

K : R
n → R, with ε ∈ R, ε > 0, be defined as

λε
K(x) = μ(Bε)−1 ·

∫
y∈Bε(x)

χK(y) dy

where Bε(x) denotes the n-ball centered at x with radius ε, Bε = Bε(0), and
χK denotes the characteristic function of K. In this case we have the following
stability result.

Theorem 3. Let K1, K2 be non-empty closed subsets of a triangulable subspace
X of R

n. Moreover, let ϕ1,ϕ2 : X → R
k be vector-valued continuous functions.

Then, defining Ψ ε
1,Ψ

ε
2 : X → R

k+1 by Ψ ε
1 = (−λε

K1
,ϕ1) and Ψ ε

2 = (−λε
K2

,ϕ2),

the following inequality holds: D
(
βΨε

1
, βΨε

2

) ≤ max
{

d�(K1,K2)
μ(Bε)

, ‖ϕ1 −ϕ2‖∞
}

.

4 Experimental Results

In order to demonstrate the effectiveness of the approach presented here, we
tested the method on the Kimia data set of 99 shapes [16], which are shown
in Table 1. The dataset is classified in nine categories with 11 shapes in each
category.

Each of the shapes has been corrupted by adding salt & pepper noise to a
neighborhood of the set of its black pixels, as shown for some instances in
Figure 2(Top). Salt & pepper noise is a form of noise typically seen on im-
ages, usually caused by errors in the data transmission. It appears as randomly
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Table 1. Some instances from the database of 99 shapes with 9 categories and 11
shapes in each category used in our experiments. The complete database can be found
in [16].

Table 2. Top: Shapes with salt & pepper noise. Bottom: The same shapes after mor-
phological opening.

occurring white and black pixels, the percentage of pixels which are corrupted
quantifying the noise. For each image, the set of black pixel of the image obtained
by adding salt & pepper noise as in Figure 2(Top) is close to the set of black
pixels of the original image with respect to the symmetric difference distance.

Salt & pepper noise can partially be removed by applying a morphological
opening, thus obtaining shapes such as those in Figure 2(Bottom). The set of
black pixels in the images so obtained is close to the set of black pixels of the
original image with respect to the Hausdorff distance.

In both cases the topology of the set of black pixels in the noisy images is
very different from that of the original images.

Three retrieval tests from the Kimia dataset of Table 1 were performed.
In order to provide a point of reference, the first retrieval test was performed

without noise by matching each shape in the Kimia-99 dataset against every
other shape in the database.

In the second retrieval test we used as models to be compared with all the
shapes of the Kimia-99 database, the 99 images obtained by adding the salt &
pepper noise and performing the morphological opening.

Finally, we compared the images corrupted by the salt & pepper noise with
all the original images.

In all cases, ideal result would be that the 11 closest matches (including the
queried model itself) all be of the same category as the query shape. The actual
results we obtained are reported in Table 3. For each experiment, a string of
11 numbers describes the performance rate, the nth number corresponding to
the rate at which the nth nearest match was in the same category as the model.
This performance test has been applied to retrieval experiments from the Kimia-
99 database by several authors testing their methods (see, e.g., [2,13,16,18,20]).
However, our results are not directly comparable with theirs since we aim at a
method tolerant under noise that modifies the shape topology.
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Table 3. The retrieval rates of our method for the Kimia-99 database

Experiment 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

without noise 99 95 91 88 85 82 80 76 63 53 40

with noise after opening 99 95 88 82 81 75 71 69 60 42 39

with noise without opening 99 91 87 78 76 71 69 62 57 45 38

We now describe how we obtained the results of Table 3. In each case we have
used only the persistence diagrams of zeroth homology (a.k.a. size functions).
Black pixels of each image represent the compact set K under study, respectively,
whereas the black and white pixels of the bounding box constitute the ambient
set X . A graph structure based on the local 8-neighbors adjacency relations of
the digital points is used in order to topologize the images.

In the first experiment, without noise, for each shape we computed three per-
sistence diagrams corresponding to the functions ϕ0, ϕ1, ϕ2 : X → R restricted
to the set of black pixels K, where ϕ0 is equal to minus the distance from the
centroid of K, and ϕ1, ϕ2 are equal to minus the distance from the first and
second axis of inertia of K, respectively.

In the second experiment, the query shapes were corrupted by noise and
partially cleaned by the morphological opening. For each shape we computed 72
persistence diagrams: for each 2-dimensional function Φ0 = (dK , ϕ0) : X → R

2,
Φ1 = (dK , ϕ1) : X → R

2, Φ2 = (dK , ϕ2) : X → R
2, where ϕ0, ϕ1, ϕ2 are as

before and dK is the distance from K, we obtain 24 persistence diagrams by
considering the restriction of the associated Betti numbers to the planes of the
foliation corresponding to the parameters b = (b,−b) with b = 10, 13, 16 and
l = (cos θ, sin θ) with θ = 10◦, 20◦, . . . , 80◦. The rationale behind these choices
for b is that they ensure cooperation of dK and ϕi in the function Fϕi

(l,b).
In the third experiment, the query shapes were corrupted by noise and no

preprocessing was performed. For each shape we considered three 2-dimensional
functions: Ψ0 = (−λε

K , ϕ0) : X → R
2, Ψ1 = (−λε

K , ϕ1) : X → R
2, Ψ2 =

(−λε
K , ϕ2) : X → R

2, where ϕ0, ϕ1, ϕ2 are as before and λε
K is the convolution

of the characteristic function of K with that of the square of radius ε = 10. By
taking the restriction of the associated PBNs to the planes of the foliation cor-
responding to the parameters b = (b,−b) with b = 3, 5, 7, 9 and l = (cos θ, sin θ)
with θ = 10◦, 20◦, . . . , 80◦, for each shape we obtain 96 persistence diagrams.
The motivation for these choices for b is the same as before.

In all three experiments persistence diagrams associated with each function (i.e.
ϕ0, ϕ1, ϕ2 in the first experiment,Φ0,Φ1,Φ2 in the second one, and Ψ0,Ψ1,Ψ2 in
the third one) were compared using the Hausdorff distance, as a lower bound
of the matching distance to speed up computations. Next, these distances were
normalized with mean equal to 0 and standard deviation equal to 1 so to obtain
comparable values for different functions. Finally, as a dissimilarity measure
between two shape, we took the sum of the normalized Hausdorff distances.
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Abstract. In this work, we propose a Human Activity Prediction (HAP) system 
using activity sequence spanning trees constructed from a life-log created by a 
video sensor-based daily Human Activity Recognition (HAR) system using 
time-sequential Independent Component (IC)-based depth silhouette features 
with Hidden Markov Models (HMMs). In the daily HAR system, the IC fea-
tures are extracted from the collection of the depth silhouettes containing vari-
ous daily human activities such as walking, sitting, lying, cooking, eating etc. 
Using these features, HMMs are used to model the time sequential features and 
recognize various human activities. The depth silhouette-based human activity 
recognition system is used to recognize daily human activities automatically in 
real time, which creates a life-log of daily activity events. In this work, we pro-
pose a method for human activity prediction using fixed-length activity se-
quence spanning trees based on the life-log. Utilizing the consecutive activities 
recorded in an activity sequence database (i.e. life-log)  for a specific period of 
time of each day over a period such as a month, the fixed-length spanning trees 
can be constructed for the sequences starting with each activity where the leaf 
nodes contain the frequency of the fixed-length consecutive activity sequences. 
Once the trees are constructed, to predict an activity after a sequence of activi-
ties, we traverse the spanning trees until a path up to the previous node of the 
leaf nodes is matched with the testing pattern. Finally, we can predict the next 
activity based on the highest frequency of the leaf nodes along the matched 
path. The prediction experiments over the computer simulated data which is 
based on the daily logs show satisfactory results. Our video sensor-based hu-
man activity recognition and prediction systems can be utilized for practical ap-
plications such as smart and proactive healthcare. 

Keywords: PCA, ICA, LDA, HMM, Spanning Tree, Human Activity  
Recognition, Human Activity Prediction. 
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1   Introduction 

In the recent years, Human Activity Recognition (HAR) is getting considerable atten-
tion among the researchers of Human Computer Interaction (HCI) [1]-[3]. So far, in 
the video-based HAR, binary silhouettes from RGB activity videos are the most 
commonly employed from which useful features are derived [4], [5]. In [4] and [5], 
Uddin et al proposed local features from the binary silhouettes via Independent Com-
ponent Analysis (ICA) to recognize different human activities.  

However, binary silhouettes are not efficient enough to describe human body prop-
erly in the activity videos due to its two-level flat pixel intensity distribution although 
they have been extensively utilized. Depth values can represent the human body better 
than the binary representation by differentiating the body parts by means of different 
intensity values [6], [7]. With a depth silhouette-based real-time HAR system, one can 
recognize various daily human activities such as walking, eating, lying, sitting, cook-
ing etc. Thus, a HAR system acts as a life-log agent that logs what activities a human 
subject performs everyday in a specific time. There have been a few attempts to create 
a log a person’s life in different research areas [8], [9]. Using the human activity log 
information, many researchers have tried to predict human activities [10], [11]. In 
[10], the authors proposed a behavior prediction system to support daily lives where 
the behaviors in a daily life were recorded with some embedded sensors, and the pre-
diction system learned the characteristic patterns that would be followed by the be-
haviors to be predicted. The prediction system observes daily behaviors with sensors 
and outputs the prediction of future behaviors based on some rules. For their experi-
ments, the authors applied 1,250 rules for prediction. In another work [11], the au-
thors focused on the prediction of the progression of a particular activity on the basis 
of a 24-hour period to detect an unexpected event which could indicate a change in a 
health condition. In general, humans habitually repeat the same kind of sequential 
patterns every day and hence, the contiguous activity sequences can be focused for 
efficient Human Activity Prediction (HAP).  

In this work, we propose an activity sequence spanning tree-based HAP system us-
ing life-log created through a real-time depth silhouette-based HAR system. Then, we 
build fixed-length activity spanning trees containing the frequency of the contiguous 
activity sequences. Every node in the tree represents an activity. After recognizing 
some contiguous activities automatically by a HAR system in real-time, we predict 
the next activity going to be performed by means of the activity spanning tree infor-
mation. Thus, we traverse the tree for matching the contiguous activity sequence for 
prediction. Along with that matched path in the tree, there could be more than one leaf 
nodes. Then, considering the leaf node with the highest frequency in the matched path 
in a tree, we predict the next activity going to be performed. With the depth-based 
HAR system, we have performed validation with the simulated data to test our predic-
tion system. 

The remaining sections of our paper are structured as follows. Section 2 describes the 
methodology of HAR system. Section 3 shows the basic steps to create a life-log using 
our HAR system. Section 4 represents the spanning tree-based HAP. Section 5 deals 
with the experiments and results. At last, Section 6 provides the concluding remarks. 
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2   Depth Silhouette-Based Human Activity Recognition 

In the depth silhouette-based HAR, the process starts with depth silhouette extraction 
from the time sequential activity video images. The RGB and depth images of five 
home activities including eating, lying, sitting, cooking, and walking are acquired by 
ZCAMTM (3DV Systems Ltd) [12]. Fig. 1 demonstrates HMM-based HAR procedure 
as well as normalized basis images in a gray scale after applying PCA, ICA, and LDA 
on the IC features over the depth silhouettes of the five activities: namely walking, 
lying, sitting, cooking, and eating. For HAR experiments, our depth silhouette-based 
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Fig. 1. Basic steps for depth silhouette-based real-time HAR to create an activity life-log 
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activity database was built for five activities (i.e., walking, lying, sitting, cooking, and 
eating) where each clip contained variable length consecutive frames. In order to train 
and test each activity HMM, we applied 15 and 40 image sequences respectively. We 
applied LDA on the ICA features of binary and depth silhouettes for the experiments 
with HMM for training and recognition. The depth silhouette–based HAR approach 
achieved the mean recognition rate of 96.50%, which is superior to binary silhouette-
based approach that achieved mean rate of 88.50%.  

3   Generation of a Life-Log from Depth Silhouette-Based HAR 
System 

The depth silhouette-based HAR system was applied in real-time to recognize the five 
human activities automatically and saved the activity events with time stamps as a life-
log. Once a life-log is available containing the activities of each day, human activity 
prediction can be done based on contiguous sequential activity patterns. Table 1 shows 
an sample database of daily logs of activities where the letters represent the activities 
such as W for walking, L for lying, S for sitting, E for eating, and C for cooking.  

Although we can generate a short daily log of activities with the real-time HAR 
system, to test the HAP system, one needs an extensive database of daily logs. Thus, 
an activity life-log database is created by means of a program that randomly generates 
the activity sequences similar to the events in Table 1. Two random numbers are gen-
erated for the dataset where the first one is to generate the random activity among five 
activities and the second one to determine the number of repetitions of the most recent 
activity. In the next section, we are going to discuss an idea to predict human activity 
using spanning tree containing activity sequences with their frequencies. 

4   Spanning Tree-Based Human Activity Prediction 

To start the prediction process, we require a life-log of human activities for a specific 
period of every day for one month or two months. Each day’s time-line is divided by 
a fixed number of seconds (such as 10 sec) and tagged with what activities are per-
formed in that period. Based on the tagged information, we have built fixed-length 
spanning trees containing activity sequences where each node represents an activity 
and the leaf nodes are used to predict using the upper level nodes. Fig. 2 shows the 
basic processes to create activity sequence spanning trees to use them for HAP. 

Table 1. A sample activity database for six days 

Day Activity Sequence 
1 CCCCSSSSCCCCSSS 
2 SSCCCCCLLLLLLLL 
3 SSSLLLLLLCCCCWW 
4 EEEEEWWWCCCCLLL 
5 CCCCCWWWWWCCCCC 
6 WWWWWWWWWWWWSSS 
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Now, we run a fixed-length window through each row of the database and build 
fixed-length spanning trees where the leaf node stores the frequency of fixed-length 
patterns. Fig. 3(a) shows a five-length sliding window approach to scan the activity 
database shown in Table 1. Figs. 3(b) to (f) show the W-tree, L-tree, S-tree, E-tree, 
and C-tree respectively. Table 2 summarizes our algorithm where it is divided in 
two parts. The first part contributes to build fixed-length activity spanning trees 
which is used in the second part for prediction. The second part shows how to  
predict Fth activity using a fixed-length activity sequence containing the length of 
(F-1). 

Table 2. Proposed algorithm for activity spanning tree construction and human activity  
prediction  

Algorithm 
PART1: Constructing Spanning Trees 
Step: Extract fixed-length activity sequences from database and construct spanning trees  
//Access all database sequences 
1. for(i=0; i< N; i++) 
//Extract fixed-length subsequences 
2. FS = Extract_Fixed_Length_Subseq(F, Si); 
// Construct spanning trees with the fixed-length pattern and it’s frequency in leaf node. 
3. SP_Tree= Construct_Spanning_Trees(F); 
PART2: Prediction Using the Constructed Spanning Trees 
Step : Search trees with an activity sequence of length (F-1) ST and try to predict the Fth activity. 
//Extract matched sequence in the tree up to level four. 
6. Matched_Seq= Search_in_Spanning_Tree(SP_Tree, ST); 
//Observe the frequencies of the leaf nodes along with the matched path in the tree. The leaf 
node //with highest frequency can be the next activity. If the leaf nodes’ frequencies are almost 
same or //marginally greater or lower than no prediction can work and hence return NULL.  
7. Activity_F = CheckFreqLeaf(SP_tree, Matched_Seq); 

 

 

 

Fig. 2. Processes to create activity sequence spanning trees for human activity prediction 
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As our tree is of five-length, we recognize activities in consecutive four time slots 
(i.e., 40 seconds where 10 seconds for each slot) and try to predict the fifth activity to  
be performed in the next 10 seconds using the activity spanning trees. Thus, we start 
matching the four-length consecutive tree pattern in the trees and if there is any 
match, we can find the leaf nodes in that path and their frequencies.  

 

   
                        (a)                                          (b)                                           (c) 

      
                  (d)                          (e)                                                         (f)  

Fig. 3. Five-length (a) Scanning (b) W-, (c) L-, (d) S-, (e) E-, and (f) C-tree 

If there is only one node, there will be a good possibility of that activity for being 
next activity. If there are many, we see that which one contains the highest frequency 
and then predict that activity as the next activity. Besides, we apply here a threshold 
on the highest frequency i.e., the highest frequency should be greater than the thresh-
old percentage of the total frequency of all the leaf nodes along the matched path. For 
instance, we want to recognize four consecutive activities as WWWW and now we 
would like to predict the next activity to be performed. We traverse the trees for the 
pattern and get a match in W-tree. However in that path, there are three leaf nodes as 
W with frequency of nine, S with frequency of 1 and C with frequency of 1. As fre-
quency of W is much higher than that of others, we predict that the next activity 
should be W (i.e., walking). Another instance is CCCC where we can see that in that 
path, all the leaf nodes have the same frequency. So, we cannot predict the next activ-
ity here and hence, we continue recognition for the next time slot without prediction. 
Later on, we try to predict again using the spanning trees. 
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5   Experiments and Results 

We obtained a total number of 60 activity sequences for 60 days in the database cre-
ated through simulation where each sequence was 2,048 in length and consists of five 
distinct items (i.e., W, L, S, C, and E) to represent different activities. Using these 60 
days data sequences we created the five-length spanning trees for each activity. Later 
on, to test our prediction approach, we created another datasets which consists of 
6,210 test patterns of five-length to predict the 5th activity. For every test pattern, we 
tried to match a path of four-length in the spanning trees and based on the frequencies 
of the leaf nodes in the matched path, the 5th activity was predicted with which the 5th 
activity of the test pattern was compared to verify the prediction. Finally, we tested 
our approach to test all the testing patterns and obtained the mean prediction rate of 
91.31% successfully. Besides, during prediction, we applied a threshold to check the 
frequency of the leaf node containing the maximum frequency was greater than or 
equal to 80% of total frequency of the leaf nodes along the matched path or not. When 
any leaf node in that path satisfied the condition, we continued prediction otherwise 
no predication for that sequence and we proceeded to the next testing sequence for 
prediction. 

6   Conclusion 

In this work, a novel fixed-length activity spanning tree-based activity prediction ap-
proach, based on the life-log created through human activity recognition using depth 
silhouette features with HMM, has been proposed. Utilizing our HAP approach, we 
obtained 91.31% prediction results using the computer simulated activity sequence 
datasets. Our HAP system still requires real tests under real environments, but could 
be used for human activity recognition and prediction at an environment like smart 
homes. 
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Abstract. In this paper, we investigate the problem of analyzing the
shape of obstacle-avoiding paths in a space. Given a d-dimensional space
with holes, representing obstacles, we ask if certain paths are equiva-
lent, informally if one path can be continuously deformed into another,
within this space. Algebraic topology is used to distinguish between topo-
logically different paths. A compact yet complete signature of a path is
constructed, based on cohomology theory. Possible applications include
assisted living, residential, security and environmental monitoring. Nu-
merical results will be presented in the final version of this paper.

Keywords: obstacle-avoidance, cohomology generators, trajectory
planning problem.

1 Introduction

In the recent years, there has been growing interest in topics such as assisted
living, residential, security and environmental monitoring [1,2]. This is closely
related to the area of remote sensing, which aims at delivering a description of
the chosen aspects of the sensed environment by aggregating information from
an array of sensors.

The information gathered by individual sensors ranges from visual data (Vi-
sual Sensor Networks [3]) to the presence of smoke in the air. Visual Sensor
Networks are the most closely related to the computer vision field. In this pa-
per we treat the sensors in an abstract way, therefore the method should be
applicable in a number of settings.

One important question that arises is how to arrange such sensors. In [1],
which largely inspired us to write this paper, straight laser beams are used as
sensors. Prompted by some of the questions posed in the summary of that paper,
we consider the following questions. How does this scenario generalize to sensors
of different shapes? Can we generalize these concepts to higher dimensions (the
original considerations were done in 2D)?

As a simple example, consider a network of paid highways. Since exact tracking
the movement of each vehicle is prohibitively expansive, simplified measurements
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have to be performed. Gates serve as sensors, enabling us to roughly estimate
the movement of the vehicle. While we fail to capture the precise geometry of
the path of the vehicle, we are able to capture what we consider the topology.

This is closely related to the recent concept of minimal sensing, where sensors
are very limited in their capabilities. In such a setting, sensors are typically
unable to capture the actual geometry of the space. See [2] and references
therein, to see how this problem was tackled, often using algebraic topology.

While the above example is trivial and can be described with basic graph
algorithms, the situation is much more interesting (and challenging) in higher
dimensions. Since our approach is based on algebraic topology, especially coho-
mology theory, it is dimension-independent.

Our additional aim is to to expose cohomology theory to the CAIP commu-
nity. We believe that the mathematical robustness and intuitivity make it an
interesting tool, which can be applied more generally.

The paper is structured as follows: In Section 2 a rigorous formulation of
the considered problem is presented. In Section 3 the complexes used in this
paper are discussed. In Section 4 an intuitive introduction to homology and
cohomology theory is given. In Section 5 the main result of this paper is stated.
In Section 6 an algorithm to compute signature of a given path is presented.
Finally in Section 7 the conclusions are drawn.

2 Problem Formulation

We analyze movement, from point S to T , of a number of agents in a known
space. Simply put, we ask how to place sensors, so that we are able to describe the
topology of each path, based only on how it intersects these sensors. We encode
these intersections as a signature, which is sufficient to discriminate between
paths having different topology (more precisely: homology). We will prove that
the sensors need to be placed in the support of cohomology generators.

The problem of analyzing paths of moving agents in a 2-dimensional space,
in the presence of obstacles and linear (beam) sensors was introduced in [1].
We present a variation for a d-dimensional, orientable space, where ”sensors”
are represented by certain (d− 1)-dimensional hypersurfaces (possibly with self-
intersections). For the 2−dimensional case the difference is that our sensors can
have arbitrary shape and are allowed to intersect. While the idea of a sensor
of arbitrary shape might seem contrived, imagine that such a sensor is actually
composed of a number of small sensing units covering a given hypersurface.

3 Representing Spaces with Holes

In this section we present some theory related to computational topology, used
later in the paper. For simplicity the concept of simplicial complex is used to
represent the space. The definition of simplicial complex can be found in [4].
Imagine that a simplicial complex is a decomposition of the space into a set of
simplices, that is vertices, edges, triangles etc. In general, n−simplex is a convex
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hull of n + 1 points lying in general position. The number n is the dimension of
a simplex S and is denoted by dim(S). We assume that vertices of a simplicial
complex are uniquely enumerated with integers, allowing to index each simplex
with the set of its vertices. Each simplex in the simplicial complex has an orien-
tation (this is discussed in details in [5]). In the implementation presented in [6],
enumeration of vertices of complex K is used in orienting the edges and higher
dimensional simplices. For instance every edge E is oriented from its higher ver-
tex to lower vertex. From now on the orientation of all simplices in the complex
is assumed to be fixed. A subset of simplices is chosen to represent the obstacles.
During the computation of cohomology, the interior of obstacles is removed from
the complex. Later by K we will denote the complex after this removal.

There are two vertices chosen in our complex, marked as S and T from Source
and Target. An oriented path is the formal sum of edges joining those points
with +1,−1 coefficients, which induce orientation.

The goal is to provide an efficient algorithm to describe and distinguish paths
from S to T , which avoid all the obstacles1. An example of a 2−dimensional
simplicial complex can be found in Figure 1(a).

(a) (b)

Fig. 1. a) Simple example of a complex. Obstacles are marked with black, paths with
green (solid). b) Graphical representation of complexes that we will use for clarity of
images. Imagine that the complex is very finely subdivided, but paths and generators
are still composed of edges of the complex, which is not displayed. Cohomology gener-
ator is depicted as the red (dotted) curve. In both cases point S is placed in the lower
left, and point T in the upper right corner of the picture.

4 Cohomology Theory

In this section an intuitive exposition of homology and cohomology theory is
given. For a full introduction consult [5]. Both homology and cohomology groups
give a compact description of topology of a simplicial complex.

In homology theory one uses a concept of chain, being a formal sum of sim-
plices with integer coefficients. A group of chains of dimension n is denoted by
Cn(K) := {∑S∈K,dim(S)=n αSS}. A boundary operator ∂ : Cn → Cn−1 is then
introduced for a simplex S = [v0, . . . , vn]:
1 Note that the number of homologically different paths is unbounded for non-trivial

cases.
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∂S =
n∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vn] (1)

and extended linearly to Cn(K). As an example, let us calculate the boundary
of a full triangle: ∂[0, 1, 2] = [1, 2]− [0, 2] + [0, 1].

A group of n dimensional cycles Zn(K) := {c ∈ Cn(K) | ∂c = 0}. In short, a
cycle is a chain whose boundary vanishes. A group of n− dimensional boundaries
Bn(K) := {c ∈ Cn(K)|∃d ∈ Cn+1(K)|∂d = c}. The idea behind cycles and
boundaries is presented in Figure 2(a).

(a) (b)

Fig. 2. a) Right chain is a cycle and a boundary. Left cycle surrounds a hole, so it
is not a boundary b) Red (dotted) and green (dashed) cycles are homologous. Blue
(bold) is not homologous with any of them. Red (or green) and blue cycles constitute
a homology basis.

It is straightforward to verify from Formula 1 that ∂∂ = 0. Therefore we have
Bn(K) ⊂ Zn(K) and we can define the homology group Hn(K) as a classes of
cycles which are not boundaries, namely Hn(K) := Zn(K)/Bn(K). Two n-cycles
c1 and c2 such that c1 − c2 ∈ Bn(K) are said to be homologous. By homology
generators we mean any representants of classes of cycles that generate Hn(K).
In absence of torsions the rank of homology group can be interpreted as number
of holes in the considered space. Idea of homology groups is given in Figure 2(b).

In this paper we restrict ourselves to connected simplicial complexes K which
are torsion-free in dimension one (i.e. after the obstacles are removed from the
complex, the resulting complex is connected and torsion free). Torsions in ho-
mology mean that elements of a homology group have finite order (they generate
a subgroup Zp of homology group for p ∈ Z being the order of an element).

For a formal introduction to the cohomology theory consult [5], for an intuitive
introduction consult [6]. Further in the paper we need a concept of n-cochain
c∗ being a map assigning any chain c ∈ Zn(K) a number2 〈c∗, c〉 ∈ Z. A group

2 Operation 〈c∗, c〉 is called evaluation of a cocycle c∗ on a cycle c. In order to compute
〈c∗, c〉, note that the set of maps {S∗|〈S∗, K〉 = δSK for any K ∈ K}S∈K constitutes
a basis of Cn(K). Therefore every cochain c∗ is equal to

∑
S∈K αSS∗ for dim S = n.

Then for a chain c =
∑

S∈K βSS we have 〈c∗, c〉 = 〈∑S∈K αSS∗,
∑

S∈K βSS〉 =∑
S∈K αSβS .
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of n−cochains is denoted as Cn(K). Dually to homology, a so-called coboundary
operator δ : Cn(K) → Cn+1(K) is introduced. It is defined as 〈δc∗, c〉 = 〈c∗, ∂c〉
for every c∗ ∈ Cn−1(K) and c ∈ Cn(K). Again, cochain c∗ is a cocycle if δc∗ = 0.
Cochain c∗ is a coboundary if there exists a cochain d∗ ∈ Cn−1(K) such that
δd∗ = c∗. Cocycles are denoted as Zn(K), and coboundaries as Bn(K). Finally,
cohomology group is defined as the quotient Hn(K) := Zn(K)/Bn(K).

It might appear that for torsion-free spaces all (co)homology computations
could be performed with Zp coefficients for p ∈ Z, p ≥ 2. This is not the case.
Without going into details: we must use Z coefficients to handle the case of paths
crossing certain cohomology generators np-times for n ∈ Z.

For our purposes it is sufficient to consider cohomology group basis in di-
mension one. For torsion-free spaces, there is a straightforward correspondence
between homology and cohmology group generators (see Theorem 4.8, [7]).
Theorem 4.8 states that for any set of cycles representing homology gener-
ators h1, . . . , hn there exist dual cohomology generators h1, . . . , hn such that
〈hi, hj〉 = δij . This theorem allows us to use the so-called ”cutting analogy” to
describe a cohomology basis. In fact, in the considered case the generator hi, for
i ∈ {1, . . . , n}, can be seen as a fence that blocks any cycles in the class of hi.
This idea is illustrated in Figure 3(a). The concept of the presented ”cut anal-
ogy” was developed in the so-called Discrete Geometrical Approach to Maxwell’s
equations [6].

(a) (b)

Fig. 3. a) The ”cut analogy”. When one cuts a complex along the red (dashed) co-
homology generator, the left homology class vanishes. Cutting along blue (dotted)
generator makes the right homology class vanish. b) Completion of chain c.

With the algorithm described in [6], we obtain cohomology generators (rep-
resented as a set of pairs (edge, integer)) of any simplicial complex. Note that
cohomology generators are allowed to intersect. See the Borromean Rings phe-
nomenon in [8] for an example of a 3-dimensional space, where it is impossible
to find a non-intersecting cohomology basis.

5 Path Characterization Using Signatures

In this section a formal proof of the main result of the paper is provided. Sup-
pose a simplicial complex K is given. As previously, we assume that H1(K) is
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torsion-free and K itself is connected. Let h1, . . . , hn be cocycles representing
first cohomology group generators of K. Moreover, let h1, . . . , hn be the homol-
ogy generators dual to h1, . . . , hn according to Theorem 4.8 in [7] (they are only
needed for the proof). We fix h1, . . . , hn and their dual h1, . . . , hn for the rest of
this section. Let c ∈ C1(K) be a path from S to T .

Definition 1. For a path c the vector Sc = [a1, . . . , an] such that ai = 〈hi, c〉,
for i ∈ {1, . . . , n}, is called a signature of c.

In this section we show that paths having the same signature are homologous
and, conversely, that paths having different signature are non-homologous. It
is necessary to assume that all paths lead from S to T . A signature of a path
provides an efficient way of distinguishing non-homologous paths and identifying
homologous ones. Let us start with a lemma, the proof of which can be found
in [7].

Lemma 1. Let c∗ ∈ Z1(K) be a cocycle and let b ∈ B1(K) be a boundary. Then
〈c∗, b〉 = 0.

Let us now define the completion of a chain. Let us take any chain A joining point
S with the boundary of the complex K, B joining point T with the boundary
of a complex and D lying entirely on the boundary of K joining endpoints of
chains A and B. With any path c ∈ C1(K) from S to T we can assign a cycle
c ∪A ∪B ∪D. This cycle is called a completion of chain c (see Figure 3(b)).

Now we are ready to give the two main theorems of this paper.

Theorem 1. Two homologous paths c1 and c2 have the same signature, Sc1 =
Sc2 .

Proof. Since c1 and c2 are homologous, there exists b ∈ C2(K) such that ∂b =
c1− c2. Therefore c1 = c2 + ∂b. From Lemma 1 we have, that 〈hi, c1〉 = 〈hi, c2 +
∂b〉 = 〈hi, c2〉+〈hi, ∂b〉 = 〈hi, c2〉+0 = 〈hi, c2〉 for every i ∈ {1, . . . , n}. Therefore
Sc1 = Sc2 . ��
Theorem 2. Two non-homologous paths c1 and c2 have different signatures,
Sc1 
= Sc2 .

Proof. Suppose by contrary that c1 and c2 are non-homologous and Sc1 = Sc2 .
Therefore d1 = c1∪A∪B ∪D and d2 = c2∪A∪B ∪D are also non-homologous.
But h1, . . . , hn is a homology basis dual to cohomology basis h1, . . . , hn. Then we
have d1 =

∑n
i=1 αihi + ∂e and d2 =

∑n
i=1 βihi + ∂f for some e, f ∈ C2(K) and

αi, βi ∈ Z for i ∈ {1, . . . , n}. Since d1 and d2 are not homologous there exists
an index i ∈ {1, . . . , n} such that αi 
= βi. But from the hypothesis we have
Sc1 = Sc2 . It implies, that Sd1 = Sd2 . We have 〈hi, d1〉 = 〈hi,

∑n
i=1 αihi〉 = αi

and 〈hi, d2〉 = 〈hi,
∑n

i=1 βihi〉 = βi. Therefore from the hypothesis we have
αi = βi for every i ∈ {1, . . . , n}, which gives a contradiction. ��
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6 Computing the Signature of a Path

In this section we present an algorithm which, for fixed cocycles h1, . . . , hn,
constituting a cohomology basis and a path c from A to B outputs Sc, the
signature of c. We assume that simplicial complex is represented as a pointer-
based data-structure as in [6]. Moreover, let each edge E of simplicial complex
K be equipped with a vector v of n integers such that vE [i] = 〈hi, E〉 for every
i ∈ {1, . . . , n}. Let a path c be given as a vector of pointers to edges in K.

It remains to resolve the subtlety of orientation of simplices versus an orien-
tation of a path c. The path is oriented from point S to T . Let us define o(c, E)
in the following way: o(c, E) := 1 if orientation of c is the same as orientation
of E and −1 otherwise. Now we list the algorithm. Also, see Figure 4 for a vi-
sual example. Note that this two-dimensional example is very simple and can be
solved with basic tools, but our method works for general dimension.

Algorithm 1. Computing signature of a path
Input: path c, simplicial complex K with cohomology generators h1, . . . , hn

Output: s - signature of path c
1: Let v be the vector encoding the intersections of c with cohomology generators
2: Let s be an n-tuple
3: for i ∈ {1, . . . , n} do
4: s[i] ←∑

E∈c o(c, E)vE[i]
5: return s

Fig. 4. We use the presented procedure to compute s[1] for the blue (dotted) path. vE [1]
is nonzero only for the edges in the support of the cohomology generator. Therefore
s[1] = 1, as the orientation of this path is the same as the orientation of cohomology
generator (bold black). As for the green (dashed) path s[1] = 0, since the path do not
cross the cohomology generator. Blue (dotted) and green (dashed) paths are clearly
non-homologous.
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7 Conclusions

The ideas presented in this paper generalize the approach using ”laser beams”
presented in [1]. We use topological tools to distinguish between different
obstacle-avoiding paths, based only on their intersections with selected sensors.
The usage of algebraic topology enables us to use sensors of arbitrary shape and
abstract away from the actual geometry of the space. Topological information
(cohomology generators and their intersections with paths) sufficiently repre-
sents the space. Additionally, the usage of algebraic topology makes our method
dimension-independent, which extends the area of applications.
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Abstract. Contemporary digital art has an overwhelming trend of non-
photorealism emulated by different algorithmic techniques. This paper
proposes such a technique that uses a randomized algorithm to create
artistic sketches from line drawings and edge maps. A curve-constrained
domain (CCD) is defined by the Minkowski sum of the input drawing
with the structuring element whose size varies with the pencil diameter.
Each curve segment is randomly drawn in the CCD in such a way that
it never intersects itself, whilst preserving the overall input shape. An
artist’s usual trait of making irregular strokes and sub-strokes with vary-
ing shades while sketching, is realistically captured in this randomized
approach. Simulation results demonstrate its efficacy and elegance.

1 Introduction

Non-photorealistic rendering, originated as a promising digital art about two
decades back [CAS97, VG91, VB99], has gained significant impetus in recent
times [Deu10, GG01, LMHB00, MG02, Mou03, RMN03]. The works are mostly
based on simulating the physical model through frictional coefficient, viscosity,
smear factors, force factors, etc. [KHCC05, KNC08, KCC06, OSSJ09, PSNW07].
The factors of irregularity and obscurity arising out of an artist’s creative mind—
which prevail in an artistic creation and hence differentiate it from a machine-
generated product—are, however, seldom noticed in the existing approaches. In
fact, unless some (artistic) randomization is imparted, it is practically impossible
to simulate an artistic creation, since the mystical, fanciful mind of an artist can
hardly be scientifically modelled.

To incorporate a randomization factor while sketching a figure out of a set
S of (irreducible) digital curve segments, corresponding to a real-world object,
a novel simulation technique is proposed (Fig. 1). The fact that an artist often
uses irregular strokes and sub-strokes with varying shades while sketching is
rightly captured in our randomized curve sketching. Some sketched segments
get lightly shaded in our technique compared to other heavily-shaded ones, and
a sub-segment also may be lighter or deeper in shade compared to the rest of
the segment, which characterizes the novelty of our algorithm.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 318–326, 2011.
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Fig. 1. Proposed algorithm. Left-top: Input image. Left-mid:After edge detection. Left-
bottom: Skeletal image. Right:Final output by our algorithm, which resembles a crayon-
drawn line sketch on a piece of handmade paper.

Preliminaries. A linear-time algorithm to generate random digital curves in a
closed canvas is proposed recently in [BPR10]. The work proposed here rests on
the same theoretical foundation, but extends the algorithm further for drawing
random curves in CCD. Both the grid-point model and the cell model in Z2 are
adopted in our work for their theoretical correspondence [KR04].

The input (thinned) digital image is first decomposed into a set S = {Ch}N
h=1

of digital curves, each of which is simple and irreducible [KR04]. For each curve
Ch, we prepare its curve-constrained domain (CCD), namely Dh, in which the
segment (corresponding to Ch) sketched by the pencil will lie. Figure 2 illustrates
a simple case where the segment starts from the point p and ends at the point
q. Notice that the points p and q lie in two cells of Dh. Vertices and centres
of cells in Dh are assumed to be grid points in Z2, also simply called points for
brevity in this paper. For each point p ∈ Ch, we take its Minkowski sum [KR04],
namely Mp = {q : q ∈ Z

2 ∧ ||p− q|| ≤ �t/2�}, t being the width/thickness of the
pencil-tip; then Dh is defined by

⋃
p∈Ch

Mp.

2 Curve Randomization in CCD

Contrary to polygon-generation algorithms [ZSSM96, AH96] that work with in-
put vertices generated randomly but a priori, our algorithm generates new points
on the fly (also called online in [KR04]) while creating a digital curve ρ. The curve
ρ starts from p = p1 and randomly chooses all the successive points, eventually
ending at the destination point q (Fig. 2). The difficulty lies in making ρ one
pixel wide everywhere without intersecting itself, thus becoming irreducible and



320 S. Roy et al.

c c(0)
c(1)c(2)c(3)

c(4)

c(5) c(6) c(7)

(a)

R

L

R L

R

L

RL

L

L

L

L

L L L

L

L

L

LL

RR

R R

RR

R R

R R

R R

(b)

p

q

(c)

p

q

(d)

Fig. 2. (a) Neighborhood of a cell c: A0(c) = {c(0), c(1), . . . , c(7)}; A1(c) =
{c(0), c(2), c(4), c(6)}; Nα(c) = Aα(c) ∪ {c}, α ∈ {0, 1}. (b)Three types of turns with
four combinatorial cases each. The current cell ci is shown in blue, and the previous
and the next cells in faded blue. (c) Minkowski sum (in blue) of a typical (simple and ir-
reducible) digital curve (deep green) from p to q; red lines show the borderlines through
p and q for CCD initialization. (d) Cells occupied (β > 0) by the initialized curve are
shown in violet.

simple. This calls for detecting every possible “narrow-mouthed” trap formed
by the previously generated part of ρ, which, if entered into, cannot be exited
without touching or intersecting ρ.

Parameters and Principle. A cell c (of a CCD, say, Dh) is said to be occupied
if and only if the generated part of curve ρ already passes through c ; otherwise
it is free. We use the following parameters for a cell c (see Fig. 2):

The blocking factor β(c) is a 5-bit number given by the combinatorial arrange-
ment of the occupied and the free cells in N1(c). The most significant bit of β(c)
corresponds to c itself, and the other four bits correspond to the four cells lying
right, top, left, and below of c in that order. If a cell in N1(c) is occupied, then
the corresponding bit of β(c) equals 1, otherwise 0. Thus, β(c) = 0 implies that
ρ is not (yet) passing through any cell in N1(c). If 0 < β(c) < 16, then c is free
but one or more cells in A1(c) are occupied. If β(c) ≥ 16, then c is occupied.

The directional label δ(c) is used if 0 < β(c) < 16 which takes its value then
from {L, R, B}, with the interpretation: L = left, R = right, B = both left and
right, depending on the position of c relative to the direction of traversal of ρ
in the cell(s) of A0(c). We use X for the initialized value. While the construction
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Fig. 3. Distinguishing the formation of a hole (a,b) from an ensuing hole (c,d). Ensu-
ing hole: (a) Before formation, all the concerned cells have label L. (b)After forma-

tion, label of bi := c
(2)
i gets modified to B, and a free path exists from each free cell in

Ei ∩N4(ci+1) := {c(2)
i+1, c

(4)
i+1, c

(6)
i+1} to bi. Hole: (c)Before formation, cells have label L.

(d)After formation, label of bi := c
(2)
i becomes B, and a free path to bi is not possible

from c
(4)
i+1 and c

(6)
i+1, as c

(3)
i+1 is blocked.

of ρ is in progress, blocking factors and directional labels have interim values,
which are updated and become final values when ρ is finished.

Initialization of CCD. The cells cp and cq, corresponding to p and q, are
obtained first (Fig. 2). The initialized curve ρ enters c

(6)
q and then progresses

through the border cells, to finally reach the cell cp. By this initialization, cq

is free and has B as δ-value, whereas all other border cells are occupied, the
(actual) random curve starts from p, and the free cells, adjacent to the border
cells, have L or R as δ-value. While generating the random curve, if some cell c is
visited which is adjacent to some border cell, then the corresponding parameters
of c are updated accordingly. The initialized and the runtime parameters help
advancing the curve in a random-yet-‘safe’ direction. Clearly, that virtual part
of ρ lying in the border cells of Dh is not random, and hence not considered as
being a part of the random curve.

Progressing the Random Curve. The current cell, which ρ has currently
entered, is denoted by ci (i > 1), unless mentioned otherwise. The cell ci corre-
sponds to the ith iteration of our algorithm. Parameters β and δ are updated in
(appropriate cells of) A0(ci), as shown in Fig. 2. Each current cell ci has a previ-
ous cell, ci−1, from where ρ has entered ci, and a next cell, ci+1, where ρ will enter
next. The cells belonging to the region Ñ(ci) := A0(ci) � (A1(ci−1) ∪A1(ci+1))
are labelled in the ith iteration, as illustrated in Fig. 2.

From the current cell ci, the next cell ci+1 is (randomly) chosen in such a
way that there exists at least one free path from ci+1 to the destination cell cq.
(A free path from a cell ci to a cell ci+k, k > 1, is given by a sequence of cells,
ρ(ci, ci+k) := 〈ci, ci+1, . . . , ci+k〉, such that each cell in 〈ci+1, . . . , ci+k−1〉 is free
and distinct, and every two consecutive cells in ρ(ci, ci+k) are 1-adjacent.) A safe
edge of ci is a possible exit edge; the algorithm selects randomly one of the safe
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edges for exit. For the current cell ci we have the free region Ri of all free cells
c of Dh such that there exists still at least one free path from c to cq. Similarly,
a blocked region H is a maximal (connected) region of free cells such that there
does not exist any free path from any cell of H to cq. A cell in H is said to be
blocked, and edges of a blocked cell are also blocked. There exists a free path from
the current cell ci to the destination cell cq if and only if A1(ci) ∩ Ri 
= ∅. (If
A1(ci)∩Ri 
= ∅, then there exists a free cell c

(t)
i ∈ A1(ci) lying in Ri. Conversely,

the existence of a free path from ci to cq implies that at least one cell of A1(ci)
is in Ri, thus A1(ci) ∩Ri 
= ∅.) As a result, the edge between ci and c

(t)
i is safe

if and only if c
(t)
i belongs to Ri.

Ensuring Simple and Irreducible Property: ρ is allowed to enter and exit a cell
at most once. Hence, an exit edge of the current cell ci cannot be an entry edge
of the next cell if the latter is already occupied (using β(ci)). Furthermore, a
blocked edge cannot be an exit edge. The crux of the problem is, therefore, to
decide whether or not an edge of ci is a blocked edge. Each event of forming a
hole is detected based on (changes in the components of the cells in) A0(ci). The
advantage of detecting such a hole event is that, once ρ enters the next cell ci+1

from ci by selecting a safe edge, it can never enter the hole H formed by ci, since
H gets surrounded by occupied cells after it is formed. Further characterization
of cells in the local neighbourhood of ci are required to distinguish whether there
is a hole event or an event of an ensuing hole (Fig. 3). Ei ⊂ Ri defines an ensuing
hole corresponding to ci if and only if

(e1) there exists c ∈ Ñ(ci) such that δ(c, i) = B,
(e2) for each c′ ∈ Ei, we have that δ(c′, i) ∈ {L, R, X},
(e3) there exists a free path ρ(ci+1, cq), and for any such path, c is on ρ(ci+1, cq).
Note that, δ(c, i) denotes the label of cell c when the current cell is ci.

Either a hole or an ensuing hole is created if and only if at least one free cell
in Ñ(ci) gets the label B as ci becomes the current cell. The current cell ci gives
rise to an ensuing hole Ei if and only if there exists a free cell bi ∈ Ñ(ci) with
(E1) δ(bi, i) = B;
(E2) there exists ρ(ai, bi) ⊆ A0(ci+1) for each ai ∈ Ei ∩A1(ci+1). In particular,
ci gives rise to a hole Hi if and only if E1 is true and E2 is false. The proof
follows from the combinatorial arguments given in [BPR10].

Final Sketch Creation. For each curve Ch in S, we create m random curves.
Note that, S is obtained in our work by Canny edge detection [Can86] and
thinning [RK82]. If p and q be the respective start and end points of the curve
Ch, then each of these m random curves is made to start from p and end at q.
Further, due to the curve-constrained domain, Dh, corresponding to Ch, each
random curve strictly lies in Dh. The cells of Dh are always (re-)initialized for
creating each instance of the m random curves corresponding to Ch.



MAESTRO: Making Art-Enabled Sketches through Randomized Operations 323

S t = 7, m = 3 t = 7, m = 7 t = 12, m = 5

Fig. 4. Effect of varying m versus t (γmax = 255, γ0 = 0)

Let Sh =
{

C
(z)
h

}m

z=1
be the set of m random curves corresponding to Ch.

Let ch be a cell of the domain Dh. We maintain a counter, namely count[ch],
corresponding to each ch ∈ Dh. Each such count[ch] is initialized to 0 before
generating the random curves in Dh. Whenever a random curve C

(z)
h visits ch,

count[ch] is incremented. Thus, after all m random curves are constructed in
Dh, we get 0 ≤ count[ch] ≤ m ∀ch ∈ Dh.

In order to create the artistic curve C̃h corresponding to Ch, we use the counter
values {count[ch] : ch ∈ Dh}. For each ch ∈ Dh, the corresponding image pixel
is intensified to the value

γmax −
(

γ0 +
count[ch]

m
× (γmax − γ0)

)
,

since we consider 8-bit intensity of the image (with γmax = 255, γ0 = 0) as
the final output corresponding to the input set S. To achieve an overall darker
intensity (as in Fig. 4) in simultaneity with the randomized finish, we scale the
colour spectrum to a smaller interval, namely [γ0, γmax − γ0], and assign the
pixel intensity by setting γ0 to an appropriately high value.

3 Results and Conclusion

We have developed the software in JavaTM API, version 1.5.2, the OS being Linux
Fedora Release 7, Kernel version 2.6.21.1.3194.fc7, Dual Intel Xeon Processor 2.8
GHz, 800 MHz FSB, and have tested it on various digital images. Snapshots on
a typical set are already given in Fig. 1. A summary of results for a few images
presented in Table 1 shows that as the width of pencil-tip increases, the run-
time also increases, since it needs a larger number of iterations to create sufficient
stroke intensity.

Fig. 4 shows the effect of number of iterations m with changing width of the
pencil-tip, t. Clearly, for a given value of t, the stroke intensity increases with
increase in m. An appropriate combination of m and t is, therefore, required to
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Fig. 5. Results on another image. Top-left: A photograph. Top-right: Product of our
algorithm. Bottom: After overlaying on a canvas.

Fig. 6. Effect of using mixed pencils. Left: Input image. Middle: Product of our algo-
rithm. Right: After overlaying on a canvas. Note that our algorithm uses thick curves
in the relevant portion (e.g., nose) and thin curves for small details, which creates the
desired artistic touch.
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Table 1. Summary of simulation results

Image w h n t m T

houses 480 320 3441 8 10 10.871
houses 480 320 3441 5 5 6.257
nestle 320 480 2579 8 10 9.755
elephants 480 320 6256 5 5 10.306
vase 220 400 5048 5 5 3.333

w = image width; h = image height; n =
number of curve points in the input im-
age; t = width/thickness of pencil-tip; m =
number of random curves; T = CPU time
in seconds for the algorithm to produce the
final output.

achieve the aesthetic quality. Finer details can be captured with a fine-tipped
pencil (low value of t), as presented in Fig. 4. Figures 5 and 6 show how our
algorithm successfully produce the desired artistic impression—whether the type
of input be a line-sketch or a photograph. Figure 6 also shows the usage of mixed
pencils to take care of different regions of interest. For a fairly long curve that
possibly signifies a strong structural information, demanding a bold stroke from
the artist, a thick and bold line is sketched by our algorithm. The non-uniformity
of shade gives a crayon-like appeal, thus creating an artistic finish.
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Abstract. LaRank is a multi-class support vector machine training al-
gorithm for approximate online and batch learning based on sequential
minimal optimization. For batch learning, LaRank performs one or more
learning epochs over the training set. One epoch sequentially tests all
currently excluded training examples for inclusion in the dual optimiza-
tion problem, with intermittent reprocess optimization steps on examples
currently included. Working set selection for one reprocess step chooses
the most violating pair among variables corresponding to a random ex-
ample. We propose a new working set selection scheme which exploits the
gradient update necessarily following an optimization step. This makes
it computationally more efficient. Among a set of candidate examples we
pick the one yielding maximum gain between either of the classes being
updated and a randomly chosen third class. Experiments demonstrate
faster convergence on three of four benchmark datasets and no significant
difference on the fourth.

1 Introduction

Support vector machines (SVMs, e.g. [1]) have attractive theoretical properties
and give good classification results in practice. Training times between quadratic
and cubic in the number of training examples however impair their applicability
to large-scale problems. Over the past years well-performing online variants of
binary and multi-class SVM solvers have been proposed and refined [2,3,4,5,6].
Online SVMs can be preferable to standard SVMs even for batch learning. On
large datasets that prohibit calculating a close to optimal solution to the SVM
optimization problem, online SVMs can excel in finding good approximate so-
lutions quickly. The prominent online multi-class SVM LaRank was introduced
by Bordes, Bottou, Gallinari, and Weston [4]. It relies on the multi-class SVM
formulation proposed by Crammer and Singer (CS, [7]). We refer to LaRank-
like solvers [2,4] as epoch-based since they complete one or more epochs over a
training set, aiming at well-performing hypotheses after as few as a single epoch.

When using universal, non-linear kernels – which are a prerequisite for con-
sistency, cf. [8] – sequential minimal optimization (SMO, [9]) solvers are the
method of choice for SVM training. Their time requirements strongly depend
� M.T. acknowledges a scholarship by the German National Academic Foundation.
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on stopping criteria, working set selection, and implementation details such as
kernel cache organization, shrinking, etc. This paper focuses on an improvement
to working set selection for SMO steps in LaRank.

Section 2 formally introduces the CS machine. We give a general definition of
epoch-based CS solvers and restate the LaRank algorithm [4]. One of LaRank’s
building blocks is the random selection of examples for reprocess-type optimiza-
tion steps. Random example selection provides the advantage of a constant time
operation, however at the risk of conducting an optimization step yielding lit-
tle gain for the overall problem. We propose an alternative example selection
scheme which is both gain-sensitive and can be carried out fast enough to speed
up the overall convergence of dual, primal, and test error. Empirical evaluations
are presented in Section 3, followed by our conclusions and outlook in Section 4.

2 Multi-class SVMs

Consider an input set X , an output set Y = {1, . . . , d}, a labeled training set
SN = {(xi, yi)}1≤i≤N ∈ (X × Y )N of cardinality N , and a Mercer kernel [1]
function k : X × X → R. Then a trained all-in-one multi-class SVM without
bias assigns to an example x ∈ X the output class label

h(x) = arg max
y∈Y

N∑
i=1

βy
i k(x, xi) . (1)

Training the SVM is equivalent to determining the parameter vector β ∈ R
dN . Its

component βy
i constitutes the contribution of example i to the kernel expansion

associated with class y. Iff ∃y βy
i 
= 0 , we say that i or βi is a support pattern,

and iff βy
i 
= 0, we say that y or βy

i is a support class for sample i.

2.1 Crammer-Singer Type Multi-class SVMs

Following the notation in [4] and given a regularization parameter C ∈ R
+,

Crammer-Singer type multi-class SVMs [7] determine the parameter vector β by
solving the dual optimization problem

max
β

∑
i

βyi

i − 1
2

∑
i,j

∑
y

βy
i β

y
j k(xi, xj) (2)

s.t. ∀i ∀y βy
i ≤ Cδ(y, yi) (3)

∀i
∑

y

βy
i = 0 , (4)

with Kronecker delta δ. The derivative of (2) w.r.t. the variable βy
i is given by

gy
i = δ(y, yi)−

∑
j

βy
j k(xi, xj) . (5)
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Two notable consequences arise from the specific form of problem (2). Con-
straint (4) in practice restricts SMO solvers to working sets of size two with both
working variables corresponding to the same training example. This closely links
working set selection to example selection. Second, because the quadratic part
of problem (2) is entirely composed of diagonal sub-matrices, altering a variable
βc

i only propagates through to gradients gc
j involving the same class label.

2.2 Epoch-Based Crammer-Singer Solvers

We understand an epoch-based Crammer-Singer (EBCS) solver to carry out opti-
mization epochs over a training set according to Alg. 1. Specific variants of EBCS
solvers are then realized through different implementations of the sub-algorithms
WSSnew, WSSrep, and R. These control working set selection for (i) non-support
patterns and (ii) support patterns, as well as (iii) the relative ratio between
optimization steps on non-support and support patterns, respectively. All three
will in practice depend on the joint state of both solver and solution. Note that
we understand the SMO steps in lines 7 and 11 of Alg. 1 to potentially leave β
unaltered, for example if both variables are actively constrained.

Algorithm 1. Epoch-based Crammer-Singer solver
Input: training set SN , epoch limit emax, working set selection

algorithms WSSnew and WSSrep, step selection algorithm R
1 β ← 0
2 for e ← 1 to emax do // 1 loop = 1 epoch

3 Shuffle training set SN jointly with β
4 for i ← 1 to N do // 1 loop = 1 sample

5 if ∀ y βy
i = 0 then // process new sample

6 Choose (c, e) ∈ Y 2 according to WSSnew

7 SMO-step on (βc
i , βe

i ) and gradient update
8 while not R do // reprocess old samples

9 Choose (j, c, e) ∈ {1, . . . , N} × Y 2 according to WSSrep

10 if ∃y βy
j = 0 then

11 SMO-step on (βc
j , βe

j ) and gradient update

LaRank. The popular EBCS solver LaRank [4] in its query to WSSrep (Line 9
of Alg. 1) chooses the example index j randomly. For both WSSrep and WSSnew,
the class indices (c, e) are selected according to the most violating pair heuristic
(MVP, [10]) on the given example. In addition, WSSrep operates in two differ-
ent modes, WSSold and WSSopt, which perform MVP among all classes or all
support classes of one example, respectively. The resulting three step variants
processNew, processOld, and processOpt are chosen from in a stochastic man-
ner. Their probabilistic weights are adapted through three slowly relaxing linear
dynamical systems with attractors to the current dual gain rate of each step
variant. For alternative, deterministic step selection schemes also see [2,5,6].
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Algorithm 2. Gain-sensitive working set selection for LaRank
22 SMO-step on (βc

i , βe
i )

44 (wmax, v) ← (0, ∅)
66 Pick random class t, t /∈ {c, e}
88 for (j, y) : βy

j = 0, y ∈ {c, e} do // loop through support classes

9 Update (gy
j )

10 if βt
j = 0 then

11 w ← clipped SMO-Gain(βy
j , βt

j)

12 if w > wmax then // found new best candidate

13 (wmax, v) ← (w, j)

14 if wmax = 0 then // fallback to random

15 v ← index of random support pattern
16 Provide example v upon next call to WSSrep

Gain-sensitive working set selection. LaRank and its binary predecessor
LaSVM [2] are inspired by perceptron-like kernel machines. As such, the random
traversal of hitherto excluded training samples around line 4 of Alg. 1 is concep-
tually well-founded. Since first and second order working set selection coincide for
CS, MVP can further be seen as a viable approximation to clipped gain working
set selection [11,3]. Another relevant building block of EBCS solvers is the exam-
ple selection procedure for WSSrep. A naive deterministic alternative to LaRank’s
random selection scheme would be to compute the full argmaxi arg max(c,e) of
the clipped or unclipped gain. Yet, the computational effort outburdens the po-
tential gain, especially if, as for original LaRank, not all gradients are being
cached. The LaRank algorithm with minimal cost and random gain can thus
be seen as lying on one end of all possible example selection methods and the
argmax-scheme with maximum cost and maximum gain on the other. This pa-
per explores the question whether the already well-performing LaRank algorithm
can be further improved by an example selection scheme for which the added
cost (relative to instant example selection) is outweighed by the gain advantage
received in turn (relative to the average gain of MVP on random examples).

We propose to exploit the gradient update necessarily following each SMO step
to select the next “old” example. Similar to [11], reusing information recently
computed promises efficient working set selection. Let (βc

i , β
e
i ) be the pair of

variables altered by the last SMO step. Then, according to (5), the subset of
all gradients {gc

j , g
e
j}1≤j≤N currently stored by the solver must be updated. For

LaRank these are all gy
j , y ∈ {c, e}, for which βy

j 
= 0. As the solver looks at this
subset in any case, it suggests itself to select the next old example according to
some property of all gradients being updated. We propose as such a property
the clipped gain achievable by a SMO step between the variable βy

j the gradient
gy

j of which is being updated and, fixed within each update loop, a random third
class t. If βt

j is not a support class, it is not considered. Alg. 2 summarizes the
resulting example selection procedure following both SMO steps in lines 7 and 11
of Alg. 1. If no feasible pair can be identified, a fallback to a random sample is
guaranteed. In practice, this only occurs in the first few iterations. After Alg. 2,
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Table 1. Datasets, SVM hyperparameters, and average reprocess step rates

Train Ex. Test Ex. Classes Features C k(x, z) sold sopt

USPS 7291 2007 10 256 10 e−0.025(x−z)2 1.94 36.7

LETTER 16000 4000 26 16 10 e−0.025(x−z)2 1.75 82.6

INEX 6053 6054 18 167295 100 x · z 3.67 35.1

MNIST 60000 10000 10 780 1000 e−0.02(x−z)2 1.65 53.4

a call to WSSopt will directly return (βy
v , β

t
v), while a call to WSSold returns the

MVP within the candidate example v. In the rare case that the latter does not
yield a feasible variable pair, we also choose a random example in the next step.

Compared to the original version, Alg. 2 adds the computational burden of
checking whether βt

j = 0 for all examples for which βy
j 
= 0, y ∈ {c, e}. For those

examples for which βt
j 
= 0 we say that we have a hit between class y and t. For

every hit the potential gain of a SMO step on (βy
j , β

t
j) has to be calculated and

compared to the current maximum candidate. Because for each class the support
classes lie sparse in the total set of support patterns, the gain calculation is only
conducted in a fraction of update steps. Yet still, experiments not documented
here indicate that Alg. 2 does not typically improve upon LaRank. Since Alg. 2
is carried out after each SMO step, the resulting constant time cost propagates
through to all three average gain rates which steer the stochastic step selection
procedure. The added time is negligible for the more costly step types processNew
and processOld, but large enough to make the selection of processOpt significantly
more unlikely. This in turn impedes the removal of useless support patterns,
which again makes update steps more costly.

We reduce the computational cost by entering candidate examination at line 10
of Alg. 2 only for a subset of all variables being updated. In detail, we introduce
a parameter D representing the desired number of hits within the entire update
loop. Starting from a random index we only enter candidate examination at
line 10 while less than D hits have occurred. Note that the best of D hits with
probability 1 − xD is better or equal to the best in a fraction x of all possible
hits (e.g., theorem 6.33 in [1]). We choose D = 10, for which the probability of
the best of D random hits being in the highest quintile of all possible hits is
∼ 90%, and divide these ten hits evenly between the two classes being updated.
We further provide an incentive towards sparser solutions and hence shorter gra-
dient update times by slightly modifying line 12 of Alg. 2. If a SMO step on a
candidate hit would eliminate at least one of the two support classes, that step
is given preference over a non-eliminating candidate step. Between candidates of
identical priority the resulting gain remains the selection criterion, just as stated
in line 12 of Alg. 2. For brevity we refer to this final algorithm employing gain
sensitive example selection in LaRank reprocess steps as “GaLa”.
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3 Experiments

We incorporated GaLa into the original LaRank implementation and conducted
our comparison on the original benchmark datasets, both obtainable at the soft-
ware page of [4]. Tb. 1 lists the corresponding dataset characteristics and SVM
hyperparameters.1 We further wish to rule out that our results are merely an
artifact of GaLa nudging the stochastic step selection mechanism to for some
reason more suitable relative step rates. We therefore besides LaRank and GaLa
considered a third variant for comparison, GaLaFix, in which we fixed the av-
erage number of processOld and processOpt steps per processNew in GaLa to
those exhibited by LaRank. In detail, we for each dataset simultaneously let
one LaRank and two dummy GaLa runs perform ten independent single-epoch
trials and noted the average relative step rates (sold, sopt) of LaRank in Tb. 1. In
the actual experiments we compare GaLaFix, clamped to these empirical step
rates, to LaRank and GaLa, afterwards verifying that LaRank approximately
reached the same step rates again. Fig. 1 shows the results obtained as mean
averages over ten independent single-epoch trials on differently shuffled train-
ing sets. We for clarity excluded the primal training curves, which qualitatively
follow those of the test errors. The horizontal black bar in the upper right of
each plot illustrates the factual time advantage of GaLa over LaRank. It extends
from the finish time of that method with lower final dual value to the linearly
extrapolated time at which the respective other method reached the same dual
value. Dividing the length of the line by the time of its later endpoint we note
a speed-up of 12, 9, 18, and 2 percent for USPS, LETTER, INEX, and MNIST,
respectively. Experiments were carried out on an eight-core 2.9 GHz machine
with 8 MB CPU cache, 3.5 GB memory, using 500 MB of which as kernel cache,
and no other avoidable tasks running besides all three methods in parallel.2

1 As SVM hyperparameters were selected on the basis of “past experience” [4], the
dual curve should probably be seen as most significant performance measure. Fur-
ther, MNIST data and hyperparameters slightly vary between the printed and web-
site version of [4], which we used and where the relevant differences are listed. We
also slightly modified the LaRank implementation for training set shuffling, serial-
ization, etc. The entire source code underlying our experiments can be obtained at
http://image.diku.dk/igel/downloads.php. Besides the implementation described
above, we added a complete re-implementation of an EBCS solver to the Shark ma-
chine learning library [12]. In that implementation one epoch of GaLa on MNIST on
average reaches a dual of 3656 in 987 seconds, despite not speeding up sparse radial
basis function kernel evaluations through precomputed norms as in the original.

2 Similar to the note on the LaSVM software page [2] we observed performance vari-
ability across platforms also for LaRank. We ascribe this effect to the volatility of
the step selection algorithm. E.g., if kernel computations are slightly faster on one
machine, this will make processNew and processOld steps more likely, but might
lead to an actual decrease in accuracy if the relative advantage for processNew is
higher. Further, if the operation underlying gradient updates takes longer on one
machine, this constant cost on all three step types will regularize the original step
selection mechanism. In [5] the adaptive step selection mechanism is discarded for a
deterministic one, at the cost of introducing an additional SVM hyperparameter.

http://image.diku.dk/igel/downloads.php
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3.1 Results and Discussion

For the first three datasets the proposed method arrives at the same dual values
between 9% and 18% faster than the original approach. For the fourth dataset,
MNIST, it only yields a marginal advantage of 2%. Possible reasons for this
comparatively weak performance may be that the distribution of gradients is
such that randomly picking an example holds no real disadvantage as compared
to a gain-sensitive selection method. We also conducted minor experiments not
documented here towards the role of the parameter D, but did not find quali-
tatively different results for reasonable changes in D. Third, it is notable that
until around 2300 seconds, GaLaFix persistently sustains an advantage of 10 to
15% over LaRank. It might be enlightening to relate the subsequent decline to
the onset of the kernel cache overflow, since that would most likely significantly
perturb the target attractor for the probabilistic weight of processOld steps. This
however is not straightforward as LaRank uses d class-wise kernel caches.

(a) The USPS dataset (b) The LETTER dataset

(c) The INEX dataset (d) The MNIST dataset

Fig. 1. Development of dual objective (left axis) and test error (right axis) of LaRank,
GaLa, and GaLaFix over one epoch on four benchmark datasets
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4 Conclusions

We proposed a gain-sensitive working set selection algorithm for LaRank by Bor-
des et al. [4], which is an epoch-based solver for the Crammer-Singer multi-class
SVM [7]. Our new working set selection scheme improves learning speed and is
conceptually compatible with a wide range of conceivable step selection proce-
dures. While several approaches to step selection have been presented [2,4,5,6],
a robust canonical solution has yet to be developed. We further believe that the
method suggested here is a promising basis for parallelizing processOpt steps in
LaRank. Since SMO steps and subsequent gradient updates are independent for
disjunct class pairs, d/3 parallel SMO steps should with slight modifications be
possible while still benefiting from gain-sensitive example selection.
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Abstract. In object classification tasks from digital photographs, multiple cat-
egories are considered for annotation. Some of these visual concepts may have
semantic relations and can appear simultaneously in images. Although taxonom-
ical relations and co-occurrence structures between object categories have been
studied, it is not easy to use such information to enhance performance of object
classification. In this paper, we propose a novel multi-task learning procedure
which extracts useful information from the classifiers for the other categories. Our
approach is based on non-sparse multiple kernel learning (MKL) which has been
successfully applied to adaptive feature selection for image classification. Exper-
imental results on PASCAL VOC 2009 data show the potential of our method.

Keywords: Image Annotation, Multi-Task Learning, Multiple Kernel Learning.

1 Introduction

Recognizing objects in images is one of the most challenging problems in computer
vision. Although much progress has been made during the last decades, performance
of state-of-the art systems are far from the ability of humans. One possible reason is
that humans do incorporate co-occurrences and semantic relations between object cat-
egories into their recognition process. On the contrary, standard procedures for image
categorization learn one-vs-rest classifiers for each object class independently [2].

In this paper, we propose a two-step multi-task learning (MTL) procedure which can
find out useful information from the classifiers for the other categories based on mul-
tiple kernel learning (MKL) [6], and its non-sparse extension [4]. In the first step we
train and apply the classifiers independently for each class and construct extra kernels
(similarities between images) from the outputs. In the second step we incorporate infor-
mation from other categories by applying MKL with the extended set of kernels. Our
approach has several advantages over standard MTL methods like Evgeniou et al. [3],

� né Wojcikiewicz
�� We thank Klaus-Robert Müller for valuable suggestions. This work was supported by the Fed-

eral Ministry of Economics and Technology of Germany under the project THESEUS (FKZ
01MQ07018) and by the FP7-ICT program of the European Community, under the PASCAL2
Network of Excellence (ICT-216886).

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 335–342, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



336 W. Samek, A. Binder, and M. Kawanabe

namely (1) it does not rely on a priori given similarities between tasks, but learns them
via MKL, (2) it uses asymmetric task relations thus avoids negative transfer effects, i.e.
good classifiers are not deteriorated by other bad classifiers, which may occur in MTL
with symmetric task relations and (3) in contrast to other MTL methods it is scalable.
Our experimental results on PASCAL VOC 2009 images show that information from
the other classes can improve the classification performance significantly.

The rest of this paper is organized as follows. Section 2 describes related work. In
Section 3 we explain MKL and our multi-task learning procedure. Experimental results
are described in Section 4 and Section 5 concludes this work and discuss future issues.

2 Related Work

The main goal of multi-task learning is to achieve better performance by learning
multiple tasks simultaneously. In general multi-task learning methods can either utilize
common structure or use explicit relations between tasks. Methods utilizing common
structure in the data can be used for combining multiple features or learning from unla-
beled data in a multi-task framework [1,12]. Using relations between tasks became very
popular in last years. For example Evgeniou et al. [3] proposed a framework in which
relations between tasks are represented by a kernel matrix and multi-task learning is
performed by using a tensor product of the feature and task kernel as input for SVM.
Similar work can be also found in [9,11] or in [8] where the authors used Gaussian
Processes for learning multiple-tasks simultaneously. All these approaches are theoret-
ically attractive, but have drawbacks which reduce their applicability in practice. The
dimensionality of the kernel matrix increases (as square) with the number of tasks, thus
these methods are intractable for many real-world problems. Further, it is necessary to
determine task similarities appropriately in advance and in contrast to our method these
approaches assume a symmetric relationship between the tasks, but in practice a gain
from task A on task B may incur a loss from task B on task A.

Our work is, in philosophy, close to Lampert and Blaschko [5] who applied MKL
to multi-class object detection problems. However, their procedure cannot be used for
object categorization where detection is not the primal interest and no bounding boxes
of objects are available.

3 Multi-task Learning via MKL

3.1 Multiple Kernel Learning

In image categorization, combining many kernels Kj(x, x̄), (similarity measures be-
tween images x and x̄) for j = 1, . . . ,m constructed from various image descriptors
has become a standard procedure. Multiple kernel learning (MKL) is a method which
can choose the optimal weights {βj}m

j=1 of the combined kernel
∑m

j=1 βjKj(x, x̄) and
learn the parameters of support vector machine (SVM) simultaneously (see [6]).

Originally MKL imposes a 1-norm constraint ‖β‖1 =
∑

j βj = 1 on the mixing
coefficients to enforce sparse solutions. Recently, Kloft et al. [4] extended MKL to
allow non-sparse mixing coefficients by employing a generalized p-norm constraint

‖β‖p =
(∑

j β
p
j

)1/p

≤ 1 and showed that it outperforms the original one in practice.
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Fig. 1. Left Panel: Co-occurrence relations between the 20 categories of VOC 2009. The en-
tries are P (class row|class column) except for the last column with P (class row). If a condi-
tional probability is higher than its unconditioned value, then class row appears frequently with
class column together (e.g. diningtable and chair). In the opposite case both categories are rather
exclusive to each other (e.g. aeroplane and person). Right Panel: Kendall rank correlation scores.

3.2 Multi-task Learning

In a multi-task learning problem we obtain samples {(xi,yi)}n
i=1 where the vector

y consists of the binary labels yc ∈ {+1,−1} of C different categories (e.g. visual
concepts). Since some of these visual concepts may have semantic relations and can
appear simultaneously in images, it is natural to incorporate such relations into learning
processes. In order to see the pair-wise co-occurrence between the 20 object categories,
we plotted in Figure 1 (left panel) the conditional probabilities of the classes in the
rows given those in the columns, where the diagonal entries with probabilities 1 are
excluded for better visibility. We see that for instance diningtable and chair appear
together frequently, while classes such as cat and cow are rather exclusive to each other.

Apart from co-occurrence there exist other factors characterizing class-relationships.
The right panel of Figure 1 shows Kendall rank correlation score τ

τ =
(#concordant pairs)− (#disconcordant pairs)

1
2n(n− 1)

,

where n is the number of samples and a pair of samples is concordant, if the orders of
the two classification scores agree. For instance, although aeroplane and boat appear
together very rarely, their classification scores are positively correlated, because they
often share similar backgrounds (e.g. blue sky). Multi-task procedures aim at improving
classification performances by uncovering statistical relations overlooked by class-wise
binary solutions. However, in competitions on object categorization like PASCAL VOC
2009, there have been almost no submissions using the additional label interactions to
improve performance over one-vs-rest classifiers.

We tackle this by constructing a classifier which incorporates information from the
other categories via MKL for each class separately. Our procedure consists of two steps.
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First Stage: For each binary problem we compute the SVM outputs using the average

feature kernel.

Second Stage: (1) For each class we construct an output kernel based on the SVM scores

from first stage. (2) For each class, we apply sparse or non-sparse MKL with the

feature kernels and the output kernels from the other categories.

We measure similarities between the SVM outputs by using the exponential kernel

K̃c(xi,xj) = exp
[
−{sc(xi)− sc(xj)}2

]
, (1)

where sc(xi) is the score of SVM for the c-th category for the i-th example xi. We
neither normalized the scores, nor optimized kernel width further. It must be noted
that we cannot compare SVM outputs of training examples with those of test samples,
because their statistical properties are not the same. In particular, most of the training
images become support vectors whose SVM outputs almost coincide with their labels.
In this paper, we deployed 5-fold cross-validation to obtain reasonable scores for the
training images, while for the validation and test images, one SVM with the entire
training data was used to compute the classifier outputs.

4 Experimental Results

4.1 Experimental Setup

We used the data set of PASCAL VOC 2009 [2] which consists of 13704 images and
20 object classes with an official split into 3473 training, 3581 validation, and 6650 test
examples. We deployed the bag-of-words (BoW) image representations over various
color channels and the spatial pyramid approach [7] using SIFT descriptors calculated
on different color channels (see [10]). We used a vocabulary of size 4000 learned by
k-means clustering and applied a χ2 kernel which was normalized to unit variance in
feature space. Average precision (AP) was used as performance measure.

We created 10 random splits of the unified training and validation sets into new
smaller data sets containing 1764 training, 1763 validation, and 3527 test images. Since
the true labels of the original test images have not been disclosed yet, we excluded
these from our own splits. We remark that the AP scores reported in this paper are
not comparable with those by the VOC 2009 winners, because the training sample size
here is much smaller than that of the official split. For each of the 10 splits, the training
images were used for learning classifiers, while with its validation part we selected the
SVM regularization parameter C based on the AP score. The regularization constant C
is optimized class-wise from the candidates {2−4, 2−3, . . . , 24}.

The following three options were tested in the second step of our method: 1-norm
MKL, 2-norm MKL and average kernel SVM with 15 BoW and 19 output kernels.

4.2 Performance Comparison

In the first experiment we compare the performance of the three multi-task learning
strategies (denoted with ‘M’) using both the 15 feature and the 19 output kernels with
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Table 1. Average AP results for 10 splits. The combination of feature and output kernels with non-
sparse MKL outperforms all other settings. The performance gains of M 2mkl are all significant.

Split B ave B 2mkl B 1mkl M ave M 2mkl M 1mkl

1 0.4949 0.4932 0.4726 0.4958 0.5033 0.4737
2 0.4845 0.4845 0.4683 0.4818 0.4926 0.4675
3 0.4893 0.4882 0.4775 0.4879 0.4945 0.4756
4 0.4963 0.4957 0.4804 0.4938 0.5004 0.4804
5 0.4862 0.4910 0.4704 0.4910 0.5000 0.4781
6 0.4908 0.4896 0.4783 0.4929 0.5029 0.4779
7 0.4875 0.4905 0.4665 0.4962 0.5012 0.4685
8 0.4866 0.4875 0.4736 0.4857 0.4970 0.4753
9 0.4937 0.4959 0.4801 0.4980 0.5067 0.4852

10 0.4994 0.4983 0.4768 0.4887 0.5030 0.4788
average 0.4909 0.4914 0.4745 0.4912 0.5002 0.4761

three different baselines (denoted with ‘B’) with kernels computed only from BoW fea-
tures. The mean AP scores for the 10 splits are summarized in Table 1. Note that a
comparison with standard MTL methods like [3] was not possible as it is computation-
ally infeasible.

Two observations can be made from the results. First of all we see that the multi-
task learning method with 2-norm MKL (M 2mkl) outperforms the other settings in
all n = 10 runs. An application of the t-test shows that the performance gains are all
highly significant e.g. the difference ΔX between M 2mkl and the average feature
kernel baseline B ave is significant with p-value less than 0.1% as

t =
√
n

E[ΔX ]√
V ar[ΔX ]

= 7.4247

is larger than t(1− α
2 , n− 1) = 6.86.

The second observation which can be made from the results is that performance
decreases when using 1-norm MKL. Note that this effect occurs among the ‘B’ options
as well which do not use any kernels from SVM outputs. This result is consistent with
[4] who showed that the non-sparse MKL often outperforms 1-norm MKL in practice.
Especially in difficult problems like object classification sparsity is often not the best
choice as it ignores much information.

An interesting fact is that the performance gain is not uniformly distributed over
the classes. The left panel of Figure 2 shows the average relative performance change
between M 2mkl and B ave over all 20 VOC classes. The largest average gain can be
observed for the classes sheep, dog, diningtable, horse, motorbike and cow. Using the
t-test we can show that the performance gain for the classes aeroplane, bicycle, bird,
boat, car, cat, diningtable, dog, motorbike, person, sheep and train are significant with
α = 5% and the gain for classes bird, boat, dog, motorbike, person and train is even
significant with p-value less than 1%.

So the question now is can we identify the classes (output kernels) which are respon-
sible for the performance gain of these classes ?
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Fig. 2. Left Panel: Relative performance change (average over 10 runs) per class between the
2-norm multi-task MKL and average kernel baseline. Right Panel: Average MKL weights β.
The classes in the row indicate the classification tasks, while those in the column are the output
kernels. The strength of contribution is not symmetric e.g. see chair - diningtable.

4.3 Interactions between Object Categories

The kernel weights of MKL give a hint to what extent a classifier uses the output infor-
mation from another classifier. The right panel of Figure 2 shows the average weights
of MKL and we see some prominent links, e.g. train → bus, horse → cow, chair →
diningtable. In order to visualize the relations, we created a class-relation graph with
the 15 largest kernel weights β. This graph is asymmetric i.e. the output of the class A
classifier may be important for classification of class B (arrow from A to B), but not
vice versa. It is interesting that this graph although created from MKL kernel weights
reveals a semantically meaningful grouping of the classes into: Animals (horse, cow,
dog, cat), Transportation (bus, car, train), Bikes (bicycle, motorbike), Home (chair,
tvmonitor, sofa, diningtable), Big bluish areas (aeroplane, boat).

We can think of at least two reasons why the classifier output can help classifiers
in the same group. First, co-occurrence relationships can provide valuable information
e.g. a chair in the image is an evidence for a diningtable. The second reason is that
objects from different classes may have similar appearance or share similar context e.g.
images with aeroplanes and boats often contain a large bluish area, the sky and water
respectively, so that the outputs of aeroplane classifier may help to classify boats.

4.4 Ranking of Images

When we compare image rankings of the baseline and our classifiers in more detail,
we gain interesting insights, e.g. the cat → dog and chair → diningtable rankings are
analysed in Figure 4. On the horizontal axis we divide the test set into 35 groups of 100
images based on cat (or chair) scores and create a box plot of the rank difference of dog
(resp. diningtable) outputs between the two procedures for each group. In both cases,
our method provide better ranks (i.e. positive) in some interval from rank 101 (101 -
1300 for dog and 101 - 600 for diningtable). We conjecture that this is caused mainly by
similarities between objects (e.g. cat and dog) and/or backgrounds (e.g. indoor scene).
On the other hand, the top group (1 - 100) has rather negative shifts (i.e. our method
gave lower ranks than the baseline) for dog, while shows more positive changes for
diningtable. It can be possible that this behavior is caused by co-occurrence relations.
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Fig. 3. Left Panel: Class-relation graph computed from MKL weights showing the 15 strongest
relations. An arrow from A to B indicates that B is using the output kernel from A with high
kernel weight. Right Panel: Images with substantial rank changes. Top images using dog classi-
fier (upper: 297→207, 50→4, 140→60, lower: 33→164, 86→280, 108→1057), Bottom images
using diningtable classifier (upper: 28→15, 486→345, 30→6, lower: 36→63, 35→61, 9→36).

Finally, we show in the right panel of Figure 3 example images which had large
differences in rankings by the two methods. The three images in the upper row of each
group got higher ranks by our classifier and contain the correct objects, while the other
three in the lower row had worse ranks and the object class does not appear. For the
images containing the correct objects, the proposed method gave better ranking than the
baseline. Among dog (or diningtable) images, 63% (60% resp.) obtained better ranks

Fig. 4. Differences between the baseline and our method of diningtable (dog) ranks conditioned
on chair (cat) ranks. On the horizontal axis each group consists of 100 images, i.e. the first group
is from rank 1 to 100 of the chair (cat) classification score. The box plots show that till rank 600
the diningtable score tend to be ranked higher by our method than by the SVM baseline probably
due to co-occurrence and common indoor context. In the top group of cat, we see a downside
shift of the dog score probably because of negative co-occurrence relation, while images with
rank 101-1300 of the cat score are ranked higher due to similarities between dog and cat images.
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with median improvement +36 (+14 resp.). On the other hand, we also observed that
mutually-exclusive categories may reduce false positives, e.g. among non-diningtable
images containing cat, 73% had worse ranks with median difference−139.

5 Conclusions

The multi-task learning approach presented in this paper allows to automatically in-
corporate relations between object categories into the learning process without a priori
given task similarities, by using the output information from other classifiers. It can po-
tentially capture co-occurrence information as well as visual similarities and common
backgrounds. We showed that our approach with non-sparse MKL not only significantly
outperforms the baselines, but also allows to extract semantically meaningful relations
between categories. Furthermore, we analysed the rankings obtained by the proposed
method in comparison with those by the non-multi-task baseline. It reveals that interac-
tions between different categories are affected by multiple factors, but can be captured
by our method in a non-linear fashion through the output kernels.

In future research we plan to combine our idea with a boosting method and compare
it with existing approaches which model relationships between classes explicitly.
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Abstract. In this paper, the multiple random subset-kernel learning (MRSKL)
algorithm is proposed. In MRSKL, a subset of training samples is randomly se-
lected for each kernel with randomly set parameters, and the kernels with optimal
weights are combined for classification. A linear support vector machine (SVM)
is adopted to determine the optimal kernel weights; therefore, MRSKL is based
on a hierarchical SVM. MRSKL outperforms a single SVM even when using a
small number of samples (200 to 400 out of 20,000 training samples), while the
SVM requires more than 4,000 support vectors.

Keywords: Kernel Method, Multiple Kernel Learning, Support Vector Machine,
Random Sampling.

1 Introduction

Recently, multiple kernel learning (MKL) has been proposed to improve the classifica-
tion performance of single kernel classifiers [1,2]. Although the method based on the
unweighted sum if multiple kernels is considered the simplest method, it may not be the
ideal one.Therefore, various programming methods for finding the optimal combination
weight have been proposed. Lanckreit [3] and Bach [1] proposed an efficient algorithm
based on sequential minimal optimization (SMO).

The discriminant function for MKL is described as a weighted summation of kernel
values:

f(x) =
p∑

m=1

βm〈wm, Φ(x)〉+ b (1)

where m indexes kernels. βm is the weight coefficients for the kernel; wm, the
weight coefficient for the sample; Φm(x), the mapping function for feature space m;
and p, the number of kernels. Reforming equation (1) using the duality condition, we
obtain

f(x) =
p∑

m=1

βm

n∑
i=1

αmiyi 〈Φm(x), Φm(xi)〉︸ ︷︷ ︸
Km(x,xi)

+b (2)
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where n is the number of sample; αmi , the weight coefficient; and yi, be the sample
label. The kernel weights satisfy the condition βm ≥ 0 and

∑p
m=1 βi = 1. Different

kernels (such as linear, polynomial, and Gaussian kernels) or kernels with different
hyperparameters (for example, Gaussian kernels with different Gaussian widths) can be
combined; however, the same weight is assigned to a kernel over all the input samples,
as per the definition in equation (1).

Although in the original definition of MKL (equation (1)) different weights are not
assigned to a kernel for different samples, kernels can be combined over different sub-
sets of training samples, such as

f(x) =
p∑

m=1

βm

∑
i∈Ẋ

αmiyi〈Km(x,xi)〉+ b (3)

where Ẋ stands for the subset of training samples for the mth kernel, while X stands
for the full set of training samples. The sampling policy for the subsets is not restricted
to any method, but if subsets are sampled according to the probability distribution
ηm(x), the kernel matrix is defined as follows:

Kη(ẋi, ẋj) =
p∑

m−1

〈Φm(ẋi), Φm(ẋj)〉 (4)

where Ẋ = ηX . The probability that Kη(ẋi, ẋj) is obtained becomes the product
of the probabilities of obtaining xi and xj . Therefore, a subset kernel is determined
by using the kernel matrix for all training samples and the sampling function ηm, as
follows:

Kη(ẋi, ẋj) =
p∑

m−1

〈Φm(ẋi), Φm(ẋj)〉

=
p∑

m=1

ηm(xi) 〈Φm(xi), Φm(xj)〉︸ ︷︷ ︸
Km(xi,xj)

ηm(xj), (5)

which is eventually equivalent to the definition of localized multiple kernel learning
(LKML) [5].

For good classification performance in MKL, the optimal hyperparameters for the
kernels and sample subsets (sampling function according to ηm(x)) must be determined
by using different subsets; however, this requires an exhaustive search for the desired
parameters and sampling functions. Therefore, we employ random sampling for the
training subsets and randomly set hyperparameters for the kernels. The final classifier
is determined by a linear combination of random kernels (randomly sampled subset
and randomly set hyperparameters), and the βm values are optimized to obtain the best
classification performance.

In this paper, we propose multiple random subset kernel learning (MRSKL), a mul-
tiple kernel learning algorithm for a randomly selected subset of training samples.
The proposed algorithm uses a small subset for each kernel, and the kernel values are
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combined according to the classification result obtained for all training samples. Si-
multaneous optimization of αmi and βm in equation (3) has been a major interest in
MKL research, as reported by Bach [1] and Rakotmamonjy [4], but the coefficients are
independently optimized in the proposed algorithm.

The rest of the paper is organized as follows.
In Section 2, we describe the MRSKL algorithm. In Section 3, we present the experi-

mental results for an artificial dataset. MRSKL showed good classification performance
which exceeds the SVM result for the test samples.

2 Multiple Random Subset-Kernel Learning Algorithm

2.1 Learning Algorithms Using a Subset of Training Samples

Several algorithms that use a subset of training samples are proposed. These algorithms
can be used to improve the generalization performance of classifiers or to reduce the
computation cost for the training. Feature vector selection (FVS) [6] has been used
to approximate the feature space F spanned by training samples by the subspace Fs

spanned by selected feature vectors (FV s). Import vector machine (IVM) is built on
the basis pf kernel logistic regression (KLR) and used to approximate kernel feature
space by a smaller number of import vectors (IVs). While FVS and IVM involve ap-
proximation of the feature space by their selected samples, RANSAC-SVM [9] involves
approximation of the classification boundary by randomly selected samples with op-
timal hyperparameters. In FVS and IVM, samples are selected sequentially, but in the
case of RANSAC-SVM, samples are randomly selected; nevertheless, in all these cases,
a single kernel function is used over all the samples.

SABI [8] sequentially selected a pair of samples at a time and carried out linear
interpolation between the pair in order to determine a classification boundary. Although
SABI does not use the kernel method, the combination of classification boundaries can
be considered as a combination of different kernels.

An exhaustive search for the optimal sample subset requires a large computation;
therefore, we employed random sampling to select subsets and combined multiple ker-
nels with different hyperparameters for the subsets for MRSKL.

2.2 Subset Sampling and Training Procedure for MRSKL

Since the subset-kernel (Km) is determined by the subset of training samples (Sm),
the subset selection strategy may affect the classification performance of each kernel.
Therefore, in MKL using subset-kernels, the following three parameters must be opti-
mized; sample weight αmi , kernel weight βm, and sample subset Sm. However, since
simultaneous optimization of three parameters is a very complicated process, we gen-
erate randomly selected subsets to determine αmi s for a subset kernel with randomly
assigned hyperparameters; then, we determine βm as the optimal weight for each ker-
nel. When the kernel weights βm are maintained to be optimal, the weights for kernels
with insufficient performance becomes low. Therefore, such kernels may not affect the
overall performance.
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Separating the optimization procedures for αmi (sample weight) and βm (kernel
weight), we rewrite equation (2) by substituting αmiyi〈Km(x,xi)〉 with fm(x), as
follows:

f(x) =
p∑

m=1

βm

∑
i∈Sm

αmiyi〈Km(x,xi)〉+ b

=
p∑

m=1

βmfm(x) + b (6)

In MRSKL, we first optimize αmi for the subset-kernel classifier fm(x) and then
optimize βm.

The detailed MRSKL algorithm is as follows:

1. Let n be the number of training samples T ; p, the number of kernels; and l, the
number of samples in the selected subsets Sm,

2. Repeat the following steps p times
(a) Determine Q training subsets Sm by randomly selecting samples from T
(b) Randomly set hyperparameters (such as Gaussian width and regularization

term for the RBF kernel)
(c) Train the mth classifier fm over the subset Sm

(d) Predict all training samples T by fm determining probability output
3. Train a linear SVM over fm: {m = 1 . . . P} to determine the optimal βm for the

final classifier

Parameter selection is performed by repeating steps 2b to step 2d, and the best pa-
rameter set is adopted in step 3.

RBF-SVM is employed for fm(x), and MRSKL is performed on the basis of a hier-
archical SVM.

3 Experiment

The experimental results are discussed in this section. Although a wide variety of ker-
nels are suited for use in MRSKL, we use only RBF-SVM for the subset-kernels to
investigate the effect of random sampling. Hyperparameters (G and C for LIBSVM
[10]) are randomly set to the desired range for the dataset. We employed linear-SVM to
combine subset kernels to obtain the optimal kernel weight for classification.

3.1 Experimental Data

We evaluated MRSKL by using the artificial data in this experiment. The data are gener-
ated from a mixture of ten Gaussian distributions, five of which generate class 1 samples
and others generate class –1 samples. 20,000 samples are generated for the training set,
and 20,000 samples are independently generated for test set. The black contour in the
figure 1 indicates Bayesian estimation of the class boundary; the classification ratio for
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Bayesian estimation is 92.25% for the training set and 92.15% for the test set. The clas-
sification ratio for the full SVM, in which the parameters are determined by five-fold
cross-validation (c = 3 and g = 0.5), is 92.22% for the training and 91.95% for the test
set, with 4,257 support vectors.

The fitting performance of MRSKL may be affected by the subset selection policy;
therefore, we first evaluated the performance by the smallest subset size, which includes
one pair of samples from class 1 and class –1 each. All the experiments were run thrice,
and the results were averaged.

3.2 A Single-Pair Subset-Kernel

Figure 1 shows the classification boundary in MRSKL for various numbers of kernels.
From the result, a good classification boundary can be determined using as few as 100
samples (50 single-pair subset-kernels), while a larger number of samples would be
required in an SVM.

Figure 2 shows the classification ratio for the training samples, and figure 3 shows
the classification ratio for the test samples with the regularization parameter C for 210

to 2−1 and the Gaussian width parameter G for 22 to 2−5. The average classification
ratio for the training samples became comparable to the SVM result for about 100
kernels but the classification ratio for the test samples exceeds the SVM result for 150
kernels. finally, the classification ratio reached 92.20% for 200 kernels. The average
classification ratio for the test samples exceeded the SVM result for about 150 kernels
and finally reached 91.97% for 200 kernels. Since each subset contained only one pair
(two) of samples in this experiment, only 200 samples were required to attain a fitting
performance similar ti that in the SVM case with 4,257 support vectors. This result for
the training samples indicates that MRSKL can show high fitting performance with a

Fig. 1. MRSKL Classification Boundary with Single-Pair Kernel (C = 210 to 2−1, G = 22 to
2−5)
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Fig. 2. MRSKL Result for Training Samples with Single-Pair Kernel (C = 210 to 2−1, G = 22

to 2−5)

Fig. 3. MRSKL Result for Test Samples with Single-Pair Kernel (C = 210 to 2−1, G = 22 to
2−5)

small number of support vectors than does an SVM. The result for the test samples
indicates that MRSKL can show higher generalization performance than does an SVM.

3.3 Result for Benchmark Set

Next, we examined a benchmark set cod-rna from the LIBSVM dataset [11]. The
cod-rna dataset has eight attributes 59,535 training samples, and 271,617 validation
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samples with two-class labels. Hyperparameters for a single SVM were obtained by
performing grid search through five-fold cross-validation and randomly set for MRSKL
around the values for a single SVM. We applied the random subset-kernel with param-
eter selection for this dataset, because the dataset includes a large number of samples.
We examined 500-sample, 1000-sample, and 5000 sample subsets.

Table 1 shows the results for the cod-rna dataset. MRSKL outperformed the single
SVM with a subset size of 1,000 (1.7% of the total number of the training samples)
combining 2,000 kernels and with a subset of 5,000 (8.3% of the training samples)
combining 100 kernels.

Table 1. Classification Ratio for cod-rna dataset

Number of kernel Training Test
Single SVM (Full set) 1 95.12 96.23
MRSKL subset = 500 3000 95,03 96.16
MRSKL subset = 1000 2000 95.30 96.30
MRSKL subset = 5000 100 94.90 96.24

4 Conclusion

We proposed an MRSKL algorithm, which combines multiple kernels generated from
small subsets of training samples.

The result for the smallest subset (one pair) showed that MRSKL could approxi-
mate the classification boundary with a small number of samples. The 200-pair (400-
samples) subset-kernel outperformed the SVM with 4,257 support vectors.

A multiple-sample subset (100 samples) helped accelerate the convergence of the
classifier, but the final classification performance for test samples showed only a small
improvement.

The result for the benchmark dataset cod-rna showed that MRSKL with a subset
size corresponding to 2% or 5% of the training samples can outperform the single SVM
with optimal hyper-parameters.

Although 200 or 1000 kernels must be combined in MRSKL, the number of compu-
tations for the subset-kernels would not exceed that for a single (full-set) SVM, because
an SVM requires at least O(N2) to O(N3) computations.

We employed a linear SVM to combine kernels and obtain the optimal kernel weights.
However, this final SVM took up a majority of the computational time in MRSKL since
it had to trained for as many samples as the large-attribute training samples.

In this study, we used all the outputs from subset-kernels for the training samples;
however, we can apply feature selection and sample selection for the final linear SVM,
as this may help reduce computation and improve the generalization performance si-
multaneously.
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Learning. J. of Machine Learning Research 7, 1531–1565 (2006)

3. Lanckriet, G.R.G., Cristiani, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel
matrix with semidefinite programming. J. of Machine Learning Research 5, 27–72 (2004)

4. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: More Efficiency in Multiple Kernel
Learning. In: Proc. of International Conf. on Machine Learning (2007)
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Abstract. Mean shift-based algorithms perform well when the tracked object is
in the vicinity of the current location. This cause any fast moving object espe-
cially when there is no overlapping region between the frames fails to be tracked.
The aim of our algorithm is to offer robust kernel-based observation as an in-
put to a single object tracking. We integrate kernel-based method with feature
detectors and apply statical decision making. The foundation of the algorithm is
patch matching where Epanechnikov kernel-based histogram is used to find the
best patch. The patch is built based on Shi and Tomasi [1] corner detector where
a vector descriptor is built at each detected corner. The patches are built at ev-
ery matched points and the similarity between two histograms are modelled by
Gaussian distribution. Two set of histograms are built based on RGB and HSV
colour space where Neyman-Pearson method decides the best colour model. Dia-
mond search configuration is applied to smooth out the patch position by applying
maximum likelihood method. The works by Comaniciu et al. [2] is used as per-
formance comparison. The results show that our algorithm performs better as we
have no failure yet lesser average accuracy in tracking fast moving object.

Keywords: Tracking observation, Neyman-Pearson, Maximum likelihood,
Patch matching.

1 Introduction

Getting the right observation for updating any tracking algorithm is a very challenging
task. Tracking accuracy is highly dependent on good observation for getting a good
performance. Thus, improving observation accuracy or observation association are the
most crucial factors in building good tracker especially in people counting and be-
haviour analytics systems. In complex situations such as illumination change, clutter
and occlusion; robust observations are hardly obtained which lead most trackers [3,2]
resort to the prediction data alone. In certain situations, null observation or multiple
false observations are no rare incidents which will hamper the tracking algorithms per-
formance. In video analytics, the challenge of detecting the same object throughout the
video is becoming more tedious as most of the objects are nonrigid where their appear-
ance vary as the time goes on. Feature based algorithms such as SIFT [4] and SURF [5]
will not give a good matching due to the fixed size kernel used for accumulating their
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descriptors which diminishes the accuracy when the point is occluded or blurred. On
the other hand, histogram-based tracking algorithms [6,2] have been applied success-
fully for the nonrigid objects because of the matching is done based on the statistics of
a group of pixels. The most popular histogram-based tracking is mean shift algorithm
[7] where the next location is predicted based on the input of histogram backprojection
via mean shift algortihm. Later Bradski introduced CAMSHIFT [6] which integrates
scalability property into mean shift algorithm that allows the tracked object to have
variable size. Kernel-based tracking which utilizes Epanechnikov kernel profile have
been introduced by Comaniciu at el. [2]. This approach put more emphasize on the
middle pixels and lesser weightage for further pixels during the accumulating the his-
togram’s values. They also applied Bhattacharyya distance [8] for comparing between
the two histograms. Another good histogram matching algorithms are such as the works
by Funt and Finlayson [9] and earth mover distance [10], where both approaches are
robust to illumination change.

In general, kernel-based algorithm performs well for single object tracking. How-
ever, as the scene become crowded and more objects need to be tracked, the algorithms
start to falter, especially during occlusion. The works by Namboodiri et al. [11] and
Peng et al. [12] are attempted to solve the problem of occlusion. The algorithm of
Namboodiri et al. tweaks the localization of the mean shift by applying both forward
and reverse methods so that it converges to the true modes. They also add scalability
by utilizing SIFT’s scale. However this contradicts their main argument where their al-
gorithm should work in real time as it is a known fact that SIFT takes more processing
power compared to the mean shift methods. Another approach by Peng et al. focuses on
improving the updating method for the object model where Kalman filter is used. The
predicted object model is called candidate model while the previous model is called
current model and hypothesis testing is applied to choose the right histogram model. In
the paper by Leichter et al. [13], they improve kernel-based method by using multiple
object model so that it tracks well under sudden view change. This methods required
the user to initialize the object model in several views which can be quite problematic.
The main weakness of the mean shift algorithm is it depends on the proximity property.
The tracker is prone to failure when the objects movement is fast. The algorithm of Li
et al. [14] approaches this problem by extending the search area based on their hexagon
method. However, it is a brute force search which requires significant processing cost.
Besides, the algorithm still fail if the object moves fast enough to be outside of their
search region.

The main goal of this paper is to offer a robust method of obtaining a good track-
ing observation. Firstly, the object bounding box in the initial frame will be the object
model reference and several patches are built in the next frame as the target models.
This is done by matching points of interest between two consecutive frames for build-
ing possible patches at matched vector location. This allows our method to search the
tracked object for the whole image selectively. At each patch, their histograms are ob-
tained by applying Epanechnikov kernel [13]. The matching between object model and
target models are done by modelling the histograms with Gaussian distribution. Maxi-
mum likelihood method is applied to find the most probable patch. Two colour spaces
are used; RGB and HSV for solving illumination change problem. RGB is good in
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normal condition while hue performs better under illumination change. Neyman Pear-
son method is applied to find the right colour model. Then, diamond search config-
uration is used in building position smoothing patches where once again maximum
likelihood is applied.

2 Statistical Kernel-Based Observation (SKBO)

Basically, our algorithm (SKBO) has a close resemblance to the content-based image
retrieval approach because of the matching procedure, but in this case the database is
generated in a second image frame instead of via a predefined database. The output
of the algorithm then can be applied as an input to filtering algorithm. The main four
components of the algorithm are:

1. Generate points of interest.
2. Generate possible patches.
3. Undertake patch matching.
4. Perform position smoothing.

2.1 Generate Points of Interest

The purpose of finding points of interest is to generate early locations of where the
possible patches may be built. At every located points, vector descriptor is built which
will be compared between consecutive frames (F t andF t−1) to find the possible anchor
point where the patches are built. Initially, the user will define the bounding box of
the interest object. The importance of this user defined patch is that it serves as the
reference for building the statistical data used in matching and smoothing procedures
and in particular the reference histograms. Moreover, the size of the first frame patch
indicates the original object size. Let Pw and Ph denote the width and height of the user
defined bounding box, while (x)=(x, y) represents the coordinate location and t is the
timing of the frame. Corner detectors as defined by Shi and Tomasi [1] are applied to
find the possible points of interest. The threshold used for the Shi and Tomasi algorithm
is around 0.01 which signifies the minimum eigenvalue required for the point to be
considered as a corner. The minimum distance between consecutive corners is set at 3
pixels. This corner detector was chosen because of its ability to generate the points even
during low ambient illumination and for low textured objects.

2.2 Generate Possible Patches

Possible patches, (β) are generated at each corner where the vector descriptor, V are
matched. There are 3 sets of vectors for each point of interest which are corresponding
to red, green and blue channels, (Vx,y,t

R ,Vx,y,t
G ,Vx,y,t

B ). The advantage of this approach
is we can expand the search area all over the frame while keeping the computational
burden low as the histograms are built at selected points only. Contrary to mean shift
approach where the processing cost is directly proportional to search area region. The
vectors are generated by finding the colour difference between the anchor pixel and its
selected neighbourhood pixels as shown in Figure 1. Let i denote the channel type and
define
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Fig. 1. Neighbourhoods pattern used for vectors generation

Vx,y,t
i = {F x−1,y,t

i − F x,y,t
i , F x,y−1,t

i − F x,y,t
i , F x+1,y,t

i − F x,y,t
i , F x,y+1,t

i − F x,y,t
i }

(1)

Then the vector components are sorted from the lowest to the highest value. Sorting
allows the algorithm to find good match even during illumination change at the expense
of orientation accuracy. This will not affects the algorithm performance as the objec-
tive is to built as many as possible good patch candidates. The decision rule (dr) for
matching the vectors is shown in equation 2 where the differences between each vector
component are summed up and the final value is obtained by combining all 3 channels
differences. Then it is compared with a predefined threshold, γ1. Let Lx,y,t

1 denotes
the label which takes the value 1 when the vectors are matched and 0 for unmatched
vectors.

dr =
B∑

i=R

∣∣∣Vx,y,t
i − Vx,y,t−1

i

∣∣∣ (2)

Lx,y,t
1 =

{
1 if dr < γ1

0 if dr ≥ γ1

(3)

Each of the matched vector (Lx,y,t
1 = 1) is candidate for locations at which patches

are built. Patches for the second frame are anchored at the corner of the matched vec-
tor. Figure 2 shows an example of how the bounding box is generated. A subsequent
test for distinguishing overlapping patches is performed after all patches have been as-
signed their location and size. This is done in order to reduce the calculation burden
by reducing the number of patches. Moreover, most of the small differences occur be-
cause of “noise” in the patch generation process. The decision rule, L2 for determining
overlapping patches is calculated as in equation 4. Patch smoothing is performed if the
overlapping area is more than γ2% of the original patch size.

Fig. 2. Examples of constructing the new patches between the frames. The bounding boxes are
aligned with respect to the matched vectors in the first frame. (a) First frame (b) Second frame.
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L2 =

{
1 if the overlap region > (γ2).Pw.Ph

0 if the overlap region ≤ (γ2).Pw.Ph

(4)

The new combined patch location, (x̄, ȳ) is the average of the corresponding center of
the overlapping patches where N is the number of L2s detected.

(x̄, ȳ) =

⎛⎝ 1
N

N∑
j=1

xj ,
1
N

N∑
j=1

yj

⎞⎠ , (xj , yj) = jth patch with L2 = 1 (5)

2.3 Patch Matching

In order to choose which patch is the most probable one, we apply maximum likelihood
method. The basis for our patch matching is by utilizing the histogram similarity. All
histograms are built by applying Epanechnikov kernel, (K(x)) [13] where more weigh-
tage is emphasize for the middle part and lesser as the pixels are further away from
the anchor pixel. This is based on the assumptions that outliers and ”noise” are more
apparent at the kernel border. Before applying the kernel, each patch size is normalized.
The kernel’s profile is

K(x) ∝
{

(1− x) if 0 ≤ x ≤ 1
0 if x > 1

(6)

Two colour models are applied consecutively, RGB and HSV. For RGB colour space,
a 3-dimensional histogram is built for each patch while for HSV colour space, a 1-
dimensional histogram is built based on hue component only. Under normal circum-
stances, RGB colour space works the best while under illumination change, hue channel
is found to be invariant, yet the distinctive property is degraded. Histogram matching is
done by modelling the relationship between two histograms as a Gaussian distribution.
We find that Gaussian approach is good enough to model the histograms difference
and directly applicable to maximum likelihood method. We assume the variances (σ)
are equivalent for all channels and the covariance matrix is a diagonal matrix for sim-
plicity purpose. Let n and m represent the histograms and i is the number of bins in
1-dimension. For 1-dimensional histogram, they are ni×1 and mi×1 elements while for
3-dimensional histogram, they are ni×3 and mi×3 elements.

P (n; m, σ2) =
1

(2φ)k/2|σ| exp
(
− 1

2σ
(n−m)2

)
, k = histogram dimension (7)

Every histograms are normalized before comparison is made. For each colour space,
we use maximum likelihood approach to find the best match. The likelihoods are mod-
elled by equation 7, P (Y|β) = P (n; m, σ2) where β̂ denotes the matched patch, Y
represents the observation and j can be either RGB or hue.

β̂j = argmax
∀βj

P (Y|βj) (8)
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There are two candidates for the most likely patch, one is the output of RGB space while
the other one is from Hue component. Neyman-Pearson hypothesis testing is applied to
choose the most likely patch. Let P (x;H0) be P (β̂RGB), P (x;H1) be P (β̂hue) and λ1

represent the threshold for the Neyman-Pearson hypothesis testing. If the test favours
H0, then an indicator, ε is initialized as 1 and β̂RGB is selected, while if H1 is chosen,
ε is equal to 0 and β̂hue is selected. In the next section, we will utilize only one colour
space depending on the parameter epsilon. Figure 3 shows an example of selecting the
right patch between frames.

NP =
P (Y;H1)
P (Y;H0)

=
P (β̂hue)
P (β̂RGB)

> λ1 (9)

βfin1 =

{
β̂RGB if P (β̂hue) < λ1P (β̂RGB)

β̂hue if P (β̂hue) ≥ λ1P (β̂RGB)
(10)

Fig. 3. Procedures for selecting the right patch. (a) Original patch (b) Raw patches (c) Combined
patches (d) Maximum correlation patch

2.4 Position Smoothing

Usually the output from the patch matching is not aligned nicely with the tracked ob-
ject. This error is prevalent during illumination change or in low ambient illumination.
To smooth out the position, we apply once again maximum likelihood method as in
equation 7. The translation test for adjusting the patch location is performed towards 4
directions: 1) leftward (βnew1

fin1
), 2) upward (βnew2

fin1
), 3) rightward (βnew3

fin1
), and 4) down-

ward (βnew4
fin1

) as shown in Figure 5. The solid patch is the original position while the
dashed patch is the moved patch by a step size value. The histograms of each of the

Fig. 4. Example of applying location smoothing algorithm. (a) Original patch (b) New location is
indicated by the green bounding box
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Figure 4 shows the example of applying position smoothing algorithm to fit the tracked object
nicely. Diamond search method [14] is used to generate the possible shift patches anchored
around βfin1 . The colour space used is decided based on the ε value. Firstly, the step size (δ)
used for adjusting the patch translation is determined as follows, δ = 0.1(min(Pw, Ph)).

Fig. 5. Patches coordination for location smoothing (a) Left side translation (b) Upward transla-
tion (c) Right side translation (d) Downward translation

five patches including the original position patch are obtained. The likelihood of each
patch is calculated with respect to the object model histogram. Let β̂fin2 denotes the
output of the position smoothing, βfin2 = argmax

∀βfin1

P (x|βfin1). For each iteration, the

pivot position is reinitialized by letting βold0
fin1

= βfin2 , so that 4 new translated patches
for the next iteration are built around the new βfin2 . The algorithm is iterated until the
estimated patch position remain constant as shown by L3. This final patch then is ready
to be fed into filter-based tracker such as Kalman as the measurement input.

L3 =

{
βfin2 = βold0

fin1
stop the iteration

βfin2 
= βold0
fin1

continue the iteration
(11)

3 Results and Discussion

The algorithm has been tested on several videos that contained fast moving object and
sudden illumination change. We compared our algorithm with the kernel-based tracking
by Comaniciu et al. [2] with slightly alteration where we use HSV colour space so that
the comparison is fairer since the videos contain a lot of illumination change scenes.
All videos have a size of 320× 240 and samples of the videos are shown in the Figure
6. The parameters used are σ = 122, γ1 = 12 and γ2 = 0.7. Figure 6(a) to 6(c) contain
a fast moving object while Figure 6(d) contains an object under sudden illumination
change. We use relative error mean, E and number of failed tracks to quantify the al-
gorithms performance. Relative error are the ratio between Euclidean distance of the
object compared to the ground truth over its dimension. Let σsim denotes the simulation
result and σgnd represents the ground truth.

E =

⎛⎝
√

(σsim
x − σgnd

x )2 + (σsim
y − σgnd

y )2

max(Pw, Ph)

⎞⎠ (12)

Table 1 shows that after averaging, our algorithm works better for video 1, while worse
for video 3 and is equally good for video 2 compared to the kernel-based method.
However, we manage to track the object at every frames while kernel-based method
failed occasionally and needs to be reinitialized. Our lack of accuracy in video 3 is
caused by the small number of feature points are generated. For video 4, we have a one
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Fig. 6. Samples of the tracked object. (a) video 1 (b) video 2 (c) video 3 (d) video 4

Table 1. Performance evaluation of SKBO

Input video Relative error mean No. of tracking failure
Comaniciu et al. SKBO Comaniciu et al. SKBO

video 1 0.5807 0.2251 4 0
video 2 0.3080 0.3144 2 0
video 3 0.1710 0.2638 1 0
video 4 0.1974 0.3850 0 1

failure out of several illumination changes test which leads to higher average relative
error. Besides, we apply HSV colour model for the kernel-based method which help
them improve the algorithm due to the hue invariant under lighting change.

4 Conclusion

In conclusion, we proved that our method works better in obtaining observation for sin-
gle object tracking for fast moving object. The novelty of the approach is the search re-
gion is the entire frame but histograms are built at the matched points only. This method
allows us reduce the computational cost significantly instead of brute force search. Be-
sides, we also apply kernel profile in building the histograms and apply Gaussian based
modelling for quantifying the histograms similarity. However, the performance is lower
than kernel-based method under illumination change but still yield a reasonable accu-
racy. The performance can be improved if better feature detector is used but it will cost
more computational power which hinders online applications.
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Abstract. X-ray inspection systems play a crucial role in security check-
points, especially at the airports. Automatic analysis of X-ray images is
desirable for reducing the workload of the screeners, increasing the in-
spection speed and for privacy concerns. X-ray images are quite different
from visible spectrum images in terms of signal content, noise and clut-
ter. This different type of data has not been sufficiently explored by
computer vision researchers, due probably to the unavailability of such
data. In this paper, we investigate the applicability of bag of visual words
(BoW) methods to the classification and retrieval of X-ray images. We
present the results of extensive experiments using different local feature
detectors and descriptors. We conclude that although the straightfor-
ward application of BoW on X-ray images does not perform as well as it
does on regular images, the performance can be significantly improved
by utilizing the extra information available in X-ray images.

Keywords: X-ray image analysis, bag of visual words, classification,
retrieval.

1 Introduction

X-ray imaging is an important technology for security applications. Traditionally,
images recorded by X-ray machines at security checkpoints are monitored by
specially-trained screeners to prevent the entrance of illicit materials/objects (e.g.,
explosives, guns). Considering the huge number of luggages to be inspected (espe-
cially at the airports), it is desirable to (semi-)automate the inspection process to
reduce the workload of screeners and hence increase the inspection speed and op-
erator alertness. Automated inspection is also desirable for privacy concerns.

Our aim is to reduce theworkload ofX-ray screeners at airports byautomatically
analyzing and recognizing illicit materials/objects in baggage X-ray images such
that the screeners will only need to check a small subset of the baggages that will be
marked as suspicious by our automatic system. This is relevant to object detection,
recognition and retrieval in computer vision, and has been studied extensivelywith
some success on regular, visible spectrum images. However, X-ray images are quite
different from the visible spectrum images: (1) they are transparent, pixel values
represent the attenuation by multiple objects; (2) they may be very cluttered; (3)
they are noisy due to the low energy X-ray imaging (Figure 1).

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 360–368, 2011.
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Fig. 1. Colored X-ray images

Objects in visible spectrum images are opaque and occlude each other. On
the contrary, X-rays penetrate the objects, therefore, the objects along the X-ray
path attenuate the signal and affect the final intensity value. Due to this, pixel
intensities in X-ray images represent signal attenuation due to (multiple) objects.
Contrast between objects in X-ray images is due to the differential attenuation
of the X-rays as they pass through the objects. Attenuation of X-rays as they
travel through objects is formulated by

Ix = I0e
−μx (1)

where Ix is the intensity of the X-ray at a distance x from the source, I0
is the intensity of the incident X-ray beam, and μ is the linear attenuation
coefficient of the object measured in cm−1. The higher the value of μ, the higher
the attenuation.

Dual energy X-ray imaging combines two radiographs acquired at two different
energy levels, to obtain both the density and atomic number of the materials,
thus to provide information about material composition or at least improve
image contrast [13,6]. The low-energy and high-energy images are fused with the
help of a look-up table into a single color image to facilitate the interpretation
of the baggage contents (Figure 2). Most X-ray machines record images from
multiple view points (e.g., from 4 different viewing angles) so that the contents
of the baggage can be seen better. This means, multiple images are recorded for
each baggage, each image from a different view.

This different type of data has been left unexplored (except for a few works
mentioned below), probably due to the unavailability of such data to computer
vision researchers. We are investigating the applicability, and if possible adapta-
tion and extension, of relevant computer vision algorithms on baggage X-ray data
for the recognition and retrieval of baggages containing illicit materials/objects.
This paper presents the results of extensive experiments on the classification and
retrieval of baggage X-ray images using the popular bag of visual words method.
We conclude that the classification and retrieval performance can be significantly
improved by utilizing the extra information available in X-ray images, such as
the dual energy images, multiple views and material-specific colors.
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Fig. 2. Using two energy levels to obtain a color X-ray image using a look-up table.
Colors represent the type of materials (atomic number); e.g., orange: organic materials,
blue: non-organic materials (e.g., metals). Intensity is related to the thickness of the
materials.

2 Related Work

The literature on baggage X-ray image analysis is very limited. There are only
a few previous works, which mainly focused on image enhancement and seg-
mentation. Chen et. al developed a combinational method to fuse, de-noise and
enhance dual-energy X-ray images for improved threat detection and object
classification [6]. A similar approach is presented in [9] for the enhancement
of dual-energy X-ray carry-on luggage images. Singh and Singh proposed an
approach for the optimization of the image enhancement tools [14]. Abidi et.
al proposed an enhancement method for data decluttering for low density and
hard-to-distinguish objects in baggage X-ray images.

Ding et. al proposed an attribute relational graph (ARG) based segmentation
method for the segmentation of overlapping objects in X-ray images [8]. Simi-
larly, Wang et. al proposed a structural segmentation method based on ARG
matching [16]. Heitz et. al proposed a method for separating objects in a set
of X-ray images using the property of additivity in log space, where the log at-
tenuation at a pixel is the sum of the log-attenuations of all objects that the
corresponding X-ray passes through [10].

To the best of our knowledge, there is no published work addressing the
problem of recognition and retrieval on baggage X-ray images. Recently, Bag of
(Visual) Words (BoVW or BoW) approaches have been successfully used in im-
age classification, object detection/recognition and retrieval [7,15,12,2]. Adapted
from text processing domain, BoW relies on visual words, which are generated
by clustering a large number of local features obtained by computing low-level
descriptors around local image patches. Described next is how we apply the BoW
method on baggage X-ray images.
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3 Method

We applied the standard BoW method for the classification and retrieval of X-
ray images, and then utilized the extra information available in baggage X-ray
images to improve the performance. The method consists of four main stages:
(1) detection and description of image patches, (2) clustering the descriptors for
vocabulary construction, (3) computing the BoW representation of images, and
(4) classification and retrieval using the BoW representation [7].

Detection and description of image patches. Local image descriptors have proved
to be successful in image classification, recognition and retrieval, since they are
robust to partial occlusion and clutter, and image variations like translation,
rotation and scaling. Several techniques have been suggested for the detection
of local image patches [12]:

– Sparse representation with interest points
– Multiple interest point operators
– Dense sampling over a regular grid
– Random sampling

We used the first three sampling strategies in this work and experimented with
several interest point detectors: DoG, Hessian-Laplace, Harris, FAST and STAR,
which are all available in OpenCV [1]. Once the patches/points are detected, a
descriptor can be computed around each patch/point. We experimented with
three different descriptors: SIFT [11], SURF [3] and BRIEF [4].

Visual vocabulary construction. The visual vocabulary is obtained by clustering
the visual descriptors into a number of clusters (e.g., 500, 1000, 2000) and taking
the cluster centroids as the visual words. We used the well-known k-means clus-
tering algorithm and also experimented with the Self Organizing Maps (SOM).

Vector quantization and BoW computation. After obtaining the visual vocabu-
lary, images or image regions can be described by a histogram of visual words,
the so-called bag of visual words. The histogram can be constructed using
different assignment/weighting techniques, which affect the performance
significantly [17].

Fig. 3. Interest point detectors on a color X-ray image using the OpenCV 2.2 imple-
mentations of Harris, SIFT’s DoG, SURF’s Hessian-Laplace and FAST respectively
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– Hard assignment (HA): assign each descriptor to the single closest visual
word

– Soft weighting (SW): assign some weight to closest K visual words (e.g.,
K=3)
• SW1: assign constant weights to closest K visual words (e.g., for K=3,

[0.5, 0.25, 0.25])
• SW2: determine the weights according to the distances to closest K visual

words

Classification and retrieval. The bag of visual words representations of images
can be used for supervised classification and retrieval. Among many available
supervised classifiers, the Support Vector Machines (SVM) have been the most
popular due to their performance [7,2]. For class-specific retrieval (searching for
an instance of a class, e.g, handgun in X-ray images), the classification scores
are used to rank the images.

4 Experiments

In this section, we present experimental results for the classification and retrieval
of baggages containing handguns (Figures 1, 3, 4). Our dataset consists of bag-
gage X-ray images recorded on a dual-energy X-ray machine, which provides 4
views (one from top, one from side and two views at some angle) for each bag-
gage, hence a total of 12 images (1 low-energy, 1 high-energy and 1 color image
for each of the 4 views) for each baggage. The imaged baggages are packed with
a variety of objects/materials such as clothes, shoes, bottles, mobile phones,
laptops, umbrellas, guns and knives. In practice, the baggages may (and does)
contain anything that can fit in the baggage. The image sizes depend on the size
of the baggages, and are around 600× 700 pixels.

We used OpenCV 2.2 [1] for the interest point detectors and descriptors, and
LIBSVM [5] with several kernels (linear, RBF, chi-square, intersection) for classi-
fication. We observed that the intersection kernel performed the best. Therefore,
all the results presented below were obtained using the intersection kernel.

The training set contains 208 images (corresponding to 52 baggages), 52 pos-
itive images (13 baggages containing handguns), 156 negative images (39 bag-
gages not containing handguns). The test set contains 764 images (191 baggages),
40 positive (10 baggages) and 724 negative images (181 baggages). We used all
of the images from all 4 views in training, as if they were standalone images,
without considering if they belong to the same baggage or not.

For performance evaluation, we used the standard recall, precision and av-
erage precision (AveP) measures. These performance measures were computed
for both image- and baggage-based classification and retrieval. In the baggage-
based evaluation, if an image is classified as positive, the baggage it belongs to is
classified as positive. Similarly, for baggage-based retrieval, a baggage’s score is
taken as the highest score of all the images corresponding to the four views and
ranking is done accordingly. This is because one of the four views of a baggage
may contain a better view of the object than the other views, and hence it scores
high in classification.
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4.1 Results

Due to space limitations we present only the most relevant results. All the re-
sults were obtained using k-means for vocabulary learning (SOM performed
worse), soft weighting (SW2, which worked best) in BoW computation, and
histogram intersection kernel in classification with LIBSVM. We observed that
DoG, Hessian-Laplace, Harris and FAST perform competitively, while STAR
keypoints and dense sampling are not as good. Moreover, SIFT performed the
best among the three descriptors.

Table 1 shows the recall, precision and average precision values for classifica-
tion and retrieval for 3 different images for each view of a baggage with DoG
detector and SIFT descriptor. Compared to visible spectrum images, the recall
and precision values are considerably lower, indicating the difficulty of the X-ray
image data. The major problem with X-ray images is the lack of texture, which
is very important for the success of BoWs in regular images, which are rich in
texture.

Table 1. Recall, precision and average precision for classification and retrieval using
DoG+SIFT on low-energy, high-energy and color X-ray images

low-energy high-energy color
Recall Prec. AveP Recall Prec. AveP Recall Prec. AveP

200
Image 0.30 0.30 0.37 0.35 0.27 0.33 0.45 0.35 0.34

Baggage 0.40 0.22 0.42 0.40 0.15 0.37 0.70 0.28 0.44

500
Image 0.35 0.29 0.38 0.35 0.27 0.38 0.37 0.31 0.38

Baggage 0.40 0.20 0.40 0.50 0.22 0.41 0.60 0.25 0.42

1000
Image 0.35 0.27 0.38 0.38 0.27 0.40 0.37 0.26 0.32

Baggage 0.40 0.20 0.38 0.50 0.24 0.43 0.50 0.20 0.39

Baggage X-ray images may get very cluttered, depending on the contents of
the baggage. In such cases, most of the detected keypoints belong to the back-
ground, as shown in Figure 3. We can eliminate some of the background points
by a coarse background/foreground segmentation using the color information
(atomic number) available in the color X-ray images. For the case of handguns,
which are mostly metallic (blue in color X-ray), the foreground corresponds to
blue regions. Figure 4 shows an example of such a segmentation (using Gaussian
Mixture Models and morphological dilation) and the densely sampled keypoints
that remain after eliminating the ones that belong to the background. Con-
structing the BoW representation of the images using the foreground keypoints
improves the classification and retrieval performance significantly, as shown in
Figure 5.

Interest point detectors detect different set of keypoints on the same image
(e.g., some detect corners, some detect blobs), as shown in Figure 3. Combining
the information from multiple detectors is expected to help in classification and
retrieval. Indeed, as shown in Figure 6 and Table 2, using multiple point detectors
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Fig. 4. Color segmentation and filtering out the background keypoints. Left: original
image, middle: segmentation result for metallic materials, right: densely sampled points
remaining after filtering out the points that belong to the background.

Fig. 5. Image- and baggage-based retrieval performance, with and without color filter-
ing the keypoints. Descriptor: SIFT

Table 2. Recall, precision and average precision for classification and retrieval with
multiple images per view and multiple detectors (color filtered)

DoG (low+high+color) DoG+Harris DoG+Harris
(DoG, union) (color, union) (color, concat.)

Recall Prec. AveP Recall Prec. AveP Recall Prec. AveP

200
Image 0.58 0.34 0.50 0.63 0.41 0.60 0.63 0.45 0.54

Baggage 0.70 0.23 0.54 0.70 0.26 0.65 0.70 0.29 0.57

in computing the BoW or concatenating the BoW representation from 2 different
detectors (Harris + DoG) improves the performance. Moreover, using the union
of keypoints from low energy, high energy and color images also increases the
performance. This suggests the use of Multiple Kernel Learning as in [2] to
compute the best combination of different detectors and descriptors.
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Fig. 6. Image- and baggage-based retrieval performance, with union of point detectors
and concatenation of BoWs (color filtered keypoints + SIFT)

5 Conclusion

We investigated the applicability of bag of visual words method on a challenging
data type, baggage X-ray images. Judging by the experimental results: (1) X-ray
image data is more challenging compared to visible spectrum image data, (2)
although the straightforward application of the method does not perform well,
the performance can be improved by utilizing the characteristics of X-ray images
(multiple views, two energy levels, color representing the material type).

Our goal is to reduce the workload of the screeners, rather than replacing
them. In a realistic setting, the automatic system can process the images recorded
by multiple X-ray machines and return only a small subset of the baggages as
suspicious. Thus, the screeners need to examine only a small subset of the images
instead of all. Hence, we also need to measure the performance of the system in
terms of work reduction at specific accuracy levels.

We are currently building a large X-ray image dataset to perform a de-
tailed benchmark for state-of-the-art classification, recognition and detection
algorithms based on local features. We are planning to make the data set pub-
licly available to stimulate research on baggage X-ray image analysis.
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Abstract. The objective of Content-based Image Retrieval (CBIR) sys-
tems is to return a ranked list containing the most similar images in a
collection given a query image. The effectiveness of these systems is very
dependent on the accuracy of the distance function adopted. In this
paper, we present a novel approach for redefining distances and later re-
ranking images aiming to improve the effectiveness of CBIR systems. In
our approach, distance among images are redefined based on the similar-
ity of their ranked lists. Conducted experiments involving shape, color,
and texture descriptors demonstrate the effectiveness of our method.

1 Introduction

Traditional image retrieval approaches based on keywords and textual metadata
face serious challenges. Describing the image content with textual descriptions is
intrinsically very difficult [6]. One of the most common approaches to overcome
these limitations on supporting image searches relies on the use of Content-
Based Image Retrieval (CBIR) systems. Basically, given a query image, a CBIR
system aims at retrieving the most similar images in a collection by taking into
account image visual properties (such as, shape, color, and texture). Collection
images are ranked in decreasing order of similarity, according to a given image
descriptor.

Commonly, CBIR systems compute similarity considering only pair of images.
On the other hand, the user perception usually considers the query specification
and responses in a given context. For interactive applications, the use of context
can play an important role [1]. In a CBIR scenario, relationships among images
and information encoded in ranked lists can be used for extracting contextual
information.

Recently, efforts were put on post-processing the similarity scores aiming to
improve the effectiveness of information retrieval tasks [13]. Methods have been
proposed for analyzing the relations among all documents in a given collec-
tion [8,25,24,14]. Contextual information have also been considered for improv-
ing the effectiveness of image retrieval approaches [15, 18, 13]. The objective of
these methods is somehow mimic the human behavior on judging the similarity
among objects by considering specific contexts. More specifically, the notion of
context can refer to updating image similarity measures by taking into account
information encoded in the ranked lists defined by a CBIR system [18].
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In this paper, we present the RL-Sim Re-Ranking Algorithm, a new post-
processing method that considers ranked lists similarities for taking into ac-
count contextual information. We propose a novel approach for computing new
distances among images based on the similarity of their ranked lists. Each ranked
list is modeled as sets and set operations are used for computing the similarity
between two ranked lists. We believe that the modeling of ranked lists as sets,
in a general way, represents an advantage of our strategy. The algorithm can be
used with different distances or similarity scores. Thus, the re-ranking method
can be used for different CBIR tasks and easily adapted for other information
retrieval tasks (e.g., text or multimodal search).

We evaluated the proposed method with shape, color, and texture descriptors.
Experimental results demonstrate that the proposed method can be used in
several CBIR tasks and yields better results in terms of effectiveness performance
than various post-processing algorithms recently proposed in the literature.

2 The RL-Sim Re-ranking Algorithm

The main motivation of our re-ranking algorithm relies on the conjecture that
contextual information encoded in the similarity between ranked lists can provide
resources for improving the effectiveness of CBIR descriptors. In general, if two
images are similar, their ranked lists should be similar as well [14]. It is somehow
close to the the cluster hypothesis [16], which states that “closely associated
documents tend to be relevant to the same requests”. In the following, we present
a definition of our re-ranking algorithm.

Let C={img1, img2, . . . , imgN} be an image collection and let D be an image
descriptor that defines a distance function ρ : C × C → R, where R denotes
real numbers. Consider ρ(x, y) ≥ 0 for all (x, y) and ρ(x, y) = 0, if x = y. The
distance ρ(imgi,imgj) among all images imgi,imgj ∈ C can be computed to
obtain an N ×N distance matrix A.

Given a query image imgq, we can compute a ranked list Rq in response to the
query, based on the distance matrix A. The ranked list Rq={img1, img2, . . . ,
imgN} can be defined as a permutation of the collection C, such that, if img1

is ranked at lower positions than img2, then ρ(imgq,img1) ≤ ρ(imgq,img2). We
also can take every image imgi ∈ C as a query image imgq, in order to obtain a
set R = {R1, R2, . . . , RN} of ranked lists.

Let ψ : R × R × N → R be a similarity function that defines a similar-
ity score between two ranked lists considering their first K images, such that
ψ(Rx, Ry,K) ≥ 0 for all Rx, Ry ∈ R.

Our goal is to propose a re-ranking algorithm that takes as input an initial
set of ranked lists R and use the function ψ for computing a more effective dis-
tance matrix Â and therefore a more effective set of ranked lists R̂. An iterative
approach is proposed: the new (and more effective) set Rt+1, where t indicates
the current iteration, is used for the next execution of our re-ranking algorithm
and so on. These steps are repeated along several iterations aiming to improve
the effectiness incrementally. After a number T of iterations a re-ranking is per-
formed based on the final distance matrix Â. Based on matrix Â, a final set



Image Re-ranking and Rank Aggregation 371

Algorithm 1. RL-Sim Re-Ranking Algorithm
Require: Original set of ranked lists R, distance matrix A, and parameters Ks, T , λ
Ensure: Processed set of ranked lists R̂
1: t ← 0
2: Rt ← R
3: At ← A
4: K ← Ks

5: while t < T do
6: for all Ri ∈ Rt do
7: c ← 0
8: for all imgj ∈ Ri do
9: if c ≤ λ then

10: At+1[i, j] ← 1/(1 + ψ(Ri, Rj , K))
11: else
12: At+1[i, j] ← 1 + At[i, j]
13: end if
14: c ← c + 1
15: end for
16: end for
17: Rt+1 ← perfomReRanking(At+1)
18: t ← t + 1
19: K ← K + 1
20: end while
21: R̂ ← RT

of ranked lists R̂ can be computed. Algorithm 1 outlines the proposed RL-Sim
Re-Ranking Algorithm.

Observe that the distances are redefined considering the function ψ for the
first λ positions of the each ranked list, such that λ ∈ N and 0 ≤ λ ≤ N .
For images in the remaining positions of the ranked lists, the new distance is
redefined (Line 12) based on the current distances. In these cases, the function
ψ does not need to be computed, considering that relevant images should be at
the begining of the ranked lists. In this way, the computional efforts decreases,
becoming the algorithm not dependent on the collection size N .

Also note in Line 19, that at each iteration t, we increment the number of K
neighbors considered in the computation of function ψ. The motivation behind
this increment relies on the fact that the effectiveness of ranked lists increase
along iterations. In this way, non-relevant images are moved out from the first
positions of the ranked lists and K can be increased for considering more images.

The main step of the algorithm consists in the computation of function ψ,
detailed in next subsection.

2.1 Measuring Similarity between Ranked Lists

The objective of function ψ is to compute a more effective distance between two
images, considering the contextual information encoded in the first K positions
of their ranked lists. Let KNN be a function that extracts a subset with the first
positions of ranked list Ri, such that | KNN(Ri, k) |= k. The function ψ com-
putes the intersection between the subsets of two ranked lists considering different
values of k, such that k ≤ K. Equation 2 formaly defines the function ψ.

ψ(Rx, Ry,K) =
∑K

k=1 | KNN(Rx, k) ∩KNN(Ry, k) |
K

(1)
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Note that if two ranked lists present the same images at the first positions,
the size of the intersection set is greater, and the value of ψ is greater as well.
Figure 1 illustrates the computation of ψ considering multiscale values of K.

Fig. 1. Computation of function ψ: intersection of ranked lists with different sizes

3 The Rank Aggregation Algorithm

Let C be an image collection and let D = {D1, D2, . . . , Dm} be a set of CBIR
descriptors. We can use the set of descriptors D for computing a set of distances
matrices A = {A1, A2, . . . , Am}. Our approach for combining descriptors works
as follows: first, we combine the set A in a unique matrix Ac. For the matrices
combination we use a multiplicative approach. Each position (i, j) of the matrix
is computed as follows:

Ac[i, j] = A1[i, j]×A2[i, j]× . . . Am[i, j] (2)

Once we have a matrix Ac, we can compute a set of ranked lists Rc based on
this matrix. Then, we can submit the matrix Ac and the set Rc for our original
re-ranking algorithm.

4 Experimental Evaluation

4.1 Impact of Parameters

The execution of Algorithm 1 considers three parameters: (i) Ks - number of
neighbors considered when algorithm starts; (ii) λ - number of images of each
ranked list that are considered for redefining distances; and (ii) T - number of
iterations in which the algorithm is executed.

To evaluate the influence of different parameter settings on the retrieval scores
and for determining the best parameters values we conducted a set of experi-
ments. We use MPEG-7 database with the so-called bullseye score, which counts
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all matching objects within the 40 most similar candidates. Since each class
consists of 20 objects, the retrieved score is normalized with the highest pos-
sible number of hits. For distance computation, we used the ASC [11] shape
descriptor.

Retrieval scores are computed ranging parameters Ks in the interval [1,20]
and T in the interval [1,7]. Figure 2 illustrates the results of precision scores for
different values of parameters Ks and T . We observed that best retrieval scores
increased along iterations and parameters converged for values Ks = 15 and
T = 3: 94.69%. We used these values in all experiments.

We also analyzed the impact of parameter λ on precision. As discussed before,
the objective of λ consists in decreasing computation efforts needed for the al-
goritm. In this way, we ranged λ in the interval [0,N ] (considering the MPEG-7
collection). Results are illustrated in Figure 3. Note that the precision scores
achieve the stability near to λ = 700 (value used in our experiments).

Fig. 2. Impact of parameters: Ks and T Fig. 3. Impact of parameters: λ

4.2 Experiments Considering CBIR Tasks

In this section, we present a set of conducted experiments for demonstrating the
applicability and effectiveness of our method. We analyzed our method with in
the task of re-ranking images considering shape, color, and texture descriptors.
We also compared our method to state-of-the-art post-processing methods.

Table 1 presents results (bullseye score - Recall@40) for shape descriptors
on MPEG-7 database. We can observe a significative gains from +7.13% to
+20.82%.

In addition to shape descriptors, we conducted experiments with color and
texture descriptors. For texture descriptor, we used the Brodatz [5] dataset, a
popular dataset for texture descriptors evaluation. For color descriptor, we used
a soccer data set proposed in [23] and composed by images from 7 soccer teams,
containing 40 images per class. Table 2 presents results for 10 image descriptors
in 3 different datasets. The measure adopted is Mean Average Precision (MAP).
We can observe that the proposed re-ranking method presented gains of up to
+15% in MAP scores.
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Table 1. Contextual Re-Ranking for shape descriptors on MPEG-7 (Recall@40)

Shape Descriptor Score [%] RL-Sim Re-Ranking Gain

SS [17] 43.99% 53.15% +20.82%
BAS [2] 75.20% 82.94% +10.29%
IDSC+DP [10] 85.40% 92.18% +7.94%
CFD [14] 84.43% 94.13% +11.49%
ASC [11] 88.39% 94.69% +7.13%

Table 2. MAP scores regarding the used of the RL-Sim Re-Ranking in CBIR tasks

Descriptor Type Dataset Score
(MAP)

RL-Sim Re-
Ranking (MAP)

Gain

SS [17] Shape MPEG-7 37.67% 43.06% +14.31%
BAS [2] Shape MPEG-7 71.52% 74.57% +4.25%
IDSC [10] Shape MPEG-7 81.70% 86.75% +6.18%
ASC [11] Shape MPEG-7 85.28% 88.81% +4.14%
CFD [14] Shape MPEG-7 80.71% 88.97% +10.23%

GCH [20] Color Soccer Dataset 32.24% 33.66% +4.40%
ACC [7] Color Soccer Dataset 37.23% 43.54% +16.95%
BIC [19] Color Soccer Dataset 39.26% 43.45% +10.67%

LBP [12] Texture Brodatz 48.40% 47.77% -1.30%
CCOM [9] Texture Brodatz 57.57% 62.01% +7.72%
LAS [21] Texture Brodatz 75.15% 77.81% +3.54%

We evaluated the use of our re-ranking method to combine different CBIR
descriptors. We selected two descriptors for each visual property: descriptors
with best effectiveness results are selected. Table 3 presents results of MAP score
of these descriptors. We can observe significatve gains when compared with the
results obtained for descriptor in isolation.

Table 3. MAP scores regarding the use of RL-Sim Algorithm for Rank Aggregation

Descriptor Type Dataset Score (MAP)
CFD [14] + IDSC [10] Shape MPEG-7 98.34%
CFD [14] + ASC [11] Shape MPEG-7 98.75%
BIC [19] + ACC [7] Color Soccer 44.49%
LAS [21] + CCOM [9] Texture Brodatz 80.26%

Finally, we also evaluated our method in comparison to other state-of-the-
art post-processing methods. We use MPEG-7 database with the called bullseye
score. Table 4 presents results of our contextual re-ranking method and four
post-processing methods. Note that the results of our RL-Sim Re-Ranking
method in rank aggregation tasks presented the best effectiveness performace
when compared to other methods.
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Table 4. Post-processing methods comparison on MPEG-7 database (Recall@40)

Algorithm Shape Descriptor Score Gain

Data Driven Generative Models (DDGM) [22] - 80.03% -
Contour Features Descritpor (CFD) [14] - 84.43% -
Inner Distance Shape Context (IDSC) [10] - 85.40% -
Shape Context (SC) [4] - 86.80% -
Aspect Shape Context (ASC) [11] - 88.39% -

Graph Transduction (LP) [24] IDSC [10] 91.00% +6.56%
Distance Optimization [14] CFD [14] 92.56% +9.63%
Locally Constrained Diffusion Process [25] IDSC [10] 93.32% +9.27%
Mutual kNN Graph [8] IDSC [10] 93.40% +9.37%
RL-Sim Re-Ranking CFD [14] 94.13% +11.49%
Contextual Re-Ranking [13] CFD [14] 94.55% +11.99%
RL-Sim Re-Ranking ASC [11] 94.69% +7.13%
Locally Constrained Diffusion Process [25] ASC [11] 95.96% +8.56%

Co-Transduction [3] IDSC [10]+DDGM [22] 97.31% -
Co-Transduction [3] SC [4]+DDGM [22] 97.45% -
Co-Transduction [3] SC [4]+IDSC [10] 97.72% -
RL-Sim Re-Ranking CFD [14]+IDSC [10] 99.31% -
RL-Sim Re-Ranking CFD [14]+ASC [11] 99.44% -

5 Conclusions

In this work, we have presented a new re-ranking method that exploits contextual
information for improving CBIR tasks. The main idea consists in analyzing sim-
ilarity between ranked lists for redefing distance among images. We conducted a
large set of experiments and experimental results demonstrated the applicability
of our method to several image retrieval tasks based on shape, color, and texture
descriptors. Future work focuses on considering multimodal searches involving
visual and textual descriptions associated with images.
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Abstract. This work addresses the problem of the representation of
spatial relationships between symbolic objects in images. We have stud-
ied the distribution of several categories of relationships in LabelMe1,
a public database of images where objects are annotated manually and
online by users. Our objective is to build a cartography of the spatial
relationships that can be encountered in a representative database of
images of heterogeneous content, with the main aim of exploiting it in
future applications of Content-Based Image Indexing (CBIR), such as
object recognition or retrieval. In this paper, we present the framework
of the experiments made and give an overview of the main results ob-
tained, as an introduction to the website2 dedicated to this work, whose
ambition is to make available all these statistics to the CBIR community.

Keywords: Symbolic image, Spatial relationships, Cartography.

1 Introduction

We are interested in the representation of spatial relationships between symbolic
objects in images. In CBIR, embedding such information into image content de-
scription provides a better representation of the content as well as new scenarios
of interrogation. Literature on spatial relationships is very rich – several hun-
dreds of papers exist on this topic – and a lot of approaches were proposed. Most
of them describe different aspects of spatial relationships, e.g. directional [3] or
topological [1] relationships, and have been evaluated on small synthetic or spe-
cific image datasets, e.g. medical or satellite imagery. In this work, we propose
to build a cartography of the spatial relationships that can be encountered in a
database of images of heterogeneous natural contents, such as audiovisual, web
or family visual contents. We have chosen a public annotated database, from the
platform LabelMe1, which is described in section 2. This cartography collects
statistical informations on the trends of spatial relationships involving symbolic
objects effectively encountered in this database, with the aim of exploiting them
in future CBIR applications, for improving tasks such as object recognition or

1 LabelMe: http://labelme.csail.mit.edu
2 Our website: http://www.lamsade.dauphine.fr/~hoang/www/cartography
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retrieval. Here, we focus on the analysis of unary and binary relationships, re-
spectively described in sections 3 and 4. Because of space limitation, we present
a synthesis of this analysis, which is fully described in research report [2], and
made available to the CBIR community on our website2.

2 A Public Annotated Image Database: LabelMe

Studied database: LabelMe [7] is a platform containing image databases and
an online annotation tool that allows users to indicate freely, by constructing a
polygon and a label, the many objects depicted in a image as they wish. Thus,
each object, called entity in this work, is presented by a polygon and a label.
In our work, each label is considered as the name of an entity category, so all
entities possessing the same label belong to a same category. We used one of the
test databases of this platform which contains 1133 annotated images in daily
contexts (see examples in Fig.1). The content of these images is very heteroge-
neous, it contains many categories and many images, and it is not specific to a
particular domain. Therefore, studying this database can provide a general view
about categories and their relationships, and the results should not be influenced
noticeably by changing the database. In order to guarantee the quality of the
database we verified carefully each annotated image for consistency. Firstly, we
manually consolidated synonymous labels by correcting orthographic mistakes
and merging labels having the same meaning. Secondly, we selected 86 different
categories taking into account only those categories having at least 15 entities.
This decision was taken to ensure an independence of statistical results even
whether the image database is changed. Lastly, we added missing annotations
to entities of the considered categories, except for too small size entities or enti-
ties belonging to a category having a high frequency of already annotated entities
in the image. In this way, the statistical results should not be biased by these
missing annotations. In the following, we call DB this database.

Statistic on categories: Before studying different relationships between cat-
egories, we take a look at statistics concerning each category, for example, its
highest and lowest numbers of entities in an image, the total number of its en-
tities in the database, the number of images where at less one of its entities
appears, etc. The overview of this statistical study is presented in Table 1.

Sky, tree, person, lake, ground Road,car, building, window Sky,tree, mountain, ground

Fig. 1. Images of DB and associated annotations
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Table 1. Overview of statistical measures on DB

Nb of Nb of Average of Average of Max. nb of Min. nb of
img/DB entities/DB entities/cat.(STDEV) entities/img (STDEV) entities/img entities/img

1133 38075 442.7 (1485.6) 33.6 (32.3) 264 1

The average entities number of each category in an image could be used to
have a quick view about the possibility of having more than one of its entities
in an image. For example, the window category has a high average, around 19
entities per image. Then, if we find a window in an image, we can expect to find
another window in the same image. For a more detailed study, we have com-
puted the intra-class correlation of categories, based on the classic correlation
function between two categories. Slightly differently to classic correlation repre-
senting impact of one category on another, the intra-class correlation is never
negative. Returning to the previous example, we obtained 0.776 for the intra-
class correlation of windows, this is also the highest score among intra-class
correlations obtained. This score is high enough to conclude that we can find
mostly at least two windows in an image where a window entity has already
been detected. The lowest score in this study is 0, related to lake category.
Therefore, no image in DB contains more than one lake. In fact, it is not usual
to have two or more instances of lake in the same image. Summarizing, 21 cat-
egories have intra-class correlation higher than 0.3 while only 8 categories have
a score higher than 0.5, for example car, window, building.

This study can provide useful information in the category detection process, if
we want, for example, to detect all entities of a category Ci present in an image
I. Knowing that Ci has, in general, one entity per image (based on a threshold
on correlation, for example), as soon as the first entity of Ci is detected, we
could finish the detection process, thus reducing significantly the execution time
of the detection. The statistics for all categories are available on our website2.

3 Unary Relationships

Representation: We call unary relationship, the relationship between an entity
and its localization in an image, where localization is defined as a region or area
of the image, represented in this work by a code. More formally, let A = {Ai},
I = {Ij}, and C = {Ck} be the set of areas, the set of images, and the set of
categories, respectively. The unary relationship is an application R from C × I
to A. R(Ck, Ij) ∈ A allows knowing where Ck is located in Ij . Areas of an image
can be represented in different ways like quad-tree or quin-tree, see [6,8]. Since
we do not have any knowledge a priori of the location of the categories in the
images, we propose to split images in a fixed number of regular areas (i.e. equal
size areas). First, we divide each image in a fixed sized grid. Each cell of this grid,
called atomic area, is represented by a code. Fig.2(a) and 2(b) depict a splitting
in 9 and 16 atomic areas and their codes, respectively. We then combine these
codes to present more complex areas, by example for 9-area splitting, the code
009 represents area grouping together atomic areas 001( ) and 008( ).
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(a) (b) (c)

Fig. 2. Codes in (a) 9-area splitting, (b) 16-area splitting, (c) 9DSpa areas

Results analysis: The combination of nine codes in 9-area splitting (Fig.2(a))
gives 511 possible complex area codes. However, some of them cannot be used,
for example, code 017 ( ) or code 161 ( ) because their atomic areas are not
connected by an edge (i.e. they are disjoint). In consequence, based on this idea,
there are only 218 theoretically authorized codes. Concretely, in DB, we did not
find any entity in areas represented by impossible codes. Moreover, there are only
138 useful theoretically authorized codes. For example, DB does not contain any
entity in areas with codes 047( ) or 125 ( ). In the same way, the combination
of 16 codes in Fig.2(b) gives 65535 different codes. In theory, we can reach 11506
possible complex areas (based on connected areas), but in DB, only 649 codes
are present. A quick report about codes present in DB is presented in Fig.3.

(a) (b)

Fig. 3. Distribution of codes in terms of nb. of occurrences: (a)9-area splitting (b)16-
area splitting.

Interpretation: From Fig.3(b) we can observe that large or complex regions
have a small number of occurrences. It means that categories are mostly repre-
sented by a simple or small area. On the other hand, the trend of the categories’
presence first corresponds to the two middle lines, then to the combination of
the two top lines, and finally to the combination of the two bottom lines. These
results are consistent with those of 9-area splitting (see Fig.3(a)). Similarly, we
can observe that the trend of the categories’ presence, on the left is higher than
on the right. These conclusions confirm the well known rules concerning photog-
raphy and ergonomics (human-computer interaction):
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– In photography, there is the rule of thirds 3, one of the first rules of compo-
sition taught to most photography students. It is recommended to present
interesting objects at the intersections or along the lines presented in this
rule (see Fig.3(b)).

– According to [4] concerning ergonomic studies on human-computer interac-
tion, the center of computer screen is the most attracting. Next, the human
attention view is attracted by the top and the left of screen more than by
the bottom and the right consecutively, leading to slightly more annotated
entities in these areas (see Fig.3(a)).

We have studied the distribution of categories across areas of the image, ac-
cording to 9-area and 16-area splitting. Basically, the results obtained can be
encapsulated in a knowledge-based system where they will be interpreted as a
probability of presence of a given category in a given area. For example with
9-area splitting, chimney and sky appear more frequently on the top of the
image (of probabilities 0.72 and 0.81 respectively). In a object detection task for
example, these measures can help in determining priority searching areas, and
then in reducing the searching space of the objects. They are available for all
categories on our website2.

Spatial reasoning: We have also a question: ”Could a category be frequently and
entirely present in a given area?”. This question could help us to find an efficient
method for detecting a category in an image. This idea drives us to examine the
distribution of occurrences of each category Cj according to each theoretically
possible area in the image, by the way of a normalized histogram: Hsplit(Cj) with
split ∈ {9-area, 16-area}. When a category is integrally in an area Ai of split,
it can probably appear in a smaller theoretically authorized area Ak included in
Ai. Let FC be a function allowing to create theoretically possible areas from Ai.
{Ak} = FCsplit(Ai). Let SCsplit(Ai) be the set of codes of every theoretically
authorized areas Ak in Ai: SCsplit(Ai) = {cod(Ak)|Ak ∈ FCsplit({Asplit})},
where cod(Ak) is the code representing area Ak. A category Cj , whose instances
appear in Ai, has a specific histogram where the number of occurrences of a code
c, c ∈ SCsplit(Ai), is not null. Then, to do spatial reasoning on such histograms,
we propose a function FH such as FH(Hsplit(Cj), Ai) = Gsplit ! Hsplit(Cj),
where ! is the dot product and G a 1D template mask of size the number of
theoretical codes c according to the splitting method:

Gsplit(c) =

{
0 if c ∈ SCsplit(Ai)
1 otherwise

(1)

FH has values varying in [0..1] ; FH = 0 means that all not null frequencies
correspond to codes SCsplit(Ai), and then that category Cj is always entirely
in area Ai. If FH = 1, we can say that Cj is never entirely in Ai. The more
FH is high, the less Cj appears entirely in Ai. From FH , we can deduce the
probability pa of presence of Cj in Ai as pa(Ai) = 1 − FH . More generally, if
we examine the presence of Cj in n disjoint areas Ai, the probability becomes

3 http://www.digital-photography-school.com/rule-of-thirds
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pa({Ai}n) =
∑n

i=1(1− FH(Hsplit(Cj), Ai)). For category person for example,
the values FH for the three Ai areas in 9-area splitting are respectively
0.704, 0.644 and 0.721, that gives pa({Ai}3) = 0.931. This result means that
the probability of category person to be entirely in one column is high, and
that its presence in two columns at least is very small. Consequently, we can
say that in DB, entities person are present vertically most of the time, and
that they appear rarely at scales larger than one column. These statistics can
help designing a person detection task for future applications. Similar spatial
reasoning can be done with other categories and other areas.

4 Binary Relationships

A binary relationship links two entities of distinct categories together in an im-
age. It can be a co-occurrence or a spatial relationship. From the 86 categories
of the database used, there are 3655 possible binary relationships between cate-
gories. Among them, we observed first that 879 couples of categories never occur
together. Before studying spatial binary relationships, we examine co-occurrence
relationships.

Co-Occurrence Relationships

To begin, we give an example. In DB, window appears in 677 images and car

in 519 images, while the couple appears together in 480 images. Then, we can
conclude that their co-occurrence relationship is quite remarkable: for instance,
92% of the images containing a car also contain a window. This rate corre-
sponds to a conditional probability, denoted P (window|car). Additionally, we
can compute their correlation to learn more about the co-occurrence of such
couples. Hence, these measures can help understanding better which category’s
presence conducts to the presence or absence of another category. Because of
article’s length limitation, we present only some relevant statistics in Table 2.

Interpretation: the correlation score can resume in one value the presence or
absence together of two categories and especially the strength of this knowledge.

Table 2. Couples of categories having either the highest or lowest number of occur-
rences, of conditional probability or of correlation

Couple (A-B) Nb of occur. P (A) P (B) P (A ∩ B) P (A|B) P (B|A) Corr.

window-car 57925 0.598 0.458 0.424 0.925 0.709 0.609

building-sidewalk 3051 0.688 0.542 0.535 0.987 0.777 0.696

window-building 38173 0.598 0.688 0.591 0.859 0.990 0.788

window-lake 0 0.598 0.014 0.000 0.000 0.000 -0.149

car-tail light 1591 0.458 0.147 0.147 1.000 0.321 0.450

chimney-sky 78 0.040 0.653 0.040 0.061 1.000 0.146

building-bird 15 0.688 0.046 0.004 0.077 0.005 -0.297

arm-torso 2262 0.089 0.092 0.089 0.971 1.000 0.984



A Cartography of Spatial Relationships 383

The highest score obtained is 0.984 for (torso-arm) ; in fact, only 3 couples have
a correlation higher than 0.8. The lowest score obtained is −0.297 for (building-
bird). These results cannot conduct to the conclusion on correlation or decorrela-
tion of most of the couples of categories. But conditional probabilities can help
to go deeper in the analysis. For example P (building|sidewalk) is very high
(see Table 2). That means that, in detecting a sidewalk, we can expect finding a
building in the same image. Such relationship should be integrated with benefit
in a knowledge-based system dedicated to artificial vision. Indeed, sidewalks are
easy to detect because of their specific and universal visual appearance, while the
variability of buildings makes them harder to detect. Then the prior detection of a
sidewalk would contribute to facilitate the detection of a building by reducing the
number of images to process. This reasoning can be generalized to other couples of
categories, since in total, there are 141 conditional probabilities higher than 0.95.
Note that 66 of them are equal to 1 (see examples in Table 2), making the possibil-
ity of replacing the detection step of one category by the detection step of another,
if easier, to find images of that category. All these measures are available on the
website2 of this work.

Binary Spatial Relationships

In last years, there have been many approaches proposed for representing bi-
nary spatial relationships. They can be classified as topological, directional or
distance-based approaches, and can be applied on symbolic objects or low level
features. Here, we have focussed on relationships between the entities of DB
described in terms of directional relationships with approach 9DSpa [3], of topo-
logical relationships [1] and of a combination of them with 2D projections [5].
9DSpa describes directional relationships between a reference entity and another
one based on the combination of 9 codes associated to areas orthogonally built
around the MBR (Minimum Bounding Rectangle) of the reference entity ; see
the illustration of Fig. 2(c) where the reference entity A has a relationship with
B of code 499 and graphical representation . The description of topological
relationships produces 8 types of relationships. The 2D projections approach as-
sociates 7 basic operators plus 6 symmetric ones (denoted by adding symbol ”*”
to the basic ones) to each image axis, leading to 169 possible 2D relationships
between MBR of entities. Table 3 presents an overview on the statistics obtained
in terms of relationships encountered and of occurrences in DB.

Interpretation: among all the possible relationships existing theoretically,
only a subset was effectively found in DB for each approach. The subset is

Table 3. Binary spatial relationships studied and related main statistics

Approach Nb of possible Nb of effective Relationships with best
relationships relationships occurrences (and frequency in %)

9DSpa 511 206 (14%), (13%), (14%), (13%)

Topological rel. 8 5 ”Disjoint” (94%)

2D projections 169 36 < (37%), < ∗ (37%) (averaged on x,y axes)
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particularly small with 9DSpa and 2D projections (see Table 3). This result leads
to the first conclusions that the digital codes of these relationships could be op-
timized and that indexing them would more benefit from data driven than space
driven indexes. With topological relationships, we never found ”equal”, ”cover”
and ”cover by”. ”Meet” relationship is dully represented (0.3%): its number of
occurrences is small because the notion of strict adjacency between high-level
objects is not common in natural contents such those of DB and because of man-
ual annotation. Meanwhile, in literature ”meet” is a popular relationship often
used with some image analysis techniques such as region segmentation that gen-
erates adjacent regions by definition, with application to specific domains, e.g.
satellite imagery. Similarly with 2D projections, 1D relationships |, |∗, ], ]∗, [, [∗
and = are not present at all on x or y axes. This result confirms that adjacency
relationship is not noticeable in DB, and it also shows that 2D projections do not
describe well this relationship, since they are not able to detect it here. The high
frequency of 1D relationships < and < ∗ partially confirms the high frequency
of ”disjoint” in the topological approach, and of areas with 9DSpa.

Among these three approaches, we think that 9DSpa is the one that allows
providing the most relevant statistical knowledge for future interpretations. In
particular, it is possible to deduce from them the probability of presence of a
given entity in an area having a given directional relationship with a reference
entity, as well as an indication on its size. For example, two entities of categories
chimney (reference entity) and roof obtain the three best probabilities of pres-
ence 0.10, 0.14 and 0.17 with respective areas , and . During an object
detection and localization task, this knowledge gives the possibility to constrain
the search of the target object to priority searching areas in the image and to
corresponding object’s size, given a reference object. All the associated statistics
are available on the website2 of this work.

5 Conclusion

We have presented a statistical study on spatial relationships of categories of en-
tities from a public database of annotated images. This study provides a cartog-
raphy of the spatial relationships that can be encountered in a database of hetero-
geneous natural contents. We think that it could be integrated with benefit in a
knowledge-based system dedicated to artificial vision and CBIR, in order to enrich
the description of the visual content as well as to help to choose the most discrimi-
nant type of relationships for each use case. Here, we have focussed on the analysis
of unary and binary relationships. Study on unary relationships highlights trends
on location of categories of entities in the image. These measures allows to deter-
mine the probability of the presence of a category in a given area, and to perform
spatial reasoning. In the same way, study on binary relationships allows deducing
the probability of presence of a category in an area regarding the location of an-
other reference category. In addition, it gives indications on the relevance of the
tested representations of these relationships. Ternary spatial relationships were al-
ready studied, but because of space limitation, they are not included in the paper
; see technical report [2] or the website2.
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This work was done on a manually annotated database of one thousand images.
Therefore, it is evident that these statistics will have to be confirmed or refined on
other image databases of larger size. However from now, we think that these mea-
sures can help us, on the one hand, to better understand which kinds of spatial
relationship should be employed for a given problem and how to model them. On
the other hand, such statistics can help to start a knowledge base on these rela-
tionships, that can be applied quickly to some topical problems of artificial vision
and CBIR such as object detection, recognition or retrieval in a collection.
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Abstract. Multi-class object detection is a promising approach for re-
ducing the processing time of object recognition tasks. Recently, random
Hough forests have been successfully used for single-class object detec-
tion. In this paper, we present an extension of random Hough forests
for the purpose of multi-class object detection and propose local his-
tograms of visual words as appropriate features. Experimental results
for the Caltech-101 test set demonstrate that the performance of the
proposed approach is almost as good as the performance of a single-class
object detector, even when detecting a large number of 24 object classes
at a time.

Keywords: Multi-class object detection, object recognition, Hough
forests.

1 Introduction

The task of finding a given object category in an image or video sequence has
received considerable attention in the literature. While early approaches were
sensitive to real world imaging conditions such as pose and occlusion, significant
progress has been made in recent years [4]. In general, the task of object detec-
tion is posed as a binary classification problem. Object models are learned to
distinguish between specific object classes and background. To detect multiple
object classes, the usual procedure is to use a large number of independently
trained single-class object detectors. However, this approach is computationally
expensive and does not scale to thousands of object classes. Moreover, in the
field of semantic concept detection it has been shown that it is beneficial to inte-
grate object detection results as additional inputs for a support vector machine
(SVM) [13]. For this purpose, many object classes have to be detected in large
image and video databases. An appealing approach to reduce the computational
overhead is the concurrent detection of several object classes by using a multi-
class learning framework. Instead of learning class-specific object detectors, the
aim is to learn a common classification model for multiple or all object classes.

In this paper, we present an extension of Hough forests [7] for multi-class ob-
ject detection. Gall and Lempitsky’s Hough forests [7] are random forests that
use local features to vote for object locations in order to realize a generalized

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 386–393, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Hough transform for a single-class object detection problem. We show that the
features and the split function used in Gall and Lempitsky’s approach are not ap-
propriate for multi-class object detection. To resolve this issue, local histograms
of visual words (HoW) in conjunction with an appropriate node split function
for multi-class random Hough forests are proposed. The presented approach can
classify multiple classes without any significant computational overhead, in con-
trast to other multi-class approaches such as multi-class SVMs that have to build
one-against-one classifiers for all class combinations. Experimental results for the
Caltech-101 test set demonstrate that the presented multi-class approach rely-
ing on local HoWs achieves similar performance as (single) class-specific Hough
forests, even when detecting as many as 24 object classes at a time.

The remainder of the paper is organized as follows. Related work is discussed
in Section 2. In Section 3, the construction of multi-class Hough forests is ex-
plained. In Section 4, experimental results are presented. Section 5 concludes
the paper and outlines areas for future research.

2 Related Work

Random forests introduced by Breiman [3] consist of an ensemble of decision
trees. They inherit the positive characteristics of decision trees, but they do not
suffer from the problem of overfitting. Breiman has shown empirically that ran-
dom forests are more robust to noise in the training data, i.e., mislabeled training
examples, than Adaboost. Moreover, the construction of trees has a rather low
computational complexity compared to a SVM, classification is very efficient at
runtime, and training as well as classification can be easily parallelized at the
level of decision trees. Recently, random forests have been successfully applied to
image classification. Bosch et al. [1] have investigated random forests for multi-
class image classification using spatial shape and appearance descriptors. Simple
linear classifiers on random feature subsets are used as decision functions within
the trees. The authors have shown that random forests are significantly faster
with only a slight performance decrease than a multi-class multiple kernel SVM.

In the field of object detection, Hough-based approaches have achieved im-
pressive detection performance and speed. Exploiting the fact that object parts
provide useful spatial information, local features are used to vote for object lo-
cations. Thus, these approaches are relatively robust to partial occlusions, shape
and appearance variations. Leibe et al. [10] presented the implicit shape model as
a probabilistic formulation of the Hough transform. It consists of a class-specific
codebook and a spatial probability distribution. The codebook is learned from
local feature descriptors using the k-means clustering algorithm, and the prob-
ability distribution specifies where each codebook entry can be found within
the object area. At the detection stage, local descriptors are matched to code-
book entries, and probabilistic Hough votes are generated based on the corre-
sponding spatial probability distribution. The Hough votes are aggregated in a
voting space where object locations are determined by searching for local max-
ima. To optimize the detection performance, Maji and Malik [12] have extended



388 M. Mühling et al.

the implicit shape model by placing the Hough transform in a discriminative
framework. The authors use a max-margin formulation to learn weights on the
codebook entries. The weights for possible object location votes indicate whether
a codebook entry is a good predictor for an object location. Another way of im-
proving object detection performance is to discriminatively learn the codebook.
Gall and Lempitsky [7] use the random forest framework, called Hough forest, to
realize a generalized Hough transform to detect object appearances. Kumar and
Patras [9] use a different criterion based on intermediate Hough images for tree
construction. They try to explicitly maximize the response at the true object
locations in the Hough images. Therefore, Hough spaces for all training images
have to be calculated at all non-leaf nodes during training. Hough forests are also
used by Fanelli et al. [5] for mouth localization in facial images and by Yao et al.
[16] for action recognition in videos. An approach for multi-class object detection
has been presented by Torralba et al. [14]. Instead of training object detectors
individually, the authors use a joint-boosting algorithm to share features among
object classes. Using 21 object classes from the LabelMe dataset, the authors
have shown that jointly learning object classes need less training data and yield
a better object detection performance than single object detectors.

3 Multi-class Hough Forests

The proposed multi-class object detection approach is based on the class-specific
Hough forest presented by Gall and Lempitsky [7]. We extend this approach for
multi-class object detection. Furthermore, different local feature representations
as described in Section 3.1 are investigated. The construction of the underlying
random forest, including the Hough voting extension and the required leaf node
information, is explained in Section 3.2. Finally, the Hough voting process and
the detection of object centers is presented in Section 3.3.

3.1 Local Features

The random Hough forest proposed by Gall and Lempitsky [7] uses decision
functions that directly compare pixel values. Therefore, each local patch consists
of a number of image channels: three color channels, four edge channels with
first- and second-order derivatives and nine HOG-like (histogram of gradients)
channels. Apart from these HOG-like features, we investigate two further feature
representations. First, densely sampled SIFT (Scale Invariant Feature Transform
[11]) descriptors are used. To extract these features, the Vision Lab Features
Library (VLFEAT) [15] is used, because it provides a fast algorithm for the
calculation of a large number of SIFT descriptors of densely sampled features of
the same scale and orientation. Color information is integrated by concatenating
and computing the descriptors independently for the three channels of the RGB
color model. Due to the normalizations, the RGB-SIFT descriptor is invariant
against light intensity and color changes or shifts, respectively.

Furthermore, based on the previously described SIFT descriptors, the use-
fulness of local HoWs is analyzed. We assume that these descriptors are more
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suitable to describe local object parts, because they capture the local spatial
arrangement of visual words. In a first step, a vocabulary of visual words is gen-
erated by clustering the SIFT descriptors from the set of training images in their
feature space. For this purpose, the k-means algorithm is used to derive k cluster
centers that represent the visual words. A vocabulary size of 1000 visual words
is used in our experiments. Then, image regions are represented as local HoWs
by mapping the keypoint descriptors of a local region to the visual words of the
vocabulary. During histogram generation, the similarity of keypoint descriptors
and vocabulary entries is calculated according to the soft-weighting scheme of
Jiang et al. [8]: Instead of mapping a keypoint only to its nearest neighbor, the
top K nearest visual words are selected. Using a visual vocabulary of N visual
words, the importance of a visual word t in the image is represented by the
weights of the resulting histogram bins w = [w1, . . . , wt, . . . , wN ] with

wt =
K∑

i=1

Mi∑
j=1

1
2i−1

sim(j, t) and sim(x, y) = e−
2
γ d(x,y) (1)

where Mi is the number of keypoints whose i-th nearest neighbor is the visual
word t, d is the Euclidean distance and γ is the maximum distance between two
codebook entries.

3.2 Random Forest Construction

A random forest is an ensemble of decision trees. To realize efficient multi-class
object detection, the decision trees are trained in a multi-class fashion. The
training data consist of a set of image patches Pi = (Ii, ci, di) with the class
label ci and the vector di describes the relative position to the object center.
The training subsets for the different trees are generated using subbagging. The
decision trees are built in a top-down manner by selecting at each node the
best split function of a set of randomly instantiated split functions, so that the
impurity of class labels and class specific offsets in the child nodes are minimized.
Thus, to build the trees, a binary split function for decision making and an
uncertainty measure have to be defined that guarantee the purity of class labels
and offsets in the leaf nodes.

Split Function. Two different split functions are used. The decision function
of the original approach of Gall and Lempitsky directly compares values of a
pair of pixels in an image patch I within the same channel a:

ta,p,q,r,s,τ (I) =

{
0, if Ia(p, q) < Ia(r, s) + τ

1, otherwise
(2)

with a decision threshold τ and two locations within the image patch (p, q) and
(r, s). For local HoWs as well as for the edge histograms of SIFT descriptors,
the following simple linear classifiers are applied:

tn,b(x) =

{
0, if nTx + b ≤ 0
1, otherwise

(3)
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where n is a vector of the same size as the feature vectors. Randomness is
introduced by randomly choosing the channel and pixel positions and in the
case of linear classifiers by randomly choosing the components of the vector n
in the range of [−1, 1].

Uncertainty Measure. For each node, a set of decision functions tk with
randomly chosen parameters is considered. The following optimization function
with U ∈ {U1, U2} is solved to find the binary test that optimally splits the data:

argmink(U(Pi|tk(Ii) = 0) + U(Pi|tk(Ii) = 1). (4)

The class-label uncertainty is modified for the multi-class case by

U1(A) = |A| · Entropy(A) with Entropy(A) = −
C−1∑
c=0

|Ac|
|A| log2

( |Ac|
|A|
)

(5)

and the offset uncertainty by

U2(A) =
C−1∑
c=1

∑
i:ci=c

||di − dc
A||2 with dc

A =
1
|Ac|

∑
i:ci=c

di (6)

where C is the number of classes, Ac is the subset of A containing all instances
of class c and di is the offset of the i-th local patch. For calculating the offset
uncertainty, the background class is not considered. The type of uncertainty is
randomly chosen for each node.

Leaf Node Information. The training data are recursively split until a maxi-
mum depth is reached or the number of patches falls below a minimum. The final
leaf nodes represent the visual codebook and store the class as well as the spatial
information. Each leaf node consists of a list of offset vectors and corresponding
class labels for the containing instances. Furthermore, the class probabilities,
i.e., the percentage of the corresponding object class patches, are stored. These
probabilities later determine the weight of the associated Hough votes.

3.3 Hough Voting and Local Maxima Detection

During object detection, the local feature descriptors are propagated through
the trees of the random forest according to the split criteria in the nodes. At
the leaf nodes, Hough votes for locations of possible object centers are triggered
using the stored offset vectors. The votes are weighted by the corresponding class
probabilities. Two voting strategies are investigated. The first strategy votes for
all classes in the leaf node. Thus, weighted votes are generated for all offset
vectors. The second strategy only considers offset vectors from the dominating
object class. To detect objects at different sizes, the Hough Forest is applied
to a series of images at different scales resulting in several Hough images, one
Hough image per object class and scale. Finally, the objects are detected as
maxima in the Hough images. A Hough image contains the accumulated votes.
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The idea of the Hough transformation is that the triggered votes of local patches
yield peaks in the Hough image at the positions of the object centers. These local
maxima in the Hough images are detected using the mean-shift algorithm, which
is a local, iterative and non-parametric approach. The implementation of Intel’s
OpenCV library [2] is used. It uses a local search window of predefined size.
The local maxima have to exceed a predefined threshold to be accepted as an
object center. The bounding boxes are determined based on the scale of the
corresponding Hough image.

4 Experiments

In this section, experimental results are presented for a subset of the Caltech-
101 object test set [6]. Caltech-101 is a challenging dataset containing 101 ob-
ject classes and a background class. The bounding boxes are provided as ground
truth for all object appearances. For our experiments, we have randomly se-
lected 24 object classes: “airplane”, “bonsai”, “brain”, “buddha”, “butterfly”,
“car”, “chandelier”, “ewer”, “face”, “grand piano”, “hawksbill”, “helicopter”,
“kangaroo”, “ketch”, “laptop”, “leopard”, “menorah”, “motorbike”, “revolver”,
“scorpion”, “starfish”, “sunflower”, “trilobite”, and “watch”. For each object
class, 65 randomly chosen images including background were used for training,
and from the remaining images, 15 images were randomly chosen for each class
for testing. The F1-score is calculated for the point in the ROC-curve where the
difference of recall and precision is minimal. In a first experiment, the multi-
class and single-class object detection performance on the 24-class subset of the
Caltech-101 dataset is investigated. The experimental results are displayed in Ta-
ble 1. The application of a large number of class-specific object detectors achieved
better performances than the multi-class extensions. While the accuracy of the
multi-class extension of the original approach declined from 56.7% to 14.4%, the
approaches based on SIFT and local HoWs showed a significantly smaller per-
formance decrease from 42.4% to 36.5% and from 57.9% to 54.5%, respectively.
Overall, the best performance was achieved using HoWs. Furthermore, the ex-
periments have been repeated with pre-scaled test images. The test images have
been scaled such that the objects are of the same size as in the training set.
The results for this experiment are also presented in Table 1. As expected, the
performance increased for all runs. The implementation of Gall and Lempitsky’s
approach seems to be more sensitive to differing object scales than the proposed
approach that relies on local HoW features. While the performance loss of the
original approach comparing multi-class and single-class detection was 42.3% in
the preceding experiment, it also declined by 31.4% using equally scaled objects.
The performance loss of the proposed approach using HoW features amounts to
only 2.8% when pre-scaled images are used. The experiments suggest that the
combination of local HoW features and linear classifiers as decision functions is
more appropriate for Hough forests for multi-class object detection. The multi-
class object detectors are significantly faster than the single-class detectors (see
Table 2). To further reduce the computation times the training of Hough forests
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Table 1. Mean f1-scores for 24 classes of Caltech-101

In [%] Pre-scaled test images

Single-class Multi-class Single-class Multi-class

G&L 56.7 14.4 70.6 39.2

DSIFT 42.4 36.5 55.6 49.1

HOW 57.9 54.5 67.8 65.0

Table 2. Runtimes for 24 classes of Caltech-101 on a 2 GHz AMD OpteronTM processor
270 with 8 GB RAM, running a Debian Linux 5.0.3, implemented in C++

Training Runtime Testing Runtime (per image)

Single-class Multi-class Single-class Multi-class

DSIFT 1473 h 75 h 17.8 sec 0.9 sec

HOW 1284 h 67 h 74.6 sec 4.1 sec

is easily parallelizable on the tree level. Moreover, if object detection results are
used for concept detection, the overhead for computing the HoWs is negligible
since related state-of-the-art systems rely on visual words and thus these features
do not need to be calculated twice.

5 Conclusions

To detect a large set of object classes in images, it is inefficient to run a large
number of single-class object detectors. In this paper, we have presented a multi-
class approach for the task of object detection. The presented approach is capable
of detecting 24 different object classes at a time, instead of applying one object
detector for each object class separately. To achieve this, we have extended a
random Hough forest approach with appropriate measures for class and offset
uncertainty. The proposed approach relies on local HoW features with an ad-
equate split function. It turned out that the choice of features is crucial for
obtaining a multi-class detection performance that is comparable to the single-
class case. While the performance of the multi-class extension of the original
approach using HoG-like features clearly dropped, the multi-class Hough forest
based on local HoW features almost retained the performance compared to the
class-specific version. Overall, it was shown how multi-class Hough forests can
be constructed to speed up the concurrent detection of many object classes in
images. Areas for future work are, for example, the investigation of multi-class
detectors for different object subsets or the use of context information.
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Abstract. This paper investigates whether the Jensen-Shannon diver-
gence can be used as a means of establishing a graph kernel for graph
classification. The Jensen-Shannon kernel is nonextensive information
theoretic kernel which is derived from mutual information theory, and
is defined on probability distributions. We use the von-Neumann en-
tropy to calculate the elements of the Jensen-Shannon graph kernel and
use the kernel matrix for graph classification. We use kernel principle
components analysis (kPCA) to embed graphs into a feature space. Ex-
perimental results reveal the method gives good classification results on
graphs extracted from an object recognition database.

Keywords: Jensen-Shannon kernel, Divergence, Entropy, Graph
Kernel.

1 Introduction

Graph based representations have proved to be powerful tools for structural
pattern analysis in computer vision. One of the problems that arises with large
amounts of graph data is that of edit distance computation which itself is de-
pendant on accurate correspondence analysis.

There have been several successful attempts to classify graph data using clus-
tering techniques. The methods developed include a) using vectors of structural
characteristics or permutation invariants [18], b) applying pairwise clustering to
edit distances [17], c) embedding graph structures in dissimilarity-based feature
spaces, and d) through central clustering based on class prototypes [16] [15]. An
alternative to this methods is to use kernel methods formulated in the graph
domain [13]. Graph kernels aim to overcome the computational bottleneck asso-
ciated with graph similarity or edit distance computation which is known to be
NP-complete. This is analogous to the use of kernel methods with vector data,
which allow efficient algorithms to be developed that can deal with high dimen-
sional data without the need to construct an explicit high dimensional feature
space [2]. A number of graph kernels have been reported in the literature and
successfully applied to real world data [4]. Most of the reported methods share
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the feature of exploiting topological information concerning the arrangement of
nodes and edges in a graphs. There are three popular methods, namely a) dif-
fusion kernels defined with respect to similarity [9] [10], b) random walk kernels
based on counting the number of nodes with the same label in a random walk
[8] [4], and c) the shortest path kernel [1].

Recently, information theory has been used to define a new family of kernels
on probability distributions, and these have been applied to structured data [13]
[14] [3] [6]. These so-called nonextensive information theoretic kernels are derived
from the mutual information between probability distributions, and are related
to the Shannon entropy. Examples include the Jensen-Shannon kernel [12].

One of the problems in constructing Jensen-Shannon kernels for graphs is that
of constructing the required probability distributions or computing the entropy
associated with graph structures. Both of these problems have proved elusive,
and this is turn has provided an obstacle to the successful construction of in-
formation theoretic graph kernels [12]. Recently, we have shown to efficiently
compute the von Neumann entropy of a graph [11]. The von Neumann entropy
is the Shannon entropy associated with the Laplacian eigenvalues of a graph,
and requires the computation of the graph spectrum, and this is cubic in the
number of nodes. By approximating the Shannon entropy by its quadratic coun-
terpart, we have shown how to the computation can be rendered quadratic in
the number of nodes. In this paper, we explore how this simplification can be
used to efficiently compute the Jensen-Shannon kernel between graphs. The re-
sulting computations depend on the node degree distribution over the graph and
can be simply computed for both the original graphs and their tensor product.
Once the Jensen-Shannon kernel is to hand, we use kernel principle components
analysis (kPCA) [7] to embed the graphs into a low dimensional feature space
where classification is performed.

This paper is organised as follows. Section 2 briefly reviews the basic concepts
of Jensen-Shannon kernel. Section 3 reviews how we construct a node degree
probability distribution over both graphs and product graphs. This distribution
is used to approximate the von-Neumann entropy, and we show how to calculate
Jensen-Shannon graph kernel. Section 4 provides our experimental evaluation.
Finally, Section 5 provides conclusions and directions for future work.

2 Jensen-Shannon Kernel

In this section we review the basic theory of the Jensen-Shannon Kernel used
in our work. The Jensen-Shannon Kernel is a nonextensive mutual information
kernel which is defined using the extensive and nonextensive entropy. It is defined
on probability distributions over structured data. Assume M1

+(χ) is a set of
probability distributions where χ is a set provided with some σ − algebra of
measurable subsets, the kernel kJS : M1

+(χ) ×M1
+(χ) → R, is positive definite

(pd) with the following kernel function [12]:

kJS(P1, P2) = ln 2− JS(P1, P2) (1)
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where JS(P1, P2) is the Jensen-Shannon divergence kJS : M1
+(χ) ×M1

+(χ) →
[0,∞)defined as

JSD(P1, P2) = H(
P1 + P2

2
)− 1

2
(H(P1) + H(P2)) (2)

and for a mixture of n probability distribution P1, ...Pn with mixing proportions
π1, ..., πn, the divergence is given by:

JSD(P1, P2, ..., Pn) = H(Σn
i=1πiPi)−Σn

i=1πiH(Pi) (3)

where H(Pi) is an Shannon entropy for distribution Pi.

3 Jensen-Shannon Graph Kernel

In this section we explore how to compute the Jensen-Shannon kernel for pairs
of graphs. We commence by defining a probability distribution over the node
degree distribution and then show how this can be used to compute the Shannon
entropy appearing in the definition of the kernel.

3.1 Node Degree Distribution

We use the node degree distribution to calculate the Jensen-Shannon graph
kernel. To commence, we denote the graph as G = (V,E) where V is the set of
nodes and E ⊆ V × V is the set of edges. The adjacency matrix A of graph G
has elements

A(u, v) =

{
1 if(u, v) ∈ E,

0 otherwise.
(4)

The degree matrix of graph G is a diagonal matrix D with the nodes degrees as
diagonal elements D(u, u) = du =

∑
u,v∈V A(u, v). From the adjacency matrix

and the degree matrix we compute the Laplacian matrix L ≡ D−A, which has
elements

L(u, v) =

⎧⎪⎨⎪⎩
dv ifu = v,

−1 if(u, v) ∈ E,

0, otherwise.

(5)

The spectral decomposition of the Laplacian matrix is L =
∑|V |

u=1 λiφiφ
T
i

where λi are the eignevalues and φi are the eigenvectros of L.
We can define the node degree distribution as the node degree divided by the

volume of the graph, and for node u ∈ V the probability is

PG(u) = du/
∑
v∈V

dv (6)
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3.2 Graph Product

Before we introduce the Jensen-Shannon graph kernel, we first introduce the
graph product concept. For the graphs G(V,E) and G′(V ′, E′) the product graph
G× = (V ×, E×), has node and edge sets

V× = {(vi, v
′
i) : vi ∈ V ∧ v

′
i ∈ V } (7)

E× = {((vi, v
′
i), (vi, v

′
i)) : (vi, v

′
i) ∈ E ∧ (vi, v

′
i) ∈ E

′} (8)

If A and A′ are the adjacency matrices of graphs G and G′ respectively A× =
A
∏

A′ is the adjacency matrix of the product graph G×. The most common
graph products are formed by taking the Cartesian product, tensor product or
the union. For reasons of efficiency here we take the union graph. We compute
the difference in entropy between the two graphs and their union. To construct
the union graph, we perform pairwise correspondence matching. Details of the
construction are outside the scope of this paper. Our approach follows that of
Lin, Wilson and Hancock [5], and the adjacency matrix of the union is denoted
by AU .

3.3 Jensen-Shannon Graph Kernel Graph Kernel

Consider a a graph set {G1, ..., Gi, ..., Gj , ..., Gn}. A graph kernel can be defined
using a similarity measure to compute the n × n positive matrix. Associated
with the degree distribution Pi and Pj of graphs Gi and Gj , the Jensen-Shannon
kernel is defined as

kJS(Pi, Pj) = ln 2−H(
Pi + Pj

2
) +

1
2
(H(Pi) + H(Pj)) (9)

We suppose Pi+Pj

2 represents the degree distribution of the product graph G×
of Gi(Vi, Ei) and Gj(Vj , Ej). As a result (9) can be written as

kJS(Pi, Pj) = ln 2−H(P×) +
1
2
(H(Pi) + H(Pj)) (10)

Here we use the von Neumann entropy to compute the Jensen-Shannon kernel.
The von Neumann entropy for graph G is HV N =

∑|V |
i=1

λi

2 ln
λi

2 . By approximat-
ing the non-Neumann entrpy by its quadratic counterpart, Han and Hancock
[11] have shown that the approximate von-Neumann entropy is given by

HV N =
|V |
4
−
∑

(u,v)∈E

1
4dudv

(11)

As the node degree distribution Pi(u) and Pj(v) can be written as Pi(u) =
du/Σ

V
u du and Pj(v) = dv/Σ

V
v dv, so associated with function (10) and (11), the

Jensen-Shannon graph kernel can be approximated as
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kJS(Pi, Pj) = ln 2− (
|V×|
4
−
∑

v× �=u×

1
P×(u×)P×(v×)

) +
|Vi|+ |Vj |

2

− 1
2
(

V1∑
u1 �=v1,v1(i) �=u1(j)

1
Pi(u)Pi(v)

+
V2∑

u2 �=v2,v2(i) �=u2(j)

1
Pj(u)Pj(v)

)

(12)

where P×(i) represents the degree distribution of p×.

4 Experiments

In this section, we will explore whether the Jensen-Shannon kernel can be used
for object recognition, and evaluate its stability. we commence by classifying syn-
thetic graph abstracted from real-world image, and then calculate relationship
between the kernel value and number of edit operation.

4.1 Graph Characterization

In the first experiment, we use three different graph datasets to illustrate the
classification performance of the Jensen-Shannon graph kernel. The first dataset
consists of graphs are extracted from digital images of three similar boxes in the
ALOI database Fig.1(a), the second of graphs extracted from images of three
toy houses in the MOVI and CMU databases, and the third of graphs extracted
from images of cups from the COIL database Fig.1(3). For each object there
are 18 images captured from different viewpoints. The graphs are the Delaunay
triangulations of feature points extracted from the different images.

For the three different datasets we compute the Jensen-Shannon kernel ma-
trices. We perform kernel Principal Components Analysis (kPCA) on the ker-
nel matrices to embed the graphs into a 3-dimensional feature space. Fig.2(1),

(a) Similar Boxes from ALOI
Dataset

(b) Similar Houses from CMU and
MOVI Datasets

(c) Similar Cups from COIL
Datasets

Fig. 1. Datastes for Experiments
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Fig. 2. Experiment Performance of Jensen-Shannon Kernel

Table 1. Accurancy of Classification with Jensen-Shannon Kernel

Datasets Object1 Object2 Object3

Boxes (ALOI) 100% 100% 100%

Houses (CMU and MOVI) 100% 100% 100%

Cups (COIL) 100% 100% 100%

Fig.2(b) and Fig.2(c) show the resulting embeddings. In each case the different
objects are well separated in the embedding space. To place our analysis on a
more quantitative footing, we apply K-means clustering method to the embedded
graphs, and compute the classification accuracy for the three datasets. Table.1
summaries the results, and indicate that an accuracy of 100% is achievable.

4.2 Stability Evaluation

Next we evaluate the stability of the Jensen-shannon kernel. We select nine seed
graphs from the three groups of real-world images shown in Fig.1. We then apply
random edit operations to the nine seed graphs to simulate the effects of noise.
The edit operations are node deletion and edge deletion. For each seed graph,
we randomly delete a predetermined fractions of the nodes or edges to obtain
noise corrupted variants. Fig.3. and Fig.4. show the effects of node deletion and
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Fig. 3. Jensen-Shannon Kernel Evaluation with Node Deletion Edit Operation
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Fig. 4. Jensen-Shannon Kernel Evaluation with Edge Deletion Edit Operation

edge deletion for each group of graphs respectively. The x-axis shows the fraction
of nodes or edges deleted, and the y-axis shows value of the kernel K(Go, Gn)
between the original graph Go and its noise corrupted counterpart Gn. The
plots show that there is an approximately liner relationship between the Jensen-
Shannon kernel and the number of deleted nodes or edges, i.e. the graph edit
distance.

5 Conclusions

In this paper, we have shown how to construct Jensen-Shannon kernels for graph
data-sets using the von-Neumann entropy. The method is based on a probability
distribution over the node degree in a graph, and uses the von Neumann entropy
to measure the mutual information between pairs of graphs. By applying kernel
PCA to the Jensen-Shannon kernel matrix, we embed sets of graphs into a
low dimensional space. Here we use K-means clustering to assign the graphs to
classes. Experimental results reveal that the method gives good results for graph
datasets extracted from image data.
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Abstract. This paper proposes an object database representation model for ac-
tive recognition systems. This model optimizes dataset information. The objects
are modeled by using the proposed Canonical Sphere Section (CSS) model and
the shape is normalized to affine transformations in the spectral dominium. This
dataset representation model is compared with other shape representation models
and implemented in an active recognition system which develops object manipu-
lation. Its feasibility in complex robotic applications is therefore proved.

Keywords: Affine normalization, active object recognition, object modeling.

1 Introduction

The use of monocular vision to develop 3D object recognition provides several ad-
vantages to robotic applications: low economical cost of its implementation (in several
cases the use of a webcam would be sufficient) and the fact that it can be easily in-
tegrated into industrial applications under real time requirements. However, the trans-
formation of a 3D object recognition into a 2D shape recognition problem implies an
undesirable factor: uncertainty. The uncertainty signifies that one specific view of an
object might be similar to other objects views due to: the loss of loss of information
(ambiguity) and factors such as noise, illumination variations, occlusions, etc. that may
corrupt the feature vector describing the object view in the scene. The uncertainty prob-
lem can be solved by moving the sensor to other positions in order to collect more
evidence about the scene object.

Several active recognition methodologies have been developed [1,2,3,4]. These
recognition systems show high recognition rates even in the cases of objects with a
high level of ambiguity, but their computational efficiency is low when the dataset have
a large number of objects as a result of the large number of views that must be han-
dled in the dataset and the number of robot movements required to identify an object
in the scene. They are focused on solving the ambiguity/uncertainty problem without
considering the object representation model. Furthermore, a large number of views rep-
resenting the object model increase the number of items in the dataset, and the searching
process to identify the scene view in the dataset therefore become slower. Moreover, in
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most cases researchers use a probabilistic framework to solve the uncertainty prob-
lem [2,3], which requires a shape descriptor with stochastic properties such as a PCA
descriptor [5]. However, active recognition systems based on PCA have an important
drawback: the object pose cannot be estimated with accuracy and their application to
tasks like object manipulation it is not recommended. It is also advisable to choose other
shape representation models to provide accuracy in object pose estimation. Although
shape representation models are a widely researched subject [6], their implementation
in active object recognition systems requires the satisfaction of several constraints such
as: robustness to shape variations caused by viewpoint variation, scene noise, illumina-
tion changes, etc. Researchers deal with those problems using a feature vector invariant
to affine transformations, but a critical problem concerns the number of elements in the
feature vector that are necessary to describe, with a given precision, all the shapes in
a database in which the number of different shapes is very high. From our experience
we know that the recognition rates increase or decrease according to the number of el-
ements in the feature vector and that, depending on the shape boundary, more or less
elements must be used to describe it. If a new object is added to the database, most
recognition systems therefore have to re-run several tests in order to find the optimal
number of elements in the feature vector to achieve the best shape recognition rates.

The contribution of our work lies in defining an optimal database object representa-
tion model in an attempt to solve the two questions mentioned below: (1) which is the
number of views needed to model the object and (2) a shape representation model that
is invariant to affine transformations, able to represent all the shapes in the dataset with
the same precision. We first propose a method with which to select the object canon-
ical views according to object symmetry (Canonical Sphere Section). For the canon-
ical views, we suggest a model to represent the views in the dataset in the spectral
dominium. This representation will be referred to as the Affine Spectral Silhouette Nor-
malized (ASSN) model, which is invariant to affine transformations and it is able to
represent all the dataset shapes with the same precision using a feature vector of a fixed
number of elements. This proposed database representation model have been imple-
mented in an active recognition to evaluate its performance with regard to other active
recognition systems from the scientific literature. Our dataset representation model has
also been used in a robotic-vision system to develop object manipulation in order to
show its feasibility in object manipulation, which is a complex robotic application. The
following sections provide a detailed explanation of the database object representation
model and its performance in a robotic-vision system.

2 Object Model Representation

Since the objects are represented by their appearance from a viewing sphere, it is ad-
visable to select the sphere section whose viewpoints correspond with the Canonical
Object Section (COS). The sphere section containing the viewpoints associated with the
Canonical Object Section will be denoted as Canonical Sphere Section (CSS). Figure 1
shows samples of objects with different symmetries, their Canonical Object Section and
their Canonical Sphere Section.
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Defining the Canonical Spherical Section (CSS)

Let us take a synthetic object, o, whose principal axes have been aligned to the canonical
coordinate system, as in Figure 2. Figure 2(a) shows a viewing sphere S represented in
the canonical coordinate system, while, Figure 2(b) shows the principal bottle axes.
Figure 2(c) shows the result of the alignment of principal object axes with the canonical
coordinates system, in which we can see the object pose inside S where the object’s
major axis corresponds with axis Y and the minor axis corresponds with the X axis.

The o model is viewed from different view directions corresponding to the nodes of
the sphere S with J nodes: this sphere has a radius r, and the image is projected in the
direction defined by the node with the camera pointing towards the sphere center. These
nodes are labeled by integer positive numbers j following a given order structure. Let
us associate the view j of the object with a synthetic image I j,1 ≤ j ≤ J. The position
of node j, which is representative of the view j, is given in spherical coordinates by a
pair of angles (ψ j,σ j), ψ j ∈ [0 2π ] and σ j ∈

[π
2 − π

2

]
, these being the azimuth and

polar coordinates respectively.

(a) (b) (c)

Fig. 1. Samples of objects with different sym-
metries, their Canonical Object Section and
their Canonical Sphere Section

(a) (b) (c)

Fig. 2. a) Sphere coordinates system b) Object
principal axes. c) Object principal axis aligned
with the reference coordinate system.

Therefore, let nz and ny be the order of symmetry which is reflective for axes Z and
Y respectively. The nodes j∗ in the Canonical Sphere Section Ξ are defined as: j∗ = j ∈
Ξ : ψ j ∈ [0 π

ny
],σ j ∈ [0 π

nz
].

The relationship between the nodes in Ξ and the other nodes in S is: I j = I j∗ : ψ j =
(ky � 2π

ny
+ ψ j∗),σ j = (kz � 2π

nz
+ σ j∗), I j = Î j∗ : ψ j = (ky � 2π

ny
−ψ j∗),σ j = (kz � 2π

nz
−σ j∗)

where j 
= j∗, Î j∗ is the image reflection, kz = 1,2, ..., and ky = 1,2, ....
Based on the relationship between the nodes in Ξ and the other nodes in S, it is

simple to compute the order of the reflective symmetry ny and nz over axes Y and Z
respectively. See in [7] how to compute ny and nz values.

3 ASSN Descriptor

The ASSN descriptor is developed by means of three operations: 1- Contour Normal-
ization, 2- Number of descriptor reductions, 3- Precision normalization.

The contour normalization process normalizes the contour to rotation, translation
scale and skew. The contour normalization method used to model the database canon-
ical views in the spectral dominium is equivalent to that proposed by [8] in the spatial



CSS-AFFN: A Dataset Representation Model for Active Recognition Systems 405

dominium. Working in the spectral dominium increases the robustness because in [8]
the normalization process to the staring point (rotation) is unstable, while rotation in-
variance is guaranteed in the spectral dominium.

Assume a silhouette s composed of N points (x(w),y(w)),1 ≤ w ≤ N on the plane:
XY where the origin of index w is an arbitrary point of the curve, and w and w + 1
are consecutive points according to a given direction (for example clockwise direction)
over the silhouette. In order to normalizes the silhouette s to affine variations (scale,
rotation, translation and skew), a set of linear operations are applied to the silhouette
representation in the spectral dominium based in contour orthogonalization from [8].
Thus, to the silhouette coordinates x(w) and y(w), the Fast Fourier Transform (F ) is
applied obtaining X(m) = F (x(w)) and Y (m) = F (y(w)) where 1≤m≤ N. Then, the
follow operations are developed:

1. The center-of-gravity of the curve is normalized so as to coincide with the origin:

X1(m) = X(m)− μx,Y1(m) = Y (m)− μy (1)

where μx = X(0)/N, μy = Y (0)/N
2. The curve is scaled horizontally and vertically

X2(m) = X1(m) ·ρx ·N,Y2(m) = Y1(m) ·ρy ·N (2)

where ρx = 1√
Σ |(X1(m))2| , ρy = 1√

Σ |(Y1(m))2|
3. The curve is rotated π/4 counterclockwise

X3(m) =
1√
2
· (X2(m)−Y2(m)),Y3(m) =

1√
2
· (X2(m)+Y2(m)) (3)

4. The curve is scaled horizontally and vertically

X4(m) = X3(m) · τx ·N,Y4(m) = Y3(m) · τy ·N (4)

where τx = 1√
Σ |(X3(m))2| , τy = 1√

Σ |(Y3(m))2|

Finally, the silhouettes feature vector is: S(m) = X4(m)+ i ·Y4(m), where |S(m)| is in-
variant to rotation, translation, scale and skew transformations.

The other two operations are supported by the following property in the spectral
dominium: most significant harmonics are in the first and last positions of the Fourier
descriptor vector while non important contour details in the spatial dominium corre-
spond to the central harmonics. What is more, the reduction of the number of descrip-
tors is based on eliminating the central harmonics in order to achieve a new vector
with the desirable length (L,L < N). So, if S = S(1), ...,S(N), the reduced vector is
Ŝ = {S(1),S(2), ...,S(L/2),S(N− L/2),S(N− L/2 + 1), ...,S(N)} where L is an even
number.

The precision representation normalization step sets the central harmonic to zero
according to the spatial representation error between the initial silhouette and that which
is normalized. Indeed, for a predefined precision error (A ), we have set to zero the
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maximal number of central harmonic keeping the error between both silhouette minor
or equal to (A ). Thus,

ˆ̂S = {Ŝ(1), Ŝ(2)..., Ŝ(K∗),0...0, Ŝ(L−K∗), Ŝ(L−K∗+ 1), ...Ŝ(L)} : (5)

K∗ = maxK,K ∈ N,{|(x(l)− x′(l)|, |y(l)− y′(l))|} ≤A ,∀1 ≤ l ≤ L,

(x(l),y(l)) = F−1(Ŝ),(x′(l),y′(l)) = F−1{Ŝ(1), Ŝ(2)..., Ŝ(K),0...0, Ŝ(L−K), ...Ŝ(L)}

where F−1 is the inverse of fast Fourier transform, 1≤ l ≤ L and K is an even number.
The technical report from [9] provides details of the whole process used to compute

the ASSN descriptor and how to estimate the pose parameters between two silhouettes
represented using ASSN. The properties required for a shape descriptor: variance, com-
pleteness and stabilities, are also proved.

4 Experimentation

In order to prove the effectiveness of the proposed dataset representation model, we
have developed a set of experimental tests in a robot-vision system. The experimental
setup consisted of a Stabli RX90 robot with a camera on the end-effector of the robot.
This vision-robot system was able to capture images around the object placed in the
scene. Figure 3(a) illustrates a typical scene with an isolated object placed on a table
inside the robot workspace. The tests were carried out on a 3D Synthetic Model library
(3DSL)[10]. The experiments were developed by selecting (3DSL) 18 free form objects
from this library. This set of objects can be observed in Figure 3(b), while Figure 3(c)
shows samples of images captured in the vision-robot system and used during the tests.
Note that the object background is uniform but that the objects’ illumination changes
according to the sensor position.

Shape Recognition Performance of ASSN Descriptor

Since shape recognition is a key process for any 3D recognition system based on ob-
ject appearance, the first tests have been focused on measuring the performance of our

(a) (b) (c)

Fig. 3. Experimental setup. a) The experimental platform uses a Stabli robot with a camera on the
end-effector. b) Synthetic objects in the dataset. c) Samples of images captured in the vision-robot
setup and used during the active recognition tests.
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suggested shape representation model (ASSN). A comparative analysis was then made,
taking the following parameters into consideration: recognition rates (Ro), computa-
tional cost (To) and pose estimation error (Eo). The pose estimation error is measure as
a quadratic mean error between the scene shape and the identified shape in the dataset
after to be transformed according the estimated pose parameter. In this test, we com-
pared the behavior of ASSN descriptor with that of other popular descriptors based
on shape contours (Fourier descriptor (FD)[11] and Boundary Moment (BM)[12]) and
based on shape region (Zernike Moments (ZM)[13] and Complex Moments (CM)[14].
The shape recognition process was developed by using the Euclidean distance as a sim-
ilarity measure. The shape recognition test is accomplished by capturing one image
from a camera located at the end-effector of a robot. We have taken a total of 86 images
for this test. Table 1 depicts the average of the parameters under analysis. Upon con-
sidering the classical Fourier Descriptor and our suggested ASSN descriptor, the com-
putation cost parameter of ASSN is higher but the recognition rate and pose estimation
parameters achieves a better performance. The improvement of ASSN descriptor over
traditional Fourier Descriptor is due to the robustness of the ASSN descriptor to shape
variations (viewpoint variation, noise, segmentation error). The Complex Moments de-
scriptor is the only descriptor to be compared which has better recognition rates than
ASSN. However, it is important to bear in mind that if the object recognition application
requires high accuracy for object pose estimation, then the ASSN descriptor is better
than the Complex Moment descriptor.

An Active Recognition System Using the Proposed Dataset Representation
Model: A Comparative Analysis

To evaluate the performance of the proposed dataset model, we have used the active
recognition system developed in [4]. During the comparative process, [4] will be re-
ferred as AR 1. Two active recognition systems based on modifications of AR 1 system
have been implemented. The first AR 1 modification is based on modeling the objects
using [15]. The second AR 1 modification uses the CSS algorithm to model the objects
and the object views are represented by ASSN descriptor. Also, we have implemented
the active recognition developed by Borosting et.al. [2] based in a probabilistic model
and PCA descriptors. From now, AR 1 modified with [15], AR 1 modified with our
dataset representation model and Borosting et.al. [2] will be denoted as AR 2, AR 3 and
AR 4 respectively. The CSS method reduced the number of views in the dataset to 63%
meanwhile, with [15] method the number of views was reduced to 78%.

Table 2 shows the comparison between different shape recognition systems with
regard to: recognition rate (Ro) and computational efficiency (Go). This last parameter
is computed by Go = Wo ·To, where Wo is the mean sensor positions and To is the
computational cost a each sensor position.

From table 2 we can conclude that: (1) The AR 3 system is an improvement of the
AR 1 system since the number of sensor positions is reduced, and although the compu-
tational cost is increased in one iteration (sensor position) in AR 3, the computational
efficiency of this system is higher since it requires a smaller number of sensor positions.
This result proves that our representation model is more robust than AR 1 because the
shape recognition system identifies a smaller number of hypotheses in each iteration.
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Table 1. Comparison between shape recog-
nition systems using different descriptors

Descriptor Ts(s) Es(%) Rs(%)
ASSN 0.18 0.11 66.0
FD 0.14 0.18 58.2
BM 0.09 1.21 23.6
ZM 0.35 2.27 49.9
CM 0.64 2.30 74.1

Table 2. Comparison between different active
recognition systems

Active model To (s) Wo (%) Go Ro (%)
(AR 1) 0.20 5.5 1.10 94
(AR 2) 0.17 5.2 0.88 91
(AR 3) 0.22 3.8 0.85 96
(AR 4) 0.19 4.6 0.90 96

(2) The improvement achieved by AR 2 is lower than by AR 3 since when using the
[15] object representation model the number of views in the dataset is reduced in an
additional 15%. This behavior is related to the uncertainty that is present during the
hypothesis estimation as a result of the differences between the scene view and the key
view, and more robot movements are therefore required to solve the uncertainty prob-
lem. (3) The performances of AR 4 and AR 3 are very similar, but observe that in the
case of AR 3 it is not necessary to use a training step. (4) The comparative study shows
the importance of the shape representation model in the computational efficiency pa-
rameters since the number of sensor positions is strongly dependent on the robustness
in the shape recognition system during the identification of the hypothesis.

In order to evaluate the applicability of the proposed dataset representation model
in tasks more complex such as object manipulation, we have used the active recogni-
tion AR 3 to develop a simple application: the active recognition system AR 3 must
recognize an object in a scene and order the grasping system to pick up the object and
leave it in the right box. After 35 tests, the manipulation task was developed in a 97%
successfully. The video sample is available at http://isa.esi.uclm.es/descarga-objetos-
adan/videoGrasping.wmv.

5 Final Discussions and Conclusions

In this paper we have presented an object dataset representation model for active recog-
nition systems. This model optimizes dataset information. It models the objects by using
the proposed Canonical Sphere Section (CSS) model and normalizes the shape to affine
transformations and representation accuracy in the spectral dominium (ASSN descrip-
tor). The proposed ASSN descriptor is also robust to small deformations in shape and
geometric transformations, and is able to represent, with the same precision, any ob-
ject shape (silhouette) using the same number of elements in the descriptor. The good
performance of the ASSN descriptor has been experimentally proved by comparing
its performance with that of other shape descriptors. Our object dataset representation
model has also been implemented in an active recognition system and compared with
other active recognition systems from the scientific literature, thus showing that it may
assist in the construction of more efficient active recognition systems for 3D objects.
What is more, the suitability of this representation model in developing object recogni-
tion tasks requiring accuracy in the object pose estimation has been tested in an object
manipulation robotic application.
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Abstract. In this paper we propose to enhance the training data of
boosting-based object detection frameworks by the use of principal com-
ponent analysis (PCA). The quality of boosted classifiers highly depends
on the image databases exploited in training. We observed that negative
training images projected into the objects PCA space are often far away
from the object class. This broad boundary between the object classes in
training can yield to a high classification error of the boosted classifier
in the testing phase. We show that transforming the negative training
database close to the positive object class can increase the detection
performance. In experiments on face detection and the analysis of mi-
croscopic cell images, our method decreases the amount of false positives
while maintaining a high detection rate. We implemented our approach
in a Viola & Jones object detection framework using AdaBoost to com-
bine Haar-like features. But as a preprocessing step our method can
easily be integrated in all boosting-based frameworks without additional
overhead.

1 Introduction

Several well known algorithms exist to perform object detection and recognition
in images. For an overview on existing approaches and databases in the field of
face detection, we recommend the web page [7] or the overview articles [17] and
[18]. In the vast amount of available techniques, two complementary strategies
are very common for object detection, namely boosting [6,13] and PCA-based
methods [12,4]. Simply speaking and more detailed in Section 2.1, the strategy
behind AdaBoost is to linearly combine several weak classifiers to gain a strong
classifier. By using integral images, the classifiers are based on the difference
of local (rectangle shaped) image patches. Object detection using AdaBoost is
known to be slow in the training phase, but real-time capable in detection,
even on resource limited systems. AdaBoost is further known to be sensitive in
generating false-positive mistakes, which is sometimes compensated for by using
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additional post-processing steps, such as Canny-pruning or histogram analysis.
In contrast to a linear combination of local classifiers, the idea behind a PCA-
space of objects is to learn a global subspace from training data which span the
object variations as principal components in a high-dimensional vector space [12].
Additional to the PCA, several variants, e.g. independent component analysis
(ICA) [2] or Kernel PCA (KPCA)[11] have also been proposed for face detection
and recognition. The method for (K)PCA-based object detection is explained in
more detail in Section 2.2. PCA based methods are more robust to noise since
a subspace is learned from the training data, but much slower in the detection
phase, because image patches need to be projected in the object space. For this
reason we decided not to boost features evaluated in PCA-space as proposed in
[19] and [1].

Since boosting- and PCA-based approaches rely on completely different prin-
ciples, our main interest is to combine both methods without introducing ad-
ditional limitations. So the key question is how to integrate a learned subspace
of objects (e.g. faces, cells) in the boosting approach. Our observation is, that
training data for e.g. non-objects are commonly very far away from the object
space, once a PCA-space has been learned from the training data.

So the key contribution described in Section 3 is to modify the training-data
of the non-objects in such a way, that they are closer to the PCA-space of objects
and therefore to cause a much smaller margin at the start of training. This is
in some way contrary to approaches in semi-supervised learning [8] in which the
negative training class is raised at the boundary being opposite to the object
class.

Figure 1 shows two non-object examples which are morphed towards their
object-space, namely a non-face towards face-space in the top row and a defec-
tive cell towards cell-space in the bottom row. The middle images are non-objects
which are much better suited to learn a boundary between the positive and neg-
ative classes in the boosting framework. Overall, it allows to train a much more
selective classifier, especially if only a sparse amount of training data is available.
Additionally, since the amount of training data remains unchanged (images of
non-objects are replaced with synthesized new images closer to the object space),
we do not introduce any additional overhead in the training or testing phase in

Fig. 1. Morphing a non-object towards the a PCA-trained object space. Top : Example
morph for a face space. Bottom: Example morph for a cell space.
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conventional AdaBoost. Another advantage is, that many existing modifications
and improvements to the classical AdaBoost algorithm such as Entropy Regu-
larized LPBoost, SoftBoost, MILBoost or SEAdaboost [16,15,14,3] can still be
used, since we only perform a kind of pre-processing with the training data (in
this case for the non-objects). Therefore, it is sufficient to use the conventional
AdaBoost algorithm to evaluate the impact of our approach.

2 Foundations

This section introduces the foundations for our work, namely the AdaBoost
algorithm and the basic idea behind PCA-learning.

2.1 AdaBoost

AdaBoost is a popular machine learning algorithm proposed by Freund and
Schapire [6] that can be applied to achieve good results in different areas in ob-
ject detection. As a boosting algorithm it forms a strong classifier while trained
on labeled classes of training data. The boosted classifier is a linear combination
of single classifiers selected from a given set in each training round due to their
minimal classification error. This error is calculated depending on weights as-
signed to the training images. By adapting these weights AdaBoost concentrates
in later training rounds on the examples that are hard to classify. Suitable as
weak classifiers are Haar-like features because of their fast and simple computa-
tion as proposed by Viola and Jones in [13]. Because of AdaBoost’s autonomous
learning the quality of the boosted classifier depends to a high degree on the
characteristics of the training classes.

2.2 PCA-Learning

A principal component analysis (PCA) transforms (possibly) correlated variables
into uncorrelated variables called principal components by applying an orthog-
onal transformation. The transformation is designed in such a fashion that the
first axis (principal component) represents the highest amount of data varia-
tion, whereas the other following (orthogonal) axes are sorted in a decreasing
order, depending on the amount of variance. A PCA is simply computed as a
singular value decomposition of a data matrix or by an eigendecomposition of a
covariance matrix generated from a data set. In our implementation we derived
the eigenvectors from a singular value decomposition of the covariance matrix.
As that covariance matrix is symmetric and positive semidefinite the obtained
eigenvectors are identical to those provided by a PCA and also the order of the
corresponding eigenvalues is the same.

Following the notations in [12], we assume n-dimensional data points Γ1 . . . Γm

and compute the average of the data points as

Ψ =
1
m

m∑
i=1

Γi (1)
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Fig. 2. Missing data estimation of face image (on the left) and a cell image (on the
right). No blending was performed and it is shown, that the mouse and nose as well
as the cell structure is well approximated. The reconstruction of the cell to the right
is based on a Kernel-PCA. For this kind of data, it seems to approximate the cell
boundaries slightly better.

We further define Φi = Γi − Ψ as the difference to the average vector (and shift
the data in this way towards the origin). The matrix A = [Φ1, . . . , Φm] contains
the difference vectors of the data, so that the covariance matrix of the data
points is given as

C =
1
m

m∑
i=1

ΦiΦ
T
i (2)

= AAT (3)

A singular value decomposition C = UDV T of the covariance matrix C allows
to compute the principal components of the data. Note, that the computation of
ATA can be much more efficient, if less data points are available than the dimen-
sion of the data (see [12] for details). This happens, e.g. when face images are
encoded as vector and only a few face images (e.g. a couple hundred) are avail-
able. Then U needs to be multiplied by A and rescaled to get the eigenvectors.
Then the first s Eigenvectors can be used for approximation of the face space.
Figure 2 shows two simple examples in which the missing parts of a corrupted
face and cell image (not contained in the training data) has been reconstructed
with the help of a database by performing a subspace projection. As can be
seen, the position of the nose and mouth as well as the cell boundaries have
been reconstructed fairly well.

There exist many extensions and modifications about PCA-methods for data
clustering. In our experiments on Cell-data we will use a Kernel-PCA (KPCA)
[11]. Here, we want to demonstrate that the method on PCA-enhancement of
training data is not restricted to a specific method for subspace learning. The
idea for KPCA is to employ a mapping φ(x) on the data to lift the input to
a higher dimensional space, in which the subspace can be approximated more
easily. Since the higher dimensional space can become very large, they key idea
behind Kernel-PCA is to avoid the explicit computation of φ and to work with a
kernel Ki,j = k(xi, xj) =< φ(xi), φ(xj) >= φ(xi)Tφ(xj). The covariance matrix
C then becomes

C =
1
m

m∑
i=1

φ(xi)φ(xi)T (4)
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which is again splitted and normalized after a SVD, C = UDV T . In our exper-
iments we used two standard kernels, namely K(x, y) = − exp((x − y)2/(σ)2)
with σ = 1 and K(x, y) = (xT y)2.

3 Training Data Enhancement

Obviously one possibility to combine PCA-based face detection and boosting is
to use both algorithms for classification separately and to join (in a smart way)
the outcome. The disadvantage of this method would be that the superior time
performance of the boosting approach would be lost since the computation of the
PCA-mapping takes significantly longer time for a test image. Therefore, the idea
is to modify and enhance the training data. The impact of some characteristics
of the training data on the test error is subject to the margin theory, that is
described briefly in the following.

3.1 Margin Analysis

Shortly after publication of the AdaBoost algorithm research has been started
to examine its detection performance. As the consideration of only the training
error is not sufficient to estimate the test error of AdaBoost, Schapire et al. [10]
proposed the margin as a measure of the confidence in the algorithms classifica-
tion. They defined the margin as the difference between the sum of the weights
of the weak classifiers voting for the correct object class and the maximal sum of
weights assigned to an incorrect class. As these weights are normalized to sum
up to one, the margin is defined in the range [-1,1] and a positive value implies
a correct decision. Hence a large positive margin represents a confident correct
classification.

Evaluated on the complete training set a margin distribution can be derived.
Schapire et al. observed that, due to its adaption of the training example weights,
AdaBoost proceeds very aggressive in reducing the amount of training examples
having a small margin. For this reason the AdaBoost learning algorithm can
reduce the test error even after the training error has reached zero.

In the last decade much research has been done in estimating the test er-
ror subject to the margin and find a boundary based on the minimum margin
and other training parameter. But recent research [9] indicates as well that con-
sidering the minimum margin is not sufficient and also the complete margin
distribution has to be taken into account.

The margin theory should not be discussed in this work in detail. As we
followed a more empirical approach in enhancing our detection framework, an
experiment on the impact of our method on the margin distribution will be
presented in Section 4.1.

3.2 Training Data Adaption

In our experience, negative training examples are not always well chosen to differ
between objects and non-objects. This is mainly due to the fact, that the non-
object space is significantly larger and more complex than the positive examples.
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Basically, the non-objects can be seen as the complementary space to the learned
PCA object space. Therefore, its variability is hard to reflect in the training data.
The idea is to bring the training data close to the PCA-space. This can simply be
done by projecting the negative training examples onto the trained PCA-space
and then shifting it back towards the non-object space with a scale λ ∈ [0 . . . 1]:
Let Us = U(1 : n, 1 : s), s ≤ n be the upper left matrix of U stemming from
C = UDV T and let T be an example of the non-object class. The shift of T
towards Ts being closer to the object space can simply be done by computing

Proj = UT
s · (T − Ψ) (5)

Rec = Us · Proj + Ψ (6)
Ts = Rec + λ(T −Rec) (7)

Note, that U is an unitary matrix and thus Us describes the inverse projection
of UT

s . In case of the more efficient computation mentioned in Section 2.2 this
property is not given and instead a pseudoinverse has to be used. Obviously,
λ = 0 yields the projection on the PCA-space, whereas λ = 1 leads to the
training example itself. So λ steers the amount on how much the example is
shifted towards the object space. In our experiments we used λ = 0.3, 0.5 and
0.7, respectively. Some example morphs of negative training data for different
weighting factors are shown in Figure 1 and the second row of Figure 3.

4 Experiments

We decided for two kinds of experiments. The first experiments are on face
detection. Here we use the well known AT&T database of faces. Therefore we give
credits to AT&T Laboratories Cambridge. The database contains ten different
images each of 40 people varying in the lighting, facial expressions and facial
details (glasses / no glasses). The images were taken against a dark homogeneous
background with the people in an upright, frontal position.

The second set of experiments is performed on microscopic images of cells. The
cells are recorded during cryo-conservation, and therefore ice fronts are forming
around the cells. The goal is to detect (and track) the cells in the videos. Here
we collected 250 images of cells and 350 images of non-cells, so that we gain a
reasonable database. We divided our image bases into a training and validation
set using a 67/33 ratio. Crowther and Cox [5] illustrated that especially for small
bases a split containing only a small part for validation is not recommendable.
They suggested to select a ratio between 50/50 and 70/30.

Figure 3 shows in the top row example images of non-faces and non-cells.
The middle row shows morphed images towards the trained PCA space. These
images are then used for training to find a more selective classifier. The bottom
row shows positive example images of faces and cells of the used databases.

4.1 Experiments with the AT&T Database

Using the PCA from Section 3 we generated four different training sets containing
the good/bad examples and morphed bad examples with λ = 0.3, 0.5 and 0.7.
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Fig. 3. Top row: Example images of non-faces and non-cells. Middle row: Morphed
images towards the trained PCA space. These images are either used to find a more
selective classifier. Bottom row: Example faces and cells of the used databases.

For all four data sets we performed an AdaBoost learning as described in Section
2.1. Here we used simple rectangular features for training.

Margin distribution. Figure 4(a) presents the cumulative margin distribu-
tions of the original face training set after different training rounds. In Fig-
ure 4(b) the margins boosting the AT&T database using PCA-enhanced non-
faces with λ = 0.3 is shown. The impact of the boosting process on the margin
distribution is clearly noticeable in both figures. The amount of training exam-
ples having a small margin is in both cases strongly reduced during training.
Roughly after 10 rounds the training error reaches zero as all examples images
have a positive margin and hence are correctly classified. Then the AdaBoost
algorithm further concentrates on the training examples that are hard to classify
and continues to reduce the number of narrow decisions.

But it is also observable that it is more difficult to classify the morphed
training set. After 5 training rounds the boosted classifier for the morphed set
makes almost twice as much wrong decisions compared to the classifier boosted
on the original training set. Also about 15% and 30% of the training examples
on the morphed set have a margin smaller than 0.2 and 0.56, respectively. In
comparison, for the original set the smallest 15% have a margin below 0.32 and
the margins of the smallest 30% do not exceed 0.62.

After 40 training rounds the boosted classifier for the morphed training set
has caught up in the lower region of the margin distribution. The minimum
margin amounts roughly to 0.26 in both cases and the progress of cumulative
distributions is similar showing only a slightly steeper slope for the morphed
training set.

As discussed in Section 3.1 the margin distribution in training has been found
to be an indicator for the quality of a classifier in terms of its test error. Hence
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Fig. 4. (a): Cumulative margin distributions of the original face training set after 5,
10, 20 and 40 rounds. (b): Cumulative margin distributions of the morphed training
set. The negative object class has been morphed using λ = 0.3.

the result of the PCA enhanced training to achieve a similar margin distribution
starting from an adverse one can be interpreted as a higher gain during training.
Therefore we expect classifiers boosted using PCA enhanced training data to
achieve superior performance in the test phase.

Face detection. In the following the results of experiments on the test set
are presented. Figure 5(a) shows the ROC-curves of multiple classifiers varying
the classification threshold in detecting faces. The curve in red is the classifier
based on the original data set, whereas the other curves show the performance
of the classifiers using PCA-images for training. Overall, the curves show that
the classifiers which have been trained with the PCA-images are more selective
in detecting faces so that good detection rates are achieved while maintaining a
lower false alarm rate.

4.2 Experiments with the Cell Database

For the cell database we decided on using a Kernel-PCA-method for modifying
the training data. The main reason is to demonstrate that variants of PCA-
learning can be used in a similar fashion. Especially for image data with larger
image gradients (due to edges), KPCA-methods can be better suited, since the
overall smoothing effect using PCA can be reduced. Since the KPCA-enhanced
training is dependent on the selection of the kernel function we further decided
to compare two different (standard) kernels, namely K1(x, y) = − exp((x −
y)2/(σ)2) and K2(x, y) = (xT y)2. The KPCA-enhanced training data leads for
both kernels to an increased performance of the detection rate, which is shown
in the ROC-curve in Figure 5(b). E.g. for a detection rate of 96.3%, the PCA-
enhanced training data with K1 yields a classifier which produces a false-positive
detection rate of 1%, whereas the original data produces a false-positive detection
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Fig. 5. (a): ROC curve for the face database using different thresholds of boosting with
the original data (red) and using PCA-enhanced non-faces with different λ-values (0.3,
0.5 and 0.7). The PCA-enhanced data reveals a much more selective performance. (b):
ROC-curve for the cell database.

rate of 6%. The PCA-enhanced training data with K2 yields similar performance,
in producing a detection rate of 95.5% with no false positives.

5 Conclusion

We introduced an approach to enhance the training data of boosting-based ob-
ject detection frameworks to achieve a higher detection performance. Using prin-
cipal component analysis we shift the negative training examples in PCA space
near to the positive training class. The trained classifier achieves a lower classifi-
cation error being more selective in detection. Our experiments on face detection
and microscopic cell images showed that our method decreases the false positive
rate of the boosted classifier. The variable strength of our transformation allows
for a trade-off between true positive and false alarm rates. But in all experi-
ments our approach managed to significantly lower the amount of false alarms
without reducing the detection rate. As a preprocessing of the training data our
method can be integrated in nearly all boosted detection frameworks without
any computational costs in the learning and detection process.
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Abstract. Face recognition systems robust to major occlusions have
wide applications ranging from consumer products with biometric fea-
tures to surveillance and law enforcement applications. In unconstrained
scenarios, faces are often subject to occlusions, apart from common
variations such as pose, illumination, scale, orientation and so on. In this
paper we propose a novel Bayesian oriented occlusion model inspired by
psychophysical mechanisms to recognize faces prone to occlusions amidst
other common variations. We have discovered and modeled similarity
maps that exist in facial domains by means of Bayesian Networks. The
proposed model is capable of efficiently learning and exploiting these
maps from the facial domain. Hence it can tackle the occlusion uncer-
tainty reasonably well. Improved recognition rates over state of the art
techniques have been observed.

Keywords: Face Recognition, Occlusion Models, Similarity Measures,
Bayesian Networks, Parameter Estimation.

1 Introduction

Substantial research is ongoing in both the fields viz., cognitive psychology and
machine vision to understand the effect of occlusions in recognizing human faces.
Till date the problem of recognizing faces prone to occlusion appears to be a
partially solved problem in computer vision [1,2,3]. In this paper we propose
a novel “Psychophysically Inspired Bayesian Occlusion Model (PIBOM)” to
attack this potential problem.

The formulation of PIBOM has been inspired by some key cognitive
psychology principles which we briefly describe here. Similarity is a basic con-
cept in cognitive psychology which is utilized to explore the principles of hu-
man perception [4]. Recent studies [5,6] refer to the classical contrast model of
similarity [7] which insists that perceived similarity is the result of a feature-
matching process. A fundamental hypothesis [8] associated with the perception
and memory of faces states that, humans perceive and remember faces chiefly
by means of facial features. Psychological experiments [8] that evaluate simi-
larity judgments support this hypothesis. Facial processing algorithms used by
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popular imaging applications such as photofit and identikit are based on this
cognitive phenomenon. PIBOM as well, is based on these fundamental insights
about human pattern matching and memory. While reasoning with objects which
are prone to uncertainties, humans are often able to notice similarities between
subregions of a face and a set of faces. For example when a face is cluttered
with occlusions, we would be able to recall some individuals by just observing a
particular portion of the face which closely resembles the characteristic of those
individuals. PIBOM precisely intends to map intrinsic similarities between the
set of subsamples of a given probe face with the set of faces in the facial do-
main by means of Bayesian Networks(BNs). We briefly present the three-fold
architecture of our PIBOM with the aid of the flow diagram shown in Fig. 1.
Firstly, we normalize the face images using the technique proposed by Bartlett et
al.[9]. Then the feature space (low dimensional eigenspace) is constructed from
the gallery (training set) of face images available in the Face DataBase (FDB).
PIBOM further learns the belief states of various facial subregions from the
enhanced FDB using a standard machine learning procedure called Parameter
Estimation. All these preliminary activities in Phase I have been done off-line
to make minimal use of computing resources. In Phase II the probe face is sim-
ilarly enhanced and subject to horizontal segmentation. Then the PCA features
of facial entities, acquired by combining probe face components over the gallery
face images, are extracted and projected over the feature space using an inheri-
tance mechanism which will be described in section 3. Further, probable subjects
are shortlisted by means of comparing similarity measures. In Phase III, a BN
is generated for a given probe, whose child node variables represent the belief
states of short-listed subjects and the parent nodes represent the belief states of

Fig. 1. Flow diagram of the proposed PIBOM
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corresponding components of the probe face. Finally faces are rank-listed using
a face score function which will be defined in section 3.

2 Related Work

Psychologically feasible computational models exhibit clear and strong relation-
ships between behavior and properties of the domains which they intend to
represent[10]. The psychophysical experiments performed by Schwaninger et al.
[11] supports the notion that component based processing of faces is prefer-
able than global processing, which is orientation sensitive unlike component
based processing. Behrmann and Mozer [12] have shown that humans, in or-
der to minimize the processing load, organize a complex occluded object into
subregions and then attend selectively to particular physical regions. A very re-
cent psychological study [13] empirically shows that facial identity information is
conveyed largely via mechanisms tuned to horizontal visual structure. Based on
these psychological evidences, the proposed PIBOM strategically uses horizontal
processing.

The Martinez Localization Algorithm (MLA) [1], which serves as a baseline
occlusion model, attempts to recognize partially occluded faces with frontal views
using a PCA based approach. It demands high computation time due to the use
of mixtures of Gaussian distributions. This approach mainly tackles frontal view
images without any pose variations. Like MLA, the proposed PIBOM does not
impose a restriction that the face images should be frontal. Bayesian models
have been applied in a variety of applications that work in unconstrained and
realistic environments and they are now the mainstay of the AI research field
known as “uncertain reasoning” [14].

3 Formulation of PIBOM from the Facial Domain

Let the probe face be segmented into k equal horizontal rectangular subregions.
Let S = {S1, S2, S3, · · · , Sk} represent the k subsamples of the probe face. Let
F = {F1, F2, F3, · · · , Fn} represent the training face set which has face images
of n subjects. Let us suppose that, a typical subsample Si ⊂ S, 1 ≤ i ≤ k, might
influence the recognition of a set of faces f = {Fp, Fq, Fr} ⊂ F , where p, q and
r represent unique integers between 1 and n. Let Zip, Ziq and Zir represent the
corresponding influence strengths. Since Si is influencing the recognition of f , we
draw edges from Si to the elements of f , resulting in a typical Directed Acyclic
Graph (DAG) as shown in Fig.2. By this way we establish mappings from the
set of subsamples (Si) to the subset of faces activated (f). Conceptually these
faces will be nearly similar to the probe face which represents these subsamples.
In the DAG shown in Fig.2 each face is conditionally independent of the other
faces given its parent. That is IP ({Fp}, {Fq, Fr}|Si), Ip({Fq}, {Fr, Fp}|Si) and
Ip({Fr}, {Fp, Fq}|Si), where we denote independence of random variables by IP .
This can be be precisely written in the following general form

P (Fj |Fc, Si) = P (Fj |Si), i = 1, . . . , k, j = 1, . . . , n. (1)
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Fig. 2. Proposed PIBOM showing mappings between a subsample and the faces being
recognized as a consequence of its influence

where Fc = F \ Fj . The graphical nature of PIBOM can help us to visualize
the abstract intrinsic similarity relationships that exists in a facial domain, as a
consequence of mapping Si to f .

Inheriting similarity mappings from the subspace: We intend to shortlist
r similar faces (closely resembling the probe face) from the FDB which is a
consequence of the influence of the subregions of the probe face. This will aid
us to predict the faces influenced by the horizontal subregions of the probe face
by inheriting the PCA architecture. Please note that the proposed PIBOM can
be fitted into any suitable subspace projection technique (eg. PCA, ICA, LDA
and so on). As an example we have chosen the well known PCA architecture.
As the eigenspace is built with the eigenfaces, we cannot directly project the
subsamples Si which do not represent the whole face into this subspace. We
strategically combine the subsamples into each of the faces in the Face Database
(FDB) and project this combined face, say Xij , onto the eigenspace, where Xij

is given by
Xij = Si ∪ Fj , i = 1, . . . , k, j = 1, . . . , n. (2)

Let SM(Fi, Fj) ∈ [0, 1] represent the similarity measure between two faces Fi, Fj .
Then, faces influenced (FI) by subsamples can be computed by

FI = arg min
Fj

SM(Xij , Fj), i = 1, . . . , k, j = 1, . . . , n. (3)

We can project the combined face Xij into the eigenspace using,

ωij = uT
j (Xij − Ψ), i = 1, . . . , k, j = 1, . . . , n, (4)

where ωij , uj and Ψ are respectively the weight vectors, eigenvectors and the
mean face of the FDB. The face space projection Φf can be computed by

Φf =
n∑

j=1

ωijuj , i = 1, . . . , k. (5)
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The Euclidean distance between Xij and the face space projection can be
computed using

εij =‖ (Xij − Ψ)− Φf ‖ (6)

Let Es represent the sorted Euclidian distances of εij . Consequently the r face
classes that correspond to the first r Euclidean distances of Es will yield the
faces influenced by each of the horizontal subregions of the probe face. Similar
to how a human recalls some faces by observing portions of a face, the above
formulation aids the machine to shortlist faces by observing subsamples of a face
via psychophysical means. We mathematically define the influence strength Zij

of a subsample Si as
Zij = (n− �)/n (7)

where � is the rank in which the face Fj is being recognized by the subsample
Si. We perform the standard Maximum Likelihood Estimation (MLE) for all
subsamples i = 1, . . . , k, to estimate the parameters Zij that best agrees with the
observed gallery set of face images. Using a gradient method, a set of necessary
conditions for the maximum-likelihood estimate for Zij can be obtained from
the set of k equations

n∑
j=1

∇Zi ln P (Fj |Si) = 0 i = 1, . . . , k (8)

where the gradient operator ∇Zi is given by

∇Zi ≡

⎛⎜⎜⎜⎝
∂

∂Zi1
∂

∂Zi2
...
∂

∂Zin

⎞⎟⎟⎟⎠ i = 1, . . . , k (9)

By utilizing the crucial influence strengths to weigh the prior probability of
subsamples, P (Si), we can define the face score μ of a mth face conditioned on
Si using

μ(Fm) =
∑
Si

P (Si)P (Fm|Si) +
∑
Si

ZimP (Si) (10)

This face score function has been used to rank-list the probable faces influenced
by the subsamples of a given probe face.

4 Experimental Results and Discussions

We have implemented PIBOM using the MATLAB based Bayesian Net Toolbox,
developed by Dr.Murphy’s team, University of British Columbia. We have used
the huge AR FDB [15] which consists of over 3200 face images for our experi-
ments. The dataset has face images with varying facial expressions, illumination
conditions and occlusions. Also it offers duplicate probe images, which were taken
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after a gap of 14 days. Though we use four face images for training, we treat
all the training samples as different classes and during testing we consolidate
the resulting ranks of recognized face images based on their first occurrence. For
example, let the training samples of class i be denoted as Ci1, Ci2, Ci3 & Ci4
and say, C13, C11, C22, C14, C12 & C32 have been rank-listed. Then the con-
solidated ranking will be C1, C2 & C3. If the actual gallery match (true class)
is C3 then rank-3 classifier will register a match. This strategy would enable the
proposed PIBOM to be compared with models such as MLA that attempt to
use single training sample per class. The comparative results of PIBOM with
MLA against two typical real occlusions viz., sunglass and scarf, in terms of
Cumulative Match Characteristics are as shown in Figs. 3, 4. For the first few
ranks MLA leads. However, we see that PIBOM eventually outperforms MLA.
It is reported in [1] that recognition tests on non duplicate images are tougher.
Even against these tougher tests, PIBOM reports promising recognition rates of
about 95% within 4 to 11 ranks, considering the overall performance of all the
experiments.
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Fig. 3. Comparative analysis of PIBOM, and MLA using the non-duplicate AR dataset
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Fig. 4. Comparative analysis of PIBOM and MLA using the duplicate AR dataset
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5 Conclusion and Future Work

We have discovered that faces exhibit interesting similarity mappings and
successfully modeled an intuitive Bayesian approach to tackle the occlusion
problem. In the near future we intend to extend the proposed PIBOM over a
wider range of object recognition problems where some uncertainty issues throw
major challenges.
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Abstract. This paper presents an unsupervised method for selection of
feature points and object category formation without previous setting of
the number of categories. For unsupervised object category formation,
this method has the following features: selection of target feature points
using One Class-SVMs (OC-SVMs), generation of visual words using
Self-Organizing Maps (SOMs), formation of labels using Adaptive Res-
onance Theory-2 (ART-2), and creation and classification of categories
for visualizing spatial relations between them using Counter Propagation
Networks (CPNs) . Classification results of static images using a Caltech-
256 object category dataset demonstrate that our method can visualize
spatial relations of categories while maintaining time-series characteris-
tics. Moreover, we emphasize the effectiveness of our method for category
formation of appearance changes of objects.

1 Introduction

Because of the advanced progress of computer technologies and machine learning
algorithms, generic object recognition has been studied actively in the field of
computer vision [11]. Generic object recognition is defined as a capability by
which a computer can recognize objects or scenes to their general names in real
images with no restrictions, i.e., recognition of category names from objects or
scenes in images. In actual environments, the number of categories is mostly
unknown. Moreover, the categories are not known uniformly.

Learning-based object classification methods are roughly divisible into super-
vised object classification methods and unsupervised object classification meth-
ods. Supervised object classification methods require training datasets including
teaching signals extracted from ground-truth labels. In contrast, unsupervised
object classification methods require no teaching signals. Studies of unsuper-
vised object classification methods have been active gradually. The subject has
attracted attention because it might provide technologies to classify visual in-
formation flexibly in various environments.

As unsupervised object classification methods, Sivic et al. proposed a method
using pLSA and LDA, which are generative models from the statistical text
literature [8]. They modeled an image including instances of several categories
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Fig. 1. Whole architecture of our method

as a mixture of topics and attempted to discover topics as object categories from
numerous images. Zhu et al. proposed Probabilistic Object Models (POMs) that
improved their method and enabled classification, segmentation, and recognition
of objects [2]. Todorovic et al. proposed an unsupervised identification method
using optical, geometric, and topological characteristics of multiscale regions
consisting of two-dimensional objects [10]. They represented each image as a tree
structure by division of multi-scale images. However, these methods include the
restriction of prior settings of the number of classification categories. Therefore,
these methods are applied only slightly to classification problems in an actual
environment for which the number of categories is unknown.

This paper presents unsupervised feature selection and category formation
without previous setting of the number of categories. Our method has the fol-
lowing four features. First, our method can localize target feature points using
One Class-Support Vector Machines (OC-SVMs) [7] without previous setting of
boundary information. Second, our method can generate labels as a candidate of
categories for input images while maintaining stability and plasticity together.
Third, automatic labeling of category maps can be realized using labels created
using Adaptive Resonance Theory-2 (ART-2) as teaching signals for Counter
Propagation Networks (CPNs). Fourth, our method can present the diversity
of appearance changes for visualizing spatial relations of each category on a
two-dimensional map of CPNs. Through object classification experiments, we
evaluate our method using the Caltech-256 object category dataset [4].

2 Proposed Method

In generic object recognition, it is a challenging task to develop a unified model
to address all steps from feature representation to creation of classifiers. The aim
of our study is the realization of category formation for generic object recognition
to apply theories with different characteristics for each step. Fig. 1 depicts the
network architecture of our method. The procedures are the following.
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1. Selecting feature points using OC-SVMs
2. Creating visual words using Self-Organizing Maps (SOMs)
3. Generating labels using ART-2
4. Creating a category map using CPNs

Procedures 1. through 3., which correspond to preprocessing, are based on the
representation of Bag-of-Features (BoF) [3]. We apply OC-SVMs to select fea-
ture points for localizing target regions in an image. For producing visual words,
we use SOMs, which can learn neighborhood regions while updating the cluster
structure, although k-means must determined data of the center of a cluster. Ac-
tually, SOMs can represent visual words that minimize misclassification [9]. Fur-
thermore, the combination of ART-2 and CPNs enables unsupervised category
formation that labels a large quantity of images in each category automatically.

2.1 Selected Feature Points with OC-SVMs

As described earlier, the OC-SVMs are unsupervised learning classifiers that
estimate the dense region without using density functions [7]. Our target is
Scale-Invariant Feature Transform (SIFT) feature points on an object for recog-
nition. Therefore, target regions and target feature points respectively mean
object regions and feature points on an object. The OC-SVMs are unsupervised-
learning-based binary classifiers that enable density estimation without estimat-
ing a density function. Therefore, OC-SVMs can apply to real-world images
without boundary information.

The discriminant function f(·) is calculated to divide input feature vectors xi

into two parts. The position of the hyperplane is changed according to parameter
ν, which controls outliers of input data with change, and which has range of 0–1.

f(x) = sgn(ω�Φ(x) − ρ). (1)

Here, ω and ρ (ρ ∈ R) represent a coefficient and a margin. Therein, zi represents
results of xi to the high-dimension feature space.

Φ : xi %→ zi (2)

The restriction is set to the following.

ω�zi ≥ ρ− ζi, ζi ≥ 0, 0 < ν ≤ 1 (3)

Here, ζ represents relaxation variable vectors. The optimization problem is solved
with the following restriction

1
2
‖ω‖2 +

1
νl

l∑
i=1

ζi −ρ→ min ω, ζ, and ρ (4)

Parameter ν of OC-SVMs is a high limit of unselected data and lower limit of
support vectors if the solution of the optimization problem (4) fulfills ρ 
=0.
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2.2 Creating Visual Words with SOMs

For our method, we apply SOMs, not k-means, which is generally used in BoF, for
creating visual words. In the learning step, SOMs update weights while main-
taining topological structures of input data. Actually, SOMs create neighbor-
hood regions around the burst unit, which demands a response of the input
data. Therefore, SOMs can classify various data whose distribution resembles
the training data. In addition, Terashima et al. reported that SOMs are superior
to k-means as an unsupervised classification method that is useful to minimize
misrecognition [9]. The learning algorithm of SOMs [6] is the same as the algo-
rithm used between the Input-Kohonen layers of CPNs. In this method, we used
all SIFT features for creating visual words at the learning step of SOMs. We
used SIFT features selected by OC-SVMs for generating histograms based on
visual words. Based on our preliminary experiment, we set the learning iteration
to 100,000 times. Additionally, we set the number of units of the Kohonen layer
to 100 units. We created visual words to extract weights between Kohonen layer
units and input layer units.

2.3 Generating of Labels with ART-2

Actually, ART-2 [1] is a theoretical model of unsupervised neural networks of
incremental learning that forms categories adaptively while maintaining stability
and plasticity together. Features of time-series images from the mobile robot
change with time. Using ART-2, our method enables an unsupervised category
formation that requires no setting of the number of categories.

The learning algorithm of ART-2 is the following.

1) Input data xi are presented to the F1.
2) Search for the maximum active unit Tj as

TJ(t) = max(
∑

j

pi(t)Zij(t)). (5)

3) Top-down weights Zji and bottom-up weights Zij are updated as

d

dt
ZJi(t) = d[pi(t)− ZJi(t)], (6)

d

dt
ZiJ (t) = d[pi(t)− ZiJ(t)]. (7)

4) The vigilance threshold ρ is used to judge whether input data correctly
belong to a category.

ρ

e + ‖r‖ > 1, ri(t) =
ui(t) + cpi(t)
e + ‖u‖+ ‖cp‖ . (8)

Here, pi and ui are sublayers on F1. When (8) is true, the active units reset and
return 2) to search again. Repeat 1) and 4) until the rate of change of F1 is
sufficiently small if (8) is not true.
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2.4 Creating Category Maps with CPNs

The CPN [5] actualizes mapping and labeling together. Such networks comprise
three layers: an input layer, a Kohonen layer, and a Grossberg layer. In addition,
CPNs learn topological relations of input data for mapping weights between units
of the input-Kohonen layers. The resultant category formations are represented
as a category map on the Kohonen layer. Our method can reduce these labels
using the Winner-Takes-All competition of CPNs. In addition, our method can
visualize relations between categories on the category map of CPNs. Detailed
algorithms of ART-2 and CPNs are the following.

The CPN learning algorithm is the following. ui
n,m(t) are weights from an

input layer unit i(i = 1, ..., I) to a Kohonen layer unit (n,m)(n = 1, ..., N,m =
1, ...,M) at time t. Therein, vj

n,m(t) are weights from a Grossberg layer unit j to
a Kohonen layer unit (n,m) at time t. These weights are initialized randomly.
The training data xi(t) show input layer units i at time t. The Euclidean distance
dn,m separating xi(t) and ui

n,m(t) is calculated as

dn,m =

√√√√ I∑
i=1

(xi(t)− ui
n,m(t))2. (9)

The unit for which dn,m is smallest is defined as the winner unit c as

c = argmin(dn,m). (10)

Here, Nc(t) is a neighborhood region around the winner unit c. ui
n,m(t) and

vj
n,m(t) of Nc(t) are updated as

ui
n,m(t + 1) = ui

n,m(t) + α(t)(xi(t)− ui
n,m(t)). (11)

vj
n,m(t + 1) = vj

n,m(t) + β(t)(tj(t)− vj
n,m(t)). (12)

In that equation, tj(t) is the teaching signal to be supplied to the Grossberg
layer. Furthermore, α(t) and β(t) are the learning rate coefficients that decrease
with the progress of learning. The learning of CPNs repeats up to the learning
iteration that was set previously.

3 Experimental Results Obtained Using the Caltech-256
Dataset

The target of this experiment is object classification of static images because
Caltech-256 [4] has no temporal factors in each category. We use the highest 20
categories with the number of images in 256 categories. The results of selection
of SIFT features and recognition accuracy for classification of 5, 10, and 20
categories are the following.
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��Selected points,  ��Unselected points

(a) Different category

(b) Same category

Fig. 2. Results of selected SIFT feature points in the same and different categories on
Caltech-256

3.1 Category Formation Results

Figure 2 depicts results of selected feature points using OC-SVMs on eight sam-
ple images of Caltech-256. Fig. 2 (a) shows that our method can select feature
points of target objects in images of different categories. In addition, Fig. 2 (b)
shows that our method can select feature points around the wings that charac-
terize airplanes for various images of the Airplane category.

Figure 3 (a) depicts labels by ART-2 on 20-object classification. The vertical
and horizontal axes respectively represent labels and images. The bold line shows
the number of images in 10 categories. The circles and squares portray images
for which ART-2 confused labels on 10 and 20 categories, respectively. In the
10-object classification, ART-2 generated independent labels in all categories,
although three images of two labels are confused. In the 20-object classification,
independent labels of 19 categories are generated, except for the Zebra category
that is confused of all images, although 16 images of five labels are confused.
Confusion of labels occurs often in images of Ketch, Hibiscus, and Guitar-pick
categories. Although confused labels are restrained until 10-object classification,
numerous confused labels are apparent in the 20-object classification.

Figure 3 (b) depicts a category map generated with CPNs on 20-object clas-
sification. The names of categories and the number of images are shown on
the category map. For all images in each category, 11 categories are mapped
to neighborhood units. The CPNs created categories for mapping neighborhood
units on the category map in images of each category by which ART-2 generated
several labels. In addition, categories without their names are mapped images of
different categories.

3.2 Recognition Accuracy

Table 1 portrays results of recognition accuracy obtained using our method and
POMs, the existing state-of-the-art unsupervised classification method, as re-
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Fig. 3. Results of formed labels using ART-2 and category map of 20 categories

Table 1. Recognition accuracy for learning and testing datasets used in Caltech-256

Number of Our method POMs by Chen et al. [2]
categories Learning Testing Learning Testing

5 96% 76% 68% 73%

10 94% 42% 75% 72%

20 81% 45% – –

26 – – 77% 67%

ported by Chen et al. [2]. The recognition accuracy values obtained using our
method were, respectively, 96%, 94%, and 81% for training datasets and 76%,
42%, and 45% for testing datasets in 5, 10, and 20 categories. The recognition
accuracy values obtained using POMs were, respectively, 68%, 75%, and 77% for
training datasets and 73%, 72%, and 67% for testing datasets in 5, 10, and 26
categories. In five-category classification, the recognition accuracy of our method
is higher than that of POMs for both training and testing datasets. In results
for more than 10 categories, the recognition accuracy of our method was lower
than that of POMs for the testing dataset, but the recognition accuracy of our
method was higher than that of POMs for the training dataset. We consider that
the result of our method is inferior to POM results because of over-fitting. We
used the category map of fixed size, 20 × 20 unit, for all recognition targets. For
improving expression and mapping capabilities of CPNS, we will consider intro-
duction of a mechanism to change a suitable size of the category map according
to the number of categories to be classified.

Actually, objects of various types exist in an actual environment. In our daily
life, it is almost unknown how many objects exist in a room. Therefore, it is
unrealistic to present the number of categories in advance. POMs require setting
of a number of categories in advance. Our method can classify objects without
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prior setting of the number of categories. Therefore, our method is effective for
application to problems that are known as challenging tasks of classification of
categories whose ranges and types are unclear.

4 Conclusion

This paper presented an unsupervised method of SIFT feature points selection
using OC-SVMs and category formation combined with incremental learning of
ART-2 and self-mapping characteristic of CPNs. Our method enables feature
representation that contributes to improved accuracy of classification for select-
ing feature points to concentrate characterized information of an image. More-
over, our method can visualize spatial relations of labels and integrate redundant
and similar labels generated with ART-2 as a category map using self-mapping
characteristics and neighborhood learning of CPNs. Therefore, our method can
represent diverse categories.

Future studies must be conducted to develop methods to extract boundaries
among clusters automatically and to determine a suitable number of categories
from category maps of CPNs.
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Abstract. The paper presents a framework for object recognition with the mul-
ti-model space-variant approach in the log-polar domain built into the multili-
near tensor classifier. Thanks to this the method allows recognition of rotated 
and/or scaled objects taking advantage of the foveal and peripheral information. 
Recognition is done in the multilinear subspaces obtained after the higher-order 
singular value decomposition of the pattern tensor. The experiments show high 
accuracy and robustness of the proposed method. 

1   Introduction 

Object recognition is one of the fundamental tasks of Computer Vision and also one 
of the most demanding ones due to discrepancy between a variety of real objects and 
their images obtained under different conditions such as viewpoints, illuminations, 
image resolutions, noise, etc. In this context the methods employing tensor decompo-
sitions show very high accuracy and robustness [11][6]. A method based on higher-
order SVD (HOSVD) for digit classification was proposed by Savas et al. [9]. One of 
its main properties is robustness to spatial variations of patterns. However, to cope 
with an inherent rotation and scale the special means have to be undertaken. For in-
stance, in a system for road signs recognition, to account for object rotations the ro-
tated versions of the test patterns are generated which then compose the deformed 
prototypes tensor (DPT) [4]. To cope with scale variations, also different versions of 
scaled object can be generated or a test object before the classification needs to be 
registered to the known reference dimensions [2]. All these increase tensor size and 
for some distorted test objects do not guarantee sufficient accuracy. On the other 
hand, it is well known that the transformation from the Euclidean to the log-polar 
(LP) representation maps rotation and scale into linear shifts. However, linear shifts 
can be easily accommodated by the HOSVD of the DPT [4]. Nevertheless, LP be-
longs to the group of space variant transformations, i.e. it is not translation invariant. 
In other words, features describing a target depend on a viewpoint. If many different 
viewing positions are used to prepare the prototype patterns then the multiple proto-
type models is obtained. This was proposed by Traver et al. [10] as a multiple-model 
approach (MMA). MMA has many beneficial properties especially in the context of 
active vision systems. During our experiments with the HOSVD it was observed that 
the MMA fits well into the HOSVD framework since each of its subspaces is built 
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separately around each set of prototypes of a single training class. Thus, the main 
contribution of this paper is incorporation of the MMA into the recognition frame-
work with the HOSVD and DPT. The method takes advantage of a decreasing resolu-
tion in the representation going from foveal center toward the view periphery. The 
method appears to be very robust in terms of accuracy and operation time. It was 
checked in the prototypical automotive application of a driver assisting system which 
contains the road signs recognition, as well as driver inattention monitoring system 
based on a driver's eye recognition. Rest of the paper is organized as follows: Section 
2 presents the concept of the multiple spatial model in the log-polar space. Section 3 
deals with MMA built into the HOSVD framework. Experimental results are pre-
sented in 4. The paper ends with conclusions in Section 5.   

2   Multiple Spatial Log-Polar Models 

Following the works by Jurie [5] and Traver et al. [10], the multiple spatial log-polar 
model is defined as a set of different image positions {Pi}, for which a separate set of 
features {Fi} is computed, describing a target as viewed at {Pi}. In our case {Pi} is 
proposed to cover the foveal and peripheral areas of the image space, while {Fi} is the 
set of log-polar representation of the target Ti. 

   a b 

Fig. 1. The log-polar space (a). Points on a rectangular grid defining multiple spatial models (b). 

Fig. 1a depicts the log-polar mapping while Fig. 1b depicts the set of {Pi} points at 
which the log-polar representations {Fi} are computed. The distances dHi and dVi were 
chosen as 1, 2, and 4, respectively. The nonlinear LP transformation with a center 
c=(c1,c2)∈{Pi} transforms a point x=(x1,x2) into y=(r,φ) , as follows 

( ) ( )( )2 2

1 1 2 2logBr x c x c= − + − , ( ) ( )( )2 2 1 1arctanϕ = − −x c x c , (1)

where B is a base of a logarithm which should be greater than 1.0. Usually B is chosen 
to fit the value of rmax which is the maximal distance from the center c to the points of 
the original image. In this case it is given as follows 

( )max maxexp lnB d r= ⎡ ⎤⎣ ⎦ , (2)

where dmax>1, rmax>1, and dmax=min{d1max, d2max} is a minimal distance from a chosen 
center C and surrounding window, rmax is the maximal number of columns in the LP 
image. 
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3   Object Recognition with the Higher-Order Singular Value 
Decomposition and Multiple Log-Polar Models 

Tensors allow description of physical laws which transform appropriately with a 
change of the coordinate system. These can be also seen as the multidimensional 
arrays of data. Thus, scalars, vectors, and matrices all are tensors. Also images in 
different formats can be seen as tensors. This allows an explicit control of intrinsic 
dimensions, but also with help of tensor decompositions - an insight into intrinsic 
information hidden in massive amount of pixels.  

In this work a tensor is composed of space-variant log-polar representations of the 
prototype models. This way a set of DPTs is obtained, one for each pattern with its LP 
representations. A number of these representations can be different for each proto-
type. Then each DPT is decomposed with the HOSVD, which allows construction of 
a space spanned by the dominating base tensors. Recognition is done checking dis-
tances of a test object projected into these spaces. In this section we provide a brief 
overview of tensors and their HOSVD decomposition in the context of pattern recog-
nition in computer vision. More on this can be found in literature [6][7]. 

3.1   Basic Concepts of Tensor Algebra 

When processing tensors, the first important concepts is tensor flattening. For an P-th 

order  tensor 1 2 PN N N× ×∈ ℜ KT  the k-mode vector (or a fiber) of T  is defined as a 

vector obtained from the elements of T  by varying only one index nk when keeping 

all other fixed. If from T a following matrix  

( )
( )1 2 1 1k k k PN N N N N N

k
T − +×∈ ℜ K K

 (3)

is formed, then columns of T(k) are k-mode vectors of T. The k-mode representation of 

a tensor is obtained by selecting the k-th index to become a row index of its flatten 
representation. On the other hand its column index is a product of all other P-1 
indices. Nevertheless, where an element of the tensor is stored in memory depends on 
an assumed permutation of these P-1 indices, which gives (P-1)! possibilities. From 
these only two, i.e. forward and backward cycle modes, are used [6].. 
 The second important concept is a k-mode multiplication of a tensor 

1 2 PN N N× ×∈ ℜ KT  and a matrix kQ NM ×∈ ℜ . In result a following tensor 
1 2 1 1k k PN N N Q N N− +× × × × ×∈ ℜ K KS  is obtained whose elements can be expressed as  

( )
− + − +− + =

= × = ∑K K K KK K1 2 1 1 1 2 1 11 2 1 1 1

.
k

k k P k k k P kk k P
k

N

n n n qn n k n n n n n n qnn n n qn n
n

t mMS T  (4)

The third important concept is the HOSVD which is an analog to the SVD for ma-

trices [6][7]. HOSVD allows any P-dimensional tensor 1 2 m n PN N N N N× × × ×∈ ℜ K K KT  to be 
equivalently represented as follows  
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1 1 2 2 P P
= × × ×S S SKT Z . (5)

Sk are unitary matrices of dimensions Nk×Nk, called mode matrices. 
1 2 m n PN N N N N× × × ×∈ ℜ K K KZ  is a core tensor which fulfills the two properties [6][7]:  

1. Two subtensors 
kn a=Z  and 

kn b=Z , are orthogonal for all possible values of k for 

which a≠b, i.e. 

0
k kn a n b= =⋅ =Z Z , (6)

2. All subtensors of Z  for all k can be ordered according to their Frobenius norms 

1 2
0

k k k Pn n n N= = =≥ ≥ ≥ ≥KZ Z Z , (7) 

Finally, the a-mode singular value of T is defined as follows 

σ= = .
k

k
n a a

Z  (8)

3.2   Pattern Recognition with the Deformable Prototype Tensor 

For each mode matrix Si in (5) the following sum can be constructed 

1

PN
h

h P P
h=

= ×∑ sT T , (9)

thanks to the commutative properties of the k-mode multiplication. In the above 

1 1 2 2 1 1h P P− −= × × ×S S SKT Z  (10)

denote the basis tensors and sh
P are columns of the unitary matrix SP. Since Th is of 

dimension P-1 then ×P in (9) is an outer product, i.e. a product of two tensors of 
dimensions P-1 and 1. Let us now observe that due to the orthogonality properties of 
the core tensor Z  in (10), Th are also orthogonal. Thus, they can constitute a basis.  

In this space pattern recognition with HOSVD can be stated as testing a distance of 
a given test pattern Px to its projections in each of the spaces spanned by the set of the 
bases Th in (10). This can be expressed as the following minimization problem 

=

− ∑
1442443

2

, 1

min
i
h

i

N
i i

x h h
i c h

Q

cP T , 
(11)

where the scalars ci
h denote unknown coordinates of Px in the space spanned by Th

i, 

and N≤NP denotes a number of chosen dominating components.  
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To solve (11) the squared norm Q of (11) is created for a selected i, as follows 

= = =

= − = − −∑ ∑ ∑
2

1 1 1

,
N N N

x h h x h h x h h
h h h

Q c c cP P PT T T  (12)

Now, to find a minimum of (11) for each ch, the set of derivatives with respect to 
each ch is computed and then equated to 0. This leads to the following expression 

= , , ,
h h x h h
c PT T T  (13)

Now, for each i, (13) can be back substituted into (11), which yields the following 
residual  

ρ
=

= −∑
2

1

,

,

i
N

h x i
i x hi i

h
h h

P
PT

T
T T

. (14)

Assuming further that i
h

T  and 
x
P  are normalized the following is obtained (the 

hat notation relates to the normalized tensors) 

ρ
=

= − ∑
2

1

ˆ ˆ1 ,
N

i
i h x

h

PT . (15)

Thus, to minimize (11) we need to maximize the following value 

ρ
=

= ∑
2

1

ˆ ˆˆ ,
H

i
i h x

h

PT , (16)

In other words, our system returns a class i for which the corresponding ρi from (16) 
is the largest. 

4   Experimental Results 

All layers of the system were implemented in C++ using the HIL library [3]. The 
experimental setup consists of the computer with 8 GB RAM and Pentium® Core Q 
820 (clock 1.73 GHz). Two types of objects were tested for recognition, facial regions 
and the road signs, which training databases are depicted in Fig. 2a and Fig. 2b, re-
spectively. The prototype patterns are transformed into the LP-MMA from which  the 
pattern tensor T is constructed. Then, HOSVD is computed from T , from which the 

sets of base tensors i
h

T  are obtained for each pattern separately in accordance with 

(10), as described in the previous sections.  
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  a                         b 
 

Fig. 2. The two databases used in the experiments. Face regions database (a), road signs (b). 

Fig. 3 depicts first five tensors h
T  for the speed limit sign "70 km/h" from the da-

tabase in Fig. 2b. The corresponding subtensors n
Z , which correspond to the "ener-

gy" factor (8), spread out from the left top corner to the bottom right one [6]. 

 

Fig. 3. First five tensors h
T  of the "70 km/h" speed limit sign 

During operation the HOSVD classifier selects a class of corresponding to the best 

subspace. That is, the subtensors i
h

T  are used to compute distances (16) of the test 

pattern Px to all subspaces spanned by i
h

T .  

Fig. 4 depicts stages of processing of real traffic scenes from which the sign areas 
are cropped and their LP representations computed. These are then fed to the 
HOSVD-MMA classifier. The measured accuracy is 94% on average, thus it is better 
than in our previous system [2] and comparable with the system operating exclusively 
in the spatial domain and the HOSVD, presented in [4]. However, the proposed me-
thod performs better than [4] in the case of imprecisely cropped objects, thanks to the 
employed multiple model approach. 

Fig. 5 depicts results of operation of our method on three selected frames showing 
a person, shown in the first column. The second column of Fig. 5 contains the skin 
segmented areas (in white). Third column shows compact skin regions detected with 
the adaptively growing window method, described in [2]. 
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Fig. 4. Stages of processing of real images to their LP representations. Original image (first 
column), cropped area of interest based on color information (second column), the framed 
patterns (third column), the log-polar version of the test pattern (fourth column). 

Finally, fourth column of Fig. 5 depicts correctly identified eye regions. Experi-
ments were conducted on a database of selected test images containing persons with 
well visible faces in good lighting conditions (i.e. daily or artificial light). 

  
a b c d 

Fig. 5. Results of eye recognition for three images. Original image (a). Skin binary map (b). 
Compact skin regions detected with the adaptive window growing algorithm (c). Detected eyes 
with the HOSVD classifier trained with database in Fig. 2a (d). 

To test accuracy of the method it was compared with answers of a human operator. 
The resulting average accuracy is 97%. This compares favorably with the reported 
results [12][1]. Examination of the misclassified cases reveals that problems are 
usually due to wrong initial skin segmentation. More precise segmentation offer other 
methods [8][12]. However, they require more computational effort than the used one. 
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The average execution time for an 640x480 RGB image is in order of 150-200 ms, 
which allows real time operation.  

5   Conclusions 

In this paper we propose a novel method for object recognition which connects the 
multilinear HOSVD based classification and the multiple model approach operating 
in the space variant log-polar space. Such connection allows recognition of rotated or 
scaled objects and shows better performance than a single HOSVD. The experiments 
were performed on two types of objects for different applications. The first is recogni-
tion of the road signs. The second is recognition of human eyes. The obtained results 
show high accuracy and fast operation which allows real time processing even in 
software implementation. 

Acknowledgement. This work was supported from the Polish funds for scientific 
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Abstract. We present in this paper a precise eye detection method us-
ing Discriminating Histograms of Oriented Gradients (DHOG) features.
The DHOG feature extraction starts with a Principal Component Analy-
sis (PCA) followed by a whitening transformation on the standard HOG
feature space. A discriminant analysis is then performed on the reduced
feature space. A set of basis vectors, based on the novel definition of the
within-class and between-class scatter vectors and a new criterion vector,
is defined through this analysis. The DHOG features are derived in the
subspace spanned by these basis vectors. Experiments on Face Recogni-
tion Grand Challenge (FRGC) show that (i) DHOG features enhance the
discriminating power of HOG features and (ii) our eye detection method
outperforms existing methods.

Keywords: Histograms of Oriented Gradients (HOG), Discriminant
Analysis, Eye Detection, Face Recognition Grand Challenge (FRGC).

1 Introduction

Eye detection has a significant impact on the performance of face recognition due
to the Curse of Alignment [13]. Even a slight detection error (e.g., 5 pixels) will
dramatically reduce the face recognition performance [13], [12]. Detecting eyes in
images is a challenging task due to the wide change of face pose and expressions
(e.g., closed eyes) and the various obstructions (e.g., glasses and hats). Many
eye detection methods have been proposed over the last decade [7] [10] [15] [13]
[14] [4]. However, many problems, especially in detection accuracy, still exist.

Recently, Dalal & Triggs [3] presented the Histograms of Oriented Gradients
(HOG) for human detection and got excellent detection performance. The ba-
sis idea of HOG features is that local object appearance and shape can often
be characterized rather well by the distribution of local intensity gradients or
edge directions. In this paper, we present a novel discriminating HOG (DHOG)
features to reduce the dimensionality of the standard HOG features while en-
hance its discriminating power. The most widely used dimensionality reduction
technique is probably the Principal Component Analysis (PCA) [5]. Although
PCA can derive the optimal representing features, it can not derive the optimal
discriminating features. An alternative is the Fisher Linear Discriminant (FLD)

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 443–450, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Work flow chart of our eye detection method

[5]. For any L-class pattern classification problem, FLD derives a compact and
well-separated features with the dimensionality of L−1. However, when applied
to the two-class detection problem, FLD only derives one feature, which will
lead to the significant loss of data information and a very poor classification
performance.

Our DHOG feature extraction starts with a Principal Component Analysis
(PCA) followed by a whitening transformation on the HOG feature space. A
discriminant analysis is then performed on the reduced feature space. A set of
basis vectors, based on the novel definition of the within-class and between-class
scatter vectors and a new criterion vector, is defined through this analysis. The
DHOG features are then derived in the subspace spanned by these basis vectors.

Our eye detection method is shown is Fig. 1. First, a face is detected using
the BDF method proposed in [8] and normalized to the size of 128× 128. Then
geometric constraints are applied to localize the eyes, which means eyes are only
searched in the top half of the detected face. Then the eye detection is achieved
by two steps: the feature based eye candidate selection and appearance based
validation. The selection stage chooses eye candidates through an eye color dis-
tribution analysis in the YCbCr color space based on the observation that the
pixels in the eye region, compared with other skin area, have higher chromi-
nance blue (Cb) value, lower chrominance red (Cr) value, and lower luminance
(Y) value [2]. The validation stage first extracts the DHOG features of each can-
didate and then a near neighbor classifier with the distance metric is applied for
classification to detect the center of the eye among these candidates. Usually,
there are multiple eyes detected around the pupil center. The final eye location
is the average of these multiple detections.

We perform the experiments on Face Recognition Grand Challenge (FRGC)
database to evaluate the performance of DHOG features and our eye detection
method. Experiment results show that (i) DHOG features enhance the discrim-
inating power of HOG features and (ii) our eye detection method outperforms
existing methods.

2 HOG Features

In this section, we briefly describe the HOG features. HOG features are inherited
from the Scale Invariant Feature Transform proposed in [9]. They are derived
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based on a series of well-normalized local histograms of image gradient orien-
tations in a dense grid [3]. The HOG feature extraction procedure is shown in
Algorithm 1.

Algorithm 1. Overview of HOG Feature Extraction
Step1: Compute the horizontal and vertical gradient of image by convolving
the image with a derivative mask.

Step2: Compute both norm and orientation of the gradient. Let Gh and Gv

denote the horizontal and vertical gradient, respectively. The norm NG and
orientation OG at the point (x, y) are given as follows:

NG(x, y) =
√
Gh(x, y)2 + Gv(x, y)2,

OG(x, y) = arctanGh(x,y)
Gv(x,y) .

Step3: Split the image into cells. Compute the histogram for each cell. Suppose
the histogram is divided into K bins based on the orientation, the value of the
i-th bin Vi for cell C is computed as follow:

Vi =
∑

(x,y)∈C

{NG(x, y), OG(x, y) ∈ Bini}.

Step4: Normalize all histograms within a block of cell.

Step5: Concatenate all normalized histograms to form the HOG feature vector.

In our work, we use 1-D centered derivative [−1, 0, 1] to compute the horizontal
and vertical gradients. The size of cells is set to 4× 4 pixels and the histogram
is evenly divided into 6 bins over 0◦ − 180◦. Each block contains 3 × 3 cells
and blocks are overlapped with each other by two-thirds in a sliding fashion. L2
normalization is used for block normalization scheme.

3 DHOG Features

In this section, we present a novel discriminating HOG (DHOG) features, which
reside in low dimensional space and have significant discriminative power.

Let the extracted HOG feature vector introduced in Section 2 be X ∈ R
N ,

where N is the dimensionality of the HOG feature space. PCA is firstly applied
to reduce the dimensionality of the original HOG feature from N to m, where
m < N : Y = P tX , where P contains the m eigenvectors of the covariance matrix
of X corresponding to its m largest eigenvalues: λ1, λ2, · · · , λm.

After PCA, the new feature vector Y resides in a lower dimensional space R
m.

In this R
m dimensional space, we implement the whitening transformation to

sphere the covariance matrix of Y. The whitening transformation is defined by
the transformation matrix W : W = Γ−1/2P , where Γ = diag(λ1, λ2, · · · , λm).
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Next, we will define two scatter vectors and a criterion vector in order to derive
the DHOG features. Let W = {W1,W2, · · · ,Wm}, where W ∈ R

N×m. Note
that W contains m vectors. The idea of DHOG feature extraction is to choose
a smaller set of vectors, from these m vectors, with the most discriminating
capability. This smaller set of vectors will be the basis vectors for defining the
DHOG feature. Toward that end, we first define the within-class scatter vector,
α ∈ R

m, and the between-class scatter vector, β ∈ R
m, as follows:

α = P1

n1∑
i=1

s(W tx
(1)
i −W tM1) + P2

n2∑
i=1

s(W tx
(2)
i −W tM2) (1)

and

β = P1s(W tM1 −W tM) + P2s(W tM2 −W tM) (2)

where P1 and P2 are the prior probabilities, n1 and n2 are the number of samples,
and x

(1)
i and x

(2)
i are the HOG features of the eye and the noneye samples,

respectively. M1, M2, and M are the means of the eye class, the noneye class,
and the grand mean in the original HOG feature space, respectively. The s(·)
function defines the absolute value of the elements of the input vector. The
significance of this new scatter vectors is that the within-class scatter vector,
α ∈ R

m, measures the clustering capability of the vectors in W , and the between-
class scatter vector, β ∈ R

m, measures the separating capability of the vectors
in W . In order to choose the most discriminating vectors from W to form a set
of basis vectors to define DHOG features, we then define a new criterion vector
γ ∈ R

m, as follows:

γ = β./α (3)

where ./ is element-wise division. The value of the elements in γ indicates the
discriminating power of their corresponding vectors in W : the larger the value is,
the more discriminating power the corresponding vector in W possesses. There-
fore, we choose the p vectors, Wi1,Wi2, · · · ,Wip, in W corresponding to the p
largest values in γ to form a basis T = [Wi1,Wi2, · · · ,Wip], where T ∈ R

N×p

and p < m. The DHOG features are thus defined as follows:

Z = T tX (4)

We name T ∈ R
N×p as the DHOG basis vectors. The DHOG features thus resides

in the feature space R
p and capture the most discriminating HOG information

of the original data X .
Note that our DHOG extraction method is different from the commonly used

discriminant analysis methods, such as Fisher Linear Discriminant (FLD) [5].
FLD seeks a set of basis vectors that maximizes the criterion J = trace(S−1

w Sb)
[5], where Sw and Sb are the within-class and between-class scatter matrices. The
criterion is maximized when the basis vectors are the eigenvectors of the matrix
S−1

w Sb corresponding to its largest eigenvalues. FLD can find up to L − 1 basis
vectors for the L-class pattern recognition problem. For a two-class eye detection
problem, FLD is just able to derive only one feature, while our DHOG method is
able to derive multiple features for achieving more reliable eye detection results.
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4 Experiments

We evaluate the performance of DHOG features and our eye detection method
on the Face Recognition Grand Challenge (FRGC) version 2 experiment 4, which
contains both controlled and uncontrolled images [11]. Note that while the faces
in the controlled images have good image resolution and illumination, the faces
in the uncontrolled images have lower image resolution and large illumination
variations. In addition, facial expression changes are in a wide range from open
eyes to closed eyes, from without glasses to with various glasses, from black
pupils to red and blue pupils, from white skin to black skin, and from long hair
to wearing a hat. All these factors increase the difficulty of accurate eye-center
detection. In our experiments, we do the test on the whole training data set of
FRGC 2.0, which contains 12,776 images. So there are 25,552 eyes totally to be
detected. In order to train a robust eye detector, 3,000 pairs of eyes and 12,000
non-eye patches are collected as training samples from different sources.

In Fig. 2 - Fig. 4, we compare the detection accuracy of DHOG features with
the standard HOG features through different pixel errors. The HOG features
after PCA (PHOG) are also included into the comparison to show the superior
performance of DHOG. We don’t list the result of the HOG features after FLD,
since its performance is relatively lower in our experiments and thus is not a good
criterion to evaluate the DHOG performance. A near neighbor classifier with
three different distance metrics - L1 (city-block), L2 (Euclidean), and Cosine -
are employed for classification. The size of the standard HOG features in our
experiment is 1,296. The size of both PHOG and DHOG features is set to 80 for
the best performance and fair comparison. The detection accuracy is measured
as the Euclidean distance between the detected eye and the ground truth.

From Fig. 2 - Fig. 4, it is observed that no matter what kind of distance
metric is applied, DHOG features outperform both of HOG and PHOG. In
average, DHOG improves the detection accuracy of HOG by 1.39% and PHOG
by 2.07%, respectively. If we consider the eye is detected correctly when the
Euclidean distance between the detected eye and the ground truth is less than
5 pixels, DHOG reaches the best detection rate of 92.25% under COS metric,
compared with 90.58% of HOG under L1 and 89.66% of PHOG under COS,
respectively (see Table 1).

Table 1 lists the average detection pixel errors of all three methods in order
to further show the performance improvement of DHOG over HOG and PHOG.
Table 1 indicates that DHOG has smaller average detection pixel errors and
higher detection rate than HOG and PHOG. The best result for each method
under different distance metrics is highlighted. The DHOG+COS reaches the
best, whose Euclidean distance error is about 3.16 pixels. We plot the distribution
of eye detection pixel error for the best performance of each method in Fig. 5.
It is observed that DHOG gives more detections in the range of one and five
pixels from the ground truth than HOG and PHOG, which indicates the more
accurate detection performance of DHOG.

We then compare our DHOG-based method with other eye detection methods.
Although authors do not think the normalized errors is not a strict criterion to
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Fig. 2. Detection rate under L1 distance
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Fig. 3. Detection rate under L2 distance
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Fig. 4. Detection rate under COS distance
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Fig. 5. Distribution of pixel errors

Table 1. Performance comparison among HOG, PHOG, and DHOG under different
distance metrics (ED stands for the Euclidean distance)

Method mean(x) std(x) mean(y) std(y) ED(mean) Detection Rate
HOG+L1 2.50 2.68 2.24 4.12 3.53 90.58%
HOG+L2 2.46 2.63 2.33 4.20 3.83 89.16%
HOG+COS 2.45 2.60 2.45 4.49 3.79 89.66%
PHOG+L1 2.52 2.59 2.26 4.08 3.81 89.58%
PHOG+L2 2.45 2.60 2.36 4.26 3.84 89.16%
PHOG+COS 2.43 2.56 2.33 4.21 3.77 89.66%
DHOG+L1 2.57 2.65 1.92 3.24 3.40 91.24%
DHOG+L2 2.39 2.33 1.78 3.02 3.19 92.16%
DHOG+COS 2.38 2.32 1.76 2.91 3.16 92.25%
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measure the performance of an eye detection method as explained in Section 1,
it is still introduced here in order to make a fair comparison. The normalized
error is the pixel error normalized by the binocular distance. Fig. 6 shows a
typical comparison of our DHOG+COS method, which is reported with the
best performance in our experiment, with the hybrid classifier of Jin in [6], who
reported results on 3816 images of FERET database, and with the SVM based
method of Campadelli in [1], who reported results on 862 images of FRGC 1.0
database. It is observed from Fig. 6 that although our experiments are performed
in a much larger database (12,776 images) with more challenging compliancy
(various illumination, poses, expressions, and obstructions), our eye detection
method still outperform these two methods.

Finally, some examples of the detection result are listed in Fig. 7.
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Fig. 6. Comparison of normalized detection error with different methods

Fig. 7. Example of detected eyes
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5 Conclusion

In this paper, we present a precise eye detection method using Discriminating
HOG (DHOG) features. The DHOG features reside in a low dimensional space
spanned by a set of DHOG basis vectors and have improved discriminating power
over the standard HOG features. Experiments on FRGC database show that (i)
DHOG features enhance the discriminating power of HOG features and (ii) our
eye detection method outperforms the existing methods. Future work will focus
on designing an automatic face recognition system using the DHOG features and
eye detection method presented in this paper.
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Abstract. The detection of vascular bifurcations in retinal fundus im-
ages is important for finding signs of various cardiovascular diseases. We
propose a novel method to detect such bifurcations. Our method is im-
plemented in trainable filters that mimic the properties of shape-selective
neurons in area V4 of visual cortex. Such a filter is configured by com-
bining given channels of a bank of Gabor filters in an AND-gate-like
operation. Their selection is determined by the automatic analysis of a
bifurcation feature that is specified by the user from a training image.
Consequently, the filter responds to the same and similar bifurcations.
With only 25 filters we achieved a correct detection rate of 98.52% at a
precision rate of 95.19% on a set of 40 binary fundus images, containing
more than 5000 bifurcations. In principle, all vascular bifurcations can
be detected if a sufficient number of filters are configured and used.

Keywords: DRIVE, Gabor filters, retinal fundus, trainable filters, V4
neurons, vessel bifurcation.

1 Introduction

The vascular topographical geometry in the retina is known to conform to struc-
tural principles that are related to certain physical properties [14]. The analysis
of the geometrical structure is very important as deviations from the optimal
principles may indicate some cardiovascular diseases, such as hypertension [17]
and atherosclerosis [4]; a comprehensive analysis is given in [12]. The identifica-
tion of vascular bifurcations is one of the basic steps in this analysis.

More than 100 vascular bifurcations can be seen in a typical retinal fun-
dus image. Their manual detection by a human observer is a tedious and time
consuming process. The existing attempts to automate the detection of retinal
vascular bifurcations can be categorized into two classes usually referred to as
geometrical-feature based and model based approaches. The former involve ex-
tensive preprocessing such as segmentation and skeletonization followed by local
pixel processing and branch point analysis. These techniques are known for their
robustness in bifurcation localization [2,3,5,8]. On the other hand, model based
approaches are usually more adaptive and have smaller computational com-
plexity which makes them more appropriate for real-time applications [1,16].
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However, model based approaches are known to suffer from insufficient general-
ization ability as they are usually unable to model all the features of interest.
Consequently, these methods may fail to detect some relevant features.

In this paper we propose trainable filters for the detection of vascular bifur-
cations in retinal fundus images. Our approach requires a single-step training
process where an observer specifies a typical bifurcation by a point of interest in
an image. The specified feature is then used to automatically configure a bifurca-
tion detector by determining the properties of all line segments in the concerned
feature and their mutual geometrical arrangement. This training procedure can
be repeated as many times as required in order to configure a number of filters
based on different specified features of interest. The filters can then be applied
on retinal fundus images to detect the features that are similar to the patterns
that were used to configure the filters.

The rest of the paper is organized as follows: In Section 2 we present our method
and demonstrate how it can be used to detect retinal vascular bifurcations. In Sec-
tion 3, we apply the proposed nonlinear filters on retinal fundus images from the
DRIVE dataset [15]. Section 4 contains a discussion and conclusions.

2 Proposed Method

2.1 Overview

Fig.1a shows a bifurcation encircled in a binarized retinal fundus image from the
DRIVE dataset [15]. Such a feature, which is shown enlarged in Fig.1b, is used
to automatically configure a detector that will respond to the same and similar
patterns.

Each of the three ellipses shown in Fig.1b represents the support or receptive
field (RF) of a sub-unit that detects a line of a given orientation and width, while
the central circle represents the RF of a group of such sub-units. The response
of the proposed bifurcation detector is computed by combining the responses of
the concerned sub-units by multiplication. The preferred orientations of the sub-
units and the mutual spatial arrangement of their RFs are determined by the
local pattern used for the configuration of the concerned filter. Consequently,

(a) (b)

Fig. 1. (a) The circle indicates a bifurcation that is selected by a user. (b) Enlargement
of the selected feature. The ellipses represent the support of line detectors that are
identified as relevant for the concerned feature.



Detection of Retinal Vascular Bifurcations 453

that filter is selective for the presented local combination of lines of specific
orientations and widths.

Such a design is inspired by electrophysiological evidence that some neurons
in area V4 of visual cortex are selective for moderately complex stimuli, such as
curvatures, that receive inputs from a group of orientation-selective cells in areas
V1 and V2 [9,10,11]. Moreover, there is psychophysical evidence [6] that curve
contour parts are likely detected by an AND-gate-like operation that combines
the responses of afferent orientation-selective sub-units by multiplication. An
AND-gate-like model produces a response only when all its afferent sub-units
are stimulated; i.e. all constituent parts of a stimulus are present.

In the next sub-sections, we explain the automatic configuration process of
a bifurcation detector. The configuration process determines which responses of
which Gabor filters in which locations need to be multiplied in order to obtain
the output of the filter.

2.2 Orientation-Selective Sub-units Based on Gabor Filters

The input to the orientation-selective sub-units mentioned above is provided
by two-dimensional (2D) Gabor filters, which are established models of V1/V2
cells. We denote by gλ,θ(x, y) the half-wave rectified response of a Gabor filter
of preferred wavelength λ and orientation θ to a given input image. Such a filter
has also other parameters, namely spatial aspect ratio, bandwidth and phase
offset, that we skip here for brevity. We set their values as proposed in [13].

Since we work in a multiscale setting, we re-normalize all Gabor functions
that we use in such a way that all positive values of such a function sum up to
1 while all negative values sum up to -1. We use symmetric Gabor functions as
they respond to line structures and we are interested to detect the presence of
vessels in retinal fundus images.

We use a bank of Gabor filters with 5 wavelengths (Λ = {4, 4√2, 8, 8
√

2, 16})
and 8 equidistant orientations (Θ = {0, π

8 , . . . ,
7π
8 }) that we apply on images of

size 565 × 584. In such images, the blood vessels have widths of 1 to 7 pixels.
Fig.2a illustrates the maximum value superposition of the thresholded responses
of the concerned bank of Gabor filters obtained for the bifurcation image shown
in Fig.1b. All responses are thresholded at a given fraction t1 = 0.2 of the
maximum response of gλ,θ(x, y) across all combinations of values (λ, θ) used and
all positions (x, y) in the image.

2.3 Sub-unit Parameters

A sub-unit uses as inputs the responses of a certain Gabor filter characterized
by the parameter values (λ, θ) around a certain position (ρ, φ) with respect to
the center of the filter. A sub-unit is thus characterized by four parameters:
(λ, θ, ρ, φ). The values of such parameters for a sub-unit are obtained as follows.

We consider the responses of the bank of Gabor filters along a circle of a given
radius ρ around the selected point of interest (Fig.2). In each position along that
circle, we take the maximum of all responses across the possible values of (λ, θ).



454 G. Azzopardi and N. Petkov

If this value is greater than the corresponding values for the neighboring positions
along an arc of angle π

8 the concerned position is chosen as a center of the RF
of a sub-unit. Its coordinates (ρ, φ) are determined with respect to the center
of the filter. The pair of values (λ, θ) for which the concerned local maximum is
reached are the preferred wavelength and orientation of the sub-unit.

In our experiments, we configure bifurcation detectors using multiple values
of the parameter ρ. For non-zero values of ρ we determine a group of sub-units
with the method mentioned above. For ρ = 0, we consider the responses of the
bank of Gabor filters used at the specified point of interest. For such a location,
we consider all combinations of (λ, θ) for which the corresponding responses
gλ,θ(x, y) are greater than a fraction t2 = 0.75 of the maximum of gλ,θ(x, y)
across the different combinations of values (λ, θ) used. For each value θ that
satisfies such a condition, we consider a single value of λ, the one for which
gλ,θ(x, y) is the maximum of all responses across all values of λ. At this central
location, multiple sub-units can thus be defined and their RFs are centered at
the same position with polar coordinates (ρ = 0, φ = 0).

We denote the set of parameter value combinations, which fulfill the above
conditions, by Sf = {(λ, θ, ρ, φ)}. The subscript f stands for the local pattern
around the selected point of interest. Every tuple in the set Sf specifies the
parameters of a sub-unit.

For the point of interest shown in Fig.2a and two given values of the radius
ρ ({0, 10}), the selection method described above results in five sub-units with
parameter values specified by the tuples in the following set; Sf = {(λ = 4, θ =
0, ρ = 0, φ = 0), (λ = 4, θ = π

2 , ρ = 0, φ = 0), (λ = 4, θ = 0, ρ = 10, φ =
1.34), (λ = 4, θ = 3π

4 , ρ = 10, φ = 3.75), (λ = 4, θ = π
2 , ρ = 10, φ = 6.27)}. The

last tuple in that list, (λ = 4, θ = π
2 , ρ = 10, φ = 6.27), for instance, describes a

sub-unit that collects its inputs from the responses of a Gabor filter with λ = 4
and θ = π

2 , i.e. a Gabor filter that strongly responds to horizontal lines (θ = π
2 )

ρ
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(a) (b)

Fig. 2. (a) The gray-level intensity of every pixel is the maximum value superpo-
sition of the thresholded responses from a bank of Gabor filters at that position;
maxλ∈Λ,θ∈Θ |gλ,θ(x, y)|t1 . The arrow indicates the location of the point of interest se-
lected by a user, while the bright circle of a given radius ρ indicates the considered
locations. (b) Values of the maximum value superposition of Gabor filter responses
along the concerned circle of radius ρ = 10 around the point of interest. The marked
local maxima are caused by the three blood vessels.
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of width of (λ
2 =) 2 pixels, around a position of (ρ =) 10 pixels to the right

(φ = 6.27) of the center of the filter. This selection is the result of the presence
of a horizontal vessel to the right of the center of the feature that is used for the
configuration of the filter.

2.4 Sub-unit Response

We denote by sλ,θ,ρ,φ(x, y) the response of a sub-unit, which we compute as
follows. We consider the responses gλ,θ(x, y) of a Gabor filter with preferred
wavelength λ and orientation θ around position (ρ, φ) with respect to the cen-
ter of the filter. We weight these responses by a 2D Gaussian function with a
standard deviation that is a linear function of parameter ρ. We define the out-
put of the sub-unit as the maximum value of all the weighted responses of the
concerned Gabor filter. This result is shifted by ρ in the direction opposite to φ.

Fig.3 illustrates the computation of the responses of three sub-units. Each
of the three bright blobs shown is an intensity map of a 2D Gaussian function
mentioned above. The three ellipses illustrate the orientations and wavelengths
of the corresponding Gabor filters. The responses gλ,θ(x, y) of such a filter are
weighted by the respective 2D Gaussian function and the maximum result is
shifted by the corresponding vector.

Fig. 3. Computation of sub-unit responses. The three bright blobs are intensity maps
for 2D Gaussian functions that model the corresponding sub-unit RFs. The three el-
lipses illustrate the orientations and wavelengths of the corresponding Gabor filters.
A sub-unit response is computed as the maximum value of the weighted responses of
such a Gabor filter with the respective 2D Gaussian function. The result is shifted by
the corresponding vector.

2.5 Filter Response

We define a nonlinear filter with output rSf
as the geometric mean of all quan-

tities sλ,θ,ρ,φ(x, y) that belong to the specific selection determined by Sf :

rSf
(x, y) =

∣∣∣∣∣∣
( ∏

(λ,θ,ρ,φ)∈Sf

sλ,θ,ρ,φ(x, y)

) 1

|Sf |
∣∣∣∣∣∣
t3

(1)
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where |.|t3 stands for thresholding the response at a fraction t3 of its maximum.
Rotation invariance is achieved by manipulating the set of parameter values

in Sf , rather than by computing them from the responses to a rotated version
of the original pattern. Using the set Sf that defines the concerned filter, we can
form a new set &ψ(Sf ) = {(λ, θ + ψ, ρ, φ + ψ) | (λ, θ, ρ, φ) ∈ Sf}. The rotation
invariant response is then defined as r̂Sf

(x, y) = maxψ(r�ψ(Sf )(x, y)).

3 Experimental Results

We use the bifurcation illustrated in Fig.1 to configure a filter denoted by Sf1

(ρ ∈ {0, 4, 10}, t1 = 0.2 and t2 = 0.75). Fig.4(a-b) show the result (for t3 = 0.25)
of the application of filter Sf1 to the binary retinal fundus image shown in Fig.1a.
The encircled regions are centered on the local maxima of the filter response and
if two such regions overlap by 75%, only the one with the stronger response is
shown. Besides the original bifurcation, the filter successfully detects 5 other
bifurcations with similar vessel orientations.

If the same filter is applied in a rotation invariant mode, a total of 38 sim-
ilar features are detected, Fig.4(c-d). This illustrates the strong generalization
capability of this approach because 35.51% (38 out of 107) of the features of
interest are detected by a single filter. Notable is the fact that this is achieved at
a precision rate of 100%, as the filter does not give any false positive responses.
The threshold parameter t3 can be used to tune the degree of generalization.

As to the remaining features that are not detected by this filter, we proceed
as follows: we take one of these features that we denote by f2 (Fig. 5) and train a
second nonlinear filter, Sf2 , using it. With this second filter we detect 46 features
of interest of which 20 coincide with features detected by filter Sf1 and 26 are
newly detected features. Merging the responses of the two filters results in the
detection of 64 distinct features. We continue adding filters that are configured
using features that have not been detected by the previously trained filters. A
set of 10 filters that correspond to the features shown in Fig.5 proves sufficient
to detect all 107 features of interest in the concerned image. A fixed response

(a) (b) (c) (d)

Fig. 4. (a) Result of applying the filter Sf1 in rotation non-invariant mode and (b)
enlargements of the detected features given in descending order (left-to-right, top-to-
bottom) of the filter response. (c) Result of applying the filter in a rotation invariant
mode and (d) enlargements of the detected features.
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fig. 5. A set of 10 bifurcations extracted from the image in Fig.1a, used to configure
10 filters

threshold of t3 = 0.25 is applied for all filters. An important aspect of this result
is that a recall rate of 100% is achieved at a precision rate of 100% 1.

We apply these 10 filters on a larger dataset (DRIVE) of 40 binary retinal
fundus images2. The ground truth of correct bifurcations was defined by the
authors of this paper. For this larger dataset we achieve a recall rate R of 97.3%
and a precision rate P of 94.71%. We carried out further experiments by config-
uring up to 40 filters and varying the threshold parameter t3 between 0.2 and
0.3. We achieve optimal results for 25 filters and show them together with the
results for 10 filters in Fig.6. With 25 filters, the harmonic mean (2PR/(P +R))
of the precison and recall reaches maximum at a recall rate of 98.52% and a
precision rate of 95.19% for t3 = 0.28.
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Fig. 6. Precision-recall plots obtained with 10 and 25 filters. For each plot the threshold
parameter t3 is varied between 0.2 and 0.3. The precision rate increases and the recall
rate decreases with an increasing value of t3. The harmonic mean of precision and recall
reaches a maximum at R = 0.9852 and P = 0.9519 for 25 filters and at R = 0.973 and
P = 0.9471 for 10 filters. These points are marked by a filled-in square and triangle,
respectively.

4 Discussion and Conclusion

We propose a novel approach for the automation of vascular bifurcation detection
in retinal fundus images. Our proposed method is implemented in filters that
simulate the properties of shape-selective V4 neurons in visual cortex.
1 Recall rate is the percentage of true bifurcations that are successfully detected.

Precision rate is the percentage of correct bifurcations from all detected features.
2 Named in DRIVE 01 manual1.gif, 02 manual1.gif, . . . , 40 manual1.gif
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The proposed V4-like filters are trainable, in that the structure of the filter
is determined by a feature that is specified by a user. The way this is achieved
is not by template matching, but rather by the extraction of information about
the dominant orientations in the concerned feature and their mutual spatial
arrangement. While such a filter reacts most strongly to the feature that was used
to configure it, the filter also reacts to features which differ in the orientations of
the involved line segments to a certain extent. The degree of generalization can be
tuned by proper selection of the filter parameters. The automatic configuration of
the proposed filters gives an edge to our approach over model based approaches
regarding generalization ability.

Although one can find methods for local image feature analysis by combining
filter responses at different scales (e.g. SIFT features [7]), to the best of our
knowledge, the proposed approach is the first one which combines the responses
of orientation-selective filters with their main area of support outside the point
of interest.

In our experiments, we use a set of 40 binary retinal images provided as
ground truth in the DRIVE dataset [15]. In total, these images contain 5118
vessel bifurcations. We achieved a recall rate of 98.52% and a precision rate of
95.19% with the application of only 25 filters. The precision rate can be improved
by performing additional analysis of the features that are detected by the filters.
In [2] a recall rate of 95.82% was reported on a small dataset of five retinal
images.

In principle, all vessel bifurcations can be detected if a sufficient number
of filters are configured and used. The recall rate of 98.52% that we achieve
means that on average only one to two out of 100 bifurcations are missed in
a typical image. This is sufficient to the needs of the medical application at
hand. We conclude that the proposed trainable filters are an effective means to
automatically detect bifurcations in retinal vascular images.
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Abstract. A method is suggested for identification and visualization
of histology image structures relevant to the key characteristics of the
state of cancer patients. The method is based on a multi-step procedure
which includes calculating image descriptors, extracting their principal
components, correlating them to known object properties and mapping
disclosed regularities all the way back up to the corresponding image
structures they found to be linked with. Image descriptors employed
are extended 4D color co-occurrence matrices counting the occurrence
of all possible pixel triplets located at the vertices of equilateral trian-
gles of different size. The method is demonstrated on a sample of 952
histology images taken from 68 women with clinically confirmed diag-
nosis of ovarian cancer. As a result, a number of associations between
the patients’ conditions and morphological image structures were found
including both easily explainable and the ones whose biological substrate
remains obscured.

1 Introduction

It is well-known that visual examination of histological images taken from tissue
samples remains a gold standard in definitive diagnosis, staging and treatment of
a number of cancer types [1], [2]. However, the histological image analysis prob-
lem has not been adequately explored and remains underdeveloped comparing
to other branches of recent image analysis methods [3], [4], [5]. This is mostly
because the histological image data stay apart from the main body of biomedical
images by their remarkable morphological complexity [3], [4], [6]. These holds
true for majority of conventional methods and worsened even further by new
emerging techniques of preprocessing of tissue probes and advanced imaging
technologies such as the whole slide scanning producing hyper-large images [7].

Motivation. The motivation of this work stems from a biomedical problem of
discovering implicit links between the morphological structure of histological
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images and features describing the state of cancer patients. In particular, we
are interesting in attributing certain conditions of the ovarian cancer patients to
morphological structures observed in routine diagnostic tissue samples as well as
in the probes immuno-histochemically processed for highlighting tissue lympho-
and angio-genesis.

Ovarian cancer is a devastating disease which is known as one of the major
causes of female gynaecological death worldwide [8]. In Western countries about
1-2% of all women develop epithelial ovarian cancer at some time during their
lives. The problem is also that the most patients refer to a hospital too late being
already in an advanced stages of disease. This is because the first indication of
the ovarian cancer is not a pain but simply swelling of the abdomen which can be
easily missed. As a result, the five-year survival rates remain as low as 20% [8],
[9]. This work is part of a larger project aimed at studying the malignant tumor
angiogenesis in ovary [10]. Angiogenesis, the development of new blood vessels
from the existing vasculature, is an important factor of solid tumor growth and
metastasis [9]. Without angiogenesis the tumor expansion is naturally limited
by 1-2 mm only because in order to grow the tumor needs to be supplied by
oxygen and nutrition and waste removals outside [11]. Recently, there is a hope
for cancer treatment by inhibiting angiogenesis processes. Thus, disclosing links
between the tumor structure, its growth characteristics and patient conditions
is of paramount importance for oncology [8], [9].

The technical problem. In a typical setup there is a patient database available
which contains both image data of different modalities as well as non-visual pa-
tient characteristics such as general social data, clinical observations, results of
laboratory tests, history of personal and family diseases, etc. Then technically
the problem is posed as finding statistically significant associations between the
morphological image structures presented in form of suitable quantitative fea-
tures and database variables containing the patient records. Such correlations
can be found in a straightforward manner using, for example, conventional ap-
proach of feature extraction followed by a multivariate statistical analysis for
identifying significant links between these two. However, this is only possible
with a priori research hypothesis in hands which presumes certain connections
between the specific, pre-defined image structures and some patient characteris-
tics. Being developed, implemented, and successfully applied to the input data,
this approach leaves researcher with only particular results and image structures
that have been extracted and examined. For instance, our preliminary study ex-
ploiting this approach was attempting to attribute tumor vessel development
visualized with the help of D2-40 marker to patients’ conditions. To this end,
the vessel network was segmented, characterized by five quantitative features,
and correlated to the patient state. However, despite certain time and other
resources were spent, it gave very particular and rather modest results [10].

Thus, in this context it is worth to consider an alternative, exploratory
approach which is aimed at detecting the whole bunch of objectively exist-
ing correlations between the histology image structures and patient state first
and separate investigating their novelty together with the underlying biomedical
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substrate afterwards. Such an approach may conditionally be categorized into
the image mining research area. In much the same way as data mining, the image
mining can be understood as the process of extracting hidden patterns from im-
ages [12], [13]. More specifically, image mining deals with extraction of implicit
knowledge, image data relationship or other patterns not explicitly stored in
the image database (e.g., [14], [15], [16], [17]). Given that the histological image
analysis is the task that difficult to automate due to its structural sophistica-
tion, it appears promising to examine the wide-cut image mining techniques for
discovering the links we are interested in.

Basic requirements. In order to produce the desired result, a method of identi-
fication and visualization of histological image structures which correlate with
the cancer patient conditions should fulfill the following major requirements.

(a) The image descriptors should be powerful and flexible enough to capture a
broad range of morphological image properties and be capable of both color
and grayscale images.

(b) The quantitative features which are derived from descriptors and correlated
to patient state records should allow mapping selected correlations back to
original images for isolating and visualizing underlying morphological struc-
tures.

(c) The number of features used for describing the image content should be
limited by a few dozen to satisfy the well-known statistical requirement (i.e.,
kept less than the number of patients) what avoids correlation purely by
chance.

In this paper, we introduce a method for discovering important histology
image structures of cancer tissue that fulfill these requirements. We demonstrate
its abilities on a database of 68 ovarian cancer patients.

2 Materials and Methods

Image Data. A database containing patient records and histological tissue images
of 68 ovarian cancer patients (women, mean age 59.8 years, STD=11.2) was
used with this study. The image data part consisted of 952 color images of
2048×1536 pixels in size which were acquired under ×200 magnification using
recent Leica DMD108 microscope. They included 272 routine hematoxylin-eosin
stained diagnostic images (4 images for each patient) and 680 images of tissue
probes (10 per patient) immuno-histochemically processed with D2-40 marker
highlighting lymphogenesis. Examples are provided in Fig. 1. Patients’ state
records included about 80 characteristics such as the international TNM cancer
staging, medical history, tumor dissemination, surgery and chemotherapy details,
current value of alive-died flag and some other.

The Method. Due to the characteristic textural appearance, color texture de-
scriptors are the most common type of features used in histology image analysis
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Fig. 1. Examples of original histological images of tissue routinely stained with
hematoxylin-eosin (top two rows) and D2-40 endothelial marker (bottom two rows)

when describing the image as a whole. Among them are the color co-occurrence
matrices introduced independently in [18] and [19] under the color correlogram
term first [18] and as co-occurrence matrices a year later [19]. There are also
several allied approaches for describing spatial image structure such as simulta-
neous autoregressive models [15] and some other. Here we continuing to exploit
the co-occurrence approach. However, taking into account the first requirement
given in the introduction, we developing the co-occurrence approach further and
using extended 4D matrices. Namely, we considering triplets of pixels located
at the vertices of equilateral triangles instead of conventional pixel pairs. Note
that such an extension is not just mechanical addition of one more dimension
to co-occurrence matrix array as this might appear at the first sight. The con-
sequences are by far deeper and they related to the problem of discriminating
different sorts of textures with the help of first (pixel intensities/colors alone),
second (gradients), and higher order spatial statistics. This problem was thor-
oughly studied by Bela Julesz (e.g., [20]). More recently, this line of research on
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visual texture perception is studied with the help of fMRI brain scanning. In
particular, it was experimentally proven [21] that patterns of brain activity are
significantly different when observing textures with low and high order spatial
correlations. Note that one should not mistake high order statistics in the spatial
and in the intensity [22] domains.

Let FG = {I(x, y)} = {I(i)} = {I(j)} = {I(k)} be a gray-scale image of
M ×N pixels in size. Let suppose all the image pixels are indexed with the help
of indices i, j, and k, where i = 1,MN , j = 1,MN and k = 1,MN and their
intensity levels are I(i), I(j), and I(k) respectively. The indices are naturally
defined by pixel coordinates as i = (xi, yi), j = (xj , yj) and k = (xk, yk). Then
the 4D gray-scale intensity co-occurrence matrix of IIID type defined on the
triplets of pixels (i, j, k) which are located at the vertices of equilateral triangles
with the side of d pixels can be defined as follows:

WIIID = ‖I(i), I(j), I(k), d‖ ,

d(i, j) = d(i, k) = d(j, k), d ∈ D,

i < j, i < k,

∀i : yj ≥ yi, yk < yi.

Note that the last two lines of the above equation formalize the requirement of
enumeration of all possible triangles with no repetition. The equation describes
algorithm of covering the whole image by equilateral triangles. As it can be
inferred, the procedure consists of subsequent placing the basic (seed) triangle
vertex on the image position i so that the second vertex j falls into the same row
for d pixels ahead with the vertex k pointing down. This gives the first, initial
position with the seed vertex fixed at i whereas the rest ones are obtained by
rotating the triangle around i clockwise so that its third, i.e. k-th vertex neither
cross nor elevates over the current image row.

In case the image colors should be considered, the color space is suitably
reduced first and corresponding color co-occurrence matrix of CCCD type can
be defined exactly in the same manner using the image color indices C(i), C(j),
and C(k) instead of intensity levels.

Once the co-occurrence matrices are calculated, the very common strategy is
to calculate Haralick’s features next and to use them for image characterization,
clustering, etc. However, this traditional procedure may not be followed here at
least because Haralick’s features cannot be mapped back to the original images as
the second introductory condition requires. On the contrary, the matrix elements
themselves may be mapped back [23] but there are too many of them to satisfy
the final, third condition. The solution is to apply PCA method for extracting
a limited number of uncorrelated features from matrices.

Thus, the method supposes calculating 4D co-occurrence matrices, extracting
principal components, correlating them to patients’ state, selecting significant
ones, projecting selected components back to co-occurrence matrix elements,
and finally using them for visualizing the image structures we are looking for.
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Note that since principal components are uncorrelated, there is no need to ap-
ply complicated and somewhat risky multivariate statistical analysis methods.
Searching for significant links can be done by straightforward univariate corre-
lations or with the help of Student’s t-test according to the feature type.

3 Results

Original RGB images were converted into the Lab space with Euclidean color
dissimilarity metrics and the number of colors was reduced down to 24 bins us-
ing the median cut algorithm preserving most important colors. Thus, the 3D
color co-occurrence sub-matrices CCC with a fixed inter-pixel distance d con-
tain 243 = 13824 cells. Given that elements above leading diagonal are zeros, the
number of effective matrix elements was NE = 2600. Equilateral triangles with
side lengths D = {1, 3, 5} were considered so that the total number of elements
of completed CCCD matrices was 7800. Cumulative CCCD matrices computed
over all the images of each patient were vectorized constituting an input PCA
data table with 68 rows and 7800 columns. PCA resulted in extracting 27 prin-
cipal components (PCs) in case of matrices of routine images and 38 PCs in
case of D2-40 images under condition of covering 95.0% of variance. The first
components cover 55.7% and 26.5% of variances respectively. These results sug-
gest that structural variability of D2-40 images is substantially higher compared
to routine ones. Being correlated with patients’ data, 27 PCs of routine images
have produced a total of 43 events of correlation significant at p < 0.01. Same
procedure being applied to 38 PCs derived from descriptors of D2-40 images with
highlighted lymphatic vessels resulted in detecting 47 significant links between
these features and patient state records.

Detailed investigation of significant correlation has revealed that some of them
were easily deductible from existing knowledge whereas other are suggestive for
novelty and certainly interesting from both scientific and practical points of view.
For instance, in case of routine images the significant links between PCs and the
following patient data appears to be very promising: development of distant
metastases (p < 0.001), the degree of cancer tissue differentiation (p < 0.007),
the number of miscarriages (p < 0.0001), and the number of chemotherapy tri-
als (p < 0.000002, r = −0.543) (see visualization of related image structures on
the top row of Fig. 2). The negative correlation of the length of borders high-
lighted in the figure with the number of trials may be explained by the fact that
more spacious tumor structure is typical for relatively ”young” tumors which
are chemically treated first compared to ”old” ones which removed immediately.
Images of tissue processed by D2-40 endothelial marker have demonstrated sim-
ilar behavior disclosing a number of interesting links. The bottom row of Fig.
2 demonstrates one of them which displays stromal structures (automatically
extracted and visualized on the bottom-right picture) affected by proteins of
endothelial cells. The fraction of these structures strongly correlates with tumor
differentiation rate (p < 0.009), patient survival time (p < 0.010) and presence
of a relapse (p = 0.017).



466 V. Kovalev et al.

Fig. 2. Examples of original images (left column) and their key structures visualized
(right column) for routine (top row) and D2-40 (bottom row) images

Finally, the abilities of IIID co-occurrence matrices computed using grayscale
version of the images were also assessed. Despite some promising correlations
were found, an ambiguity was revealed. In particular, when certain IIID matrix
element was mapped back to the grayscale images, it highlights structures of
biologically different sorts. This is because two or more substantially different
image colors were converted down to one single gray level.

4 Conclusions

The results reported with this study allow to draw the following conclusions.

1. The method presented in this paper may be considered as a promising tool
capable of an automatic identification and visualization of histological image
structures relevant to the cancer patient conditions.

2. Since there is no intrinsic mechanism for semantic assessing the resultant
links detected by the method, an expert-based evaluation of the novelty and
biological substrate of the result is necessary.

3. The future work should include development of an automatic procedure for
selecting the set of matrix elements to be mapped back to original images
once the interesting principal component is identified.
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Abstract. The analysis of the behavior of the pelvic organs on dynamic
mri sequences could help to a better understanding of pelvic floor patho-
physiology. The main pelvic organs (bladder, uterus-vagina, rectum) are
soft-tissue organs, they undergo deformations and displacements under
an abdominal strain. Moreover, the inter-patient morphological variabil-
ities of these organs are very important. In this paper, we present a
methodology for the analysis of the pelvic organ dynamics based on a
diffeormorphic matching method called large deformation diffeomorphic
metric mapping. It allows to define a unique contour parametrization of
the pelvic organs, and to estimate the organ deformations after matching
the organ shape against its initial state (t = 0). Some promising results
are presented, where the pathology detection capability of the deforma-
tion features is analyzed through an inter-patient analysis. Also, an organ
parcellation is proposed by performing a local deformation analysis.

Keywords: dynamic mri, pelvic dynamic, shape matching.

1 Introduction

The pathologies associated with the pelvic floor disorders are characterized by an
abnormally large organ descent during a strain. Besides the clinical examination,
the pelvic dynamic mri is a recommended tool for the clinical diagnosis of these
pathologies [1], [2]. Thanks to its appreciable contrast, the dynamic mri allows
to qualitatively assess the behavior of the main pelvic organs (bladder, uterus-
vagina, rectum) during an abdominal strain. Although significant research has
been performed, the pelviperineal physiology and the anatomic basis of pelvic
floor diseases remain unclear, as mentioned in [3]. An image-analysis based study
could bring a quantitative characterization of the pelvic organ dynamics. As it
would be automatic, it could be applied to a wide number of cases. In [4], a
global characterization of the deformations of the pelvic organs has been pro-
posed. It uses shape descriptors. This approach measures shape variations of
the pelvic organs, but it does not track the local dynamics of organ specific
landmarks. We propose an organ dynamics characterization based on a diffeo-
morphic matching. This approach allows to analyze the organ behavior locally,
and to compare different organ behaviors from different mri sequences. We use

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 469–476, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



470 M. Rahim et al.

the large deformation diffeomorphic metric mapping (lddmm) method to per-
form the organ shape matching. Its main advantage is that it takes into account
the large organ deformations that are observed along a dynamic mri. Thanks
to the lddmm, an intra-sequence matching is proposed to track the evolution
of the contour points of an organ. We propose also an inter-sequence matching
which yields a unique spatial parametrization for all the mri sequences. The
input data of the proposed approach are the contours of the organs. The seg-
mentation process is out of the scope of this study, the mri dicom images were
segmented by clinicians providing a set of closed contours for each of the three
organs of interest, as depicted in figure 1-b. We detail in section 2 the proposed
approach for the organ dynamics characterization. Some results are presented in
section 3, where the pathology detection capability of the computed features is
analyzed through an inter-patient analysis, in addition to a local organ analysis.
Section 4 concludes the paper.

Uterus

Rectum

Bladder

... ...

t=0s t=4.28s t=8.09s

-a- -b-

Fig. 1. a: The main pelvic organs. b: A Segmented mri Sequence

2 Organ Dynamics Characterization

A mere visual observation of dynamic mri sequences reveals that there is a
large shape variability of the pelvic organs as they are soft-tissue organs. The
shape and the size of the organs are not consistent indicators for the pelvic
characterization. This is the main reason for our focus on the dynamics of the
organ and its deformation evolution during a strain, compared to the shape of
this organ at the rest state (t = 0).

Thus, for each organ type, we define a spatial reference which is common to
all the studied sequences, so that we can track the points of the contours of the
pelvic organs.

Our methodology is based on two matching stages :

– Intra-sequence matching between the current organ shape and the organ
shape at the rest state, produces the deformation field of the organ points
along a sequence of frames.

– Inter-sequence matching regarding a template shape calculated from the
available data, provides a common spatial reference, in order to follow the
same point on different sequences.

We detail in the next subsections the lddmm method, and the followed steps for
intra-sequence and inter sequence matching.
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Fig. 2. The proposed matching scheme

2.1 Large Deformation Diffeomorphic Metric Mapping

About. The (lddmm) is a non-linear registration method. It defines a matching
function φ, which is a diffeomorphism since it is invertible and differentiable.
One of the benefits of the method relies in the ability to map very irregular
deformations, resulting on a smooth displacement field, regular and without
intersections. The lddmm can be applied to different geometrical structures,
such as surfaces, curves, sparse points, or landmarks. More details are discussed
in [5]. The method has been used, among others, for the inter-subject registration
of cortical surfaces [6], the analysis of the temporal evolution of the skull [7], or
an anatomical atlas estimation [8].

Mathematical Formulation. In our case, the lddmm is applied on curves. For
two curves S,T , the source and the target curves respectively, the diffeomorphic
matching transforms T via a diffeomorphic function φ, to find a mapping between
the points of the two curves.

φv
1 .T = S

Formula (1) defines the displacement flow vt depending on time t.

δφv
t

δt
= vt(φv

t ) (1)

With : φv
0(T ) = T and φv

1(T ) = S.
The goal of the matching is to find an optimal diffeomorphism φ by minimizing

the formula (2) below:

JT,S((vt)t∈[0,1]) = γ

∫
‖vt‖2V dt +

1
σ
E(φv

1 .T, S) (2)

The first term is a regularization term that controls the smoothness of the dif-
feomorphism, the second term is a fidelity to data term which quantifies the
matching error between the mapped target points μφv

1(T ) and the source points
μS . It is defined as follows:

E(φv
1 .T, S) = ‖μφv

1(T ) − μS‖2 (3)

Typically, the resolution of the problem is done with the gradient descent method.
We used the implementation presented in [5].
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2.2 Inter-Sequence Matching

For a given organ, the inter-sequence matching aims at determining a common
contour parametrization. It involves the curve matching between an average
organ shape and the organ shapes at the rest state from different sequences.
For this purpose, a pre-processing step is required to obtain an ordered contour
curve C where each point c(t) = (x(t), y(t)). The contours do not necessarily
share the same number of points and the same starting point.

The inter-sequence matching is performed according to the following steps:

1. Template computation : by calculating an average initial shape, all the avail-
able organ shapes at t = 0 are aligned. This alignment is done according to
the main geometric transformations:
– Translation : the shapes are translated to share the same center of mass.
– Rotation : the shapes are rotated so that the principal axes of the shapes

are aligned.
– Scaling : the normalization is performed towards a unit disk.

The cumulative addition of the aligned shapes generates a level map (figure 3-
a), from which an average shape is extracted by thresholding, typically the
threshold is defined as (max + min)/2.

2. Shape matching : A matching by lddmm is applied on the initial organ
shapes of all the patients compared with the template shape.

Figure 3 shows consistent results.

-a- -b-

Fig. 3. a: The average shape of the bladder. b: Some results of the inter-sequence
matching between different initial shapes (blue) and the associated templates (red).

2.3 Intra-sequence Matching

Thanks to the inter-sequence matching, all the contours of a given organ type
(bladder, uterus or rectum) at rest share a common parametrization. So each
organ contour point is clearly identified. The intra-sequence analysis aims at
tracking each contour point. This is done by matching the organ points at the ith

frame towards the corresponding points of the initial organ shape. This match-
ing is obtained from a composition of consecutive matching (j, j + 1), starting
from the initial contour C0 to the contour Ci (figure 4). This technique involves
estimating a large deformation with a composition of consecutive deformations
and consequently smaller ones. It avoids the inaccuracies due to very large de-
formations specially on the last frames of the sequence.
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C0 C1 C2 Cn
...

φ0,1 φ1,2

φ0,2 = φ1,2 ◦ φ0,1

Fig. 4. Diagram of the lddmm matching on a contour sequence

3 Results and Discussion

The lddmm provides the correspondence between the organ points. For a given
sequence of m frames, the n matched points are represented with :

P =

⎛⎝(x1, y1)1 . (x1, y1)m

. (xi, yi)k .
(xn, yn)1 . (xn, yn)m

⎞⎠
The displacement magnitude of a point (xi, yi) at the kth frame compared to its
initial state (t = 0) is defined as:

Def(i, k) =
√

(xk
i − x1

i )2 + (yk
i − y1

i )2 (4)

This measurement is the main feature of a statistical analysis of the sequences
that we will develop in the next section. The analysis will involve the bladder
and uterus.

3.1 Inter-subject Analysis

The purpose of the inter-patient analysis is to assess the ability of the deforma-
tion estimators towards the discrimination between mri sequences. We used in
this analysis a dataset consisting of 30 segmented sequences, where each sequence
contains m= 12 frames (1 frame per second). In addition, we have the clinical
diagnosis relating to each organ of the segmented pelvic mri. The dynamics of a
pelvic organ j is quantitatively summarized by a n × 11 matrix of deformation
magnitudes, for n contour points.

Dj(i, k) = {Def(i, k + 1), 1 ≤ i ≤ n, 1 ≤ k ≤ 11}
Thanks to the inter-sequence matching, we have a common and ordered set of
contour points for each organ. Therefore, it is possible to compare the dynamics
of two organs from two different sequences, on the basis of these points. Thus,
we can rewrite the deformation matrix of a patient as a vector. All the l = 30
sequences data can be written as:

features−−−−→

P =

⎛⎜⎜⎜⎝
D1(1, 1) . D1(n, 11)

. . .

. Dj(i, k) .

. . .
Dl(1, 1) . Dl(n, 11)

⎞⎟⎟⎟⎠ ↓ patient
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We carried out a principal component analysis (pca) on this matrix, in order
to reduce the feature dimension. Figure 5 shows the result of the pca, where
we have represented the different sequences according to the 1st,2nd and 3rd

principal component. The inertia ratio are 75% for the bladder, 81% for the
uterus, 77% for the rectum, which seems sufficient to represent the sequences
consistently. We observe an evident separation between the pathological cases
(red triangles), and the healthy ones (green squares). This allows us to assert
that the deformation magnitude calculated is a relevant criterion aiming at dis-
tinguishing in between pelvic organs those with disease and the healthy ones.
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Fig. 5. Inter-subject representation (green square: healthy case, red triangle : patho-
logical case), according to the 3 pca components

3.2 Organ Parcellation

We characterize the local deformations of the pelvic organs in order to find a
parcellation related to the dynamics of the organ deformations. The purpose of
the local analysis is to group the contour points according to their deformation
profiles. It seems obvious to use a method of unsupervised clustering. Among
the many existing clustering methods, we opted for the Affinity propagation
method proposed in [9]. Its main advantage lies in the automatic determination
of the number of clusters when this latter is not known in advance. The Affin-
ity Propagation algorithm requires as input a similarity matrix built from the
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dataset samples. In our case, the samples are the contour points of an organ,
represented by their deformations. Thus, the similarity matrix M of a contour
is defined beneath:

M = {mi,j = d(V (i), V (j)), 1 ≤ i, j ≤ n}
V (i) =

(
Def(i, 1) . . Def(i, k) . . Def(i, 11)

)
d is the Euclidean distance. V (i) is the deformation vector of the point i.

Bladder

Uterus-vagina

Fig. 6. Some results of the organ parcellation applied to the bladder and the uterus

From the bladder parcellation results, two to three separate sectors (blue, red,
green) are distinguished. On figure 6, the blue sector corresponds to the upper
edge of the bladder which undergoes less deformation than the lower edge of
the bladder delimited by the red and green sectors. This result is anatomically
interesting as the delimited sectors involve two anatomical references. Indeed,
the point undergoing the maximal deformation corresponds to an anatomical
landmark called the bladder neck, the blue parcel includes the attachment point
of the bladder to the urachus, while the red parcel includes the bladder neck.

Two to three sectors characterize the uterus, they separate the uterus from
the vagina. In addition, the deformation magnitude of the sectors related to
the vagina are larger than their uterus counterparts, corroborating the fact that
the uterus is more rigid than the vagina. Globally, the local analysis helped to
highlight automatically the non-homogeneous deformations of the pelvic organ,
and to delimit these non-homogeneous sectors which have a clinical meaning.

4 Conclusion

The lddmm allowed us to solve the problem of matching the contours of organs
which have mobile anatomical landmarks. The intra-sequence and inter-sequence
matching defined a geometrical reference of the pelvic organs, despite of the
morphological variability of the soft-tissue organs.

We have analyzed several pelvic dynamic mri sequences, by estimating the
magnitude of the deformations undergone by these pelvic organs during a strain.
The global statistical analysis of shape deformations helped to distinguish the
pathological cases from the healthy ones. This result validates the relevance of
the features chosen for the pelvic dynamics assessment. A study on a larger
dataset of mri sequences would open the possibility to build a diagnosis-aid
system.
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The local analysis of the bladder and the uterus highlighted the anisotropic
deformation properties of these organs, which cannot be retrieved by common
geometrical features, such as the area, the perimeter, etc..

As a result of the local analysis, we proposed a parcellation of the organ
contour. It is based on the deformation profiles of the organ points. It provides
a delimitation of parcels associated with significant anatomical references.

On the whole, this analysis contributes to a better understanding of the dy-
namics of the pelvic organs. Moreover, it will be a key feature for the validation
of the biomechanical behavior laws of the pelvic organs, used in simulations [10].
Indeed, we are able to compare local organ deformations which are observed
with mri to simulated ones. Furthermore, in order to have a fully automated
process, we are currently working on automating the segmentation, using a con-
tour tracking method.

Acknowledgments. We thank J. Lefèvre for the fruitful discussions about
the lddmm method. This work is supported by the French National Research
Agency (ANR) under reference ”ANR-09-SYSC-008”.
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10. Bellemare, M.E., Pirró, N., Marsac, L., Durieux, O.: Toward the simulation of the
strain of female pelvic organs. In: IEEE EMBS Annual International Conference,
pp. 2756–2759 (2007)



Histogram-Based Optical Flow for

Functional Imaging in Echocardiography

Sönke Schmid1,2,�, Daniel Tenbrinck1,2,�, Xiaoyi Jiang1,2,
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Abstract. Echocardiographic imaging provides various challenges for
medical image analysis due to the impact of physical effects in the pro-
cess of data acquisition. The most significant difference to other medical
data is its high level of speckle noise that makes the use of conventional
algorithms difficult. Motion analysis on ultrasound (US) data is often
referred to as ’Speckle Tracking’ which plays an important role in di-
agnosis and monitoring of cardiovascular diseases and the identification
of abnormal cardiac motion. In this paper we address the problem of
speckle noise within US images for estimating optical flow. We demon-
strate that methods which directly use image intensities are inferior to
methods using local features within the US images. Based on this ob-
servation we propose an optical flow method which uses histograms as a
local feature of US images and show that this approach is more robust
under the presence of speckle noise than classical optical flow methods.

Keywords: Ultrasound, Motion Analysis, Optical Flow, Histogram.

1 Introduction

Motion analysis in echocardiography is a fundamental part in diagnosis of
cardiovascular diseases. By tracing the endocardial border of the myocardium
physicians assess different medical parameters. Based on these measurements
abnormal motion of the myocardium can be identified and quantified, hence
helping in computer aided diagnosis [9]. Recently, optical flow methods have
been proposed for estimating motion in echocardiographic data [1,3,4]. These
methods deliver a dense motion field in contrast to contour-based algorithms
currently used in clinical environment.

In Section 2 we analyze the noise model of ultrasound images, which is of mul-
tiplicative nature. Based on this observation we will show that the fundamental
assumption of most optical flow methods, the so called ’Intensity Constancy
Constraint’ (ICC), is heavily violated in the presence of multiplicative noise in
US imaging. To deal with this problem we propose local cumulative histograms
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as a discrete representation of the intensity distribution in the neighbourhood
of a pixel. We incorporate this feature into a new basic constraint in Section 3
and propose a novel optical flow algorithm based on this constraint. To show the
robustness of our approach in the presence of multiplicative noise we present in
Section 4 results on synthetic (ultrasound software phantom) as well as real pa-
tient data from echocardiographic examinations and compare our method with
a popular respresentative of optical flow methods based on the ICC. Finally, this
paper is concluded by discussion in Section 5.

2 Motivation

2.1 Optical Flow and Constancy Constraints

Optical flow methods are a popular approach to compute motion between two
given images. These methods model motion as a dense vector field and allow to
incorporate a-priori knowledge into estimation of the motion. Recently, different
optical flow methods have been proposed for medical imaging [1,3]. Generally,
these algorithms are based on the fundamental assumption that for a motion
vector (u, v) the intensity of two pixels in images at time t and t+1 is constant:

I(x, y, t) = I(x + u, y + v, t + 1) . (1)

Equation 1 is referred to as the Intensity Constancy Constraint.
The ICC implies that the illumination does not change and no noise is present

in the images. On real data the influence of noise can be alleviated by smoothing
the images. However, in ultrasound imaging this procedure does not provide good
results due to the high level of speckle noise which will be discussed in the next
section.

In the literature there are also other constancy constraints. Examples are gra-
dient, Hessian, and Laplacian of corresponding pixels [2,7]. All such constraints
share the same problem as ICC when dealing with ultrasound data.

2.2 Speckle Noise

One has to carefully deal with speckle noise in ultrasound imaging. The origins of
speckle are tiny inhomogenities within the tissue which reflect ultrasound waves
but cannot be resolved by the ultrasound system. Speckle noise is a known phe-
nomenon and depends on the underlying signal intensity. The image degradation
process [6] can be modeled by:

Ĩ(x) = I(x) + sσ(x) ·
√
I(x) (2)

Here, I is the unbiased image, s is Gaussian distributed random noise with mean
0 and standard deviation σ, and Ĩ is the observed image. This multiplicative noise
leads to distortions in the image, especially in regions with high intensities. In
order to deal with multiplicative noise one has to use more sophisticated methods
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Table 1. Mean distance of two pixel patches with uniform intensity contaminated by
speckle noise

Noise level (σ) 0.01 0.02 0.04 0.08 0.16

Intensity L1 Distance 14.7335 20.8151 29.4815 41.7718 59.1326
Intensity L2 Distance 180.1315 253.9759 360.3631 510.5504 722.3002
Histogram L1 Distance 1.3149 1.3017 1.3050 1.3020 1.3313
Histogram L2 Distance 0.2917 0.2895 0.2899 0.2895 0.2952

[6] compared to additive noise which is not signal dependent. The intensities of
speckles can change due to motion of the imaged object, especially if the object
moves out of the imaging plane in 2D ultrasound B-mode imaging. To illustrate
the effect of multiplicative noise on the ICC, Table 1 shows experimental results
using a 10× 10 pixel patch with a greyscale value of I = 120. We added speckle
noise based on Equation 2. The noise variance σ was increased to investigate
the violation of the ICC by multiplicative noise. To show the impact of speckle
noise we considered different distance measures L1 and L2. For each noise vari-
ance σ we generated 10, 000 pairs of patches and computed the mean distances.
As can be seen in Table 1, the average distance on the 10 × 10 pixel patches
grows significantly with increasing noise variance, indicating that the ICC and
its related variants are not suitable for ultrasound imaging and we need to find
more robust image features.

2.3 Local Cumulative Histograms

In contrast to the constancy assumptions conventionally used for optical flow
estimation [2,7] which are all based on the pixel intensity or its related variants,
we suggest a constancy constraint incorporating information from a small neigh-
bourhood around the pixel. We propose the use of local histograms as a discrete
representation of the intensity distribution to relate corresponding pixels of ul-
trasound images. By this way we capture all important information of this region
in local histograms. We use cumulative histograms which are more robust than
normal histograms for comparison purposes. The histograms are normalized so
that the highest value becomes one.

(a) US B-mode image (b) Histogram 1 (c) Histogram 2 (d) Histogram 3

Fig. 1. (a) Different regions within an US image of the left ventricle. (b) Histogram of
septum. (c) Histogram in region with shadowing effects. (d) Histogram of blood pool.
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Figure 1 shows different local cumulative histograms of a real 2D US B-mode
image using twelve bins to represent the greyscale distribution. As one can see,
the three cumulative histograms can be clearly distinguished. This gives us a re-
liable feature especially in regions with low contrast, as can be seen in histogram
2. The three example histograms represent different regions of the cardiac image:
the high intensity values of the septum (1), a mixed signal distribution in the lat-
eral wall of the myocardium due to shadowing effects (2), and the non-reflecting
blood within the myocardium (3).

3 Histogram-Based Optical Flow Method

As shown in the last section the intensity constancy constraint is not a good
choice in the presence of speckle noise. Due to this fact we replace the ICC by
another constraint based on the assumption that the local intensity distribution,
i.e. the local cumulative histogram, remains constant over time. To exploit the
effect of this replacement in detail we apply this exchange to the basic optical
flow algorithm of Horn-Schunck (HS) since its properties are well-understood [5].
Note that the goal of our current work is to explore the fundamental potential of
histogram-based features for motion estimation in US imaging. For this purpose
it is feasible to adapt the baseline algorithm of HS. We will extend to more
sophisticated optical flow estimation paradigms in future.

3.1 Histogram Constancy Constraint

We replace Equation 1 by a histogram constancy constraint (HCC):

H(x, y, t) = H(x + u, y + v, t + 1) (3)

where the function H represents the local histogram of the region surrounding
the pixel (x, y) at the given point of time. As shown in Figure 1 histograms can
be represented by a vector whose dimension corresponds to the number of bins
in the histogram. To measure the distance of the histogram vectors we use the
L2-norm. Compared to the classical ICC this constraint remains robust under
the influence of multiplicitative noise, as can be seen in Table 1.

3.2 Energy Functional

The HCC formulated as an energy functional leads to a minimization problem:

argmin
u,v

∫ ∫
‖H(x + u, y + v, t + 1)−H(x, y, t)‖2 dxdy . (4)

Without additional regularization this problem is ill-posed. The smoothness of
the flow field (u, v) is a reasonable regularization for the presented application
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due to the fact that human tissue can be deformed up to a certain level but can-
not change its topology. The HCC formulated as an energy functional combined
with the smoothness constraint leads to the final minimization problem:

argmin
u,v

∫ ∫
‖H(x + u, y + v, t + 1)−H(x, y, t)‖2+α

(
|∇u|2 + |∇v|2

)
dxdy (5)

where α is the smoothness parameter regulating the influence of the smoothness
constraint.

3.3 Numerical Discretization

The minimization problem given by the Equation 5 is solved numerically with use
of the Euler-LagrangeTheorem. We replace the HCC by its Taylor-approximation
to the first order:

H(x+u, y+v, t+1)−H(x, y, t) ≈ Hx(x, y, t) ·u+Hy(x, y, t) ·v+Ht(x, y, z) (6)

The derivatives Hx, Hy, and Ht of the histograms can be approximated by the
finite differences:

Hx(x, y, t) = (H(x + 1, y, t)−H(x− 1, y, t)) / 2
Hy(x, y, t) = (H(x, y + 1, t)−H(x, y − 1, t)) / 2
Ht(x, y, t) = (H(x, y, t + 1)−H(x, y, t))

(7)

With the Taylor-approximated HCC the Euler-Lagrange equations of the mini-
mization problem are given by:

(Hx ∗Hx)u + (Hx ∗Hy)v + (Hx ∗Ht) = αΔu = α (u− u)
(Hy ∗Hx)u + (Hy ∗Hy)v + (Hy ∗Ht) = αΔv = α (u− u)

(8)

where the operator ’∗’ represents the scalar product of two vectors. This linear
system can be solved directly for u and v and leads to an iterative scheme for
computing the histogram-based optical flow (HOF):

u =
(α + Hy ∗Hy) · (αu −Hx ∗Ht)− (Hx ∗Hy) · (αv −Hy ∗Ht)

(α + Hx ∗Hx) (α + Hy ∗Hy)− (Hx ∗Hy)
2

v =
(−Hx ∗Hy) · (αu−Hx ∗Ht) + (α + Hx ∗Hx) · (αv −Hy ∗Ht)

(α + Hx ∗Hx) (α + Hy ∗Hy)− (Hx ∗Hy)2

(9)

3.4 Implementation

The histogram-based optical flow (HOF) was implemented for 2D images and
also 3D data (with the necessary extensions) from newest ultrasound systems.
To cope with large movements we extended our method by a simple multiscale
approach as described in [7].
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The selection of function H has to be considered carefully depending on the
type of data, since there is a tradeoff between more statistics in larger regions
and loss of locality. For ultrasound images we found a mask size of 9×9 pixels as
best choice in combination with a Gaussian weighting function to give the pixels
in the center a higher influence on the histogram. For the discretization of the
intensity distribution we used histograms with 30 bins which proved to be fully
sufficient. Since the L2 distance of two normalized histogram vectors is much
smaller than the difference of the intensity values used in HS the smoothness
parameter α has to be chosen accordingly smaller. For ultrasound data empirical
tests on 15 datasets showed optimal values for α in the domain α ∈ [0.5, 1.5] in
contrast to α ∈ [200, 5000] for HS. This specification is bounded to the design
parameters stated above (number of bins, mask size).

4 Results

4.1 Software Phantom

In order to validate our method quantitatively we used the simulation proposed
in [8] to create a software phantom for US. Simulating the data acquisition by
an US transducer this method allows to add speckle noise to a given image and
also includes deformation effects. Thus, two given images with a known ground
truth motion can be transformed into a software phantom to validate optical flow
algorithms on US data (see Figure 2). The simulation software contains several
parameters that were selected as suggested by medical experts. For evaluation
we optimized the parameters of both HS and HOF algorithm and compared
the results by using the average endpoint error [2]. As can be seen in Table 2,
our new constraint improves the motion estimation significantly. Tests on five
additional datasets showed very similar results. Although the absolute difference
of performance does not seem to be large, an improvement of 28% has been

(a) ground truth (b) speckle phan-
tom

(c) HOF result (d) HS result

Fig. 2. Synthetic data simulating a four-chamber view of the heart. (a) Original image
with ground truth flow. (b) Speckle phantom. (c) Result of the HOF algorithm. (d)
Result of the HS algorithm.
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Table 2. Comparison of the performance of the HOF-algorithm to the method of
Horn-Schunck using the average endpoint error [2] and its standard deviation in pixel

Sequence HOF HS

Software phantom with multiscale 0.387 ± 0.280 0.455 ± 0.310
Software phantom without multiscale 0.414 ± 0.290 0.530 ± 0.362

(a) floating frame (b) target frame (c) HS result (d) HOF result

Fig. 3. (a),(b) Consecutive US B-mode images of the left ventricle. (c) Result of Horn-
Schunck algorithm. (d) Result of our approach based on local histograms.

reached just by incorporation of a new basic constraint into the algorithm of HS.
Furthermore, the standard deviation is also reduced by our approach. We expect
further improvements if the HCC gets used with more sophisticated methods
from the literature.

4.2 2D Ultrasound B-Mode Images

To validate our approach on real medical data we chose several 2D US B-mode
images of the left ventricle acquired with a Philips iE33 ultrasound system. In
Figure 3(a) one can see a real image of the left ventricle in a four-chamber view.
We chose two consecutive frames in systole of the myocardium for motion esti-
mation. Deformation grids were used to visualize the estimated motion vectors
and we let experts in echocardiography rate the quality of these estimations.
Figure 3(c) shows a result of the Horn-Schunck algorithm with the regulariza-
tion parameter α = 250. The visualization by a deformed grid reveals several
inconsistencies and anatomically incorrect deformations although we chose a rel-
atively high regularization. This is due to the fact that the HS algorithm is based
on the ICC, which is not valid in the presence of speckle noise as described in
Section 2.2. In Figure 3(d) we demonstrate the result of our approach for α = 1.
One can clearly see that the proposed HCC leads to satisfying results on noisy
US images with low regularization, though there is motion out of the image plane
which cannot be estimated on 2D images.
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(a) transversal view (b) sagittal view (c) coronal view

Fig. 4. Transversal, sagittal, and coronal slices of an US 3D data set. The vectors
indicate the result of motion estimation with HOF.

4.3 3D Echocardiographic Data

We also tested our algorithm on real 3D data from an echocardiographic TEE ex-
amination of the left ventricle captured with a Siemens iE33 ultrasound system.
Figure 4 illustrates the results of motion estimation for a 3D dataset consisting
of 112×104×104 voxels. It shows three orthogonal slices of the dataset with the
corresponding motion vectors in sagittal, coronal, and transversal slices. Since
the full motion of the left ventricle can be captured in the volume dataset, less
problems occurr in the estimation of the flow fields. The additional dimension
enforces anatomically consistent flow fields even more. For this reason we chose
the regularization parameter α = 0.6 and observed satisfying results which give
anatomically consistent flow fields in all three dimensions. Thus, our method can
be used for functional imaging with 3D ultrasound data which is a new and fast
developing field in clinical environment.

5 Discussion

We proposed a new constraint for optical flow methods targeted for the use on
echocardiographic data. Our approach is based on local cumulative histograms
which have shown to be robust in the presence of speckle noise in ultrasound
imaging. It was shown by using the Horn-Schunck algorithm as a representa-
tive example that ignoring this fundamental fact tends to produce bad motion
estimations and inconsistent flow fields. In future we will extend our work to
incorporate the proposed HCC into more sophisticated methods from the lit-
erature. Furthermore, we want to develope a validation method for functional
imaging by using a hardware phantom for motion simulation.
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Olivier, P., Schröder, H., Shih, T.K. (eds.) IVIC 2009. LNCS, vol. 5857, pp. 191–201.
Springer, Heidelberg (2009)

2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database
and Evaluation Methodology for Optical Flow. Int. J. Comput. Vis. 92, 1–31 (2011)
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Abstract. This paper presents a comparative study on the use of no-
reference quality metrics for eye fundus imaging. We center on auto-
focusing and quality assessment as key applications for the correct
operation of a fundus imaging system. Four state-of-the-art no-reference
metrics were selected for the study. From these, a metric based of Rényi
anisotropy yielded the best performance in both auto-focusing and qual-
ity assessment.

Keywords: No-reference metrics, fundus image, image quality.

1 Introduction

Eye fundus imaging is an integral part of modern ophthalmology, and as so
it can truly benefit from emerging methods for image content estimation and
quality assessment. In this paper we present a preliminary study on the use of
no-reference measures of image content in fundus imaging. We have chosen four
state-of-the-art no-reference metrics that have been recently introduced. In the
following sections we discuss the applicability of these metrics in two different
aspects of fundus imaging: auto-focusing and image quality assessment. In fact,
most of the no-reference quality assessment methods were initially proposed in
the context of autofocusing applications [1]. These two aspects play a crucial
role in the correct operation of a fundus imaging system, which at present day
are still chiefly performed by human operation.

2 No-reference Metrics

No-reference assessment of image content is, perhaps, one of the most difficult –
yet conceptually simple– problems in the field of image analysis [2]. It is only until
recently that several authors have proposed no-reference metrics in an attempt
to shed some light on this uncertain problem. We have considered four metrics
to apply them in fundus imaging. The first metric Q1 was proposed by Gabarda
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and Cristóbal [3] and is based on measuring the variance of the expected entropy
of a given image upon a set of predefined directions. The entropy is computed
on a local basis using the generalized Rényi entropy and the normalized pseudo-
Wigner distribution as an approximation for the probability density function.
Therefore, a pixel-by-pixel entropy can be computed, and histograms as well.
The Rényi entropy associated to a pixel n in an image can be computed as:

R[n] = −1
2

log2

(
N∑

k=1

P̆ 3
n [k]

)
, (1)

where N is the size of the spatial window used, and P̆ is the normalized probabil-
ity distribution. We can now compute an entropy value for any given orientation
θi to obtain R[n, θi]. The expected value for the whole image is calculated as:

R̄[θi] =
∑

n

R[n, θi]/M , (2)

where M is the image size. And finally the standard deviation from the expected
entropy for K orientations –the metric itself– is computed as:

Q1 =

(
K∑

i=1

(
μ− R̄[θi]

)2
/K

)1/2

, (3)

where μ is the mean of R̄[θs]. Q1 is a good indicator of anisotropy and the authors
were able to show that this measure provides a good estimate for the assessment
of fidelity and quality in natural images, because their degradations may be seen
as a decrease in their directional properties. This directional dependency is also
true for fundus images, especially due to blurring or uneven illumination

A drawback of Q1 is that it requires uniform degradation across the whole im-
age. However, here we show that the use of domain knowledge for retinal imaging
provides a means to adjust the metric so as to meet local quality requirements.
For this case it would imply to multiply every R[n, θs] by a weighting function
w[n] ∈ [0, 1] such that some specific areas are given more importance,

R̄[θi] =
∑

n

R[n, θi]w[n]/M . (4)

This yields a modified Q′
1. Considering two of the most relevant features of a

fundus image, the optic disc (OD) and the blood vessels, we have designed a
weighting function that takes this fact into account. It is known that in order
to assess image sharpness, specialists fixate on the surroundings of the OD to
visualize the small blood vessels [4]. The weighting function used is an elliptic
paraboloid centered at the OD with values ranging from one exactly at the
position of the OD to approximately zero very near the periphery. This function
has also been used to model the illumination distribution in fundus images. The
approximate position of the OD is determined via template matching [5]. The
spatial distribution of the weighting function is shown in Fig. 1(b).
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Fig. 1. (a) Normal fundus image. (b) Weighting function w[n] described by an elliptic
paraboloid centered at the OD.

The second metric Q2 was recently proposed by Zhu and Milanfar [6] and it
seeks to provide a quantitative measure of –what they call– “true image content”.
It is correlated with the noise level, sharpness, and intensity contrast manifested
in visually salient geometric features such as edges. Q2 is based upon singular
value decomposition of local image gradient matrix. Its value generally drops
if the variance of noise rises, and/or if the image content becomes blurry. To
avoid regions without edges this algorithm divides the image into small patches
and only processes anisotropic ones (non-homogeneous), thus local information
is embedded into the final result.

The third metric Q3 was proposed by Ferzli and Karam [1]. It is a sharpness
metric designed to be able to predict the relative amount of blurriness in images
regardless of their content. Q3 is conceived based on the notion that the human
visual system is able to mask blurriness around an edge up to a certain threshold,
called the“just noticeable blur” (JNB). It is an edge-based sharpness metric
based on a human visual system model that makes use of probability summation
over space. JNB can be defined as the minimum amount of perceived blurriness
given a contrast higher than the “Just Noticeable Difference”. The probability
of blur detection (Pblur) at an edge given a contrast C can be modeled as a
psychometric function given by:

Q3 = Pblur = P (ei) = 1− exp
(
− |w(ei)/wJNB(ei)|β

)
, (5)

where wJNB(ei) is the JNB edge width which depends on the local contrast C,
w(ei) is the measured width of the edge ei inside a small patch of the image
and β is a fitting constant with a median value of 3.6. Finally, for the sake of
completeness we include the image variance as metric Q4 defined as:

Q4 =
∑

n

(I[n]− ḡ)2 , (6)

where I[n] indicates the gray level of pixel n, and ḡ the gray mean of the image.
This measure has been proven to be monotonic and has a straight-forward rela-
tion with image quality for autoregulative illumination intensity algorithms [7].



No-reference Quality Metrics for Eye Fundus Imaging 489

3 Experimental Details

All images were acquired using a digital fundus camera system (TRC-NW6S,
Topcon, Tokyo Japan) with a Fuji FinePix S2 Pro camera, with an image reso-
lution of 1152× 768. The images were digitized in color RGB of 24 bit-depth in
TIFF format without compression. In all figures the images are shown in color,
however all metrics were computed using only the luminance channel (Y) of the
YUV color space as usual in image quality assessment. From Fig. 1(a) it is evi-
dent that the region of interest of the image is that of an approximately circular
shaped area that corresponds to the captured object field. The remaining black
pixels are not of interest, thus all metrics have been modified to solely include
pixels within the circular region of interest in the calculation. The neighboring
pixels of the sharp black edge are also left aside from all calculations.

4 Fundus Auto-focusing

In fundus photography, the task of fine focusing the image is demanding and
lack of focus is quite often the cause of suboptimal photographs [4]. Autofocus
algorithms have arisen from the possibility that digital technology offers to con-
tinuously assess the sharpness of an image an indicate when the best focus has
been achieved. Any given focus measure should be in principle monotonic with
respect to blur and robust to noise.

The first experiment we carried out was to observe the behavior of the con-
sidered metrics with artificially blurred fundus images (Fig. 2(c)-(d)). Notice
the detail from the sharp image and how the fine structures are properly re-
solved. The increase in blurriness hinders this level of detail, thus the medical
use as well. In Fig. 3(a) the original sharp image (Fig. 2(a)) was convolved with
a 15× 15 Gaussian kernel with a varying standard deviation σ. All metrics are
in relative value. The figure clearly reveals the overall monotonic nature of all
metrics, however Q1 is the only metric that rapidly decreases with respect to
increase in blurriness.

To validate experimentally this result we captured a series of fundus images
from an optimal position of focus to the end of the fine focus capability of
the retinal camera (Fig. 2(e)-(f)). The fine focus knob of the retinal camera
is operated manually and is able to compensate over a range of −13 ∼ +12D.
Fig. 3(b) shows the relative values for all metrics for seven images with increasing
levels of blurriness. Notice how Q1 also behaves in a consistent way with respect
to the deviation from optimal focus. The other metrics seem to be reliable for a
small amount of blurriness. One possible explanation for the discrepancy between
the artificial and real blur for the metrics Q2−4 is that the overall illumination
distribution cannot be exactly the same, moreover it is also non-uniform. If the
metric is not conceived for variations in illumination –even if they are small– it
might be prone to produce an unreliable measure. The algorithm Q1 is based on
a normalized space-frequency representation of the image and not in the image-
levels statistics, hence it is robust against illumination changes. In addition, we
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Original sharp fundus image and (b) detail. (c)-(d) details from artificially
blurred images with σ of 1.5 and 3, respectively. (e)-(f) detail from images with different
degrees of focus 3 and 6, respectively (See Fig. 3).
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Fig. 3. No-reference metrics for assessing optimal focus in relative value. (a) Fundus
image artificially blurred with a 15 × 15 gaussian kernel with varying σ. (b) Fundus
images corresponding to the same eye in (a) but with different degrees of fine focus
acquired with the retinal camera.

have adjusted the metric to meet the local quality requirements by means of a
spatially-variant weighting function defined after the geometry of the problem.
Similar results have been obtained for other fundus images (10>), but are not
reported here for a matter of space.

5 Fundus Image Quality Assessment

Initial image quality is a limiting factor for automated retinopathy detection [8].
The imaging procedure is usually carried out in two separate steps: image ac-
quisition and diagnostic interpretation. Image quality is subjectively evaluated
by the person capturing the images and they can sometimes mistakenly accept a
low quality image [9]. A recent study by Abràmoff et al. [10] using an automated
system for detection of diabetic retinopathy found that from 10 000 exams 23%
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Fig. 4. Fundus images with varying degree of quality corresponding to the same eye

had insufficient image quality. Accurate quality assessment algorithms can allow
operators to avoid poor images. Furthermore, a quality metric would permit the
automatic submission of only the best images if many are available. It is from
this point of view on that no-reference metrics can be truly useful.

It is often the case that for a given patient several fundus images are acquired.
A multilevel quality estimation algorithm at the first few levels has to determine
if the images correspond to fundus images, if they are properly illuminated, etc;
in other words, if they meet some minimum quality and content requirements.
This is in some way what the operator does, he acquires the image and then
decides to accept it or not by rapidly visualizing a downscaled version of the
image. Once several images of acceptable quality pass this first filter (human
or machine), the system would need a final no-reference metric to decide which
image to save or to send for further diagnostic interpretation. This metric should
in principle yield the sharpest image, with less noise and with the most uniform
illumination as possible.

Here we seek to elucidate the possible use of the no-reference metrics for
fundus image quality assessment. For this experiment we have analyzed a set of
20 fundus images divided in 5 subsets of 4 images corresponding to the same
eye and acquired within the same session. All images within each subset have a
varying degree of quality similar to the first subset shown in Fig. 4. Our purpose
is to attempt to organize this set from the best image down to the worse. The
relative values from all the metrics applied to this set are shown in Table 1.
Notice the value Q′

1 for image 2. This image is in focus, however it suffers from
uneven illumination. Q′

1 puts more emphasis on the retinal structures, which are
well defined in spite of the illumination, hence the increase with respect to Q1.
Illumination problems are less difficult to compensate as opposed to blurring [11].
This is in line with the specialist’s evaluation of the images.

To validate the results two optometrists were recruited as readers. They were
familiarized with fundus images and were asked to examine the whole set of im-
ages (4 per subject). They evaluated each subset and organized the images from
the best to the worse in terms of sharpness and visibility of retinal structures. The
relative scores of the metrics are converted to sorting or permutation indexes so
as to compare with the quality sorting carried out by the readers (Table 2). Note
that in this case only Q1 and Q′

1 agree entirely with the readers. To quantify the
agreement we devised a similarity score based on the Spearman’s footrule [12].
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Table 1. Relative values for all the
metrics applied to the set of images in
Fig. 4

Image Q1 Q′
1 Q2 Q3 Q4

1 1.00 1.00 1.00 0.91 1.00
2 0.67 0.90 0.40 1.00 0.81
3 0.10 0.12 0.54 0.81 0.85
4 0.38 0.38 0.79 0.70 0.96

Table 2. Reader A and B vs. metric sort-
ing of images from Fig. 4 in accordance to
quality. Top to bottom: best to worse.

A B Q1 Q′
1 Q2 Q3 Q4

1 1 1 1 1 2 1
2 2 2 2 4 1 4
4 4 4 4 3 3 3
3 3 3 3 2 4 2

Table 3. Evaluation of the no-reference metrics w.r.t. reader grading with the use of
the similarity score S in (7). The subindex in S indicates reader A or B.

Q1 Q′
1 Q2 Q3 Q4

SA 1st subset 1.00 1.00 0.50 0.50 0.50
SB 1st subset 1.00 1.00 0.50 0.50 0.50
SA all images 0.80 0.80 0.55 0.55 0.40
SB all images 0.90 0.90 0.60 0.65 0.45

It is basically the l1-norm of the difference between the reference permutation πr

(from the reader) and the metric Q permutation πq. Given a set U of m elements
(images), a permutation π of this set is defined as a set of indexes mapping to
U to produce a particular order of the elements, π : {1, · · · ,m} → {1, · · · ,m}.
The similarity score S of two permutations πr and πq is defined as:

S = 1−
∑m

i=1|πr(i)− πq(i)|
pmax

, (7)

where pmax is the maximum value of the numerator. It occurs when the permu-
tations are reversed and it can be shown that pmax is equal to m2/2 when m
is even and (m2 − 1)/2 when m is odd. Perfect agreement means S = 1, and
the opposite S = 0. The inter-reader agreement for the whole set of 20 images
yielded a S score of 0.90. The S scores for the first 4 image subset and the whole
set of images are shown in Table 3. The difference in the overall scores for both
readers is practically negligible. It is also clear that Q1 outperforms the other
metrics in this experiment with agreement scores of 0.8 and 0.9. The most prob-
able reason is the computation of the metric from normalized space-frequency
representation of the image.

6 Conclusions

We have considered four state-of-the-art metrics and their applicability for eye
fundus imaging. For fundus auto-focusing, all metrics proved to decrease with
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respect to the deviation from optimal focus, however strict monotonic decrease
was only appreciable for the metric Q1, based on a directional measure of Rényi
entropy. This is most likely due to its robustness to illumination variation. As
far as image quality assessment is concerned, we showed that from the consid-
ered metrics Q1 and its modified version Q′

1 are the most reliable in terms of
agreement with expert assessment, evidenced by average similarity scores of 0.8
and 0.9 with readers A and B, respectively. The results lend strong support to
the development of a no-reference metric for fundus imaging based on Rényi
entropy.
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Abstract. Medical images are often corrupted by random noise due
to various acquisitions, transmission, storage and display devices. Noise
can seriously affect the quality of disease diagnosis or treatment. Image
denosing is then a required task to ensure the quality of medical image
analysis. In this paper, we propose a novel method for reducing some
types of common noises in medical images by using a set of given stan-
dard images and a well-known machine learning technique namely the
Support Vector Regression (SVR). Experimental results are carried out
to demonstrate that our method can effectively denoise while preserving
small details. A comparison is also performed to demonstrate the out-
performance of the proposed technique in terms of both objective and
subjective evaluations.

Keywords: Support vector regression, fuzzy c-means, singular value de-
composition, medical image, image denoising.

1 Introduction

Denoising is one of the first requirements in the medical image processing. In
many denoising methods, the noise is assumed to be normally distributed and
additive. However, the nature of noise in medical images such as CT (Computed
Tomography), MR (Magnetic Resonance), PET (Positron Emission Tomogra-
phy) or other modalities can be complex, as these images are generally affected
by noise due to various processes from acquisition to display devices. Remov-
ing such complex noise is then a difficult task. Unlike conventional denoising
methods, a medical image denoising method must remove noise effectively while
preserving edges and fine details as much as possible, because subtle details can
reveal critical pathological information. This is one of the major challenges in
medical image denosing. Generally, image denoising methods can be classified
into three main approaches: PDE based approaches [4]-[8], sparcifying transform
approaches such as wavelets [9]-[11], and Nonlocal-means based approaches [1]-
[3]. The PDE based-approach such as the Total Variation (TV) methods can
provide excellent performances in edge preservation and smoothing of flat re-
gions. However, these methods suffer from a staircasing effect in regions with
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gradual variations [8]. In addition, details and textures can be over-smoothed
[1]. The second approach is developed and applied very broadly to medical
imaging [11]. However, typical wavelet-based methods can produce significant
artifacts because of the structure of the underlying wavelets. Nonlocal means
method (NLM) [1] is initially designed to denoise images affected by additive
white Gaussian noise with zero-mean and constant-variance. The basis idea is
to restore the value of a pixel by computing a weighted average of all pixels in
the noisy image. Some extensions of this method for medical image denoising
are later introduced [2], [3]. However, it is clear that using a weighted average
of all pixels in the noisy image to recover the original image is not guaranteed,
especially for non-Gaussian noise. In fact, some of important small details can
also be lost. Recently, another solution for denoising relying on learning machine
technique is introduced in [12]. Although the results are still far from satisfactory,
the idea is interesting.

In medical imaging, we observe the interesting fact that many images can
be acquired at approximately the same location. Thus, it is very helpful to
use a set of standard (acceptably and proven by experts as noise-free) images
to denoise a new noisy image. In this paper, a novel edge/texture-preserving
denoising method for medical imaging is proposed. This method can produce
better performance than available alternatives and also be used for different
types of noise and for any type of medical images. The main idea of the method
is to construct an adaptive denoising machine M by using a set of given standard
images, the fuzzy c-means clustering technique and the learning method SVR.
Machine M is a set of many different SVR functions. Each of them corresponds
to a type of noise with a certain noise level around a certain position in the body.
Then, denoising can be performed using the SVR functions of machine M.

The rest of this paper is organized as follows. In Section 2, we briefly review
the SVR technique. Section 3 describes our proposed algorithm. Our experiments
and results are reported in Section 4. Section 5 concludes the article.

2 An Overview of Support Vector Regression

Suppose we are given � observations (x1, y1), . . . , (x�, y�) (called training set).
Each of observations consists of a vector xi ∈ R

d, i = 1, . . . , � and the associated
”truth” yi ∈ R given by a trusted source. The establishment of the training
set will be shown in the next subsection. The goal of the regression is to learn
the mapping xi → yi. In general, the training set is not linearly distributed
and a conventional linear regression is not sufficient. So, a nonlinear regression
function is required for a better estimation. Nonlinear SVR [15] is one of the
most well-known techniques to solve this problem and often outperforms other
techniques. Its basic idea is to use a mapping function φ(x) to map the data
into a higher dimensional space H (also called feature space) and then find a
linear regression function y = f(x) = 〈W,φ(x)〉+ b according to a new training
set {(φ(x1), y1), . . . , (φ(x�), y�)}, which represents a nonlinear regression in the
original input space. In order to find a linear regression function in the feature
space, SVR solves the following optimization problem:
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min
W,b,ξ,ξ∗

[
1
2
‖W‖2 + C

�∑
i=1

(ξi + ξ∗i )

]
(1)

subject to

⎧⎨⎩
yi − 〈W,φ(xi)〉 − b � ε + ξi

〈W,φ(xi)〉+ b− yi � ε + ξ∗i
ξi, ξ

∗
i � 0

where 〈·, ·〉 denotes the dot product in H, C, ε > 0 are constants. The primal
Lagrangian is as follows:

LP =
1
2
‖W‖2 + C

�∑
i=1

(ξi + ξ∗i )−
�∑

i=1

αi(ε + ξi − yi + 〈W,φ(xi)〉+ b)

−
�∑

i=1

α∗
i (ε + ξ∗i + yi − 〈W,φ(xi)〉 − b)−

�∑
i=1

(ηiξi + η∗i ξ
∗
i ). (2)

It is understood that dual variables in (2) have to satisfy positivity constraints,
i.e. αi, α

∗
i , ηi, η

∗
i ≥ 0, ∀i. From the saddle point condition, we obtain the dual

optimization problem of (1):

max
αi,α∗

i

− 1
2

�∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi,xj)−
�∑

i=1

[ε(αi + α∗
i )− yi(αi − α∗

i )] (3)

subject to
�∑

i=1

(αi − α∗
i ) = 0 and 0 ≤ αi, α

∗
i ≤ C, i = 1, . . . , �

where K(xi,xj) = 〈φ(xi), φ(xj)〉 is called kernel function. Solving problem (3)
consists in determining the Lagrange multipliers αi, α

∗
i . Let SV s be a set of

indexes i where αi − α∗
i 
= 0. Then the SVR function is determined as follows:

f(x) =
∑

i∈SV s

(αi − α∗
i )〈φ(xi), φ(x)〉+ b =

∑
i∈SV s

(αi − α∗
i )K(xi,x) + b. (4)

If i ∈ SV s, xi is called a support vector. Commonly, the number of support
vectors is much smaller than �. So, SVR is usually faster than traditional re-
gression techniques. From (4), it is clear that the direct mapping φ(x) is not
used. Therefore, there is no need to explicitly obtain φ(x) as long as we can
access the kernel function. Commonly used kernel functions are linear, polyno-
mial, sigmoid, Gaussian. Kernel function should satisfy Mercer’s condition (the
interested reader is referred to [15] for more details).

3 Proposed Denoising Method

The main idea of the proposed method is to construct a learning machine on a
given set of standard images (noise-free images) and then use it for denoising.



Adaptive Medical Image Denoising Using Support Vector Regression 497

Our method is referred as MD (Machine for Denoising) method. Accordingly, the
proposed method essentially includes the training phase and the denoising phase.
In the training phase, a denoising machine M is constructed and defined by a
set of SVR functions, according to the training set which is established from the
given standard images and the noisy versions made from these standard images
(see subsection 3.1). In order to remove noise adaptively, we use fuzzy c-means
(FCM) [14] clustering technique to classify the training set into several groups
before determining the SVR functions for M. In the denoising phase, with a
noisy image as input, the noise of the image is first determined (type and level
of the noise). Then, denoising machine M automatically chooses adaptive SVR
functions to estimate the value for each pixel in the image. These phases are
detailed in the next subsections.

3.1 Denoising Machine

Denoising machine is designed with many stacks, each of them is designed for
one type of image (CT, MR, PET or other modalities). Moreover, each stack
includes many substacks. Each substack is designed to image denoising at a
certain location in the body such as brain, neck, knee, etc. For each substack,
there are several options corresponding to different levels of the noise. Each
option has many SVR functions trained from the given standard images.

Assume that we have a database of standard images at approximately the
same location, let N(T, σ) denote a noise of a type T (Gaussian, Rician, Poisson,
etc) with standard deviation σ. In order to establish the training set from a set of
standard images, we first add noise N into the standard images. Each observation
in the training set is a pair (xi, yi), where xi is a vector corresponding to a patch
of fixed size (2s + 1) × (2s + 1) and centered at pixel i in the noisy version B
established from a standard image A, while yi is the value of pixel i in image
A. By this way, we obtain the training set G = {(xi, yi), i = 1, . . . , �} from the
standard images. Then, the training set is separated into groups. Each group
contains observations such that their patches have some similar features. Here,
features are defined according to the following image characteristics: homogenous
zone, texture/edge zone and luminance. In order to quantify the luminance of
an image patch we can use the average of pixel values in the patch. In the
other hand, according to [13], by applying the Singular Value Decomposition
(SVD) method to the gradient field of patch xi, we can quantify its edgeness.
For a homogeneous region, there is no dominant direction and all eigenvalues are
small. For an oriented edge/texture region, there is a dominant direction and the
corresponding eigenvalue is significantly larger than the others.

In summary, for each patch xi in the training set we define a characteristic
vector vi = (λi

1 − λi
2, μi) ∈ R

2 with λi
1, λ

i
2 are singular values of xi and μi is

the mean of pixel values in xi. The next step concerns the classification of the
training set into c groups (2 ≤ c ≤ �), where c can be achieved using histogram
of standard images. It can be done by classifying the set of characteristic vectors
Ω = {vi, i = 1, . . . , �} into c clusters. For an effective classification, a well-known
technique, namely fuzzy c-means (FCM) clustering is used. Let R

c� denote set
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of all real c× � matrices. According to [14], FCM algorithm partitions set Ω into
c clusters while minimizing the following optimization problem:

min
U,ν

Jp(U, ν) =
c∑

k=1

�∑
j=1

up
kj‖vj − νk‖2 (5)

where 1 < p < ∞, is a constant, ν = (ν1, . . . , νc)T ∈ R
c2, νk ∈ R

2 is the
prototype for cluster k and U = [ukj ] ∈ R

c� represents a non-degenerate fuzzy
c-partition of Ω, the entries of which satisfy:

ukj ∈ [0, 1], 1 ≤ k ≤ c; 1 ≤ j ≤ �,

c∑
k=1

ukj = 1, ∀j, and
�∑

j=1

ukj > 0, ∀k. (6)

After performing classification, we obtain the training set G = G1∪G2∪ . . .∪Gc

where each group Gk has a characteristic vector νk ∈ R
2. Consequently, the SVR

functions f1, f2, . . . , fc of an option in the machine M are determined according
to the groups G1, G2, . . . , Gc, respectively (see section 2).

3.2 Principle of Operation of the Denoising Machine

Let Y be the image to be denoised and N̂ an estimation of the noise on Y. The
distribution of N̂ can be determined according to the opinion of experts. For
example, the noises on CT images were found to have a Gaussian probability
density function [16]. Noise on MR images has Rician distribution [17] while
Poisson noise was found in fluorescent confocal microscopy imaging, X-ray films,
PET and SPET. In the proposed method, the first step to denoise Y consists in
selecting the suitable option based on the type of image, the position in the body
of Y and the estimated standard deviation σ̂ of the noise N̂ . Then, denoising is
performed by the machine M as follows: for each pixel i in Y, we denote x in R

d

(d = (2s + 1)2) as a vector corresponding to a patch of size (2s + 1) × (2s + 1)
and centered at i as in the training set (built with the estimated noise of Y; see
3.1). A characteristic vector v of x is then computed (see subsection 3.1). In the
second step, machine M automatically determines the SVR function that is used
for estimating the value of pixel i. SVR function fk is selected if

k = arg min
1≤t≤c

{‖v− νt‖2}. (7)

Finally, true value of pixel i is estimated as follows:

fk(x) =
∑

j∈SV s

(αi − α∗
j )K(xj ,x) + b (8)

In this paper, the Gaussian function K(xj ,x) = exp(−‖xj−x‖2)/(2h2) is chosen
as kernel function, where h is the decay parameter.

Although the number of the training set is very large, classifying the training
set into groups to determine the SVR functions can be done easily. Moreover, the
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(a) (b) (c) (d) (e) (f)

Fig. 1. Test images: CT images of head (a), neck (b), Thorax (c); MR images of head
(d), pelvis (e), knee (f)

(a) (b) (c) (d) (e) (f)

Fig. 2. Standard images of the training set: (a)-(c) CT images, (d)-(f) MR images

estimated value for each pixel in the noisy image only depends on the training
group, which includes patches that have similar characteristics as the patch
defined for the pixel under considerration. The Gaussian function can be seen as
a measurement of similarity between two image patches. Therefore, according to
(8), K(xj ,x) may be viewed as weights. The more xj is similar to x, the higher
is the weight. This shows the adaptiveness of the proposed method.

Fig. 3. Result of MR image of the pelvis in Fig. 1(e). From left to right, first row:
results of VWNF, TV, NLM, MD and the original image; second row: residual images
of VWNF, TV, NLM, MD and the MR image with Rician noise (σ = 20), respectively.

4 Experimental Results

The proposed MD method is tested on several CT and MR images. We report
here some examples of test CT and MR images (Fig. 1). Two quality metrics,
namely the PSNR and the SSIM [18] are used to evaluate the performance of our
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Table 1. PSNR and SSIM comparison of denoised images

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Results of CT image of the neck in Fig. 1(b): (a) Noisy image with Gaussian
noise (σ = 20), (b) result of NLM, (c) result of MD and (d) Original image. (e)-(h)
illustrate zoom-in images of DROI in (a)-(d), respectively.

method in terms of fidelity between the denoised image and the original noise-
free image. The SSIM is chosen as it better measures the structure similarity
between the recovered image and the reference one, when compared with the
PSNR. The original noise-free image is the test image (Fig. 1). Then, the noisy
image is obtained by addition of the test image with a noise corresponding to
the type of medical image. While CT images are generally corrupted by additive
Gaussian noise, MR images are affected by Rician noise. We generate Rician
noise by adding two independent Gaussian noises to the real and imaginary
part of MR image, respectively. We use the Gaussian noise with zero mean
and standard deviation σ = 10 and 20. The performance of our MD method is
compared with three state-of-the-art image denoising methods, namely the TV
of Gilboa et al. [6], the wavelet based method (VWNF) of Pizurica et al. [11]
and the NLM. Here, we use the NLM of Buades et al. [1] for Gaussian noise
on CT images, and the NLM method proposed by Manjón et al. [2] for Rician
noise on MR images. In our experiments, for each test image, a training set is
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established by using three standard images. Fig. 2 only illustrates one of those
standard images for each example. We use a patch size 5×5. Parameter h of the
kernel function in (8) is set to σ̂ and p in (5) is set to 2. The results obtained for
the test MR image in Fig. 1(e) as well as its noisy image affected with Rician
noise, are shown in Fig. 3, for visual comparison. We can see that residual image
of our method contains nearly no texture or structure while other methods and
particularly the NLM contain many edges that have been removed by these
denoising methods. Likewise, comparative results between NLM method and
the proposed method for the test CT image in Fig. 1(b) (with Gaussian noise)
are presented in Fig. 4. Fig. 4(e) - 4(h) illustrate zoom-in images of a desired
region of interest (DROI) in Fig. 4(a) - 4(d), respectively. As can be seen, our MD
method effectively removes noise while better preserving many subtle details and
the textures compared to other methods. In Table 1, it is clear that the proposed
method yields a significant PSNR and SSIM gap over the other methods.

5 Conclusion

In this paper, a novel method for medical image denoising is proposed. This
method is based on learning machine using the SVR and a given set of standard
images. The method can be used for different types of noise, while existing
solutions are often designed only for a certain type of noise. Experimental results
demonstrated the superior performance of the proposed method over some well
known techniques. We believe that with an effective training set, this technique
may be quite useful and promising.
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2008, Part II. LNCS, vol. 5242, pp. 171–179. Springer, Heidelberg (2008)

4. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. In: Physica D, IEEE Conf., vol. 60, pp. 259–268 (1992)

5. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

6. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using
adaptive fidelity term. In: Proc. VLSM 2003, Nice, France (October 2003)

7. Dibos, F., Koepfler, G.: Global total variation minimization. SIAM Journal on
Num. Anal. 37, 646–664 (2000)

8. Weickert, J.: Anisotropic Diffusion in Image Processing. B. G. Teubner, Stuttgart
(1998)



502 D.H. Trinh et al.

9. Donoho, D.L.: De-noising by soft-thresholding. IEEE, Trans. Inform. Theory 41(5),
613–627 (1995)

10. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denois-
ing and compression. IEEE Trans. on Image Proc. 9(9), 1532–1546 (2000)

11. Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain
noise filtration technique for medical imaging. IEEE Transactions on Medical Imag-
ing 22, 323–331 (2003)

12. Li, D.: Support vector regression based image denoising. Image and Vision Com-
puting 27, 623–627 (2009)

13. Feng, X., Milanfar, P.: Multiscale principal components analysis for image local
orientation estimation. Presented at the 36th Asilomar Conf. Signals, Systems and
Computers, Pacific Grove, CA (November 2002)

14. Bezdec, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, N.Y (1995)
16. Lu, H., Li, X., Hsiao, I.T., Liang, Z.: Analytical noise treatment for low-dose CT

projection data by penalized weighted least squares smoothing in the K-L domain.
In: Proc. SPIE. Medical Imaging, vol. 4682, pp. 146–152 (2002)

17. Gudbjartsson, H., Patz, S.: The rician distribution of noisy MRI data. Magn.
Reson. Med. 34, 910–914 (1995)

18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)



Data-Driven Cortex Segmentation in

Reconstructed Fetal MRI by Using Structural
Constraints
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Abstract. In utero fetal MR images are essential for the diagnosis of ab-
normal brain development and understanding brain structures
maturation. Because of particular properties of these images, such as
important partial volume effect and tissue intensity overlaps, few auto-
mated segmentation methods have been developed so far compared to
the numerous ones existing for the adult brain anatomy. In order to ad-
dress these issues, we propose a two-step atlas-free cortex segmentation
technique including anatomical priors and structural constraints. Exper-
iments performed on a set of 6 in utero cases (gestational age from 25 to
32 weeks) and validations by comparison to manual segmentations illus-
trate the necessity of such constraints for fetal brain image segmentation.

Keywords: Cortex, fetal brain, segmentation, topology.

1 Introduction

The study of in utero developing brain by magnetic resonance imaging (MRI)
is motivated by the need of understanding the early brain structure matura-
tion [16,12]. A prerequisite is the automated labeling of these structures, which
has to be robust to noise, fetal motion artifacts, partial volume effects (PVE),
and MRI intensity inhomogeneity.

Other studies focused mainly on premature, noenates and young children.
Prastawa et al. [14] developed an automated segmentation process of the
newborn brain, including estimation of the initial parameters through a graph
clustering strategy, intensity inhomogeneity correction and a final refinement
focusing on the separation of myelinated and non-myelinated white matter re-
gions. White matter delineation from deep grey matter was also a challenge
addressed by Murgasova et al. [10] for young children with an atlas-based ap-
proach. Another method by Xue et al. [17], focusing on cortex segmentation and
� The research leading to these results has received funding from the European Re-

search Council under the European Community’s Seventh Framework Programme
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reconstruction through a mislabeled partial volume voxel removal strategy was
applied to term and preterm neonates.

A first attempt for fetal brain structures segmentation was a semi-automated
algorithm based on a region-growing method by Claude et al. [4]. Later on,
fully automatic techniques were developed. Bach Cuedra et al. [1] introduced
separated Bayesian segmentation and Markov random field regularization steps,
the latter including anatomical priors. Other methods took advantage of motion-
corrected and high resolution 3D volumes, computed through reconstruction
techniques from in utero MR scans [8,15]. Habas et al. developed an automatic
atlas-based segmentation [7], and a method including anatomical constraints in
form of a laminar prior [6]. Gholipour et al. [5] performed a volumetric study of
the brain based on the segmentation of the pericerebral fluid spaces (PFS) (the
part of the cerebrospinal fluid (CSF) located around the cortical area) by using
level-sets, connected components, and mathematical morphology filters.

Most of these methods follow an atlas-based approach or specific regulariza-
tion strategies, including anatomical priors. This illustrates the difficulty to de-
fine a data-driven segmentation, because of PVE and important tissue intensity
overlaps. Nevertheless, building and using an atlas presents several difficulties
such as its registration over the different cases in order to have an accurate seg-
mentation. Moreover, using a specific regularization strategy disconnected from
the data illustrates the need of strong structural constraints which can be also
used in a data-driven approach.

An atlas-free two-step segmentation is defined. It includes structural con-
straints based on a topological model [13] in order to deal with PVE, and a
morphological filter [11] in order to highlight areas where the cortex will the
most likely appear. The first step aims at defining a region of interest including
the cortex and the second one aims at segmenting the cortex itself. Experiments
are carried out on reconstructed 3D volumes and the probability maps issued
from of a non-local fuzzy c-means (NL-FCM) clustering algorithm [3] are used
in order to benefit from its robustness to noise.

2 Method

The grey level histogram from fetal MRI (Fig. 1(a)) reveals two peaks corre-
sponding respectively to the brain, including white matter and cortex, and to
the CSF. Moreover, an important overlap due to intensity inhomogeneity and
partial volume effect is observed. Furthermore, an analysis from a ground truth
segmentation reveals that the cortex and white matter intensity distributions
are melted into the brain pick, meaning that these structures can not be disso-
ciated by classic clustering algorithms based on intensity features. This leads to
hazardous classifications such as white matter between CSF and cortex, which
is anatomically wrong.

To cope with the previous problems, a two steps segmentation is defined in
order to consider these facts (Fig. 1(b)). Both steps rely on a topological k-
means described in Section 2.1. Section 2.2 describes the complete segmentation



Cortex Segmentation in Fetal MRI 505

0 200 400 600 800 1000 1200
0

100

200

300

400

500

Grey Level

(a) (b)

Fig. 1. (a) Grey-level histogram from a fetal brain MRI. Black: intracranial volume,
green: cortex, red: white matter and deep grey nuclei, blue: CSF. (b) Overall diagram
of the segmentation process.

pipeline. The first step aims at separating the intracranial volume into PFS,
ventricles and brain. This first segmentation provides a good estimation of the
border between the PFS and the brain, which is used to define a region of interest
including the cortex. Afterward, the second step is performed in order to retrieve
the CSF, the white matter and the cortex.

2.1 Topological K-Means Clustering

A topological model robust to intensity inhomogeneity, relying on three con-
centric spheres (model already used by [9] for adult brain segmentation) and
introducing geometrical constraints for the segmentation process is defined.

Let us consider an image composed of a set of voxels Ω, each voxel j ∈ Ω
having a given grey-level yj . Let us suppose that this image has to be segmented
into K (≥ 2) clusters. For each cluster k, let Sk be the set of voxel values included
into it and νk be the centroid of this cluster (which usually corresponds to the
mean grey-level value of this class of voxels). Based on these notations, in the
k-means approach, the segmentation process of a grey-level image consists of the
minimization of an objective function:

Jk-means =
K∑

k=0

∑
yj∈Sk

‖yj − νk‖22.

Nevertheless, considering a global centroid (therefore spatially invariant)makes
the k-means algorithm sensitive to intensity inhomogeneity occurring in MRI
data. In order to tackle this problem without relying on ad hoc prior knowledge
related to the intensity inhomogeneity, we introduce local intensity centroid val-
ues νjk. These local mean-values are computed in the following way (Fig. 2(a)).
An image is divided into several cubical non-overlapping sub-images or regions.
Let νr

k be the mean value of the kth cluster in an image region r. This region
mean value is considered as being located in the center of this region. Let pr

be this position. Afterward, for each considered voxel, a local mean value νjk is
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computed by a distance-based interpolation of the nearest region mean-values:
νjk =

∑
r ωjrνr

k∑
r ωjr

, where ωjr = 1/d(j, pr) and d(j, pr) is the Euclidean spatial
distance between the position of voxel j and pr.

The minimization of the k-means objective function is achieved by a border
voxel exchange, with respect to the following topological model. Let Nj be the
neighborhood of voxel j. Let CNj be the corresponding set of clusters present in
Nj . A considered voxel j switches from cluster k to another candidate cluster k′

if it meets the following requirements (Fig. 2(b)):⎧⎨⎩
|CNj | = 2,
∀ c ∈ CNj , c 
= background,
‖yj − νjk′‖2 < ‖yj − νjk‖2.

The first two requirements guarantee the preservation of the structural con-
straints. They state that a voxel is eligible for switching from one cluster to an-
other if there are exactly two different clusters in its neighborhood, and if neither
of these is the background. The third requirement guarantees that a voxel switch
decreases the objective function. Our model is different from the notion of simple
points used in topology [13], which implies in particular that labels of connected
components are preserved. Broadly speaking, labels of connected components can
be broken into several ones or fused as long as the concentric sphere model is re-
spected, which brings a better flexibility to the segmentation process.

In practice, the segmentation is achieved by considering a list of border voxels
obtained by a dilation of the current label. Each voxel meeting the third require-
ment is switched to the considered label. When no switch through the different
labels is observed, the centroids are updated and the k-means objective function
computed. This process iterates until a local minimum of the objective function
is reached.

(a)

1

2

3

(b)

Fig. 2. (a) Intensity inhomogeneity correction. Voxel j mean values depend on mean
values from regions 1, 2, 4 and 5 and voxel j′ mean values depend on mean values from
regions 5, 6, 8 and 9. (b) Topological model. From white to dark grey, labels are 0, 1,
2 and 3, 0 being the background. Voxel 1: not eligible for switching to another label
because there are three different labels in its neighborhood and a switch would break
the concentric circle model. Voxel 2: eligible to switch to label 1. Voxel 3: not eligible
to switch to label 2 because a neighbor is a background label.
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2.2 Proposed Segmentation Algorithm

Step 1 - CSF. This step is initialized as follows. The intracranial volume, is
divided into three concentric spheres representing the PFS, the brain and the
ventricles, thanks to an intracranial distance map (measures the distance from
the border of the intracranial volume). Moreover, a two class FCM clustering
is performed in order to obtain an accurate initialization of the centroids. The
segmentation is then performed by the topological k-means with the grey-level
image as input.

Step 2 - Cortex. Due to intensity overlaps between cortex and white matter,
additional information is needed in order to achieve the segmentation. Since the
fetal cortex is a thin layer between PFS and white matter, a morphological filter
is defined in order to highlight image areas where it will most likely appear.
Let I : Ω → V be a discrete grey-level image. Let ϕB be the morphological
closing of I by a structuring element B. The Top Hat Dark Filter Td is defined
as: Td(I) = ϕB(I) − I. In other words, this filter highlights small objects of the
image that are added by the closing, depending on the choice of the structuring
element [11].

A region of interest is defined from the border between the PFS and the brain.
A band around this border, including CSF and brain is defined thanks to a dis-
tance map computed from the PFS segmentation (measures a distance from
the PFS border with the rest of the brain). This band is divided into three
sub-bands being the initialization for CSF, cortex and white matter. More-
over, this initialization is corrected by removing any voxel belonging to the
ventricles.

The segmentation is performed by using a vector image composed by the origi-
nal image and the top-hat filtered image, instead of the original grey-level values
alone, as the input of the topological segmentation presented in Section 2.1.
Consequently, each cluster is characterized by a centroid vector composed of its
grey-level mean-value and its top-hat-filtered image mean value, allowing a better
discrimination of the cortex. During this process, a maximum cortical thickness
of 4 millimeters is imposed in order to cope with improbable extensions.

In order to improve the segmentation, one can use probability maps computed
from a non local FCM algorithm [3] as a post-processing. This method intro-
duces a regularization based on a non-local framework [2], aiming at correcting
artifacts due to noise, by taking advantage of the redundancy present in images.
Broadly speaking, a small neighborhood around a voxel, called a patch, may
match patches around other voxels within the same scene, selecting the most ac-
curate voxels to perform the regularization. This post-processing step is run on
the same border voxel exchange basis than the topological k-means algorithm,
unless a voxel wil lswitch if the probability it belongs to the destination label is
higher than the current one.
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3 Experiments and Results

3.1 Material and Experimental Settings

Experiments are performed on a set of six patients. Gestational ages (GA) range
from 27 to 32 weeks. For each of them, a set of three T2-weighted MR im-
ages (axial, coronal and sagittal) are acquired from a 1.5T scanner (Magnetom
Avanto, Siemens, Germany Erlangen) using single shot fast spin echo sequences
(TR 3190 ms, TE 139-147 ms). Since these images have anisotropic voxel sizes
(from 0.742×0.742×3.45 to 0.742×0.742×4.6 mm) and may present motion ar-
tifacts, a reconstruction process [15] is applied in order to obtain high resolution
images.

Reconstructed images have the following dimensions: 256× 256× 88 to 256×
256×117 and voxel dimensions are: 0.742×0.742×0.742 mm. A 3D 6-neighbor-
hood is used to run the topological model. Empirically, a 5× 5 × 5 structuring
element is chosen to perform the Top Hat filter.

For the PFS segmentation, the model is initialized as follows. On the border
with the background, a 1 voxel thin layer is set as PFS. Then, the voxels being
less than 80% of the maximum intracranial distance are set as brain and the
remaining ones are set as ventricles. This guarantees that the ventricles initial
cluster will not include any PFS voxels.

Regarding the cortex segmentation, the model was initialized as follows. The
first two-millimeters layer is set as CSF, the next 5 as cortex and the last 2 as
white matter. These values were chosen according to tissues anatomical charac-
teristics.

Concerning the parameters of the non-local FCM algorithm, the size of the
research area is 11 × 11 × 11 and the size of the patches is 3 × 3 × 3. The
computation times are about 20 minutes for the extraction of the CSF and 15
minutes for the cortex segmentation, mostly due to the exploration of voxels
neighborhoods.

3.2 Validation

Each reconstructed image has been manually segmented. The validation consists
of the computation of the dice similarity coefficient (DSC) between the manual
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Fig. 3. Average DSC comparison between cortex thickness initialization (red) and
final segmentation (blue)
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Table 1. Dice similarity coefficient (DSC) between manual and automated segmenta-
tions with and without non-local FCM post-processing

Case (GA) 1 (28) 2 (30) 3 (-) 4 (32) 5 (27) 6 (30)

DSC 72.42 73.03 77.57 74.51 76.60 76.61

DSC with regularization 71.02 71.37 77.76 71.86 75.78 75.23

(a) (b) (c)

(d) (e) (f)

Fig. 4. Cortex extraction. (a,d): ground truth, (b,e): segmentation without non-local
FCM regularization, (c,f): segmentation with non-local FCM regularization. Red: CSF,
green: cortex, blue: white matter and deep grey nuclei.

and the automated segmentation of the cortex. Let TP be the amount of true
positives (number of detected cortex voxels), FP the amount of false positives
(number of voxels incorrectly classified as cortex) and FN the amount of false
negatives (number of undetected cortex voxels). The dice coefficient is given by:
DSC = 2× TP/(2× TP + FN + FP ).

Table 1 presents DSC for each case. Both regularized and non-regularized
results are presented. Fig. 3 illustrates the algorithm robustness to initialization
by setting a 2 to 5 millimeters initial thickness to the cortex.

A visual insight of the segmentation (Fig. 4) underlines the accuracy of the
method, even though a slight under-segmentation can be observed in some areas.
Moreover, even though regularization accentuates the under-segmentation, it can
be observed that it brings a noise correction and smoother borders between the
different tissues.

Other studies about fetal brain segmentations highlighted results about the
cortex segmentation. Bach Cuedra et al. [1] showed DSC values around 65 %
with a two steps segmentation separating LCR into PFS and ICSF and applying
a specific regularization step. Habas et al. [7] achieved performance around 82
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% with an atlas based approach. Results presented here underline the usefulness
of structural constraints for fetal tissue segmentation, if no atlas is available.

4 Conclusion

A topological based clustering method has been proposed for the segmentation
of the cortex in fetal brain MR images, which takes advantages of anatomical
knowledge. The validation performed on T2-weighted images illustrates the use-
fulness of such structural constraints in an atlas-free approach of fetal brain
segmentation.

Further work will focus on the improvement of the segmentation method, such
as a better integration of the regularization step into the process, its validation
on additional cases and the segmentation of other tissues and structures of the
fetal brain.
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Abstract. We explore marker-less tracking methods for the purpose of
evaluating the efficacy of facial re-constructive surgery on patients with
facial palsies. After experimenting with several optical flow methods, we
choose an approach that results in less than 2 pixels in tracking error for
15 markers tracked on the face. A novel method is presented that utilizes
the non-rigid deformation observed on facial skin tissue to visualize the
severity of facial paralysis. Results are given on a dataset that contains
three videos of an individual recorded using a standard definition camera
both before and after undergoing facial reconstructive surgery over a
period of three years.

Keywords: Optical Flow, Optical Strain, Facial Palsy, Facial Recon-
structive Surgery.

1 Introduction

Accurately estimating and quantifying the extent of facial paralysis in patients
with facial palsy without the need of manually applied markers would be a
benefit to patients, researchers, and the medical community at large. In this
paper, we propose methods that can be used to measure the severity of facial
paralysis using non-invasive tracking methods and motion analysis tools.

The experimental flow is as follows: first, a patient is recorded in front of
a video camera mirror system [2] and is asked to perform several standardized
expressions multiple times (ex., lifting of eyebrows, smile, close eyes, frown, whis-
tle) [4]. Next, a dense optical flow method is used that tracks all points (pixels)
of the face over the entire length of the expressions. These optical flow vectors
are then used to calculate optical strain, a feature that is used for two purposes:
� W.K. acknowledges the support of the Austrian Science Fund (FWF), grant no.

P20134-N13.
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(i) the magnitude of optical strain is utilized in order to detect key moments of
an expression (contract, peak, compression) [6]. Finding the these moments in
an expression allows strain maps to be calculated at the maximal point of facial
deformation, so a valid comparison can be done over time; (ii) strain maps are
used to represent and quantize the deformation of the soft-skin tissue on the
face, which is directly correlated with expansion and contraction of underlying
facial muscles that have been surgically altered.

Evaluating the efficacy of facial reconstructive surgery has been the main
goal of Frey et al. [2]. In their experimental setup, a patient is asked to sit
between two angled mirrors (∼ 90 ◦). Hand placed markers are applied to the
face and are tracked in 3-D as the patient performs expressions. In their setup,
the process of applying markers and tracking them takes roughly five hours. In
this paper, we use a video dataset from their collection and hope to expand on
their initial work firstly by eliminating the need for markers, thus significantly
reducing the time needed for data acquisition. Secondly, we suggest a method
that provides a denser correspondence and a more detailed visual representation
and quantization.

2 Background

When calculating optical strain there are typically two main approaches: either
(i) integrate the strain definition into the optical flow equations, or (ii) derive
strain directly from the flow vectors. The first approach requires the calculation
of high order derivatives, hence is sensitive to image noise. The second approach
allows us to post-process the flow vectors before calculating strain, possibly
reducing the effects of any errors incurred during the optical flow estimation.
We use the second approach in this paper.

2.1 Optical Flow

Optical flow is an established motion estimation technique that is based on the
brightness conservation principle [1]. In general, it assumes that the intesntity at
a point remains constant over a pair of frames, and that the pixel displacement
relatively smooth within a small image region. It is typically represented by the
following equation:

(∇I)T p + It = 0 (1)

where I(x, y, t) represents the temporal image intensity function at point x and
y at time t, and ∇I represents the spatial and temporal gradient. The horizontal
and vertical motion vectors are represented by p = [p = dx/dt, q = dy/dt]T s.

Since large intervals over a single expression can often cause failure in track-
ing (due to the smoothness constraint), we implemented a vector linking (or
stitching) process that combines small, local pairs of small intervals (1-3 frames)
into larger pairs to expand over the entire sequence of frames. In section 3.1, we
discuss three seperate implementations of optical flow.
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2.2 Optical Strain

The displacement of any deformable object projected on a 2-D plane can be
expressed by a vector u = [u, v]T . Assuming a small enough motion , a finite
strain tensor can be defined:

ε =
1
2
[∇u + (∇u)T ], (2)

which can be expanded to:

ε =

[
εxx = ∂u

∂x εxy = 1
2 (∂u

∂y + ∂v
∂x )

εyx = 1
2 ( ∂v

∂x + ∂u
∂y ) εyy = ∂v

∂y

]
(3)

where (εxx,εyy) are normal strain components and (εxy,εyx) are shear strain
components.

Since (u,v) are displacement vectors that over a continuous space, we approx-
imate the strain components using the optical flow data (p,q):

p =
δx

δt
≈ Δx

Δt
=

u

Δt
, u = pΔt, (4)

q =
δy

δt
≈ Δy

Δt
=

v

Δt
, v = qΔt (5)

where Δt is the change in time between two image frames. Setting Δt to a fixed
interval length, we can estimate the partial derivatives of (4) and (5):

∂u

∂x
=

∂p

∂x
Δt,

∂u

∂y
=

∂p

∂y
Δt, (6)

∂v

∂x
=

∂q

∂x
Δt,

∂v

∂y
=

∂q

∂y
Δt, (7)

The second order derivatives are calculated using the central difference method.
Hence,

∂u

∂x
=

u(x + Δx)− u(x−Δx)
2Δx

≈ p(x + Δx) − p(x−Δx)
2Δx

(8)

∂v

∂y
=

v(y + Δy)− v(y −Δy)
2Δy

≈ q(y + Δy)− q(y −Δy)
2Δy

(9)

where (Δx,Δy) ≈ 2-3 pixels.
Finally, each of these values corresponding to low and large elastic moduli are

summed to generate the strain magnitude. Each value can also be normalized to
0-255 for a visual representation (strain map).
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3 Experiment

In this section, we explore several potential uses of optical flow and optical strain
for the marker-less tracking and visualization of expressions for patients with fa-
cial palsies. Our dataset consists of three videos from the Medical University of
Vienna. Each video corresponds to a different year of the patient undergoing fa-
cial reconstructive surgery. The first video records the patient before the surgery
(1998), and the next two videos (1999 and 2000) were recorded post surgeries.
For each video, there are roughly 30 expression made. Expressions include rais-
ing the eyebrows, smiling, smiling and closing eyes, bunching lips together, and
frowning.

3.1 Optical Flow and Tracking

In this paper, the primary purpose of optical flow is to calculate a dense corre-
spondence between pixels over video sequences that contain expressions, a task
that is important for the accurate calculation of strain maps. Hence, we explored
several implementations of optical flow, including Ogale flow [5], SIFT flow [3],
and Black Flow [1]. To determine the best implementation choice, we inspected

(a) (b) (c) (d)

(e)

Fig. 1. Example tracking results of point given in circle (a). In (b) - (d), results for
black flow (square) Ogale flow (triangle) and SIFT flow (star) at during two ’raise
eyebrows’ expressions (frame numbers 30, 120, 150). In (e) the actual error for all 15
points (see Fig. 2) is shown for every 20 frames.
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(a) (b) (c)

Fig. 2. Comparison of total flow displacement values between the left (solid blue line)
and right (dotted green line) sides of face, after re-constructive surgery over 3 years
(using Black flow). The images (a), (b) and (c) are the starting frames from each video
and show the tracked points. The first row of graphs corresponds to the raised eyebrows
expression and the second row corresponds to the smile expression.

the tracking performance over several expressions at specific points. The points
selected were the physical markers placed on the face, since these areas have
texture information which aids in optical flow estimation. An example sequence
containing the raised eyebrows expression can be seen in Fig. 1. This figure also
shows the total summed error that was calculated for the same expression every
20 frames, at all fifteen points given in Fig. 2.

To further analyze the tracking results of each flow algorithm on this sequence,
we calculated the average error (see Table 1) for all fifteen points and also for a
subset of three select points near the right eye (see Fig. 2) where there was large
eye / eyebrow motion. A few observations were made: Ogale flow occasionally
showed sporadic tracking by jumping several pixels off and then back again.
Overall, it resulted in average error rates of 2 pixels (for fifteen points) and 4.3
pixels (for three points). On the other hand, SIFT flow performed poorly even
with small non-rigid movements of the eyebrow, since such local motion was
dominated back the lack of motion in surrounding regions. It had average error
rates of 2.5 pixels (all points) and 6.1 pixels (three points). Black flow performed
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Table 1. Average error (in pixels) for all 15 points tracked on face and a subset of 3
points that have relatively large motion

Flow Type All Points Three Points

Black Flow 1.67 2.58

SIFT Flow 2.01 4.35

Ogale FLow 2.55 6.14

the best of all three and led to the most consistent results, with average error
rates of 1.6 (all points) and 2.5 (three points).

Next, we show the tracking results using black flow for two expressions (raised
eyebrows, smile) for each year. For this, points on each side of the face were

Fig. 3. Optical strain maps for five expressions, over three years. Strain maps were
generated between the start and peak of each expression. Intensity values correspond
to amount of deformation observed.
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Fig. 4. Quantization using strain map difference between years recorded, post surgery.
Each column contains one of the five expressions and shows the difference between
strain map rows in Fig 3. The first row shows the change from 1998 and 1999, and the
second row shows the change from 1999 to 2000.

tracked over two expressions and the displacements were summed to generate
total summed displacement. As expected, for both expressions, the difference be-
tween the total displacement observed for each half of the face is largely reduced
between 1998 and 1999, and even more between the 1998 and 2000 (see Fig. 2).
This indicates that optical flow is successfully capturing the motion caused from
the facial expressions. Next, we will use these flow vectors to calculate strain
magnitude and optical strain maps.

3.2 Optical Strain Maps

Since strain maps represent the non-rigid deformation observed on the face dur-
ing an expression, it is important that we capture the peak of the expression.
We automatically get this frame using an expression spotting algorithm [6]. In
summary, the algorithm utilizes the strain magnitude calculated over the entire
video sequence, and correlates spatio-temporal regions that contain high strain
values as segments containing expressions. It is particularly robust to expressions
that occur in small regions or one side of the face, making it ideal for patients
with facial palsy. The algorithm returns the frame number in a expression se-
quence that has the highest summed strain magnitude. These frames are then
used for calculating final strain maps. Fig. 3 shows the strain maps calculated
for all five expressions, over all three years. It is important to note here that
eye regions and mouth regions have been masked due to common flow failure in
these regions, due to self-occlusion (eyelids, inside mouth). For areas outside of
the masked regions, large intensity values correspond to regions of the patients
soft-skin tissue that have deformed significantly due to muscular contraction.

Quantization using Strain Difference. Subtracting two strain maps from
different years but the same expression allows us to gain a representation of the
change in deformation, or the change in active regions of the face. As can be
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observed in Fig. 4, the strain maps showing the difference between the years
1998 and 1999 suggest a large amount of improvement (first row), while the gain
between 1999 and 2000 (second row) appears to be less.

4 Conclusions

In this paper, we explore the use of marker-less tracking methods for the purpose
of evaluating the improvement gained from facial re-constructive surgery on
patients with facial palsies. We have explored several tracking methods that allow
us to create the dense correspondence necessary for strain map calculation and
have concluded the Black flow leads to the most consistent and reliable results,
with less than 2 pixel average tracking error. Using these optical flow fields,
we have proposed a method that quantizes the non-rigid deformation observed
on facial skin tissue into strain maps. Strain maps can then then be used to
highlight the (a)symmetries between each side of the face, while also providing a
useful measure of the changes at each point on the face over time, thus potentially
allowing surgeons to quickly evaluate the efficacy of facial reconstrutive surgeries.
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Abstract. Evaluation of the performance and limitations of medical imaging al-
gorithms is essential to estimate their impact in social, economic or clinical as-
pects. However, validation of medical imaging techniques is a challenging task
due to the variety of imaging and clinical problems involved, as well as, the diffi-
culties for systematically extracting a reliable solely ground truth. Although spe-
cific validation protocols are reported in any medical imaging paper, there are
still two major concerns: definition of standardized methodologies transversal to
all problems and generalization of conclusions to the whole clinical data set.

We claim that both issues would be fully solved if we had a statistical model
relating ground truth and the output of computational imaging techniques. Such
a statistical model could conclude to what extent the algorithm behaves like the
ground truth from the analysis of a sampling of the validation data set. We present
a statistical inference framework reporting the agreement and describing the rela-
tionship of two quantities. We show its transversality by applying it to validation
of two different tasks: contour segmentation and landmark correspondence.

Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.

1 Introduction

Researchers agree that validation of medical imaging algorithms is essential for sup-
porting their validity and applicability in clinical practice [1]. Although validation is
addressed in any medical imaging paper, there is no consensus in the statistical and
mathematical tools required for standardized quantitative analysis [2, 3, 1, 4]. Given the
diversity of imaging tasks and final clinical applications, techniques are prone to be
validated using specific protocols, not easily extendable to a unifying general frame-
work [1].

A validation protocol should face two main challenges: extracting ground truth (GT)
and defining a metric quantifying differences between GT and the algorithm output
(AO). A main difficulty in medical imaging is that GT might not be always available or
might vary across observers [5]. The first case is common in image registration tasks,
since the deformation matching images might not be easily extracted from in vivo cases.
Current solutions, base validation on either synthetic experiments or correspondence of
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anatomical landmarks [6]. The realism of synthetic databases might be too low for
generalization of conclusions to clinical data [5]. It follows that, in real data, a verifi-
cation based on structures (landmarks) correspondence is usually required. Variability
in GT typically arises in segmentation tasks, due to discrepancies across manual trac-
ers. This implies that an analysis of automated errors might not reflect, by its own, the
true accuracy of segmentations, since variations might be caused by a significant differ-
ence among expert models. A standard solution [7] is comparing automated errors to
the variability among different manual segmentations. Concerning comparison between
GT and automatic computations, several metrics can be considered. For landmark cor-
respondence, the difference in positions is the accepted goodness measure [6], while for
contour segmentation [8, 3] differences can be measured by means of area overlap or
distances between contours. The counterpart of these metrics is that they assess com-
plementary quality scores and, thus, several quality measures need to be considered.

Two major concerns still remain: 1) defining the subset of scores best reflecting ac-
curacy for clinical application and 2) whether the results of validation tests are general-
izable to all clinical data. We claim that a validation protocol assessing to what extent an
image processing algorithm can substitute the manual interaction would address both
issues. In this context, validation should report the agreement between AO and GT, as
well as, a model describing the relation between both quantities.

Agreement between observers can be assessed by means of Bland-Altman plots or
regression analysis. Bland-Altman [9] measures this agreement by analyzing the vari-
ability of their differences. In the case of disagreement, Bland-Altman fails to either
describe or report the degree of disagreement [10]. Regression analysis provides a (lin-
ear) statistical model of the relation between two quantities. Existing techniques usually
only report regression coefficients (slope and intercept) and correlation. Given that cor-
relation only reports the degree of linear dependence between both quantities, a high
correlation does not imply that the variables agree [10]. In order to explore agreement,
one should consider the slope and intercept of the regression model, since they describe
the relation between the two variables. However, even in the case of a perfect relation
(identity), the regression coefficients alone are not sufficient to ensure that the quantities
can be swapped. The slope and intercept describe the behavior of the specific sample we
are analyzing, but they do not allow to generalize conclusions to the whole population.
The only way to obtain generalizable conclusions is by means of statistical inference.

We present a statistical inference framework for assessing how well two methodolo-
gies performing the same task behave equally and can replace one each other. We define
a regression model for predicting the performance of an image processing algorithm in
clinical data from a subset of validated samples. Our model is applied to two main
tasks involved in medical image processing: detection (registration) and segmentation
of anatomical structures. Experiments on vessel wall segmentation show the correlation
between our model and standard metrics. Meanwhile, experiments on cardiac-phase
detection illustrate its versatility for assessing difficult tasks.

2 Inference Model

We note by GT the ground truth we want to substitute and AO, the algorithm output.
Their nature is prone to vary depending on the particular problem we are facing:
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1. Segmentation. Image segmentations produce a (continuous) contour enclosing the
area of interest. Therefore, GT = GT (t) = (GT1(t), GT2(t)), AO = AO(t) =
(AO1(t), AO2(t)) are curves parameterized by a common parameter t ∈ [0, 1].

2. Detection. In detection tasks, the output is a (finite) list storing the positions of k
corresponding landmarks. Thus, GT = {GT i}k

i=1, AO = {AOi}k
i=1, for GT i =

(GT i
j )

n
j=1, AOi = (AOi

j)
n
j=1 points in R

n, where n=1,2,3 is the dimension of the
data domain.

Our final goal is to control (predict) the values taken by GT from the values taken
by the alternative measure AO. In inference statistics, this is achieved by relating both
quantities using a regression model.

2.1 Regression Model

The linear regression of a response variable y over an explicative variable x is given by:

Y = Xβ + ε (1)

for β = (β0, β1) the regression parameters, X =

⎛⎜⎝1 x1

...
...

1 xN

⎞⎟⎠, Y = (y1, · · · , yN) a

sampling of x, y and ε = (ε1, · · · , εN ) an uncorrelated random error following a mul-
tivariate normal distribution, N(0, Σ2) of zero mean and variance Σ2 = σ2Id.

The parameters of the regression model (1) are the regression coefficients β =
(β0, β1) and the error variance σ2. The regression coefficients describe the way the
two variables relate, while the variance indicates the accuracy of the model and, thus,
measures to what extent x can predict y.

Given that, in our case, the inference is over GT , our model is:

GTi = β0 + β1AOi + εi (2)

for (GTi)N
i=1, (AOi)N

i=1 samplings of GT and AO obtained for each task as:

1. Segmentation. In the case of contours, the sampling is given by the coordinates of
a uniform sampling of each of the curves:

(GTi)2N
i=1 = (GT (ti))N

i=1 = (GT1(ti), GT2(ti))N
i=1

(AOi)2N
i=1 = (AO(ti))N

i=1 = (AO1(ti), AO2(ti))N
i=1

for ti = i/N , i = 1 : N . In order to have pair-wise data, samplings are taken using
a common origin of coordinates.

2. Detection. In this case, the sampling of the two variables is given by:

(GTi)N=nk
i=1 = (GT i)k

i=1 = ((GT i
j )n

j=1)
k
i=1

(AOi)N=nk
i=1 = (AOi)k

i=1 = ((AOi
j)

n
j=1)

k
i=1

Pair-wise data is obtained by using the same scanning direction in images for sort-
ing the vector of landmarks.
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For a sample of length N , the regression coefficients, β̂ = (β̂0, β̂1), are estimated by
least squares fitting as:

β̂ = (XTX)−1XTY (3)

for X and Y as in eq. (1) and T denoting the transpose of a matrix.
The difference between the estimated response, ŷi = β̂0 + β̂1xi, and the observed

response yi, ei = yi− ŷi, are called residuals. Their square sum provides an estimation
of the error variance:

SR = σ̂2 =
∑

e2
i

n− 2

Previous to any kind of inference, it is mandatory to verify that the estimated param-
eters make sense. That is, whether it really exists a linear relation between x and y. By
the Gauss-Markov theorem, such linear relation can be statistically checked using the
following F-test [11]:

TM : H0 : β1 = 0 , H1 : β1 
= 0 (4)

where a p− value close to zero (below α) ensures the validity of the linear model with
a confidence (1− α)100%.

2.2 Prediction Model

In order to predict the values of GT from the values achieved by AO, we use the
regression prediction intervals [11]:

PI(x0) = [LPI(x0), UPI(x0)]

since, for each x = x0, they provide ranges for y at a given confidence level 1 − α.
That is, given x0, the values of the response y are within LPI(x0) ≤ y ≤ UPI(x0) in
(1− α)100% of the cases.

Given x0 = AO0, the confidence interval at a confidence level (1-α) predicting GT
is given by:

PI(x0) = [LPI(x0), UPI(x0)] = [ŷ0 + tα/2SR

√
1 + h0, ŷ0 − tα/2SR

√
1 + h0]

for tα/2 the value of a T-Student distribution with N − 2 degrees of freedom having
a cumulative probability equal to α/2 and h0 = (1 x0)(XTX)−1(1 x0)T = a0 +
a1x0 + a2x

2
0. Prediction intervals achieve their minimum range at the average x and

their maximum range at their extreme values xMin, xMax.
A prediction interval within a given precision, UPI(x)−LPI(x) ≤ ε, ∀ x, indicates

that the regression model predicts GT with high accuracy and, thus, AO is a good can-
didate for substituting GT . The alternative quantity can substitute GT in the measure
that the identity line is within the range given by the prediction interval PI(x). Other-
wise, AO presents a systematic bias from the reference, which might be corrected using
the regression coefficients. The slope, β1, is associated to a scaling factor (unit change),
while the intercept, β0, is a constant bias.
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The identity line is in the range of the prediction interval PI(x) with a given preci-
sion, ε, if and only if (PI(x) − x) ⊂ (−ε, ε), ∀ x. This requirement is fulfilled if the
following conditions hold:

CP1 : max(LPI(x)− x) ≤ 0 ≤ min(UPI(x) − x)
CP2 : max(UPI(x)− LPI(x)) ≤ 2ε (5)

The first condition ensures that variables can be swapped with a confidence of (1− α),
while the second assesses the accuracy of the swapping. We note that the above condi-
tions can also be formulated in terms of an identity test for the regression coefficients.

3 Results

We have chosen the following applications for each task:

1. Vessel Wall Segmentation in Intravascular Ultrasound Sequences. We have ap-
plied our model to the validation of the adventitia wall detection reported in [12] in
order to compare the regression-prediction assessment to standard metrics (mean
distance, noted by MeanD). We have considered two sequences of 300 frames each
manually segmented every 20 frames (15 samples). One case (C1) has a low error
and the other one (C2) a poor performance of the automatic method.

2. Cardiac Phase Detection. We have applied our model to assess replacing ECG
signal sampling by manual sampling of longitudinal cuts of IntraVascular Ultra-
Sound sequences [13]. Comparison of cardiac phase samplings is a difficult task
because it should not penalize constant shifts associated to a sampling of a differ-
ent fraction of the cardiac phase. We have considered 3 sequences between 378
and 1675 frames long and acquisition rate between 10 and 30 fps. The first case
(C1) is a short segment (378 frames) acquired without pullback. The other two are
a (visually) good and bad acquisitions (C2 and C3, respectively).

Our goal is by no means validating the performance of alternative methods, but to
show the benefits of regression-prediction models for performance evaluation. To such
end, we have assessed the validity of the linear model (given by SR and TM test), as
well as, its prediction value (given by CPi, i = 1, 2). Positions are given in mm.

Tables 1 and 2 report regression parameters and predictive value for each task and, in
the case of segmentation (table 1), we also report the range (computed for 300 frames)
of the metric MeanD in the last column. For the regression model, we report the p −
value for TM test, confidence intervals for β0, β1 and SR. For the prediction model,
we give the interval for the interchangeability condition, CP1, and the accuracy ε in
mm, CP2. In the case of detection, CP1 has been computed for x + β0 instead of x in
order to account for constant shift in samplings.

For all cases and tasks, there is a clear linear relation between GT and the image
processing AO (with p close to the working precision). For the segmentation task (table
1), C1 has an accurate regression model close to the identity line. The squared root
of the model accuracy (

√
SR = 0.1224) agrees with MeanD ranges computed for the

15 manually segmented samples. Concerning predictive value, manual and automatic
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Table 1. Regression-Prediction Model for Vessel Wall Segmentation

Regression Model Prediction Model Distance
TM β1 β0 SR CP1 CP2 MeanD

C1 ≤ 10−308 1.009 ± 0.002 0.063 ± 0.001 0.015 (-0.072,0.280) 0.200 0.105 ± 0.018

C2 ≤ 10−308 1.001 ± 0.006 0.229 ± 0.029 0.221 (-0.561,0.899) 0.822 0.365 ± 0.171

Table 2. Regression-Prediction Model Scores for Cardiac Phase Detection

Regression Model Prediction Model
TM β1 β0 SR CP1 CP2

C1 ≤ 10−308 0.998 ± 0.002 0.018 ± 0.038 0.004 (-0.113 ,0.047) 0.113
C2 ≤ 10−308 0.997 ±7.5e−4 -0.284± 0.026 0.003 (-0.096,0.001) 0.094
C3 ≤ 10−308 0.966 ±0.004 0.792 ± 0.255 0.662 (-1.454,-2.449) 1.362

Fig. 1. Regression Model and Prediction Intervals for Vessel Wall Segmentation

contours can be swapped for the whole sequence with high accuracy. For C2, the model
is a translation of the identity and the fitting is worse. This indicates severe contour
misalignment (see right image in fig. 1). We observe that in this case the squared root
of the fitting error (

√
SR = 0.4701) also agrees with MeanD ranges. Although the

two variables can be swapped (both measure the same [10]), the low accuracy of the
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Fig. 2. Regression Model and Prediction Intervals for Cardiac Phase Detection

prediction advises against swapping them. For the detection task (table 2), C1 and C2
present an accurate regression model close to the identity line and a good predictive
value. The non-zero intercept of C2 is due to a constant shift in manual samplings (see
left image in fig. 2). Concerning C3, both, the regression model and the predictive value,
present very bad scores and the samplings cannot be swapped (CP1 does not hold).

Figures 1 and 2 show the regression-prediction plots for vessel wall segmentation
and cardiac phase sampling, respectively. Each plot shows the point cloud AO (x-axis)
versus GT (y-axis), the regression line in black solid, PI limits in dashed black and the
identity line AO = GT in red. In the case of vessel wall segmentation (fig. 1), we show
a representative frame with manual (solid white) and automated (dashed yellow) con-
tours, while for cardiac phase sampling (fig. 2) we show a longitudinal cut with ECG
(yellow lines) and manual (cyan lines) samplings. For segmentation cases, the devia-
tion of the identity line from the regression model is similar in both cases, though the
range of the prediction interval is substantially larger for C2. This increase in error is
reflected in the visual quality of the segmentation shown at the right bottom image. Re-
garding detection plots, visual inspection of the longitudinal sampling for C2 reasserts
the agreement up to a constant shift reflected by the thin prediction interval in top left
plots. For C3, the identity line traverses prediction interval upper bound as suggested by
CP1 interval. The prediction model coincides with the erratic relation between manual
and ECG samplings observed in the left bottom image.

4 Conclusions and Future Work

Standardized validation of medical imaging algorithms allowing generalization of con-
clusions to clinical data is a challenging task not fully solved. We have approached
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validation from the point of view of statistical inference. In this context, we use a re-
gression model for assessing to what extent GT and AO can be swapped and a prediction
model for inferring conclusions to the whole population. Experiments on a segmenta-
tion task are a good proof of concept of the capability of the framework for assessing
performance, while experiments on a detection task illustrate its versatility.

The framework presented in this paper can be applied to explore the performance
from a relatively small test set. In order to fully generalize results to the whole clinical
data involved in each task, we should consider a general regression model with random
effects in order to account for variability across acquisitions. Also, in order to fully
validate their capability for assessing performance, we are running our methods on the
whole data set and metrics used in [12].
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11. Newbold, P., Carlson, W.L., Thorne, B.: Statistics for Business and Economics, 6th edn.
Pearson Education, London (2007)
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Abstract. Glaucoma is associated with axonal degeneration of the op-
tic nerve leading to visual impairment. This impairment can progress to
a complete vision loss. The transsynaptic disease spread in glaucoma ex-
tends the degeneration process to different parts of the visual pathway.
Most of glaucoma diagnosis focuses on the eye analysis, especially in the
retina. In this work, we propose a system to classify glaucoma based
on visual pathway analysis. The system utilizes diffusion tensor imaging
to identify the optic radiation. Diffusion tensor-derived indices describ-
ing the underlying fiber structure as well as the main diffusion direction
are used to characterize the optic radiation. Features are extracted from
the histograms of these parameters in regions of interest defined on the
optic radiation. A support vector machine classifier is used to rank the
extracted features according to their discrimination ability between glau-
coma patients and healthy subjects. The seven highest ranked features
are used as inputs to a logistic regression classifier. The system is ap-
plied to two age-matched groups of 39 glaucoma subjects and 27 normal
controls. The evaluation is performed using a 10-fold cross validation
scheme. A classification accuracy of 81.8% is achieved with an area un-
der the ROC curve of 0.85. The performance of the system is competi-
tive to retina based classification systems. However, this work presents
a new direction in detecting glaucoma using visual pathway analysis.
This analysis is complementary to eye examinations and can result in
improvements in glaucoma diagnosis, detection, and treatment.
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1 Introduction

More than 60 million people around the world suffer from glaucoma. Bilateral
blindness caused by glaucoma is estimated to affect more than 8 million peo-
ple [1]. Glaucoma is accompanied by neurodegeneration of the axonal fibers
in the optic nerve along with visual impairment. The development of glaucoma
can result in complete blindness. The vision loss can not be restored. However, if
glaucoma is detected in an early stage, its progression can be delayed or stopped.
Therefore, early detection of glaucoma is necessary as well as novel treatment
methods.

The conventional trend in glaucoma diagnosis is through eye examinations. In-
traocular blood pressure, retinal nerve fiber layer thickness measured by optical
coherence tomography (OCT), fundus images, and optic disc topography evalu-
ated by Heidelberg retina tomograph (HRT) are examples of glaucoma relevant
data examined by ophthalmologists to evaluate the glaucoma severity. Moreover,
systems were developed based on the aforementioned data among others using
various eye imaging modalities to screen, detect, and diagnose glaucoma [2,3].
Despite the efficiency and high performance of the developed systems, they focus
on the eye, specifically the retina, ignoring the largest part of the visual system
represented by the cerebral visual pathway fibers within the brain. In addition,
the mechanism of glaucoma progression and the functional or structural dam-
age precedence [4] are still unresolved issues. Therefore, exploring the recently
discovered possibilities offered by diffusion tensor imaging (DTI) [5] to recon-
struct and characterize the fiber structure of the human white matter [6] can be
a valuable addition to the glaucoma examination flow.

Recent studies addressed the visual system changes due to glaucoma. Garaci
et al. [7] showed that a reduction in fiber integrity affecting different parts of
the visual pathway as the optic nerve and optic radiation is correlated with
glaucoma. Another study showed axonal loss along the visual pathway from the
optic nerve through the lateral geniculate nucleus till the visual cortex in the
presence of glaucoma [8]. These results suggest that the visual pathway analysis
can be significant in detecting and diagnosing glaucoma.

In this article, we investigate the significance of DTI-derived parameters in
the optic radiation for glaucoma detection. We propose a classification system
based on statistical features derived from the histograms of the DTI indices.
The optic radiation is first identified automatically using the authors’ developed
algorithm [9]. A specific region of interest (ROI) on the optic radiation is then
manually delineated. The histograms of the DTI measures are calculated. The
histograms’ statistical features are extracted from the histograms of the DTI
indices in the specified ROI. The features are evaluated using a support vector
machine classifier for dimensionality reduction and the highest ranked features
are used for classification. The system is trained and tested using 10-fold cross
validation. Finally, the ability of the system to differentiate between normal
subjects and glaucoma patients is evaluated.
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2 Classification System

2.1 Diffusion Tensor Imaging

Diffusion-weighted imaging (DWI) brain scans were acquired using a 3T-MRI
high field scanner (Magnetom Tim Trio, Siemens, Erlangen, Germany). The
diffusion weighting gradients were applied along 20 non-collinear directions with
a maximal b-factor of 1,000 s/mm2. The scans were repeated four times and
averaged to increase the signal to noise ratio (SNR) and to improve the quality
of the images. The axial resolution was 1.8 × 1.8 mm2 with 5 mm slice thickness.
The corresponding acquisition matrix size was 128 × 128 on a field of view (FoV)
of 23 × 23 cm2. The acquisition sequence protocol was a single-shot, spin echo,
echo planar imaging (EPI) with parameters: TR = 3400 ms, TE = 93 ms, and
partial Fourier acquisition = 60%. The scans were complemented by a non-
weighted diffusion scan with b-factor equals zero. The Gaussian modeling of
the diffusion process within a voxel is represented by a 3 × 3 diffusion tensor.
The diffusion tensors were calculated from the DWI-datasets. The eigenvalue
decomposition of the diffusion tensors contained information about the principal
diffusion direction and aspects of the diffusion process (degree of anisotropy,
mean diffusion, etc). The diffusion tensors were spectrally decomposed. The
obtained eigenvalues were used to calculate the mean (MD), radial (RD), and
axial (AD) diffusivities in addition to the fractional anisotropy (FA) [10]. The
eigenvector corresponding to the largest eigenvalue was regarded as the principal
diffusion direction (PDD).

2.2 Optic Radiation Segmentation

The identification of the optic radiation was performed using the authors’ pre-
viously developed algorithm [9]. The algorithm operated on the interpolated
DTI-images to produce an automatic segmentation of the optic radiation. The
drawbacks of the Euclidean space interpolation and analysis of diffusion ten-
sors were avoided by the utilization of the Log-Euclidean framework [11]. The
DTI-images were enhanced by applying an anisotropic diffusion filtering to the
individual elements of the diffusion tensors. This increased the coherency within
the fiber bundles while preserving their edges. Based on neurophysiological facts
of the dominant diffusion direction in the optic radiation and its anatomical size
relative to other fibers, the optic radiation was initially identified using a thresh-
olding and connectivity analysis. Similarly, the mid brain was approximately
identified to be used later for segmentation enhancement. A region-based seg-
mentation with the initialization of the optic radiation from the previous step
was performed by a statistical level set engine [12]. The level set segmentation
was adjusted to work with the Log-Euclidean metric for extending the framework
to Riemannian operations while maintaining the computational efficiency. The
framework optimized the posterior probabilities of partitioning the brain image
space into the optic radiation and the remaining parts of the brain. The proba-
bilities were modeled by normal distributions of the diffusion tensors within each
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of the two division parts. Finally, the outcome of the level set segmentation was
adjusted based on the relative anatomical position between the optic radiation
and the mid brain. This was done to remove the tracts anteriorly connected
to the optic radiation (i.e., optic tracts). Further details on the segmentation
system can be found in [9].

2.3 Region of Interest Selection

In this step, a region of interest defined on the segmented optic radiation was
configured. The slice containing the optic radiation and clearly identifying the
termination of the optic tracts in the lateral geniculate nucleus (LGN) region
was located in all subjects. The automatic segmentation on the selected slice
was examined by two DTI experts and the segmentation errors were manually
corrected. Moreover, the connection of the optic radiation to the primary vi-
sual cortex was manually eliminated. This region is characterized by misleading
reduced fractional anisotropy due to the limitation of the diffusion tensor in
modeling the branching and crossing fibers [13]. The final processed optic radi-
ation on the selected slice was the ROI used in the remaining analysis. Figure 1
shows an example of a selected ROI on a sample subject.

Fig. 1. The semi-automatically identified region of interest (ROI) representing the optic
radiation shown on a fractional anisotropy image (left). The diffusion direction coded
image (right) of the ROI-slice demonstrates the dominant anterior-posterior diffusion
direction in the optic radiation. The selected slice indicates clearly the termination of
the optic tracts at the lateral geniculate nuclei (LGN) as indicated by the white arrows
on the right image.



Glaucoma Classification Based on Diffusion Tensor Imaging Measures 533

2.4 Histogram Analysis and Feature Extraction

The histograms of the four DTI-derived parameters (FA, MD, RD, and AD) in
the specified ROI were computed. A number of bins for each parameter were
predetermined and the number of voxels corresponding to a certain bin range
was calculated. The PDD has a unity length with three components representing
the three coordinate axes. The PDD was converted to the spherical coordinate
system. The histograms of the azimuth and inclination angles were measured by
binning them in 0.2 radians bins. Since the sign of the PDD is not representative,
the range of the azimuth angle was restricted between zero and 180 degrees while
the inclination angle range was retained between zero and 180 degrees. That was
simply done by inverting the direction of the PDD if it falls outside these ranges.
Six first order statistical features (Mean, variance, skewness, kurtosis, energy,
and entropy) of the DTI-indices and the PDD were derived from the histograms
using the following equations:

Mean : μ =
N∑

i=1

param(i)× hist(i) (1)

V ariance : σ2 =
N∑

i=1

(param(i)− μ)2 × hist(i) (2)

Skewness : μ3 = σ−3
N∑

i=1

(param(i)− μ)3 × hist(i) (3)

Kurtosis : μ4 = σ−4
N∑

i=1

(param(i) − μ)4 × hist(i)− 3 (4)

Energy : E =
N∑

i=1

[hist(i)]2 (5)

Entropy : H = −
N∑

i=1

hist(i) log(hist(i)) (6)

where N is the number of bins in the corresponding DTI-parameter histogram,
hist is the normalized histogram (i.e. probability distribution which is the his-
togram divided by the total number of voxels within the ROI), i is the index
of the ith bin, and param(i) is the mean value of the corresponding parameter
(param) in the ith bin.

2.5 Feature Selection and Classification

A support vector machine classifier [14] was used to rank the 36 histogram fea-
tures by recursive feature elimination. This procedure works as follows: The
support vector machine classifier was trained using the complete feature set and
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the features’ weights were determined. Then, the feature with the lowest squared
weight was considered as the least ranked feature. The feature with the lowest
rank was removed from the feature set. The previous steps were repeated it-
eratively with the remaining features until all the features were ranked. The
highest seven ranked features provided the best classification performance and
were, therefore, selected as features for the classifier. For classification, the se-
lected seven features were the input to a logistic regression classifier. The training
and testing were performed using a 10-fold cross validation analysis. The soft-
ware implementation in Weka [15] was used for the feature selection and the
classification.

3 Results

The proposed system was applied to two groups of subjects: A group of 27 healthy
controls with a mean age of 58.52± 10.10 years (17 females and 10 males) and 39
patients with primary open angle glaucoma (POAG) with a mean age of 61.74
± 8.32 years (19 females and 20 males). The two groups were age matched and
the two-sided Wilcoxon ranksum test which is equivalent to the Mann-Whiteny
U-test gave a p-value of 0.17 indicating the correlation between the ages of the
two groups. The subjects underwent MRI and DTI brain scans. The brains were
examined by experienced neuroradiologists and did not show any indications of
neuronal diseases or lesions affecting the visual pathway. The optic radiations of
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Fig. 2. The Receiver Operating Characteristic (ROC) curve of the glaucoma classifi-
cation system based on DTI measures. The area under the ROC curve is 0.85.
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all subjects were segmented and the ROIs were selected. The statistical features
were extracted from the histograms of the four DTI-derived indices as well as the
azimuth and inclination angles of the PDD. The features were ranked by a sup-
port vector machine classifier. The seven most discriminating features were: MD
Kurtosis, RD Skewness, FA Entropy, MD Skewness, Azimuth Energy, Azimuth
Entropy, and FA Mean, respectively. A logistic regression classifier was trained
and tested using these seven features in a 10-fold cross validation setup.

The classification accuracy of the system was 81.82%. This rate corresponded
to the correct recognition of 54 subjects’ classes. Out of these 54 subjects, 36 were
glaucoma patients and 18 were control subjects. Three glaucoma patients and 9
normal subjects were wrongly diagnosed. The receiver operating characteristic
(ROC) curve was calculated and plotted in Figure 2. The area under the ROC
curve was 0.853. A sensitivity of 92.31% for glaucoma detection and specificity
of 70.37% were obtained. Additional values from the ROC curve at a different
threshold showed a sensitivity of 71.79% at a fixed specificity of 85.19%.

4 Discussion and Conclusion

This paper proposed a new approach in glaucoma detection using visual pathway
analysis. Utilizing the capabilities of the diffusion tensor imaging, the system
identified and characterized the fiber structure of the optic radiation. First order
statistical features extracted from the histograms of the DTI-derived measures
were used to detect glaucoma. The classification performance obtained by the
proposed system is comparable to systems based on eye imaging modalities [3].
Nevertheless, the significance of the DTI-parameters and the histogram features
is evident from the limited number of features used.

Diffusion tensor-derived indices characterize different aspects of the under-
lying fiber structure. For example, FA indicates the degree of intravoxel fiber
alignment and coherency while MD is related to the fiber integrity. Thus, these
parameters were shown to correlate with the cerebral fiber damage caused by
neuronal diseases such as Alzheimer and glaucoma. Four classification features
among the highest ranked features were derived from the FA and the MD his-
tograms demonstrating the sensitivity of these parameters to glaucoma. Frac-
tional anisotropy and MD were shown to correlate with glaucoma [7] and such
an influence can be expected.

The proposed classification method based on visual pathway analysis presents
a new perspective in detecting diseases affecting the visual system such as
glaucoma. Diffusion tensor imaging provides valuable information regarding the
white matter microstructure allowing for the identification, characterization, and
pathological diagnosis of fiber tracts. The high classification rates are indicators
of the sensitivity of the features derived from the DTI-measures to glaucoma. It
also emphasizes the effect of glaucoma on the entire visual system. This analysis
is complementary to retina-based diagnosis. The integration of features from tra-
ditional eye imaging modalities and diffusion tensor imaging covers the complete
visual system. Thus, it can enhance the detection of glaucoma significantly, the
understanding of its pathophysiology, and consequently the treatment methods.
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Abstract. In recent years, endovascular aneurysm repair (EVAR) has proved to 
be an effective technique for the treatment of abdominal aneurysm. However, 
complications as leaks inside the aneurysm sac (endoleaks) can appear, causing 
pressure elevation and increasing the danger of rupture consequently. 
Computed tomographic angiography (CTA) is the most commonly used 
examination for medical surveillance, but endoleaks can not always be detected 
by visual inspection on CTA scans. The aim of this work was to evaluate the 
capability of texture features obtained from CT images, to discriminate 
evolutions after EVAR. Regions of interest (ROIs) from patients with different 
post-EVAR evolution were extracted by experienced radiologists. Three 
different techniques were applied to each ROI to obtain texture parameters, 
namely the gray level co-occurrence matrix (GLCM) , the gray level run length 
matrix (GLRLM) and the gray level difference method (GLDM). In order to 
evaluate the discrimination ability of textures features, each set of features was 
applied as input to support vector machine (SVM) classifier. The performance 
of the classifier was evaluated using 10-fold cross validation with the entire 
dataset. The average of accuracy, sensitivity, specificity, receiving operating 
curves (ROC) and area under the ROC curves (AUC) were calculated for the 
classification performances of each texture-analysis method. The study showed 
that the textural features could help radiologists  in the classification of 
abdominal aneurysm evolution after EVAR. 

Keywords: Aneurysm, EVAR,  texture features, support vector machine. 

1   Introduction 

The Endovascular Aneurysm Repair (EVAR) treatment, is a percutaneous image-
guided endovascular procedure in which a stent graft is inserted into the aneurysm 
cavity. Once the stent is placed, the blood clots around the metallic mesh forcing the 
blood flux through the stent and thus reducing the pressure on the aneurysm walls. 
Nevertheless, in a long term perspective different complications such as prostheses 
displacement or leaks inside the aneurysm sac (endoleaks) could appear  provoking a 
pressure elevation and increasing the danger of rupture consequently. Due to this, 
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periodic follow-up scans of the prosthesis behaviour are necessary. At present, 
contrast enhanced computed tomographic angiography (CTA) is the most commonly 
used examination for imaging surveillance [1]. On the other hand, the post operation 
analysis is quite crude as it involves manually measuring different physical 
parameters of the aneurysm cavity [2]. According to these measurements, the 
evolution of the aneurysm can be split up  into two main categories: Favourable 
evolution, when a reduction of the diameter of the aneurysm sac can be observed what 
means that the aneurysm has been correctly excluded from the circulation. 
Unfavourable evolution, when a growth of the aneurysm diameter in presence of 
endoleaks is observed. Endoleaks can be detected thanks to contrast in the CT images.  

In Fig. 1 two series of images for favourable and unfavourable evolution are 
shown. We could also distinguish a subcategory inside the unfavourable evolution 
cases.  There are patients in which abdominal aneurysm does not increase or reduce 
significantly its volume and endoleaks are not visually detected (endotensión) [3]. 
The reason for this behaviour it is not completely known but it is usually attributed to 
different causes [4]. The initial idea behind the study is that texture thrombus in 
favourable shrinking aneurysms might differ from unfavourable expanding ones. If 
the hypothesis is confirmed, we consider to extend the analysis to endotension cases 
in posterior studies. 

1.1   Texture Analysis 

In recent years, many efforts have been put into the developing of Computer Aided 
Diagnosis systems based on image processing methods. The principal motivation for 
the research on this kind of systems has been to assist the clinicians on the analysis of 
medical images. In many occasions this analysis implies the detection or 
measurement of subtle differences,  usually difficult to appreciate by visual inspection 
even for experienced radiologists. Computer Aided Diagnosis systems have been 
successfully utilized in a wide range of medical applications [5-7]. A particular field 
inside the image processing methods is the so named texture-based analysis. This 
analysis studies, not only the variation of the pixel intensity values along the image 
but also the possible spatial arrangement of them, and the more or less periodic 
repetition of such arrangement (primitives). From this point of view texture analysis 
can help on the  functional characterization of different kind of organs, tissues, etc, at 
the evolution of disease. The textures features obtained from the analysis can be fed 
as inputs for a deterministic or probabilistic classifier, which assign each sample with 
its specific class. 

Textures analysis methods can generally be classified into three categories: 
statistical methods, model based methods, and structural methods [8]. In our approach 
we have focused on the application of statistical texture methods, specifically, on 
spatial domain statistical techniques as the Gray Level Co-occurrence Matrix 
(GLCM) [9], the Gray Level Run Length Matrix (GLRLM) [10] and the Gray Level 
Difference Method (GLDM) [11]. These three very extended methods can capture 
second or higher order statistics on the relation between gray values in pixel pairs or 
groups of pixels in order to estimate their probability-density functions. Their validity 
has been proved in many studies [12-14]. 
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Fig. 1. CTA images of 2 patients treated with EVAR. Top row: favourable evolution. (a) 1 year 
after treatment. (b) 2 years after. (c) 3 years after. Bottom row: unfavourable evolution.(e) 1 
year after treatment. (f) 2 years after. (g) 3 years after. White arrow points aneurysm sac in all 
of the scans. 

Our purpose in this study is to investigate the GLCM, GLRLM and GLDM 
capacity for discriminate between favourable and unfavourable evolutions of patients 
after abdominal EVAR treatment. For obtaining this objective a semi-automated 
segmentation process to facilitate the extraction of samples has been developed. Once 
the samples from patients with different post-EVAR evolution have been obtained, 
the texture features from the three methods are calculated and fed into a support 
vector machine classifier for automatic classification. 

The paper is organised as follows: "Materials and Methods" provides with 
information about the acquisition of CTA images, the description of the segmentation 
process, the theoretical background on the texture analysis methods, and the definition 
of the support vector machine structure. The methodology, and results obtained from 
the performance evaluation of the classifier are presented in "Results". Finally, some 
conclusions are given in "Conclusion" section. 

2   Materials and Methods 

2.1   Dataset 

The CTA image scans used in this work were obtained by experienced radiologists 
from the Vascular Surgery Unit and Interventional Radiology Department of the 
Donostia Hospital. These CTA images belong to the scan studies of 70 patients with 
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ages ranging from 70 to 93 years, conducted over a maximum of 5 years in fixed 
periods of 6 -12 months.  The total patient set was selected by the radiologist team 
and balanced samples sets for training and testing the classifier system were obtained.  
A total of 35 CTA studies belonged to the "favourable evolution" class and 35 to the 
"unfavourable" one. All the studies were taken from the abdominal area with a spatial 
resolution of 512×512 pixels and 12-bit gray-level at the WW400 y WL40 window 
and 5 mm thickness in DICOM format. For each patient a maximum of three ROIs 
(15x15 pixels) were extracted from different slices, resulting in a total of 210 ROIs. 
Half of them corresponded to the "favourable evolution" group and the rest to the 
"unfavourable" one. 

2.2    Segmentation Process 

In order to facilitate the extraction of samples by radiologists a semi-automated 
segmenting process of the aneurysm has been implemented [15]. Based on the series 
of CTA scans in DICOM, images are created with a volume format. During this 
process the resolution and the spacing of the original images are preserved. The files 
obtained are used as inputs for the following 3D processing pipeline.  The spinal canal 
is segmented to use it as reference, as it deforms only a little and it is relatively easy 
to segment. The aneurysm is segmented using a combination of fast marching method 
to delineate the thrombus and confidence connected components to delineate the stent 
graft. The two segmentations are then fused together using geodesic active contours 
and smoothed using a median filtering.  The segmented volume is resliced along the 
axial plane facilitating the extraction of the 15x15 pixels ROIs of thrombus aneurysm 
samples by specialists.  

2.3   Texture Analysis – Feature Extraction 

2.3.1   Gray Level Co-occurrence Matrix (GLCM) 
The gray level co-occurrence matrix (GLCM) [9] is an estimation of a second order 
joint conditional probability density function f(i,j⏐d, θ). This function characterizes 
the spatial interrelationships of the gray values in an image. The values of the co-
occurrence matrix elements represent the probability of going from grey level i to 
grey level j given that they are separated by the distance d and the direction is given 
by the angle θ (usually θ = 0°, 45°, 90°, and 135°). In the present application, GLCM 
features have been calculated at distance 1 due to the reduced size of the aneurysm 
samples. Initially, the assumption of an isotropic texture distribution inside the 
aneurysm sac was considered, consequently  averaging over the four angular 
directions was computed. To reduce the influence of random noise on texture 
features, the number of gray levels was reduced to 16 prior to the accumulation of the 
matrix. From GLCM matrix a set of features are obtained to classify the kind of 
texture analysed. In this study, 13 features have been evaluated: Energy, correlation, 
inertia, entropy, inverse difference moment, sum average, sum variance, sum entropy, 
difference average, difference variance, difference entropy and two information 
measures of correlation. 
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2.3.2   The Gray Level Run Length Matrix (GLRLM) 
The gray level run length matrix (GLRLM) [10] is a way of extracting higher order 
statistical texture information. For a given image, a gray level run is a set of linearly 
adjacent picture points having the same gray level value.  A run length matrix is a 
two-dimensional matrix in which each element p(i,j⏐ θ) represents the total number of 
runs with pixels of gray value i and run length j in a certain direction θ.  The number 
of gray levels in the image is usually reduced by re-quantization before the 
accumulation of the matrix. In our study the number of gray levels has been kept in 
16, equal than in the GLCM method in order to make both methods comparable. 
Various textures features can then be extracted from the run length matrix. In our case 
the following 11 features has been calculated: short run emphasis, long run emphasis, 
gray-level nonuniformity, run length nonuniformity, run percentage, low   gray-level 
run emphasis, high gray-level run emphasis, short run low gray-level emphasis, short 
run high gray-level emphasis, long run low gray-level emphasis, and long run high 
gray-level emphasis. 

2.3.3   Gray Level Difference Method 
The Gray Level Difference method (GLDM) [11] is based on the occurrence of two 
pixels which have a given absolute difference in gray level and which are separated 
by a specific displacement δ, estimated by the probability-density function D(i⏐δ). In 
this analysis, four possible forms of the vector δ will be considered: (0, d ), (-d , d), ( 
d, 0), and (d , -d) where d is the intersample spacing distance. Due to the reduced size 
of the aneurysm samples, d distance was considered equal to 1. Five textural features 
are measured from D(i⏐δ): contrast, angular second moment, entropy, mean, and 
inverse difference moment. As with the GLCM method, the assumption of an 
isotropic texture distribution inside the aneurysm sac was considered, consequently 
averaging over the four angular directions was computed. 

2.4   Classification 

To test the approach, a Support Vector Machine (SVM) [16] has been utilized as 
texture classifier. Support vector machine classifier is a powerful machine learning 
tool which that generalizes well to a wide range of real-world applications [17-18]. 
The basic idea of SVM classifier is to determine a separating hyperplane that 
distinguishes between two classes. Given a set of labeled training data, the  input data 
are transformed into high-dimensional feature space with the use of kernel functions, 
so that the transformed data becomes more separable compared to the original ones. 
The SVM attempts to minimize a bound on the generalization error and therefore it 
tends to perform well when applied to data outside the training set. Lots of variety 
kernels can be employed for mapping input data but some of the most frequently used 
kernel functions are Gaussian, Polynomial and Sigmoid kernels. In this study, the 
Gaussian radial basis function (RBF) kernel was utilized because of its good results  
in many practical applications. Three SVMs with different number of inputs were 
implemented. A SVM with 13 inputs for GLCM, another with 11 inputs for GLRLM, 
and another one with 5 inputs for GLDM. All the textural features were normalized 
by the sample mean and standard deviation of the data set before being fed to the 
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SVM. In our case, the best classification was obtained with a penalty factor value of 
+4.7 and a sigma value of +12.5 for cross correlation protocol. 

3   Results 

In order to evaluate the potential of texture analysis to discriminate between the two 
types of aneurysm evolution the development and validation of the SVM has been 
based on the 10-fold cross validation method. To improve the evaluation of 
performance of the feature sets, the process was repeated 6 times averaging the 
results.The averages  of accuracy, sensitivity, and specificity for all the trials were 
used as an estimate of the performance of each classifier and consequently of the 
discrimination ability of textures features for differentiate between favourable or 
unfavourable cases. Table 1 shows the accuracy, sensitivity, and specificity values 
(mean ± standard deviation) estimated by the cross validation of the testing sets for 
each texture method.  

Table 1. The average classification accuracy, sensitivity and specificity (in %) for testing sets 
of the SVMs are given for the GLCM, GLDM, and GLRLM features 

Accuracy (%)  Sensitivity (%)     Specificity (%)    Texture 
Method mean std mean std mean std 
GLCM 93.61 0.15 95.08 0.12 90.80 0.24 
GLDM 91.41 0.23 93.20 0.21 90.20 0.17 
GLRLM 84.05 0.47 85.44 0.17 81.74 0.19 

 
From the table 1, it is shown that all texture analysis methods supplied the support 

vector machine classifiers with enough discriminative information to differentiate 
between aneurysm evolutions. The best performing features set in terms of correctly 
classified cases corresponds to the GLCM method (93.64% ± 0.15) but the other two 
methods, GLDM (91.41% ± 0.23) and  GLRLM (81.74% ± 0.19),  could also be 
considered as significant. The area under the ROC curve (AUC) was also used as a 
measure of the classification performance. Table 2 presents the  AUC values (mean ± 
standard deviation) calculated for feature training and testing sets using the 10-fold 
cross validation. 

Table 2. The AUC values (mean ± standard deviation) calculated for feature testing sets using 
the 10-fold cross validation 

AUC_mean testing Texture 
Method mean std 

GLCM 0.930 0.020 
GLDM 0.883 0.032 
GLRLM 0.821 0.042 

 
 
The obtained values show again that the biggest area under the ROC curve, and 

consequently the best performance of the classifier is obtained with the set of features 
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extracted with the GLCM method (0.930 ± 0.020), followed by the GLDM (0.883± 
0.032) and the GLRLM methods (0.821± 0.042). Figure 4 depicts the average ROC 
curves obtained using the 10-fold cross validation testing sets for each texture 
method. 

 

Fig. 4. Averaged ROC curve for testing sets from GLCM (⎯), GLDM (····), and RLGM (‒ ‒) 
features fed into support vector machine inputs 

Although the GLCM method scores the highest AUC value, the GLDM method 
follows it very closely. The GLRLM method performance is the worst of three but it 
can still be considered as indicative. These ROC curves confirm the previous results 
and reinforce the hypothesis of using texture analysis as discriminative information. 
According to classification results for the three methods we could affirm that texture 
analysis might offer complementary information to support radiologist on classifying 
aneurysm evolution after EVAR. 

4   Conclusions 

The results obtained by each texture analysis method permit to assert that the two 
main aortic thrombus aneurysm evolutions, namely favourable or unfavourable, 
correspond to different textures parameters. Consequently, we can conclude that 
texture analysis could be utilized by physicians as complementary information to 
classify the post-operative evolution in patients who underwent EVAR treatment. The 
results can be considered as promising, taking into account the limited number of 
patients. A bigger patient dataset would be needed in order to generalise the findings 
to different clinical situations. The study can also be regarded as a first step to more 
specific studies, particularly for the unfavourable-endotension cases. In these cases a 
better knowledge of the evolution of aneurysm thrombus by mean of texture analysis 
could be precious for physicians at the time to decide the treatment to follow.  
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Abstract. Geometric distortion of diffusion tensor imaging (DTI) al-
ways results in inner brain tissues shift and brain contour deformation
and it will certainly lead to the uncertainty of DTI and DTI fiber track-
ing in the planning of neurosurgeries. In this study, we investigated the
accuracy of two deformable registration algorithms for distortion cor-
rection of DTI in the application of computer assisted neurosurgery
system. The first algorithm utilized cubic B-spline modeled constrained
deformation field (BSP) registration of the 3D distorted DTI image to
3D anatomical image, while the second algorithm used multi-resolution
B-spline deformable registration. Based on the results, we found that
multi-resolution B-spline registration is more reliable than BSP registra-
tion for distortion correction of multi-sequence DTI images, the contour
deformation and inner brain tissue displacement could be well calibrated
in 2D and 3D visualizations. The mesh resolution of B-spline transform
plays a great role in distortion correction. This multi-resolution B-spline
deformable registration can help to improve the geometric fidelity of DTI
and allows correcting fiber tract distortions which is critical for the ap-
plication of DTI in computer assisted neurosurgery system.

Keywords: Diffusion tensor imaging, Geometric distortion, Deformable
registration, B-spline transform.

1 Introduction

Currently, MR DTI is widely utilized in many clinical practices, especially in
the field of neurological evaluation and neurosurgical planning [1]. The common
scanning pulse sequence of DTI is multi-directional diffusion weighted imaging
(DWI) with a fast, single-shot, echo planar imaging (EPI) readout [2]. This fast
imaging protocol leads to geometric distortion for the effect of eddy current pro-
duced during DTI data acquisition. In the field of image guided neurosurgery,
connection of cerebral lesions and adjacent fiber bundles is usually provided by
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fusing anatomical images and fiber bundles reconstructed by DTI fiber tracking,
but the distortion makes the fusion could not provide reliable anatomical rela-
tionship. The maximum distortion along the phase-encoding direction can reach
6.5mm at the brain frontal lobe and represents nonlinear characteristics, while
distortion along the frequency-coding direction is inconspicuous [3]. Fig. 1 shows
the fusion image of an anatomical image and a fiber tract of corpus callosum
(CC) reconstructed from raw distorted DTI images. It is easily seen that the CC
extends out the brain boundary at the region of frontal lobe (labeled by green
arrow).

Fig. 1. The fusion of anatomical image and CC tract from raw DTI image

Image registration schemes can be generally classified into two kinds of mod-
els for correcting DTI distortion. One kind of these is the linear model. In the
work by Mistry et al. [4], the retrospective registration via mutual information
(MI) and Fourier transform(FT)-based affine deformations was applied to cor-
rect distortion in a 3D high resolution DTI dataset, but the distortions could
be not completely corrected. Another kind of these is the nonlinear model. A
nonlinear registration using Bezier functions was presented for the correction of
susceptibility artifacts in DTI [5]. The comparison of two EPI distortion cor-
rection methods in DTI was addressed by Wu et al. [6], BSP showed an overall
better performance than B0 field mapping. In summary, the B-spline transform
utilized in mentioned nonlinear registrations is effective in distortion correction.
Nevertheless, its accuracy still needs further evaluation for severe clinical re-
quirements.

In this study, two deformable registration approaches based on B-spline trans-
form were presented to solve the intractable distortion of DTI. The accuracy and
performance of the two proposed method was also compared and addressed in
detail in latter sections. This study aims to determine the reliability of using B-
spline deformable registration for the system of computer assisted neurosurgery.

2 Materials and Methods

2.1 Image Data

A total of 10 cases of clinical DTI images were provided by the Huashan hospital
where the authors are affiliated with. Five cases were acquired from a 1.5T MRI
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scanner (Signa Twin speed, GE Medical Systems, USA). The other five cases
were acquired from a 3T MRI scanner (Signa Excite, GE Medical Systems, USA).
DTI was acquired with a multi-slice single shot spin echo (SE) diffusion weighted
EPI sequence (TE = 70-90 ms, TR = 7000-8000 ms, slice thickness = 5-7 mm,
thick gap = 1 mm, matrix = 128 ×128, FOV = 24 cm, b = 1000 s/mm2, 6-20
non-collinear gradient directions). The corresponding T1 or T2 weighted image
(WI) was acquired with an SE sequence (FOV = 24 cm, TR = 2000-2280 ms,
TE = 18-20 ms, slice thickness = 7-10 mm, thick gap = 1 mm). Axial view
orientation was used for all images.

2.2 Deformable Registration

The registration has two basic input images. A 3D reference image is defined as
the fixed image and a 3D DTI image as the floating image. This process involves
an optimization problem to find the spatial map that will align the floating image
with the fixed image by iteratively searching the space defined by the transform
parameters.

A similarity metric of mutual information (MI) is applied because it is a robust
measure criterion for the registration between two images of different modalities
[7]. The MI can quantitatively measure how well the transformed floating image
fits the fixed image by comparing the gray-scale intensity of the two images. The
optimization of Limited memory Broyden Fletcher Goldfarb Shanno with bound
constrained (LBFGSB) is used to find the global extreme of the MI criterion
due to its efficiency in optimizing high numbers of transform parameters [8].
The Bi-linear interpolator is assisted to estimate the image intensity at the non-
grid positions. Here, the 3D deformable transform implemented in deformable
registration is either BSP transform or two levels of B-spline transform with
different mesh resolutions.

The deformable BSP transform is designed to deal with different scale distor-
tions by setting appropriate 3D mesh resolutions. The transformation model is
a 3D free-form deformation (FFD) [9] that can be described by a cubic B-spline
as:

TB(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)Φi+l,j+m,k+n (1)

For any point x, y and z of the floating image, the B-spline transform is
computed from the positions of the surrounding 4×4×4 control points. The
parameter Φi,j,k is the set of the deformation coefficients which is defined on
a regular lattice of control points placed over the floating image. The spacing
between the control points is denoted by δx, δy and δz which represents the lattice
mesh resolution. The mesh resolution is inverse proportional to the capability
of correcting distortion. The i, j and k are the indices of the control points
i = x/δx-1, j = y/δy-1 and k = z/δz-1; u, v and w are the relative positions of
(x, y, z) inside that cell in the 3D space:
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The functions B0 through B3 are the third-order spline polynomials:

B0(t) = (−t3 + 3t2 − 3t + 1)/6
B1(t) = (3t3 − 6t2 + 4)/6
B2(t) = (−3t3 + 3t2 + 3t + 1)/6
B3(t) = t3/6

(3)

The two levels of B-spline transform consists of two layers of B-spline trans-
form with appropriate mesh resolutions. It first performed at a coarse level where
the two images have fewer pixels and the transform parameters are then used
to initialize registration at the next finer level where the two images have more
pixels. The whole space transform T (u, v, w) is then defined as:

T (u, v, w) = Tglobal(u, v, w) + Tlocal(u, v, w) (4)

Where the B-spline transform Tglobal(u, v, w) with low mesh resolution at
the first level solves large-scale global distortion, While the B-spline transform
Tlocal(u, v, w) with high mesh resolution at the second level is used to solve
residual small-scale local distortion after the transform of Tglobal(u, v, w). In
this way, the transform parameters of the first level are transferred to the next
level for deducing the whole space transform. For every level, the mentioned
optimization is used to find the global extreme of transform parameters.

3 Experimental Setup

3.1 Setup of Distortion Correction Method

The distortion correction method used in this study involves three steps. The
first step is the 3D brain segmentation of an undistorted reference and a dis-
torted DTI image sequences using brain extraction tool (BET) first proposed by
Smith [10]. The aim of 3D brain segmentation is to avoid the disturbance from
non-brain tissues to ensure the reliability of the 3D registration. T1WI or T2WI
images of SE sequence are taken as the reference images because they explicitly
represent anatomical structures and show negligible distortion. The second step
is the 3D deformable registration methods mentioned above. The third step is
the correction of multiple DTI sequences by the optimal space transform de-
duced from step two. DTI is a multi-directional imaging modality that includes
at least seven sequences for tensor computation, and many other routinely re-
quired scalar metric sequences in radiological diagnosis. Through the transform
T (u, v, w), every 3D floating image can be matched with 3D reference image
and its distortion can be rectified.

3.2 Setup of Method Validation

The two registration algorithms with different mesh resolutions are compared for
identifying theirs performance. The whole process is accomplished by a panel of
three experienced radiologists for the estimation of correction accuracy.
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In the 2D visualization, the same 2D physical slices are drawn from 3D images.
The maximum brain contour deformation along phase coding direction and the
inner brain displacement of lateral ventricle are analyzed by overlying reference
image with distorted or corrected DTI images, respectively. Those maximum
differences in brain boundary and inner brain displacement are visually inspected
and measured with the software of Adobe Photoshop by the radiologists. The
measured results are performed with independent samples t test.

In the 3D visualization, the brain contour deformation and inner brain dis-
placement are also compared by visual inspection. During the comparison of
inner brain tissue displacement, the CC tracked by fiber assignment by contin-
uous tracking algorithm [11] is fused with corrected or uncorrected fractional
anisotropy (FA) images. The match of CC tract and WM in FA images reflect
the ability of the two proposed methods in correcting fiber tract distortion.

4 Results

Figs. 2-5 show some examples of the method outcomes. Fig. 2 shows the mea-
surements of maximum brain distortion and inner brain displacement; Fig. 3
shows the comparison of brain contour correction results in 2D; Fig. 4 shows the
comparison of inner brain displacements of lateral ventricle in 2D; Fig. 5 shows
the comparison of 3D results.

4.1 Visualization of Results in 2D

Figs. 2a and 2b show the measurement of maximum brain contour distortion. The
brain boundary of reference image is enclosed by the red rectangle, whereas that
of DTI is drawn by the green rectangle. The two overlying images with rectangles
is presented in Fig. 2b; The distortion along the phase-coding direction is obvious
and it is inconspicuous along the frequency-coding direction. Table 1 records the
maximum brain contour distortions along the phase-coding direction without
correction. Figs. 2c and 2d display the measurement of inner brain displacement.
The lateral ventricle from the reference image is overlaid with the DTI image is
presented in Fig. 2d. The anterior horn of the lateral ventricle appears distinct
in the non-overlapped regions, whereas no obvious displacement can be found at
the posterior horn of lateral ventricle. Table 2 lists the displacements of lateral
ventricle without correction.

Fig. 3a shows the overlaid image of reference image and uncorrected DTI im-
age. Fig. 3b shows the overlaid image of reference image and corrected DTI image
by the BSP at the mesh resolution of 6×6×5; Fig. 3c shows the overlaid image
of reference image and corrected DTI image by the multi-resolution B-spline
deformable registration method at the first level with mesh resolution of 6×6×5
and at the second level with mesh resolution of 12×12×5. The brain boundary
in the reference image is delineated in green, whereas the brain boundary in the
corrected DTI image is drawn in red only at the region of frontal lobe for its ob-
vious distortion. For the two registrations, there still exists some relic distortion
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Fig. 2. Measurements of maximum brain contour distortion and inner brain displace-
ment: (a) reference image; (b) DTI image; (c) lateral ventricle image from (a); (d)
overlying image of (b) and (c)

Fig. 3. Comparison of brain contour correction results in 2D: (a) without correction;
(b) BSP method; (c) multi-resolution B-spline registration method

after the correction by the BSP and the difference in brain contour is almost
negligible by the multi-resolution B-spline method. Table 1 gives the results of
the maximum brain distortion along the phase coding direction corrected by the
two proposed methods.

Fig. 4a shows the overlaid image of lateral ventricle from reference image
and segmented DTI raw image and Fig. 4b shows the corresponding overlaid
image of lateral ventricle segmented from the reference image and corrected DTI
image. After distortion correction, the displacement of lateral ventricle could be
fully rectified without displacement. Table 2 records the displacements of lateral
ventricle corrected by the two proposed methods.

Table 1 shows that the maximum distortions in DTI can be corrected by
the method of BSP (10.5±1.70 vs. 2.7±0.59, P<0.001, paired t test) and the
proposed multi-resolution B-spline registration (10.5±1.70 vs.1.5±0.53 P<0.001,
paired t test). The proposed multi-resolution B-spline registration shows better

Fig. 4. Comparison of inner brain displacements of lateral ventricle in 2D: (a) without
correction; (b) BSP method; (c) Multi-resolution B-spline registration method
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Table 1. Comparison of maximum distortion (mm)

Case number 1 2 3 4 5 6 7 8 9 10

Distortions without correction 13.0 10.5 8.5 9.0 11.5 10.0 10.5 13.5 9.5 9.0
BSP correction 2.5 2.5 2.0 2.5 3.0 2.5 3.0 4.0 2.0 3.0

Multi-resolution correction 0.5 1.5 1.5 1.5 2.0 1.5 1.5 2.5 1.0 1.5

performance than the BSP method (2.7±0.59 vs. 1.5±0.53, P<0.001, paired t
test).

Table 2 shows that the inner displacements in DTI can be corrected by the
BSP method (3.6±0.84 vs. 2.35±0.53 P<0.005, paired t test) and the proposed
multi-resolution B-spline registration method (3.6±0.84 vs. 1.15±0.47 P<0.001,
paired t test). The proposed multi-resolution B-spline registration method shows
better performance than the BSP method (2.35±0.53 vs. 1.15±0.47 P<0.001,
paired t test).

Table 2. Comparison of inner brain displacements(mm)

Case number 1 2 3 4 5 6 7 8 9 10

Distortions without correction 5.0 3.0 3.0 4.0 3.0 4.0 3.0 5.0 3.0 3.0
BSP correction 3.0 2.0 2.0 3.0 2.5 2.0 2.0 3.0 1.5 2.5

Multi-resolution correction 0.0 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.0

4.2 Visualization of Results in 3D

Figs. 5a-5d show the comparison of brain contour in 3D. Fig. 5a shows the 3D
reference brain image and Fig. 5b shows the corresponding 3D distorted DTI
image. Compared with reference image, contour distortion in the DTI image
(indicated by red arrows) is visible at the frontal lobe in Fig. 5b. Fig. 5c shows
the corrected DTI image of By BSP and Fig. 5d shows the corrected DTI im-
age by multi-resolution B-spline method. The two proposed methods can minish
contour distortion and the multi-resolution B-spline registration is superior to
the BSP in brain contour correction; Figs. 5e-5h show the comparison of inner
brain displacement of CC in 3D. Fig. 5e shows the overlaid image of the distorted
FA and distorted CC and Fig. 5f illustrates the overlaid image of the corrected
FA and distorted CC. In Fig. 5f, the reconstructed CC exceeds the region of the
FA image and it is inconsistent with the WM in FA image(indicated by green
arrows). Figs. 5g and 5h show the overlaid images of corrected FA image and
corrected CC. The two proposed method can decrease the inner brain displace-
ment and the multi-resolution B-spline registration is more robust than the BSP
in correction of inner brain displacement. It is obvious that both the WM in the
FA image and CC are fully matched in Fig. 5h.
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Fig. 5. Comparison of correction results in 3D: (a) 3D referenced image; (b) 3D dis-
torted DTI image; (c) and (d) 3D corrected DTI images; (e) Overlaid image of distorted
FA and distorted CC; (f) Overlaid image of corrected FA and distorted CC; (g) and
(h) Overlaid images of corrected FA and corrected CC

5 Discussions and Conclusions

The main limitation of DTI in image guided neurosurgery is untruthful anatom-
ical presentations because of the geometric distortion. Besides image processing
methods, the distortion correction of DTI can resort to the improvement of hard-
ware and pulse sequence compensation [12]. However, these methods cannot fully
calibrate the geometric distortions due to the eddy current, and they are difficult
to implement in clinical applications.

In this study, two kinds of B-spline registrations were used to rectify geometric
distortions in multiple DTI sequences. multi-resolution deformable registration
fully considered the global and local distortions. The mesh resolution of B-spline
transformation is a critical for the reason that mesh resolution reflects the space
between the control points on the 3D images, whereas an appropriate space can
deals with different scale distortion. With the only one B-spline transform, BSP
experiences difficulty in solving both global and local distortions only by setting
one mesh resolution at one registration.

The results of 2D and 3D displays proved that the multi-resolution B-spline
registration not only can correct the outer brain contour but also rectify the inner
brain displacement. It can be used as a practical way for distortion correction
in the system of computer assisted neurosurgery.
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Abstract. We discuss in this paper the problem of localizing and quantifying in-
tracranial aneurysms. Assuming that the segmentation of medical images is done,
and that a 3D representation of the vascular tree is available, we present a new
automatic algorithm to extract vessels centerlines. Aneurysms are then automat-
ically detected by studying variations of vessels diameters. Once an aneurysm is
detected, we give measures that are important to decide its treatment. The name
of the aneurysm-carrying vessel is computed using an inexact graph matching
technique. The proposed approach is evaluated on segmented real images issued
from Magnetic Resonance Angiography (MRA) and CT scan.

1 Introduction

Fig. 1. Aneurysm types1

Aneurysms are dilatations in the wall of a blood
vessel, leading to little pockets. Aneurysms can be
saccular, fusiform or dissecting, see Fig. 1. In this
article we are interested in saccular aneurysms
which are connected to the vessel by a narrowed
zone called the neck. If not treated, an aneurysm
may burst causing a stroke and in most cases the
death of the patient.

The decision of treating an aneurysm or just
observing it is made according to its risk of rup-
ture. When the treatment is needed, two possi-
ble ways exist: either embolization using a plat-
inum coil, or clipping. A lot of studies and statis-
tical surveys have been done in order to know what factors affect the rupture of an
aneurysm [1,2,3], and thus help in making the best decision about the treatment. Ac-
cording to these studies the most important factors are: size, shape, neck, and location
of the aneurysm.

A lot of work has been done in the domain of intracranial aneurysms, most of which
is about segmenting the vascular tree and giving the user a 3D view of the aneurysm.
This segmentation can be statistical [4], or it can be based on the tubular shape of
vessels [5,6,7,8]. In [9], a morphological characterization of the aneurysm is given in
order to predict the rupture rate, and thus decide if there should be a treatment.

1 http://nyp.org/health/neuro-cerbaneu.html
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In this paper, we suppose that the segmentation is done, and we go further. The
set of voxels representing the cerebrovascular tree goes through several processes in-
cluding: extraction of vessels’ centerlines, detection of aneurysms, quantification and
localization of the detected aneurysms. An approach based on Dijkstra’s algorithm [10]
is proposed to get thin, connected and centered centerlines. These centerlines are then
used to study the evolution of the diameters and automatically detect aneurysms. Blood
vessels have a cylindrical shape and thus their diameters are almost steady, whereas
those of aneurysms change considerably. Relevant measures of found aneurysms and
their location are then given using a partial graph matching technique. To our knowl-
edge, this is the first time these steps are performed together to detect, quantify and
localize intracranial aneurysms.

2 Methods

2.1 Centerlines Extraction

Extraction of blood vessels centerlines can be done either while segmenting these blood
vessels [7,8,11,12], or after segmenting blood vessels from medical images as in our
case. Various methods for centerline extraction are proposed for different uses. Some
categories of these methods are presented in [13] along with the usually desired prop-
erties of centerlines. Since we want to use the centerlines to study the evolution of
blood vessels diameters, these centerlines should be: 1. connected: the centerlines we
are looking for should be 26-connected, 2. thin: a centerline is thin if each voxel of
the centerline has only two of its neighbors in the centerline, except for the extremi-
ties which have one neighbor in the centerline, 3. centered: the centerlines should be
centered within the vascular tree, and 4. connections between branches: should be as
perpendicular as possible, see Fig. 2. Finally, the algorithm should be efficient since it
is a step out of four in the processing chain, besides cerebral vascular trees are complex.

In the following, we call skeleton the set of centerlines. The longest centerline is
called the main centerline, while the others are called branches. The main centerline
and each branch have a diameter which is the mean diameter of the corresponding
blood vessels.

Main centerline using Dijkstra’s algorithm
with Euclidian distance (a), the wanted

centered centerline (b)

Connection between branches: (a) the
connection is not perpendicular, (b) the

wanted perpendicular connection

Fig. 2. Important features of the desired centerlines
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To fulfil our requirements, we propose a centerline extraction method that falls in
the distance-based methods category. The main idea of these methods is to construct a
shortest distance tree (SDT) [10]. After the construction of such a tree, we get a graph.
Nodes of the graph are the voxels of the object. The voxels will be connected (a connec-
tion between two voxels corresponds to an edge in the graph) in a way to minimize the
distance to a source voxel S, hereafter called Distance From Source (DFS). The main
centerline is then extracted by tracing fromE, the voxel with maximum DFS, back to the
source S, and thus is connected and thin by construction. The use of a heap for the prior-
ity queue makes the complexity of these methods of O(NlogN) where N is the number
of voxels and thus computationally efficient. However, using the Euclidian metric as the
distance to minimize leads to a centerline that cuts the corners, see Fig. 2. Several vari-
ations of this algorithm were proposed to solve the ”cutting corners” problem and get
centered centerlines [14,15,16]. The common idea is to use another distance function
while constructing the tree to privilege voxels near the center of the object.

(a) (b)

Fig. 3. Our method. (a) Flowchart. 50 is a sufficient number to extract all significant branches in
all our experiments. (b) Result of the method on a real dataset with a zoom on the branching.

Our method is illustrated on Fig. 3. First, the source voxel is chosen automatically,
to be sure that it is an extremity of a vessel. We construct a SDT taking an arbitrary
voxel as a source, the end voxel (furthest one of the arbitrary source) is necessarily an
extremity and is used as the source voxel for our algorithm.

We use the following distance function instead of using the Euclidian distance:

d(v1, v2) =
dist(v1, v2)

1 + (DFB[v1] + DFB[v2])
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with: dist(v1, v2) the Euclidian distance between v1, v2, DFB[vi] vi’s distance from
the boundary, i.e. Euclidian distance between vi and the closest surface voxel (a surface
voxel is a voxel with at least one of its 26-neighbors missing in the voxel set).

The division by the distance from boundary (depth) privileges the voxels that are
far from the boundary, and thus enforce the centeredness. At the same time, we keep
using the Euclidian distance to find the end voxel at each iteration, and thus extract
branches in a descending length order. Each branch Bi is connected to a father branch
that is not necessarily Bi−1. Another important advantage of our algorithm is junctions
between branches. Putting DFS of voxels of extracted branches to zero, makes each
branch join its father in a perpendicular way (see Fig. 3). We emphasize on this point
because variations of branches’ diameters play a major role in aneurysm detection and
quantification, see Section 2.2.

The complexity of our algorithm is O(KNlogN) where K is the number of extracted
branches, and N is the number of voxels. One drawback of this method is that the set of
branches is not homotopic to the object. This method gives by construction a tree-like
structure with no loops.

2.2 Automatic Detection of the Aneurysm

One key characteristic that differentiates a saccular aneurysm from a normal vessel,
is that the normal vessel -which has a cylindrical shape- has an almost steady diame-
ter, whereas the aneurysm -which has an irregular shape- has a diameter that changes
considerably.

In order to model the appearance of a vessel, we define a set of points (x, y). Each
point corresponds to a voxel v of the branch, where:
• x, represents the distance between the voxel v and the origin of the branch j.
• y, represents the approximate diameter of the branch at v.

Fig. 4. Calculating y

To calculate y, we compute the real plane P passing
through the center of voxel v and perpendicular to the
branch, see Fig. 4. P cuts the vessel or aneurysm sur-
face on voxels vi, 1 ≤ i ≤ k. Let yi be the distance
between vi and v, y is defined as the average value of

yi : y =
∑k

i=1 yi

k
. Thanks to the centeredness of cen-

terlines, and perpendicular connections between branches,
y represents a reliable measure of the diameter changes.

Then, we use the least-squares method to find the quadratic function (y = a + bx +
cx2) that best matches our set of points. A more complex function could be used, but
this one is sufficient to discriminate between a diameter variation which is linear and a
one that is not. Since normal vessels have a cylindrical shape, their diameter is almost
steady and thus the value of c is very small. So, by thresholding on c, we decide if the
corresponding branch is in an aneurysm. The threshold we use has been found after
a ROC analysis, and is 0.2. The threshold is not null because a branch can traverse
several blood vessels (see branches in Fig. 3), which makes the associated diameter
change. However, this change remains insignificant in comparison with the one caused
by an aneurysm.
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(a)

Branch a b c

B1 2.494 -0.012 0.000
B2 1.250 -0.018 0.000
B3 2.156 -0.105 0.003
B4 3.509 3.831 -2.006

(b)

Fig. 5. Diameters variations for branches of the real dataset shown in Fig. 3: (a) The quadratic
functions, note that they closely match straight lines for vessels, which is not the case for the one
of the aneurysm (B4). (b) Table1 shows values of a,b and c for each branch.

During the extraction of branches, the above test is made on each branchBi to decide
if it is an aneurysm or not. Branches that are in aneurysms are saved in a list to be treated
later for quantification.

2.3 Aneurysm Quantification

The construction of a shortest distance tree creates an oriented graph. The nodes of
the graph are the voxels. The oriented edges link these voxels together to minimize
their distance from the source voxel. Voxels of an aneurysm are the voxels that can
be reached from voxels of the aneurysm branch by descending the graph. Since the
aneurysm branch is connected to the father branch, which is inside the holding vessel,
some of its voxels are inside the holding vessel, see Fig. 6-(a). In order to get rid of
these voxels, we only add voxels if their distance from the branch of the holding vessel
is greater than its radius, see Fig. 6-(b). The aneurysm’s neck is the surface voxels of the
aneurysm that have at least one neighbor that is not in the aneurysm, see Fig. 6-(c),(d).

(a)In yellow, voxels linked to those
of the aneurysmal branch.

(b) The voxels of the aneurysm. (c) The neck of the aneurysm.

Fig. 6. Compute aneurysm’s neck
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Following a discussion with a surgeon, we found out that the following measures of
the aneurysm are relevant to help the treatment decision:

• Size of the aneurysm: number of aneurysmal voxels.
• Maximum vertical diameter of the aneurysm (Diam1): to find this diameter, we

look for the surface voxel which is the furthest from the origin j of the aneurysmal
branch. Diam1 is the distance between this voxel and j.

• Maximum horizontal diameter of the aneurysm (Diam2): we look for the voxel m
of the aneurysmal branch with maximum DFB, then Diam2 = 2×DFB[m].

2.4 Localization of the Aneurysm

Fig. 7. Measures of an
aneurysm

Regarding the method we use to extract centerlines, the re-
sult is a set of branches where each branch Bi (except B0)
has a father branch. On the same time, the branches do not
correspond to blood vessels, a branch can be within several
blood vessels. To get a graph that represents the resulting
tree, we deal with segments. A segment is made of the vox-
els of a branch between its extremity and a junction, or be-
tween two successive junctions. We choose the widest seg-
ment (aneurysms excluded) as root, because it corresponds to the carotid (widest blood
vessel), and we construct a graph. In Fig. 8-(a), we see the graph corresponding to the
dataset of Fig. 5-(a).

(a)Initial graph (b)Graph without small branch (c)Final graph

Fig. 8. Graphs for the dataset of Figure5-(a)

Graph matching is a well known problem, and graphs can be with or without attributes
for both nodes and edges. If we consider our graph of segments without any attributes,
the matching process will be mainly a topological one, meaning that if a node has two
child nodes, it may be matched with any node with two children in the reference graph.
To get a more accurate matching, we choose to use a graph with attributes.

As can be seen in Fig. 8-(a), we associate to each node of the graph three attributes:
length, diameter of the segment, and number of children. The first two attributes are used
to give an idea about the importance of the segment. Segments with small diameters or
short lengths are considered very patient specific and unimportant. The corresponding
nodes are then deleted from the graph (Fig. 8-(b)). We can describe this deletion step as a
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simplification of the graph. To keep a trace of the deleted nodes, we use the third attribute
“number of children”. Each time we decide to delete a node, we increase the number of
children of its parent by one. Finally, we give the root of our graph a big number of
children (10), to be sure that the root will be matched with the carotid.

Only the third attribute (number of children), is then used in the matching step. It
helps to differentiate between vessels that are known to have a lot of bifurcations (vessel
M) and those who have less bifurcations (vessel A), and both issued from the same
parent (carotid), see Fig. 9.

Since the anatomy of the cerebral vascular tree is known, especially regarding the
main vessels, we use a reference graph. In practice, not all vessels are segmented from
acquired images, so several reference graphs with different resolutions are needed.
Fig. 9 shows the reference graphs we use.

(a) (b) (c)

Fig. 9. Reference graphs

The localization of the aneurysm is then reduced to an inexact graph matching prob-
lem. We use the VF algorithm [17] to solve this problem. We try first to match our
simplified graph with the most detailed reference graph 9-(a), then with 9-(b), and fi-
nally with 9-(c). In practice, more reference graphs can be used if needed.

3 Results

We validated our approach on a set of twenty patients, using both MRA and CT imaging
techniques for five and fifteen patients respectively. The set contained five males and
fifteen females, the patients’ ages varied from 33 to 78 years with an average of 51.68.

After segmentation, our method is applied on one connected component (either cho-
sen by the user, or the largest one if no choice is made). The results reported no error
of typeI (false negative) and two errors of typeII (false positive). Results of quantifica-
tions were compared to those provided by experts (experts provided quantifications for
only 10 cases). We use the following formule to calculate the error of a measurement:
E = 100× ‖provided−calculated‖

provided . For Diam1, the error varied from 0.8 to 48 with an
average of 11.7, for Diam2, it varied from 1.7 to 17.1 with an average of 8.25.

Since our technique of localization does not consider cases where the whole cere-
brovascular tree is present, the localisation was possible in ten cases and the localiza-
tions were distributed as follows: six aneurysms were localized on the carotid, two on
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Aneurysm located on the posterior component

Aneurysm located on the carotid

Aneurysm detected but not localized

Aneurysm located on the carotid

Fig. 10. Some examples of aneurysms detected by our method

vessel A1 and two on the posterior component. Fig. 10 shows some examples of the
detected aneurysms. Calculation time on a Pentium(R) 4 CPU 3.00 GHz varied from
4.5 to 145.23 seconds with an average of 29.97. In practice, this time is almost linearly
connected to the number of voxels.

4 Conclusion and Future Work

In this paper, we have presented a complete solution to automatically localize and quan-
tify intracranial saccular aneurysms. First, we use a new distance-based method to find
centerlines of the vascular tree. The centerlines are connected, thin (by construction),
and centered, due to our modification of Dijkstra’s algorithm. Moreover, since the dis-
tance map is calculated relative to a source voxel, the presented approach is invariant
to rigid transformations. Then, aneurysms are automatically detected and quantified.
Finally, the aneurysm is localized by graph-subgraph matching between a graph repre-
senting the centerlines and a reference graph.

When applying our method to 3D medical images, it proved to be fast and robust
since the quality of the results is independent of small segmentation artifacts.
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Abstract. We present a novel approach to multiclass learning using an ensemble-
based cascaded learning framework. By implementing a multiclass cascaded clas-
sifier with AdaBoost, we show how detection runtimes are accelerated since only
a subset of the ensemble is executed, thus making the classifiers suitable for com-
puter vision applications. We also propose a new multiclass weak learner and
demonstrate the framework’s ability to achieve arbitrarily low training errors in
conjunction with it. We tested our algorithm against AdaBoost.OC, ECC and M2
multiclass learning methods, on seven benchmark UCI datasets. In our exper-
iments, we found that our framework achieves higher accuracy on five out of
seven datasets and displays faster runtime efficiency in all cases.

1 Introduction

Many real-world classification problems involve predictions that require an assign-
ment to one of multiple classes. Since the probability of making a wrong prediction in
multiclass problems is higher than for binary classification, multiclass problems are
considered inherently more difficult to solve especially as class numbers increase [1].
Additionally, developing object detection systems that are not only robust, but also real-
time capable is an important goal of the computer vision community [2].

A large body of research has shown the effectiveness of boosting and ensemble-based
learning to provide robust and efficient solutions to binary class problems; nevertheless,
multiclass domains still present a formidable challenge to current approaches. Most
methodologies attempt to solve multiclass classification by reformulating the task into
a series of binary class problems [3] that results in multiple classifiers being created. The
most popular of these are one-against-all (OAA) and one-against-one (OAO) training
approaches [4,1], which carry a high runtime cost since all classifiers require execution
before a classification is possible.

Effective and theoretically proven extensions of AdaBoost have been proposed for
multiclass problems. Of these, AdaBoost.M2 proceeds by implementing a weak learner
that selects a set of plausible classes for a given sample at each iteration and evaluates
each hypothesis based on the related pseudoloss measure. Other approaches take advan-
tage of principles behind error-correcting output codes (ECOC) [5]. The best known
ECOC-based methods AdaBoost.ECC (error-correcting code) [6] and AdaBoost.OC
(output code) [7], iteratively construct coding matrices with uncorrelated errors at train-
ing, that become vital for accurate classification resolution.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 563–570, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



564 T. Susnjak et al.

Although the outputs of multiclass AdaBoost algorithms are single classifiers, the
entire ensemble must still be executed first, before a prediction can be made. This may
not satisfy real-time demands of high-speed data streams associated with vision detec-
tion. In addition, multiclass AdaBoost often cannot rapidly converge to adequately low
training errors on difficult datasets when using weak learners, which results in larger
and computationally costlier ensembles. In such instances, more sophisticated learn-
ers like C4.5 and CART are employed [8]; however, this trade-off leads to protracted
training runtimes.

In this paper we propose a novel multiclass learning method that decomposes the
training and detection task into cascades. We present also a new weak learner and
demonstrate how it can be combined with the cascaded architecture to attain arbitrarily
low training errors and accurate classifiers compared to current multiclass AdaBoost
approaches. We address the problem of detection runtimes for real-time critical do-
mains and show how our cascaded classifier need only execute a subset of its collective
ensemble in order to formulate a prediction, making it suitable for computer vision
applications. [2] have already aptly demonstrated how a multiclass problem can be de-
composed into cascades for multi-view face detection within the context of rare-event
detection. We put forward a method that is applicable to other, more general problems
also.

The suceeding section of the paper describes the weak learner and the details of our
cascaded multiclass architecture. We tested our classifiers on seven benchmark multi-
class University of California at Irvine (UCI)1 datasets, whose results we discuss in the
remainder of the paper.

2 Multiclass Cascade Learning

We begin first by describing the details of our weak learning algorithm and boosting
before outlining the structure of the cascaded multiclass framework.

Inspired by the speed and efficiency of calculating optimal thresholds for simple de-
cision stump learners on binary class problems as demonstrated by [9], we extended this
underlying principle to calculating multiple optimal thresholds for k-class problems. In
effect, we end up with a domain partitioning weak learner that is an extension of [10], in
that that partitions are not necessarily disjointed. Given a sorted vector of k-class feature
values, we first calculate the optimal threshold value and direction for each class label.
Our learner achieves this by manipulating the weight distribution of a current example
at each step of the traversal k-times with respect to all class labels. The manipulation
of the weight distribution of a current example is a form of normalization. The effect
is that for each class label the weight of the current example is dynamically altered to
reflect a binary class distribution in which the allocation of weights is 50-50 between
the target class label and the rest.

The first step of calculating optimal binary-class distribution thresholds for a vector
of k-class feature values is not sufficient on its own since it does not generate enough
discriminatory information that is necessary to resolve conflicting predictions of multi-
ple class labels for a given sample. We counter this problem by calculating a secondary

1 URL ”http://archive.ics.uci.edu/ml/”
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Algorithm 1. Cascaded multiclass learning
INPUT: training examples (v1, y1), (v2, y2), ...(vn, yn) where vi is a feature vector ∈ V
and y is a class label
OUTPUT: multiclass weak classifier (tf

k ,vf , mek) k = class, K = total number of
classes, wi = weight for an element i, vf

i = value of feature f for element i, tf
k =

threshold/direction on feature f , S+
k = total sum of weights for class k, S−

k = total sum of
weights for non-class k, W +

k , W−
k = current sum of weights, nck = normalization

coefficient for class k, error
right/left
k = classification errors on each direction, mek =

minimum classification error for a certain class k,

for each hypothesis do
compute nck

initialise S+
k , S−

k

for each feature f do
sort vf

for each i in vf and each class k...K do
W +

k =
∑

(nck.wi), where yi = k
W−

k =
∑

(nck.wi), where yi = k

errorright
k = W +

k + S−
k − W−

k

errorleft
k = W−

k + S+
k − W +

k

mek = MIN(errorright
k , errorleft

k , mek)
if (new minimum mek) then

store (tf
k ,vf , mek)

repeat algorithm for secondary thresholds in respect to the corresponding primary tf
k

threshold on the same feature vector which complements the original primary threshold.
The role of the secondary threshold is to define an optimal value at which the primary
threshold is bound with respect to its direction. The result of this is that the feature vec-
tor is partitioned into k bins or intervals with every interval representing a class label
(Figure 1). Each partition is assigned a confidence value based on its accuracy and the
average error rate of all partitions defines the overall error rate for the given feature.

We use binary AdaBoost in order to re-weight all samples after generating each
hypothesis. The weight of incorrectly classified samples is increased in proportion to
the competence of the last hypothesis and in the case of a sample value falling into a
region of overlapping class partitions, a prediction is awarded to a class label associated
with the partition carrying the highest confidence.

The multiclass cascade we propose consists of k number of layers with each layer
trained to predict a given class label. The cascade is also two dimensional whereby
each layer contains within it a further nested cascade to facilitate the training process
and ensure low training error (Figure 1). For clarity we will refer to each layer of a
nested cascade denoted as Mn in this figure, as a node.

The training proceeds as follows: the initial node of the first layer is trained on all
samples until a predefined number of boosting iterations are completed. Once this cri-
terion is met, the node is assessed for accuracy and the correctly predicted samples
belonging to the best performing class label are removed from further training of the
current layer. The training for the subsequent node proceeds with samples belonging to
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Fig. 1. Example of our weak learning algorithm partitioning the feature vector space on the
Pendigits UCI dataset (left). Diagram of the architecture of the proposed cascaded multiclass
framework (right).

k-1 class labels until the training essentially becomes a binary problem, after which the
class label with the best accuracy becomes the designated label for the layer. Conse-
quently, as each new node is constructed, training takes place on samples of class labels
that are most difficult to discriminate from one another while the easier samples are
removed in order to facilitate the process.

After a layer has been completed, cascade training restarts in the same fashion, only
this time without samples belonging to the class label that was designated to the pre-
vious layer. As a result, the training problem is continuously decomposed into simpler
learning tasks containing a total number of k-1 class labels until a layer for each class
label has been trained. The final cascade structure with all its constituent nodes can be
visualized as an inverted pyramid.

The selection of the most appropriate class label with its corresponding samples for
removal after each node is trained, is a critical component of this learning framework.
The hit rate of the selected class determines the proportion of its samples that will
be removed from further training of the layer. If this is low then the ongoing training
of the given layer will not benefit by becoming appreciatively easier for the task of
discriminating between classes. Also the training will not become less computationally
expensive and most importantly the misclassified samples of a given node will no longer
have the possibility of being correctly learned, thus ensuring that the training error will
increase.

The false positive rate of the selected class is crucial since these samples may com-
prise instances of the class label that is eventually to be designated to the layer which
we do not know a priori. If that is the case, then an arbitrarily low training error will
not be attained and the given layer will not generalize well. Therefore the ideal scenario
is that a selected class label achieves near 100% hit rates while attaining the vital false
positive rates at 0%. Since this is not likely to occur consistently on majority of difficult
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datasets using the simple weak learner described earlier, a solution is required to handle
the false positive predictions after each multiclass node is trained.

We formulate the solution to the problem of false positive detections by training
an additional auxiliary node attached to the original with the major difference that the
supporting node is trained as a binary class problem using simple binary thresholds.
The training set for the auxiliary nodes is comprised of the correctly predicted samples
belonging to the selected class label of the multiclass node which form the positives
while the negatives consist of all samples that are the false positives. Boosting iterations
are executed in the auxiliary node until all the negatives have been correctly classified.
The negatives are returned to the layer where the multiclass training continues while
the correctly classified positives are removed and forwarded to the subsequent layer for
training.

The problem of how to separate remaining samples from the final class after the last
multiclass node has been trained is addressed using the same strategy in order to ensure
zero training error for each layer. The samples belonging to the designated class label
for a layer are assigned as positives while the remaining samples are negatives. The final
auxiliary node for the layer is trained until all the samples have been correctly learned.

During detection time the prediction for a given sample is reached by evaluating
it against individual nodes which return a vector of all possible class labels and their
associated confidences. The confidences represent the sum of all class confidence la-
bels which registered a hit from each weak classifier. The class label with the highest
confidence sum is selected as the winning label.

The runtime classification of a given sample is efficient compared to most other ap-
proaches. While ECOC-based, OAO and OAA approaches to multiclass training require
that all classifiers be executed in order to formulate a prediction, our classifiers undergo
the calculation of only a subset of their complete makeup. As an unseen sample enters
the cascaded structure, it will be ejected from a layer if any member node classifies it as
matching its label, after which time the sample will be forwarded to the next layer until
it reaches the layer that matches its class label. In this case, if the sample is correctly
classified, it will be evaluated by every multiclass node within a layer. All multiclass
nodes will reject the given sample as a negative while only the final auxiliary node will
accept it as matching the layer class label. Additionally, as a sample instance propa-
gates deeper into the cascade, the classification accelerates since there are a decreasing
number of nodes at each step.

3 Experiments

We evaluated our algorithm on seven benchmark multiclass datasets from the UCI ma-
chine learning repository. We implemented AdaBoost.OC and ECC to compare with the
proposed algorithm, while making use of existing results from [11] for AdaBoost.M2.
For datasets with both training and test sets, we ran the experiments ten times; other-
wise, 10-fold cross-validation was employed in conjunction with 10 training repetitions
for a total of 100 runs. All results were averaged and in the presence of randomness,
standard error was reported. For the multiclass cascade, we trained four different clas-
sifiers for each dataset with different parameter settings for determining the maximum
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Fig. 2. Training and test error graphs for Pendigit, Vehicle and Glass datasets

number of weak classifiers per multiclass node. The sizes were 5, 10, 25 and 50. Each
cascade layer target was set to a 100% hit rate for the designated class label and a 0%
false alarm rate for every final auxiliary node. The terminating criterion for the entire
cascade was zero training error. For a fair comparative analysis, AdaBoost ECC, OC
and M2 classifiers were trained using decision stumps, while the total number of boost-
ing iterations was in line with experiments in [11,7], which are reported in the results
section.

We first examine the learning effectiveness and the generalization ability of our
method before analyzing the runtime performances. In Figure 2, the training and test
convergence patterns are illustrated for three selected datasets. It is clearly observable
that during training, OC and ECC classifiers converge considerably faster in the initial
boosting iterations; however, the cascaded classifiers catch up and eventually reach zero
training error unlike their counterparts. This pattern was consistent across all datasets.
Particularly on larger training datasets, the OC and ECC classifiers converged more
rapidly to a given point from which the training error decreased marginally, and reached
zero training error only once. Stagnation in the subsequent convergence indicated the
inability of OC and ECC approaches to improve learning on challenging datasets when
given a weak learner and a naive training architecture. On the other hand, while the
training cost of the cascaded classifiers was higher at onset, they converged to a zero
training error with only one exception. This demonstrated the efficacy of our strategy to
employ a stepwise decomposition of a training multiclass problem into cascades under
direction of the boosting process. The method strengthens a weak base learner to the
extent that arbitrarily low training error rates become achievable.

The test error graphs, seen also in Figure 2, mirror those of their associated training
convergence patterns. Correspondingly, the accuracy rates of the OC and ECC classi-
fiers is preferable over the cascaded classifiers when considering the initial boosting
rounds; nevertheless, our experiments illustrated that in many cases, subsequent rounds
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Table 1. Results from seven UCI datasets, featuring comparisons of error proportions on test sets,
total numbers of boosting rounds per classifier and the detection runtime in seconds per sample
to the accuracy of ±10%

Multi-Class Cascaded ECC M2 OC
DATASET Node Sizes Eibl[11]

5 10 25 50

PENDIGIT test error 0.067 0.071 0.067 0.053 0.15 ±0.01 0.186 0.144 ±0.002
boosting iterations (4157) (3722) (4715) (5085) (2000) (2000) (2000)
execution runtime 4.3e-05 6.1e-05 1.2e-04 2.2e-04 8.5e-04 - 1.0e-04

SATIMAGE test error 0.152 0.145 0.139 0.147 0.228 ±0.004 0.182 0.163 ±0.002
boosting iterations (2621) (2608) (2760) (2745) (2000) (2000) (2000)
execution runtime 1.9e-05 2.6e-05 4.1e-05 6.9e-05 4.0e-04 - 7.7e-05

VOWEL test error 0.616 0.541 0.735 0.688 0.611 ±0.013 0.543 0.626 ±0.01
boosting iterations (1109) (1368) (2085) (3419) (2000) (2000) (2000)
execution runtime 4.3e-05 7.0e-05 1.4e-04 2.8e-04 9.9e-04 - 1.1e-04

SEGMENTATION* test error 0.0554 ±0.008 0.0390 ±0.005 0.0511 ±0.007 0.0459 ±0.004 0.081 ±0.014 0.084 0.0468 ±0.017
boosting iterations (814) (978) (1297) (1513) (2000) (2000) (2000)
execution runtime 1.3e-05 2.6e-05 5.2e-05 7.3e-05 5.2e-04 - 9.2e-05

VEHICLE* test error 0.299 ±0.016 0.245 ±0.019 0.26 ±0.009 0.27 ±0.011 0.345 ±0.046 0.353 0.386 ±0.03
boosting iterations (721) (787) (809) (976) (2000) (2000) (2000)
execution runtime 9.0e-06 1.3e-05 1.8e-05 2.8e-05 2.7e-04 - 6.8e-05

GLASS* test error 0.278 ±0.025 0.319 ±0.027 0.3 ±0.027 0.328 ±0.01 0.37 ±0.075 0.25 0.36 ±0.078
boosting iterations (309) (360) (592) (985) (500) (500) (500)
execution runtime 9.7e-06 1.6e-05 3.5e-05 6.0e-05 1.1e-04 - 2.1e-05

IRIS* test error 0.0733 ±0.018 0.0800 ±0.016 0.0867 ±0.019 0.0533 ±0.018 0.079 ±0.037 0.055 0.066 ±0.027
boosting iterations (50) (65) (123) (228) (500) (500) (500)
execution runtime 2.2e-06 3.8e-06 7.0e-06 1.4e-05 4.8e-05 - 1.7e-05

contribute to an improved accuracy of the proposed algorithm over the OC and ECC
methods, while being comparable in the rest. This is supported by the figures in Table
1, which lists the final accuracy rates of all classifiers across the seven datasets, with the
best performing and statistically significant results highlighted.

Table 1 also reports the execution runtimes in seconds for all classifiers except M2.
The best performing results are highlighted. The results show that all the fastest de-
tection times are achieved by the cascaded classifiers and in particular by those with
the smallest node sizes. It is significant, that in most cases the most accurate classi-
fiers have also registered faster runtime performances. Out of ECC and OC classifiers,
consistently faster runtimes were archived by OC classifiers. The accelerated execution
runtime of the cascaded classifiers can be explained by the fact that only a subset of the
entire ensemble requires evaluation per instance, in contrast to the naive implementation
of monolithic ensembles of ECC and OC. Since each layer in a cascade is embedded
with multiple exit points, most layers will only be exposed to partial execution even
if the target class label for a particular candidate instance is assigned to the last layer.
Moreover, as a candidate sample propagates through a cascade, the size of the layers
also decrease in size; thus, further minimizing the execution time.

We observed that further execution runtime increases can be gained. Currently the
performance bottleneck lies with the evaluation of the domain partitioning of the mul-
ticlass weak classifiers which increases linearly with the number of classes. This can
be seen from Glass and Iris datasets where the cascaded classifiers comprised of sig-
nificantly smaller ensembles, yet only performed marginally better than ECC and OC
classifiers. In these instances, the ratio of multiclass weak classifiers greatly outweighed
the binary weak classifiers. We believe that by implementing lookup tables at detection
time for each multiclass node, a significant improvement can be realized.
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4 Conclusion

In this paper we have presented a unique cascaded training algorithm for multiclass
ensemble-based problems, as well as a new weak learning method to accompany it. We
demonstrated the ability of our strategy to create robust and real-time capable classifiers
that are appropriate for time-critical computer vision applications with faster runtimes
than AdaBoost.OC and ECC.

Most multiclass algorithms based on weak learners cannot achieve arbitrarily low
training errors on difficult datasets and therefore resort to computationally more com-
plex learners, which results in protracted training runtimes. Using seven benchmark
UCI datasets, we have show how a simple weak learner can be combined with a mul-
ticlass decomposition strategy that organizes an ensemble into cascades. We demon-
strate the ability of our approach to reach arbitrarily low training errors while displaying
stronger generalization rates in five out of seven datasets compared to AdaBoost.OC,
ECC and M2 when using very weak learners.
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Abstract. Proliferation of gestural interfaces necessitates the creation
of robust gesture recognition systems. A novel technique using Mutual
Information to classify gestures in a recognition system is presented. As
this technique is based on well-known information theory metrics the
underlying operation is not as complex as many other techniques which
allows for this technique to be easily implemented. A high recognition
rate of 98.55% was achieved, with recognition occurring in under 10ms.

Keywords: Mutual Information, Pattern Recognition, Classification,
User Interface.

1 Introduction

The recent proliferation of touch screen, accelerometer based, haptic, and other
gestural interfaces necessitates the creation of robust gesture recognition systems
to ensure their fast and reliable operation. The inclusion of these interfaces in
modern electronic devices (e.g. mobile phones, hand-held touch devices [15], and
computer game consoles [2]), which often have access to limited processing power,
requires these recognition systems to be computationally efficient to allow the
classification of input at a near real-time speed which is considered acceptable
to users [10]. This paper presents a lightweight, simple to implement recognition
system, based on information theory techniques, which fulfils these criteria, and
details the results of testing as to illustrate the effectiveness of this system.

2 Recognition Problem

The recognition problem addressed is that of the correct classification of two-
dimensional glyphs [12], of the type routinely used as control input for touch
screen, stylus or wand driven devices ([8] gives an example control interface).
A set of sixteen gestural input glyphs is employed, as seen in Figure 1, which
has previously been used (in whole or in part) during the testing of this type of
system [7,16], and is believed to offer a reasonable cross section of the possible
gestures that would be found in modern user interfaces.

The recognition of these glyphs must be shown to be robust, as even a single
user system may have to deal with “noisy” input, for various reasons [17]. The
recognition provided must also be shown to be computationally efficient, allowing
recognition at a rate that may be considered to be in real time, from the user’s
perspective.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 571–578, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Unistroke gestures

3 Recognition Using Mutual Information

The proposed technique has two basic sections, the first of these concerns the
processing of raw data to transform it to a more usable form. The data is then
passed to the classification system, which performs the comparisons against a
template bank.

The data capture system used is touch screen based, and reads user input as
a set of N Cartesian coordinates sampled from a single continuous motion. This
method was chosen as it is analogous to myriad accelerometer, wand and mouse
based interfaces to modern electronic devices.

3.1 Pre-processing

The initial processing steps performed are not uncommon in classification sys-
tems, and consist of the re-sampling, rotation and scaling of the raw data.

User input was found to be of varying size (i.e. the number of points), due to
factors such as the speed with which the gesture was made and the data capture
technique. The first pre-processing step normalizes the number of points. The
raw data are re-sampled, interpolating to ensure that all points are of a fixed
size and equidistantly spaced, leaving a vector of points, N ′. Figure 3.1 shows
a re-sampling of a single input of size N to create a processed set of points
at size of N ′. The second pre-processing stage rotates the gesture based on
the angle between the first recorded point of the input, and the centroid of
the input, see Figure 3.1, so the angle is uniformly 0c. This mitigates any error
caused by poorly orientated input, and is required to ensure the robustness of the
recognition technique. Finally the gestures are scaled to have a fixed bounding
box. Each (x, y) value is transformed to lie within the range ±κ (an arbitrarily
chosen scaling constant), where

v′ = 2κ
(
v −min(V )
max(V )

)
− κ, v ∈ V. (1)

This is applied separately to the (x, y) values (v is an arbitrary symbol) and
κ = 1.
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Fig. 2. Resampling and subsequent rotation of an input glyph

3.2 Mutual Information Analysis

The actual recognition method for these glyphs is based on Mutual Information
(MI), a probabilistic method for quantifying the interdependence of two signals.
It has previously been employed as an analytical technique in many areas [3,5,4],
including classification tasks [1,14], but appears not to have been applied to the
problem of gesture recognition.

The weighted mutual information of two discrete time-series variables, T and
U , is defined as

I(T ;U) =
∑
i,j

w(ti, uj)P (ti, uj) logn

P (ti, uj)
P (ti)P (uj)

(2)

where P (ti), P (uj), and P (ti, uj) are the individual and joint probability distri-
butions of T and U respectively. In general terms, the MI of two signals quan-
tifies their interdependence; therefore if T and U are entirely independent, then
I(T ;U) = 0, but in all other cases I(T ;U) > 0. The use of weights w(ti, uj) in
MI can increase recognition accuracy [11,6]. This scales I(ti, uj) either upwards
if ti ≈ uj, or downwards if ti 
= uj. This creates a reward structure for correct
values, whilst penalising any pairs of values that are not correctly identified.

The weighting function employed in this paper is a Gaussian distributed func-
tion of the absolute difference of the two input values, scaled by σ. Initial experi-
mentation showed that the application of the weighting matrix improved results
considerably, but only for very small variances, so σ2 = 10−2, while κ = 1.

User input is read in the form of a vector of Cartesian coordinates, U , which is
then re-sampled, rotated and scaled as described previously. These coordinates
are then separated into their x and y components, and discretised into R equally
sized bins R ∈ {3, . . . , 9}, leaving two discrete vectors Ux and Uy. The each
set of template data, T , is processed in exactly the same manner. The mutual
information, I, is calculated as I = I(Tx;Ux)× I(Ty;Uy).
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4 Experimentation and Results

Experimentation was carried out in three stages; ideal data recognition, user
data (including comparison with an existing system) and additional noise. These
testing stages were designed to test the limits of the system under different
circumstances. Idealised data testing shows performance with known inputs and
parameterized variations. The user data testing tests the ability of the method to
classify gestures in a real world context. The addition of noise to data tests the
ability of the system to recognise and correctly classify distorted data, which is
an important test for any system that may not be deployed in an ideal scenario.

4.1 Ideal Data Recognition

A set of perfect patterns (precisely defined, uniform inputs) were created, which
consisted of five points joined by four straight lines. The position of the final
point of the pattern was then repositioned to a total 121 different locations,
which were uniformly distributed inside the pattern, to create a test set. An
example of one of these patterns may be seen in Figure 3.
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To ensure that the system could recognise data reliably all of the 121 data
items were both used as a test set and a template set for these experiments.
The system was presented with each of the 121 data items in turn, and then
logged both the classification given and the MI score returned at R = 7. The
system achieved a 100% accuracy in classification during these tests, i.e. each
input presented was identified as its corresponding data item from the template
bank. This shows that the system is able to accurately distinguish between large
sets of relatively similar gestures and retain a good degree of accuracy.

To investigate the variance in MI results across increasingly distorted versions
of the same input, the MI scores returned when the input shown in Figure 3 was
compared with all of the 121 templates. Figure 4 shows that higher recognition
values lie on the arc where the pattern retains exactly the same length, i.e. the
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points at which the length of the fourth line in the pattern retains the same
length as in the recognition template. When two ideal data patterns are of the
same length re-sampling will produce many corresponding points along the first
three straight lines increasing the MI score.

4.2 User Data

Sets of test data, consisting of three examples of each of the sixteen Figure 1
glyphs, were collected from 26 test subjects. Four data items were not recorded
due to experimenter error, resulting in a total of 1244 unique data items being
used for testing. The testing was carried out using a leave-one-user-out testing
strategy; in turn, each user was supplied probes, and all remaining 25 sets of
user data formed the gallery.

Considering the fast and lightweight nature of the MI system, a suitable com-
parison is the $1 recogniser [16] (which uses a geometric measure for classification
and utilises the same pre-processing steps). This has been shown to operate at
a faster speed than both a Rubine Classifier [13] and a Dynamic Time Warping
based matcher [9], and has at worst comparable but often more accurate recogni-
tion to these systems. The same gesture set and testing strategy were employed.
The recognition rate and recognition speed was recorded for various re-sampling
values of N with both systems.
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The accuracy of the MI technique reached a maximum recognition rate of
98.55% while the $1 recogniser reached a maximum recognition rate of 96.46%.
The confusion matrix in Figure 7 shows the results for the MI classifier. For all
values of R > 3 the recognition technique out performed the $1 recogniser in
classification and speed. Figure 5 shows the MI technique’s highest recognition
rates (7 ≤ R ≤ 9) compared to the absolute highest recognition rate achieved
by the $1 recogniser.
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The speed at which each technique recognised and classified an input gesture
was recorded, this was calculated by sequentially recognising each of the 1244
data items and averaging the net time taken. Experiments were run on a desktop
computer with Intel R© CoreTM2 Quad CPU Q2800 running at 2.33GHz and 4GB
of RAM with Java version 1.6.0 11. Figure 6 shows the speeds at which the MI
system performed recognitions (binning values 7 ≤ R ≤ 9; note these render
to the same line). The MI system took approximately half the time to perform
a classification that was required by the $1 recogniser for a give value of N ′.
The value of R was found to have little effect on the speed of the MI system in
comparison with the value of N ′.

4.3 Additional Noise

To further investigate the robustness of the recognition technique, a series of
experiments were run in which with additional noise applied to the probes be-
fore classification. The noise, η, was applied according to a directed, Gaussian
distributed function

ηn+1 = ηn + d |(N : μ, σ)| d ∈ {−1, 1} (3)

where d defines the directionality of the noise, and will change with a probability
of P (dn+1 = −dn) = N

2 , yielding one expected change in the directionality of
the noise for each probe. Noise is applied independently to both the x and y
components of the signal, so at any time each component will have a separate
and independent η. The noise is cumulative, which ensures that the signal will
not be raised and lowered repeatedly; rather it will increased or decreased in a
natural manner over time. This is arguably similar to the atypicalities found in
human movements.
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The same testing technique was employed across the new data set. The results
of these experiments can be seen in Figure 8. The best recognition rates were
achieved at low σ and μ values, where the recognition rate peaked at the 98.55%
recorded during the user testing experiments, and recognition rates show a steady
decrease as both μ and σ is increased. Even at the largest values μ = 10 and
σ2 = 10 (note: maximum bounds of the glyphs were approximately 350 by 350
pixels before processing) the lowest recognition rate recorded was still 75.8%,
which is twelve times greater than the näıve rate for this template set.

5 Discussion and Conclusions

Mutual information has been shown to work well when applied to the recognition
of 2D gestures. In this series of experiments the MI system was shown to classify
gestures with a high degree of accuracy; with a 100% recognition rate on artificial
gesture data and 98.55% with user gesture data. The addition of noise to the
user data lowered the accuracy of recognitions, although a recognition rate of
over 75% was achieved in the worst conditions.

The recognition system managed to perform recognitions, on average, in under
70ms in the worst cases (highest R and N ′ values). The optimum recognition
rates (98.55%) were achieved in under 10ms. The limiting factor in terms of speed
of recognition was found to be the re-sampling rate N ′, this is not considered a
problem as the optimum value for N ′ will, in most circumstances, be dictated
by the sampling rate of the hardware in question. In the case of the machine
used during the testing covered in this paper the maximum number of samples
collected for any gesture was less than 500 points and was regularly found to
be lower than 200 points. It is safe to assume that systems that have a higher
sampling rate are also likely to have more processing power available for the
MI recognition technique itself. For a user interface to be seen as responsive by
users, it is suggested that the system should respond in under 100ms [10], the MI
based system fulfils this requirement amply. It is also significantly more accurate
and faster than other algorithms.

6 Further Work

As the x and y components of the signals are analysed seperately this method
can be simply extended to a third dimension, allowing for input from a 3-axis
accelerometer based device. As the technique has been found to be so fast, a large
template bank was used during these experiments; template reduction techniques
may be adapted to further increase recognition speed, which could allow a whole
new area of low computational power micro-devices to incorporate gesture based
control techniques into their software.
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Abstract. We propose a new boosting method for classification of time
sequences. In the problem of on-line classification, it is essential to classify
time sequences as quickly as possible in many practical cases. This type
of classification is called “early classification.” Recently, an Adaboost-
based “Earlyboost” has been proposed, which is known for its efficiency.
In this paper, we propose a Logitboost-based early classification for fur-
ther improvements of Earlyboost. We demonstrate the structure of the
proposed method, and experimentally verify its performance.

Keywords: TimeSequence classification,Logitboost,EarlyRecognition.

1 Introduction

Classification of time sequence data is one of the most important problems in
machine learning and computer vision, and is applicable to many practical prob-
lems including on-line handwriting recognition [1] and the classification of human
behaviors [12]. Time sequence classification is typically tackled using genera-
tive models such as HMM [11]. These models require the entire sequence data
{x(τ)}T

τ=1 in general, but making a classification decision at an early time t on a
time sequence 1 ≤ t < T is desirable in many practical applications. On the other
hand, many classification methods that are based on the discriminative models
have been intensively developed in recent years. Support Vector Machine [14],
Adaboost [2] and Conditional Random Field [8] are well known for their high
performance, and have been employed in several studies [7,5].

Our problem is determining the class of a sequence of length T at an early
time t ≤ T by using only the early time dataset {x(τ)}t

τ=1; this problem is
called “early classification” in this paper. In other words, the early classification
problem is to classify a time sequence as quickly as possible, before the sequence
ends. For example, consider the problem of driver behavior recognition from
images captured by a camera installed in a vehicle [12] for driver assistance
systems that make driving comfortable and safe. If we detect a sign of dangerous
movements such as mobile phone use while driving, we would like to warn the
driver quickly before the behavior finishes and causes any accidents.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 579–588, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Outline of early classification by boosting. Boosting generates a powerful clas-
sifier at each time t, and updates by adding an optimized weak classifier.

Recently, an Adaboost-based method called “Earlyboost” [13] has been pro-
posed for early classification. In [6], the multi-class version of the method is
also discussed with statistical background, and promising results are reported.
However, these models are based on the original Adaboost [2]. Though the Ad-
aboost is known as a powerful discriminative model, there must be many ways
to improve the performance of the system, as the Adaboost has been modified
by many researchers.

In this paper, we propose an extension of Earlyboost by using Logitboost [3].
Logitboost is an extension of Adaboost that improves classification performance
by the maximum likelihood approach with logistic regression. Since the Early-
boost is based on the Adaboost, we expect further improvements of early clas-
sification by adopting the Logitboost algorithm (Fig. 1).

In section 2, we briefly review the previous boosting methods. In section 3, we
propose a Logitboost-based early classification technique for the binary classifi-
cation problems and the multi-class classification problems. The fourth section
is devoted to experiments, and section 5 concludes this paper.

2 Background

2.1 Adaboost and Earlyboost

First, we briefly review Adaboost. Let xi ∈ R
d and yi ∈ {1,−1} denote the

training data sample and its corresponding label, respectively.N is the number of
sample-label pairs. Adaboost constructs committee function F (x) by combining
a number of weak classifiers fm(x) : R

d → {−1, 1} as
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FM (x) =
M∑

m=1

cmfm(x), (1)

where c is called importance weight and m indexes the weak classifier.
The key elements of Adaboost are the propagation of weight variables. Denot-

ing wi as the propagation weight for i-th datum, Adaboost increases the weights
wi of samples that are misclassified by the weak classifier at each iteration m
(i.e. yi 
= fm(xi)) by wi ← wi exp(cm).

Theoretically, Adaboost is derived by minimizing the “exponential loss func-
tion” [3], which is defined as follows:

J(F ) =
1
N

N∑
i=1

[exp(−yiF (xi))] . (2)

Given l− 1 iterations have finished, Adaboost optimizes the next weak classifier
fl(x) and importance weight cl by using the previous step’s weight wi. The min-
imization of (2) is boiled down to the following equation by a Taylor expansion:

fl(x) = argmin
f(x)

1
N

N∑
i=1

[−wiyif(xi)]. (3)

The pseudo code of Adaboost is shown in Algorithm (1).

Algorithm 1. Standard Adaboost
Initialize wi = 1

N
, i = 1, . . . , N .

for m = 1, 2, . . . , M do
(1)Fit the weak classifier fm(x) ∈ {−1, 1} using weight wi on the training dataset.
(2)εm = Ew[1(y �=fm(x))].

(3)cm = log
(

(1−εm)
εm

)
.

(4)wi ← wi exp[cm1yi �=fm(xi)], i = 1, 2, . . . , N .
(5)wi ← wi∑N

i=1 wi
.

end for
Output sign[F (x)], where F (x) =

∑M
m=1 cmfm(x).

Earlyboost is an application of Adaboost for early classification [13], which is
similar to Adaboost except that the input samples {xi(t)}N

i=1 are quite different
in each time frame, indexed by t = 1, 2, . . . , T . The strong classifier F is defined
as an additive model of frame-dependent weak classifiers ft.

FT (xi) =
T∑

t=1

ctft(xi(t)), (4)

where i indicates the index of a sequence sample.
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Earlyboost considers the distribution of samples as independent in each time
t. Hence the weak classifiers ft are independent for each time frame t, each ft

classifies only the observations in time frame t x(t) = {xi(t)}N
i=1, and propagat-

ing the sample weight wi(t) connects time frames. Following the almost identical
path of Adaboost, we can easily derive Earlyboost. The pseudo code of Early-
boost is presented at Algorithm (2). We can interpret this algorithm that each
weak classifier ft learns the classification boundary at time t to minimize the
classification error induced by the information up to time t− 1. Thus the result-
ing strong classifier will be good for early classification of sequences, even if the
sequence is short (τ ≤ T ).

Furthermore, Earlyboost.MH, which is applied to multi-class classification
problems, has been proposed. Please see [6] for details of Earlyboost.MH.

Algorithm 2. Earlyboost
Initialize wi = 1

N
, i = 1, . . . , N .

for t = 1, 2, . . . , T do
(1)Fit the weak classifier ft(x) ∈ {−1, 1} using weight wi on the training dataset.
(2)εt = Ew[1(y �=ft(x(t)))].

(3)ct = log
(

(1−εt)
εt

)
.

(4)wi ← wi exp[ct1yi �=ft(xi(t))], i = 1, 2, . . . , N .
(5)wi ← wi∑

N
i=1 wi

.

end for
Output the classifier sign[F (x(1 : τ ))] at any time 1 ≤ τ ≤ T

Incremental nature of Earlyboost may remind the reader of online boost-
ing [10,4]. We briefly explain the difference between these techniques and Early-
boost (early classification problem). Online boosting models are truly on-line:
these models update the entire classifier given a current input of an observa-
tion and its label (xi, yi). If the input data is time-stamped, the strong classifier
will change adaptively to classify the current input xi(t) correctly. In Early-
boost, however, we only optimize ft only at the t-th round of training, exploiting
x(t) = {xi(t)}i=1,...,N . And Earlyboost classifies the sequence data obtained so
far, not the current input xi(t).

2.2 Logitboost

Logitboost is a boosting method based on logistic regression [3], and the weak
classifiers f(x) : R

d → R are optimized by maximizing a likelihood. Since the
weak classifier is optimized directly (without weight variables), the committee
function is represented as F (x) =

∑M
m=1

1
2fm(x). Logitboost employs a “bino-

mial likelihood function” defined by Eq. (5) instead of the “exponential loss” (2)
in Adaboost, and the probability of yi = 1 is estimated by Eq. (6).
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Algorithm 3. Standard Logitboost
Initialize F (x) = 0 and probability estimates pi = 1

2
, i = 1, 2, . . . , N

for m = 1, 2, . . . , M do
(1)Calculate the working response zi and weight wi by Eq. (8).
(2)Fit the weak classifier fm(x) using weighted least squares as (7).
(3)F (x) ← F (x) + 1

2
fm(x) and pi ← 1

1+exp(−2F (xi))
.

end for
Output the classifier sign[F (x)]

L(F ) =
1
N

N∑
i=1

[− log(1 + exp(−2yiF (xi)))]. (5)

pi =
1

1 + exp(−2F (xi))
. (6)

For maximizing the likelihood, we adopt Newton’s method. Then, we obtain
the following least square criterion to find the weak classifier fl(x):

fl(x) = argmin
f(x)

N∑
i=1

wi(zi − f(xi))2, (7)

zi =
y∗i − pi

pi(1− pi)
, wi = pi(1− pi), (8)

where y∗i = yi+1
2 . A standard Logitboost is summarized as Algorithm 3.

3 Logitboost Extensions for Early Classification

3.1 Binary Logitboost for Early Classification

We develop a sequential extension of Logitboost in a way similar to deriving
Earlyboost from Adaboost in [6]. Assuming the distributions of input samples
x(t) = {xi(t)}N

i=1 are independent in each time t, the framework of Logitboost is
applicable for time sequences. In this case, t-th weak classifier ft is only applied
to x(t), the samples on the same time frame. Using the Bayesian law, a posteriori
probability of y∗i = 1 at time t is given by

p(y∗i = 1|x(1 : t)) =
p(xi(t)|y∗i = 1)p(y∗i = 1|x(1 : t− 1))∑

k={0,1} p(xi(t)|y∗i = k)p(y∗i = k|x(1 : t− 1))
(9)

where x(1 : t) = {x(τ)}t
τ=1. Defining a sigmoid function σ(a) = 1

1+exp(−a) , the
posteriori probability is represented as p(y∗i = 1|x(1 : t)) = σ(a(t)), where

a(t) = ln
p(xi(t)|y∗i = 1)
p(xi(t)|y∗i = 0)

+ ln
p(y∗i = 1|x(1 : t− 1))
p(y∗i = 0|x(1 : t− 1))

. (10)
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The first term of Eq. (10) is a function with respect to xi(t), which is denoted by
ft(xi(t)), The second term with respect to the prior probabilities equals a(t−1).
Assuming the second term is zero at t = 1 (a(0) = 0), we obtain the additive
model as a(t) = ft(x(t)) +

∑t−1
s=1 fs(x(s)), which corresponds to the recursive

Bayesian inference. Now, the binomial log-likelihood is represented as

L(f1:t) =
1
N

N∑
i=1

[
− log

(
1 + exp

(
−2yi

(
t−1∑
s=1

fs(xi(s)) + ft(xi(t))

)))]
.

(11)
Assuming pi as the prior at time t, the derivatives for Newton’s method F (x) ←
F (x)−H−1(x)s(x) are computed as follows:

s(x(1 : t)) =
∂L

∂ft(x(t))

∣∣∣∣
ft(x(t))=0

=
2
N

N∑
i=1

(y∗i − pi), (12)

H(x(1 : t)) =
∂2L

∂ft(x(t))2

∣∣∣∣
ft(x(t))=0

= − 4
N

N∑
i=1

pi(1− pi). (13)

The weak classifier is determined by using the weighted least squares as (7).
Finally, the Logitboost for early classification is summarized in Algorithm 4.

Algorithm 4. Binary Logitboost for early classification
Initialize F (x) = 0 and probability estimates pi = 1

2
, i = 1, . . . , N .

for t = 1, 2, . . . , T do
(1)Calculate the working response zi and weight wi by Eq. (8).
(2)Fit the weak classifier ft(x(t)) using weighted least square as (7).
(3)F (x(1 : t)) ← F (x(1 : t − 1)) + 1

2
ft(x(t)) and pi ← 1

1+exp(−2F (xi(1:t)))
.

end for
Output the classifier sign[F (x(1 : τ ))] at any time 1 ≤ τ ≤ T

3.2 Multi-class Logitboost for Early Classification

Multi-class Logitboost [3] maximizes the multinomial likelihood given by

L(y∗, p) =
K∑

k=1

y∗k log pk, (14)

pk,i =
expFk(xi)∑K

j=1 expFj(xi)
(15)

where index k ∈ {1, . . . ,K} denotes class, K is the class cardinality, y∗k = {0, 1} is
the label and Fk is the classifier of class k. The sequential multi-class Logitboost
is derived in a similar way to deriving sequential binary Logitboost.
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Choosing a base class k = K arbitrarily, and considering the multi-class
Bayesian law, the likelihood (14) is reformulated to the additive model as

L(g1:K,1:t) =
1
N

N∑
i=1

[
K−1∑
k=1

y∗k,i

(
t−1∑
s=1

gk,s(xi(s)) + gk,t(xi(t))

)

− log

(
1 +

K−1∑
k=1

exp

(
t−1∑
s=1

gk,s(xi(s)) + gk,t(xi(t))

))]
, (16)

where gk,t(xi(t)) = log pk,i − log pK,i; also note that gK,t = 0 at all time t. For
Newton updates, we differentiate (16) and obtain the following derivatives:

sk(x(1 : t)) =
1
N

N∑
i=1

(y∗k,i − pk,i), (17)

Hj,k(x(1 : t)) = − 1
N

N∑
i=1

pj,i(δj,k − pk,i), (18)

where j, k = 1, . . . , J − 1. Approximating the Hessian matrix as diagonal, the
updates are produced as

gk,t(xi(t)) ←
y∗k,i − pk,i

pk,i(1− pk,i)
. (19)

Assuming the diagonal Hessian matrix, the model learns weak classifiers of K
classes independently. Instead, we obtain computationally efficient solutions as
Eq.(19). We can fit the weak classifiers by a weighted least squares regression of
gk,t(xi(t)) with weight wi = pk,i(1 − pk,i) without the base class K. However,
the optimization of classifiers should not depend on choosing base class K, so
the symmetrization of classifiers is necessary. The conclusive update procedure
with symmetrization is given by

fk,t(xi(t)) =
K − 1
K

(
gk,t(xi(t))− 1

K

K∑
k=1

gk,t(xi(t))

)
(20)

where gk,t, k = 1, . . . ,K are computed by (19). The multi-class Logitboost for
early classification is summarized in Algorithm 5.

4 Experiments

4.1 Settings

We conducted experiments with two kinds of tasks (Fig. 2). The first experi-
ment was on-line handwriting recognition. Two datasets were taken from the
“Kuchibue” database: one is the English alphabet and the other is Japanese
“hiragana” characters. Each sequence corresponds to a trajectory of writing a
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Algorithm 5. Multi-class Logitboost for early classification
Initialize Fk(x) = 0 and probability estimates pk,i = 1

K
, k = 1, . . . , K, i = 1, . . . , N .

for t=1,2,. . . , T do
(1)Calculate the working response gk,t by eq. (19) and weight wi = pk,i(1 − pk,i).
(2)Fit the weak classifier fk,t(x(t)) into gk,t(x(t)) using weighted least squares (7).
(3)Set fk,t ← K−1

K
(fk,t(x(t)) − 1

K

∑K
k=1 fk,t(x(t)))

(4)Update Fk(x(1 : t)) = Fk(x(1 : t−1))+fk,t(x(t)) and pk,i ← exp(Fk(xi(1:t)))∑
K
j=1 exp(Fj(xi(1:t)))

end for
Output the classifier arg maxk[Fk(x(1 : τ ))] at any time 1 ≤ τ ≤ T

Fig. 2. The experiments. (A) Handwriting recognition task consists of English alphabet
and Japanese hiragana recognition. (B) Driver behavior recognition task. Six joints are
tracked by optical flow, without any markers.

complete character, and the length of the sequence was aligned to T = 50 by
linear interpolations. The observed features xi(t) consisted of the 2D coordinates
of a stylus pen tip on a pressure sensitive tablet and their velocity (d = 4). The
performance of the methods was evaluated via 10-fold cross validation.

Our second experiment involved driving behavior recognition. A driver’s be-
havior was recorded at 60 fps by a video camera installed in a driving simulator.
Seven people participated in the experiment, and each person drove 30 times.
The six joints of drivers were tracked by using optical flows, and the coordi-
nates of joints (left and right wrists, elbows, and shoulders) were obtained on
the 2D images. Thus, the feature xi(t) was d = 24 dimensional vector (12-dim.
observations and 12-dim. velocities). The number of behavioral patterns was
K = 12, which included “manipulating A/C,” “adjusting the mirrors” and so
on. All time frames were manually labeled, and segmented into behavior se-
quences. Each subject’s behavior dataset is trained and evaluated separately by
6-fold cross validation, and the final result is averaged over seven subjects. The
details of datasets are shown in Table 1.

4.2 Results

We compared the proposed multi-class sequential Logitboost with the previous
method of Earlyboost.MH [6]. Both methods employed the “decision stump” as
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Table 1. Details of datasets for each experiment

Task alphabets hiraganas driving behavior

The number of classes K 52 83 12

The number of sequences N 14000 52500 � 650 for each subject

The dimension of features d 4 4 24
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Fig. 3. Results of handwriting and driving behavior recognition. The red solid lines
represent the averaged error rate of the early classification of the proposed method,
and blue dashed lines represent those of Earlyboost.MH. (a) Alphabet (52 classes), (b)
Japanese hiragana (83 classes), (c) Driving behavior recognition (12 classes).

a weak classifier. The averaged error rate of the test dataset of the alphabet
task is shown in Fig. 3(a) where the vertical axis denotes the averaged error
rate and the horizontal axis denotes the input sequences’ time t. The hiragana
recognition task’s result is shown in Fig. 3(b), and the result of the driving
behavior recognition task is shown in Fig. 3(c). The red solid lines denote the
result by using the proposed sequential multi-class Logitboost, and the blue
dashed lines denote the results by using Earlyboost.MH.

All results show that the proposed method is superior to Earlyboost.MH,
which is based on Adaboost at all times. In general, Logitboost outperforms
Adaboost due to the difference in optimization. In our early classification frame-
work, however, we think the number of adaptable parameters also contributes to
performance improvements. In Earlyboost.MH, the weak classifier is constrained
to f(x) : R

d → {−1, 1}, and we have only T weight parameters {ct}T
t=1. On the

other hand, the proposed Logitboost-based model optimizes the weak classifier
f(x) : R

d → R directly: this corresponds to extending the Earlyboost.MH with
2 × T × K parameters. Therefore, Logitboost fit the weak classifiers into the
maximizing likelihood better than Earlyboost.MH.

The objective of experiments is to measure the usefulness of Logitboost-based
early classification against Earlyboost.MH, which is based on Adaboost. Thus we
did not employ the state-of-the-art visual features such as SIFT [9], and utilized
simple raw observations and velocities. We assume this is one reason that the
classification rates remains not very high.
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5 Conclusion

We presented a new boosting method that extends Logitboost for early classi-
fication of time sequences. We developed the formulations for both binary and
multi-class problems by a Bayesian approach, and experimentally confirmed the
superiority of the proposed method.

In this paper, we adopt the Logitboost for improving Adaboost-based early
classification. However, many boosting models have been proposed by various
researchers. Applying these models to the early classification will help more
understanding of the problem.
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Abstract. Pairwise dissimilarity representations are frequently used as
an alternative to feature vectors in pattern recognition. One of the prob-
lems encountered in the analysis of such data, is that the dissimilarities
are rarely Euclidean, and are sometimes non-metric too. As a result the
objects associated with the dissimilarities can not be embedded into a
Euclidean space without distortion. One way of gauging the extent of
this problem is to compute the total mass associated with the negative
eigenvalues of the dissimilarity matrix. However,this test does not reveal
the origins of non-Euclidean or non-metric artefacts in the data. The aim
in this paper is to provide simple empirical tests that can be used to de-
termine the origins of the negative dissimilarity eigenvalues. We consider
three sources of the negative dissimilarity eigenvalues, namely a) that
the data resides on a manifold (here for simplicity we consider a sphere),
b) that the objects may be extended and c) that there is Gaussian error.
We develop three measures based on the non-metricity and the negative
spectrum to characterize the possible causes of non-Euclidean data. We
then experimentally test our measures on various real-world dissimilarity
datasets.

Keywords: non-Euclidean pairwise data, metric, embedding.

1 Introduction

Pairwise dissimilarity representations offer a powerful alternative to vectorial or
feature-based characterisations of objects. Specifically, they provide a natural
way of capturing the relationships between objects that are not characterised
by ordinal measurements or feature vectors [6]. One way to translate such data
into a vector representation is to represent the similarity data using a kernel
matrix, and to embed the data into a vector space using kernel principal com-
ponents analysis. In this way a vector representation is obtained by projecting
the dissimilarity data into a vector space of fixed dimension.

However, one of the problems with dissimilarity representations and their em-
beddings is that the distance measures can not be used to construct a Euclidean
vector space if the underlying Gram matrix contains negative eigenvalues. If this
is the case, then the data can not be embedded into a real-valued Euclidean
space, and must instead be embedded into a complex valued or Krein space [5].
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In order to analyse non-Euclidean dissimilarity data using traditional geomet-
ric machine learning or pattern recognition techniques, we must first attempt
to rectify the data so as to minimize the non-Euclidean artifacts. Examples of
translating similarities into vector representation include using only the positive
definite subspace of the distances, adding a constant amount to the off diagonal
elements, i.e. the constant shift embedding [4], or manifold embedding (e.g. the
spherical embedding in [1]).

Each of these approaches is based on assumptions concerning the sources
of the negative eigenvalues. The positive definite subspace embedding assumes
that metric violations are an artifact of noise and that the distances in the
negative sub-space do not carry any significant discriminative information. The
manifold embedding assumes that the Euclidean violations are geodesic and that
the data resides on a manifold. Recent studies [2,4] have showed that the negative
eigenspace can contain valuable information. Moreover, Euclidean correction can
lead to poor classification performance. Thus, before using any of the above
approaches to attempt to rectify non-Euclidean data, it is advisable to analyze
the underlying causes.

We model the distribution of non-Euclidean pairwise data in the following
three situations: a) that the objects reside on the surface of a sphere (a simple
manifold) and that the pairwise similarities are geodesic distances across the
manifold, b) a non-metric dataset based on the distances between the surfaces
of randomly positioned balls having different radii ( Delft’s balls data) and c)
a noisy dataset with the Gaussian noise added to the distance between points
in Euclidean space. By observing the spectrum of negative eigenvalues of the
resulting Gram matrices and the additive constant required to render it metric,
we identify three measures that can be used to characterise the above sources
of negative eigenvalues. A variety of dissimilarity datasets are tested on the
measures. Our analysis provides insight into the non-Euclidean behaviour of
dissimilarity datasets and can be used to select appropriate embedding methods
suited to the non-Euclidean data in hand.

Another secondary contribution of the paper is to develop a measure that
assesses the contribution of each object to the mass of negative eigenvalues that
provides further insight into the cause of non-Euclidean behavior. In this paper,
we test a finer measure that assesses the contribution of each object to the mass
of negative eigenvalues. In this way it is possible to determine whether the non-
Euclidean artifacts are attributable to the dissimilarities associated with a few
outlying objects or are uniformly distributed throughout the dataset.

2 Characterising the Causes of non-Euclidean Data

In this paper we are concerned with the sources of non-Euclidean data. Our
overall aim is to identify the causes of a given set of non-Euclidean dissimilarity
data so as to find out suitable correction methods to make them more Euclidean.
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2.1 The Causes of non-Euclidean Data

We begin by identifying three reasons for non-Euclidean behaviour [2].

Manifold. If the data points reside on a curved manifold, then the distances be-
tween them are intrinsically non-Euclidean (but still metric). This is one pos-
sible source of non-Euclidean distances. Here we model such data as points
on the surface of a sphere, a simple surface where distances are easy to com-
pute. It is simple to simulate patches with various degrees of curvature that
depart from Euclidean behavior by changing the curvature of the patch. The
dissimilarity measurements on the sphere are metric but non-Euclidean.

Extended objects. If objects are not point-like but rather are extended in
space, then the distances between them are measured between the closest
points on their surface. As a result the distances will be non-Euclidean and
possibly non-metric. Delft’s balls data [2] is a typical example. Randomly
positioned balls are generated with varying radius. The pairwise dissimilari-
ties are the surface distances between the balls. As a result only the pairwise
distances between balls with zero radius are Euclidean. It is also simple to
modify the degree of non-Euclidean behaviour by adjusting the radii of the
balls.

Gaussian noise. The final source is Gaussian noise added to the original Eu-
clidean dissimilarities. This will generate data that is both non-Euclidean
and non-metric.
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Fig. 1. The negative eigenvalues of the resulting Gram matrix of 100 points on the
sphere, from extended objects and Gaussian noise as a function to the index of ordered
negative eigenvalues

2.2 Negative Spectrum

We study with the three simple modes of the occurrence of non-Euclidean pair-
wise data. The Gram matrix of non-Euclidean dissimilarity data is indefinite,
i.e. it has negative eigenvalues. One way to gauge the degree to which a pairwise
distance matrix exhibits non-Euclidean artefacts is to analyse the properties of



592 W. Xu, R.C. Wilson, and E.R. Hancock

its centralised Gram matrix. For an N × N symmetric pairwise dissimilarity
matrix D with the pairwise distance as elements, the centralized Gram matrix
G = − 1

2JD
2J ,where J = I − 1

N 11T is the centering matrix and 1 is the all-ones
vector of length N . The degree to which the distance matrix departs from being
Euclidean can be measured by using the relative mass of negative eigenvalues
or “negative eigenfraction ” FeigS =

∑
λi<0 |λi|/

∑N
i=1 |λi| [3]. This measure is

zero when the distances are Euclidean and increases as the distance becomes
increasingly non-Euclidean.

We commence by examining the negative spectrum of the Gram matrix un-
der the three models. Figure 1 shows the non-Euclidean dissimilarities from
the sphere and balls data-sets have spectrum which contain a strong negative
component, with a concentration towards the low end of the spectrum. The
non-Euclidean dissimilarities from Gaussian noise have a more slowly decreasing
negative spectrum. Each of the negative spectrum appear to follow an exponen-
tial decay. Thus the slope and the intercept from an exponential fit should be
able to discriminate at least the Guassian noise model from the remaining two
models. An exponential curve of the form y = aebx is fitted to the data, with
b the slope and a the intercept. These two parameters are used as measures to
characterise the negative spectrum.

2.3 Non-metricity

A distance measure is considered to be non-metric if it is either non-symmetric,
negative or violates the triangle inequality. A dissimilarity matrix rarely satisfies
the triangle inequality, but is usually positive [4]. Thus the violation of the
triangle inequality is considered when measuring non-metricity. A constant C =
maxi,j,k |dij + dik − djk| is computed and added to the off-diagonal elements
of the dissimilarity matrix so as to increase the amount of data that satisfies
triangle equality [3]. If C is zero, the pairwise dissimilarity is considered to be
metric. Moreover, the dissimilarity values over the sphere are metric. Thus a, b
and C can be used as three measures to identify the three modeled sources of
non-Euclidean behavior.

2.4 Object’s Contribution to the non-Euclidean Behaviour of
Dissimilarities

If the non-Euclidean artefacts are created solely by the set of distances to a few
outlying objects which are incorrectly placed, then it is possible to restore the
data to a Euclidean state by editing these objects from the dataset. Based on
this idea the notion of measuring the contribution of each object to the negative
eigenfraction of a dissimilarity matrix is introduced.That is, the fraction given
by the ratio of the sum of the negative distances originating from an individual
object to each of the remaining objects, divided by the total.

The points can be embedded in Krein space as follows Y =
√
ΛΦT where Λ

is the diagonal matrix with the ordered eigenvalues of centralised Gram matrix
as elements and Φ is the eigenvector matrix with the ordered eigenvectors as
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columns. When the centered Gram matrix has negative eigenvalues then those
dimensions of the embedding associated with negative eigenvalues are repre-
sented by imaginary numbers, and those associated with positive eigenvalues by
real numbers. In other words, the data are embedded into a pseudo Euclidean
or Krein space [5]. Under the embedding,the coordinate vector of point j is
yj = (

√
λ1Φ1j , ...,

√
λiΦij ,

√
λNΦNj)T . The contribution to the squared distance

between two points k and e is

d2
ke =

∑
i

(yk(i)− ye(i))
2 =

∑
i

λi(φik − φie)
2

The sum of negative squared distances and the sum of positive squared distances
from point k to all the remaining points are:

d2
k− =

∑
λi<0

λi

∑
e�=k

(φik − φie)
2, d2

k+ =
∑
λi>0

λi

∑
e�=k

(φik − φie)
2

Thus the fraction of negative squared distances from point k is

fpneig =
|d2

k−|
|d2

k−|+ |d2
k+|

This measure is zero for all objects (or points) when the distances are Euclidean
and non-zero for outlier objects. Thus the measure can be useful to identify
whether the non-Euclidean is caused by the second sources.

3 Experiments

To model distances sampled from a manifold, we commence with 100 points uni-
formly distributed on the surface of a 3D sphere with unit radius. The spherical
coordinates of an object are x = (r sin θ cosφ, r sin θ sinφ,r cos θ)T where r is
the radius of the sphere, θ is the elevation angle([0, π]) and φ([0, 2π]) is azimuth
angle. The pairwise geodesic distances are computed as the lengths of great cir-
cle arcs between pairs of objects. We can use the tangent space projection and
increase the radius or change the range of the elevation angle to control the
extent to which the patches deviate from a Euclidean surface, i.e. the degree of
non-Euclideanness in the dissimilarity matrix. In total 100 initial configurations
of points are used.

To model the extended objects, we pick 100 randomly positioned points in a
7D hypercube with length 100, and we take each point as the center of a ball
with radius r(r ≥ 0). The balls do not overlap. The pairwise distance is the
Euclidean distances between the centers of two balls minus the radii of the two
balls. We regard the balls with radius greater than 0 as non-Euclidean balls. We
vary the fraction of non-Euclidean balls, and take the fraction to be 0.1, 0,3, 0.5,
0.7 or 0.9 in our experiments. The radii of the non-Euclidean balls are 2, 3 or 4.
We also generate 100 balls with uniformly distributed radii ranging from 0 to 4.
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To model the Gaussian noise, we commence with 100 randomly positioned
points in a 3D Euclidean space and calculate the Euclidean dissimilarity matrix.
Then we add Gaussian noise with zero mean and various values of standard
deviation to the off-diagonal elements of the dissimilarity matrix to generate a
non-Euclidean dissimilarity matrix. The value of the standard deviation of the
Gaussian noise is 0.1, 0.3, 0.5, 0.7 and 0.9.

To ensure the results are comparable over the dissimilarity data in various
ranges and scales, all of the dissimilarity metrics are scaled such that the average
dissimilarity is unity. We calculate the negative eigenvalues of each dissimilarity
matrix and fit the average negative spectrum by an exponential curve to obtain
the slope b, the intercept a and the average metric constant C. The whole process
is repeated for a sample sizes of 500 and 1000 points.

Figure 2 shows the slope b as a function of the metric constant value C from
the non-Euclidean dissimilarities on the sphere, the ”balls” data and Gaussian
noise. As the negative spectrum of the Gram matrix from the Euclidean points
with Gaussian noise appears to be in a flat and linear in shape, so the value of
slope b is very small with a value around −0.04. For the dissimilarities from the
extended objects, the negative spectrum has a very sharp decreasing negative
tail (just few significant negative eigenvalue), so the value for the slope b has
a larger magnitude. Comparing the points on sphere and the ball data, there
are several negative eigenvalues in the tail and the decrease is less sharp. This
may explain why the slope of the non-Euclidean dissimilarities on the sphere
is intermediate between that of the Gaussian noise and the non-Euclidean balls
data. Another interesting finding is that the number of objects is not correlated
with the slope, especially for points on the sphere and Gaussian noise. In terms
of the parameters the three sources of negative eigenvalues are well separated
from each other.
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Fig. 2. The artificial non-Euclidean dissimilarity data caused by the manifold the data
resides on, the extended objects and the Gaussian noise
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We therefore use the above models to analyze a set of public domain dissimi-
larity data provided by the EU SIMBAD project consortium [2]. The Catcortex
dataset contains dissimilarities based on the connection strengths between 65
cortical areas of the cat brain from four regions. CoilDelftDiff, CoilDelftSame
and CoilYork are three dissimilariy datasets extracted from feature points de-
tected in the COIL image database computed using different graph edit dis-
tances. FlowCyto contains four histogram dissimilarities for samples of breast
cancer tissue. Newsgroups contains dissimilarities for messages in four classes
of newsgroups. PolyDisH57 and PolyDisM57 are the dissimilarites of randomly
generated polygons based on the standard and the modified Hausdorff distance.
Protein contains the dissimilarities of protein sequences based on an evolutionary
measure of distance. Woodyplants50 contains the shape dissimilarities between
leaves of woody plants. Zongker contains the dissimilarities between handwritten
digits based on deformable templates. Chickenpieces-cost60 contains 7 dissimi-
larity matrices from a weighed edit distance.
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Fig. 3. (a)The slope b as a function of the metric constant C; (b)The slope b as a
function of the intercept a

The left and right plots in Figure 3 respectively show the slope b and the in-
tercept a as a function of the metric constant value C, for the artificial samples
of 100 objects. The plots indicate that the non-Euclidean behaviour of Deflt-
Gestures, PolyDisM57, Woodyplants50, Zongker, Chicken pieces, Catcortex and
FlowCyto are likely to arise from Gaussian noise. On the other hand, the non-
Euclidean behaviour of the Newgroups, ProDom and DelftSame datasets is likely
to arise the non-Euclidean distances of a few outlying objects. We are unsure
about the origin of the negative eigenvalues for the Protein and PolyDisH57
datasets. For PolyDisH57 the cause may be a combination of data residing on a
manifold and the Gaussian noise. For the Protein dataset it may be a combina-
tion of data on the manifold and extended objects.



596 W. Xu, R.C. Wilson, and E.R. Hancock

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Index of ordered contributions to the negative eigenmass

 Co
ntr

ibu
tio

n t
o t

he
 ne

ga
tive

 ei
ge

nm
as

s

Fig. 4. Sorted each object’s contribution to the negative eigenvalues at Protein

We plot the individual contribution to the negative eigenmass for the Pro-
tein dataset in Figure 4. This shows that the negative eigenvalues are caused
by the non-Euclidean distances of just a few objects. The protein data is al-
most Euclidean with a very small negative eigenfraction value of 0.001. We have
explored the effect of applying a leave one out nearest neighbor classifier to
the dataset. When we edit out the effect of the outlier objects distances by
adding a constant to the squared distances to the remaining objects, we obtain
only a slightly smaller error rate of 0.47% compared to 1.9% for the original
distances.

4 Conclusion

This paper discusses three possible sources of non-Euclidean behavior in dis-
similarity data. We present three measures for analysing and determining the
causes of negative eigenvalues in a non-Euclidean dissimilarity matrix. The three
measures are based on distribution of the negative eigenvalues, and allow us to
determine if the case is a) that data resides on a manifold, b)that the objects
may be extended and c) that there is Gaussian noise.
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Abstract. This paper describes an improved version of our system for
robust detection of buildings with a gable roof in varying rural areas from
very-high-resolution aerial images. The algorithm follows a custom-made
design, extracting key features close to modeling, such as roof ridges and
gutters, in order to allow a large freedom in roof appearances. It starts by
detecting straight line-segments as roof-ridge hypotheses, and for each of
them, the likely roof-gutter positions are estimated. Supervised classifi-
cation is employed to select the optimal gutter pair and to reject unlikely
detections. Afterwards, overlapping detections are merged. Experiments
on a large dataset containing 220 images, covering different rural regions
with significant variation in both building appearance and surroundings,
show that the system is able to detect over 87% of the present buildings,
thereby handling common distortions, such as occlusions by trees.

Keywords: Building detection, Object detection, Remote sensing.

1 Introduction

Very-high-resolution aerial images are captured from The Netherlands at a yearly
basis, providing a recent overview of the country infrastructure. Updating of civil
community databases based on aerial images is time consuming when performed
manually, leading to a demand for automated interpretation of these images.
This is of particular interest in rural areas, since these cover a widespread area
together with a low population density, increasing the cost per citizen. Since
buildings are dominant features in those images, accurate extraction of their
locations is important. However, accurate and large-scale detection of buildings
in aerial images is a complicated problem, since buildings vary considerably in
appearance, may feature complex compositions and occlusions by trees occur
frequently. Besides this, large variations also exist in the source data due to
varying capturing conditions, illumination circumstances and sensor differences.
This causes large variations in both visual appearance and statistical properties.
Therefore, development of a building-detection solution that is able to handle
these issues is a rather complicated problem.

A. Berciano et al. (Eds.): CAIP 2011, Part I, LNCS 6854, pp. 598–605, 2011.
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In literature, localization of buildings in remote sensing data is researched
for decades, based on many different types of source data, including satellite
and aerial images, lidar data, etc. As the information content of these sources
varies from 2D grayscale images to 3D structural information, the proposals
vary from building localization to automatic 3D city reconstruction. However,
our country-covering datasets only contain color aerial images, disabling the use
of any 3D information. Relevant proposals in literature for detection of build-
ings in single color images are e.g. based on image segmentation [1]. There, the
input image is segmented using a range of parameters, resulting in multi-layer
segmented images. This is analyzed with a tree structure by means of rooftop
constraints. Potential buildings are evaluated relying on shadow information
and a fixed height. Other strategies include searching of closed loops [2]. In this
work, after mean-shift segmentation, edge pixels that form closed loops are con-
verted into polygons. These polygons are used to deduce the building shape.
Nosrati et al. [3] apply dynamic programming to line intersections for searching
of closed loops. Both rely on the visibility of the outer edges, which possibly dis-
ables detection of buildings in low-contrast situations. A combination of multiple
information sources is followed by Jin et al. [4], where three different detectors,
focusing at structural, contextual and spectral information, are applied for local-
ization of buildings in high-resolution satellite images. They report a significant
increase in detection performance by combining these detectors. Benedek et al. [5]
apply a probabilistic approach for building extraction, where building footprints
are represented by combinations of rectangular segments. The optimal building
configuration is retrieved based on a global optimization process.

Although many proposals report accurate results, the test data is often lim-
ited in both numbers and in-set variety. In contrast, we focus on robustness to
the above-described variations, and we have described a novel, specific algorithm
for localization of buildings with a gable roof in rural areas [6]. Whereas we aim
at applying the algorithm at a large-scale database, we have designed the algo-
rithm for robustness against both variations in building appearance, variations in
the source data and commonly occurring distortions, such as overhanging trees.
These constraints have guided us to design a more generic system, aiming at an
high overall score, instead of a very high score in a specific situation, which is a
different approach compared to many proposals in literature. In this paper, we
describe an improved version of the original algorithm, which still operates under
the above-mentioned conditions. Next to this, we will also present new and more
accurate results obtained with this system, where we used an extended version of
our test set, now containing more images and captured in three different years.

2 Algorithm Description

2.1 Preprocessing

Figure 1 portrays the schematic overview of our algorithm, based on [6].
Prior to image analysis, the image is segmented using a region-segmentation

procedure similar to [7]. Vegetated and large, uniform farmland areas are then
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Fig. 1. Schematic overview of our building detection system

discarded using vegetation detection and a minimum size constraint of 500m2.
Pixels (represented by RGB values) are marked as vegetation when they satisfy
the following empirically determined rule:

G ≥ min (1.175 · B , 0.975 ·R) . (1)
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2.2 Roof-Ridge Hypothesis Generation

Within the accepted regions of interest, hypotheses of occurring roof ridges are
generated by detection of straight line segments. For this, a Canny edge detector
is applied on a single-channel version O of the input RGB image, where the
employed color transformation is chosen such that clear transitions are expected
along roof ridges. Since roofs are usually either red or gray, and often contain a
shadowed roof side, the following transformation is selected:

O = 0.5 · (R + B) . (2)

Connected edge pixels forming straight lines are extracted based on a technique
described in [8], resulting in a set of line pieces. To enable by-passing of line-
interrupting objects, like chimneys, individual line pieces having a position and
orientation such that they jointly form a straight line are combined when they
are located near the same region segment.

2.3 Roof Gutter Position Estimation

For all hypotheses of occurring roof ridges, the set of likely roof-gutter positions
is estimated for both sides of the ridge. This results in a set of hypotheses of the
roof configuration, given by each combination of gutter positions at both ridge
sides, as displayed in Box 3 Fig. 1.

To identify the likely gutter positions, two rectangular regions located parallel
to the ridge are analyzed, where the region size is inferred from training data. For
ease of description, we assume that the ridge is oriented vertically. Within the
regions, vertical Sobel filters are applied to both the red and blue color channels,
since roofs are usually red or gray. Per color channel and for each column, the
resulting edge energy is sorted by magnitude, and divided into 4 groups, each
containing the sum of the represented 25% of the pixels. The resulting signal
matrix ES containing 8 features per column i is represented with a Gaussian
model. This model is trained from the first 10 columns, i.e. the columns closest
to the roof ridge. The distance towards the center of the ellipsoid is calculated,
which is proportional to:

D (ES (i)) ∼ e−
1
2 ([ES(i)−μES]T C−1

ES [ES(i)−μES ]), (3)

where μES and CES denote the mean and covariance matrix extracted from
the 10 training samples. Column i with D (ES (i)) satifying (1) local maximality,
(2) higher than twice the running average, and (3) larger than 66% of the running
maximum, is identified as roof-gutter position.

2.4 Roof Analysis

Each roof-configuration hypothesis is validated, where at first infeasible candi-
dates are rejected, and second, machine learning is employed to classify each
remaining configuration between roof half and non roof-half. This results in a
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likelihood value for each configuration, used to select the optimal roof configu-
ration for each ridge hypothesis and to discard low-valued detections.

The first step aims at rejecting very unlikely configurations by checking a
number of loose constraints on size, aspect ratio, shadow profile and vegetation
coverage. This step exploits physical properties of gable roofs, and is described
in detail [6].

All remaining configurations are subject to classification based on supervised
classification. For each of both roof halves, the following features are extracted.

1. Roof-Gutter Edge Orientation Histogram: a gradient orientation histogram
is extracted along the gutters, indicating the deviation in orientation w.r.t.
the ridge orientation. This histogram contains 6 bins representing 15◦ each.

2. Segmentation Features : The five largest clusters covering each roof half are
expressed as a percentage of the total amount of roof-half pixels.

3. Color Similarity Histogram: patch-based similarity analysis is employed to
investigate roof similarities. For each patch, the most similar patch is searched
(with a minimum distance constraint), and after sorting, the values for which
20%, 40%, etc. of the pixels are lower, are extracted.

Next to these features, also the ridge length, aspect ratio and ratio of roof-half
widths are extracted. The total feature vector consists of 51 features, containing
the 3 global features, 2× 16 features for each roof half, appended by their sum.
Note that during the training phase, we have also included the samples with
reversed roof halves. Classification is performed using a Support Vector Machine
(SVM) with radial basis function kernel, which outputs the distance towards the
decision bound, as a kind of likelihood information. For each ridge hypothesis,
the configuration with the highest value is selected as optimal configuration,
while configurations with a low SVM output value are discarded.

2.5 Detection Merging

Each physical roof may contain several detections, where at most one detection
corresponds to the actual roof ridge, as shown in Box 5 in Fig. 1. Therefore,
overlapping detections are fused using supervised classification, where we have
found that multiple classifiers rejecting detections in specific situations outper-
form a single, large classifier. As a result, we have installed multiple linear SVM
classifiers, each of them set up to analyze a specific situation. These situations
include differences in red profile, compliance with the expected shadow profile,
detections with complete overlap, etc. For each situation, we extract relevant
features, and append this by features representing the differences in likelihood,
length and angle between the ridges. The continuous output of each classifier is
subject to a threshold such that at most 0.5% of the positive training samples
are rejected. This threshold setting gives a trade-off between detections and false
alarms.

Note that each classifier fuses a small fraction of the overlapping detections. In
some cases, the optimal fusion process does not satisfy our generic principles, so
that not all overlapping detections are fused. Even then, the amount of detections
is reduced significantly.
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3 Experiments and Results

3.1 Dataset Description and Test Setup

The algorithm is tested on 220 ortho-rectified aerial images, captured in 2008,
2009 and 2010 during spring and fall time. All images are normalized such that
each pixel corresponds to 0.1m on the ground plane. The set contains 1, 523
buildings, including houses, garages, barns and small sheds, which are all marked
manually for evaluation purposes. The set is randomly divided in two equal parts,
denoted as SetA and SetB, where for each test, the other set is used for training.

The performance of our system is analyzed in two ways. First, we have eval-
uated the detection accuracy of the system, i.e. how accurate our algorithm
indicates the presence of a gable roof. Second, we have analyzed the accuracy
of the estimated building dimensions, i.e. how well the algorithm indicates the
building size. These two aspects are separated since we concentrate on detection
of buildings, where we consider the size estimate as a byproduct.

The detection performance is assessed using the following metrics:

– Recall: R = TP
TP+FN · 100%,

– Precision: P = TP
TP+FP · 100%.

We count a detection as a True Positive (detected building) when it overlaps
the roof ridge for at least 51%, all other detections are treated as False Posi-
tives (falsely detected buildings). Since we aim at localizing the somewhat larger
buildings in rural areas, we have neglected buildings smaller than 5 × 3 meters
based on a minimum roof-ridge length and building width. These minimum sizes
are chosen such that typical side-buildings, like e.g. garages, are still detected.

3.2 Results

The recall-precision curves for both sets are shown in Fig. 2. As follows from
this graph, our system is capable of detecting over 87% of the target buildings,
where for a detection rate of 80%, around 77% of the detections are correct. For
this specific working point, we have analyzed the performance in more detail.
Buildings are missed due to large occlusions by trees, or shadows from trees on
the roof. We have already reported in [6] that about 15% of the buildings are
covered by trees to a certain extent, where we add that about 2% of the buildings
have at least one roof half covered completely by trees (as in e.g. Fig. 3(h)).
In numerous cases, we still find a detection on the outer building border, but
these are counted as false detections. Other causes of misdetections are e.g.
low-contrast roof ridges, which especially occur at completely black roofs. Such
special cases may be handled by additional detectors, as e.g. applied in [4]. False
detections are mainly located at the outer building borders of missed buildings
and on gable-roof-like objects, including road segments. For both categories,
the SVM output is relative low, but not smaller than some detected buildings.
Fig. 3 displays some examples of correct detections, false detections and missed
buildings; more examples can be found on our website1.
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Fig. 2. Recall-precision curve for our system, shown for both setA and setB

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Examples of correct detections (a)-(d), false detection (e)-(f) and missed build-
ing (f)-(h). The estimated ridge positions are drawn green (TP), yellow (FP) or red
(FN); corresponding gutter positions are drawn dotted white .

We have also assessed the modeling capabilities of our algorithm by compar-
ing the estimated length and width against the ground-truth dimensions. The
found roof ridge is often smaller than the real roof length, due to chimneys and
roofs where the ridge ends in a triangular shape, as in e.g. Fig. 3(d). The main
cause for inaccurately found building widths are low-contrast gutters. Quantita-
tively, 80.2% of the detected ridges deviate less than 10% from the ground-truth
length, 83.7% of the estimated widths deviate less than 10% and 61.8% of the
detections have an area deviation smaller than 10%. We consider this as a reason-

1 See http://vca.ele.tue.nl/demos/buildingdetection/index.html.
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ably accurate result as our system is primarily targeting at localizing buildings
with a diverse test set, where numerous buildings are overlapped by trees.

4 Conclusions and Future Work

We have presented an improved version of our algorithm for detection of gable
roofs in very-high-resolution aerial images, focusing on rural areas. Our system
aims at detecting buildings with a high robustness in a generic way, and is
therefore designed with special attention to the large existing variations in both
building appearance and source data. This deviates from the common practice
to pursue high scores in a specific number of cases. A specific novel aspect of our
algorithm is the example-based detection-merging step, based on multiple linear
SVM classifiers. Tests on a diverse dataset, containing numerous geographical
locations, have shown that our system is able to localize over 87% of the buildings
larger than 5 × 3m, where for a recall of 80%, a precision of around 77% is
obtained. The reported system is able to detect around 8% more buildings than
our previously described system. Considering that our test set contains large
variations in both source data and target objects, and no height information is
incorporated in the detection process, we consider this as an accurate result.
Improvement of the modeling capabilities is part of our future work.
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